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FINITE VOLUME BASED FLUID-STRUCTURE INTERACTION 

MOHAMED M. SELIM 

INTERDISCIPLINARY ENGINEERING 

ABSTRACT 

Fluid-Structure Interaction (FSI) is an important topic that needs to be addressed 

during the design and analysis of air vehicles. The main components of an FSI analysis 

framework include: 1) computational fluid dynamics (CFD) solver, 2) computational 

structural dynamics (CSD) solver, 3) mesh deformation module, and 4) module for data 

transfer between computational fluid and structural solvers.  

In this PhD research work a loosely-coupled FSI methodology with all of the above 

components in a single framework has been developed.  An in-house CFD solver has been 

used for the solution of the fluid dynamics equations.  A structural solver has been 

developed by discretizing the linear elasticity equations using the finite-volume method 

that is used in the in-house CFD solver.  The developed finite volume based structural 

mechanics solver has been validated against analytical and finite element based numerical 

results. Results were found to be in a good agreement for bending and tensile deflections 

as well as for distributed and concentrated loads. Furthermore, the implemented CSD 

methodology was tested for the prediction of large deflection cases. Two different 

dimensionless load magnitudes have been applied.  The error in the deflection amplitude  

for the lower load and higher load were 5.5% and 7.19%, respectively, with frequency 

shifts of 1.0% and 4.8%, respectively. 
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In addition, an extensive survey of the existing mesh deformation techniques has 

been conducted. Per this survey, Radial Basis Functions (RBF) based mesh deformation 

technique has been adopted for further improvements. A novel concept to solve the RBF 

system of equations incrementally combined with a greedy algorithm has been introduced. 

This improvement decreased the computational complexity of solving the RBF’s system 

of equations from O(n3) to O(n2), where n is the total number of fluid mesh boundary nodes. 

Benchmark test cases with four different analytic deformations were used to evaluate the 

performance of the presented approach. Mesh deformation results were also presented for 

deflections of a cantilever beam and a rectangular supercritical wing. These simulations 

showed that the developed incremental approach saves up to 67% of CPU time as 

compared to the traditional RBF solvers. 

The developed FSI methodology is a general purpose one that can be applied to 

different types of problems and is capable of handling any mesh topology. The numerical 

compatibility between the CFD and CSD solvers implies same mesh requirements for both 

domains. Therefore, an identical surface meshes at the interface have been used for both 

fluid and structural domains. This eliminated the interpolation errors during the data 

transfer between the structural and fluid solvers. The developed FSI approach has been 

tested on the case of flow-induced cantilever beam vibration. Four different flow inlet 

speeds have been analyzed. The predicted beam vibration has preserved the natural 

frequency for all cases. Furthermore, increasing the flow velocity increases the magnitude 

of the beam deflection, as expected. Moreover, two different structural densities were 

simulated. The results were validated against the FSI results produced by coupling a finite 

element structural solver with a finite volume fluid solver. The predicted structural 
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response was found to be in a good agreement for both density values. The proposed FV-

FSI solver under-predicted the maximum deflection by 7% and over-predicted the vibration 

frequency by 0.16%. 
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CHAPTER 1 

INTRODUCTION 

BACKGROUND 

The importance of obtaining numerical results in engineering applications has 

increased greatly over recent years. The ability to model and simulate engineering systems 

allows more informed decisions to be made during the design as well as the operating 

phase. In many cases numerical analysis can provide a level of detail that is difficult or 

even impossible to obtain using experimental methods. Moreover, the rapid improvement 

in computer hardware makes the associated cost of performing numerical simulations very 

feasible in comparison to the computational cost of performing experiments.  

Numerous computational fluid dynamics (CFD) and computational structural 

dynamics (CSD) solvers have been developed independently over the decades. The results 

from computational simulation are now accurate enough to predict real physical 

phenomena. However, in many physical problems it may not only be the fluid medium in 

isolation or the structural medium in isolation that is of interest; these two mediums might 

interact together and also many other physical processes might contribute to the problem, 

such as chemical reaction, heat transfer, radiation, and acoustics. An efficient and accurate 

numerical scheme is required to solve such multiphysics problems. 

Fluid-Structure Interaction (FSI) is one of the most important topics that need to be 

addressed during the design and analysis of many engineering problems. There are 

numerous applications which involve FSI effect. Typical examples include: the wind 
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induced oscillations of structures, the floating offshore components under wave motion, 

the aeroelastic deformation of wings, and the expansion and contraction of blood vessels. 

There are three different categories of FSI analysis based on their degree of detail. 

These approaches include: strongly-coupled, loosely-coupled, and reduced order 

modeling. In the strongly-coupled approach, the fluid and the structural state equations are 

combined and treated as a single monolithic system of equations. On the other hand, the 

loosely-coupled approach solves the equations governing the dynamics of the fluid and the 

structure in an alternating manner.  Reduced order modeling is usually thought of as 

computationally inexpensive mathematical representations that offer the potential for near 

real-time analysis using a certain number of system responses, i.e. mode shapes. The main 

components of an FSI framework consist of: 1) computational fluid dynamics (CFD) 

solver, 2) computational structural dynamics (CSD) solver, 3) mesh deformation module, 

and 4) module for data transfer between computational fluid and structural solvers. Figure 

1 shows how the information is being transferred between the different FSI components.  

 

Figure 1 FSI main components 
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The strongly-coupled scheme provides more accurate results than the loosely-

coupled one. However, it requires more effort to formulate and implement, and it also 

requires higher computational resources which tend to be more feasible with the recent 

advances in hardware [1, 2]. Another advantage is the seamless coupling of the fluid and 

structure domains, which can lead to improved solution stability. On the other hand, the 

main drawbacks of this approach are:  

1. Generating a single mesh that is of high quality for both domains creates a 

challenge [3] 

2. A single time step must be used for both domains, which can lead to 

inefficiencies when totally different time scales present [4] 

3. A highly ill-conditioned matrix system may arise, especially when the fluid 

and the structure domain’s rigidities are highly incompatible [5, 6] 

The loosely-coupled scheme is the simplest approach for simulating FSI problems 

in which separate programs are used to simulate the fluid flow and solid deformation. The 

interface stresses and deformations are being transferred between the programs. However, 

since the two programs may use different numerical grids based on the numerical schemes; 

interpolation is needed to transfer the information between these programs. Furthermore, 

an interface code is required to transfer the data between the two programs, since each 

package has different data structures for storing the information. In addition, the use of 

commercial CSD solvers for the FSI analysis decreases the efficiency due to lack of access 

to the source codes, file based data transfer, and script based synchronization.  This can 

also affect the parallel performance due to the use of separate processors for the CFD and 

CSD solvers.  Data interpolation at the interface between the two solvers and transferring 

the data between different data structures lead to solution inaccuracy, particularly for 

unsteady problems with large structure deformations.  



 

4 

The limitations of using loosely-coupled FSI scheme can be overcome by 

eliminating the use of commercial CSD and CFD solvers; instead use CSD and CFD 

solvers that are compatible with each other. If the two mediums are solved in the same 

exact manner with respect to the numerical discretization approach, as well as the same 

data structures for storing the solutions, then a similar numerical grid can be used; and 

accordingly there will be no need to interpolate the solutions over the interface between 

the fluid and the structure. Consistent implementation also removes the need for a software 

interface, allowing more efficient computation and parallel implementation. 

Most of the CSD solvers used at present are based on Finite Element Methods 

(FEM) [7]. However, state-of-the-art CFD solvers are based on Finite Volume Methods 

(FVM) [7]. The mesh requirements for these solvers are different and that necessitates 

interpolation of forces from the CFD solver to the CSD solver and displacement from the 

CSD solver to the CFD solver.  FEM based structural dynamics solvers are known for a 

better order of accuracy as compared to FVM based solvers.  However, it has been reported 

in the literature that mesh refinement for finite volume schemes would result in comparable 

solution accuracy to an FEM based simulation [8-10].  Even with a refined mesh for the 

structural domain, the mesh size will be much smaller as compared to the mesh for the fluid 

domain. Therefore, the computational time that is needed for the structural solver using a 

finite volume scheme will be small as compared to that of the CFD solver. 

Another important element within the FSI framework is the mesh deformation 

algorithm. A successful fluid mesh deformation, due to structural deflections, is a critical 

step in the analysis of this class of problems.  For an accurate simulation, the fluid volume 

mesh needs to move conformal to the structure, with very little degradation in quality. Due 
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to the repeatability of the mesh deformation and the large number of fluid cells, an efficient 

and reliable approach is needed for a successful analysis. In addition, the fluid mesh is 

typically partitioned and handled by different processors. This necessitates that the mesh 

deformation algorithms be parallelizable for efficient simulations. The main complexity of 

the moving mesh approach is to find an optimum technique that is suitable for different 

mesh topologies and physical situations. At the same time, it should preserve, as much as 

possible, the quality of the mesh while keeping computational cost low. 

Strategies for deforming the fluid mesh conforming to the deformation of structure 

can be divided into two basic classes: physical analogy or interpolation. The physical 

analogy approach describes the fluid mesh deformation according to a physical process 

that can be modeled using numerical methods. One of the popular methods in this class is 

the tension spring analogy by Batina [11]. In the interpolation approach an interpolation 

function is used to transfer prescribed boundary point displacements to the fluid mesh. In 

general, these schemes do not require connectivity information.  Therefore, these 

algorithms can be applied to arbitrary mesh types that contain general polyhedral elements 

or hanging nodes [12]. 

STUDY OBJECTIVES 

Since the existing in-house CFD solver is finite-volume based, it was decided that 

the main objective of this work is to develop a finite-volume based FSI analysis 

methodology. This was achieved by solving the structural dynamics equations using the 

finite volume numerical approach and coupling this solver to the in-house CFD solver. 

This will enforce same mesh requirements and same surface meshes for both CSD and 

CFD solvers, alleviating the data interpolation problem. Also, a conservative stresses 
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transfer between the two domains will be enforced by default. Furthermore, a novel Radial 

Basis Function (RBF) interpolation based mesh deformation approach was developed to 

handle the fluid mesh deformation to accommodate the structural deflections. 

The main objectives of this research can be concluded in the following four 

objectives: 

1- Develop and validate a finite volume based linear elasticity methodology 

2- Conduct an extensive survey of the available mesh deformation techniques 

3- Develop an efficient mesh deformation technique 

4- Couple the developed modules in objective 1 and 3 with the in-house CFD code 

and perform and validate FSI cases 

OUTLINE OF DISSERTATION 

Chapter 2 provides a literature review of the recent studies in the field of Fluid-

Structure Interaction, with a focus on the studies dealt with finite volume based structural 

mechanics approaches. Chapter 3 describes the governing equations for linear elasticity in 

integral form and the numerical implementation of the finite volume stand-alone structural 

solver. Test cases are also presented in Chapter 3 for the purpose of validation of the 

numerical approach. Following this, Chapter 4 provides an extensive survey of the 

available mesh deformation techniques. Chapter 5 describes the development of a novel 

mesh deformation approach. The FSI coupling procedure and FSI test cases are presented 

in Chapter 6. Finally, the conclusions from this work and recommendations for future work 

are presented in Chapter 7.
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CHAPTER 2 

LITERATURE REVIEW 

FLUID-STRUCTURE INTERACTION 

The main approaches to solve FSI problems, which are strongly-coupled and 

loosely-coupled, are reviewed in this section. An overview of modeling of the FSI problem 

in aero-elasticity can be found in Bennett et al. [13] and Dowell et al. [14]. The review of 

FSI in liquid filled pipe systems can be found in Tijsseling et al. [15]. 

The most common approach to carry an FSI analysis is to employ a loosely-coupled 

or partitioned approach. The main advantages of the loosely-coupled approach are the 

ability to separately develop and advance the flow modeling and structural modeling 

software [16-19] and to generate individual meshes for the structural and the fluid domains, 

which allow for different mesh resolutions. The main drawback to this approach is the 

possible degradation of solution stability due to small errors during the coupling step [20, 

21]. 

One of the major applications of FSI that has been studied by many researchers 

using strongly-coupled scheme is Aero-elasticity. Behr [22] analyzed incompressible flow 

over two-dimensional airfoil and cylinder using implicit stabilized space-time formulation 

for moving boundaries and interfaces, and a new stabilized velocity-pressure-stress 

formulation. Carstens et al. [23] analyzed the flutter behavior of turbo-machinery blades in 

the time domain. The structural part of the governing aeroelastic equations is time-

integrated according to the Newmark algorithm, while the unsteady air-loads are computed 
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at every time step by a Navier–Stokes code. However, their applications with the strongly-

coupled methods are limited to two-dimensional or simple three-dimensional geometry 

because the possibility of divergence of solution is increased as geometries become 

complicated. Another problem associated with the strongly-coupled scheme is to yield ill-

conditioned matrix system from the differences of properties and scales used in CFD and 

CSD formulations. Other applications with this method in aero-elasticity can be found in 

Refs. [24-28]. 

Demirdzic and Muzaferija [29] coupled a finite-volume CFD solver to a finite 

volume solid solver. The fluid solver included the SIMPLE pressure correction algorithm 

and k– turbulence model, whilst the solid solver used the thermo-elastic form of the 

constitutive relations. A coupled FSI simulation was performed for a simplified air-cooled 

engine; however, only qualitative results were given to demonstrate the possibilities of the 

method, rather than to test its accuracy. 

Yates [30] developed a finite volume based two-dimensional FSI solver. He used 

the SIMPLE method of Patankar and Spalding [31] for pressure-velocity linkage in the 

CFD solver with the Quadratic Upwind Interpolation for Convective Kinematics (QUICK) 

scheme of Leonard [32] in order to increase the accuracy of the discretization by including 

higher order terms. The system of discretized equations for both fluid and structure solvers 

had been solved using the Tri-Diagonal Matrix Algorithm (TDMA). The developed 

algorithm used a single numerical mesh to cover both fluid and solid sub-domains, and it 

was capable of handling only structured meshes. The coupled solver was verified and 

validated through three test cases: steady laminar flow through an initially straight tube 

with a compliant wall section; steady flow (laminar and turbulent) through a compliant 
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walled stenosis, and unsteady turbulent flow through a compliant aneurysm. Only one of 

the test cases was in a good agreement with the data existed in the literature. 

A wide range of applications involves the analysis of a flow-induced cantilever 

beam vibration. Wang et al. [33] used the Euler-Bernoulli beam theory and the normal 

mode method to analyze the cantilever structural response and used the finite element 

method to resolve the flow field. Other possible applications are the reed valve, two-stroke 

engines, compressors, and shock absorbers [34]. Cantilevers with cylindrical shapes are 

also important for cardiovascular applications, where the internal flow of the blood exerts 

stresses leading to deformation in arteries and veins [35]. Furthermore, fluid–structure 

interaction is dominant for very small-scale dynamics problems in biomedical applications 

[36]. 

COMPUTATIONAL STRUCTURAL DYNAMICS 

Many computational techniques have been used in the field of structural dynamics, 

but the most widely adopted technique is the finite element method. This method was 

developed by Richard Courant in 1943 [37]. The method was put to practical use on 

computers in the mid 1950’s by aeronautical structures engineers M. J. Turner, R. W. 

Clough, H. C. Martin and L. J. Topp in the United States [38] and by J. H. Argyris and S. 

Kelsey in Britain [39]. In the most common version of the finite element method, the 

domain to be analyzed is divided into elements, and the displacement field within each 

element is interpolated in terms of displacements at a few points around the element 

boundary, and sometimes within it, called nodes. The interpolation must ensure the 

continuity of the displacement field across element boundaries for any choice of the nodal 
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displacements. Then it is required that the stress-strain relations of the material satisfy the 

principle of virtual work for arbitrary variation of the nodal displacements [40]. 

FEM was the choice in the solid mechanics area due to its ability in dealing with 

arbitrary domains and its less complex mathematical models for elasticity problems. On 

the other hand, fluid flow equations which include high level of nonlinearities are more 

suitable to be coupled and solved using finite volume methods (FVM) [41]. However, for 

solving coupled problems that involve both structural and fluid systems, the use of the same 

discretization methodology provide the advantage of using the same mesh and avoid the 

need for solutions interpolation and coupling interfaces. Thus, more focus is being 

concentrated in the past few years into providing a more robust and efficient FVM for 

solving structural dynamics problems. 

The first use of the FV method to numerically solve structure problems was by 

Demirdzic et al. [42], who used the method to simulate thermo-elastic problems. Following 

this, Demirdzic and Martinovic [43] used the FV method to simulate thermo-elastoplastic 

problems. This method solved the unsteady form of the equations governing thermal 

energy conservation and momentum balance, with displacement components and 

temperature as dependent variables. The elasto-plastic form of the solid body constitutive 

relations, which relate stresses to displacement gradients, and Fourier’s law, which relates 

heat flux to temperature gradient, were used to close the system of equations. Both works 

used a structured numerical grid. The authors concluded the following advantages for the 

use of the FV method to solve structure problems: 1) the method is simple and efficient; 2) 

the method is conservative on both the local and global scale; 3) boundary conditions are 

simple to prescribe; and 4) non-linearities can be handled at little extra cost. Demirdzic and 
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Muzaferija [29] then applied the FV method for unstructured grids for improving the ability 

to deal with complex geometries. In this case the thermo-elastic constitutive relations were 

used. As a further development, Bijelonja et al. [40] used an FV based method to solve 

incompressible elastic problems. Wheel [44] presented an FV based method to calculate 

the stresses and displacements within axisymmetric bodies. He stated that the finite-volume 

method would be particularly useful in the fluid-structure interaction analysis of pressure 

vessels, pipes and heat exchangers. 

Several studies focused on application of FV method to linear elasticity [8, 10, 45, 

46]. Jasak and Weller [46] used a segregated cell-centered FV approach to discretize the 

linear elasticity governing equation. Moreover, for the sake of efficient parallelization, they 

treated the displacement vector implicitly and treated the inter-component coupling term 

explicitly. Tukovic and Jasak [45] used a similar approach to numerically calculate large 

deformation dynamic response of an elastic body. Xia and Lin [10] employed an implicit 

dual time-stepping cell-vertex FV method to obtain time accurate solutions for linear 

elasticity problems. They adopted a dual time-stepping scheme by adding a pseudo time 

derivative term to the governing equation. Then they sought the solution by marching into 

the pseudo time using five-stage Runge-Kutta scheme. Suliman et al. [8] also adopted the 

dual time-stepping scheme; however, they proposed a hybrid finite volume method. Instead 

of using the standard cell-vertex FV method, they proposed a hybrid scheme where they 

calculated the shear stress component at the cell center and calculated the normal stress 

components at the cell vertices. They demonstrated their methodology on two-dimensional 

structured test cases. 
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COMPUTATIONAL FLUID DYNAMICS 

Computational fluid dynamics, CFD, is the branch of fluid mechanics that uses 

numerical analysis to solve and analyze problems that involve fluid flows. The first attempt 

to use a discrete numerical model to simulate fluid motion was made by the British 

meteorologist, L. F. Richardson, at the beginning of the 20th century [47]. He developed 

the first numerical weather prediction system when he divided physical space into grid 

cells and used a primitive finite difference approximations. His attempt to calculate weather 

for a single eight-hour period took six weeks of real time and ended in failure [47]. 

During the 1960s, NASA scientists at Los Alamos in the U.S. contributed many 

numerical methods that are still in use in CFD today: Particle-In-Cell (PIC), Marker-and-

Cell (MAC), Vorticity-Stream function methods, Arbitrary Lagrangian-Eulerian (ALE) 

methods, and the ubiquitous k- turbulence model [48]. 

 In the 1973, the CFD group at Imperial College, London, developed Parabolic flow 

codes that predict simple shear flows, free and confined jet flows [49]. In 1974, they 

extended their codes to include Vorticity-Stream function based codes, the SIMPLE 

algorithm and the TEACH code, as well as the form of the k- equations that are used today 

[50]. Another key event in CFD history was in 1980 when Patankar published his book 

which is considered the most influential book on CFD to date [51]. 

In-House CFD Solver (HYB3D) 

When considering the simulation of a flow field on a given spatial domain, the 

physical problem can be modeled by a set of partial differential equations conveniently 

written in a conservative form 
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𝜕(𝑄)

𝜕𝑡
+

𝜕𝐹𝑖(𝑄)

𝜕𝑥𝑖
=

𝜕𝐺𝑖(𝑄)

𝜕𝑥𝑖
+ 𝑆(𝑄) (1) 

where 𝑄 is the vector of conserved variables, 𝐹𝑖(𝑄) is the convective flux vector 

along the i-direction, 𝐺𝑖(𝑄) is the diffusive flux vector along the i-direction and 𝑆(𝑄) is a 

source term. In the case of viscous flows, equation (1) is given by the conservative 

formulation of the Navier-Stokes equations. While in the case of inviscid flows, equation 

(1) is given by the Euler equations which are a simplified form of the Navier-Stokes 

equations. In order to solve this equation numerically, the domain is required to be 

discretized into a set of discrete points for which the equations will be solved after 

providing some initial and boundary conditions [52]. Few of the most popular spatial 

discretization methods are briefly described below. 

The Finite Difference Method 

The finite difference method (FDM), considered the simplest method that has an 

historical importance. FDM is based on filling the computational domain with regularly 

spaced discretization points and the derivatives are approximated using Taylor series 

expansion. One of the earliest demonstrations of the use of applying finite difference 

approximation was the study by Courant et al. [53]. They used a discrete analogue of 

Dirichlet’s principle to define an approximate solution by means of the five point 

approximation of Laplace’s equation. By extending Taylor expansions higher orders of 

accuracy can be obtained. However, this requires extended stencils and can rapidly become 

oscillatory [54]. Despite the simplicity of the FDM, it was limited to simple geometry 

problems because of the difficulty associated with generating structured meshes for 

complicated geometries. However, in the early 1990’s, NASA developed an overset grid 
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CFD solver, called OVERFLOW, that is capable of solving problems of complicated 

geometries by means of finite difference approximations [55, 56]. 

The Finite Element Method 

The finite element method, FEM, is very popular for the structural analysis of solids 

but is also applicable to fluids. In the Finite Element method, a continuous function fitting 

to a finite element space is used to approximate the solution. The solution is assumed to be 

of the form: 

𝑄(𝑥⃗, 𝑡) = ∑𝑁𝑗𝑄𝑗

𝑛

𝑗=1

 (2) 

where Nj is the nodal shape function defined at node j and Qj is the solution at node 

j. There are two methods of defining the shape functions, 1) the Galerkin method in which 

the shape function is defined locally, and 2) the Collocation method in which the shape 

function is defined globally [57]. 

The Finite Volume Method 

The finite volume method, FVM, is the main method used in this. FVM uses a 

volume integral formulation of the problem with a finite partitioning set of volumes, 

defined by a numerical grid, to discretize the equations. The cells of the grid usually consist 

of rectangles or triangles in two-dimensional, and tetrahedral, pyramids, prisms, or 

hexahedra in three-dimensional. Generally, any type of volume that is bounded by a 

number of planar surfaces is possible; see Figure 2. 
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Figure 2. Control volume shapes. 

 

After discretizing the computational domain, 𝛺, into a finite number of control 

volumes, 𝛺𝑛, the conservative equation is expresses in the integral form 

∫
𝜕𝑄

𝜕𝑡
 𝑑𝛺𝑛

 

𝛺𝑛

+ ∫
𝜕𝐹𝑖

𝜕𝑥𝑖
 𝑑𝛺𝑛

 

𝛺𝑛

= ∫ 𝑆(𝑄) 𝑑𝛺𝑛

 

𝛺𝑛

 (3) 

By applying the Gauss theorem the following expression is obtained 

∫
𝜕𝑄

𝜕𝑡
 𝑑𝛺𝑛

 

𝛺𝑛

+ ∮ 𝐹𝑖𝑛𝑖  𝑑𝑠
 

𝜕𝛺𝑛

= ∫𝑆(𝑄) 𝑑𝛺𝑛

 

𝛺𝑛

 (4) 

where n is the outward pointing unit normal field of the boundary 𝑑𝑠. 

The spatial discretization term is computed by summing the contribution of the 

fluxes through the faces of the control volume.  

∮ 𝐹𝑖𝑛𝑖  𝑑𝑠
 

𝜕𝛺𝑛

= ∑𝐹𝑖𝑛𝑖 ∙ 𝑑𝑠

 

𝑓

 (5) 

The flux terms are conserved for any adjacent control volumes that share a common 

face. This is considered to be the main advantage of FVM.  

There are two basic approaches for defining the shape and position of the control 

volume within the numerical grid. First, the cell-centered approach in which the control 

volumes are identical to the grid cells and solution variables are stored at the centroid of 

the grid cells. Second, the cell-vertex approach in which the solution variables are stored 
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at the grid points and the control volume is formed by a volume around each grid point. 

Figure 3 illustrates each approach of defining the control volume shapes. 

 

(a) (b) 

 

Figure 3. Control volume defining approaches: (a) cell-centered and (b) cell-vertex. 

HYB3D FEATURES 

The in-house fluid dynamics solver, HYB3D, is an Euler/Navier-Stokes flow 

simulation solver for generalized grids. It is capable of dealing with any type of numerical 

grids, e.g. structured, unstructured or an agglomeration of cells with an arbitrary number 

of faces. The spatial discretization of the governing equations is based on a cell-centered, 

finite volume upwind scheme. The upwind scheme is one of the most stable discretization 

schemes that uses the upstream information along with the flow direction to evaluate the 

flow properties at the boundaries. Similar to the developed structural solver, the control 

volume that is used for the flux integration is taken as the cell itself. 

The convective fluxes at the cell-faces are evaluated using either Roe’s approximate 

Riemann solver or van Leer’s flux vector split scheme. The viscous flux at a cell-face is 

taken as the average of those on either sides of the cell-face. The turbulent viscosity at the 

cell center is estimated using the Spalart-Allmaras one equation model. The gradients at 
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the cell center for the Taylor series expansion are estimated using the Gauss theorem 

together with a weighted averaging procedure. In order to avoid the creation of local 

extrema during the reconstruction process, a limiter function is added to the Taylor’s series 

expansion. Time integration is performed implicitly and the flux Jacobian is evaluated 

either analytically assuming the Roe averaged matrix to be constant or numerically. The 

block sparse matrix system resulting from the linearization of the governing equations is 

solved using a symmetric Gauss-Seidel algorithm. Numerical methods used in this 

framework and the results from the validation are presented in the literature [58, 59].   

MESH DEFORMATION 

Strategies for deforming the fluid mesh conforming to the deformation of structure 

can be divided into two basic classes: physical analogy or interpolation. The most popular 

algorithms of each of these classes are discussed below. 

Mesh Deformation using Physical Analogy 

The physical analogy approach describes the fluid mesh deformation according to 

a physical process that can be modeled using numerical methods. One of the popular 

methods in this class is the tension spring analogy by Batina [11].  In this approach, each 

edge of the mesh is replaced by a tension spring with the spring stiffness taken as inversely 

proportional to the edge length.  The drawback of this approach, especially for fine meshes 

or high amplitude movements, is the mesh crossing.  One of the improvements to this 

approach is the torsional spring approach introduced by Farhat et al.[60], in which fluid 

mesh is considered as a network of torsional springs added at the nodes to prevent cell 

collapse and to allow cell rotation. There are modifications reported in the literature in 
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which the mesh is considered as a combination of tension and torsion springs and also the 

stiffness of the springs is varied locally based on mesh cell size or proximity to the 

deforming surface.  The main drawback of these methods is that they involve large systems 

of equations, implying a higher computational cost. Besides, these methods require grid 

connectivity information which results in more storage requirements and difficulties in 

parallelization. 

A later advancement under the physical analogy approach is the use of 

multidimensional linear elasticity analogy [61], in which the mesh is interpreted as a 

continuous elastic medium. The modulus of elasticity is chosen as inversely proportional 

to the cell volume or to the distance from the deforming boundaries. In this approach, each 

displacement component of a mesh movement is governed by a partial differential 

equation, such as Laplacian equation [62]. 

Mesh Deformation using Interpolation Analogy 

In this approach, an interpolation function is used to transfer prescribed boundary 

point displacements to the fluid mesh. In general, these schemes do not require connectivity 

information.  Therefore, these algorithms can be applied to arbitrary mesh types that 

contain general polyhedral elements or hanging nodes [12].  

Recently, a novel interpolation based scheme has been developed by Luke [12]. In 

this scheme, the deformation of the volume mesh is viewed as a projection of the surface 

deformation into the volume. Using a tree-code optimization, the algorithm cost is 

demonstrated to be O(nlog(n)), where n is the total number of nodes in the simulation, with 

mesh quality that is competitive to radial basis function (RBF) scheme. 
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McDaniel and Morton [63] developed a technique that is based on a two-pronged 

approach where the viscous layers of nodes are deformed rigidly and the outer region is 

deformed with two different interpolation techniques. Several different rigid deformation 

schemes were investigated. However, the results showed that the best performing scheme 

was based on a semi-rigid connection to the owner surface nodes defined as part of the 

mesh parsing, which provided smoother deformation in convex regions. The last layer of 

the viscous region was used as the deforming boundary surface for the outer region 

deformation.  

The radial basis function interpolation method, such as the method developed by 

Boer et al. [64], is one of the promising interpolation schemes. RBF’s have become a well-

established tool to interpolate scattered data. RBF can also be used as an interpolation 

function to transfer the displacements known at the boundaries of the structural mesh to 

the fluid mesh. This scheme produces high-quality meshes with reasonable orthogonality 

preservation near deforming boundaries. Other advantages of RBF includes: 1) it avoids 

the need for mesh connectivity information, 2) the system of equations which needs to be 

solved is linear, and 3) the size of the linear system of equation is proportional to the 

number of boundary nodes, not all fluid nodes.  Moreover, many studies have investigated 

different techniques for improving RBF’s interpolation based mesh deformation. The most 

influential study was made by Rendall and Allen [65]. They proposed the use of data 

reduction algorithm along with RBF interpolation. This technique will be discussed later 

in details. Another study, which builds up on the previous technique, is the work done by 

Sheng and Allen [66], in which they put forward specific criteria for selecting the nodes 

involved in the interpolation.
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CHAPTER 3 

OBJECTIVE 1: FINITE VOLUME BASED STRUCTURAL SOLVER 

INTRODUCTION 

In this chapter, an approach to solve the governing equations of linear elasticity is 

presented. The main principles, simplifications and assumptions inherent in a linear elastic 

analysis are also highlighted in this chapter. The equations in this chapter have been written 

with reference to use Cartesian coordinate system. 

The implementation of FV methods can be classified into two main categories: the 

cell-centered approach [67-69] and the cell-vertex approach [3, 70, 71]. Both approaches 

are locally and globally conservative. In the cell-vertex approach, the displacement and 

stress variables are stored at the nodes of the control volumes formed by the mesh elements. 

In the cell-centered approach, the variables are stored at the centroids of the control 

volumes that are formed by the mesh elements. In this work, the main goal is to couple the 

structural solver with the in-house CFD solver based on the cell-centered approach. 

Therefore, for a better compatibility, the cell-centered approach was chosen to develop the 

linear elasticity structural solver. 

 



 

21 

GOVERNING EQUATIONS 

Cauchy’s First Law 

The governing equations for a structural domain undergoing motion can be written 

as,  

𝜕(𝜌𝑉)

𝜕𝑡
− ∇ ∙ 𝜎 + 𝜌 𝐶 𝑉 = 𝜌𝑓 (6) 

where V is the velocity vector, is the density, C is the damping coefficient, f is the 

body force per unit mass and is the stress tensor. 

Equation (6) is also known as the stress equation of small motion, the equation of 

equilibrium, or the equation of motion [70]. 

The Hooke’s Law 

The generalized form of Hook’s law provides the following stress-strain 

relationship for isotropic homogeneous material undergoing small strains [72]. 

𝜎 = 2𝜇𝜀 + 𝜆 𝑡𝑟(𝜀)𝑰 (7) 

Or in matrix notations 

[
 
 
 
 
 
𝜎11

𝜎22
𝜎33

𝜎23
𝜎31

𝜎12]
 
 
 
 
 

=

[
 
 
 
 
 
2𝜇 + 𝜆

𝜆
𝜆
0
0
0

𝜆
2𝜇 + 𝜆

𝜆
0
0
0

𝜆
𝜆

2𝜇 + 𝜆
0
0
0

0
0
0
2𝜇
0
0

0
0
0
0
2𝜇
0

0
0
0
0
0
2𝜇]

 
 
 
 
 

  

[
 
 
 
 
 
𝜀11 

𝜀22 
𝜀33
𝜀23
𝜀31

𝜀12 ]
 
 
 
 
 

 (8) 

Note: in this case, the stress and strain tensors are assumed to be symmetric (i.e. 

12 = 21). 

Here, I is the unit tensor and μ and are the Lamé’s coefficients, relating to the 

Young’s modulus of elasticity E and the Poisson’s ratio as [46]: 
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     𝜇 =
𝐸

2(1+𝑣)
 ,       𝜆 = {

𝑣𝐸

(1+𝑣)(1−𝑣)
 

  
𝑣𝐸

(1+𝑣)(1−2𝑣)

    

Plane Stress 

Plane Strain and three-dimensional 

The strain tensor is defined in terms of the displacement vector U [73]: 

𝜀 =
1

2
[∇𝑈 + (∇𝑈)𝑇] (9) 

Where U is the displacement vector. 

Or in matrix notation 

[
 
 
 
 
𝜀11 𝜀12 𝜀13      
𝜀21 𝜀22 𝜀23      
𝜀31 𝜀32 𝜀33]

 
 
 
 

=

[
 
 
 
 
 
 

𝜕𝑢1

𝜕𝑥1

1

2
(
𝜕𝑢1

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥1
)

1

2
(
𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
)

1

2
(
𝜕𝑢2

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥2
)

𝜕𝑢2

𝜕𝑥2

1

2
(
𝜕𝑢2

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥2
)

1

2
(
𝜕𝑢3

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥3
)

1

2
(
𝜕𝑢3

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥3
)

𝜕𝑢3

𝜕𝑥3 ]
 
 
 
 
 
 

 (10) 

By substituting equation (10) into equation (8), we get 

𝜎 =

[
 
 
 
 
 
 𝜆 (

𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
+

𝜕𝑢3

𝜕𝑧
) + 2𝜇

𝜕𝑢1

𝜕𝑥
𝜇 (

𝜕𝑢1

𝜕𝑦
+

𝜕𝑢2

𝜕𝑥
) 𝜇 (

𝜕𝑢1

𝜕𝑧
+

𝜕𝑢3

𝜕𝑥
)

𝜇 (
𝜕𝑢2

𝜕𝑥
+

𝜕𝑢1

𝜕𝑦
) 𝜆 (

𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
+

𝜕𝑢3

𝜕𝑧
) + 2𝜇

𝜕𝑢2

𝜕𝑦
𝜇 (

𝜕𝑢2

𝜕𝑧
+

𝜕𝑢3

𝜕𝑦
)

𝜇 (
𝜕𝑢3

𝜕𝑥
+

𝜕𝑢1

𝜕𝑧
) 𝜇 (

𝜕𝑢3

𝜕𝑦
+

𝜕𝑢2

𝜕𝑧
) 𝜆 (

𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
+

𝜕𝑢3

𝜕𝑧
) + 2𝜇

𝜕𝑢3

𝜕𝑧 ]
 
 
 
 
 
 

 (11) 

For convenience, the stress tensor within equation (6) is rewritten in terms of the 

gradient of the displacement ∇𝑈: 

𝜕(𝜌𝑉)

𝜕𝑡
− ∇ ∙ [𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟(∇𝑈)] + 𝜌 𝐶 𝑉 = 𝜌𝑓 (12) 
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Special Cases 

Plane Stress 

For plane stress conditions, the normal and tangential stresses in the 3rd direction 

are ignored [74],  which will result into 

𝜎13 = 𝜎23 = 𝜎33 = 0 (13) 

Plane Strain 

For plane strain conditions, the deformations in the third direction are neglected 

[74], which will result into 

𝜎13 = 𝜎23 = 0 (14) 

𝜀13 = 𝜀23 = 𝜀33 = 0 (15) 

DISCRETIZATION OF THE EQUATIONS 

Integrating equation (12) over a control volume 𝑣𝑃 with 𝜕𝑣𝑃 as the control surface 

and applying the Gauss’ theorem will result in: 

∫
𝜕(𝜌𝑉)

𝜕𝑡
 𝑑𝑣𝑃

 

𝑣𝑃

− ∮ ds
 

𝜕𝑣𝑃

∙ [𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟(∇𝑈)] + ∫ 𝜌 𝐶 𝑉 𝑑𝑣𝑃

 

𝑣𝑃

= ∫ 𝜌𝑓𝑑𝑣𝑃

 

𝑣𝑃

 (16) 

Temporal Derivative 

The temporal derivative is calculated using properties at n+1, n, and n-1 time levels 

∫
𝜕(𝜌𝑉)

𝜕𝑡
 𝑑𝑣𝑃

 

𝑣

= 𝜌𝑣𝑃 [
3𝑉𝑛+1 − 4𝑉𝑛 + 𝑉𝑛−1

2∆𝑡
] (17) 

where Vn+1  = V(t + ∆t), Vn  = V(t) and Vn−1  = V(t − ∆t). 
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Spatial Discretization 

The continuous surface integrals in equation (16) are split into the sum of integrals 

over the cell faces 

∮ ds
 

𝜕𝑣𝑃

∙ [𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟(∇𝑈)] = ∑ 𝑠 ∙ [𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟(∇𝑈)]

 

𝑓𝑎𝑐𝑒𝑠

 (18) 

where s is the face area vector. 

By assembling all terms and performing the integration, we get 

𝜌𝑣𝑃 [
3𝑉𝑛+1 − 4𝑉𝑛 + 𝑉𝑛−1

2∆𝑡
] − ∑ 𝑠.

𝑓𝑎𝑐𝑒𝑠

[𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟 (∇𝑈)] + 𝜌𝑣𝑃(𝐶 𝑉𝑛 − 𝑓) = 0 (19) 

The term ∇𝑈 in equation (19) could be evaluated based on the current (available) 

solution 𝑈𝑛; in this case the solution is said to be explicit, or it could be evaluated based 

on the next iteration solution 𝑈𝑛+1, in this case the solution is said to be implicit [52]. 

Dual Time-Stepping Scheme 

To achieve a matrix-free operation and to use a larger time step size, a dual time-

stepping scheme is adopted [8, 10] by adding a pseudo time derivative term to the left hand 

side of equation (19). This dual-time-stepping procedure is independent of the spatial 

discretization approach employed, i.e. finite volume or finite element [75, 76]. After adding 

the pseudo term into equation (19) will be: 

𝜌𝑣𝑃

𝑑𝑉𝑛

𝑑𝜏
= ∑ 𝑠.

𝑓𝑎𝑐𝑒𝑠

[𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟 (∇𝑈)] − 𝜌𝑣𝑃 [
3𝑉𝑛+1 − 4𝑉𝑛 + 𝑉𝑛−1

2∆𝑡
] − 𝜌𝑣𝑃(𝐶 𝑉𝑛 − 𝑓) (20) 
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By dividing both sides by the mass of the control volume and grouping the spatial 

terms together the equation could be re-written as follows:  

𝑑𝑉𝑛

𝑑𝜏
=

1

𝜌𝑣𝑃

∑ 𝑠.

𝑓𝑎𝑐𝑒𝑠

[𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟 (∇𝑈)] − [
3𝑉𝑛+1 − 4𝑉𝑛 + 𝑉𝑛−1

2∆𝑡
] − 𝐶 𝑉𝑛 + 𝑓 

= ℛ(𝑉𝑛+1) 

(21) 

In order to retrieve the displacement from the calculated velocity the following 

relation is used 

𝑉 =
𝜕𝑈

𝜕𝑡
 (22) 

Similarly, by adding a pseudo time derivative term and using properties at n+1, n, 

and n-1 time level for approximating the temporal derivative and grouping the spatial terms 

together, equation (22) can be re-written as 

𝜕𝑈

𝜕𝜏
= 𝑉𝑛 − [

3𝑈𝑛+1 − 4𝑈𝑛 + 𝑈𝑛−1

2∆𝑡
] 

= 𝐻(𝑈𝑛+1) 

(23) 

Then the solution is sought by marching in 𝜏 to a pseudo steady state. We adopt a 

four-stage Runge-Kutta scheme for integrating equation (21) and equation (23) for stability 

and convergence. 

𝑉(0) = 𝑉(𝑛,𝑚) 

𝑉(1) = 𝑉(0) + 𝛼1 ∆𝜏 ℛ(0) 

𝑉(2) = 𝑉(0) + 𝛼2 ∆𝜏 ℛ(1) 

𝑉(3) = 𝑉(0) + 𝛼3 ∆𝜏 ℛ(2) 

𝑉(4) = 𝑉(0) + 𝛼4 ∆𝜏 ℛ(3) 

𝑉(𝑛,𝑚+1) = 𝑉(4) 

𝑈(0) = 𝑈(𝑛,𝑚) 

𝑈(1) = 𝑈(0) + 𝛼1 ∆𝜏 𝐻(0) 

𝑈(2) = 𝑈(0) + 𝛼2 ∆𝜏 𝐻(1) 

𝑈(3) = 𝑈(0) + 𝛼3 ∆𝜏𝐻(2) 

𝑈(4) = 𝑈(0) + 𝛼4 ∆𝜏 𝐻(3) 

𝑈(𝑛,𝑚+1) = 𝑈(4) 
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where the superscript m denotes the pseudo time level and the coefficients for the 

four-stage Runge-Kutta time integration are taken as 

𝛼1 = 0.15,    𝛼2 = 0.3275,    𝛼3 = 0.57,     𝛼4 = 1.0 

Pseudo Time Step Calculation 

The dual-time stepping procedure is a conditionally stable scheme since it is 

explicit in pseudo-time, which means maximum pseudo-time step size, ∆𝜏, is limited. 

However, the procedure is implicit in real-time, thus the scheme is stable for any choice of 

the real-time step size ∆𝑡. 

To ensure solver stability, the pseudo time step must be less than the critical pseudo 

time step which is defined by the following expression [75]  

𝐿

∆𝜏𝑐𝑟
= √

𝐾

𝜌
+ √

𝜇

𝜌
 (24) 

where 𝐿 is the effective length scale of the mesh spacing and K is the bulk modulus 

which is defined as 

𝐾 =
𝐸

3(1 − 2𝜈)
 (25) 

Physical Damping Coefficient 

Damping is the dissipation of energy in an oscillating system. In cases where the 

static state solution is to be determined, physical damping must be added. Based on the 

assigned value for the damping coefficient, the motion of the system will be termed as 

underdamped, overdamped, or critically damped.  



 

27 

if C    {
< 𝐶𝑐𝑟   Underdamped      
= 𝐶𝑐𝑟    Crtically damped 
> 𝐶𝑐𝑟    Overdamped        

 (26) 

where 𝐶𝑐𝑟 is the critical damping coefficient and is defined as 

𝐶𝑐𝑟 = 2 𝑀 𝜔𝑛 (27) 

where 𝑀 is the mass per unite length and ωn is the natural frequency of the 

structure. 

𝜔𝑛 = 𝛼𝑛√
𝐸𝐼

𝑀𝐿4
 (28) 

where 𝐼 is the area moment of inertia and 𝐿 is the length span. The value of 𝛼𝑛 is 

based on the support condition, i.e. 1.57 for the pinned supports, 2.45 for fixed/pinned 

supports, 3.56 for fixed both ends and 0.56 is for fixed/free (cantilever) ends [77]. 

FORCES ON INTERNAL FACES  

The forces acting on an internal face are calculated based on the gradients of the 

displacement of this face. The gradients of the displacement at any internal face are 

calculated based on the neighboring cells gradients; see Figure 4, as the following 

∇𝑈𝑖 = [∇𝑈̅̅ ̅̅
𝑃𝑗 − (∇𝑈̅̅ ̅̅

𝑃𝑗 ∙
𝑠⃗

‖𝑠⃗‖
)

𝑠⃗

‖𝑠⃗‖
] + [(

𝑈𝑗 − 𝑈𝑃

‖𝑠⃗‖
)

𝑠⃗

‖𝑠⃗‖
] (29) 

where 

(∇𝑈̅̅ ̅̅ )𝑃𝑗 =
1

2
((∇𝑈)𝑃 + (∇𝑈)𝑗) (30) 

where 𝑠⃗ is the vector pointing from the centroid of cell P to the centroid of cell j, as 

shown in Figure 4. 

The force acting on the internal face can be calculated using the relation 
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𝐹⃗𝑖 = 𝑆𝑏. [𝜇∇𝑈𝑖 + 𝜇(∇𝑈𝑖)
𝑇 + 𝜆 𝑰 𝑡𝑟 (∇𝑈𝑖)] (31) 

  

Figure 4.  Sample 2D grid showing the cell which the gradient is being evaluated for, cell 

p, and its nearest neighbors. 

FORCES ON BOUNDARY FACES  

Fixed Displacement Boundary 

This condition specifies the value of 𝑈𝑏 on the boundary face. The necessary face 

gradient is computed using the cell center value in the neighboring cell. 

∇𝑈𝑓𝑎𝑐𝑒 = ∇𝑈𝑐𝑒𝑙𝑙 − [∇𝑈𝑐𝑒𝑙𝑙 ∙ 𝑛⃗⃗]𝑛⃗⃗ + [(
𝑈𝑏 − 𝑈𝑐𝑒𝑙𝑙

‖𝑑‖
)] 𝑛⃗⃗ (32) 

Where 𝑛⃗⃗ is the unit surface normal, ‖𝑑‖ is the distance between the cell-center and 

the face-center, and 𝑈𝑏 is the displacement at the boundary face. 

The force acting on the surface can be calculated using the relation 

𝐹⃗𝑑 = 𝑆𝑏. [𝜇∇𝑈𝑓𝑎𝑐𝑒 + 𝜇(∇𝑈𝑓𝑎𝑐𝑒)
𝑇

+ 𝜆 𝑰 𝑡𝑟 (∇𝑈𝑓𝑎𝑐𝑒)] (33) 
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Specified Traction Boundary 

The traction boundary condition specifies the force on the boundary face in terms 

of the pressure and the shear stress. The force acting on the surface can be calculated using 

the relation 

𝐹⃗𝑡 = 𝑆𝑏. [𝜇∇𝑈 + 𝜇(∇𝑈)𝑇 + 𝜆 𝑰 𝑡𝑟 (∇𝑈)] = |𝑆𝑏|𝑡 − 𝑆𝑏 𝑝 (34) 

Where 𝐹⃗𝑡 is the traction force acting on the boundary, 𝑆𝑏 is the outward pointing 

boundary face area vector, 𝑡 is the specified traction, and 𝑝 is the pressure. 

TOTAL FORCES 

By combining the forces from all type of faces, equations (31), (33), and (34), 

equation (21) can be written as 

𝑑𝑉𝑛

𝑑𝜏
= −[

3𝑉𝑛+1 − 4𝑉𝑛 + 𝑉𝑛−1

2∆𝑡
] −

1

𝜌𝑣𝑃
[∑𝐹⃗𝑖

𝑖

+ ∑𝐹⃗𝑑

𝑑

+ ∑𝐹⃗𝑡

𝑡

] + 𝐶𝑉𝑛 − 𝑓 (35) 

CELL-CENTER DISPLACEMENT GRADIENTS 

The displacement gradient at the cell-center is calculated based on the Green-Gauss 

theory  

∇𝑈𝑐𝑒𝑙𝑙 = [ ∑ 𝑛⃗⃗.𝑈𝑓𝑎𝑐𝑒𝑑𝐴

𝑓𝑎𝑐𝑒𝑠

] 𝑣𝑃⁄  (36) 

Where 𝑈𝑓𝑎𝑐𝑒 is the face displacement value, which is calculated based on a simple 

averaging of the displacement values at the face nodes, 𝑑𝐴 is the face area, and 𝑣 is the cell 

volume. 
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In the current cell-center finite volume scheme the displacement values are being 

calculated at the center of each control volume. In order to transfer the displacement values 

from the control volume centers to the control volume nodes, a weighted averaging 

interpolation is used as follows [45]  

𝑈𝑛𝑜𝑑𝑒 = [∑ 𝑤𝑛𝑐(𝑈𝑐𝑒𝑙𝑙 + 𝑟𝑛𝑐 ∙ ∇𝑈𝑐𝑒𝑙𝑙)

𝑐𝑒𝑙𝑙𝑠

] ∑ 𝑤𝑛𝑐

𝑐𝑒𝑙𝑙𝑠

⁄  (37) 

where 𝑈𝑛𝑜𝑑𝑒 is the node displacement value, 𝑈𝑐𝑒𝑙𝑙 is the cell displacement value, 

𝑟𝑛𝑐 is the vector pointing from the cell center to the designated node, ∇𝑈𝑐𝑒𝑙𝑙 is the 

displacement gradients evaluated at the previous time step, the summation is executed over 

all cells sharing the designated node, 𝑤𝑛𝑐 is the weighting coefficient which is inversely 

proportional with the distance between the cell center and the node 

𝑤𝑛𝑐 =
1

|𝑟𝑛𝑐|
 (38) 

CONVERGENCE CRITERIA 

Convergence is achieved when no further change in solution is being recorded. This 

condition is implemented by calculating the L2 norm of the residuals at the physical time 

level and the pseudo time level. The L2 norm is calculated based on the change in 

displacement difference, ∆𝑈, within all elements, as follow 

‖𝐿2‖ = √∑(∆𝑈𝑥
2 + ∆𝑈𝑦

2 + ∆𝑈𝑧
2)

𝑐𝑒𝑙𝑙𝑠

 (39) 

Where at the physical time level ∆𝑈 = 𝑈𝑡+∆𝑡 − 𝑈𝑡 and at the pseudo time level 

∆𝑈 = 𝑈𝜏+∆𝜏 − 𝑈𝜏 
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When L2 norm for the pseudo time level falls below a pre-defined tolerance the 

inner pseudo time iterations are considered converged and the code marches to the next 

physical time step. At this stage the displacement at the physical time level, 𝑈𝑡+∆𝑡, is set 

equal to the converged displacement at the pseudo time level, 𝑈𝜏+∆𝜏. Before starting the 

next physical time step, the L2 norm for the physical time level is calculated and compared 

against a pre-defined tolerance as well. If it is found to be less than this tolerance, the 

solution is considered fully converged and the simulation is stopped. 

TEST CASES 

The developed methodology has been tested using a three-dimensional fixed-free 

cantilever beam for which an exact analytical solution exists. Three different types of 

loading have been used: 1) suddenly applied uniform distributed pressure, 2) suddenly 

applied axial tension pressure, 3) suddenly applied traction force. For each case, the 

dynamic (undamped) solution and the static (damped) solution have been analyzed. 

The density 𝜌 and Young’s modulus of elasticity E are selected to obtain the beam’s 

first natural frequency (fn) as 1 Hz. The beam has a length of 2.0 m with a cross section of 

0.2 x 0.2 m2, as shown in Figure 5. Table 1 lists the material and geometrical specifications 

of the beam. Note that the gravity effect has not been taken into account. 

In order to demonstrate the capability of the developed solver to handle any mesh 

type, an unstructured mesh with mixed elements has been generated for the cantilever 

beam. The generated unstructured mesh, shown in Figure 5, consists of 20,346 tetrahedral 

cells. 
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Table 1 

Cantilever beam material specifications 

Beam specification Value 

Density 1000 kg/m3 

Modulus of elasticity 15.293 MPa 

Poisson’s ratio 0.3 

Natural Frequency 1 Hz 

Area moment of inertia 1.333x10-4 m4 

 

 

Figure 5. Schematic of the cantilever beam dimensions (top) and the generated 

unstructured mesh (bottom). 

 

The physical time step was set to 1x10-3 seconds and the pseudo time step was set 

to 1x10-5 seconds which satisfies the solver stability condition. Within each physical time 

step a maximum of 300 pseudo iterations were performed. The convergence tolerance for 

the pseudo iteration residuals was 1x10-7. For all cases, the full load was suddenly applied 
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at t = 0 seconds and kept till the end of the simulation. Moreover, the structure was assumed 

to be initially stationary. 

3D Cantilever Beam under Uniform Distributed Load  

A uniform distributed pressure has been added as shown in Figure 6. The static 

solution for this type of problem is determined analytically to be 

𝑈𝑚𝑎𝑥 =
𝑃𝑑𝐴𝑝𝐿4

8𝐸𝐼
 (40) 

Where 𝐴𝑝 is the area on which the uniform pressure, Pd, is applied.  

The applied uniform pressure, Pd, value has been selected to be 510.0 Pa, which 

would result in a maximum static deflection of 0.1 m at the free end of the beam. 

 

Figure 6. Schematic of the cantilever beam under a distributed pressure load. 

 

First, the dynamic (undamped) response was simulated. Based on the analytical 

solution and the calculated natural frequency, the maximum dynamic deflection at the free 

end of the beam should be 0.2 m and should take place at t = 0.5 seconds. Figure 7 shows 

a comparison between the finite element approach and the proposed finite volume approach 

of the predicted dynamic response at the center of the beam free end.  
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Table 2 lists the deflection and frequency error percentages associated with using 

the finite volume approach. The finite volume approach shows a good agreement with the 

finite element solution with a maximum deflection of 0.196 m at t = 0.51 seconds and a 

natural frequency of 0.992 Hz.  This represents a 2% amplitude error and a 1.6% frequency 

shift.  Second, the static state solution was obtained using the proposed finite volume 

approach. Using a damping coefficient, C, of 3 N.m/s, the simulation converges at a 

maximum of 0.0995 m deflection at the free end of the cantilever beam, as shown in    

Figure 8.  

 

Table 2 

Uniform distributed load deflection and frequency comparison 

 Dynamic Analysis Static Analysis 

 Umax (m) Frequency (Hz) Usteady (m) 

Finite Element 0.2 1.0 0.1 

Finite Volume 0.196 0.992 0.0995 

Error % 2.0% 1.6% 0.05% 
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Figure 7. Dynamic response of the cantilever beam under uniform distributed pressure at 

the center of the free end. 

 

 

Figure 8. Static response of the cantilever beam under uniform distributed pressure at the 

center of the free end with C = 3 N.m/s. 
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The deflection at any section across the beam length can be determined analytically 

as 

𝑈𝑥 =
𝑃𝑑𝐴𝑝𝑧2

24𝐸𝐼
(𝑧2 + 6𝐿2 − 4𝐿𝑧) (41) 

Where z represents the location across the beam length (z-direction). 

Figure 9 shows the computed steady state beam shape, which illustrates consistent 

deflections throughout the beam length (z-direction). Also Figure 9 shows a comparison 

between the analytical and finite volume deflections across the beam length. It can be seen 

from the figure that the error in the deflection across the length is minimal close to the fixed 

end of the beam and increasing in the direction of the free end. However, the maximum 

error at the free end is 0.05%. 

 

 

Figure 9. Steady state cantilever shape under uniform distributed load (top) and 

deflection values across the beam length (bottom). 
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3D Cantilever Beam under Axial Tension Pressure 

A normal pressure has been added to the free end of the cantilever beam, as shown 

in Figure 10. The static solution for this type of problem predicts a maximum deflection to 

be 

𝑈𝑚𝑎𝑥 =
𝑃𝐴𝑝𝐿

𝐸
 (42) 

The applied normal pressure, P, value has been selected to be 1911.1 Pa, which 

would result in a maximum static deflection of 2.5x10-4 m at the free end of the beam. 

 

Figure 10. Schematic of the cantilever beam under an axial tension pressure 

 

For the dynamic (undamped) response, the developed finite volume approach 

predicts an accurate response when compared to the response obtained by the finite element 

method. Table 3 lists the deflection and frequency error percentages associated with using 

the finite volume approach for dynamic and static analyses. The maximum deflections 

predicted by finite element and finite volume were 4.85x10-4 m and 4.57x10-4 m, 

respectively. While the predicted vibration frequencies were 15.0 Hz and 14.3 Hz, 

respectively. The dynamic responses at the center of the free end for both methods, finite 

element and finite volume, are shown in Figure 11. However, when damping is added the 

finite volume simulation under-predicts the maximum deflection by 6% at 2.35x10-4 m. 

The damped response at the center of the free end predicted by the finite volume approach 

is shown in Figure 12.  
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Figure 11. Dynamic response of the cantilever beam under axial tension pressure at the 

center of the free end. 

 

 

 

Figure 12. Static response of the cantilever beam under axial tension pressure at the 

center of the free end with C = 70 N.m/s. 
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Table 3 

Axial Tension Load deflection and frequency comparison 

 Dynamic Analysis Static Analysis 

 Umax (m) Frequency (Hz) Usteady (m) 

Finite Element 4.85x10-4 15.0 2.50x10-4 

Finite Volume 4.57x10-4 14.3 2.35x10-4 

Error % 5.8% 4.7% 6.0% 

 

3D Cantilever Beam under Traction Force 

In this test case, a pure bending traction pressure was added to the free end of the 

cantilever beam as shown in Figure 13. For this case, the load is concentrated and not 

uniformly distributed along wide area. For this reason, it is expected that the maximum 

amplitude to be less than the load calculated using equation (40). 

The applied traction pressure, P, value has been selected to be 1911.1 Pa. The 

maximum deflection was calculated using finite element analysis and determined to be 

0.196 m. 

 

Figure 13. Schematic of the cantilever beam under a traction pressure. 
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As shown in Figure 14 and Figure 15, the finite volume based dynamic and static 

responses show a good agreement when compared to the finite element based response. 

Table 4 lists the deflection and frequency error percentages associated with using the finite 

volume approach for dynamic and static analyses. For the dynamic structural response, the 

finite volume solution predicted a maximum deflection and a vibration frequency of 0.187 

m and 0.94 Hz, respectively. This represents a deflection error of 4.7% and a frequency 

error of 6%. For the static damped structural response, the finite volume solution predicted 

a steady state deflection of 0.092 m and the finite element predicted a deflection of 0.098 

m. This represents an error of 6%. Using a smaller pseudo time tolerance and performing 

more sub-iterations might lead to a more accurate solution.  

 

Table 4 

Bending traction load deflection and frequency comparison 

 Dynamic Analysis Static Analysis 

 Umax (m) Frequency (Hz) Usteady (m) 

Finite Element 0.196 1.0 0.098 

Finite Volume 0.187 0.94 0.092 

Error % 4.7% 6.0% 6.0% 
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Figure 14. Dynamic response of the cantilever beam under traction pressure at the center 

of the free end. 

 

 

Figure 15. Static response of the cantilever beam under traction pressure at the center of 

the free end with C = 3 N.m/s. 
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Large Amplitude Deflections of a 3D Cantilever Beam 

In this test case, a diagonal traction load is applied to the free end of the cantilever 

beam, as shown in Figure 16. Higher load magnitudes were used in order to test the 

developed approach for large deflections capabilities. The load, P, is specified at the faces 

of the free-end of the cantilever beam as a traction vector, 𝑡 = (
𝑃

√2
,

𝑃

√2
, 0) N/m2. The 

applied load, P, was determined based on the dimensionless traction force, 

ℱ =
𝑃𝐴𝐿2

𝐸𝐼
 (43) 

The maximum deflection was calculated at mid-point on the free-end of the beam 

as, 

𝑑𝑚𝑎𝑥 = √𝑢𝑥
2 + 𝑢𝑦

2 (44) 

 

 

Figure 16 Schematic of the cantilever beam under diagonal traction load 

 

In order to reach a steady state solution, a damped analysis has been performed. 

The calculated deflection was compared with the exact deflection calculated by Mattiasson 

[78] using the numerical evaluation of elliptic integrals. Figure 17 shows the steady state 
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shape of the beam colored by the deflection values. It can be seen from the figure that the 

predicted deflections are uniform throughout the beam length. 

 

 

 

(a) 

ℱ = 0.2 

 

 

 

(b) 

ℱ = 0.4 

 

 

 

Figure 17 Steady State shape colored by deflection value for different loads. 

 

Moreover, the dynamic response of the beam with no damping effect has been 

analyzed. Figure 18 shows the recorded deflection history at the free end of the beam. The 

simulation was run for 9 cycles to ensure the stability of the calculation over a long period 

of time, which is important for an FSI simulation. It is clear that the predicted dynamic 

response shows no effect of damping, which implies that there are no numerical dissipation 

associated with the applied numerical approach. Table 5 presents the applied loads 

specifications and the comparison between the exact numerical deflection and the 
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calculated deflection. It also compares the predicted dynamic frequency with the beam’s 

natural frequency. 

 

 
Figure 18 Dynamic response of the cantilever beam under diagonal traction load at the 
center of the free end. 

 

Table 5 

Relative error in steady state deflection and dynamic frequency  

 𝓕 = 0.2 𝓕 = 0.4 

 𝒅𝒎𝒂𝒙 (m) Frequency (Hz) 𝒅𝒎𝒂𝒙 (m) Frequency (Hz) 

Exact 0.13272 1.0 0.26196 1.0 

Finite Volume 0.1255 1.01 0.2431 0.952 

Error % 5.5% 1.0% 7.19% 4.8% 
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Mesh Sensitivity Analysis 

In order to study the effect of the mesh refinement on the accuracy of the proposed 

method, five different unstructured meshes were generated, i.e. 270, 2100, 4000, 10000 

and 20000 cells. Table 6 lists the relative errors for the dynamics solutions for the five 

different meshes. The dynamic (undamped) solution, for the cantilever beam under uniform 

distributed load of 510.0 Pa, shows that the accuracy of the finite volume solver increases 

with refining the mesh. However, for the 20000 cells mesh the maximum tip deflection 

recorded was 0.196 m, while the analytical solution indicates a maximum tip deflection of 

0.2 m.  

 

Table 6 

Dynamic (undamped) solution’s maximum deflection and relative error 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Analytical 

No. of Cells 270 2100 4000 10000 20000 -- 

Max. Deflection 0.1747 0.1862 0.1906 0.1918 0.1955 0.2 

Relative Error % 12.7% 6.9% 4.7% 4.1% 2.2% 0.0% 

 

By performing a Fourier transform, the frequencies recorded by the finite volume 

solver for each mesh were obtained. Figure 19 illustrates the increase in the solution’s 

accuracy with the increase of mesh refinement. It is clear that the error in the solution’s 

vibration amplitude and frequency kept decreasing with the increase of the number of cells. 

Increasing the number of cells allows for a more accurate estimation of the displacement 

gradients and accordingly a more accurate stresses to be calculated. 
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Figure 19. Mesh number of cells versus recorded maximum deflection (top) and 

frequency (bottom). 

 

CPU Time 

The current implementation of the finite volume structural solver is in serial. A 

CPU time analysis was performed for the investigated test cases. In these test cases a 

20,000 unstructured tetrahedral mesh was used. It was found that the average CPU time 

required to perform one time step with 300 pseudo inner iterations is 48.6 seconds. This 

CPU time is considered to be relatively high. By analyzing the solver performance, it was 
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found that the step of calculating the gradient is consuming around 90% of the total CPU 

time.  

The Green-Gauss method is used for calculating the gradients of the displacement. 

This method requires the displacement values to be known at the center of each face. Since 

the displacement values are being calculated at the center of the control volume, it was 

essential to use a weighted averaging interpolation to transfer the displacement values to 

the nodes, then transfer the nodal values into the center of the face. The Green-Gauss 

method is more suitable for CFD solvers where the number of inner iterations required is 

low, typically 3 to 5 [52]. While in the developed CSD methodology, the number of inner 

iterations required is of order of hundreds. For the test cases investigated in this chapter, 

the CSD solver performed 300 inner iteration to reach a convergence tolerance of 1x10 -7, 

as shown in Figure 20. 

Thus, optimizing the Green-Gauss theory implementation within the code or 

replacing it with an alternative less expensive method, e.g. least square fitting is essential. 

Due to time limitations, it was decided to consider this step as part of the future work. 
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Figure 20 Convergence history of L2 Norm versus pseudo inner iteration. 

 

CONCLUSIONS 

A second order cell-centered finite volume approach to model three-dimensional 

linear elastic structures was developed and investigated. The case of a 3D cantilever beam 

under three different loading conditions was tested. The obtained results were compared 

against the traditional finite element method and against analytical solutions. The proposed 

finite volume methodology results show a good agreement. Furthermore, the developed 

solver was tested for large amplitude deflection cases. The load was applied as a diagonal 

traction load acting on the free-end of the beam. Two different dimensionless load 

magnitudes have been applied.  The finite volume results well-predicted the dynamic as 

well as the damped responses. The error in the deflection amplitude for the lower load and 

higher load were 5.5% and 7.19%, respectively, with frequency shifts of 1.0% and 4.8%, 

respectively. 
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Based on the obtained results, the proposed finite volume approach can be used as 

an alternative for the well-established finite element method. The developed finite volume 

methodology adapts the exact numerical discretization scheme applied in state-of-the art 

generalized mesh based CFD solvers. This allows for efficient FSI coupling without the 

need for data interpolation and will greatly improve the parallelization capabilities.
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CHAPTER 4 

OBJECTIVE 2: EXTENSIVE SURVEY OF MESH DEFORMATION TECHNIQUES 

INTRODUCTION 

This survey reviews the recent development of mesh deformation methods. During 

the past two decades a vast number of researches have been concerned with developing an 

efficient and robust mesh deformation technique. This has been achieved either by 

proposing a novel approach, improving an existing one, or by combining two existing 

approaches together resulting in a new hybrid approach. It is important to keep track of the 

most up to date developments in the field of mesh deformation, in order to allow the 

researchers to adopt the most efficient and application compatible mesh deformation 

scheme, as well as propose new methods of improvements. In this survey the mesh 

deformation techniques have been classified into two main categories, 1) physical analogy 

based techniques and 2) interpolation based techniques. 

The numerical simulation of dynamically updated three-dimensional (3D) meshes 

arises in many engineering applications, such as moving boundary problems [79], bio-fluid 

mechanics problems [80], free surface flows, and Fluid–Structure Interaction (FSI) 

problems. FSI are of great importance in many real-life applications, such as industrial 

processes, aero-elasticity, and bio-mechanics. In such applications, when the flow domain 

boundary undergoes a motion, the most common approach is to conform the fluid mesh to 

confine the changing flow domain. This can be achieved either by deleting the old mesh 

and regenerating a new mesh or by dynamically deforming the mesh. For applications that 
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require updating the mesh at every time step, regenerating a new mesh consumes high CPU 

cost and requires special mesh quality controls which makes it impractical approach [81-

83]. Moreover, mapping the solution from the old mesh to the new mesh consumes extra 

CPU cost. Therefore, the mesh deformation option is more practical and flexible.  

Various mesh deformation methodologies have been proposed. Some of them are 

robust with respect to elements overlapping and crossing but very time consuming, while 

others are computationally efficient but less robust. Since 1980 it has been a challenge to 

develop an efficient and robust mesh deformation technique. However, various types of 

simulations have different mesh deformation requirements. The simplest problem is when 

an object undergoes a translational or rotational motion, followed by an object experiencing 

both translational and rotational motions; then the most complicated is when the problem 

involves higher frequency components or multiple objects motions. Moreover, handling 

structured grids is easier than unstructured grids and dealing with small deformations is 

obviously simpler than large deformations. Also, viscous flows need a special treatment 

for preserving the quality of the boundary layer mesh, whereas the mesh layers are tightly 

packed and needs to move rigidly with the boundary surfaces. 

Strategies for deforming the fluid mesh conforming to the deformation of solid 

body can be divided into two basic classes: physical analogy or interpolation. The physical 

analogy approach describes the fluid mesh deformation according to a physical process 

that can be modeled using numerical methods. In the interpolation based approaches, an 

interpolation function is used to transfer prescribed boundary point displacements to the 

fluid mesh. Figure 21 shows the reviewed approaches of each of these classes which are 

discussed below in detail. 
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Figure 21 Reviewed mesh deformation techniques. 

 

MESH DEFORMATION USING PHYSICAL ANALOGY 

Techniques lying under this category are based on spring analogy or solutions of 

partial differential equations. The main drawback of physical analogy methods is that they 

involve large systems of equations, implying a higher computational cost. Besides, these 

methods require grid connectivity information which results in more storage requirements 

and difficulties in parallelization. 
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Linear Spring Analogy 

One of the popular methods in this class is the tension spring analogy developed by 

Batina [84]. In this approach, each edge of the mesh is replaced by a tension spring with 

the spring stiffness is taken as inversely proportional to the edge length. Many researchers 

have adopted the spring analogy and also used the same assumption for the stiffness [85-

87]. In this method, the equilibrium lengths of the springs are set equal to the initial lengths 

of the edges. By applying Hook’s law to the nodes displacements, the force is written as 

𝐹⃗𝑖 = ∑ 𝛼𝑖𝑗(𝛿𝑗 − 𝛿𝑖)

𝑛𝑖

𝑗=1

 (45) 

where 𝛼𝑖𝑗  is the stiffness of the spring between node i and j, 𝛿 is the node 

displacement and 𝑛𝑖  is the number of neighbors of node i. For static equilibrium, the force 

at every node i has to be zero. The iterative equation to be solved is 

𝛿𝑖
𝑘+1 =

∑ 𝛼𝑖𝑗𝛿𝑗
𝑘𝑛𝑖

𝑗=1

∑ 𝛼𝑖𝑗
𝑛𝑖

𝑗=1

 (46) 

where the known displacements at the boundaries are used as the boundary 

conditions. 

After iteratively solving equation (46), the nodes coordinates are updated by adding 

the final displacement to them. 

Blom [88] analyzed the stiffness of the springs of a one-dimensional linear spring 

system. He proved that by setting the stiffness equal to the inverse of the edge length the 

nodes are prevented from colliding when they are placed on a line and move along this 

line. In other words, this stiffness choice prevents the cells from colliding if they are placed 

on the same axis and moving across this axis. However, for triangular grids it is possible 
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for the triangle edges to rotate and cross each other, see Figure 22. In order to prevent this, 

Farhat et al. [89] proposed the use of torsional springs that are placed in the corner between 

adjacent edges. An alternative solution is to divide the edge stiffness by the angle formed 

by the other two edges in the triangle. However, this will result in a non-linear system of 

equations, since 𝛼𝑖𝑗  will become a function of the displacement. This approach is usually 

referred to as the semi-torsional spring approach.  

 

Figure 22. Negative areas produced by linear spring method [90]. 

 

Modified Spring Analogies 

In order to prevent the element inversion problem associated with the linear spring 

analogy, multiple modifications have been proposed.  The most influential modifications 

are discussed in this section. These modifications are the torsional spring [89], the semi-

torsional spring [88], the ball-vertex [91], and the Ortho-Semi-Torsional (OST) spring 

approach [92].  

Torsional Spring Method. To prevent element inversion on a 2D triangular mesh, 

three torsional springs where attached, one at each vertex of the triangle and their stiffness 

coefficients were depended on the angle 𝜃 of the corresponding vertex in the triangle. The 

stiffness of the torsional spring is given by 
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𝛼𝐴
𝐴𝐵𝐶 =

1

sin2 𝜃𝐴
𝐴𝐵𝐶 (47) 

where the subscript A specifies the vertex on which the calculation applies, and the 

superscript ABC specifies the triangle which the vertex A belongs to.  

This method was extended to 3D meshes by Degand and Farhat [93]. They 

constructed 12 triangles within each tetrahedron, where three triangles are constructed for 

each vertex. Consider the tetrahedron ABCD, to prevent the vertex D from penetrating 

through its opposite face ABC, three triangles can be constructed by projecting the vertex 

D on each of the edges forming the face ABC. The first triangle can be constructed as 

follow, consider the projection of the vertex D on the edge AB as node X, then the first 

triangle is DXC, as shown in Figure 23. Similarly, consider the projection of the vertex D 

on the edges AC and BC as node Y and node Z respectively. Then, the other two triangles 

are DYB and DZA respectively. 

 

Figure 23. Three triangles constructed for vertex d of the tetrahedron ABCD. 

 

The stiffness coefficients are then calculated using equation (47). For points X, Y, 

and Z, the displacement is calculated by interpolating the displacements of the two vertices 

of the corresponding edge. Finally, the local stiffness matrix for the tetrahedron is obtained 

by assembling all matrices associated with the twelve inserted triangles. 
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Burg [90] generalized the extension of the method for 3D meshes in order to be 

applicable for higher order elements, such as quadrilateral. 

Ball-Vertex Spring Method. The concept of this method is to modify the original 

linear spring method by introducing additional linear springs. These additional springs 

resist the motion of a vertex towards its opposite faces, see Figure 24. Point i position is 

computed as the normal projection of the vertex s on the face pqr.  

 

Figure 24. Ball-vertex additional linear spring [92]. 

 

The displacement at i can be calculated by the interpolation of the three vertices of 

the corresponding face. The stiffness of the added spring is, 

𝛼𝑖𝑠 = 1
𝐿𝑖𝑠

⁄  (48) 

where 

𝐿𝑖𝑠 = √(𝑥𝑖 − 𝑥𝑠) ∙ (𝑥𝑖 − 𝑥𝑠) (49) 

 

Semi-Torsional Spring Method. This method considers the same springs of the 

original linear spring method, but with different stiffness calculation approach. Here, the 

stiffness coefficient of each linear spring is equal to the torsional stiffness coefficient of 



 

57 

the facing angle. As was proposed in [88], for 2D triangular element, a semi-torsional 

stiffness coefficient of an edge ij is, 

𝛼𝑖𝑗 =
1

𝑙𝑖𝑗 ∙ 𝜃
 (50) 

where 𝑙𝑖𝑗  is the length of the edge ij and 𝜃 is the edge facing angle. 

This semi-torsional 2D model is not directly applicable to 3D problems. Zeing and 

Ethier [94] extended this method for 3D applications. They suggested defining the spring 

stiffness as the sum of its linear and semi-torsional stiffness, as follows, 

𝛼𝑖𝑗 = 1
𝑙𝑖𝑗

⁄ + 𝐶 ∑ 1
𝑠𝑖𝑛2(𝜃𝑚

𝑖𝑗)⁄

𝑁𝐸𝑖𝑗

𝑚=1

 (51) 

where NEij is the number of elements sharing edge ij, 𝜃𝑚
𝑖𝑗

 is the edge facing angle 

on the mth element sharing the edge ij, and C is a coefficient which is related to the 

dimension of the stiffness. Figure 25 shows the facing angle of an edge on a tetrahedron. 

 

Figure 25. Definition of facing angle in a tetrahedron [92]. 
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Thus, for edge pq the following system of equations results, 
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 (52) 

 

This method requires the calculation of 6 torsional stiffness coefficients 

corresponding to the 6 angles created by four tetrahedral faces. Hence, this method is more 

efficient than the torsional spring method, which requires 12 triangles to be created for 

each tetrahedron. In 2D problems the calculations to form the fictitious stiffness matrix for 

the torsional spring analogy model involve 72 additions and 117 multiplications per 

element, while for the semi-torsional spring analogy model these operations are reduced to 

18 additions and 20 multiplications per element [94]. 

Ortho-Semi-Torsional Spring Method. In this method four additional springs, 

within each tetrahedron element, have been considered in addition to the springs of the 

original spring method. These four springs are connecting each vertex with its projection 

on its opposite face, as shown in Figure 26. The stiffness coefficients of these imaginary 

springs were assumed to be inversely proportional to their lengths. These additional springs 

are used only to alter the original springs’ stiffness coefficients, and they are discarded in 

the final formulation.   
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Figure 26. Additional projected spring from each node toward its opposite face [92]. 

 

Each additional stiffness coefficient is divided into three parts, one for each 

neighboring edge, as follow, 

𝜆𝑠𝑖,1 =
𝑙𝑞𝑠

𝑙𝑞𝑠+𝑙𝑝𝑠+𝑙𝑟𝑠
,  𝜆𝑠𝑖,2 =

𝑙𝑝𝑠

𝑙𝑞𝑠+𝑙𝑝𝑠+𝑙𝑟𝑠
,  𝜆𝑠𝑖,3 =

𝑙𝑟𝑠

𝑙𝑞𝑠+𝑙𝑝𝑠+𝑙𝑟𝑠
 (53) 

Then each of the neighboring edges stiffness coefficients are calculated as, 

𝛼𝑞𝑠
𝑡𝑜𝑡𝑎𝑙 = 1

𝑙𝑞𝑠
⁄ + 𝐶 ∑ 1

𝑠𝑖𝑛2(𝜃𝑚
𝑞𝑠)⁄

𝑁𝐸𝑞𝑠

𝑚=1

+ [(
𝛼𝑠𝑖

(𝜆𝑠𝑖,1)
𝑘1) + (

𝛼𝑞𝑖

(𝜆𝑠𝑖,1)
𝑘1)]

𝑘2

 (54) 

where 𝑘1 is a coefficient related to the closeness of the projection si to the 

neighboring edges and k2 is a coefficient affects the contribution of the additional linear 

spring stiffness coefficients to the total stiffness of the edge. 

This method combines the simplicity of the semi-torsional spring method and the 

robustness of the torsional spring method. 

Summary. Markou et al. [92] conducted several tests in order to analyze each of 

these four schemes. They concluded that the ball-vertex and semi-torsional spring analogy 

methods could be an appropriate choice for large problems with relatively small 

deformations. On the other hand, for large boundary surfaces deformations, then the 
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torsional spring analogy is a better choice. However, for both cases, the OST spring 

analogy method appeared to be ensuring robustness and computational efficiency. 

Linear Elasticity 

In this method, mesh deformation is accomplished by solving the linear elasticity 

equations for the mesh point displacements throughout the field. Since the elasticity 

equations contain material properties, the modulus of elasticity (E) and Poisson’s ratio (𝜐), 

these properties are related to the mesh characteristics. One common approach is to set 𝜐 

as a constant, within the valid physical range from 0 to 1/2, and E either to be calculated 

as the inverse of the distance between the interior node and the nearest boundary surface 

or to be set inversely proportional to the cell volume [95-97]. This turned out to be very 

beneficial for avoiding invalid mesh cells, especially near to the boundaries. An alternative 

approach is to use a constant E and manipulate the 𝜐 so that the term 1 (1 − 2𝜐)⁄  is equal 

to the aspect ratio of the cell [61, 98] or to use constant 𝜐 and set E equal to the aspect ratio 

of the element [99]. This increases the stiffness in regions with high aspect ratio cells 

leading to more rigid motion near boundary surfaces. Another rarely used option is to set 

E equal to the element condition number which according to [100, 101] should result in the 

same effect of the previous approach.  

Yang and Mavriplis [102] implemented an adjoint-based optimization procedure 

for producing a more optimal distribution of E. In this study, an objective function, that 

was selected to be proportional to the cell volume, was minimized by varying E in each 

cell. Even though the optimization resulted in avoiding invalid elements generation for 

highly stretched mixed element meshes, its solution consider to be expensive in terms of 

CPU time.    
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Hsu et al. [103] proposed to perform the deformation through two consecutive 

steps. The first step is performed with uniform modulus of elasticity (E = 1) and the second 

one with varying modulus of elasticity.  The element strain energy density output from the 

first analysis is used to compute the modulus of elasticity for the second analysis. 

Most of the studies concerned with the linear elasticity mesh deformation method 

used the Finite Element method for discretizing the linear elasticity equations and then 

solved the resulting linear system using GMRES method [95, 99, 103-105].  

Laplacian and Modified Laplacian 

Using the Laplace smoothing equations for mesh deformation proved to be an 

efficient technique. The idea behind using the Laplace equations for mesh deformation is 

that the solution of the Laplace equations satisfies the minimum/maximum principle. In 

other words, this means that the values of the interior displacements are bounded by the 

values on the boundary surfaces. This ensures that the interior nodes will not cross the 

boundaries. The traditional Laplacian method is to consider the Laplace smoothing 

equation, 

∇ ∙ (∇𝑢) = 0 (55) 

where u is the mesh deformation velocity such that, 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + ∆𝑡 𝑢 (56) 

The modified Laplacian includes the factor 𝛾 raised to some exponent 𝑞, 

∇ ∙ (𝛾𝑞∇𝑢) = 0 (57) 

where 𝛾 is the diffusion coefficient, If q = 0, then the traditional Laplacian is 

recovered. 
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The selection of variable 𝛾 should depend on the specific mesh motion problem. 

Jasak and Tuković [106] investigated several possibilities to set the 𝛾 value based on 

distance (linear, quadratic, and exponential) from some boundary or mesh characteristics 

(orthogonality and skewness). These methods all have their merits and shortcomings. 

Lohner et al. [107] varied the diffusion coefficient with the distance from the viscous 

surfaces, and Crumpton and Giles [62] used diffusion coefficient inversely proportional to 

the cell volume.  

One disadvantage that limits the use of traditional Laplacian method is that the three 

components of the mesh deformation are solved independently of each other. For example, 

if the boundary surface is moved only along x-direction, the interior mesh points will be 

moved only along coordinate x [103]. 

Choosing an appropriate exponent to the modified Laplacian for single frequency 

deformations would highly improve the capability of handling extreme deformations. 

Therefore, the modified Laplacian yields excellent results in cases of rigid translations and 

rotations. However, in practical problems, the mesh deformation has multiple frequencies 

which make the use of optimal exponent impractical and leads to invalid mesh generation 

[108].  

MESH DEFORMATION USING INTERPOLATION ANALOGY 

In general, these schemes do not require connectivity information.  Therefore, these 

algorithms can be applied to arbitrary mesh types that contain general polyhedral elements 

or hanging nodes [12]. Interpolation based schemes attain higher computational 

efficiencies and less memory requirements compared to physical schemes. However, any 

interpolation process is associated with some sort of error margin.  
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Transfinite Interpolation 

Most structured grid regeneration and deformation techniques are based on 

transfinite interpolation (TFI) [109]. In this method, an interior fluid node motion is 

assumed to be equal to the motion of the moving boundary times a scale factor. This scale 

factor depends on the distances from the node to the moving and the fixed surfaces [110, 

111]. This method is very computationally efficient but suffers from robustness issues. 

Obviously, TFI method does not have any mechanism for preventing element crossing and 

overlapping; thus this method is not suitable for handling unstructured meshes especially 

when large deformations take place. 

Algebraic Damping Method 

The method, proposed by Zhao and Forhad [112], works by assigning a boundary 

node (𝑥𝑏𝑖) for each interior node (𝑥𝑖) that needs to be deformed, then the deformation of 

this interior node is calculated as the product of a distance function and the displacement 

of the associated boundary node as follows: 

𝐷⃗⃗⃗(𝑥𝑖) = 𝑓(𝑥𝑏𝑖)𝐷⃗⃗⃗(𝑥𝑏𝑖) (58) 

where 𝐷⃗⃗⃗ is the displacement vector and 𝑓 is the distance function. 

The boundary node that has the shortest distance to the interior node is selected as 

the associated node (𝑥𝑏𝑖). A generic distance function was chosen so it tends to 1 when 

‖𝑥𝑖 − 𝑥𝑏𝑖‖ tends to 0 and the function tends to 0 when ‖𝑥𝑖 − 𝑥𝑏𝑖‖ tends to the 

𝑚𝑎𝑥‖𝑥𝑖 − 𝑥𝑏𝑖‖ for all interior nodes. This results in having a very rigid mesh in areas near 

to the boundary walls and far away from the boundary wall while having a very elastic 

mesh in between. In order to improve the robustness of this method for large mesh 
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deformations, a smoothing procedure was also incorporated to eliminate highly skewed or 

overlapping cells. 

Inverse Distance Weighting Method 

This method has been originally used for the generation of contour maps in 

geography [113]. In this method, the interpolated displacement value is an average of the 

known values at the boundary nodes weighted by the inverse of the distance to the interior 

fluid node. Thus, the displacement at any interior node 𝑥𝑖 can be calculated by 

𝐷⃗⃗⃗(𝑥𝑖) =
∑ 𝑥𝑘𝑤(𝑟𝑘)𝑛𝑏

𝑘=1

∑ 𝑤(𝑟𝑘)𝑛𝑏
𝑘=1

 (59) 

with weighting function 

𝑤(𝑟) = 𝑟−𝑐 (60) 

where 𝑛𝑏 is the total number of boundary nodes, 𝑟𝑘 = ‖𝑥𝑖 − 𝑥𝑘‖, and 𝑐 is a power 

parameter which is usually set to a value of 2 in order to influence the distance-decay effect. 

The IDW technique has the capability of treating boundary rotations separately. 

Therefore, the IDW technique can be used as a tool to improve the mesh orthogonality near 

the boundary surfaces. To illustrate this property, a single-block structured C-type inviscid 

mesh was tested. Different power parameters were considered. The results showed that for 

power parameter 𝑐 = 1 the mesh orthogonality tends to be worst; however, by increasing 𝑐, 

the mesh quality improves spectacularly. The mesh quality measure shows a perfect value 

of 90o over more than 95% of the airfoil surface for 𝑐 = 3. Further increasing of 𝑐 does not 

have noticeable effect on mesh quality. However, the effect of this optimization on the 

global mesh quality was not reported in this study. 
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In the research conducted by Witteveen [114], the 3D AGARD aeroelastic wing 

case has been tested as a full fluid-structure interaction problem. The results for IDW and 

RBF mesh deformation were compared. The results reported a reduction of computational 

costs for IDW mesh deformation with respect to the RBF method of a factor 20. 

Furthermore, by neglecting mesh rotation and considering only mesh translation the 

reduction of computational costs reduce the CPU time to a factor 50 with respect to RBF 

mesh deformation. However, the RBF technique produced 4% higher mesh quality than 

the IDW. It should be noted here that the study did not declare whether the used RBF 

approach is the most straightforward approach or the improved approach. 

The main advantages of this approach can be summarized as, 1) it does not involve 

the solution of a matrix system of equations, and 2) it treats boundary node displacements 

and rotations separately. 

Radial Basis Functions Interpolation 

The radial basis function interpolation method, such as the method developed by 

Boer et al. [65], is one of the promising interpolation schemes. RBF’s have become a well-

established tool to interpolate scattered data. RBF can also be used as an interpolation 

function to transfer the displacements known at the boundaries of the structural mesh to 

the fluid mesh. This scheme produces high-quality meshes with reasonable orthogonality 

preservation near deforming boundaries. Other advantages of RBF includes: 1) Avoid the 

need for mesh connectivity information, 2) the system of equations which needs to be 

solved is linear, and 3) the size of the linear system of equation is proportional to the 

number of boundary nodes, not all fluid nodes.  Moreover, many studies have investigated 

different techniques for improving RBF’s interpolation based mesh deformation. The most 
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influencing study was made by Rendall and Allen [66]. They proposed the use of data 

reduction algorithm along with RBF interpolation. This technique will be discussed later 

in details. Another study, which builds up on the previous technique, is the work made by 

Sheng and Allen [115], in which they put forward specific criteria for selecting the nodes 

involved in the interpolation. 

RBF Formulation. Using RBF, the interpolation function, S, describing the 

displacement in the whole domain can be approximated by a sum of basis functions as, 

𝑆(𝑋) = ∑ 𝛼𝑗

𝑛𝑏

𝑗=1

𝜙 (‖𝑋 − 𝑋𝑏𝑗
‖) + 𝑃(𝑋) (61) 

where Xbj = [xbj , ybj , zbj] are the boundary nodes in which the deformations are 

known and these are called the centers for RBF, P is a polynomial, nb is the number of 

boundary nodes, and  is the selected basis function with respect to the Euclidean distance 

‖𝑥‖. The coefficients j and the polynomial P are determined by the interpolation 

conditions 

𝑆 (𝑋𝑏𝑗
) = 𝑑𝑏𝑗

 (62) 

∑𝛼𝑗

𝑛𝑏

𝑗=1

= ∑ 𝛼𝑗

𝑛𝑏

𝑗=1

𝑥𝑗 = ∑ 𝛼𝑗

𝑛𝑏

𝑗=1

𝑦𝑗 = ∑ 𝛼𝑗

𝑛𝑏

𝑗=1

𝑧𝑗 = 0 (63) 

The values for the coefficients j and the linear polynomial coefficient can be 

obtained by solving the system 

[

𝜙𝑏,𝑏

 

𝑝

 

𝑝𝑇 0

] [

𝛼

 
𝛽
] = [

𝑑𝑏

 
0

] (64) 

Where  is a vector containing the coefficients j,  is a vector containing the 

coefficients of the linear polynomial P, b,b is an nb x nb matrix containing the evaluation 
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of the basis function 𝜙𝑏𝑖,𝑏𝑗
= 𝜙 (‖𝑋𝑏𝑖

− 𝑋𝑏𝑗
‖), and p is an nb x 4 matrix with row j given by 

[1 𝑥𝑏𝑗
 𝑦𝑏𝑗

 𝑧𝑏𝑗
] [64, 65]. In this study, the polynomial P was omitted, since it was concluded in 

previous studies that it does not have a large influence on the quality of the deformed mesh 

[116]. In this case, the system in equation (64) will be simplified as the following 

[𝜙𝑏,𝑏][𝛼] = [𝑑𝑏] (65) 

RBF interpolation method produces high-quality meshes with good orthogonality 

preservation near deforming boundaries. On the other hand, in its most straightforward 

implementation, it is too costly to use for large three-dimensional problems. A direct 

solution of such systems require O(nb
3) operations and O(nb

2) memory usage which 

becomes prohibitive for more than a few thousand data points. Great progress has been 

made in recent years towards alleviating this computational burden. 

An approximation algorithm for RBF mesh deformation has been suggested by 

Rendall and Allen [66]. In this algorithm, the RBF is applied using a coarsened subset of 

the surface mesh. Displacements of the omitted surface nodes are calculated using the 

interpolation method and the error is calculated as the difference between the interpolated 

values and the actual displacement.  A greedy algorithm is used to add points that have the 

largest error. Rendall and Allen reported that this algorithm improves the performance of 

the RBF method by approximately two orders of magnitude. The use of the greedy 

algorithm reduces the cost remarkably without compromising the accuracy. Michler [117] 

proposed a confinement technique that restricts the mesh deformation to the surrounding 

region of the moving surface. He achieved this by assigning an auxiliary geometry 

encompassing the region targeted by the interpolation, instead of using a cut-off function. 

Moreover, Michler [117] proposed to choose different centers for different directions 
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instead of using the same set of centers for all displacement directions, which results in 

reducing the required CPU time. 

Control Mesh Methods 

This scheme is based on the creation of a Delaunay graph of the original mesh. The 

Delaunay graph is used as an intermediate map. Only boundary nodes are used to create 

the graph. Then each interior node is assigned to the Delaunay element that it belongs to. 

Finally, by deforming the Delaunay graph, which the displacements are already known for, 

the interior nodes new locations are easily interpolated [118]. Basically, this method 

includes the following four steps: 

1. Generating the Delaunay graph 

2. Locating the mesh points in the graph 

3. Moving the Delaunay graph according to the specified geometric change 

4. Relocating the mesh points in the new graph 

Generating the Delaunay graph. The Delaunay graph must be generated to cover 

the whole computational domain. All moving boundary nodes with few stationary 

boundary nodes must be used for generating the graph. If not all moving boundary nodes 

are used, the integrity of the grid is not guaranteed. If the stationary boundary surface has 

a curved shape, more points on the surface must be used. Then the Delaunay graph is 

generated using the Delaunay criterion [119, 120]. 

Locating the mesh points in the Delaunay graph. Any node within the graph must 

belong to one of the triangles or tetrahedrons elements in the graph, since the graph covers 

the whole solution domain. In order to locate the mesh nodes in the graph, the relative 

area/volume coefficients to define the points for 2D/3D meshes are used. For 2D, assume 
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that the node P is to be located within the Delaunay element ABC. By connecting the node 

P with each node of the Delaunay graph element ABC, three sub-triangles will be created. 

The area coefficients can be calculated as the area of the sub-triangle divided by the area 

of the element ABC. Similarly, for 3D the volume coefficients can be calculated as the 

volume of the sub-tetrahedron divided by the volume of the tetrahedron ABCD. Obviously, 

the summation of all coefficients must equal to 1. However, if and only if all the signs of 

the above coefficients are positive or zero, the point is within the graph element. Otherwise 

the point is classified outside the element.  

An efficient walk-through algorithm [121, 122] was adopted for locating the nodes 

within the Delaunay graph. The complexity of the walk-through algorithm is of O(n1/d), 

where n is the total number of the Delaunay elements and d is the spatial dimension. 

Moving the Delaunay graph. After deforming the mesh, the Delaunay graph might 

not satisfy the Delaunay rules. This should not cause a problem unless some nodes move 

across each other, which will result in negative coefficients. In this case, the movement is 

broken into two smaller steps. 

 Relocating the mesh points in the graph. After the graph movement, the mesh 

points can now be located based on the area/volume coefficients stored for the points with 

the associated graph element number. This requires keeping the coefficients constant 

during the deformation. 

Test Cases. Liu et al. [118] showed the robustness of the method through a series 

of test cases including inviscid and viscous flow grids with large deformations. The 

performance of the method was compared with a standard spring analogy method in the 
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wing-body test case. An order of magnitude improvement in CPU has been achieved, but 

on the other hand the memory requirements have been increased. 

Main Disadvantage. Intersections occur occasionally between the Delaunay 

graph’s elements for complex geometries with large relative movements. Under this 

condition, the Delaunay graph has to be regenerated and the grid nodes are required to be 

relocated, which increase the time consumption. 

RBFs-MSA Hybrid Method 

This method, recently proposed by Yu et al. [123], combines the benefits of Moving 

Submesh Approach (MSA) and RBFs interpolation, which is called RBFs-MSA. The MSA 

method can be considered as an extension to the Delaunay graph interpolation method. The 

main difference between the two methods is that in the MSA the background mesh is not 

a Delaunay graph anymore, it is a coarse unstructured mesh. This change avoids the 

elements crossing problem associated with using the Delaunay graph as the background 

mesh. On the other hand, since the background mesh now is not formed only by boundary 

nodes, the displacement is not known for all background nodes. Hence, an extra step needs 

to be performed before transferring the movement from the background mesh to the 

computational mesh. This step involves interpolating the displacements between the 

boundary nodes and the non-boundary nodes of the background mesh. Therefore, the 

authors proposed the use of RBFs interpolation to perform this step. Since the background 

mesh is a coarse mesh, performing RBFs interpolation will be more efficient. 
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RBFs-MSA Hybrid Algorithm’s Steps. 

1. Generate the background mesh 

2. Locate the computational mesh nodes on the background mesh element and 

compute the area/volume ratio coefficients 

3. Update the coordinates of the boundary points of the background mesh 

4. Solve the RBF interpolation system and evaluate the non-boundary points new 

coordinates of the background mesh 

5. Update the coordinates of computation mesh points by interpolation using the 

relative area/ volume ratio coefficients 

6. Repeat Step 3 to Step 5 until the end of computation 

Test Cases Results. Two 2D test cases and one 3D test case have been presented in 

[123]. Firstly, a rectangular block rotation 2D test case was analyzed and compared with 

RBFs interpolation and semi torsional spring scheme. The results showed that the semi 

torsional spring produces an invalid mesh after 50o rotation. On the other hand, the RBFs-

MSA and the RBFs interpolation produce a valid mesh for 90o rotation. However, the RBFs 

interpolation produced slightly better mesh quality than the RBFs-MSA. 

Secondly, a double flapping wings 2D test case was analyzed and compared with 

RBFs interpolation. The RBFs-MSA produced slightly better mesh quality than the RBFs 

interpolation. However, the RBFs-MSA reduced the CPU cost by about two orders of 

magnitude in comparison to RBFs interpolation. 

Finally, a 3D test case was constructed by artificially bending the ONERA M6 

wing. Since the computational mesh in this case has 10,419 boundary nodes, the authors 

stated that using RBFs interpolation is unpractical. Thus, the RBFs-MSA has been 

compared to the semi-torsional spring method. The comparison was in favor of the RBFs-

MSA method. It showed that the RBFs-MSA method produced an acceptable mesh quality 
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while the semi-torsional method produced poor mesh quality. Moreover, the RBFs-MSA 

was 6.35 times faster than the semi-torsional spring method. 

Quaternion Based Method 

A quaternion can be interpreted as a scalar with a direction. It is composed of one 

real number and three imaginary numbers, on the form, 

𝑄 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 (66) 

where 𝑖𝑖 = 𝑗𝑗 = 𝑘𝑘 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, and 𝑘𝑖 = −𝑖𝑘 = 𝑗. 

Quaternions are widely used to describe rotations in computer graphics, animations, 

control theories in robotics, attitude controls of spacecraft, etc. Quaternions have several 

unique properties, such as [124]: 

1. Conjugate of a quaternion, 𝑄∗ = 𝑞0 − 𝑞1𝑖 − 𝑞2𝑗 − 𝑞3𝑘 

2. Magnitude of a quaternion, ‖𝑄‖ = √𝑄𝑄∗ = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 

3. Unit quaternion, ‖𝑄‖ = 1 

4. Inverse of quaternion, 𝑄−1 = 𝑄∗ (𝑄𝑄∗)⁄  

5. For unit quaternion, 𝑄−1 = 𝑄∗ 

The nature of the quaternion makes it ideal to carry on rotational information, for 

which the scalar term could represent the magnitude of the rotation, and the last three terms 

represent the axis of rotation. Moreover, the unique properties those quaternions have make 

it easier to perform different mathematical operations on them. 

Samareh [124] proposed a technique to use quaternions for mesh deformation. He 

proposed a three-steps approach to translate the known boundary displacements into 

boundary quaternions and then use these quaternions to deform the mesh. Step 1) is to 

translate the undeformed nodes, deformed nodes, and the neighboring nodes to the origin. 
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Step 2) is to rotate the undeformed nodes so their normal vectors align with the deformed 

nodes normal vectors. This step is performed using a quaternion, which is calculated as 

follows, 

𝑄1 = [𝑐𝑜𝑠(𝛼 2⁄ ), 𝑛𝑢 × 𝑛𝑑  𝑠𝑖𝑛(𝛼 2⁄ )] (67) 

where 𝛼 is the angle between the two normal, and 𝑛𝑢 and 𝑛𝑑 are the undeformed 

and deformed normal, respectively. Step 3) is to rotate the undeformed nodes about the 

deformed boundary normal vectors in order to minimize the angle between neighboring 

nodes. Similarely, another quaternion can be used to perform this rotation, 

𝑄2 = [𝑐𝑜𝑠(𝜃 2⁄ ), 𝑛𝑑 𝑠𝑖𝑛(𝜃 2⁄ )] (68) 

where 𝜃 is the average angle between corresponding neighboring nodes. Step 4) is 

to compute the total rotation of any node as the composition of 𝑄1 and 𝑄2 as, 

𝑄 = 𝑄1𝑄2 (69) 

And the translation vector T is calculated as, 

𝑇 = 𝑋𝑑 − 𝑄𝑋𝑢𝑄∗ (70) 

Where Xd and Xu is the deformed and undeformed node position vector, 

respectively. The translation vectors and quaternions are propagated into the field mesh 

using the spring analogy. Maruyama et al. [125] proposed a modification to this method in 

order to generalize the formulation and obtain the quaternions independently of the 

coordinate system. They used Laplacian smoothing to propagate the translation vectors and 

the quaternions into the field. Moreover, they reported that this method is at least one order 

of magnitude more CPU intensive than other interpolation based mesh deformation 

methods, such as RBF interpolation method. 
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Worth Mentioning Approaches 

Recently, a novel interpolation based scheme has been developed by Luke [12]. In 

this scheme, the deformation of the volume mesh is viewed as a projection of the surface 

deformation into the volume. Using a tree-code optimization, the algorithm cost is 

demonstrated to be O(nlog(n)), where n is the total number of nodes in the simulation, with 

mesh quality that is competitive to radial basis function (RBF) scheme. 

McDaniel and Morton [63] developed a technique that is based on a two-pronged 

approach where the viscous layers of nodes are deformed rigidly and the outer region is 

deformed with two different interpolation techniques. Several different rigid deformation 

schemes were investigated. However, the results showed that the best performing scheme 

was based on a semi-rigid connection to the owner surface nodes defined as part of the 

mesh parsing, which provided smoother deformation in convex regions. The last layer of 

the viscous region was used as the deforming boundary surface for the outer region 

deformation. 

CONCLUSIONS 

In this chapter, the mesh deformation methods are categorized into physical 

analogy based methods and interpolation based methods. Basically, the physical analogy 

approaches treat the mesh deformation problem as a physical process that can be modeled 

using numerical methods. These approaches are accurate, reliable, and can be case-

optimized by changing the physical parameters. However, these methods involve solving 

large systems of equations, implying a higher computational cost. Besides, these methods 

require grid connectivity information which results in more storage requirements and 

difficulties in parallelization. 
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On the other hand, in the interpolation based approaches, an interpolation function 

is used to transfer prescribed boundary point displacements to the fluid mesh. These 

approaches are fast, easy to implement and stable. Despite that interpolation error cannot 

be completely avoided, it can be limited to be below certain tolerance. Also, these methods 

can accommodate any mesh topology and do not require mesh connectivity information; 

thus they are easy to parallelize. 

Based on the survey conducted in this chapter, it was concluded that interpolation 

based approaches are more suitable for the FSI applications that are targeted by this study. 

The aim of this study is to develop a generic FSI solver that is capable of handling any 

mesh topology. Moreover, more avenues for improvements are seen within the 

interpolation based approaches. It has been decided that the RBF based mesh deformation 

technique is the most promising technique among the reviewed techniques. As stated 

earlier in this chapter, RBF scheme produces high-quality meshes with reasonable 

orthogonality preservation near deforming boundaries. Moreover, it produces linear system 

of equations, and the size of this system of equations is proportional to the number of 

boundary nodes, not all fluid nodes.  In the following chapter the implementation of a novel 

improvement in the conventional RBF based mesh deformation technique is described and 

tested. 
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CHAPTER 5 

OBJECTIVE 3: RBF BASED MESH DEFORMATION DEVELOPMENT AND 

IMPROVEMENT 

INTRODUCTION 

Many dynamic computational simulations, such as Fluid Structure Interaction (FSI) 

and control surface deflections involve moving/deforming meshes.  A critical step in the 

analysis of this class of problems is a successful mesh deformation due to structural 

deflections.  For an accurate simulation, the fluid volume mesh needs to move conformal 

to the structure, with very little degradation in quality. Due to the repeatability of the mesh 

deformation and the large number of fluid cells, an efficient and reliable approach is needed 

for a successful analysis. In addition, the fluid mesh is typically partitioned and handled by 

different processors.  This necessitated the mesh deformation algorithms be parallelizable 

for efficient simulations. The main complexity of the moving mesh approach is to find an 

optimum technique that is suitable for different mesh topology and physical situations. At 

the same time, it should preserve, as much as possible, the quality of the mesh while 

keeping computational cost low. The objective of this chapter is to investigate the 

feasibility of using radial basis function (RBF) based interpolation technique with greedy 

algorithm to deform large-scale generalized meshes and to improve the traditional greedy 

algorithm using an incremental approach. In the following sections, the RBF formulation 

is revisited in more details and the proposed novel improvement approach is described. 
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RBF FORMULATION 

Using RBF, the interpolation function, S, describing the displacement in the whole 

domain can be approximated by a sum of basis functions as, 

𝑆(𝑋) = ∑ 𝛼𝑗

𝑛𝑏

𝑗=1

𝜙 (‖𝑋 − 𝑋𝑏𝑗
‖) + 𝑃(𝑋) (71) 

where Xbj = [xbj , ybj , zbj] are the boundary nodes in which the deformations are 

known and these are called the centers for RBF, P is a polynomial, nb is the number of 

boundary nodes, and  is the selected basis function with respect to the Euclidean distance 

‖𝑥‖. The coefficients j and the polynomial P are determined by the interpolation 

conditions 

S (Xbj
) = dbj

 (72) 

∑αj

nb

j=1

= ∑αj

nb

j=1

xj = ∑αj

nb

j=1

yj = ∑ αj

nb

j=1

zj = 0 (73) 

equation (73) ensures that the polynomial P is coinciding with the interpolant S, by 

forcing the polynomial in equation (71) to zero when 𝑋 = 𝑋𝑏𝑗
 [126]. 

The values for the coefficients j and the linear polynomial coefficients j can be 

obtained by solving the system 

[

𝜙𝑏,𝑏

 

𝑝

 

𝑝𝑇 0

] [

𝛼

 
𝛽
] = [

𝑑𝑏

 
0

] (74) 

Where  is a vector containing the coefficients j,  is a vector containing the 

coefficients of the linear polynomial j, b,b is an nb x nb matrix containing the evaluation 
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of the basis function 𝜙𝑏𝑖,𝑏𝑗
= 𝜙 (‖𝑋𝑏𝑖

− 𝑋𝑏𝑗
‖), and p is an nb x 4 matrix with row j given by 

[1 𝑥𝑏𝑗
 𝑦𝑏𝑗

 𝑧𝑏𝑗
] [64, 65]. 

In this study, the polynomial P was omitted, since it was concluded in previous 

studies that it does not have a large influence on the quality of the deformed mesh [127]. 

In this case, the system of equations in (74) will be simplified as the following 

[𝜙𝑏,𝑏][𝛼] = [𝑑𝑏] (75) 

Generally, RBFs can be divided into two groups 1) functions with compact support, and 

2) functions with global support. The main difference between the two types is that the 

function with compact support is scaled with a support radius (r) to control the extent of 

influence of the basis function. Functions with global support cover the entire 

interpolation space, which leads to dense matrix systems.  

Table 7 lists some RBFs for both these types [64, 65]. 

Functions with compact support are forced to satisfy the following condition 

𝜙𝑏,𝑏 =  {
     𝜙 (‖𝑋𝑏𝑖

− 𝑋𝑏𝑗
‖)   𝑖𝑓 0 ≤ 𝜉 ≤ 1
 

     0                       𝑖𝑓 𝜉 > 1

 (76) 

 

Table 7 

Examples of Different RBFs Types 

No. Function 𝝓 Type Remarks 

1 (1 − 𝜉)2 Compact Support 𝜉 = 𝑥
𝑟⁄  

2 (1 − 𝜉)4(4𝜉 + 1) Compact Support 𝜉 = 𝑥
𝑟⁄  

3 (1 − 𝜉)6(35
3⁄ 𝜉2 + 6𝜉 + 1) Compact Support 𝜉 = 𝑥

𝑟⁄  

4 𝑒−𝑥2
 Global Support Gaussian 

5 𝑥2 log (𝑥) Global Support Thin Plate Spline 

6 1 + 𝑥2 Global Support Quadric Biharmonics 
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Direct RBF Scheme Limitations and Improvements 

The radial basis function interpolation method produces high-quality meshes with 

good orthogonality preservation near deforming boundaries. On the other hand, in its most 

straightforward implementation, it is too costly to be used for large three-dimensional 

problems. A direct solution of such systems requires O(nb
3) operations and O(nb

2) memory 

usage which becomes prohibitive for more than a few thousand data points. Great progress 

has been made in recent years towards alleviating this computational burden. 

An approximation algorithm for RBF based mesh deformation has been suggested 

by Rendall and Allen [66]. In this algorithm, the RBF is applied using a coarsened subset 

of the surface mesh. Displacements of the omitted surface nodes are calculated using the 

interpolation method and the error is calculated as the difference between the interpolated 

values and the actual displacement.  A greedy algorithm is used to add points that have the 

largest error. Rendall and Allen report that this algorithm improves the performance of the 

RBF method by approximately two orders of magnitude. The use of the greedy algorithm 

reduces the cost remarkably without compromising the accuracy.  

The presented approach is an extension of the work done by Rendall and Allen [66] 

by utilizing incremental approaches to solve the system of equations resulting from RBF 

formulation. This study takes advantage of solving similar systems of equations within 

each iteration by using an incremental approach [128] to reduce the CPU time by avoiding 

the use of any expensive linear system solver such as full LU decomposition. Two 

incremental approaches will be presented and compared in this chapter: 1) Matrix inversion 

based approach, and 2) Incremental LU decomposition based approach. The proposed 

method does not require any pre-conditioning, since it is not affected by the matrix’s 
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condition number, which makes it very robust and suitable for any compact support RBF. 

The procedure of picking the centers using the greedy algorithm and the use of the 

incremental approaches are described in the following sections. 

GREEDY ALGORITHM 

A direct RBF method would use all boundary nodes as interpolation centers. For 

large-scale unstructured-grid problems, the number of boundary nodes is usually of the 

order of 104 to 105, therefore calculating the interpolation weight coefficients tends to be 

very costly. Moreover, if the mesh is required to be deformed at each time step, direct RBF 

method cost will be impractical. It was reported in the literature that to achieve high mesh 

deformation accuracy, only a small subset of the total boundary nodes is sufficient [66, 

115, 117].  

Centers selection is highly dependent on the shape of the geometry, displacement 

vector, and the support radius in the case of compact support RBFs. Therefore, there is no 

direct way to predict which nodes to be selected in advance. Hence, a greedy algorithm is 

used to iteratively select these centers. Initially, two boundary nodes are selected during 

the first iteration. In each subsequent iteration, the selected centers are used to predict the 

deformation of the unselected centers. Based on this prediction the error is calculated at all 

boundary points, which is the difference between the actual and the predicted deformations. 

The greedy algorithm is stopped if the maximum error is below a specified tolerance.  

Otherwise, the node with the maximum error is added to the selected subset, and the 

iteration continues. Sheng and Allen [115] investigated the possibility of selecting the 

centers based only on the geometry. Thus, the greedy algorithm is used only once and the 
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same subset of centers is used for all time steps for different deformations. A typical greedy 

algorithm procedure is expressed in Algorithm 1. 

 

Algorithm 1: Greedy Algorithm Procedure 

Procedure Greedy_RBF  

Read in real deformation for all boundary nodes 

Choose an initial subset (two nodes) to begin with 

Do While (Maximum Error > Tolerance) 

Calculate 𝜙𝑠,𝑠 & 𝜙𝑢,𝑠 

Solve equation (75) 

Evaluate deformation for all unselected centers 

Calculate the error 

Select node with largest error and add it to selected centers list 

End Do 

Evaluate volume deformation using only reduced subset of centers 

Update volume mesh 

 

Assume the greedy algorithm starts with n selected centers, equation (75) becomes 

[
𝜙1,1 … 𝜙1,𝑛

⋮           ⋮
𝜙𝑛,1 … 𝜙𝑛,𝑛

] [
𝛼1

⋮
𝛼𝑛

] = [
𝑑1

⋮
𝑑𝑛

] (77) 

or  

[𝜙𝑛][𝛼𝑛] = [𝑑𝑏𝑛
] (78) 

where 𝜙𝑖,𝑗 = 𝜙(‖𝑋𝑖 − 𝑋𝑗‖). 

Then for the next iteration, the node with the largest error will be added to the list, 

and the system will become 
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[
 
 
 

𝜙1,1 ⋯ 𝜙1,𝑛 𝜙1,𝑛+1

⋮    ⋮ ⋮ ⋮
𝜙𝑛,1 ⋯ 𝜙𝑛,𝑛    𝜙𝑛,𝑛+1

𝜙𝑛+1,1 ⋯ 𝜙𝑛,𝑛+1 𝜙𝑛+1,𝑛+1]
 
 
 

[

𝛼1

⋮
𝛼𝑛 

𝛼𝑛+1

] = [

𝑑1

⋮

𝑑𝑛 
𝑑𝑛+1

] (79) 

or 

[𝜙𝑛+1][𝛼𝑛+1] = [𝑑𝑏𝑛+1
] (80) 

Note that 

[𝜙𝑛+1] = [
𝜙𝑛 𝜙𝑖,𝑛+1

𝜙𝑛+1,𝑖 𝜙𝑛+1,𝑛+1
] (81) 

where i = [1, 2, …, n]. 

For compact support RBFs, the matrix 𝜙𝑏,𝑏 is symmetrical with ones in the 

diagonal. Therefore, the system can be simplified as 

[
𝜙𝑛 𝜙𝑎𝑑𝑑

𝜙𝑎𝑑𝑑
𝑇 1

] [

𝛼1

⋮
𝛼𝑛 

𝛼𝑛+1

] = [

𝑑1

⋮

𝑑𝑛  
𝑑𝑛+1

] (82) 

where 𝜙𝑎𝑑𝑑 is a vector that contains the RBF evaluations for the newly added node 

with respect to each selected center.  

The following sections describe the proposed approaches for solving equation (75) 

incrementally which is considered the novel contribution of this chapter. 

Incremental Matrix Inversion Based Approach 

The most straight-forward technique for solving the above system is by calculating 

the inverse of the coefficients matrix. Since the coefficient matrix consists of the matrix 

from the previous iteration with an addition of one row and one column, it is possible to 

use an incremental approach to compute the inverse using the inverse from the previous 

iteration. 
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The inverse of a general block matrix can be calculated as [129]  

[
𝐴 𝐵
𝐶 𝐷

]
−1

= [
(𝐴 − 𝐵𝐷−1𝐶)−1 −𝐴−1𝐵(𝐷 − 𝐶𝐴−1𝐵)−1

−(𝐷 − 𝐶𝐴−1𝐵)−1𝐶𝐴−1 (𝐷 − 𝐶𝐴−1𝐵)−1 ] (83) 

By applying this principle to the calculation of the inverse of the coefficient matrix 

in equation (82) will result in, 

[𝜙𝑛+1]
−1 = [

𝜙𝑛 𝜙𝑎𝑑𝑑

𝜙𝑎𝑑𝑑
𝑇 1

]
−1

= [
(𝜙𝑛 − 𝜙𝑎𝑑𝑑 𝜙𝑎𝑑𝑑

𝑇)−1 −
1

𝑘
𝜙𝑛

−1 𝜙𝑎𝑑𝑑

−
1

𝑘
 𝜙𝑎𝑑𝑑

𝑇  𝜙𝑛
−1 1

𝑘

] (84) 

where 𝑘 =  1 −  𝜙𝑎𝑑𝑑
𝑇  𝜙𝑛

−1
𝜙𝑎𝑑𝑑 

Since the matrix 𝜙𝑛 is symmetrical, the previous equation can be simplified as 

[𝜙𝑛+1]
−1 =

1

𝑘
[
𝑘𝜙𝑛

−1  +  𝜉𝜉𝑇 −𝜉

−𝜉𝑇 1
] (85) 

where 𝜉 = 𝜙𝑛
−1 𝜙𝑎𝑑𝑑 

This step has O(n2) complexity [128] instead of O(n3) complexity required by 

Gauss elimination or LU decomposition [130]. The matrix system resulting from RBFs 

based formulation is highly ill-conditioned [115, 131], which makes it difficult to use 

traditional iterative matrix solvers. The current incremental approach is independent of the 

condition number of the matrix.  As shown in the following section, it requires less 

computational time as compared to LU decomposition. Moreover, this step is repeated for 

every iteration until the greedy algorithm converges, which makes the complexity 

reduction more significant. However, it must be noted here that during the first greedy 

algorithm iteration, the inverse of the matrix must be computed using any traditional 

method. At this specific iteration, the system is very small in size, typically 2x2, which is 

very feasible to solve.  
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Incremental LU Decomposition Based Approach 

LU decomposition of the matrix 𝜙𝑛+1 defined in equation (84) can be calculated 

incrementally using the LU decomposition of the matrix 𝜙𝑛. This can be performed by the 

addition of one row and one column to the LU decomposition of the matrix 𝜙𝑛, as shown 

in equation (86). In this case, performing full LU factorization is needed only once at the 

first iteration. For all subsequent iterations an incremental LU decomposition will be used.  

[𝐿𝑈𝑛+1] = [

𝑢1,1 ⋯ 𝑢1,𝑛+1

⋮ ⋱ ⋮
𝑙1,𝑛+1 ⋯ 𝑢𝑛,𝑛+1

] = [
[𝐿𝑈𝑛]

 
𝑙1,𝑛+1 … 𝑙𝑛,𝑛+1

𝑢1,𝑛+1

⋮
𝑢𝑛,𝑛+1

] (86) 

The incremental LU decomposition procedure requires only two nested do loops to 

perform the decomposition instead of three nested do loops which are regularly required 

by the full LU decomposition. The resulted 𝐿𝑈𝑛+1 from this code is used, alongside 

with 𝑑𝑏𝑛
, to calculate the interpolation weight coefficients using forward and backward 

substitutions. 

RESULTS AND DISCUSSION 

Two-dimensional test functions 

To investigate the accuracy and efficiency of the presented method, four analytical 

test functions were chosen to deform a structured mesh. A mesh refinement study is also 

conducted to analyze influence of the total number of nodes on the performance of the 

algorithm.  Three different structured meshes used for this study are shown in Figure 27.  

The x- and y-coordinates of the computational domain varies from -1.5 to 1.5.  The z-

coordinate of the computational domain is specified as zero before the deformation and it 
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is specified as the analytic functions after the deformation.  The specified deformations of 

the mesh for this study are listed below. 

F1(x, y) = (1 + 9x2 + 16y2)−1 (87) 

F2(x, y) = 1 − ((x2 + y2)/2)
1 2⁄

 (88) 

F3(x, y) = 1.5xe−x2−y2
 (89) 

F4(x, y) = (1.25 + cos(5.4y)) / (6 + 6(3x − 1)2) (90) 

   
(a) (b) (c) 

Figure 27. Surface mesh with three different element spacing: (a) h = 0.1, (b) h = 0.05, 

and (c) h = 0.025. 

 

The displacement at each node is pre-calculated using the above functions, and two 

random nodes are selected as initial centers for the RBFs. The greedy algorithm uses the 

initial centers to calculate the RBF weight coefficients and evaluate the displacement for 

all the remaining nodes. The error is calculated as the difference between the pre-calculated 

displacement and the evaluated displacement to check the stopping criteria for the greedy 

algorithm.  If the maximum error is greater than the specified tolerance, the node with the 

maximum error is added to the list of centers for RBF. If the maximum error is less than 

the specified tolerance, the greedy algorithm is stopped and the fluid mesh deformation is 

performed using only the selected RBF centers.  
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From a computational cost point of view, the greedy algorithm consists of three 

main steps: 

1. Evaluating the RBF between the nodes and forming  𝜙𝑠,𝑠 & 𝜙𝑢,𝑠 

2. Solving equation (75) for the weight coefficients 

3. Evaluating the interpolated deformations for all unselected centers 

Using conventional methods for performing solving equation (75) makes Step 2 the 

most expensive step within the greedy loop. Figure 28 illustrates the computational cost of 

each step as a percentage of the total CPU time of the greedy algorithm for the different 

shape functions deformations when using Full LU decomposition. In this specific case, 

Step 2 formed approximately an average of 70% of the total CPU time of the greedy 

algorithm. Thus, reducing the cost of solving equation (75) would highly improve the 

greedy algorithm’s performance, which the proposed method aims to. 

To assess the enhancement gained by using the greedy algorithm with the 

incremental approach, the performances of the proposed algorithms were compared against 

the use of a full LU decomposition. In this test case, the compact support RBF 

∅ = (1 − 𝜉)4(4𝜉 + 1) was used with a predefined error tolerance of 5×10−4. Table 8 shows 

the results of this comparison, for the case of element spacing h = 0.05, which clearly 

illustrates the superiority of the use of greedy algorithm along with incremental approach. 

Shape function F2 requires picking relatively a higher number of centers, to achieve the 

predefined tolerance, compared to other shape functions. This leads to perform more 

iterations for the greedy algorithm, which consequently leads to a longer CPU time 

especially for the full LU decomposition case. 
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Figure 28. Computational cost percentages of greedy algorithms steps for different shape 

functions using full LU decomposition for element size (h) = 0.05. 

 

Table 8 

Time comparison between RBF with greedy algorithm using full LU decomposition and 

incremental approaches for element size (h) = 0.05 

Analytical 

Shape 

Function 

Greedy RBF (Tolerance = 5×10
−4

) 

Centers 

Percentage 

CPU Time (Seconds) Time Saving 

Full LU Matrix Inv. LU Decomp. Matrix Inv. LU Decomp. 

F1 6.9 % 0.92 0.4 0.41 56.4 % 55.6 % 

F2 11.5 % 4.84 1.57 1.59 67.6 % 67.3 % 

F3 3.5 % 0.32 0.13 0.14 57.5 % 56.8 % 

F4 5.6 % 0.82 0.31 0.32 61.6 % 60.9 % 

 

The number of selected centers and total number of nodes on the surface for three 

meshes with different resolution and for four different deformations are compared in Figure 

29.  In these calculations 1.0x10-3 is set as the tolerance criteria for stopping the greedy 

algorithm and a support radius of 1.5 units is used.   
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Figure 29. Total number of nodes versus selected number of centers for the three 

different mesh refinements: (a) h = 0.1, (b) h = 0.05, and (c) h = 0.025. 

 

It can be seen from the figure that the mesh refinement did not cause the number of 

selected centers to increase. The number of centers required for each of the analytical 

deformation remains more or less the same irrespective of the number of surface nodes.  

However, the number of selected nodes varies with the analytical functions used for the 

deformation. This confirms that, for the same geometry, the number of selected centers is 

a function of the type of deformation. 

The specified four different analytic deformations are used for this study. The selected 

RBF centers for the interpolation for three different meshes are shown in Figure 30.   In 

this figure the color contour is specified based on the deformation.  It can be seen from the 

figure that the pattern of the selected RBF centers are the same for all different mesh 

resolutions. Figure 31 shows the deformed mesh shaded with the absolute error for a 

specified error tolerance of 1×10−4 for all four analytical benchmark deformations.  This 
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figure shows the error is smaller in the vicinity of the selected nodes and relatively higher 

near the unselected nodes.  

 

Figure 30. Original surface mesh and selected centers (top view) for coarse, medium, and 

fine meshes. 

 

A study is also conducted to analyze the effect of error tolerance on the number of 

selected centers and the CPU time required for the selection of appropriate centers.  The 

fine mesh (h = 0.025) from the mesh refinement study is used for this analysis. The number 

of selected centers and CPU time requirements were calculated for error tolerances of 

1×10−3, 5×10−4, and 1×10−4. As expected, the finer the specified tolerance, the higher the 

number of centers picked and longer the CPU time required. Figure 32 shows the variation 
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of CPU time and number of selected centers versus the specified tolerance. It is noticeable 

from the chart that the number of selected centers and the CPU time for the greedy 

algorithm increases with the decrease in error tolerance.  

F1 F2 
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F3 F4 

  

Figure 31. Deformed mesh shaded by the absolute error. 

 

To determine the dependency of the total number of nodes (N) on the interpolation 

error, the Root Mean Square (RMS) error is plotted against the number of nodes using a 

logarithmic scale in Figure 33. It can be seen from the figure that all different analytical 

functions for deformation showed an approximate slope of 0.4 or less, indicating that the 

total number of nodes has a minimal effect on the interpolation error. 
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Figure 32. Tolerance versus number of centers (left), tolerance vs. CPU time (right). 

 

 

Figure 33. Variation of the RMS error with the total number of centers. 

 

Cantilever beam vibration in an oscillating flow field 

To study the effect of the support radius on the mesh quality, a well-known three-

dimensional FSI problem for flow-induced vibration of a beam structure is considered [45, 

132]. The geometry of the beam and the computation domain are depicted in Figure 34. 

The generated computational mesh consists of prism elements in the boundary layer and 
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tetrahedral elements away from the beam, as shown in Figure 35. The mesh consists of 

5,427 nodes, out of which 2,471 are the boundary nodes. The deformation is set to zero for 

all the boundary nodes, except the ones on the beam.  The nodes on all the boundary 

surfaces are considered for the interpolation, even though some of the boundary nodes have 

zero deformation.  

 

Figure 34. Cantilever beam vibration computation domain [132]. 

 

The beam is assumed to be fixed at the bottom, and it is assumed to deflect in the 

cross-flow direction based on the sinusoidal shape with an angle of 7 degrees at the tip of 

the beam. The tolerance to stop the greedy algorithm was set to 5x10 -4 and the support 

radius is set as 1.45 units, which is half the distance between the furthest fluid node and 

any boundary node.  The greedy algorithm selected 307 centers, which is only 12% of the 

total number of boundary nodes. The centers selection process and calculating the RBF 

weighting coefficients took approximately 0.3 seconds using single Intel CPU with 2.6 

GHz clock speed. The deformed mesh is shown in Figure 35.  Also, Figure 35 illustrates 

the influence of different support radii on deformed mesh region.  In this figure, the region 

with red cells represents the region influenced by the deformation. The use of a larger 
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support radius will lead to include more far away nodes in the interpolation and increase 

the CPU requirements. On the other hand, the use of a smaller support radius will lead to 

better performance but it will compromise the resulting mesh quality as the deformation 

will be confined to a small region.  

The mesh skewness distribution for the original mesh and deformed mesh with 

different support radii is shown in Figure 36. The mixed element mesh generator called 

MEGG3D is used to evaluate the skewness of the mesh elements [133]. Assuming, 𝑉 as 

the volume of a tetrahedron, and  𝑉𝑜𝑝𝑡 as the volume of the equilateral tetrahedron with the 

same circumsphere, the skewness   is defined as 𝜀 = (𝑉𝑜𝑝𝑡 − 𝑉) 𝑉𝑜𝑝𝑡⁄ . A skewness value 

of zero represents an equilateral tetrahedron, while a value of unity represents a degenerate 

element.  For a support radius of 0.6 units, more elements tend to have higher skewness, 

which leads to lower mesh quality. On the other hand, skewness distribution for support 

radii of 1.45 and 2.9 is almost identical to the undeformed mesh indicating the preservation 

of mesh quality. 
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Figure 35. XY-plane cross-section of original and deformed meshes for several compact 

radii (r): a) undeformed, b) r=0.6, c) r=1.45, d) r=2.9. 

 

 

Figure 36. Histogram of the skewness of the original mesh and deformed mesh using 

different support radii. 
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Rectangular Supercritical Wing (RSW) 

To assess the proposed approaches on a real-life FSI application, the computational 

time savings for the presented RBF interpolation with greedy algorithm and incremental 

approach, and traditional RBF interpolation with greedy algorithm are compared using the 

rectangular supercritical wing. RSW test case was used at the Aeroelastic Prediction 

Workshop sponsored by the Structural Dynamics Technical Committee, American Institute 

of Aeronautics and Astronautics (AIAA) [134, 135].  This wing has a span of 48 inches 

and root chord length of 24 inches. The mesh used for this analysis is one of the meshes 

provided for the Aeroelastic Prediction Workshop and is available to down load from the 

workshop website†. A fully tetrahedral mesh was selected for this test case as shown in 

Figure 37. The definition used for the skewness results in approximately 34% of the total 

number of elements in the original mesh having a skewness of 1.0 due to the highly skewed 

tetrahedral elements within the boundary layer; see Figure 38. The fluid domain has the 

dimensions of 4824x2400x4800. The mesh consists of 17,453,792 cells, 2,944,006 nodes, 

and 56,272 boundary nodes. A direct RBF interpolation technique will require operations 

of the order of (56,272)3 to evaluate the interpolation coefficients and operations of the 

order of 2,944,006 x 56,272 to evaluate the deformation for all interior nodes. In addition, 

this process will be repeated for each time step, which will make it impractical for FSI 

analysis.   

                                                   
† https://c3.nasa.gov/dashlink/static/media/other/RSW.htm 

https://c3.nasa.gov/dashlink/static/media/other/RSW.htm
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Figure 37. RSW volume mesh (left) and rsw wing view (right). 

 

The RSW structure is assumed to be fixed at root of the wing and deflected using 

sinusoidal shape function. Three deformation angles are tested (1o, 3.5o, and 5o) to assess 

the performance of the presented approach.  In these simulations, a specified tolerance of 

5x10-4 for the greedy algorithm and a support radius of 1200 units are used. The support 

radius was calculated as half the distance between the furthest fluid node and any boundary 

node.  

 

Figure 38. Highly skewed elements within the boundary layer: a) mounting wall normal 

view, b) zoom into the wing leading edge, and c) zoom into the wing trailing edge. 

 

a) 

b

) 

c) 
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Figure 39 shows no noticeable change in the skewness before and after the 

deformation. However, to get a better understanding about the effect of the magnitude of 

boundary deformation on the mesh quality, the percentage change of number of elements 

with respect to the skewness before and after the deformation is plotted in Figure 39. From 

this graph, it is evident from the figure that the new distribution of skewness is within an 

acceptable range and the number of elements that became highly skewed after the 

deformation is below 0.1% for 3.5 degrees deformation and below 0.2% for 5 degrees 

deformation. Furthermore, all the deformed meshes have been tested and neither negative 

volume cells nor cells degeneration has occurred. Pictorial views of the mesh after 

deformation are shown in Figure 40. The computational costs and number of selected 

centers for the full LU decomposition method compared against the incremental matrix 

inversion and LU decomposition based approaches are compared in Table 9. The reason 

for using LU decomposition method as the base method for comparison instead of using 

an iterative method is that the matrix system is highly ill-conditioned and convergence 

issues were reported in the literature [115, 131]. 

It is clear that the number of selected centers and accordingly the corresponding 

computational time increases for larger deformations. However, it can be noted from the 

results that the time required for the greedy algorithm with incremental approaches is 

significantly smaller than that of performing a full LU decomposition.  Moreover, the 

matrix inversion based approach is found to have slightly better performance over LU 

decomposition based approach for all cases. Also the superiority of the incremental 

approaches over the full LU decomposition increases for larger deformations and 



 

98 

accordingly for larger meshes, as illustrated by the increase of the computational time 

saving with the increase of the deformation angle.  

 (a) 

 
(b) 

Figure 39. (a) Mesh skewness versus number of elements and (b) mesh skewness versus 

percentage change in number of elements. 
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Table 9  

Number of selected centers and CPU time in seconds for different deformation angles 

Deformation 
Angle 

Tolerance 
No. of 

Centers 

Greedy Algorithm Time Total Saving % 

Full LU Matrix Inv. LU Decomp. Matrix Inv. LU Decomp. 

1.0o 5.0𝐸−4 285 10.31 5.29 5.32 48.7% 48.4% 

3.5o 5.0𝐸−4 570 39.34 18.80 18.88 52.2% 52.0% 

5.0o 5.0𝐸−4 703 78.84 25.48 25.62 67.7% 67.5% 

 

 

Figure 40. Mid YZ-plane: a) undeformed, b) 1.0o deformation, b) 3.5o deformation, b) 5o 

deformation. 

 

Bending and Twisting RSW Deformation 

The computational time savings for hybrid mesh topologies are demonstrated using 

a combined bending and twisting deformations of the RSW case. Three different meshes 

were used for this study. The count of boundary and interior nodes and the count of cells 

for each mesh are given in Table 10. These meshes were also attained from the Aeroelastic 
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Prediction Workshop website. Figure 41 illustrates the different refinements for the three 

meshes by visualizing a part of side wall around the wing.  

   

(a) (b) (c) 

Figure 41. Meshes for three different refinements (side wall view): (a) coarse mesh, (b) 

medium mesh, (c) fine mesh. 

 

Table 10 

Count of boundary and interior nodes for the three mesh refinements 

 
No. of Boundary 

Nodes 

No. of Interior 

Nodes 

No. of 

Cells 

Coarse 30,146 1,325,155 1,355,301 

Medium 60,101 3,062,697 3,122,798 

Fine 134,754 8,476,975 8,611,729 

 

The deformation of the wing is specified as a combination of a vertical bending 

displacement and a twist using the following formula. 

∆𝑧 = 𝛿0 𝑠𝑖𝑛 (
𝑦

2𝑏
𝜋) ;          𝛿0 = 0.5𝑐 (91) 

𝜑 = 𝜑0 𝑠𝑖𝑛 (
𝑦

2𝑏
𝜋) ;         𝜑0 = 30𝑜  (92) 

Where y is the coordinate along the span of the wing, z is the coordinate normal to 

the wing, b is the span of the wing, c is the root chord length, and φ is the twist angle. A 

comparison of the original and the deformed wings is shown in Figure 42. This test case 

represents a real-application of FSI problem since it involves more complicated 
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deformations with more than 130 thousand boundary nodes and 8.4 million interior nodes. 

The focus here will be directed toward determining which incremental approach provides 

better performance.  

 

Figure 42. Side view of the wing before and after deformation. 

 

In this test case, the support radius is taken as four times the span of the wing (220 

units). Therefore, the deformation is confined within 220 units away from all boundaries.  

The error tolerance for stopping the greedy algorithm is taken as 5.0x10 -4. Figure 43 

compares the CPU time required by the greedy algorithm using the matrix inversion and 

LU decomposition based approaches for each of the three meshes. For all meshes the 

matrix inversion based approach required slightly less CPU time and resulted in average 

time saving of 5.5% over LU decomposition based approach.  

Deformed 

Wing 

Original Wing 
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Figure 43. CPU time’s comparison for the two proposed incremental approaches. 

 

It should be mentioned that in some cases, due to round off error and slight variation 

in solvers accuracies, matrix inversion and LU decomposition based approaches do not 

pick exactly the same number of centers. However, the difference in the final number of 

selected centers is within the range of ±5 centers. Figure 44 shows the convergence trends 

for the case of the fine mesh. The convergence trends for both algorithms are identical for 

all test cases. However, the variation in the total number of centers occurs at the end when 

a few centers are added to reach the predefined tolerance. Therefore, for ensuring fair time 

comparison, in such case, both algorithms were forced to pick the same subset of centers 

with the same sequence.  

Moreover, the matrix inversion based approach shows unstable behavior when 

reducing the error tolerance below 1x10-4, unlike the LU decomposition based approach 

(see Figure 45). This instability is due to the accumulation of numerical errors for the 

matrix inverse calculation during the greedy iterations and which results in error in the 

weight calculation. The matrix inverse at the current level is calculated as a function of the 

matrix inverse from the previous step through the calculation of k and ξ in equation (85). 
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Therefore, any error in the calculation of the inverse in the previous step will be carried to 

the next level. Based on this observation, it is recommended to use the LU decomposition 

based approach for the greedy algorithm, even though the CPU time requirement is slightly 

higher. 

 

Figure 44. Convergence history of error versus number of iterations. 

 

 

Figure 45. Convergence history of error versus number of iterations for smaller tolerance. 
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CONCLUSIONS 

An efficient mesh deformation technique using radial basis functions by combining 

the advantages of merging the use of both greedy algorithm and incremental approach is 

presented in this chapter. A greedy algorithm is used to reduce the number of centers used 

for the RBF interpolation and an incremental approach is used for the inversion of the 

matrix system during each greedy iteration. Two different incremental approaches were 

implemented and tested: 1) Matrix inversion based, and 2) LU decomposition based. The 

use of the incremental approach decreased the computational complexity of solving the 

system of equations within each greedy algorithm’s iteration from O(n3) to O(n2).  This 

technique does not need any cell, face or edge connectivity information, and it depends 

only on the set of points and the boundary deformation. Therefore, it could be efficiently 

parallelized. However, in this study, the proposed approaches have not been implemented 

in a parallel framework.  

Benchmark test cases with four different analytic deformations are used to evaluate 

the performance of the presented approach. The results from the numerical experiments 

showed that the number of centers required to perform the interpolation is independent of 

the total number of nodes and mainly depends on the deformation. This makes the 

technique optimal for fluid-structure interaction simulations where the meshes are very 

fine. Moreover, the algorithm’s order of accuracy is also independent of the total number 

of nodes.  Results are also presented for mesh deformations for deflections of a cantilever 

beam and a rectangular supercritical wing. These simulations showed both proposed 

incremental approaches take significantly less CPU time as compared to the traditional full 

LU decomposition. The present results show that improvement in CPU time saving 
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increases as the number of selected centers for RBF increases. Moreover, the matrix 

inversion based approach showed instability issues when error tolerance is less than 1x10-

4. Therefore, it is recommended to use the LU decomposition based approach for the greedy 

algorithm, even though the CPU time requirement is slightly higher.
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CHAPTER 6 

OBJECTIVE 4: FLUID-STRUCTURE COUPLING 

INTRODUCTION 

This chapter summarizes the coupling process between the three main elements of 

the FSI analysis framework, namely 1) CFD solver, 2) CSD solver, and 3) Mesh 

deformation module. Once the newly developed CSD methodology as well as the mesh 

deformation module had been verified independently, they were coupled to the existing in-

house CFD code. This task was greatly simplified by the care taken to implement the CSD 

solver in a manner consistent with the CFD solver. The data transfer procedures between 

the three components of the FSI framework are described in this chapter. The general 

procedure for solving coupled FSI problems is shown in Figure 46. The FSI procedure 

starts with reading the CSD and CFD meshes, calculating various mesh parameters (e.g. 

areas centroids, volumes, etc.), and constructing mapping information between CSD-CFD 

interface faces. Then a steady state CFD simulation is run in order to obtain a fully 

developed converged solution. Afterwards, a global time step is determined and stresses 

are transferred from CFD mesh to CSD mesh. Then a single FSI time step is performed 

which includes a CSD step, a mesh deformation step, and a CFD step. Finally, the time 

level is updated and the stopping criteria is checked to decide whether more steps are 

needed or not. 
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Figure 46. Coupled FSI procedure. 

 

DATA TRANSFER 

Since the CSD methodology has been implemented in a consistent manner with the 

existing CFD numerical approach, both solvers are storing the solutions at the cell-centers. 

This implies easier data transfer between the two solvers. Moreover, the numerical 

compatibility between the solvers implies same mesh requirements for both domains. 

Therefore, an identical surface meshes at the interface will be used for both CSD and CFD 

domains. Thus, a simple mapping module is needed to map each CFD face/node ID to its 
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corresponding CSD face/node ID at the interface. This module’s function is to create two 

pointer arrays. The first array maps the CFD interface faces to their corresponding CSD 

interface faces. While the second array maps the CFD interface nodes to their 

corresponding CSD interface nodes. The former array is used to transfer the CFD interface 

stresses to the CSD interface. The later array is used to transfer the CSD nodal deflections 

to the CFD nodes at interface, as a preparation for the mesh deformation process. Since the 

RBF mesh deformation technique does not change the mesh connectivity, there is no need 

to update the mapping information during the simulation and the mapping module runs 

only once at the beginning of the FSI simulation. 

The fluid exerts two types of stresses into the structural interface: pressure and shear 

stress. CFD solver computes the pressure as one of the flow variables. However, the wall 

shear stresses are not calculated by default. Thus, the velocity gradients at each interface 

face must be calculated by knowing the velocity gradients stored at the neighbor cell. Then 

these face gradients are multiplied by the fluid viscosity and projected on the face normal 

direction resulting in the shear traction stresses. The structural traction stress is calculated 

as  

[

𝑡𝑥
𝑡𝑦
𝑡𝑧

] = −
𝜇

2

[
 
 
 
 
 
 2

𝜕𝑣1
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+
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𝜕𝑣3

𝜕𝑧 ]
 
 
 
 
 
 

. [

𝑛𝑥

𝑛𝑦

𝑛𝑧

] (93) 

or 

𝑡 = −
𝜇

2
(∇𝑉 + ∇𝑉𝑇)𝑓𝑎𝑐𝑒 ∙ 𝑛⃗⃗ (94) 
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Where 𝑡 is the traction stress, 𝜇 is the fluid dynamic viscosity, ∇𝑉 is the velocity 

gradients at the fluid face, and 𝑛⃗⃗ is the fluid face normal. Since the face normal is pointing 

into the outward direction, each CSD face and its corresponding CFD face at the interface 

have opposite normal directions. This justifies the presence of the negative sign. The 

transferred traction, 𝑡, and pressure, 𝑝, at each interface face are applied into equation (34) 

in Chapter 3 in order to calculate the overall traction force, 𝐹⃗𝑡, acting on each particular 

face. 

It must be noted that all variables within the CFD solver are stored in a non-

dimensional form. Thus, the pressure and shear stresses are converted into dimensional 

form while being transferred to the CSD mesh. 

GLOBAL TIME STEP 

One requirement for the FSI analysis is to ensure that CFD and CSD simulations 

are synchronized together. Both solvers must march in physical time simultaneously. Since 

the time step size for the CSD solver is not limited by a stability condition, unlike CFD 

solver, the CFD solver time step is used for both solvers during the FSI analysis.  

∆𝑡𝐶𝑆𝐷 = ∆𝑡𝐶𝐹𝐷 (95) 

Where ∆𝑡𝐶𝑆𝐷 and ∆𝑡𝐶𝐹𝐷 are the time steps used for CSD and CFD solvers. 

However, the CSD pseudo time step must be smaller than the critical pseudo time 

step and must not be larger than the CSD physical time step. Thus, the CSD pseudo time 

step is selected based on the following condition 

∆𝜏𝐶𝑆𝐷 = Min(𝛼 ∙ ∆𝜏𝑐𝑟 , ∆𝑡𝐶𝐹𝐷) (96) 



 

110 

Where 𝛼 is a constant varying between 0 < 𝛼 < 1 which ensures the satisfaction 

of the stability condition in equation (24). 

Since both meshes are being deformed through the analysis, the time step stability 

conditions must be examined and updated if needed every several time levels. The previous 

condition in equation (96) is revisited after every time step update. 

CONVERGENCE CRITERIA 

Convergence is achieved when no further change to either fluid or solid solutions 

are being recorded. This condition is implemented by calculating the L2 norm of the 

residuals for both of the solvers. The L2 norm is calculated based on the change in solution 

within all elements for each solver. When L2 norms of both solvers fall below a certain 

tolerance, which means that there is no change in the solution, the coupled FSI simulation 

convergence is said to be achieved. If convergence did not occur, the FSI simulation will 

continue until the maximum physical time is reached. 

FLOW-INDUCED CANTILEVER BEAM VIBRATION 

To examine the coupled fluid-structure interaction methodology along with the 

mesh deformation algorithm, the case of a cantilever beam under the effect of incoming 

flow is investigated. The cantilever beam has the same structural properties as well as the 

exact dimensions of the cantilever beam case used in Chapter 3. As shown in Figure 47, 

the beam has a cross section area of 0.2 m x 0.2 m and a height of 2 m. The computational 

domain is identical to the domain that has been used to test the mesh deformation algorithm 

in Chapter 4. As also shown in Figure 47, the computational domain has the dimensions of 

8 m x 1.2 m x 2.5 m and the beam is placed at 2 m from the inlet. 
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Figure 47. Cantilever beam vibration computation domain. 

 

The fluid was assumed to be water with a density of 1000 kg/m3. The fluid flow 

was assumed to be inviscid and incompressible. Regarding the boundary conditions, all 

walls, including interface walls, were assigned as slip walls, thus no boundary layer was 

needed. An inlet velocity boundary and an atmospheric pressure outlet boundary were 

used. Four different inlet velocities have been analyzed, i.e. 0.25, 0.5, 0.75, and 1.0 m/s. 

For the structural side, the same material properties of the cantilever beam have been kept 

the same as stated in Table 1 in Chapter 3. The faces forming the bottom surface of the 

beam were assigned as a zero displacement boundary. The remaining boundary faces were 

considered interface faces where a specified traction boundary was applied.  

Unstructured tetrahedral meshes has been used for both domains. Figure 48 shows 

the generated surface meshes for both fluid and structural domains. The CFD mesh consists 

of 105,568 cells, 206,408 faces, and 19,164 nodes. The CSD mesh consists of 20,346 cells, 

37,114 faces, and 5,169 nodes. The surface meshes for both domains at the interface are 

identical. 
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Figure 48. Unstructured tetrahedron mesh for the induced flow cantilever beam case. 

 

Steady State CFD Analysis 

A fully-developed steady state fluid flow was obtained prior to starting the FSI 

analysis. Since the fluid flow is assumed to be inviscid and incompressible, the same 

pressure profile has been obtained for the different inlet velocity cases. The difference can 

be noticed in the magnitude of pressure for each case. Figure 49 shows the maximum and 

minimum pressure on the beam surface for the analyzed range of inlet velocities.  

Figure 50 shows the pressure distribution on the surfaces of the beam after 

obtaining a steady state CFD condition. It is obvious that the pressure is highest in 

magnitude and positive at the surface facing the incoming flow which pushes the surface 

opposite to its surface normal direction (positive x-direction). Moreover, it is noticeable 

that the pressure around the edges tends to fall to a negative value which is pulling the 

surfaces toward its normal outward direction. However, opposite surfaces will cancel the 

displacement in y-direction and z-direction. 
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Figure 49. Maximum and minimum pressure versus inlet velocity. 

 

 

 

Figure 50. Pressure distribution on beam surface after obtaining converged CFD solution. 
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Figure 51 shows the pressure and velocity distributions of a mid-plane within the 

fluid domain. Identical pressure and velocity profiles were obtained for different inlet 

velocities. The pressure is highest on the beam surface facing the incoming flow and lowest 

behind the beam. 

  

  

 

 

Figure 51. Mid-plane CFD solution for V = 0.25 m/s: pressure distribution (top), velocity 

distribution (middle), and velocity vectors distribution (bottom). 
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FSI Analysis 

After obtaining converged steady state solutions successfully, the required FSI 

parameters were initialized. These parameters include setting a global time step to insure 

CFD and CSD solvers stability, constructing of mapping information needed to transfer 

stresses between the two meshes, and setting the mesh deformation’s support radius and 

error tolerance. 

Specified traction boundary condition was assigned to all CSD mesh boundary 

faces except to the faces on the bottom which were of a zero displacement type. The 

specified traction values were updated based on equation (34) in Chapter 3 after each CFD 

time step. The physical time step, ∆𝑡𝐶𝑆𝐷, was set to 1x10-3 seconds and the pseudo time 

step was set to 1x10-5 which satisfies the solver stability condition. Within each physical 

time step a maximum of 500 pseudo iterations were allowed. The order of pseudo iteration 

residual was 1x10-10. 

An RBF support radius of 1.0 m has been used for this test case. However, regarding 

the error tolerance, it has been found that using a fixed error tolerance is not practical for 

such FSI analysis. Since the beam is expected to have a wide range of deflections, using a 

fixed error tolerance that suits the minimum deflection will cause the greedy algorithm to 

pick almost all boundary nodes when the deflection reaches its peak. This will lead to a 

very time consuming mesh deformation process. Instead, a relative error tolerance has been 

used in order to relate the error tolerance to the maximum deflection predicted at each time 

step. In this case, the error tolerance has been set as 0.1% of the maximum total beam 

deflection. At the same time, the minimum allowed error tolerance was set to 1x10 -6 in 

order to avoid expensive mesh deformation at the beginning of the vibration cycle.   
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Furthermore, it is worth mentioning that the fluid mesh is being deformed based on 

the original undeformed mesh at every time step. Hence, instead of deforming the mesh 

based on the previous time step location and the newly calculated deflection (∆𝑈), the mesh 

is deformed based on the undeformed location and the total deflection (𝑈). This approach 

avoids the accumulation of interpolation error. 

Each case has been run for a total physical time of three seconds. Figure 52 shows 

the recorded tip deflections for each case throughout the analysis. It is clear that the 

predicted deflections preserved the natural frequency of the cantilever beam. Moreover, as 

expected, increasing inlet velocity led to predicting higher deflections. Table 11 lists the 

predicted vibration frequency and maximum deflection for each case. By comparing the 

predicted frequency against the beam natural frequency (1.0 Hz), the maximum error was 

determined to be below 2.7% within all cases.  

By increasing the inlet velocity the flow momentum tend to resist the beam 

vibration and act as a damping effect. For higher inlet velocities, i.e. V = 0.75 m/s and V = 

1.0 m/s, the damping effect is more substantial. This damping effect is expected to vanish 

after certain number of cycles when the vibration response reaches a steady state. 
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Figure 52. Tip deflection histories for four inlet velocities. 

 

Table 11 

Vibration frequency and maximum deflection for different inlet velocities 

 Inlet Velocity (m/s) 

 0.25 0.50 0.75 1.00 

Umax (m) 0.021 0.082 0.180 0.305 

Frequency (Hz) 1.028 1.004 0.994 0.980 

Frequency Error 2.7% 0.4% 0.6% 2.0% 

 

Figure 53 shows the velocity distributions around the cantilever beam at simulation 

time of 0.5 seconds for the different inlet velocities. It is clear from the figure that 

increasing the inlet velocity leads to higher beam deflections which reduces the beam 

resistance to the flow. As can be seen on the side view velocity distributions, the area 

showing minimum velocity is shrinking with the increase of the inlet velocity. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 53. Velocity distribution of cutting planes normal to Y (right) and X (left): (a) V = 

0.25 m/s, (b) V = 0.5 m/s, (c) V = 0.75 m/s, and (d) V = 1.0 m/s. 
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Mesh Deformation Performance Analysis 

The RBF based mesh deformation approach with incremental solver showed a very 

efficient and robust performance. Using a varying error tolerance, that is a percentage of 

the maximum deflection, improved the algorithm’s performance dramatically. For all 

cases, the total number of the nodes in the deformed region is 19,164 and the surface mesh 

consists of 4730 points. Only an average of 470 surface points, i.e. around 10%, were 

selected to drive the volume mesh motion. A support radius of 1 m was selected, which 

gave a deforming region that was large enough to reasonably accommodate the motion, as 

shown in Figure 54. It is noticeable in this figure that for higher beam deflections, the mesh 

cells located above the beam tend to become more skewed. This issue happened because 

the mesh is coarse on the top wall, and the gap between the top wall and the beam tip is 

relatively small. This can be avoided by refining the mesh at this region.     

Figure 55 shows the percentage of selected centers versus simulation time. It is 

noticeable that the number of selected centers increases up to 16% at the beginning of each 

cycle. Since the predicted deflections tend to be relatively small at the beginning of each 

cycle, the algorithm picks more nodes in order to achieve the error tolerance. However, 

limiting the minimum value of the error tolerance to be 1x10-6 prevents the algorithm from 

keep adding more points at this stage of the deflection cycle.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 54. Mid-plane section of the CFD mesh for V = 1.0 m/s at different simulation 

times: (a) 0.0 sec, (b) 0.2 sec, (c) 0.3 sec, and (d) 0.5 sec. 

 

The RBF interpolation error is calculated based on the known deflections of the 

unselected centers. The interpolation error percentage is shown in Figure 56 for different 

inlet velocities. It can be seen that the error is fixed at 0.1%. However, when the maximum 

deflection reaches a very small value (less than 1x10-3 m in this case), the error exceeds 

0.1%, since the tolerance is not allowed to fall below 1x10-6. This behavior can be seen at 

the beginning of each deflection cycle for the case of V = 0.25 m/s where the deflections 

are the smallest. 
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Figure 55. Percentage of selected centers versus simulation time for four inlet velocities. 

 

  

  
Figure 56. Percentage of interpolation error versus simulation time for four inlet 

velocities. 
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CPU Time Analysis 

A CPU time analysis was performed for all cases. The total CPU time for the FSI 

solver was distributed into three main elements: 1) CSD solver CPU time, 2) CFD solver 

CPU time, and 3) RBF mesh deformation CPU time. The cost unit is considered to be the 

CPU time required for one time step. Table 12 presents the CPU time in seconds for the 

three element of the FSI solver for different inlet velocity values. The CSD solver 

consumes 95% of the total required time. This performance was expected since the CSD 

solver requires performing many additional inner iterations when compared to CFD solver. 

The costly implementation of the Green-Gauss theorem for calculating the displacement 

gradients within the CSD solver is not suitable for such high number of inner iterations. 

On the other hand, the RBF algorithm shows an efficient computational time with an 

average of 1.4 seconds per FSI time step. The minimum CPU time through the FSI analysis 

of this test case was consumed by the CFD solver. This was expected due to the low number 

of elements within the fluid mesh. However, it is expected for the CPU time consumed by 

the CFD solver to exceed the time consumed by the RBF module when larger and more 

complex test cases are being simulated. 

 

Table 12 

Average CPU time in seconds for one FSI time step 

 V = 0.25 m/s V = 0.5 m/s V = 0.75 m/s V = 1.0 m/s Average 

CSD 47.414 48.684 48.967 48.983 48.512 

CFD 1.052 1.058 1.061 1.062 1.058 

RBF 1.285 1.471 1.448 1.458 1.415 

FSI (Total) 49.751 51.213 51.476 51.502 50.985 
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FSI RESULTS VALIDATION 

There are several benchmark test cases with experimental data available for 

comparison in the field of aero-elasticity. Among several well-known test cases the 

Rectangular Supercritical Wing case [134, 135] and the AGARD wing case [136] are 

considered to be milestones for validating newly developed FSI tools because the 

experimental data of the analysis are well documented. However, most of the well-

documented cases that deal with the flutter wing problem require larger meshes, usually 

millions of elements. Based on the current serial development of the proposed solver, it is 

prohibitive to consider such large complicated cases.  

One study that investigated a similar flow-induced cantilever beam case was the 

study by Lorentzon [137]. He used an open source packages, i.e. DEAL.II and 

OpenFOAM, to create a coupling between a finite element formulation for structural 

dynamics and a finite volume formulation for fluid dynamics. In his study, the cantilever 

beam vibration results were compared against empirical data and found to be in a good 

agreement. The beam has the same dimensions as the previous case, which is 0.2 m x 0.2 

m x 2 m. However, the fluid domain dimensions are changed to be 5.2 m x 1.2 m x 2.5 m. 

The beam is placed at 1.0 m from the inlet and 0.5 m from the side walls while the outlet 

is placed at 4.0 m from the beam. 

Unstructured tetrahedral meshes have been used for both domains. Figure 57 shows 

the generated surface meshes for both fluid and structural domains. The CFD mesh consists 

of 182,805cells, 358,027 faces, and 32,816 nodes. The CSD mesh consists of 24,013 cells, 

45,317 faces, and 5,264 nodes. The surface meshes for both domains at the interface are 

identical. 
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Figure 57 Unstructured tetrahedron mesh for FSI validation case 

 

The fluid was assumed to have a density of 0.1 kg/m3 and the inlet velocity is set 

to be 10 m/s. The structure was assumed to have a modulus of elasticity of 20 KPa and a 

Poisson’s ratio of 0.3. Two different structural densities were investigated, 10 kg/m3 and 

50 kg/m3. The physical time step, ∆𝑡𝐶𝑆𝐷, was set to 1x10-3 seconds and the pseudo time 

step was set to 2x10-6 seconds which satisfies the solver stability condition for the newly 

generated structural mesh. Within each physical time step a maximum of 500 pseudo 

iterations were allowed. The convergence tolerance for the pseudo iteration residual was 

set to 1x10-10 in the simulation. 
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First, a CFD analysis was run to obtain a fully-developed converged fluid flow 

solution. Then, the coupled FSI analysis was run for 0.3 seconds of simulation time. Within 

the RBF mesh deformation algorithm, a support radius of 1.0 m has been used for this test 

case. The greedy algorithm’s error tolerance has been set as 0.1% of the maximum total 

beam deflection and the minimum allowed error tolerance was set to 1x10-6 m.   

Figure 58 shows the recorded tip deflection throughout the simulation for structural 

density of 10 kg/m3. By comparing the obtained results against the results presented by 

Lorentzon [137], it can be seen that both solutions are in a good agreement. Table 13 

compares the predicted maximum deflection and frequency values against the results of 

Lorentzon [137]. The proposed FV-FSI solver under-predicted the maximum deflection by 

7% and predicted almost the exact vibration frequency with error margin of 0.23%.  

Since the natural frequency is a function of the beam mass, changing the structure 

density should affect the frequency of vibration. However, the deflection magnitude, which 

is a function of the applied load, modulus of elasticity, and area moment of inertia, should 

remain unchanged. Figure 59 shows the recorded tip deflection throughout the simulation 

for structural density of 50 kg/m3. By comparing the obtained results against the results 

obtained by Lorentzon [137], it can be seen that both solutions are in a good agreement. 

The proposed FV-FSI solver under-predicted the maximum deflection by 7% and well-

predicted the vibration frequency with error margin of 0.16%. It can be seen in Table 13 

that the maximum deflection has not been affected by changing the density, and only a 

change in the response frequency was recorded.  
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Figure 58 Tip deflection history comparison for 𝜌𝑠 = 10 kg/m3. 

 

 

Figure 59 Tip deflection history comparison for 𝜌𝑠 = 50 kg/m3. 
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Table 13 

Maximum deflection and frequency comparison 

 𝝆𝒔 = 10 kg/m3 𝝆𝒔 = 50 kg/m3 

 𝑼𝒎𝒂𝒙 (m) Frequency (Hz) 𝑼𝒎𝒂𝒙 (m) Frequency (Hz) 

Lorentzon 0.0028 0.0868 0.0028 0.1926 

FV-FSI 0.0026 0.0866 0.0026 0.1929 

Error 7.14% 0.23% 7.14% -0.16% 

 

CONCLUSIONS 

This chapter has described the procedure used for coupling the fluid solver with the 

structural solver and the mesh deformation algorithm. The case of flow-induced cantilever 

beam vibration has been simulated. Four different flow inlet speeds have been analyzed, 

i.e. V = 0.25, 0.5, 0.75, and 1.0 m/s. The predicted beam vibrations have preserved the 

natural frequency for all cases with a margin of error below 2.7%. Furthermore, increasing 

the flow velocity increases the magnitude of the beam deflection, as expected.  

The RBF based mesh deformation algorithm has shown a very robust and efficient 

performance. On average, only 10% of the total number of boundary nodes have been 

picked by the greedy algorithm. The interpolation error was limited below 0.1% of the 

maximum deflection. The use of incremental solver helped to reduce the CPU time 

significantly. On average, the CPU time of mesh deformation for all cases was below 1.4 

seconds per time step.  

The behavior of the flow-induced cantilever beam vibrations for two different 

structural densities were simulated. The results were validated against the FSI results 

produced by coupling a finite element structural solver with a finite volume fluid solver 
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provided by Lorentzon [137]. The predicted structural response was found to be in a good 

agreement for both density values. The proposed FV-FSI solver under-predicted the 

maximum deflection by 7% and well-predicted the vibration frequency with error margin 

less than 0.23%. 
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CHAPTER 7 

OVERALL CONCLUSIONS AND FUTURE WORK 

CONCLUSIONS 

This dissertation has described the development of a loosely coupled three-

dimensional fluid-structure interaction methodology. The developed approach has several 

novel features to improve the overall efficiency, compatibility, and reduce the complexity 

of simulation process. This study is considered the first to implement the dual time-

stepping discretization scheme to solve linear elasticity problems using a cell-centered 

FVM in three-dimension. The use of matching numerical approach for solving the 

governing equations for both mediums resulted in straight forward data transfer. In 

addition, an efficient and robust mesh deformation approach has been developed. The 

novel integration of incremental solver along with the use of greedy algorithm for mesh 

deformation process has shown to reduce the computational time dramatically. 

Finite Volume Based Structural Solver 

A second order cell-centered finite volume approach to model three-dimensional 

linear elastic structures was developed and validated. The case of a three-dimensional 

cantilever beam under three different loading conditions was tested. The obtained results 

were compared against the traditional finite element method and against analytical 

solutions. The presented finite volume methodology results show a good agreement when 

compared to analytical and finite element results. Furthermore, the developed numerical 
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method was tested for large amplitude deflection cases. The load was applied as a diagonal 

traction acting on the free-end of the beam. The finite volume results well-predicted the 

dynamic as well as the damped responses. Two different dimensionless load magnitudes 

were applied to test the developed approach capability of predicting large amplitudes of 

deflection.  The error in the deflection amplitude for the lower load and higher load were 

5.5% and 7.19%, respectively, with frequency shifts of 1.0% and 4.8%, respectively.  

Based on the obtained results, the proposed finite volume approach can be used as 

an alternative for the well-established finite element method. The developed finite volume 

methodology adapts the exact numerical discretization scheme applied in state-of-the art 

generalized mesh based CFD solvers. This ensures same meshing requirements for the fluid 

and structural domains, which allows generating identical surface meshes at the interface. 

This leads to an efficient FSI coupling without the need for data interpolation at the 

interface between fluid and structural domains. 

RBF Based Mesh Deformation 

An efficient mesh deformation technique using radial basis functions, by 

combining the advantages of merging the use of both greedy algorithm and incremental 

approach, for fluid-structure interaction simulations is developed. A greedy algorithm is 

used to reduce the number of centers used for the RBF interpolation and an incremental 

approach is used for the inversion of the matrix system during each greedy iteration. Two 

different incremental approaches were implemented and tested: 1) Matrix inversion based, 

and 2) LU decomposition based. The use of the incremental approach decreased the 

computational complexity of solving the system of equations within each greedy 

algorithm’s iteration from O(n3) to O(n2), where n is the number of selected interpolation 
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centers.  This technique does not need any cell, face, or edge connectivity information and 

it depends only on the set of points and the boundary deformation. Therefore, it could be 

efficiently parallelized. However, in this study, the proposed approaches have not been 

implemented in a parallel framework.  

Benchmark test cases with four different analytic deformations are used to evaluate 

the performance of the presented approach. The results from the numerical experiments 

showed that the number of centers required to perform the interpolation is independent of 

the total number of nodes and mainly depends on the deformation. This makes the 

technique optimal for fluid-structure interaction simulations where the meshes are very 

fine. Moreover, the algorithm’s order of accuracy is also independent of the total number 

of nodes.  Results are also presented for mesh deformations for deflections of a cantilever 

beam and a rectangular supercritical wing. These simulations showed that both proposed 

incremental approaches save up to 67% of CPU time as compared to the traditional full LU 

decomposition.  

The presented results show that improvement in CPU time saving increases as the 

number of selected centers for RBF increases. Moreover, the matrix inversion based 

approach showed instability issues when error tolerance is less than 1x10-4. Therefore, it is 

recommended to use the LU decomposition based approach for solving the RBF system, 

even though the CPU time requirement is slightly higher as compared with the matrix 

inversion based approach. 
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Fluid-Structure Coupling 

The procedure used for coupling the fluid solver with the structural solver and the 

mesh deformation algorithm has been described in Chapter 6. The case of flow-induced 

cantilever beam vibration has been used to validate the developed methodology. Four 

different flow inlet speeds have been analyzed, i.e. V = 0.25, 0.5, 0.75, and 1.0 m/s, to 

study the effect of flow velocity on structural deflection. The predicted beam vibrations 

have preserved the natural frequency for all cases with error below 2.7%. As expected, 

increasing the flow velocity increases the magnitude of the beam deflection.  

Moreover, the RBF based mesh deformation algorithm has shown a very robust and 

efficient performance. On average, only 10% of the total number of boundary nodes has 

been picked by the greedy algorithm to perform the mesh deformation. The greedy 

algorithm’s convergence criteria was set to limit the interpolation error below 0.1% of the 

maximum deflection. The use of incremental solver helped reduce the CPU time 

significantly. On average, the CPU time for mesh deformation for different inlet velocity 

cases was below 1.4 seconds per time step on a mesh consists of 19,164 nodes..  

Furthermore, the structural dynamic response for the case of flow-induced 

cantilever beam vibration for two different structural densities was simulated. The results 

were compared against the FSI results produced by coupling a finite element structural 

solver with a finite volume fluid solver provided by Lorentzon [137]. The predicted 

structural response was found to be in a good agreement for both density values. The 

proposed FV-FSI solver under-predicted the maximum deflection by 7% and well-

predicted the vibration frequency with error margin less than 0.23%. 
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SUGGESTIONS FOR FUTURE WORK 

Alternative Approach for Gradients Calculation  

In the current development of the structural solver, the Green-Gauss theory has 

been used for the calculation of displacement gradients. This approach requires the 

displacement values to be known at the center of each face. Since the displacement values 

are being calculated at the center of the control volume, it was essential to use a weighted 

averaging interpolation to transfer the displacement values to the nodes, then transfer the 

nodal values into the center of the face. This entire process is relatively more 

computationally expensive than other gradients calculation methods. In the future, it is of 

importance to replace the Green-Gauss method with an alternative less expensive method, 

e.g. least square fitting. 

Code Parallelization 

In the current FSI analysis framework, the most CPU time consuming module is 

the CSD solver. Parallelizing the developed CSD code will allow running of large complex 

FSI cases efficiently. However, adding parallelization capabilities to the solver will not be 

a trivial task. Another component that needs to be parallelized is the mesh deformation 

module. The developed RBF based mesh deformation module does not require 

connectivity information, which will make it easier to parallelize. 
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Validation against other Benchmark Cases 

After implementing the previous two suggestions it will be feasible to test more 

complex FSI problems. Two among several interesting benchmark cases to test would be 

the Rectangular Supercritical Wing case (RSW) and the AGARD wing case. Experimental 

data for the RSW and the AGARD wing deformations are available for validation purposes 

[134-136]. 

Add Non-Linear Elasticity and Thermal Elasticity Capabilities 

In the current implementation of the structural methodology, only linear elasticity 

constitutive relation has been included. A nominal effort would be needed in order to 

extend the current version of the solver to include non-linear elasticity and thermal 

elasticity constitutive relations. This will allow the FSI solver to cover a wide range of 

interesting applications.     
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