
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2019

A Study Of Approximation Error In Eulerian Hydrocodes A Study Of Approximation Error In Eulerian Hydrocodes

Parth Yogeshbhai Patel
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Patel, Parth Yogeshbhai, "A Study Of Approximation Error In Eulerian Hydrocodes" (2019). All ETDs from
UAB. 2677.
https://digitalcommons.library.uab.edu/etd-collection/2677

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/2677?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

A STUDY OF APPROXIMATION ERROR IN EULERIAN HYDROCODES

by

PARTH YOGESHBHAI PATEL

DAVID L. LITTLEFIELD, CHAIR

DEAN SICKING

LEE MORADI

A THESIS

Submitted to the graduate faculty of The University of Alabama at Birmingham,

in partial fulfillment of the requirements for the degree of

Master of Science

BIRMINGHAM, ALABAMA

2019

Copyright by

Parth Yogeshbhai Patel

2019

0 ii

A STUDY OF APPROXIMATION ERROR IN EULERIAN HYDROCODES

PARTH YOGESHBHAI PATEL

MECHANICAL ENGINEERING

ABSTRACT

In this study, we examine a number of approximations in the formulation of

hydrocodes. These approximations were borne out of an original requirement for the code

to run as fast as possible i.e. with accuracy being secondary to speed. Many of these

approximations originated from the 1970’s when computers were slow and memory was

at a premium. Although speed and memory are not as much of an issue today, these

approximations are still used to formulate the hydrocodes. In this study, the effect of

these approximations is examined systematically.

The lumped mass approximation is a simplification to the consistent mass

formulation and is routinely used in hydrocodes. While this approximation is

computationally efficient, the consistent mass formulation is the most accurate (and

computationally expensive) option. There are other levels of approximation between

these two extremes that trade off computational efficiency for accuracy. As is shown in

this work, some of these result in tridiagonal systems which are very computationally

efficient to solve. We introduce these algorithms in this work and refer to them as the

reduced consistent mass method.

Linear finite elements are also used pervasively in hydrocodes. Like the lumped

mass approximation, the use of linear elements was borne out of the requirement for

computational efficiency and not accuracy. Surprisingly, linear elements are still used

routinely today, despite their numerous accuracy issues such as realistic representation of

i

0 ii

geometry and the need for hourglass stabilization. In this work higher order finite

elements, including quadratic and cubic elements, are examined. Special attention is

placed on quadrature order used in integration and its effect on overall accuracy.

The 2D version of ALEAS (Arbitrary Lagrangian-Eulerian Adaptive Solver), an

in-house ALE (Arbitrary Lagrangian-Eulerian) research code, is used in this work. Some

simple benchmark problems are used to assess and quantify the effect of higher order

approximations in Eulerian hydrocodes.

Keywords: ALEAS, Hydrocodes, Lumped mass, Consistent mass, Tridiagonal systems

ii

0 ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. David Littlefield, my research advisor,

for his guidance, and patience, which have helped me to become an independent

researcher. It was his ideas that motivated this work, and without his expertise none of

this would have been possible. Also, I would like to express my gratitude especially to

Dr. Kenneth Cline Walls, III, for his constant guidance in coding.

I am also grateful to Dr. Dean Sicking, and Dr. Lee Moradi for serving on my

committee and providing valuable feedback on this work.

I would also like to thank Mechanical Engineering Department at the University

of Alabama at Birmingham. During my time as a student in this department, they have

provided tremendous support. I am very delighted to have worked with all of them.

Lastly, I would like to thank my family and my guru for the support and

encouragement they have provided during this process. My father, Y. N. Patel, taught me

the value of hard work, and patience and for that I am forever grateful. I would like to

especially thank my guru, Mahant Swami Maharaj, who has taught me values of unity,

positivity, and loyalty, my mother, Varsha, and sister, Hima for believing in me.

iii

0 ii

TABLE OF CONTENTS

Page

ABSTRACT ... i

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. viii

CHAPTER

 1. INTRODUCTION ..1

Hydrocode Modeling ...1

History of the Finite Element Method ...2

Background ..4

Thesis Organization ...4

 2. MATHEMATICAL FOUNDATIONS ...6

Mathematical Background for Continuum Mechanics ..6

Notation..6

Conservation Equations ...7

 3. FORMULATIONS ...9

Development of the conservation Equations and Finite Element Formulation9

Conservation of Momentum in ALE Coordinates10

Conservation of Mass in ALE Coordinates ...15

Conservation of Energy in ALE Coordinates ..19

Summary of the Eulerian Finite Element Contact Formulation23

 4. REDUCED CONSISTENT MASS LUMPING SCHEME25

Description of Lumped Mass Equation ...25

iv

0 ii

The reduced consistent mass method ...28

Tridiagonal 1 ..28

Tridiagonal 2 ..28

Penta diagonal ...29

Higher Order System ..30

Thomas Algorithm to Solve Tridiagonal System 30

 5. SOFTWARE AND SETUP ...36

 ALEAS ..36

Setup for Virtual Node Numbering..36

Easy_mesh Subroutine ...38

Mesh_setup Subroutine ..38

Setup for Reduced Consistent Mass Matrix ..38

Zeroed Subroutine ...39

Bnd_explicit Subroutine ...39

Stiff_explicit Subroutine ...39

Rhs_explicit Subroutine ..41

Solve_explicit Subroutine ...42

Contact Subroutine ..42

Slide4 Subroutine ..43

Update_energy Subroutine ..43

 6. DISCUSSION AND RESULTS ..44

 Results of Simple Quadratic Four Elements ...44

 7. CONCLUSIONS..49

 Future Work ..49

LIST OF REFERENCES ...51

APPENDICES

 A Easy_mesh.f File ...52

 B Mesh_setup.f File ...54

 C Zeroed.f File ...55

 D Bnd_explicit.f File ..56

 E Stiff_explicit.f File ..58

 F Rhs_explicit.f File ...67

 G Solve_explicit.f File ..68

 H Slide4.f File ...70

v

0 ii

 I Update_energy.f File ..71

 J Input File ...72

 K Plot Input File ...74

vi

0 ii

LIST OF FIGURES

Figure Page

1.1 Representations of the Eulerian computational mesh ..2

3.1 Lagrangian, Eulerian, and ALE coordinate systems ..9

4.1 Quadratic element ..26

4.2 Quadratic element with node numbering in X-direction28

4.3 Quadratic element with node numbering in Y-direction29

4.4 Quadratic Element used for Penta-diagonal Mass Lumping29

4.5 Four Elements of Serendipity Family for Higher Order Mass Lumping30

4.6 Quadratic element (a) Existing ordering system (b) Desire ordering system32

5.1 Two different regions with virtual and real node numbering37

5.2 Quadratic element when icycle equals to zero ...40

5.3 Quadratic element when icycle equals to one ..41

6.1 Representation of mesh and material of four quadratic element at t = 045

6.2 Representation of pressure and mesh of four quadratic element at t = 046

6.3 Representation of density and mesh of four quadratic element at t = 046

6.4 Representation of mesh and material of four quadratic element at t=0.38E-0247

6.5 Representation of pressure and mesh of four quadratic element at t=0.38E-0247

6.6 Representation of density and mesh of four quadratic element at t=0.38E-0248

vii

0 ii

LIST OF ABBREVIATIONS

ALE Arbitrary Lagrangian-Eulerian

ALEAS Arbitrary Lagrangian-Eulerian Adaptive Solver

viii

1

CHAPTER 1

INTRODUCTION

Hydrocode Modeling

 Hydrocodes are computer software packages that can be used for the numerical

solution of mathematical models. This includes ability to accurately approximate the

mathematical models. Hydrocodes also include capabilities to solve structural dynamics

models. This makes them useful for modelling vehicular collisions, biomechanical injury

analysis, planetary impacts, explosions, hypervelocity impacts and penetrations, fluid

structure interactions, and many more.

 Hydrocodes formulate dynamical structural models and compute approximate

solutions, which can involve various types of materials with very different properties.

Thus, the user is responsible for constructing the most accurate model and also for

specifying equations that govern how the materials will behave under specific conditions.

Development of this code is still used in today’s generation of software such as EPIC and

ALEAS. The ALEAS hydrocode is used in this work.

 Hydrocodes are mainly categorized by the frame of reference of the

computational mesh. Each frame of reference has his own advantages and disadvantages

that the user must have to account for before modelling with the code.

2

Figure 1.1: Representations of the Eulerian computational mesh

 The Lagrangian formulation uses a computational mesh that is fixed in the

material domain and no material passes between elements. Eulerian formulations use a

mesh that is fixed in space and material flows through the mesh, as show in Figure 1.1. In

this work, Eulerian computational mesh is used because it allows large stresses and

deformations as the mesh is fixed in space.

History of the Finite Element Method

 Courant appears to have been the first to propose the finite element method in

history. In a 1941 mathematics lecture, which was published in 1943, he used the

principle of stationary potential energy and piecewise polynomial interpolation over

triangular subregions to study the Saint-Venant torsion problem [1]. Courant’s work was

ignored until engineers had independently developed the torsion problem.

3

 None of the ongoing work was of much practical value at that time because there

were no computers available to generate and solve large sets of algebraic equations. As

major advances in digital computers and programming languages, the development of

finite element coincided with it. By 1953, engineers were able to write stiffness equations

in matrix form and solve with the digital computers [2]. Most of this took place at the

Boeing Airplane Company. At the time, a large problem was one with 100 degrees of

freedom. Turner suggested that triangular plane stress elements be used to model the skin

of a delta wing [3]. Much of this publication was unrecognized because of company

policies against publication [4].

 The name “finite element method” was given by Clough in 1960 [5]. Because of

the practical value of this method, new elements for stress analysis applications were

developed. The finite element method was regarded as the solution of a variational

problem by minimization of a functional. Thus the finite element method was seen as

applicable to all kinds of problems that are in variational form.

 Large general purpose finite element computer programs were developed during

late 1960s and early 1970s like ANSYS, ASKA, and NASTRAN. Each of this programs

can do different types of analysis such as static analysis, dynamic and heat transfer

analysis. Today there are hundreds of finite element solvers that are available for

different specialized purposes.

4

Background

 In this section, we will consider several works that have had a significant

influence on this thesis. This work is an extension of the work done by Littlefield [6], [7],

[8], and Kenneth Walls, III, [9], and it provided valuable background information. A new

mass lumping scheme, referred to as the reduced consistent mass method, is introduced in

this work. As such, there are only a few literature resources related to this new method.

Much of this early work led the way for the development of the Eulerian and

ALE finite element formulations that we use in this thesis. Many of these approximations

like lumped mass approximation and consistent mass approximations, originated from the

1970’s when the computers were slow and memory was at premium. Although speed and

memory are not as much of an issue today, these approximations are still used to

formulate the hydrocodes. As a part of this research, the effect of these approximations

are examined systematically for the lumped and consistent mass methods.

Thesis Organization

 The layout of this thesis is as follows:

 In Chapter 1 we have presented the research motivation for this work as well as

an introduction to the topics to be covered.

 In Chapter 2, a brief introduction to the mathematical background and notations

necessary to develop the ALE form of the conservation equations developed for this work

is presented.

5

 In Chapter 3, formulations for the conservation equations used in this work will

be developed. This section will also present the finite element formulations of the

conservation of mass, momentum, and energy equations that are used in ALEAS.

 Chapter 4 introduces the reduced consistent mass method and will provide some

intermediate options to create a tridiagonal system, and a description of the Thomas

algorithm to solve the tridiagonal system.

 Chapter 5 will provide an overview of the research code ALEAS, which will be

used in this work and was developed by Littlefield in two-dimensions [10]. Then, it is

shown how to set up the tridiagonal system in the ALEAS code.

 Chapter 6 presents the results of a simple four quadratic element problem. By

implementing the new reduced consistent mass method developed in Chapter 4, it was

possible to gain a significant improvement in a simple four-element problem.

Chapter 7 concludes this thesis and makes future recommendations of research

with regards to higher order elements and linear finite elements.

6

CHAPTER 2

MATHEMATICAL FOUNDATIONS

Mathematical Background for Continuum Mechanics

Notation

Physical quantities are expressed by mathematical representations in the form of

tensors and vectors.

 Vectors are made up of unit vectors and scalar coefficients, and they are

represented by magnitude and a direction. The velocity vector in a three dimensional

Cartesian coordinate system can be expressed by:

𝐯 = 𝑢𝒊 + 𝑣𝒋 = ∑ 𝑣𝑖𝑒�̂�
𝑛
𝑖=1 (2.1)

where i and j are unit vectors, and u and v are scalar quantities for vector notation and 𝑒�̂�

is the unit vector and 𝑣𝑖 is velocity component in indicial notation where n is the number

of dimensions of the problem (n = 2 for the case hand).

The gradient operator ∇ is frequently used in the conservation equations

developed in this work. It is defined as:

 ∇ = 𝒊
𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
= 𝑒�̂�

𝜕

𝜕𝑥𝑖
 (2.2)

 The product of ∇ and a scalar quantity ϕ, results in a vector defined as:

 ∇𝜙 = 𝒊
𝜕𝜙

𝜕𝑥
+ 𝒋

𝜕𝜙

𝜕𝑦
= 𝑒�̂�

𝜕𝜙

𝜕𝑥𝑖
 (2.3)

7

The product of ∇ and a vector v, is known as the divergence and is defined as:

 ∇ ∙ 𝐯 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
=

𝜕𝑣𝑖

𝜕𝑥𝑖
 (2.4)

The Cauchy stress, which is the only stress used in this thesis is denoted by

𝜎, the density is 𝜌, the specific internal energy is e, the traction is t, and the body force

per unit mass is f.

 The velocity gradient 𝛁𝐯, which can also be denoted as Lij, is divided into a

symmetric component, Dij, which is the deformation rate, and a skew component, Wij,

which is the spin. This is given by following equations:

𝐿𝑖𝑗 =
𝜕𝑣𝑖

𝜕𝑥𝑖

𝐷𝑖𝑗 =
1

2
(𝐿𝑖𝑗 + 𝐿𝑗𝑖) (2.5)

𝑊𝑖𝑗 =
1

2
(𝐿𝑖𝑗 − 𝐿𝑗𝑖)

The deformation rate, Dij, is referred to the strain rate, 𝜀𝑖𝑗̇ , as is done in Chapter 3.

Conservation Equations

 This section contains a brief introduction of the governing equations for

momentum, mass, and energy in Eulerian reference frame.

The conservation of mass equation in the Lagrangian computational reference frame is

written as:

𝐷𝜌

𝐷𝑡
+ 𝜌

𝜕𝑣𝑖

𝜕𝑥𝑖
 = 0 (2.6)

8

where 𝜌 is the density.

The conservation of momentum equation in the Lagrangian computational reference

frame is given by:

 𝜌
𝐷𝑣𝑖

𝐷𝑡
=

𝜕

𝜕𝑥𝑗
𝜎𝑗𝑖 + 𝜌𝑓𝑖 (2.7)

where 𝜎ji is the Cauchy stress and 𝑓i is the body force per unit mass.

The conservation of energy equation in the Lagrangian computational reference frame is:

𝜌
𝐷𝑒

𝐷𝑡
= 𝜎𝑖𝑗𝜀𝑖𝑗̇ + 𝜌𝑓𝑖𝑣𝑖 (2.8)

where e is the internal energy and 𝜀𝑖𝑗̇ is the strain rate.

 Here the D/Dt term is known as the material derivative. This is the time rate of

change associated with the material. It is defined as:

𝐷

𝐷𝑡
() =

𝜕

𝜕𝑡
() + 𝑣𝑖

𝜕

𝜕𝑥𝑖
() (2.9)

where the first term on the right-hand side is the local change and the second term is the

convective change.

The conservation of mass equation in the Eulerian computational reference frame is given

by:

𝜕

𝜕𝑥𝑖
(𝜌𝑣𝑖) +

𝜕𝜌

𝜕𝑡
= 0 (2.10)

The conservation of momentum equation in the Eulerian computational reference frame

is given by:

𝜕

𝜕𝑡
(𝜌𝑣𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑣𝑖𝑣𝑗) =

𝜕

𝜕𝑥𝑗
𝜎𝑗𝑖 + 𝜌𝑓𝑖 (2.11)

The conservation of energy in the Eulerian computational reference frame is given by:

𝜕

𝜕𝑡
(𝜌𝑒) +

𝜕

𝜕𝑥𝑗
(𝜌𝑒𝑣𝑗) = 𝜎𝑗𝑖𝜀𝑖𝑗̇ + 𝜌𝑓𝑖𝑣𝑖 (2.12)

9

CHAPTER 3

FORMULATIONS

Development of the Eulerian Conservation Equations and Finite Element Formulation

 Let X denote the current, coordinate system of a given volume, V. We must have

to define two additional coordinate systems: the ALE coordinates where y = y(X,t), and

the Eulerian coordinates, where x = x(X,t). The ALE and Eulerian coordinates describe

the deformation of the volume V and deformation of a body of interest Ω respectively as

shown in Figure 3.1.

Figure 3.1: Lagrangian, Eulerian, and ALE coordinate systems

 x

y

x 1

x 1

!

! "

"

n

y 1

t = 0

t = t 1

V

V

10

 The Lagrangian description can be recovered by setting the advection velocity c

to zero from the ALE equations and the Eulerian description is recovered by setting the

advection velocity c equal to v and the Jacobian, J, equal to one.

 In following development section, we use Kenneth Walls III [9] dissertation as a

reference to create finite element formulations.

Conservation of Momentum in ALE Coordinates

 The conservation of momentum equation is solved by performing one

dimensional sweeps in each direction.

The initial momentum, M0, of the body Ω at t = 0 is given by:

𝑴0 = ∫ 𝜌0𝐯0 𝑑𝑋
Ω∩V

 (3.1)

Likewise, at some later time t = t1, the momentum of the body, M1, is given by:

𝑴1 = ∫ 𝜌0𝐯0 𝑑𝑋
Ω∩V

+ ∫ ∫ 𝜌𝐯(𝐜 ∙ 𝑛) 𝑑𝑠
Г

𝑡

0
 (3.2)

where n is the outward unit normal vector to V along its boundary Г and c is the

advection velocity, given by:

 c = v [Eulerian Description]

The change in momentum is given by M1 – M0, and the rate of change is the time

derivative, which can be written as:

𝜕𝑴

𝜕𝑡
=

𝜕𝑴𝟏

𝜕𝑡
=

𝜕

𝜕𝑡
 ∫ 𝜌𝐯 𝑑𝑥 + ∫ 𝜌𝐯 (𝐯 ∙ 𝑛) 𝑑𝑠

ГΩ∩V
 (3.3)

Now, let

𝐹𝑦 =
𝑑𝒚

𝑑𝑿
 (3.4)

11

be the second-order tensor describing the deformation of the Eulerian coordinate

system. Now, by using this we can transform the first term on the right-hand side of

Equation 3.3 into the original coordinate system as follows:

𝜕

𝜕𝑡
 ∫ 𝜌𝐯 𝑑𝑥 =

𝜕

𝜕𝑡
 ∫ 𝜌𝐯 det(𝐹𝑦) 𝑑𝑋

Ω∩V
 =

𝜕

𝜕𝑡
 ∫ 𝜌𝐯 𝑑𝑋

Ω∩VΩ∩V
 (3.5)

where J = det(Fy), which is equal to one for Eulerian description and is the Jacobian of

the reference frame. Then applying Gauss’ theorem to the second integral which gives:

 ∫ 𝜌𝐯 (𝐯 ∙ 𝑛) 𝑑𝑠 = ∫ ∇ ∙ (𝜌𝐯𝐯) 𝑑𝑥
Ω∩V

Г

 (3.6)

Using Cauchy’s law the forces acting on the body are given by:

𝑭 = ∫ 𝒏 ∙ 𝜎 𝑑𝑠 + ∫ 𝒇 𝑑𝑥
Ω∩V

Г

 (3.7)

where f is an externally applied force per unit volume and 𝜎 is the Cauchy stress

tensor.

Using Gauss’ Theorem on the first integral in Equation 3.7 gives:

𝑭 = ∫ 𝒏 ∙ 𝜎 𝑑𝑠 + ∫ 𝒇 𝑑𝑥
Ω∩V

 =
Г

∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥
Ω∩V

 (3.8)

Changing the reference frame of Equation 3.8 gives:

∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑦 = ∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥
Ω∩VΩ∩V

 (3.9)

So, the conservation of momentum equation now becomes:

∫ [
𝜕

𝜕𝑡
(𝜌𝐯) + ∇ ∙ (𝜌𝐯𝐯)] 𝑑𝑥 = ∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥

Ω∩VΩ∩V
 (3.10)

This must be valid for any choice of control volume V, so therefore the integrand must

be zero.

[
𝜕

𝜕𝑡
(𝜌𝐯) + ∇ ∙ (𝜌𝐯𝐯)] = [∇ ∙ 𝜎 + 𝒇] (3.11)

The first term on the left-hand side can be rewritten as:

𝜕

𝜕𝑡
(𝜌𝐯) = 𝜌

𝜕𝐯

𝜕𝑡
+ 𝐯

𝜕𝜌

𝜕𝑡
 (3.12)

12

The second term on the left-hand side of Equation 3.11 can be rewritten as:

∇ ∙ (𝜌𝐯𝐯) = ρ𝐯∇ ∙ 𝐯 + 𝐯 ∙ ∇(ρ𝐯) = ρ𝐯∇ ∙ 𝐯 + ρ𝐯∇ ∙ 𝐯 + 𝐯𝐯 ∙ ∇ρ (3.13)

Using equations 3.12 and 3.13, Equation 3.11 becomes

𝜌
𝜕𝐯

𝜕𝑡
+ 𝐯

𝜕𝜌

𝜕𝑡
+ ρ𝐯∇ ∙ 𝐯 + ρ𝐯∇ ∙ 𝐯 + 𝐯𝐯 ∙ ∇ρ = ∇ ∙ 𝜎 + 𝒇 (3.14)

From the conservation of mass equation shown by Kenneth Walls III [9] that it has

𝜕𝜌/𝜕𝑡 + 𝜌∇ ∙ v + v ∙ ∇𝜌 = 0. So, equation 3.14 becomes

𝜌
𝜕𝐯

𝜕𝑡
+ ρ𝐯∇ ∙ 𝐯 = ∇ ∙ 𝜎 + 𝒇 (3.15)

This is the conversation of momentum expressed in the Eulerian coordinate system.

We must express the momentum equation in the weak form. This is done by

multiplying by a test function w and integrating over the volume V which will give:

∫ 𝑤 [𝜌
𝜕𝐯

𝜕𝑡
+ 𝜌𝐯∇ ∙ 𝐯] 𝑑𝑥 = ∫ 𝑤 [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥

VV
 (3.16)

Using Gauss’s theorem, the second term on the left-hand side can be integrated by

parts to obtain:

∫ 𝑤𝜌𝐯∇ ∙ 𝐯 𝑑𝑥 = − ∫ ∇𝑤 ∙ (𝜌𝐯𝐯) 𝑑𝑥
VV

+ ∫ w𝐯ρ𝐯 ∙ n ds
Г

 (3.17)

Likewise, the stress term on the right-hand side can be integrated using Gauss’

theorem and Cauchy’s Law to give:

∫ 𝑤∇ ∙ 𝜎 𝑑𝑥 = − ∫ ∇𝑤 ∙ 𝜎 𝑑𝑥
VV

+ ∫ w𝐭 ds
Г

 (3.18)

where t is the traction.

So, the weak form of the conservation of momentum equation can be written in

Eulerian form as:

∫ [𝜌
𝜕𝐯

𝜕𝑡
− ∇𝑤 ∙ (𝜌𝐯𝐯)] 𝑑𝑥 +

V
∫ w𝐯ρ𝐯 ∙ n ds

Г

= ∫ [𝑤𝑓 − ∇𝑤 ∙ 𝜎] dx + ∫ w𝐭 ds
ГV

 (3.19)

13

For the first operator split this gives us as follows:

∫ [𝜌
𝜕𝐯

𝜕𝑡
− ∇𝑤 ∙ (𝜌𝐯𝐯)] 𝑑𝑥 +

V
∫ w𝐯ρ𝐯 ∙ n ds

Г

= ∫ [𝑤𝑓 − ∇𝑤 ∙ 𝜎] dx
V

 (3.20)

Performing the first operator split which gives:

Lagrangian step (no momentum advection)

∫ [𝜌
𝜕𝑣𝑖

𝑙𝑎𝑔

𝜕𝑡
] 𝑑𝑥 =

V
∫ [𝑤𝑓 − ∇𝑤 ∙ 𝜎] dx

V
 (3.21)

Remap step

∫ [𝑤𝜌
𝜕𝑣𝑖

𝑟𝑒𝑚𝑎𝑝

𝜕𝑡
− ∇𝑤 ∙ (𝜌𝑣𝑖

𝑙𝑎𝑔
𝑣)] 𝑑𝑥 +

V
∫ w𝑣𝑗ρ𝑣𝑖

𝑙𝑎𝑔
∙ n ds

Г
= 0 (3.22)

Finite element approximation of the conservation of momentum equation

 The finite element approximation can be developed by replacing the test

function w with the shape function Nl in the Lagrangian step and using a piecewise

constant function 𝑁𝑘
𝛼 which has a value of one for the element. We will now introduce

the subscript m to indicate the material of interest. The material velocity, v, is replaced

with following approximations:

𝐯𝑚 = ∑ 𝑁𝑗 𝐯𝑚,𝑗
𝑛𝑛
𝑗=1 (3.23)

where nn is the total number of nodes and the subscript m indicates the material of

interest. The Cauchy stress, 𝜎, can be decomposed into its components as:

𝜎𝑖𝑗 = −𝑝∗ 𝛿𝑖𝑗 + 𝑠𝑖𝑗 (3.24)

Where 𝛿ij is the Kronecker delta function, 𝑝∗ is the pressure, and 𝑠ij is the deviatoric

stress, and the indices i and j have values 1, …, n where n is the number of dimensions of

the problem. The pressure term, 𝑝∗, is the sum of the pressure, p, determined by the

14

equation of state, and the artificial viscosity, q, while the six deviatoric stress terms that

arise in three-dimensions are found through the constitutive laws. Each of these must be

written in a form suitable for the finite element method and are given by:

𝜎𝑚 = ∑ 𝑁𝑘
𝛼 𝜎𝑚,𝑘

𝑛𝑒
𝑘=1 (3.25)

𝑝𝑚 = ∑ 𝑁𝑘
𝛼 𝑝𝑚,𝑘

𝑛𝑒
𝑘=1 (3.26)

𝑞𝑚 = ∑ 𝑁𝑘
𝛼 𝑞𝑚,𝑘

𝑛𝑒
𝑘=1 (3.27)

𝑠𝑚 = ∑ 𝑁𝑘
𝛼 𝑠𝑚,𝑘

𝑛𝑒
𝑘=1 (3.28)

where 𝑛𝑒 is the number of elements. Furthermore, the density term,𝜌 can be

approximated by:

𝜌𝑚 = ∑ 𝑁𝑘
𝛼 𝜌𝑚,𝑘

𝑛𝑒
𝑘=1 (3.29)

So for the Lagrangian step the finite element approximation for the conservation of

momentum equation is given by:

 ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼 𝜌𝑚,𝑘
𝑛𝑒
𝑘=1 (∑ 𝑁𝑙

𝜕𝐯𝑚,𝑗
𝑙𝑎𝑔

𝜕𝑡

𝑛𝑛
𝑗=1) ∅𝑚,𝑘 𝑑𝑥

= ∑ (𝑁𝑙𝑓 − ∇𝑁𝑙 ∙ 𝑁𝑘
𝛼𝜎𝑚,𝑘)∅𝑚,𝑘

𝑛𝑒
𝑘=1 𝑑𝑥 (3.30)

l = 1,2, …, 𝑛𝑛

Here, assumption is made that 𝑁𝑘
𝛼 is a piecewise constant function to eliminate the

sums for 𝜎 and 𝜌 in Equations 3.25 and 3.29.

The left-hand side term ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼 𝜌𝑚,𝑘
𝑛𝑒
𝑘=1 ∅𝑚,𝑘 𝑑𝑥 is known as the consistent mass

matrix. It is not diagonalized and results in a high computational cost. Therefore, to

15

simplify the solution we can diagonalize Equation 3.30 by using the lumped mass,

𝑀𝑚,𝑙
𝑙𝑎𝑔

 at node l, which is defined as:

𝑀𝑚,𝑙
𝑙𝑎𝑔

= ∑ ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑗 𝜌𝑚,𝑘

𝑛𝑒
𝑘=1

𝑛𝑛
𝑗=1 ∅𝑚,𝑘 𝑑𝑥 (3.31)

Equation 3.31 is usually referred to as the nodal mass.

With the assumption that 𝑁𝑘
𝛼 is piecewise constant i.e. 𝑁𝑘

𝛼 = 1 on Ωk and Øk = 1,

then the left hand side of equation 3.30 can be rewritten as:

∑ ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑗 𝜌𝑘

𝜕𝐯𝑘,𝑗
𝑙𝑎𝑔

𝜕𝑡

𝑛𝑒
𝑘=1

𝑛𝑛
𝑗=1 𝑑𝑥 (3.32)

l = 1,2, …, 𝑛𝑛

Conservation of Mass in ALE Coordinates

 We also need to express the conservation of mass in the Eulerian coordinate

system using the same description as the conservation of momentum. The conservation of

mass equation solves for the mass and, by extension, the density, 𝜌. At t = 0, the mass of

the body is given by:

 𝒎0 = ∫ 𝜌0 𝑑𝑋
Ω∩V

 (3.33)

Likewise, the mass at some later time, t = t1, can be written as:

 𝒎1 = ∫ 𝜌0 𝑑𝑋
Ω∩V

+ ∫ ∫ 𝜌𝐜 ∙ 𝒏 𝑑𝑠𝑑𝑡
Г

𝑡

0
 (3.34)

where n is the outward unit normal vector to V along its boundary Г and c is the

advection velocity, given by:

16

 c = v [Eulerian Description]

We can now express the conservation of mass as:

 ∫ 𝜌0 𝑑𝑋
V

= ∫ 𝜌 𝑑𝑋
V

+ ∫ ∫ 𝜌𝐯 ∙ 𝐧 𝑑𝑠𝑑𝑡
Г

𝑡

0
 (3.35)

Here we have replaced Ω∩V with V by setting 𝜌 = 0 in V - Ω∩V. Substituting this,

changing reference frames, and differentiating with respect to time, we get:

∫ [
𝜕

𝜕𝑡
(𝜌)] 𝑑𝑥 + ∫ 𝜌𝐯 ∙ 𝐧 𝑑𝑠

Г
= 0

V
 (3.36)

Now using Gauss’s theorem, we find the second integral to be:

 ∫ 𝜌𝐯 ∙ 𝐧 𝑑𝑠 = ∫ ∇ ∙ (𝜌𝐯) 𝑑𝑦
V

= ∫ ∇ ∙ (𝜌𝐯) 𝑑𝑥
V

Г

 (3.37)

So, by substituting this, the conservation of mass equation can now be rewritten as:

∫ [
𝜕

𝜕𝑡
(𝜌) + ∇ ∙ (𝜌𝐯)] 𝑑𝑥 = 0

V
 (3.38)

Since this must apply for any choice of control volume V, we can conclude that the

integrand must be zero, so using this and dividing through by J which is equal to one

(Eulerian description) gives:

𝜕

𝜕𝑡
(𝜌) + ∇ ∙ (𝜌𝐯) = 0 (3.39)

Using the product rule, the first term on the left-hand side gives:

𝜕

𝜕𝑡
(𝜌) = [

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝐽

𝜕𝑡
] =

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝐽

𝜕𝑡
 (3.40)

Equation 3.40 can be rewritten:

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝐽

𝜕𝑡
=

𝜕𝜌

𝜕𝑡
+ 𝜌∇ ∙ �̇� (3.41)

The second term on the left-hand side of Equation 3.39 can be rewritten as:

 ∇ ∙ (𝜌𝐯) = 𝜌∇ ∙ 𝐯 + 𝐯 ∙ ∇𝜌 = 𝜌∇ ∙ (𝐯 − �̇�) + 𝐯 ∙ ∇𝜌 (3.42)

Substituting Equations 3.41 and 3.42 into Equation 3.39 and canceling terms gives:

𝜕𝜌

𝜕𝑡
+ 𝜌∇ ∙ 𝐯 + 𝐯 ∙ ∇𝜌 = 0 (3.43)

17

This is mass conservation expressed in the Eulerian coordinate system.

 We must now express the conservation of mass equation in a weak form in order

to develop the finite element formulation. This is accomplished by multiplying the

governing differential equation by a test function, w, and integrating over the volume, V,

to get:

∫ 𝑤 [
𝜕𝜌

𝜕𝑡
+ 𝜌∇ ∙ 𝐯 + 𝐯 ∙ ∇𝜌] 𝑑𝑥 = 0

V
 (3.44)

Using the Reynolds transport theorem for the first term on the left-hand side gives:

∫ 𝑤
𝜕𝜌

𝜕𝑡
 𝑑𝑥 =

𝜕

𝜕𝑡V
∫ 𝑤ρ 𝑑𝑥 − ∫ 𝑤𝜌�̇� ∙ 𝑛 𝑑𝑠

ГV
 (3.45)

The second term can be integrated by parts to obtain:

 ∫ 𝑤𝜌∇ ∙ 𝐯 𝑑𝑥 = −
V

∫ ∇𝑤 ∙ (ρ𝐯)𝑑𝑥 + ∫ ∇𝜌 ∙ (w𝐯) 𝑑𝑥
𝑉V

 = − ∫ ∇𝑤 ∙ (ρ𝐯)𝑑𝑥 + ∫ wρ𝐯 ∙ 𝐧 𝑑𝑠
ГV

 = − ∫ ∇𝑤 ∙ (ρ𝐯)𝑑𝑥 + ∫ wρ(𝐯 + �̇�) ∙ 𝑛 𝑑𝑠
ГV

 (3.46)

So, after canceling terms the statement of the weak form of the conservation of mass

equation in the Eulerian coordinate system becomes:

𝜕

𝜕𝑡
∫ 𝑤ρ 𝑑𝑥 +

V
∫ [𝑤𝐯 ∙ ∇ρ − ∇𝑤 ∙ (𝜌𝐯)] 𝑑𝑥

V
+ ∫ wρ𝐯 ∙ 𝐧 𝑑𝑠

Г
= 0 (3.47)

Performing the first operator split we arrive at the following:

Lagrangian step

𝜕

𝜕𝑡
∫ 𝑤𝜌𝑙𝑎𝑔 𝑑𝑥

V
= 0 (3.48)

Remap step

𝜕

𝜕𝑡
∫ 𝑤𝜌𝑟𝑒𝑚𝑎𝑝 𝑑𝑥 +

V
∫ [𝑤𝐯 ∙ ∇𝜌𝑙𝑎𝑔 − ∇𝑤 ∙ (𝜌𝑙𝑎𝑔𝐯)] 𝑑𝑥

V
+ ∫ w𝜌𝑙𝑎𝑔𝐯 ∙ 𝐧 𝑑𝑠

Г
= 0

 (3.49)

18

Finite element approximation of the conservation of mass equation

 In order to develop the finite element approximation of the conservation of mass

equation we replace the test function w with a piecewise constant 𝑁𝑘
𝛼 which is equal to

one for element k. Likewise, the density, and velocity are approximated using Equations

3.29, and 3.23, respectively.

 For the Lagrangian step, the finite element formulation for the conservation of

mass equation is given by:

𝜕

𝜕𝑡
∫ 𝑁𝑘

𝛼 (𝑁𝑘
𝛼𝜌𝑚,𝑘

𝑙𝑎𝑔
)

𝛺𝑘
 ∅𝑚,𝑘 𝑑𝑥 = 0 (3.50)

k = 1, 2, …, 𝑛𝑒

Since 𝑁𝑘
𝛼 = 1 for element k Equation 3.50 becomes:

𝜕

𝜕𝑡
∫ (𝜌𝑚,𝑘

𝑙𝑎𝑔
)

𝛺𝑘
 ∅𝑚,𝑘 𝑑𝑥 = 0 (3.51)

k = 1, 2, …, 𝑛𝑒

The integral ∫ (𝜌𝑚,𝑘
𝑙𝑎𝑔

)
𝛺𝑘

 ∅𝑚,𝑘 𝑑𝑥 is equal to the element mass 𝑚𝑚,𝑘
𝑙𝑎𝑔

, and can be written as:

𝜕

𝜕𝑡
𝑚𝑚,𝑘

𝑙𝑎𝑔 = 0 (3.52)

k = 1, 2, …, 𝑛𝑒

This shows that the mass is constant in element k during the Lagrangian step, therefore it

is not necessary to carry out the finite element approximation for conservation of mass in

the Lagrangian step.

19

Conservation of Energy in ALE Coordinates

The initial total energy, E0, of a body Ω at t = 0 is given by:

𝑬0 = ∫ 𝜌0 𝐸0 𝑑𝑋
Ω∩V

 (3.53)

Likewise, at some later time t = t1, the total energy of the body, E1, is given by:

𝑬1 = ∫ 𝜌𝐸 𝑑𝑋
Ω∩V

+ ∫ ∫ 𝜌𝑬 (𝐯 ∙ 𝒏) 𝑑𝑠
Г

𝑡

0
 (3.54)

The change in total energy is given by E1 – E0, and the rate of change is the time

derivative, which can be written as:

𝜕𝑬

𝜕𝑡
=

𝜕𝑬𝟏

𝜕𝑡
=

𝜕

𝜕𝑡
 ∫ 𝜌𝐸 𝑑𝑥 + ∫ 𝜌𝐸 (𝐯 ∙ 𝒏) 𝑑𝑠

ГΩ∩V
 (3.55)

Using Equation 3.4 we can convert the first term on the left-hand side of Equation 3.55 to

the original coordinate system as:

𝜕

𝜕𝑡
 ∫ 𝜌𝐸 𝑑𝑥 =

𝜕

𝜕𝑡
 ∫ (𝜌𝐸) 𝑑𝑋

Ω∩V
 = ∫

𝜕

𝜕𝑡
(𝜌𝐸) 𝑑𝑋

Ω∩VΩ∩V
 (3.56)

Applying Gauss’ theorem to the second term in Equation 3.77 gives:

∫ 𝜌𝐸 (𝐯 ∙ 𝒏) 𝑑𝑠 = ∫ ∇ ∙ (𝜌𝐸𝐯) 𝑑𝑦
Ω∩V

Г

= ∫ ∇ ∙ (𝜌𝐸𝐯) 𝑑𝑋
Ω∩V

 (3.57)

The total energy is the sum of the work done by the body, where �̇� is the rate of

mechanical work and �̇� is the rate of energy supplied by heat transfer or energy sources.

In this work we do not consider the rate of energy supplied by heat transfer or energy

sources, so �̇� is assumed to be zero.

The rate of mechanical work is the sum of the work done by external forces and

body forces given by:

�̇� = ∫ 𝒇 ∙ 𝐯 𝑑𝑥 + ∫ (𝒕 ∙ 𝐯) 𝑑𝑠
ГΩ∩V

 (3.58)

Using Cauchy’s Law on the first integral in Equation 3.58 becomes:

∫ 𝒇 ∙ 𝐯 𝑑𝑥 + ∫ (𝒕 ∙ 𝐯) 𝑑𝑠
ГΩ∩V

= ∫ 𝒇 ∙ 𝐯 𝑑𝑥 + ∫ (𝜎 ∙ 𝒏) ∙ 𝐯 𝑑𝑠
ГΩ∩V

 (3.59)

20

Applying Gauss’ theorem to the first integral on the right-hand side of Equation 3.59

gives:

∫ 𝒇 ∙ 𝐯 𝑑𝑥 + ∫ (𝜎 ∙ 𝒏) ∙ 𝐯 𝑑𝑠
ГΩ∩V

= ∫ 𝒇 ∙ 𝐯 𝑑𝑥 + ∫ ∇ ∙ (𝐯 ∙ 𝜎) 𝑑𝑠
Ω∩VΩ∩V

 (3.60)

So, the conservation of total energy equation now becomes:

∫ [
𝜕

𝜕𝑡
(𝜌𝐸) + ∇ ∙ (𝜌𝐯𝐸)] 𝑑𝑋

Ω∩V
= ∫ [∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯]

Ω∩V
 𝑑𝑋 (3.61)

This must be valid for any choice of control volume V, so therefore the integrand must be

zero. Using this and dividing through by J which is equal to one for Eulerian description

gives:

𝜕

𝜕𝑡
(𝜌𝐸) + ∇ ∙ (𝜌𝐯𝐸) = ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯 (3.62)

Using the product rule for the first term on the left-hand side gives:

𝜕

𝜕𝑡
(𝜌𝐸) = [

𝜕

𝜕𝑡
(𝜌𝐸) + 𝜌𝐸

𝜕𝐽

𝜕𝑡
] =

𝜕

𝜕𝑡
(𝜌𝐸) + 𝜌𝐸∇ ∙ �̇� (3.63)

Substituting Equations 3.63 into Equation 3.62 gives:

𝜕

𝜕𝑡
(𝜌𝐸) + 𝜌𝐸∇ ∙ �̇� + ∇ ∙ (𝜌𝐸𝐯) = ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯 (3.64)

The first term on the left-hand side can be rewritten as:

𝜕

𝜕𝑡
(𝜌𝐸) = 𝜌

𝜕𝐸

𝜕𝑡
+ 𝐸

𝜕𝜌

𝜕𝑡
 (3.65)

The third term on the left-hand side of Equation 3.64 can be rewritten as:

∇ ∙ (𝜌𝐸𝐯) = 𝜌𝐸∇ ∙ 𝐯 + 𝐯 ∙ ∇(𝜌𝐸)

= 𝜌𝐸∇ ∙ (𝐯 − �̇�) + 𝜌𝐯∇ ∙ 𝐸 + 𝐯𝐸 ∙ ∇𝜌 (3.66)

Using Equations 3.65 and 3.66 and canceling terms, Equation 3.64 becomes:

𝜌
𝜕𝐸

𝜕𝑡
+ 𝐸

𝜕𝜌

𝜕𝑡
+ 𝜌𝐸∇ ∙ 𝐯 + 𝜌𝐯∇ ∙ 𝐸 + 𝐯𝐸 ∙ ∇𝜌 = ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯 (3.67)

21

Using the conservation of mass equation shown in Equation 3.43 we can simplify

Equation 3.67 as:

𝜌
𝜕𝐸

𝜕𝑡
+ 𝜌𝐯∇ ∙ 𝐸 = ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯 (3.68)

This is one form of the conservation of energy in the Eulerian coordinate system

expressed in terms of total energy E. But the total energy E is the sum of the internal

energy 𝑒 and the kinetic energy 𝑘, where the kinetic energy is given by:

𝑘 =
𝐯 ∙ 𝐯

2

So the total energy is given by:

𝐸 = 𝑒 +
𝐯 ∙ 𝐯

2

Substituting this into Equation 3.68 gives:

𝜌
𝜕

𝜕𝑡
(𝑒 +

𝐯∙𝐯

2
) + 𝜌𝐯∇ ∙ (𝑒 +

𝐯∙𝐯

2
) = ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯 (3.69)

The right-hand side can be rewritten as:

∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯 = 𝜎: (∇𝐯) + 𝐯 ∙ (∇ ∙ 𝜎) + 𝒇 ∙ 𝐯 (3.70)

Substituting this and using the product rule on the kinetic energy terms gives:

𝜌
𝜕𝑒

𝜕𝑡
+ 𝜌𝐯∇ ∙ 𝑒 + 𝜌𝐯

𝜕𝐯

𝜕𝑡
+ 𝜌𝐯𝐯∇ ∙ 𝐯 = 𝜎: (∇𝐯) + 𝐯 ∙ (∇ ∙ 𝜎) + 𝒇 ∙ 𝐯 (3.71)

Using the conservation of momentum equation given in Equation 3.43, this equation

simplifies to:

𝜌
𝜕𝑒

𝜕𝑡
+ 𝜌𝐯∇ ∙ 𝑒 = 𝜎: (∇𝐯) (3.72)

This is another form of the conservation on energy equation, expressed in terms of

internal energy.

Taking the weak form of Equation 3.72 gives:

∫ 𝑤 [𝜌
𝜕𝑒

𝜕𝑡
+ 𝜌𝐯∇ ∙ 𝑒] 𝑑𝑥 = ∫ 𝑤 [𝜎: (∇𝐯)] 𝑑𝑥

V

𝑉
 (3.73)

22

Using Gauss’s theorem, the second term on the left-hand side can be integrated by parts

to obtain:

∫ [𝑤 𝜌𝐯∇ ∙ 𝑒] 𝑑𝑥 = − ∫ ∇𝑤 ∙ (𝜌𝑒𝐯) 𝑑𝑥
V

𝑉

+ ∫ 𝑤𝑒𝜌𝐯 ∙ 𝒏 𝑑𝑠
Г

 (3.74)

So, the weak form of the conservation of energy equation can be written in ALE form as:

∫ [wρ
𝜕𝑒

𝜕𝑡
− ∇𝑤 ∙ (𝜌𝑒𝐯)] 𝑑𝑥

V
+ ∫ 𝑤𝑒𝜌𝐯 ∙ 𝒏 𝑑𝑠

Г
= ∫ 𝑤 [𝜎: (∇𝐯)] 𝑑𝑥

V
 (3.75)

This is the form of the energy equation used in ALEAS. It should be noted that the

traction is implied in the rate of work, and thus does not appear in this equation.

Performing the first operator split we arrive at the following:

Lagrangian step

∫ [wρ
𝜕

𝜕𝑡
𝑒𝑙𝑎𝑔)] 𝑑𝑥

V
= ∫ 𝑤 [𝜎: (∇𝐯)] 𝑑𝑥

V
 (3.76)

Remap step

∫ [wρ
𝜕

𝜕𝑡
𝑒𝑟𝑒𝑚𝑎𝑝 − ∇𝑤 ∙ (𝜌𝐯𝑒𝑙𝑎𝑔)] 𝑑𝑥

V
+ ∫ 𝑤𝑒𝑙𝑎𝑔𝜌𝐯 ∙ 𝒏 𝑑𝑠

Г
 = 0 (3.77)

Finite element approximation of the conservation of energy equation

The test function w is replaced by the shape function, a piecewise constant

function 𝑁𝑘
𝛼, which has a value of one for element k. The approximations for v, 𝜌 and 𝜎

are the same as those given in the derivation of the mass and momentum equations. The

specific internal energy term is given by:

23

𝑒𝑚 = ∑ 𝑁𝑘
𝛼 𝑒𝑚,𝑘

𝑛𝑒
𝑘=1 (3.78)

Using this in the Lagrangian step of the conservation of energy equation we have:

∑ [∫ 𝑁𝑘
𝛼 𝜌𝑚,𝑘

𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
)∅𝑚,𝑘 𝑑𝑥

𝛺𝑚
]

𝑛𝑒
𝑘=1

 = ∑ [∫ 𝑁𝑘
𝛼 [𝜎𝑚,𝑘 : ∇(∑ 𝑁𝑗 𝐯𝑚,𝑗

𝑛𝑛
𝑗=1)]∅𝑚,𝑘 𝑑𝑥

𝛺𝑚
]

𝑛𝑒
𝑘=1 (3.79)

where we have made use of the fact that 𝑁𝑘
𝛼 is a piecewise constant function to eliminate

the sums for 𝑒, 𝜌, and 𝜎. Since 𝑁𝑘
𝛼 = 1 and ∇𝐯 = 𝜕𝑣𝑖 / 𝜕𝑥𝑗 = 𝐷𝑖𝑗 + 𝑊𝑖𝑗 and also 𝜎𝑖𝑗𝑊𝑖𝑗=

0.Therefore, we can rewrite Equation 3.79 as:

∑ [∫ 𝜌𝑚,𝑘
𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
)∅𝑚,𝑘 𝑑𝑥

𝛺𝑘
]

𝑛𝑒
𝑘=1

 = ∑ [∫ [𝜎𝑚,𝑘 : 𝜀𝑚,𝑘̇]∅𝑚,𝑘 𝑑𝑥
𝛺𝑘

]
𝑛𝑒
𝑘=1 (3.80)

The volume integral on the left-hand side, ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼 𝜌𝑚,𝑘
𝑛𝑒
𝑘=1 ∅𝑚,𝑘 𝑑𝑥 is the element mass

𝑚𝑚,𝑘
𝑙𝑎𝑔

, so we can rewrite the Lagrangian step of the conservation of energy equation as:

 𝑚𝑚,𝑘
𝑙𝑎𝑔

𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
) = ∫ [𝜎𝑚,𝑘 : 𝜀𝑚,𝑘̇]∅𝑚,𝑘 𝑑𝑥

𝛺𝑘
 (3.81)

k = 1, 2, …, 𝑛𝑒

The equations solved for Lagrangian step are summarized below.

Lagrangian Step:

Conservation of Momentum

∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼 𝜌𝑚,𝑘
𝑛𝑒
𝑘=1 (∑ 𝑁𝑙

𝜕𝐯𝑚,𝑗
𝑙𝑎𝑔

𝜕𝑡

𝑛𝑛
𝑗=1) ∅𝑚,𝑘 𝑑𝑥

= ∑ (𝑁𝑙𝑓 − ∇𝑁𝑙 ∙ 𝑁𝑘
𝛼𝜎𝑚,𝑘)∅𝑚,𝑘

𝑛𝑒
𝑘=1 𝑑𝑥 (3.82)

l = 1,2, …, 𝑛𝑛

24

Conservation of Mass

𝜕

𝜕𝑡
∫ 𝑁𝑘

𝛼 (𝑁𝑘
𝛼𝜌𝑚,𝑘

𝑙𝑎𝑔
)

𝛺𝑘
 ∅𝑚,𝑘 𝑑𝑥 = 0 (3.83)

k = 1, 2, …, 𝑛𝑒

Conservation of Energy

 𝑚𝑚,𝑘
𝑙𝑎𝑔

𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
) = ∫ [𝜎𝑚,𝑘 : 𝜀𝑚,𝑘̇]∅𝑚,𝑘 𝑑𝑥

𝛺𝑘
 (3.84)

k = 1, 2, …, 𝑛𝑒

25

CHAPTER 4

REDUCED CONSISTENT MASS METHOD

Description of Lumped Mass Equation

 In this section, we will review the consistent mass approach, lumped mass

approach, and some intermediate options to create a tridiagonal and pentadiagonal

system, introduced for the first time in this thesis and referred to as the reduced consistent

mass method. Also we will see a description of the Thomas algorithm to solve the

tridiagonal system.

 The equation of lumped mass derived in section 3 for the conservation of

momentum is defined as follows:

∑ ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑗 𝜌𝑘

𝜕𝐯𝑘,𝑗
𝑙𝑎𝑔

𝜕𝑡

𝑛𝑒
𝑘=1

𝑛𝑛
𝑗=1 𝑑𝑥

l = 1,2, …, 𝑛𝑛

We consider four elements attached to a node 5 and let j = 5. Note that N5 = 0, for

all elements except those attached to node 5, as shown in figure 4.1.

∑ ∑ ∫ [𝑁
5𝛺𝑘

𝑁𝑗 𝜌𝑘 𝑑𝑥]
𝜕𝐯𝑘,𝑗

𝑙𝑎𝑔

𝜕𝑡

9
𝑗=1

4
𝑘=1 (4.1)

26

 Figure 4.1: Quadratic element

Let aj =
𝜕𝐯𝑘,𝑗

𝑙𝑎𝑔

𝜕𝑡
, then if we were to write out the terms in the sums (excluding those that are

zero) we get

∫ [𝑁5
𝛺1

𝑁1𝜌1𝑑𝑥]𝑎1 + ∫ [𝑁5
𝛺1

𝑁2𝜌1𝑑𝑥]𝑎2 + ∫ [𝑁5
𝛺1

𝑁4𝜌1𝑑𝑥]𝑎4 + ∫ [𝑁5
𝛺1

𝑁5𝜌1𝑑𝑥]𝑎5

+ ∫ [𝑁5
𝛺2

𝑁2𝜌2𝑑𝑥]𝑎2 + ∫ [𝑁5
𝛺2

𝑁3𝜌2𝑑𝑥]𝑎3 + ∫ [𝑁5
𝛺2

𝑁5𝜌2𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺2

𝑁6𝜌2𝑑𝑥]𝑎6

+ ∫ [𝑁5
𝛺3

𝑁4𝜌3𝑑𝑥]𝑎4 + ∫ [𝑁5
𝛺3

𝑁5𝜌3𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺3

𝑁7𝜌3𝑑𝑥]𝑎7 + ∫ [𝑁5
𝛺3

𝑁8𝜌3𝑑𝑥]𝑎8

+ ∫ [𝑁5
𝛺4

𝑁5𝜌4𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺4

𝑁6𝜌4𝑑𝑥]𝑎6 + ∫ [𝑁5
𝛺4

𝑁8𝜌4𝑑𝑥]𝑎8 + ∫ [𝑁5
𝛺4

𝑁9𝜌4𝑑𝑥]𝑎9

(4.2)

Collecting terms in equation 4.2, we get as follows:

∫ [𝑁5
𝛺1

𝑁1𝜌1𝑑𝑥]𝑎1 + ∫ [𝑁5
𝛺1+2

𝑁2𝜌1+2𝑑𝑥]𝑎2 + ∫ [𝑁5
𝛺2

𝑁3𝜌2𝑑𝑥]𝑎3 + ∫ [𝑁5
𝛺1+3

𝑁4𝜌1+3𝑑𝑥]𝑎4

+ ∫ [𝑁5
𝛺1+2+3+4

𝑁5𝜌1+2+3+4𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺2+4

𝑁6𝜌2+4𝑑𝑥]𝑎6 + ∫ [𝑁5
𝛺3

𝑁7𝜌3𝑑𝑥]𝑎7

+ ∫ [𝑁5
𝛺3+4

𝑁8𝜌3+4𝑑𝑥]𝑎8 + ∫ [𝑁5
𝛺4

𝑁9𝜌4𝑑𝑥]𝑎9

(4.3)

27

It can be noticed from the above equation that it will produce 9 unknowns (𝑎1–

𝑎9) for each component but only a single equation for each component.

Letting l = 1, 2, 3,… n successively then it recovers an algebraic system to solve

for the unknowns (𝑎1– 𝑎9). This is the consistent mass approach. Another approach is the

so-called lumped mass approximation as discussed in the above section. In the example

above, we approximate all 𝑎𝑗′s with 𝑎5.

(∫ 𝑁5
𝛺1

(𝑁1 + 𝑁2 + 𝑁4 + 𝑁5) 𝜌1𝑑𝑥 + ∫ 𝑁5
𝛺2

(𝑁2 + 𝑁3 + 𝑁5 + 𝑁6) 𝜌2𝑑𝑥

+ ∫ 𝑁5

𝛺3

(𝑁4 + 𝑁5 + 𝑁7 + 𝑁8) 𝜌3𝑑𝑥 + ∫ 𝑁5

𝛺4

(𝑁5 + 𝑁6 + 𝑁8 + 𝑁9) 𝜌4𝑑𝑥) 𝑎5

= ∫ [𝑁5𝛺1+2+3+4
 𝜌1+2+3+4 𝑑𝑥] 𝑎5 (4.4)

The “lumped mass” (simply lumping the masses on the diagonal) is then

𝑀𝑙
𝑙𝑢𝑚𝑝𝑒𝑑 = ∑ 𝑁𝑙 𝜌𝑘 𝑑𝑥

𝑛𝑒
𝑘=1 (4.5)

l = 1,2, …, 𝑛𝑛

(=1) (=1)

(=1) (=1)

28

The Reduced Consistent Mass Method

Some intermediate options to create a tridiagonal system are described below.

Tridiagonal 1

In this system, the lumping of masses is done as 1,4,7; 2,5,8, and 3,6,9. This will

give an easy-to-solve tridiagonal system.

 Figure 4.2: Quadratic element with node numbering in x-direction

The equation of lumped mass is written as follows:

(∫ 𝑁5𝛺1
𝑁1 𝜌1𝑑𝑥 + ∫ 𝑁5𝛺1+3

𝑁4 𝜌1+3𝑑𝑥 + ∫ 𝑁5𝛺3
𝑁7 𝜌3𝑑𝑥) 𝑎4

+ (∫ 𝑁5𝛺1+2
𝑁2 𝜌1+2𝑑𝑥 + ∫ 𝑁5𝛺1+2+3+4

𝑁5 𝜌1+2+3+4𝑑𝑥 + ∫ 𝑁5𝛺3+4
𝑁8 𝜌3+4𝑑𝑥) 𝑎5

 + (∫ 𝑁5𝛺2
𝑁3 𝜌2𝑑𝑥 + ∫ 𝑁5𝛺2+4

𝑁6 𝜌2+4𝑑𝑥 + ∫ 𝑁5𝛺4
𝑁9 𝜌4𝑑𝑥) 𝑎6 (4.6)

Tridiagonal 2

This system is the same as tridiagonal 1, except lumping of masses 1,2,3; 4,5,6

and 7,8,9. Now, if the nodes were re-ordered so that 2, 5 & 8 were numbered

sequentially, then this would also be tridiagonal as shown in figure 4.3.

29

Figure 4.3: Quadratic element with node numbering in y-direction

Pentadiagonal

In this system, lumping of masses is done by lumping 1 with 2 & 4; 3 with 2 &

6; 7 with 4 & 8; 9 with 6 & 8 as shown in figure 4.4. This system is not as easy to

solve, but it is faster than the consistent mass approach.

Figure 4.4: Quadratic element used for Pentadiagonal mass lumping

4 6

 4

8

2

30

Higher order system:

 When elements are higher order, there are many possibilities between lumped

mass and consistent mass. It might be possible to lump to 10,11 & 12 then to 7,11 & 15.

The next level may be to lump to 9,10,11,12,13 and then to lump to 3,7,11,15 &19 as

shown in figure 4.5.

Figure 4.5: Four elements of serendipity family for higher order mass lumping

Thomas algorithm to solve tridiagonal system

As described previously, one intermediate step between lumped mass and

consistent mass is to form a tridiagonal system by lumping nodes which are not adjacent

(i.e. not sequential in numbering) to the current node. In above example, we lump 1,4,7;

2,5,8; & 3,6,9. This is the Tridiagonal 1 case. In this case, we get a matrix of the

following form:

 𝑏1 𝑐1 𝑣1 𝑓1

 𝑎2 𝑏2 𝑐2 𝑣2 𝑓2

 ∙ ∙ ∙

 ∙ ∙ ∙

 𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1 𝑣𝑛−1 𝑓𝑛−1

 𝑎𝑛 𝑏𝑛 𝑣𝑛 𝑓𝑛

 =

31

Forward elimination gives:

 𝑏2 𝑏2 – (𝑐1/ 𝑏1) 𝑎2 & 𝑓2 𝑓2 – (𝑓1/ 𝑏1) 𝑎2

 𝑏3 𝑏3 – (𝑐2/ 𝑏2) 𝑎3 & 𝑓3 𝑓3 – (𝑓2/ 𝑏2) 𝑎3 etc.

After the forward elimination step, the system looks like as follows:

 𝑏1 𝑐1 𝑣1 𝑓1

 𝑏2 𝑐2 𝑣2 𝑓2

 ∙ ∙ ∙

 ∙ ∙ ∙

 𝑏𝑛−1 𝑐𝑛−1 𝑣𝑛−1 𝑓𝑛−1

 𝑏𝑛 𝑐𝑛 𝑣𝑛 𝑓𝑛

This can be solved by back substitution as follows:

𝑣𝑛 = 𝑓𝑛 / 𝑏𝑛 ;

𝑣𝑛−1 = 1/ (𝑣𝑛−1) [𝑓𝑛−1 – 𝑐𝑛−1 𝑣𝑛] etc.

A modification to this procedure is needed for the Tridiagonal 2 case (In the previous

example, lumping 1,2,3; 4,5,6; & 7,8,9). In the Tridiagonal 1 case, the diagonals are

separated by m-1 diagonals of zeros. Here, m would be the number of nodes in the X-

direction, assuming a logical ij mesh. The system looks like as follows:

 𝑏1 𝑐1 𝑣1 𝑓1

 𝑏2 𝑐2 𝑣2 𝑓2

 ∙ ∙ ∙

 ∙ ∙ ∙

 𝑏𝑛−1 𝑐𝑛−1 𝑣𝑛−1 𝑓𝑛−1

 𝑏𝑛 𝑐𝑛 𝑣𝑛 𝑓𝑛

 =

 =

 m-1 zero’s

 m-1 zero’s

32

Let’s consider the case, m = 3 with 3 × 3 mesh to see if column and row interchanges can

produce a tridiagonal system.

(a) (b)

Figure 4.6: Quadratic element (a) Existing ordering system (b) Desire ordering system

So, the system will look like as follows:

 𝑏1 0 0 𝑐1 0 0 0 0 0
0 𝑏2 0 0 𝑐2 0 0 0 0
0 0 𝑏3 0 0 𝑐3 0 0 0

𝑎4 0 0 𝑏4 0 0 𝑐4 0 0
0 𝑎5 0 0 𝑏5 0 0 𝑐5 0
0 0 𝑎6 0 0 𝑏6 0 0 𝑐6
0 0 0 𝑎7 0 0 𝑏7 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7
𝑣8
𝑣9

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8
𝑓9

Now, interchange both columns and rows 2 & 4:

Changing columns 2 & 4:

𝑏1 𝑐1 0 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 𝑏3 0 0 𝑐3 0 0 0

𝑎4 𝑏4 0 0 0 0 𝑐4 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 𝑎6 0 0 𝑏6 0 0 𝑐6
0 𝑎7 0 0 0 0 𝑏7 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

 =

33

Changing rows 2 & 4:

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 0 0 0 0 𝑐4 0 0
0 0 𝑏3 0 0 𝑐3 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 𝑎6 0 0 𝑏6 0 0 𝑐6
0 𝑎7 0 0 0 0 𝑏7 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

Now, interchange both columns and rows 3 & 7:

Changing columns 3 & 7:

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 0 0 0 0 𝑐3 𝑏3 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 0 0 0 𝑏6 𝑎6 0 𝑐6
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

Changing rows 3 & 7:

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 0 0 0 𝑏6 𝑎6 0 𝑐6
0 0 0 0 0 𝑐3 𝑏3 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

34

Now, interchange both columns and rows 6 & 8:

Changing columns 6 & 8:

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 𝑐5 0 0 0
0 0 0 0 0 0 𝑎6 𝑏6 𝑐6
0 0 0 0 0 0 𝑏3 𝑐3 0
0 0 0 0 𝑎8 𝑏8 0 0 0
0 0 0 0 0 0 0 𝑎9 𝑏9

Changing rows 6 & 8:

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 𝑐5 0 0 0
0 0 0 0 𝑎8 𝑏8 0 0 0
0 0 0 0 0 0 𝑏3 𝑐3 0
0 0 0 0 0 0 𝑎6 𝑏6 𝑐6
0 0 0 0 0 0 0 𝑎9 𝑏9

 Here, the final system we get is tridiagonal. So, in the Thomas algorithm if we

first define an integer array giving the needed row/column swaps - i.e. in the example

above ipvt (1) = 1; ipvt (2) = 4; ipvt (4) = 2; ipvt (5) = 5; ipvt (6) = 8; ipvt (7) = 3; ipvt (8)

= 6; ipvt (9) = 9. The indexes on 𝑎𝑛 refer to row i and column i-1. The example above

suggests that we simply replace i with ipvt (i). Same is true for c & f. The solution we get

for v will be pivoted as well i.e.

𝑣1,𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑣1, 𝑣2,𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑣4 𝑣3,𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑣7 etc. In general 𝑣𝑖 = 𝑣𝑖𝑝𝑣𝑡(𝑖),solved.

35

Summarizing, once the pivot array is defined, the Thomas algorithm becomes as follows:

Forward elimination

𝑏𝑖𝑝𝑣𝑡(𝑖) 𝑏𝑖𝑝𝑣𝑡(𝑖) - [(𝑐𝑖𝑝𝑣𝑡(𝑖−1)/ 𝑏𝑖𝑝𝑣𝑡(𝑖−1)) 𝑎𝑖𝑝𝑣𝑡(𝑖)]

𝑓𝑖𝑝𝑣𝑡(𝑖) 𝑓𝑖𝑝𝑣𝑡(𝑖) - [(𝑓𝑖𝑝𝑣𝑡(𝑖−1)/ 𝑏𝑖𝑝𝑣𝑡(𝑖−1)) 𝑎𝑖𝑝𝑣𝑡(𝑖)]

where, i = 2, 3, …, n

Back substitution

𝑣𝑖𝑝𝑣𝑡(𝑛) = 𝑓𝑖𝑝𝑣𝑡(𝑛) / 𝑏𝑖𝑝𝑣𝑡(𝑛)

𝑣𝑖𝑝𝑣𝑡(𝑖) = (1/ 𝑣𝑖𝑝𝑣𝑡(𝑖)) [𝑓𝑖𝑝𝑣𝑡(𝑖) - 𝑐𝑖𝑝𝑣𝑡(𝑖) 𝑣𝑖𝑝𝑣𝑡(𝑖+1)]

where, i = n-1, n-2, … ,2, 1.

36

CHAPTER 5

SOFTWARE AND SETUP

ALEAS

 ALEAS (Arbitrary Lagrangian-Eulerian Adaptive Solver) is a finite element

research code. It was developed in 2D by Dr. David Littlefield [10], and it is used for this

work to develop the Reduced Consistent Mass Method. ALEAS is capable of performing

multi-material calculations in Lagrangian, ALE, Eulerian, and multi-material ALE

frameworks. The conservation equations presented in chapter 3 are implemented in

ALEAS. Note that in the ALEAS input file, we are only using ijob = 0, which is for the

Lagrangian step only, in this work and according to that, all subroutines are edited.

Setup for virtual node numbering

 We have to create a new node numbering which we refer to as “Virtual Node

Numbering” for the reduced consistent mass method. The reason behind the need to

develop virtual node numbering is so that we can easily define locations of neighboring

nodes, which help us to create a tridiagonal matrix. In this section, we will see how to

develop virtual node numbering in ALEAS. To develop virtual node numbering, first, we

have to edit the easy_mesh and mesh_setup subroutines in the mesh source directory of

ALEAS.

37

Figure 5.1: Two different regions with virtual and real node numbering

 The real node numbering and virtual node numbering are shown in figure 5.1. The

blue node numbering is the virtual node numbering, and the red node numbering is the

real node numbering. Note that once we define virtual node numbering in a few

subroutines, we must also reassign this numbering back to real node numbering in others.

 Virtual Node Numbering

 Real Node Numbering

38

Easy_mesh subroutine

 Easy_mesh subroutine inserts a uniform mesh in region ireg. After this routine

develops real node numbering, we defined the ipvt array to develop virtual node

numbering, as shown in Appendix A. Here, offset2 is used to calculate the offset when

virtual node numbering is required for a second material. So, the structure of the ipvt

array is defined as follows:

ipvt (ireg, real node) = virtual node

Where ireg = number of regions

Mesh_setup subroutine

 This subroutine generates a mesh, region by region, using the paving technique of

Blacker and Stephenson. In this subroutine, we develop two single arrays, ipvt4 and

ipvt5, as shown in Appendix B. The structure of both arrays are defined as follows:

ipvt4 (real node) = virtual node

ipvt5 (virtual node) = real node

 So, ipvt4 returns the virtual node number given the real node number, and ipvt5

returns the real node number given the virtual node number. We can use these arrays in

any subroutine to get virtual or real node numbering.

Setup for reduced consistent mass matrix

 In this section, we will see how to diagonalize the consistent mass matrix

according to the new reduced consistent mass method, and which subroutines need to be

edited before stiff_explicit is called in main aleas2dc file.

39

Zeroed subroutine

 This subroutine zeroes out various values. So, before we start updating values in

reduced consistent mass matrix i.e., in the stiff_explicit subroutine, we must zero out all

those values. So, this array is edited, as shown in Appendix C.

a(1,i) = 0

a(2,i) = 0

a(3,i) = 0

Bnd_explicit subroutine

 This routine implements the boundary conditions into the stiffness matrix and

right-hand-side vector. So, before we call the stiff_explicit and rhs_explicit routines,

icol needs to refer to virtual node numbering, as shown in Appendix D.

inode = ipvt4(ixv(i)), inode = ipvt4(iyv(i))

 inode = ipvt4(iemv(i)), inode = ipvt4(iemz(i))

Stiff_explicit subroutine

 This subroutine generates the reduced consistent mass matrix by looping through

the elements and update the values of the lumped mass matrix. First, to develop reduced

consistent mass matrix, we have to define the value of i1max for each region. i1max is

the number of nodes on the boundary in the x-direction. To get the value of i1max for

each region, we defined an array before we call x and y locations, as shown in Appendix

E. So, i1max is defined as follows:

40

i1max = nftbndry(x-direction)

 According to the new reduced consistent mass scheme, we have to split the

integrand in three sections, referred to here as Left integrand, Center integrand, and Right

integrand, to make a tridiagonal matrix. For that, we have to define the location of

neighboring nodes. Considering the center node, the neighboring nodes will

automatically fall under Right or Left integrand. Now, there are two cycles, icycle = 0

and icycle = 1 as shown in figure 5.2 and figure 5.3.

Figure 5.2: Quadratic element when icycle equals to zero

41

Figure 5.3: Quadratic element when icycle equals to one

 To understand more in detail, consider an element when icycle equals to zero,

as shown in figure 5.2. As described in the above section, the value of i1max = 3 and

the center node, i.e. i2, which is equal to 5. So, according to new reduced consistent

mass scheme, nodes 2,5,8 will fall under Center integrand, nodes 1,4,7 will fall under

Right integrand, and nodes 3,6,9 will fall under Left integrand. This is the same case

for icycle equals to one; the only difference is lumping of masses is done in a different

direction, as shown in figure 5.3. After assigning all integrands to the nodes, we sum

up all integrands for momentum, mass, and energy, as shown in Appendix D.

Rhs_explicit subroutine

 This subroutine constructs the right-hand side for explicit calculations. Since

we are using virtual node numbering, the irow in a right-hand side also needs to refer

to virtual node numbering. So, instead of using real node in the irow equation, we must

use virtual node numbering as shown in Appendix F.

42

irow = imax ∗ mmat ∗ (ipvt4(jnode) - 1) + imax ∗ (imat-1) + 1

Here, ipvt4 refers to the virtual node numbering as described in the above section.

Solve_explicit subroutine

 This subroutine solves the equations to get the full iteration step. We use the

Thomas algorithm to solve the system of equations given the matrix a and vector b, as

shown in Appendix G. In this subroutine, we also setup an array which reverses icol

from virtual node numbering to real node numbering. Here, we see the ipvt3 array

which is already set up in the mesh_setup subroutine and gives virtual node

numbering. Instead of using the ipvt3 array, the ipvt4 array could also be used, but

ipvt3 is used here for convenience.

Contact routines

 This subroutine checks for node penetration and makes the appropriate

corrections for sliding surfaces. There are mainly two subroutines, slide4, and

update_energy. Those subroutines require editing for both nodal mass and virtual node

numbering.

43

Slide4 subroutine

 This routine is a diagonalized version wherein velocities of adjacent master

nodes are set equal. As we divided the lumped mass into three different sections, they

need to be summed up in this routine with referring to virtual node numbering, as

shown in Appendix H.

Mass b = a(1,imax ∗ ipvt4(node) -1) + a(2,imax ∗ ipvt4(node) -1)

 + a(3,imax ∗ ipvt4(node) -1)

Update_energy subroutine

 This subroutine updates the energy as a result of contact forces. So, the icol

needs to refer to virtual node numbering and also the lumped mass needs to be

summed up, as shown in Appendix I.

icol = ioff ∗ ipvt4(node)

fv = fv + (vxc(1,node) ∗ vx(1,node) + vyc(1,node) ∗ vy(1,node))

* mass(0,i) / (ne ∗ (a(1,icol) + a(2,icol) + a(3,icol)))

44

CHAPTER 6

DISCUSSION AND RESULTS

Results of Simple Quadratic Four Elements

 In this section, results from a simple four quadratic element test problem are

presented and discussed. The reason behind presenting this simple problem is that

some additional debugging in the ALEAS code will be required to run more realistic

examples. Considering this simple quadratic four element problem, the codes gives

correct results up to the 35th cycle, and after that, it gives values five times larger than

expected. This is the same case for every test and verification we did after modifying

the code.

 We discovered a work-around for this error by setting pres(imat,i) equal to

zero, as it should be for this problem, and is as shown in Appendix F. With that

change, the code will give all the correct values for each cycle, but this is not the

correct way to specify the pressure. We are forcefully defining a value of pressure

equals to zero in rhs_explicit, and that is why we are getting correct values for each

cycle, but in actual conditions, the pressure in each cycle should be set equal to the

value returned from the equation of state.

45

 The results of a simple four quadratic elements with a constant velocity of 100

m/s in the y-direction and zero velocity in the x-direction and with no contact with

another material are presented below.

Figure 6.1: Representation of mesh and material of four quadratic element at t = 0

46

Figure 6.2: Representation of pressure and mesh of four quadratic element at t = 0

Figure 6.3: Representation of density and mesh of four quadratic element at t = 0

47

Figure 6.4: Representation of mesh and material of four quadratic element at t = 0.38E-02

Figure 6.5: Representation of pressure and mesh of four quadratic element at t = 0.38E-

02

48

Figure 6.6: Representation of density and mesh of four quadratic elements at t= 0.38E-02

 The results obtained for a simple four quadratic element problem are not as

accurate as we expected from this new reduced consistent mass method. It does not mean

that the new reduced consistent mass method is flawed. The tests are inconclusive at this

point but suggest the method has promise.

49

CHAPTER 7

CONCLUSIONS

 In this work we have presented a new computational method for improving the

accuracy of the lumped mass approximation, referred to as the reduced consistent mass

method. The Eulerian form of the conservation equations have been solved by using

Finite Element Approximations. The new reduced consistent mass method was

successfully implemented in the ALEAS code. There are several levels on which the

lumped mass approximation was generalized, including the Tridiagonal 1 and

Tridiagonal 2 approximation as described in Section 4, the pentadiagonal approximation,

culminating with the consistent mass formulation where no approximation were used.

Those are studied theoretically, but it requires more detailed study to implement into

ALEAS. While a work-around was developed to run a simple test case of the new

method, more work remains to fully debug the code. Because of that, we did not get the

results as expected from the new method. It does not mean that the new method is wrong;

it requires more study in future work.

50

Future Work

 This research intended to demonstrate a tremendous improvement in accuracy

when using a new reduced consistent mass method, but it still requires more work to fix

the code. Some possible areas for future work include the following list.

 ALEAS needs to be debugged in more detail to find a small bug which will give

accurate results as expected from theoretical calculations.

 Linear finite elements have been traditionally used in hydrocodes. The limitations

in accuracy for these elements are well known. For example, linear elements

cannot accurately represent curvilinear surfaces and result in inaccurate

approximation to the volume of geometries. Linear elements also admit spurious

zero-energy modes of deformation (called hourglass modes) and require artificial

stabilization methods to be used successfully. Higher-order elements do not suffer

from many of these deficiencies. So in the future, it will be great to quantify the

improvements in accuracy afforded with the use of higher-order finite elements.

 To investigate the effect of element order on accuracy in Eulerian hydrocodes,

linear, serendipity quadratic, Lagrange biquadratic, serendipity cubic, and

Lagrange bicubic elements should be compared.

 As we developed a tridiagonal matrix for the new reduced consistent mass

method, in the same way, it is possible to develop a new pentadiagonal matrix to

further enhance the accuracy of Eulerian hydrocodes.

51

REFERENCES

[1] R. Courant, “Variational Methods for the Solution of Problems of Equilibrium

 and Vibrations,” Bulletin of the American Mathematical Society, Vol. 49, 1943,

 pp.1-23.

[2] S. Levy, “Structural Analysis and Influence Coefficient for Delta Wings,” J. Aero.

 Sci., Vol. 20 7, 1953, pp. 449-454.

[3] R. W. Clough, “The Finite Element Method After Twenty-Five Years: Personal

 View,” Computers & Structures, Vol. 12, No. 4, 1980, pp. 361-370.

[4] J. Robinson, Early FEM Pioneers, Robinson & Associates, Dorest, England,

 1985.

[5] Clough, R. (1960). The finite element method in plane stress analysis. In

 2nd Conference in Electronic Computation, pages 345-378. American

 Society of Civil Engineers, Pittsburg, PA.

[6] Littlefield, D. (2002). A Method for Treatment of Dynamic Contact-

 Impact in Multi-material Frameworks. Fifth World Congress on

 Computational Mechanics, Vienna, Austria, July 7-12, 2002.

[7] Littlefield, D. (2006). Modeling Contact in Multi-material Frameworks.

 Seventh World Congress on Computational Mechanics. Los Angeles,

 CA, July 16-22, 2006.

[8] Littlefield, D. (2007). Improvements to Multi-material Advection

 Algorithms in MACH. Final report from Air Force Research Laboratory

 Contract #FA9451-05-M-0225, Submitted August 2007.

[9] Kenneth C. Walls (2017). An Improved Contact Method for Multi-Material

 Eulerian Hydrocodes.

[10] Littlefield, D. (2001). The Use of r-adaptivity with Local, Intermittent

 Remesh for Modeling Hypervelocity Impact and Penetration.

 International Journal of Impact Engineering, 26 (1), 433-442.

52

APPENDIX A

Easy_mesh.f File

∗ In this file, the only edited part is shown

∗ ipvt array

 do i=1,maxnodes

 ipvt(ireg,i)=0

 enddo

∗ Right side boundary nodes

 do i=1,i2max

 ipvt(ireg,(i-1)*i1max+1)=offset2+i1max-1+i

 enddo

∗ Bottom side boundary nodes

 do i=2,i1max

 ipvt(ireg,i)=offset2+i1max-i+1

 enddo

∗ Top side boundary nodes

 do i=2,i1max-1

 ipvt(ireg,(i2max-1)*i1max+i)=offset2+i1max+i2max+i-2

 enddo

∗ Left side boundary nodes

 do i=2,i2max

 ipvt(ireg,i1max*i)=offset2+2*(i1max+i2max-1)-i

 enddo

53

∗ Interior boundary nodes

 do iy=2,i2max-1

 do ix=2,i1max-1

 ipvt(ireg,i1max*(iy-1)+ix)=nnodes0+1

 nnodes0=nnodes0+1

 enddo

 enddo

 offset2 = 2*(i1max-1)+2*(i2max-1)+offset2

54

APPENDIX B

Mesh_setup.f File

∗ In this file, the only edited part is shown

∗ ipvt3 array which gives virtual node numbering

 offset2=0

 offset5=0

 do ireg=1,nreg

 do j=1,maxnodes

 if(jnode.eq.0)then

 offset2=offset2+j-1

 if(ireg.gt.1)then

 offset5(ireg)=offset5(ireg-1)+j-1

 endif

 goto 999

 endif

 ipvt3(ireg,jnode)=j+offset2

 enddo

 999 continue

 enddo

∗ ipvt4 and ipvt5 array’s which gives virtual and real node numbering respectively

 do ireg=1,nreg

 nmax=nnreg(ireg)

 do iv=1,nmax

 nodeR=ipvt(ireg,iv)

 nodeV=ipvt3(ireg,nodeR)

 ipvt5(nodeV)=nodeR

 ipvt4(nodeR)=nodeV

 enddo

 enddo

55

APPENDIX C

Zeroed.f File

∗ In this file, the only edited part is shown

∗ This subroutine zeroes out various quantities

 if(jobtype.eq.0)then

 if(lmm)then

 imax=(neql-neqe)*nummat*nnodes+neqe*nummat*nel

 else

 imax=(neql-neqe)*nnodes+neqe*nummat*nel

 endif

 do i=1,imax

 a(1,i)=pzero

 a(2,i)=pzero

 a(3,i)=pzero

 b(i)=pzero

 enddo

 else

 imax=2*nnodes

 jmax=ml+md

 do i=1,imax

 do j=1,jmax

 a(j,i)=pzero

 enddo

 b(i)=pzero

 enddo

56

APPENDIX D

Bnd_explicit.f File

∗ In this file, the only edited part is shown

∗ This subroutine implements the boundary conditions into the stiffness matrix and rhs -

vector

 if(nxvel.ne.0)then

 do i=1,nxvel

 inode=ipvt4(ixv(i))

 icol=imax*inode-2

 a(1,icol)=pzero

 a(2,icol)=pone

 a(3,icol)=pzero

 b(icol)=xvel(i)

 enddo

 endif

 if(nyvel.ne.0)then

 do i=1,nyvel

 inode=ipvt4(iyv(i))

 icol=imax*inode-1

 a(1,icol)=pzero

 a(2,icol)=pone

 a(3,icol)=pzero

 b(icol)=yvel(i)

 enddo

 endif

 if(nemv.ne.0)then

 do i=1,ntract-1

 x1=ttract(i)

 x2=ttract(i+1)

 if(x2.gt.ptime)then

 y1=ptract(i)

57

 y2=ptract(i+1)

 current=y1+(y2-y1)*(ptime-x1)/(x2-x1)

 goto 10

 endif

 enddo

10 fact=mu0*current/ptwo/pi

 do i=1,nemv

 inode=ipvt4(iemv(i))

 icol=imax*inode

 a(1,icol)=pzero

 a(2,icol)=pone

 a(3,icol)=pzero

 b(icol)=fact/xloc(inode)

 enddo

 endif

 if(nemz.ne.0)then

 do i=1,nemz

 inode=ipvt4(iemz(i))

 icol=imax*inode

 a(1,icol)=pzero

 a(2,icol)=pone

 a(3,icol)=pzero

 b(icol)=pzero

 enddo

 endif

58

APPENDIX E

Stiff_explicit.f File

∗ In this file, the only edited part is shown

∗ This subroutine loop through the elements, and update the values of the lumped mass

matrix

∗ An array to calculate i1max for each region

 ishift=0

 do ibs=1,4

 iseg=nsbnd(ibs+ishift,ibndry)

 ismax=ndfltseg(iseg)

 do is=1,ismax

 node1=iabs(nfltseg(is,iseg))

 nfloat(is,ibs)=node1

 enddo

 isum=ismax

 nftbndry(ibs)=isum

 i1max=nftbndry(1)

 enddo

∗ An array to calculate left, center, and right integrands for both icycles

 do i1=1,ne1

 i2=ipvt4(jnode)

 i1node=econ(i1,iel)

callfcom1(xg(ig,ng),xg(jg,ng),ne,norder,igeom,rtmp,ztmp,rtmp,ztmp,i1,ni,dum,dum,dum,

dum,dum,dum,dum,jacob,r,z,1)

59

 if(mod(icycle,2).eq.0)then

 if(igeom.eq.1)then

 if(i1node.eq.ipvt5(i2))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 if(i2+i1max.le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-i1max))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*Jacob

 endif

 endif

 if((i2+1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+1))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2+1+i1max).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max+1))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2+1-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2+1-i1max))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

60

 endif

 if((i2-1).gt.0)then

 if(i1node.eq.ipvt5(i2-1))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2+i1max-1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max-1))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2-1-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-1-i1max))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 else

 if(i1node.eq.ipvt5(i2))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 if((i2+i1max).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-i1max))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

61

 endif

 if((i2+1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+1))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2+i1max+1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max+1))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2+1-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2+1-i1max))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2-1).gt.0)then

 if(i1node.eq.ipvt5(i2-1))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2+i1max-1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max-1))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2-1-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-1-i1max))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

62

 ntegranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 endif

 endif

if(mod(icycle,2).eq.1)then

 if(igeom.eq.1)then

 if(i1node.eq.ipvt5(i2))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 if((i2+1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+1))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2-1).gt.0)then

 if(i1node.eq.ipvt5(i2-1))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2+i1max).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2+i1max+1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max+1))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

63

 endif

 if((i2-1+i1max).le.maxnodes)then

 if(i1node.eq.ipvt5(i2-1+i1max))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-i1max))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2-i1max+1).gt.0)then

 if(i1node.eq.ipvt5(i2-i1max+1))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 if((i2-1-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-1-i1max))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob

 endif

 endif

 else

 if(i1node.eq.ipvt5(i2))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 if((i2+1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+1))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*Jacob

64

 endif

 endif

 if((i2-1).gt.0)then

 if(i1node.eq.ipvt5(i2-1))then

 integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2+i1max).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2+i1max+1).le.maxnodes)then

 if(i1node.eq.ipvt5(i2+i1max+1))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2-1+i1max).le.maxnodes)then

 if(i1node.eq.ipvt5(i2-1+i1max))then

 integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-i1max))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2-i1max+1).gt.0)then

 if(i1node.eq.ipvt5(i2-i1max+1))then

65

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 if((i2-1-i1max).gt.0)then

 if(i1node.eq.ipvt5(i2-1-i1max))then

 integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob

 integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob

 endif

 endif

 endif

 endif

 icol=imax*mmat*(ipvt4(jnode)-1)+imax*(imat-1)+1

 a(1,icol)=a(1,icol)+integranL

 a(2,icol)=a(2,icol)+integranC

 a(3,icol)=a(3,icol)+integranR

 icol=icol+1

 a(1,icol)=a(1,icol)+integranL

 a(2,icol)=a(2,icol)+integranC

 a(3,icol)=a(3,icol)+integranR

 icol=icol+1

 a(1,icol)=a(1,icol)+(pone-phiv(iel))*integranL1

 a(2,icol)=a(2,icol)+(pone-phiv(iel))*integranC1

 a(3,icol)=a(3,icol)+(pone-phiv(iel))*integranR1

 enddo

 enddo

 enddo

 enddo !

 do i=1,nel

 do imat=1,nummat

 icol=ieoff+(i-1)*nummat+imat

66

 a(1,icol)=pzero

 a(2,icol)=pone

 a(3,icol)=pzero

 enddo

 enddo

67

APPENDIX F

Rhs_explicit.f File

∗ In this file, the only edited part is shown

∗ This subroutine constructs the right hand side for explicit calculations

 irow=imax*mmat*(ipvt4(jnode)-1)+imax*(imat-1)+1

 b(irow)=b(irow)+vxint

 irow=irow+1

 b(irow)=b(irow)+vyint

 irow=irow+1

 b(irow)=b(irow)+bint

68

APPENDIX G

Solve_explicit.f File

∗ In this file, the only edited part is shown

∗ This subroutine solves the equations to get the full iteration step

∗ Thomas Algorithm to solve equations

 do i=1,imax

 a1(i)=a(1,i)

 a2(i)=a(2,i)

 a3(i)=a(3,i)

 enddo

 do i=2,imax

 if(a2(i).ne.pzero)then

 factor=a1(i)/a2(i-1)

 a2(i)=a2(i)-(factor*a3(i-1))

 b(i)=b(i)-(factor*b(i-1))

 else

 b(i)=pzero

 a2(i)=1.0d0

 endif

 enddo

x(imax)=b(imax)/a2(imax)

 do i=imax-1,1,-1

 x(i)=(b(i)-(a3(i)*x(i+1)))/a2(i)

 enddo

 do i=1,imax

 b(i)=x(i)

 enddo

69

∗ An array to reverse from virtual node numbering back to real node numbering

 i2max=neql-neqe

 do ireg=1,nreg

 nmax=nnreg(ireg)

 do iv=1,nmax

 do imat=1,nummat

 inode=ipvt(ireg,iv)

 ivnode=ipvt3(ireg,inode)

 icolR=i2max*nummat*(inode-1)+i2max*(imat-1)+1

 icolV=i2max*nummat*(ivnode-1)+i2max*(imat-1)+1

 breal(icolR)=b(icolV)

 breal(icolR+1)=b(icolV+1)

 breal(icolR+2)=b(icolV+2)

 enddo

 enddo

 enddo

 i3max=i2max*nummat*nnodes

 do i=1,i3max

 b(i)=breal(i)

 enddo

70

APPENDIX H

Slide4.f File

∗ In this file, the only edited part is shown

∗ This subroutine checks for node penetration and makes the appropriate corrections for

sliding surfaces

 node=nfltbnd(j1,jb)

 nodem(3)=node

 massb=a(1,imax*ipvt4(node)-1)+a(3,imax*ipvt4(node)-1)

 +a(2,imax*ipvt4(node)-1)

 bcol(j1)=massb

 vxb=vx(1,node)

 vyb=vy(1,node)

 vni=(vxi-vxf)*nx+(vyi-vyf)*ny

 if(vni.gt.pzero)goto 20

 mass1=a(1,imax*ipvt4(inode)-1)+a(2,imax*ipvt4(inode)-1)

 +a(3,imax*ipvt4(inode)-1)

 vn1=vxi*nx+vyi*ny

 if(min(vn1,vn2).gt.pzero)goto 20

 mass1=a(1,imax*ipvt4(inode)-1)+a(2,imax*ipvt4(inode)-1)

 +a(3,imax*ipvt4(inode)-1)

 vn1=vxi*nx+vyi*ny

71

APPENDIX I

Update_energy.f File

∗ In this file, the only edited part is shown

∗ This subroutine updates the energy as a result of contact forces

 ioff=neql-neqe

 do 10 i=1,nel

 fv=pzero

 do 15 j=1,ne

 node=econ(j,i)

 icol=ioff*ipvt4(node)

 fv=fv+(vxc(1,node)*vx(1,node)+vyc(1,node)*vy(1,node))*

 mass(0,i)/(ne*(a(1,icol)+a(2,icol)+a(3,icol)))

15 continue

 energy(1,i)=energy(1,i)+fv*dt/mass(1,i)

10 continue

 return

 end

72

APPENDIX J

Input File

* Example input file for running MAAP2D

* The first line is the job title, but this can be anywhere in the input file

* Jobtitle = 'Verification Test 8'

*

* Control Records

*

Control

ttype = explicit !default is explicit

mtype = lagrangian !default is lagrangian

start = yes !this is the default and this line is not necessary

restart = no !this is the default and this line is not necessary

remesh = no !set equal to yes to allow auto-remeshing (default is no)

glen = 0.001 !length scale for boundary reseeding during remesh

amr = no !set equal to yes to allow AMR (default is no)

nlevel = 4 !number of levels for an AMR calculation

stest = no !default is no for seed test

mtest = no !default is no for mesh test

tmin = 0. !required input

tmax =1000. !required input

tstep = 0.005 !required input for implicit

cycle_max = 50 !default is 50000

gauss = 2 !default is 1

weight = volume !default is volume weighting

file_number = 0 !required input ONLY if restart = yes or remesh = yes

coordinate_system = cyl !the default is cylindrical

debug=no !default is no

end_control

*

* Plot and edit dump records

*

plot

pcycle=0 pdc = 100

73

ecycle=0 edc = 100

pvoid=yes !default is no

evoid=yes !default is no

end_plot

*

* Region definition records

*

regions

 region=1 mesh = uniform material = 1 model = 1

 boundary = 1 btype = exterior

 xvel = 0. yvel = -100.

*

 geometry = line bcond = free

 start = 0. 0.

 finish= 1. 0.

 nseeds = 2

 prop = 1

*

 geometry = line bcond = free

 start = 1. 0.

 finish = 1. 1.

 nseeds = 2

 prop = 1.

*

 geometry = line bcond = free

 start = 1. 1.

 finish = 0. 1.

 nseeds = 2

 prop = 1.

*

 geometry = line bcond = symmetric

 start = 0. 1.

 finish = 0. 0.

 nseeds = 2

 prop = 1.

* end regions

*

* End of input file

*

74

APPENDIX K

Plot Input File

* This is an example keyword-based input file for plotting

* The first line here is the job title, but this line could be anywhere in the file

*

* jobtitle = 'Verification test 8 plots' !this is a comment in a line

evaluate_seeds = no !default is no

number = 0 !this is the number appended to the file seeddmp

 that will be read (default is 0)

seed_numbering=yes ! the default is no

read_neutral_file=no !default is no

neutral_file=rempat !neutral file name

* trailer=R !trailer for plot dump file (default is none)

*

* Now the input for plot dump files

*

* begin 0 end 10 skip 5

 begin 0 end 10

*

* Now the input telling what to plot

*

 type=mat dim=two

 nodes=yes

 elements=no

 range=-0.2 2.2 -1.2 1.2

*

 type=mat dim=two

 nodes=yes

 elements=no

 range=-2 6 -2 6

*

 type=band dim=two var=pressure

 nodes=yes

 elements=no

75

 range=-0.2 2.2 -1.2 1.2

*

 type=band dim=two var=density

 nodes=yes

 elements=no

 range=-0.2 2.2 -1.2 1.2

*

* end of plot input file

	A Study Of Approximation Error In Eulerian Hydrocodes
	Recommended Citation

	TITLE: DISSERTATION TO BE COMPLETE BY

