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A STUDY OF APPROXIMATION ERROR IN EULERIAN HYDROCODES 

 

PARTH YOGESHBHAI PATEL 

 

MECHANICAL ENGINEERING  

 

ABSTRACT  

 

In this study, we examine a number of approximations in the formulation of 

hydrocodes. These approximations were borne out of an original requirement for the code 

to run as fast as possible i.e. with accuracy being secondary to speed. Many of these 

approximations originated from the 1970’s when computers were slow and memory was 

at a premium.  Although speed and memory are not as much of an issue today, these 

approximations are still used to formulate the hydrocodes. In this study, the effect of 

these approximations is examined systematically.   

The lumped mass approximation is a simplification to the consistent mass 

formulation and is routinely used in hydrocodes. While this approximation is 

computationally efficient, the consistent mass formulation is the most accurate (and 

computationally expensive) option.  There are other levels of approximation between 

these two extremes that trade off computational efficiency for accuracy.  As is shown in 

this work, some of these result in tridiagonal systems which are very computationally 

efficient to solve. We introduce these algorithms in this work and refer to them as the 

reduced consistent mass method. 

Linear finite elements are also used pervasively in hydrocodes.  Like the lumped 

mass approximation, the use of linear elements was borne out of the requirement for 

computational efficiency and not accuracy.  Surprisingly, linear elements are still used 

routinely today, despite their numerous accuracy issues such as realistic representation of 
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geometry and the need for hourglass stabilization. In this work higher order finite 

elements, including quadratic and cubic elements, are examined. Special attention is 

placed on quadrature order used in integration and its effect on overall accuracy. 

The 2D version of ALEAS (Arbitrary Lagrangian-Eulerian Adaptive Solver), an 

in-house ALE (Arbitrary Lagrangian-Eulerian) research code, is used in this work.  Some 

simple benchmark problems are used to assess and quantify the effect of higher order 

approximations in Eulerian hydrocodes. 

 

 

Keywords: ALEAS, Hydrocodes, Lumped mass, Consistent mass, Tridiagonal systems  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Hydrocode Modeling  

 

 Hydrocodes are computer software packages that can be used for the numerical 

solution of mathematical models. This includes ability to accurately approximate the 

mathematical models. Hydrocodes also include capabilities to solve structural dynamics 

models. This makes them useful for modelling vehicular collisions, biomechanical injury 

analysis, planetary impacts, explosions, hypervelocity impacts and penetrations, fluid 

structure interactions, and many more.  

 Hydrocodes formulate dynamical structural models and compute approximate 

solutions, which can involve various types of materials with very different properties. 

Thus, the user is responsible for constructing the most accurate model and also for 

specifying equations that govern how the materials will behave under specific conditions. 

Development of this code is still used in today’s generation of software such as EPIC and 

ALEAS. The ALEAS hydrocode is used in this work.   

 Hydrocodes are mainly categorized by the frame of reference of the 

computational mesh. Each frame of reference has his own advantages and disadvantages 

that the user must have to account for before modelling with the code.   

  



 

2 

 

       

 

 

 

 

 

 

 

Figure 1.1: Representations of the Eulerian computational mesh 

 

 The Lagrangian formulation uses a computational mesh that is fixed in the 

material domain and no material passes between elements. Eulerian formulations use a 

mesh that is fixed in space and material flows through the mesh, as show in Figure 1.1. In 

this work, Eulerian computational mesh is used because it allows large stresses and 

deformations as the mesh is fixed in space.  

 

 

History of the Finite Element Method  

 Courant appears to have been the first to propose the finite element method in 

history. In a 1941 mathematics lecture, which was published in 1943, he used the 

principle of stationary potential energy and piecewise polynomial interpolation over 

triangular subregions to study the Saint-Venant torsion problem [1]. Courant’s work was 

ignored until engineers had independently developed the torsion problem.  
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 None of the ongoing work was of much practical value at that time because there 

were no computers available to generate and solve large sets of algebraic equations. As 

major advances in digital computers and programming languages, the development of 

finite element coincided with it. By 1953, engineers were able to write stiffness equations 

in matrix form and solve with the digital computers [2]. Most of this took place at the 

Boeing Airplane Company. At the time, a large problem was one with 100 degrees of 

freedom. Turner suggested that triangular plane stress elements be used to model the skin 

of a delta wing [3]. Much of this publication was unrecognized because of company 

policies against publication [4].  

 The name “finite element method” was given by Clough in 1960 [5]. Because of 

the practical value of this method, new elements for stress analysis applications were 

developed. The finite element method was regarded as the solution of a variational 

problem by minimization of a functional. Thus the finite element method was seen as 

applicable to all kinds of problems that are in variational form.  

 Large general purpose finite element computer programs were developed during 

late 1960s and early 1970s like ANSYS, ASKA, and NASTRAN. Each of this programs 

can do different types of analysis such as static analysis, dynamic and heat transfer 

analysis. Today there are hundreds of finite element solvers that are available for 

different specialized purposes.   
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Background 

 In this section, we will consider several works that have had a significant 

influence on this thesis. This work is an extension of the work done by Littlefield [6], [7], 

[8], and Kenneth Walls, III, [9], and it provided valuable background information. A new 

mass lumping scheme, referred to as the reduced consistent mass method, is introduced in 

this work. As such, there are only a few literature resources related to this new method. 

Much of this early work led the way for the development of the Eulerian and 

ALE finite element formulations that we use in this thesis. Many of these approximations 

like lumped mass approximation and consistent mass approximations, originated from the 

1970’s when the computers were slow and memory was at premium. Although speed and 

memory are not as much of an issue today, these approximations are still used to 

formulate the hydrocodes. As a part of this research, the effect of these approximations 

are examined systematically for the lumped and consistent mass methods.  

 

 

Thesis Organization  

 The layout of this thesis is as follows: 

 In Chapter 1 we have presented the research motivation for this work as well as 

an introduction to the topics to be covered. 

 In Chapter 2, a brief introduction to the mathematical background and notations 

necessary to develop the ALE form of the conservation equations developed for this work 

is presented. 
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 In Chapter 3, formulations for the conservation equations used in this work will 

be developed. This section will also present the finite element formulations of the 

conservation of mass, momentum, and energy equations that are used in ALEAS. 

 Chapter 4 introduces the reduced consistent mass method and will provide some 

intermediate options to create a tridiagonal system, and a description of the Thomas 

algorithm to solve the tridiagonal system. 

 Chapter 5 will provide an overview of the research code ALEAS, which will be 

used in this work and was developed by Littlefield in two-dimensions [10].  Then, it is 

shown how to set up the tridiagonal system in the ALEAS code.  

 Chapter 6 presents the results of a simple four quadratic element problem. By 

implementing the new reduced consistent mass method developed in Chapter 4, it was 

possible to gain a significant improvement in a simple four-element problem.  

Chapter 7 concludes this thesis and makes future recommendations of research 

with regards to higher order elements and linear finite elements.  

 

 

 

 

 

 

 

 

 



 

6 

 

 

 

 

 

 

 

CHAPTER 2 

 

 

MATHEMATICAL FOUNDATIONS 

 

 

Mathematical Background for Continuum Mechanics   

 

Notation 

 

Physical quantities are expressed by mathematical representations in the form of 

tensors and vectors.  

 Vectors are made up of unit vectors and scalar coefficients, and they are 

represented by magnitude and a direction. The velocity vector in a three dimensional 

Cartesian coordinate system can be expressed by:  

𝐯 = 𝑢𝒊 + 𝑣𝒋 = ∑ 𝑣𝑖𝑒𝑖̂
𝑛
𝑖=1                                       (2.1) 

where i and j are unit vectors, and u and v are scalar quantities for vector notation and 𝑒𝑖̂ 

is the unit vector and 𝑣𝑖 is velocity component in indicial notation where n is the number 

of dimensions of the problem (n = 2 for the case hand).  

The gradient operator ∇ is frequently used in the conservation equations 

developed in this work. It is defined as:  

    ∇ = 𝒊
𝜕

𝜕𝑥
+  𝒋

𝜕

𝜕𝑦
=  𝑒𝑖̂

𝜕

𝜕𝑥𝑖
                            (2.2)       

 The product of ∇ and a scalar quantity ϕ, results in a vector defined as: 

                            ∇𝜙 = 𝒊
𝜕𝜙

𝜕𝑥
+  𝒋

𝜕𝜙

𝜕𝑦
=  𝑒𝑖̂

𝜕𝜙

𝜕𝑥𝑖
     (2.3) 
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The product of ∇ and a vector v, is known as the divergence and is defined as: 

                                             ∇ ∙ 𝐯 =
𝜕𝑢

𝜕𝑥
+  

𝜕𝑣

𝜕𝑦
=  

𝜕𝑣𝑖

𝜕𝑥𝑖
         (2.4) 

The Cauchy stress, which is the only stress used in this thesis is denoted by 

𝜎, the density is 𝜌, the specific internal energy is e, the traction is t, and the body force 

per unit mass is f.  

 The velocity gradient 𝛁𝐯, which can also be denoted as Lij, is divided into a 

symmetric component, Dij, which is the deformation rate, and a skew component, Wij, 

which is the spin. This is given by following equations:  

𝐿𝑖𝑗  =
𝜕𝑣𝑖

𝜕𝑥𝑖
  

 

𝐷𝑖𝑗  =  
1

2
(𝐿𝑖𝑗 + 𝐿𝑗𝑖)                                  (2.5) 

 

𝑊𝑖𝑗  =  
1

2
(𝐿𝑖𝑗 − 𝐿𝑗𝑖) 

 

  

 

The deformation rate, Dij, is referred to the strain rate, 𝜀𝑖𝑗̇ , as is done in Chapter 3.  

 

 

Conservation Equations 

 This section contains a brief introduction of the governing equations for 

momentum, mass, and energy in Eulerian reference frame.  

The conservation of mass equation in the Lagrangian computational reference frame is 

written as: 

𝐷𝜌

𝐷𝑡
+ 𝜌

𝜕𝑣𝑖

𝜕𝑥𝑖
 = 0     (2.6) 
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where 𝜌 is the density.  

The conservation of momentum equation in the Lagrangian computational reference 

frame is given by: 

      𝜌
𝐷𝑣𝑖

𝐷𝑡
=  

𝜕

𝜕𝑥𝑗
𝜎𝑗𝑖 +  𝜌𝑓𝑖      (2.7) 

where 𝜎ji is the Cauchy stress and 𝑓i is the body force per unit mass. 

The conservation of energy equation in the Lagrangian computational reference frame is: 

𝜌
𝐷𝑒

𝐷𝑡
=  𝜎𝑖𝑗𝜀𝑖𝑗̇ +  𝜌𝑓𝑖𝑣𝑖    (2.8) 

where e is the internal energy and 𝜀𝑖𝑗̇  is the strain rate. 

 Here the D/Dt term is known as the material derivative. This is the time rate of 

change associated with the material. It is defined as:  

𝐷

𝐷𝑡
( ) =  

𝜕

𝜕𝑡
( ) + 𝑣𝑖

𝜕

𝜕𝑥𝑖
( )      (2.9) 

where the first term on the right-hand side is the local change and the second term is the 

convective change. 

The conservation of mass equation in the Eulerian computational reference frame is given 

by:  

𝜕

𝜕𝑥𝑖
(𝜌𝑣𝑖  ) +  

𝜕𝜌

𝜕𝑡
= 0     (2.10) 

The conservation of momentum equation in the Eulerian computational reference frame 

is given by:  

𝜕

𝜕𝑡
(𝜌𝑣𝑖  )  +  

𝜕

𝜕𝑥𝑗
(𝜌𝑣𝑖𝑣𝑗  )  =  

𝜕

𝜕𝑥𝑗
𝜎𝑗𝑖 +  𝜌𝑓𝑖    (2.11) 

The conservation of energy in the Eulerian computational reference frame is given by: 

𝜕

𝜕𝑡
(𝜌𝑒 )  +  

𝜕

𝜕𝑥𝑗
(𝜌𝑒𝑣𝑗  )  =  𝜎𝑗𝑖𝜀𝑖𝑗̇ +  𝜌𝑓𝑖𝑣𝑖   (2.12) 
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CHAPTER 3 

 

 

FORMULATIONS 

 

 

Development of the Eulerian Conservation Equations and Finite Element Formulation 

 

 

 Let X denote the current, coordinate system of a given volume, V. We must have 

to define two additional coordinate systems: the ALE coordinates where y = y(X,t), and 

the Eulerian coordinates, where x = x(X,t). The ALE and Eulerian coordinates describe 

the deformation of the volume V and deformation of a body of interest Ω respectively as 

shown in Figure 3.1.   

 

     

 

 

  

 

 

 

 

 

Figure 3.1: Lagrangian, Eulerian, and ALE coordinate systems 
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 The Lagrangian description can be recovered by setting the advection velocity c 

to zero from the ALE equations and the Eulerian description is recovered by setting the 

advection velocity c equal to v and the Jacobian, J, equal to one.   

 In following development section, we use Kenneth Walls III [9] dissertation as a 

reference to create finite element formulations. 

 

 

Conservation of Momentum in ALE Coordinates  

 The conservation of momentum equation is solved by performing one 

dimensional sweeps in each direction.  

The initial momentum, M0, of the body Ω at t = 0 is given by:  

𝑴0 =  ∫ 𝜌0𝐯0 𝑑𝑋
Ω∩V

    (3.1) 

 

Likewise, at some later time t = t1, the momentum of the body, M1, is given by:  

𝑴1 =  ∫ 𝜌0𝐯0 𝑑𝑋
Ω∩V

+  ∫ ∫ 𝜌𝐯(𝐜 ∙ 𝑛) 𝑑𝑠
Г

𝑡

0
   (3.2) 

 

where n is the outward unit normal vector to V along its boundary Г and c is the 

advection velocity, given by:  

      c = v                           [Eulerian Description] 

The change in momentum is given by M1 – M0, and the rate of change is the time 

derivative, which can be written as:  

𝜕𝑴

𝜕𝑡
=  

𝜕𝑴𝟏

𝜕𝑡
=   

𝜕

𝜕𝑡
 ∫ 𝜌𝐯 𝑑𝑥 +  ∫ 𝜌𝐯 (𝐯 ∙ 𝑛) 𝑑𝑠

ГΩ∩V
   (3.3) 

Now, let  

𝐹𝑦 =  
𝑑𝒚

𝑑𝑿
      (3.4) 
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be the second-order tensor describing the deformation of the Eulerian coordinate 

system.  Now, by using this we can transform the first term on the right-hand side of 

Equation 3.3 into the original coordinate system as follows:  

              
𝜕

𝜕𝑡
 ∫ 𝜌𝐯 𝑑𝑥 =  

𝜕

𝜕𝑡
 ∫ 𝜌𝐯 det(𝐹𝑦)  𝑑𝑋

Ω∩V
 =  

𝜕

𝜕𝑡
 ∫ 𝜌𝐯 𝑑𝑋

Ω∩VΩ∩V
   (3.5) 

where J = det(Fy), which is equal to one for Eulerian description and is the Jacobian of 

the reference frame. Then applying Gauss’ theorem to the second integral which gives:  

                                  ∫ 𝜌𝐯 (𝐯 ∙ 𝑛) 𝑑𝑠 =  ∫ ∇ ∙ (𝜌𝐯𝐯)  𝑑𝑥
Ω∩V

 
Г

    (3.6) 

Using Cauchy’s law the forces acting on the body are given by:  

𝑭 = ∫ 𝒏 ∙  𝜎 𝑑𝑠 + ∫ 𝒇 𝑑𝑥
Ω∩V

 
Г

     (3.7) 

where f is an externally applied force per unit volume and 𝜎 is the Cauchy stress 

tensor. 

Using Gauss’ Theorem on the first integral in Equation 3.7 gives:   

𝑭 = ∫ 𝒏 ∙  𝜎 𝑑𝑠 + ∫ 𝒇 𝑑𝑥
Ω∩V

 = 
Г

∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥
Ω∩V

   (3.8) 

Changing the reference frame of Equation 3.8 gives:  

∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑦 =  ∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥
Ω∩VΩ∩V

    (3.9) 

So, the conservation of momentum equation now becomes:  

∫ [
𝜕

𝜕𝑡
(𝜌𝐯) + ∇ ∙ (𝜌𝐯𝐯)]  𝑑𝑥 =  ∫ [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥

Ω∩VΩ∩V
   (3.10) 

This must be valid for any choice of control volume V, so therefore the integrand must 

be zero.  

[
𝜕

𝜕𝑡
(𝜌𝐯) + ∇ ∙ (𝜌𝐯𝐯)] =  [∇ ∙ 𝜎 + 𝒇]    (3.11) 

The first term on the left-hand side can be rewritten as:  

𝜕

𝜕𝑡
(𝜌𝐯) = 𝜌

𝜕𝐯

𝜕𝑡
+ 𝐯 

𝜕𝜌

𝜕𝑡
     (3.12) 
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The second term on the left-hand side of Equation 3.11 can be rewritten as: 

∇ ∙ (𝜌𝐯𝐯) =  ρ𝐯∇ ∙ 𝐯 +  𝐯 ∙ ∇(ρ𝐯)  =  ρ𝐯∇ ∙ 𝐯 +  ρ𝐯∇ ∙ 𝐯 +  𝐯𝐯 ∙ ∇ρ   (3.13) 

Using equations 3.12 and 3.13, Equation 3.11 becomes 

𝜌
𝜕𝐯

𝜕𝑡
+ 𝐯 

𝜕𝜌

𝜕𝑡
+  ρ𝐯∇ ∙ 𝐯 +  ρ𝐯∇ ∙ 𝐯 +  𝐯𝐯 ∙ ∇ρ =  ∇ ∙ 𝜎 + 𝒇   (3.14) 

From the conservation of mass equation shown by Kenneth Walls III [9] that it has 

𝜕𝜌/𝜕𝑡 + 𝜌∇ ∙ v + v ∙ ∇𝜌 = 0. So, equation 3.14 becomes 

𝜌
𝜕𝐯

𝜕𝑡
+ ρ𝐯∇ ∙ 𝐯 =  ∇ ∙ 𝜎 + 𝒇    (3.15) 

This is the conversation of momentum expressed in the Eulerian coordinate system.  

We must express the momentum equation in the weak form. This is done by 

multiplying by a test function w and integrating over the volume V which will give: 

∫  𝑤 [𝜌 
𝜕𝐯

𝜕𝑡
+ 𝜌𝐯∇ ∙ 𝐯]  𝑑𝑥 =  ∫  𝑤 [∇ ∙ 𝜎 + 𝒇] 𝑑𝑥

VV
   (3.16) 

Using Gauss’s theorem, the second term on the left-hand side can be integrated by 

parts to obtain: 

∫  𝑤𝜌𝐯∇ ∙ 𝐯 𝑑𝑥 =  − ∫  ∇𝑤 ∙ (𝜌𝐯𝐯) 𝑑𝑥
VV

+  ∫  w𝐯ρ𝐯 ∙ n ds
Г

    (3.17) 

Likewise, the stress term on the right-hand side can be integrated using Gauss’ 

theorem and Cauchy’s Law to give: 

∫  𝑤∇ ∙ 𝜎 𝑑𝑥 =  − ∫  ∇𝑤 ∙ 𝜎 𝑑𝑥
VV

+  ∫  w𝐭 ds
Г

   (3.18) 

where t is the traction.  

So, the weak form of the conservation of momentum equation can be written in 

Eulerian form as:  

∫  [𝜌 
𝜕𝐯

𝜕𝑡
−  ∇𝑤 ∙ (𝜌𝐯𝐯)] 𝑑𝑥 +

V
∫  w𝐯ρ𝐯 ∙ n ds

Г
    

= ∫  [𝑤𝑓 −  ∇𝑤 ∙ 𝜎] dx +  ∫  w𝐭 ds
ГV

    (3.19) 
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For the first operator split this gives us as follows:  

∫  [𝜌 
𝜕𝐯

𝜕𝑡
−  ∇𝑤 ∙ (𝜌𝐯𝐯)] 𝑑𝑥 +

V
∫  w𝐯ρ𝐯 ∙ n ds

Г
  

= ∫  [𝑤𝑓 −  ∇𝑤 ∙ 𝜎] dx
V

     (3.20) 

Performing the first operator split which gives: 

Lagrangian step (no momentum advection)  

∫  [𝜌 
𝜕𝑣𝑖

𝑙𝑎𝑔

𝜕𝑡
] 𝑑𝑥 = 

V
∫  [𝑤𝑓 −  ∇𝑤 ∙ 𝜎] dx

V
    (3.21) 

Remap step 

∫  [𝑤𝜌 
𝜕𝑣𝑖

𝑟𝑒𝑚𝑎𝑝

𝜕𝑡
−  ∇𝑤 ∙ (𝜌𝑣𝑖

𝑙𝑎𝑔
𝑣)] 𝑑𝑥 +

V
∫  w𝑣𝑗ρ𝑣𝑖

𝑙𝑎𝑔
∙ n ds

Г
= 0   (3.22) 

 

Finite element approximation of the conservation of momentum equation 

 The finite element approximation can be developed by replacing the test 

function w with the shape function Nl in the Lagrangian step and using a piecewise 

constant function 𝑁𝑘
𝛼  which has a value of one for the element. We will now introduce 

the subscript m to indicate the material of interest. The material velocity, v, is replaced 

with following approximations: 

𝐯𝑚 =  ∑ 𝑁𝑗  𝐯𝑚,𝑗
𝑛𝑛
𝑗=1       (3.23) 

where nn is the total number of nodes and the subscript m indicates the material of 

interest. The Cauchy stress, 𝜎, can be decomposed into its components as:  

𝜎𝑖𝑗 =  −𝑝∗ 𝛿𝑖𝑗 +  𝑠𝑖𝑗      (3.24) 

Where 𝛿ij is the Kronecker delta function,  𝑝∗ is the pressure, and 𝑠ij is the deviatoric 

stress, and the indices i and j have values 1, …, n where n is the number of dimensions of 

the problem. The pressure term, 𝑝∗, is the sum of the pressure, p, determined by the 
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equation of state, and the artificial viscosity, q, while the six deviatoric stress terms that 

arise in three-dimensions are found through the constitutive laws. Each of these must be 

written in a form suitable for the finite element method and are given by:  

𝜎𝑚 =  ∑ 𝑁𝑘
𝛼  𝜎𝑚,𝑘

𝑛𝑒
𝑘=1       (3.25) 

𝑝𝑚 =  ∑ 𝑁𝑘
𝛼  𝑝𝑚,𝑘

𝑛𝑒
𝑘=1       (3.26) 

𝑞𝑚 =  ∑ 𝑁𝑘
𝛼  𝑞𝑚,𝑘

𝑛𝑒
𝑘=1       (3.27) 

𝑠𝑚 =  ∑ 𝑁𝑘
𝛼  𝑠𝑚,𝑘

𝑛𝑒
𝑘=1       (3.28) 

where 𝑛𝑒 is the number of elements. Furthermore, the density term,𝜌 can be 

approximated by:  

𝜌𝑚 =  ∑ 𝑁𝑘
𝛼  𝜌𝑚,𝑘

𝑛𝑒
𝑘=1       (3.29) 

So for the Lagrangian step the finite element approximation for the conservation of 

momentum equation is given by:  

 ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼  𝜌𝑚,𝑘  
𝑛𝑒
𝑘=1 (∑ 𝑁𝑙  

𝜕𝐯𝑚,𝑗
𝑙𝑎𝑔

𝜕𝑡
 

𝑛𝑛
𝑗=1 ) ∅𝑚,𝑘 𝑑𝑥  

= ∑ (𝑁𝑙𝑓 −  ∇𝑁𝑙 ∙ 𝑁𝑘
𝛼𝜎𝑚,𝑘)∅𝑚,𝑘  

𝑛𝑒
𝑘=1 𝑑𝑥   (3.30) 

l = 1,2, …, 𝑛𝑛 

Here, assumption is made that 𝑁𝑘
𝛼 is a piecewise constant function to eliminate the 

sums for 𝜎 and 𝜌 in Equations 3.25 and 3.29.  

The left-hand side term ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼  𝜌𝑚,𝑘  
𝑛𝑒
𝑘=1 ∅𝑚,𝑘 𝑑𝑥 is known as the consistent mass 

matrix. It is not diagonalized and results in a high computational cost. Therefore, to 
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simplify the solution we can diagonalize Equation 3.30 by using the lumped mass, 

𝑀𝑚,𝑙
𝑙𝑎𝑔

 at node l, which is defined as:  

𝑀𝑚,𝑙
𝑙𝑎𝑔

=  ∑  ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑗  𝜌𝑚,𝑘  

𝑛𝑒
𝑘=1

𝑛𝑛
𝑗=1 ∅𝑚,𝑘 𝑑𝑥    (3.31) 

Equation 3.31 is usually referred to as the nodal mass. 

With the assumption that  𝑁𝑘
𝛼 is piecewise constant i.e. 𝑁𝑘

𝛼 = 1 on Ωk and Øk = 1, 

then the left hand side of equation 3.30 can be rewritten as:  

∑  ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑗  𝜌𝑘  

𝜕𝐯𝑘,𝑗
𝑙𝑎𝑔

𝜕𝑡

𝑛𝑒
𝑘=1

𝑛𝑛
𝑗=1 𝑑𝑥     (3.32) 

l = 1,2, …, 𝑛𝑛 

 

 

Conservation of Mass in ALE Coordinates 

 We also need to express the conservation of mass in the Eulerian coordinate 

system using the same description as the conservation of momentum. The conservation of 

mass equation solves for the mass and, by extension, the density, 𝜌. At t = 0, the mass of 

the body is given by:  

   𝒎0 =  ∫ 𝜌0 𝑑𝑋
Ω∩V

               (3.33) 

 

Likewise, the mass at some later time, t = t1, can be written as: 

   𝒎1 =  ∫ 𝜌0 𝑑𝑋
Ω∩V

+ ∫ ∫ 𝜌𝐜 ∙ 𝒏 𝑑𝑠𝑑𝑡
Г

𝑡

0
            (3.34) 

where n is the outward unit normal vector to V along its boundary Г and c is the 

advection velocity, given by:  
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      c = v                                   [Eulerian Description] 

We can now express the conservation of mass as:  

   ∫ 𝜌0 𝑑𝑋
V

=  ∫ 𝜌 𝑑𝑋
V

+  ∫ ∫ 𝜌𝐯 ∙ 𝐧 𝑑𝑠𝑑𝑡
Г

𝑡

0
              (3.35) 

Here we have replaced Ω∩V with V by setting 𝜌 = 0 in V - Ω∩V. Substituting this, 

changing reference frames, and differentiating with respect to time, we get:  

∫ [
𝜕

𝜕𝑡
(𝜌)]  𝑑𝑥 + ∫ 𝜌𝐯 ∙ 𝐧 𝑑𝑠 

Г
= 0

V
      (3.36) 

Now using Gauss’s theorem, we find the second integral to be:  

                                 ∫ 𝜌𝐯 ∙ 𝐧 𝑑𝑠 =  ∫ ∇ ∙ (𝜌𝐯)  𝑑𝑦 
V

=  ∫ ∇ ∙ (𝜌𝐯)  𝑑𝑥
V

 
Г

                (3.37) 

So, by substituting this, the conservation of mass equation can now be rewritten as: 

∫ [
𝜕

𝜕𝑡
(𝜌) +  ∇ ∙ (𝜌𝐯)]  𝑑𝑥 = 0

V
    (3.38) 

Since this must apply for any choice of control volume V, we can conclude that the 

integrand must be zero, so using this and dividing through by J which is equal to one 

(Eulerian description) gives: 

                                                        
𝜕

𝜕𝑡
(𝜌) +  ∇ ∙ (𝜌𝐯) = 0                         (3.39) 

Using the product rule, the first term on the left-hand side gives: 

    
𝜕

𝜕𝑡
(𝜌) =  [

𝜕𝜌

𝜕𝑡
+  𝜌

𝜕𝐽

𝜕𝑡
 ]  =   

𝜕𝜌

𝜕𝑡
+  𝜌 

𝜕𝐽

𝜕𝑡
                       (3.40) 

Equation 3.40 can be rewritten: 

   
𝜕𝜌

𝜕𝑡
+  𝜌 

𝜕𝐽

𝜕𝑡
=  

𝜕𝜌

𝜕𝑡
+  𝜌∇ ∙ 𝑦̇                                     (3.41) 

The second term on the left-hand side of Equation 3.39 can be rewritten as:  

              ∇ ∙ (𝜌𝐯) =  𝜌∇ ∙ 𝐯 + 𝐯 ∙ ∇𝜌 =  𝜌∇ ∙ (𝐯 −  𝑦̇) + 𝐯 ∙ ∇𝜌                      (3.42) 

Substituting Equations 3.41 and 3.42 into Equation 3.39 and canceling terms gives: 

    
𝜕𝜌

𝜕𝑡
+  𝜌∇ ∙ 𝐯 + 𝐯 ∙ ∇𝜌 = 0             (3.43) 
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This is mass conservation expressed in the Eulerian coordinate system. 

 We must now express the conservation of mass equation in a weak form in order 

to develop the finite element formulation. This is accomplished by multiplying the 

governing differential equation by a test function, w, and integrating over the volume, V, 

to get:  

∫  𝑤 [
𝜕𝜌

𝜕𝑡
+  𝜌∇ ∙ 𝐯 + 𝐯 ∙ ∇𝜌]  𝑑𝑥 = 0

V
   (3.44) 

Using the Reynolds transport theorem for the first term on the left-hand side gives: 

∫  𝑤 
𝜕𝜌

𝜕𝑡
 𝑑𝑥 =

𝜕

𝜕𝑡V
∫  𝑤ρ 𝑑𝑥 −  ∫ 𝑤𝜌𝑦̇  ∙ 𝑛 𝑑𝑠 

ГV
  (3.45) 

The second term can be integrated by parts to obtain:  

                          ∫  𝑤𝜌∇ ∙ 𝐯 𝑑𝑥 = −
V

∫  ∇𝑤 ∙ (ρ𝐯)𝑑𝑥 +  ∫ ∇𝜌 ∙ (w𝐯) 𝑑𝑥 
𝑉V

  

      =  − ∫  ∇𝑤 ∙ (ρ𝐯)𝑑𝑥 +  ∫ wρ𝐯 ∙ 𝐧 𝑑𝑠 
ГV

     

    =  − ∫  ∇𝑤 ∙ (ρ𝐯)𝑑𝑥 +  ∫ wρ(𝐯 + 𝑦̇) ∙ 𝑛 𝑑𝑠 
ГV

  (3.46) 

So, after canceling terms the statement of the weak form of the conservation of mass 

equation in the Eulerian coordinate system becomes:  

𝜕

𝜕𝑡
∫  𝑤ρ 𝑑𝑥 + 

V
∫  [𝑤𝐯 ∙ ∇ρ − ∇𝑤 ∙ (𝜌𝐯)] 𝑑𝑥 

V
+  ∫ wρ𝐯 ∙ 𝐧 𝑑𝑠 

Г
= 0  (3.47) 

Performing the first operator split we arrive at the following: 

Lagrangian step 

    
𝜕

𝜕𝑡
∫  𝑤𝜌𝑙𝑎𝑔 𝑑𝑥  

V
= 0                                     (3.48) 

 

Remap step 

𝜕

𝜕𝑡
∫  𝑤𝜌𝑟𝑒𝑚𝑎𝑝 𝑑𝑥 + 

V
∫  [𝑤𝐯 ∙ ∇𝜌𝑙𝑎𝑔 − ∇𝑤 ∙ (𝜌𝑙𝑎𝑔𝐯)] 𝑑𝑥 

V
+ ∫ w𝜌𝑙𝑎𝑔𝐯 ∙ 𝐧 𝑑𝑠 

Г
= 0  

   (3.49) 
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Finite element approximation of the conservation of mass equation 

 In order to develop the finite element approximation of the conservation of mass 

equation we replace the test function w with a piecewise constant 𝑁𝑘
𝛼 which is equal to 

one for element k. Likewise, the density, and velocity are approximated using Equations 

3.29, and 3.23, respectively. 

 For the Lagrangian step, the finite element formulation for the conservation of 

mass equation is given by:  

𝜕

𝜕𝑡
∫ 𝑁𝑘

𝛼 (𝑁𝑘
𝛼𝜌𝑚,𝑘

𝑙𝑎𝑔
)

𝛺𝑘
 ∅𝑚,𝑘  𝑑𝑥 = 0     (3.50) 

k = 1, 2, …, 𝑛𝑒 

Since 𝑁𝑘
𝛼 = 1 for element k Equation 3.50 becomes:  

𝜕

𝜕𝑡
∫ (𝜌𝑚,𝑘

𝑙𝑎𝑔
)

𝛺𝑘
 ∅𝑚,𝑘  𝑑𝑥 = 0     (3.51) 

k = 1, 2, …, 𝑛𝑒 

The integral ∫ (𝜌𝑚,𝑘
𝑙𝑎𝑔

)
𝛺𝑘

 ∅𝑚,𝑘  𝑑𝑥 is equal to the element mass 𝑚𝑚,𝑘
𝑙𝑎𝑔

, and can be written as: 

𝜕

𝜕𝑡
𝑚𝑚,𝑘

𝑙𝑎𝑔 = 0      (3.52) 

k = 1, 2, …, 𝑛𝑒 

This shows that the mass is constant in element k during the Lagrangian step, therefore it 

is not necessary to carry out the finite element approximation for conservation of mass in 

the Lagrangian step. 
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Conservation of Energy in ALE Coordinates 

The initial total energy, E0, of a body Ω at t = 0 is given by:  

𝑬0 =  ∫ 𝜌0 𝐸0 𝑑𝑋
Ω∩V

      (3.53) 

Likewise, at some later time t = t1, the total energy of the body, E1, is given by: 

𝑬1 =  ∫ 𝜌𝐸 𝑑𝑋
Ω∩V

+  ∫ ∫ 𝜌𝑬 (𝐯 ∙ 𝒏) 𝑑𝑠
Г

𝑡

0
    (3.54) 

The change in total energy is given by E1 – E0, and the rate of change is the time 

derivative, which can be written as: 

𝜕𝑬

𝜕𝑡
=  

𝜕𝑬𝟏

𝜕𝑡
=   

𝜕

𝜕𝑡
 ∫ 𝜌𝐸 𝑑𝑥 +  ∫ 𝜌𝐸 (𝐯 ∙ 𝒏) 𝑑𝑠

ГΩ∩V
    (3.55) 

Using Equation 3.4 we can convert the first term on the left-hand side of Equation 3.55 to 

the original coordinate system as:  

𝜕

𝜕𝑡
 ∫ 𝜌𝐸 𝑑𝑥 =  

𝜕

𝜕𝑡
 ∫ (𝜌𝐸) 𝑑𝑋

Ω∩V
 =  ∫

𝜕

𝜕𝑡
(𝜌𝐸) 𝑑𝑋

Ω∩VΩ∩V
    (3.56) 

Applying Gauss’ theorem to the second term in Equation 3.77 gives:  

∫ 𝜌𝐸 (𝐯 ∙ 𝒏) 𝑑𝑠 =  ∫ ∇ ∙ (𝜌𝐸𝐯)  𝑑𝑦
Ω∩V

 
Г

=  ∫ ∇ ∙ (𝜌𝐸𝐯)  𝑑𝑋
Ω∩V

   (3.57) 

The total energy is the sum of the work done by the body, where 𝑊̇ is the rate of 

mechanical work and 𝑄̇ is the rate of energy supplied by heat transfer or energy sources. 

In this work we do not consider the rate of energy supplied by heat transfer or energy 

sources, so  𝑄̇ is assumed to be zero. 

The rate of mechanical work is the sum of the work done by external forces and 

body forces given by:  

𝑊̇ =  ∫ 𝒇 ∙ 𝐯 𝑑𝑥 +  ∫ (𝒕 ∙ 𝐯) 𝑑𝑠
ГΩ∩V

     (3.58) 

Using Cauchy’s Law on the first integral in Equation 3.58 becomes:  

∫ 𝒇 ∙ 𝐯 𝑑𝑥 +  ∫ (𝒕 ∙ 𝐯) 𝑑𝑠
ГΩ∩V

=  ∫ 𝒇 ∙ 𝐯 𝑑𝑥 +  ∫ (𝜎 ∙ 𝒏) ∙ 𝐯 𝑑𝑠
ГΩ∩V

  (3.59) 
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Applying Gauss’ theorem to the first integral on the right-hand side of Equation 3.59 

gives:  

∫ 𝒇 ∙ 𝐯 𝑑𝑥 +  ∫ (𝜎 ∙ 𝒏) ∙ 𝐯 𝑑𝑠
ГΩ∩V

=  ∫ 𝒇 ∙ 𝐯 𝑑𝑥 +  ∫ ∇ ∙ (𝐯 ∙ 𝜎) 𝑑𝑠
Ω∩VΩ∩V

   (3.60) 

So, the conservation of total energy equation now becomes:  

∫ [
𝜕

𝜕𝑡
(𝜌𝐸) +  ∇ ∙ (𝜌𝐯𝐸)]  𝑑𝑋

Ω∩V
=  ∫ [∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯]

Ω∩V
 𝑑𝑋   (3.61) 

This must be valid for any choice of control volume V, so therefore the integrand must be 

zero. Using this and dividing through by J which is equal to one for Eulerian description  

gives:  

𝜕

𝜕𝑡
(𝜌𝐸) + ∇ ∙ (𝜌𝐯𝐸) =  ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯    (3.62) 

Using the product rule for the first term on the left-hand side gives:  

𝜕

𝜕𝑡
(𝜌𝐸) =  [

𝜕

𝜕𝑡
(𝜌𝐸) +  𝜌𝐸

𝜕𝐽

𝜕𝑡
] =  

𝜕

𝜕𝑡
(𝜌𝐸) +  𝜌𝐸∇ ∙ 𝑦̇  (3.63) 

Substituting Equations 3.63 into Equation 3.62 gives:  

𝜕

𝜕𝑡
(𝜌𝐸) +  𝜌𝐸∇ ∙ 𝑦̇ +  ∇ ∙ (𝜌𝐸𝐯) =  ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯  (3.64) 

The first term on the left-hand side can be rewritten as:  

𝜕

𝜕𝑡
(𝜌𝐸) = 𝜌

𝜕𝐸

𝜕𝑡
+ 𝐸

𝜕𝜌

𝜕𝑡
      (3.65) 

The third term on the left-hand side of Equation 3.64 can be rewritten as:  

∇ ∙ (𝜌𝐸𝐯) =  𝜌𝐸∇ ∙ 𝐯 + 𝐯 ∙ ∇(𝜌𝐸)  

=  𝜌𝐸∇ ∙ (𝐯 − 𝑦̇) +  𝜌𝐯∇ ∙ 𝐸 + 𝐯𝐸 ∙ ∇𝜌      (3.66) 

Using Equations 3.65 and 3.66 and canceling terms, Equation 3.64 becomes:  

𝜌
𝜕𝐸

𝜕𝑡
+ 𝐸

𝜕𝜌

𝜕𝑡
+  𝜌𝐸∇ ∙ 𝐯 +  𝜌𝐯∇ ∙ 𝐸 +  𝐯𝐸 ∙ ∇𝜌 =  ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯   (3.67) 
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Using the conservation of mass equation shown in Equation 3.43 we can simplify 

Equation 3.67 as:  

𝜌
𝜕𝐸

𝜕𝑡
+ 𝜌𝐯∇ ∙ 𝐸 =  ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯    (3.68) 

This is one form of the conservation of energy in the Eulerian coordinate system 

expressed in terms of total energy E. But the total energy E is the sum of the internal 

energy 𝑒 and the kinetic energy 𝑘, where the kinetic energy is given by: 

𝑘 =  
𝐯 ∙ 𝐯

2
  

So the total energy is given by: 

𝐸 = 𝑒 + 
𝐯 ∙ 𝐯

2
  

Substituting this into Equation 3.68 gives:  

𝜌
𝜕

𝜕𝑡
(𝑒 +  

𝐯∙𝐯

2
) + 𝜌𝐯∇ ∙ (𝑒 +  

𝐯∙𝐯

2
) =  ∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯   (3.69) 

The right-hand side can be rewritten as: 

∇ ∙ (𝐯 ∙ 𝜎) + 𝒇 ∙ 𝐯 =  𝜎: (∇𝐯) + 𝐯 ∙ (∇ ∙ 𝜎) + 𝒇 ∙ 𝐯    (3.70) 

Substituting this and using the product rule on the kinetic energy terms gives:  

𝜌
𝜕𝑒

𝜕𝑡
+  𝜌𝐯∇ ∙ 𝑒 +  𝜌𝐯

𝜕𝐯

𝜕𝑡
+  𝜌𝐯𝐯∇ ∙ 𝐯 =  𝜎: (∇𝐯) + 𝐯 ∙ (∇ ∙ 𝜎) + 𝒇 ∙ 𝐯  (3.71) 

Using the conservation of momentum equation given in Equation 3.43, this equation 

simplifies to:  

𝜌
𝜕𝑒

𝜕𝑡
+  𝜌𝐯∇ ∙ 𝑒 =  𝜎: (∇𝐯)      (3.72) 

This is another form of the conservation on energy equation, expressed in terms of 

internal energy. 

Taking the weak form of Equation 3.72 gives:  

∫  𝑤 [𝜌
𝜕𝑒

𝜕𝑡
+  𝜌𝐯∇ ∙ 𝑒]  𝑑𝑥 =  ∫  𝑤 [𝜎: (∇𝐯)] 𝑑𝑥

V
 

𝑉
    (3.73) 
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Using Gauss’s theorem, the second term on the left-hand side can be integrated by parts 

to obtain:  

∫  [𝑤 𝜌𝐯∇ ∙ 𝑒] 𝑑𝑥 =  − ∫  ∇𝑤 ∙ (𝜌𝑒𝐯) 𝑑𝑥
V

 
𝑉

+  ∫  𝑤𝑒𝜌𝐯 ∙ 𝒏 𝑑𝑠
Г

   (3.74) 

So, the weak form of the conservation of energy equation can be written in ALE form as: 

∫  [wρ
𝜕𝑒

𝜕𝑡
− ∇𝑤 ∙ (𝜌𝑒𝐯)]  𝑑𝑥

V
+  ∫  𝑤𝑒𝜌𝐯 ∙ 𝒏 𝑑𝑠

Г
=  ∫  𝑤 [𝜎: (∇𝐯)] 𝑑𝑥

V
  (3.75) 

This is the form of the energy equation used in ALEAS. It should be noted that the 

traction is implied in the rate of work, and thus does not appear in this equation.  

Performing the first operator split we arrive at the following: 

 

Lagrangian step 

∫  [wρ
𝜕

𝜕𝑡
𝑒𝑙𝑎𝑔)]  𝑑𝑥 

V
=  ∫  𝑤 [𝜎: (∇𝐯)] 𝑑𝑥

V
     (3.76) 

 

Remap step 

∫  [wρ
𝜕

𝜕𝑡
𝑒𝑟𝑒𝑚𝑎𝑝 − ∇𝑤 ∙ (𝜌𝐯𝑒𝑙𝑎𝑔)]  𝑑𝑥

V
+ ∫  𝑤𝑒𝑙𝑎𝑔𝜌𝐯 ∙ 𝒏 𝑑𝑠

Г
 = 0   (3.77) 

 

 

Finite element approximation of the conservation of energy equation 

The test function w is replaced by the shape function, a piecewise constant 

function 𝑁𝑘
𝛼, which has a value of one for element k. The approximations for v, 𝜌 and 𝜎 

are the same as those given in the derivation of the mass and momentum equations. The 

specific internal energy term is given by:  
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𝑒𝑚 =  ∑ 𝑁𝑘
𝛼  𝑒𝑚,𝑘

𝑛𝑒
𝑘=1      (3.78) 

Using this in the Lagrangian step of the conservation of energy equation we have:  

∑ [∫ 𝑁𝑘
𝛼  𝜌𝑚,𝑘  

𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
)∅𝑚,𝑘 𝑑𝑥

𝛺𝑚
]

𝑛𝑒
𝑘=1   

                                            = ∑ [∫ 𝑁𝑘
𝛼   [𝜎𝑚,𝑘 : ∇(∑ 𝑁𝑗  𝐯𝑚,𝑗

𝑛𝑛
𝑗=1 )]∅𝑚,𝑘 𝑑𝑥

𝛺𝑚
]

𝑛𝑒
𝑘=1    (3.79) 

where we have made use of the fact that 𝑁𝑘
𝛼 is a piecewise constant function to eliminate 

the sums for 𝑒, 𝜌, and 𝜎. Since 𝑁𝑘
𝛼 = 1 and ∇𝐯 = 𝜕𝑣𝑖  /  𝜕𝑥𝑗 = 𝐷𝑖𝑗 + 𝑊𝑖𝑗 and also 𝜎𝑖𝑗𝑊𝑖𝑗= 

0.Therefore, we can rewrite Equation 3.79 as:  

∑ [∫ 𝜌𝑚,𝑘  
𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
)∅𝑚,𝑘 𝑑𝑥

𝛺𝑘
]

𝑛𝑒
𝑘=1   

    = ∑ [∫  [𝜎𝑚,𝑘 : 𝜀𝑚,𝑘̇ ]∅𝑚,𝑘 𝑑𝑥
𝛺𝑘

]
𝑛𝑒
𝑘=1              (3.80) 

The volume integral on the left-hand side, ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼  𝜌𝑚,𝑘  
𝑛𝑒
𝑘=1 ∅𝑚,𝑘 𝑑𝑥 is the element mass 

𝑚𝑚,𝑘
𝑙𝑎𝑔

, so we can rewrite the Lagrangian step of the conservation of energy equation as: 

   𝑚𝑚,𝑘
𝑙𝑎𝑔

  
𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
)  =  ∫  [𝜎𝑚,𝑘 : 𝜀𝑚,𝑘̇ ]∅𝑚,𝑘 𝑑𝑥

𝛺𝑘
           (3.81) 

k = 1, 2, …, 𝑛𝑒 

The equations solved for Lagrangian step are summarized below. 

Lagrangian Step:  

Conservation of Momentum  

∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑘

𝛼  𝜌𝑚,𝑘  
𝑛𝑒
𝑘=1 (∑ 𝑁𝑙  

𝜕𝐯𝑚,𝑗
𝑙𝑎𝑔

𝜕𝑡
 

𝑛𝑛
𝑗=1 ) ∅𝑚,𝑘 𝑑𝑥  

= ∑ (𝑁𝑙𝑓 −  ∇𝑁𝑙 ∙ 𝑁𝑘
𝛼𝜎𝑚,𝑘)∅𝑚,𝑘  

𝑛𝑒
𝑘=1 𝑑𝑥    (3.82) 

l = 1,2, …, 𝑛𝑛 

 

 



 

24 

 

Conservation of Mass 

   
𝜕

𝜕𝑡
∫ 𝑁𝑘

𝛼  (𝑁𝑘
𝛼𝜌𝑚,𝑘

𝑙𝑎𝑔
)

𝛺𝑘
 ∅𝑚,𝑘  𝑑𝑥 = 0               (3.83) 

k = 1, 2, …, 𝑛𝑒 

 

Conservation of Energy  

   𝑚𝑚,𝑘
𝑙𝑎𝑔

  
𝜕

𝜕𝑡
(𝑒𝑚,𝑘

𝑙𝑎𝑔
)  =  ∫  [𝜎𝑚,𝑘 : 𝜀𝑚,𝑘̇ ]∅𝑚,𝑘 𝑑𝑥

𝛺𝑘
             (3.84) 

k = 1, 2, …, 𝑛𝑒 
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CHAPTER 4 

 

 

REDUCED CONSISTENT MASS METHOD 

 

 

Description of Lumped Mass Equation 

 

  

 In this section, we will review the consistent mass approach, lumped mass 

approach, and some intermediate options to create a tridiagonal and pentadiagonal 

system, introduced for the first time in this thesis and referred to as the reduced consistent 

mass method. Also we will see a description of the Thomas algorithm to solve the 

tridiagonal system. 

 The equation of lumped mass derived in section 3 for the conservation of 

momentum is defined as follows:  

∑  ∑ ∫ 𝑁𝑙𝛺𝑘
𝑁𝑗  𝜌𝑘  

𝜕𝐯𝑘,𝑗
𝑙𝑎𝑔

𝜕𝑡

𝑛𝑒
𝑘=1

𝑛𝑛
𝑗=1 𝑑𝑥  

l = 1,2, …, 𝑛𝑛 

We consider four elements attached to a node 5 and let j = 5. Note that N5 = 0, for 

all elements except those attached to node 5, as shown in figure 4.1.  

∑  ∑ ∫   [𝑁
5𝛺𝑘

𝑁𝑗  𝜌𝑘  𝑑𝑥 ]
𝜕𝐯𝑘,𝑗

𝑙𝑎𝑔

𝜕𝑡

9
𝑗=1

4
𝑘=1     (4.1) 
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                                           Figure 4.1: Quadratic element  

Let aj = 
𝜕𝐯𝑘,𝑗

𝑙𝑎𝑔

𝜕𝑡
, then if we were to write out the terms in the sums (excluding those that are 

zero) we get 

∫ [𝑁5
𝛺1

𝑁1𝜌1𝑑𝑥]𝑎1 + ∫ [𝑁5
𝛺1

𝑁2𝜌1𝑑𝑥]𝑎2 + ∫ [𝑁5
𝛺1

𝑁4𝜌1𝑑𝑥]𝑎4 + ∫ [𝑁5
𝛺1

𝑁5𝜌1𝑑𝑥]𝑎5 

+ ∫ [𝑁5
𝛺2

𝑁2𝜌2𝑑𝑥]𝑎2 + ∫ [𝑁5
𝛺2

𝑁3𝜌2𝑑𝑥]𝑎3 + ∫ [𝑁5
𝛺2

𝑁5𝜌2𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺2

𝑁6𝜌2𝑑𝑥]𝑎6 

+ ∫ [𝑁5
𝛺3

𝑁4𝜌3𝑑𝑥]𝑎4 + ∫ [𝑁5
𝛺3

𝑁5𝜌3𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺3

𝑁7𝜌3𝑑𝑥]𝑎7 + ∫ [𝑁5
𝛺3

𝑁8𝜌3𝑑𝑥]𝑎8 

+ ∫ [𝑁5
𝛺4

𝑁5𝜌4𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺4

𝑁6𝜌4𝑑𝑥]𝑎6 + ∫ [𝑁5
𝛺4

𝑁8𝜌4𝑑𝑥]𝑎8 + ∫ [𝑁5
𝛺4

𝑁9𝜌4𝑑𝑥]𝑎9 

(4.2) 

Collecting terms in equation 4.2, we get as follows:  

 

∫ [𝑁5
𝛺1

𝑁1𝜌1𝑑𝑥]𝑎1 + ∫ [𝑁5
𝛺1+2

𝑁2𝜌1+2𝑑𝑥]𝑎2 + ∫ [𝑁5
𝛺2

𝑁3𝜌2𝑑𝑥]𝑎3 + ∫ [𝑁5
𝛺1+3

𝑁4𝜌1+3𝑑𝑥]𝑎4 

+ ∫ [𝑁5
𝛺1+2+3+4

𝑁5𝜌1+2+3+4𝑑𝑥]𝑎5 + ∫ [𝑁5
𝛺2+4

𝑁6𝜌2+4𝑑𝑥]𝑎6 + ∫ [𝑁5
𝛺3

𝑁7𝜌3𝑑𝑥]𝑎7 

+ ∫ [𝑁5
𝛺3+4

𝑁8𝜌3+4𝑑𝑥]𝑎8 + ∫ [𝑁5
𝛺4

𝑁9𝜌4𝑑𝑥]𝑎9 

(4.3) 
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It can be noticed from the above equation that it will produce 9 unknowns (𝑎1– 

𝑎9) for each component but only a single equation for each component.  

Letting l = 1, 2, 3,… n successively then it recovers an algebraic system to solve 

for the unknowns (𝑎1– 𝑎9). This is the consistent mass approach. Another approach is the 

so-called lumped mass approximation as discussed in the above section. In the example 

above, we approximate all 𝑎𝑗′s with 𝑎5. 

 

(∫ 𝑁5
𝛺1

(𝑁1 + 𝑁2 + 𝑁4 + 𝑁5) 𝜌1𝑑𝑥 + ∫ 𝑁5
𝛺2

(𝑁2 + 𝑁3 + 𝑁5 + 𝑁6) 𝜌2𝑑𝑥 

 

 

+ ∫ 𝑁5

𝛺3

(𝑁4 + 𝑁5 + 𝑁7 + 𝑁8) 𝜌3𝑑𝑥 + ∫ 𝑁5

𝛺4

(𝑁5 + 𝑁6 + 𝑁8 + 𝑁9) 𝜌4𝑑𝑥) 𝑎5 

 

= ∫ [ 𝑁5𝛺1+2+3+4
 𝜌1+2+3+4 𝑑𝑥 ] 𝑎5      (4.4) 

The “lumped mass” (simply lumping the masses on the diagonal) is then 

𝑀𝑙
𝑙𝑢𝑚𝑝𝑒𝑑 =  ∑ 𝑁𝑙 𝜌𝑘  𝑑𝑥

𝑛𝑒
𝑘=1       (4.5) 

l = 1,2, …, 𝑛𝑛 

 

 

  

(=1) (=1) 

(=1) (=1) 
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The Reduced Consistent Mass Method 

Some intermediate options to create a tridiagonal system are described below. 

Tridiagonal 1 

In this system, the lumping of masses is done as 1,4,7; 2,5,8, and 3,6,9. This will 

give an easy-to-solve tridiagonal system.  

 

 

 

 

 

 

               Figure 4.2: Quadratic element with node numbering in x-direction  

The equation of lumped mass is written as follows:  

(∫ 𝑁5𝛺1
𝑁1 𝜌1𝑑𝑥 + ∫ 𝑁5𝛺1+3

𝑁4 𝜌1+3𝑑𝑥 + ∫ 𝑁5𝛺3
𝑁7 𝜌3𝑑𝑥) 𝑎4  

+ (∫ 𝑁5𝛺1+2
𝑁2 𝜌1+2𝑑𝑥 + ∫ 𝑁5𝛺1+2+3+4

𝑁5 𝜌1+2+3+4𝑑𝑥 + ∫ 𝑁5𝛺3+4
𝑁8 𝜌3+4𝑑𝑥) 𝑎5  

                         + (∫ 𝑁5𝛺2
𝑁3 𝜌2𝑑𝑥 + ∫ 𝑁5𝛺2+4

𝑁6 𝜌2+4𝑑𝑥 + ∫ 𝑁5𝛺4
𝑁9 𝜌4𝑑𝑥) 𝑎6     (4.6) 

 

Tridiagonal 2 

This system is the same as tridiagonal 1, except lumping of masses 1,2,3; 4,5,6 

and 7,8,9. Now, if the nodes were re-ordered so that 2, 5 & 8 were numbered 

sequentially, then this would also be tridiagonal as shown in figure 4.3. 
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Figure 4.3: Quadratic element with node numbering in y-direction 

 

Pentadiagonal  

In this system, lumping of masses is done by lumping 1 with 2 & 4; 3 with 2 & 

6; 7 with 4 & 8; 9 with 6 & 8 as shown in figure 4.4. This system is not as easy to 

solve, but it is faster than the consistent mass approach.  

 

 

 

 

 

 

Figure 4.4: Quadratic element used for Pentadiagonal mass lumping  

  

4 6

 4 

8 

2 
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Higher order system:  

 When elements are higher order, there are many possibilities between lumped 

mass and consistent mass. It might be possible to lump to 10,11 & 12 then to 7,11 & 15. 

The next level may be to lump to 9,10,11,12,13 and then to lump to 3,7,11,15 &19 as 

shown in figure 4.5.  

 

 

 

 

 

 

Figure 4.5: Four elements of serendipity family for higher order mass lumping  

 

 

Thomas algorithm to solve tridiagonal system  

As described previously, one intermediate step between lumped mass and 

consistent mass is to form a tridiagonal system by lumping nodes which are not adjacent 

(i.e. not sequential in numbering) to the current node. In above example, we lump 1,4,7; 

2,5,8; & 3,6,9. This is the Tridiagonal 1 case. In this case, we get a matrix of the 

following form: 

                                     𝑏1 𝑐1                                   𝑣1                𝑓1 

                                     𝑎2 𝑏2 𝑐2                              𝑣2                𝑓2  

                                               ∙                                  ∙                   ∙ 

                                                    ∙                             ∙                   ∙  

                                                𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1           𝑣𝑛−1          𝑓𝑛−1   

                                                        𝑎𝑛 𝑏𝑛                𝑣𝑛                𝑓𝑛 

    =                        
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Forward elimination gives: 

  𝑏2           𝑏2 – (𝑐1/ 𝑏1) 𝑎2 & 𝑓2                   𝑓2 – (𝑓1/ 𝑏1) 𝑎2 
 

  𝑏3           𝑏3 – (𝑐2/ 𝑏2) 𝑎3 & 𝑓3                   𝑓3 – (𝑓2/ 𝑏2) 𝑎3 etc. 

 

After the forward elimination step, the system looks like as follows: 

                                  𝑏1 𝑐1                                   𝑣1                𝑓1 

                                      𝑏2 𝑐2                               𝑣2                𝑓2  

                                            ∙                                  ∙                   ∙ 

                                                ∙                              ∙                   ∙  

                                                 𝑏𝑛−1 𝑐𝑛−1              𝑣𝑛−1          𝑓𝑛−1   

                                                     𝑏𝑛    𝑐𝑛             𝑣𝑛                𝑓𝑛 

This can be solved by back substitution as follows: 

𝑣𝑛  = 𝑓𝑛 / 𝑏𝑛 ;   

𝑣𝑛−1 = 1/ (𝑣𝑛−1) [𝑓𝑛−1 – 𝑐𝑛−1 𝑣𝑛] etc. 

A modification to this procedure is needed for the Tridiagonal 2 case (In the previous 

example, lumping 1,2,3; 4,5,6; & 7,8,9). In the Tridiagonal 1 case, the diagonals are 

separated by m-1 diagonals of zeros. Here, m would be the number of nodes in the X-

direction, assuming a logical ij mesh. The system looks like as follows: 

                                  𝑏1   𝑐1                                 𝑣1                𝑓1 

                                      𝑏2   𝑐2                             𝑣2                𝑓2  

                                            ∙                                  ∙                   ∙ 

                                                ∙                              ∙                   ∙  

                                                 𝑏𝑛−1   𝑐𝑛−1             𝑣𝑛−1          𝑓𝑛−1   

                                                     𝑏𝑛     𝑐𝑛           𝑣𝑛                𝑓𝑛 

 

    =                        

    =                        

   m-1 zero’s                  

   m-1 zero’s                  
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Let’s consider the case, m = 3 with 3 × 3 mesh to see if column and row interchanges can 

produce a tridiagonal system.  

 

 

 

(a)                                                                     (b) 

Figure 4.6: Quadratic element (a) Existing ordering system (b) Desire ordering system 

So, the system will look like as follows: 

  𝑏1 0 0 𝑐1 0 0 0 0 0
0 𝑏2 0 0 𝑐2 0 0 0 0
0 0 𝑏3 0 0 𝑐3 0 0 0

𝑎4 0 0 𝑏4 0 0 𝑐4 0 0
0 𝑎5 0 0 𝑏5 0 0 𝑐5 0
0 0 𝑎6 0 0 𝑏6 0 0 𝑐6
0 0 0 𝑎7 0 0 𝑏7 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

              

𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7
𝑣8
𝑣9

                    

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8
𝑓9

 

Now, interchange both columns and rows 2 & 4: 

Changing columns 2 & 4: 

𝑏1 𝑐1 0 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 𝑏3 0 0 𝑐3 0 0 0

𝑎4 𝑏4 0 0 0 0 𝑐4 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 𝑎6 0 0 𝑏6 0 0 𝑐6
0 𝑎7 0 0 0 0 𝑏7 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

 

 

    =                        
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Changing rows 2 & 4:  

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 0 0 0 0 𝑐4 0 0
0 0 𝑏3 0 0 𝑐3 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 𝑎6 0 0 𝑏6 0 0 𝑐6
0 𝑎7 0 0 0 0 𝑏7 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

 

 

Now, interchange both columns and rows 3 & 7: 

Changing columns 3 & 7:  

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 0 0 0 0 𝑐3 𝑏3 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 0 0 0 𝑏6 𝑎6 0 𝑐6
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9

 

 

Changing rows 3 & 7:  

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 0 0 𝑐5 0
0 0 0 0 0 𝑏6 𝑎6 0 𝑐6
0 0 0 0 0 𝑐3 𝑏3 0 0
0 0 0 0 𝑎8 0 0 𝑏8 0
0 0 0 0 0 𝑎9 0 0 𝑏9
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Now, interchange both columns and rows 6 & 8: 

Changing columns 6 & 8:  

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 𝑐5 0 0 0
0 0 0 0 0 0 𝑎6 𝑏6 𝑐6
0 0 0 0 0 0 𝑏3 𝑐3 0
0 0 0 0 𝑎8 𝑏8 0 0 0
0 0 0 0 0 0 0 𝑎9 𝑏9

 

 

Changing rows 6 & 8:  

𝑏1 𝑐1 0 0 0 0 0 0 0
𝑎4 𝑏4 𝑐4 0 0 0 0 0 0
0 𝑎7 𝑏7 0 0 0 0 0 0
0 0 0 𝑏2 𝑐2 0 0 0 0
0 0 0 𝑎5 𝑏5 𝑐5 0 0 0
0 0 0 0 𝑎8 𝑏8 0 0 0
0 0 0 0 0 0 𝑏3 𝑐3 0
0 0 0 0 0 0 𝑎6 𝑏6 𝑐6
0 0 0 0 0 0 0 𝑎9 𝑏9

 

 

 Here, the final system we get is tridiagonal. So, in the Thomas algorithm if we 

first define an integer array giving the needed row/column swaps - i.e. in the example 

above ipvt (1) = 1; ipvt (2) = 4; ipvt (4) = 2; ipvt (5) = 5; ipvt (6) = 8; ipvt (7) = 3; ipvt (8) 

= 6; ipvt (9) = 9. The indexes on 𝑎𝑛 refer to row i and column i-1. The example above 

suggests that we simply replace i with ipvt (i). Same is true for c & f. The solution we get 

for v will be pivoted as well i.e. 

𝑣1,𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑣1, 𝑣2,𝑠𝑜𝑙𝑣𝑒𝑑  = 𝑣4 𝑣3,𝑠𝑜𝑙𝑣𝑒𝑑 = 𝑣7  etc. In general 𝑣𝑖   = 𝑣𝑖𝑝𝑣𝑡(𝑖),solved. 
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Summarizing, once the pivot array is defined, the Thomas algorithm becomes as follows: 

 

Forward elimination  

𝑏𝑖𝑝𝑣𝑡(𝑖)                 𝑏𝑖𝑝𝑣𝑡(𝑖)  -  [(𝑐𝑖𝑝𝑣𝑡(𝑖−1)/ 𝑏𝑖𝑝𝑣𝑡(𝑖−1)) 𝑎𝑖𝑝𝑣𝑡(𝑖)]  

𝑓𝑖𝑝𝑣𝑡(𝑖)                  𝑓𝑖𝑝𝑣𝑡(𝑖)  -  [(𝑓𝑖𝑝𝑣𝑡(𝑖−1)/ 𝑏𝑖𝑝𝑣𝑡(𝑖−1)) 𝑎𝑖𝑝𝑣𝑡(𝑖)]  

where, i = 2, 3, …, n 

 

Back substitution  

𝑣𝑖𝑝𝑣𝑡(𝑛) = 𝑓𝑖𝑝𝑣𝑡(𝑛) / 𝑏𝑖𝑝𝑣𝑡(𝑛) 

𝑣𝑖𝑝𝑣𝑡(𝑖)  = (1/ 𝑣𝑖𝑝𝑣𝑡(𝑖)) [𝑓𝑖𝑝𝑣𝑡(𝑖) -  𝑐𝑖𝑝𝑣𝑡(𝑖) 𝑣𝑖𝑝𝑣𝑡(𝑖+1)] 

where, i = n-1, n-2, … ,2, 1. 
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CHAPTER 5 

 

 

SOFTWARE AND SETUP 

 

 

ALEAS 

 

 

 ALEAS (Arbitrary Lagrangian-Eulerian Adaptive Solver) is a finite element 

research code. It was developed in 2D by Dr. David Littlefield [10], and it is used for this 

work to develop the Reduced Consistent Mass Method. ALEAS is capable of performing 

multi-material calculations in Lagrangian, ALE, Eulerian, and multi-material ALE 

frameworks. The conservation equations presented in chapter 3 are implemented in 

ALEAS. Note that in the ALEAS input file, we are only using ijob = 0, which is for the 

Lagrangian step only, in this work and according to that, all subroutines are edited.  

 

Setup for virtual node numbering  

 We have to create a new node numbering which we refer to as “Virtual Node 

Numbering” for the reduced consistent mass method. The reason behind the need to 

develop virtual node numbering is so that we can easily define locations of neighboring 

nodes, which help us to create a tridiagonal matrix. In this section, we will see how to 

develop virtual node numbering in ALEAS. To develop virtual node numbering, first, we 

have to edit the easy_mesh and mesh_setup subroutines in the mesh source directory of 

ALEAS.  
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Figure 5.1: Two different regions with virtual and real node numbering 

 

 The real node numbering and virtual node numbering are shown in figure 5.1. The 

blue node numbering is the virtual node numbering, and the red node numbering is the 

real node numbering. Note that once we define virtual node numbering in a few 

subroutines, we must also reassign this numbering back to real node numbering in others.  

              Virtual Node Numbering 

               Real Node Numbering 
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Easy_mesh subroutine 

 Easy_mesh subroutine inserts a uniform mesh in region ireg. After this routine 

develops real node numbering, we defined the ipvt array to develop virtual node 

numbering, as shown in Appendix A. Here, offset2 is used to calculate the offset when 

virtual node numbering is required for a second material. So, the structure of the ipvt 

array is defined as follows: 

ipvt ( ireg, real node ) = virtual node 

Where ireg = number of regions 

 

Mesh_setup subroutine 

 This subroutine generates a mesh, region by region, using the paving technique of 

Blacker and Stephenson. In this subroutine, we develop two single arrays, ipvt4 and 

ipvt5, as shown in Appendix B. The structure of both arrays are defined as follows: 

ipvt4 (real node) = virtual node 

ipvt5 (virtual node) = real node 

 So, ipvt4 returns the virtual node number given the real node number, and ipvt5 

returns the real node number given the virtual node number. We can use these arrays in 

any subroutine to get virtual or real node numbering.   

 

Setup for reduced consistent mass matrix 

 In this section, we will see how to diagonalize the consistent mass matrix 

according to the new reduced consistent mass method, and which subroutines need to be 

edited before stiff_explicit is called in main aleas2dc file. 
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Zeroed subroutine 

 This subroutine zeroes out various values. So, before we start updating values in 

reduced consistent mass matrix i.e., in the stiff_explicit subroutine, we must zero out all 

those values. So, this array is edited, as shown in Appendix C. 

a(1,i) = 0 

a(2,i) = 0 

a(3,i) = 0 

 

Bnd_explicit subroutine  

 This routine implements the boundary conditions into the stiffness matrix and 

right-hand-side vector. So, before we call the stiff_explicit and rhs_explicit routines, 

icol needs to refer to virtual node numbering, as shown in Appendix D.  

inode = ipvt4( ixv(i) ),      inode = ipvt4( iyv(i) ) 

   inode = ipvt4( iemv(i) ),   inode = ipvt4( iemz(i) ) 

 

Stiff_explicit subroutine 

 This subroutine generates the reduced consistent mass matrix by looping through 

the elements and update the values of the lumped mass matrix. First, to develop reduced 

consistent mass matrix, we have to define the value of i1max for each region. i1max is 

the number of nodes on the boundary in the x-direction. To get the value of i1max for 

each region, we defined an array before we call x and y locations, as shown in Appendix 

E. So, i1max is defined as follows: 
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i1max = nftbndry(x-direction) 

 According to the new reduced consistent mass scheme, we have to split the 

integrand in three sections, referred to here as Left integrand, Center integrand, and Right 

integrand, to make a tridiagonal matrix. For that, we have to define the location of 

neighboring nodes. Considering the center node, the neighboring nodes will 

automatically fall under Right or Left integrand. Now, there are two cycles, icycle = 0 

and icycle = 1 as shown in figure 5.2 and figure 5.3. 

 

 

Figure 5.2: Quadratic element when icycle equals to zero 



 

41 

 

 

 

 

 

 

 

 

Figure 5.3: Quadratic element when icycle equals to one 

 To understand more in detail, consider an element when icycle equals to zero, 

as shown in figure 5.2. As described in the above section, the value of i1max = 3 and 

the center node, i.e. i2, which is equal to 5. So, according to new reduced consistent 

mass scheme, nodes 2,5,8 will fall under Center integrand, nodes 1,4,7 will fall under 

Right integrand, and nodes 3,6,9 will fall under Left integrand. This is the same case 

for icycle equals to one; the only difference is lumping of masses is done in a different 

direction, as shown in figure 5.3. After assigning all integrands to the nodes, we sum 

up all integrands for momentum, mass, and energy, as shown in Appendix D.  

 

Rhs_explicit subroutine  

 This subroutine constructs the right-hand side for explicit calculations. Since 

we are using virtual node numbering, the irow in a right-hand side also needs to refer 

to virtual node numbering. So, instead of using real node in the irow equation, we must 

use virtual node numbering as shown in Appendix F. 
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irow = imax ∗ mmat ∗ (ipvt4(jnode) - 1) + imax ∗ (imat-1) + 1  

Here, ipvt4 refers to the virtual node numbering as described in the above section.  

 

Solve_explicit subroutine  

 This subroutine solves the equations to get the full iteration step. We use the 

Thomas algorithm to solve the system of equations given the matrix a and vector b, as 

shown in Appendix G. In this subroutine, we also setup an array which reverses icol 

from virtual node numbering to real node numbering. Here, we see the ipvt3 array 

which is already set up in the mesh_setup subroutine and gives virtual node 

numbering. Instead of using the ipvt3 array, the ipvt4 array could also be used, but 

ipvt3 is used here for convenience.  

 

Contact routines  

 This subroutine checks for node penetration and makes the appropriate 

corrections for sliding surfaces. There are mainly two subroutines, slide4, and 

update_energy. Those subroutines require editing for both nodal mass and virtual node 

numbering.  
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Slide4 subroutine 

 This routine is a diagonalized version wherein velocities of adjacent master 

nodes are set equal. As we divided the lumped mass into three different sections, they 

need to be summed up in this routine with referring to virtual node numbering, as 

shown in Appendix H.  

Mass b = a(1,imax ∗ ipvt4(node) -1) + a(2,imax ∗ ipvt4(node) -1)  

                                + a(3,imax ∗ ipvt4(node) -1) 

 

Update_energy subroutine 

 This subroutine updates the energy as a result of contact forces. So, the icol 

needs to refer to virtual node numbering and also the lumped mass needs to be 

summed up, as shown in Appendix I.  

icol = ioff  ∗ ipvt4(node) 

fv = fv + (vxc(1,node) ∗ vx(1,node) + vyc(1,node) ∗ vy(1,node) )  

* mass(0,i) / (ne ∗ ( a(1,icol) + a(2,icol) + a(3,icol) ) ) 

 

 

 

 

 

 



 

44 

 

 

 

 

 

 

 

CHAPTER 6 

 

 

DISCUSSION AND RESULTS 

 

 

Results of Simple Quadratic Four Elements  

 

 In this section, results from a simple four quadratic element test problem are 

presented and discussed. The reason behind presenting this simple problem is that 

some additional debugging in the ALEAS code will be required to run more realistic 

examples. Considering this simple quadratic four element problem, the codes gives 

correct results up to the 35th cycle, and after that, it gives values five times larger than 

expected. This is the same case for every test and verification we did after modifying 

the code.  

 We discovered a work-around for this error by setting pres(imat,i) equal to 

zero, as it should be for this problem, and is as shown in Appendix F. With that 

change, the code will give all the correct values for each cycle, but this is not the 

correct way to specify the pressure. We are forcefully defining a value of pressure 

equals to zero in rhs_explicit, and that is why we are getting correct values for each 

cycle, but in actual conditions, the pressure in each cycle should be set equal to the 

value returned from the equation of state.  
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 The results of a simple four quadratic elements with a constant velocity of 100 

m/s in the y-direction and zero velocity in the x-direction and with no contact with 

another material are presented below.    

 

 

 

  

 

 

 

 

 

 

 

Figure 6.1: Representation of mesh and material of four quadratic element at t = 0 
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Figure 6.2: Representation of pressure and mesh of four quadratic element at t = 0 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Representation of density and mesh of four quadratic element at t = 0 
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Figure 6.4: Representation of mesh and material of four quadratic element at t = 0.38E-02 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Representation of pressure and mesh of four quadratic element at t = 0.38E-

02   
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Figure 6.6: Representation of density and mesh of four quadratic elements at t= 0.38E-02 

  

 The results obtained for a simple four quadratic element problem are not as 

accurate as we expected from this new reduced consistent mass method. It does not mean 

that the new reduced consistent mass method is flawed. The tests are inconclusive at this 

point but suggest the method has promise. 
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 In this work we have presented a new computational method for improving the 

accuracy of the lumped mass approximation, referred to as the reduced consistent mass 

method. The Eulerian form of the conservation equations have been solved by using 

Finite Element Approximations. The new reduced consistent mass method was 

successfully implemented in the ALEAS code. There are several levels on which the 

lumped mass approximation was generalized, including the Tridiagonal 1 and 

Tridiagonal 2 approximation as described in Section 4, the pentadiagonal approximation, 

culminating with the consistent mass formulation where no approximation were used. 

Those are studied theoretically, but it requires more detailed study to implement into 

ALEAS. While a work-around was developed to run a simple test case of the new 

method, more work remains to fully debug the code. Because of that, we did not get the 

results as expected from the new method. It does not mean that the new method is wrong; 

it requires more study in future work.  
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Future Work 

 This research intended to demonstrate a tremendous improvement in accuracy 

when using a new reduced consistent mass method, but it still requires more work to fix 

the code. Some possible areas for future work include the following list. 

 

 ALEAS needs to be debugged in more detail to find a small bug which will give 

accurate results as expected from theoretical calculations. 

 Linear finite elements have been traditionally used in hydrocodes. The limitations 

in accuracy for these elements are well known. For example, linear elements 

cannot accurately represent curvilinear surfaces and result in inaccurate 

approximation to the volume of geometries. Linear elements also admit spurious 

zero-energy modes of deformation (called hourglass modes) and require artificial 

stabilization methods to be used successfully. Higher-order elements do not suffer 

from many of these deficiencies. So in the future, it will be great to quantify the 

improvements in accuracy afforded with the use of higher-order finite elements. 

 To investigate the effect of element order on accuracy in Eulerian hydrocodes, 

linear, serendipity quadratic, Lagrange biquadratic, serendipity cubic, and 

Lagrange bicubic elements should be compared.  

 As we developed a tridiagonal matrix for the new reduced consistent mass 

method, in the same way, it is possible to develop a new pentadiagonal matrix to 

further enhance the accuracy of Eulerian hydrocodes. 

 



 

51 

 

 

 

 

 

 

 

REFERENCES 

[1]  R. Courant, “Variational Methods for the Solution of Problems of Equilibrium 

 and Vibrations,” Bulletin of the American Mathematical Society, Vol. 49, 1943, 

 pp.1-23.  

 

[2] S. Levy, “Structural Analysis and Influence Coefficient for Delta Wings,” J. Aero. 

 Sci., Vol. 20 7, 1953, pp. 449-454. 

 

[3] R. W. Clough, “The Finite Element Method After Twenty-Five Years: Personal 

 View,” Computers & Structures, Vol. 12, No. 4, 1980, pp. 361-370. 

 

[4] J. Robinson, Early FEM Pioneers, Robinson & Associates, Dorest, England, 

 1985. 

 

[5] Clough, R. (1960). The finite element method in plane stress analysis. In 

 2nd Conference in Electronic Computation, pages 345-378. American 

 Society of Civil Engineers, Pittsburg, PA. 

 

[6] Littlefield, D. (2002). A Method for Treatment of Dynamic Contact- 

 Impact in Multi-material Frameworks. Fifth World Congress on 

 Computational Mechanics, Vienna, Austria, July 7-12, 2002. 

 

[7] Littlefield, D. (2006). Modeling Contact in Multi-material Frameworks. 

 Seventh World Congress on Computational Mechanics. Los Angeles, 

 CA, July 16-22, 2006. 

 

[8] Littlefield, D. (2007). Improvements to Multi-material Advection 

 Algorithms in MACH. Final report from Air Force Research Laboratory 

 Contract #FA9451-05-M-0225, Submitted August 2007. 

 

[9] Kenneth C. Walls (2017). An Improved Contact Method for Multi-Material 

 Eulerian Hydrocodes.  
 

[10] Littlefield, D. (2001). The Use of r-adaptivity with Local, Intermittent 

 Remesh for Modeling Hypervelocity Impact and Penetration. 

 International Journal of Impact Engineering, 26 (1), 433-442. 

 

 

 



 

52 

 

 
 

 

 

 

 

APPENDIX A 

Easy_mesh.f File 

∗ In this file, the only edited part is shown 

∗ ipvt array 

 

 do i=1,maxnodes 

    ipvt(ireg,i)=0 

 enddo 

 

∗ Right side boundary nodes 

 

 do i=1,i2max 

   ipvt(ireg,(i-1)*i1max+1)=offset2+i1max-1+i 

            enddo 

 

∗ Bottom side boundary nodes 

 

 do i=2,i1max 

 ipvt(ireg,i)=offset2+i1max-i+1 

 enddo 

 

∗ Top side boundary nodes 

 

 do i=2,i1max-1 

 ipvt(ireg,(i2max-1)*i1max+i)=offset2+i1max+i2max+i-2 

 enddo 

 

∗ Left side boundary nodes 

 

 do i=2,i2max 

 ipvt(ireg,i1max*i)=offset2+2*(i1max+i2max-1)-i 

 enddo 

 

 



 

53 

 

 

 

∗ Interior boundary nodes 

 

 do iy=2,i2max-1 

   do ix=2,i1max-1 

      ipvt(ireg,i1max*(iy-1)+ix)=nnodes0+1 

      nnodes0=nnodes0+1 

  enddo 

         enddo 

 

   offset2 = 2*(i1max-1)+2*(i2max-1)+offset2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 

 

 

 

 

 

 

 

APPENDIX B 

Mesh_setup.f File 

∗ In this file, the only edited part is shown 

∗ ipvt3 array which gives virtual node numbering 

 

 offset2=0 

 offset5=0 

  do ireg=1,nreg 

       do j=1,maxnodes 

   if(jnode.eq.0)then 

   offset2=offset2+j-1 

      if(ireg.gt.1)then 

      offset5(ireg)=offset5(ireg-1)+j-1 

      endif 

      goto 999 

   endif 

   ipvt3(ireg,jnode)=j+offset2 

      enddo 

 999      continue 

  enddo 

 

∗ ipvt4 and ipvt5 array’s which gives virtual and real node numbering respectively  

 

  do ireg=1,nreg 

       nmax=nnreg(ireg) 

       do iv=1,nmax 

   nodeR=ipvt(ireg,iv) 

   nodeV=ipvt3(ireg,nodeR) 

   ipvt5(nodeV)=nodeR 

   ipvt4(nodeR)=nodeV 

       enddo 

  enddo 
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APPENDIX C 

Zeroed.f File 

∗ In this file, the only edited part is shown 

∗ This subroutine zeroes out various quantities  
 

  

    if(jobtype.eq.0)then 

        if(lmm)then 

        imax=(neql-neqe)*nummat*nnodes+neqe*nummat*nel 

        else 

        imax=(neql-neqe)*nnodes+neqe*nummat*nel 

        endif 

        do i=1,imax 

  a(1,i)=pzero 

  a(2,i)=pzero 

  a(3,i)=pzero 

  b(i)=pzero 

        enddo 

    else 

        imax=2*nnodes 

        jmax=ml+md 

       do i=1,imax 

  do j=1,jmax 

       a(j,i)=pzero 

  enddo 

  b(i)=pzero 

       enddo 
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APPENDIX D 

Bnd_explicit.f File 

∗ In this file, the only edited part is shown 

∗ This subroutine implements the boundary conditions into the stiffness matrix and rhs -

vector  

 if(nxvel.ne.0)then 

    do i=1,nxvel 

  inode=ipvt4(ixv(i)) 

  icol=imax*inode-2 

  a(1,icol)=pzero 

  a(2,icol)=pone 

  a(3,icol)=pzero 

  b(icol)=xvel(i) 

   enddo 

 endif 

 

 if(nyvel.ne.0)then 

    do i=1,nyvel 

  inode=ipvt4(iyv(i)) 

  icol=imax*inode-1 

  a(1,icol)=pzero 

  a(2,icol)=pone 

  a(3,icol)=pzero 

  b(icol)=yvel(i) 

    enddo 

 endif 

 if(nemv.ne.0)then 

    do i=1,ntract-1 

  x1=ttract(i) 

  x2=ttract(i+1) 

  if(x2.gt.ptime)then 

  y1=ptract(i) 
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  y2=ptract(i+1) 

  current=y1+(y2-y1)*(ptime-x1)/(x2-x1) 

  goto 10 

  endif 

    enddo 

 

10      fact=mu0*current/ptwo/pi 

 

    do i=1,nemv 

  inode=ipvt4(iemv(i)) 

  icol=imax*inode 

  a(1,icol)=pzero 

  a(2,icol)=pone 

  a(3,icol)=pzero 

  b(icol)=fact/xloc(inode) 

    enddo 

 endif 

 

 if(nemz.ne.0)then 

    do i=1,nemz 

  inode=ipvt4(iemz(i)) 

  icol=imax*inode 

  a(1,icol)=pzero 

  a(2,icol)=pone 

  a(3,icol)=pzero 

  b(icol)=pzero 

    enddo 

 endif  
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APPENDIX E 

Stiff_explicit.f File 

∗ In this file, the only edited part is shown 

∗ This subroutine loop through the elements, and update the values of the lumped mass 

matrix 

∗ An array to calculate i1max for each region  

      ishift=0 

  do ibs=1,4 

   iseg=nsbnd(ibs+ishift,ibndry) 

   ismax=ndfltseg(iseg) 

      do is=1,ismax 

   node1=iabs(nfltseg(is,iseg)) 

   nfloat(is,ibs)=node1 

      enddo 

   isum=ismax 

   nftbndry(ibs)=isum 

   i1max=nftbndry(1) 

  enddo 

 

∗ An array to calculate left, center, and right integrands for both icycles 

 

 do i1=1,ne1 

  i2=ipvt4(jnode) 

  i1node=econ(i1,iel) 

 

callfcom1(xg(ig,ng),xg(jg,ng),ne,norder,igeom,rtmp,ztmp,rtmp,ztmp,i1,ni,dum,dum,dum,

dum,dum,dum,dum,jacob,r,z,1) 
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 if(mod(icycle,2).eq.0)then 

    if(igeom.eq.1)then 

  if(i1node.eq.ipvt5(i2))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

 

    if(i2+i1max.le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-i1max))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*Jacob 

  endif 

    endif 

 

    if((i2+1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+1))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2+1+i1max).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max+1))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2+1-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2+1-i1max))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 
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    endif 

 

    if((i2-1).gt.0)then 

  if(i1node.eq.ipvt5(i2-1))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2+i1max-1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max-1))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2-1-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-1-i1max))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

     else 

    if(i1node.eq.ipvt5(i2))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

    endif 

 

    if((i2+i1max).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-i1max))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 
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    endif 

 

    if((i2+1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+1))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2+i1max+1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max+1))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2+1-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2+1-i1max))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2-1).gt.0)then 

  if(i1node.eq.ipvt5(i2-1))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2+i1max-1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max-1))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2-1-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-1-i1max))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 
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  ntegranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 endif 

         endif 

 

if(mod(icycle,2).eq.1)then 

 if(igeom.eq.1)then 

 

  if(i1node.eq.ipvt5(i2))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

 

    if((i2+1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+1))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2-1).gt.0)then 

  if(i1node.eq.ipvt5(i2-1))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2+i1max).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2+i1max+1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max+1))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 
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    endif 

 

    if((i2-1+i1max).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2-1+i1max))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-i1max))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2-i1max+1).gt.0)then 

  if(i1node.eq.ipvt5(i2-i1max+1))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

 

    if((i2-1-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-1-i1max))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*r*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*r*jacob 

  endif 

    endif 

   else 

 

  if(i1node.eq.ipvt5(i2))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

 

    if((i2+1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+1))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*Jacob 



 

64 

 

  endif 

    endif 

 

    if((i2-1).gt.0)then 

  if(i1node.eq.ipvt5(i2-1))then 

  integranC=integranC+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranC1=integranC1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2+i1max).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2+i1max+1).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2+i1max+1))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2-1+i1max).le.maxnodes)then 

  if(i1node.eq.ipvt5(i2-1+i1max))then 

  integranL=integranL+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranL1=integranL1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-i1max))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2-i1max+1).gt.0)then 

  if(i1node.eq.ipvt5(i2-i1max+1))then 
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  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 

    if((i2-1-i1max).gt.0)then 

  if(i1node.eq.ipvt5(i2-1-i1max))then 

  integranR=integranR+wg(ig,ng)*wg(jg,ng)*rho1*ni*nj*jacob 

  integranR1=integranR1+wg(ig,ng)*wg(jg,ng)*ni*nj*jacob 

  endif 

    endif 

 endif 

        endif 

 

 icol=imax*mmat*(ipvt4(jnode)-1)+imax*(imat-1)+1 

 

 a(1,icol)=a(1,icol)+integranL 

 a(2,icol)=a(2,icol)+integranC 

 a(3,icol)=a(3,icol)+integranR 

 

 icol=icol+1 

 

 a(1,icol)=a(1,icol)+integranL 

 a(2,icol)=a(2,icol)+integranC 

 a(3,icol)=a(3,icol)+integranR 

 

 icol=icol+1 

 

 a(1,icol)=a(1,icol)+(pone-phiv(iel))*integranL1 

 a(2,icol)=a(2,icol)+(pone-phiv(iel))*integranC1 

 a(3,icol)=a(3,icol)+(pone-phiv(iel))*integranR1 

 

 enddo  

         enddo  

      enddo  

   enddo !  

 

 do i=1,nel 

  do imat=1,nummat 

  icol=ieoff+(i-1)*nummat+imat 
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  a(1,icol)=pzero 

  a(2,icol)=pone 

  a(3,icol)=pzero 

  enddo 

 enddo 
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APPENDIX F 

Rhs_explicit.f File 

∗ In this file, the only edited part is shown 

∗ This subroutine constructs the right hand side for explicit calculations  

 

 irow=imax*mmat*(ipvt4(jnode)-1)+imax*(imat-1)+1 

 b(irow)=b(irow)+vxint 

 irow=irow+1 

 b(irow)=b(irow)+vyint 

 irow=irow+1 

 b(irow)=b(irow)+bint 
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APPENDIX G 

Solve_explicit.f File 

∗ In this file, the only edited part is shown 

∗ This subroutine solves the equations to get the full iteration step 

∗ Thomas Algorithm to solve equations  

 do i=1,imax 

  a1(i)=a(1,i) 

  a2(i)=a(2,i) 

  a3(i)=a(3,i) 

 enddo 

 

 do i=2,imax 

      if(a2(i).ne.pzero)then 

        factor=a1(i)/a2(i-1) 

        a2(i)=a2(i)-(factor*a3(i-1)) 

        b(i)=b(i)-(factor*b(i-1)) 

      else 

        b(i)=pzero 

        a2(i)=1.0d0 

      endif 

 enddo 

 

x(imax)=b(imax)/a2(imax) 

 

 do i=imax-1,1,-1 

  x(i)=(b(i)-(a3(i)*x(i+1)))/a2(i) 

 enddo 

 

 do i=1,imax 

  b(i)=x(i) 

 enddo 
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∗ An array to reverse from virtual node numbering back to real node numbering  

 

 i2max=neql-neqe 

  do ireg=1,nreg 

       nmax=nnreg(ireg) 

         do iv=1,nmax 

           do imat=1,nummat 

   inode=ipvt(ireg,iv) 

   ivnode=ipvt3(ireg,inode) 

   icolR=i2max*nummat*(inode-1)+i2max*(imat-1)+1 

   icolV=i2max*nummat*(ivnode-1)+i2max*(imat-1)+1 

   breal(icolR)=b(icolV) 

   breal(icolR+1)=b(icolV+1) 

   breal(icolR+2)=b(icolV+2) 

           enddo 

         enddo 

  enddo 

 

 i3max=i2max*nummat*nnodes 

 

 do i=1,i3max 

      b(i)=breal(i) 

 enddo 
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APPENDIX H 

Slide4.f File 

∗ In this file, the only edited part is shown 

∗ This subroutine checks for node penetration and makes the appropriate corrections for 

sliding surfaces 

 

 node=nfltbnd(j1,jb) 

 nodem(3)=node 

 massb=a(1,imax*ipvt4(node)-1)+a(3,imax*ipvt4(node)-1) 

  +a(2,imax*ipvt4(node)-1) 

 bcol(j1)=massb 

 vxb=vx(1,node) 

 vyb=vy(1,node) 

 

 vni=(vxi-vxf)*nx+(vyi-vyf)*ny 

  if(vni.gt.pzero)goto 20 

  mass1=a(1,imax*ipvt4(inode)-1)+a(2,imax*ipvt4(inode)-1) 

   +a(3,imax*ipvt4(inode)-1) 

 

 vn1=vxi*nx+vyi*ny 

  if(min(vn1,vn2).gt.pzero)goto 20 

  mass1=a(1,imax*ipvt4(inode)-1)+a(2,imax*ipvt4(inode)-1) 

   +a(3,imax*ipvt4(inode)-1) 

 vn1=vxi*nx+vyi*ny 
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APPENDIX I 

Update_energy.f File 

∗ In this file, the only edited part is shown 

∗ This subroutine updates the energy as a result of contact forces  

    ioff=neql-neqe 

  do 10 i=1,nel 

        fv=pzero 

          do 15 j=1,ne 

   node=econ(j,i) 

   icol=ioff*ipvt4(node) 

   fv=fv+(vxc(1,node)*vx(1,node)+vyc(1,node)*vy(1,node))* 

         mass(0,i)/(ne*(a(1,icol)+a(2,icol)+a(3,icol))) 

15          continue 

          energy(1,i)=energy(1,i)+fv*dt/mass(1,i) 

10  continue 

  return 

  end 
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APPENDIX J 

Input File 

* Example input file for running MAAP2D 

* The first line is the job title, but this can be anywhere in the input file 

* Jobtitle = 'Verification Test 8' 

* 

* Control Records 

* 

Control 

ttype = explicit   !default is explicit 

mtype = lagrangian  !default is lagrangian 

start = yes    !this is the default and this line is not necessary 

restart = no    !this is the default and this line is not necessary 

remesh = no    !set equal to yes to allow auto-remeshing (default is no) 

glen = 0.001    !length scale for boundary reseeding during remesh 

amr = no    !set equal to yes to allow AMR (default is no) 

nlevel = 4    !number of levels for an AMR calculation 

stest = no    !default is no for seed test 

mtest = no    !default is no for mesh test 

tmin = 0.    !required input 

tmax =1000.    !required input 

tstep = 0.005    !required input for implicit 

cycle_max = 50   !default is 50000 

gauss = 2    !default is 1 

weight = volume   !default is volume weighting 

file_number = 0   !required input ONLY if restart = yes or remesh = yes 

coordinate_system = cyl  !the default is cylindrical 

debug=no    !default is no 

end_control 

* 

* Plot and edit dump records 

* 

plot 

pcycle=0 pdc = 100 
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ecycle=0 edc = 100 

pvoid=yes    !default is no 

evoid=yes    !default is no 

end_plot 

* 

* Region definition records 

* 

regions 

 region=1 mesh = uniform material = 1 model = 1 

 boundary = 1 btype = exterior 

 xvel = 0. yvel = -100. 

* 

 geometry = line bcond = free 

 start = 0. 0. 

 finish= 1. 0. 

 nseeds = 2 

 prop = 1 

* 

 geometry = line bcond = free 

 start = 1. 0. 

 finish = 1. 1. 

 nseeds = 2 

 prop = 1. 

* 

 geometry = line bcond = free 

 start = 1. 1. 

 finish = 0. 1. 

 nseeds = 2 

 prop = 1. 

* 

 geometry = line bcond = symmetric 

 start = 0. 1. 

 finish = 0. 0. 

 nseeds = 2 

 prop = 1. 

* end regions 

* 

* End of input file 

* 
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APPENDIX K 

Plot Input File 

* This is an example keyword-based input file for plotting 

* The first line here is the job title, but this line could be anywhere in the file 

* 

* jobtitle = 'Verification test 8 plots'  !this is a comment in a line 

evaluate_seeds = no   !default is no 

number = 0     !this is the number appended to the file seeddmp 

      that will be read (default is 0) 

seed_numbering=yes    ! the default is no 

read_neutral_file=no    !default is no 

neutral_file=rempat    !neutral file name 

* trailer=R     !trailer for plot dump file (default is none) 

* 

* Now the input for plot dump files 

* 

* begin 0 end 10 skip 5 

   begin 0 end 10 

* 

* Now the input telling what to plot 

* 

 type=mat dim=two 

 nodes=yes 

 elements=no 

 range=-0.2 2.2 -1.2 1.2 

* 

 type=mat dim=two 

 nodes=yes 

 elements=no 

 range=-2 6 -2 6 

* 

 type=band dim=two var=pressure 

 nodes=yes 

 elements=no 
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 range=-0.2 2.2 -1.2 1.2 

* 

 type=band dim=two var=density 

 nodes=yes 

 elements=no 

 range=-0.2 2.2 -1.2 1.2 

* 

* end of plot input file 
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