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ABSTRACT  

A complete meso-to-macro computational homogenization approach for particulate 

materials has been devised and implemented in this study. Starting with experimental dis-

tributions of the micromechanical characteristics of constitutive grains, this framework 

uses computational modeling of mesoscale statistical ensembles to characterize effective 

mechanical behavior at incrementally larger mesoscopic scales. This approach is found to 

be useful in several ways: 1) the effective Representative Volume Element (RVE) size of 

particulate media can be identified using the most rigorous homogenization criterion, the 

Hill-Mandel macrohomogeneity condition, 2) a statistical description is possible of the ef-

fective mechanical properties of particulate media at scales below the RVE, where these 

properties are spurious and non-deterministic, 3) ensemble modeling results can be used to 

optimize and calibrate continuum models of particulate materials with Finite Element 

Analysis, 4) ensemble averages of finite strain simulations can be used to study internal 

state variable evolution, and 5) uncertainty quantification (UQ) of the mechanical response 

of particulate media is possible using propagation of uncertainty from the mesoscale en-

semble results.  

This approach hinges on a newly developed real-time interface tracking algorithm 

for particle-based simulation methods that can be used to study the bounds of discrete par-

ticle aggregates such as sand. The interface tracking algorithm uses an advanced surface 
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extraction technique based on the alpha shape paradigm of computational geometry. When 

used concurrently with particle-based methods, this algorithm can track the evolution of 

the simulation boundaries and applying accurate micro-boundary conditions on them. The 

micro-boundary conditions may be of Dirichlet type, Neumann type, or mixed-orthogonal 

type and may be tensorial. 

This framework enables the heretofore limited use of particle-based simulations in 

upscaling studies by providing a path for homogenization and uncertainty quantification 

(UQ) of granular media. Thus, this framework provides an additional path for constitutive 

characterization of particle aggregates, particularly in hydrocode modeling of high con-

finement, finite deformation phenomena. 



 

 

iv 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to Dr. David Littlefield, my doctoral 

adviser and research mentor, for his guidance, patience and constructive feedback. This 

research topic was his brainchild; to his great credit he gave me the freedom and oppor-

tunity to adopt it and mold it after my own ideas. 

I would also like to recognize and thank Dr. Stephen Akers, Dr. Kent Danielson, 

Dr. Bradley Martin, Dr. Dean Sicking, and Dr. Nasim Uddin, for serving on my dissertation 

committee and giving me feedback on improving and finalizing this manuscript. I am also 

appreciative of the faculty and staff of the Mechanical Engineering Department at the Uni-

versity of Alabama at Birmingham. They have contributed to a healthy and productive 

research environment. 

My gratitude also goes to the developers of the Yade open source Discrete Element 

code, particularly Prof. Bruno Chareyre of the University of Grenoble, whose expertise and 

creativity with computational geometry helped my research progress beyond the concep-

tual phase. 

Lastly, I would like to thank my family for their love, support and encouragement 

during this process. My wife, Dr. Dori Pekmezi, has had boundless patience and love on 

this journey, encouraging me along the way and shouldering the bulk of the parenting du-

ties as this manuscript gathered momentum. My three little boys, Ian, Aleks, and Julian, 

have provided the ultimate motivation. I want to thank my mother Beti and my father Maks, 

my late grandfather Pineu, my grandmother Pina, my uncle Toni as well as all my family 



 

 

v 

 

still in my original homeland of Albania. The world I was born into changed while I was 

growing up, it was the intellectual thirst they instilled that allowed me to find a place in it.



 

 

vi 

 

 

 

 

 

 

TABLE OF CONTENTS 

Page 

ABSTRACT .......................................................................................................................  ii 

ACKNOWLEDGEMENTS ..............................................................................................  iv 

LIST OF FIGURES ..........................................................................................................  ix 

LIST OF TABLES .......................................................................................................... xxii 

CHAPTER 

1  INTRODUCTION .. ........................................................................................................ 1 

Motivation ............................................................................................................................ 2 
Scope and Objectives ........................................................................................................... 4 

Mesoscale Modeling ...................................................................................................... 4 
Statistical Geomechanics ............................................................................................... 5 
Homogenization ............................................................................................................. 6 
Uncertainty Quantification ............................................................................................. 7 
Calibration of Continuum Models.................................................................................. 8 

Dissertation Organization ..................................................................................................... 9 

2  THEORY AND BACKGROUND ................................................................................ 12 

A Brief History of Soil Mechanics ..................................................................................... 12 
Important Concepts of Sand Mechanics ............................................................................. 14 

Physics of Sand ............................................................................................................ 15 
Classification and Testing ............................................................................................ 19 
Some Common Sand Models ....................................................................................... 23 

A Bridge from the Grain to the Continuum ........................................................................ 31 
Homogenization – Analytical and Computational ....................................................... 32 
Separation of Scales ..................................................................................................... 35 
Volume Elements – Representative and Stochastic ..................................................... 36 
The Hill Condition for Particle Aggregates ................................................................. 37 
Mesoscale Bounds of Particle Aggregates ................................................................... 38 

Computational Mechanics through Statistics, Probability, and Optimization .................... 41 
Statistical Mechanics of Random Heterogeneous Materials ........................................ 42 
Propagation of Uncertainty at the Mesoscale ............................................................... 46 
Model Calibration through Mathematical Optimization .............................................. 47 

 

 



 

 

vii 

 

3  FORMULATION OF COMPUTATIONAL AND MATHEMATICAL MODELS .... 50 

Discrete Element Modeling of Sand ................................................................................... 50 
Explicit Numerical Scheme .......................................................................................... 51 
Contact Model .............................................................................................................. 53 
Global Damping Mechanism ....................................................................................... 55 
Weibull Survival Probabilities of Sand Grains ............................................................ 56 
Brazilian Criterion of Grain Fracture ........................................................................... 60 

Hybrid-Elastic-Plastic Models............................................................................................ 61 
Volumetric Behavior in the HEP Model ...................................................................... 62 
Deviatoric Behavior in the HEP Model ....................................................................... 67 

Statistical Ensemble Generation and Analysis ................................................................... 69 
Generation of Ab-Initio Realizations for Homogenization .......................................... 69 
Iterative Domain Partitioning for Propagation of Uncertainty ..................................... 76 
Anomaly Detection with Grubbs Test for Outliers ...................................................... 78 
Weibull Distribution Fitting of Results ........................................................................ 80 
Wasserstein Metric of Statistical Distance ................................................................... 81 

Mathematical Optimization Algorithms ............................................................................. 82 
Single Objective Genetic Algorithm ............................................................................ 83 
Multi-Objective Genetic Algorithm ............................................................................. 85 

4  MICRO-MECHANICAL BOUNDING OF PARTICLE AGGREGATES . ............... 86 

A Line in the Sand – Boundaries of Particle Aggregates ................................................... 86 
A Novel Approach to Particle Aggregate Boundaries ........................................................ 89 

Voronoi Diagrams and Delaunay Triangulations ......................................................... 89 
Surface Reconstruction with Alpha-Shapes ................................................................. 92 
LaGuerre-Voronoi Diagrams on Particle Aggregate Boundaries ................................ 96 
Ancillary Surface Mapping with Regular Grids .......................................................... 98 

Numerical Implementation of Boundary Conditions ....................................................... 102 
Kinematic Uniform Boundaries ................................................................................. 102 
Static Uniform Boundaries ......................................................................................... 104 
Periodic Boundaries ................................................................................................... 105 
Particle Kinematics and the Deformation Gradient Tensor ....................................... 107 
Love-Weber Average of the Cauchy Stress Tensor ................................................... 109 
Work-Conjugate Measures of Stress and Strain......................................................... 111 

5  EGLIN SAND MESOSCALE ENSEMBLE SIMULATIONS AND RESULTS . .... 114 

Micromechanical Parameters ........................................................................................... 115 
Computational Homogenization without Fragmentation ................................................. 116 
Comminution due to Grain Fragmentation ....................................................................... 120 
Mesoscopic Physical Characteristics of the Ensembles ................................................... 125 
Computational Homogenization with Comminution ....................................................... 132 
Ensemble Averaged Finite Strain Response ..................................................................... 137 
Ensemble Thermomechanical Statistics of Eglin Sand .................................................... 147 
Summary and Discussion of Mesoscale Results .............................................................. 154 

6  MESOSCALE-BASED MODELING AND UQ WITH THE HEP MODEL ........... 160 

Confined Triaxial Simulations with Library HEP Model ................................................ 161 



 

 

viii 

 

Calibration of the HEP Model from Discrete Modeling .................................................. 166 

7  CONCLUSIONS .…................................................................................................... 176 

Future Work ..................................................................................................................... 177 

REFERENCES ............................................................................................................... 179 

APPENDIX 

A  HISTOGRAMS OF MESOSCALE ELASTIC MODULI OF EGLIN SAND 

WITHOUT COMMINUTION ............................................................................. 195 

B  HISTOGRAMS OF MESOSCALE ELASTIC MODULI OF EGLIN SAND 

AFTER COMMINUTION ................................................................................... 220 



 

 

ix 

 

 

 

 

 

 

LIST OF FIGURES 

Figure                                                                                                                            Page 

 

1.1: Disordered Heterogeneous Packing of Sand Grains .................................................... 7 

2.1: Pressure-compression behavior in the HEP model .................................................... 16 

2.2: Modes of grain crushing in sand ................................................................................ 17 

2.3: Sand specimen in SHPB testing ................................................................................ 22 

2.4: SHPB schematic  ....................................................................................................... 22 

2.5: Mohr-Coulomb Failure Surface ................................................................................. 24 

2.6: Drucker-Prager Failure Surface ................................................................................. 25 

2.7: Modified Cam-Clay Yield Surface and Critical State Line ....................................... 27 

2.8: Yield surface in the Cap Model  ................................................................................ 28 

2.9: Yield surface of the three-phase modified Cam-Clay Model  ................................... 30 

2.10: Heterogeneous Packing of Sand Grains................................................................... 35 

2.11: Hierarchy of scale-dependent bounds  ..................................................................... 40 

3.1: Grain probability distribution of normalized strengths for normalized diameters .... 58 

3.2: Apollonian Sphere Packings at increasing levels of refinement................................ 59 

3.3: Apollonian packing blowout under 1D compression ................................................ 60 

3.4: Pressure-compression behavior in the HEP model .................................................... 64 

3.5: Simple HEP deviatoric behavior ................................................................................ 68 

3.6: Four typical 1x104 particle ab-initio realizations confined to average              

isotropic stress of 5 MPa in a “bounding box” ...........................................................73 
 



 

 

x 

 

3.7: Four typical 1x104 particle ab-initio realizations gradually confined to                        

a uniform isotropic micro-stress of 5MPa ................................................................. 75 
 

3.8: RVE-sized 5x106 particle Discrete Element model decomposed into a                   

grid of 8x8x8 subdomains ......................................................................................... 77 
 

3.9: RVE-sized 5x106 particle Discrete Element model decomposed into a                   

grid of 17x17x17 subdomains ................................................................................... 78 
 

4.1: A set of 20 points and their Voronoi polygons .......................................................... 91 

4.2: Alpha-shape reconstruction of a 2D point set boundary............................................ 93 

4.3: Alpha-shape reconstruction of a 2D point set boundary............................................ 94 

4.4: 2-dimensional Power Diagram of 4 Circles ............................................................... 98 

4.5: The two types of boundary surfaces considered ........................................................ 99 

4.6: First stage of ancillary surface grid interpolation stage ........................................... 101 

4.7: Second stage of ancillary surface grid interpolation stage ...................................... 101 

5.1: Eglin Sand PSD from the sieve data as well as the Weibull fit ............................... 116 

5.2: Ratios of elastic moduli Voigt to Reuss bounds at 1 MPa confinement.................. 117 

5.3: Ratios of elastic moduli Sachs to Taylor bounds at 1 MPa confinement ................ 117 

5.4: Ratios of elastic moduli Voigt to Reuss bounds at 5 MPa confinement.................. 118 

5.5: Ratios of elastic moduli Sachs to Taylor bounds at 5 MPa confinement ................ 118 

5.6: Ratios of elastic moduli Voigt to Reuss bounds at 20 MPa confinement................ 119 

5.7: Ratios of elastic moduli Sachs to Taylor bounds at 20 MPa confinement .............. 119 

5.8: Eglin Sand PSD evolution during crush-up for compression up to 200 MPa ......... 120 

5.9: Comminuted PSDs of the Statistical Ensembles at 20 MPa Confinement .............. 121 

5.10: Comminuted PSDs of the Statistical Ensembles at 50 MPa Confinement ............ 122 

5.11: Comminuted PSDs of the Statistical Ensembles at 100 MPa Confinement .......... 122 

5.12: Comminuted PSDs of the Statistical Ensembles at 200 MPa Confinement .......... 123 



 

 

xi 

 

5.13: Comminuted PSDs of the Statistical Ensembles at 400 MPa Confinement .......... 123 

5.14: Average realization window size of ensembles with virgin PSD .......................... 126 

5.15: Average realization porosity of ensembles with virgin PSD ................................. 126 

5.16: Average window size of ensembles with comminuted PSD at 20 MPa ................ 127 

5.17: Average porosity of ensembles with comminuted PSD at 20 MPa ....................... 127 

5.18: Average window size of ensembles with comminuted PSD at 50 MPa ................ 128 

5.19: Average porosity of ensembles with comminuted PSD at 50 MPa ....................... 128 

5.20: Average window size of ensembles with comminuted PSD at 100 MPa .............. 129 

5.21: Average porosity of ensembles with comminuted PSD at 100 MPa ..................... 129 

5.22: Average window size of ensembles with comminuted PSD at 200 MPa .............. 130 

5.23: Average porosity of ensembles with comminuted PSD at 200 MPa ..................... 130 

5.24: Average window size of ensembles with comminuted PSD at 400 MPa .............. 131 

5.25: Average porosity of ensembles with comminuted PSD at 400 MPa ..................... 131 

5.26: Ratios of elastic moduli Voigt to Reuss bounds at 20 MPa confinement.............. 132 

5.27: Ratios of elastic moduli Sachs to Taylor bounds at 20 MPa confinement ............ 133 

5.28: Ratios of elastic moduli Voigt to Reuss bounds at 50 MPa confinement.............. 133 

5.29: Ratios of elastic moduli Sachs to Taylor bounds at 50 MPa confinement ............ 134 

5.30: Ratios of elastic moduli Voigt to Reuss bounds at 100 MPa confinement............ 134 

5.31: Ratios of elastic moduli Sachs to Taylor bounds at 100 MPa confinement .......... 135 

5.32: Ratios of elastic moduli Voigt to Reuss bounds at 200 MPa confinement............ 135 

5.33: Ratios of elastic moduli Sachs to Taylor bounds at 200 MPa confinement .......... 136 

5.34: Ratios of elastic moduli Voigt to Reuss bounds at 400 MPa confinement............ 136 

5.35: Ratios of elastic moduli Sachs to Taylor bound at 400 MPa confinement ............ 137 



 

 

xii 

 

5.36: Isotropic compression of Eglin sand using SUBC and KUBC .............................. 138 

5.37: Eglin Sand volumetric compression response at mean stress up to 400 MPa ....... 139 

5.38: Volumetric response with interpolated double porosity ........................................ 140 

5.39: Deviatoric response of CTC axial loading at 20 MPa confinement ...................... 141 

5.40: Volumetric response of CTC axial loading at 5 MPa confinement ....................... 141 

5.41: Deviatoric response of CTC axial loading at 20 MPa confinement ...................... 142 

5.42: Volumetric response of CTC axial loading at 20 MPa confinement ..................... 142 

5.43: Deviatoric response of CTC axial loading at 50 MPa confinement ...................... 143 

5.44: Volumetric response of CTC axial loading at 50 MPa confinement ..................... 143 

5.45: Deviatoric response of CTC axial loading at 100 MPa confinement .................... 144 

5.46: Volumetric response of CTC axial loading at 100 MPa confinement ................... 144 

5.47: Deviatoric response of CTC axial loading at 200 MPa confinement .................... 145 

5.48: Volumetric response of CTC axial loading at 200 MPa confinement ................... 145 

5.49: Deviatoric response of CTC axial loading at 400 MPa confinement .................... 146 

5.50: Volumetric response of CTC axial loading at 400 MPa confinement ................... 146 

5.51: Work and energy dissipation during volumetric loading ....................................... 148 

5.52: Work and dissipation during CTC axial loading at 5 MPa confinement ............... 149 

5.53: Work and dissipation during CTC axial loading at 20 MPa with crush-up ........... 149 

5.54: Work and dissipation during CTC axial loading at 20 MPa without crush-up ...... 150 

5.55: Work and dissipation during CTC axial loading at 50 MPa with crush-up ........... 150 

5.56: Work and dissipation during CTC axial loading at 50 MPa without crush-up ...... 151 

5.57: Work and dissipation during CTC axial loading at 100 MPa with crush-up ......... 151 

5.58: Work, dissipation during CTC axial loading at 100 MPa without crush-up ......... 152 



 

 

xiii 

 

5.59: Work and dissipation during CTC axial loading at 200 MPa with crush-up ......... 152 

5.60: Work, dissipation during CTC axial loading at 200 MPa without crush-up ......... 153 

5.61: Work and dissipation during CTC axial loading at 400 MPa with crush-up ......... 153 

5.62: Work, dissipation during CTC axial loading at 400 MPa without crush-up ......... 154 

5.63: RVE size for Eglin sand based on mesoscale simulations..................................... 157 

5.64: Effective bulk moduli for 1x105 particle ensembles .............................................. 158 

5.65: Effective Young’s moduli for 1x105 particle ensemble......................................... 158 

5.66: Effective shear moduli for 1x105 particle ensemble .............................................. 159 

6.1: Hexahedral single element in Epic .......................................................................... 162 

6.2: Isotropic response of library sand material .............................................................. 162 

6.3: Axial loading response of library sand material at 5 MPa confinement .................. 163 

6.4: Axial loading response of library sand material at 20 MPa confinement ................ 163 

6.5: Axial loading response of library sand material at 50 MPa confinement ................ 164 

6.6: Axial loading response of library sand material at 100 MPa confinement .............. 164 

6.7: Axial loading response of library sand material at 200 MPa confinement .............. 165 

6.8: Axial loading response of library sand material at 400 MPa confinement .............. 165 

6.9: Objective function contours for parametric optimization of PSUB1 vs. PSUB2 .... 167 

6.10: Objective contours for parametric optimization of PSUB2 vs. PSUBC................ 168 

6.11: Objective contours for parametric optimization of USUB2 vs. USUBC .............. 168 

6.12: Objective contours for parametric optimization of ASUB0 vs. ASUB1 ............... 169 

6.13: Objective contours for parametric optimization of ASUB0 vs. ASUB1 ............... 169 

6.14: Histogram of PSUB1 optimized to each realization .............................................. 171 

6.15: Histogram of PSUB2 optimized to each realization .............................................. 171 



 

 

xiv 

 

6.16: Histogram of PSUBC optimized to each realization ............................................. 172 

6.17: Histogram of USUB2 optimized to each realization ............................................. 172 

6.18: Histogram of USUBC optimized to each realization ............................................. 173 

6.19: Histogram of ASUB0 optimized to each realization ............................................. 173 

6.20: Histogram of ASUB1 optimized to each realization ............................................. 174 

6.21: Histogram and fit of ASUB2 optimized to each realization .................................. 174 

6.22: Histogram of ASUBC optimized to each realization ............................................. 175 

A.1: Secant Young’s Modulus for 1x103 Particle Ensemble at 1MPa ........................... 196 

A.2: Secant Shear Modulus for 1x103 Particle Ensemble at 1MPa ................................ 196 

A.3: Secant Bulk Modulus for 1x103 Particle Ensemble at 1MPa ................................. 196 

A.4: Tangent Young’s Modulus for 1x103 Particle Ensemble at 1MPa ......................... 197 

A.5: Tangent Shear Modulus for 1x103 Particle Ensemble at 1MPa .............................. 197 

A.6: Tangent Bulk Modulus for 1x103 Particle Ensemble at 1MPa ............................... 197 

A.7: Secant Young’s Modulus for 1x103 Particle Ensemble at 5MPa ........................... 198 

A.8: Secant Shear Modulus for 1x103 Particle Ensemble at 5MPa ................................ 198 

A.9: Secant Bulk Modulus for 1x103 Particle Ensemble at 5MPa ................................. 198 

A.10: Tangent Young’s Modulus for 1x103 Particle Ensemble at 5MPa ....................... 199 

A.11: Tangent Shear Modulus for 1x103 Particle Ensemble at 5MPa ............................ 199 

A.12: Tangent Bulk Modulus for 1x103 Particle Ensemble at 5MPa ............................. 199 

A.13: Secant Young’s Modulus for 1x103 Particle Ensemble at 20MPa ....................... 200 

A.14: Secant Shear Modulus for 1x103 Particle Ensemble at 20MPa ............................ 200 

A.15: Secant Bulk Modulus for 1x103 Particle Ensemble at 20MPa ............................. 200 

A.16: Tangent Young’s Modulus for 1x103 Particle Ensemble at 20MPa ..................... 201 



 

 

xv 

 

A.17: Tangent Shear Modulus for 1x103 Particle Ensemble at 20MPa .......................... 201 

A.18: Tangent Bulk Modulus for 1x103 Particle Ensemble at 20MPa ........................... 201 

A.19: Secant Young’s Modulus for 1x104 Particle Ensemble at 1MPa ......................... 202 

A.20: Secant Shear Modulus for 1x104 Particle Ensemble at 1MPa .............................. 202 

A.21: Secant Bulk Modulus for 1x104 Particle Ensemble at 1MPa ............................... 202 

A.22: Tangent Young’s Modulus for 1x104 Particle Ensemble at 1MPa ....................... 203 

A.23: Tangent Shear Modulus for 1x104 Particle Ensemble at 1MPa ............................ 203 

A.24: Tangent Bulk Modulus for 1x104 Particle Ensemble at 1MPa ............................. 203 

A.25: Secant Young’s Modulus for 1x104 Particle Ensemble at 5MPa ......................... 204 

A.26: Secant Shear Modulus for 1x104 Particle Ensemble at 5MPa .............................. 204 

A.27: Secant Bulk Modulus for 1x104 Particle Ensemble at 5MPa ............................... 204 

A.28: Tangent Young’s Modulus for 1x104 Particle Ensemble at 5MPa ....................... 205 

A.29: Tangent Shear Modulus for 1x104 Particle Ensemble at 5MPa ............................ 205 

A.30: Tangent Bulk Modulus for 1x104 Particle Ensemble at 5MPa ............................. 205 

A.31: Secant Young’s Modulus for 1x104 Particle Ensemble at 20MPa ....................... 206 

A.32: Secant Shear Modulus for 1x104 Particle Ensemble at 20MPa ............................ 206 

A.33: Secant Bulk Modulus for 1x104 Particle Ensemble at 20MPa ............................. 206 

A.34: Tangent Young’s Modulus for 1x104 Particle Ensemble at 20MPa ..................... 207 

A.35: Tangent Shear Modulus for 1x104 Particle Ensemble at 20MPa .......................... 207 

A.36: Tangent Bulk Modulus for 1x104 Particle Ensemble at 20MPa ........................... 207 

A.37: Secant Young’s Modulus for 1x105 Particle Ensemble at 1MPa ......................... 208 

A.38: Secant Shear Modulus for 1x105 Particle Ensemble at 1MPa .............................. 208 

A.39: Secant Bulk Modulus for 1x105 Particle Ensemble at 1MPa ............................... 208 



 

 

xvi 

 

A.40: Tangent Young’s Modulus for 1x105 Particle Ensemble at 1MPa ....................... 209 

A.41: Tangent Shear Modulus for 1x105 Particle Ensemble at 1MPa ............................ 209 

A.42: Tangent Bulk Modulus for 1x105 Particle Ensemble at 1MPa ............................. 209 

A.43: Secant Young’s Modulus for 1x105 Particle Ensemble at 5MPa ......................... 210 

A.44: Secant Shear Modulus for 1x105 Particle Ensemble at 5MPa .............................. 210 

A.45: Secant Bulk Modulus for 1x105 Particle Ensemble at 5MPa ............................... 210 

A.46: Tangent Young’s Modulus for 1x105 Particle Ensemble at 5MPa ....................... 211 

A.47: Tangent Shear Modulus for 1x105 Particle Ensemble at 5MPa ............................ 211 

A.48: Tangent Bulk Modulus for 1x105 Particle Ensemble at 5MPa ............................. 211 

A.49: Secant Young’s Modulus for 1x105 Particle Ensemble at 20MPa ....................... 212 

A.50: Secant Shear Modulus for 1x105 Particle Ensemble at 20MPa ............................ 212 

A.51: Secant Bulk Modulus for 1x105 Particle Ensemble at 20MPa ............................. 212 

A.52: Tangent Young’s Modulus for 1x105 Particle Ensemble at 20MPa ..................... 213 

A.53: Tangent Shear Modulus for 1x105 Particle Ensemble at 20MPa .......................... 213 

A.54: Tangent Bulk Modulus for 1x105 Particle Ensemble at 20MPa ........................... 213 

A.55: Secant Young’s Modulus for 1x106 Particle Ensemble at 1MPa ......................... 214 

A.56: Secant Shear Modulus for 1x106 Particle Ensemble at 1MPa .............................. 214 

A.57: Secant Bulk Modulus for 1x106 Particle Ensemble at 1MPa ............................... 214 

A.58: Tangent Young’s Modulus for 1x103 Particle Ensemble at 1MPa ....................... 215 

A.59: Tangent Shear Modulus for 1x106 Particle Ensemble at 1MPa ............................ 215 

A.60: Tangent Bulk Modulus for 1x106 Particle Ensemble at 1MPa ............................. 215 

A.61: Secant Young’s Modulus for 1x106 Particle Ensemble at 5MPa ......................... 216 

A.62: Secant Shear Modulus for 1x106 Particle Ensemble at 5MPa .............................. 216 



 

 

xvii 

 

A.63: Secant Bulk Modulus for 1x106 Particle Ensemble at 5MPa ............................... 216 

A.64: Tangent Young’s Modulus for 1x106 Particle Ensemble at 5MPa ....................... 217 

A.65: Tangent Shear Modulus for 1x106 Particle Ensemble at 5MPa ............................ 217 

A.66: Tangent Bulk Modulus for 1x106 Particle Ensemble at 5MPa ............................. 217 

A.67: Secant Young’s Modulus for 1x106 Particle Ensemble at 20MPa ....................... 218 

A.68: Secant Shear Modulus for 1x106 Particle Ensemble at 20MPa ............................ 218 

A.69: Secant Bulk Modulus for 1x106 Particle Ensemble at 20MPa ............................. 218 

A.70: Tangent Young’s Modulus for 1x106 Particle Ensemble at 20MPa ..................... 219 

A.71: Tangent Shear Modulus for 1x106 Particle Ensemble at 20MPa .......................... 219 

A.72: Tangent Bulk Modulus for 1x106 Particle Ensemble at 20MPa ........................... 219 

B.1: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa ........ 221 

B.2: Secant Shear Modulus for 1x103 Comminuted Particle Ensemble at 20 MPa ....... 221 

B.3: Secant Bulk Modulus for 1x103 Comminuted Particle Ensemble at 20 MPa ......... 221 

B.4: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa ...... 222 

B.5: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa ........... 222 

B.6: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa ............ 222 

B.7: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 50 MPa ........ 223 

B.8: Secant Shear Modulus for 1x103 Comminuted Particle Ensemble at 50 MPa ....... 223 

B.9: Secant Bulk Modulus for 1x103 Comminuted Particle Ensemble at 50 MPa ......... 223 

B.10: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 50 MPa .... 224 

B.11: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 50 MPa ......... 224 

B.12: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 50 MPa .......... 224 

B.13: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa .... 225 



 

 

xviii 

 

B.14: Secant Shear Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa ......... 225 

B.15: Secant Bulk Modulus for 1x103 Comminuted Particle Ensemble at 100 MPa ..... 225 

B.16: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa .. 226 

B.17: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa ....... 226 

B.18: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa ........ 226 

B.19: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa .... 227 

B.20: Secant Shear Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa ......... 227 

B.21: Secant Bulk Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa .......... 227 

B.22: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa .. 228 

B.23: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa ....... 228 

B.24: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa ........ 228 

B.25: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa .... 229 

B.26: Secant Shear Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa ......... 229 

B.27: Secant Bulk Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa .......... 229 

B.28: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa .. 230 

B.29: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa ....... 230 

B.30: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa ........ 230 

B.31: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 20 MPa ...... 231 

B.32: Secant Shear Modulus for 1x104 Comminuted Particle Ensemble at 20 MPa ..... 231 

B.33: Secant Bulk Modulus for 1x104 Comminuted Particle Ensemble at 20 MPa ....... 231 

B.34: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 20 MPa .... 232 

B.35: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 20 MPa ......... 232 

B.36: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 20 MPa .......... 232 



 

 

xix 

 

B.37: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa ...... 233 

B.38: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa ........... 233 

B.39: Secant Bulk Modulus for 1x104 Comminuted Particle Ensemble at 50 MPa ....... 233 

B.40: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa .... 234 

B.41: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa ......... 234 

B.42: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa .......... 234 

B.43: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa .... 235 

B.44: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa ......... 235 

B.45: Secant Bulk Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa .......... 235 

B.46: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa .. 236 

B.47: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa ....... 236 

B.48: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa ........ 236 

B.49: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa .... 237 

B.50: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa ......... 237 

B.51: Secant Bulk Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa .......... 237 

B.52: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa .. 238 

B.53: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa ....... 238 

B.54: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa ........ 238 

B.55: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa .... 239 

B.56: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa ......... 239 

B.57: Secant Bulk Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa .......... 239 

B.58: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa .. 240 

B.59: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa ....... 240 



 

 

xx 

 

B.60: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa ........ 240 

B.61: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 20 MPa ...... 241 

B.62: Secant Shear Modulus for 1x105 Comminuted Particle Ensemble at 20 MPa ..... 241 

B.63: Secant Bulk Modulus for 1x105 Comminuted Particle Ensemble at 20 MPa ....... 241 

B.64: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 20 MPa .... 242 

B.65: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 20 MPa ......... 242 

B.66: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 20 MPa .......... 242 

B.67: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa ...... 243 

B.68: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa ........... 243 

B.69: Secant Bulk Modulus for 1x105 Comminuted Particle Ensemble at 50 MPa ....... 243 

B.70: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa .... 244 

B.71: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa ......... 244 

B.72: Tangent Bulk Modulus for 1x105 Comminuted Particle Ensemble at 50 MPa .... 244 

B.73: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa .... 245 

B.74: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa ......... 245 

B.75: Secant Bulk Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa .......... 245 

B.76: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa .. 246 

B.77: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa ....... 246 

B.78: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa ........ 246 

B.79: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa .... 247 

B.80: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa ......... 247 

B.81: Secant Bulk Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa .......... 247 

B.82: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa .. 248 



 

 

xxi 

 

B.83: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa ....... 248 

B.84: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa ........ 248 

B.85: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa .... 249 

B.86: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa ......... 249 

B.87: Secant Bulk Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa .......... 249 

B.88: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa .. 250 

B.89: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa ....... 250 

B.90: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa ........ 250 



 

 

xxii 

 

 

 

 

 

 

LIST OF TABLES 

Table                                                                                                                             Page 

 

5.1: Eglin sand parameters used in mesoscale modeling ................................................ 115 

5.2: Wasserstein distance between comminuted PSDs of ensembles of different sizes . 124 

6.1: Simple HEP model variables relevant to optimization study .................................. 166 

6.2: Optimized simple HEP model bulk response variables ........................................... 170 

6.3: Optimized simple HEP model deviatoric response variables .................................. 175 



1 

 

 

 

 

 

CHAPTER 

CHAPTER 1 

INTRODUCTION 

While engineering soil analysis has as long a history as any other material, consti-

tutive modeling of soils under transient loading is a relatively recent endeavor. With the 

development of hydrocodes such as CTH, Epic, Pronto3D, LS-Dyna etc., research into the 

transient modeling of soil behavior accelerated, since soils are prominent constituents of 

the commercial and defense applications these hydrocodes are built to model. Soil is a 

particularly challenging material to model as a continuum since it is a large assemblage of 

individual particles, which have all possible three-dimensional degrees of freedom. Con-

sequently, modeling of soil behavior, particularly for highly-transient response, is still 

largely based on empirical formulae customized from field tests. 

Of the models developed for soil modeling, the Mohr-Coulomb model is still the 

best known due to its agreement with experiments for modeling stress at failure. Its “in-

convenience” for computational modeling due to its corners and singularities, has led to 

adoption of the Drucker-Prager model, which may be considered a smooth generalization 

of the Mohr-Coulomb model. However, both models suffer from similar problems: they 

predict excessive dilatancy, cannot predict hysteresis, do not account for compaction and 

crushing, cannot predict strain softening, and do not account for strain rate. The develop-

ment of pressure cap plasticity, first proposed by Drucker [1], was a very important evolu-

tion in soil modeling. The modified Cam-clay model [2] was based on critical state theory 

and contains an elliptical yield surface rather than a cap, and has been very popular 
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especially in modeling clays. Finally, effective stress models are three-phase soil models 

that explicitly account for the two fluid phases in the soil  

Motivation 

The Hybrid Elastic Plastic (HEP) series of geomaterial model fits have been used 

extensively in several military/defense hydrocodes (CTH, Epic, Pronto) due to their versa-

tility and ease of customization. The fits were produced from the computational code 

“SABER-PC”, which implemented a geomechanical constitutive model that used an Ef-

fective Stress formulation in the sense of Terzaghi [3] and Bishop [4]. The SABER-PC 

Effective Stress Model (ESM) is a phenomenological framework with a number of options 

for soil constitutive behavior and equations of state. That is to say the ESM is a rather loose 

agglomeration of the constitutive modeling efforts resulting from several experimental 

characterizations of various soil samples. When porting the framework from SABER-PC 

to the various hydrocodes, the HEP fits were extracted for the soils the ESM was based on, 

however the ESM itself was not ported. 

Currently, using the HEP to model soil in hydrocodes typically involves a three-

stage calibration process. In the first stage, a relevant library fit is identified from the par-

ticle size distribution obtained using a sieve and hydrometer analysis. Next, in the second 

stage, the model parameters are adjusted to match the laboratory test results (triaxial, uni-

axial, constant volume). Finally, in the third step, further adjustment of the many model 

parameters is typically required when dynamic testing results become available. Such re-

sults typically come from flyer plate experiments or Impulse Measurement Devices. The 

main reason for the multi-stage approach to model calibration, is that the underlying phys-

ics of soil behavior, particularly during highly-transient phenomena, is not very well 
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understood. While the HEP models can model a wide range of soil behaviors, there is not 

a linear process of selecting its parameters from readily available laboratory analyses and 

tests. 

The current work will explore the underlying mechanics of the ESM using 

mesoscale simulations of the physics involved. It will do so by first creating “avatars” of 

all the soils that have had HEP fits using the ESM. These avatars will essentially be com-

putational representations of the soils using spheres as idealized soil grains. The avatars 

will be created using a sequence of two-types of particle-based modeling efforts. The initial 

type of model will use a particle-packing algorithm followed by an isotropic triaxial com-

pression simulation to achieve the necessary physical characteristics. The second type of 

model, will model the shear behavior of the avatar. Depending on the mesoscale and mac-

roscale characteristics of the soil being investigated, many particle models will be synthe-

sized at different scales to model the behavior of the soil at different confining pressures. 

The process may be repeated until the model is ultimately homogenized into a continuum 

representative of the relevant soil at the macroscale. 

This work also aims to establish an alternative means of calibrating continuum ma-

terial behavior. Rather than fitting the mathematical material model directly to the experi-

mental data from triaxial testing, the material model is fit to the granular mesoscale avatar. 

Once the computational avatar is calibrated to adequately match the soil behavior in the 

available test data, the avatar can be used to explore the underlying statistics and add to the 

data available from the physical tests with data from virtual ones. Whereas some charac-

teristics of a soil’s evolution with deformation are typically inferred indirectly from the 

triaxial test data, herein these characteristics will be tested for and quantified from virtual 
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testing of the soil avatar. Characteristics such as third-invariant dependence, the shape and 

evolution of the shear-limiting failure surface, pressure-cap evolution, onset of yielding, 

etc. can be evaluated directly from the computational avatar, if the avatar is adequately 

matched to the physical sample. 

The data compiled from the various models can further be used to identify a unify-

ing constitutive framework that can bring the different fits under a single mathematical 

umbrella. The documentation for SABER-PC  along with the data from Ehrgott [5], will 

provide a fair amount of experimental data among a range of soils. Once modeled, cali-

brated, and quantified in the context of the current work, there will be enough information 

to form such a framework from the combination of physical data and mesoscale models. 

Scope and Objectives 

This work has two main objectives: homogenization and uncertainty quantification 

of a geomaterial. The geomaterial is sand for this particular study, however the framework 

is expected to be widely applicable to other types of granular media. The stated goals are 

accomplished using tools adapted for this specific study: simulation at the mesoscale, ge-

omechanics derived from the statistical parameters of mesoscale ensembles, and calibra-

tion of the mesoscale ensembles using mathematical optimization. 

Mesoscale Modeling 

With the significant increase in available computational power and resources over 

the last decade, geomaterial modeling has seen both evolutionary and revolutionary 

changes. One such “revolution” has been the dramatic rise in popularity of particle methods 

such as the Discrete Element Method (DEM). DEM is very closely related to molecular 

dynamics (MD), in fact one of the more popular DEM applications (LIGGGHTS) [6] is a 
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fork of the most widely used MD code, LAMMPS [7]. The inclusions of rotational degrees 

of freedom and nonlinear contact with friction are the main attributes that separate DEM 

from MD. DEM can be useful in modeling soils in dynamic applications considering the 

large deformations involved. As with any other simulation paradigm, there is a potential 

for misuse with DEM. The approach, methodology, and output expectations need to be 

weighed carefully, otherwise the Discrete Element Method becomes nothing more than a 

relatively inexpensive, visually appealing, but mechanistically meaningless gimmick. 

Statistical Geomechanics 

Among the characteristics that make the constitutive behavior of geomaterials dif-

ferent from many other materials, is the degree of variability and uncertainty exhibited in 

most applications. This uncertainty has two primary sources: the heterogeneity and com-

plexity of the soil structure as well as the inherent difficulty in measuring material proper-

ties. These uncertainty sources coincide with the two categories of uncertainties commonly 

used in the scientific discipline of Uncertainty Quantification (UQ): aleatory uncertainty 

and epistemic uncertainty [8]. Aleatory uncertainty is also sometimes called irreducible or 

stochastic uncertainty, and consists of the sources of uncertainty that are inherent to a ma-

terial and are impossible to avoid. Epistemic uncertainty on the other hand, is uncertainty 

due to the lack of, or imprecision in, the available data. In recent years there have been 

some efforts to address uncertainties in geomaterial modeling. These efforts are primarily 

focused towards dealing mathematically with aleatory uncertainty by introducing proba-

bilistic models to the physics, e.g. Monte Carlo simulations and Stochastic Finite Elements 

(SFE) [9] [10]. The current work will quantify aleatory uncertainty at the mesoscale, but 

will do so in the context of identifying a trend and a threshold for homogenization to a 
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deterministic model. Furthermore, this work aims to introduce a possible means of reduc-

ing epistemic uncertainty by offering the possibility of conducting virtual experiments on 

soil avatars, experiments that would be very difficult, if not impossible, to conduct on phys-

ical samples.  

Homogenization 

The primary assumption of any effort to quantify the behavior of a material at the 

macroscale, is the existence of a Representative Volume Element (RVE). Herein, the RVE 

is understood in the sense of Hill [11]. The existence of the RVE is readily ascertained via 

a unit cell in the case of periodic microstructures, such as those constituting many ma-

trix/fiber composites. However, the identification and determination of the RVE is rather 

more difficult when dealing with random heterogeneous media such as soils. Mathemati-

cally, an infinite number of grains would be required to attain the RVE scale, due to the 

complete randomness and heterogeneity of the grains.  

Consider the random sand grain distribution of Figure 0.1. The figure shows two 

cross-sections of the same cubic sand grain packing, and illustrates the concept of Separa-

tion of Scales. The separation suggested here and based on [8], involves three scales 

1. The microscale d, which represents the size of the typical grain, or an inclusion. 

2. The mesoscale L, the RVE size  

3. The macroscale Lmacro, macroscopic sample size 

 macro

d
L L

d

 



  (1.1) 
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Figure 0.1: Disordered Heterogeneous Packing of Sand Grains 
 

The inequality of Equation (1.1) contains two options as the mismatch in geometry 

and properties may be small or great. In the current work the mismatch is always great, 

requiring the use of the second form of the left-hand side of the inequality. 

In addition to the concept of the RVE, it is also beneficial at this point to introduce 

the related concept of the Statistical Volume Element (SVE), which is sometime also called 

the Stochastic Volume Element, for obvious reasons. The SVE represents any and all real-

izations of the microscale greater than the typical grain, but smaller than the RVE. Where 

the RVE material properties are the same as those of the macroscale, the SVE properties 

are represented by statistical quantities like the Probability Density Function (PDF) and 

Statistical Bounds.  

Uncertainty Quantification 

Among the characteristics that make the constitutive behavior of geomaterials dif-

ferent from many other materials, is the degree of variability and uncertainty exhibited in 

most applications. This uncertainty has two primary sources: the heterogeneity and com-

plexity of the soil structure as well as the inherent difficulty in measuring material 



8 

 

 

 

properties. These uncertainty sources coincide with the two categories of uncertainties 

commonly used in the scientific discipline of Uncertainty Quantification (UQ): aleatory 

uncertainty and epistemic uncertainty [8]. Aleatory uncertainty is also sometimes called 

irreducible or stochastic uncertainty, and consists of the sources of uncertainty that are 

inherent to a material and are impossible to avoid. Epistemic uncertainty on the other hand, 

is uncertainty due to the lack of, or imprecision in, the available data. In recent years there 

have been some efforts to address uncertainties in geomaterial modeling. These efforts are 

primarily focused towards dealing mathematically with aleatory uncertainty by introducing 

probabilistic models to the physics, e.g. Monte Carlo simulations and Stochastic Finite 

Elements (SFE) [9] [10]. The current work will quantify aleatory uncertainty at the 

mesoscale, but will do so in the context of identifying a trend and a threshold for homoge-

nization to a deterministic model. Furthermore, this work aims to introduce a possible 

means of reducing epistemic uncertainty by offering the possibility of conducting virtual 

experiments on soil avatars, experiments that would be very difficult, if not impossible, to 

conduct on physical samples.  

Calibration of Continuum Models 

It is common practice when modeling a particular soil in many simulation packages 

to go through a multi-stage calibration process. In the first stage, a relevant library fit is 

identified from the particle size distribution obtained using a sieve and hydrometer analy-

sis. Next, the model parameters are adjusted to match the laboratory test results (triaxial, 

uniaxial, constant volume). Finally, further adjustment of the many model parameters is 

typically required when additional experimental results, such as from dynamic testing, be-

come available. Such results typically come from flyer plate experiments or Impulse 
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Measurement Devices. The main reason for the multi-stage approach to model calibration, 

is that the underlying physics of soil behavior, particularly during highly-transient phe-

nomena, is not very well understood.  

The current work will explore the physical evolution of sand fabric using mesoscale 

simulations of the physics involved. It will do so by first creating “avatars” of the sand 

using the Discrete Element Method (DEM). Each avatar will essentially be a particle-based 

computational representation of the sand. The avatars will be created by using a particle-

packing algorithm followed by isotropic triaxial compression to attain the highest hydro-

static stress seen in physical testing. Subsequently, the DEM avatar will be calibrated to 

match as closely as possible the response seen during isotropic unloading in the physical 

tests. Only the unloading portion of the isotropic compression tests is used for calibration 

herein. During the loading part of the test, the sand’s response depends not only on the 

contact stiffness, but also on the friction angle, the shape of the grains, initial porosity, 

moisture content etc. Once the sand is highly compressed however, only the grain contact 

stiffness is important and unloading may be used to extract the Hertzian contact parameters.  

Dissertation Organization 

This dissertation is organized as follows: 

In Chapter 1, the motivation for this work as well as the objectives of the research 

have been described along with a brief introduction to the topics covered in this manuscript. 

In Chapter 2, a brief review is presented of the relevant topics from the different 

disciplines that form the theoretical background to this study. First, a quick audit of the 

history and basics of soil mechanics is introduced. Next, there is a review of the state-of-

research as pertains to computational homogenization and upscaling. Finally, there is an 
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introduction to the wider mathematics disciplines that are integrated in this work with the 

more familiar computational mechanics methods. 

In Chapter 3, a deeper dive is taken into the mathematical foundations and the re-

spective computational implementations. First, the underpinnings of the mesoscale simu-

lation method used here, the Discrete Element Method (DEM), are laid out along with 

specific adaptations necessitated by the scope of this framework. Next, there is a review 

the basics of the continuum model used for the Finite Element Analysis (FEA) part of this 

study, the Hybrid Elastic Plastic (HEP) model. Following the first two sections on the com-

putational modeling paradigms used here, the next two sections focus on the broader math-

ematical lattice of the framework. beginning with the statistics and probability theory tools 

required to construct and analyze the mesoscale ensembles used in this work. The second 

of these sections, and the last one in the chapter, describes the mathematical optimization 

algorithms used for the upscaling part of this multiscale simulation.  

In Chapter 4, arguably the most important single development introduced with this 

framework is presented. Heretofore, use of the Discrete Element Method in micromechan-

ics has been hampered by the inability to impose boundary values of stress and strain in 

the sense of Neumann and Dirichlet. To build a complete meso-to-macro framework, this 

needed to be remedied. First, a review of boundary implementations in particle methods is 

given. Next, the real-time surface tracking algorithm that allows this novel approach to 

micromechanical boundaries is described. Following that introduction, the specific imple-

mentation of the boundaries using the surface diagrams is defined. Finally, volume-aver-

aging methods required to enable characterization of deformation and stress from particle 

aggregates in the continuum sense are derived. 
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In Chapter 5, the results of the many mesoscale ensemble simulations of Eglin sand 

are presented. In the first section, the Particle Size Distribution and the distributions of the 

micromechanical experimental characteristics of Eglin sand are summarized. Next, the 

equivalent physical characteristics of the mesoscale ensembles are computed. The follow-

ing section presents the homogenization results for Eglin sand at relatively low confine-

ments, neglecting any consideration of grain fracture. Results of ensemble simulations of 

grain fracture and the ensuing comminution are given in the next section. Homogenization 

results at higher confinements accounting for grain comminution follow. Next, bounds and 

distributions of the mesoscale moduli are extracted from the RVE-level simulations. In the 

two sections that follow, finite strain volumetric and deviatoric ensemble simulation re-

sponses are presented. The last section of this chapter presents ensemble statistics of strain 

energy and dissipation evolution during the finite strain simulations. 

In Chapter 6, Finite Element Analysis results are presented for simulations with the 

Hybrid Elastic Plastic model. In the first section of this chapter, “off-the-shelf” library fits 

of constitutive properties are used to demonstrate the model’s response to the triaxial test-

ing data for Eglin sand. Next, results from optimization of the HEP variables to mesoscale 

responses are presented. The final section shows the results of triaxial simulations and as-

sociated uncertainty, using the optimized properties. 

Chapter 7 concludes this dissertation with a discussion of the results attained, an 

evaluation of the degree of success in achieving the stated objectives, and near-sighted as 

well as “blue sky” perspectives on the future directions of this line of research.  
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CHAPTER 2 

THEORY AND BACKGROUND 

The aim of this chapter is to provide a qualitative background on the concepts and 

theory underlying this work. That may indeed be a tall order, considering the various dis-

ciplines that this study seeks to marry.   

A Brief History of Soil Mechanics 

It has been said that soil is the oldest engineering material. This goes along with the 

notion that soil is also the most primitive engineering material. It has also been said that 

soil is the most complex engineering material. The evidence for those statements lies both 

in the remains of ancient dwellings and in the latest endeavors of engineering mechanics 

research studies such as this one. Ancient humans certainly did not conceive of soil me-

chanics with quite the rigor of today, however they had clearly developed some practice 

with using it as an engineering material for burial sites, flood protection, and shelter against 

the (other) elements. 

The code of Hammurabi (2500 B.C.) is the oldest surviving text that attempts to 

codify building. Meanwhile the writings of Vitruvius, who served as engineer during the 

reign of Emperor Augustus in the first century B.C., paid great attention to soil types and 

to the design and construction of foundations thereof. In the Middle Ages the tendency of 

soil to consolidate under triaxial pressure, had become obvious to European engineers in-

volved in the construction of great cathedrals. The uncertainty inherent in soil 
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characterization was a hard lesson that was learned, though perhaps not exactly in those 

terms, when the tower at Pisa stood less than perfectly vertical. 

Soil mechanics in the sense understood today, has its genesis with Charles-Augus-

tin de Coulomb who was, among many other things, a member of the French Royal Engi-

neers. It was Coulomb in 1776, who introduced the concepts of frictional and cohesive 

resistance for solid bodies [12]. He also made the intellectual leap of assuming that these 

resistances applied to the grains of soils, and in so doing was possibly the first to understand 

the importance of micro-mechanics to the behavior of heterogeneous materials. It is no 

surprise that the shear strength theory bearing his name is also intrinsic to the computa-

tional model used herein. 

Another important year in the history of soil mechanics is the year 1856. That is the 

year of publication for Darcy’s law of soil permeability [13] and for Stokes’ law of solid 

particle velocity in liquid media [14]. The subsequent year, 1857, marks the year of publi-

cation of Scottish engineer William John Macquorn Rankine’s theory on earthen pressure 

and equilibrium of earth masses [15]. In 1871 German engineer Christian Otto Mohr de-

veloped his rupture theory and established the concept of stress circles, a concept still 

taught today extensively in soil mechanics classes under the name Mohr’s circle. The 19th 

century history of the development of soil mechanics also includes French mathematician 

Joseph Valentin Boussinesq’s theory of stress distribution in a semi-infinite, homogeneous, 

isotropic medium under a surface point load [16].  

The 20th century saw an explosion in the collective understanding of soil mechan-

ics. Swedish agriculturist Albert Atterberg was the first to define consistency limits for 

cohesive soils in 1911 [17]. These are still widely used in geotechnical engineering today. 
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Another important development came out of Sweden not long after Atterberg’s report, in 

the form of a report by the Swedish Geotechnical Commission of the State Railways of 

Sweden headed by Wolmar Fellenius [18]. This commission was established to investigate 

geotechnical failures after several landslides on railways, canals, and harbor structures. 

This report contained many new concepts and testing methods, including the concept of 

clay sensitivity and overconsolidation.  

This is arguably where the pre-history of soil mechanics ends, and soil mechanics 

as it is understood today begins. This threshold is marked by the publication of the first soil 

mechanics textbook, authored by Austrian engineer Karl von Terzaghi [19]. There is per-

haps no argument needed for this, considering “soil mechanics” is the English translation 

of his book “Erdbaumechanik”. Enumeration of Terzaghi’s contributions to the field would 

require a separate dedicated chapter, however if one were required to pick but a single 

concept, it would have to be the concept of effective stress. Other, prominent early contri-

butions to the field were made by Ralph Proctor [20], Arthur Casagrande [21], Donald 

Taylor [22], Ralph B. Peck [23], Alec Skempton [24], Laurits Bjerrum [25], and Harry 

Bolton Seed [26], among others.  

Important Concepts of Sand Mechanics 

This work relies on certain accepted concepts and measures in the mechanics of 

sand. This section lays out those concepts, starting with the relevant physics of sand at all 

scales, the methods by which sand is usually qualified and quantified, and finally some 

mathematical/computational frameworks commonly used to model sand. 
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Physics of Sand 

A constitutive model of a material is merely a mathematical abstraction of the as-

sumed underlying physics. No matter how good or complex the math is, if the assumed 

physics is inaccurate the output produced will not be useful. This is especially true for the 

current work, as the physics is explicitly modeled at the mesoscale, whereas on the balance 

constitutive modeling efforts are aimed at phenomenological agreement. A brief review of 

the physics relevant to the current work follows. 

The first relevant aspect of soil behavior that is encountered empirically, is the plas-

ticity of soil. Plasticity, in general terms refers to non-reversible changes to the shape of a 

material in response to applied forces. The reversible deformation is termed elastic defor-

mation, while the irrecoverable deformation is plastic deformation. For many engineering 

materials, plasticity is only assumed under deviatoric loading, however for soils the con-

cept of “soil compaction” is also used to refer to plasticity under mean stress loading. A 

further look into sand plasticity is included in the following section on commonly-used 

constitutive models. 

Bulk response refers to the response of the material under hydrostatic loading con-

ditions and is also called “volumetric response” in reference to the volumetric straining of 

the material. The bulk response is described by the so-called pressure-compression curve. 

The pressure-compression curve used in the HEP material model is shown in Figure 0.1, 

and is illustrative of the typical bulk response of sand. The response can be divided into 

three major regions. In the first region, the response may be assumed to be elastic. In this 

region, the sand response comes mostly from the contact forces between sand grains, with-

out significant frictional sliding or changes in the distribution of particle sizes.  
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Figure 0.1: Pressure-compression behavior in the HEP model 
 

The response in the second region is neither elastic or linear, and typically involves 

a hysteretic unloading-reloading loop. The response in this region comes from dissipative 

effects in the sand fabric, nominally frictional sliding and grain crush-up. Grain crushing 

comes in the three distinct “flavors” shown on : abrasion, attrition, and fracture [27]. The 

dominant form of crushing in sand is fracture [28]. Finally, in the third region virtually all 

air pores have been closed and virtually all grains that can be crushed, have been. The 

response here comes once again mostly from contact forces, though there may be enough 

plastic deformation at the contact points to make the response nonlinear. 
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Figure 0.2: Modes of grain crushing in sand [27] 

 

The next important characteristic of soil behavior is its shear response, which in-

cludes deformation and strength under shear forces. Most soils have only a small elastic 

region, and deform inelastically almost from the onset of the loading, however are fre-

quently modeled as having a discrete yield surface as a convenience for separating linear 

from nonlinear shear stress-strain response.  

Soil response to external loads is predicated on intergranular behavior, the grains 

need to slide, be elevated, and/or rotated over each other to respond to these external forces. 

Therefore, the emergent behavior depends strongly on bulk (volumetric) response. This is 

what is termed as the “dilatancy” of sand. It should be noted that the ESM implemented 

in SABER does not include rigorous volumetric/distortional coupling, and is therefore in-

capable of predicting shear-induced dilation. It was assumed that strongly empirically-

based bulk pressure response was more important than shear-bulk coupling. This will be 

reevaluated in the course of the current work. 

abrasion attrition fracture 
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Also of importance, is the strain hardening and softening behavior of the soil. 

Hardening refers to the elastoplastic response of a material once the yield surface has been 

reached but prior to failure. Softening refers to a well-compacted soil’s tendency to flow 

under shear loading. Again, neither hardening nor softening is predicted by the simple HEP 

library fits.  

Sand is often thought of as a cohesionless soil. While it is certainly true that sand 

does not have the electrostatic forces that make clays cohesive, cohesion is usually present 

in sand due to either chemical cementation, capillary action, or pore pressure hysteresis. 

The tensile strength of a soil at the mesoscale and above, is due to any intergranular ad-

hesion, whether from capillary forces or some sort of chemical cementation present (at the 

microscale there are also electrochemical forces like van der Waals and the electrical dou-

ble layer). 

Physical response of the soil depends on pore-scale fluid flow, or drainage. The 

highly-transient phenomena that are the focus of the current work, may be safely assumed 

to occur only at undrained timescales/conditions. However, in order to accurately match 

the mesoscale physics with the experimental data, drained conditions need to be accounted 

for as present during triaxial compression testing.  

There are some physics that are ignored in this work. One prominent example is 

viscoplasticity (creep). Viscoplasticity is not usually relevant in hydrocode simulations 

with the HEP model, considering such simulations are carried out at very high strain rates 

where viscous effects are not important. Viscoplasticity does need to be considered in tri-

axial testing, as even with the slow loading rate adopted there is some creep at constant 
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stress. This triaxial creep is however small and the recorded stress and strain measures do 

follow a brief pause in monotonic loading. 

Classification and Testing 

When soils are described, the terms “gravels”, “sands”, “silts’ and “clays” are com-

monly used to refer to the texture of specific soils. Broadly speaking, gravels and sands are 

generally understood to be “coarse-grained” soils, while silts and clays are “fine-grained” 

soils. If texture is the “feel” of a soil, then coarse-grained soils feel gritty and rough, while 

fine-grained soils feel soft and smooth.  

Since the inception of soil mechanics as an engineering science, there have been 

concerted efforts to adopt a classification system for soils that can succinctly describe to 

an engineer the nature of the particular material at hand. As typically happens in such cases, 

many different systems have been proposed over time to classify soils based on relevant 

properties, including texture, plasticity, strength etc. Some of these systems have indeed 

gained relatively wide acceptance and applicability, nonetheless seldom have all engineers’ 

requirements been met by a classification system.  

The Unified Soil Classification System is the most widely used engineering soil 

classification system in North America. Its “cousin”, the European soil classification sys-

tem is very similar in scope and differs mainly in its classification of plasticity in silts and 

clays. The USCS is geared towards identifying soils in terms of their texture and plasticity, 

then grouping them further by mechanical response. Terms such as “gravel”, “sand”, and 

“clay” have been adopted into the USCS as a means of prescribing the expected behavior 

rather than as descriptive of a soil’s geological history. Indeed, one is unlikely to find 



20 

 

 

 

naturally occurring homogeneous gravel or sand, soils are usually a mixture of varying 

fractions of different particle sizes. 

The parameters below are fundamental to the nature of a soil’s behavior, and form 

the basis of the USCS: 

• Relative fractions of gravel, sand, silts, and clays. 

• Shape of the particle-size-distribution (PSD) curve 

• Compressibility and plasticity 

The size distribution of particles for coarse-grained soils is obtained by screening 

the soil through a stack of sieves of progressively finer openings. Each of these sieves is 

identified by a number that matches the number of square openings in each linear inch of 

the sieve mesh. The particle mass retained in each sieve may be weighed and its percentage 

relative to the sample computed. The results may then be plotted on the familiar particle 

size distribution curves which are a type of cumulative distribution chart with the particle 

size usually plotted on a logarithmic scale.  

The sieve-based screening approach cannot be used for fine-grained soils. Typi-

cally, the size distribution of fine-grained soils is obtained through hydrometer analysis. In 

the hydrometer test, a small amount of the soil is placed into suspension and the settlement 

of the various particles observed over time. The larger particles settle quickly, while the 

smaller ones remain in suspension longer. The hydrometer is lowered into the suspension 

until the buoyancy force balances its weight. The hydrometer can be calibrated to the den-

sity of the suspension at different times. 

The Split-Hopkinson pressure bar (SHPB) is an apparatus for measuring the high 

strain rate response of materials. It is named after Bertram Hopkinson [29], though it is 
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also frequently referred to as the Kolsky bar [30] after Herbert Kolsky who refined the 

original Hopkinson setup by using two bars in series (split-Hopkinson bar). The SHPB is 

a highly useful method for determining dynamic material properties in a range of strain 

rates. Different configurations of the SHPB test enable testing of tensile, compressive, or 

shear responses in a material specimen. Additionally, the SHPB test can be used to obtain 

the dynamic fracture toughness of a specimen in three-point bending  

Arrangements and techniques in common use for SHPB testing are numerous, how-

ever the operational principles and measurement methods are virtually identical. The ma-

terial specimen lies between the inside edges of two bars, which are called the incident bar 

and the transmitted bar [31]. A stress wave is created in the incident bar, typically at its far 

end, which then propagates through the bar and into the material tested. This incident wave 

splits into two smaller waves once it meets the material specimen. These two smaller waves 

are labeled the transmitted wave and the reflected wave. The transmitted wave is thusly 

termed since it travels through the material specimen, continuing into the transmitted bar 

and causing plastic deformation into the latter. The reflected wave on the other hand, trav-

els back down the incident bar after being reflected away from the material specimen [32]. 

Strain gauges are generally used to measure the deformation and stress response caused by 

the induced stress waves [33]. 

Mesoscale modeling carried out in this study uses experimental data from “modi-

fied long SHPB” testing on Eglin sand by Luo et al. [34] shown in Figure 0.3.  
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Figure 0.3: Sand specimen in SHPB testing [34] 

 

In that investigation they made use of an 11 m long SHPB using pulse shaping with an 

annealed copper disk meant to stretch the dynamic compression over a relatively long du-

ration. Their SHPB consisted of a striker bar in a gun barrel, solid stainless steel incident 

and transmission bars, and a strain data acquisition system. The strain data included lateral 

deformation through measurement of the circumferential strain on the outer surface of the 

specimen sleeve [35]. Figure 0.4 shows a schematic of the modified SHPB. 

  

Figure 0.4: SHPB schematic [34] 
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Some Common Sand Models 

In Soil Mechanics, a “model” of the material’s mechanical behavior can be as sim-

ple as a single linear equation or as complex as an entire framework of equations. For the 

former, one need look no further than the equation often considered the genesis of all ma-

terial models, Hooke’s Law. For the latter, the HEP model used here is an example, though 

by no means the most complex model that can be identified in the literature. Hooke’s Law 

is obviously too simple to describe important aspects of soil response [36], other common 

constitutive models are reviewed here. 

The seminal Elastic-Perfectly Plastic model in geomechanics is the Mohr-Cou-

lomb model. The number of parameters used in the Mohr-Coulomb model is five. Of these 

five parameters, two are elastic parameters from Hooke’s Law: the Young’s modulus (E) 

and Poisson’s ratio (). Another two parameters come from Coulomb’s failure criterion: 

the friction angle (φ) and cohesion (c). The final parameter is the dilatancy angle (ψ), which 

corresponds to the irreversible volume change from shearing for non-associated flow rules. 

The yield criterion of the Mohr-Coulomb model in 1D is simply: 

 ( )tan 0f c  = − − =   (2.1) 

where   represents the shear stress, while   represents the normal stress. For a 3D state 

of stress, the Mohr-Coulomb yield surface is: 
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where is the first invariant of the stress tensor, 2J  is the second stress invariant of the 

deviatoric stress tensor, and   is the Lode angle. The Lode angle is defined as: 
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where 3J = s  is the third invariant of the deviatoric stress tensor. The failure surface may 

be visualized in principals stress space as the hexagonal pyramid shown in Figure 0.5. 

  

Figure 0.5: Mohr-Coulomb Failure Surface 

 

The Mohr-Coulomb is still the best known model for soils, and experimental stud-

ies using triaxial testing generally agree with the model’s predictions of stress at failure 

[37]. However, the model is computationally inconvenient principally due to the presence 

of corners and singularities. Hence, a smooth generalization of the Mohr-Coulomb model, 

the Drucker-Prager model [38], is widely used to model failure in computational imple-

mentations. The Drucker-Prager model replaces the hexagonal pyramid of the Mohr-Cou-

lomb model with the simple cone shown in Figure 0.6. 
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Figure 0.6: Drucker-Prager Failure Surface 

 

For many situations the dominant load path is triaxial, whether compression or ex-

tension. Other problems may be rightly simplified as plane strain problems. For these sit-

uations, generalization of the failure surface into the Drucker-Prager formulation is not 

divergent from what can be obtained with the Mohr-Coulomb surface. However, for situ-

ations with multiple loading paths, the Drucker-Prager surface does not capture failure well 

[37].  For this reason, the Mohr-Coulomb is considered superior to the Drucker-Prager 

model. 

Shortcomings of both the Mohr-Coulomb model and the Drucker-Prager model in-

clude: 

• Both models predict more dilatancy than observed in experiments. 

• Experiments exhibit hysteresis in load-unload cycles. This cannot be mod-

eled using a single value for the bulk modulus or without a pressure cap 

[39]. 

• Neither model can model strain softening behavior. 
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Strain hardening and strain softening are important components of the constitutive 

response of soil. Drucker et al. [1] were the first to suggest using work-hardening plasticity 

theories developed for metals to model soil as an elastic-plastic work-hardening material. 

The idea espoused therein, was to use successive extended Drucker-Prager cones with a 

spherical cap, with both cone and cap able to expand. This concept was reworked into 

numerous work-hardening soil models, which may be grouped into two categories: modi-

fied Cam-clay models and generalized cap models. 

The modified Cam-clay model is based on critical state theory, and was originally 

developed at Cambridge University to simulate near-normally consolidated clays undergo-

ing triaxial testing [2]. The version of the Cam-Clay model that gained acceptance was the 

version proposed by Burland with a modified flow rule [40], hence most references to the 

model contain the “modified” moniker.  

The primary assumption in the Modified Cam-Clay model is that of a logarithmic 

relationship between the mean effective stress p  and the void ratio e . This implies that 

stress is linearly-dependent on the stiffness. Another important aspect of the model is that 

there is a difference in response between “primary” loading beyond the pre-consolidation 

stress level cp  and unloading or reloading up to the pre-consolidation stress. The pre-con-

solidation stress increases in the model by means of hardening plasticity. Any loading past 

a normally-consolidated state leads to volumetric plastic straining according to a ratio of 

plastic volumetric strain to plastic deviatoric strain. This ratio depends on the internal fric-

tion; once the mobilized internal friction has reached a critical value there is no more vol-

umetric strain while the deviatoric strain goes to infinity. This is the so-called Critical State 

associated with the failure of the material. The Critical State Line in the Modified Cam-



27 

 

 

 

Clay model is analogous to the Drucker-Prager failure criterion. A typical yield surface 

and Critical State line are shown in Figure 0.7.  

 

Figure 0.7: Modified Cam-Clay Yield Surface and Critical State Line (after Wood [41]) 

 

The Modified Cam-Clay model contains four model parameters and two state pa-

rameters. The model parameters are: the isotropic logarithmic compression index  , the 

swelling index  , Poisson’s ratio for unloading and reloading  , and the friction constant 

M . The state parameters of the model are the previously mentioned pre-consolidation 

stress cp  and void ratio e . Notice that the model does not contain a cohesion parameter, 

shear strength is specified implicitly through the effective friction constant. 

Caveats with regards to using the Modified Cam-Clay model include all those pre-

viously mentioned for Drucker-Prager vis-à-vis the inaccuracy of the failure surface/criti-

cal state. An additional caveat particular to the model is a tendency towards a non-physi-

cally long elastic range for soils in an over-consolidated stress state. In fact the Modified 

Cam-Clay model should be considered unsuitable for highly over-consolidated soils.  
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The Generalized Cap model was first conceived by DiMaggio and Sandler [39] 

inspired by the work of Drucker et al. [1]. The model’s yield function combines a deviatoric 

plastic part with an elliptical cap that advances according to the amount of plastic volumet-

ric strain as shown in Figure 0.8. The model is therefore able to predict dilatancy by re-

versing strain-hardening 

  

Figure 0.8: Yield surface in the Cap Model [42] 

 

Three different types of responses are possible with the Generalized Cap Model: 

1. The response is elastic if the stress point lies inside the yield surface. 

2. The response is perfectly plastic/failing if the stress point is on the yield sur-

face/failure envelope. 

3. The response exhibits volumetric hardening when the stress point is on the cap. 

 

The elastic part of the model response always results in recoverable deformations. 

There are, however, many extensions of the model and some of them include nonlinear 

elastic behavior as well as viscoelastic representations. The failure surface of the response 

in the model is the same as the yield surface with the assumption of perfect plasticity. This 
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has the effect of limiting the level of shear stress in the material. Again, as for linear elas-

ticity, many extensions of the model exist that add hardening to the yield surface. The flow 

rule is associated, requiring plastic strain rate vector to be normal to the failure surface. 

This implies that there must be a dilatant component to plastic strain during yielding/fail-

ure. 

When the stress point is on the cap, the response pushes the cap outward. This im-

plies a plastic volumetric strain through a hardening rule. There are many versions of the 

cap model, however in the original the cap was assumed to be elliptical. The associated 

flow rule implies that there must be a shear component to the plastic strain along with a 

volumetric component. The latter represents the permanent compaction related to void clo-

sure observed in granular materials. 

Many extensions of the original Generalized Cap Model have been developed over 

the years. Sandler and Baron [43] introduced viscoelastic response inside the yield surface. 

Isenberg et al. [44] included hardening within the failure envelope. A formulation incorpo-

rating the third invariant of the deviatoric stress tensor was introduced by Levine [45]. A 

damage parameter was introduced by Mould et al. [46] to represent cracking in the material 

and softening therein. However, the most successful and widely used extension of the Gen-

eralized Cap model is the Continuous Surface Cap model, introduced by Pelessone [47], 

adapted by Rubin [48], and implemented into LS-Dyna by Schwer and Murray [49]. 

The next development in constitutive modeling of soils came about in the 1980s 

with the advent of so-called three-phase soil models. Herein, three-phase models are used 

in the sense of models such as the one presented by Loret and Khalili [50]. This develop-

ment married three existing concepts: Terzaghi’s concept of “effective stress” or stress in 
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the solid skeleton of the soil, elastic-plastic modeling using existing models applied to this 

effective stress, and the theory of mixtures. Three-phase models are specifically meant to 

describe the behavior of unsaturated soils, wherein the three phases are: solid “skeleton”, 

fluid (water), and gas (air). Terzaghi’s description of effective stress in saturated soils is 

well-established in describing plastic behavior, however the same cannot be said for un-

saturated soils. Bishop’s effective stress was shown experimentally by Bishop and Blight 

[51] through observation that the bulk and deviatoric responses are not affected if the net 

stress and water pressure (suction) are kept constant.  

The yield surface of the three-phase model of [50] is shown in Figure 0.9 and is in 

the plane of effective mean stress p  and shear stress q  defined as: 

 ( )1
3

p tr = −   (2.4) 

 ( ) ( )( )
1

23 :
2

q dev dev =   (2.5) 

 

Figure 0.9: Yield surface of the three-phase modified Cam-Clay Model [50] 

 

It is evident that the third effective stress invariant is not considered, thus the yield surface 

is circular cross-sections along deviatoric planes. The yield surface is then described be-

low: 
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where M  is a material parameter representing the slope of the critical state line. The pre-

consolidation stress 
cp  describes the size of the yield surface. 

The main downside of using a three-phase model is the lack of experimental results 

to justify its complexity, and the need to carry out many experiments to identify the many 

coefficients, such as the coefficients describing the soil-water characteristic curve (SWCC) 

that is incorporated in the model. 

A Bridge from the Grain to the Continuum 

Heterogeneity is a feature of virtually all engineering materials at one scale or an-

other. This tends to make characterization of the material response a difficult task indeed. 

Carrying out experiments with the goal of capturing the various mechanically relevant 

properties is a prohibitive endeavor in terms of time and effort. Turning to computational 

models for clarity is not a realistic option for the foreseeable future, a numerical simulation 

of an entire material specimen that captures the relevant microstructure is a task that even 

the most high-powered, high-performance systems are not currently capable of computing. 

Including heterogeneity in characterization of material response poses a problem 

that has in recent decades been answered using multiscale modeling methods. The mul-

tiscale modeling paradigm has been developed along two different tracks. On the first of 

these tracks, one can find concurrent multiscale methods where the scales are coupled. On 

the second of the two multiscale modeling tracks is the one with homogenization methods, 

where the scales are clearly separated 

The main feature of concurrent methods is the transfer of microstructural properties 

to the macroscale directly.  Some studies representative of concurrent multiscale methods 
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include the material failure analyses using domain decomposition of Guidault et al. [52], 

Eckardt and Könke [53], and Lloberas-Valls et al. [54]. Rather than domain decomposition, 

the variational multiscale method was used in the works of Hettich et al [55], as well as 

Loehnert and Belytschko [56]. An often-used approach to concurrent multiscale modeling 

is adaptive combination of numerical homogenization with a concurrent method such as 

by Ghosh et al [57], Larsson and Runesson [58], and Temizer and Wriggers [59]. Other 

important works on the concurrent multiscale track include Oden et al. [60], Takano et al. 

[61], Fish and Chen [62], Zhang et al [63], as well as Bitencourt et al [64]. 

Homogenization – Analytical and Computational 

The second track, homogenization or separation of scales, is the one followed in 

the current work. Computational homogenization as a field of study is relatively young, 

most of the work has been carried out in the past two decades. However its parent field, 

analytical homogenization, has substantial literature behind it. In fact Voigt, after whom 

the upper elastic bound is named, used uniform strain in his 1889 analysis of heterogeneous 

materials [65]. Then of course Reuss, after whom the lower elastic bound is named, did the 

same using uniform stress [66]. It has long been recognized that these two bounds are quite 

wide and their use can only be justified for linear material properties [67]. There are how-

ever, nonlinear counterparts to the Voigt and Reuss bounds in the bounds of Taylor [68] 

and Sachs [69]. 

In the subsequent decades the analytical homogenization approach was extended 

by Hashin and Shtrikman using a variational formulation to derive bounds for bulk and 

shear moduli [70] and magnetic permeability [71] for isotropic composite materials. A 

generalization of the Hashin-Shtrikman bounds for anisotropic materials was derived by 
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Walpole [72] as well as Milton and Kohn [73]. Similarly, the variational approach was 

used by Zimmerman to obtain bounds for the Poisson’s ratios of composites [74], by Rosen 

and Hashin to obtain bounds for thermal expansion coefficient in problems of thermoelas-

ticity [75], and by Bisegna and Luciano to obtain bounds for effective moduli in piezoe-

lectricity. The Hashin-Shtrikman bounds, like the Reuss-Voigt bounds, can be rather wide 

when the composite phases are very dissimilar. Nemat-Nasser et al [76] attempted to ame-

liorate this, with some success, by including phase geometrical information in the analysis. 

A rather more complex approach based on the so-called “dilute family methods” 

was pioneered by Eshelby [77]. The fundamental assumption of these methods relates to 

the distribution of the heterogeneities in a composite; it is assumed that the included inho-

mogeneities are sufficiently diluted that one may effectively neglect any interactions 

among them. This renders the problem into a problem of a single elliptical inclusion and 

an infinite matrix. Zohdi and Wriggers pointed out that neglecting inclusion interactions is 

not physically realistic for materials with random heterogenous particulate microstructure 

[78]. Additional models in this vein of research are primarily based on mean-field homog-

enization [79], with models worth noting being the Mori-Tanaka method [80], the self-

consistent scheme [81], the generalized self-consistent scheme [82], and the differential 

method [83]. Hori and Nemat-Nasser proposed a generalization that unified the self-con-

sistent scheme with the Mori-Tanaka method, dubbing it the “double-inclusion model” 

[84]. 

Moving on to the problem of analytical homogenization of random and nonlinear 

composites, the groundwork was laid here by Rodney Hill, after whom the Hill-Mandel 

macrohomogeneity condition is partly named, with his treatment of finite deformation 
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elasticity [85]. Another pioneer was Ray Ogden, with his treatment of the homogenization 

of nonlinear composites [86]. Over the following decades, many improvements to these 

bounds were published at relatively steady pace. This includes the analytical homogeniza-

tion studies of Ponte Castañeda and Willis [87], who managed to obtain improved bounds 

for two-phase random composites with nonlinear viscous phases, the work of Suquet with 

power-law composites [88], the work of Olson with perfectly-plastic composites [89], as 

well as the work of Talbot and Willis with nonlinear composites of a more generalized type 

[90]. Ponte Castañeda further advanced the field with a nonlinear variational principle that 

can be used to derive the effective mechanical properties of nonlinear composites with both 

ductile brittle phases [91-93].  

In the last three decades, as computational methods have come to occupy a larger 

share of the engineering mechanics literature, homogenization studies have increased sig-

nificantly with computational homogenization making up a larger portion of these studies 

over time. The earliest and most widely used computational homogenization approach is 

the unit-cell method. The unit-cell method is a homogenization approach that assumes a 

repetitive microstructure, modeling this microstructure explicitly to obtain macroscopic 

constitutive response characteristics [94-97]. In fact, micro-to-macro computational ho-

mogenization methods such as the approach employed in the current study, may be con-

sidered a generalization of the unit-cell method for irregular/random microstructures. A 

fundamental condition of this more generalized micro-to-macro approach, is that there 

must be an energy equivalence between the microscale problem and the macroscale prob-

lem. This energy equivalence requirement is the often-mentioned, underlying principle of 

this work, the Hill-Mandel macrohomogeneity condition [85, 98]. 
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Separation of Scales 

Consider the random sand grain distribution of Figure 0.1. The figure shows two 

cross-sections of the same cubic sand grain packing, and serves to illustrate the concept of 

Separation of Scales. 

 

Figure 0.10: Heterogeneous Packing of Sand Grains 

 

Separation of Scales is a principle that links the three different scales present in 

material mechanics:  

4. The microscale d, which represents the size of the typical grain, or an inclusion. 

5. The intermediate scale L, the RVE size  

6. The macroscale Lmacro, macroscopic sample size 

 

Separation of Scales was also defined as the MMM Principle by Hashin [99], where 

“MMM” denoted a contraction of qualitative Equation (2.7)   

 Micro Mini Macro     (2.7) 
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Ostoja-Starzewski rewrote Equation (2.7) to define the intermediate scale as the 

“mesoscale” [8].  

  

 macro

d
L L

d

 



  (2.8) 

The inequality of Equation (2.8) contains two options as the mismatch in geometry 

and properties may be small or great. In the current work, the mismatch is always great, 

requiring the use of the second form of the left-hand side of the inequality. 

Volume Elements – Representative and Stochastic  

The primary assumption of any effort to quantify the behavior of a material at the 

macroscale, is the existence of a Representative Volume Element (RVE). Herein, the RVE 

is understood in the sense of the Hill-Mandel macro-homogeneity condition [11]. The ex-

istence of the RVE is readily ascertained via a unit cell in the case of periodic microstruc-

tures, such as those constituting many matrix/fiber composites. However, the identification 

and determination of the RVE is rather more difficult when dealing with random heteroge-

neous media such as soils. Mathematically, an infinite number of grains would be required 

to attain the RVE scale, due to the complete randomness and heterogeneity of the grains 

[8].  

In addition to the concept of the RVE, it is also beneficial at this point to introduce 

the related concept of the Statistical Volume Element (SVE), which is sometime also called 

the Stochastic Volume Element, for obvious reasons. The SVE represents any and all real-

izations of the microscale greater than the typical grain, but smaller than the RVE. Where 

the RVE material properties are the same as those of the macroscale, the SVE properties 
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are represented by statistical quantities like the Probability Density Function (PDF) and 

Statistical Bounds. 

The Hill Condition for Particle Aggregates  

Consider a body 𝐵𝛿(𝜔) not under the action of any body forces or inertia and with 

stress and strain fields σ and ε due to some arbitrary boundary conditions. The stress/strain 

fields may be represented as a superposition of their means (  and ) and trivial fluctua-

tions (  and  )  

 
( ) ( )

( ) ( )

, ,

, ,

    

    

= +

= +

x x

x x
  (2.9) 

The volume average of the energy density over  𝐵𝛿(𝜔) may then be written as: 

 

( ) ( )
( )

1
, : , :

1

2

1 1
: :

2 2

2
B

U dV
V

U

 

     

   

=

 +

=

=

 x x

  (2.10)  

The Hill Condition [11] means the average of a scalar product of stress and strain 

fields is equal to the product of their averages 

 : :   =   (2.11) 

which requires 

 : 0   =   (2.12) 

Rewriting (2.11) in indicial notation and applying the divergence theorem 

 ( )( )
1

ij ij i ij j i ij j

V

t n u x dS
V

   


   = − −
     (2.13) 

The triviality of the fluctuations is clearly satisfied for the macroscale Lmacro, how-

ever for a finite mesoscale the Hill Condition is satisfied if and when Equation (2.14) holds 
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 ( )( )
1

0
B

dS
V



 


−  −  =   t n u x   (2.14) 

The condition is satisfied by three different types of uniform boundary conditions 

for heterogeneous media: 

1. uniform displacement (Dirichlet, kinematic, KUBC) boundary condition 

2. uniform traction (Neumann, static, SUBC) boundary condition 

3. uniform displacement-traction (orthogonal mixed, MUBC) boundary con-

dition 

In addition to the uniform boundary conditions listed above, the Hill-Mandel con-

dition can also be satisfied by the so-called Periodic Boundary Conditions (PBC), also 

sometimes more descriptively called the “periodic displacement and anti-periodic traction 

boundary conditions”.  

Mesoscale Bounds of Particle Aggregates  

Consider again the particle mesoscale domain shown in Figure 0.1 and assume the 

state of the composite body 𝐵𝛿(𝜔) to be described everywhere by the local stress-strain 

relation 𝜎 = 𝐶(𝜔, 𝑥): 𝜀. Supposing the material window is evenly divided into four subdo-

mains 𝐵𝛿𝑠
(𝜔), s=1, …, 4 as illustrated by the dashed lines in the figure. The uniform dis-

placement boundary conditions for a prescribed constant strain 𝜀0, over the mesodomain 

are 

 

0

0

( )

( ) 1, , 4
s

r

u x x x B

u x x x B s





 

 

=   

=    =
  (2.15) 

In Equation (2.15), the first equation represents the boundary of the entire mesodo-

main of Figure 0.1, while the second equation is given on the individual boundary of each 

sub-mesodomain. Here the superscript r  indicates that the sub-mesodomain is “restricted”, 
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i.e. is dependent of the response of the bigger mesodomain. It should be noted that, using 

the strain averaging theorem, the volume average strain is the same in each subdomain and 

also equal to that in the larger mesodomain. 

 0 s  = =   (2.16) 

Consider the minimum potential energy principle for the kinematically admissible 

fields ( , )   satisfying the local stress-strain relations ( ), :C  =σ x  and the displace-

ment boundary condition (2.15). The minimum potential energy principle is written as  

 
1 1

: :
2 2t tB BB B

dS dV dS dV

  

   
 

 −   −   t u t u   (2.17) 

  From Equation (2.17), it follows that for the displacement boundary condition the 

inequality of Equation (2.18) holds.    

 : :      (2.18) 

The solution ( , )r r  to the second equation of (2.15) is a kinematically admissible 

solution, hence  

 : :r r     (2.19) 

 The inequality of  implies a weak inequality between mesoscale stiffness tensors 

under restricted and unrestricted conditions. Following this line of reasoning, an inequality 

is implied between smaller mesodomains and larger mesodomains, assuming homogeneity 

of the material. In fact, the inequality may be generalized to the hierarchy of bounds 

 
1 / 2d d d d VC C C C C   

      =   (2.20) 

where VC  is the Voigt bound. The mesoscale stiffness hierarchy of (2.20) spans form a 

single grain ( )1 =   to the macroscopic response ( ) → . 
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Similarly, under traction boundary condition 

 
1 / 2t t t t RS S S S S   

      =   (2.21) 

where RS  is the Reuss bound. 

The combined hierarchy of bounds from Equations (2.20) and (2.21) is 

1 1 1

1

1... / 2

t t t eff

d d d

 

   

− − −

 



     

     =

S S S C

C C C
  (2.22) 

Figure 0.11 gives an illustration of the bounds for a disk-matrix composite with 

moduli ratios of 100 and 10000. As the realization window gets larger, the moduli bound 

obtained from the traction-controlled boundary converges with the bound obtained from 

the displacement-controlled bound [8]. 

 

Figure 0.11: Hierarchy of scale-dependent bounds [100] 
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Consider a multiphase elastic-plastic-hardening material with phases 1, , totp p=

. Each realization  of  is described by an associated flow rule 

 

0
2

2

ij

ij p p p

p ij

ij

ij p p

p

d f
d df for f c and df

G

d
d for f c

G


 






 
 = + = 




 = 

  (2.23) 

and 

 
( )

1 2

2 1

p

p p

d d
G


 



−
=

+
  (2.24) 

where 3iid d =  and 3iid d = . Here pG  is the shear modulus, p  is Poisson’s ratio, 

and pc  is the yield limit.  

When loaded monotonically, elastic plastic hardening composites can be treated as 

elastic materials with physical nonlinearities. Again, considering the stiffness and compli-

ance moduli as before, their tangent formulations can be defined as 

 
0 0: : ; : :Td Td Tt Ttd d d d d d   = = = =σ C ε C ε ε S σ S σ   (2.25) 

where the superscripts t/d denotes response under displacement or traction boundary con-

ditions. As before, this indicates a similar hierarchy of upper and lower bounds on the 

effective tangent moduli 

1 1 1 1 1

1 1

1 1 / 2

TS Tt Tt Tt T T

T Td Td Td TT

 

   

− − − − −

  



     

       =

S S S S S C

C C C C C
  (2.26) 

where 
1

1

TS
−

S  and 
1

TT
C  are the Sachs and Taylor bounds. 

Computational Mechanics through Statistics, Probability, and Optimization 
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The computational solid mechanics discipline is, by now, a mature field with a 

healthy and growing body of literature and a global host of researchers. As the discipline 

has matured, the focus of this community has turned toward integrating the accumulated 

knowledge of the discipline within the wider applied mathematics, physics, and general 

scientific research efforts. This is manifest in the expanding literature with multiscale, 

multi-physics, and multi-discipline objectives. However, the converse is also very much 

true, knowledge from other scientific disciplines has much to offer to improve computa-

tional modeling efforts in solid mechanics. Specifically, within the context of the current 

study, there are three mathematics disciplines that are quite useful in the micro-to-macro 

transition. Those disciplines are: 1) statistics and statistical mechanics, 2) probability the-

ory and propagation of uncertainty, and 3) mathematical optimization methods. 

Statistical Mechanics of Random Heterogeneous Materials 

Statistical Mechanics is a branch of theoretical physics. Its objective is to evaluate 

the macroscale properties of systems by modeling the interactions of a system’s fundamen-

tal constituents, constituents such as atoms, molecules, or, as in the present case, grains. In 

statistical thermodynamics, for example, statistical mechanics starts with molecular inter-

actions and structure as determined from the laws of quantum or classical mechanics, then 

attempts to link these to macroscopic properties such as the temperature and pressure of a 

liquid. Useful insight into the constitutive behavior of random heterogeneous materials can 

be gained by modeling these as systems of interacting particles. This is especially true for 

particulate media such as soils in general and sand in particular. This section serves as a 

brief primer on statistical mechanics, particularly as it relates to the particle aggregates as 

random heterogeneous systems of particles. For a much more thorough review of statistical 
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mechanics, the reader is pointed towards the works of Torquato [101], Huang [102], Kardar 

[103], and Sethna [104]. 

Arguably, the most important concept of statistical mechanics drawn from in this 

work, is the concept of a statistical ensemble. In broad terms, a statistical ensemble is a 

compilation of conceivable “realizations” of a system resulting from non-deterministic pro-

cesses. Here, a “realization” refers to a single sample of the system out of the infinite num-

ber of possible samples drawn from the random medium. In more specific terms, when 

dealing with physics-based modeling, a statistical ensemble is a model composed of many 

copies of a system in its different possible states, considered simultaneously. Another way 

to state this is that the Statistical Ensemble is a probability distribution for the state of the 

system [105]. For the concrete case of a particle model of a geomaterial such as the sand 

considered herein, the ensemble may be defined as a collection of particle packings of a 

finite size, wherein the cumulative distribution tends to that of a single packing of a near-

infinite number of particles. 

The idea here may be distilled down to the simple fact that a Discrete Element 

Model containing a near-infinite number of particles is both impractical and computation-

ally prohibitive. However, a sufficiently large number of concurrent models of finite sizes, 

is quite feasible, especially so with access to High Performance Computing (HPC) re-

sources. These models of finite size are henceforth called “realizations”, wherein each is a 

random realization of a possible collection of particles and properties of the constituent 

grains. 

Ensemble Averaging is the computation of the average, or possibly the statistical 

distribution, of a certain quantity for an ensemble of realizations. In this study, the 
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ensemble is a collection of Discrete Element Models, each of which represents a realization 

of the system of grains. 

When discussing heterogeneous materials, statistical descriptors and metrics are 

useful in describing and quantifying the geometry of the system. The general term for these 

statistical geometry descriptors is microstructural correlation functions [101]. The first 

important types of correlation functions are n-point probability functions. These func-

tions were introduced by Brown [106] as a means of deriving effective transport properties 

in random media. However, as statistical descriptors, they are also useful in determining 

mechanical properties of heterogeneous materials. They have, in fact, successfully been 

used to determine effective material elastic moduli by several authors [107-109].  

Using binary variables to describe two contrasting phases in a system, an n-point 

probability functions expresses the probability of finding n points 1 2, , , nx x x  in phase i 

as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i(i)

n 1 2 n 1 2 n
x ,x , , x x x x   (2.27) 

where angular brackets indicate an ensemble average. Equation (2.27) gives the probability 

of the ensemble consisting of n points 1 2, , , nx x x  being found in phase i. Following sim-

ilar logic and derivation, the two-point “full-contrast” probability of finding point 1x  in 

phase 1, while also finding point 2x  in phase 2 is given by 

 ( ) ( ) ( ) ( ) ( )  −
  

1 1(12)

2 1 2 1 2
x ,x x 1 x   (2.28) 

This formulism can be extended to the case of polydisperse spherical microstruc-

tures. Doing this results in two edge cases, the case of overlapping or fully-penetrable 
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spheres, and the case of rigid or completely impenetrable spheres. For the former, the n-

point probability function for phase 1 may be derived to be: 

 ( ) ( )  − 
 n n n n

x exp x ;R   (2.29) 

where 
n

 is the volume of the union on n d-dimensional spheres of radius R.  

Surface correlation functions contain information about a random interface av 

and are of basic importance in the trapping and flow problems. In this context, letting phase 

1 denote the fluid or "void" phase, and phase 2 the "solid" phase. The simplest surface 

correlation function is the specific surface s(x) (interface area per unit volume) at point x, 

which is a one-point correlation function for statistically inhomogeneous media, i.e. 

 (x)= (x)   (2.30) 

Another interesting and useful statistical measure is called the lineal-path func-

tion. For statistically isotropic media, it is defined as follows: 

 
( ) ( )             

       .

i
z Probability that a line segment of length z lies wholly in

phase i when randomly thrown into the sample

=
  (2.31) 

In stochastic geometry, the quantity 
( ) ( )1
i

i L z  −
 

  is sometimes referred to as the 

linear contact distribution function. The lineal-path function is a lower-order microstruc-

tural function, since it is a lower-order case of the canonical n-point correlation function. 

A quantity related to the lineal-path function is the chord-length probability den-

sity function. Chords are all of the line segments between intersections of an infinitely 

long line with the two-phase interface. The density function 
( ) ( )i

p z   is defined for statis-

tically isotropic media as follows: 
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( ) ( )dz = Probability of finding a chord of length between z and z +dz

in phase i.

i
p z

  (2.32) 

Propagation of Uncertainty at the Mesoscale 

Among the characteristics that make the constitutive behavior of geomaterials dif-

ferent from many other materials, is the degree of variability and uncertainty exhibited in 

the constitutive response. Certainly, much of this uncertainty is epistemic. Given just the 

right sample of the material, prepared in just the right way, submitted to just the right type, 

magnitude, and path of loading, it would be possible to predict fairly accurately how the 

material will respond to the environmental loading under investigation. However, tailor-

made material constitutive characterization is not within the realm of possibility for virtu-

ally any real-world application. What is far more attainable, is characterization of the con-

stitutive properties within certain bounds, meeting certain cumulative distributions if run 

through enough scenarios. This is where uncertainty quantification (UQ) enters the stage 

in this framework. 

Uncertainty Quantification may be defined as the applied convergence of statistics 

and probability theory [110]. It is the UQ “way” to treat a problem probabilistically using 

mathematical models with parameters subject to some known or estimated variability. The 

most common type of Uncertainty Quantification problem is known as a problem of “for-

ward uncertainty propagation”, often called simply “propagation of uncertainty”. Propaga-

tion of uncertainty aims to quantify the uncertainty in the outputs of a process from the 

uncertainty inherent in its inputs. This type of input uncertainty may also be referred to as 

“parametric variability”. Possible objectives of a propagation of uncertainty analysis may 

include: 
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• To evaluate the moments of the output histogram, such as means, deviation 

etc. 

• To identify a continuous or discrete statistical distribution that accurately 

describes the range of process outputs. 

• To establish confidence limits on the expected process outcomes. This is 

also known as reliability analysis. 

In the current framework, uncertainty quantification refers specifically to propaga-

tion of uncertainty from experimental data onto mesoscale modeling then across computa-

tional modeling paradigms. The measured micromechanical properties and the variability 

therein are used to model the mesoscale response using Discrete Element ensembles. The 

output then is uncertainty inherent to mechanical response parameters in particulate media. 

This is sampled from the discrete modeling paradigm of the Discrete Element Method, then 

propagated in turn as uncertain input to the continuum modeling paradigm of the Finite 

Element Method. 

Model Calibration through Mathematical Optimization  

In applied mathematics and computational modeling, an optimization problem is 

one where there is no unique solution and the best choice of possible solutions must be 

identified. There are two broad types of optimization problems, combinatorial optimization 

and continuous optimization. Combinatorial optimization deals with discrete values or re-

alizations of variables. This work does not deal with combinatorial optimization. Continu-

ous optimization, on the other hand, deals with continuous variables and can include con-

straints and multimodality.  

The standard form of a continuous optimization problem may be written as [111]: 
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minimize ( )

subject to ( ) 0, 1, ,

( ) 0, 1, ,

i

i

x f x

g x i m

h x i p

 =

= =

  (2.33) 

where ( ) : nf x →  is the objective function that needs to be minimized over x, 

( ) 0ig x   are inequality constraints, and ( ) 0ih x =  are equality constraints.  

An objective function is a function that maps values of variables to a real number 

that represents the cost or reward associated with the variable value. When reward is used, 

the objective function is called a Reward or Profit Function and the goal of optimization is 

to maximize it. When cost is used, the Objective Function is termed a Loss Function and 

the goal of the optimization problem is to minimize the cost or loss number. In the context 

of Computational Modeling, an objective function is typically a Loss Function where the 

“cost” is some measure of the computational error relative to an objective measure such as 

experimental testing.  

Optimization algorithms include Local as well as Global approaches. Local optimi-

zation approaches seek the local best solution or local minimum with no consideration to 

the possibility there may be a lower minimum in a distant region of the solution space. The 

local approach is well-suited to problems with a monotonic objective function. However, 

if the objective function is “bumpy”, then a global approach is required to ensure the opti-

mization has not converged to a local minimum that does not represent the optimal global 

result. 

Additionally, optimization algorithms may be classified as either Gradient-based or 

Derivative-free methods. Gradient-based methods have the best accuracy and convergence 

rates; however, they require the computational code to provide analytic gradients, which is 

often not possible when dealing with Computational Fluid Dynamics and Finite Element 
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Method codes. This is where derivative-free methods are useful. They are inherently more 

expensive computationally then gradient-based methods, however they benefit greatly 

from parallelism and can approach the speed of gradient-based methods with sufficient 

asynchronous concurrency [112].  
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CHAPTER 3 

FORMULATION OF COMPUTATIONAL AND MATHEMATICAL MODELS 

This chapter presents descriptions and technical details of the computational and 

mathematical paradigms used in this work. There are two computational mechanics frame-

works for modeling the material, another two computational learning and optimization 

frameworks for training the mechanics frameworks, and a statistical mechanics framework 

to describe the inherent heterogeneity of the material parameters and resulting response. 

The first computational mechanics model type is the one used for mesoscale modeling of 

sand, the Discrete Element Method (DEM). The second computational mechanics model, 

is a continuum mechanical model called the Hybrid Elastic Plastic (HEP) model, developed 

and used mainly for modeling granular media in hydrocode applications. To reiterate what 

was previously stated, the HEP model is an arbitrary choice of a macroscale/continuum 

model, the multiscale analysis carried out herein can be adapted to other continuum models 

of granular media. 

Discrete Element Modeling of Sand 

Discrete Element Method (DEM) is the name given to a collection of numerical 

methods used to model the motion, forces, and interactions of particles. The method was 

originally developed by Cundall and Strack [113]  

 

 



51 

 

 

 

Explicit Numerical Scheme 

DEM employs an explicit numerical scheme to integrate the motion of spherical 

particles. This motion consists of both translational and rotational degrees of freedom 

(DOF), represented by the following equations of motion 

 
2

2i

d
m

dt
=i ix F   (3.1) 

 
i

d
I

dt
=

i i
ω T   (3.2) 

where 
im  represents the mas of particle i, 

ix  represents the position vector of the particle 

and 
iF  represents the body force vector on particle i. The rotational equation of motion 

contains the particles moment of inertia iI , the particle’s angular velocity vector 
iω , and 

the total torque vector 
iT .  

The integration scheme is the typical integration scheme used in explicit codes, the 

”leapfrog” scheme, which is a variant of the Verlet integration scheme [114, 115]. The 

name of the scheme is a nod to the scheme’s pattern of computing even derivatives at the 

current time-step, while computing odd derivatives mid-step. 

Recall that an integration scheme is needed to compute the updated position of a 

particle from its current position 
ix  using its current acceleration 2 2 ( )d dt=i ix x . The 

acceleration is in turn computed from the force 
iF  using Newton’s first law: 

 
im

= i
i

F
x   (3.3) 

When using a second order finite difference scheme with time-step t , Equation 

(3.3) becomes: 
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0

0

2

2

t

− +− +




i i i
i

x x x
x   (3.4) 

where 0

ix  is the current acceleration, 0

ix  is the current position, +

ix  is the updated position, 

and −

ix  is the previous position. If the updated particle position is required, Equation (3.4) 

is expressed as: 

 0 0 22 t+ −= − + u u u u   (3.5) 

which may be rewritten as: 

 
0

0 0t t
t

−
+  −
= +  +  

 

u u
u u u   (3.6) 

Note that the first term inside the parentheses of Equation (3.6) represents the mean veloc-

ity during the previous step 

 
0

t

−
− −



u u
u   (3.7) 

Using Equation (3.7), Equation (3.6) may be written as: 

 ( )0 0t t+ −= +  + u u u u   (3.8) 

The algorithm then is succinctly described by Equations (3.9) and (3.10) 

 0 t+ −= + u u u   (3.9) 

 0 2t+ += + u u u   (3.10) 

The leapfrog pattern can be clearly discerned here, where the particle positions are known 

at multiples of t , while velocities  are known at midsteps 2t t  .  

Particle orientation is computed similarly to the position. The current angular ac-

celeration is 
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iI

=0 i
i

T
ω   (3.11) 

Following the familiar scheme, an expression analogous to Equation (3.9) is obtained 

 0t+ −= +ω ω ω   (3.12) 

 

 

Contact Model 

The contact force used in the discrete element particle model may follow one of 

two formulations. The first formulation, henceforth referred to as Hertzian contact, re-

sembles the Hertz-Mindlin solution [116], which is valid for elastic bodies in contact. The 

elastic normal force in the Hertzian solution is expressed as 

 * * 3 2

,

4

3
n el nF E R u=  (3.13) 

Where *E  and *R  represent the equivalent effective Young’s modulus and particle 

radius, respectively. These are determined from the contacting particle parameters 

 

1
2 2

* 1 2

1 2

1 1
E

E E

 
−

 − −
= − 
 

  (3.14) 

 

1

*

1 2

1 1
R

R R

−

 
= + 
 

  (3.15) 

where 2

1  and 2

1  are the Poisson ratios of the interacting particles. 

 The shear force is linear with respect to the relative sliding displacement at the 

contact, assuming the no micro-slip solution of Hertzian contact. 

 
* *8s n sF G R u u=

 (3.16) 

with *G  being the equivalent shear modulus. Finally, the normal and tangential 

contact stiffnesses can be written as 
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* *2n nk E R u=

 (3.17) 

 
* *8s nk G R u=

 (3.18) 

There are some alternate contact models that bear mentioning. A simple normal 

contact model is the contact model from the original DEM formulation of Cundall and 

Strack [113]. This model uses a linear spring formulation for the normal contact stiffness 

rather than the Hertz formulation of  Equation (3.13). On the other side of the complexity 

spectrum, there are some elasto-plastic contact models that account for hysteresis in un-

loading of the grains at contact, such as the Walton and Braun elastoplastic contact law 

[117], and the Thornton elastic-perfectly plastic contact law [118, 119]. Finally, an often-

used alternative tangential contact model is the Mindlin-Deresiewicz model [120], which 

tries to  account for micro-slip of the contact surface. 

A frictional dissipation mechanism is included in the current DEM formulation as 

in most DE simulation packages. This takes the form of the following frictional Mohr-

Coulomb sliding criterion 

 max ,s s n elF F F =   (3.19) 

where   is the coefficient of interparticle friction. 

Contact damping in both the normal and tangential directions is included in the 

contact model used herein. This is done using a normal contact viscous force: 

 , ,n v n n relF v=   (3.20) 

where n  is the normal contact viscous damping ratio and ,n relv  is the normal relative ve-

locity, or the rate of inter-penetration of the contacting particles. Similarly, the tangential 

contact viscous force used is: 



55 

 

 

 

  

 
, ,s v s s relF v=   (3.21) 

where 
s  is the tangential contact viscous damping ratio and ,s relv  is the tangential relative 

velocity, or the rate of sliding between the contacting particles. The viscous damping ratios 

are related to the interparticle coefficients of restitution by the following relations: 

 
( )

( )( )
22

log

log

n

n

n

e

e





−
=

+

  (3.22) 

 
( )

( )( )
22

log

log

s

s

s

e

e





−
=

+

  (3.23) 

Another important aspect of particle contact modeling is cohesion between parti-

cles. Sand is typically considered a cohesionless material, and rightly so. However, cohe-

sion may be a good approximation for capillary effects, and for some sands it can accu-

rately model chemical cementation.  The cohesion model used herein is the Derjaguin-

Muller-Toporov (DMT) model [121]. In the DMT model the contact profile is the same as 

for Hertzian contact but with the added assumption of adhesion outside the area of contact. 

The radius of contact between two spheres from DMT theory is 

 
( )3 3

= 4
4 *

R
a F R

E
+

  (3.24) 

and the pull-off force is 

 4cF R= −   (3.25) 

 

Global Damping Mechanism 

The global damping mechanism used in the Yade DEM formulation is a type of 

artificial numerical damping. Such a mechanism is required to ensure that the quasi-static 
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assumption is reasonable, by dissipating some of the kinetic energy of particles in the 

model. In Yade, it is implemented in such a way as to decrease only those forces that in-

crease particle velocities, and conversely to increase those forces that decrease particle ve-

locities. Since this must be done by component, it is clear this damping scheme is non-

physical. The damping scheme below was originally proposed by Cundall. 

 
( )

( )  0sgn , ,dk
d k k

k

k x y z


= − 
F

F u
F

  (3.26) 

where 
d  is the damping coefficient. There are several advantages to formulating numeri-

cal damping in this way [122]: 

• By acting on accelerations, uniform motion  in the model is not constrained. 

• All particles are equally damped, regardless of their eigenfrequencies. 

• The damping coefficient is dimensionless. 

In Yade, an adapted form of Equation (3.26) is used which replaces the midstep 

velocity 0

ku  by an on-step estimate of it. 

 
( ) 0

sgn
2

dk k
d k k

k

t
 −

   
= − +  

  

F u
F u

F
  (3.27) 

This is done in order to prevent oscillation of a particle back and forth when the 

velocity changes its sign due to the force update at each step.  

Weibull Survival Probabilities of Sand Grains 

Weibull [123] proposed the following equation for the survival probability sP  for 

material blocks of volume 0V  under normalized tensile stress: 

 ( )0

0

exp

m

sP V




  
 = − 
   

  (3.28) 
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where ( )0sP V  is the probability of survival of a particle of volume 
0V  under a characteristic 

stress of 2F d = ,  is the magnitude of characteristic stress where 37% of the blocks 

survive, and m  is known as the Weibull modulus or the m-modulus. The m-modulus de-

scribes variability in strength, a higher m-modulus indicates decreasing variability. 

For spherical particles of varying volumes, as pointed out by Nakata [28] Equation 

(3.28) may be written as: 

 ( )
0 0

exp

m

s

V
P V

V





  
 = −  
   

  (3.29) 

or, in terms of particle diameters: 

 ( )
3

0 0

exp

m

s

D
P D

D





    
 = −   
     

  (3.30) 

For a sand grain of diameter D , Equation (3.30) gives the probability that the grain sur-

vives intact when subjected to a force equal to 2F D=  . 

A more useful quantity for particle aggregate simulations using DEM, is the prob-

ability density function (PDF) of grain strengths. This may be obtained as the derivative of 

the survival probability function which actually is the complement of the cumulative dis-

tribution function (CDF). 

 

3 3
1

0 0 0 0

exp

m
m

s

m

P D D
m

D D

 

  

−         
 = −       

          

  (3.31) 

This PDF of grain strengths may be visualized as a surface dependent on grain stresses and 

diameters, as illustrated in Figure 0.1 below. 
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Figure 0.1: Grain probability distribution of normalized strengths for normalized diame-

ters 

 

It should be noted that Equation (3.30) implies a sort of “size-hardening law”, 

whereby the larger the grain the weaker it is expected to be, and vice-versa. This may be 

qualified by modifying the expression so as to compare the characteristic stresses for D  

and
0D , which results in the following equation. 

 ( ) ( )

3

0 0 0

0

mD
D D

D
 

−

 
=  

 
  (3.32) 

Finally, in order to make Weibull survival usable directly in statistical mechanics 

mesoscale DE models, an expression for   is required. Such an expression needs to take 

into account both the experimental results for characteristic stress, and the stochastic nature 
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of grain survival. This can be done by solving Equation (3.30) for  and substituting the 

survival function 
sP  with a randomly generated survival probability qP  for particle q  

 ( )

1
3

0
0 ln

m

q q

q

D
P

D
 

  
 = −      

  (3.33) 

where qP  is drawn from the uniform distribution over [0,1]. Equation (3.33) is a match for 

2-parameter Weibull random sampling as implemented in NumPy [124]. The scale param-

eter for 2-parameter Weibull sampling in this case is simply 

3

0
0

m

q

D

D
 

 
=   

 

 . 

Upon crush-up, a spherical particle is replaced by an “Apollonian” spherical pack-

ing as shown in Figure 0.2. The use of the Apollonian fractal packing algorithm goes be-

yond convenience and aesthetic considerations. Experimental observations of the evolution 

of particle size distributions find a fractal distribution with an exponent of ~2.5 [125]. This 

agrees remarkably well with the Apollonian packing’s fractal number of ~2.47 [126]. 

  

Figure 0.2: Apollonian Sphere Packings at increasing levels of refinement 
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Brazilian Criterion of Grain Fracture 

 

The crushing criterion used here is the so-called “Brazilian” criterion [127-129]. 

This criterion derives its name from the use of the distribution of stress in a 1D compression 

test, also widely known as a Brazilian test. The maximum tensile stress in such a test is: 

 1 33

2
t

 


−
=   (3.34) 

where 
1  is the major principal stress and 

3  is the minor principal stress.  

A particle that meets the crushing criterion is replaced by an Apollonian packing 

which has been rotated in 3D space so that the major principal stress bears down on the 

assumed fracture axis of the fragments. This allows for “blowout” of the packing similar 

to the blowout fracture seen in a Brazilian test. Figure 0.3 illustrates the loading and blow-

out of the Apollonian packing under 1D compression (
3 0 = ). 

  

Figure 0.3: Apollonian packing blowout under 1D compression 
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Hybrid-Elastic-Plastic Models 

The hybrid-elastic-plastic (HEP) designation refers to a conglomeration of material 

model fits rather than a single monolithic model. However, for the sake of conciseness, it 

will henceforth be usually referred to as the “HEP model”. Development of the HEP model 

was originally carried out by researchers at the Engineer Research and Development Center 

(ERDC) of the U.S. Army Corps of Engineers. The original goal for the model was calcu-

lation of ground shock from conventional weapons for geologic materials [130, 131]. The 

HEP model was initially implemented in the SABER-PC code [132], a first-principle one-

dimensional, spherically-symmetric, Lagrangian finite element code.  

In line with the original target of HEP model development, advanced equations of 

state (EOS) were implemented for the bulk material response. These EOS were judged 

more important for high confinement applications than a rigorous deviatoric-volumetric 

behavior coupling. The bulk response in the HEP model is therefore decoupled from the 

shear response, with a pressure-dependent deviatoric failure surface. Consequently, the 

HEP model cannot predict dilatation under shear. 

The HEP model can simulate complex stress-strain response of geomaterials having 

been fit to several mechanical tests at high confining pressures. The volumetric response is 

separated into multiple regions with nonlinear load-unload-reload paths. The failure sur-

face in the HEP model is exponential, non-associative, and elastic-plastic. This exponential 

failure surface is two-invariant-dependent and has been fit to quasi-static triaxial testing 

data. The Poisson’s ratio scheme typically used is constant but can take different constant 

values in loading and unloading.  
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In the intervening years the HEP model from SABER-PC has been adapted for the 

EPIC Lagrangian Finite Element code [133], which is used in this work as the implemen-

tation of the HEP model for response characterization, as well as for calibration and uncer-

tainty quantification. The procedure used to port the HEP model over to EPIC, was similar 

to the one used to validate it in SABER-PC in the first place [134], and is described below. 

1. Carry out controlled ground shock tests with soil backfills carefully placed 

to tightly controlled and quantified density and water content specifications 

2. Carry out uniaxial (UX) and triaxial (TXC) mechanical property tests on 

specimens of the soil backfill remolded to field-measured densities and 

moisture contents 

3. Analyze the mechanical property data to determine recommended UX 

stress-strain, pressure-volumetric, and stress-path relations, as well as a 

TXC failure relation. 

4. Fit the HEP model to the recommended properties. 

5. Implement these models in SABER/EPIC and simulate the experiments 

6. Compare the ground shock measurements with the calculated results to val-

idate the HEP models and overall methodology. 

 

Volumetric Behavior in the HEP Model 

The equation of state (EOS) used for the HEP is a modified Tillotson EOS [135, 

136], which contains an energy-dependent pressure-volume material response. The EOS is 

formulated as: 

 ( ) ( )max min, , ,h eP P P e   = +   (3.35) 
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where the pressure P  is additively decomposed into an energy independent total hydro-

static triphasic (solid, water, and air) response term 
hP  as well as an energy-dependent term 

eP . The latter is defined as: 

 ( )eP a S e= +   (3.36) 

with: 

 

2

0

1

b
S

e

e

=

+

  (3.37) 

where a, b, and 
0e  are constants.  

The hydrostatic compressibility term 
hP  is calculated through an energy-independ-

ent hysteretic EOS. This mean the pressure-compression ( P − ) relation is evaluated for 

loading as well as unloading in both compression and tension. The current value of the 

compression is defined as: 

 
0

1





= −   (3.38) 

where   is the current density and 0  is the initial density. The hysteresis loop is collapsed 

into a curve for compression beyond ( ,c cP  ), where c denotes the point of void closure, as 

illustrated in Figure 0.4. 
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Figure 0.4: Pressure-compression behavior in the HEP model 

 

The EOS, as currently implemented, contains four distinct regions. The initial re-

sponse is characterized as linear elastic through the “elastic toe” of Region 1 ( 1  ). 

Region 2 is identified as a “hysteretic crush-up” region ( 1 c    ). In Region 3, having 

crossed void closure, the bulk behavior is non-hysteretic ( c  ). Finally, Region 4 is a 

region of high-pressure pressure response appended to Region 3, which is not used in this 

work, as it requires the direct use of the SABER code (it has not been ported to EPIC). 

For Region 1, the bulk behavior is defined as: 

 0lP K =   (3.39) 

as long as 1  . Note that Region 1 is optional, and may be turned off in the simulation. 
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Region 2 can be modeled with one of two fit types. In a Region 2 Type 1 fit the 

bulk behavior is modeled with a single region power fit, with the pressure defined as:  

 ( ) ( )1 1 1 1lP P K K


   = + − + −   (3.40) 

where: 

 
( )

( )
1 1 1

1

c c

c

P P K
K 

 

 

− − −
=

−
  (3.41) 

and: 

 
( )( )

( )
1 1

1 1 1

c c

c c

K K

P P K

 


 

− −
=

− − −
  (3.42) 

Note that with the Type 1 fit, it is assumed that 
1 c    , 

2 0 = , and 
1 1 0P K = . 

For a Region 2 Type 2 fit, two distinct power fit sections are used. The pressure is 

defined as: 

 ( ) ( ) i

il i i i iP P K K


   = + − + −   (3.43) 

where 1i =  when 1 2     and 2i =  when 2 c    . The other variables are as de-

fined below: 

 
( )

( )1 1

2 1 1 2 1

2 1

P P K
K 

 

 

− − −
=

−
  (3.44) 

 
( )( )

( )
2 1 2 1

1

2 1 1 2 1

K K

P P K

 


 

− −
=

− − −
  (3.45) 

 

 
( )

( )2 2

2 2 2

2

c c

c

P P K
K 

 

 

− − −
=

−
  (3.46) 

 
( )( )

( )
2 2

2

2 2 2

c c

c c

K K

P P K

 


 

− −
=

− − −
  (3.47) 
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Note that with the Type 2 fit, it is assumed that 
1 c     and 

1 2 0   . 

Finally, in Region 3 where 
c  , a quadratic fit is used for the simple HEP model. 

The pressure is defined as: 

 ( ) ( )
2

l c c c cP P K B   = + − + −   (3.48) 

where B , 
c , 

cK , and 
cP  are considered material constants. 

Unloading and reloading in the HEP model can be controlled through several op-

tions. In the elastic toe of Region 1, unloading and reloading both proceed along the same 

line as loading. 

 0u rlP P K = =   (3.49) 

In Region 2 there are two options for unloading, linear unloading fans or parallel 

unloading toes. The unloading pressure if choosing nonlinear unloading, is defined as: 

 

 ( ) ( )u s s sP K K


   = − + −   (3.50) 

where: 

 
( )

( )
max max

max 1

s sP K
K 

 

 

− −
=

−
  (3.51) 

and: 

 
( )( )

( )
max

max max

s t s

s s

K K

P K

 


 

− −
=

− −
  (3.52) 

where tK  is the initial unloading slope with value restricted so that it is greater than or 

equal to the slope of the virgin loading curve at max . There are also two options for re-

loading in hysteretic part of Region 2. Option 1 is to match the unloading curve exactly. 
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Option 2 is to reload to a point between (
max max,P  ) and (

min min,P  ). The latter option re-

sults in the following expression for the reloading pressure. 

 ( )min minr rP P K  = + −   (3.53) 

where: 

 max min

max min

r

P P
K

 

−
=

−
  (3.54) 

and: 

 ( )min minuP P =   (3.55) 

Non-hysteretic unloading and reloading starts upon “full compaction”, that is once 

max c   and r c    . The unloading pressure following full compaction is defined 

as: 

 ( ) ( )u r r rP K K


   = − + −   (3.56) 

where: 

 
( )

( )
c r c r

c r

P K
K 

 

 

− −
=

−
  (3.57) 

and: 

 
( )( )

( )
c r c r

c r c r

K K

P K

 


 

− −
=

− −
  (3.58) 

Note that when c  , the unloading equations are identical to the loading equations, the 

region is non-hysteretic. 

 

Deviatoric Behavior in the HEP Model 
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By comparison with the bulk response, the deviatoric response in the HEP model 

is rather simple. The HEP model uses an exponential failure surface and constant Poisson’s 

ratios, 
l  for loading and 

u  for unloading. This is illustrated in Figure 0.5. 

  

Figure 0.5: Simple HEP deviatoric behavior 

 

The yield surface for the simple HEP (SHEP) model is defined as: 

 0B P
Y A C e= −   (3.59) 

where A , C , and 0B  are constants and Y  is in terms of the effective stress or principal 

stress difference q . 

 1 3 23q J = − =   (3.60) 

 The shear modulus G  is defined as: 
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max

1 2
min 1.5 ,

1
G B G





− 
=  + 

  (3.61) 

where the local bulk modulus B  is defined as: 

 ( )1
dP

B
d




= −   (3.62) 

Statistical Ensemble Generation and Analysis 

Chapter 2 introduced the concept of the statistical ensemble as it pertains to the 

current study. The section that follows describes the particulars of the integration of 

mesoscale modeling with the Discrete Element Method within the statistical ensemble for-

malism. The first part of the section describes the two different types of ensembles used in 

this study. The rest of the section describes the statistical tools used to quantify the results 

of the ensemble modeling, including parameter fitting, anomaly detection, and goodness 

of fit measurements. 

Generation of Ab-Initio Realizations for Homogenization 

As was previously mentioned, in the current study there are two types of ensembles. 

Each of these ensembles contains different, though similar realizations. In fact, it is possi-

ble, though not very likely, that one or more realizations in the first type is statistically 

identical to a realization in the second type of ensemble. What differs in the realizations of 

the second type of ensemble from the first is the starting conditions. The first ensemble is 

composed of realizations generated “from scratch” (ab-initio) using random sampling of 

the known Particle Size Distribution (PSD). Each of these Ab-Initio realizations contains 

the same finite number of particles confined to the same initial uniform isotropic stress. 

Thus, the ensemble of Ab-Initio mesoscale realizations is not representative of the effective 

mesoscale statistics of the homogenized medium. The second type of ensemble, presented 
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in the next section, is drawn directly from the RVE scale and as such is representative of 

the effective properties of the medium at the mesoscale. Rather, the Ab-Initio realizations 

are crucial to the determination of the size of the RVE. Ab-Initio realizations of increasing 

size are created and an ensemble of them used in mesoscale modeling until the Hill-Mandel 

condition is met. The window size at which the Hill-Condition is finally met, is considered 

to be the RVE. That realization, a model of the RVE with Discrete Elements, can then be 

partitioned and the resulting ensemble used for mesoscale effective property distributions 

of the constitutive behavior of the medium. 

The Ab-Initio ensemble is created in four steps as follows. 

Step 1 - a massive 1x108 particle Discrete Element Model, henceforth called the 

“source model”, is created using the “make cloud” method [137]. The use of the word 

“cloud” here refers to the fact that the total particle volume is a minuscule fraction of the 

bounding volume, on the order of 1x10-5 giving the particle model an effective porosity of 

greater than 99.999%. The “cloud” in Yade can be generated using several options, includ-

ing a monodisperse, a polydisperse option with a normal distribution using only the mean 

and the standard deviation, or given a Particle Size Distribution in histogram format. The 

last option is used in this study, allowing the source model to mirror the PSD determined 

using sieve data. The version of “make cloud” used to build the source model in this study 

is a slightly modified version, with the interference checking (checking a particle is not 

placed where another already exists) of the main version of Yade disabled. This was done 

to make it possible to build such a massive DE model in a realistic amount of time, and 

because with the aforementioned porosity value interference is not an issue. 
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Step 2 - a random sampling algorithm is used to choose particles from the source 

model for the realizations required to build the ensembles. The random sampling algorithm 

used here is the “random choice” module of the NumPy (Numerical Python) library [124]. 

The random choice method chooses n integers at random from the set of positive integers 

less than or equal to the size of the source model (1x108). Here n is the size of the realization 

for the particular ensemble size. In the mesoscale modeling carried out in this study, ab-

initio ensembles consist of realizations of n=1x103, n=1x104, n=1x105, n=1x106, and 

n=5x106 particles. The integer chosen by the sampling algorithm represents a particle index 

number from the source model. To ensure randomness, particles may be chosen more than 

once by setting the “Replace” parameter in the random choice method to “True”. 

Step 3 - each realization DEM is gradually confined to a prescribed average iso-

tropic stress. This is done using the “virtual wall” approach common to most Discrete El-

ement packages and not using the novel surface tracking micromechanical boundaries im-

plemented and described in Chapter 4. The virtual wall approach essentially uses bounding 

planes to restrict the particles from moving outside the bounded volume. The reason for 

using this bounding box approach for this step is twofold. First, this approach is robust and 

computationally very efficient due to the use of so-called “internal compaction”. Internal 

compaction refers to the fact that confinement is not imposed by moving the boundaries, 

but rather by uniformly and gradually increasing the particle sizes [138]. The second reason 

for using the bounding box approach in this step, is to create mesoscale models that resem-

ble the continuum mechanical concept of “infinitesimal point or element”. This is im-

portant because the use of the Cauchy stress tensor as well as deformation gradient carries 

the underlying assumption of Cartesian geometry. Furthermore, computing ensemble 
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response results is simpler when the cardinal directions are orthogonal to the principal di-

rections. 

Figure 0.6 shows four typical 1x104 particle ab-initio realizations used in the Eglin 

sand mesoscale modeling carried out in this study.  

Figure 0.6 shows these mesoscale realizations as they are confined from the “cloud” 

state with a porosity of almost unity to an average wall isotropic confinement stress of 5 

MPa. 
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Figure 0.6: Four typical 1x104 particle ab-initio realizations confined to average isotropic 

stress of 5 MPa in a “bounding box” 
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Step 4 – each realization is loaded to a uniform isotropic stress using the novel 

micromechanical boundary described in Chapter 4. First, the typical DEM virtual walls are 

removed, then the stress tensor σ  is applied to the realization defined as: 

 
c=σ I   (3.63) 

where 
c  is the confinement level desired, while I  is the identity tensor. Note that 

c  here is the same as the average isotropic stress imposed in Step 3. When uniform stress 

is first applied to a realization model, there is a lot of acceleration of boundary particles as 

the force applied by the virtual walls is typically very different from the force applied when 

uniform stress is applied using the micromechanical boundaries. To avoid excessive iner-

tial effects in these realization, adaptive damping is applied that forces the average velocity 

gradient below a certain value as described earlier in the “Quasi-Static Modeling” section 

of this chapter. 

Figure 0.7 shows the same four typical 1x104 particle ab-initio realizations from  

Figure 0.6 as the virtual walls in the simulation are removed and replaced with the 

LaGuerre-Voronoi diagrams. The realizations then are gradually loaded to a micromechan-

ical uniform isotropic confinement stress of 5 MPa. 
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Figure 0.7: Four typical 1x104 particle ab-initio realizations gradually confined to a uni-

form isotropic micro-stress of 5MPa 
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Iterative Domain Partitioning for Propagation of Uncertainty 

Mesoscale bounds of effective particulate aggregate properties were discussed in 

Chapter 2, as was propagation of uncertainty at the mesoscale. One of the main objectives 

of the current study is to use mesoscale models to quantify uncertainty associated with 

modeling particulate media at scales comparable to the size of the RVE, including scales 

smaller than the RVE. For particulate media this is not simply a matter of academic and 

scientific de rigueur. Finite Element meshes of concrete, gravel, sand, rock etc. cannot be 

expected to have elements whose size is always greater than the RVE. When the element 

size is smaller than the RVE it is of course necessary to account for the non-determinism 

present in the system. 

The first type of ensemble in this study, the ensemble composed of ab-initio reali-

zation, is not representative of the homogenized medium and therefore unsuitable for prop-

agation of uncertainty. What is required is a different ensemble, an ensemble composed of 

realizations drawn from the homogenized medium, the RVE. This second type of ensemble 

is constructed in the current study using “iterative domain partitioning” in the sense of Huet 

[139-143]. Iterative domain partitioning for mesoscale bounds consists of dividing the 

RVE into increasingly smaller subdomains that can be used as realizations for ensemble 

averaging. Ostoja-Starzewski showed that these “partition realizations” need not be com-

mensurate [8], so that the number of realizations that can be drawn from the RVE is not 

restricted. Notwithstanding the latter point, the current study uses commensurate partition 

realizations, as these can be readily drawn from the RVE using an existing approach, do-

main decomposition for distributed memory parallel computations with Message Passing 

Interface (MPI). MPI parallel computation capability is, as of the publication of this study, 
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still in the process of being implemented in Yade [144]. However, the domain decomposi-

tion capability is robust and was adapted for domain partitioning with minor modifications 

required. 

The results of domain partitioning are illustrated in Figure 0.8 and Figure 0.9. A  

particle DE model is partitioned into a grid of 8x8x8 subdomains in Figure 0.8 and a grid 

of 17x17x17 subdomains in Figure 0.9 . 

  
Figure 0.8: RVE-sized 5x106 particle Discrete Element model decomposed into a grid of 

8x8x8 subdomains 
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Figure 0.9: RVE-sized 5x106 particle Discrete Element model decomposed into a grid of 

17x17x17 subdomains 

 

Anomaly Detection with Grubbs Test for Outliers 

One of the difficulties with carrying out large numbers of simulations, such as in 

the context of statistical ensembles, is that it is virtually impossible to check each simula-

tion to verify its results. If a handful of realizations in an ensemble of hundreds produce 

anomalous results, they can skew the ensemble averages and lead to erroneous conclusions. 
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Fortunately, there is a relatively easy to implement test that can detect and filter outliers in 

statistical data. This the well-known the Grubbs’ Test for Outliers [145, 146]. 

Grubbs' test is also known as the maximum normed residual test. Grubbs' test is 

used to detect a single outlier in a univariate data set that follows an approximately normal 

distribution. This outlier is expunged from the dataset and the test is iterated until no out-

liers are detected. 

Grubbs's test is defined for the hypothesis: 

• Null: There are no outliers in the data set 

• Alternative: There is exactly one outlier in the data set 

The Grubbs test statistic is defined as:     

 
1, ,max i N iY Y

G
s

=  −
=   (3.64) 

with Y and s denoting the sample mean and standard deviation, respectively. The Grubbs 

test statistic is the largest absolute deviation from the sample mean in units of the sample 

standard deviation. 

This is the two-sided version of the test. The Grubbs test can also be defined as a 

one-sided test. To test whether the minimum value is an outlier, the test statistic is 

 minY Y
G

s

−
=   (3.65) 

with Ymin denoting the minimum value. To test whether the maximum value is an outlier, 

the test statistic is 

 maxY Y
G

s

−
=   (3.66)     

with Ymax denoting the maximum value. 
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For the two-sided test, the hypothesis of no outliers is rejected at significance level 

α if 
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 with tα/(2N),N−2 denoting the upper critical value of the t-distribution with N − 2 degrees of 

freedom and a significance level of α/(2N). For the one-sided tests, α/(2N) is replaced with 

α/N. 

Weibull Distribution Fitting of Results 

The Weibull distribution is a continuous probability distribution named after Swe-

dish mathematician Waloddi Weibull. He originally proposed the distribution as a model 

for material breaking strength, but recognized the potential of the distribution in his 1951 

paper A Statistical Distribution Function of Wide Applicability [123]. Today, it’s com-

monly used to assess product reliability, analyze life data and model failure times.  

Although it is named after Weibull, who described it in detail, the distribution was 

first identified by Fréchet [147]. It’s first application came shortly after that, by Rosin and 

Rammler [148], in describing a Particle Size Distribution (PSD). In fact, this application is 

the basis of much of the numerical work described in later chapters of this manuscript. The 

Weibull distribution was used to describe some of the experimental data used in the 

mesoscale ensembles here, including the particle size distribution, Young’s moduli of sand 

grains, and the crushing strength of sand grains. It stands to reason then, that the ensemble 

results of mesoscale simulations are fitted to Weibull distributions. 

The probability density function of a Weibull random variable is: 
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  (3.68) 

 

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. Its 

complementary cumulative distribution function is a stretched exponential function. The 

Weibull distribution is related to a number of other probability distributions; in particular, 

it interpolates between the exponential distribution (k = 1) and the Rayleigh distribution (k 

= 2 and 2 = ).  

In engineering mechanics, the shape parameter k of a distribution of strengths is 

known as the Weibull modulus. 

Wasserstein Metric of Statistical Distance 

In statistics, the Wasserstein distance, also known as the earth mover’s distance 

(EMD), is a metric of the difference between two probability distribution functions over a 

region. The EMD moniker comes from an informal interpretation of the histograms as piles 

of dirt, and the metric as the work required to change one pile into the other. The “work” 

here is measured as dimensionless amount multiplied by distance. A more detailed defini-

tion follows. 

A statistical distribution may be represented by a set of clusters, known as a signa-

ture. Instead of assigning a distribution to a set of points in d , they can be clustered and 

the point set can be represented in terms of the clusters. Each cluster is then a single point 

in d  while the fraction of the distribution present in that cluster represents the weight of 

the cluster. The problem to solve here then, is transforming one signature P to another Q 

with minimum work. 
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Assuming signature P has m clusters, while Q has n clusters, the signatures can be 

represented as: 

 
1 1 2 2

1 1 2 2{( ) ( ) (

{( , ),

)

( , ),..., ( , )}

, , , ,... }, ,

p p m pm

q q n qn

P p w p w p w

Q q w q w q w

=

=
  (3.69) 

where ( ),i ip q  are the cluster representatives and ( ),pi qiw w   are the weights of the clusters. 

The objective here is to solve the transportation problem of finding the flow be-

tween 
ip  and jq  that minimizes the overall cost. This problem is expressed below: 

 , ,

1 1

min
m n

i j i j

i j

F f d
= =

=    (3.70) 

subject to the constraints below: 
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  (3.71) 

Hence, the Wasserstein distance is defined as the work normalized by the total flow: 
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Mathematical Optimization Algorithms 

In Chapter 2 the basic concepts of mathematical optimization were introduced. This 

section goes into more detail on the specific optimization algorithms used in the current 

study. There are two algorithms used here and they are both derivative-free, global 
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optimization methods. In fact, they are both genetic algorithms, which is a type of evolu-

tionary algorithm. The Single-Objective Genetic Algorithm (SOGA) is used to calibrate 

individual constitutive parameter values in the continuum model to specific Discrete Ele-

ment ensemble simulations. Thus, in the first stage of calibration the bulk moduli are cali-

brated to isotropic simulations, while the shear moduli are calibrated to deviatoric simula-

tions. Then, in the second stage the whole parameter space is calibrated to all the available 

ensemble simulations at once using the Multi-Objective Genetic Algorithm. This ensures 

the parameters of the FEA model are the best fit to the mesoscale ensemble results. 

Single Objective Genetic Algorithm 

The aim of genetic algorithms is to emulate the behavior of biological genetics us-

ing mathematical operations that model the mechanics of genes. These mathematical op-

erations are typically far less complex than some of the other mathematics used in this 

study. The power of the genetic algorithms does not come from sophisticated math, rather 

from simple, easily programmable, random exchanging of number locations in a sequence. 

In fact, the relevant mathematical operations of genetic algorithms are based on the me-

chanics of the three basic genetic operations: reproduction, crossover, and mutation. 

Here, a search problem is used to explain the way genetic algorithms work. The 

first step in a search problem would be to use bit strings as representatives of the variable 

combinations possible. The bit strings here are used as the computational facsimile of chro-

mosomes. Then, a loss function is used to measure how well a specific combination of 

“chromosomes” does in the search. For a minimization problem, this can be expressed as 

 ( )  1 2 3 4min , , , ,imize f x x x x x x=   (3.73) 

Here, the variables can be represented as a sequence of bits (bit string), as shown below. 
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1 2 3 4

1011 11 101 0110

x x x x

  (3.74) 

The decimal equivalents of the bit strings here are 
1 11x = , 

2 3x = , 
3 5x = , 

4 6x = . The 

ranges for these bit strings are 115 0x  ,  23 0x  ,  37 0x  ,  415 0x  .  The 

bit string representation shown here represents the source of genetic algorithm “magic”. 

Moving from the discrete variables of search algorithms, to the continuous variable space, 

a population of bit strings emulating chromosomes can capture global solutions. This hap-

pens because many points that are possibly local extrema remain in the “gene” pool, so the 

solution does not get stuck at one of these points.  

An optimization using a genetic algorithm proceeds as follows: 

1. The population size is chosen, and the variables are assigned random values 

that correspond to their random bit strings. 

2. Reproduction of the population occurs, whereby bit strings with low loss 

function values are used to form the next “generation” of the variable pop-

ulation. This may be viewed as a computational representation of survival 

of the fittest. 

3. Members of the new generation are paired off randomly. This is done by 

generating two new “offspring” bit strings from the “parent” bit strings 

through a random combinatorial process [149]. 

4. Another genetic concept used in the algorithm is mutation. The reproduc-

tion step can yield a new generation with multiple copies of a bit string, or 

even an entire population of the same string. The mutation step aims to pre-

vent this pitfall by changing a random bit’s value in the string [150].  
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Multi-Objective Genetic Algorithm 

Multi-objective optimization means that there are two or more objective functions 

that need to be optimized simultaneously. Often these are conflicting objectives, such as 

cost and performance. The answer to a multi-objective problem is usually not a single 

point. Rather, it is a set of points called the Pareto front. Each point on the Pareto front 

satisfies the Pareto optimality criterion, which is stated as follows: a feasible vector X  is 

Pareto optimal if there exists no other feasible vector X  which would improve some ob-

jective without causing a simultaneous worsening in at least one other objective. The 

multi-objective optimization problem can be expressed as: 

 1 2,( ( ) ,) ),( ( )kmin f x f x f x x X    (3.75) 

where the number of objectives k is at least 2, and X  is the set of feasible decision vec-

tors. The objective function here is vector-valued, and can be defined as: 

 
1: ,  , ,( ) ( ( ) ( ))k

k

Tf X f x f x f x→ =    (3.76) 

If a feasible point *x  exists that can be improved on one or more objectives simultane-

ously, it is not Pareto optimal: it is said to be “dominated” and the points along the Pareto 

front are said to be “non-dominated.” Conversely, the solution *x X  and its respective 

outcome *( )f x  is called Pareto optimal if there does not exist another solution that domi-

nates it. The set of Pareto optimal outcomes is called the Pareto front, Pareto frontier, or 

Pareto boundary.
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CHAPTER 4 

MICRO-MECHANICAL BOUNDING OF PARTICLE AGGREGATES 

This chapter describes how boundary conditions are typically implemented in par-

ticle-based simulations, then introduces a new method for modeling, loading, and quanti-

fying the stress and deformation characteristics of particle aggregates. This method was 

developed specifically for this study; however, it does fill a known gap in boundary mod-

eling for the broader class of particle-based simulations. As such, it may well have applica-

bility beyond the Discrete Element Method, to other particle-based methods. 

A Line in the Sand – Boundaries of Particle Aggregates 

In Continuum Mechanics, there are two classical types of boundary conditions: (1) 

the displacement boundary condition, also known a homogeneous deformation boundary 

condition, and (2) the traction boundary condition, also known as a uniform stress bound-

ary. These boundaries arise from analogous boundary conditions in Differential Equations; 

the displacement boundary is the continuum mechanics application of the Dirichlet bound-

ary condition, while the traction boundary is the continuum mechanics application of the 

Neumann boundary condition. From these classical boundary conditions, two more types 

of boundary conditions may be defined: mixed orthogonal boundaries, and periodic bound-

aries. Many authors refer to either, or both, of these boundaries as a third or fourth type of 

“classical” boundary, and they may certainly be viewed as such. However, in the context 

of this study, there are two “classical boundaries”, those that provide bounds on the re-

sponse of the medium: the displacement boundary and the traction boundary. The 
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responses of mixed orthogonal boundaries and periodic boundaries are expected to fall 

somewhere between the response of those two bounds.  

These classical boundary conditions are readily implemented in discretization-

based continuum simulation methods such as Finite Element Analysis (FEA). In FEA the 

Dirichlet boundary is imposed when the final displacement is specified for static models, 

or when the velocity at the boundary is specified for dynamic models. The Neumann 

boundary is imposed in FEA by specifying a “pressure” or, more generally, a “stress” on 

element edges, which is then applied as a prescribed force on the boundary nodes. Simi-

larly, for Finite Difference Analysis, or the Finite Volume Method (FVM), the Dirichlet 

boundary can be imposed as a flux value at the boundaries. The Neumann boundary con-

dition can be approximated in FVM using extrapolation, or more commonly, using “ghost 

cells” meant to approximate a flux derivative at the boundary. 

In particle methods with discrete bodies, such as the Discrete Element Method, 

these boundaries have heretofore not been rigorously implemented. Instead of applying the 

classical boundary conditions from Differential Equations, the discretized forms of the 

boundaries from Finite Elements have been approximated using particles of infinite radii 

as boundary “walls”. The positions of these walls in DEM codes are adjusted using either 

a constant velocity, or some type of numerical servo-like control. Prescribing a constant 

velocity on the walls is typically used to simulate a “strain rate”, while numerical servo-

control is typically used to achieve an average “stress”.  

For the majority of applications of the Discrete Element Method in the literature 

thus far, these approximations of boundary conditions are quite reasonable and sufficient. 

This is because DEM is typically used as a macro-scale simulation method, rather than as 
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a micro-scale method within a hierarchical multiscale homogenization framework. The lat-

ter requires that upper and lower response bounds be considered, which dictates that the 

Dirichlet and Neumann boundaries must be implemented. 

This last point has been recognized by several other authors in recent years. Dettmar 

[151] and later Miehe et al [152] implemented micro-mechanical boundaries for Discrete 

Elements using a penalty method, whereby those particles designated as “boundary parti-

cles” receive increasing forces and moments if the boundary conditions are “violated”. Liu 

et al [153] applied micro-mechanical boundaries for 2D Discrete Elements by implement-

ing a servo-control mechanism at each “boundary particle”, with special treatment given 

to “corner particles”. A significant limitation of both these approaches is the need for spe-

cial and permanent designation of “boundary particles”. 

In fact, if the special designation approach is used for the 3D case, there is a need 

to partition the particle aggregate domain into four non-alterable particle subdomains: 1) 

interior particles, 2) single boundary particles, 3) dual boundary or edge boundary particles, 

and 4) triple boundary or corner boundary particles. This limits the utility of the approach, 

since particles that are interior particles at the start cannot become boundary particles, nor 

can single boundary particles become multi-boundary particles or vice-versa. Furthermore, 

and perhaps most importantly, this approach limits the range of deformation that can be 

modeled. Finite strains, as opposed to small strains, result in considerable changes in the 

material structure. These cannot be adequately modeled with a static boundary, since the 

boundary is an intrinsic part of the material structure. In many geotechnical applications, 

the assumption of small strains may be reasonable, however this is not so with the finite 

strain applications typically modeled using hydrocodes. Therefore, the need for a 3D 
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implementation of micro-mechanical boundaries in the Discrete Element Method is quite 

clear.  

A Novel Approach to Particle Aggregate Boundaries 

In the section that follows, a novel approach to micro-mechanical boundary mod-

eling is introduced and described. The approach uses three-dimensional surface reconstruc-

tion with weighted alpha shapes to demarcate the boundaries of discrete particle aggre-

gates. Additionally, the reconstructed boundary is partitioned using modified alpha shape 

weights to construct LaGuerre-Voronoi Diagrams on a model’s surface.  

Voronoi Diagrams and Delaunay Triangulations 

A review of the Voronoi Diagram of points in the Euclidian sense and its dual, the 

Delaunay Triangulation is in order for a proper introduction to alpha-shapes and Laguerre 

Diagrams. Both Euclidian and Laguerre diagrams are considered “affine diagrams”. Let 

 1, , np p=   be a set of points of d . To each 
ip  is associated its Voronoi region 

( )iV p   

 ( )  : ,d

i i jV p x x p x p j n=  −  −     (4.1) 

The region ( )iV p  is the intersection of n-1 half-spaces. Each such half-space con-

tains 
ip   and is bounded by the bisector of 

ip  and some other point of . Since the bisec-

tors are hyperplanes, ( )iV p  is a convex polyhedron and need not be bounded. 

The Euclidean Voronoi diagram of , denoted here as ( )Vor , is the cell com-

plex whose cells are the Voronoi regions and their faces. Equivalently, the Euclidean Vo-

ronoi diagram of  can be defined as the minimization diagram of the distance functions 

, ,i n  , where 
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 ( )i ix x p = −   (4.2) 

Another way to describe the Voronoi diagram is in procedural terms. Let each point 

in the point set is a “generator” point 
kP   generating a Voronoi polygon 

kR . The generator 

point 
1P  generates cell 

1R , point 
2P  generates polygon 

2R  and so on. Then, as noted in 

[154] "all locations in the Voronoi polygon are closer to the generator point of that polygon 

than any other generator point in the Voronoi diagram in Euclidean plane". This definition 

is illustrated in Figure 0.1, where the Voronoi polygon generated by each point can be 

clearly discerned. 

Next, it is important to assert the graph theory concept of a “dual graph”. Consider 

two cell complexes V  and D . Each complex may be considered as the dual of the other if 

there is an involutive relationship between the faces of V  and the faces of D  such that the 

inclusions are reversed. That is to say that for any two faces f  and g  of V , their dual 

faces *f  and *g  satisfy Equation (4.3) 

 
* *f g g f     (4.3) 

This may also be interpreted asserting that D  is a graph that has a vertex for each 

face of V . The dual graph D  has an edge whenever two faces of V  are separated from 

each other by an edge, and a self-loop when the same face appears on both sides of an edge. 

Thus, each edge e  of V  has a corresponding dual edge, whose endpoints are the dual 

vertices corresponding to the faces on either side of e. 
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Figure 0.1: A set of 20 points and their Voronoi polygons 

(https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg) 
 

 

The dual graph of the Voronoi graph is the Delaunay triangulation of a point set. 

The triangulation is also most concisely defined using its dual relation to the Voronoi 

graph. Again, let  1, , np p=   be a set of points of d  and let f  be a face of ( )Vor

. Any point inside face f  can be shown to have the exact same subset f  of closest points 

from . Next consider that the dual of face f  according to the definition provided in the 

preceding paragraph has to be a face defined by the subset f , specifically its convex hull. 

https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg
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( )Del , the Delaunay triangulation of  is simply the cell complex consisting of all the 

dual faces defined by the convex hulls of each and every closest point subset in ( )Vor . 

Because points of  are assumed to be in general position, all the faces of ( )Del  are 

simplices and ( )Del  is a simplicial complex. Common algorithms for finding the De-

launay triangulation of a point set include flip algorithms [155], incremental algorithms 

[156, 157], divide-and-conquer [158, 159], and sweephull [160]. 

Surface Reconstruction with Alpha-Shapes 

The definition of a boundary for free-floating particles in space, also known as a 

“point cloud”, requires some sort of surface reconstruction algorithm. Serendipitously, sur-

face reconstruction from point clouds has been an area of intensive research and progress 

in recent years. This has been spurred by rapid developments in 3D scanning and photo-

grammetry. There are several approaches used to extract an exterior surface from a point 

cloud. These can be divided into three broad categories: explicit surface reconstruction 

techniques, implicit surface reconstruction techniques, and computer vision techniques. 

Two types of explicit reconstruction techniques are Parametric Surface fitting such as B-

splines and NURBS, and Triangulated Surfaces using Delaunay Triangulation and Voronoi 

Diagrams. Implicit surface reconstruction techniques include: the Least Square Method, 

Poisson Reconstruction, the Partial Differential Equation (PDE) Method, and the Level Set 

Method. The two classical Computer Vision Techniques are Shape-from-Shading (SFS) 

and Photometric Stereo (PMS). 

The surface reconstruction method used here is a method based on the concept of 

alpha-shapes, introduced and developed by Edelsbrunner et al. [161] [162]. The alpha-

shape technique relies upon triangulation of surfaces through Delaunay Triangulation and 
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its dual, the Voronoi Diagram. The alpha-shape technique may be considered a generali-

zation of the concept of a “convex hull”, which is the smallest convex set that contains all 

points of interest in a Euclidian plane. For the 2-dimensional case, the alpha-shape concept 

may be described using a disk of radius 1/ as follows:  

• If  = 0, it is a closed half-plane (convex hull) 

• If  > 0, it is closed disk of radius 1/α 

• If  < 0, it is the closure of the complement of a disk of radius −1/α 

While this a simple idea on its surface, it is a concept that can enable surface recon-

struction of complex shapes. Consider the point cloud shown in Figure 0.2. The leftmost 

illustration shows the result of boundary reconstruction using the convex hull approach, 

while the middle illustration shows what is possible using the alpha-shape approach. 

 

Figure 0.2: Alpha-shape reconstruction of a 2D point set boundary 

 

 

A sublime intuitive visualization of the technique was offered in that original paper 

by Edelsbrunner's and Mucke [161]. The -shape may be conceived of as a huge mass of 

ice-cream making up the space d   and containing the points S as harder pieces, perhaps 

nuts, chocolate, or cookie dough. Using an ice-cream spoon with a spherical hollow, it is 

possible to carve out all parts of the ice-cream block that may be reached without bumping 

into the hard pieces, thereby even carving out holes in the inside (e.g. parts not reachable 
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by simply moving the spoon from the outside). This process will eventually result in an 

object bounded by caps, arcs and points. If, instead, all these “round" faces are straightened 

to triangles and line segments, the resulting mass of ice-cream and pieces represents an 

intuitive description of what is called the -shape of S. An example for this process in 2D 

is shown in Figure 0.3 (where the ice-cream spoon is “flattened” and is simply a circle): 

 

Figure 0.3: Alpha-shape reconstruction of a 2D point set boundary 

 

 

Figure 0.3 makes it trivial to understand what the  of an -shape is, it is merely 

the radius of the concave cavity used to carve the domain around a point set. Notice that 

all the circles in Figure 0.3 are the same size.  

Having described the technique in broad terms and physical metaphors, a more 

technical and succinct definition follows.  

First, consider a set of points  in d  in general position. Here “general posi-

tion” is a computational geometry term that refers to the genericity of the set of points, 

which distinguishes it from certain special circumstances. In the current context, general 
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position implies that no 4 points of  lie on a common plane, and no 5 points lie on the 

surface of a common sphere. The Delaunay triangulation of the pointset  is ( )DT . 

Next, consider a sphere (or circle for 2D) of radius  . A simplex   is designated 

as  -exposed if there exists such a sphere that is empty. This is also known as an empty 

circumsphere. A circumsphere of a simplex in ( )DT  is a sphere passing through the 

vertices of this simplex. A circumsphere is said to be empty if it encloses no vertex of the 

triangulation ( )DT . 

  One additional concept must be introduced to properly explain the alpha-shape 

of , the alpha-complex. The alpha-complex ( , )AC   includes all Delaunay simplices 

which have an empty circumsphere with square radius not bigger than . Let 
T  be a 

simplex of ( )DT  with a circumsphere of radius 
T  centered at 

T . For the point set 

, the alpha-complex ( )
 of  is the simplicial subcomplex that meets the follow-

ing criterion.  

A simplex T  is in ( )
  if and only if it meets either of the conditions below: 

• T    and the circumsphere is empty 

• T   is a face of another simplex in ( )
. 

The alpha-shape is just the domain covered by simplices of the alpha-complex. It 

should be noted at this point that the alpha-complex and the shape it describes, bounds 

only the centers of the boundary particles. If it is desired to bound the particles them-

selves, this must be done through some additional computational geometry “magic”. In 
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this work, the “magic” takes the form of LaGuerre-Voronoi Diagrams, also known as 

Power Diagrams  

LaGuerre-Voronoi Diagrams on Particle Aggregate Boundaries 

Laguerre-Voronoi diagrams, also known as power diagrams in the literature are 

fundamentally constructions similar to the Euclidean Voronoi diagrams of points and their 

dual Delaunay triangulations. The main difference lies in replacing the point set  with a 

set of hyperspheres . “Hyperspheres” here implies circles in 2 dimensions and spheres 

in 3 dimensions. The distance function of a point x  to a hypersphere   is referred to as 

the “power” of x  to  , which is the source of one of the names of its eponymous diagram. 

The power of a point x  to hypersphere   with center c  and radius r  is defined as:  

 ( ) ( )
2 2x x c r = − −   (4.4) 

Let  1, , n =  be a set of hyperspheres in d . The hyperspheres of  have 

centers ic , radii 
ir , and power functions ( ) ( )

2 2

i i ix x c r = − − . As for the Voronoi case, 

consider a region within d  consisting of all points with power to i  smaller than or equal 

to their power to the other hyperspheres in . Denoting this region ( )iPow   

 ( ) ( ) ( ) : ,1d

i i jPow x x x j n  =       (4.5) 

There is a set of points that has equal powers to the hyperspheres i  and j . This 

set of points defines a hyperplane ij . This hyperplane is orthogonal to a line joining ic  to 

jc  and is called the “radical hyperplane” of i  and j . This radical hyperplane partitions 

d  into two half-spaces, with half-space 
i

ij  belonging to hypersphere i  and consisting 
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of all points whose power to 
i  is smaller than their power to j . The region ( )iPow   is 

a convex polyhedron consisting of the intersection of all 
i

ij , where i j . 

From the above definition, it follows that there is a cell complex consisting of cells 

which are the power regions of  and their faces. This cell complex is denoted as ( )Pow  

and termed a “power diagram” of . Note that if all the hyperspheres have identical radii, 

the power diagram is identical to the Voronoi diagram of the hypersphere centers. Figure 

0.4 shows a simple 2D power diagram of four circles. 
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Figure 0.4: 2-dimensional Power Diagram of 4 Circles 

(https://commons.wikimedia.org/wiki/File:Power_diagram.svg) 

 

Ancillary Surface Mapping with Regular Grids 

As previously noted, the surface reconstruction algorithm presented in this section 

returns both a list of the boundary particles, as well as their respective area vectors. How-

ever, obtaining strain and stress measures requires that the particle positions, and their area 

vectors need to be computed both for the reference, as well as for the current configuration. 

https://commons.wikimedia.org/wiki/File:Power_diagram.svg
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A highlight of this novel micromechanical boundary implementation is that the 

boundary particles may become interior particles and vice-versa. While this makes micro-

mechanical boundaries more versatile, it does increase computation complexity for origi-

nal-to-deformed mapping schemes such as the deformation gradient. This complexity is 

herein resolved by introducing into the computation a fixed rectangular grid which is “fit-

ted” to the particle aggregate boundary at either configuration. Figure 0.5 illustrates the 

different surface types described. On the left can be seen the Laguerre diagram surface 

consisting of polyhedral quasi-polygons, while on the right can be seen the ancillary rec-

tangular grid surface interpolated to the Laguerre diagram. 

 

 

Figure 0.5: The two types of boundary surfaces considered: a) the power diagram polyg-

onal boundary surface, and b) the ancillary regular grid boundary surface 

 

The interpolation of the ancillary rectangular grid is carried out in two stages. In 

the initial stage, the ancillary grid is stretched and rotated according to the deformation of 
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the particle aggregate as defined from the particle centers. Essentially, this means applying 

a deformation map in the form of a deformation tensor to a tessellated unit cube.  

 = i ix F X   (4.6) 

Here 
ix  represents the position of each grid point in the current configuration, i.e. 

after deformation. Meanwhile, 
iX  represents the position of each grid point in the original 

configuration, i.e. on the unit cube. Figure 0.6 shows the initial tessellated unit cube, as 

well as the surface grid of the unit cube after this first stage of interpolation.  

Additional details on how a deformation tensor can be obtained from the particle 

aggregate model, can be found further down in this chapter under the section “Particle 

Kinematics and the Deformation Gradient Tensor”. 

In the second stage, the ancillary surface grid is stretched to the surface defined by 

the LaGuerre-Voronoi diagram. This is done using the simple linear barycentric interpola-

tion of Eq 

 ( ) ( )
3

1

i i

i

f x f x
=

   (4.7) 

where 
ix  represents the vertices in the triangulation of the LaGuerre-Voronoi diagram 

closest to x , i  represent their barycentric coordinates, and ( )f x  represents the function 

to be interpolated. In this case, it is desired to simply stretch the surface grid points, so 

( )f x  is the radial distance of x  from the center of mass of the particle aggregate. Figure 

0.7 shows again the surface grid of the unit cube after the first stage of interpolation, and 

then after the linear barycentric interpolated stretching on the LaGuerre-Diagram.  
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Figure 0.6: First stage of ancillary surface grid interpolation stage a) tessellated unit 

cube, b) interpolated to centers of boundary particles 

 

 

 

Figure 0.7: Second stage of ancillary surface grid interpolation stage a) interpolated to 

centers of boundary particles, b) interpolated to LaGuerre-Voronoi diagram 
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Numerical Implementation of Boundary Conditions 

This section provides a brief review of the Uniform Boundary Conditions that sat-

isfy the Hill macrohomogeneity condition. These are the Neumann, a.k.a. traction, natural, 

or static uniform boundary condition (SUBC), and the Dirichlet ,  a.k.a. displacement, es-

sential, or kinematic uniform boundary condition (KUBC). A mixed-orthogonal uniform 

boundary condition also can satisfy the Hill condition provided certain restrictions. 

Kinematic Uniform Boundaries 

The displacement boundary condition in solid mechanics is based upon the Di-

richlet boundary condition for both ordinary and partial differential equations. This bound-

ary condition specifies the value of a solution at the boundary. For an ordinary differential 

equation (ODE) such as: 

 0y y + =   (4.8) 

the Dirichlet boundary condition on the interval  ,a b  may take the form: 

 ( ) ( ),y a y b = =   (4.9) 

where   and   are known values. 

Similarly, for a partial differential equation (PDE) such as: 

 2 0y y + =   (4.10) 

where 2  denotes the Laplace operator, the Dirichlet boundary condition on a domain 

n  assumes the form: 

 ( ) ( )y x f x x=     (4.11) 

where ( )f x  is a known function on the domain boundary  .  
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To see how to apply the KUBC to a particle aggregate boundary, consider again 

the nonlinear deformation map of Equation (4.30). The KUBC requires that the boundary 

displacement be set by the applied deformation tensor with no particle rotations. 

 ,q q q=  =x F X Q I  on V   (4.12) 

where, for the sake of clarity, the bar denoting an average has been omitted. It is understood 

that all effective macroscale deformation and stress metrics henceforth imply an averaging 

of the microscale quantities. 

Due to the explicit nature of the Discrete Element Method, it is necessary to refor-

mulate the expression of Equation (4.12) in terms of velocities. To that effect consider the 

time derivative of the first part of Equation (4.13): 

 q q= x F X   (4.13) 

where F  is the time derivative of the deformation gradient. Equation (4.13) describes 

how the KUBC affects the boundary of the particle aggregate, however it is not a useful 

expression for implementation of the boundary. This is due to a limitation that has been 

described repeatedly in this chapter, the flux of particles through the boundary makes de-

formation mapping from particle positions impossible. Fortunately, there is a way to im-

pose the KUBC instantaneously through the velocity gradient tensor, which can be done 

on the boundary particles at the current rather than the reference configuration. The ve-

locity gradient tensor may be rewritten in index notation form as: 

 


=


i
ij

j

v
L

x
  (4.14) 

or, using gradient notation as: 

 = L v   (4.15) 
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Furthermore, the velocity gradient can be related to the time derivative of the deformation 

tensor. Consider that 

 


=


i
ij

j

v
F

X
  (4.16) 

Applying the chain rule: 

 
 

=
 

i i
ij

j j

v x
F

x X
  (4.17) 

from which it can be seen that: 

 = F L F   (4.18) 

and that 

 1−= L F F   (4.19) 

Hence, the KUBC may be applied directly on the current list of boundary particles using 

the following expression: 

 
LG

q q= v L x   (4.20) 

where 
LG

qx  denotes the position vector of the centroid of the Laguerre-Voronoi power re-

gion of boundary particle q.  

Static Uniform Boundaries 

The traction boundary condition in solid mechanics is based upon the Neumann 

boundary condition for both ordinary and partial differential equations. This boundary con-

dition specifies the derivative of a solution at the boundary. For an ordinary differential 

equation (ODE) such as that of Equation (4.8) the Neumann boundary condition on the 

interval  ,a b  may take the form: 

 ( ) ( ),y a y b  = =   (4.21) 
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where   and   are known values. 

Similarly, for a partial differential equation (PDE) such as that of Equation (4.10) 

the Neumann boundary condition on a domain n  assumes the form: 

 ( ) ( )
y

f


=  


x x x
n

  (4.22) 

where n  denotes the normal to the boundary, while ( )f x  is a known function on the do-

main boundary  . 

Application of the SUBC to a particle aggregate is relatively simple. The “hard 

work” has already been done in finding the Laguerre-Voronoi diagram of the boundary. 

Given the area vector qA  of any particle q on the boundary of the particle aggregate, the 

microscale body force applied on that particle is the product of the Cauchy stress tensor 

with qA   

 q q= f σ A   (4.23) 

Use of the Cauchy stress tensor here makes application of the SUBC simple, since the 

Cauchy stress is defined in the current deformed configuration. However, computation of 

the deformation gradient tensor can be easily carried out as described in the previous sec-

tion. This means that other measures of stress can be easily applied by simply carrying out 

a frame transformation. Additional discussion on different measures of deformation and 

stress can be found in the following section on work-conjugate measures.  

Periodic Boundaries 

The concept of the periodic boundary condition (PBC) in computational mechanics 

is essentially undistinguishable from the concept of a unit cell. PBCs enforce a 
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displacement field on a domain that mirrors its opposite extremum, effectively representing 

an endlessly repeating cell. In terms of the deformation gradient this may be expressed as: 

 : periodic on −   F X   (4.24) 

Furthermore, because of resulting antiperiodicity of boundary normals, boundary tractions 

are antiperiodic. This can be expressed as: 

 :t antiperiodic on −   P N   (4.25) 

In the specific case of particle methods like Discrete Elements, Equation (4.25) is 

applied through boundary particle displacements as shown below: 

 ( ) , 0q q q q q q on V+ − + − + −− =  − − = x x F X X Q Q   (4.26) 

where the superscripts + and – are used to denote particles on opposite extrema of the 

realization model bounding box. As mentioned above and required by equilibrium, forces 

and moments on opposite boundaries need to be antiperiodic as shown below: 

 0, 0q q q q on V+ − + −+ = + = f f m m   (4.27) 

In particle methods, PBCs are easily implemented by making the simulation space 

itself periodic. By restricting the particle coordinates to the limits of the cell domain and 

effectively “wrapping” the simulation space, periodic displacements and antiperiodic 

forces are seamlessly applied by the contact implementation in the model.  

In the Yade implementation of periodic space, a parallelepiped-shaped cell is ef-

fectively repeated to create the periodic boundary conditions [137]. The deformation of the 

cell can then be obtained as a velocity gradient representing a homogeneous velocity field. 

This velocity gradient is integrated automatically over time, resulting in the tensor-valued 

stepwise deformation gradient shown below: 
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 ( ) 0t+ = + F I v F   (4.28) 

where v  represents the velocity gradient of the simulation cell, +
F  represents the defor-

mation gradient at the end of the timestep, while 0
F  represents the initial deformation gra-

dient. The initial deformation gradient can be reset to the identity tensor at any time, al-

lowing for arbitrary reference configurations in the simulation. 

Loading of the periodic unit cell is carried out by altering the matrix representing 

the base vectors of the unit cell parallelepiped. This may be viewed as “shrinking” or “ex-

panding” the periodic space so that the contact forces at the unit cell boundaries increase 

or decrease. Using this simple but very powerful method allows stress-average or strain 

rate loading of the unit cell as required by the simulation parameters. 

Finite Strain Stress and Deformation of Particle Aggregates 

Of imperative importance to the multiscale utility of particle aggregate boundary 

modeling, is the ability to extract equivalent macroscale metrics of stress and deformation. 

In continuum mechanics, the averages of stress and strain are readily defined by volume 

integrals, however these averages need to be defined for the discrete setting. 

Particle Kinematics and the Deformation Gradient Tensor 

The motion of a body may be described as a transformation   defined by: 

 ( ), t=x X   (4.29) 

where x represents the current location of a given material point at time t, while X repre-

sents the material point in the reference configuration. If the concept of a “material point” 

is then extended to a discrete material particle, the transformation may then be defined as 

a non-linear deformation map to the current configuration: 

 ( ) ( ) 1 ,i for i P Q = +  − = +
i i i

X x Q X X   (4.30) 
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where 
iQ  is the second-order particle transformation tensor, P are the interior particles in 

the aggregate, and Q are the boundary particles in the aggregate. The current positions of 

the particles may then be expressed as: 

 =  +i i ix F X w   (4.31) 

where F is the macroscopic deformation gradient, while 
iw  represents the displacement of 

particle i with respect to the macroscale current or deformed configuration.  

The macroscopic deformation gradient is defined by the volume average of the 

macro-scale deformation: 

 
1

V
dv

V
= F F   (4.32) 

Recall that the deformation gradient is defined as: 

 


=


ψ
F

X
  (4.33) 

which may be rewritten in index notation form as: 

 


=


i
ij

j

x
F

X
  (4.34) 

or, using gradient notation as: 

 = F x   (4.35) 

 Substitution of Equation (4.35) into Equation (4.32) followed by application of the 

divergence theorem, gives: 

 
1

V
ds

V 
= F x N   (4.36) 

where N is the unit normal vector at the outer boundary for the reference configuration.  

If qA is the area vector defined as: 
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V

ds


= q
A N   (4.37) 

then, for a discrete setting, Equation (4.36) is equivalent to: 

 
1

1 Q

q

qV =

=  q
F x A   (4.38) 

which may be described as the volume average of the tensor products of the area vectors 

in the reference configuration and the particle position vectors in the current configuration. 

Love-Weber Average of the Cauchy Stress Tensor 

Before delving into the vagaries of the definition of stress as pertains a system of 

discrete particles, consideration is given to the definition of the stress average in continuum 

mechanics. In continuum mechanics, instead of a discrete particle, the fundamental analy-

sis unit is the, presumably infinitesimal, “material point”. A fundamental definition of the 

Cauchy stress for a material point arises naturally from the balance of momentum equation: 

  + =σ γ v   (4.39) 

where σ  denotes the Cauchy stress tensor, v  is the velocity, γ  is the body force density, 

and   is the mass density.  

The volume average of the Cauchy stress tensor may be defined as: 

 
1

V
dv

V
= σ σ   (4.40) 

Rewriting Equation (4.40) in indicial notation and noting that kj=ij ikσ σ  where kj is the 

Kronecker delta: 

 
1

ij kj
V

dv
V

=  ik
σ σ   (4.41) 

Furthermore, since kj j kx x =     Equation (4.41) may be rewritten as: 
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1

ij

V

dv
V


=







k
ik

j

x
σ σ

x
  (4.42) 

Using the chain rule, Equation (4.42) may be written as: 

 
( )1

ij

V

dv
V

  
= − 

   






ik j ik
j

k k

σ x σ
σ x

x x
  (4.43) 

Applying the divergence theorem to the first term in the integral of Equation (4.43) gives: 

 
1 1 ik

ij ik j k j
V

V k

dS dv
V V


= −








σ

σ σ x N x
x

  (4.44) 

Taking Equation (4.39) into account gives: 

 ( )
1 1

ij ik j k i i j
V V

dS dv
V V




= − − σ σ x N v γ x   (4.45) 

Furthermore, since at all points on the boundary ext

i ik k=f σ N , where ext

if  is the exterior 

force, then: 

 ( )
1 1ext

ij i j i i j
V V

dS dv
V V




= − − σ f x v γ x   (4.46) 

where it becomes obvious that the average Cauchy stress tensor is composed of two parts.  

The first integral on the right side of Equation (4.46) represents the static compo-

nent of the stress, involving the forces applied at the boundary. The second integral is an 

inertial term, representing the acceleration of each material point. For static and quasi-static 

analyses, the second term may be ignored, however it needs to be considered for transient 

dynamic analyses.  

For the case of a particle aggregate with P interior particles and Q boundary parti-

cles, Equation (4.46) may be written as: 

 ( ),

1 1

1 1

q

Q P Q
ext q q

ij i j i i j
V

q q

dV
V V


+

= =

= − − σ f x v γ x   (4.47) 
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For a particle aggregate under in equilibrium when subjected to external forces 

,ext q

if  the second term vanishes, giving the classical Love-Weber formula of the average 

Cauchy stress tensor [163-166]: 

 ,

1

1 Q
LW ext q q

ij i j

qV =

= σ f x   (4.48) 

Work-Conjugate Measures of Stress and Strain 

It was mentioned that different measures of stress and strain may be obtained using 

the particle aggregate boundary conditions and averaging procedures described in this 

chapter. In describing these measures and their relations, a note is in order about which 

measures are energetic conjugates of each other. The fundamental metrics of stress and 

strain here are the Cauchy stress tensor and the deformation gradient tensor, respectively. 

However, these measures are not actually energetic conjugates of each other. Work conju-

gate measures of stress and strain are those measures whose product gives the strain work 

density. It must be stated that energy-conjugate measures need not be used exclusively in 

pairs, in fact this is far from the most common way to pair stress-strain measures. However, 

work-conjugacy must be taken into account if thermomechanics are considered, such as 

when computing strain energy and when considering work potentials and plastic dissipa-

tion.  

Starting with the Cauchy stress, it is well-established that its work-conjugate strain 

measure is the true strain, better known in the full 3D configuration as the Hencky strain. 

It is given by: 

 ( )ln=H U   (4.49) 
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where U  is the right stretch tensor. The right stretch tensor U  arises from polar decompo-

sition of the deformation gradient tensor: 

 =  = F R U V R   (4.50) 

where V  is the left stretch tensor and R  is the rotation tensor. The right stretch tensor U  

is itself work-conjugate to the Biot stress, which is also known as the Jaumann stress and 

is given by: 

 T TJ −=  T R σ F   (4.51) 

where J  is the Jacobian. 

Next of immediate interest is the stress measure that is work-conjugate to the de-

formation gradient tensor. This measure is known as the First Piola-Kirchoff stress tensor, 

or more succinctly as the Nominal stress. The Nominal stress tensor is given by: 

 TJ −= P σ F   (4.52) 

It should be noted that the nominal stress/deformation gradient pair will be the work-con-

jugate pair used in this work to compute the strain energy. This is a fairly common way to 

compute the strain energy, and is certainly convenient given that the Cauchy stress tensor 

and deformation gradient tensor are computed frequently in the particle aggregate simula-

tions carried out using the framework described in this chapter. 

As a matter of completeness, there is another work-conjugate stress-strain pair 

sometimes used to compute the strain energy. This is the Green-Lagrange strain/Second 

Piola-Kirchoff stress-strain pair. The Green-Lagrange strain is often used in mechanics 

application for the simple reason that it can be additively decomposed into small strain 

terms and higher order terms. This is useful when making the transition from infinitesimal 

strain theory to finite strains. The Green-Lagrange strain is given by: 
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1

( )
2

T−=  −E F F I   (4.53) 

while the Second Piola-Kirchoff stress, also known as the Material stress, is given by: 

 1 TJ − −=  T F σ F   (4.54) 

 



114 

 

 

 

 

 

 

CHAPTER 5 

EGLIN SAND MESOSCALE ENSEMBLE SIMULATIONS AND RESULTS 

This chapter describes the multitude of mesoscale simulations and results thereof, 

carried out using the methods described in the preceding chapters of this document. First, 

the experimental micromechanical parameters used in these simulations are presented. 

Next, the ensemble homogenization results are presented for realizations at confinements 

up to 20 MPa, prior to grain fracture and the resulting comminution becoming significant.  

The results of the grain crushing simulations and the evolution of the PSD with 

increasing isotropic stress are presented in the following section. Next, ensemble homoge-

nization results are presented for the higher confinements levels, taking into account the 

comminuted size distribution. With homogenization carried out at the various confinement 

levels, mesoscale bounds on the Lame constants are established from the iterative domain 

partition of the RVE. Mesoscale bounds for large strain bulk and deviatoric responses are 

established using the periodic unit cell approach, shown to be statistically equivalent to the 

iterative domain partition approach for window sizes higher than 1/8th the RVE size. 

Finally some thermomechanical statistics of the unit cell simulations are presented. 

Energy dissipation due to friction and grain comminution, as well as the amount of recov-

erable strain energy, are quantified along with the associated uncertainty. These thermo-

mechanical results further show the versatility of the framework presented here. The HEP 

Model used as the continuum model in this study is phenomenological model. However, 
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there several work-based particulate medium models, which can greatly benefit from a mi-

cromechanical source for energy density evolution data. 

Micromechanical Parameters 

The micromechanical parameters used here for Eglin sand, were obtained from ex-

perimental testing results. For Eglin sand there have been several micromechanical exper-

iments carried out in recent years, enabling a near-complete description of the required 

Discrete Element parameters from experimental data. These are shown in Table 0.1, while 

the histogram of the Particle Size Distribution is shown in  Figure 0.1. 

Table 0.1: Eglin sand parameters used in mesoscale modeling 
 

Parameter Distribution Type Shape/StDev Scale/Mean 

Particle Size [34] Weibull 2.59 0.428 (mm) 

Young’s Modulus [167] Weibull 5.48 95.9 (GPa) 

Density [34, 168] Scalar Constant - 2.72 (g/cm3) 

Shear Stiffness [169, 170] Scalar Constant - 0.17 

Angle of Friction [171, 172] Normal 5.7 (deg) 19.1 (deg) 

Crush Strength * [171] Scalar Constant - 36 (MPa) 

Fail. Ref. Diameter [171] Scalar Constant - 1.36 (mm) 

Weibull Modulus [171] Scalar Constant - 2.5 

* Crush Strength is the characteristic stress at 37% survival 
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Figure 0.1: Eglin Sand PSD from the sieve data as well as the Weibull fit 
 

Computational Homogenization without Fragmentation 

Homogenization results for Eglin sand at relatively low confinements are presented 

in this section. The results are presented at three confinement levels, specifically 1 MPa, 5 

MPa, and 20 MPa. At confinements higher than 20 MPa, use of the virgin Particle Size 

Distribution curve is not physically realistic. In fact, comminution is also relevant for con-

finement of 20 MPa, however this is used as an opportunity to compare homogenization of 

Eglin sand at 20 MPa with and without the comminution of crush-up behavior. 

The histograms of the elastic moduli from the ensemble results can be found in 

Appendix A Figure 0.1 through Figure 0.36. Figure 0.2 through Figure 0.7 show the ratios 

of the upper bound average to the lower bound average as they converge to unity (Hill 

condition) 
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Figure 0.2: Ratios of elastic moduli Voigt to Reuss bounds at 1 MPa confinement 
 

  

Figure 0.3: Ratios of elastic moduli Sachs to Taylor bounds at 1 MPa confinement 
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Figure 0.4: Ratios of elastic moduli Voigt to Reuss bounds at 5 MPa confinement 
 

  

Figure 0.5: Ratios of elastic moduli Sachs to Taylor bounds at 5 MPa confinement 
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Figure 0.6: Ratios of elastic moduli Voigt to Reuss bounds at 20 MPa confinement 
 

  

Figure 0.7: Ratios of elastic moduli Sachs to Taylor bounds at 20 MPa confinement 
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Comminution due to Grain Fragmentation  

Shown in this section are ensemble average results of mesoscale simulations of the 

crush-up behavior of Eglin sand. Figure 0.8 shows the evolution of the particle size distri-

bution (PSD) of Eglin sand found from the cumulative behavior of the mesoscale model 

ensemble compared with that from experimental PSD evolution. The experimental data in 

this figure is represented by three different data series. First, the data series titled “Weibull 

Initial” is the Weibull distribution fit for the “as-received” PSD.  

 

Figure 0.8: Eglin Sand PSD evolution during crush-up for compression up to 200 MPa 
 

The fit here is almost perfect, so the discrete data points for each sieve are not 

shown. The series titled “Sieves Final” shows the experimental sieve data points for the 

sand after crush-up [34] [34]. The “Weibull Final” series shows the Weibull distribution 

fit for the sieve data points. The fit is still quite good, though not as perfect as the fit for 

the initial PSD. Next, the series titled “m=2.5” represents the mesoscale simulation 
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ensemble cumulative PSD using a Weibull modulus of 2.5 for the Weibull grain survival 

model described in this paper. 

The fit of Figure 0.8 is remarkable for one very important reason: no calibration or 

optimization has been carried out to obtain the computational results shown. Only experi-

mental data has been used for the mesoscale ensemble simulations of grain crush-up. So, 

what is remarkable is that this Discrete Element paradigm, wherein sand grains are mod-

eled as prefect spheres, can with no calibration use lab data to approximate the complex, 

non-deterministic behavior of sand using fractal geometry to discretize the comminution 

of macrograins. 

Next, the evolving particle size distribution is shown at increasing confinement 

stresses in Figure 0.9 through 4.20. Figure 0.9 shows the PSD at 20 MPa with minor com-

minution, while Figure 0.13 shows the severely comminuted PSD at 400 MPa. 

 

Figure 0.9: Comminuted PSDs of the Statistical Ensembles at 20 MPa Confinement 
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Figure 0.10: Comminuted PSDs of the Statistical Ensembles at 50 MPa Confinement 

 

Figure 0.11: Comminuted PSDs of the Statistical Ensembles at 100 MPa Confinement 
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Figure 0.12: Comminuted PSDs of the Statistical Ensembles at 200 MPa Confinement 

 

Figure 0.13: Comminuted PSDs of the Statistical Ensembles at 400 MPa Confinement 
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Table 0.2 shows the normalized Wasserstein distances between the comminuted 

PSDs for ensembles of realizations with different particle number. The difference between 

comminuted size distributions is negligible between realizations of a thousand (103) and 

ten thousand (104) particles, and even more so between realizations of ten thousand (104) 

and hundred thousand (105) particles. 

Table 0.2: Wasserstein distance between comminuted PSDs of ensembles of different 

sizes 
 

103 vs 104 Ensemble PSDs at 20 MPa 1.4% 

104 vs 105 Ensemble PSDs at 20 MPa 0.9% 

103 vs 105 Ensemble PSDs at 20 MPa 1.7% 

103 vs 104 Ensemble PSDs at 50 MPa 3.5% 

103 vs 104 Ensemble PSDs at 100 MPa 3.9% 

103 vs 104 Ensemble PSDs at 200 MPa 3.7% 

103 vs 104 Ensemble PSDs at 400 MPa 2.4% 
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Mesoscopic Physical Characteristics of the Ensembles 

This section is concerned with describing equivalent physical characteristics of the 

discrete model ensembles. The ab-initio realizations used here for homogenization and up-

scaling are models of a set scale based on the number of particles. However, number of 

particles is not a very useful metric for describing particulate materials. What is truly use-

ful, is to have an equivalent window size in units of length for the mesoscale models. This 

can be done by finding the mean dimension of the bounding box for each realization and 

computing the ensemble average of the realization window sizes. 

In the previous section, the evolution of the PSD of Eglin sand due to crush-up  was 

discussed and results presented. The comminution shown there is also relevant to the phys-

ical characteristics of the ensembles at the confinement levels where crush-up is relevant. 

A realization that contains 10 000 particles at 5MPa, can become a Discrete Element model 

with 200 000 particles or more once comminution up to isotropic stress magnitude of 400 

MPa is simulated. Homogenization at the higher confinement is then again carried out us-

ing set particle number ensembles, but this time the PSD is based on the comminuted re-

sults shown in Figure 0.1 through Figure 0.13. The equivalent physical window sizes for 

these ensembles need to also be computed. The computed ensemble averages of realization 

window sizes, along with equivalent porosities for each realization size and particle size 

distribution is shown in Figure 0.14 through Figure 0.25 
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Figure 0.14: Average realization window size of ensembles with virgin PSD 
 

  

Figure 0.15: Average realization porosity of ensembles with virgin PSD 
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Figure 0.16: Average window size of ensembles with comminuted PSD at 20 MPa 
 

 

Figure 0.17: Average porosity of ensembles with comminuted PSD at 20 MPa 
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Figure 0.18: Average window size of ensembles with comminuted PSD at 50 MPa 
 

 

Figure 0.19: Average porosity of ensembles with comminuted PSD at 50 MPa 
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Figure 0.20: Average window size of ensembles with comminuted PSD at 100 MPa 
 

 

Figure 0.21: Average porosity of ensembles with comminuted PSD at 100 MPa 
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Figure 0.22: Average window size of ensembles with comminuted PSD at 200 MPa 
 

 

Figure 0.23: Average porosity of ensembles with comminuted PSD at 200 MPa 
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Figure 0.24: Average window size of ensembles with comminuted PSD at 400 MPa 
 

 

Figure 0.25: Average porosity of ensembles with comminuted PSD at 400 MPa 
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Computational Homogenization with Comminution  

Homogenization results for Eglin sand at relatively low confinements were pre-

sented in an earlier section of this chapter. Then, comminution due to crush-up was simu-

lated and described in a subsequent section. In this section, homogenization of Eglin sand 

proceeds for the higher confinements where comminution is considered. 

 The histograms of the elastic moduli from the ensemble results can be found in 

Appendix B Figure 0.1 through Figure 0.36. Figure 0.2 through Figure 0.7 show the ratios 

of the upper bound average to the lower bound average as they converge to unity (Hill 

condition)

 

Figure 0.26: Ratios of elastic moduli Voigt to Reuss bounds at 20 MPa confinement 
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Figure 0.27: Ratios of elastic moduli Sachs to Taylor bounds at 20 MPa confinement 
 

 

Figure 0.28: Ratios of elastic moduli Voigt to Reuss bounds at 50 MPa confinement 
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Figure 0.29: Ratios of elastic moduli Sachs to Taylor bounds at 50 MPa confinement 
 

 

Figure 0.30: Ratios of elastic moduli Voigt to Reuss bounds at 100 MPa confinement 
 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

R
at

io
 S

ac
h

s 
B

o
u

n
d

 /
 T

ay
lo

r 
B

o
u

n
d

Ensemble Average Realization Window Size (m)

Etan

Gtan

Ktan

1

2

3

4

5

6

7

8

9

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

R
at

io
 V

o
ig

t 
B

o
u

n
d

 /
 R

eu
ss

 B
o

u
n

d

Ensemble Average Realization Window Size (m)

Esec

Gsec

Ksec



135 

 

 

 

 

Figure 0.31: Ratios of elastic moduli Sachs to Taylor bounds at 100 MPa confinement 

 

Figure 0.32: Ratios of elastic moduli Voigt to Reuss bounds at 200 MPa confinement 
 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

R
at

io
 S

ac
h

s 
B

o
u

n
d

 /
 T

ay
lo

r 
B

o
u

n
d

Ensemble Average Realization Window Size (m)

Etan

Gtan

Ktan

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

R
at

io
 V

o
ig

t 
B

o
u

n
d

 /
 R

eu
ss

 B
o

u
n

d

Ensemble Average Realization Window Size (m)

Esec

Gsec

Ksec



136 

 

 

 

 

Figure 0.33: Ratios of elastic moduli Sachs to Taylor bounds at 200 MPa confinement 

 

Figure 0.34: Ratios of elastic moduli Voigt to Reuss bounds at 400 MPa confinement 
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Figure 0.35: Ratios of elastic moduli Sachs bound to Taylor bound at 400 MPa confine-

ment 
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Figure 0.36: Isotropic compression of Eglin sand using SUBC and KUBC 
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on behavior other than those present in the Discrete Element Method. While much is known 

about the microscale characteristics of Eglin sand, there are some things that are not known 

that are relevant to the current framework. One such missing piece is whether fragmenta-

tion of the sand grains results in any additional air voids being created. This is sometimes 

referred to as intra-granular porosity, or double porosity. In Figure 0.37, three different 

mesoscale ensemble simulations are presented, with internal porosities of 0, 0.1, and 0.2. 

Note that the concept of double porosity does not necessarily apply only to air voids present 

within the grain prior to fracture. If crush-up is not completely dominated by fragmenta-

tion, but undergoes abrasion and attrition, this will result in a significant volume of ultra-

fine particles. 

 

Figure 0.37: Eglin Sand volumetric compression response at mean stress up to 400 MPa 
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however this only comes about at higher confinements. A linear interpolation is shown in 

Figure 0.38 along with unloading points at each of the confinement levels treated in this 

study. Note that the bulk response curve shows load-unload points. The paths are linear 

representations of the difference between the points, the actual loading path was not com-

puted between those points and is not going to be linear if computed.  

 

 

Figure 0.38: Volumetric response with interpolated double porosity 
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Figure 0.39: Deviatoric response of CTC axial loading at 20 MPa confinement 

  

Figure 0.40: Volumetric response of CTC axial loading at 5 MPa confinement 
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Figure 0.41: Deviatoric response of CTC axial loading at 20 MPa confinement 

  

Figure 0.42: Volumetric response of CTC axial loading at 20 MPa confinement 
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Figure 0.43: Deviatoric response of CTC axial loading at 50 MPa confinement 

  

Figure 0.44: Volumetric response of CTC axial loading at 50 MPa confinement 
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Figure 0.45: Deviatoric response of CTC axial loading at 100 MPa confinement 

  

Figure 0.46: Volumetric response of CTC axial loading at 100 MPa confinement 
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Figure 0.47: Deviatoric response of CTC axial loading at 200 MPa confinement 

  

Figure 0.48: Volumetric response of CTC axial loading at 200 MPa confinement 
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Figure 0.49: Deviatoric response of CTC axial loading at 400 MPa confinement 

  

Figure 0.50: Volumetric response of CTC axial loading at 400 MPa confinement 
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Ensemble Thermomechanical Statistics of Eglin Sand 

The mesoscale ensemble simulations can clearly be used to evaluate the response 

of particulate media along many different loading paths and at various scales up to and 

including the macroscale. However, there is an additional bonus to explicitly modeling the 

response and evolution of a particulate material with discrete particles. The strain energy 

can be monitored during simulation, giving insight into the internal variable evolution. If 

the virtual work done in a simulation is monitored, its components can be readily extracted. 

Loading a realization to a certain stress tensor, then unloading it can be used to obtain the 

1) total work done during loading, 2) recoverable elastic and plastic free energy during 

unloading 3) total plastic dissipation. For a thorough review of the thermomechanical sta-

tistics considered here, the reader is pointed to the work of Yang et al. [173]. 

Figure 0.51 shows the total work during the loading phase of the ensemble simula-

tion, the total energy recovered during unloading, as well as the energy dissipated due to 

particle sliding as well as crushing. The energy recovered here is made up of both elastic 

energy and plastic free energy that can be recovered. 
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Figure 0.51: Work and energy dissipation during volumetric loading  

 

Next, the work done during the deviatoric loading phases of the CTC tests are is 

presented. The deviatoric phase of the CTC tests consists of maintaining lateral confine-

ment while increasing the axial strain. For each deviatoric loading test, two charts are pre-

sented, one showing the response and strain energy density for the case where crush-up is 

allowed to occur during the deviatoric phase, and one with no crush-up. For deviatoric 

loading at 5 MPa confinement, only one chart is shown, since crush-up is virtually non-

existent until higher mean stresses are reached. 
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Figure 0.52: Work and dissipation during CTC axial loading at 5 MPa confinement 
 

  

Figure 0.53: Work and dissipation during CTC axial loading at 20 MPa with crush-up 
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Figure 0.54: Work and dissipation during CTC axial loading at 20 MPa without crush-up 
 

  

Figure 0.55: Work and dissipation during CTC axial loading at 50 MPa with crush-up 
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Figure 0.56: Work and dissipation during CTC axial loading at 50 MPa without crush-up 
 

  

Figure 0.57: Work and dissipation during CTC axial loading at 100 MPa with crush-up 
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Figure 0.58: Work, dissipation during CTC axial loading at 100 MPa without crush-up 
 

  

Figure 0.59: Work and dissipation during CTC axial loading at 200 MPa with crush-up 
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Figure 0.60: Work, dissipation during CTC axial loading at 200 MPa without crush-up 
 

  

Figure 0.61: Work and dissipation during CTC axial loading at 400 MPa with crush-up 
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Figure 0.62: Work, dissipation during CTC axial loading at 400 MPa without crush-up 
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• The size of the RVE in particulate media appears to depend on the confine-

ment stress level in the aggregate. More highly confined aggregates seem 

to approach homogeneity more rapidly. 

• The upper bound to lower bound ratio is lower at the mesoscale for certain 

loading paths than other. The bulk modulus under uniform strain micro-

loading does not differ greatly from the bulk modulus under uniform stress 

loading even at smaller mesoscales. The shear modulus ratio is high at lower 

scales but seems to converge more quickly than the Young’s modulus ratio. 

 

These observations may appear to be unrelated at first blush, however they result from the 

same underlying principle. The underlying principle is that in particulate media dissipation 

due to frictional sliding is the main source of response heterogeneity and the primary driver 

of the discrepancy between the upper bound response and the lower bound response.  

A method that evaluates the Hill condition in frictional particulate media must al-

low sliding of the boundary particles with respect to each other. It is with the introduction 

of the surface tracking micro-boundaries here that this is finally possible.  Allowing this 

frictional sliding of grains at the boundary gives insight into just how important frictional 

dissipation is to the homogenization of particulate media. At higher confinement levels the 

grains are packed more tightly together, allowing for far less movement therefore less dis-

sipation. This is partly the reason for the apparently smaller RVE at the higher confine-

ments. The other reason is that there are more particles at the higher confinements due to 

comminution. Frictional dissipation at the boundaries is also responsible for the bound ra-

tios being lower under bulk and shear mesoscale loading to obtain the eponymous moduli 
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than for uniaxial loading to obtain the Young’s modulus. Under uniaxial loading in a CTC 

simulation, the static uniform boundary condition allows sliding at the boundaries due to 

the deviatoric micro-forces in the model while the kinematic uniform boundary condition 

fixes the velocities of particles at the boundaries so that they are less able to slide relative 

to each other. The contrast is far smaller in bulk loading due to less frictional dissipation 

under the static uniform boundary. The contrast also fades quicker under pure deviatoric 

loading due to relative velocities being imposed on the boundary particles for the kinematic 

uniform boundary condition. 

It seems clear the RVE size depends on the type of loading and level of confine-

ment. Still a qualitative determination can be made on its approximate size for Eglin sand 

based on the mesoscale simulations carried out here. The RVE has clearly been reached at 

a confinement level of 5 MPa for the DE model of five million (5x106) particles. This is 

equivalent to a physical window size of approximately 3.3 cm. The bound ratios for other 

confinement levels seems to follow a similar convergence pattern based on the number of 

particles in the model, except for confinement levels in excess of 100 MPa where less par-

ticles are required.  

Figure 0.63 shows the apparent RVE size for Eglin sand based on the mesoscale 

simulations carried out herein. Two curves are shown in Figure 0.63. One shows the RVE 

size based on minimum number of particles being five million. The second curve shows 

the RVE size taking into account the faster convergence at higher levels of confinement.  
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Figure 0.63: RVE size for Eglin sand based on mesoscale simulations 
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Figure 0.64: Effective bulk moduli for 1x105 particle ensembles 
 

  

Figure 0.65: Effective Young’s moduli for 1x105 particle ensemble  
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Figure 0.66: Effective shear moduli for 1x105 particle ensemble  
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CHAPTER 6 

MESOSCALE-BASED MODELING AND UQ WITH THE HEP MODEL 

It has been stressed throughout this manuscript that the objectives of this research 

study are manifold. Chapter 5 presented results for the meso-to-macro aspect of the study, 

namely homogenization and constitutive response evolution at different mesoscopic scales. 

This chapter presents results for the propagation of the discrete simulations results to the 

continuum mechanics computational paradigm. Virtually all Lagrangian Finite Element 

codes, their Eulerian Finite Volume counterparts, and the coupled or adaptive combination 

thereof, use continuum mechanical constitutive models for particulate media like sand. 

Identification of parametric values for these models, is far from an exact science. Discrete 

modeling efforts like the ones presented in the current framework, can provide an addi-

tional path towards that goal. Furthermore, when ensemble modeling is used to quantify 

the variability of the mesoscopic response, that uncertainty can be propagated to the con-

tinuum model. 

In this chapter, Finite Element modeling of Eglin sand is carried out using the Dis-

crete Element results documented in Chapter 5. In the first section the typical response of 

an HEP model using built-in library parameters for HEP sand are shown. Next, parameter 

calibration of the HEP model is carried out using mathematical optimization. The HEP 

parameters are optimized to the discrete model results, rather than experimental data. This 

is done initially to the ensemble average response of the DE simulations, then individually 
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to different ensemble realizations, effectively propagating the uncertainty to the HEP 

model. Finally, Finite Element simulations of triaxial testing with the HEP model are car-

ried out using the parameters obtained from the optimization of the previous section.  

Confined Triaxial Simulations with Library HEP Model 

The HEP model in the Epic code comes with several pre-calibrated material param-

eters. These materials have been passed down to Epic from the initial implementation of 

the SABER-PC code discussed in Chapter 3 and are based on extensive experimental test-

ing and computational calibration. In this section, the response of one of these materials is 

described under several triaxial loading scenarios. The specific material model used here 

is Material 123 in the Epic HEP library, described as “DSOIL3 – Clayey Sand 26.5% 

AFV”. This is a rather stiff sand with a porosity of 26.5%, and was chosen to illustrate the 

response here simply due to the fact that its response range extends into the high confine-

ment range of the experimental testing of Eglin sand. The default values of the HEP model 

constants relevant to the response are shown in Table 0.1 of the next section. 

The response of HEP Material 123 under isotropic compression is shown in Figure 

0.2. Note that several unload-reload cycles have been carried out at specific isotropic stress 

levels corresponding to the confinement levels where the Eglin sand’s mesoscale response 

has been simulated, namely 5 MPa, 20 MPa, 50 MPa, 100 MPa, 200 MPa, and 400 MPa. 

The isotropic compression response as well as the deviatoric responses shown further in 

this section, are extracted from “single element” simulations in Epic. A single hexahedral 

(brick) element with unit dimensions has been loaded to the prescribed path. Figure 0.1 

shows this single hexahedron at 400 MPa. 
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Figure 0.1: Hexahedral single element in Epic 

 

 

Figure 0.2: Isotropic response of library sand material 
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Figure 0.3: Axial loading response of library sand material at 5 MPa confinement 
 

  

Figure 0.4: Axial loading response of library sand material at 20 MPa confinement 
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Figure 0.5: Axial loading response of library sand material at 50 MPa confinement 

 

  

Figure 0.6: Axial loading response of library sand material at 100 MPa confinement 
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Figure 0.7: Axial loading response of library sand material at 200 MPa confinement 
 

  

Figure 0.8: Axial loading response of library sand material at 400 MPa confinement 
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Calibration of the HEP Model from Discrete Modeling 

Table 0.1 shows the Simple HEP model constants that are varied in this parametric 

optimization study along with the units used in the model and a brief description of their 

function. Also shown in the table, is the optimization method used to calibrate the material 

parameters. The library HEP material here, the DSOIL3 fit used to illustrate the response 

in the previous section, is used merely as a starting point for the optimization algorithm as 

it seeks to minimize the loss function, or the relative error between the ensemble average 

response and the HEP fit. 

Table 0.1: Simple HEP model variables relevant to optimization study 
 

Opt. Method Name Lib. Value Units Description 

SOGA ASUBC 0.206 Mb Bulk Modulus at void closure 

SOGA ASUB0 0.0109 Mb Initial Bulk Modulus 

SOGA ASUB1 0.0014 Mb Bulk Modulus at Point 1 

SOGA PSUBC 0.00502 Mb Pressure at Void Closure 

SOGA PSUB1 0.0 Mb Pressure at Point 1 

SOGA USUBC 0.385 - Bulk Strain at Void Closure 

SOGA ASUB2 0.032 Mb Bulk Modulus at Point 2 

SOGA PSUB2 0.00259 Mb Pressure at Point 2 

SOGA USUB2 0.333 - Bulk Strain at Point 2 

SOGA/MOGA VCURL 0.327 - Loading Poisson’s Ratio 

SOGA/MOGA SHRMAX 1.0 Mb Maximum Shear Modulus 

SOGA/MOGA ASUB1 0.0041 Mb Maximum Yield Stress 

SOGA/MOGA BSUB0 -489.0 Mb-1 Yield Curve transition rate 
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For all the bulk response variables Single Objective Genetic Algorithm (SOGA) 

was used. First two parameters at a time were varied, and the objective function is plotted 

as contours in their parametric optimization space. Then the optimization was carried out 

on all bulk response parameters simultaneously. For the deviatoric response parameters, a 

SOGA optimization was carried out for axial loading at each confinement level. This was 

followed by a Multi-Objective Genetic Algorithm (MOGA) optimization considering de-

viatoric loading at all different confinement levels simultaneously. 

Figure 0.9 through Figure 0.13 show the SOGA objective function contours for 

different couples of bulk parameters. Table 0.2 shows the optimum volumetric response 

parameters identified by SOGA on all parameters simultaneously. 

  

Figure 0.9: Objective function contours for parametric optimization of PSUB1 vs. 

PSUB2 
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Figure 0.10: Objective contours for parametric optimization of PSUB2 vs. PSUBC 

  

Figure 0.11: Objective contours for parametric optimization of USUB2 vs. USUBC 
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Figure 0.12: Objective contours for parametric optimization of ASUB0 vs. ASUB1 

  

Figure 0.13: Objective contours for parametric optimization of ASUB0 vs. ASUB1 
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Table 0.2: Optimized simple HEP model bulk response variables 
 

Name Lib. Value Ensemble Average Opt. Value Units 

ASUBC 20600 18228 MPa 

ASUB0 1090 730.1 MPa 

ASUB1 140 70.8 MPa 

PSUBC 502 572.2 MPa 

PSUB1 0.0 12.8 MPa 

USUBC 0.385 0.365 - 

ASUB2 3200 1993 MPa 

PSUB2 259 306.2 MPa 

USUB2 0.333 0.362 - 

 

Table 0.2 shows the bulk parameters of the HEP model optimized to the mesoscale 

ensemble average of the volumetric loading response. These parameters can also be opti-

mized specifically to each different realization in the ensemble. In doing so, the distribution 

of the mesoscale response and the uncertainty associated with it are effectively being prop-

agated to the continuum model. This is a very important aspect of the framework, as it 

represents the level of the upscaling that is accessible to most mechanicians using a con-

tinuum method such as Finite Elements to simulate the material response.  
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Figure 0.14: Histogram of PSUB1 optimized to each realization 
 

  

Figure 0.15: Histogram of PSUB2 optimized to each realization 
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Figure 0.16: Histogram of PSUBC optimized to each realization 
 

  

Figure 0.17: Histogram of USUB2 optimized to each realization 
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Figure 0.18: Histogram of USUBC optimized to each realization 
 

  

Figure 0.19: Histogram of ASUB0 optimized to each realization 
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Figure 0.20: Histogram of ASUB1 optimized to each realization 

  

Figure 0.21: Histogram and fit of ASUB2 optimized to each realization 
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Figure 0.22: Histogram of ASUBC optimized to each realization 

 

 

Finally, Table 0.3 shows values of the deviatoric variables optimized to the devia-

toric phase of each confined triaxial compression test. 

Table 0.3: Optimized simple HEP model deviatoric response variables 
 

Name Lib. 

Value 

Ensemble Average Opt. Value Units 

5 MPa 20 MPa 50 MPa 100 MPa 200 MPa 400 MPa 

ASUB1 410 370.6 356.1 348.0 366.3 352.8 303.0 MPa 

BSUB0 -489.0 -4.85 -55.1 -19.7 -33.2 -15.4 -53.3 /Mb 

VCURL 0.327 0.272 0.267 0.303 0.154 0.404 0.168 MPa 

SHEARMAX 100000 82000 238000 200000 176000 266000 14207 MPa 
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CHAPTER 7 

CONCLUSIONS 

A recently developed method for imposing micro-boundaries on particle aggre-

gates, as well as for obtaining the stress and deformation tensors for heterogeneous particle 

aggregates was used in this work to evaluate mesoscale bounds.  

Hundreds of thousands of simulations were carried out using random samples of 

spherical particles with the Discrete Element formulation. The Cauchy stress tensor and 

the deformation tensor were successfully obtained for the ensemble using two different 

surface reconstruction methods, along nine distinct loading paths, subjected to two differ-

ent boundary conditions. The ensemble distributions of the elastic moduli were success-

fully obtained and compare favorably with experimental values. 

This is an important development, as it clears an important hurdle for utilization of 

DE models in the context of mesoscale modeling of particle aggregates. As such, and along 

with the statistical mechanics perspective herein, it represents a powerful tool in the mul-

tiscale modeling of particulate media. 

Additionally, a method for simulating the particle size distribution (PSD) evolution 

of particle aggregates during grain crush-up was devised and presented in this work. It was 

demonstrated that through this approach, the evolution of Discrete Element Models of par-

ticle aggregates can be modeled during large stress loading and the resulting comminution 

approximated using the available experimental testing and data. 
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. The PSD evolution and constitutive response were successfully obtained for the 

ensemble under loading conditions simulating lab testing, including a Split-Hopkinson 

Pressure bar and triaxial loading. 

Future Work 

This framework opens several possibilities for further research. Some of these are 

discussed here, but there are many others yet to be considered.  

The main thrust of this research is to improve constitutive characterization of par-

ticulate media, especially soils, when using solid mechanics simulation tools. Of particular 

interest are explicit dynamic applications that depend on evolution, loading path, and time-

history of the particulate medium. In these dynamic applications, propagation of stress 

waves and shock response can be important. The mesoscale-based framework devised here 

is useful for modeling of the quasi-static response, however dynamic/shock response is 

also very important in hydrocode modeling. The immediate next step in this research would 

be to extend the meso-to-macro framework here to transient applications, including prop-

agation of stress waves and shock response. 

Another logical next step in continuing this mesoscale research, is to carry out this 

type of study with different particulate media. This can be another sand specimen, or per-

haps a different type of soil entirely. Modeling of other types of soils are likely to require 

different physics to be considered. For example, if clay is prevalent, electrochemical inter-

actions need to be modeled. Additionally, the non-cohesive sand considered here was only 

considered in the kiln-dried condition. However, for most soils two-phase flow is very 

important and can alter the response of the particulate medium significantly. There is a 

great deal of research being done in unsaturated fluid flow with Discrete Elements. If this 
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cutting-edge research is integrated into this mesoscale-based framework, it can yield a way 

to model soil mechanical response with evolving water-air interface flow. 

Once a sufficient number of mesoscale studies are carried out on a large enough 

number of soils, it is conceivable that a large enough database of material results will exist 

to enable machine-learning algorithms to be able to sort through and make predictions for 

soil behavior in continuum modeling, but also possibly for in-situ applications. 

Another place where this research could be very fruitful, would be in concrete re-

search. Discrete Elements have been used to model concrete successfully in many applica-

tions. Using this type of ensemble mesoscale modeling would be very useful if it could be 

used for propagation of knowledge and uncertainty to the structural response of the con-

crete. Much of concrete practice currently is based on the principle that there needs to be a 

sufficient number of conservative assumptions in the design with the material. However, 

concrete practice stands to benefit from having some better-established confidence levels. 

This requires that the uncertainty inherent in material heterogeneity be established, which 

requires some sort of analysis like the one presented in the current framework. 
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Figure 0.1: Secant Young’s Modulus for 1x103 Particle Ensemble at 1MPa  
 

 

Figure 0.2: Secant Shear Modulus for 1x103 Particle Ensemble at 1MPa  

 

Figure 0.3: Secant Bulk Modulus for 1x103 Particle Ensemble at 1MPa  
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Figure 0.4: Tangent Young’s Modulus for 1x103 Particle Ensemble at 1MPa  
 

 

Figure 0.5: Tangent Shear Modulus for 1x103 Particle Ensemble at 1MPa  
  

 

Figure 0.6: Tangent Bulk Modulus for 1x103 Particle Ensemble at 1MPa  
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Figure 0.7: Secant Young’s Modulus for 1x103 Particle Ensemble at 5MPa  
 

 

Figure 0.8: Secant Shear Modulus for 1x103 Particle Ensemble at 5MPa  

 

Figure 0.9: Secant Bulk Modulus for 1x103 Particle Ensemble at 5MPa 
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Figure 0.10: Tangent Young’s Modulus for 1x103 Particle Ensemble at 5MPa 
 

 

Figure 0.11: Tangent Shear Modulus for 1x103 Particle Ensemble at 5MPa  
  

 

Figure 0.12: Tangent Bulk Modulus for 1x103 Particle Ensemble at 5MPa  
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Figure 0.13: Secant Young’s Modulus for 1x103 Particle Ensemble at 20MPa  
 

 

Figure 0.14: Secant Shear Modulus for 1x103 Particle Ensemble at 20MPa  

 

Figure 0.15: Secant Bulk Modulus for 1x103 Particle Ensemble at 20MPa  
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Figure 0.16: Tangent Young’s Modulus for 1x103 Particle Ensemble at 20MPa  
 

 

Figure 0.17: Tangent Shear Modulus for 1x103 Particle Ensemble at 20MPa  
  

 

Figure 0.18: Tangent Bulk Modulus for 1x103 Particle Ensemble at 20MPa  
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Figure 0.19: Secant Young’s Modulus for 1x104 Particle Ensemble at 1MPa  
 

 

Figure 0.20: Secant Shear Modulus for 1x104 Particle Ensemble at 1MPa  

 

Figure 0.21: Secant Bulk Modulus for 1x104 Particle Ensemble at 1MPa  
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Figure 0.22: Tangent Young’s Modulus for 1x104 Particle Ensemble at 1MPa  
 

 

Figure 0.23: Tangent Shear Modulus for 1x104 Particle Ensemble at 1MPa  
  

 

Figure 0.24: Tangent Bulk Modulus for 1x104 Particle Ensemble at 1MPa  
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Figure 0.25: Secant Young’s Modulus for 1x104 Particle Ensemble at 5MPa  
 

 

Figure 0.26: Secant Shear Modulus for 1x104 Particle Ensemble at 5MPa  

 

Figure 0.27: Secant Bulk Modulus for 1x104 Particle Ensemble at 5MPa 
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Figure 0.28: Tangent Young’s Modulus for 1x104 Particle Ensemble at 5MPa 
 

 

Figure 0.29: Tangent Shear Modulus for 1x104 Particle Ensemble at 5MPa  
  

 

Figure 0.30: Tangent Bulk Modulus for 1x104 Particle Ensemble at 5MPa  



206 

 

 

 

 

Figure 0.31: Secant Young’s Modulus for 1x104 Particle Ensemble at 20MPa  
 

 

Figure 0.32: Secant Shear Modulus for 1x104 Particle Ensemble at 20MPa  

 

Figure 0.33: Secant Bulk Modulus for 1x104 Particle Ensemble at 20MPa  
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Figure 0.34: Tangent Young’s Modulus for 1x104 Particle Ensemble at 20MPa  
 

 

Figure 0.35: Tangent Shear Modulus for 1x104 Particle Ensemble at 20MPa  
  

 

Figure 0.36: Tangent Bulk Modulus for 1x104 Particle Ensemble at 20MPa  
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Figure 0.37: Secant Young’s Modulus for 1x105 Particle Ensemble at 1MPa  
 

 

Figure 0.38: Secant Shear Modulus for 1x105 Particle Ensemble at 1MPa  

 

Figure 0.39: Secant Bulk Modulus for 1x105 Particle Ensemble at 1MPa  
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Figure 0.40: Tangent Young’s Modulus for 1x105 Particle Ensemble at 1MPa  
 

 

Figure 0.41: Tangent Shear Modulus for 1x105 Particle Ensemble at 1MPa  
  

 

Figure 0.42: Tangent Bulk Modulus for 1x105 Particle Ensemble at 1MPa  
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Figure 0.43: Secant Young’s Modulus for 1x105 Particle Ensemble at 5MPa  
 

 

Figure 0.44: Secant Shear Modulus for 1x105 Particle Ensemble at 5MPa  

 

Figure 0.45: Secant Bulk Modulus for 1x105 Particle Ensemble at 5MPa 
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Figure 0.46: Tangent Young’s Modulus for 1x105 Particle Ensemble at 5MPa 
 

 

Figure 0.47: Tangent Shear Modulus for 1x105 Particle Ensemble at 5MPa  
  

 

Figure 0.48: Tangent Bulk Modulus for 1x105 Particle Ensemble at 5MPa  



212 

 

 

 

 

Figure 0.49: Secant Young’s Modulus for 1x105 Particle Ensemble at 20MPa  
 

 

Figure 0.50: Secant Shear Modulus for 1x105 Particle Ensemble at 20MPa  

 

Figure 0.51: Secant Bulk Modulus for 1x105 Particle Ensemble at 20MPa  
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Figure 0.52: Tangent Young’s Modulus for 1x105 Particle Ensemble at 20MPa  
 

 

Figure 0.53: Tangent Shear Modulus for 1x105 Particle Ensemble at 20MPa  
  

 

Figure 0.54: Tangent Bulk Modulus for 1x105 Particle Ensemble at 20MPa  
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Figure 0.55: Secant Young’s Modulus for 1x106 Particle Ensemble at 1MPa  
 

 

Figure 0.56: Secant Shear Modulus for 1x106 Particle Ensemble at 1MPa  

 

Figure 0.57: Secant Bulk Modulus for 1x106 Particle Ensemble at 1MPa  
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Figure 0.58: Tangent Young’s Modulus for 1x103 Particle Ensemble at 1MPa  
 

 

Figure 0.59: Tangent Shear Modulus for 1x106 Particle Ensemble at 1MPa  
  

 

Figure 0.60: Tangent Bulk Modulus for 1x106 Particle Ensemble at 1MPa  
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Figure 0.61: Secant Young’s Modulus for 1x106 Particle Ensemble at 5MPa  
 

 

Figure 0.62: Secant Shear Modulus for 1x106 Particle Ensemble at 5MPa  

 

Figure 0.63: Secant Bulk Modulus for 1x106 Particle Ensemble at 5MPa 
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Figure 0.64: Tangent Young’s Modulus for 1x106 Particle Ensemble at 5MPa 
 

 

Figure 0.65: Tangent Shear Modulus for 1x106 Particle Ensemble at 5MPa  
  

 

Figure 0.66: Tangent Bulk Modulus for 1x106 Particle Ensemble at 5MPa  
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Figure 0.67: Secant Young’s Modulus for 1x106 Particle Ensemble at 20MPa  
 

 

Figure 0.68: Secant Shear Modulus for 1x106 Particle Ensemble at 20MPa  

 

Figure 0.69: Secant Bulk Modulus for 1x106 Particle Ensemble at 20MPa  
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Figure 0.70: Tangent Young’s Modulus for 1x106 Particle Ensemble at 20MPa  
 

 

Figure 0.71: Tangent Shear Modulus for 1x106 Particle Ensemble at 20MPa  
  

 

Figure 0.72: Tangent Bulk Modulus for 1x106 Particle Ensemble at 20MPa 
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APPENDIX B 

A BHISTOGRAMS OF MESOSCALE ELASTIC MODULI OF EGLIN SAND 

AFTER COMMINUTION 
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Figure A.1: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa  
 

 

Figure A.2: Secant Shear Modulus for 1x103 Comminuted Particle Ensemble at 20 MPa  

 

Figure A.3: Secant Bulk Modulus for 1x103 Comminuted Particle Ensemble at 20 MPa  
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Figure A.4: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa  
 

 

Figure A.5: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa  

 

Figure A.6: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 20 MPa  
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Figure A.7: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 50 MPa  
 

 

Figure A.8: Secant Shear Modulus for 1x103 Comminuted Particle Ensemble at 50 MPa  

 

Figure A.9: Secant Bulk Modulus for 1x103 Comminuted Particle Ensemble at 50 MPa  
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Figure A.10: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 50 

MPa  
 

 

Figure A.11: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 50 MPa  

 

Figure A.12: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 50 MPa  
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Figure A.13: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 100 

MPa  
 

 

Figure A.14: Secant Shear Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa  

 

Figure A.15: Secant Bulk Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa  



226 

 

 

 

 

Figure A.16: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 100 

MPa  
 

 

Figure A.17: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa  

 

Figure A.18: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 100 MPa  
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Figure A.19: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 200 

MPa  
 

 

Figure A.20: Secant Shear Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa  

 

Figure A.21: Secant Bulk Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa  
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Figure A.22: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 200 

MPa  
 

 

Figure A.23: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa  

 

Figure A.24: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 200 MPa  
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Figure A.25: Secant Young’s Mod. for 1x103 Comminuted Particle Ensemble at 400 

MPa  
 

 

Figure A.26: Secant Shear Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa  

 

Figure A.27: Secant Bulk Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa  
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Figure A.28: Tangent Young’s Mod. for 1x103 Comminuted Particle Ensemble at 400 

MPa  
 

 

Figure A.29: Tangent Shear Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa  

 

Figure A.30: Tangent Bulk Mod. for 1x103 Comminuted Particle Ensemble at 400 MPa  
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Figure A.31: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 20 MPa  
 

 

Figure A.32: Secant Shear Modulus for 1x104 Comminuted Particle Ensemble at 20 MPa  

 

Figure A.33: Secant Bulk Modulus for 1x104 Comminuted Particle Ensemble at 20 MPa  
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Figure A.34: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 20 

MPa  
 

 

Figure A.35: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 20 MPa  

 

Figure A.36: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 20 MPa  
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Figure A.37: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa  
 

 

Figure A.38: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa  

 

Figure A.39: Secant Bulk Modulus for 1x104 Comminuted Particle Ensemble at 50 MPa  
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Figure A.40: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 50 

MPa  
 

 

Figure A.41: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa  

 

Figure A.42: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 50 MPa  
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Figure A.43: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 100 

MPa  
 

 

Figure A.44: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa  

 

Figure A.45: Secant Bulk Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa  
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Figure A.46: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 100 

MPa  
 

 

Figure A.47: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa  

 

Figure A.48: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 100 MPa  
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Figure A.49: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 200 

MPa  
 

 

Figure A.50: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa  

 

Figure A.51: Secant Bulk Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa  
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Figure A.52: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 200 

MPa  
 

 

Figure A.53: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa  

 

Figure A.54: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 200 MPa  
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Figure A.55: Secant Young’s Mod. for 1x104 Comminuted Particle Ensemble at 400 

MPa  
 

 

Figure A.56: Secant Shear Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa  

 

Figure A.57: Secant Bulk Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa  
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Figure A.58: Tangent Young’s Mod. for 1x104 Comminuted Particle Ensemble at 400 

MPa  
 

 

Figure A.59: Tangent Shear Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa  

 

Figure A.60: Tangent Bulk Mod. for 1x104 Comminuted Particle Ensemble at 400 MPa  
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Figure A.61: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 20 MPa  
 

 

Figure A.62: Secant Shear Modulus for 1x105 Comminuted Particle Ensemble at 20 MPa  

 

Figure A.63: Secant Bulk Modulus for 1x105 Comminuted Particle Ensemble at 20 MPa  
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Figure A.64: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 20 

MPa  
 

 

Figure A.65: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 20 MPa  

 

Figure A.66: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 20 MPa  
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Figure A.67: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa  
 

 

Figure A.68: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa  

 

Figure A.69: Secant Bulk Modulus for 1x105 Comminuted Particle Ensemble at 50 MPa  

 



244 

 

 

 

 

Figure A.70: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 50 

MPa  
 

 

Figure A.71: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa  

 

Figure A.72: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 50 MPa  
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Figure A.73: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 100 

MPa  
 

 

Figure A.74: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa  

 

Figure A.75: Secant Bulk Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa  
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Figure A.76: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 100 

MPa  
 

 

Figure A.77: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa  

 

Figure A.78: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 100 MPa  
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Figure A.79: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 200 

MPa  
 

 

Figure A.80: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa  

 

Figure A.81: Secant Bulk Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa  



248 

 

 

 

 

Figure A.82: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 200 

MPa  
 

 

Figure A.83: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa  

 

Figure A.84: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 200 MPa  
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Figure A.85: Secant Young’s Mod. for 1x105 Comminuted Particle Ensemble at 400 

MPa  
 

 

Figure A.86: Secant Shear Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa  

 

Figure A.87: Secant Bulk Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa  
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Figure A.88: Tangent Young’s Mod. for 1x105 Comminuted Particle Ensemble at 400 

MPa  
 

 

Figure A.89: Tangent Shear Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa  

 

Figure A.90: Tangent Bulk Mod. for 1x105 Comminuted Particle Ensemble at 400 MPa  
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