
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2017

Augmented Framework For Generating Domain-Specific Mobile Augmented Framework For Generating Domain-Specific Mobile

Applications Applications

Rama Krishna Raju Rudraraju
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Rudraraju, Rama Krishna Raju, "Augmented Framework For Generating Domain-Specific Mobile
Applications" (2017). All ETDs from UAB. 2873.
https://digitalcommons.library.uab.edu/etd-collection/2873

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/2873?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F2873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

 AUGMENTED FRAMEWORK FOR GENERATING DOMAIN-SPECIFIC MOBILE

APPLICATIONS

by

RAMA KRISHNA RAJU RUDRARAJU

LEON JOLOLIAN, COMMITTEE CHAIR

HAIDER MOHAMMAD

MURAT M. TANIK

A THESIS

Submitted to the graduate faculty of The University of Alabama at Birmingham,

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical and Computer Engineering

BIRMINGHAM, ALABAMA

2017

© Copyright by

Rama Krishna Raju Rudraraju

2017

iii

AUGMENTED FRAMEWORK FOR GENERATING DOMAIN-SPECIFIC MOBILE

APPLICATIONS

RAMA KRISHNA RAJU RUDRARAJU

ELECTRICAL AND COMPUTER ENGINEERING

ABSTRACT

In this research, we developed a new approach called Augmented Framework to

mean the integration of existing frameworks with domain-specific knowledge. The

resulting framework provides a productive development environment suitable for app-

developers to generate customized mobile-applications in the domain chosen by the

framework developer. This process requires the application developer to provide

specifications about the domain for customizing the generated mobile-applications. With

this approach, the entire process of developing a mobile-application becomes simplified

since it will only need minimum design and development effort.

 The approach for developing an Augmented Framework consists of three stages.

The first stage consists of the development of a variety of user-interfaces related to the

chosen domain. In the second stage, the approach illustrates a mechanism for dynamically

integrating the customized components into the framework. The third stage involves the

development of the logic to display the appropriate user-interfaces based on the customized

components. The three-stage approach results in generating an Augmented Framework.

There are three distinct benefits for using the Augmented Frameworks: a) a

significant reduction in application development time, b) an overall decrease in the cost of

creating the application and c) an ability to customize features of the mobile app.

Furthermore, Augmented Frameworks developed by this approach will follow generally

iv

accepted standards and common-sense options for their intended domains application. The

framework-developer may impose some restrictions in the way applications are generated.

Therefore, the application-developer will be asked to follow prescribed design

specifications associated with the framework. In return, it will result in a fast and precise

application development process.

The effectiveness of the proposed approach is illustrated with a case study, which

details the steps involved in the creation of an Augmented Framework. The chosen domain

for this case-study is resource allocation for reservation systems.

Keywords: Augmented Framework, Application developer, Domain-Specific, and

Framework developer.

v

DEDICATION

 I dedicate this thesis to my parents and Dr. Leon who has provided support

throughout my graduate journey and always had faith in my success.

vi

ACKNOWLEDGMENTS

 I thank my parents Ramesh Babu & Sujatha and my brother Seetha Ram for

investing their lifetime savings and for their moral support. I would like to thank my

relatives and mentors Ramu Kosuri, Jagadesh Sagi, Rama Raju Rudraraju, Prasad

Pinnamaraju, Srikanth Karra, Viswanadha Raju Datla, Annapurna Rudraraju, Anil & Ravi

Rudraraju, Kishore Kanumuri, Sreekanth Paricharla and many more for their enormous

help and mentorship.

 I would like to thank my advisor and committee chair Dr. Leon for his countless

hours of guidance, reading, encouraging, and most of all patience throughout the entire

process. His guidance helped me in all the time of research and writing of this thesis.

Despite of his busy schedule as an associate chair of the department, the door to his office

was always open whenever I ran into a trouble spot or had a question about my research or

writing. He consistently allowed this research to be my own work, but steered me in the

right direction whenever he thought I needed it. I could not have imagined having a better

advisor and mentor for my Master's study.

 Finally, I would like to thank all the people that have supported me on this journey:

Dr. Murat Thanik, Dr. Karthikeyan Lingasubramaniyan, Dr. Haider Mohammad, Sandra

Mohamad, and many others.

 If I forgot to mention any others, it is due to my negligence.

vii

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

DEDICATION ..v

AKNOWLEDGMENTS .. vi

LIST OF FIGURES ..x

LIST OF ABBREVIATIONS ... xii

CHAPTER

1 INTRODUCTION ...1

 1.1 Problem and Motivation ..1

 1.2 Approach Overview ...3

 1.3 Importance of Domain-Specific Augmented Frameworks5

 1.4 Overview of Domain-Specific Frameworks ... 6

 1.5 Summary ... 8

2 A SURVEY OF DIFFERENT DOMAIN-SPECIFIC FRAMEWORKS9

 2.1 Framework for Scientific Software Development .. 9

 2.1.1 Characteristics of Scientific Software Development 9

 2.1.2 The AIBench Framework ... 10

 2.2 Framework for Product Line Development ... 11

 2.2.1 Characteristics of Product Line Development 11

 2.2.2 The Software Factory Approach ... 12

 2.3 Framework for Developing Applications in VR/AR domain 13

 2.3.1 Characteristics of VR/AR Applications .. 13

 2.3.2 The VHD++ Framework .. 14

 2.4 Summary ... 15

3 APPROACH FOR DEVELOPING A DOMAIN-SPECIFIC AUGMENTED

FRAMEWORK..16

viii

TABLE OF CONTENTS (Continued)

 Page

 3.1 Overview of the Approach .. 16

 3.2 Graphical User Interface Development .. 17

 3.2.1 Static User Interface Development ... 18

 3.2.2 Dynamic User Interface Development ... 19

 3.2.2.1 User Interfaces with Structural Dependence 19

 3.2.2.1 User Interfaces with Behavioral Dependence 19

 3.3 Application Logic Development ... 20

 3.3.1 Dynamic Binding .. 20

 3.3.1.1 Resource-Listfile.. 21

 3.3.1.2 Data-and-Behavioual-File.. 21

 3.4 User-Interface Logic ... 25

 3.4.1 Structural User Interface Display ... 25

 3.4.2 Behavioural User Interface Display .. 26

 3.5 Summary .. 27

4 A CASE-STUDY FOR THE DEVELOPMENT OF AN AUGMENTED

FRAMEWORK FOR MANAGING RESOURCES ..28

 4.1 Description of the Case-Study .. 28

 4.2 User Interface Screens for Resource Allocation ... 29
 4.2.1 Development of Static User Interfaces ... 29

 4.2.2 Development of Dynamic User Interfaces ... 30

 4.2.2.1 Behavioral Dependency related to Duration Factor 30

 4.2.2.2 Structural Dependency related to Number of Inputs 31

 4.3 Application Logic for the Case-Study .. 32

 4.3.1 Source File for Identifying the Resources .. 33

 4.3.2 Resource File with Behavioral Characteristics 34

 4.4 User-Interface Logic Development in Our Case-Study 37

 4.4.1 Generating Structural User Interfaces .. 37

 4.4.2 Generating Behavioral User Interfaces ... 39

 4.5 Summary .. 40

5 EVALUATION AND FUTURE WORK ...42

 5.1 Evaluation of Proposed Approach .. 42

 5.2 Limitations of Proposed Approach ... 43

 5.3 Summary of Our Research .. 44

 5.4 Future Work .. 44

LIST OF REFERENCES ..46

ix

 TABLE OF CONTENTS (Continued)

 Page

 APPENDIX: PROGRAM CODE ...48

x

LIST OF FIGURES

Figure Page

1 Workflow and Stakeholders ... 4

2 Input and Output formats in AIBench ... 11

3 Process involved in the development of Product line development 12

4 Mechanism involved in the VHD++ Framework .. 14

5 Stages in the Development of Augmented Framework ... 17

6 Two types of Graphical User Interfaces .. 18

7 Steps involve in Binding the “Data-and-Behavioral-Files” 22

8 Code in the Text Document ... 23

9 Code associated with all the six steps .. 24

10 Execution Process .. 24

11 Resource-Listfile Format ... 25

12 Data-and-Behavioral-File .. 26

13 UI for Login Screen ... 29

14 UI for Admin Screen .. 29

15 UI for Days .. 31

16 UI for Hours ... 31

17 UI for One Resource .. 32

18 UI for Six Resources .. 32

19 Resource-Listfile Format ... 33

20 Resource-Listfile Example... 33

21 Code to integrate the Resource-Listfile ... 34

22 Fixed Input Convention ... 35

23 Process of Accepting the Behavioral Files .. 36

24 Code to Grab the Number of Resources .. 37

25 UI Display Based on the Resource Count.. 38

xi

26 Code to Grab the Resource File Names ... 39

27 Code to Extract the Resource Behavior ... 39

28 UI Display Based on Days or Hours .. 40

xii

LIST OF ABBREVIATIONS

CPU Central Processing Unit

CSV Comma Separated Value

DSL Digital Subscription Line

GUI Graphical User Interface

HTML Hyper Text Markup Language

IPO Input-Process-Output

MP3 MPEG-2 Audio Layer III

MVC Model View Control

RDBMS Relational Database Management Systems

SQL Standard Query Language

UI User Interface

VRML Virtual Reality Model Language

VR/AR Virtual Reality / Augmented Reality

XML Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

 This chapter introduces the problem that is the subject of this research and the

overview of the proposed framework. Section 1.1 describes the problem associated with

the development of complex applications, the motivation behind the proposed framework

and the fields on which it will show its impact. Section 1.2 gives an overview of the

approach we are following and introduces different stakeholders involves from framework

development process to application development. Section 1.3 illustrates the importance of

proposed approach and the benefits of using it. Section 1.4 gives an overview of some

domain-specific frameworks.

1.1 Problem and Motivation

Programming was first used to develop small systems with limited amount of functionality.

As developers started to realize the importance of programming, it was soon applied to

many domains. As the programming continued to be applied to increasingly large

problems, the level of difficulty in programming is also increased. In recognizing the

growing complexity of software development, Frank DeRemer and Hans Kron described

two different levels of programming in their 1975 book: “Programming-in-the-large versus

Programming-in-the-small” [1]. They also discussed the complexity of writing large

programs and the inherent difficulty in using the same approach. They defined the code

2

into a set of small modules to make it easy to code, easy to understand, and even easy to

edit. In 1986, Fredrick P. Brooks in his book “No Silver Bullet - Essence and Accident in

Software Engineering” [2] points out that large software system will face essential and

accidental difficulties. Current systems play a remarkable role in eliminating the accidental

difficulties like high-level languages, time-sharing, and workstations. Furthermore, in his

2007 panel paper [3], Brooks mentions that at least half of the remaining trouble is essential

and had an inherent complexity.

 Over the past few decades, many tools have been proposed to cope with the

development of “large and complex” software systems. Some of the most successful tools

developed for dealing with this complexity are frameworks [4], Object-oriented design [5],

and Component-Based model [6].

 More recently, a growing computing trend has emerged with the increasing use of

smart devices, such as smartphones and tablets. The software running on these devices has

the following characteristics:

1) Programming-in-the-Small.

2) Limited Hardware, CPU, and Memory.

3) Access to the cloud.

 To cope with the development of applications for these devices, a verity of frameworks

have been developed. However, the focus of the frameworks has been targeted towards

components such as Graphical User Interface (GUI), Database, Cloud, etc.

3

1.2 Approach Overview

 The primary aim of this research is to develop a new approach for creating

frameworks that extend the capability of existing frameworks with domain knowledge. We

refer to this new type of framework as an augmented framework. The approach consists of

two phases as shown in Figure 1. The first Phase involves creating an Augmented Domain-

specific framework. This consists of taking an application development framework and

adding some domain-specific knowledge to it by the framework-developer. This results in

the development of a framework with embedded domain knowledge. We call the resultant

framework with integrated domain knowledge as a domain-specific augmented framework.

The framework developed by this process allows external components provided by the

application-developer (for customized behavior) to integrate with the framework at run-

time to generate a customized application. This model keeps core Framework

functionalities intact and even allows reuse in other environments or applications. The

second phase involves having the app developer add customized components to the

framework to generate the customized application. The integration of customization

components with the framework is accomplished using a mechanism called Dynamic-

Binding.

Developing an Augmented Framework for Generating Domain-Specific

Applications requires a deep understanding of the specific domain, as well as a reference

architecture that can be used as a basis for the design of the applications. The proposed

development guidelines will outline the steps required to create a domain-specific

augmented framework. The guidelines include steps on how to: develop the requirements,

design the user-interface templates, usage of a mechanism to add the external data, and the

4

definitions of software components associated with the chosen domain need to include in

the framework. As a case-study to demonstrate the effectiveness of Augmented

Framework, we developed a framework for the case of resource allocation.

Figure 1: Workflow and Stakeholders

5

In the context of this Augmented Framework, we recognized three distinct roles

among all stakeholders:

a) The Framework developer:

 We refer to the framework-developer as the individual who follows the guidelines

for creating the domain-specific augmented framework. The framework is capable of

taking external data as input and later generating the customized application.

b) The Application developer:

 We refer to application-developer as the person who uses the domain-specific

augmented framework and adds some extra code to generate customized applications.

c) The Application User:

 Finally, Application-user is the end user who uses the generated application to

perform his tasks.

1.3 Importance of Domain-Specific Augmented Frameworks

Increasingly, there is a great need to develop complex applications, which can run

on mobile devices. There are many traditional mobile application development

frameworks. While these frameworks follow the “Programming-in-the-large” model,

however, they are focused on simplifying the programming task as it relates to the devices.

These frameworks do not add the domain knowledge. Traditional frameworks require the

deep understanding of multiple fields like scripting languages for user-interface,

programming languages to generate dynamic effects, event handling, and SQL as well as

RDBMS concepts for database operations that make the application development process

complex and time-consuming. Since in our Domain-Specific Augmented Frameworks we

6

are using “programming-in-the-small,” it makes easy to create the application. Also, we

are building the framework based on a specific domain which makes it straightforward to

generalize and perfect the functionalities that are most common in the chosen field. The

apparent benefits of applying this proposed approach is a significant reduction in

development time and an overall decrease in the cost of creating and coding the customized

application when compared with developing similar applications by using regular

frameworks from scratch.

1.4 Overview of Domain-Specific Frameworks

Domain-Specific frameworks have been traditionally developed to assist software

development by taking advantage of reusable components. However, those frameworks are

not suitable for mobile devices due to limitations in the processing power of mobile

devices. This section presents an overview of three different domain-specific frameworks

that are used in their respective domain.

 The AIBench Framework:

 In the field of scientific software development, one of the widely used framework

is AIBench [7]. This framework adapts latest concepts like MVC, and there are well-

defined coding section like operations, data types, and views. Since framework has distinct

parts to insert the code, the software developer can write the corresponding algorithm and

easily plugs it into the framework. This allows the programmer to keep clean his own

application core functionality and even reuse it in other environments or applications. It

results in a customized application with fixed four window user interfaces. AIBench model

7

is perfectly suitable for any scientific experiments that are having the following

functionality like commonly contains collecting parameters, executing an algorithm, and

analyzing the results. Although AIBench can be classified as a white-box framework

(which require the programmer to inherit or implement specific classes or interfaces), the

end application code (algorithms, data structures, and viewers) contain the minimum

amount of framework-related code.

 The Software Factory Framework:

 Software factory [8] is mainly used in the domains where there is continues need to

update the existing software. For example, in the industries like Financial, Banking, and

Healthcare if there are a small portion of software update (Change of Numerical Data)

results in necessary updates in many parts of the application code. Software factory reduces

the code and time to generate updated applications. This framework requires the deep

understanding of concepts like Component-based development, model-driven

development, knowledge on the product line and Domain Specific Language.

 The VHD++ Framework:

 VHD++ [9] is a high-performance framework applied in the development of

interactive VR/AR applications. VHD++ contains inbuilt packages to simplify the

application development process. For the regular VR/AR applications, there is a repository

available, which contains the commonly used code arraigned in a prescribed manner. To

access the external components VHD++ has its own vhdServices, pluggable portion, etc.

Once the external components are integrated into the framework, it has a

vhdRuntimeEngine responsible for binding components with the framework architecture

8

and generates an interactive VR/AR application. This application process little bit but the

application development process is fast and reliable.

1.5 Summary

 In this chapter, we introduced the background associated with the software

development process. We mentioned about the challenges faced in the development of the

software if we apply traditional approaches (Programming-in-the-Large) to all kind

devices without considering the limitations of the device. Some of the examples of that

kind of devices are smartphones and tablets. To solve this problem, we introduced a new

approach, which extends the capabilities of the existing frameworks we call it as

Augmented Framework. We extended the capabilities of existing frameworks by

integrating the domain knowledge into the framework. This chapter also mentions the

importance of domain-specific Augmented Framework, and also an overview of other

domain-specific frameworks.

9

CHAPTER 2

A SURVEY OF DIFFERENT DOMAIN-SPECIFIC FRAMEWORKS

 The overall idea of this chapter is to give an inside into the other domain-specific

frameworks. This chapter contains a detailed study of three widely used frameworks and

why they are applicable in their respective domains. Section 2.1 explains about AIBench

used in scientific software development. Section 2.2 gives an inside into the Software

factory applied for product-line development. Section 2.3 contains a detailed study of

VHD++ applied in the development of interactive VR/AR applications.

2.1 Framework for Scientific Software Development

2.1.1 Characteristics of Scientific Software Development:

In general, most of the scientific experiments have the same workflow even with the

change of inputs and output. Since the researcher's focus is on the core experimental study,

it is always better if any generalized framework can provide them with a quick and reliable

user interface to increase the productivity of research groups. AIBench best fit because of

the IPO (input-process-output) model by means of the MVC (model-view-controller)

design pattern and makes use of several technologies (XML, Java 1.5, etc.). The framework

is a plugin-based architecture with contains three types of inputs: operations, data-types,

and views.

10

2.1.2 The AIBench Framework:

 AIBench is intended for use in scientific experiments that are having the following

functionality like commonly contains collecting parameters, executing an algorithm, and

analyzing the results. The framework is a plugin-based architecture with contains three

types of inputs: operations, data-types, and views as shown in Figure 2. The model

operation part contains the core algorithm on which logic of a scientific experiment will

reside. It is inserted in the form of Java Class with well-defined input and output ports. In

this model, Data-Type supports data-structures types associated with core experimental

program requirement. Sometimes data-types may be non-primitive or classes but should

contain information, which is easily assessable by the process to use in its operations or to

display in GUI. In this model, there is a default four-window structure, where each window

has its properties. Based on the requirement, external programmer can add experiment

specific UI components like input (from Console, TextViews, etc.) and output models

(Tables, Graphs, etc.).

Although AIBench can be classified as a white-box framework (which require the

programmer to inherit or implement specific classes or interfaces), the application specific

code (algorithms, data structures, and viewers) contain the minimum amount of

framework-related code. This allows the programmer to keep clean his application core

functionality and even reuse it in other environments or applications (web, a more detailed

GUI, etc.)

11

Figure 2: Input and Output formats in AIBench

2.2 Framework for Product Line Development

2.2.1 Characteristics of Product Line Development:

 Usually, the development of updated versions of software is done over a

considerable period. In some industries like financial services, banking, and healthcare

slight changes in the software is necessary over short periods. For this kind of scenarios, if

they follow normal software product-line(Next Version) development processes based on

component-based or software product line tents, they involve iterating through each portion

of the software. Therefore it results in a consumption of a lot of time as well as money for

small software changes. In the enterprise software, development to cope up with this kind

of scenario researchers in Microsoft proposed a framework called Software Factory.

12

2.2.2 The Software Factory Approach:

 The software factory is one the most sophisticated and advanced frameworks. It

has major applications in product-line development industries. It is the combination of

component-based development, model-driven development, and software product line

development. Its main aim is to reduce the cost and time of development Enterprise

applications having product-lines (Need of continues updated applications).

Figure 3: Process involved in the development of Product line development

 The software factory follows knowledge bases methodology, where it

systematically captures the knowledge of how to produce the member of a specific product

family. It stores that information in the form of assets, tools, libraries frameworks, etc. as

shown in Figure 3.

13

 To generate an application the asserts, tools, libraries of the previous application is

collected into an Interactive Development Environment (IDE), such as Microsoft’s Visual

Studio.NET. When IDE’s are configured in this, way they will become software factories.

In other words, developers build assets which are used as plugins to IDE’S which generates

next family products. Since applications generated from software factory is more like

providing updated versions to an existing application, it uses a technique called Domain-

specific language (DSL) which reduces the complexity of the process.

 We can say that Software factory is a model-driven product line defined by domain

specific language. It plays a good role in the development applications in financial services,

banking, and healthcare application development where there are necessity risk calculation

and forecasting engines. The main drawback of this framework is it will demand a lot of

multi-field expertise like Component-based development, model-driven development,

knowledge on the product line and Domain Specific Language to generate an application.

Also, it will not support multiple suppliers to collaborate in the development of the product.

2.3 Framework for Developing Applications in VR/AR domain

2.3.1 Characteristics of VR/AR Applications:

 Nowadays, Virtual Reality and Augmented Reality applications is a rising trend in the

motion picture industry. The application development process follows traditional

development process of accessing the external repository manually and writing the code to

fit the external components to generate the VR/AR applications. In present days to maintain

the demand the application development process should have the following characteristics:

14

deliver new, always faster, and always more in short period. VHD++ plays a remarkable

to cope up with those characteristics in the VR/AR domain. VHD++ has a well-built

package containing most widely used components, and it provides services to access the

traditional repositories.

2.3.2 The VHD++ Framework:

 In current days, there is a rapid advancement in the graphics as well as virtual

character simulation technology which helps in the development of interactive audio-visual

simulation applications. VHD++ is an Object-Oriented Framework, which provides an

interactive environment to different components like audio, video, etc.

Figure 4: Mechanism involved in the VHD++ Framework

As shown in the above Figure, VHD++ primarily contains nearly 35 packages

containing approximately 500 classes. It also featured some high-performance component

called vhdRuntimeEngine. The vhdRuntimeEngine has a mechanism to inherit the external

components from the VR/AR simulation domain. VhdRuntimeEngine has an interface

called pluggable portion, which allows the external components that come from

vhdServices. The external components in the VR/AR simulation domain are in the form of

component-based structure. The components in the VR/AR repository contains a well-

15

defined naming convention [10] for storing the data. Since VR/AR is component based,

the naming convention is based on the functionality (XML, VRML, WAV, MP3, etc.) [11]

each of them is further divided into based on the area to which they are applied. VR/AR

repository components are fit for reuse and tested thoroughly. vhdServices are the software

components are responsible for carrying the VR/AR components into the VHD++

framework. One the vhdServices delivers the external components it is the

vhdRuntimeEngine in processing the information and adding it to the necessary locations.

VhdRuntimeEngine has a robust nature to communicate with other VhdRuntimeEngine in

different systems at the same time.

VHD++ is a complex and domain-specific system; to make effective use of it, the

application developer has to know so many inside out of the in VR/AR domain. Like any

other component based system VR/AR repository grow when application developer

exports the code that has the potential to reuse into the pool by following the naming

convention.

2.4 Summary

 In this chapter, we presented three widely used domain-specific frameworks

(AIBench, Software Factory, and VHD++) that are useful for the development of

applications in Scientific, Product line and VR/AR domains. Initially, we explained the

characteristics of each of the three domains and why these frameworks are best fit for that

domain. We presented in-depth details on the mechanism used in the framework and the

process of generating applications from frameworks.

16

CHAPTER 3

APPROACH FOR DEVELOPING A DOMAIN-SPECIFIC AUGMENTED

FRAMEWORK

 In this chapter, we outline the guidelines for the development of a domain-specific

augmented framework. Section 3.1 gives a complete overview of the approach we are

following in the development of the augmented framework. Section 3.2 illustrates the

development of all kinds of graphical user interfaces. Section 3.3 illustrates the approach

we are following to integrate the customization components into the augmented

framework. Section 3.4 specifies the guidelines for displaying the appropriate user

interfaces based on the customization components that comes during runtime.

3.1 Overview of the Approach

 The proposed approach describes a step-by-step process for the development of a

domain-specific augmented framework. As shown in Figure 6, the proposed approach has

three stages: In the first stage, we provide the guidelines for the framework-developer to

create the design and skeleton code for generating the user interface; this allows

customization of the screens by the application-developer. In the Second stage, we provide

the guidelines to the framework-developer to create the dynamic binding mechanism to

integrate the external customization components at runtime. The third stage consists of

guidelines to display the appropriate user-interface based on input at runtime

17

Figure 5: Stages in the Development of Augmented Framework

3.2 Graphical User Interface Development

 Usually, user interface development (Web or Mobile), the creation of the skeleton

means creating the user-interfaces without any value attached to the elements in the user-

interface. Since in our framework we allow customization, the values of the components

in the user-interface are populated with the values given by application-developer at

runtime.

 In our approach, the user-interface development is categorized into two types:

1) Static user-interface: This refers to the development of screens that can be

included in the app without the need for customization. For example, the

login, Signup, admin, etc. screens.

18

2) Dynamic user-interface: This refers to the development of screens that

requires some input specifications from the app developer.

Figure 6: Two types of Graphical User Interfaces

3.2.1 Static User Interface Development

The static user interfaces are the user interfaces, which are not affected by the

resource type or resources structure. For example, the user-interface associated with

authentication, signup, admin functionality, will remain static across many applications.

As an example, when apps provide a signup or login screens, it almost invariably

consists of two fields and a couple of buttons. The two fields are used by the user to

provides their username and password. One button is used to submit the login information,

and another button is used to navigate to the signup screen for the new user.

19

3.2.2 Dynamic User Interface Development

Dynamic user-interfaces are one of the essential components in the development of

frameworks that supports customized applications. The dynamic user interfaces are the

user interfaces, which varies based on the resource type or resources structure. Dynamic

user-interfaces are categorized into two types of user-interfaces: behavior-dependent and

structure-dependent. In the following paragraphs, we describe these two categories.

3.2.2.1 User-Interfaces with Structural Dependence

 Since the framework can manage any number of resources, there is a need to create

layouts, which changes according to the number of resources. For example, if the

application-developer needs to manage three resources, the user-interface has to show three

buttons with corresponding resource names. If the application-developer wants to manage

one resource, it should show only one resource.

For example, in our case study to be discussed in the following chapter, the

framework generates a screen with a button for each of the resource introduced by the app-

developer. Each of the buttons, when pressed will trigger the corresponding screens that

display the needed details about the resource.

3.2.2.2 User-Interfaces with Behavioral dependence

 While developing the user-interfaces for this category, the framework-developer

need to look at different kinds of scenarios associated with the chosen domain where the

framework is applied. For each scenario, there are different kinds of inputs that need to

be managed. Therefore, there is an obvious need of different user-interfaces.

20

For Instance, in our case study (Chapter 4), we demonstrate the behavioral-

dependency user-interfaces with the screens associated with the time allocation of a

resource. There are resources that are allocated to users on an hourly basis. The app has

to generate each type of screen associated with the resource based on the input received

by the developer.

3.3 Application Logic Development

In software development, the application logic is a critical and complex part. It

defines the actions associated with the applications, such as handling the onclick

operations, taking the input from the screens, creating the databases and performing the

Database related tasks. In our augmented framework development, our main contribution

is in the development of a mechanism to accept external data we call it “dynamic binding.”

3.3.1 Dynamic Binding

In the augmented framework development dynamic binding means developing a

mechanism which allows external data into the framework as input at runtime. It is a

crucial component in the framework development because it the path through with

customization data will be integrated into the framework.

The Augmented framework should be developed in such a way that it will take two

kinds of inputs (Text Files) from the application developer at runtime. The first type of

textfiles is the “Resource-Listfile” which contain the number of resources as well as the

names of the resources files on which the data is present. The second kind of text files is

21

the “Data-and-Behavioural-File” contains the data and its behavior in the form of methods.

In the following sections, both of the input formats are described.

3.3.1.1 Resource-Listfile

The Resource-Listfile contains the information regarding the Structure of resources

and the names of each resource the customized application is going to manage. First, the

framework-developer have to decide the pattern of Ressource-Listfile. Once the pattern

is decided the framework developer has to write the logic to extract the list information

and navigation to the corresponding files given by the application-developer. Framework-

developer should also mention the location in the framework where the application-

developer should add the resource file. More details regarding the Resource-ListFile

integration is mentioned with the case study described in Chapter 4.

3.3.1.2 Data-and-Behavioral-File

The “Data-and-Behavioral-Files” are the files which contain data associated with the

resource and its behavior. To follow a similar pattern in the input resource files, the

framework-developer has to provide a fixed input standard so that every application-

developer will follow it. Nowadays, we see so many frameworks which accept external

data to develop customized applications. They follow the traditional approach of writing

the code in the IDE provided by the framework.

In our approach, we are not restricting application-developers to follow any

developing environment; they can simply write the code on a “Text Document” and add

int the framework. Since we are not using any traditional IDE, the text document

22

(Containing the Code) should undergo the following six steps as shown in the figure. The

code associated with each of the steps as shown in Figure 7.

Figure 7: Steps involve in Binding the “Data-and-Behavioral-Files”

Step 1 In this step involves reading the specification file which contains the

customization components.

23

Step 2 This Step involves instantiating the compiler object of the associated

programming language to convert the source code from text files to a lower level language

(e.g., assembly language, object code, or machine code) to create an executable program.”

 Step 3 From Step 1 and 2 we got the necessary files as well as compiler, this

step involves compiling both together to generate a bytecode

 Step 4 This step involves creating a class from the input file, to facilitate the

necessary operations.

 Step 5 This step involves instantiating an object to the class that we had created

in step 4 access the customization content in it.

 Step 6 This step deals with invoking both the data as well as behavioral methods

in the input files.

 The code associated with above six steps is illustrated with the following

example:

Figure 8 illustrates a Text Document File with a variable and a method with file name as

“Test.java”

Figure 8: Code in the Text Document

24

 Figure 9 illustrates all the Six steps involved right from Accessing the source

code in the text document to Invoking the methods in the source code.

Figure 9: Code associated with all the six steps

When we execute the above code as shown in Figure 6, we will get the following

output:

Figure 10: Execution Process

25

Figure 10 shows the proof of accessing the content in the external file by following

the proposed Six-step approach. The code in Figure 9, will take the input from the source

file (Figure 8) and invoked the method in it.

3.4 User-Interface Logic

From Graphical User interface and Application logic section, the framework will get

the user interfaces and the mechanism to extract the customization data from application-

developer. This stage consists of writing logic to display the appropriate user interfaces

based on the structural and behavioral data. As mentioned in section 3.3, the structural data

comes from “Resource-Listfile,” and behavioral data comes from “Data-and-Behavioral-

Files.” The Resource-Listfile and Data-and-Behavioral-Files formats vary from domain to

domain, so the logic associated with the structural user interface display also varies based

on the domain.

3.4.1 Structural User Interfaces Display:

 At this stage, the framework-developer have to write the logic to display the

appropriate user interfaces based on the content in the Resource-Listfile. For instance, in

our case study, the Resource-Listfile (Format for App-Developer) as shown in the

following Figure 11.

 Figure 11: Resource-Listfile Format

26

 The first row contains the information regarding the number of resources the

application developer introduced. The rest of the rows contains the names of the resources.

In this case, we wrote the logic (Chapter 4) to display the user interface that has the same

number of buttons as of number of resources and the logic to populate the contents of the

buttons with the resource name.

3.4.2 Behavioral User Interface Display:

In this section, the framework developer must write the logic to display the

appropriate user interface based on the behavioral content in the “Data-and-Resource-File.”

For example, in our case study, we defined the behavior of the resource depends on Hours

and Days. The information regarding the resource behavior is present inside the method

(getHorD()) as shown in Figure 12.

 Figure 12: Data-and-Behavioral-File

The framework-developer has to write the code to display appropriate user interface

based on the contentment in the method getHorD(). In this case, we have two kinds of user

interfaces they are displayed by the framework based on the following criteria: A) If

getHorD() contains letter “H” then it will display the screen that accepts hours and B) If

getHorD() contains letter “D” then it will display the screen that accepts hours. Both these

cases are explained in the Section 4.4.2.

27

3.5 Summary

 This chapter explains the systematic approach we are following to generate the

domain-specific augmented framework. The approach consists of three steps: Graphical

User Interface development, Application logic development, and User Interface logic. In

the first step, Graphical User Interface development explains about the creation of skeleton

user interfaces, which are categorized into Static and Dynamic User Interfaces. In the next

step, we discuss the application logic development; it explains the dynamic integration of

customization components into the framework. In the third step, we discuss the writing of

the User Interface logic; its main function is to display the appropriate user interfaces based

on the runtime input we get from the previous step.

28

CHAPTER 4

A CASE-STUDY FOR THE DEVELOPMENT OF AN AUGMENTED FRAMEWORK

FOR MANAGING RESOURCES

 In this chapter will show the development of augmented framework by following the

steps mentioned in the previous chapter. Section 4.1 describes the domain to which we are

applying the proposed steps. Sections 4.2 shows the development of layouts for the static

and dynamic User-Interfaces that are associated with chose domain. Section 4.3 illustrates

the dynamic binding process of Resource-Listfile as well as Data-and-Behavioral-Files.

Section 4.4 explains the logic to vary the user-interface based on the input data.

4.1 Description of the Case-Study

 To show the effectiveness of the proposed approach we are developing an

augmented framework for resource allocation (Chosen Domain) for the reservation system.

The augmented framework created by using the proposed approach can manage any

resources associated with the reservation system. For instance, if we want to apply this

framework (Reservation System) to libraries it will automatically handle different types of

resources (i.e., Books, Study Rooms, Projectors, etc.) that are associated with the

reservation.

29

4.2 User Interface Screens for Resource Allocation

 As mentioned in Chapter 3 the user interfaces are divided into two types: Static and

Dynamic. The following sections describe both types of user interfaces, as it relates to the

case study.

4.2.1 Development of Static User Interfaces:

 At this stage, the framework-developer need to develop the user interfaces

that won’t change based on the input. The Static User Interfaces are mostly common in

many applications, such as the User Interfaces for authentication and admin functionality.

We are developing the user interfaces as shown in the following figures.

 Figure 14: UI for Admin Screen

Figure 13: UI for Login Screen

30

4.2.2 Development of Dynamic User Interfaces:

 As mentioned in Chapter 3 Dynamic User Interfaces are dependent on the

following factors:

1) Behavioral dependency.

2) Structural dependency.

 Both are completely dependent on the domain we are selecting. As in our case study,

we are selecting choosing the domain as the reservation system. The behavior in our case

study is the duration, and the Structure is the number of resources the application is going

to manage. The user-interface development of both categories is mentioned below.

4.2.2.1 Behavioral Dependency related to Duration factor:

 If we look at the reservation system, the resources are Books, Projectors, and Study

Rooms. They are directly dependent on the Duration factor, i.e., Days or Hours. So, we

are categorizing the resources that are dependent on hours (Study Rooms, Conference

Rooms, etc.) as one category and resources that are dependent on days (Books, Projectors,

etc.) as one category. Then we will create the user interfaces that are commonly used for

each category they are as shown in the following figures.

31

 Figure 15: UI for Days Figure 16: UI for Hours

 Figure 13, will be displayed when the input resource depends on Days (Study Rooms,

Conference Rooms, etc.). Figure 14, will be displayed when the input resource depends on

Hours (Books, Projectors, etc.).

4.2.2.2 Structural Dependency related to Number of Inputs:

 The structural dependency in our case study depends on the number of inputs the

framework is going to manage. Since they are not known while creating the framework

the framework developer must create the user interfaces that can accommodate any

number of resources that comes during the runtime. For example, if there is only one

32

input the application display User Interface as shown in Figure 17 and for six inputs it

should display Figure 18.

 Figure 17: UI for One Resource Figure 18: UI for Six Resources

 Note: The content in the buttons are populated with the Resource names.

4.3 Application Logic for the Case-Study

 This step is mainly associated with developing the mechanism to integrate the

customization components into the framework, which we call it as dynamic binding. For

as mentioned in the previous chapter it will accept two types of inputs Resource-Listfile

and Data-and-Behavioral-Files. Resource-Listfile is useful to identify the resource and

33

Data-and-Behavioral-Files are the set of files that contain the information regarding the

resource. The formats and dynamic integration of each of them are explained in the

following subsections. In this case study, Resource-Listfile is a CSV File, and Data-and-

Behavioral-Files are Java classes both of them are discussed in the following sections

subsections.

4.3.1 Source File for Identifying the Resources:

 In our case study as a framework-developer, we are fixing the “Resource-Listfile”

as the CSV File and the pattern as shown in Figure 19. The Structural dependent user-

interface was selected based on the values in the first row (Number of Resources).

 Figure 19: Resource-Listfile Format

 Example of CSV Input file to the framework is as shown in Figure 8

 Figure 20: Resource-Listfile Example

34

Integration of the CSV Files into the framework was done by using a simple code as

shown in the following Figure 21:

 Figure 21: Code to integrate the Resource-Listfile

4.3.2 Resource file with Behavioral Characteristics:

 Data-and-Behavioral-Files are the files that contain resource information, i.e., data

and its behavior. To follow a single input pattern as a framework-developer, we are

mentioning the application-developer to implement an interface as shown in the following

Figure 22 A. In the Interface, the method getHorD() defines the behavior, and the method

getResourceMatrix() contains the complete data of the resource.

35

Figure 22: Fixed Input Convention

 As an example, the Figure 22 B, shows the customization input given by the

application-developer by implementing the interface. It contains both behavioral as well as

data methods. If there is any mismatch in the input format, the framework won’t accept the

external files and indicates the application-developer.

36

 Figure 23: Process of Accepting Behavioral Files

 Once the application-developer follows the input protocol format and inputs the text file

as shown in Figure 23 A. The textfile will undergo the six-step process by going through

the code as shown in the Figure 23 B. Once the input undergoes through the six-step

process the input files are automatically integrated into the framework and all the methods

in the input files are accessible to the Augmented Framework.

37

4.4 User-Interface Logic Development in our Case-Study

 From the section 4.2, we got all kinds of user interfaces (Static and Dynamic)

associated with the reservation system. From the section 4.3, the Augmented Framework

has the mechanism to integrate the CSV Files (Resource Identification File) as well as the

Java Classes (Resource Files). This stage consists of writing logic to generate the

appropriate user interfaces based on the structural and behavioral data.

4.4.1 Generating Structural User Interface:

 This step involves writing the code to Identifying the number of resource in CSV file

and displaying the associated User Interface. From Section 4.3.1, we wrote the program to

stored the CSV content in reader variable, by using the code as shown in Figure 24, we

will get the number of resources, and it is stored in resourceCount variable.

 Figure 24: Code to Grab the Number of Resources

 Based on the resourceCount, the pattern of displaying the user interface is as shown

the following Figure 20.

38

Figure 25: UI Display Based on Resource Count

 CSV Files also contains the resource class names; They are used to identify the

Resource Files. The code associated with identifying Resource File names from CSV File

is shown in the Following Figure 26. In Figure 26, the array classNames contains all the

resource file names. Once we get the list of class names, we have to go through each of the

resource files to get the behavioral information.

39

 Figure 26: Code to Grab Resource File Names

4.4.2 Generating Behavioral User Interfaces:

 This step involves writing the code to display User Interfaces based on the Behavioral

data from the input classes. In our case study as mentioned in the 4.3.2, the behavioral

components will come from the method “getHorD().” It has two possible values that are

‘H’ or ‘D.'

 Figure 27: Code to Extract the Resource Behavior

 The above Figure 27, shows the code responsible for navigation towards the

corresponding resource file and extracting the behavioral information from the resource

40

file. Once we get the content of the getHorD() method, the application will display the

corresponding user interface. The pattern of displaying the User Interfaces based on Days

or Hours is as shown in the following Figure 28.

Figure 28: UI Display Based on Days or Hours

4.5 Summary

 In this chapter, we demonstrate the effectiveness of the technology by using a case

study. The chosen domain for our case study is a library reservation system. In the first

step, we created examples of possible user interfaces used for the reservation of any

41

resources (Books, Study Rooms, Projectors, etc.). In the second stage, we used only

one format of input and also wrote the code to integrate the customization components

into the framework. In the third stage, we wrote the logic to display appropriate user

interfaces based on the customization components at runtime.

42

CHAPTER 5

EVALUATION AND FUTURE WORK

 In this chapter, we evaluate the limitations, summary and future scope of the proposed

system. We compared the system with existing, similar frameworks. The chapter also

highlights areas where the proposed approach can be improved. In Section 5.1, we evaluate

the proposed approach by comparing it with the regular framework development process.

Section 5.2 illustrates the limitations of the applications generated by the proposed

approach. Section 5.3 briefly summarized our whole work. Section 5.4 gives an overview

of the areas where the proposed approach can be extended.

5.1 Evaluation of Proposed Approach

Evaluation is necessary for any research to correlate with existing systems. In our

research, we developed an approach for creating a new generation domain specific

framework for mobile application development. There are many traditional mobile

application development frameworks. Those frameworks follow the “Programming-in-the-

large” model, focusing on simplifying the programming. However, the traditional

frameworks require a deep understanding of multiple fields like scripting languages for

user-interface, programming languages to generate dynamic effects, event handling, and

SQL as well as RDBMS concepts for database operations. This makes the application

development process complex and time-consuming. The proposed framework changes the

43

application development model to “Programming-in-the-Small” to reduce the application

developer effort. We achieved it by integrating the domain knowledge with the traditional

framework. The domain knowledge will help the application-developer to auto-generating

the user interfaces. Nowadays we see so many frameworks which accept external data to

develop customized applications. Developers follow the traditional approach of writing the

code in the IDE provided by the framework. In our approach, we are not restricting

application-developers to follow any developing environment; they can simply write the

code in a “Text Document,” using the format specified by the framework-developer.

Another advantage of this approach is in the inherent code reusability, which will

contribute to a more reliable code since the framework will be thoroughly tested over time.

5.2 Limitations of Proposed Approach

 Limitations do exist for every application development framework because no

framework or development method can address all domains. The proposed system

improves the application development process by adding the domain knowledge to the

existing framework. On the other hand, we are restricting the framework for only the

chosen-domain. If the application developer needs to develop the applications for different

domains, he must search the other framework that associated with that domain. The pattern

of the customization components may vary with the domains as well as framework-

developer. Even though the proposed augmented framework allows customization up to

some degree, but it is practically impossible to change the skeleton of the applications

generated from the proposed framework. The proposed approach simplifies the application

44

development process, but on the other hand, it demands the very high expertise from the

framework-developer.

5.3 Summary of Our Research

 Nowadays there are many frameworks for the development of the mobile

applications, but they still demand the programming expertise. To reduce this effort, we

proposed an approach to extend the capabilities of a framework. The capability extension

of a framework on the domain basis, i.e., adding the most commonly used features in the

chosen domain into the framework by framework-developer. We call the framework

obtained in this process as the Augmented Framework. Once the framework was developed

the framework-developer will give a set of simple instructions on the external data

acceptable pattern. The application-developer need to follow the set of instructions given

by the framework-developer to give the customization components. After giving the

customization components, the framework developer needs to run the augmented

framework. The augmented framework will integrate the customization components into

the framework and generate the application based on that input data. To further reduce the

use of IDE’s, we have developed a mechanism called “Dynamic-Binding” which will

accept Text Documents.

5.4 Future Work

 In general, frameworks always evolve over time. The following are the three main

areas to extend our work:

1) Database Design Automation:

45

 The proposed approach plays a significant role in auto-generating the user

interfaces. As a next step, we can extend the auto-generating aspect to the database design,

i.e., external data dependent databases.

2) Other Platforms:

 The proposed approach was implemented for the Android platform, but it can be

easily extendable to other Mobile platforms such as iOS.

3) Superior Methodology:

 The proposed approach plays a good role in the development of mobile

applications for resource allocation system. In the future, we will work on extending this

research to provide a methodology, which can be applied to any domains.

46

LIST OF REFERENCES

[1] Frank DeRemer, Hans Kron, Programming-in-the large versus programming-in-

the-small, proceedings of the international conference on Reliable software, p.114-

121, April 21-23, 1975, Los Angeles, California.

[2] F.P Brooks Jr. No Silver Buller: Essence and Accidents of Software Engineering,

IEEE Computer (April 1987), pp. 10-19

[3] https://dl.acm.org/citation.cfm ? id=1297846 & picked=prox &

CFID=1013418917 & CFTOKEN=18720603

[4] Gregory F. Rogers, Framework-based software development in C++, Prentice-Hall,

Inc., Upper Saddle River, NJ, 1997.

[5] https://search.proquest.com/docview/215837131?accountid=8240.

[6] M.R.J Qureshi, S.A.Hussain, A reusable software component-based development

process model, Advances in Engineering Software, February 2008.

[7] F. Fdez-Riverola, D. Glez-Peña, H. López-Fernández, J.R.A. Méndez Java

application framework for scientific software development. Software: Practice and

Experience (2012).

[8] J. Greenfield, and K. Short; Software Factories: Assembling Applications with

Patterns, Models, Frameworks and Tolls, John Wiley & Sons, 2004.

[9] Ponder M, Papagiannakis G, Molet T, Magnenat-Thalmann N, Thalmann D.

VHD++ development framework: towards extendible, component based VR/AR

simulation engine featuring advanced virtual character technologies.

In Proceedings of Computer Graphics International (CGI). IEEE Computer Society

Press, 2003.

[10] S. A. Amjad and S. A. Khan, “A Framework for Enhancing Readability and

Opportunistic Reuse of Enterprise Software,” New York, 2015.

[11] http://vhdplus.sourceforge.net/vhdPlusDoc.html

https://dl.acm.org/citation.cfm%20?%20id=1297846
https://dl.acm.org/citation.cfm?id=248485&CFID=1013418917&CFTOKEN=18720603
https://dl.acm.org/citation.cfm?id=248485&CFID=1013418917&CFTOKEN=18720603
http://vhdplus.sourceforge.net/vhdPlusDoc.html

47

[12] W.W. Agresti, F.E. McGarry, "The Minnowbrook Workshop on Software Reuse:

A Summary Report," Tutorial Software Reuse: Emerging Technology, 1987.

[13] J.J. Jeng, B.C.H. Cheng, "Specification Matching for Software Reuse: A

Foundation."

[14] Zhu, F., Turner, M., Kotsipoulos, I.A., Bennett, K.H. (2004). Dynamic data

integration using web services.

[15] A. Schultz, A. Matteini, R. Isele, C. Bizer, and C. Becker. LDIF - Linked Data

Integration Framework, 2011.

[16] A framework for effective commercial Web application development, Research

paper Ming-te Lu, Wing-Lok Yeung, 1998.

[17] M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, pages

233–246. ACM, 2002.

[18] V. Basili, L. Briand, and W. Melo. How reuse influences productivity in object-

oriented systems. Communications of the ACM, 1996.

[19] J.S. Poulin- Measuring Software Reusability, Proc. Third Conf Software Reuse,

Nov. 1994.

[20] Martin L. Griss, Software reuse: from library to factory, IBM Systems Journal, v.32

n.4, p.548-566, October 1993.

https://dl.acm.org/citation.cfm?id=1011343&CFID=1013418917&CFTOKEN=18720603
https://dl.acm.org/citation.cfm?id=1011343&CFID=1013418917&CFTOKEN=18720603

48

APPENDIX

PROGRAM CODE

49

 The Chapter contains all the code associated with associated with the development

of Augmented Framework. For Good detailed understanding, I am dividing the Code

different sections.

'''

Created by Rama Krishna Raju Rudraraju

MainActivity

'''

public class MainActivity extends AppCompatActivity implements Serializable {

 InputStream inputStream;

 private static final String TAG = "MainActivity";

 String csvLine, resourceType;

 int n = 0, classCount;

 Resource ob;

 String[] ids, className = new String[10];// resourceTitleArray = new String[10],

resourceFunionsArray = new String[10], resourceUniIdeArray = new String[10];

 String RN, A, SM, SD, SY, EM, ED, EY, ST, ET, resourceFunOn, resourceUniIde,

stClassCount, resourceMaxTime;

 int numberOfCol = 10;

 String[][] resourceGrid;

 DbHelperPj Dbp;

 EditText TFusername, TFpassword;

 Button Bsignup, Blogin;

 String Username, Password;

 String[] resourceTitleArray , resourceFunionsArray , resourceUniIdeArray,

resourceMaxTimeArray ;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Dbp = new DbHelperPj(this);

 TFusername = (EditText) findViewById(R.id.TFusername);

 TFpassword = (EditText) findViewById(R.id.TFpassword);

 Bsignup = (Button) findViewById(R.id.Bsignup);

 Blogin = (Button) findViewById(R.id.Blogin);

50

 /* Reading Multiple Resource Titles*/

 inputStream = getResources().openRawResource(R.raw.resourcer);

 BufferedReader reader = new BufferedReader(new

InputStreamReader(inputStream));

 try {

 if((csvLine = reader.readLine()) != null){

 ids = csvLine.split(",");

 Log.d(TAG, "Crossed the Split Line");

 resourceType = ids[0];

 Log.d(TAG, "csvWithHeader: "+ resourceType);

 int i = 0;

 if(resourceType.equals("\uFEFF1"))

 {

 classCount = 1;

 Log.d(TAG, "Number of Classes = " + classCount);

 }

 if(resourceType.equals("\uFEFF2"))

 {

 classCount = 2;

 Log.d(TAG, "Number of Classes = " + classCount);

 }

 if(resourceType.equals("\uFEFF3"))

 {

 classCount = 3;

 Log.d(TAG, "Number of Classes = " + classCount);

 }

 if(resourceType.equals("\uFEFF4"))

 {

 classCount = 4;

 Log.d(TAG, "Number of Classes = " + classCount);

 }

 try {

 while ((csvLine = reader.readLine()) != null){

 ids = csvLine.split(",");

 if(n == 0){

 n++;

 }else if(n == 1) {

51

 Log.d(TAG, "csvWithHeader: Came Inside Else ");

 try {

 Log.d(TAG, "onCreate: Room Number: ids " + ids[0]);

 className[i] = ids[0];

 Log.d(TAG, "onCreate: Room Number: cN " +

className[i]);

 i++;

 } catch (Exception e) {

 Log.d(TAG, "onCreate: Inside Exception 1");

 }

 }

 }

 }

 catch (Exception e){

 Log.d(TAG, "onCreate: Inside Exception 2");

 }

 }

 else{

 Log.d(TAG, "csvWithHeader: There is no data in the Input file.");

 }

 Log.d(TAG, "onCreate: Came Before the Count ------ ");

 }

 catch (Exception e){

 Log.d(TAG, "onCreate: Inside Exception 3");

 }

 /* Log.d(TAG, "Controller came Before the Count.");

 classCount = className.length;

 Log.d(TAG, "onCreate: " + classCount);

 */

 Log.d(TAG, "Before the For Loop");

 // for (int j = 0; j < className.length; j++){

 for (int j = 0; j < classCount; j++){

 Log.d(TAG, "Name of Classes : " + className[j]);

 }

 // String[] resourceTitleArray = new String[classCount], resourceFunionsArray =

new String[classCount], resourceUniIdeArray = new String[classCount];

52

 resourceTitleArray = new String[classCount];

 resourceFunionsArray = new String[classCount];

 resourceUniIdeArray = new String[classCount];

 /* New Code */

 resourceMaxTimeArray = new String[classCount];

 /* New Code */

 Log.d(TAG, " Length of resourceTitleArray " + resourceTitleArray.length);

 Log.d(TAG, " Length of resourceFunionsArray " +

resourceFunionsArray.length);

 Log.d(TAG, " Length of resourceUniIdeArray " +

resourceUniIdeArray.length);

 Log.d(TAG, " Length of resourceMaxTimeArray --> " +

resourceMaxTimeArray.length);

 /* Reading Multiple Resource Titles*/

 /* Assigning the Resource Titles to the Variables and calling the Associated classes

*/

 for (int j = 0; j < classCount; j++){

 // Log.d(TAG, "Name of Classes : " + className[j]);

 String inputJavaClass;

 inputJavaClass = className[j];

 Log.d(TAG, "onCreate: " + inputJavaClass);

 String resName = "com.example.rrkr2016.javaclassname." +

inputJavaClass;

 try {

 Class exampleClass = Class.forName(resName);

 ob = (Resource) exampleClass.newInstance();

 resourceGrid = ob.getResourceMatrix();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

53

 e.printStackTrace();

 }

 String[] rowMatrix = new String[numberOfCol];

 resourceType = ob.getName();

 Log.d(TAG, "extraResourceData: resourceType ---> " + resourceType);

 resourceTitleArray[j] = resourceType;

 Log.d(TAG, "extraResourceData: resourceTitleArray ---> " +

resourceTitleArray[j]);

 resourceFunOn = ob.getHorD();

 Log.d(TAG, "extraResourceData: resourceFunOn ---> " +

resourceFunOn);

 resourceFunionsArray[j] = resourceFunOn;

 Log.d(TAG, "extraResourceData: resourceFunionsArray ---> " +

resourceFunionsArray[j]);

 resourceUniIde = ob.getUniqueIdentifier();

 Log.d(TAG, "extraResourceData: resourceUniIde ---> " +

resourceUniIde);

 resourceUniIdeArray[j] = resourceUniIde;

 Log.d(TAG, "extraResourceData: resourceUniIde ---> " +

resourceUniIdeArray[j]);

 resourceMaxTime = ob.timePeriod();

 Log.d(TAG, "extraResourceData: TimePeriod ---> " +

resourceMaxTime);

 resourceMaxTimeArray[j] = resourceMaxTime;

 Log.d(TAG, "extraResourceData: TimePeriod --------------> " +

resourceMaxTimeArray[j]);

 // Log.d(TAG, "extraResourceData: resourceFunOn ---> " +

resourceFunOn);

 for (int row = 2; row < resourceGrid.length; row++) {

 int n = 0;

 for (int col = 0; col < resourceGrid[row].length; col++) {

 rowMatrix[n] = resourceGrid[row][col];

 n++;

 }

 RN = rowMatrix[0];

54

 A = rowMatrix[1];

 SM = rowMatrix[2];

 SD = rowMatrix[3];

 SY = rowMatrix[4];

 EM = rowMatrix[5];

 ED = rowMatrix[6];

 EY = rowMatrix[7];

 ST = rowMatrix[8];

 ET = rowMatrix[9];

 Log.d(TAG, "extraResourceData: Before AddDate Method ---> " +

RN + A + SM + SD + SY + EM + ED + EY + ST + ET);

 AddData(RN, A, SM, SD, SY, EM, ED, EY, ST, ET);

 }

 }

 for (int j = 0; j < classCount; j++){

 Log.d(TAG, "Name of Classes in the Array : " + resourceTitleArray[j]);

 Log.d(TAG, "Parameters on which the Functionality has to Apply : " +

resourceFunionsArray[j]);

 Log.d(TAG, "Unique Identifiers in the Database : " +

resourceUniIdeArray[j]);

 Log.d(TAG, "Max Time Period: ---------> " +

resourceMaxTimeArray[j]);

 }

 /* Assigning the Resource Titles to the Variables and calling the Associated classes

*/

 /* Login Button Code */

 stClassCount = Integer.toString(classCount);

 View.OnClickListener log = new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Toast tl = Toast.makeText(MainActivity.this, "Entered in to the login",

Toast.LENGTH_SHORT);

 tl.show();

 TFusername = (EditText) findViewById(R.id.TFusername);

55

 Username = TFusername.getText().toString();

 TFpassword = (EditText) findViewById(R.id.TFpassword);

 Password = TFpassword.getText().toString();

 if (Username.equals("admin") && Password.equals("admin")) {

 Intent is = new Intent(MainActivity.this, AdminSuccess.class);

 startActivity(is);

 } else {

 Intent is = new Intent(MainActivity.this,

ListOfResourceButtons.class);

 is.putExtra("NumberOfResources:", stClassCount);

 is.putExtra("ClassTitlesArray:", resourceTitleArray);

 is.putExtra("ParametersDorHArray:", resourceFunionsArray);

 is.putExtra("UniqrIdentifierArray:", resourceUniIdeArray);

 is.putExtra("MaxTimePeriod:", resourceMaxTimeArray);

 startActivity(is);

 }

 }

 };

 Blogin.setOnClickListener(log);

 /* Login Button Code Ending */

 }

 /* Method to Add Resource*/

 public void AddData(String RN, String A, String SM, String SD, String SY,

String EM, String ED, String EY, String ST, String ET) {

 boolean insertData = Dbp.addData(RN, A, SM, SD, SY, EM, ED, EY,

ST, ET);

 if (insertData) {

 // Toast.makeText(this, "Data Inserted Successfully-",

Toast.LENGTH_SHORT).show();

 } else {

 Toast.makeText(this, "Something went wrong Please check

DbHelper.", Toast.LENGTH_LONG).show();

 }

 }

 /* Method to Add Resource*/

56

}

AdminSuccess

public class AdminSuccess extends AppCompatActivity {

 Button bAddResource, bViewList, bDeleteRecord, bEditRecord,

bDeleteRecordsLessthanET;

 EditText RN, SM,SD,SY,EM,ED,EY,ST,ET, ENorDA,ID, DLETID;

 private static final String TAG = "AdminSuccess";

 DbHelperPj Db;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_admin_success);

 Db = new DbHelperPj(this);

 RN = (EditText) findViewById(R.id.rnid);

 SM = (EditText) findViewById(R.id.etsmid);

 SD = (EditText) findViewById(R.id.etsdid);

 SY = (EditText) findViewById(R.id.etsyid);

 EM = (EditText) findViewById(R.id.etemid);

 ED = (EditText) findViewById(R.id.etedid);

 EY = (EditText) findViewById(R.id.eteyid);

 ST = (EditText) findViewById(R.id.etStHour);

 ET = (EditText) findViewById(R.id.etStMin);

 ENorDA = (EditText) findViewById(R.id.etDuration);

 ID = (EditText) findViewById(R.id.idid);

 DLETID = (EditText) findViewById(R.id.dletid);

 bAddResource = (Button) findViewById(R.id.bSubmit);

 bViewList = (Button) findViewById(R.id.bViewListID);

 bDeleteRecord = (Button) findViewById(R.id.bDeleteRecordID);

 bEditRecord = (Button) findViewById(R.id.bEditRecordID);

 bDeleteRecordsLessthanET = (Button)

findViewById(R.id.bDeleteRecordsLessthanETID);

57

 bAddResource.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 String Rn = RN.getText().toString();

 String Sm = SM.getText().toString();

 String Sd = SD.getText().toString();

 String Sy = SY.getText().toString();

 String Em = EM.getText().toString();

 String Ed = ED.getText().toString();

 String Ey = EY.getText().toString();

 String St = ST.getText().toString();

 String Et = ET.getText().toString();

 String Enorrn = ENorDA.getText().toString();

 if((Enorrn.equals("0")) || (Enorrn.equals("1"))) {

 if (Rn.length() != 0 && Sm.length() != 0 && Sd.length() != 0 &&

Sy.length() != 0 && Em.length() != 0 && Ed.length() != 0

 && Ey.length() != 0 && St.length() != 0 && Et.length() != 0 &&

Enorrn.length() != 0) {

 AddData(Rn, Enorrn, Sm, Sd, Sy, Em, Ed, Ey, St, Et);

 } else {

 Toast.makeText(AdminSuccess.this, "Please enter all the parameters!!!",

Toast.LENGTH_SHORT).show();

 }

 }

 else{

 Log.d(TAG, "You Have to Enter Either 0 or 1 in Enable or Dicable

Column");

 }

 }

 });

 bViewList.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(AdminSuccess.this, ViewListContents.class);

 startActivity(is);

 }

 });

58

 bDeleteRecord.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 int temp = ID.getText().toString().length();

 if (temp > 0){

 DeleteData();

 // String Et = ET.getText().toString();

 ID.setText("");

 }else {

 Toast.makeText(AdminSuccess.this, "Please Enter an ID to Delete a record

!!!", Toast.LENGTH_SHORT).show();

 }

 }

 });

 bEditRecord.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 int temp = ID.getText().toString().length();

 if (temp > 0){ // Checking if User had Entered any thing or Not.

 UpdateData();

 // deRd.setText("");

 }else {

 Toast.makeText(AdminSuccess.this, "Pleas Enter the Id to Update !!!",

Toast.LENGTH_SHORT).show();

 }

 }

 });

 bDeleteRecordsLessthanET.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 int temp = DLETID.getText().toString().length();

 if (temp > 0){

 DeleteLessThan();

 }else {

 Toast.makeText(AdminSuccess.this, "Please enter the ending time !!!",

Toast.LENGTH_SHORT).show();

 }

59

 }

 });

 }

 public void AddData(String RN,String A, String SM,String SD,String SY,String

EM,String ED,String EY,String ST,String ET){

 boolean insertData = Db.addData(RN, A, SM,SD,SY,EM,ED,EY,ST,ET);

 if(insertData){

 Toast.makeText(this, "Data Inserted Successfully",

Toast.LENGTH_LONG).show();

 } else {

 Toast.makeText(this, "Something went wrong Please check DbHelper.",

Toast.LENGTH_LONG).show();

 }

 }

 public void DeleteData(){

 Integer deleteRow = Db.deleteDataById(ID.getText().toString());

 // Here we are passing the ID, to the DbHelper to Delete the Data.

 if(deleteRow > 0){

 Toast.makeText(AdminSuccess.this, "Successfully Deleted the record.",

Toast.LENGTH_LONG).show();

 }else {

 Toast.makeText(AdminSuccess.this, "Something went wrong.",

Toast.LENGTH_LONG).show();

 }

 }

 public void UpdateData() {

 boolean update = Db.updataData(ID.getText().toString(),RN.getText().toString(),

ENorDA.getText().toString(), SM.getText().toString(), SD.getText().toString(),

 SY.getText().toString(), EM.getText().toString(), ED.getText().toString(),

EY.getText().toString(), ST.getText().toString(), ET.getText().toString());

 if (update) {

 Toast.makeText(AdminSuccess.this, "Successfully Updated.",

Toast.LENGTH_LONG).show();

 } else {

60

 Toast.makeText(AdminSuccess.this, "Something went wrong, In Updating.",

Toast.LENGTH_LONG).show();

 }

 }

 private void DeleteLessThan() {

 Integer deleteLessThan = Db.deleteDataLessThan(ENorDA.getText().toString());

 if(deleteLessThan > 0){

 Toast.makeText(AdminSuccess.this, "Successfully Deleted the records.",

Toast.LENGTH_LONG).show();

 }else {

 Toast.makeText(AdminSuccess.this, "Something went wrong.",

Toast.LENGTH_LONG).show();

 }

 }

Conformation

public class Conformation extends AppCompatActivity {

 private static final String TAG = "SecondActivity";

 // ImageView Iv;

 TextView incomingData;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_conformation);

 incomingData = (TextView) findViewById(R.id.etIncomingData);

 // Iv = (ImageView) findViewById(R.id.imageView);

 Intent incomIntent = getIntent();

 String incomingRoom = incomIntent.getStringExtra("Room");

 Toast.makeText(Conformation.this, "User Clicked on: " + incomingRoom,

Toast.LENGTH_LONG).show();

 incomingData.setText(incomingRoom);

 }

61

}

DbHelperPj

public class DbHelperPj extends SQLiteOpenHelper {

 private static final String TAG = "DbHelperPj";

 private static final String TABLE_NAME = "Resource";

 private static final String COL_1 = "ID";

 private static final String COL_2 = "RN";

 private static final String COL_3 = "A";

 private static final String COL_4 = "SM";

 private static final String COL_5 = "SD";

 private static final String COL_6 = "SY";

 private static final String COL_7 = "EM";

 private static final String COL_8 = "ED";

 private static final String COL_9 = "EY";

 private static final String COL_10 = "ST";

 private static final String COL_11 = "ET";

 public DbHelperPj(Context context) {

 super(context, TABLE_NAME, null, 1);

 }

62

 @Override

 public void onCreate(SQLiteDatabase db) {

 String createTable = "CREATE TABLE " + TABLE_NAME + "(ID INTEGER

PRIMARY KEY AUTOINCREMENT," +

 " RN TEXT, A INTEGER, SM INTEGER, SD INTEGER, SY INTEGER, EM

INTEGER, ED INTEGER, EY INTEGER, ST INTEGER, ET INTEGER)";

 db.execSQL(createTable);

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int i, int i1) {

 db.execSQL("DROP IF TABLE EXISTS " + TABLE_NAME);

 onCreate(db);

 }

 public boolean addData(String RN, String A,String SM, String SD,String SY,String

EM,String ED, String EY,String ST,String ET) {

 SQLiteDatabase db = this.getWritableDatabase(); // First thing we have

to Do, Creating SQLiteDatabase Object.

 ContentValues contentValues = new ContentValues(); // Second thing,

Creating ContentValues Object which Helps us to write into DataBase.

 contentValues.put(COL_2, RN);

 contentValues.put(COL_3, A);

 contentValues.put(COL_4, SM);

 contentValues.put(COL_5, SD);

 contentValues.put(COL_6, SY);

 contentValues.put(COL_7, EM);

 contentValues.put(COL_8, ED);

 contentValues.put(COL_9, EY);

 contentValues.put(COL_10, ST);

 contentValues.put(COL_11, ET);

 long res = db.insert(TABLE_NAME, null, contentValues); // Inserting the The

values in cv Object (Entered Name)to TABLE_NAME.

 if (res == -1) {

 return false;

 } else {

 return true;

 }

 }

63

 public Cursor getData() { // Returns all the Data from Database // It returns a

Cursor Type

 SQLiteDatabase db = this.getWritableDatabase();

 String qr = "SELECT * FROM " + TABLE_NAME; // It is in the form of

 Cursor data = db.rawQuery(qr, null);

 return data;

 }

 public Cursor roomSearch(String st, String et, String sm, String sd, String sy,String

em,String ed,String ey, String UniqeID){

 SQLiteDatabase db = this.getWritableDatabase();

 Log.d(TAG, "UID :" + UniqeID);

 //String Que = "SELECT DISTINCT RN FROM " + TABLE_NAME + " WHERE "

+ " (ET <= " + st + " OR " + " ST >= " + et + ") " + " AND " + "(SD != " + sd + ") ";

 String Que = "SELECT DISTINCT RN FROM " + TABLE_NAME + " WHERE "

+ " (ET <= " + st + " OR " + " ST >= " + et + ") " + " AND " + "(SD != " + sd + ") " +

" AND " + "(A = " + UniqeID + ") " ;

 Cursor data = db.rawQuery(Que, null);

 return data;

 }

 public Cursor datesSearch(String sm, String sd, String sy,String em,String ed,String

ey, String UniqeID){

 SQLiteDatabase db = this.getWritableDatabase();

 //String Que = "SELECT DISTINCT RN FROM " + TABLE_NAME + " WHERE "

+ " (ET <= " + st + " OR " + " ST >= " + et + ") " + " AND " + "(SD != " + sd + ") ";

 int CSV, CEV;

 String t = "0";

 Log.d(TAG, "datesSearch: " + t);

 int it = Integer.valueOf(t);

 Log.d(TAG, "datesSearch: " + it);

 // Log.d(TAG, "datesSearch: " + sm);

 Log.d(TAG, "datesSearch: Before the Errors");

 int iSD = Integer.valueOf(sd);

 Log.d(TAG, "datesSearch: ISD" + iSD);

 int iSM = Integer.valueOf(sm);

64

 Log.d(TAG, "datesSearch: ISM" + iSM);

 int iEM = Integer.valueOf(em);

 int iED = Integer.valueOf(ed);

 CSV = (100 * iSM) + (iSD);

 CEV = (100 * iEM) + (iED);

 Log.d(TAG, "UID :" + UniqeID);

 int uid = Integer.valueOf(UniqeID);

 // String Que = "SELECT DISTINCT RN FROM " + TABLE_NAME + " WHERE

" + "(((EM * 100) + ED) <= " + CSV + " OR "+ " ((SM * 100) + SD) >= " + CEV +")";

 String Que = "SELECT DISTINCT RN FROM " + TABLE_NAME + " WHERE " +

"(" + "("+ "((EM * 100) + ED) < " + CSV + " OR "+ " ((SM * 100) + SD) > " + CEV +"

)"+ " AND " + "(A == " + uid + ") " + ") ";

 // String Que = "SELECT DISTINCT RN FROM " + TABLE_NAME + " WHERE

"+ "(A == " + uid + ") ";

// + " AND " + "(A != " + 0 + ") "

 Cursor data = db.rawQuery(Que, null);

 return data;

 }

 public int deleteDataById(String id){

 SQLiteDatabase db = this.getWritableDatabase();

 return db.delete(TABLE_NAME, "ID = ?", new String[] {id});

 }

 public int deleteDataLessThan(String endTime){ // Important

 SQLiteDatabase db = this.getWritableDatabase();

 return db.delete(TABLE_NAME, "ET <= ? AND ET > 0.1 ", new String[]

{endTime});

 }

 public boolean updataData(String id, String RN, String A,String SM, String SD,String

SY,String EM,String ED, String EY,String ST,String ET){

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues cv = new ContentValues();

 cv.put(COL_1, id);

 cv.put(COL_2, RN);

 cv.put(COL_3, A);

65

 cv.put(COL_4, SM);

 cv.put(COL_5, SD);

 cv.put(COL_6, SY);

 cv.put(COL_7, EM);

 cv.put(COL_8, ED);

 cv.put(COL_9, EY);

 cv.put(COL_10,ST);

 cv.put(COL_11,ET);

 // cv.put(COL_4, RET);

 db.update(TABLE_NAME, cv, "ID = ?", new String[] {id});

 return true;

 }

}

ListOfResource

public class ListOfResource extends AppCompatActivity {

 String Resource, DaysOrHours, UniqeID, Title;

 private static final String TAG = "ListOfResource";

 // private static final String TAG = "MainActivity";

 TextView setTitle;

 DbHelperPj Dbp;

 ListView listView2;

 User user2;

 ArrayList<User> ul;

 Cursor data2;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 /* setTitle = (TextView)findViewById(R.id.pname);

 setTitle.setText(Title); */

 Intent IncomingResource = getIntent();

 DaysOrHours = IncomingResource.getStringExtra("DaysOrHours:");

66

 UniqeID = IncomingResource.getStringExtra("UniqeID");

 Title = IncomingResource.getStringExtra("Title:");

 Log.d(TAG, "onCreate: "+ DaysOrHours);

 Log.d(TAG, "onCreate: "+ UniqeID);

 if(DaysOrHours.equals("H")){

 setContentView(R.layout.activity_list_of_resource);

 Log.d(TAG, "onCreate: Inside RR " + DaysOrHours + DaysOrHours);

 setTitle = (TextView)findViewById(R.id.pname);

 setTitle.setText(Title);

 Dbp = new DbHelperPj(this);

 // displayTheAvaiRooms();

 listView2 = (ListView) findViewById(R.id.lvp);

 Intent incomIntent = getIntent(); // compAddress

 String StartTime = incomIntent.getStringExtra("StartTime");

 String EndTime = incomIntent.getStringExtra("EndTime");

 String SM = incomIntent.getStringExtra("SM");

 String SD = incomIntent.getStringExtra("SD");

 String SY = incomIntent.getStringExtra("SY");

 String EM = incomIntent.getStringExtra("EM");

 String ED = incomIntent.getStringExtra("ED");

 String EY = incomIntent.getStringExtra("EY");

 data2 = Dbp.roomSearch(StartTime, EndTime, SM,SD,SY,EM,ED,EY,

UniqeID);

 ul = new ArrayList<>();

 int numRow2 = data2.getCount();

 if (numRow2 == 0){

 Toast.makeText(this, "There is nothing in Database!!!",

Toast.LENGTH_SHORT).show();

 }else {

 while (data2.moveToNext()) { // Have a look over It

 // user2 = new User(data2.getString(1));

 user2 = new User(data2.getString(0));

 // ul.add(data2.getString(0));

 ul.add(user2);

67

 Log.d(TAG, "onCreate: "+ ul);

 }

 Log.d(TAG, "onCreate: sUCCESSFULL UPTO THIS POINT");

 }

 OneColumn_ListAdapter OneAdapt = new

OneColumn_ListAdapter(ListOfResource.this, R.layout.one_adapter_view, ul);

 listView2.setAdapter(OneAdapt);

 listView2.setOnItemClickListener(new AdapterView.OnItemClickListener(){

 @Override

 public void onItemClick(AdapterView<?> adapterView, View view, int i, long

l) {

 Log.d(TAG, "onItemClick ListView");

 Intent intent = new Intent(ListOfResource.this, Conformation.class); //

(String Name , Type of value)

 Toast.makeText(ListOfResource.this, "I: " + i +

listView2.getItemAtPosition(i).toString(), Toast.LENGTH_LONG).show();

 // Toast.makeText(ListOfRooms.this, "I: " + i,

Toast.LENGTH_LONG).show();

 String Value = listView2.getItemAtPosition(i).toString();

 // Log.d(TAG, "onItemClick: " + Value);

 Toast.makeText(ListOfResource.this, "************* : "+ Value,

Toast.LENGTH_LONG).show();

 intent.putExtra("Room", listView2.getItemAtPosition(i).toString()); //

Attaching Data to ListView.

 startActivity(intent);

 }

 });

 } else if(DaysOrHours.equals("D")){

 setContentView(R.layout.activity_list_of_resource);

 Log.d(TAG, "onCreate: Inside Dates ");

 setTitle = (TextView)findViewById(R.id.pname);

 setTitle.setText(Title);

 Dbp = new DbHelperPj(this);

68

 // displayTheAvaiRooms();

 listView2 = (ListView) findViewById(R.id.lvp);

 Intent incomIntent = getIntent(); // compAddress

 // String StartTime = incomIntent.getStringExtra("StartTime");

 // String EndTime = incomIntent.getStringExtra("EndTime");

 String SM = incomIntent.getStringExtra("SM");

 String SD = incomIntent.getStringExtra("SD");

 String SY = incomIntent.getStringExtra("SY");

 String EM = incomIntent.getStringExtra("EM");

 String ED = incomIntent.getStringExtra("ED");

 String EY = incomIntent.getStringExtra("EY");

 Log.d(TAG, "onCreate: Before going to DataBase" + SM);

 Cursor data2 = Dbp.datesSearch(SM,SD,SY,EM,ED,EY,UniqeID);

 ArrayList<User> ul = new ArrayList<>();

 int numRow2 = data2.getCount();

 if (numRow2 == 0){

 Toast.makeText(this, "There is nothing in Database!!!",

Toast.LENGTH_SHORT).show();

 }else {

 while (data2.moveToNext()) { // Have a look over It

 // user2 = new User(data2.getString(1));

 user2 = new User(data2.getString(0));

 ul.add(user2);

 Log.d(TAG, "onCreate: "+ ul);

 }

 Log.d(TAG, "onCreate: sUCCESSFULL UPTO THIS POINT");

 }

 OneColumn_ListAdapter OneAdapt = new

OneColumn_ListAdapter(ListOfResource.this, R.layout.one_adapter_view, ul);

 listView2.setAdapter(OneAdapt);

 }

 }

}

69

ListOfResourceButtons

public class ListOfResourceButtons extends AppCompatActivity {

 private static final String TAG = "MainActivity";

 Button B1, B2, B3, B4, B5, B6, B7, B8, B9, B10;

 String[] ClassNames, correspondingDorH, correspondingUniIdent,

correspondingMaxTime;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Intent IncomingResource = getIntent();

 String resourceNumber =

IncomingResource.getStringExtra("NumberOfResources:");

 ClassNames = getIntent().getStringArrayExtra("ClassTitlesArray:");

 correspondingDorH = getIntent().getStringArrayExtra("ParametersDorHArray:");

 correspondingUniIdent =

getIntent().getStringArrayExtra("UniqrIdentifierArray:");

 correspondingMaxTime = getIntent().getStringArrayExtra("MaxTimePeriod:");

 int cn = ClassNames.length;

 int dh = correspondingDorH.length;

 int ui = correspondingUniIdent.length;

 int mtp = correspondingMaxTime.length;

 Log.d(TAG, "Length of the Input Strings : " + cn + " " + dh + " " + ui+"----->"+ mtp);

 //DaysOrHours = IncomingResource.getStringExtra("DaysOrHours:");

 Log.d(TAG, "Before If Condition " + resourceNumber);

 for(int i = 0; i < cn ; i++){

 Log.d(TAG, "Class Name : " + ClassNames[i]);

 Log.d(TAG, "D or H : " + correspondingDorH[i]);

 Log.d(TAG, "Uni ID : " + correspondingUniIdent[i]);

 Log.d(TAG, "Max Times : " + correspondingMaxTime[i]);

 }

70

 if(resourceNumber.equals("1")) {

 setContentView(R.layout.activity_list_of_resource_buttons);

 B1 = (Button) findViewById(R.id.b1);

 B1.setText(ClassNames[0]);

 B1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this, ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[0]);

 is.putExtra("UniqeID",correspondingUniIdent[0]);

 is.putExtra("MaxTime---->",correspondingMaxTime[0]);

 // String

 is.putExtra("Title:", ClassNames[0]);

 startActivity(is);

 }

 });

 }

 else if(resourceNumber.equals("2")) {

 setContentView(R.layout.activity_list_of_resource_buttons2);

 B1 = (Button) findViewById(R.id.b1);

 B2 = (Button) findViewById(R.id.b2);

 B1.setText(ClassNames[0]);

 B2.setText(ClassNames[1]);

 B1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this,

ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[0]);

 is.putExtra("UniqeID",correspondingUniIdent[0]);

71

 is.putExtra("MaxTime---->",correspondingMaxTime[0]);

 is.putExtra("Title:", ClassNames[0]);

 startActivity(is);

 }

 });

 B2.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this,

ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[1]);

 is.putExtra("UniqeID",correspondingUniIdent[1]);

 is.putExtra("MaxTime---->",correspondingMaxTime[1]);

 is.putExtra("Title:", ClassNames[1]);

 startActivity(is);

 }

 });

 }

 else if(resourceNumber.equals("3")) {

 setContentView(R.layout.activity_list_of_resource_buttons3);

 B1 = (Button) findViewById(R.id.b1);

 B2 = (Button) findViewById(R.id.b2);

 B3 = (Button) findViewById(R.id.b3);

 B1.setText(ClassNames[0]);

 B2.setText(ClassNames[1]);

 B3.setText(ClassNames[2]);

 B1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this,

ResourcePage.class);

72

 is.putExtra("DorH", correspondingDorH[0]);

 is.putExtra("UniqeID",correspondingUniIdent[0]);

 is.putExtra("MaxTime---->",correspondingMaxTime[0]);

 is.putExtra("Title:", ClassNames[0]);

 startActivity(is);

 }

 });

 B2.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this,

ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[1]);

 is.putExtra("UniqeID",correspondingUniIdent[1]);

 is.putExtra("MaxTime---->",correspondingMaxTime[1]);

 is.putExtra("Title:", ClassNames[1]);

 startActivity(is);

 }

 });

 B3.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this,

ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[2]);

 is.putExtra("UniqeID",correspondingUniIdent[2]);

 is.putExtra("MaxTime---->",correspondingMaxTime[2]);

 is.putExtra("Title:", ClassNames[2]);

 startActivity(is);

 }

 });

73

 }

 else if(resourceNumber.equals("4")) {

 setContentView(R.layout.activity_list_of_resource_buttons4);

 B1 = (Button) findViewById(R.id.b1);

 B2 = (Button) findViewById(R.id.b2);

 B3 = (Button) findViewById(R.id.b3);

 B4 = (Button) findViewById(R.id.b4);

 B1.setText(ClassNames[0]);

 B2.setText(ClassNames[1]);

 B3.setText(ClassNames[2]);

 B4.setText(ClassNames[3]);

 B1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this, ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[0]);

 is.putExtra("UniqeID",correspondingUniIdent[0]);

 is.putExtra("MaxTime---->",correspondingMaxTime[0]);

 is.putExtra("Title:", ClassNames[0]);

 startActivity(is);

 }

 });

 B2.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this, ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[1]);

 is.putExtra("UniqeID",correspondingUniIdent[1]);

 is.putExtra("MaxTime---->",correspondingMaxTime[1]);

 is.putExtra("Title:", ClassNames[1]);

 startActivity(is);

74

 }

 });

 B3.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this, ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[2]);

 is.putExtra("UniqeID",correspondingUniIdent[2]);

 is.putExtra("MaxTime---->",correspondingMaxTime[2]);

 is.putExtra("Title:", ClassNames[2]);

 startActivity(is);

 }

 });

 B4.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent is = new Intent(ListOfResourceButtons.this, ResourcePage.class);

 is.putExtra("DorH", correspondingDorH[3]);

 is.putExtra("UniqeID",correspondingUniIdent[3]);

 is.putExtra("MaxTime---->",correspondingMaxTime[3]);

 is.putExtra("Title:", ClassNames[3]);

 startActivity(is);

 }

 });

 }

 }

}

OneColumn_ListAdapter

75

public class OneColumn_ListAdapter extends ArrayAdapter<User> {

 private LayoutInflater mInflater;

 private ArrayList<User> users2;

 private int mViewResourseId;

 public OneColumn_ListAdapter(Context context, int textViewResourseId,

ArrayList<User> users2){

 super(context, textViewResourseId, users2);

 this.users2 = users2;

 mInflater = (LayoutInflater)

context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 mViewResourseId = textViewResourseId;

 }

 public View getView(int position, View convertView2, ViewGroup parent){

 convertView2 = mInflater.inflate(mViewResourseId, null);

 User user2 = users2.get(position);

 if(user2 != null){

 TextView RoomNumber = (TextView)

convertView2.findViewById(R.id.rnoclid);

 if (RoomNumber != null){

 RoomNumber.setText(user2.getRN());

 }

 }

 return convertView2;

 }

}

ProjectorBorrow

public class ProjectorBorrow implements Resource {

 public String getName(){

 return "Projectors Borrow";

 }

 public String getUniqueIdentifier() {

76

 return "2";

 }

 public String getHorD(){

 return "D";

 }

 public String[][] getResourceMatrix() {

 String[][] resourceGrid = {

 {"Projectors Borrow","D","","","","","","","","",},

 {"Projector Name","A","SM","SD","SY","EM","ED","EY","ST","ET"},

 {"Leon","2","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 {"Dell 712","2","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 {"Apple 512","2","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 };

 return resourceGrid;

 }

 public String getInputClassName(){

 return "ProjectorReso";

 }

 public String timePeriod(){

 return "10";

 }

}

Resources

public interface Resource {

 public String getName();

 public String getHorD();

 public String[][] getResourceMatrix();

 public String getUniqueIdentifier();

 public String getInputClassName();

 public String timePeriod();

}

ResourcePage

77

public class ResourcePage extends AppCompatActivity {

 private static final String TAG = "ResourcePage";

 TextView resourceid, setTitle;

 String Resource, DaysOrHours, UniqeID, MaxTime;

 int alotedWindow; Double Ideff;

 // RoomReservation Variables

 DbHelperPj Dbp;

 EditText etStHour, etEndHour, etStMin, etDuration, etsm, etsd, etsy, etem, eted, etey;

 Button bSubmit;

 Intent intent;

 String STimeS, ETimeS, Title;

 // RoomReservation Variables

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Intent IncomingResource = getIntent();

 DaysOrHours = IncomingResource.getStringExtra("DorH");

 UniqeID = IncomingResource.getStringExtra("UniqeID");

 MaxTime = IncomingResource.getStringExtra("MaxTime---->");

 Title = IncomingResource.getStringExtra("Title:");

 Log.d(TAG, "onCreate: " + DaysOrHours);

 Log.d(TAG, "onCreate: " + UniqeID);

 Log.d(TAG, "onCreate: " + MaxTime);

 if (DaysOrHours.equals("H")) {

 setContentView(R.layout.activity_resource_page);

 // resourceid = (TextView)findViewById(R.id.resourceid);

 // resourceid.setText(Resource);

 setTitle = (TextView)findViewById(R.id.tit);

 setTitle.setText(Title);

 Dbp = new DbHelperPj(this);

 etStHour = (EditText) findViewById(R.id.etStHour);

 etStMin = (EditText) findViewById(R.id.etStMin);

 etDuration = (EditText) findViewById(R.id.etDuration);

 etsm = (EditText) findViewById(R.id.etsmid);

 etsd = (EditText) findViewById(R.id.etsdid);

78

 etsy = (EditText) findViewById(R.id.etsyid);

 etem = (EditText) findViewById(R.id.etemid);

 eted = (EditText) findViewById(R.id.etedid);

 etey = (EditText) findViewById(R.id.eteyid);

 bSubmit = (Button) findViewById(R.id.bSubmit);

 bSubmit.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String StartingHour = etStHour.getText().toString();

 String StartingMin = etStMin.getText().toString();

 String Duration = etDuration.getText().toString();

 String SM = etsm.getText().toString();

 String SD = etsd.getText().toString();

 String SY = etsy.getText().toString();

 String EM = etem.getText().toString();

 String ED = eted.getText().toString();

 String EY = etey.getText().toString();

 if (SD.equals(ED) && SM.equals(EM) && SY.equals(EY)) {

 if (StartingHour.length() != 0 && StartingMin.length() != 0 &&

Duration.length() != 0) {

 Double SHour = Double.valueOf(StartingHour);

 Double SMin = Double.valueOf(StartingMin);

 Double Dura = Double.valueOf(Duration);

 Double STime = SHour + (SMin / 60);

 Double ETime = STime + Dura;

 STimeS = STime.toString();

 ETimeS = ETime.toString();

 Toast.makeText(ResourcePage.this, "Ending Time was: " + ETime,

Toast.LENGTH_SHORT).show();

 double Ist, Iet;

 Ist = Double.valueOf(STimeS);

 Iet = Double.valueOf(ETimeS);

 Ideff = Iet - Ist;

 alotedWindow = Integer.valueOf(MaxTime);

79

 if(Ideff <= alotedWindow) {

 Log.d(TAG, "Resource: Inside IF condition");

 intent =new Intent(ResourcePage.this, ListOfResource.class);

 intent.putExtra("StartTime", STimeS);

 intent.putExtra("EndTime", ETimeS);

 intent.putExtra("Resource", Resource);

 intent.putExtra("SM", SM);

 intent.putExtra("SD", SD);

 intent.putExtra("SY", SY);

 intent.putExtra("EM", EM);

 intent.putExtra("ED", ED);

 intent.putExtra("EY", EY);

 intent.putExtra("DaysOrHours:", DaysOrHours);

 intent.putExtra("UniqeID", UniqeID);

 intent.putExtra("Title:", Title);

 startActivity(intent);

 etStHour.setText("");

 etStMin.setText("");

 etDuration.setText("");

 etsm.setText("");

 etsy.setText("");

 etsd.setText("");

 etem.setText("");

 etey.setText("");

 eted.setText("");

 }

 else{

 Log.d(TAG, "Resource: Rooms are allocated at a Max of :" +

alotedWindow);

 Toast.makeText(ResourcePage.this, "Rooms are allocated at a Max

of :" + alotedWindow + " Hrs", Toast.LENGTH_SHORT).show();

 }

80

 } else {

 Toast.makeText(ResourcePage.this, "Please enter all the parameters!!!",

Toast.LENGTH_SHORT).show();

 }

 } else {

 Toast.makeText(ResourcePage.this, "Please Enter Same Dates!!!",

Toast.LENGTH_SHORT).show();

 }

 }

 });

 } else if (DaysOrHours.equals("D")) {

 Log.d(TAG, "onCreate: Inside the D Section");

 setContentView(R.layout.activity_resource_page_daysonly);

 setTitle = (TextView)findViewById(R.id.tit);

 setTitle.setText(Title);

 Dbp = new DbHelperPj(this);

 etsm = (EditText) findViewById(R.id.etsmid);

 etsd = (EditText) findViewById(R.id.etsdid);

 etsy = (EditText) findViewById(R.id.etsyid);

 etem = (EditText) findViewById(R.id.etemid);

 eted = (EditText) findViewById(R.id.etedid);

 etey = (EditText) findViewById(R.id.eteyid);

 bSubmit = (Button) findViewById(R.id.bSubmit);

 bSubmit.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String SM = etsm.getText().toString();

 String SD = etsd.getText().toString();

 String SY = etsy.getText().toString();

 String EM = etem.getText().toString();

 String ED = eted.getText().toString();

 String EY = etey.getText().toString();

81

 if (SM.length() != 0 && SD.length() != 0 && SY.length() != 0 &&

EM.length() != 0 && ED.length() != 0 && EY.length() != 0) {

 int iSM = Integer.valueOf(SM);

 int iSD = Integer.valueOf(SD);

 int iSY = Integer.valueOf(SY);

 int iEM = Integer.valueOf(EM);

 int iED = Integer.valueOf(ED);

 int iEY = Integer.valueOf(EY);

 // Date Caluculation

 int Sdate = (100 * iSM) + (iSD);

 int Edate = (100 * iEM) + (iED);

 int windowFromUser = Edate - Sdate;

 alotedWindow = Integer.valueOf(MaxTime);

 if (iSM == 1 || iSM == 3 || iSM == 5 || iSM == 7 || iSM == 8 || iSM == 10 ||

iSM == 12) {

 if (windowFromUser <= alotedWindow || (windowFromUser >= 70 &&

windowFromUser <= 76)) {

 Log.d(TAG, "onClick: Your Dates are in Range");

 sendingDates(SM,SD,SY,EM,ED,EY, UniqeID);

 } else {

 Log.d(TAG, "onClick: We will only provide for 7 Days");

 }

 } else if (iSM == 4 || iSM == 6 || iSM == 9 || iSM == 11) {

 if (windowFromUser <= alotedWindow || (windowFromUser >= 71 &&

windowFromUser <= 77)) {

 Log.d(TAG, "onClick: Your Dates are in Range");

 sendingDates(SM,SD,SY,EM,ED,EY, UniqeID);

 } else {

 Log.d(TAG, "onClick: We will only provide for 7 Days");

 }

 } else if (iSM == 2) {

 if (windowFromUser <= alotedWindow || (windowFromUser >= 73 &&

windowFromUser <= 79)) {

 Log.d(TAG, "onClick: Your Dates are in Range");

82

 sendingDates(SM,SD,SY,EM,ED,EY, UniqeID);

 } else {

 Log.d(TAG, "onClick: We will only provide for 7 Days");

 }

 } else {

 Log.d(TAG, "onClick: You Had enterd a wrong Month");

 }

 }

 }

 });

 }

 }

 public void sendingDates(String SM, String SD, String SY,String EM,String

ED,String EY, String UniqeID) {

 Intent intent2 = new Intent(ResourcePage.this, ListOfResource.class);

 Log.d(TAG, "sendingDates: " + SM);

 intent2.putExtra("SM", SM);

 intent2.putExtra("SD", SD);

 intent2.putExtra("SY", SY);

 intent2.putExtra("EM", EM);

 intent2.putExtra("ED", ED);

 intent2.putExtra("EY", EY);

 intent2.putExtra("DaysOrHours:", DaysOrHours);

 intent2.putExtra("UniqeID", UniqeID);

 intent2.putExtra("Title:", Title);

 startActivity(intent2);

 etsm.setText("");

 etsy.setText("");

 etsd.setText("");

83

 etem.setText("");

 etey.setText("");

 eted.setText("");

 }

}

RoomReservation

public class RoomReservation implements Resource {

 public String getName(){

 return "Room Reservation";

 }

 public String getHorD(){

 return "H";

 }

 public String getUniqueIdentifier() {

 return "1";

 }

 public String[][] getResourceMatrix() {

 String[][] resourceGrid = {

 {"Projectors Borrow","D","","","","","","","","",},

 {"Projector Name","A","SM","SD","SY","EM","ED","EY","ST","ET"},

 {"RM 101","1","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 {"RM 102","1","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 {"RM 201","1","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 {"RM 202","1","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"}

 };

 return resourceGrid;

 }

 public String getInputClassName(){

 return "RoomReservation";

 }

 public String timePeriod(){

 return "3";

84

 }

}

ThreeColumn_ListAdapter

public class ThreeColumn_ListAdapter extends ArrayAdapter<User> {

 private LayoutInflater mInflater;

 private ArrayList<User> users;

 private int mViewResourseId;

 // ListAdapter

 public ThreeColumn_ListAdapter(Context context, int textViewResourseId,

ArrayList<User> users){

 super(context, textViewResourseId, users);

 this.users = users;

 mInflater = (LayoutInflater)

context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 mViewResourseId = textViewResourseId;

 }

 public View getView(int position, View convertView, ViewGroup parent){

 convertView = mInflater.inflate(mViewResourseId, null);

 User user = users.get(position);

 if(user != null){ // SM,SD,SY,EM,ED,EY,ST,ET

 TextView ID = (TextView) convertView.findViewById(R.id.ID);

 TextView RN = (TextView) convertView.findViewById(R.id.RN);

 TextView A = (TextView) convertView.findViewById(R.id.A);

 TextView SM = (TextView) convertView.findViewById(R.id.SM);

 TextView SD = (TextView) convertView.findViewById(R.id.SD);

 TextView SY = (TextView) convertView.findViewById(R.id.SY);

 TextView EM = (TextView) convertView.findViewById(R.id.EM);

 TextView ED = (TextView) convertView.findViewById(R.id.ED);

 TextView EY = (TextView) convertView.findViewById(R.id.EY);

 TextView ST = (TextView) convertView.findViewById(R.id.ST);

 TextView ET = (TextView) convertView.findViewById(R.id.ET);

 if(ID != null){

 ID.setText(user.getID());

85

 }

 if (RN != null){

 RN.setText(user.getRN());

 }

 if (A != null){

 A.setText(user.getA());

 }

 if(SM != null){

 SM.setText(user.getSM());

 }

 if (SD != null){

 SD.setText(user.getSD());

 }

 if(SY != null){

 SY.setText(user.getSY());

 }

 if (EM != null){

 EM.setText(user.getEM());

 }

 if(ED != null){

 ED.setText(user.getED());

 }

 if (EY != null){

 EY.setText(user.getEY());

 }

 if(ST != null){

 ST.setText(user.getST());

 }

 if(ET != null){

 ET.setText(user.getET());

 }

 }

 return convertView;

 }

}

User

public class User {

 public String ID,RN, A, SM,SD,SY,EM,ED,EY,ST,ET;

86

 public User(String id, String rn, String a, String sm,String sd, String sy, String em,

String ed,String ey,String st, String et){ // When the Ibject was created Everything was

 // Stored in the Single Object.

 ID = id;

 RN = rn;

 A = a;

 SM = sm;

 SD = sd;

 SY = sy;

 EM = em;

 ED = ed;

 EY = ey;

 ST = st;

 ET = et;

 }

 public User(String rn){

 String Res = rn;

 Log.d(TAG, "User: " + Res);

 RN = Res;

 Log.d(TAG, "User: " + RN);

 }

 public String getID(){

 return ID;

 }

 public String getRN(){

 return RN;

 }

 public String getA(){

 return A;

 }

 public String getSM(){

 return SM;

 }

 public String getSD(){

 return SD;

 }

 public String getSY(){

 return SY;

 }

 public String getEM(){

 return EM;

 }

 public String getED(){

 return ED;

87

 }

 public String getEY(){

 return EY;

 }

 public String getST(){

 return ST;

 }

 public String getET(){

 return ET;

 }

}

ViewListContents

public class ViewListContents extends AppCompatActivity {

 DbHelperPj Db;

 ListView lv;

 User user;

 private static final String TAG = "ViewListContents";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_view_list_contents);

 lv = (ListView) findViewById(R.id.listContents);

 Db = new DbHelperPj(this);

 displayingListOfNames();

 }

 private void displayingListOfNames(){

 Cursor data = Db.getData();// Contains whole Data in the Table. // Have a

look Over It

 ArrayList<User> userList = new ArrayList<>(); // Each Block in the Array

contains, User Number of Peaces(4).

 // "ArrayList" Take User type parameters

 int numRow = data.getCount(); // Count the number of Rows.

 if (numRow == 0){

 Toast.makeText(this, "There is nothing in Database!!!",

Toast.LENGTH_SHORT).show();

88

 }else {

 while (data.moveToNext()){

 user = new User(data.getString(0), data.getString(1), data.getString(2),

data.getString(3),

 data.getString(4), data.getString(5), data.getString(6), data.getString(7),

data.getString(8), data.getString(9), data.getString(10));

 userList.add(user);

 }

 ThreeColumn_ListAdapter adapter = new ThreeColumn_ListAdapter(this,

R.layout.list_adapter_view, userList);

 lv.setAdapter(adapter);

 }

 }

}

BookBorrow

public class BookBorrow implements Resource {

 public String getName(){

 return "Books Borrow";

 }

 public String getHorD(){

 return "D";

 }

 public String getUniqueIdentifier() {

 return "3";

 }

 public String[][] getResourceMatrix() {

 String[][] resourceGrid = {

 {"Book Borrow","D","","","","","","","","",},

 {"Book Name","A","SM","SD","SY","EM","ED","EY","ST","ET"},

 {"Book1","3","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 {"Book2","3","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 {"Book3","3","0.1","0.1","0.1","0.1","0.1","0.1","0.1","0.1"},

 };

 return resourceGrid;

 }

89

 public String getInputClassName(){

 return "ProjectorReso";

 }

 public String timePeriod(){

 return "10";

 }

}

	Augmented Framework For Generating Domain-Specific Mobile Applications
	Recommended Citation

	tmp.1703177643.pdf.QH6xs

