
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2011

A Topological Approach to Shape Analysis and Alignment A Topological Approach to Shape Analysis and Alignment

Benjamin David O'Gwynn
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
O'Gwynn, Benjamin David, "A Topological Approach to Shape Analysis and Alignment" (2011). All ETDs
from UAB. 2618.
https://digitalcommons.library.uab.edu/etd-collection/2618

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/2618?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

A TOPOLOGICAL APPROACH TO SHAPE ANALYSIS AND ALIGNMENT

by

B. DAVID O’GWYNN

JOHN JOHNSTONE, COMMITTEE CHAIR
NIKOLAI CHERNOV
THAMAR SOLORIO

ALAN SPRAGUE
EDWARD SWAN

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA
2011

Copyright by
B. David O’Gwynn

2011

A TOPOLOGICAL APPROACH TO SHAPE ANALYSIS AND ALIGNMENT

B. DAVID O’GWYNN

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

When analyzing multiple mesh models, an important first step is to find the

rigid transform that best aligns them. Many mesh alignment techniques exist, but

because they treat input meshes as a collection of surface samples, they tend to be

sensitive to surface variations between those meshes. We instead wish to align shapes

based upon an analysis of mesh topology, thus making it possible to align shapes with

similar part structures but varying surface geometry. To this end, we present a novel

algorithm that extracts a curve-skeleton from a mesh based on its connectivity, rather

than its surface geometry. We show that this method is robust to surface variation

and achieves consistent results across shapes in the same object class. We then will

present our system for mesh alignment based on our topological analysis of input

meshes, and we will show that our technique is able to align shapes with similar part

structures but differing surface shapes.

Keywords: Shape analysis, Mesh alignment, Skeleton extraction, Segmentation, Al-

gorithms

iii

iv

TABLE OF CONTENTS

ABSTRACT . iii

DEDICATION . viii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Shape Analysis and Alignment . 3
1.1.1 Aligning triangle surface meshes 3
1.1.2 The human approach to alignment 5
1.1.3 Part structure and alignment 5

1.2 Hypotheses . 7

1.3 Benefits of Our Approach . 7
1.3.1 Existing applications . 8
1.3.2 Simple first-pass solution 10

1.4 Overview of Thesis . 10
1.4.1 Contributions . 10
1.4.2 Outline . 11

2 PRIOR WORK . 14

2.1 Shape Alignment . 15
2.1.1 Problem Definition . 15
2.1.2 Surface Registration . 16
2.1.3 Orientation Normalization 19

2.2 Shape Parts and Alignment . 22
2.2.1 Mesh Segmentation . 24
2.2.2 Skeleton Extraction . 27
2.2.3 From Parts to Alignment 30

2.3 Connectivity Shapes of Isenburg et al 31
2.3.1 Connectivity-based Approach to Part Extraction 33

3 DEFINITIONS AND TOOLS . 34

3.1 Geometry and Topology . 34

3.2 Mesh as Topology . 36
3.2.1 Simplex and simplicial complex 36
3.2.2 Operations on simplicial complexes 38
3.2.3 Mesh as simplicial complex 41
3.2.4 Operations on mesh topology 42
3.2.5 Discrete Reeb Graph . 44

3.3 Least-squares Fitting of Two 3D Point Sets 46

3.4 Generalized Iterative Closest Point 48

4 THE BREADTH-FIRST GRAPH: Ĝ . 50

4.1 Breadth-first Graph Algorithm . 51

4.2 Segmentation from Ĝ . 52

4.3 Curve-skeleton from Ĝ . 55

4.4 Automatic Ĝ Generation . 57
4.4.1 Priming . 57
4.4.2 Hairs . 58
4.4.3 Distilling the Graph . 58
4.4.4 Automatic Ĝ algorithm 61

4.5 Conclusions . 63

5 EXPERIMENTAL DATA . 64

5.1 Requirements . 64

5.2 Data Set . 65

6 APPLICATIONS OF THE BREADTH-FIRST GRAPH 68

v

6.1 Segmentation . 68
6.1.1 Benchmark of Chen et al 69
6.1.2 Error metrics . 70
6.1.3 Issues with testing the breadth-first graph 72
6.1.4 Results . 73
6.1.5 Discussion . 78

6.2 Skeleton Extraction . 80
6.2.1 Connectedness . 82
6.2.2 Isometry invariance . 83
6.2.3 Centered . 83
6.2.4 Part preserving . 85
6.2.5 Robust . 87
6.2.6 Homotopy . 88
6.2.7 Surface genus . 88
6.2.8 Hierarchical . 89

6.3 Conclusions . 90

7 AUTOMATIC SHAPE ALIGNMENT USING Ĝ 92

7.1 The Correspondence Problem . 93
7.1.1 Correspondence error . 94
7.1.2 Correspondence algorithm 96

7.2 Automatic Alignment Algorithm 98

7.3 Results . 100
7.3.1 Landmarks and landmark error 100
7.3.2 Input conditions to test 105
7.3.3 Testing results . 106

7.4 Conclusions . 116

8 CONCLUSIONS AND FUTURE WORK 118

8.1 Validity of Hypotheses . 118
8.1.1 Hypothesis: Shape analysis through mesh topology 118
8.1.2 Hypothesis: Improving shape alignment through semantic

analysis . 119

8.2 Future Work . 120

LIST OF REFERENCES . 122

vi

APPENDIX

A ALGORITHMS TESTED BY CHEN et al 129

vii

viii

DEDICATION

To my parents, for teaching daily that my best ought to be my norm.

To my siblings, for showing by example how to be my best.

To my advisor, for never accepting anything less than my best.

To my Leah, for making me better than my best. This exists because of you.

ix

LIST OF TABLES

TABLE PAGE

4.1 Average iterations for distillation . 61

6.1 Centeredness of BFG skeletons for Chen database 84

6.2 Feature points extracted from breadth-first graphs of meshes of differ-
ing object classes . 86

6.3 Robustness of BFG part structure . 87

x

LIST OF FIGURES

FIGURE PAGE

1.1 Sources of shape data . 2

1.2 Explicit mesh information . 4

1.3 Alignment complications: shape variation 5

1.4 Semantic or part-oriented alignment 6

1.5 Our encoding of part structure as skeleton 8

1.6 Shape comparison and retrieval . 9

2.1 Example of surface registration . 16

2.2 Necessity of curve-skeletons in shape alignment 27

2.3 Volumetric thinning . 28

2.4 Reeb graphs . 29

2.5 Connectivity shapes of Isenburg et al . [42] 32

3.1 Simplices of dimension -1 through 3 37

3.2 Not a simplicial complex . 38

3.3 Simplicial complexes: closure, star, link 40

3.4 2D example of Path(V) . 44

4.1 Breadth-first graph Ĝ . 51

4.2 Mesh segmentation via Ĝ . 54

4.3 Curve-skeleton from Ĝ . 56

4.4 Distilation of Ĝ . 59

5.1 Princeton Shape Benchmark . 66

5.2 Object classes of Chen et al . 67

6.1 AutoBFG segmentations . 69

6.2 TopoBFG segmentations . 70

6.3 Triangulating dual mesh . 73

6.4 Chen benchmark results: Cut Discrepancy 74

6.5 Chen benchmark results: Hamming Distance 76

6.6 Chen benchmark results: Consistency Error 77

6.7 Chen benchmark results: Rand Index 78

6.8 Poor object class candidates for Ĝ . 79

6.9 Part preservation in BFG skeletons 85

6.10 Capturing part hierarchy in Ĝ skeletons 89

7.1 Alignment algorithm . 93

7.2 Automatic alignment using Ĝ . 99

7.3 Classes from Chen used in alignment 101

7.4 Performance curve . 103

7.5 Alignment results for identical meshes 107

7.6 Alignment results for identical meshes under noisy conditions 109

7.7 Alignment results for three different object classes 110

7.8 Results of alignment of similar shape 112

7.9 Alignment of similar shape under noise 113

7.10 Timing results for Gen. ICP and BFG alignment 115

xi

7.11 Handling of toplogical differences in alignment 116

xii

1

CHAPTER 1

INTRODUCTION

Recent technological advancements in the creation of 3D shapes have led to

substantial, easily accessible repositories of 3D data. This data can come from many

different sources such as range scans and 3D modeling packages (Figure 1.1). They

are stored in many different types of databases, and these databases generally store

models in arbitrary positions and orientations in R
3 with, at best, the coarsest level

of semantic information. Most tasks involving 3D models, such as quantitative shape

comparison and object recognition [38], shape retrieval [70], determining upright ori-

entation [33], view selection [15] and scene composition [84], require much more in-

formation than what is given explicitly in the database. As such, they are usually

analyzed and aligned as a preliminary step.

Our goal is to improve this preliminary step by decomposing the models into

their semantic parts and aligning them based on that part structure. In this work, we

explore the problems of shape analysis and alignment and provide a set of methods

for their solution. Specifically, we present a simple, robust means of decomposing

articulated shapes into their semantic parts and embedding that part structure in a

skeletal graph. We then use this skeletal graph to perform pairwise alignments of

shapes.

2

(a) Range scans [49] (b) 3D modeling suites (Blender 3D) [16]

Figure 1.1: 3D shape data can come from many different sources of shape data.
(a) Digital Michelangelo Project of Levoy et al . [49]. (b) Blender 3D modeling and
design suite [16]. Given these variety of sources, the position and orientation of the
data can arbitrary and non-uniform. This makes analysis difficult. Some means of
automatic shape alignment would increase the value of existing shape databases and
the applications that use them.

Our primary contribution, and our primary departure from existing literature,

is that we use a topological approach to extract a shape’s part structure, as opposed to

most existing approaches based on low-level geometric characteristics such as curva-

ture. The advantage of this approach is two-fold. First, by integrating part structure

into the process of alignment, it allows for more stability in the face of surface varia-

tion due to noise, differences in physiology, differences in surface sampling, and pose

variation. Second, our topological approach to shape analysis is efficient, automatic,

easy to implement and requires no more knowledge of geometrical analysis than the

ability to calculate the centroid of a set of vertices. Our system is an efficient, fire-

and-forget means to analyze and align large shape databases, and it requires no more

than a basic data structures and algorithms course to implement.

3

1.1 Shape Analysis and Alignment

In this section, we discuss the problems of shape analysis and alignment and

the high-level motivation for our approach to these problems. By shape analysis,

we mean the problem of decomposing a shape into its semantic part structure and

encoding that part structure into a skeletal graph. By shape alignment, we mean

rigidly transforming one shape so that it is aligned with another in a way that is

meaningful and satisfactory to a human observer. We motivate the problem of shape

analysis through the specific problem of alignment.

We first discuss how the primary form in which shapes are stored, the triangle

surface mesh, complicates the alignment process and how most existing solutions

approach this problem. We then explain how decomposing the shape into parts first

and aligning them based on that part structure more closely matches how humans

tackle the problem of alignment. This then motivates a discussion of the importance

of shape analysis to any system of shape alignment and how we take a different tack

from existing shape analysis methods.

1.1.1 Aligning triangle surface meshes

When aligning two shapes, the form in which they are stored is relevant. They

are most often stored as triangle surface meshes (or simply mesh). The only explicit

information that is stored in a mesh are the individual samples on the surface and

the local connectivity of each vertex (Figure 1.2). Based solely on this information,

4

(a) Surface sample
points (vertices)

(b) Local connectivity of sample points
(edges, faces)

Figure 1.2: The only explicit data given in a triangle mesh are (a) the sample points
on the surface and (b) the local connectivity of those sample points.

it is difficult to know exactly how to align two shapes. The two dominant approaches

to this problem either:

(i) correspond surface samples and align based on that correspondence, or

(ii) find the principal axes (best-fitting ellipsoids) and/or planes of symmetry of

each shape and normalize their orientation using that information.

If the models share common surface geometry, i.e. are either the same shape in slightly

different poses or are incomplete subsurfaces of the same underlying shape, then

approach (i) works well. Similarly, if the models share common planes of symmetry

then approach (ii) works well, even if the shapes are of different objects. Essentially,

these alignment methods treat input shapes as geometric monoliths.

However, surface noise, variation of sampling density, part articulation and

differing physiology (Figure 1.3) can present difficulties for these methods. When

5

(a) Variations in sampling density (b) Variations in pose, physiology

Figure 1.3: Existing alignment methods treat input meshes as geometric monoliths,
either as a collection of surface samples or as planes of symmetry. Variations in sam-
pling density (a) and especially pose or shape physiology (b) can present difficulties
for these methods.

these complications are introduced into the alignment process, it becomes apparent

that more information about the input shapes is needed.

1.1.2 The human approach to alignment

When humans align objects, the above concerns play less of a role than the

part structure of the shapes. That is, humans tend to decompose the objects into

parts first and align core regions to core regions and appendages to appendages. It

would be helpful if we could approach the problem from that standpoint.

1.1.3 Part structure and alignment

This leads us to those areas of shape analysis dealing with the semantic, or

human-oriented, aspects of shape. Specifically, we need some means to decompose

the shape into its semantically relevant part structure. Then we could find the shared

6

(a) How do we align these horses? (b) Find shared part structure

Figure 1.4: (a) How can we align these horse meshes? Their surface geometries are
very different, as are their principal axes and planes of symmetry. What we need is
an understanding of their shared part structure. That would allow us to solve for a
correspondence of parts which we could use to align them.

part structure between two similar shapes and align them based on that shared part

structure (Figure 1.4). This would allow us to account for part articulation and

surface variation more robustly. That is, if we can solve for the part correspondence

of input shapes, then surface variation between corresponding parts presents less of

a problem.

Many powerful techniques exist for this purpose. These methods examine

low-level geometric characteristics such as curvature, geodesic distances and dihedral

angles to find part boundaries that are then used to decompose the shape into its

semantic parts. Our contribution to the literature lies in the fact that we eschew all

complex geometric analysis and instead exploit the graph structure of the triangle

mesh to decompose the shape. Instead of framing semantic shape analysis as a ques-

tion of geometric surface characteristics, we approach it as graph problem. The result

is a simple yet surprisingly expressive and robust encoding of an articulated shape’s

part structure into a skeletal graph.

7

1.2 Hypotheses

It is with this insight that we introduce the two fundamental hypotheses of

this work. The first involves the value added of integrating part information into the

alignment process:

Hypothesis 1.1 Integrating the semantic aspects of shape, specifically the part struc-

ture of input shapes, into the process of alignment will significantly improve its robust-

ness to surface variation due to sampling density, noise, pose variation and differing

physiology.

The second is less obvious, but it involves our novel approach to the problem of

shape decomposition which will be introduced in Chapter 2, given a formal basis in

Chapter 3 and fleshed out in Chapter 4:

Hypothesis 1.2 It is possible to use a direct analysis of mesh topology to encode

the shape’s part decomposition into a 1D skeletal graph for highly articulated shapes.

This approach is simple, efficient, robust to surface variation and consistent for shapes

within the same object class.

We will gather data and test Hypothesis 1.2 first, since it is the basis of our methods

for Hypothesis 1.1.

1.3 Benefits of Our Approach

The goal of this work is to formalize and test our novel algorithms for:

(i) encoding the part decomposition of shapes into a graph which can be realized

in R
3 as a curve-skeleton (Figure 1.5)

8

(a) (b)

Figure 1.5: Our topological approach to shape analysis can take this chair shape (a)
and encode its part structure into a graph. This graph can then be realized in R

3 as
a curve-skeleton (b).

(ii) alignment of shapes based on the graph of (i)

1.3.1 Existing applications

Some common shape applications that would benefit from such a system are:

• Shape retrieval: The fundamental task of a 3D shape repository involves re-

turning a model to the user based on some criteria. Examples of repositories

would be Princeton’s 3D Model Search Engine [70], the Blender Model Reposi-

tory [17], and the Shape Analysis and Research Project (SHARP) [50]. A query

is most commonly text or tag based, but in some systems the query can be in

the form of an example shape or even a 2D sketch (Figure 1.6). Our method

of shape analysis produces curve skeletons that can be used as the referent for

sketch-based queries.

9

Figure 1.6: The Princeton Shape Database (Shilane et al . [70]), an example of a
sketch-based shape retrieval system. Our shape analysis methods (Figure 1.5) would
be useful to such a system.

• Determining upright orientation: The study of how humans determine

the upright orientation of objects is an active area of research. Fu et al . [33]

restricted their solution to the subset of man-made objects, but our methods

might be used to generalize their results to all articulated shapes, both man-

made and organic.

• View selection: Automatic selection of good views for 3D shapes is one critical

aspect of browsing large model databases. Those methods based on shape

similarity (Yamouchi et al . [85]) or those using exemplars (Saleem et al . [65])

would benefit from our robust shape analysis.

10

1.3.2 Simple first-pass solution

The most important benefit of our approach is that it provides solutions to a

number of problems in shape analysis using simple graph traversal methods, which

we will see in Chapter 4. For the cost of two breadth-first traversals of mesh ver-

tices, it automatically decomposes a mesh into its semantic parts and encodes that

part structure into skeletal graph. Many very powerful methods exist to solve these

individual problems, but these methods rely on expensive pre-processing or complex

geometric analysis. For some applications, this level of detail is necessary. However,

given the ever-increasing volume of 3D data, there is a need for an easily implemented

and efficient technique that can give an analyst the gist of a set of data. We see our

methods as a perfect fit for that kind of first-pass analysis.

1.4 Overview of Thesis

1.4.1 Contributions

In this work, we use an analysis of the topology of triangle meshes to produce

a robust system for the comparison and alignment of 3D shapes. The contributions

of this work are as follows:

• By viewing the triangle mesh as a topological space, specifically as a simplicial

2-complex, we provide a formal basis for semantic shape analysis within the

field of combinatoric topology.

• We develop a novel method for shape analysis based on a modified breadth-first

traversal of mesh vertices. The result of this analysis, the breadth-first graph

11

Ĝ, is an encoding of the semantic part structure of the shape into a graph. This

graph can be used to segment the mesh vertices into parts. It can also be used

to realize that part structure as a 1D curve-skeleton in R
3.

• By employing the curve-skeletons of input shapes, we develop a novel method

of shape alignment that is robust to surface variation and moderate pose artic-

ulation.

1.4.2 Outline

The rest of this work is organized as such:

• Chapter 2: We discuss the problem of shape alignment and provide some

background into the state of the practice in this area. We will give the two major

conceptual frameworks for alignment and describe some of the existing methods

within those frameworks. We will show how an understanding of semantic

part structure would improve the quality of alignments and show how existing

methods do not take it into account. Finally, we provide justification for using

a simple topological approach to shape analysis and part decomposition, as

opposed to a more complex geometry-based approach.

• Chapter 3: We lay down a theoretical framework for our shape analysis within

the field of combinatoric topology. We show how a triangle mesh can be viewed

as a simplicial complex and how operations on simplicial complexes can be used

to generate a Discrete Reeb Graph. This can then be used to analyze the mesh

12

shape’s whole topology. We will also discuss some of the external tools that are

integral to our methods.

• Chapter 4: We present our novel tool for shape analysis based on mesh topol-

ogy, the breadth-first graph. We describe the process of generating the breadth-

first graph based on seed vertices, as well as the issues involved with automati-

cally generating a graph. We then present two algorithms for automatic graph

generation.

• Chapter 5: We give a description of the requirements and constraints on our

experimental data set, and we describe the data set we chose that meets those

requirements.

• Chapter 6: We provide testing and verification of our breadth-first graph meth-

ods’ ability to solve two important shape analysis problems, mesh segmentation

and curve-skeleton extraction. We test our methods against the benchmark

for mesh segmentation of Chen et al . and discuss the results. We perform

an in-depth analysis of the properties of the curve-skeletons produced by our

methods.

• Chapter 7: We apply our breadth-first graph to the problem of shape align-

ment. We first describe how we use the breadth-first graph to solve the relevant

subproblem of alignment, correspondence. We then present our complete algo-

rithm for automatic shape alignment. Finally we provide testing and analysis

of our alignment method on our data set.

13

• Chapter 8: We provide some concluding remarks about the concepts and

methods presented here. We then discuss the validity of the central hypotheses

of our work. Finally, we give some future directions for research.

14

CHAPTER 2

PRIOR WORK

This chapter provides a summary of the problem of shape alignment and the

prior work in that area. Our intent is twofold. First, we want to show how our

problem is distinct from those being solved by most existing methods, namely that

we treat input shapes as collections of interrelated semantic parts rather than as

monolithic geometric entities. Second, we want to show how our work intersects with

other areas of shape analysis in order to facilitate the integration of semantic part

structure into the problem of shape alignment.

In Section 2.1, we discuss the general problem of shape alignment, present

the major methodological themes and discuss the distinctions between our problem

and those solved in existing literature. In Section 2.2, we look into the importance

of understanding the semantic part structure of shapes when aligning them. We

integrate part structure into shape alignment by relying on two related areas of shape

analysis, mesh segmentation and skeleton extraction, so we also discuss prior work in

those areas. In Section 2.3, we look at a particularly important result of Isenburg et

al . [42] that inspired our original research and provided us with the imprimatur for

our approach to part-aware shape alignment. We also discuss our reasons for building

from Isenburg’s results.

15

2.1 Shape Alignment

2.1.1 Problem Definition

Given two input shapes P and Q, we want to find the rigid transformation α

such that α(P) and Q are semantically aligned. We are purposefully imprecise about

the meaning of semantic alignment but will develop an understanding of this term

through this chapter and especially in Chapter 7. P and Q are complete shapes,

described as triangle meshes MP and MQ, respectively. In general, they are not the

same shape, but they are shapes from the same object class, i.e. having the same or

similar part structures. So, the problem can be stated as the alignment of triangle

surface meshes that are complete expressions of the same object class.

Since P and Q can be different shapes (e.g . the same shape in different poses

or different shapes of the same class) some shape pairs cannot be perfectly aligned.

However, it can be assumed that there exists a transform α that aligns the two objects

well in a semantic sense. That is, there is some α that aligns P and Q in a way that

is sensible to a human observer. Our goal is to find that α in a way that is robust

to noise and object part pose variation between input shapes and achieves consistent

results among shapes of the same object class. The details of how the quality of α is

calculated will be discussed in Chapter 7 on alignment, but it will involve the manual

selection of semantically relevant landmarks and measuring how well α aligns those

landmarks.

There are two dominant methodologies for aligning two input shapes P and

Q. Surface registration treats P and Q as sub-surfaces of some ground truth surface

16

(a) (b) (c) (d)

Figure 2.1: Surface registration in action. (a) Range scans are taken of the original
object model, producing scanned surface strips of the model (b). These strips are
registered (c) to produce a final model (d).

and solves for α based on points of overlap (Figure 2.1). Orientation normalization

instead solves for the local coordinate frame of P and Q and then aligns those frames

to the global coordinate system.

2.1.2 Surface Registration

If P and Q are known to be constructed from samplings of the same object,

then they are related by some rigid transform. The problem of finding this trans-

form is an active area of research known as surface registration. These techniques

are commonly used for the problem of multi-view registration, i.e. the alignment of

surfaces reconstructed from multiple passes of a 3D range scanner on an object, the

end result being a complete mesh approximation of that object. A famous applica-

tion of multi-view registration is the Digital Michelangelo Project of Levoy et al . [49]

(Figure 2.1).

17

Solutions to this problem in the literature generally come in two forms. Local

registration techniques assume that the input shapes are approximately aligned and

search only for the closest local minimum of the distance function. Global registration

techniques make no assumptions about initial placement and seek the global minimum

of the distance function.

Local registration

Given some initial guess of rigid transform α, this class of registration methods

finds the local minimum of the distance equation (minα d2(α(P),Q)). Iterative Clos-

est Point (ICP), first formalized by Besl and McKay [11] and Chen and Medioni [25],

is a well-known local registration method. Rusinkiewicz and Levoy [64] modified the

name to Iterative Corresponding Point and defined ICP to be an algorithm in three

stages: given some initial position of input point sets P and Q, find point correspon-

dences between the sets, compute the transform for P that minimizes some error

metric and apply the transform to P iteratively until some convergence condition is

met. The most common types of algorithms to compute the aligning transform are

the closed form solutions based on least-squares. One of these least-squares solutions,

that of Arun et al . [7], is discussed in more detail in Section 3.3. Both the selection

of which points from the input meshes make up P and Q and the relative weighting

of point correspondences varies (see [64]). Local registration methods are sensitive

to the initial choice of α. If the initial placement is poor, ICP will converge to an

incorrect alignment.

18

Global registration

Global surface registration algorithms are not dependent on initial placement,

instead of searching directly for the globally optimal α. Wolfson et al . [83] use the low

dimensionality of transform space to solve directly for α. Others solve for the globally

optimal set of corresponding points and compute the aligning transform from that.

Gelfand [35] uses shape descriptors based on integral volume at each sample point to

identify a small number of unique feature points which are then used as candidates

for correspondence. Aiger et al . [4] use congruent 4-point sets to solve for the correct

alignment in the presence of significant noise.

Surface registration and shape alignment

The surface registration techniques most amenable to our problem are those

that reduce surface alignment to the point correspondence problem. In the case of

local registration techniques like ICP, the correspondence problem is solved through

iterative refinement. For global registration methods of this type, it is solved through

an optimized search of correspondence space. Section 2.2 will highlight the importance

of integrating the part structure of input shapes into the alignment process. If we can

frame that integration of part structure within the context of point correspondence,

then we can leverage the powerful tools of the surface registration literature.

The problem with using these methods directly is that they focus exclusively

on surface samples when building point correspondences. Input surfaces are expected

to be incomplete overlapping sub-samplings of a static ground-truth model shape,

19

and they are aligned in order to build a complete mesh approximation of the original

model. In our problem of shape alignment, there is no single ground truth model (i.e.

there are two).

There are techniques that deal with some of these concerns. Anguelov et al . [6]

use a joint probabilistic model over all point correspondences to handle shifts in object

pose, but they assume that input meshes are of the same object in different poses.

Chang and Zwicker [21] transform the alignment problem to one of discrete labeling of

object parts to handle both shifts in pose and missing surface data in input shapes,

but they also require significant surface similarity. As such, it is unclear whether

either of these techniques would be suitable for our problem.

2.1.3 Orientation Normalization

Instead of thinking of each input shape as a subset or slightly modified version

of a ground truth model as in surface registration, orientation normalization finds each

input shape’s local coordinate system and aligns both shapes to the global coordinate

system. It should be noted that in the literature, the more common name for this

class of methods is pose normalization, where the qualifier “pose” is defined as the

orientation of the whole shape in three dimensional space. We choose to modify that

qualifier to “orientation” so as not to confuse the reader with our definition of pose

(i.e. the interrelated distribution of individual parts of an individual shape).

There are two major types of solution to the problem of orientation normal-

ization. The first type are those based on principal component analysis (PCA). The

20

second type are those that transform the alignment problem to some function space

and solve directly for the optimal rotation within that space.

PCA

The most common method of orientation normalization uses principal compo-

nent analysis (PCA) [70, 86] as its basis. The principal components of a point cloud

are the eigenvectors of its covariance matrix. They are the principal axes of its best

fitting ellipsoid. By aligning the principal components of the mesh vertices to the

coordinate axes, each input shape can be rotated to a consistent orientation. If some

uniformly distributed subset of mesh vertices is chosen, this method is very efficient

and provides an easily implemented solution. However, it is limited to input shapes

whose principal axes are well defined. Isotropic models (i.e. those with strong axial

symmetry such as vases) and amorphous models (such as plants or molecules) give

rise to poor alignments [45]. PCA also ignores part structure, as it is based solely on

the best-fitting ellipsoid.

Solutions have been posed to the problem of axial symmetry within PCA-based

alignment algorithms. Podolak et al . [61] introduce the Planar Reflective Symmetry

Transform (PRST), which encodes the reflectional symmetry of a shape with respect

to all planes in 3-space. With this, they were able to define two new concepts that help

express shape symmetry within the global coordinate system, the center of symmetry

and the principal symmetry axes. The principal symmetry axes are the normals of the

planes of maximal symmetry of an object, and the center of symmetry is the point at

21

which the three planes meet. Chaouch and Verroust-Blondet [22, 23] use these ideas

of planar symmetry along with the continuous PCA (CPCA) technique of Vranic et

al . [82] to achieve positive results.

Function-space

A more recent approach involves transforming each input shape to some func-

tional space on either the unit sphere or in 3D and finding the rotation that minimizes

the distance between those functions. A brute-force search over the space of rotations

will find the optimal rotation. However, even using signal processing techniques to

decrease running times, this method is still too slow for alignment tasks involving

large shape databases. To address this issue, Makadia and Daniilidis [52] parameter-

ize the space of rotations into the axis and angle of rotation, solving first for the axis

using the Fast Spherical Harmonic Transform [56] and then solving for the angle via

Fast Fourier Transform. Kazhdan [45] first computes an axially symmetric descriptor

of each input shape within a spherical function-space, rotates them so that the axis

with largest symmetry maps to the z-axis, then solves for the angle relating them

similarly to Makadia. Martinek and Grosso [55] implement such an approach on the

GPU to achieve dramatically decreased run-times.

Orientation normalization and shape alignment

The essence of normalization is to think of each shape as having a canonical

orientation within some space. This orientation is defined either by the principal axes

22

or by the projection of the mesh vertices into some function-space. Once this canonical

orientation of each input shape is known, their orientations are made to agree. The

primary strength of this approach is that it is designed to accommodate complete

input shapes (unlike surface registration) and does not depend on the existence of a

ground truth model.

However, like surface registration, normalization techniques view the shape as

a geometric monolith. The primary issue with using normalization for our problem

of shape alignment is their reliance on well-defined principal axes that are similarly

defined among input shapes. Since changes in the poses of individual object parts

necessarily affect the principal axes of a shape, it is unclear how these techniques

would behave in the presence of such changes. Indeed, it would be difficult to modify

these techniques to take their part structure into account.

2.2 Shape Parts and Alignment

In this section, we wish to lay out how we will deviate from existing literature

by integrating the part structure of input shapes into the process of shape alignment.

The predominant approach to alignment in the literature treats each shape as a

monolithic geometric entity, devoid of an articulated part structure. If the part

structures of input shapes are taken into account, as in the case of Anguelov [6] and

Chang [21], it is specifically to deal with pose variations of a single object. We wanted

to approach the problem differently.

23

A mesh that encodes a whole shape is more than just a collection of sample

points with local connectivity. What makes it a mesh, as opposed to a polygon

soup, is the fact that its vertices, edges and faces are themselves connected to each

other. Starting from the explicit local connectivity at a single vertex and expanding

outwards in scope, a global macro-structure of parts emerges. That part structure is

as relevant to alignment as the surface geometry. Indeed, that part structure might be

more important than the surface geometry when trying to align shapes with significant

surface dissimilarity. When aligning objects of the same class whose surface geometry

is different, it is more natural to think in terms of aligning their part structure than

aligning their surfaces.

Bronstein et al . [20] explore this idea when dealing with the similarity of shapes

under deformation. They break the problem of similarity into two classes, intrinsic

and extrinsic similarity. Extrinsic similarity involves their layout in Euclidean space.

Intrinsic similarity involves intrinsic properties of shapes, i.e. those properties that

are invariant to object deformation. In our case, we rely on an intrinsic property of

input shapes, namely their part structure and the internal distances between those

parts.

There are two related areas of research that are concerned with finding and

representing an object’s part structure. The first, mesh segmentation, deals with de-

composing the shape into disjoint subsets. The second, skeleton extraction, attempts

to encode the shape’s structure by a 1D curve. We will discuss each of these topics,

presenting the works in the literature that are relevant to our understanding of part

structure. Then we will discuss how they apply to our goal of shape alignment.

24

2.2.1 Mesh Segmentation

In order to integrate part structure into the process of shape alignment, we

must first have some means of decomposing input shapes into parts. Mesh seg-

mentation is an active area of research concerned with exactly that. Given a mesh

M = {V, E, F} of vertices V = {v : v ∈ R
3}, edges E = {(vi, vj) : vi, vj ∈ V } and

faces F = {(vi, vj , vk) : vi, vj, vk ∈ V, (vi, vj), (vj, vk), (vk, vi) ∈ E}, a segmentation of

M is the set of sub-meshes SM = {M0, M1, ..., Mk−1} induced by a k-way partition

of either V , E or F . See Shamir [67, 68] for a thorough treatment of the problem of

boundary mesh segmentation, where a boundary mesh is a 2D surface embedded in

3D. Both Shamir and Attene et al . [9] separate solutions to the segmentation problem

into two types defined by their objective: geometric segmentation and semantic seg-

mentation ([68] refers to them as patch-type and part-type, respectively). Geometric

(patch-type) techniques seek to decompose M into disk-like patches meeting low-level

geometric criteria such as planarity, size or convexity, and semantic (part-type) tech-

niques seek to decompose M into visually or semantically meaningful sub-parts, such

as limbs or appendages. Our goal is an understanding of the overall semantic struc-

ture of parts, so we will limit our discussion to part-type solutions. See Shamir and

Attene [9], for information on patch-type techniques.

Prior work

Solutions to the problem of decomposing a mesh into semantically meaningful

parts have several forms. These forms can be classified by the metrics used to deter-

25

mine part boundaries. This list of metrics is by no means exhaustive, or indeed fully

separable, but it gives the flavor of what the dominant solutions involve. See [3,9,67]

for a review of existing methods. Chen et al . [24] also provide formal benchmarks for

comparison of segmentation techniques.

Salience Many results in the segmentation literature deal with analyzing

the surface curvature characteristics of a mesh to find part boundaries, in an attempt

to segment the mesh the way a human might. This is based on a seminal result

in cognitive psychology by Hoffman and Singh [40] that showed that humans tend

to place visually salient part boundaries along lines of negative minimum curvature.

Lee et al . [48] took this idea and developed a mesh scissoring method using geometric

snakes selected under part salience conditions. The “Tailor” technique of Mortara et

al . [58] studies how salient curvature features evolve when the surface is intersected

with expanding spheres. Attene et al . [8] use salient features for fitting primitives

that approximate mesh parts and form the basis for mesh segmentation. Golovinsky

et al . [37] propose the method of normalized cuts that starts with each face in its

own segment and hierarchically combines segments in a bottom-up fashion based on

area-normalized cut cost: the sum of each segment’s perimeter divided by its area,

where perimeter is weighted by concavity so that boundaries are along salient concave

seams.

Geodesic distance Other shape-centered solutions take overall mesh con-

nectivity into account by using globally defined properties like geodesic distance.

Katz and Tal [44] use geodesic distance as the basis for hierarchically separating a

mesh into fuzzy clusters, or clusters of mesh faces with fuzzy boundaries, which are

26

then cut along edges with highly concave dihedral angles. Katz et al . [43] use multi-

dimensional scaling to transform the mesh into a canonical form where Euclidean

distances between points are similar to geodesic distances, label feature points based

on this transform, and segment based on the relationship of those feature points to the

“core” region of the mesh. Agathos et al . [2] build on the core-appendage premise

of [43] to construct a protrusion-oriented segmentation. Lien and Amato [51] use

a divide-and-conquer approach to combine skeletonization and decomposition of the

mesh into a single interdependent process. Tierny et al . [81], in a continuation of their

skeleton extraction results of [80], use a Reeb graph of the mesh based on geodesic

distances with respect to mesh features which, in concert with curvature considera-

tions, is used for segmentation. Similarly, Berretti et al . [10] use an average geodesic

distance function to induce the Reeb graph that is used to segment the mesh.

Medial and functional simplification Some methods rely on shape sim-

plifications based on medial structures or other functional representations. de Goes

et al . [29] use medial structures based on diffusion distance for segmentation. In

addition to normalized cuts mentioned above, Golovinsky et al . [37] also propose a

hierarchical segmentation method that starts with a decimated version of the mesh

in a single segment and uses randomized minimum cuts to recursively split the mesh

into binary segments. Shapira et al . [69] use the “Shape Diameter Function”, which

approximates the diameter of the object’s volume in the neighborhood of a point on

the surface, to apply energy minimization techniques to cluster faces in a way that

maximizes boundary smoothness and location along concave seems.

27

(a) (b)

Figure 2.2: Usefulness of curve-skeletons in shape alignment. Given two humanoid
shapes (a) in different poses, we need some way to represent their individual parts
(e.g . arms and legs) so that the parts’ lengths are encoded and preserved under
deformation. (b) Curve-skeletons provide a way to do so.

2.2.2 Skeleton Extraction

In order to properly integrate part structure into alignment, we need more than

just the raw shape decomposition that segmentation provides. We also need some

understanding of the connectivity and relative distances of parts within the overall

shape context. Take the example of a humanoid shape (Figure 2.2). Given that an

arm can be straight or bent, we need some way of representing that arm such that the

distance from shoulder to fingers is both encoded and preserved under deformation.

A straight-line representation of the arm would accomplish this. The area of shape

analysis concerned with producing linear simplifications is skeleton extraction.

In shape analysis, the term skeleton can mean a number of things. It can refer

to the medial axis of 2D objects [18] or the medial surface of 3D objects [5]. The

better definition for us would be the curve-skeleton in the sense of Dey and Sun [30],

28

(a) Thinning process in 2D (b) 3D example

Figure 2.3: (a) The thinning process on an example 2D shape. Boundary points are
marked at the beginning of each iteration and then removed if they are simple (i.e.
their removal does not change the topology). (b) An example of this process on a 3D
shape (Siddiqi [73]).

that is, a 1D simplification of a 3D surface. See Biasotti et al . [12,13] and Cornea et

al . [28] for a review of curve skeletons in shape analysis.

Prior work

According to Cornea [28], solutions to the problem of skeleton extraction come

in various forms. We will focus our attention on two of those forms, volumetric

thinning and geometric methods. We chose these forms since they are well-suited to

use on polygonal mesh data.

Volumetric thinning These methods require a discrete volumetric (i.e.

voxelized) representation of the polygonal surface, which can be generated using a

voxelization technique such as that of Noorudin and Turk [60]. Volumetric thinning

methods then remove voxels iteratively from the boundary of the shape until some

29

(a) Segmentation (b) Reeb graph

Figure 2.4: (a) Example of segmentation-based curve skeletons of Katz et al . [44]. (b)
Example of the use of Morse functions on a surface to produce a curve-skeleton [80].
The critical points in the height function correspond to junctions in the Reeb graph,
which becomes the skeleton.

thinness condition is met. At each step, boundary voxels are tested against some set of

topology preserving conditions as well as conditions to prevent excessive shortening

of curve-skeleton branches. See Figure 2.3 for an example. This method is also

referred to as morphological thinning [19,46,53]. See also Gagvani and Silver [34] for

a review of volumetric thinning. Svensson et al . [77] thin from a voxelization of the

medial surface while preventing the removal of junctions between surfaces. Sundar et

al . [76] work from the results of [34] to build curve-skeletons for shape matching and

retrieval. Cornea et al . [27] use the generalized potential field of Chuang et al . [26]

to guide the thinning process, producing topology-preserving skeletons that capture

part structure. Siddiqi et al . [73] use a voxelization of medial surfaces to produce a

directed acyclic graph of components for shape retrieval (Figure 2.3(b)).

Geometric methods These curve-skeleton methods are those that apply

specifically to objects represented by polygonal meshes or point clouds. One well-

30

developed class of geometric methods are those associated with the medial surface.

Siddiqi and Pizer [72] is an excellent reference for these medial representations. Katz

and Tal [44] use their segmentation to extract 1D curve-skeletons by representing

the segmentation hierarchy as a tree graph embedded in 3D with individual tree

nodes at the centroids of segment boundaries (Figure 2.4(a)). Tierny et al . [80] use

a Reeb graph to construct the curve-skeleton of a mesh, as does Biasotti et al . [14]

(Figure 2.4(b)). Zheng et al . [87] use the curve skeleton extraction technique of

Tagliasacchi et al . [78] to construct consensus skeletons of point clouds. Agathos et

al . [1] apply a graph-based representation of articulated meshes to the problem of

shape retrieval, restricting to those meshes with a core-appendage topology.

2.2.3 From Parts to Alignment

If the part structure of a shape can be represented as a graph of curvilinear

segments whose segments connect at junction points for part boundaries and termi-

nate at cap points for part tips, then the problem of surface alignment would reduce

to the alignment of those junction and cap points. By finding the correct correspon-

dence between those points, we could solve for the rigid transform that aligns them.

That is, given a curve-skeleton whose topology is a direct encoding of part structure

of each mesh, we have enough information to perform shape alignment in a general

form.

What we need is a simple, robust algorithm for skeleton extraction that pro-

duces skeletons with junction and cap points for meshes of the same object class

31

that correspond to part structures shared by those meshes. This algorithm must be

invariant to rigid transformations. It must also produce a minimal skeletal structure.

That is, we only want it to capture the coarsest level of part decomposition. This

will minimize the number of junction and cap points in the skeleton and thus the

correspondence space for our alignment algorithm.

The best example of such a simple, robust algorithm in the literature is the

affine-invariant skeleton of Mortara and Patane [57]. It produces a skeleton that

meets the first criteria of invariance to rigid transform, but because these skeletons

capture all protrusions in the mesh shape, the second criteria of minimal structure is

less promising. The Reeb graph curve skeletons of Biasotti et al . [14] and Tierny [80]

would suffice, but the Morse functions used in these techniques require expensive

geometric computation on the mesh surface. The consensus skeletons of Zheng et

al . [87] might be an option, but their technique assumes that the input shapes are of

the same object in differing poses, which is overly restrictive for our problem.

In the next section, we discuss the reasons for looking elsewhere for a mesh

segmenting curve-skeleton extraction algorithm.

2.3 Connectivity Shapes of Isenburg et al .

Early in our search of the literature, we were intrigued and inspired by the

work of Isenburg et al . [42]. They found that there is an astounding amount of shape

part information embedded in the pure connectivity of the mesh. They demonstrated

this idea by interpreting the natural geometry of a connectivity as an embedding in

32

(a) Connectivity shapes (b) Our skeleton

Figure 2.5: Connectivity shapes of Isenburg et al . [42]. (a) A startling amount of
the geometric information is embedded in the connectivity of this cow mesh. (b) Our
skeleton is similarly based on the connectivity of the mesh.

space of uniform edge length. That is, they throw out the actual geometry of a mesh’s

vertices and place them in space such that the edges between vertices have roughly

equal length. The result, which they refer to as connectivity shapes (Figure 2.5), have

a cartoonish appearance and bear little resemblance to the original model in terms

of fine detail, but they contain a considerable amount of information about the mesh

part structure.

Others have applied these ideas in other areas of mesh analysis, which gave

us additional confidence that we could use it to our ends. For example, Sorkine

and Cohen-Or [74] use mesh connectivity along with a sparse set of control points

to construct a fair surface reconstruction of an original mesh geometry. Sorkine et

al . [75] then generalize this idea to approximate the geometry of a mesh using a linear

combination of basis vectors that are generated from a connectivity mesh.

33

2.3.1 Connectivity-based Approach to Part Extraction

We seek to extract part information directly from the connectivity, without a

rescaling of edge lengths, and encode it into a more compact form. We would then

use this new connectivity-based representation in our end goal of shape alignment.

Our goal is aided by such an approach for a few reasons.

• The approach is independent of the initial position of input shapes. Sensitivity

to initial position is an inherent difficulty with many existing alignment methods

(see Section 2.1 for more details).

• High-frequency shape characteristics would be ignored (i.e. smoothed out) in

favor of large-scale parts and appendages. This would dramatically decrease

the effect of noise. Having fewer parts to align means a smaller correspondence

search space, thus a more efficient algorithm.

• The part topology would be largely invariant to pose.

In the next chapter, we will provide a basis for this connectivity-based ap-

proach within the field of combinatoric topology. By viewing the mesh as a specific

kind of topological space, we can apply primitive operations on that space to form a

scalar-value function, and this function will allow us to frame our analysis within the

well-established area of Morse theory. In Chapter 4, we will present our algorithm

for shape analysis and part extraction.

34

CHAPTER 3

DEFINITIONS AND TOOLS

In this chapter, we will provide an explanation of those concepts and techniques

fundamental to our topological approach to mesh shape analysis and alignment. The

intent is not to give an exhaustive treatment but to provide a quick reference on how

they will be used throughout this work. In order to provide some context for our

approach, Section 3.1 explains the distinction between topology and geometry with

respect to mesh input. Section 3.2 establishes a formal basis in existing combinatorics

for our approach to mesh shape analysis.

We will also introduce some of the external tools and software that will be

used extensively both in our methods and in testing our methods. Section 3.3 intro-

duces and explains the least-squares method of Arun to find the distance-minimizing

transform of a point correspondence, a technique that is integral to our alignment

solution. Section 3.4 discusses the Generalized ICP technique of Segal et al . and how

we use it as a baseline for good alignment performance.

3.1 Geometry and Topology

In this work, we use the terms geometry and topology when discussing mesh

input. These terms are very broadly defined, so for the sake of clarity, we would like

to define their usage here. According to Munkres [59], topology is an area of math-

35

ematics defined by the search for homeomorphisms between spaces, i.e. continuous

bijective maps, with continuous inverse, mapping one space to another. Geometry is

another branch of study concerned with the questions of size and distance between

entities within a particular field, such as R
2 or R

3. In this work, we are dealing with

a particular kind of topological space geometrically embedded in the field R
3, the

triangle surface mesh. Moreover, this mesh is 2-manifold, or locally homeomorphic

to a plane. Our use of these terms is confined to that context.

So, given the context of a 2-manifold triangle surface mesh, when we speak of

geometry, we are referring to the location in R
3 of the vertices V . When we speak

of topology, we are referring to the edges E and faces F , i.e. the connectivity of the

vertices (we will often use the two terms interchangeably). It is this combination of

connectivity and placement that determine the surface characteristics of the shape

approximated by M . Thus a mesh is defined by both its geometry and its topology.

We mention this dichotomy between geometry and topology in order to high-

light the differences between the methods proposed in this work and prior work in

shape analysis. Most existing techniques focus on the specific geometry of a mesh and

only use the mesh topology indirectly in the recovery of geometric surface character-

istics (e.g . curvature, dihedral angles). Inspired by the results of others (Section 2.3),

we wished to know what the topology could tell us about the shape. In the following

section, we will give a brief discussion of how the mesh can be expressed and analyzed

as a purely topological entity.

36

3.2 Mesh as Topology

It is the goal of this work to demonstrate the possiblity of performing mean-

ingful analysis of shape based on mesh topology. In Section 3.1, we saw that topology

deals with continuous bijective maps between topological spaces. Therefore, we need

to be able to describe the mesh as a topological space. In this section, we will show

that under certain conditions, mesh input is equivalent to a well-known topological

space, the simplicial complex, giving our topological approach a basis in existing

theory.

We will break our discussion into three parts. As background, we first define

what a simplex and a simplicial complex are. We then discuss some important opera-

tions on simplices and simplicial complexes. Finally, we show how careful constraints

on mesh input allow us to transform mesh analysis into the analysis of simplicial

complexes. This provides the formal basis for our analytical methods of Chapter 4.

The foundational work on algebraic topology is Munkres [59]. Edelsbrun-

ner [31] is another standard work on computational and combinatoric topology. For

a more thorough review of topics given here, the reader is referred to these texts.

3.2.1 Simplex and simplicial complex

Simplex

A simplex is a generalization of geometric concepts such as points, lines and

triangles. A set of points S is affinely independent (a.i.) if no point in S is an affine

combination of the other points in the set. A simplex of dimension k, or k-simplex σ,

37

Figure 3.1: Simplices of various dimensions. The simplex of dimension -1 is the
empty set. A 0-simplex is a vertex, 1-simplex is an edge, 2-simplex is a triangle and
3-simplex is a tetrahedron. A triangle surface mesh thus can be thought of as a pure
simplicial 2-complex, i.e. a simplicial complex composed purely of triangles.

is the convex hull of k + 1 a.i. points S, σ = conv(S) [31]. We denote the dimension

of σ as Dim(σ). Figure 3.1 demonstrates the simplices of dimension -1 through 3.

Every subset of points T ⊆ S of σ is a.i., so the convex hull of T is itself a simplex,

τ = conv(T). This simplex τ is called a face of σ, denoted τ ≤ σ (as opposed to

τ ∈ σ, which is a characteristic of simplicial complexes below). So, in the case of the

triangle S = {vi, vj, vk}, the 2-simplex (or face simplex) defined by S contains:

• ∅ and S as improper faces

• the 1-simplices vi, vj, vj, vk and vk, vi and the 0-simplices vi, vi, or vk as proper

faces.

Simplicial complex

A simplicial complex is a set of simplices K that satisfies the following condi-

tions:

(i) If σ ∈ K and τ ≤ σ, then τ ∈ K

38

Figure 3.2: An example of a set of simplices which are not a simplicial complex (they
fail condition (ii)). On the left, the triangles meet along an edge not shared by both.
On the right, a triangle and an edge meet at a vertex not in either.

(ii) If σ1, σ2 ∈ K then (σ1 ∩ σ2) ≤ σ1 and (σ1 ∩ σ2) ≤ σ2

Informally, condition (i) requires that for any simplex in K, its component faces must

also be in K. For example, if K contained a triangle 2-simplex, it must also contain

all three of its edge 1-simplices and vertex 0-simplices. Condition (ii) states that for

any two simplices in K, their intersection must be a face shared by both. An example

of when this condition is not true is given in Figure 3.2.

A simplicial k-complex K is a simplicial complex where Dim(σ) ≤ k, ∀σ ∈ K.

A pure simplicial k-complex K is one where every simplex of dimension less than k is

a face of a simplex of dimension k.

3.2.2 Operations on simplicial complexes

A subcomplex of K is a subset of K that meets the conditions of a simplicial

complex. All subsets of K satisfy condition (ii). In order to enforce condition (i), we

must find the closure of that subset.

39

Closure

The closure of L ⊆ K, is the minimal simplicial subcomplex of K containing

all faces in L:

Cl(L) = {τ ∈ K : τ ≤ σ ∈ L} (3.1)

In Figure 3.3(a), a triangle τijk and an edge τlm face are chosen, L = {τijk, τlm}, and

the closure of L is:

{∅, τi, τj , τk, τl, τm, τij , τjk, τki, τlm, τijk}

where the indices of each face simplex correspond to the vertices of which they are

composed.

Star

Let τ be a simplex in K. The star of τ is the set of all simplices in K that

contain τ .

St(τ) = {σ ∈ K : τ ≤ σ} (3.2)

Figure 3.3(b) demonstrates this with a vertex simplex τ . The star of this vertex

contains the edge and face simplices that connect to τ but not the outermost edges

and vertex simplices. Because of this, the star is usually not closed, i.e. a subcomplex

of K. If we were to find the closure of the star of τ , then those outermost edge and

vertex simplices would be included, which leads us to the last important operation.

40

(a) A triangle and edge simplex and their
closure

(b) Vertex simplex and its star

(c) Simplex and its link

Figure 3.3: Operations on simplex subsets of simplicial complexes. (a) The closure

of a subset of faces L ⊆ K is the smallest simplicial subcomplex of K that contains
each face in L. (b) The star of a particular simplex τ is all simplices in K that
contain τ . (c) The link of τ consists of the faces of simplices in the star of τ that
don’t intersect τ .

Link

The link of some simplex τ is the set of simplices in the closure of the star of

τ that do not contain τ .

Lk(τ) = {σ ∈ Cl(St(τ)) : σ ∩ τ = ∅} (3.3)

We see the link of vertex simplex τ in Figure 3.3(c). Whereas the star of τ did not

include the outermost vertex and edge faces, the link consists solely of those missing

faces. What’s more, the link is always a simplicial subcomplex of K.

41

3.2.3 Mesh as simplicial complex

In general, a polygon mesh is some collection of vertices, edges and faces that

defines the shape of some polyhedral object. This might be an approximation of

some continuous function or reconstructed from sample points taken from the scan

of a real object. In this work, we will deal only with a specific kind of polygon mesh,

the triangle mesh.

A manifold triangle mesh M = {V, E, F} is defined by its vertices V ⊂ R
3,

edges E ⊂ V × V and triangles F ⊂ V × V × V such that the surface defined by M

is 2-manifold. Formally, every point on the surface defined by M has a neighborhood

homeomorphic to an open subset of R
2. That is, at every vertex v, the surface can

be locally “flattened” to a plane without tearing or gluing.

We can see right away that the manifold triangle mesh, or simply mesh, is

composed of simplices in that it contains vertices (0-simplex), edges (1-simplex) and

triangles (2-simplex). What remains to be seen is whether it can be described as a

simplicial complex. Suppose we define mesh M as M = {V, E ,F} where:

V = {τi = (∅, vi) : vi ∈ V }

E = {τij = (∅, {vi, vj}) : {vi, vj} ∈ E, vi ∈ τi, vj ∈ τj , τi, τj ≤ τij}

F = {τijk = (∅, {vi, vj, vk}) : {vi, vj , vk} ∈ F, vi ∈ τi, vj ∈ τj , vk ∈ τk,

τi, τj , τk, τij , τjk, τki ≤ τijk}

42

M meets condition (i) of a simplicial complex, since for any vertex, edge or triangle

in M, its component faces are also contained in M. Condition (ii) is satisfied by the

fact that the mesh M is a 2-manifold surface. That is, the surface local to every mesh

vertex v, i.e. those faces adjacent to v, is a complete disk of triangles. In particular, if

Ev and Fv are the set of edges and faces adjacent to v, then |Ev| = |Fv| and every edge

in Ev is adjacent to exactly two faces in Fv. The intersection of two faces corresponds

to some edge or some vertex.

The highest dimension of any simplex in M is 2, so it is a 2-complex. Because

M is constructed exclusively of connected triangles (i.e. all edges are adjacent to

exactly two triangles) it is also pure. So, M is a pure simplicial 2-complex.

3.2.4 Operations on mesh topology

Knowing that the mesh M is also a simplicial complex, we can now apply the

same operations described in Section 3.2.2 to M . These topological operations will

form the basis of our shape analysis of Chapter 4. Here we will discuss the connection

between these operations and our approach.

Let M be a manifold triangle mesh as in Section 3.2.3, and thus, a pure

simplicial complex. Because M is a 2-manifold surface, we know that every mesh

vertex v is adjacent to D triangles and D edges where D is the degree of that vertex.

Let τ be the simplex of v and Eτ = {σE : τ ≤ σE},Fτ = {σF : τ ≤ σF} be the

respective edge and face simplices containing τ as a face. The star of τ is:

St(τ) = {τ} ∪ Eτ ∪ Fτ (3.4)

43

So |St(τ)| = 2D + 1. Let vert(Fτ) and edge(Fτ) be the vertex and edge simplices

contained in Fτ . The link of τ is:

Lk(τ) = (vert(Fτ) − {τ}) ∪ (edge(Fτ) − Eτ) (3.5)

and |Lk(τ)| = 2D. This can be seen clearly in the example of Figure 3.3.

We now introduce a new notion, the path of a set of vertices, which will become

useful in our shape analysis methods of Chapter 4 and in the definition of the discrete

Reeb graph below. Let V be a simplicial 0-subcomplex of M = {V, E, F}, i.e. a subset

of mesh vertices in V . Let Lk(V, M) be the link of simplical subcomplex V on the

simplicial complex M . The path of V on M is a partition of the vertices of M into

discrete level-sets some integer distance from V. Each element of the partition is

constructed in the following recursive manner.

P0 = V

P1 = Lk(V, M)

P2 = Lk(P1, M − St(V))

P3 = Lk(P2, M − St(P1 ∪ V))

...

For some Pi:

Pi = Lk

(

Pi−1, M − St(
i−2
⋃

j=0

Pj)

)

(3.6)

44

(a) P0 = V (b) P1 = Lk(V , M)

(c) P2 = Lk(P1, M − St(V)) (d) P3 = Lk(P2, M − St(P1 ∪ V))

Figure 3.4: Example of Path(V) for 2D mesh. Given some simplicial 0-subcomplex
V of M , each step finds the link of the previous step, but it ignores those parts of M
previously seen. Thus it expands outward in a breadth-first manner.

This partition, Path(V) = {P0,P1, ...,Pi}, is a simplicial 1-subcomplex of M , as is

each of its elements. We will refer to its size, |Path(V)| = N , as the length N of the

path.

3.2.5 Discrete Reeb Graph

A Reeb graph [63] is a topological structure that describes the connectivity of

the level sets of a scalar function. It is part of a larger area of mathematics called

Morse theory [39] that uses differentiable functions on manifolds to understand their

topology. Morse theory states that for a real-valued smooth function f : X → R on

a differentiable manifold X, the points where the differential of f vanishes, critical

45

points, correspond to relevant topological changes. The Reeb graph tracks these

changes in graph form.

We would like to adapt these concepts from Morse theory to our discrete case,

so that we can build a graph that captures critical points similarly to a Reeb graph.

We know that our mesh M is a 2-manifold. Using Path(V), we can describe a function

f : (M,V) → N. Given some 0-simplex τ ≤ M , define f as follows:

f(τ) = i if τ ≤ Pi

f−1(i) = Pi

Discrete Reeb graph: Let f : (M,V) → N be the scalar function defined on

the simplicial 2-complex M that we just introduced based on the path. Let τ1 and τ2

be two 0-simplices of M . The discrete Reeb graph of f is defined by the equivalence

relation τ1 ≈ τ2, if and only if:

i. f(τ1) = f(τ2), i.e. 0-simplices τ1 and τ2 lie in the same component of the parti-

tion induced by Path(V), and

ii. τ1 and τ2 are subcomplexes of the same connected component of f−1(f(τ1))

Because our f is neither continuous nor differentiable, the discovery of critical

points on which to base the construction of a traditional Reeb graph is impossible.

This is the point where our discrete graph departs from existing Morse theory. Instead

of constructing the graph from the critical points, we discover the critical points after

constructing the graph. When partitioning the mesh M into a path based on the

46

subcomplex V, there is sufficient information available to decide the connectivity of

the level sets in Path(V).

Let Pi be a level set in Path(V). Let Pi = {Ki
0
,Ki

1
, . . . ,Ki

j, . . . ,K
i
M−1

} be

the connected components in Pi. We know that there must exist some edge between

the connected components of Pi and its neighbors Pi±1. An edge exists between Ki
j

and Ki±1

l if St(Ki
j) ∩ St(Ki±1

l) is nonempty. By connecting together the connected

components of each element in the path, we are able to construct a discrete Reeb

graph. That is, the vertices of the discrete Reeb graph are the connected components

of Pi, and the edges of the graph exist when those connected components’ stars

intersect.

The critical points of that graph then are those connected components K which

represent end-points (have degree 1 in the discrete Reeb graph) and branches (have

degree 3 or more). In Chapter 4, we refer to them as caps and junctions, respectively.

They will form the basis of our alignment technique of Chapter 7.

3.3 Least-squares Fitting of Two 3D Point Sets

In this section we describe the fundamental results of Arun et al . [7] that play

a critical role later in Chapter 7. Given two point sets {pi} and {p′i} of size N , they

solve directly for the rotation R and translation T that minimizes the equation

Σ2 =

N
∑

i=1

||p′i − (Rpi + T)||2

using singular value decomposition (SVD).

47

Their algorithm is as follows:

Step 1: From {pi}, {p
′
i}, calculate their centroids p, p′ and qi = pi − p, q′i = qi − q

Step 2: Calculate the 3 × 3 matrix

H =

N
∑

i=1

qiq
′t
i

where the superscript t denotes matrix transposition.

Step 3: Find the singular value decomposition (SVD) of H ,

H = UλV t

Step 4: Calculate

X = V U t

Step 5: Calculate det(X), the determinant of X. If det(X) = +1, then R = X. if

det(X) = −1, the algorithm fails.

There are three general cases for possible point sets, two of which are degen-

erate.

(i) {pi} are not coplanar - There is a unique solution for R with no reflections.

This is the non-degenerate case.

(ii) {pi} are coplanar but not collinear - There is a unique solution for R as well as

a unique reflection. This is a degenerate case, but its answers are useful.

48

(iii) {pi} are collinear - There are infinitely many rotations and reflections. This

is a problematic degenerate case, as the answer returned by this algorithm is

unpredictable.

The degenerate case (iii) will play an important role later on in analyzing decreased

alignment performance results.

This method provides a closed form solution to the least-squares minimizing

transform that is integral to many different methods of alignment. We will be using

it extensively later on in our alignment algorithms.

3.4 Generalized Iterative Closest Point

In Chapter 7, we will be using the Generalized Iterative Closest Point (Gen-

eralized ICP) software of Segal et al . [66] as the standard for the state of the art in

surface registration. We will be comparing our method to Generalized ICP to deter-

mine the validity of our hypotheses. As mentioned in Chapter 2, ICP is an algorithm

for the alignment of surfaces in three stages. Given some initial position of input

point sets P and Q:

1. Find point correspondences between the sets using a (potentially modified) near-

est neighbor method.

2. Compute the transform for P that minimizes the distance between Q and the

transformed P in a least-squares sense.

3. Apply the transform to P and return to step 1 until some convergence condition

is met.

49

The Generalized ICP combines the Iterative Closest Point [11] and point-

to-plane ICP [25] algorithms into a single probabilistic framework. They maintain

speed and simplicity by computing the correspondences of step 1 using highly efficient

nearest-neighbor approaches based on Euclidean distance. They then use principle

component analysis (PCA) to calculate the normals at each point, and they integrate

this into step 2 via a probabilistic version of the point-to-plane ICP of Chen and

Medioni [25]. This allows them to incorporate structural information from both input

surfaces to decrease the influence of incorrect correspondences.

50

CHAPTER 4

THE BREADTH-FIRST GRAPH: Ĝ

We wish to formulate a method that simultaneously segments the mesh into

parts and generates a curve-skeleton suitable for alignment. In this chapter, we

develop a means to do so through the use of a modified breadth-first traversal of the

mesh and the use of that traversal to build a simplified graph representation of the

mesh, the breadth-first graph. The mesh itself is essentially treated as a graph, and

we find that our breadth-first graph, much like the connectivity shapes of Isenburg,

encodes the part structure of the mesh (Figure 2.5(b)). This approach has two main

advantages. First, its implementation is straightforward. Second, because it largely

ignores surface geometry, it is robust to surface variation.

To best explain, we will split our discussion into the following sections. In

Section 4.1, we will describe the breadth-first graph algorithm and its user-defined

input (seed vertices). Section 4.2 will describe how to segment a mesh using the

breadth-first graph. In Section 4.3, we will describe how to extract a skeleton using the

breadth-first graph. Finally, we then provide our final automatic breadth-first graph

generation method in Section 4.4, in which seed vertices are generated automatically.

51

(a) (b) (c)

Figure 4.1: The breadth-first graph generated from manually selected seed vertices.
(a) Given a wolf mesh, we select 6 seed vertices manually at the nose, tail and four
paws. (b) We perform a breadth-first traversal of the mesh encoding each front (seen
here as alternating black and orange edge loops) as a node in a new graph. (c) The
graph structure can be seen by embedding each of these fronts in R

3 as the centroid
of the vertices it encodes.

4.1 Breadth-first Graph Algorithm

Starting with a mesh M = {V, E, F}, we use a breadth-first traversal of M

to produce the associated breadth-first graph Ĝ = {V̂ , Ê}. Each vertex v̂ ∈ V̂ of

the graph encodes a subgraph of M associated with a single step in the breadth-first

traversal, or front. A vertex of the breadth-first graph is called a front vertex to

distinguish it from a mesh vertex. Let vert(v̂) and edge(v̂) be the mesh vertices and

mesh edges of M associated with front vertex v̂. The edges Ê of the breadth-first

graph encode the propagation relationship between fronts. They are called front edges

to distinguish from mesh edges. A front edge exists between two front vertices v̂ and

ŵ if there is a mesh edge between an element of vert(v̂) and an element of vert(ŵ).

The primary distinction between a standard breadth-first traversal, which be-

gins from a single vertex on the mesh, and the breadth-first traversal that produces

our graph is that we allow traversal to begin from multiple mesh vertices. We call

52

these starting vertices seed vertices. These seed vertices, VS ⊆ V , can be distributed

arbitrarily across the mesh and are required input to the algorithm.

We now present an algorithm to compute the breadth-first graph Ĝ of a mesh

M , given a set of seed vertices VS (Algorithm 1). In this algorithm, Vnew represents

the mesh vertices under consideration in the current iteration. Vseen are those vertices

already seen in the breadth-first traversal. V̂prev and V̂new are the set of front vertices

created in the previous iteration and the set of front vertices created in the current

iteration, respectively. ring(v) is the set of vertices in the link (Section 3.2.2) of mesh

vertex v. Given a graph G = {V, E} and a set of vertices, W , the subgraph induced

by W is {W, EW} where EW = {(vi, vj) : vi, vj ∈ W, (vi, vj) ∈ E}, i.e. those edges

whose endpoints both lie in W .

4.2 Segmentation from Ĝ

One of the important characteristics of the breadth-first graph Ĝ = {V̂ , Ê}

is that the front vertices V̂ define a disjoint cover of V . That is, {vert(v̂)}v̂∈V̂ is a

partition of V . While this can be shown to be true in a formal sense, it is far too fine

a partition to be of much use. To produce a more useful partition, some method for

combining the vertices in V̂ into meaningful clusters is necessary.

We first look at the characteristic topology of Ĝ. The front vertices V̂ fall into

three different types:

• Cap vertices: front vertices of degree 1

• Pipe vertices: front vertices of degree 2

53

Algorithm 1 BreadthFirstGraph(M, VS)

Require: Mesh M , seed vertices VS

V̂ = ∅; Ê = ∅
Vnew = VS; Vseen = ∅; V̂prev = ∅
while Vnew 6= ∅

// create new fronts
Γ = subgraph of M induced by Vnew

V̂new = front vertices induced by the connected
components of Γ, one per component

V̂ = V̂ ∪ V̂new

// define front edges
for all v̂ ∈ V̂prev

for all v̂new ∈ V̂new

// if fronts share a mesh edge, connect them
if ∃(vi, vj) ∈ E, vi ∈ vert(v̂), vj ∈ vert(v̂new) then

Ê = Ê ∪ {(v̂, v̂new)}

Vseen = Vseen ∪ Vnew

Vnew = (
⋃

v∈Vnew
ring(v)) − Vseen

V̂prev = V̂new

Ĝ = {V̂ , Ê}

• Junction vertices: front vertices of degree > 2

We can use this topology to make semantic inferences about the mesh vertices

each front vertex encodes. That is, the type of front vertex to which a mesh vertex

belongs (cap, pipe or junction) tells us something about where it belongs in the

overall part structure. Cap vertices correspond to the “tips” of parts, pipe vertices

correspond to the length or body of a particular part, and junction vertices define

part distinctions. Using this simple interpretation, we can segment the mesh into

parts by using junctions as part boundaries. That is, mesh M can be segmented

using a segmentation of V̂ such that:

54

Figure 4.2: The BFG segmentation. By interpreting junction vertices (front vertices
in Ĝ with > 2 neighbors) as part boundaries, the breadth-first graph segments the
mesh into parts. It does so consistently for different meshes of the same object class.
Colored faces belong to cap or pipe segments, and black faces belong to junction
segments.

1. Any two adjacent non-junction (pipe or cap) vertices are part of the same segment.

2. All junction vertices belong to a unique segment.

This can be accomplished by progressively combining adjacent non-junction

vertices and their associated mesh vertices until all non-junctions are adjacent to

junction vertices (or the graph collapses to a single vertex in the case of a graph

with no junctions). Then, each vertex in the graph is assigned a unique segment.

Figure 4.2 demonstrates how the breadth-first graph segments the mesh into parts

consistently for four different meshes from the same object class.

Applying the same terminology to segments that we used for front vertices,

we can define the individual segments in this way:

55

• Cap segments: Segments that contain at least one cap vertex

• Pipe segments: Segments that contain no cap vertices and are connected to 2

or fewer junctions (0 in the case of pure ring topologies, 1 for rings connected

to another segment and 2 for the most-common straight-line segment)

• Junction segments: Segments that are connected to more than 2 other segments

We call this segmentation the BFG segmentation.

4.3 Curve-skeleton from Ĝ

Ĝ can also be used to create a skeleton of the mesh in a straightforward

manner. We interpret each front vertex v̂ as the centroid of its corresponding mesh

vertices vert(v̂), and connect these centroids via front edges accordingly. This skeleton

is called the BFG skeleton. Figure 4.3 demonstrates this process on the high-genus

surface of Neptune.

We can use this skeleton to measure the relative distances of parts by mea-

suring their distance along the graph Ĝ = {V̂ , Ê}. Let all v̂ ∈ V̂ be represented as

the centroid v of their mesh vertices vert(v̂). Let vi and vj be the centroids of front

vertices v̂i and v̂j . graphDist(v̂i, v̂j) is the shortest path from vi to vj along the graph,

as calculated via Dijkstra’s algorithm.

Much like our surprise at the expressiveness of the connectivity shapes of

Isenburg et al . [42], we were surprised to find just how much part information is

encoded purely in the connectivity of a mesh. We want to use this information to

find the shared structure between mesh shapes. The primary roadblock in using the

56

(a) (b)

Figure 4.3: The BFG skeleton. We can generate a curve skeleton from the breadth-
first graph by interpreting each front vertex in graph as the centroid of its correspond-
ing mesh vertices. This curve skeleton captures significant topological features even
in high-genus surfaces.

breadth-first graph in an automated manner is the necessity of user input in the form

of the seed vertices VS. Another concern is that of over-segmentation. Since our

ultimate end is finding the correspondence of parts between similar shapes, in order

to save time and computation, we would rather work with a coarse segmentation than

a fine-grained one. The next section addresses these two issues.

57

4.4 Automatic Ĝ Generation

We wish to automatically generate a breadth-first graph for a mesh that seg-

ments it into a coarse yet sufficiently expressive part structure. This requires an

intelligent choice of seed vertices. In general, we have found that using mesh vertices

at the tips of appendages as seeds leads to balanced part structures. So, a logical

choice is to use these mesh vertices at the tips of appendages as our input seed vertices,

VS. This leads to a bit of a chicken/egg problem: we want to use the breadth-first

graph to understand the semantic structure of a mesh, but we need that structure

(e.g. the tips of appendages) to produce a usable graph.

4.4.1 Priming

The original impetus for the breadth-first graph came while observing the

propagation of one-rings during a breadth-first traversal across a mesh. We observed

that, regardless of the vertex chosen as the starting point for propagation, the rings

would terminate (i.e. run out of unseen vertices) at or very near the tips of ap-

pendages. Recalling our earlier discussion of front vertex types, we described cap

vertices as those that encode mesh vertices at appendage tips. Therefore, we should

be able to use the cap vertices from a priming run as input to a second, final run, thus

extracting usable semantic information from our mesh for the price of two traversals

of its vertices.

58

4.4.2 Hairs

In practice, however, not all cap vertices are actual appendage tips. Indeed,

in most cases, the algorithm produces some cap vertices that are essentially artifacts

of the traversal process and have no semantic significance whatsoever. We refer to

these artifacts as “hairs” (Figure 4.4). What’s more, even if we had no artifacts in

our graph and all of our caps were actual appendage tips, the resulting part-structure

is often too finely grained to use for our ultimate goal of alignment.

4.4.3 Distilling the Graph

We solve both problems by iteratively trimming individual segments from the

graph in a process we refer to as distilling the graph. We define a segment Ŝ ⊂ V̂ to

be any maximal connected set of pipe and cap vertices. Note that the union of all

segments is a partition of all cap and pipe vertices. We define the length of a segment

|Ŝ| to be the number of front vertices in that set. Nontrivial graphs (ones with at

least one junction) are composed of two types of segments: segments containing only

pipe vertices, which we call pipe segments, and segments composed of pipe vertices

ending in a cap vertex, which we call cap segments. We trim only cap segments.

Trimming a segment involves removing its front vertices from the graph, associating

those fronts’ mesh vertices with the junction vertex to which the segment is connected,

and decreasing the junction’s degree by one. It should be understood that trimming

multiple segments from the graph can and usually does cause junction vertices to be

reclassified as pipe (or even cap) vertices, thus reducing the total number of segments

59

(a) Original skeleton (too
many “hairs”)

(b) After trimming segments
length 1

(c) After iterative trimming

(d) (e)

Figure 4.4: Distilling the breadth-first graph. When first generated, (a) the breadth-
first graph Ĝ contains a number of cap segments that are artifacts of the traversal
process and not semantically meaningful. (b) We first trim all segments of length
one. We then trim the graph iteratively (c) to distill it to a minimal state (d) with
segments of near-uniform number of edges. (e) Ĝ encodes both the curve-skeleton
and the part structure.

60

and distilling the graph to a simpler structure. Figure 4.4 demonstrates the graph

distillation process.

Algorithm 2 defines graph distillation. We first trim all cap segments Ŝi ⊂ V̂

where |Ŝ| = 1. Through experimentation, we found that this initial trimming removes

most if not all “hairs”, or noise-related segments, and produces a much better starting

point for the following iterative process. Given the list of cap segment sizes, we

calculate its standard deviation σ and trim all cap segments Ŝi where |Ŝi| < σ.

This is repeated, each time producing a simpler graph with fewer segments, until no

trimming occurs. The goal is to produce a graph with minimal variance in segment

length. In practice, this usually takes between one and three iterations. Table 4.1

shows the average number of iterations for distillation convergence for each object

class in the Chen database.

Algorithm 2 Distill(Ĝ)

Require: Breadth-first graph Ĝ of mesh M
Ŝcaps = set of cap segments of Ĝ

Trim all Ŝi ∈ Ŝcaps where |Ŝi| = 1
repeat

Ŝcaps = set of cap segments of Ĝ

X = {|Ŝi| : Ŝi ∈ Ŝcaps}
σ = standard deviation of X
Trim all Ŝi ∈ Ŝcaps where |Ŝi| < σ
Ntrim = number of trimmed segments

until Ntrim = 0
return Modified Ĝ

61

Class Avg Iterations

Airplane 1.1
Mech 1.15
Glasses 1.4
Bearing 1.5
Pliers 1.6
Bust 1.65
Cup 1.7
Fish 1.8
Table 1.85
Bird 1.9
Teddy 1.9
Octopus 2.0
Vase 2.1
Ant 2.25
Fourleg 2.3
Chair 2.5
Human 2.55
Hand 2.6
Armadillo 2.9

Table 4.1: Average number of iterations for distillation per class. After trimming all
cap segments with one edge, the graph distillation algorithm (Algorithm 2) iteratively
trims segments. This table shows the average number of iterations, per class, for that
process.

4.4.4 Automatic Ĝ algorithm

We are now ready to present our algorithm for the automatic generation of a

breadth-first graph for a mesh M (Algorithm 3). We first generate an initial graph Ĝ0

using the mesh vertex closest to the centroid of all mesh vertices (vcent) as the seed.

This is the only time the geometry of the mesh is used in the process, and its choice

is based on the assumption that a seed vertex from a central location is most likely to

find caps at extremities. After distilling Ĝ0, we use the mesh vertices corresponding

62

to its cap vertices as input to a second run to generate Ĝ1. The distilled version of

this graph is the final breadth-first graph.

Algorithm 3 AutoBFG(M)

Require: Mesh M = {V, E, F}
// Primer run, to get appendage tips
vcent = mesh vertex closest to centroid of V
Ĝ0 = BreadthFirstGraph(M, {vcent})
V̂caps = cap vertices of Distill(Ĝ0)
Vtips = (

⋃

v̂∈V̂caps
vert(v̂)) − {vcent} // remove vcent

// Using tips from primer run, build final graph
Ĝ1 = BreadthFirstGraph(M, Vtips)

return Distill(Ĝ1)

After the final breadth-first graph is generated, we produce a skeleton from

this graph (Section 4.3). We lock the skeleton’s junction and cap vertices and perform

Laplacian smoothing on the pipe vertices [32]. Figure 4.4(d) demonstrates the mesh

skeleton for a woman mesh.

One of our goals for the AutoBFG algorithm was for it to be invariant to

rigid transform, i.e. AutoBFG(M) = AutoBFG(α(M)) for some rigid transform α.

This required the use of the geometry of M only as part of the primer run when

finding vcent, the mesh vertex nearest the centroid of all mesh vertices. Since the

proportionality of Euclidean distance is preserved under rigid transformation, the

centroid of mesh vertices would also be preserved. The vcent found for M will be the

same vcent found for α(M). Thus, their breadth-first graphs will be the same.

If we were to relax the requirement of invariance to rigid transform, we could

remove all reliance on geometry in generating the breadth-first graph. Algorithm 4

defines the automatic generation of a breadth-first graph for a mesh M using no

63

geometric information at all. Using the name TopoBFG to distinguish it as a purely

topological version of AutoBFG, the initial priming seed vertex is chosen randomly,

but the rest of the algorithm is equivalent to AutoBFG.

Algorithm 4 TopoBFG(M)

Require: Mesh M = {V, E, F}
// “Primer” run, to get appendage tips
vrand = mesh vertex randomly chosen from V
Ĝ0 = BreadthFirstGraph(M, {vrand})
V̂caps = cap vertices of Distill(Ĝ0)
Vtips = (

⋃

v̂∈V̂caps
vert(v̂)) − {vrand} // remove vrand

// Using tips from primer run, build final graph
Ĝ1 = BreadthFirstGraph(M, Vtips)

return Distill(Ĝ1)

4.5 Conclusions

We have shown in this chapter that the topology of a mesh contains a signifi-

cant amount of part information. To extract that part information, we have provided

a novel approach based on a modified breadth-first traversal of mesh vertices. We

have demonstrated how this traversal can be encoded into a graph structure and how

that graph can be used for shape analysis tasks such as segmentation and skeleton

extraction. The difficulty with using the breadth-first graph for shape analysis is its

dependence on user input in the form of seed vertices. We have shown that through

the use of an initial priming traversal of the mesh, we can use the result of that

priming run to construct a final graph in an automated manner.

64

CHAPTER 5

EXPERIMENTAL DATA

In this chapter, we discuss the shape data set we used for our shape analy-

sis and alignment experiments and testing. Given the problem definition from Sec-

tion 2.1, the data set will need to meet certain requirements, which are given in

Section 5.1. In Section 5.2 we discuss the shape database we chose that meets those

requirements.

5.1 Requirements

In making our selection of a 3D model data set, we consider 5 main criteria.

The models in our data set should:

1. Be watertight, singly-connected, 2-manifold triangle meshes: The ba-

sis in existing combinatoric topology of our approach to alignment (discussed

in Chapter 3) presupposes that our meshes are 2-manifold and triangular. The

watertightness requirement prevents potential boundary conditions and simplifies

our overall approach. We want our models to be singly connected so that the com-

plications involved in dealing with compound objects (e.g . cars with disconnected

wheels) can be avoided.

2. Cover a broad set of object categories: Since our goal is the semantically

meaningful alignment of shapes within the same object class (e.g . humanoid,

65

animals, furniture), our data should have a number of object classes to test. Also,

there should be a substantial number of meshes within each class to prevent bias

towards particular shapes.

3. Exhibit shape variation within each class: The shapes of a class should

differ in non-trivial ways (e.g ., significant surface variation, part articulation,

differences in surface sample density). This will allow us to get an impression of

the robustness of our methods to shape variation within each class.

4. Be neither too simple, nor too complex to decompose into parts: Our

alignment hypothesis is that knowledge of part decomposition improves the align-

ment of different shapes of the same object class. To prove or disprove this, we

need shapes that have a semantically meaningful part decomposition.

5.2 Data Set

To meet the requirements of Section 5.1, there are a number of candidate

databases. One obvious possibility is the Princeton Shape Benchmark [70]. It con-

tains nearly two thousand 3D object models and is organized by class with many

different models in each class. Unfortunately, many of the models contain mesh de-

generacies, requiring significant repair before use. Also, many of the models are com-

pound objects, composed of multiple connected components. Finally, the database

is skewed towards rigid, man-made objects, although there are some natural objects

such as animals, plants and humans. Only a few, however, demonstrate much part

articulation.

66

Figure 5.1: Princeton Shape Benchmark [70]. This shape database is widely used as
a benchmark for shape recognition and retrieval. For our purposes, it was not ideal
due to its shapes being non-manifold and multiply connected.

Instead, we chose the mesh database of Chen et al . [24] that was designed

specifically for the purpose of constructing a benchmark for 3D mesh segmentation.

Their database is based on the the Watertight Track of the 2007 SHREC Shape-based

Retrieval Contest 3D models of Giorgi et al . [36] that they processed into manifold

surfaces. This set contains 400 models split into 20 object classes. It contains nine

classes with significant part articulation and three classes where objects have non-

zero genus. Every object is represented by a watertight triangle mesh with a single

connected component. Of the 20 different classes in the 2007 SHREC database, Chen

selected 19 classes (the unused class were spring models whose segmentation would

have been trivial), each of which can be seen in Figure 5.2. These classes of the Chen

67

Figure 5.2: The object classes from the mesh database of Chen et al . [24].

database are: Human, Cup, Glasses, Airplane, Ant, Chair, Octopus, Table, Teddy,

Hand, Plier, Fish, Bird, Armadillo, Bust, Mech, Bearing, Vase and Fourleg.

68

CHAPTER 6

APPLICATIONS OF THE BREADTH-FIRST GRAPH

In this chapter we discuss the results of using our breadth-first graph algorithm

for two shape analysis applications, mesh segmentation and curve-skeleton extraction.

We will show that even though we use mesh topology as the basis for our analysis,

our results are commensurate with the more complex geometry-centered approaches.

By establishing the quality of our results within the context of existing benchmarks,

we demonstrate the power of our topological approach.

We first show our results for mesh segmentation using the breadth-first graph.

We then show our results for skeleton extraction.

6.1 Segmentation

If we are to properly integrate part structure into shape alignment using our

breadth-first algorithm, we need to know that the segmentations it produces are

proper reflections of the mesh’s part structure. In this section we will discuss our

algorithm’s performance against the benchmark for mesh segmentation of Chen et

al . [24]. We first discuss the benchmark’s structure and goals. We then describe

the error metrics that provide the basis of evaluation. There were some issues with

adapting our method to suit the input requirements of the benchmark that we then

discuss. Finally, we give the performance results of our method.

69

Figure 6.1: AutoBFG segmentations. Breadth-first graph segmentations of object
classes of Chen et al . [24] based on the AutoBFG algorithm. For classes with highly
articulated part structures, the part structure is captured.

6.1.1 Benchmark of Chen et al .

In Chapter 5, we discussed the shape database of Chen et al . [24] as our exper-

imental data set. They created that database for the sake of establishing a benchmark

for mesh segmentation. That benchmark provides a set of evaluation metrics that

can be used to evaluate how well computer-generated segmentations match human-

generated ones. As a baseline, they compiled a set of human-generated segmentations.

They compared the segmentation results of various existing algorithms against the

70

Figure 6.2: TopoBFG segmentations. Here the segmentations are based on the
TopoBFG algorithm, which ignores mesh geometry entirely.

human baseline based on four different metrics. We add the results of our AutoBFG

(Figure 6.1) and TopoBFG (Figure 6.2) algorithms to the list and compare them to

the human benchmark.

6.1.2 Error metrics

Here we will discuss the four different error metrics that are used by Chen et

al . [24] in determining the quality of segmentation. The first metric determines how

71

close segment boundaries are to the baseline boundaries, and the last three measure

the consistency of segment interiors.

• Cut Discrepancy: Developed and used by Huang and Dom [41] for image

segmentation, this metric sums the distances from points along the cuts in the

computed segmentation to the closest cuts in the baseline. Its advantage is that

it provides a straightforward measure of boundary alignment. Its disadvantage

is that it is sensitive to the granularity of segmentation.

• Hamming Distance: Also used by Huang and Dom [41], this uses Hamming

Distance to measure the total difference between the internal regions of two seg-

mentations. It is essentially a metric of agreement between two segmentations

based on shared area between individual segments. This gives good informa-

tion when the baseline and automatic segmentations agree on the number of

segments, but it will be noisy when they do not.

• Rand Index: First posed by Rand [62] for the evaluation of clustering methods,

this measures the likelihood that a pair of faces are either in the same segment

in two segmentations, or in different segments in both segmentations. The

metric gives the proportion of face pairs that agree or disagree on segmentation

identity. The main advantage is that it captures area overlaps without explicitly

finding segment correspondences.

• Consistency Error: This metric, proposed by Martin et al . [54], is very similar

to Hamming distance in that it measures the difference between segmentation

regions. However, it does so while trying to account for the hierarchical structure

72

humans impose on objects. The disadvantage of this metric is that it provides

better scores for segmentations with different numbers of segments. In this way,

it is a good counter-balance to the Hamming Distance metric.

Chen et al . [24] tested seven well-known algorithms against the human bench-

mark under these error metrics. These algorithms are described in Appendix A. In

addition to these seven algorithms, Chen et al . [24] evaluated the human-generated

segmentations with respect to each other and used two other trivial mesh segmenta-

tions as a sanity check. The first trivial case is where all faces belong to the same

segment, which they refer to as “None”. The second trivial case is where each face

belongs to its own segment, which they refer to as “Every”.

6.1.3 Issues with testing the breadth-first graph

We wanted to test both our AutoBFG and TopoBFG algorithms’ segmenta-

tion performance against the algorithms listed above, using the software provided by

Chen (http://segeval.cs.princeton.edu). Unfortunately, this software evaluates only

segmentations of mesh faces, and our algorithm segments mesh vertices. To use the

software, we would have to modify our algorithm to produce a face segmentation.

In the end, we decided that such a modification was unnecessary. Since our

algorithm requires only vertices and edges, instead of using the mesh M , we could

use the dual mesh, M∗. If ĜM is a segmentation of the vertices of M , ĜM∗ would

be a segmentation of the faces of M , i.e. the vertices of M∗. The primary difficulty

with using the dual mesh M∗ is that it is not triangular. Our methods are designed

73

(a) Mesh and dual (b) Dual trian-
gulation

Figure 6.3: (a) Given the mesh M (in black) and its dual M∗ (in red), (b) we
triangulate the non-triangular faces of M∗. This ensures that the dual will be a
manifold triangle mesh, or simplicial 2-complex.

to operate on simplicial complexes (Section 3.2.3). For 2-manifolds, this can only

be the case when they are composed of 2-simplices, i.e. they are triangular surface

meshes. Our solution to this problem was to triangulate the non-triangular faces in

M∗ (Figure 6.3).

6.1.4 Results

Overall, their performance was better than expected, especially that of the

purely topological version TopoBFG. Figures 6.4, 6.5 6.7, and 6.6 show the results of

running both our AutoBFG and TopoBFG algorithms on the benchmark of Chen et

al . [24].

Before analyzing the results, we introduce the issue of junction segments. The

primary difference between the segmentations based on Ĝ and other methods is the

existence of so-called junction segments (Section 4.2). These junction segments cor-

respond to those mesh vertices encoded by junction vertices in Ĝ. We kept these as

74

Figure 6.4: Cut Discrepancy: Comparison of segmentation algorithms on the shape
database of Chen et al . [24]. Shown here are the Cut Discrepancy error values aver-
aged over all object classes. This measures the overall disagreement between segment
boundaries. The lower the value, the more the algorithm’s boundaries agree with the
baseline’s.

separate segments rather than try to integrate their mesh vertices into surrounding

pipe and cap segments for essentially two reasons. Primarily, we wanted to test our ac-

tual segmentation, since its dual relationship with the skeletonization of Section 4.3

will play an important role in our later alignment techniques. Second, because of

the graph distillation process (Algorithm 2 of Section 4.4.3), junction segments can

sometimes grow quite large, requiring potentially expensive extra computation to dis-

tribute their vertices. The downside is that these junction segments end up negatively

influencing the error metrics of Chen et al . [24], as we will see.

75

Cut Discrepancy

Under this metric, both our AutoBFG and TopoBFG algorithms outperformed

three different methods, Core Extraction, Random Walks and K-means clustering,

and AutoBFG performed nearly as well as Fitting Primitives. We believe this is due

to the fact that although Cut Discrepancy is sensitive to segmentation granularity,

which is increased by junction segments, it is less sensitive when the extra segments

are constrained to very long, thin segments near to existing baseline boundaries, which

junction segments usually are. Note: the None method (where all faces belong to the

same segment) has no boundaries, so no discrepancy error can be calculated.

Hamming Distance

Our algorithms only did better under this metric than one other method, K-

Means, but they are still competitive. The issue here is the Hamming-Rf metric, or

“false alarm” rate. This corresponds to the mismatch between the additional junction

segments matching with much larger baseline segments.

Consistency Error

Under this metric, our algorithms performed better than two others, Fitting

Primitives and K-Means. Because this metric accounts for nested, hierarchical dif-

ferences in segmentations, junction segments likely played less of a role in decreasing

performance. It is interesting to note that TopoBFG outperformed AutoBFG slightly,

76

Figure 6.5: Hamming Distance: Comparison of segmentation algorithms on the
shape database of Chen et al . [24]. Shown here are the Hamming distances averaged
over all object classes. This measures the overall disagreement between segment
regions. The lower the value, the more the algorithm’s segment regions agree with
the baseline. Hamming-Rm is the missing rate, Hamming-Rf is the false alarm rate,
and Hamming is the average of the two.

though this is likely due to a few lucky choices of starting vertex leading to slightly

better segmentations.

Rand Index

This is the metric under which our algorithms performed most poorly. The

issue of extraneous junction segments is a significant factor, but it should be noted

that this metric is particularly sensitive to the baseline segmentations. For example,

77

Figure 6.6: Consistency Error: Comparison of segmentation algorithms on the
shape database of Chen et al . [24]. Shown here are the Consistency Error values
averaged over all object classes. This measures the disagreement between segment
regions in a way that does not penalize differences in hierarchies of part structure. It
is a sum of per-face refinement error values that can be defined w.r.t. the baseline or
the algorithm’s segmentation. Global Consistency Error (GCE) forces all faces to be
defined within a global error basis, and Local Consistency Error (LCE) is defined on
a per-face basis.

in the case of the Cup object class where most human-made segmentations resulted in

only a few segments, “None” outperformed nearly every algorithm. In the case of the

“Human” object class where there was significant disagreement among human-man

segmentations, “Every” performed nearly as well as the human benchmark.

78

Figure 6.7: Rand Index: Comparison of segmentation algorithms on the shape
database of Chen et al . [24]. Shown here are the Rand Index error values averaged
over all object classes. This measures the unlikelihood that a pair of faces will agree
on segment identity. The lower the number the more likely they will agree.

6.1.5 Discussion

There are a number of aspects in which our method is preferable to those

tested by Chen. First, it is easy to implement and requires no geometric processing

beyond simple centroid calculation. The other tested methods require an understand-

ing of advanced geometrical concepts such as curvature or pre-processing of the mesh.

Second, it requires no user input. Other than Core extraction and shape diameter

function, all other methods require some level of user input to function, usually the

number of desired segments. This aspect is the most relevant to our overall goal of

79

(a) Bust (b) Mechanical (c) Bearing

Figure 6.8: Three object classes from the Chen database that negatively affect our
segmentation algorithm’s performance. Objects with inherently static/subtle part dis-
tinctions (a) or little to no part structure (b,c) make poor candidates for breadth-first
graph segmentation. They will tend not to be segmented at all (i.e. all vertices/faces
will belong to the same segment).

automatic shape alignment. It would be overly burdensome for the user to have to

manually tune the number of segments for each mesh prior to alignment.

Our methods were able to perform well on three of the four metrics given by

Chen et al . [24]. Only in one metric, Rand Index, did our methods do significantly

worse than the other seven algorithms. We believe that this is due to the particular

way in which the Ĝ segments the mesh. That is, the presence of junction segments

likely negatively affected performance.

Another issue affecting the performance of our Ĝ segmentation is its difficultly

in dealing with objects with no pronounced parts or appendages. For object classes

such as those in Figure 6.8, our algorithm essentially performs the same as “None”,

i.e. it places all faces in the same segment. Looking at these shapes from a topological

perspective, they are almost identical, so it is no surprise that a topological approach

to segmentation would do poorly. Also, our primary goal is the alignment of shapes

80

of the same object class based on their shared part structure, with a view towards

dealing with significant part articulation. For largely static objects such as these,

other alignment methods would certainly suffice.

Conclusions Overall, we have shown that our topological approach to seg-

mentation performs well when compared to existing geometrically-based approaches.

We applied the benchmark of Chen et al . [24] to our AutoBFG and TopoBFG seg-

mentations. The performance of our methods on the benchmark shows that the

breadth-first graph segments mesh shapes into semantic parts. The fact that ours

is a fully automatic method increases its value as a tool for semantic shape analy-

sis. This partially justifies its use in our larger problem of shape alignment. Full

justification involves the curve-skeletons extracted using the breadth-first graph.

6.2 Skeleton Extraction

In order to know whether the skeletons produced by our breadth-first graph

algorithm can be used fruitfully for shape alignment, we need some way of testing

the overall quality of those skeletons. Cornea et al . [28] describe a set of desirable

curve-skeleton properties. The properties were compiled from their analysis of the

extraction literature and those applications in graphics and visualization that used

skeletons. We will first describe those properties and establish which are the most

relevant to shape alignment. We will then give the results and analysis of testing

against the relevant properties.

81

Given some mesh M , we denote the skeleton of that mesh to be Sk(M). The

usefulness of that skeleton can be described as the extent to which it satisfies the

following set of requirements/attributes.

• Invariant to isometry: Given an isometric (distance-preserving) transform T ,

the curve-skeleton of the transformed mesh T (M) is the same as the transformed

skeleton of the original mesh: T (Sk(M)) = Sk(T (M)).

• Reconstruction: The original mesh can be reconstructed from the information

encoded in the skeleton.

• Thin: The skeleton Sk(M) is a 1D curve, or is at most one voxel in thickness.

• Centered: The skeleton is centered within the object at all points.

• Reliable: Every point on the mesh surface is visible from at least one location

on the skeleton. That is, for any surface point, there exists a straight-line path

to the skeleton that does not intersect the surface.

• Part preserving: The skeleton distinguishes the different components of the

mesh, reflecting the part structure.

• Homotopic (topology preserving): The skeleton Sk(M) should have the same

number of connected components (we include Cornea’s “connectedness” prop-

erty here), tunnels and cavities as the mesh M .

• Robust: The skeleton exhibits a low sensitivity to noise on the surface.

82

• Smooth: The variation of the curve tangent direction as we move along the

curve-skeleton should be as small as possible.

• Hierarchical: The skeleton, as well as the process that produces it, reflects

the natural hierarchy of the underlying object encoded by the mesh.

Our purpose in extracting curve-skeletons is to integrate the connectivity and

relative distances of parts within the overall shape context into the process of align-

ment. As such, reconstruction, reliability and smoothness are largely irrelevant prop-

erties. Thinness of our skeleton is obvious, since our skeletons are straight-line graphs.

The other six properties are of varying importance. We will now discuss, each in turn,

the extent of their relevance to shape alignment and, if applicable, how well our al-

gorithm satisfies each property.

6.2.1 Connectedness

Since our algorithm is based on a breadth-first traversal of mesh vertices, we

are guaranteed to produce singly-connected skeletons for singly-connected meshes.

However, for meshes with multiple connected components, we would have to make

adjustments to our algorithm to take each component into account. In our actual

implementation, we do allow for multiple components by selecting a random vertex

from unseen components once the initial component (that which contains the centroid

vertex, vcent) has been traversed, but we lose isometry invariance. That is, the seed

vertex of a breadth-first graph must be selected in an isometrically invariant way for

83

the graph to be invariant to isometry; random selection is not invariant. As such,

when discussing the properties that follow, we are assuming a singly-connected mesh.

6.2.2 Isometry invariance

The BFG of a mesh is determined solely by the choice of seed vertices, not by

the geometry of the mesh. To show invariance to isometry of the skeleton generated

from the graph, it is sufficient to show that the choice of seed vertices is invariant

to isometry. For the AutoBFG algorithm, this means showing T (centroid(M)) =

centroid(T (M)), which we know is true in a distance-preserving isometry. For the

TopoBFG algorithm, such invariance cannot be guaranteed, since the choice of initial

seed vertex is random.

6.2.3 Centered

To demonstrate the performance of the BFG skeleton with respect to cen-

teredness, we use a simplified approach of testing whether the skeleton is located

within the surface and what percentage lies outside of the surface. We voxelize each

mesh in the Chen dataset using a grid size of 128x128x128 and the binvox software of

Nooruddin et al . [60]. Each voxel of the grid is labeled internal or external. We then

uniformly subsampled the BFG skeleton of each mesh and test whether each sample

point is inside or outside the mesh according to the voxelization.

The BFG performs well under this condition for most classes of objects. Ta-

ble 6.1 shows the performance on various object classes from the Chen database,

84

Class # Samples % Inside

Airplane 162.55 98.66
Armadillo 225.65 98.18
Pliers 162.45 98.08
Fish 101.25 97.71
Glasses 176.3 97.64
Hand 172.3 97.59
Ant 279.15 97.5
Human 210.15 97.0
Fourleg 185.7 96.85
Octopus 328.5 96.19
Teddy 137.25 95.84
Chair 333.5 95.5
Vase 109.25 93.68
Bearing 75.6 93.37
Bird 123.0 91.6
Bust 108.55 90.27
Table 230.0 87.83
Mech 82.25 85.21
Cup 106.65 39.58

Table 6.1: Performance of BFG skeletons for object classes in Chen database with
respect to centeredness. For all but three classes, performance is better than 90%.
Using a voxelization [60] of each mesh, we uniformly subsampled the BFG skeleton
and tested each sample point’s centeredness based on the voxelization. The second
column shows the average number of skeleton sample points for each class, and the
third column shows the average percentage of sample points labeled inside the mesh.

which is excellent (> 90%) for 16 of the 19 classes. The cup class is the only class

with poor performance. After visually inspecting the sample points that fall outside

the mesh, we find, for most meshes, that these bad samples are located at the tips of

parts and are mislabeled due to voxelization. That is, their faulty labeling is due to

the resolution of the voxel grid, and not due to the skeleton actually falling outside

of the surface. For the one object class with poor performance, the cup class, its

topology is not well suited to constructing a centered curve-skeleton.

85

Figure 6.9: Various skeletons showing the part preserving nature of our algorithm.
Notice that the skeletons reflect important topological characteristics. For example,
those objects with surface genus greater than zero (cup, chair, teapot) have skeletons
that contain the number of loops equal to their genus.

6.2.4 Part preserving

Part preservation of the BFG skeleton can be seen in Figure 6.9. These skele-

tons successfully capture the coarsest part structure of the articulated object classes.

Important topological characteristics of the shapes, such as their surface genus, are

also captured in these skeletons. For three classes (cup, chair and teapot), we can see

that the number of loops in the skeleton is equal to the surface genus of these shapes.

Table 6.2 compares the number of junction and cap vertices extracted by the

AutoBFG algorithm with the true number of junctions and caps in the underlying

object. It shows that there is a high degree of consistency between the extracted

and actual part structure. AvgF is the average number of front vertices, i.e. junction

86

Class AvgF AvgJ (AvgJ ± 1) AvgC (AvgC ± 1)

Mech 81 0 100 2 100
Human 205 2 95 5 90
Glasses 176 0 95 2 90
Pliers 161 2 95 4 90
Fish 100 1 95 3 90
Ant 274 3 95 9 90
Bust 104 0 95 2 95
Cup 103 1 90 2 100
Armadillo 219 3 90 5 100
Vase 103 1 90 2 85
Airplane 159 2 90 6 50
Bearing 65 1 85 2 85
Table 225 2 85 6 65
Bird 119 1 85 4 60
Hand 169 3 80 5 95
Fourleg 181 4 75 7 80
Teddy 132 2 75 5 30
Octopus 324 3 65 8 90
Chair 331 4 55 5 90

Table 6.2: AutoBFG part preservation: For most object classes, the number of
feature points extracted is highly consistent with the part structure. AvgF , AvgJ

and AvgC are the average number of total front vertices (junctions + pipes + caps),
average number of junction vertices, and average number of cap vertices, respectively,
extracted by the AutoBFG algorithm. (AvgJ ± 1) is the percentage of meshes in the
class whose number of junctions is within one of the average number of junction
vertices. (AvgC ± 1) is similar, except for caps and cap vertices vertices.

+ pipe + cap vertices. AvgJ and AvgC are the average number of junction and cap

vertices extracted by the AutoBFG algorithm, respectively. (AvgJ±1) and (AvgC±1)

are the percentage of meshes in the class whose number of junctions (or caps) is within

one of these averages. These two measures make it clear that for most of the classes,

the meshes in those classes have essentially the same number of junctions and caps.

Since junctions and caps form the basis of part distinction, this demonstrates part

preservation for our skeleton.

87

Class AvgF AvgJ (AvgJ ± 1) AvgC (AvgC ± 1)

Bust 101 0 100 2 100
Mech 79 0 100 2 100
Human 202 2 95 4 100
Fourleg 174 3 95 6 95
Ant 271 3 95 9 95
Pliers 162 2 95 4 90
Armadillo 214 2 95 4 90
Cup 101 1 90 2 100
Fish 101 1 90 3 90
Glasses 178 0 90 2 85
Bird 118 1 90 4 55
Bearing 65 1 85 2 95
Hand 168 3 85 5 90
Airplane 155 2 85 5 60
Table 235 2 85 6 45
Octopus 335 4 80 8 95
Chair 327 4 70 4 90
Vase 98 2 60 2 95
Teddy 133 2 55 4 40

Table 6.3: Robustness of part structure: Feature points from TopoBFG for each
object class. When the initial priming seed vertex is chosen randomly (normally
chosen to be the mesh vertex nearest the centroid of mesh vertices), the part structure
within each object class is still preserved.

6.2.5 Robust

The robustness of the BFG to surface noise is immediately aparent when one

remembers that surface geometry is only relevant to the choice of the initial priming

seed, i.e. that mesh vertex which is closest to the centroid of mesh vertices. This

robustness can be seen in Table 6.3. If the choice of initial priming seed were sensitive

to noise, then we would see a marked drop in part preservation, yet the results in

Table 6.3 show similar consistency rates as Table 6.2.

Of course, after the generation of the graph, surface noise does play a part

in the generation of skeletal front vertices (as the centroid of the mesh vertices that

88

they encode). However, unless the noise level is severe, the noise transfered from the

mesh surface to each skeletal front vertex is minimal. After Laplacian smoothing of

the skeleton [79], all noise is essentially eliminated.

6.2.6 Homotopy

There are two aspects of homotopy to address, connectedness and surface

genus. Connectedness has to do with the agreement between the number of connected

components in the skeleton and its corresponding surface. The issue of surface genus

involves the skeleton reflecting the number of tunnels or holes in the surface. For

three object classes with genus greater than zero (cup, chair, teapot), the skeletons

contain loops equal to the genus, seen in Figure 6.9.

6.2.7 Surface genus

Perfect reflection of the surface’s genus in the skeleton would correspond to

the number of loops in the skeleton being equivalent to the genus. For genus zero

surfaces, it can be shown that our algorithm is guaranteed to produce skeletons that

contain no loops, since it is based on breadth-first traversal. For surfaces of genus

greater than zero, we cannot guarantee an equivalent number of loops, but we can

achieve quality results. For example, in the case of the genus-3 Neptune mesh of

Figure 4.3, the number of loops is exactly equivalent to the genus.

89

(a) (b) (c)

Figure 6.10: Capturing part hierarchy in Ĝ skeleton. Because our skeletons are based
on the topology of the mesh, non-uniform meshing of the surface with respect to
curvature (a) will lead to segmentations (b) and skeletons (c) that capture extended
part heirarchies.

6.2.8 Hierarchical

Since the overarching goal of alignment is a minimal but semantically de-

scriptive part structure, this property is not necessarily advantageous. As such, the

methods presented here do not attempt to take into account multiple hierarchies of

part structure. However, it is conceivable that being able to focus on a single part’s

substructure might be useful. A modification of our algorithm to further decompose

individual parts will be left to possible future work.

In some cases, however, the part hierarchy is expressed directly within the

topology of the mesh. When a shape has been non-uniformly meshed, the process

that decides mesh density will inform the generation of breadth-first graph skeleton.

Figure 6.10 shows an example of this. This camel mesh was generated such that it is

90

more densely sampled in areas of negative minimum curvature, i.e. seams and creases,

that is the basis for the salient part distinctions mentioned in Section 2.2.1. Thus,

that extra part information will be embedded in the breadth-first graph, e.g . the

capturing of the individual toes and various facial features. In these areas, the mesh

is much more densely sampled, affecting the topology, so our topological approach

will be affected by that.

Conclusions We have shown in this section that the curve-skeletons gen-

erated by the AutoBFG and TopoBFG algorithms are suitable for analyzing the

semantic structure of articulated shapes. They meet those properties of Cornea et

al . [28] that are relevant to such analysis. They are topology preserving, invariant

to isometry, centered, part preserving and robust. These qualities justify our use of

those skeletons for shape alignment.

6.3 Conclusions

We have shown in this chapter that the breadth-first graph can be used for two

major applications in shape analysis, mesh segmentation and curve-skeleton extrac-

tion. We have demonstrated that our topological method is able to perform as well as

existing geometry-based methods on the benchmark for mesh segmentation of Chen et

al . [24]. By adapting our method to suit the input requirements of the benchmark,

we have shown its performance with respect to four different quality metrics against

seven other well-established methods. We also have performed an analysis of the

curve-skeletons generated by our breadth-first graph algorithm using the properties

91

developed by Cornea et al . [28]. We have shown that our skeletons are indeed usable

for shape analysis. Finally, we provided qualitative and quantitative evidence that

analysis of the semantic aspects of shape based on the breadth-first graph is justified.

We can now address the problem of shape alignment.

92

CHAPTER 7

AUTOMATIC SHAPE ALIGNMENT USING Ĝ

We now turn our attention back to the original problem, shape alignment. In

Chapter 4, we showed that the analysis of mesh topology was sufficient to extract a

semantically meaningful part structure. We also provided a set of methods to produce

a data structure, the breadth-first graph, that encodes that part structure in graph

form. In this chapter, we will explain how to use this graph to align shapes of the

same object class.

Our method can be classified as a global registration algorithm, one that lever-

ages knowledge of the part structure of each input mesh to solve directly for the global

minimum of the distance equation. The primary difference between our solution and

other global registration algorithms is that ours is not based on correspondences

between surface samples. Instead, we focus on building correspondences between rel-

evant front vertices of the meshes’ respective breadth-first graphs. Given those cor-

respondences, we can solve for the minimizing transform in closed form (Figure 7.1).

The first section of this chapter describes how we use the breadth-first graph

to solve the correspondence problem. The second presents our complete algorithm

for automatic shape alignment. Finally, we discuss the process by which we tested

our alignment algorithm and give the results of our experiments.

93

(a) Extract skeletons from mesh topology and
feature points from those skeletons

(b) Correspond features
and solve for rigid
transform

Figure 7.1: Outline of our alignment algorithm based on the topological shape analysis
introduced in Chapter 4. Given shapes P and Q, find their respective breadth-first
graph skeletons, use those skeletons to find semantically relevant point correspon-
dences, then use those point correspondences to solve for the rigid transform that
minimizes their pairwise distance.

7.1 The Correspondence Problem

Recalling our discussion of surface registration in Chapter 2, we know that the

problem of registration can be decomposed into two sub-problems: correspondence

and alignment. Given some point correspondence, we must find the rigid transform

that minimizes the Euclidean distance between corresponding point pairs. Since the

minimizing transform can be solved in closed form (Arun [7]), the primary problem

is finding the correct point correspondence. An optimal solution would require an

exhaustive search of the total correspondence space, i.e. all possible point pairs of

each input surface, which is prohibitively expensive. Instead, local surface registra-

tion techniques use a simple, closest-point correspondence solution that is refined

iteratively, precluding the need for exhaustive search but leading to sensitivity to ini-

tial position. Global registration techniques select only a few points from each input

94

surface, based on their uniqueness within some feature space, and then exhaustively

search the much smaller correspondence space.

In our case, because we have insight into the logical part structure of each

mesh, we are able to limit the correspondence space even further to a relatively small

number of points. These points are the most semantically dissimilar fronts of the

breadth-first graph of each input mesh, i.e. those points that represent part bound-

aries (junction fronts) and those that represent part tips (cap fronts). We further limit

correspondence space by precluding the correspondence of caps to junctions and vice

versa. So, we limit our correspondence space to (junction, junction) and (cap, cap)

pairs and solve for the optimal point correspondence within that space.

7.1.1 Correspondence error

One question remains: for a point correspondence within our limited corre-

spondence space, how do we evaluate its quality so that we can compare it with other

correspondences? This metric should of course reflect Euclidean distance after align-

ment. However, there are additional aspects of the correspondence that are relevant

to determining overall quality, aspects that are available to us because the points in

the correspondence are embedded within a graph structure. These aspects, which are

associated with geodesic distances computed as distances along the curve-skeleton

embedding of the breadth-first graph, should also be integrated into our metric.

Let P and Q be meshes with respective breadth-first graphs ĜP and ĜQ. Let

junc(P) and junc(Q) be the respective junction vertices of ĜP and ĜQ. Let cap(P)

95

and cap(Q) be their respective cap vertices. The correspondence set between the

breadth-first graphs of P and Q is:

PQ = {(p̂i, q̂i) :(p̂i ∈ junc(P), q̂i ∈ junc(Q)) ∨

(p̂i ∈ cap(P), q̂i ∈ cap(Q))}

(7.1)

Two common error metrics for point correspondences are the correspondence

root mean squared (cRMS) and distance root mean squared (dRMS) error metrics.

Adapting these metrics to our purposes, the cRMS error of a particular correspon-

dence set PQ = {(p̂i, q̂i)} between meshes P and Q is given by:

cRMS2(PQ) = min
R,t

1

n

n
∑

i=1

||(Rp̂i + t) − q̂i||
2 (7.2)

where R and t are a rotation and translation, respectively. This metric requires that

the minimizing rotation R and translation t be computed prior to error calculation,

which is not ideal. Also, those aspects associated with graph distance, such as geodesic

distance, are unaffected by rigid transformation, so cRMS error cannot take them into

account.

The dRMS error of correspondence PQ is computed by summing all internal

pairwise distances of the two point sets:

dRMS2(PQ) =
1

n2

n
∑

i=1

n
∑

j=1

(dist(p̂i, p̂j) − dist(q̂i, q̂j))
2 (7.3)

96

The dist(p̂i, p̂j) function is usually defined as the Euclidean distance between points

p̂i and p̂j , but it need not be so. It is for this reason that we chose the dRMS error

metric. Because this function can be arbitrarily defined, we can integrate the aspects

associated with the breadth-first graph along with Euclidean distance.

Let v̂i and v̂j be front vertices, vi, vj the centroids of their corresponding mesh

vertices, gd(v̂i, v̂j) the distance between them along the skeleton graph (described in

Section 4.3), agd(v̂) the average graph distance (i.e. the average distance of v̂ to all

other junction and cap vertices in the graph), and agdDiff(v̂i, v̂j) = |agd(v̂i)−agd(v̂j)|

the difference between their respective average graph distances (i.e. the average dis-

tance of each front to all other junction and cap points in the graph). We then define

the distance between two front vertices v̂i and v̂j as follows:

dist(v̂i, v̂j) = ||vi − vj || + gd(v̂i, v̂j) + agdDiff(v̂i, v̂j) (7.4)

7.1.2 Correspondence algorithm

Using the error metric of Equations 7.3 and 7.4, we can determine the best

correspondence from some set of correspondences. The final question then is how to

generate a set of plausible correspondences of (junction, junction) and (cap, cap) pairs.

Of course, this could be done exhaustively by searching the entirety of correspondence

space, and such an approach is manageable for shapes with non-trivial but relatively

simple part structures. However, for shapes with more complex part structures,

e.g . octopuses having eight legs or those meshes mentioned in Section 6.2.8 having

extra part information embedded in the topology (Figure 6.10), the O(N !) cost of

97

an exhaustive search can become expensive. Instead, we would like to have a greedy

algorithm that achieves usable results without the cost of an exhaustive search.

We now present and algorithm to find the best correspondence PQ between

two mesh shapes P and Q from their corresponding breadth-first graphs ĜP and ĜQ

(Algorithm 5). It can be best understood in this way: imagine that the skeletons

based on ĜP and ĜQ are made of string, with junctions and caps as knots in the

string, cap knots colored blue and junction knots colored red. Select a knot in ĜP

and select a knot in ĜQ of the same color. Hold one knot in each hand and let the

rest of the graph hang limp. For every knot l̂P in ĜP ’s skeleton, we look for the knot

in ĜQ’s skeleton that agrees in color, and whose distance from the selected knot in

ĜQ best matches the distance of l̂P from the selected knot in ĜP , using the distance

metric (Eq. 7.4). These pairs then define the correspondence set PQ. So for every

junction and cap v̂i ∈ junc(P) ∪ cap(P), there will be a potential correspondence set

PQi. We then choose the PQi that minimizes Equation 7.3.

The only caveat to this method has to do with degenerate skeletons, i.e. skele-

tons that contain no junctions. These could be skeletons of surfaces that are strongly

toroidal (leading to a circular loop skeleton) or spherical (leading to a line segment

skeleton). In the latter case of a line segment, we add a third knot color, for pipes,

and add a knot for the pipe vertex that is in the topological “middle” of the segment,

i.e. has index equal to 1/2 the total segment size. In the case of circular skeletons,

we arbitrarily chose a vertex and one of its neighbors as caps and treat it as a line

segment skeleton above.

98

Algorithm 5 BuildCorrespondence(ĜP , ĜQ)

Require: BFGs ĜP = {V̂P , ÊP} and ĜQ = {V̂Q, ÊQ}

F̂P = junc(P) ∪ cap(P)
F̂Q = junc(Q) ∪ cap(Q)
PQall = ∅
for all v̂P ∈ F̂P

Let L̂P be F̂P − {v̂P}
for all v̂Q ∈ F̂Q

Let L̂Q be F̂Q − {v̂Q}
Let PQ = {(v̂P , v̂Q)}

for all l̂P ∈ L̂p

Find minl̂Q∈L̂Q
|dist(v̂P , l̂P)−dist(v̂Q, l̂Q)|, such that l̂P and l̂Q are same front

type and dist is the distance function of (7.4)
if l̂Q exists then

PQ = PQ ∪ (l̂P , l̂Q)

PQall = PQall ∪ PQ

PQfinal = minPQ∈PQall
dRMS(PQ)

7.2 Automatic Alignment Algorithm

Given the above means of finding point correspondences, we now present our

algorithm for automatic mesh alignment. Let mesh P and mesh Q have corresponding

breadth-first graphs ĜP and ĜQ. We shall find the rotation R and translation T that

minimizes the least squares distance between the junctions and caps of ĜP and ĜQ,

F̂P = junc(P) ∪ cap(P) and F̂Q = junc(Q) ∪ cap(Q), respectively.

1. Build a correspondence PQ between the junctions and caps of ĜP (F̂Q) and

those of ĜQ (F̂Q) using Algorithm 5.

2. Solve for R and T in closed form using Arun [7]. That is, prepare for ICP by

approximately aligning P and Q.

99

(a) Mesh and noisy copy (b) Skeletons from Ĝ

(c) Correspondence (d) Alignment

Figure 7.2: Alignment process with mesh and copy of itself with noise introduced.
Given a mesh and noisy copy (a), the breadth-first graph Ĝ and corresponding skele-
ton of each mesh is generated (b). Using the junctions and caps of Ĝ, a correspondence
space is built (c), where junctions must correspond to junctions and caps to caps. Af-
ter sorting correspondence space by dRMS error, we solve for rotation and translation
in closed form based on the correspondence with smallest dRMS error. ICP is then
used to refine the alignment.

3. Run ICP on F̂P and F̂Q until convergence.

Figure 7.2 demonstrates the alignment process for a mesh and a noisy copy of itself.

Our alignments are determined from correspondences of front vertices in the

breadth-first graphs ĜP and ĜQ given as input. As such, we could use either our Au-

toBFG or TopoBFG algorithms as the basis of our alignment. We will refer to align-

100

ments based on the AutoBFG and TopoBFG algorithms as AutoBFG and TopoBFG

alignments, respectively. In Section 7.3 below, we test both of these versions of our

alignment algorithm.

7.3 Results

In this section, we will show that our algorithm was able to successfully align

shapes within the same object class and out-perform existing surface registration

software on object classes with articulated part structures. We first discuss how we

prepared our dataset for testing by manually adding semantic landmarks and how

those landmarks are used to establish a quantitative expression of alignment quality.

We then discuss the various input conditions that any shape alignment system should

be expected to handle and how we modified the test data to take those conditions

into account. Finally, we provide the results of testing under those conditions.

7.3.1 Landmarks and landmark error

From the Chen dataset discussed in Chapter 5, we chose 10 object classes

with 20 meshes in each class for a total of 200 meshes (Figure 7.3(a)). Our test

procedure involved performing pairwise alignments for all objects within each class.

In order to provide a quantitative measure of alignment quality we decided to use

surface landmarks (vertices) and record the pairwise distance of those landmarks

after alignment.

101

(a) Classes selected from Chen database

(b) Semantic landmarks for object classes

Figure 7.3: Object classes from Chen et al . [24] used in our alignment experimentation
and testing. In order: hand, bird, octopus, chair, vase, fourleg, armadillo, airplane,
ant and human. For each mesh (a) in these classes, we selected landmark vertices
(b) corresponding to semantically relevant areas of the mesh (tops of heads, tips of
fingers, etc.). We then ran our alignment algorithm and recorded the mean distance
of all pairs of corresponding landmarks.

Landmark selection

We selected a number of semantically relevant landmark points for each class

(e.g . tops of heads, tips of wings, etc.) and manually recorded the vertices in each mesh

that corresponded to these landmarks (Figure 7.3(b)). These landmarks represented

102

both the relatively stable core regions as well as those regions that could vary widely

due to changes in pose. We then used those landmarks as the basis for evaluating the

quality of alignment of two mesh shapes.

Landmark error

For some mesh pair (MP , MQ), whose landmark vertices are LP ⊂ VP and

LQ ⊂ VQ, respectively (|LP | = |LQ| = N), and some aligning transform αPQ, the

error associated with αPQ is:

E(MP , MQ, αPQ) =
1

N

N
∑

i=1

||αPQ(pi) − qi||,pi ∈ LP ,qi ∈ LQ (7.5)

That is, we defined the error of an alignment to be the mean of the pairwise distances

of corresponding mesh landmarks, after alignment.

It should be noted that our alignment algorithm is not symmetric. That is,

given MP and MQ, αPQ (i.e. the transform found by our algorithm to align MP to

MQ) is not necessarily the same as αQP . We found in practice that αPQ ≈ αQP when

MP ≈ MQ (i.e. differ only by an isometry and/or per-vertex noise). However, when

MP and MQ are different shapes, it is often the case that αPQ 6= αQP . Since the

graphs associated with MP and MQ are different, the optimal correspondences PQ

and QP can also be different, which leads to different minimizing transforms. If the

two transforms are different, then their respective landmark errors will be different,

so we used the average of their respective landmark errors. Therefore, we define the

103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200

Baseline

Figure 7.4: Performance curve representing the baseline (inherent) alignment error of
the Armadillo object class. This curve is generated by first calculating the 210 error
values (Equation 7.6) of alignments based on the known landmark correspondences,
sorting those values and plotting them as a line graph. The total baseline error for
the class, then, is the area under this curve.

total error associated with aligning MP and MQ to be:

E(MP , MQ) =

1

2
(E(MP , MQ, αPQ) + E(MQ, MP , αQP)) if MP 6= MQ

E(MP , MQ, αPQ) if MP ≈ MQ

(7.6)

where MP ≈ MQ means that they are the same mesh, possibly modified with per-

vertex noise.

Performance curves For each object class (20 meshes), there will be 210

total error values for any particular alignment algorithm. These 210 values are com-

posed of
(

20

2

)

error values for alignments where MP 6= MQ plus 20 error values where

MP ≈ MQ. If we were to sort these values and plot them as a line graph, we would

104

have what we will refer to as a performance curve of the algorithm. We then can

define the overall performance of an algorithm on an object class as the area under-

neath the performance curve. Figure 7.4 shows the performance curve of the baseline

algorithm (discussed below) of the Armadillo object class.

Caveat about performance curves: It should be noted that when compar-

ing multiple performance curves for different alignment algorithms, the x coordinate

of a curve represents simply the index in its sorted list of error values. Given some x,

the y values of two curves are not necessarily the error of the same shape pair. These

performance curves are given as a clean representation of overall performance of an

algorithm for an object class, not as a means to compare how they performed on a

particular mesh pair in that class.

Baseline error and algorithm

In the case where MP 6= MQ, especially when their parts are in different poses,

a perfect alignment of landmarks (i.e. one where the error of Equation 7.6 is zero)

is unlikely, even with prior knowledge of landmark correspondences. If we use the

known correspondences as input to Arun’s least-squares method, it will produce the

distance minimizing transform of that correspondence. We will refer to this hereafter

as the baseline algorithm. This can be used to calculate a performance curve (e.g .

Figure 7.4) for the baseline (or inherent) error of that class. In later Figures (7.5,

7.6, 7.8, and 7.9), this baseline algorithm will be presented with the other alignment

algorithms as a hard lower bound.

105

7.3.2 Input conditions to test

Given object shapes P and Q and their mesh representations MP and MQ, all

algorithms must be tested under the following input conditions:

(i) Identical meshes (MP = MQ). Algorithm must align MP to a rigidly trans-

formed version of itself.

Testing: We generated two random rigid transforms X0 = (R0, T0) and X1 =

(R1, T1) and gave X0(MP) and X1(MQ) as input.

(ii) Identical meshes with noise (MP ≈ MQ). Algorithm must align MP to a rigidly

transformed version of itself whose vertices have been modified with random

noise.

Testing: We generated a noisy version M̄ of each mesh M in each object class.

For each vertex in M , we generated a random unit vector (i.e. point on the

unit sphere) and scaled it by 1/100th of the length of the mesh’s bounding-box

diagonal. We then translated each vertex by its corresponding noise vector.

Using the random transforms (X0, X1), we gave X0(MP) and X1(M̄Q) as input.

(iii) Similar shapes of the same class (MP 6= MQ). Algorithm must align differ-

ent meshes that are of the same object class. This implies significant surface

variation as well as pose variation.

Testing: Using the random transforms (X0, X1) we give X0(MP) and X1(MQ)

as input. We tested this under noise conditions as well.

106

7.3.3 Testing results

For each of the conditions mentioned above, we prepared the data appropri-

ately and tested the two versions of our alignment algorithm (AutoBFG and TopoBFG

alignments) on that data. We expected our AutoBFG alignment to perform near-

perfectly under conditions (i) and (ii), due to its invariance to isometry. For condition

(iii) we tested our AutoBFG method on the data with the expectation of good perfor-

mance. We did not know what to expect from TopoBFG on conditions (iii), but given

its commendable performance with respect to segmentation (Section 6.1), we thought

it had the potential to perform well. As the lower bound for performance, we used

the baseline algorithm mentioned above in Section 7.3.1. As an upper bound, we used

an implementation of Generalized ICP of Segal et al . [66] discussed in Section 3.4.

(i) Alignment of identical meshes

When aligning a mesh MP to itself, our AutoBFG algorithm was able to align

the landmarks perfectly, within machine tolerance, for 8 of the 10 object classes, i.e.

E(MP , MP , αPP) = 0. Figure 7.5 shows the performance curves of the AutoBFG and

baseline algorithms for their 25 best mesh pairs. We can see from the performance

curves of 8 of the 10 classes that both algorithms have an error of zero for the first

20 mesh pairs, corresponding to those pairs where MP = MQ. Intuitively, since our

breadth-first graph algorithm is guaranteed to produce the same graph for the same

mesh given the same seed vertices, and since properties such as the centroid of a mesh

and straight-line distance are invariant to rigid transformation, we are guaranteed to

107

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20 25

Baseline
AutoBFG

(a) Human

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25

Baseline
AutoBFG

(b) Fourleg

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25

Baseline
AutoBFG

(c) Chair

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25

Baseline
AutoBFG

(d) Hand

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 0 5 10 15 20 25

Baseline
AutoBFG

(e) Airplane

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0 5 10 15 20 25

Baseline
AutoBFG

(f) Ant

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

Baseline
AutoBFG

(g) Octopus

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25

Baseline
AutoBFG

(h) Armadillo

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25

Baseline
AutoBFG

(i) Bird

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0 5 10 15 20 25

Baseline
AutoBFG

(j) Vase

Figure 7.5: Performance curves AutoBFG and baseline alignments. In the first 8
classes (a-h), the first 20 error values (x ∈ [0, 19]) correspond to the error of aligning
each mesh in the class with a rigidly transformed version of itself.

find the same starting seed vertex (that nearest the centroid) for identical meshes,

thus producing identical graphs.

However, in two classes, bird and vase, it did not perform perfectly. We believe

this is a result of our AutoBFG producing straight line skeletons (i.e. skeletons with

108

no junctions) for some meshes in the class. For the vase class, this is understandable.

For the bird class, this has to do with the fact that in some cases the wings were so

large in relation to the head and tail that the head and tail sections were distilled

out of the graph. If we recall back to our discussion in Section 7.1.2, we handled the

case of having only two points in a straight line segment (the cap vertices) by adding

a third point (a pipe vertex) in between them. Unfortunately, if that third point

is sufficiently collinear to the others, this leads to an underconstrained least-squares

solution, with unpredictable results. In other words, even if the point correspondences

are correct, the rigid transform output by Arun will likely be incorrect.

Alignment of identical meshes with noise

In the face of noise, our method was able to achieve results very similar to

those results without noise. Figure 7.5 shows a 1-to-1 comparison between the Au-

toBFG and baseline algorithms for aligning the 20 meshes of each object class to a

noisy version of themselves. In three cases (Figures 7.6(b), 7.6(c), and 7.6(d)), the

AutoBFG algorithm had almost exactly the baseline’s performance, while in two more

(Figures 7.6(a) and 7.6(f)) it misaligned only one mesh.

Alignment of similar shapes in same object class

Both our AutoBFG and TopoBFG alignment algorithms were able to perform

as well as Generalized ICP on all 10 object classes, outperforming it on 8 of the

10. Figure 7.7 demonstrates visually a subset of the results from three of the best-

109

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20

Baseline
AutoBFG

(a) Human

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20

Baseline
AutoBFG

(b) Fourleg

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 5 10 15 20

Baseline
AutoBFG

(c) Chair

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20

Baseline
AutoBFG

(d) Hand

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20

Baseline
AutoBFG

(e) Airplane

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20

Baseline
AutoBFG

(f) Ant

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20

Baseline
AutoBFG

(g) Octopus

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

 0 5 10 15 20

Baseline
AutoBFG

(h) Armadillo

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20

Baseline
AutoBFG

(i) Bird

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20

Baseline
AutoBFG

(j) Vase

Figure 7.6: 1-to-1 comparison of alignment error for identical meshes under noisy
conditions. Our AutoBFG alignment was able to perform very near to baseline in 6
of the ten classes (a, b, c, d, f, g).

performing classes, Human, Hand and Fourleg, to better explain what it means to

align similar shapes of the same object class. Figure 7.8 shows the performance curves

for AutoBFG, TopoBFG, Generalized ICP and baseline.

110

(a) Human meshes aligned to man in center

(b) Hands of various shapes, aligned to center mesh

(c) Several four-legged animals aligned to a wolf

Figure 7.7: Alignment results for three different object classes. In each case, the
peripheral meshes were aligned to the center mesh. The original orientation of each
mesh was chosen randomly.

111

Notice that our algorithms perform better when the objects have highly artic-

ulated part structures. The two classes with performance curves nearest the baseline,

Human and Fourleg, show that both the AutoBFG and TopoBFG algorithms perform

best when articulation is highest but pose variation is moderate. Performance on the

Chair and Hand classes, which are highly symmetric and asymmetric, respectively,

indicate that symmetry is not a defining attribute. The Airplane class demonstrates

the most disparity between the two BFG algorithms. We believe that the relatively

poor performance in the Ant, Octopus and Armadillo classes is due to the extreme

pose variation in those classes.

Figure 7.9 shows the performance curves of the AutoBFG, TopoBFG, Gener-

alized ICP and baseline algorithms on alignments of MP to a noisy version of MQ. In

this case, our alignment algorithms were able to outperform Generalized ICP on 7/10

object classes. This demonstrates our alignment algorithms’ robustness to noise.

Running time analysis

For large databases, our alignment algorithm can be optimized in a simple way

to significantly decrease total alignment running time. This can be seen in the graph

of Figure 7.10. In this graph, each object class has four bars. The first bar (blue)

represents the total average time per alignment for Generalized ICP. The second

bar (yellow) represents the total average time per alignment for our AutoBFG-based

alignment, and it is composed of these steps:

1) building the BFG for each input shape,

112

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(a) Human

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(b) Fourleg

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(c) Chair

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(d) Hand

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(e) Airplane

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(f) Ant

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(g) Octopus

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(h) Armadillo

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(i) Bird

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(j) Vase

Figure 7.8: Performance curves for AutoBFG, TopoBFG, Generalized ICP and the
baseline alighnments. For 8 of the 10 classes, both our algorithms outperformed
Generalized ICP. Only Bird and Vase are again anomalous (although comparable)
because of their lack of well-defined topology.

2) finding correspondences,

3) performing the initial alignment (prepping for ICP), and

4) refining the alignment via ICP.

113

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(a) Human

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(b) Fourleg

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(c) Chair

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(d) Hand

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(e) Airplane

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(f) Ant

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(g) Octopus

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(h) Armadillo

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(i) Bird

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

Baseline
AutoBFG
TopoBFG
Gen ICP

(j) Vase

Figure 7.9: Performance curves for AutoBFG, TopoBFG, Generalized ICP and the
baseline alighnments when aligning each mesh MP with a noisy version of MQ. Again,
in 8 of the 10 classes, both the AutoBFG and TopoBFG algorithms outperformed
Generalized ICP.

The third bar (red) represents the total average time per alignment for building the

breadth-first graph for each input shape (step 1). The fourth bar (green) corresponds

114

to the average time per alignment for steps 2, 3 and 4. The vast majority of the time

per alignment is spent building the breadth-fist graphs of input shapes.

If these graphs were generated once per mesh prior to alignment, total running

time can be decreased dramatically. In our implementation, this approach was used.

The difference in total alignment time for all 10 tested classes was more than an order

of magnitude. As an aside, the timing results for our TopoBFG-based alignment were

similar enough to these that our analysis still applies.

It should also be noted that every aspect of our algorithm was implemented

in the Python scripting language with very little optimization. Generalized ICP was

implemented in C/C++ with a fair amount of optimization. This leads us to believe

that a C/C++ implementation of our algorithm would provide even more gains in

speed.

Differences in topology

One difficulty in extracting part structure from mesh topology is that the

topology must somehow reflect the part structure. For example, if the arms of a

mesh are completely fused to the body, then topology alone is not enough to find

them. This is demonstrated in Figure 7.11. The two women are in roughly the same

pose, but the arms of the woman on the left are entirely connected to her body,

whereas the arms of the other woman are disconnected from the body. Figure 7.11(b)

shows how this leads to significantly different Ĝ skeletons for both. However, we can

see from Figure 7.11(e) that our method is still able to align these meshes. This

115

Figure 7.10: Running time results for Generalized ICP and BFG alignment. Each bar
represents average time per alignment in seconds, and the T-bars represent the stan-
dard deviation. The blue and yellow bars are the total time per complete alignment
for Generalized ICP and our AutoBFG-based algorithm, respectively. Timing results
for our algorithm (yellow bar) take into account building the BFG for each input shape
every time. The red bar represents the average time per alignment spent on building
the BFG for each input shape. The green bar is the average time per alignment
for correspondence, initial alignment, and refinement via ICP. By pre-processing the
BFGs for input shapes, running time can be significantly increased. Timing results
for our TopoBFG-based alignment algorithm are essentially the same.

is due to the fact that even though the graph for the woman on the right contains

more junction vertices (four more where the arms leave and rejoin the body), only the

junction at the legs will have the internal pairwise graph distances that best minimize

dRMS error. We can see this correspondence relationship in Figure 7.11(d).

116

(a) (b)

(c) (d) (e)

Figure 7.11: Even if there are significant topological differences between input meshes
(a), our method can still find the aligning transform for (c). The breadth-first graphs
are different (b), but correspondence is based upon similarity of internal graph dis-
tance, as well as Euclidean distance (d). Even if there is extra topological information
in one mesh, such as the arms of the woman on the right, the correct correspondence
is still found (d-e).

7.4 Conclusions

We have shown in this chapter that our topological approach to shape analysis,

the breadth-first graph, can be used fruitfully to perform alignments on mesh shapes

117

of the same object class. We have shown that these algorithms are robust to surface

variation due to noise and changes in pose. We have provided extensive testing and

quantitative evidence that mesh topology is a valuable resource when trying to align

shapes.

118

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Validity of Hypotheses

In our introductory chapter, we introduced two hypotheses. The first stated

that the integration of the semantic aspects of shape (i.e. the part structure) would

significantly improve its robustness to surface variation. The second stated that it

was possible to use an analysis of mesh topology to understand the semantic aspects

of shape critical to the first hypothesis. In this work we have shown that these

hypotheses are valid and worthy of further study. We will discuss the validity of the

second hypothesis first. Then we will discuss the validity of the first.

8.1.1 Hypothesis: Shape analysis through mesh topology

In this work, we have shown that the shape analysis has a basis in combinatoric

topology. The triangle mesh can be viewed as a topological space, specifically as a

simplicial 2-complex. We can apply primitive operations on simplicial complexes, i.e.

closure, star and link, to create a scalar function defined on a simplicial 2-complex.

This function can be used to analyze the shape within the context of Morse theory

as a Discrete Reeb Graph.

We have shown that this manner of analysis on mesh topology provides a sig-

nificant amount of semantic part information. To extract that part information, we

119

have provided a novel approach based on a modified breadth-first traversal of mesh

vertices. We have shown how to encode the part information into a graph structure

and how that graph can be used for shape analysis tasks such as segmentation and

skeleton extraction. We have shown how to overcome the breadth-first graph’s de-

pendence on user input by using an initial priming traversal of the mesh. We use the

result of that priming run to construct a final graph in an automated manner.

We have shown that our method garners valuable and useful information about

the semantic part structure. We have tested and justified the ability of this analysis

method to extract part information by using an established benchmark for mesh seg-

mentation. We have also shown that the curve-skeletons produced by our method are

valid and usable for our goal of shape alignment according to established evaluation

criteria.

8.1.2 Hypothesis: Improving shape alignment through semantic analysis

We have shown that our breadth-first graph can be used to perform alignments

on mesh shapes of the same object class. We limit the scope of correspondence

space to only those vertices in these graphs that were most semantically dissimilar,

junctions and caps. By employing a greedy graph correspondence solution to limited

correspondence space, we are able to solve for the rigid transform that minimizes

the distance between (junction, junction) and (cap, cap) pairs. We have tested our

alignment algorithms against a well-establish alignment solution, the Generalized ICP.

120

Our tests show that our algorithms outperform Generalized ICP over most object

classes and are robust to surface variation due to noise and changes in pose.

8.2 Future Work

In future, there are other application areas to which we would like to apply

our topological approach to shape analysis.

• Shape reconstruction from BFG: We believe that our method can be used to

reconstruct the basic shape characteristics of a mesh based on the pure topology.

This would be very similar to the techniques of Isenburg et al . [42] in their work

on connectivity shapes. Given the edge information of a mesh, we would use

the TopoBFG algorithm to produce an abstract (i.e. non-geometric) skeleton

of mesh that we could embed in R
3 randomly. We then could apply multi-

dimensional scaling to “unwind” the randomized skeleton to a canonical form.

Finally, we could rebuild the vertex geometry locally at each front based on the

connectivity between fronts.

• Applications to graph visualization: One thing that has not been explored

in this work is the fact that our breadth-first graph algorithm only requires

vertices and edges. It does not require that the input be a triangle mesh or

a surface of any type. We limited ourselves to simplicial 2-complexes for the

sake of establishing our shape analysis within a discrete version of Morse theory

and to apply it to the specific application area of shape alignment. We could

also apply it to discover and visualize clusters within densely connected abstract

121

graphs. Essentially, given some graph G = {V, E} junctions within Ĝ(G) whose

degree is above some threshold β could be labeled as cluster sites, reducing the

overall visualization load.

• Integration into Blender3D: The functionality of the methods described in

this work, everything from the generation of the breadth-first graph of a mesh

to colorization of a mesh based on part decomposition to skeletonization to

alignment, are available as a Blender 2.5 addon. We would like to augment this

functionality to include auto-rigging of meshes (constructing a skeleton of bones

which are used within Blender’s inverse kinematics engine for animation) and

possibly even a rudimentary shape retrieval system for ad-hoc shape databases.

122

LIST OF REFERENCES

[1] Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S., Azari-

adis, P., and Sapidis, N. 3D articulated object retrieval using a graph-based
representation. The Visual Computer (2010), 1–19.

[2] Agathos, A., Pratikakis, I., Perantonis, S., and Sapidis, N.

Protrusion-oriented 3D mesh segmentation. The Visual Computer 26, 1 (2010),
63–81.

[3] Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., and Azari-

adis, P. 3D mesh segmentation methodologies for CAD applications. Computer-
Aided Design and Applications 4, 6 (2007), 827–841.

[4] Aiger, D., Niloy, M., and Cohen-Or, D. 4-points congruent sets for robust
pairwise surface registration. ACM Transactions on Graphics 27, 3 (2008), 85–
85.

[5] Amenta, N., Choi, S., and Kolluri, R. K. The power crust. In SMA ’01:
ACM Symposium on Solid Modeling and Applications (New York, NY, USA,
2001), ACM, pp. 249–266.

[6] Anguelov, D., Srinivasan, P., Pang, H., Koller, D., Thrun, S., and

Davis, J. The correlated correspondence algorithm for unsupervised registration
of nonrigid surfaces. In Advances in Neural Information Processing Systems
(2005), The MIT Press, p. 33.

[7] Arun, K., Huang, T., and Blostein, S. Least-squares fitting of two 3-D
point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9, 5 (1987), 698–700.

[8] Attene, M., Falcidieno, B., and Spagnuolo, M. Hierarchical mesh seg-
mentation based on fitting primitives. Vis. Comput. 22, 3 (2006), 181–193.

[9] Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., and

Tal, A. Mesh segmentation - a comparative study. In SMI ’06: Proceedings
of the IEEE International Conference on Shape Modeling and Applications 2006
(Washington, DC, USA, 2006), IEEE Computer Society, p. 7.

[10] Berretti, S., Del Bimbo, A., and Pala, P. 3D mesh decomposition using
Reeb graphs. Image and Vision Computing 27, 10 (2009), 1540–1554.

[11] Besl, P. J., and McKay, N. D. A method for registration of 3-D shapes.
IEEE Trans. Pattern Anal. Mach. Intell. 14, 2 (1992), 239–256.

123

[12] Biasotti, S., Attali, D., Boissonnat, J.-D., Edelsbrunner, H., Elber,

G., Mortara, M., di Baja, G. S., Spagnuolo, M., Tanase, M., and

Veltkamp, R. Shape analysis and structuring. Mathematics and Visualization
(2008), 145–183.

[13] Biasotti, S., Marini, S., Mortara, M., and Patané, G. An overview on
properties and efficacy of topological skeletons in shape modelling. In SMI ’03:
Proceedings of the Shape Modeling International 2003 (Washington, DC, USA,
2003), IEEE Computer Society, p. 245.

[14] Biasotti, S., Marini, S., Spagnuolo, M., and Falcidieno, B. Sub-part
correspondence by structural descriptors of 3d shapes. Computer-Aided Design
38, 9 (2006), 1002–1019.

[15] Blanz, V., Tarr, M., Bülthoff, H., and Vetter, T. What object at-
tributes determine canonical views? Perception 28 (1999), 575–600.

[16] Blender. Blender 3D. In http://www.blender.org.

[17] Blender. Blender Model Repository. In http://e2-productions.com/repository/.

[18] Blum, H. A transformation for extracting new descriptors of shape. Models for
the Perception of Speech and Visual Form 19, 5 (1967), 362–380.

[19] Bouaynaya, N., Charif-Chefchaouni, M., and Schonfeld, D. Spatially
variant morphological restoration and skeleton representation. Image Processing,
IEEE Transactions on 15, 11 (2006), 3579–3591.

[20] Bronstein, A., Bronstein, M., and Kimmel, R. Topology-invariant simi-
larity of nonrigid shapes. International journal of computer vision 81, 3 (2009),
281–301.

[21] Chang, W., and Zwicker, M. Automatic registration for articulated shapes.
In Computer Graphics Forum (2008), vol. 27, Wiley Online Library, pp. 1459–
1468.

[22] Chaouch, M., and Verroust-Blondet, A. A novel method for alignment
of 3d models. In Shape Modeling and Applications, 2008. SMI 2008. IEEE In-
ternational Conference on (june 2008), pp. 187 –195.

[23] Chaouch, M., and Verroust-Blondet, A. Alignment of 3d models. Graph-
ical Models 71, 2 (2009), 63–76.

[24] Chen, X., Golovinskiy, A., and Funkhouser, T. A benchmark for 3D
mesh segmentation. ACM Transactions on Graphics (SIGGRAPH) 28, 3 (2009).

[25] Chen, Y., and Medioni, G. Object modeling by registration of multiple range
images. In IEEE International Conference on Robotics and Automation (1991),
pp. 2724–2729.

124

[26] Chuang, J., Tsai, C., and Ko, M. Skeletonisation of three-dimensional ob-
ject using generalized potential field. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 22, 11 (2000), 1241–1251.

[27] Cornea, N., Demirci, M., Silver, D., Shokoufandeh, A., Dickinson,

S., and Kantor, P. 3d object retrieval using many-to-many matching of curve
skeletons.

[28] Cornea, N., Silver, D., and Min, P. Curve-skeleton properties, appli-
cations, and algorithms. IEEE Transactions on Visualization and Computer
Graphics 13, 3 (2007), 530–548.

[29] de Goes, F., Goldenstein, S., and Velho, L. A hierarchical segmentation
of articulated bodies. In Computer Graphics Forum (2008), vol. 27, Blackwell
Science Ltd, Osney Mead, Oxford, OX 2 0 EL, UK,, pp. 1349–1356.

[30] Dey, T., and Sun, J. Defining and computing curve-skeletons with medial
geodesic function. In Symposium on Geometry Processing (2006), Eurographics
Association, p. 152.

[31] Edelsbrunner, H., and Harer, J. Computational topology: an introduction.
Amer Mathematical Society, 2010.

[32] Field, D. Laplacian smoothing and delaunay triangulations. Communications
in Applied Numerical Methods 4, 6 (1988), 709–712.

[33] Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. Upright orientation
of man-made objects. In SIGGRAPH 2008 (New York, NY, USA, 2008), ACM,
pp. 1–7.

[34] Gagvani, N., and Silver, D. Parameter-controlled volume thinning. Graph-
ical Models and Image Processing 61, 3 (1999), 149–164.

[35] Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. Robust
global registration. In SGP 2005: Symposium on Geometry Processing (Aire-la-
Ville, Switzerland, Switzerland, 2005), Eurographics Association, p. 197.

[36] Giorgi, D., Biasotti, S., and Paraboschi, L. Shape retrieval contest 2007:
Watertight models track. SHREC competition (2007).

[37] Golovinskiy, A., and Funkhouser, T. Randomized cuts for 3D mesh anal-
ysis. ACM Transactions on Graphcs (SIGGRAPH ASIA) 27, 3 (Dec. 2008).

[38] Grimson, W. E. L. Object recognition by computer: the role of geometric
constraints. The MIT Press, 1991.

[39] Hart, J. Morse theory for implicit surface modeling. Springer-Verlag, Berlin
(1998), 257–268.

125

[40] Hoffman, D. D., and Singh, M. Salience of visual parts. Cognition 63
(1997), 29–78.

[41] Huang, Q., and Dom, B. Quantitative methods of evaluating image segmen-
tation. In Image Processing, 1995. Proceedings., vol. 3, IEEE, pp. 53–56.

[42] Isenburg, M., Gumhold, S., and Gotsman, C. Connectivity shapes. In
VIS ’01: Visualization (Washington, DC, USA, 2001), IEEE Computer Society,
pp. 135–142.

[43] Katz, S., Leifman, G., and Tal, A. Mesh segmentation using feature point
and core extraction. The Visual Computer (Pacific Graphics) 21, 8-10 (October
2005), 649–658.

[44] Katz, S., and Tal, A. Hierarchical mesh decomposition using fuzzy clustering
and cuts. In SIGGRAPH 2003 (New York, NY, USA, 2003), ACM, pp. 954–961.

[45] Kazhdan, M. An approximate and efficient method for optimal rotation align-
ment of 3d models. IEEE Trans. Pattern Anal. Mach. Intell. (2007), 1221–1229.

[46] Kresch, R., and Malah, D. Skeleton-based morphological coding of binary
images. Image Processing, IEEE Transactions on 7, 10 (1998), 1387–1399.

[47] Lai, Y., Hu, S., Martin, R., and Rosin, P. Rapid and effective segmenta-
tion of 3D models using random walks. Computer Aided Geometric Design 26,
6 (2009), 665–679.

[48] Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., and Seidel, H.-P. Mesh
scissoring with minima rule and part salience. Comput. Aided Geom. Des. 22, 5
(2005), 444–465.

[49] Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D.,

Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J.,

Shade, J., and Fulk, D. The digital Michelangelo project: 3D scanning
of large statues. In SIGGRAPH 2000 (New York, NY, USA, 2000), pp. 131–144.

[50] Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura,

S., Kurita, Y., Lavoué, G., Nguyen, H., Ohbuchi, R., et al. Shrec11
track: Shape retrieval on non-rigid 3d watertight meshes.

[51] Lien, J.-M., Keyser, J., and Amato, N. M. Simultaneous shape decompo-
sition and skeletonization. In SPM ’06: Proceedings of the 2006 ACM symposium
on Solid and physical modeling (New York, NY, USA, 2006), ACM, pp. 219–228.

[52] Makadia, A., and Daniilidis, K. Direct 3d-rotation estimation from spher-
ical images via a generalized shift theorem.

[53] Maragos, P., and Schafer, R. Morphological skeleton representation and
coding of binary images. Acoustics, Speech and Signal Processing, IEEE Trans-
actions on 34, 5 (1986), 1228–1244.

126

[54] Martin, D., Fowlkes, C., Tal, D., and Malik, J. A database of hu-
man segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics.

[55] Martinek, M., and Grosso, R. Optimal rotation alignment of 3D objects
using a gpu-based similarity function. Computers & Graphics 33, 3 (2009), 291–
298.

[56] Mohlenkamp, M. A fast transform for spherical harmonics. Journal of Fourier
analysis and applications 5, 2 (1999), 159–184.

[57] Mortara, M., and Patané, G. Affine-invariant skeleton of 3d shapes. In smi
(2002), Published by the IEEE Computer Society, p. 245.

[58] Mortara, M., Patané, G., Spagnuolo, M., Falcidieno, B., and

Rossignac, J. Blowing bubbles for multi-scale analysis and decomposition
of triangle meshes. Algorithmica 38, 1 (2003), 227–248.

[59] Munkres, J. Elements of algebraic topology, vol. 2. Addison-Wesley Reading,
MA, 1984.

[60] Nooruddin, F., and Turk, G. Simplification and repair of polygonal models
using volumetric techniques. IEEE Transactions on Visualization and Computer
Graphics (2003), 191–205.

[61] Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and

Funkhouser, T. A planar-reflective symmetry transform for 3D shapes. ACM
Transactions on Graphics (TOG) 25, 3 (2006), 549–559.

[62] Rand, W. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association 66, 336 (1971), 846–850.

[63] Reeb, G. Sur les points singuliers dune forme de pfaff completement intégrable
ou dune fonction numérique. Comptes Rendus de LAcadémie ses Séances, Paris
222 (1946), 847–849.

[64] Rusinkiewicz, S., and Levoy, M. Efficient variants of the ICP algorithm.
In Proceedings of 3DIM (2001), pp. 145–152.

[65] Saleem, W., Wang, D., Belyaev, A., and Seidel, H. Automatic 2d shape
orientation by example.

[66] Segal, A., Haehnel, D., and Thrun, S. Generalized-icp. In Proc. of
Robotics: Science and Systems (RSS) (2009), Citeseer.

[67] Shamir, A. A formulation of boundary mesh segmentation. In 3DPVT 2004
(Washington, DC, USA, 2004), IEEE Computer Society, pp. 82–89.

[68] Shamir, A. A survey on mesh segmentation techniques. In Computer graphics
forum (2008), vol. 27, pp. 1539–1556.

127

[69] Shapira, L., Shamir, A., and Cohen-Or, D. Consistent mesh partitioning
and skeletonisation using the shape diameter function. The Visual Computer 24,
4 (2008), 249–259.

[70] Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. The princeton
shape benchmark. In Shape modeling international (2004), vol. 105, Citeseer,
p. 179.

[71] Shlafman, S., Tal, A., and Katz, S. Metamorphosis of polyhedral surfaces
using decomposition. Eurographics 2002 (2002), 219–228.

[72] Siddiqi, K., and Pizer, S. Medial representations: mathematics, algorithms
and applications, vol. 37. Springer Verlag, 2008.

[73] Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S.,

and Dickinson, S. Retrieving articulated 3-D models using medial surfaces.
Machine Vision and Applications 19, 4 (2008), 261–275.

[74] Sorkine, O., and Cohen-Or, D. Least-squares meshes. In SMI ’04: Proceed-
ings of the Shape Modeling International 2004 (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 191–199.

[75] Sorkine, O., Irony, D., and Toledo, S. Geometry-aware bases for shape
approximation. IEEE Transactions on Visualization and Computer Graphics 11,
2 (2005), 171–180. Member-Cohen-Or, Daniel.

[76] Sundar, H., Silver, D., Gagvani, N., and Dickinson, S. Skeleton based
shape matching and retrieval. In Shape Modeling International (2003), vol. 130,
Citeseer.

[77] Svensson, S., Nystr

”om, I., and Sanniti di Baja, G. Curve skeletonization of surface-like objects
in 3D images guided by voxel classification. Pattern Recognition Letters 23, 12
(2002), 1419–1426.

[78] Tagliasacchi, A., Zhang, H., and Cohen-Or, D. Curve skeleton extrac-
tion from incomplete point cloud. In ACM SIGGRAPH 2009 papers (2009),
ACM, pp. 1–9.

[79] Taubin, G. Geometric signal processing on polygonal meshes. Eurographics
(State of The Art Report) (2000).

[80] Tierny, J., Vandeborre, J.-P., and Daoudi, M. 3D mesh skeleton extrac-
tion using topological and geometrical analyses. Pacific Graphics 2006 (2006),
85–94.

[81] Tierny, J., Vandeborre, J.-P., and Daoudi, M. Topology driven 3D mesh
hierarchical segmentation. In SMI ’07: IEEE International Conference on Shape
Modeling and Applications (Washington, DC, USA, 2007), pp. 215–220.

128

[82] Vranic, D., Saupe, D., and Richter, J. Tools for 3d-object retrieval:
Karhunen-loeve transform and spherical harmonics. In Multimedia Signal Pro-
cessing, 2001 IEEE Fourth Workshop on (2001), IEEE, pp. 293–298.

[83] Wolfson, H., and Rigoutsos, I. Geometric hashing: An overview. IEEE
Computational Science & Engineering 4, 4 (1997), 10–21.

[84] Xu, K., Stewart, J., and Fiume, E. Constraint-based automatic placement
for scene composition. In Graphics Interface (2002), pp. 25–34.

[85] Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A.,

and Seidel, H. Towards stable and salient multi-view representation of 3d
shapes. In Shape Modeling and Applications, 2006. SMI 2006. IEEE Interna-
tional Conference on (2006), IEEE, pp. 40–40.

[86] Zaharia, T., and Prêteux, F. 3d versus 2d/3d shape descriptors: A com-
parative study. In SPIE Conf. on Image Processing: Algorithms and Systems,
vol. 2004, Citeseer.

[87] Zheng, Q., Sharf, A., Tagliasacchi, A., Chen, B., Zhang, H., Shef-

fer, A., and Cohen-Or, D. Consensus skeleton for non-rigid space-time reg-
istration. In Computer Graphics Forum (2010), vol. 29, Wiley Online Library,
pp. 635–644.

129

APPENDIX A

ALGORITHMS TESTED BY CHEN et al .

Chen et al . used these four metrics to evaluate and compare the results of

seven different automatic and semi-automatic segmentation algorithms against their

human-generated segmentations. Here we will give a short description of these algo-

rithms.

• K-Means: Shlafman et al . [71] demonstrated how a K-means clustering of

faces can be used to segment a mesh. Given some user-specified k number

of segments, the algorithm iteratively refines clusters of faces based on central

“seed” faces. It continues until the cluster assignment converges.

• Random walks: Lai et al . [47] provide a two-phase iterative segmentation

process. First, each face is assigned to the segment most likely to reach it via

a random walk on the dual graph of the mesh. Second, segments are merged

according to the relative lengths of the intersections of perimeters of adjacent

segments. This terminates when a user-specified number of segments is reached.

• Fitting Primitives: Attene et al . [8] use salient features for fitting primitives

(planes, cylinders and spheres) that approximate mesh parts. Starting with each

face in its own segment, the algorithm builds bottom-up, combining adjacent

segments until some user-specified number of segments is reached.

130

• Normalized cuts: Golovinsky et al . [37] hierarchically segment the mesh in

a bottom-up fashion. First, each segment is placed in its own segment. These

segments are then merged according to the area-normalized cut cost (the sum

of each segment’s perimeter divided by its area) until a user-defined number of

segments is reached.

• Randomized cuts: Golovinsky et al . [37] also propose a hierarchical segmen-

tation method that starts with a decimated version of the mesh in a single

segment and uses randomized minimum cuts to recursively split the mesh into

binary segments.

• Core extraction: Katz et al . [43] decompose the mesh by first extracting its

core and a set of appendages defined by feature points. Segmentation continues

until segments no longer contain any feature points or some threshold proportion

of mesh vertices are contained on the segment’s convex hull.

• Shape Diameter Function: Shapira et al . [69] use the “Shape Diameter

Function”, which approximates the diameter of the object’s volume in the neigh-

borhood of a point on the surface, to apply energy minimization techniques to

cluster faces in a way that maximizes boundary smoothness and location along

concave seams.

	A Topological Approach to Shape Analysis and Alignment
	Recommended Citation

	vase_means_noise.eps

