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“There are so many doors to open. I am impatient to begin.”

– Charlie Gordan

—DANIEL KEYES, Flowers for Algernon



CONTEXT-ENHANCED MOBILE DEVICE AUTHORIZATION AND AUTHENTICATION

BABINS SHRESTHA

COMPUTER AND INFORMATION SCIENCES

ABSTRACT

Mobile devices (e.g., smartphones and tablets) are pervasive today, continuously opening up

immense opportunities for everyday users. Their burgeoning popularity, however, brings forth

various security and privacy threats. One well-established threat is of mobile malware (a form

of insider attack) – malicious apps that may surreptitiously misuse the sensitive resources and

services available on the device. Other threats relate to unauthorized access of the device (outsider

attacks) by a malicious entity in close physical proximity to the device, or having (temporary

or permanent) physical possession of the device. The traditional defensive mechanisms, such

as existing anti-virus software, distance-bounding protocols or passwords, are not sufficient to

defeat these threats.

This dissertation work explores the notion of “context” — a potentially unique signature of

a benign usage scenario — to address insider-outsider attacks against mobile devices without

undermining the overall usability of these devices. Our proposed defense system automatically

detects the presence of a valid context using the information acquired by device’s many on-board

sensors; the absence of such a context being indicative of malicious usage. Depending upon the

application scenario, we elicit the context provided, explicitly or transparently, by the device user

(e.g., a hand gesture or body movement), or captured from the device’s ambient environmental

attributes (e.g., audio, temperature or altitude). When applicable, we use machine learning

techniques and sensor fusion approaches towards designing a highly robust contextual mobile

security system.

To be specific, this dissertation work comprises four parts: (1) enhancing mobile app

authorization using implicit/explicit context, (2) enhancing user authentication using transparent

implicit context, (3) enhancing co-presence detection using environmental context, and (4)

strengthening the contextual security adversarial models and evaluating the context detection

systems against such strong models.

In the first part, we present the design, implementation and evaluation of our contextual se-

curity mechanisms to defeat mobile malware attacks against prominent phone resources/services,
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namely, phone calls, camera and NFC payments. We use explicit as well as implicit context to

detect user-friendly explicit gestures or transparent gesture so as to ascertain if the app requesting

the permission to a sensitive resource is legitimate (and not malicious). In the second part, we

present the design, implementation and evaluation of schemes to authenticate users transparently

in the case of mobile (NFC) payments and zero-interaction authentication systems. In the third

part, we present the design, implementation and evaluation of our co-presence detection system

using different environmental context to thwart outsider “relay attacks” against mobile zero-

interaction authentication systems and mobile payment systems. In the fourth part, we stretch the

limits of the contextual security threat model to incorporate adversaries who may be capable of

actively manipulating the context or underlying sensor data (internally or externally). Further, we

present our insights to defend against such strong adversaries.
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CHAPTER 1

INTRODUCTION

Smart devices, such as smart phones and tablets, have become ubiquitous. Such a popularity of

smart devices has attracted numerous developers to build a wide variety of applications for these

devices. The manufacturers and OS developers continue to provide new capabilities to these

devices in the form of hardware (e.g., sensors) and software (enhanced SDK). With different

sensors embedded onto these devices, both developers and researchers from different fields have

proposed new ideas and implemented applications targeting different application scenarios. For

example, many smartphones have already incorporated Near Field Communication (NFC) Chips

[1]. With this, apps like Google wallet [2] and Apple pay [3] have emerged which enable mobile

users to make payments using their mobile devices. The developers also use inertial sensors, such

as accelerometers and gyroscopes, to assist elderly people [4, 5] and people in need [6, 7]. In

general, there are a myriad of applications utilizing mobile device sensors for health, exercise,

games, alerts, and so on.

1.1 Security and Privacy Threats

The popularity of smart devices has also led to the various security and privacy threats. The

integration of new hardware to these devices has lured malicious attackers and cyber criminals.

They attempt to either misuse the sensitive resources provided by these devices by gaining

access to resources, or exploiting the sensors which do not require explicit access permissions.

For example, the addition of NFC chip as a reader enables apps to scan the NFC and RFID

cards nearby. The malware developers have exploited this vulnerability to leech the sensitive

information from the nearby NFC devices and RFID cards. Similarly, cyber criminals may also

externally extract the information stored on the NFC chips using malicious readers since these

chips respond promiscuously to any readers. To be specific, in this dissertation, we focus on

two different kinds of attacks: (1) insider attacks: threats generating from within the devices

in the form of malware and spyware not only compromising the device but also compromising

the other nearby devices and information at the periphery of the device, and (2) outsider attacks:
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threats generating from outside of the device in the form of unauthorized NFC transaction during

theft/loss of device or unauthorized NFC reading, relay attacks with colluding attackers, and

physical control or theft of devices.

1.1.1 Insider Attacks

The number and scope of malware targeting different smartphones has burgeoned in recent years

[8–13]. Primary reason for the device to get infected is because users often download paid

apps from untrusted sources for free, many of which may contain hidden malicious code. Once

installed, such malwares can exploit the device in different ways [8]. For example, they may

make premium rate phone calls, or send SMS with malicious links to user’s friends, or make NFC

payments [14], or take picture of user’s surrounding [11]. They may even use the ambient audio

to infer the keystroke [12], or use accelerometer to track the user location [9] or use gyroscope

to identify pins/SSN [10]. They may use NFC in phone to scan periphery NFC device or RFID

cards to get the sensitive information such as Credit card number and other information. A

proof-of-concept Trojan Horse electronic pickpocket program under the cover of a tic-tac-toe

game has already been developed by Identity Stronghold [15].

The current mobile operating systems, such as Android or iOS, check the permission and

requires a user to grant the permission in out-of-context fashion such as during the installation

via manifest [16, 17] or during the first use via system prompt [17, 18] as shown in Figure 1.1.

The app gets permanent access to the requested resources once the user agrees to install the app

or allow the app to access the resource. This approach requires users to be aware and diligent

when they install the app. It is well-known that most users simply press “Yes” so as to proceed

with the installation without heeding the warnings prompted to them [19, 20]. Eling et al. [21]

show that 40.4% of the users in their study accepted unnecessary runtime permission requests

for minimal reward. Moreover, most users ignore permissions, privacy policies, and terms of

agreement altogether [22]. Applications are also reviewed to detect if there is a malicious code

hidden underneath. Although the review process sets a bar for a malware developer, they can

still circumvent this approach by exploiting the hardware/sensors which are considered harmless.

The inertial sensors such as accelerometer and gyroscope do not require any explicit permission

for access. The malware developers have used accelerometer [9, 12, 13] and gyroscope [10] to

extract sensitive information compromising the privacy of the user. Also, the review process has
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FIGURE 1.1: Apps in iPhone, Windows phone and Android phone requesting for permissions to
access resources/services.

failed in the past and users with rooted/jail-broken phones can easily install the apps which may

not have been reviewed [23, 24].

1.1.2 Outsider Attacks

These are the attacks that are generated from outside of the device. The devices need not be

infected for such kinds of attacks to occur. A specific target application for outsider attacks is

NFC. With the integration of NFC chip onto the new smartphones, users are now able to make

payment via phones, or use their phones as an RFID cards. However, this chip stores sensitive

information such as credit card number and other relevant information. Since the smartphone

promiscuously provides its information to any reader that tries to access the information, it is

vulnerable to a clandestine eavesdropping. For example, an adversary with an NFC reader can

easily read credit card information stored on the victim’s phone by just walking past the victim.

This not only allows fraudulent and illegitimate purchases from the victim’s account [8] but can

also lead to owner tracking and privacy problem [25]. The stolen information may also be used

to impersonate an NFC device via cloning [8, 25].

Another common outsider attack occurs when the mobile device is in physical control of

a malicious entity, for example, upon theft of the device or under “lunch-time” access to the

device. In this situation, the attacker may be able to fully or partially control the device just like

its legitimate user. For example, the theft of PKES (Passive Keyless Entry and Start) keys will
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simply allow the thief to unlock the car or the theft of the NFC payment enabled phone will

allow the thief to perform the NFC payment transactions. The user needs to be transparently

authenticated when using the mobile device as an authentication token since user convenience is

one of the main goals of these systems.

Moreover, NFC devices also suffer from “ghost-and-leech” relay attacks [26–28]. Since a

smartphone with NFC chip can act as a replacement for RFID tag which is used in a wireless

authentication scheme, it suffers from similar threats since it responds promiscuously to any

reader in its close proximity. In such mobile or wireless authentication system which moreover

provides “Zero-Interaction-Authentication” (ZIA) [29], two attackers collude to exploit such

scheme. Here, an attacker (ghost) relays the challenge from the legitimate reader to a colluding

entity (leech). The leech acts as a reader and provides the challenge to the victim’s device. The

leech relays the information from victim’s device to the ghost which then provides the information

to the legitimate reader. In such fashion, a ghost and a leech pair can impersonate as a victim

device and falsely authenticate with the reader.

A similar attack is applicable to ZIA schemes that use a mobile device (e.g., a phone or a car

key) to unlock another device (e.g., a computer or a car) just based on the co-presence of the two

devices, i.e., without any explicit user interaction.

1.2 Context Detection

In this dissertation work, we set out to defend against the insider attacks caused by malware and

the outsider attacks caused by unauthorized readings, relay attacks and physical control. Our

observation is that the sensors that the attackers often use to exploit different vulnerabilities may

also be used to protect the users. Our idea is to leverage the sensors to infer the “context” in

which the device is used. For example, the context when there is a legitimate request to access a

resource/service on the device differs from the context when there is a malicious request. The

attacks mentioned above, in order to remain stealthy, occur in scenarios when the users do not

intend to access the resources/services or in scenarios when two prover-verifier devices are far

apart (e.g., in ZIA, the phone is at a restaurant, while the computer is at the office). If such

context can be captured/identified in some ways, these attacks could be prevented.

As such, we propose to extract the context when there is legitimate request for the permission
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to access a given device service/resource, or when there is a user intent to authorize a particular

action. In other words, whenever the legitimate user wants to authorize the app to access some

service or resource, or wants to authorize himself for the credit card transaction or for the access

to the room, the system automatically detects the context and access will be allowed. On the

other hand, if an attacker attempts to do so, the appropriate context may be missing and therefore

access will be denied.

We can extract different forms of contexts to prevent users against insider and outsider

attacks. We observe that whenever a user wants an app to access a resource or service, he either

performs a gesture which can be either implicit or explicit. For example, when a user wants to

make a phone call, he moves his phone towards the ear, or to take a picture, he moves his phone

to orient his phone for a perfect snap. Similarly, when a user tries to authenticate himself or

authorize a transaction, he moves his phone with his hand to the reader. The inertial sensors on

the phone will report the corresponding sensor changes. When malware tries to make phone

call or take a picture, the gesture will be missing. Also, when two colluding adversaries attempt

to relay the information from a user device to the reader who are far apart, the ambient context

around them will be different. They will be sensing different Wi-Fi, Bluetooth devices around

them, listen different ambient audio and report different physical context such as temperature,

humidity, gas content or pressure. Hence, we can leverage the context to provide sound access

control and prevent malicious authentication and authorization.

To simplify our exposition, we define three broad categories of context that may be used to

enhance mobile device security and privacy:

1. Explicit Context

When the user has to perform an explicit action to permit the app so it can access a given

resource/service, such a context is called an “Explicit Context”. Such actions or gestures

are not transparent to the users. Explicit context might be a burden to the users as they

have to put an extra effort while authorizing the app each time. However, it is better than

using PINs/passwords which are often forgotten, and has significant security advantage

over using nothing at all. We provide intuitive gestures such as waving a hand in front

of the phone or tapping/rubbing the phone utilizing proximity and light sensors. These

gestures are more secure than using a “Yes/No” dialog box as the most users are habituated
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to pressing “Yes” when prompted. Moreover, a “Yes/No” dialog box will require user to

explicitly press a button and interrupt the users even when the user did not intended any

app to authorize. Our gesture-based approach has advantage over this as a user can just be

prompted using a “Toast” mechanism or notified using a notification bar.

2. Implicit Context

If the users do not need to perform any extra movement or put additional effort to permit

the app to access the corresponding resource/service, such context is called an “Implicit

Context”. Such actions or gestures are transparent to the users. The implicit context is better

than the explicit gesture since the process is transparent to the users. As explained above,

while making a phone call, we can use inertial sensors in the smartphone to identify if the

user has intended to make the call and moved the phone along with his hand to the ear. As

we will present later, we can use the sensors embedded in the smartphone as well as those on

a wearable device, such as smartwatch/bracelet, to identify the gesture in a robust manner.

The implicit context can be used to authorize the apps and to authenticate the users in the

form of behavioral biometrics (e.g., unique user hand movements). We use different inertial

sensors to extract such implicit context to provide robust authorization/authentication.

3. Environmental Context

The context which can be derived from sensing the ambient environment around the device

is called an “Environmental Context”. Such context can be used to detect the proximity

of two devices or co-presence of the two devices. The users do not need to provide any

gestures for authorization. The property of environmental context can be leveraged to

authenticate users transparently during ZIA. We use different ambient sensors embedded

within the phone as well as those from the off-the-shelf ambient sensing devices such

as Sensordrone1 to sense the ambient information. We show that combinations of these

sensors provide robust proximity detection and secure authentication mechanism for ZIA

systems.
1http://www.sensorcon.com/sensordrone/
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1.3 Contributions

Our work constitutes the design, implementation and evaluation of a variety of context detection

mechanisms to enhance the security of mobile devices against various insider and outsider threats.

The main contributions of our work are as follows:

1. We propose a novel approach to defend against malware on mobile devices based on

intuitive gestures serving as the explicit context. We suggest different lightweight gestures

that utilize different low-power sensors ubiquitously available on smartphones and tablets.

Based on this context, we also provide selective unlocking for the sensitive resources such

as NFC/RFID tag. We argue for a model which only approves the permission when the

context is detected instead of promiscuously providing the information to any reader. We

also use these contexts to selectively read the NFC/ RFID tag instead of executing the

command promiscuously.

2. We propose the use of transparent gestures serving as the implicit context to defend against

malware for three specific services, phone calling, camera snapping, and NFC tapping,

which can be detected using inertial sensors embedded in the current smartphones.

3. We build an NFC tapping gesture detection biometrics to authenticate users transparently

when they make NFC payment transactions at point-of-sale (POS) terminals. We extract

multiple features from the phone’s different sensors when a user taps her phone to NFC

transaction terminal and implement the machine learning approach to identify if the sensor

data corresponds to the owner of the device (or not). Moreover, we show that NFC tapping

biometrics can be extracted with a high overall accuracy, while it does not seem possible

for even a trained active attacker to succeed in mimicking the tapping gesture of a victim

user.

4. We develop walking biometrics enhanced WUZIA (“Walk-Unlock ZIA”), a multi-modal

walking biometrics approach tailored to enhance the security of ZIA systems against

stolen prover devices still with zero-interaction. Further, we demonstrate that WUZIA

offers a high degree of detection accuracy, based on multi-sensor and multi-device fusion.

We show that walking biometrics can be extracted with a high overall accuracy when using

one of the devices (phone or watch), and be almost error-free when both devices are used
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together. Furthermore, we analyze WUZIA against active attackers such as an imposter

attack and a state-of-the-art active attack.

5. We propose the use of ambient sensors to detect the co-presence of devices based on

environmental context so as to defend against relay attacks. We detect different forms of

contexts using individual environmental sensors as well as a fusion of different sensors.

We demonstrate that the fusion of multiple sensor modalities is effective, i.e., we can detect

the context in a robust way, which helps to improve the security as well as usability.

6. We enhance the security model of contextual co-presence detection systems to consider an

attacker who can manipulate the context (outsider attack). To this end, we demonstrate that

it is possible to manipulate the readings of different ambient sensors (and combinations

thereof) using low-cost, off-the-shelf equipment, representing a realistic attacker. Based on

such manipulation capabilities, we comprehensively examine and quantify the advantage a

multi-modality attacker, who can manipulate multiple sensor modalities simultaneously.

For systems that use multiple modalities, we investigate two different sensor fusion ap-

proaches – features-fusion and decisions-fusion based on majority voting (equal voting and

weighted voting), and show that both approaches are vulnerable to contextual attacks but

the latter can be more resistant in some cases, at the cost of slight degradation in usability.

We provide further guidelines to improve the security of co-presence detection systems in

the face of such strong adversaries.

7. We present a novel attack against Sound-Proof [30], a notable zero-effort two-factor web

authentication (2FA) scheme which uses ambient sounds as contextual information to detect

the co-presence of the authentication (token) and the authentication terminal (browser). We

introduce, design and develop the Sound-Danger attack system that exploits a wide variety

of a smartphone’s functionality to break Sound-Proof . To achieve this, we re-implement

the Sound-Proof ’s audio correlation algorithm and evaluate it against Sound-Danger under

a large variety of attack settings. Then, as a representative example of how to deploy our

attacks in practice, we collect general population statistics via an online survey to determine

the phone usage habits and patterns relevant to our attacks. We then use these common

statistics from our population sample to show how our different correlation-based attacks

against Sound-Proof can be carefully executed to have maximum impact. We discuss the
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implications of this attack against other ambient audio context based security systems, and

outline mitigation strategies to resist the impact of such a strong attacker.

1.4 Related Publications
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1.5 Organization

The rest of the dissertation is organized as follows.

In Chapter 2, we first introduce some preliminaries that will be discussed throughout the

dissertation. Then, we provide threat models and design goals. In Chapter 3, we discuss the state-

of-the-art work in the field of utilizing the context to provide security. We discuss the work that

tries to address the problem of insider and outsider attacks. In Chapter 4, we introduce the design,

implementation and evaluation of the explicit as well as implicit gesture detection to prevent the

unauthorized access of resources/services by a malware. In Chapter 5, we introduce the design,

implementation and evaluation of the implicit context, transparent to users, to authenticate users

based on their behavioral biometrics (NFC tapping and gait based pattern). In Chapter 6, we

present the design, implementation and evaluation of using context to enhance the detection of

two co-present devices to prevent relay attacks. Chapter 7 introduces novel attacks on the system

which utilizes the context. We critically evaluate the performance of the context based system in

the face of context manipulating adversary. We provide an attack on Sound-Proof , cutting edge

technology using audio to detect co-presence and provide second factor authentication. Finally,

we conclude our work presented with the closing remarks in Chapter 8.
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CHAPTER 2

BACKGROUND

In this chapter, we first present the preliminary concepts that will be discussed in the following

chapters, and then we present our threat models and assumptions, followed by an overview of our

contextual authentication and authorization approaches.

2.1 Preliminaries

2.1.1 Zero-Interaction Authentication (ZIA)

A ZIA scheme involves a user U who intends to authenticate to a verifier terminal V (e.g., a PC,

car or gate) using a prover device P (e.g., a phone or smart key). U does not explicitly take part

in the authentication process other than by approaching V while carrying P . ZIA is triggered by

the devices sensing each other over a short-range wireless communication channel like Bluetooth.

V will authenticate U by running a standard challenge−response based entity authentication

protocol with P over the proximity communication channel. P and V pre-share a key K, which

allows P to authenticate to V in the entity authentication protocol.

2.1.2 Relay Attacks

ZIA systems as well different payment systems are vulnerable to relay attacks. In relay attacks,

an attacker (leech) relays the information from the P device such as phone or credit card of U to a

colluding adversary (ghost). The attacker duo, a ghost and a leech, can succeed in impersonating

asP . Another scenario relates to payment tokens and point-of-sale readers. It involves a malicious

reader and an unsuspecting payment token owner intending to make a transaction [41, 42]. In

this scenario, the malicious reader, serving the role of a leech and colluding with the ghost, can

fool the owner of the payment token P into approving to V a transaction which she did not intend

to make (e.g., paying for a diamond purchase made by the adversary in a jewellery store while

the owner only intends to pay for food at a restaurant). The main difference in the two scenarios

relates to user awareness – in the first scenario, the user does not intend to authenticate at all,
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whereas, in the second scenario, the user does intend to authenticate but ends up authorizing a

different transaction than the one she intends to.

2.1.3 Biometrics Authentication

Users can be authenticated using different approaches such as “something you know”, “something

you have”, and “something you are”. Biometrics based authentication fall into the last one where

users are authenticated using their intrinsic characteristics. In biometrics authentication, users

can again be identified in two different ways, namely, 1. Physical biometrics authentication

and 2. Behavioral biometrics authentication. In physical biometrics authentication, users are

identified using their physical characteristics such as face recognition, iris recognition, fingerprint

recognition, etc., while in behavioral biometrics authentication, they are authenticated based on

the behavioral pattern such as the way they walk (gait based pattern), move (keystroke pattern,

phone tapping pattern), talk (voice authentication).

2.1.4 Two Factor Authentication

Most of the systems currently use “something you know” approach where users remember

password or pin along with their user name/id to authenticate to a system. However, such

approach has been proven to be vulnerable as users tend to choose weak password to easily

remember. To address this problem, multi-factor authentication has been deployed which provides

an additional layer of security. As a second factor, commonly deployed approach is “something

you have”, where users have an additional device as a security token such as phone. This device

provides the users with an additional information needed for the second factor authentication.

The use of a general-purpose smartphone as a token [43–45], as opposed to a dedicated device

[46, 47], helps improve usability and deployability of 2FA, and is currently a commonly used

approach on the Internet.

2.1.5 SMASheD

The current Android sensor security model either allows only restrictive read access to sensitive

sensors (e.g., an app can only read its own touch data) or requires special install-time permissions

(e.g., to read microphone, camera or GPS). Moreover, Android does not allow write access to any

of the sensors. Sensing-based security and non-security applications therefore crucially rely upon
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the sanity of the Android sensor security model. SMASheD [34] (an abbreviation for Sniffing

and Manipulating Android Sensor Data) is a framework under the current Android ecosystem

that can be used to stealthily sniff as well as manipulate many of the Android’s restricted sensors.

SMASheD exploits the Android Debug Bridge (ADB) functionality and enables a malicious app

with only the INTERNET permission to read, and write to, multiple different sensor data files at

will. SMASheD can sniff and manipulate protected sensors on unrooted Android devices, without

user awareness, without constant device-PC connection and without the need to infect the PC.

SMASheD framework comprises of three components: SMASheD server: a native service

that provides the sensor data reading and injection capabilities, SMASheD scripts: two simple

scripts used to copy the SMASheD server to the device and to start the server, and SMASheD

app: an app that runs a status detection module in the background, and depending on the phone’s

status and the desired functionality, it sends requests to the SMASheD server to read or inject

sensor events.

2.1.6 Sound-Proof

In the two-factor authentication described in Section 2.1.4, the need to look-up and interact with

the phone, and copy the pin during a 2FA authentication session lowers the system’s usability,

which may prevent users from adopting this approach for authentication [30]. Sound-Proof

leverages ambient sounds to detect the proximity between the phone and the login terminal

(browser). Specifically, during the login session, the browser and the phone each record a short

audio clip, and the login is deemed successful only if the two recorded audio samples are highly

correlated with each other (and the correct password is supplied). Except of entering the password,

Sound-Proof does not require any user action (e.g., transferring PIN codes or even looking-up

the phone) – mere proximity of the phone with the terminal is sufficient to login. It may also

work even if the phone is inside a purse or pocket.

The main security goal of Sound-Proof is to defeat a remote attacker, who has learned the

user’s password (e.g., by hacking into a password database server of the web service in question),

and is attempting to login to the user’s account, and possibly multiple user accounts. As argued

in [30], given the prominence of remote attacks on the web today, this is a very legitimate goal.

In order to login to the user’s account, the remote attacker against Sound-Proof would have to

predict the ambient sounds in the environment of the phone and possibly be in a very similar
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environment as the user, which may be a difficult endeavor in practice, as shown in the security

analysis reported in [30]. In other words, if the attacker can not predict the user’s environment

and is in a different environment than the user, the audio samples at the browser’s end and the

phone’s end would not correlate, thereby preventing the attacker from logging in [30].

2.2 Threat Model and Assumptions

2.2.1 Insider Attacks

In the case of the insider attack, we assume that the device has already been infected by the

malware without any user suspicion. The malware can be hidden in a normal application and

can spread through various paths to the phone via various communication channels such as

Bluetooth, Wi-Fi, and GSM. A user may download an app from an untrustworthy source that

looks like a normal app such as game but contains malicious code. Preventing malware from

being installed on the phone is beyond the scope of our model. The attackers use the malware to

access sensitive services (such as phone call, SMS, or camera) for various malicious intentions.

The malware can further access services such as NFC to scan confidential information from

NFC/RFID cards/devices around the device’s periphery.

We also assume that the malware has not infected the OS kernel of the device. Strengthening

the kernel is again an orthogonal problem [48, 49]. To be specific, the kernel is immune the

malware and the malware cannot alter the kernel control flow. We also assume that hardware is

immune from the malware and the malware cannot manipulate the device’s on-board sensors. The

malware capable of manipulating the sensors can produce an appropriate context corresponding

to the activity.

The ultimate goal of the malware is either to steal confidential information, compromise the

privacy of the user or directly earn money by trying to access various sensitive resources/service

such making premium phone calls, taking pictures of user surrounding [11], or read nearby NFC

enabled credit cards/tags [15]. The malware may try to access such services frequently or rarely

to remain stealthy. We do not impose any restriction as to how frequently the malware attempts

to access such services.

We assume the attacker may be physically near the user. The attacker is unable to persuade

the user to perform the gesture to access a particular service. However, he may coerce/fool
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the user into moving a particular manner with a hope that such movement can generate similar

motion as a valid gesture. In case of insider attack, we also assume that the device is not with the

attacker. If the attacker has physical access to the phone, then he can simply grant permission

to malware by providing the necessary gesture. In other words, our mechanisms, so far, are not

meant for user authentication and do not provide protection in the face of loss or theft of phone.

2.2.2 Outsider Attacks

In the case of the outsider attack, the devices themselves are not infected. However, the attacker

is trying to exploit the vulnerability of the NFC/RFID cards/tags which allows any reader to read

this sensitive information stored in the device promiscuously. The Zero Interaction Authentication

(ZIA) systems and the NFC payment systems are prone to such attacks. Attacker can exploit

the ZIA or the NFC payment systems in two different ways; either by stealing/possessing the

device or by relaying the signals from the device.

2.2.2.1 Device Theft

As mentioned in Section 2.1, ZIA systems rely upon the authentication factor “something you

have”. In ZIA system, U does not need perform any explicit action or gesture for the authentica-

tion, and simply walking towards V , while carrying P is enough to establish authentication.

In ZIA threat model, P and V are assumed to be honest (i.e., uncompromised and non-

malicious). The communication channel between P and V is protected with encryption and

authentication tools.

In a realistic threat model, an attacker should be assumed to be in possession of the P device.

The attacker may obtain the P device either by stealing it or via a lunchtime attack [50, 51]. In

this model, existing ZIA systems are completely broken since the attacker can just access V by

making use of P . The attacker can simply go near the V device and unlock it in ZIA system or

go to NFC POS terminal and perform the transaction.

We further assume that the phone’s OS kernel is healthy and the attacker is unable to alter

the kernel control flow. Strengthening the kernel is an orthogonal problem [48, 49]. We also

assume that attacker cannot manipulate device’s onboard sensor hardware. In other words, the

attacker only has physical access to the device but does not have internal control of the device.
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FIGURE 2.1: Proximity based authentication

2.2.2.2 Relay Attack

The attacker can relay the signals from P to V without stealing the P device. In such case, U

would be authenticated as having the P device even though P is not in the proximity of V . Such

vulnerability of the ZIA system calls for the proximity detection system. The Figure 2.1 shows

a general model of our proximity-based authentication. In this model, P wants to authenticate

itself to V and convince V that it is close to P . Typically, when P is close to V , the authentication

process between P and V is run. V makes use of a back-end “comparator” function to make

the authentication decision (it could reside on V device or on a remote machine such as a bank

server in the case of payment transactions). P and V have pre-shared secret keys K and K ′,

respectively, with the comparator. When P wants to authenticate to V , V sends a challenge to P .

The P computes a response based on the challenge and K. P returns the response to V which

then uses the comparator function to decide if the response is acceptable.

This model is applicable to various real-world scenarios such as payment at a point-of-sale

(POS) terminal and ZIA systems. In the payment scenario, the payment card plays the role of P ,

and the POS terminal plays the role of V . The issuer of the payment card plays the role of the

comparator. In a ZIA systems, the user token (key or mobile phone) acts as P and the terminal

(car or desktop computer) plays the role of V . The comparator functionality is integrated in the

terminal itself and therefore K ′ is not needed.

In this model, we assume that the devices are not infected and will follow the standard

protocol for communication upon the request for the authentication. We assume a standard
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FIGURE 2.2: Relay attack in proximity based authentication

Dolev-Yao adversary [52] who has a complete control over the communication channel over

which the authentication protocol between P and V is run. The adversary A does not physically

possess any of the legitimate devices. The goal of A is to carry out the relay attack such that

V is convinced that P is in close proximity when in fact P is far. A can take the form of a

”ghost-and-leech” [26] duo (Ap, Av) such that Ap is physically close to P and Av is physically

close to V , and Ap and Av communicate over a high-bandwidth connection as shown in the

Figure 2.2.

2.3 Design Goals

For each of our defense mechanism to be useful in practice, it must satisfy the following

properties:

• Lightweightness: The scheme should be lightweight in terms of memory, computation,

and power consumption.

• Efficiency: The users should not have to wait for a noticeably long time while using the

scheme. The longer delays caused due to system will affect the usability of the system.

• Robustness: The approach should be tolerant to errors. Both the False Negative Rate

(FNR) and the False Positive Rate (FPR) should be quite low. A low FNR means that the

system grants the permission to app during benign case with high probability. The low

FNR infers high usability. On the other hand, a low FPR means that the system denies
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access to requesting apps/devices during malicious case with high probability. The low

FPR infers high security.

• Usage Model Consistency: The approach should require a little or no change, to the usage

model of existing application. Although the context that is transparent to the users are

preferred, there can be cases when accessing particular services/resources may not have

definite context that can be extracted. For such services, explicit context needs to be used.

Such context should still be intuitive and easy for users to perform. Nevertheless, our

system should require minimal effort from users if not transparent.
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CHAPTER 3

LITERATURE REVIEW

In this chapter, we review state-of-the-art research that use context to enhance the security of

the system thwarting insider and/or outsider attacks. Basically, we explore the work that tries to

address the insider and outsider attacks in different ways.

3.1 Malware Detection and Prevention

The most common approach to defend against the malware are static analysis [53–56] and dy-

namic analysis [57–60]. Static analysis, also known as signature-based detection, is based on

source or binary code inspection to find suspicious patterns (malware) inside the code. This

approach has been used as current solutions by many anti-virus apps. However, it can be evaded

by malware authors through simple obfuscation, polymorphism and packing techniques. Also

it cannot detect zero day attacks. Dynamic analysis, also known as behavior-based detection,

monitors and compares the running behavior of an application (e.g., system calls, file accesses,

API calls) against malicious and/or normal behavior profiles through the use of machine learning

techniques. It is more resilient to polymorphic worms and code obfuscation and has the potential

to defeat zero-day worms. Permission models have become very common on smartphone operat-

ing systems to provide access control to sensitive services for installed third party application. The

previous research focuses on optimizing desktop solutions to fit on mobile devices. These tech-

niques for desktop computers are still considered too time consuming for resource-constrained

mobile devices operated on battery. Venugopal et al. [61] try to speed up the signature lookup

process in static analysis by using hashes. Several collaborative analysis techniques have been

proposed to distribute the work of analysis by a network of devices [62, 63]. Burguera et al. [64]

and Cheng et al. [65] have proposed remote server assisted analysis techniques to reduce the

overhead of the computation on the individual devices.

Chaugale et al. [66] have proposed to use the hardware interruption generated by human

initiated actions to differentiate pure software initiated actions which should not generate hardware

interruption. They aim at detecting the malware specifically targeting SMS and audio services.
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Whenever users press or touch the keypad or touchscreen to type and send the SMS, it generates

the hardware interruptions for each key press event while when the malware tries to send the

SMS, it will not explicitly generate such interruption, hence, providing some context to the

system. Our approach differs from their approach in a way that they check if there is (any) user-

activity involved when the request is being made while we check if there is a special user-activity.

So our approach has advantage as our approach provides more fine-grained access control to

sensitive services and thus can detect even sophisticated malware. For example, a sophisticated

malware which is hidden underneath a tic-tac-toe game, which already involves touch screen

activity generating hardware interruption, can easily send SMS while our approach will look for

corresponding context to provide SMS permission.

Roesner et al. [67] have proposed user-driven access control to grant the permission to the

app which requests for the access to the resource only when user’s permission granting intent

is captured. They encourage the operating system to provide Access Control Gadgets (ACGs).

ACGs are UI elements exposed by each user-owned resource for applications to embed. The

user’s UI interaction with the corresponding ACG grants the permission to the application to

access the corresponding resource. Their design differs with ours as they grant permission to the

app when user’s authentic UI interaction with corresponding ACG is captured while our design

grants permission to the app when a specific user gesture is captured. Their work requires kernel

level changes and requires Resource Monitor (RM) to be incorporated for each resource such

as device drivers. Moreover, if an application requires different resources to be accessed, they

suggest using composition ACG (C-ACG) with composition RM (C-RM). If there are many

resources that need to be accessed by an application, then the number of C-ACG and C-RM will

be extremely large. Also, for services like NFC which may not have any specific UI elements

or ACGs associated with them, a new ACG need to be designed which hampers the usability of

such services.

Shebaro et al. [55] have presented context-based access control (cbac) for mobile devices.

In this system, they restrict the apps from using the resources/ services according to the context

based policies. The system tries to identify the context based on location such as if a user is in a

meeting room or in a rest room. When the user is in such places, microphone recording or camera

recording must be prohibited to prevent the user against the spyware. The cbac system identifies

where the user is based on GPS trilateration, cellular triangulation and Wi-Fi Positioning method.
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It also uses time to enforce the context based policy. Their system differs from ours with respect

to that our system checks for gestures to provide access while they use location and time to get

the context and provide access. Our system has advantage over theirs as they need to frequently

poll the LocationManager service to observe if the user has moved to a sensitive place while

our system is triggered only when an app makes request for sensitive resources/services. Also in

cbac, the user needs to explicitly set policy in the beginning. This can result in a human error,

i.e., he may either add more restriction or less restriction to the resources for particular context.

Also, asking user to set policy every time a new location is detected can be burdensome for users.

3.2 Biometric Authentication

Conti et al. [68] authenticate users by analyzing the hand movements while making/answering

phone calls. They investigated if such motion can be used as biometric authentication measure.

They have used Dynamic Time Warping (DTW) algorithm to analyze and detect the gesture of

making/answering phone calls. They have only considered accelerometer and orientation sensors.

The experiment was done in a controlled setting and no real-world scenario has been captured.

Hong et al. [69] propose Waving Authentication (WA), a biometric authentication based on

waving hand along with the phone. WA utilizes accelerometer sensor to extract 8 features, train

SVM classifiers to build a model and authenticate users with this model. However, this approach

is not transparent to the user.

Gascon et al. [70] have analyzed typing motion behaviour of the user to continuously

authenticate a user on smartphones. It records the touch input along with the timestamps when

the keys are pressed or released. They use different sensors such as accelerometer, gyroscope, and

orientation sensors and extract 2376 dimensional vector representing the typing motion behaviour

of the user. They use linear Support Vector Machine (SVM) classifier to identify if the typing

motion belongs to user or not. Other work [71–74] share the similar philosophy to authenticate

users based on the touch gesture. They either use only the touch sensor or use the touch sensor in

conjunction with different inertial sensors.

Many researches have explored the use of accelerometer to authenticate the users based

on their walking pattern. These work mostly use electronic motion recording (MR) devices

such as MR100 wearable sensor [75], ZSTAR [75, 76], ADXL202JQ accelerometers [77],
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MMA7260 [78], etc. These work analyze the accelerometer reading by attaching such MR

sensors at different location of the body such as waist [75, 77–79] (device wore in a belt), lower

leg [80, 81], shoe [82–85], pockets (chest/hip) [86, 87], upper limb/forearm [86], gloves [88–90],

and so on. In most of these work, the MR device was tied on the particular parts of the body as

most of these devices were not wearable.

Vildjiounaite et al. [87] used accelerometer module (MR sensor) and placed it in chest

pocket, hip pocket and hand to authenticate users based on their walking pattern. To perform

their experiment, they made mock-ups of “clothes with pockets” from pieces of textile which

the users put on over their normal clothes. They reported that since it was not the real pocket,

shifting of the mock-ups of clothes affected the accelerometer readings while the accelerometer

module itself was not shifting as it was attached to the mock-ups of clothes.

Gafurov et al. [86, 91] used a “Motion Recording Sensors” (MRS) to collect accelerometer

data. In their work [91], they tried to spoof the user’s walking pattern by performing the

experiment in two rounds. First, the targeted user walked in front of the attacker twice. Then,

the attacker walked alone twice mimicking the user. They showed that such minimal effort

impersonation attack on gait pattern does not increase the chances of imposters being accepted

significantly. Further they used MRS attached to the belt.

Stang et al. [76] also explored the gait based authentication approach using ZSTAR ac-

celerometer sensor and analyzed if the imposters could imitate the walking pattern. They

recruited 13 participants to imitate users. Each participant was given 15 attempts on each tem-

plate to attack. The imposters did not see the original walking but they were given a simple

description of the gait. The participants were provided with the visual feedback such that they

could see the template gait graph and their gait graph continuously plotted on a big screen. The

walk duration was 5 second long for each walk sample. After each attempt a match score between

0 and 100 was displayed based on correlation such that 100 is a perfect match. They reported

3 persons exceeded the correlation threshold once, 2 persons exceeded the threshold twice, 1

person exceeded it three times and 1 person managed to exceed as much as 9 times in 15 attempts.

Therefore, they concluded that it is easy to walk like another person.

Another attempt to mimic walking pattern was made by Mjaaland et al. [75]. They trained

seven imposters to imitate a specific victim. They used two wearable sensors: the Motion

Recording 100 (MR100), and the Freescale ZSTAR sensor to record the accelerometer sensor
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values. They attached these sensors on belt and asked the participants to wear the belt which

could be mounted to any person’s hip regardless of what they were wearing such that the device

would always have the same-orientation. They conducted short-term hostile scenario and long-

term hostile scenario. In the former scenario, they trained six participants for two weeks, five

hours every day while in the latter scenario, they trained the seventh participants for six weeks.

In both scenarios, the imposters were not able to imitate the victim’s walking pattern. They

concluded that there is a physiologically predetermined boundary to every individual’s mimicking

performance and also that if one successfully adopted gait characteristics improved an attacker’s

performance, other characteristics worsen in a chain-like effect.

One of the works in line with ours is by Kumar et al. [92] as they also used an Android

smartphone with an app to record sensor data. In this work, they only used features extracted

from accelerometer sensors. They recorded accelerometer sensor only to authenticate users based

on their walking pattern. In this work rather than imitating a victim walking pattern, they used

different gait characteristics to match the victim’s walking pattern. They assumed that the attacker

has the victim’s gait samples. This means that the attacker knows the values for each feature

which would satisfy the classifier threshold to authenticate. From the 47 features extracted from

accelerometer sensor only, they ranked their features based on information gain based attribute

evaluator [93] and selected 17 top ranked features only. Since they were using features extracted

from accelerometer sensor only, the features might be highly correlated and reported that that

their system’s FAR increased from 5.8% to 43.66%.

Researchers have also explored accelerometer and/or gyroscope sensors available on current

smartwatches for the purpose of gait detection. Johnston et al. [94] used the accelerometer sensor

embedded in the smartwatch, while Kumar et al. [95] used the accelerometer and the gyroscope

sensor. They only used the sensors from smartwatch and did not consider the use of multiple

devices (both phone and watch). The authors extracted a total of 76 features (32 features from

the accelerometer readings and 44 features from the gyroscope readings).

3.3 Relay Attack Resilience

The most common approach to avoid relay attack is “Distance bounding techniques” [27, 96, 97].

However, because of its difficulty to deploy on commodity devices [98] and its dependence
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on low-level implementation which is vulnerable to attackers [99, 100], it may not be realistic

for commodity devices. An alternative approach to defend relay attacks is to use the ambient

environment which is being investigated recently. This is based on the assumption that two

legitimate devices performing transaction under benign scenario will be co-located and will

detect the similar ambient environment at that location whereas when they are not co-located

the ambient environment detected by them will be significantly different. Prior works rely on

commodity devices which are equipped with various traditional sensors such as Wi-Fi, Bluetooth,

and audio microphones.

Halevi et al. [98] have used ambient audio and light to detect if the two devices are co-

located. They present the analysis using different methods such as time-based, frequency-based

and time-frequency based similarity detection using raw audio data. They show that the ambient

audio has better accuracy in determining the co-presence than the ambient light. A pattern based

audio alignment was used by Nguyen et al. [101, 102] to detect and compare ambient audio to

provide secure communication between mobile phones. Schurmann et al. [103] also used audio

to detect the ambient context and provide secure communication.

Krumm et al. [104] have proposed “NearMe” which uses Wi-Fi similarity features for

proximity detection. They build a model using data collected in an office building environment

and tested in a cafeteria environment. Varshavsky et al. [105] have proposed the use of the

common radio environment (Wi-Fi) as a basis to deriving shared secret between co-located

devices. They introduce an algorithm Amigo that extends the Diffie-Hellman key exchange

with verification of co-present devices. Another proximity detection approach by Narayanan et

al. [106] also utilizes ambient Wi-Fi information. They studied the use of various modalities

for private proximity detection and concluded that on Wi-Fi broadcast packets and Wi-Fi access

point IDs are likely to perform best. Our systematic experiments confirm that Wi-Fi access point

IDs perform well.

Czeskis et al. [107] proposed “secret handshakes” to avoid ghost-and-leech attack by lim-

iting the context where the contactless card communicates with the reader. They used only

accelerometer data as contextual information.
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3.4 Two Factor Authentication

Most common and traditional form of Two Factor Authentication “2FA” employs hardware

tokens such as RSA SecurID [46] and Yubico [47]. These hardware tokens are specialized

devices used solely for the purpose of authentication. Such schemes require users to carry and

interact with the token. These schemes may be expensive to deploy because the service provider

must provide one such token per customer.

Many software tokens 2FA schemes are also available, including Google 2-Step Verifica-

tion [43], Duo Push [44], and Celestix’s HOTPin [45]. These schemes are both scalable and

flexible as single personal device can be used with multiple services in such schemes. These

schemes are also cost effective, since deploying software tokens are logistically much simpler.

These schemes prompt the user with a push message on his phone with current login attempt

information and the user interacts with his phone to authorize the login.

PhoneAuth [108] is a software token 2FA scheme that leverages Bluetooth communication

between the browser and the phone, to eliminate user-phone interaction. The Bluetooth channel

enables the server (through the browser) and the phone to run a challenge-response protocol

which provides second authentication factor. This scheme requires browser to have Bluetooth

communication capability which is currently not available on many browsers. Authy [109]

is another approach that allows seamless 2FA using Bluetooth communication between the

computer and the phone. However, Authy requires extra software to be installed on the computer.

Traditionally, these 2FA schemes increase resistance to online dictionary attacks. Shirvanian

et al. [110] presented several 2FA schemes that are enhanced to strengthen security against

both online and offline attacks. The main idea underlying all their 2FA protocols is for the

server to store a randomized hash of the password, h = H(p, s), and for the device to store the

corresponding random secret s. The authentication protocol checks whether the user types the

correct password p and also that it can access the device that stores s.

SlickLogin [111] (recently acquired by Google) minimizes the user phone interaction. It

employs near-ultrasounds to transfer the verification code. The notion is to generate unique near-

ultrasounds for each login attempt and use the very non-audible audio to authorize the attempt.

To verify user’s identity, a website plays a uniquely generated, nearly-silent sound through the

computer’s speakers. An app running on the user’s phone picks up the sound, analyzes it, and
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sends the signal back to the site’s server. The server verifies the user with the possession of the

phone as a second factor.
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CHAPTER 4

CONTEXT ENHANCED AUTHORIZATION

4.1 Introduction

In this chapter, we show how the context (implicit and explicit) can be used to enhance the safety

and security of the system to authorize an app requesting for sensitive permission. Especially,

we show how we can use explicit and implicit context to authorize benign apps in smartphones

requesting for permissions while block malwares requesting for such sensitive permissions. With

this approach we focus on preventing insider attacks in the form of malwares.

To detect implicit and explicit contexts, we use the gestures provided by the users. The

user gesture can be detected using various inertial and environment sensors embedded in the

smartphone. As mentioned in previous sections, the users can either be asked to provide the

gesture (explicit gesture), or the gesture can be extracted from the user movement when he is

performing corresponding activity (implicit gesture). We carried out all of our experiments for

gesture detection in Android smartphones. The Android OS, one of the most popular smartphone

operating systems, provides APIs to support different categories of sensors such as those that

measure motion, position and environment. It also provides support for NFC transactions. Our

system architecture can be visualized in Figure 4.1.

4.2 Explicit Gestures

We detected hand waving/tapping/rubbing in front of phone using low powered sensors such as

proximity sensor [35, 40], and light & accelerometer sensors [112].

4.2.1 Using Proximity Sensor

In our work [35, 40], we used a proximity sensor, which works by sending an electromagnetic

signal and analyzing the change in the electromagnetic field or the returned signal itself. This

is used in the smartphones primarily to detect if there is an object in the close proximity to the

phone so that unintentional button press/touch events can be prevented in event such as when
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FIGURE 4.1: Context Driven System Architecture for Mobile Malware Prevention

user is making phone call. For this reason, the proximity sensor is primarily located near the ear

piece and the phone’s display facing towards the user. We leverage this property to develop our

gesture detection mechanism.

The algorithm to detect these gestures using proximity sensor is simple and straightforward

as illustrated in Algorithm 1. Also, the detection approach does not require any template to

be stored which makes our approach lightweight, satisfying one of our design goals. When an

app tries to access sensitive services/resources, we will check for the proximity sensor values

for certain duration. We record the proximity sensors values along with their corresponding

timestamps. If we find more than certain number of fluctuations in proximity value within certain

duration, we deem the fluctuations as hand waving/tapping/rubbing gesture and the app will get

access to the requested services/resources.

To evaluate our approach, we conducted an experiment with 16 volunteers from our de-

partment. Eight of the participants were requested to perform the waving based unlocking 10

times and the result was recorded automatically by the app. The average gesture recognition rate

observed was 93.75%. While the other eight participants were requested to perform the tap or the

rub gesture near proximity sensor. The average gesture recognition rate in this case was 96.25%.
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Algorithm 1 Hand Tap-Wave-Rub Detection using Proximity Sensor
1: Set proxIndex = 0, WIND SZ = 6, WAV E TIME LIMIT = 1500 ms, and
UNLOCK TIME FRAME = 1000 ms

2: Record the time whenever proximity sensor detects a change

1. An array ProxChangeT ime with size equal to WIND SZ was used to record the time of
proximity sensor change in cyclic order.

3: Calculate the time difference between the current time with the time recorded in previous six sensor
change value.

1. TimeDiff = ProxChangeT ime[proxIndex] − ProxChangeT ime[(proxIndex +
1)%WIND SZ]

4: IF TimeDiff is less than WAV E TIME LIMIT , Unlock for UNLOCK TIME FRAME
5: Increase ProxIndex by 1, i.e., proxIndex = (proxIndex+ 1)%WIND SZ
6: Repeat Step 2.

4.2.2 Using Light & Accelerometer Sensors

We used light sensor to detect the hand wave gesture along with accelerometer [112]. The light

sensor values are dependent on the brightness of the surrounding. The primary purpose of the

light sensor is to sense the light of the environment and adjust the display accordingly to save

the battery in the smart devices. This is the reason, the light sensor is placed near the display of

the phone. The proximity sensor may not be available in all the devices such as tablets since the

phone calling is not the primary purpose for such devices. However, to save the battery, the light

sensor is ubiquitously available in most, if not all, smart devices. The algorithm to detect quick

fluctuations in the reading of the light sensor is also very simple and straightforward as shown in

Algorithm 2. Hence, unlike many other gesture recognition algorithms, pre-established templates

are not needed. This makes our approach extremely lightweight, satisfying one of our design

goals.

Whenever the access to the sensitive services/resources is requested by an app, we record

light sensor values along with their timestamps. We then analyze the fluctuation in the light

intensity. If the light value fluctuates beyond a given threshold for certain number of times within

an allocated time, then we consider such fluctuations in light values as being triggered by the

hand wave gesture. We calculated the threshold, used to determine if the light has fluctuated,

according to the ambient light intensity. For example, when it is dark with the ambient light

intensity around 200 lux, then optimal threshold to determine the fluctuation is 20 lux while

when it is bright with the ambient light intensity around 60,000 lux, the optimal threshold is

around 15,000 lux. We used eight different thresholds for eight different ranges of light intensity
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Algorithm 2 Hand Wave Detection using Light Sensor (and Accelerometer)
1: IF sensors are locked THEN wait for MOV EMENT LOCK T IME

ELSE get accelerometer sensor readings x, y and z.
2: IF √

x2 ∗ y2 ∗ z2 > ACC T HRESHOLD

THEN lock the sensors for MOV EMENT LOCK T IME and RETURN to step 1.
3: IF sensors are not locked THEN get light sensors reading to check if wave gesture is detected.

1. Analyze W INDOW SIZE F OR LIGHT data to find out how many extremas (maximas and mini-
mas) were there using LIGHT T HRESHOLD.

2. IF extremaCount > CHANGE COUNT F OR LIGHT AND All the light data are recorded
within W AV E T IME LIMIT F OR LIGHT THEN
SET unlockAttempted = true,
RECORD first unlock attempted time
DISPLAY Message “Stop Waving” for W AV E T IME LIMIT F OR LIGHT .

3. IF unlockAttempted THEN

(a) IF another unlockAttempt is obtained within less than
W AV E T IME LIMIT F OR LIGHT THEN Do not unlock, reset everything and
start over, i.e., return to Step 2.

(b) IF another unlockattempt is not obtained within W AV E T IME LIMIT F OR LIGHT
THEN Unlock the phone for UNLOCK T IME F RAME.

to accurately determine the wave gesture. The fluctuation of light detected using above approach

can be deemed as hand waving or it could have been triggered due to some environmental effects.

So instead of permitting the app the access, we delay the unlock for certain time. If no fluctuation

is detected in light then we can safely assume that it was human who performed the wave gesture.

We used the light sensor in conjunction with accelerometer sensor. The accelerometer sensor

is used to reduce the false positive while classifying the light fluctuations as the wave gesture.

The movement of the phone triggers the corresponding change in the position of the phone with

respect to the light source. This in turn will be detected as the wave gesture. In order to reduce

this effect, if the phone detects movement, greater than certain threshold, as per the accelerometer

data, we do not consider this as the wave gesture. Further, it locks the light sensor data.

We conducted an experiment with 20 volunteers to determine the accuracy of our gesture

detection algorithm. Each of them was requested to perform the hand wave based unlocking for

ten times and the results were recorded automatically by our app. The average recognition rate

was 90.5%. Most of the undetected wave gesture occurred when it was dark. When the light

intensity was greater than 700 lux, the system recognized the wave gesture with 95.71% accuracy,

when the light intensity was between 350 lux and 700 lux, the accuracy was 87%, whereas when

the light intensity was less than 350 lux, the accuracy was 83.3%.
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4.3 Implicit Gestures

In this section, we set out to defend against mobile malware that can exploit critical and sensitive

mobile device services, especially focusing on the phone’s calling service, camera and NFC. In

order to remain stealthy, mobile malware attacks occur in scenarios where the device user has

no intention to access the underlying services. Thus, if the user’s intent to access the services

can be captured in some way, these attacks could be prevented. We propose to elicit a user’s

intent via gestures that are transparently and naturally performed by the user prior to accessing

the services. In other words, whenever the user wants to access the service, she will naturally

exhibit a particular gesture. On the other hand, if the malware attempts to access the service, the

gesture will be missing and the access request can be blocked. We focus on authorizing an app

with the use of transparent human gestures, not on authenticating users (which is an independent

problem).

4.3.1 Our Approach: Call-Snap-Tap

We can extract a gesture from the natural interaction of a user with the device when user wants

an app to perform some operation that needs access to some sensitive services/resources. For

example, when making a phone call, a user wants an app to make a phone call while he moves

his hand along with the phone towards the ear.

We focused on three different kinds of services, namely calling, snapping and tapping, which

involves such human interaction with the device [36]. The user needs to move his phone in certain

ways to perform these activities. For example, when the user wants to make call, he presses the

“dial” button and moves his phone to ear. Similarly when he wants to snap a picture, he opens the

camera app, moves his phone to compose a picture, and clicks the snap button.

The system model for our approach is shown in Figure 4.1. Our approach adds another layer

of permission control on top of the original Android permission granting system.

4.3.2 App Design

To develop and evaluate our gesture-centric malware defense mechanism, we first needed to

collect data from users to recognize the various gestures exhibited by them in varying scenarios.

To this end, we created a suite of four separate apps, each of which collects the data from users
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while: (1) making/answering phone calls (the Call App), (2) taking pictures using the phone’s

camera (the Snap App), (3) reading NFC tags via tapping (the Tap App), and (4) various random

movements and activities captured at random times or in controlled settings (the Snoop and

Control App). The app supports Android OS 4.0 (API Level 14) or later. The data collected

from this app system is used to recognize the Call, Snap and Tap gestures, and to determine the

possibility of these gestures matching with one another and with other controlled activities.

FIGURE 4.2: Data Collector Flowchart

To prevent the overuse of sensors and excessive

drainage of the battery, the periods of recording data

must be limited to the events identified as the cap-

ture periods. Android provides/throws an intent to

all listening applications whenever the user intends to

perform certain activities. Hence, we configured the

app to trigger the sensor readings whenever a corre-

sponding event occurs. Once the event is received, the

data from sensors are recorded as shown in Figure 4.2.

The specifics of our apps are discussed below.

4.3.2.1 Call App:

The phone calling intent is triggered when the

call is initiated/answered and the state becomes

“OFFHOOK”. With this intent, the app starts recording the sensor data. This means that the user

has made/answered the phone and the associated Call gesture, i.e., the motion to bring the phone

to the ear, has been initiated. The app stops reading sensor data as soon as the proximity sensor

value changes indicating the phone has reached the ear of the user. To preserve the integrity of

the data, calls made using a headset or in the speaker phone are not considered since the motion

expected for answering the phone is not likely to be exhibited during these events. In such cases,

we need a fallback mechanism.
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4.3.2.2 Snap App:

In the Android system, the camera hardware can be used by any application that is registered

with the permission to use it in its manifest file, i.e., there is no system-wide intent that can be

intercepted by another application any time the camera is in use. Because of this restriction, we

developed a custom application which is to be used as an alternative to other camera applications

to test our hand movement gestures. The camera is capable of capturing the intent to start the

camera “MediaStore.ACTION IMAGE CAPTURE”. Once the camera is started, the sensor data

is recorded until the user either exits the screen or takes a picture. A flag is set while the camera

is on, that is changed once either the application exits the screen or the user takes a picture, at

which point the sensors are stopped.

4.3.2.3 Tap App:

For reading NFC, our app waits for the NFC intent and starts recording the sensor data as soon as

this intent is captured. Since the gesture/motion between the first time a device detects NFC tag

and stops motion is very short, we captured the data for four seconds after it detects NFC tag. In

our scheme, the gesture detection may be too late to be captured while the transaction may have

already taken place through NFC. For this, we can place the received NFC data in quarantine or

stall the NFC command received until the gesture is fully detected and analyzed if it is a valid

gesture.

4.3.2.4 Snoop and Control App:

Along with different gestures, the app system also records data from various sensors at random

point of times in order to compare these gestures with other activities. We refer to this data as

“Snoop”. To verify that our classifiers are indeed robust, we need to test them with the active

motion data (besides the random Snoop events) which is different from the Call, Snap and Tap

gestures, but still may have a chance to match with these gestures. For this purpose, we added

extra features in our app system to collect controlled data (referred to as Control gestures). It

provides a text box for the tester to specify the activity being performed and once the button is

pressed for recording, it records all the sensor data for ten seconds.
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The app displays the count of how many times each gesture has been performed and provides

a button to upload the recorded gesture data to our server. The app is designed to upload the data

at regular intervals (24 hours). A user can also explicitly upload the data by pressing the upload

button.

4.3.3 Data Collection

We used our data collection app system to extensively collect data for Call, Tap and Snap gestures

as well as various Control activities. We distributed the apps to volunteers who were willing to

provide the sensor data collected from their devices through their normal activities. We distributed

the app to the users in our respective Universities in US and Finland. Before distributing the app

to these users, we explained what sensor data was being recorded, for how long it was recorded,

at what occasions it was recorded and for what purpose the data was being used. Those who

consented to our explanation were provided with apk files for the installation. There were a total

of 23 users recruited for our study. They were students of the Computer Science departments of

the two Universities. Due to the real-world nature of our data collection, it was challenging to

recruit users for our study, and, as such, our sample size is slightly lower than a typical lab-study,

but still sufficient to demonstrate the promising feasibility of our approach. The devices used by

the participating students were popular Android smartphones which have all the sensors needed

for our tasks. Their devices had Android OS 4.0 (API 14) or later versions. Not all users could

provide the required amount of data corresponding to all three of our apps (30 calls, 30 snaps and

30 taps).

Our experiment for the Call gesture was performed in real-world settings, i.e., the data was

recorded when the volunteers made or received calls under normal use. We collected the data

from each user until we got minimum of 30 samples for each gesture. This took about a month

for most users. The Call App is fired whenever the participant made/received phone calls as

explained in Section 4.3.2. Along with recording the sensor data when user made/received a call,

it also collected snoop data at regular intervals. The app notifies the user whenever the sensor

data is being recorded by displaying an icon with a message in the notification bar.

In a similar manner, we provided the Snap App to the users to collect data in real-world

settings. They were asked to take pictures using our Snap App instead of the original camera

app conforming to real-world settings. However, following this data collection methodology,
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we obtained a little amount of data during the first phase of data collection. We came up with

two conjectures for collecting so a little data from such use of the Snap App. First, a user might

take many pictures when she is on vacation whereas during normal routine she might not take

any pictures for weeks. Second, the app we developed was inferior to the default camera app

developed by smartphone manufacturers. Our app did not provide various features (e.g., face

recognition, touch focus, zoom in/out or HDR mode), usually provided by the default camera

app. Therefore, users might have preferred the default camera app to Snap App. Hence, although

the Snap experiment could have been done in real-world settings, we had to ask volunteers to

take pictures in a lab setting mimicking real-world scenarios with our app. We posted a photo of

“Mona Lisa” in the lab and asked volunteers to take her mugshot as shown in Figure 4.3. Thus,

our Snap experiment is a semi-controlled experiment. We observed that some users preferred to

take snaps in landscape mode while other preferred portrait mode.

FIGURE 4.3: Taking a picture of Mona Lisa through Snap app

For the Tap experiment, we provided our Tap App to the volunteers. All of our participants

possessed NFC enabled smartphones. However, since the NFC reader was not widely used in

real life or by merchants, we had to limit our experiment to the lab settings. We attached a NFC

tag in the student lab and asked users to tap on the tag at regular periods as shown in Figure 4.4.

Whenever user tapped the NFC tag, Tap app handled the NFC intent as discussed in Section 4.3.2.

User held back the device as soon as the app displays the toast message “NFC Detected”. The

App notifies about the data recording in notification bar.

Although we collected snoop data, we needed to make sure our app is robust against different

kind of user activities. Since most of the random Snoop data might correspond to the device

being stationary with no noticeable change in any sensor data, it might lead to false belief
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FIGURE 4.4: NFC Tap in Lab Settings

that our gesture classifiers were good enough to classify. Hence, we set out to evaluate the

likelihood of false positives under different activities. We conducted several tests to emulate

different user activities which might have a chance to match the Call, Snap or Tap gestures.

For this experiment, our Control App was set to collect the sensor data for ten seconds as

discussed in Section 4.3.2. We (volunteers) then performed different activities such as walking

(upstairs/downstairs), running and jumping. We also mimicked reading phone’s screen when

there is a notification on device due to email or SMS, i.e., picking up the phone from table/desk

to check message. Moreover, we mimicked writing email/SMS, and playing games in different

orientations (landscape/portrait). We also performed a “drop test” to see if our classifier provides

access to the permission requesting app when phone falls from pocket. For this, we dropped our

phones from height of approximately 40 cm onto bed/couch. The activities could be exhibited by

smartphone users in their day-to-day life (benign setting). An attacker could also coerce or fool

the users into performing these activities with the hope that a false positive would occur allowing

malware with access to the resource (adversarial setting).

4.3.4 Call-Snap-Tap Detection

In order to detect our Call, Snap and Tap gestures, we used the machine learning approach based

on the underlying readings of the motion, position and ambient pressure sensors. We conducted

several classification experiments to determine which off-the-shelf machine classifiers and which

underlying sensor features provide the optimal performance. We used a total of nine sensors. The
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TABLE 4.1: Sensors Utilized for Context Detection. Sensors marked with ψ were not used for
the call/tap/snap detection. All sensors were used for NFC tapping. Sensors marked with ω were

not used for the walk biometrics.

Sensor Type Function
Accelerometer (A)

Motion

Acceleration force including gravity
Gravity (G) Force of gravity on the device
Gyroscope (Gy) Rate of rotation of the device
Linear Acceleration (LA) Acceleration force excluding gravity

Rotation Vector (R)
Rotation vector of the device
(uses geomagnetic field and gyroscope)

Game Rotation Vector (GR)

Position

Rotation vector of the device
(does not use geomagnetic field)

Geomagnetic Rotation
Vector (GMR)ψω

Rotation vector of the devices
(uses magnetometer)

Magnetic Field (M) Earth’s magnetic field

Orientation (O)
Position of a device relative to
the earth’s frame

Pressure (P)ω Environment Ambient air pressure

sensors used in our analysis and their descriptions are depicted in Table 4.1.

All of the motion and position sensors used have three components corresponding to the

three physical axes (X, Y, Z) at each instance. We calculated the scalar value, i.e., the square

root of the sum of squares for each instance, which captures the significance of all the three axes.

From this scalar value for each instance, we calculated mean and standard deviation for each of

the sample for our different gestures, such as Call, Snap, Tap, Control and Snoop. This gave us

eighteen features which we used for training and testing various off-the-shelf classifiers using

Weka. We developed a Java program that utilizes Weka library to test different classifiers across

different sensors subset that would result in best accuracy. We tested different machine learning

algorithms provided by Weka: Trees – Logistic Model Trees (LMT), Random Forest (RF) and

Random Tree (RT); Functions – Logistics (L) and Simple Logistic (SL), and Bayesian Networks

– Naive Bayes (NB), on all sensors subsets.

The eighteen features were used as input to train each classifier to differentiate Call, Snap

and Tap gestures from each other and from other gestures collected. We evaluated three training

models for the classification task: (1) user-specific model, (2) device-specific model and (3)

generalized model. The user-specific model requires each individual user to train a classifier

herself before using the app. The device-specific model would require the app developer to build
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specific classifiers for different phone models. The generalized model uses all the data from all

different devices and all users to a build global classifier. These models have their own pros and

cons. User-specific model would give better accuracy as it is tailored to an individual user but

will require the user to train the classifier before using the system. The other two models do

not have a user-centric training phase and will work right after the user installs the app, but the

accuracy of this model might be lower than the user-specific model.

In our classification tasks, the positive class corresponds to Call/Snap/Tap and the negative

class corresponds to other gestures (referred to as “Others”). Therefore, true positive (TP) repre-

sents Call/Snap/Tap that is correctly classified as Call/Snap/Tap, true negative (TN) represents

Others that is correctly classified as Others, false positive (FP) represents Others misclassified as

Call/Snap/Tap and false negative (FN) represents Call/Snap/Tap misclassified as Others.

As performance measures for our classifiers, we used Precision, Recall and F-measure (F1

score), as shown in Equations 4.1 & 4.2. Precision measures the security of the proposed system,

i.e. the accuracy of the system in detecting the malware. Recall measures the system usability as

low recall leads to high rejection rate of legitimate users’ actions. To make our system usable,

ideally we would like to have recall as close as 1.

precision = TP

TP + FP
; recall = TP

TP + FN
; (4.1)

F -measure = 2 ∗ precision ∗ recall
precision+ recall

(4.2)

4.3.4.1 Call Detection

For the Call gesture, we could receive the desired data, i.e., the one corresponding to 30 (incom-

ing/outgoing) phone calls, from 14 users, as discussed in Section 4.3.3.

User-Specific Model: We divided the data into fourteen sets based on the users’ ids. In order

to build a classifier to distinguish Call from Other gestures for each set, we define two classes.

The first class has the Call data from each user, and the other class contains the data collected

from Snap, Tap, Snoop from the same user and the Control data collected from three out of

the fourteen users. The average time for the collected Call readings was around one second, so

we compared it with one second of every other gesture. To find the best subset of features and
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TABLE 4.2: Results of using the optimal feature subset in the classification of Call and Others

Classification User ID Classifier Features Precision Recall F-Measure
Model /Device Subset

1 L A,G,LA,P 0.91 0.97 0.94
2 SL A,G,LA,O,P 0.97 0.93 0.95

User- 4 RT GR,Gy,LA 0.87 0.90 0.89
Specific 5 RT GR,LA,O,P,R 0.87 0.83 0.85

6 RF G,LA,P,R 0.83 1.00 0.91
7 SL G,LA,M,P 0.88 0.97 0.92
9 RF A,Gy,M,P,R 0.94 0.97 0.95
11 RT A,G,Gy,M,P,R 0.85 0.97 0.91
12 RF G,Gy,LA,M,P 0.79 0.90 0.84
13 RF G,GR,M,P 1.00 0.97 0.98
14 RF GR,LA,M,R 0.97 1.00 0.98
15 RF LA,M,P,R 0.88 0.93 0.90
16 L G,Gy,M,P,R 0.97 1.00 0.98
20 RF G,Gy,P 0.88 0.93 0.90

Google RF G,Gy,LA,R 0.90 0.83 0.86
Device- Nexus
Specific Samsung RF A,GR,G,Gy, 0.83 0.88 0.86

Galaxy P,R
HTC RF GR,LA,M,R 0.97 1.00 0.98

Generalized ALL RF A,GR,LA,M,R 0.92 0.83 0.87

classifiers, we applied all the combination of sensors subsets and classifiers (specified above) to

each of the fourteen user sets. The best features and the measurement values are calculated from

running a 10-fold cross validation as shown in Table 4.2. The gesture detection performance

can be termed as quite good. The recall and F-measure of the classifiers were on average 0.95

and 0.92 respectively. While the user is performing a Call gesture, he moves the phone which

can be measured by the change in the acceleration and air pressure applied on the device. For

this reason, Linear Acceleration and Pressure appear in almost all of the best sensors subsets.

The Call gesture is unique per user, as shown in a prior work [68], which justifies why different

sensors subset works well for different users.

Device-Specific Model: We grouped the data from the users who used the same devices. Seven

users out of the fourteen users used Google Nexus, six used Samsung Galaxy and one used
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HTC. As in the previous model, we applied all subset of features and different classifier onto

these resulting three data sets. The best features and the measurement values are calculated from

running a 10-fold cross validation are shown in Table 4.2. Combining the data from different

users degrade the classifiers accuracy. The recall, precision and F-measure were above 0.83

for all the classifiers. The sensor subset for each device is subset of the sensors used by those

users. For example, user 5, 6, 12, 15, 16 and 20 are the users who had Samsung Galaxy devices,

therefore the best classifier subset for Samsung Galaxy is a subset of the sensors used by those

users. User 14 is the only user who had HTC device. This is why the result for HTC is same as

that for user 14.

Generalized Model: We combined the features from all the user into a single dataset. We used

these features to generate a generalized classifier. The results are shown in Table 4.2 (last row).

Similar to device-specific model, aggregating the data from different users degrades the classifier

accuracy. The recall, precision and F-measure were all above 0.83.

4.3.4.2 Snap Detection

For the Snap gesture, we collected the data from 19 users as described in Section 4.3.3. Each

of these users performed 30 Snap operations. Similar to the Call gesture, we experiment three

different classification settings for the Snap gesture.

User-Specific Model: We divided the data into nineteen sets based on the user id. Then, we built

a classifier to distinguish the Snap gesture from other gestures collected by Call, Snap, Snoop

and Control apps for each of the sets. The average time taken by the users to take a picture was

four seconds. Therefore, we compared the Snap gesture with the four seconds of each other

gesture. The best features and the measurement values are calculated from running a 10-fold

cross validation as shown in Table 4.3. The precision, recall and F-measure are on average 0.98,

0.99 and 0.98, respectively. While the user is taking a picture, she moves the phone and adjusts

the orientation of the phone, this can be measured by the Accelerometer, Pressure, Orientation,

Gyroscope, Magnetic Field, Rotation and Game Rotation sensors. For that reason, all the sensors

subset includes at least one of those sensors. The accuracy of Snap classifier is better than for the

Call, which might be because the average time for Snap is four seconds and that for Call is one

second.
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Device-Specific Model: We aggregated the users’ data based on their devices. The best features

and the measurement values are calculated from running a 10-fold cross validation are shown

in Table 4.3. The F-measure of the classifiers is above 0.92 for all the classifiers. We had only

one user who had HTC phone in the Snap experiment; the result for the HTC is same as the

results for user 14. For the other devices, the sensor subset is a subset of the best sensors subset

of different users. Again, the classifier accuracy degraded when we combined data from different

model phones.

Generalized Model: Here, we grouped the features from all the users into a single dataset. The

results are shown in the last row of Table 4.3. The precision, recall and F-measure are 0.89, 0.93

and 0.91 respectively. The sensor subset consists of subset of the sensors used in the user-specific

model.

4.3.4.3 Tap Detection

For the Tap gesture, we could collect the data from 20 users as described in Section 4.3.3. Each

of these users performed 30 NFC taps. We then performed three different experiments to evaluate

our three classification models for the Tap gesture.

User-Specific Model: We divided the data into twenty sets according to the user id. Then, we built

a classifier to distinguish the Tap gesture from other gestures collected by Call, Snap, Snoop and

Control apps for each of the sets. The best features and the measurement values are calculated

from running a 10-fold cross validation as shown in Table 4.4. The Tap gesture requires the user

to move his device near to the NFC tag, the reading then starts, the user should keep the device

on that position and then move it far from the NFC tag. Normally the users hold their devices in

certain orientation while reading the NFC tag, finding the comfortable way to attach the NFC

sensor in their device to the NFC tag. The phone movements can be measured by the change

in Linear Accelerometer, Gravity, Accelerometer and Pressure sensors, and similar to Snap, the

orientation can be measured by Orientation, Magnetic Field, Rotation and Game Rotation sensors.

For that reason, each of the subsets includes at least one of each of those sets of sensors. The

recall and F-measure were on average 0.98 and 0.97, respectively, which indicate very good

performance.
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TABLE 4.3: Results of using the optimal feature subset for the classification of Snap and Others

Classification User ID Classifier Features Precision Recall F-Measure
Model /Device Subset

1 RF P,Gy,A,R,LA 0.97 1.00 0.98
2 SL Gy,O,LA 0.97 1.00 0.98
3 NB M,P,GR 0.97 1.00 0.98

User- 4 L G,P,M,GR 1.00 1.00 1.00
Specific 5 NB A,M,GR 1.00 1.00 1.00

7 RF A,P,M 0.97 1.00 0.98
8 NB O,A,M 1.00 1.00 1.00
9 L A,M,LA,GR 0.97 1.00 0.98
10 RF GR,M,O,P 0.97 1.00 0.99
11 RF G,Gy,P 1.00 1.00 1.00
12 RF A,G,Gy,P,R 1.00 1.00 1.00
13 RF GR,P 0.97 0.93 0.95
14 RT A,GR,G,R 0.91 1.00 0.95
16 SMO M,P,R 1.00 0.97 0.98
18 L A,LA,P 0.97 0.97 0.97
19 RF GR,Gy,P 0.97 1.00 0.99
21 RT G,LA,O,P,R 1.00 1.00 1.00
22 RF GR,Gy,P 1.00 1.00 1.00
23 NB A,GR,M,R 1.00 0.97 0.98

Google RF A,GR,G,M, 0.89 0.95 0.92
Device- Nexus O,P
Specific Samsung RF G,Gy,M,O,P 0.96 0.98 0.97

Galaxy
HTC RT A,GR,G,R 0.91 1.00 0.95
LG RF LA,M,P,R 1.00 0.98 0.99

Generalized ALL RF A,LA,M,O,P 0.89 0.93 0.91

Device-Specific Model: We aggregated the users’ data based on their devices. The best features

and the measurement values are calculated from running a 10-fold cross validation are shown

in Table 4.4. The average recall and F-measure are 0.96 and 0.94 respectively for all of the

classifiers.

Generalized Model: We grouped the features from all the users into a single dataset and we used

these features to generate a generalized classifier. The results are shown in Table 4.4 (last row).
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TABLE 4.4: Results of using the optimal feature subset for the classification of Tap and Others

Classification User ID Classifier Features Precision Recall F-Measure
Model /Device Subset

1 RT G,M,GR 1.00 0.97 0.98
2 NB P,M 1.00 0.97 0.98
3 RT P,A,GR 1.00 0.97 0.98

User- 4 NB GY,M,A 1.00 0.97 0.98
Specific 5 NB P,M 1.00 1.00 1.00

6 RF G,R,,GR 1.00 1.00 1.00
7 RF P,O,M 0.97 1.00 0.98
8 NB P,M 1.00 1.00 1.00
9 NB GR,M,P 0.94 1.00 0.97
11 NB A,Gy,M 0.97 1.00 0.98
12 NB A,G,O,P,R 1.00 1.00 1.00
13 RF O,P,R 0.92 0.96 0.94
14 RF A,LA,M 0.82 0.93 0.88
16 RF GR,M,O,P,R 1.00 0.97 0.98
17 RF A,GR,G,M,O 0.91 0.97 0.94
18 RF A,GR,G,M,O 0.97 1.00 0.99
19 L GR,G,O,P 1.00 1.00 1.00
21 RT M,P 0.97 1.00 0.98
22 RF Gy,O,P 1.00 1.00 1.00
23 RT GR,Gy,P 0.86 0.97 0.91

Google RF GR,G,Gy,M, 0.93 0.92 0.92
Device- Nexus O,P,R
Specific Samsung RF LA,M,O,P,R 0.96 0.97 0.96

Galaxy
HTC RF A,G,LA,M 0.82 0.93 0.88
LG RF A,G,M,O,P 0.96 1.00 0.98

Generalized ALL RF GR,G,M,O,P 0.89 0.90 0.89

The precision, recall, and F-measure are above 0.89. The best sensors subset consists of the

common sensors between all device models and some additional sensors.

4.4 Summary

In this chapter, we presented a novel approach to protecting sensitive mobile device services

against many prominent attacks. The approach captures user’s intent to access a given service
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via user friendly explicit gesture or transparent implicit gestures. These gestures are either very

simple, quick and intuitive or even transparent for the user, but would be very hard for the attacker

to exhibit without user’s knowledge. We presented the design and implementation of the hand

waving gesture using different sensors, already available on most smartphones.
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CHAPTER 5

CONTEXT ENHANCED AUTHENTICATION

5.1 Introduction

In the previous chapter, we have shown how the implicit and the explicit contexts can be used

to authorize a benign app requesting for a sensitive permission. The implicit gesture/context

has an advantage over the explicit gesture/context as the entire process is transparent to the user.

This transparency is a key component when we need to authenticate users interacting with the

Zero-Interaction Authentication (ZIA) system.

In this chapter, we present how we can use two different implicit context provided by users

in the form of implicit gestures to authenticate them from other users. First, we show that we can

authenticate a person performing a tap gesture to process a transaction at the Point-of-Sale (POS)

payment terminal using Near Field Communications (NFC) reader. Then, we show that a person

can be authenticated using his gait and/or arm movement patterns so that he can access a ZIA

system using multiple devices.

5.2 NFC Tap Authentication

NFC in smartphones allows a phone to communicate with any other NFC device (an external

contactless reader or another NFC phone) when they are in close proximity, typically upon

tapping to one another. This facilitates many important applications in day-to-day life including

payments (using the phone essentially as a digital wallet), access control for buildings [113–

115] and vehicles [116, 117], and public transit ticketing [118, 119], to name a few. The NFC

technology, especially mobile payments, is already popular in many countries (e.g., China and

Japan) [120] and has been gaining momentum in many other countries (e.g., the US). Introduction

of Apple Pay [3], Android Pay [121] and Samsung Pay [122] have further boosted the growth of

NFC payments.

With the rise of NFC deployments, a natural concern pertains to the security of NFC phones

and NFC applications. One obvious and serious threat is that of loss or theft of NFC phones –
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an unauthorized entity in physical possession of an NFC phone can fully compromise the NFC

functionality leading to severe consequences (e.g., making hefty purchases on behalf of the user

or entering the user’s office premises). Given many current mobile users do not lock their phones

(e.g., with a PIN or pattern) [123], the abuse of NFC services becomes a real threat. A report by

Boyles et al. [124] estimates that nearly one third of cell phone owners have experienced a lost

or stolen phone, and 12% have had another person access the contents of their phone in a way

that made them feel their privacy was invaded. Lookout [125], from 2011 lost phone data of 15+

million users worldwide, reported that more than $11 million dollars worth of phones were lost

during the Christmas alone and estimated that lost phone could cost $30 billion dollars in 2012

for the U.S. consumers alone.

To address this problem, many NFC apps (e.g., Google Wallet) authenticate the user prior

to making an NFC transaction with a PIN or password. This approach, however, has two major

problems. First, given PINs or passwords are only short and weak secrets (especially in the context

of mobile phones with small form factors), they can be easily guessed or brute-forced [126–128].

Second, typing in the PIN or password for each NFC transaction can be tedious and potentially

annoying for the user, thereby significantly undermining the usability of NFC technology as it

was inherently designed for easy and fast transactions [129, 130].

Given the rather poor security and usability offered by PINs/passwords for the purpose of

NFC user authentication, we set out to investigate a fully transparent and hard to compromise

authentication mechanism. In short, we propose a transparent behavioral biometrics [131, 132]

mechanism drawn from the gesture involving the tapping of a phone with a transaction terminal

(e.g., an external NFC reader at point of service) while completing an NFC transaction.

5.2.1 Our Approach: Tap Biometrics

When a user makes an NFC transaction using her NFC-enabled device (let’s say an NFC phone),

she taps her phone to the transaction terminal and holds it for a while. When the transaction

completes or gets interrupted, she removes her phone away from the terminal. These steps are

illustrated in Figure 5.1. Tapping a phone to an NFC transaction terminal involves a particular

motion of her phone which can be measured using different embedded sensors on the phone. The

motion sensors and the position sensors can give us information about how the phone was moved.

Also, there may be significant changes in the pressure as detected by the device when moved.
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FIGURE 5.1: Overview of our system. The user gets authenticated just based on the uniqueness
of his tapping gesture, a form of behavioral biometrics. The process is completely transparent to

the user – no additional work is needed beyond what is currently done in NFC systems.

This can also be used to analyze how the device was moved.

In this dissertation, we show that the tapping gesture performed by a user before making

NFC transactions is unique to the user and can be detected in a robust manner using machine

learning classifiers and multiple sensors available on the phone. In the following section, we will

demonstrate that our approach meets all of our design goals introduced in the prior section.

In our model, we add another layer of a security check on top of the default authentication

system of Android and that of an NFC transaction app. Android can authenticate a user via

different options such as passwords, PINs, face recognition, or fingerprint scanner. However,

many users do not prefer to lock their phones. Also, using PINs or fingerprint scans for each

transaction can be burdensome. We provide a way to authenticate the user before making the

transaction in a way that does not require any explicit user action – just tapping the phone to

the terminal (as is done currently) is sufficient. Our approach is invisible to users and requires

no additional actions from the users. Our approach accurately identifies legitimate users and

prevents unauthorized NFC transactions. It can also work seamlessly with other authentication

47



FIGURE 5.2: NFC Tap Biometrics Detection System Architecture: Control Flow

methods, such as PINs or fingerprint scans when used, to achieve strong two-factor security.

Figure 5.2 depicts the control flow for our approach. Our system analyzes the collected

sensor values and compares with a pre-registered template of the user’s tapping gesture. Our

system grants permissions to complete NFC transactions if and only if the sensor values match

with the user’s tapping gestures. Our system includes four modules: (1) NFC Transaction App

which provides the user interface and handles NFC communication, (2) Transaction Processing

Module which processes the NFC transaction messages, (3) Authenticator Module which is a

trained classifier that uniquely identifies the user’s tapping gesture, and (4) Permission Manager

that reads the sensor values, communicates with the Authenticator Module and grants the NFC

Transaction App with the permission to interact with the Transaction Processing Module.

We assume that the Transaction Processing Module executes as a Trusted application inside

trusted execution environment (TEE), e.g., ARM TrustZone [133]. ARM TrustZone divides a

device platform into two execution environments, namely, normal world and secure world. The

normal world is used to host rich Operating Systems (OS), like Android OS, and user applications

while it allows processing of security sensitive codes in isolation within the secure world. The

two worlds communicate with each other via secure monitor.
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In our approach, the trusted application is responsible for processing transaction specific

messages, handling necessary cryptographic operations and maintaining secrets like keys required

for NFC transactions. On the other hand, NFC Transaction App running on the normal world

handles user interactions and NFC communication. To authenticate a user based on her tapping

gesture, our system begins collecting information from different sensors as soon as the user opens

NFC Transaction App. Our system also records the time when the phone receives the first NFC

message from the NFC transaction terminal. At this point, the user must have tapped her phone

to the NFC transaction terminal and she is holding her phone towards the terminal to complete

the NFC transaction.

Whenever the NFC Transaction App starts, it informs the Permission Manager to indicate

that it has started. Permission Manager immediately starts collecting the sensor values. When

the NFC Transaction App requires to process transaction messages, it requests the Permission

Manager by sending NFC event begin time. The Permission Manager sends the set of appropriate

sensor values to the Authenticator. Once the Authenticator confirms the tapping gesture as

belonging to the user, the Permission Manager permits the NFC Transaction App to interact with

the transaction module to complete the NFC transaction.

5.2.2 Application Design

To develop and evaluate our authentication mechanism based on tap gesture biometrics, we first

needed to collect the tap gesture data from different users. After the data collection, different

features were to be generated to robustly identify individual user data from other user data. We

chose to implement our system in the Android OS. For the data collection, we created two

modules: (1) NFC Transaction Module for a user to perform the tap gesture on a NFC transaction

terminal which simulates NFC transactions, and (2) Sensor Module to record sensor values when

the user performs the tap so that underlying data can be analyzed and later used to identify the

user.

5.2.2.1 NFC Transaction Module

Android provides NFC Host Card Emulation APIs that allows the NFC-enabled phone to acts as

a contactless card and allows NFC applications to communicate with external contactless readers.

We designed our NFC module to simulate a real-world NFC transaction application. For this, we
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FIGURE 5.3: Sensor data collection flowchart.

chose to implement an NFC based public transit ticketing system. We designed and implemented

both NFC ticketing application on the phone and the ticket reader application that controls the

NFC transaction terminal. Both applications use a shared 128-bit AES key to authenticate each

other during an NFC transaction. Specifically, we used three-pass mutual authentication protocol

of MIFARE DESFire EV1 1 as Kasper et al. [134] elaborated. Ticketing applications based on

Mifare DESFire are widely used by public transit authorities around the world. NFC ticketing is

only one aspect of an NFC transaction, nevertheless, it can be used as an analogy to understand

user’s NFC tapping gesture during any NFC transaction (e.g., for payments or building entry).

5.2.2.2 Sensor Module

Android platform provides several sensors that allow developers to monitor the motion of the

device, the position of the device or the environment in which the device is. To be specific, the

Android platform provides three broad categories of sensors, namely, motion sensors which
1MIFARE DESFire EV1: http://www.nxp.com/products/identification_and_security/

smart_card_ics/mifare_smart_card_ics/mifare_desfire/series/MIFARE_DESFIRE_
EV1_4K.html
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measure acceleration forces and rotational forces along three axes, position sensors which measure

physical position and orientation of the device, and environmental sensors which measure various

environment parameters such as humidity, light illumination, ambient temperature, pressure and

so on.

We created an Android service such that whenever the service is called by another activity or

service, the service starts recording selected sensor values. The sensors we considered in our app

are listed in Table 4.1. The sensors values are logged along with the timestamps so that they can

be used for statistical analysis later on. When the calling app sends the stop service command

to the service, the service stops recording the sensor data. The flow chart of this data collection

process is shown in Figure 5.3.

5.2.3 Data Collection

To develop and evaluate our approach, we first needed to collect data from multiple users. We

also wanted to capture various types of gestures that users make while tapping their NFC-

enabled phone to the terminals installed for different types of NFC applications. There is no

standard instruction on how NFC transaction terminals should be placed, e.g., they can be placed

horizontally, vertically or at certain angle from the surface where they are placed at the NFC

transaction terminals. We designed our data collection engine to capture four different scenarios

based on how the NFC transaction terminals may be installed: (1) Waist-Flat: horizontally

at the height of 0.75-1 meter above the ground, (2) Waist-Angular: at 45 degree angle with

horizontal surface at the height of 0.75-1 meter above the ground, (3) Chest-Angular: at 45

degree angle with the vertical surface at the height of 1-1.5 meter above the ground, and (4)

Chest-Vertical: vertically at the height of 1-1.5 meter above the ground. A user tapping an NFC

reader in the waist-flat scenario is shown in Figure 5.4. We implemented an app as discussed in

the Section 5.2.2 and collected data using Google Nexus 5 as our phone model. We used NFC

reader ACR 122U as the transaction terminal.

As the user opens the app to make NFC transactions, our system runs in the background as a

service as mentioned in the Section 5.2.2.2. We continuously recorded the sensor values for the

experiment and detailed analysis, however, in the real-life implementation, the sensors can be

turned off as soon as the transaction success message is received or shortly thereafter.

For data collection, we invited volunteers to our lab via word of mouth. These volunteers
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FIGURE 5.4: A user tapping an NFC reader at waist-flat position. In waist-flat scenario, the
NFC reader is kept at the height of 0.75-1 m from the ground and horizontally on the table.

were university students from different countries situated in the US and Finland. There were a

total of 20 volunteers (17 male and 3 female, between the age of 25-35) who participated in our

study. We only observed four left handed users, while rest of them were right handed, and none

of them swapped their phone from one hand to other during the experiment. The experiment was

performed in lab settings. We provided a smartphone to the volunteers and asked them to tap it

to the reader. Each user opened the app, tapped to the reader to initiate an NFC transaction and

held it there until he/she was notified about the transaction complete message as displayed on the

phone. Then the user brought the phone away from the reader. We asked each user to pause for a

few seconds before he/she tapped again for another transaction.

In one session, we asked the user to tap and perform the transaction five times for each of the

four different reader positions mentioned above, i.e., after the user tapped the reader five times,

we changed the position of the reader to a different setting. Hence, in a session, we collected 20

tap gesture samples from each user (five each for four different reader positions). We conducted

six sessions collecting 120 tap gesture samples for each user (30 samples of data for each of the

four positions of the reader). These six sessions were conducted in time spans ranging from either

one day to six days depending upon the availability of the volunteers. However, each session had

sufficient gap to break the user’s rhythm of tapping and add variation to the user’s hand motion.
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5.2.4 Tap Biometrics Detection

5.2.4.1 Set-Up and Design

In order to evaluate the feasibility of the proposed tap gesture biometrics as an authentication

scheme, we utilized the machine learning approach based on the underlying readings of the

motion sensors, the position sensors and the ambient pressure sensors (the different sensor

employed are listed in Table 4.1).

Classifier: We utilized the Random Forest classifier in our analysis. Random Forest is an

ensemble approach based on the generation of many classification trees, where each tree is

constructed using a separate bootstrap sample of the data. In order to classify a new input, the

new input is run down on all the trees and the result is determined based on majority voting.

Random trees have been shown to be a strong competitor to Support Vector Machine (SVM), and

its performance frequently outperforms SVM [135]. Random Forest is efficient, can estimate the

importance of the features, and is robust against noise [135].

Features: For each of the position and the motion sensor instances, we calculated the square

root of the sum of squares for that instance’s axes components (X, Y, Z), such that it captures the

significance of all the three axes. Then, we calculated the mean and the standard deviation of all

the instances in the sample that corresponds to a single tap. This gave us twenty features, which

we used for training and testing of the Random Forest classifier.

The twenty features were used as input to train the classifier to differentiate a user from

other users. We evaluated two training models for the classification task: (1) scenario-specific

model, and (2) general model. The scenario-specific model requires each user to train a classifier

on all reader (transaction terminal) positions (described in Section 5.2.3) before using the app.

This model assumes that the classifier knows or is informed about the position of the reader

(i.e., the scenario for the transaction). The generalized model, in contrast, uses all the data from

all different scenarios of the user and builds a global classifier per user regardless of the reader

position. Moreover, we have tested multiple gesture duration by utilizing the sensor data of one,

two and three seconds before the transaction begins. Our goal was to determine the optimal

duration of the tapping gesture which can uniquely identify each user.

In all of the classification tasks, the positive class corresponds to the tap gesture of the
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legitimate user and the negative class corresponds to impersonator (other user). Therefore, true

positive (TP) represents the number of times the legitimate user is granted access, true negative

(TN) represents the number of times the impersonator is rejected, false positive (FP) represents

the number of times the impersonator is granted access and false negative (FN) represents the

number of times the correct user is rejected.

As performance measures for our classifiers, we used Precision, Recall and F-measure (F1

score), as shown in Equations 4.1 and 4.2. Precision measures the security of the proposed

system, i.e., the accuracy of the system in rejecting impersonators. Recall measures the usability

of the proposed system as low recall leads to high rejection rate of the legitimate users. F-measure

considers both the usability and the security of the system. To make our system both usable and

secure, ideally, we would like to have F-measure as close as 1.

5.2.4.2 Classification Results

General Model: As mentioned in Section 5.2.3, we collected data from 20 users. Each user

performed a total of 120 taps. We divided the collected data into 20 sets based on the users’

identities (ids). In order to build a classifier to authenticate a user based on her tapping biometrics,

we defined two classes. The first class contains the Tap data from a specific user, and the other

class contains randomly selected Tap data from other users. We analyzed three different duration

of the tapping gesture, by considering one, two and three seconds before the transaction begins.

After running a 10-fold cross validation, we obtain results for different duration and different

scenarios. The results show that one second of sensor data is enough for authenticating the user,

shown with high F-Measure, recall and precision. Increasing the gesture duration did not improve

the accuracy; it would rather decrease the accuracy as it may incorporate random user movement

before the actual tapping gesture starts. We summarize the results for different scenarios with

different durations of the tap gesture in Table 5.1. These results suggest that increasing the tap

duration does not seem to increase the accuracy and therefore one second duration seems optimal.

Hence, the rest of the experiments reported after this section are conducted with the one second

duration of the tap gesture.

In our experiment, 12 out of the 20 users performed all the tapping in one day, and, for this

sub-group of users, the average and standard deviation (for tapping duration of 1 second before)
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TABLE 5.1: Performance of the classifier for Generalized and Scenario-specific models. Each
column shows average (Avg) and standard deviation (S.D.) for F-Measure, Recall and Precision
for tapping duration of one second, two seconds and three seconds respectively. Precision
captures the security of the system while recall captures the usability of the system. F-measure
accounts for both precision and recall. The model seems to perform equally well for all the three

different duration of the tapping gestures.

One Second Two Seconds Three Seconds
F-Measure Recall Precision F-Measure Recall Precision F-Measure Recall Precision
Avg (S.D.) Avg (S.D.) Avg (S.D.) Avg (S.D.) Avg (S.D.) Avg (S.D.) Avg (S.D.) Avg (S.D.) Avg (S.D.)

Generalized 0.93 (0.05) 0.97 (0.03) 0.91 (0.08) 0.93 (0.05) 0.95 (0.04) 0.9 (0.07) 0.92 (0.06) 0.96 (0.03) 0.89 (0.08)
Chest-Angular 0.89 (0.06) 0.92 (0.06) 0.87 (0.07) 0.89 (0.06) 0.93 (0.05) 0.86 (0.09) 0.90 (0.05) 0.93 (0.06) 0.87 (0.05)
Waist-Flat 0.91 (0.06) 0.95 (0.05) 0.88 (0.07) 0.92 (0.05) 0.95 (0.06) 0.90 (0.06) 0.90 (0.06) 0.93 (0.05) 0.87 (0.08)
Chest-Vertical 0.92 (0.07) 0.94 (0.05) 0.89 (0.09) 0.91 (0.04) 0.93 (0.04) 0.89 (0.05) 0.90 (0.06) 0.93 (0.05) 0.88 (0.08)
Waist-Angular 0.91 (0.06) 0.95 (0.04) 0.88 (0.08) 0.89 (0.07) 0.92 (0.06) 0.86 (0.08) 0.89 (0.06) 0.91 (0.07) 0.87 (0.07)

were 0.97 (0.03) for these users. The data collection from the rest of the users spanned between 4

and 22 days, and, for these users, the average and standard deviation of the F-Measure dropped

to 0.88 (0.03). In practice, the classification models can be re-trained as the user makes new

successful transactions such that the accuracy does not drop as the time gap between the testing

and training data increases.

Scenario-Specific Model: In our scenario-specific model, we divided the collected data into 80

sets based on the user’s ids and the scenario’s (reader positions) id. In order to build a classifier

to authenticate the user based on the tapping in a given specific scenario, we define two classes.

The first class has the tap gesture data from a specific user in a specific scenario, and the other

class contains randomly selected data from other users corresponding to the same scenario.

The classification results are calculated after running a 10-fold cross validation and shown in

Table 5.1. The classification accuracy for the scenario-specific model is less than its correspondent

in the general model. This may be due to the reduced number of instances in each of the files (30

versus 120 in the general model). However, both models seem to perform about equally well in

detecting the tap biometrics.

5.2.4.3 Summary of Results

The results obtained from both the classification models show that the tap gesture can be detected

in a robust manner and thus will serve as an effective method for authenticating the users of NFC

devices. This is reflected in high precision, recall and F-measure for both models. The general

model can be used in applications where the user can train the model with tapping gestures

in different scenarios (reader positions). The scenario-specific model can be used in practice
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when the phone can acquire the knowledge about the reader position. This knowledge can be

acquired either by asking the user about the reader position, although this will require some user

involvement in the authentication process, or the terminal can send its position to the phone.

5.2.4.4 Power Analysis

Since our app records sensor values, we set forth to analyze if our system is lightweight. To

measure the battery power consumption, we used PowerTutor [136]. PowerTutor is an app

readily available on Google PlayStore2 which estimates the power/energy consumed by different

apps installed on the phone. The app provides the power/energy consumed by apps based on

various parameters such as screen brightness, CPU usage, Wi-Fi polling and so on. We compared

the energy consumed by our app with NFCtools3, one of the most popular apps for NFC in

Google PlayStore. We logged the energy consumption for both apps accounting for CPU usage

only.

We ran PowerTutor app to monitor the power consumption of all the apps on the phone.

Then, we performed 20 taps with our app against the NFC reader, and then we performed 20 taps

with NFCtools against an NFC tag. We observed that our app consumes 0.2 J of energy per tap

compared to 0.13 J of energy per tap by NFCtools. This shows that our system is lightweight

as it only uses an additional 0.07 J of energy for the sensor recordings.

5.2.5 Active Adversarial Attack

From the analysis presented in Section 5.2.4, we can see that our approach is robust and can

authenticate users with a high accuracy. That is, the approach can be effectively used to differen-

tiate one user from the other. However, it is possible that the attacker may deliberately attempt to

mimic the tapping gesture exhibited by a victim user. In this section, we assess our tap biometrics

system against such an active adversary.

If the attacker tries to authenticate himself as the victim user, he has to move his hand in

such a way that his hand motion as sensed by different sensors correlates significantly with the

tapping gesture exhibited by the legitimate user. Even when the attacker observes how the user

taps, it may still be difficult for the attacker to reproduce the tapping gesture as our gesture is
2https://play.google.com/store/apps/details?id=edu.umich.PowerTutor
3https://play.google.com/store/apps/details?id=com.wakdev.wdnfc
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sensed by multiple sensors and all of the sensor values should match with the user’s template.

Mimicking multiple sensor events simultaneously would be harder for the attacker and so our

approach should provide better resistance to active attacks compared to systems that use single

or fewer sensors. While robotic attacks have been reported against other authentication systems

(such as the one developed by Serwadda et al. [137], such attacks will not apply to our system

since authentication is to be performed by a real human user in the presence of retail personnel

and using a robot to make a purchase at the terminal would clearly raise a suspicion.

We proceeded to evaluate the robustness of our system against human-based observation

and active adversarial attacks. For our evaluation, we designed an active attack that aimed at

maximizing the attacker capabilities in defeating our system. If our system could defeat this

attacker, it could also defeat other weaker attackers. To this end, we asked one of our users to

serve the role of the victim while a researcher served the role of an expert attacker. The victim and

the attacker had similar body structures, i.e., their height and weight were similar, which would

have facilitated the attacker to better mimic the victim’s tapping gesture. We asked the victim

user to perform his tapping for 30 times in each of the four reader orientation scenarios while the

attacker recorded a clear video of him tapping. After the total 120 taps were collected from the

victim, we built the classifier for this user following the procedure described in Section 5.2.4.

The attacker then closely watched the previously recorded video and practiced to re-create the

victim’s tapping gesture against a dummy reader several times while receiving a feedback from

his friend (a colluding attacker). This simulated the attacker’s training phase performed at home

(i.e., not at the retail store in the presence of the authentication terminal/reader). Finally, during

the actual attack phase, the attacker performed 20 taps and each of these taps was tested against

the victim’s classifier built earlier.

The success rate of this active attacker against our authentication systems is shown in

Table 5.2. From these results, we can claim that even when an attacker practices and mimics the

hand motion of the victim, he cannot succeed. Also, we can claim that we have a strong attacker

as the attacker is fully trained watching the victim’s tap video recording and getting feedback

from a colluding attacker. Moreover, the victim we chose matched the body structure of the

attacker which may further facilitate the attack. Since our system can defeat such strong attacker,

it can, therefore, defeat attacks in other scenarios where the victim’s structure is different from

the attacker’s and/or where the attacker cannot fully observe the victim and train.
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TABLE 5.2: The results for the active attack with tap duration of one second. The performance
of the classifier built using 120 taps for generalized classification model as well as using 30 taps
for different scenario specific classification model for the particular victim is shown. The last
column shows the attack success rate FPR (False Positive Rate) for the corresponding classifier.
FPR represents the rate at which the attacker was falsely classified as the victim. The attacker

was not successful at all in mimicking the victim’s tap gesture.

Victim Attacker
F-measure Recall Precision FPR

Generalized 0.983 0.975 0.992 0

Chest-Angular 0.984 1 0.968 0

Waist-Flat 0.967 0.967 0.967 0

Chest-Vertical 0.968 1 0.938 0

Waist-Angular 0.984 1 0.968 0

5.2.6 Summary

In this section, we presented an approach to authenticate a user transparently before making an

NFC transaction. The approach captures the user’s hand movement and identifies the user based

on the sensor data recorded by the device. The gesture is very unique to the user and is difficult for

the attacker to mimic. We presented the design and implementation of the proposed authentication

approach. Our results suggest that our approach could be very effective in authenticating users and

preventing misuse of NFC services in case of theft or loss of NFC phone, without necessitating

any additional user burden.

5.3 WUZIA: Walk Unlock ZIA

Zero-interaction authentication (ZIA) [29] represents a rapidly emerging paradigm, in which a

verifier device authenticates a prover device in physical proximity of the verifier while requiring

no interaction by the user of the prover device. The user, carrying the prover, usually just walks

towards the verifier and the verifier gets unlocked automatically. In this approach, the prover and

verifier devices pre-share a security association, and simply execute a challenge-response based

protocol for the verifier to authenticate the prover.

The zero-interaction requirement is intended to improve the usability of the authentication

process, which may increase the chances of adoption. Indeed, ZIA systems are already getting

deployed in many real-world application scenarios. For example, BlueProximity [138] allows

a user to unlock the idle screen lock in her computer merely by physically approaching the
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computer while in possession of a mobile phone, without having to perform any other action,

such as typing in a password. Other ZIA systems include: “Passive keyless entry and start”

systems like “Keyless-Go” [139], PhoneAuth [108], and access control systems based on wearable

devices [140].

However, the zero-interactive nature of ZIA systems opens up a fundamental vulnerability

— unauthorized physical access to the prover device, e.g., during lunch-time or upon theft, would

allow an attacker to have unfettered access to the verifier device. Since the prover device does

not require any authorization from the user prior to responding to the verifier device in a ZIA

authentication session, mere possession of a lost or stolen prover device is sufficient to gain

access to the verifier device. Since users’ personal devices and items (e.g., smartphones or car

keys) are prone to loss or theft, this issue makes the ZIA systems inherently weak and insecure.

Speaking about statistics, digital trends [141] reports that Americans lost $30 billion worth of

mobile phones in 2011. Moreover, the trend has been increasing as reported by Lookout [142]

that 3.1 million Americans consumers were victims of smartphone theft which is double the

number reported in 2012 by Consumer Reports [143].

This raises an important research challenge: how to protect the ZIA systems in the face of

loss or theft of prover devices, while still keeping the authentication process transparent and

zero-interactive for the user?. In this section, we set out to address this challenge by the use

of walking or gait pattern biometrics prior to authorizing a ZIA authentication session. In

other words, the prover device carried by the user will respond to the authentication session

with the verifier device only when it (the prover device) detects that it is being carried by the

legitimate user. As the user walks towards the verifier device, the prover device first detects

the walking pattern of the user, and only then gets unlocked and responds to the verifier device.

Since a user’s walking pattern is believed to be unique, only that user (no imposter) would be

able unlock the prover device to gain access to the verifier device in a ZIA session. Since

the user has to nevertheless walk towards the verifier device as part of the ZIA authentication

process, no additional effort is imposed on the user, thereby preserving the zero-interactivity and

user-transparency requirement.

While walking-based biometrics schemes have been studied in prior literature for other

application settings (e.g., [75, 76, 80, 81, 83, 86, 91, 92, 94]), our main novelty lies in two

important aspects:
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1. The use of multiple sensors available on the current breed of devices (e.g., accelerometer,

gyroscope and magnetometer).

2. The use of multiple devices carried by the user, in particular, an “in-pocket” smartphone

and a “wrist-worn” smartwatch. Each of these devices capture unique physiological and

behavioral facets of the user’s walking pattern (e.g., phone captures hip movement and

watch captures hand movement).

5.3.1 Our Approach: Walk Unlock ZIA

To protect the unlocking of V in the face of loss or theft of P in a ZIA scheme, we propose

to authenticate the user based on a gait-based authentication system [32]. In other words, we

propose to authenticate the user with her unique walking pattern. Different categories of sensors

are embedded nowadays into smartphones and smartwatches such as motion, position and

environment sensors. Android OS, one of the most popular smart device operating systems,

provides APIs to support different categories of these sensors. We leverage these sensors,

especially motion and position sensors, to identify that the P device is undergoing a particular

activity, in a specific motion and orientation, as if the prover device is being carried/worn by

the legitimate user. This activity detected by the P device is transparent to the user since it is

performed implicitly while the user walks towards V .

While many types of P devices may be used to detect the user’s walking activity prior to

authorizing a ZIA session, in this work, we capture the walking biometrics using an “in-pocket”

device and/or a “wrist-worn” device, both devices having multiple on-board sensors. Specifically,

in such a walk-unlock ZIA (WUZIA) scheme, we aim to authenticate the user in a robust manner

using machine learning classifiers based on data drawn from multiple sensors from multiple

devices such as smartphone (in-pocket) and smartwatch (wrist-worn). The WUZIA authentication

process has been visualized in Figure 5.5. As shown in Figure 5.5, WUZIA requires changes only

in the P devices. The V device in an existing ZIA system is transparent to the authentication

process and requires no modification. Hence, WUZIA can be implemented in traditional ZIA

system such as BlueProximity [138] by just changing the smartphone app, without changing the

terminal software.
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FIGURE 5.5: WUZIA system overview: the P devices respond to the V device in a challenge-
response WUZIA authentication only if the P devices detect the valid walking pattern of the user.

We consider a smartphone and a smartwatch as the P devices.

In our WUZIA system, we use multiple devices, i.e., a smartphone and a smartwatch,

to authenticate the user. However, to analyze the efficiency and robustness of our system

systematically, we show:

1. walking pattern extraction using the in-pocket smartphone,

2. walking pattern extraction using the wrist-worn smartwatch, and

3. combination of the above two.

The second setting is suitable for situations where the user may leave her phone on the desk

space or the car dashboard, and will need to be logged in just by using her watch. Although

currently most of the smartwatches work along with companion devices (smartphones), we

believe that in the future such devices would be usable as stand-alone devices.

The threat model of WUZIA (Section 2.2.2.1) is in line with that of ZIA, except that the

former aims to be secure even under the adversarial possession of P . Since in the proposed

scheme, P can be either a smartphone or a smartwatch or both, the attacker may therefore possess

only one of the devices or both devices. After the attacker possesses P (one or both devices),

it will try to unlock V . Further, a WUZIA attacker may be active in the sense that it may try to

authenticate itself as the valid user by mimicking the walking pattern of the user as measured by
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P device(s). We allow such an attacker to observe (and record) the user in an attempt to imitate

the user’s walking habits.

In the WUZIA system, we assume that a relay attack prevention technique has already

been deployed (like in a ZIA system). That is, no relay attacks are possible between P and

V . Similarly, we assume that no relay attacks are possible between the P devices (phone and

watch). Also, we assume that the two P devices are securely paired with each other and that all

communication between them has been protected with traditional cryptographic mechanisms.

Given this threat model, in the following sections, we will show that our WUZIA system

satisfies all of our design goals, i.e., being lightweight, efficient, robust and transparent.

5.3.2 Application Design

To develop and evaluate our system for authenticating the users based on their walking pattern,

we need to collect the sensors data from the users’ smartphones and smartwatches while they are

walking. We developed a framework that encompasses two Android apps and a web app. The

web app utilizes Google Cloud Messaging (GCM) to send commands to the smartwatch. One of

the Android apps is installed on the smartphone and the other is installed on the smartwatch.

5.3.2.1 Web App

We used GCM to send start/stop commands to the smartphone, which upon receiving start/stop

recording the sensors data and send start/stop recording trigger to the smartwatch. We created a

simple HTML page with a text box to record the user information, a start recording button, and a

stop recording button. The experimenter first inputs the user information in the text box and hits

the start recording button when the user starts walking towards V . When the user touches V , the

experimenter hits the stop recording button. We used GCM for the purpose of data collection

only (in real-life implementation, GCM is not needed).

5.3.2.2 Smartphone App

The app on the smartphone waits for the GCM commands. As soon as it receives the GCM start

command, it sends a start recording trigger to the smartwatch and starts recording the sensors
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value. As soon as it receives the GCM stop command, it sends a stop recording trigger to the

smartwatch and stops recording the sensors value.

5.3.2.3 Smartwatch App

The app on the smartwatch waits for the smartphone’s triggers. Once it receives a start recording

trigger, it starts recording the sensors values and keeps on recording until it receives a stop

recording trigger. The recorded sensor values by the smartwatch are stored in the smartwatch.

The sensors utilized in our implementation, from both the smartphone and the smartwatch,

are listed in Table 4.1.

5.3.3 Data Collection

For data collection, we recruited 18 students in our University through the word of mouth. Among

these participants, 15 were male while 3 were female. To avoid any kind of inconsistency, we

used only one smartphone (LG Nexus 5 (D820) [144]) and one smartwatch (LG G watch R

(W110) [145]). Both devices have Android OS version 6.0.1. The participants were clearly

informed about the experiment such as the data being collected, the purpose of the experiment, and

that they can refuse to participate in the middle of the experiment or even request to delete their

collected data during or after the experiment has been conducted. Our University’s Institutional

Review Board approved the project.

After the participants were detailed about the experiment, we asked these volunteers to

wear the smartwatch on their (left/right) hand where they normally wear their watch and put

the smartphone in their (left/right) pocket where they normally put it during walking. We asked

each volunteer to walk from a door to the computer (distance of around 7 meters) as if they are

trying to log in. The experimenter sent the GCM command to the smartphone to start the sensors

recording when the user started walking. As soon as the user touches the keyboard as if the user

is trying to log into the computer, the experimenter sent another GCM command to stop the

sensors recording. We noticed that some of the users log into the machine standing while others

sit on a chair before they touch the keyboard. One of the participants even placed his phone on

the desk before he logged into the machine.
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We collected the data from these volunteers for a period of time ranging from 30 to 60 days

based on their availability. We asked each user to walk for around 7 meters (from the door to the

machine) for five times each day. We collected the data from each user for 10 days resulting in

50 samples of walking data from each user.

5.3.4 Walk Biometrics Detection

In order to evaluate the performance of the proposed gait biometrics as an authentication scheme,

we utilized the machine learning approach based on the underlying readings of the motion sensors,

and the position sensors from both of the phone and the watch.

5.3.4.1 Design

In order to evaluate the feasibility of the proposed gait based biometrics as an authentication

scheme, we utilized the machine learning approach based on the underlying readings of the

motion sensors, the position sensors and the ambient pressure sensors (the different sensor

employed are listed in Table 4.1).

Classifier: In our analysis, we utilized the Random Forest classifier. Random Forest is an

ensemble approach based on the generation of many classification trees, where each tree is

constructed using a separate bootstrap sample of the data. To classify a new input, the new input

is run down on all the trees and the result is determined based on majority voting. Random Forest

is efficient, can estimate the importance of the features, and is robust against noise [135]. Random

Forest outperforms other classifiers including support vector machines which are considered to

be the best classifier currently available [135, 146, 147].

Features: For each of the used sensor instances, we calculated the mean, the standard deviation

and the range of each of the axis (X,Y, Z), the square of each axis (X2, Y 2, Z2) and the square

root of the sum of squares for that instance’s axes components (X,Y, Z) of all the instances in

the sample that corresponds to a single walk instance. Twenty one features are extracted from

each of the used sensors, which give us a total of 336 features.

The 336 features or subset of them were used as input to train the classifier to differentiate a

user from other users. In the classification task, the positive class corresponds to the gait of the

legitimate user and the negative class corresponds to impersonator (other user). Therefore, true
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TABLE 5.3: Performance for the classifier for three different categories. The first three rows
show the performance of the classifier using all the sensors. The next three rows show the results
of using the sensors subset that provides the best average results. The last three rows show
the result of using the best sensors subset for each user. Highlighted cells emphasize the most

interesting results.

FNR FPR F-Measure recall precision

Avg (std. dev.)

O
ve

ra
ll Phone Only 0.058 (0.037) 0.068 (0.034) 0.937 (0.026) 0.942 (0.037) 0.934 (0.031)

Watch Only 0.085 (0.050) 0.105 (0.045) 0.906 (0.036) 0.915 (0.050) 0.899 (0.040)

Both 0.038 (0.047) 0.042 (0.031) 0.960 (0.030) 0.962 (0.047) 0.960 (0.029)

G
en

er
al

Phone Only 0.040 (0.035) 0.051 (0.033) 0.954 (0.025) 0.960 (0.035) 0.950 (0.031)

Watch Only 0.080 (0.049) 0.095 (0.043) 0.913 (0.030) 0.920 (0.049) 0.909 (0.038)

Both 0.022 (0.027) 0.030 (0.027) 0.974 (0.021) 0.978 (0.027) 0.971 (0.025)

In
di

vi
du

al Phone Only 0.018 (0.023) 0.036 (0.020) 0.973 (0.013) 0.982 (0.023) 0.965 (0.019)

Watch Only 0.046 (0.034) 0.063 (0.044) 0.947 (0.024) 0.954 (0.034) 0.941 (0.039)

Both 0.002 (0.006) 0.003 (0.008) 0.997 (0.005) 0.998 (0.006) 0.997 (0.008)

positive (TP) represents the number of times the legitimate user is granted access, true negative

(TN) represents the number of times the impersonator is rejected, false positive (FP) represents

the number of times the impersonator is granted access and false negative (FN) represents the

number of times the correct user is rejected.

As performance measures for our classifiers, we used false positive, false negative, precision,

recall and F-measure (F1 score), as shown in Equations 4.1 and 4.2. FP/precision measures

the security of the proposed system, i.e., the accuracy of the system in rejecting impersonators.

FN/recall measures the usability of the proposed system as high FN leads to high rejection rate

of the legitimate users. F-measure considers both the usability and the security of the system. To

make our system both usable and secure, ideally, we would like to have FP and FN as close as 0

and recall, precision and F-measure as close as 1.

5.3.4.2 Classification Results

As mentioned in Section 5.3.3, we collected data from 18 users. From each user, we collected 50

samples of walking data. We divided the collected data into 18 sets based on the users’ identities

(ids). In order to build a classifier to authenticate a user based on her gait biometrics, we defined
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two classes. The first class contains the walking data from a specific user, and the other class

contains randomly selected walking data from other users.

The classification results are obtained after running a 10-fold cross validation, and are

summarized in Table 5.3. The first part of Table 5.3 shows the results of using all the features

extracted using sensors from the phone, the watch and both devices. We found combining the

features from the phone and the watch sensors decreases the false negative from 5.8% in case of

only phone, 8.5% in case of using only watch to 3.8% and decreases the false positive from 6.8%

in case of only phone, 10.5% in case of using only watch to 4.2%.

The second part of Table 5.3 shows the results obtained by finding the sensor subset that

provides the best overall average. We found that utilizing only accelerometer, gyroscope, mag-

netometer and orientation sensors from phone rather than using all phone sensors decreases the

false negative and the false positive by around 2%. Similarly, using only accelerometer, gravity,

gyroscope, linear acceleration and magnetometer sensors from watch instead of using all watch

sensors decreases the false positive rate from 10.5% to 9.5% and the false negative rate from

8.5% to 8.0%. Furthermore, we found utilizing only phone accelerometer, phone gyroscope,

phone magnetometer, phone orientation, watch accelerometer, watch magnetometer, and watch

orientation sensors improves the classification accuracy (i.e., decrease both the false positive and

the false negative rate by 1.2% and 1.6%, respectively). These features subset also contained

the subset of features which were not correlated to each other. We leverage these uncorrelated

features to prevent our WUZIA system against a sophisticated form of active impersonation attack

[92], as we will describe in Section 5.3.5.2.

Finally, we checked the classification accuracy by selecting for each user the subset of

sensors that provides the best results. The results of this model are shown in the last three rows of

Table 5.3. We found out that the classifier performance improved over the previous two models.

Moreover, both the average false positive and the average false negative rates dropped to around

0% when we used the best subset from both of the devices.

5.3.4.3 Summary of Results

In summary, the results obtained from the classification models show that the gait biometrics can

be detected in a robust manner and thus will serve as an effective method for authenticating the
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users. The results show that the fusion of the phone and the watch sensors significantly enhances

the performance of detecting the gait biometrics. This is reflected in very low false positives and

false negatives.

5.3.5 Active Adversarial Attack

5.3.5.1 Human Imposter Attack

In a human-based imposter attack, the adversary tries to manually mimic a victim’s walking

pattern so that it can fool the WUZIA system. Our model assumes that the attacker already has

the physical possession of the P devices (phone and/or watch). Such kinds of attacks have

been explored in the literature by a few researchers [75, 76, 91]. However, most of these works

use accelerometer devices (e.g., MR100 wearable sensor) (not a phone or a watch used in our

scheme), and these devices are worn on the waist tied to the belt [75, 91] or on the limbs near the

shoes [76]. Therefore, we analyze how our system will perform when an attacker with similar

physical characteristics attempts to learn and imitate an individual’s walking pattern.

During the walking biometrics data collection, we recorded videos of eight different users.

The attacker (a researcher, serving the role of an expert attacker) chose two of the users as

victims (we call them V1 and V2) who exhibited the simplest walking pattern or distinctive visible

characteristics, upon careful visual inspection. If the attacker can not succeed in attacking such

simplistic walking patterns, then it would be harder for the attacker to succeed in attacking more

complex walking patterns.

In our experiment, the attacker watched the video several times so as to learn the feet and

the hand movement pattern of the user. While practicing, the attacker also tried to match the

time duration from the start to the end of the victim’s walk, using the video. After the attacker

felt comfortable with the timing and the walking pattern, we collected the data for the attacker

with the P devices walking towards the V device. The attacker was provided the visual feedback

while imitating the walk pattern.

To measure the performance of the imposter in mimicking the victim, we first trained a

random forest classifier with the victim’s data using 10-fold cross validation. First, we trained

the classifiers with the subset of features that provided the best average results, as mentioned in

Section 5.3.4. We analyzed the classifier’s accuracy with features from the phone only, the watch
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TABLE 5.4: Performance for the imposter attack on two different victim users for two different
types of classifier categories. The first three rows show the performance of the imposter attack
against the classifier trained with the subset that provides best average results, as mentioned
in Table 5.3. The last three rows show the result of the imposter attack against the classifier
trained with the best subset for the individual victim user. Highlighted cells emphasize the most

interesting results.

Victim V1 Attacker Victim V2 Attacker
F-measure FPR FPR F-Measure FPR FPR

G
en

er
al Phone Only 0.931 0.100 0.000 0.936 0.100 0.917

Watch Only 0.887 0.100 0.909 0.935 0.080 0.000
Both 0.980 0.020 0.091 0.989 0.000 0.833

In
di

vi
du

al Phone Only 0.970 0.040 0.182 0.968 0.060 0.917
Watch Only 0.960 0.060 0.000 0.968 0.060 0.000

Both 1.000 0.000 0.091 1.000 0.000 0.000

only and both devices. We also trained our classifiers with the subset of features that provided

the best performance for the individual user (victim). Then, we tested these classifiers against the

imposter attacker’s data to determine the success rate of the attacker. The results are shown in

Table 5.4.

As expected, we found that the individual classifier performed better than the general

classifier. When the general classifiers were tested against the imposter attacks, the attacker was

able to imitate the hand motion (captured by watch) of V1 (FPR = 0.909), while he could not

imitate the hip motion (captured by phone) of V1 (FPR = 0.000). On the other hand, the attacker

was able to imitate the hip motion of V2 (FPR = 0.917) while it could not imitate the hand motion

of V2 (FPR = 0.000). When both devices were used, we can see that the FPR for V1 is low (0.091)

but still high for V2 (0.833). This suggests that the classifier trained with the features from both

devices was dominated by the features from the phone, and hence the results of impersonation

are more similar to that of the phone only. Similarly, when the individual best subset features

were used to train the classifier, the attacker could not imitate the hand motion resulting low

attack success rate when both devices’ features were used. In other words, WUZIA could resist

the imposters to a high degree when both devices’ features and the best subset of features were

used for each individual user.

In summary, these results show that the WUZIA system that leverages both phone and watch,

and employs individualized classifiers can be highly resistant to walking imitation attacks. This

is a significant security advantage of a multi-device WUZIA scheme.
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5.3.5.2 Treadmill Attack

To perform a more powerful attack on the victim’s walking pattern so as to successfully fool

the WUZIA system, we followed the work by Kumar et al. [92]. This research represents the

state-of-the-art attack against gait biometrics and is therefore an ideal platform to evaluate our

system against. In this attack, the attacker already has the sample of a victim’s gait pattern.

First, the authors extract different features from the accelerometer sensor of the smartphone to

authenticate users based on their walking pattern to create a baseline model called Gait Based

Authentication System (GBAS). Then, they attack on the GBAS system using a treadmill. In

this attack, instead of imitating the victim’s walking pattern, the attacker uses treadmill to control

different gait characteristics (GCAT) such as speed, step length, step width and thigh lift to match

the features extracted from the victim’s walking pattern. To setup this attack, the attacker first

analyzes the feature subsets that dominates the decision making process of the machine-learning

classifiers [92]. Among these dominant features subset, the attacker then analyzes how these

features are correlated with each other. From this analysis, the attacker tries to manipulate only

one feature among the correlated features set. Now the attacker has final set of five features which

it needs to manipulate to fool the classifier. The experimenter creates an imitator profile based on

these final five features mapped to the four GCAT. This mapping is also created using correlation

between GCAT and the dominating feature set. For example, if speed is directly correlated with

the mean of X-axis of the accelerometer (ACCX M ) then to increase or decrease the ACCX M ,

the imitator needs to increase or decrease the walking speed, respectively.

To thwart such attacks using sophisticated devices like treadmill to control different gait

characteristics, we calculated the correlation values among each pair of features. The detail

regarding the calculation of the correlation among features is explained in Appendix A.1 and the

results are shown in Appendix Figure 1. From this analysis, we observe that the features from the

phone are more correlated with the features from the phone while the features from the watch are

more correlated with the features from the watch. This means that the attacker cannot use one

device to alter the feature of the other device, however, it may be able to alter the features from a

single device if it knows the correlation among the features from the same device.

We next analyzed how the features from a single device are correlated with the other features

from the same device. The correlations among the features from the same device are depicted in
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Appendix Figures 2 and 3. From these plots, we can see that the features extracted from a single

sensor were more correlated to each other than the features extracted from different sensors. For

example, mean, standard deviation and range of the accelerometer sensor were more correlated

with each other, compared to those taken from gyroscope or magnetometer. We wrote a script

to find out the best feature subset such that each feature is correlated to each other in a given

feature subset by less than -/+ 0.1 (i.e., the subset of uncorrelated features). More the number of

uncorrelated features in this subset, harder it will be for the attacker to correlate/match all the

features with different gait characteristics [92]. Further one gait characteristics may influence

more than one feature vector which do not have any correlation, increasing the difficulty of the

treadmill attack.

Further, to increase the performance of the classifier in defending the treadmill attack, we

wrote another script to find out the super set of the subset containing maximum number of

uncorrelated features set. The best feature subset for the general classifier in Section 5.3.3

that is trained with features from both devices consists of eight uncorrelated features. This

increased the accuracy of the classifier during the benign case while still being robust to the

treadmill attackers. Further, the treadmill attackers may use more sophisticated devices to provide

better gait characteristics that may alter different features. We can defend this by increasing the

correlation threshold (currently set to 0.1) for finding uncorrelated feature set. This will provide

larger number of features that are correlated to each other by that threshold value. Note that

the correlation of 0 to 0.1 is considered near-zero correlation while that between 0.1 and 0.3 is

considered weak correlation [148, 149]. Hence, using the correlation threshold of 0.3 will still

give the feature subset with weak correlation that attacker may not be able to attack using the

treadmill technique.

5.3.6 Summary

In this section, we proposed the use of walking-based biometrics to protect zero-interaction

authentication systems in the event of loss or theft of authentication tokens. Our approach trans-

parently authenticates the user to her authentication token as she walks towards the authentication

terminal in order to unlock it. Our system leverages a smartphone and/or a smartwatch, and

multiple embedded sensors therein, to reliably detect the unique walking pattern of the user.

Our results suggest that especially when using both devices together, the system offers almost

70



error-free detection and makes it very difficult for even a powerful attacker to imitate a user’s

walking habit. Consequently, we believe that our approach can significantly enhance the security

of current zero-interaction systems without degrading their usability.

5.4 Summarizing Context Enhanced Authentication

In this chapter, we presented different approaches to authenticate a user transparently during

an NFC payment transaction and ZIA based authentication. The approach captures the user’s

movement and identifies the user based on the sensor data recorded by the device(s). The gestures

are very unique to the user and are difficult for the attacker to mimic. We presented the design

and implementation of the proposed authentication approaches. Our approach could be very

effective in authenticating users and preventing misuse of services in case of theft or loss of the

device, without calling for any additional user burden, significantly enhancing the security of

such NFC payment systems as well as ZIA systems.
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CHAPTER 6

CONTEXT ENHANCED CO-PRESENCE DETECTION

6.1 Introduction

In proximity-based “zero interaction authentication” (ZIA) [29] systems, a verifier device V au-

thenticates the presence of a prover device P in physical proximity of the verifier while requiring

no additional interaction by the user of the prover device. The zero interaction requirement

is intended to improve usability of access control systems. For example, BlueProximity [138]

allows a user to unlock the idle screen lock in her computer merely by physically approaching the

computer while in possession of a mobile phone, previously paired with the computer, without

having to perform any other action, such as typing in a password. Motivated by these usability

considerations, there are many examples of ZIA systems, such as “Passive keyless entry and start”

systems like “Keyless-Go”1 PhoneAuth [108], and access control systems based on wearable

devices [140].

Although the security research community no longer takes security and usability to be

mutually contradictory goals [150], simultaneously accomplishing security and usability goals

continues to be a challenge. Under the standard Dolev-Yao adversary model [52], an attacker

is assumed to have complete control over the communication channel. In such a model, naı̈ve

ZIA schemes are vulnerable to relay attacks where a pair of colluding attackers relays messages

between a legitimate user and verifier, thereby fooling the verifier into incorrectly concluding

that the user is in close proximity. Relay attacks have been demonstrated to be practical for

various short range wireless communication technologies like Bluetooth [26, 151], RFID [28]

and NFC [99], making this vulnerability a serious threat.

The commonly proposed defense against such relay attacks, while preserving zero-interaction,

is to use distance bounding techniques [96]. Distance bounding assumes that the prover and

verifier share a security association. The prover is required to respond to a series of rapid-fire

challenges from the verifier, which can then calculate a lower bound for the distance to the prover
1http://techcenter.mercedes-benz.com/_en/keylessgo/detail.html
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by measuring the elapsed time between sending a challenge and receiving a correct response.

Distance bounding needs to be implemented at the lowest possible layer in the communication

stack because even a small error in estimating processing time at the prover side can lead to

large deviations in the distance bound. Therefore implementing distance bounding on commodity

devices like ordinary smartphones might be a challenge.

An alternative approach is to leverage the fact that two co-present devices will “see” (almost)

the same ambient environment. Modern computing devices are equipped with many “sensors”

like microphones, wireless networking interfaces, global positioning system (GPS) receivers,

temperature, humidity and so on. A device can extract information from such a sensor that is

characteristic of that context. By having two mutually trusting devices exchange and compare

context information, they can determine if they are co-present or not. This approach has recently

been proposed for single sensor modalities, including Wi-Fi [104, 105], audio [98, 103], Bluetooth

and GPS [152].

Although these prior works constitute an important step towards addressing the hard problem

of resisting relay attacks using off-the-shelf hardware, they leave several important questions

unexplored, which we address in this chapter. First, we compare the performance of different

sensor modalities in resisting relay attacks against ZIA based on contextual co-presence. Although

standalone evaluations of different modalities individually have been reported in prior work, they

cannot be used for a fair comparison given that the data assessing each modality was collected in

disparate settings. Second, we investigate whether the combination (“fusion”) of multiple sensor

modalities will perform better than using individual modalities in isolation. Prior work did not

address this question.

In this chapter, we use the ambient information to detect the co-presence of two devices

and prevent relay attacks. This ambient information can either be acoustic or Radio Frequency

(RF) signals [37, 38], such as Wi-Fi signal, Bluetooth signal, ambient audio or be naturally occur-

ring [39], such as temperature, altitude, gas ratio, humidity. Both of these ambient information,

which can be detected by various sensors either embedded in the smartphone or off-the-shelf

sensing device, can be used to analyze the context of the surrounding environment and identify

the co-presence or non-co-presence of two devices.
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6.2 Background

In this section, we review the proximity-based authentication approach that forms the focus of

this chapter and the underlying threat model, followed by an overview of our relay attack defense

based on ambient multi-sensing.

6.2.1 Functional Model for Proximity-based Authentication

Figure 2.1 shows a general model of proximity-based authentication. The model consists of a

prover P who wants to authenticate itself to verifier V and convince V that it is close to P . The

authentication process between P and V is typically run when they are in close proximity to each

other. V makes use of a back-end “comparator” function to make the authentication decision (it

could reside on the verifier device or on a remote machine such as a bank server in the case of

payment transactions). P and V have pre-shared secret keys K and K ′, respectively, with the

comparator. In an authentication session, V sends a challenge to P which computes a response

based on the challenge and K. P returns the response to V which uses the comparator function

to decide if response is acceptable.

This functional model is applicable to various real-world scenarios such as payment at a

point-of-sale (POS) terminal and zero interaction authentication (ZIA) for access control to

locking/unlocking a car or a desktop computer. In the payment scenario, the payment card plays

the role of P , and the POS terminal plays the role of V . The issuer of the payment card plays the

role of the comparator. In ZIA the user token (key or mobile phone) acts as P and the terminal

(car or desktop computer) plays the role of V . The comparator functionality is integrated in the

terminal itself and therefore K ′ is not needed.

6.2.2 Threat Model

We assume a standard Dolev-Yao adversary model [52] where the adversary A has complete

control over all communication channels. However, A is not able to compromise P , V or the

comparator, i.e., none of the legitimate entities have been compromised. The goal ofA is to carry

out relay attack by convincing V that the P is nearby when in fact P is far away. Figure 2.2 shows

how A, in the form of a relay-attack duo (Ap,Av) can relay messages between the legitimate P

and V with Ap and Av acting as a dishonest prover and verifier, respectively.
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6.2.3 Our Approach: Relay Attack Defense with Ambient Multi-Sensing

Figure 2.1 shows our countermeasure against relay attack which is based on the natural assumption

that two entities will sense similar ambient environments when they are co-present. When P

sends an authentication trigger to V , they both start sensing their respective contexts using

ambient physical sensor modalities, resulting in CP and CV , respectively, as the sensed data.

This sensor data may be acquired using an additional (uncompromised) device, connected over a

secure channel, to P and V (such as Sensordrone) or via the sensors embedded within P and V .

We consider RF sensor modalities, such as Wi-Fi, Bluetooth, GPS, as well as audio as sensors

embedded within P while physical ambient sensor modalities, such as temperature, precision

gas, humidity and altitude as sensors from an additional device (Sensordrone). P will attach CP

to response. Similarly V will convey CV along with challenge in its message to the comparator.

In case multiple sensors are used (say n), CP would be the vector CP1, CP2, ..., CPn, and

similarly, CV would be the vector CV1, CV2, ..., CVn.

Using the keys K,K ′, the comparator can recover and validate CP and CV , and compare

them (in addition checking that response matches challenge). We recall that in scenarios where

the comparator is integrated with V , K ′ is not used.

Figure 2.2 illustrates the presence of the relay attack duo A =(Ap,Av). Assuming that A

cannot subvert the integrity of context sensing and the comparator can reliably tell the difference

between co-presence and non co-presence by examining CP and CV , our countermeasure

based on context sensing will thwart a Dolev-Yao A. In the rest of this chapter, we describe

our experiments to evaluate whether a comparator can reliably distinguish co-presence and non

co-presence based on context information CP and CV sensed using RF, ambient audio and

physical ambient sensors.

6.3 RF and Audio Sensors for Co-presence Detection

6.3.1 Data Collection

As mentioned before current smartphones not only provide different sensors such as Wi-Fi,

Bluetooth, Audio, GPS but also sensors to measure ambient physical environment properties

such as ambient temperature, relative humidity and relative pressure sensors. In this section, we
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provide the co-presence detection and relay attack prevention based on the RF and audio sensors

embedded on the current smartphone.

6.3.1.1 Sensor Data

For RF and audio, we currently use GPS, Wi-Fi, Bluetooth and audio modalities. These modalities

were chosen as they are widely available on contemporary smartphones.

GPS Raw Data: We record the identifiers of visible GPS satellites and the “signal strength” for

each of them in the form of signal-to-noise ratio (SNR). The identifier is the “pseudo-random

noise code” (PRN) which is an integer (1 . . . 32). The SNR ranges from 0 to 100.

Wi-Fi: For each visible Wi-Fi access point (AP), we record the list of link-layer addresses

(BSSID) and the associated received signal strength indicators (RSSI), supported capabilities and

the frequency of the Wi-Fi channel advertised by that AP. RSSI ranges from -100 to -20 dBm.

Bluetooth: For each visible Bluetooth device, we record the identifier (BDADDR) and received

signal strength indicator (RSSI). RSSI ranges from -100 to -20 dBm.

Audio: Ambient audio is recorded in standard PCM format (wav file) without compression. Each

PCM wave is sampled in 44100Hz with 16-bit encoding. Because raw audio is sensitive, by

default, we do not store raw audio on Server. Instead, we extract certain features (as described in

Section 6.3.2). Users however have the option of changing this default to let their client(s) upload

raw audio to Server.

6.3.1.2 Dataset

We collected data for 15 days in mid 2013. Hardware variations across devices are well-known

to cause significant changes in sensor measurements. To ensure robustness of results with respect

to device variations, we collected data using tablets and phones from different manufacturers

and with different models: tablets (Google Nexus 7, Samsung Galaxy Tab, Acer Iconia, Asus

Transformer) and phones (Samsung Galaxy SII, SIII).

We gave no specific instructions to the testers about what scenarios or locations in which

they should collect data. Consequently, the resulting dataset is uncontrolled, consisting of data

collected in various everyday settings and locations (e.g., university campus, labs, libraries,

cafeteria, home, streets), Data collection was done in two different cities: Birmingham, Alabama,
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USA and Helsinki, Finland. This dataset contains 2303 samples, of which 1140 samples (49.5%)

are from co-present devices and 1163 (50.5%) from non co-present devices. Each sample contains

data from sensor modalities available at the time on the respective devices (2117 with audio,

1600 with Bluetooth, 782 with GPS and 2269 with Wi-Fi). For each sample, we scan all available

sensors simultaneously: 2 minutes for GPS scanning, 10 scans for Wi-Fi (about 30 seconds),

10 seconds for recording ambient audio, and 10 scans for Bluetooth (up to 12 seconds for each

scan).

6.3.2 Co-presence Detection

6.3.2.1 Features

We investigated various possible features that can be extracted from the data in different sensor

modalities, finally settling on the most promising features as discussed below.

Features for Bluetooth, Wi-Fi, GPS: Although the three sensors (GPS, Bluetooth, Wi-Fi)

involving radio-frequency (RF) emissions considered in our analysis are different, fundamentally

they have the same inherent characteristics. We therefore chose to represent them by a common

set of features. Let a record from an RF sensor modality be of the form (m, s) where m is an

identifier of a sensed device and s is the associated signal strength. Let Sa and Sb denote the set

of records sensed by a pair of bound devices A and B, and let na and nb denote the number of

different beacons (i.e., Wi-Fi access points, GPS satellites or Bluetooth devices) observed by

devices a and b. We define the following sets:

Sa = {(m(a)
i , s

(a)
i ) | i ∈ Zna−1}.

Sb = {(m(b)
i , s

(b)
i ) | i ∈ Znb−1}.

S
(m)
a = {m ∀(m, s) ∈ Sa}, S(m)

b = {m ∀(m, s) ∈ Sb}.

S∩ = {(m, s(a), s(b)) ∀m|(m, s(a)) ∈ Sa, (m, s(b)) ∈ Sb}.

S∪ = S∩ ∪ {(m, s(a), θ) ∀m|(m, s(a)) ∈ Sa,m 6∈ S(m)
b }

∪ {(m, θ, s(b)) ∀m|(m, s(b)) ∈ Sb,m 6∈ S
(m)
a },

θ is modality-specific (see below).

S
(m)
∩ = {m ∀m|(m, s(a), s(b)) ∈ S∩}.

S
(m)
∪ = {m ∀m|(m, s(a), s(b)) ∈ S∪}.

L
(s)
a = {sa|(m, s(a), s(b)) ∈ S∩}.
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L
(s)
b = {sb|(m, s(a), s(b)) ∈ S∩}.

S∩ consists of devices seen by both A and B; S∪ represents all devices seen by A or B with

θ filled in as the “signal strength” for devices that are not seen by either device.

We consider a total of six features, five of which have been selected from state-of-the-

art co-presence detection systems (NearMe [104], Amigo [105] and RF-based place learning

schemes [153].

1. Jaccard distance: 1− |S
(m)
∩ |
|S(m)
∪ |

2. Mean of Hamming distance:
∑|S∪|

k=1 |s
(a)
k
−s(b)

k
|

|S∪|

3. Euclidean distance:
√∑|S∪|

k=1(s(a)
k − s

(b)
k )2

4. Mean exponential of difference:
∑|S∪|

k=1 e
|s(a)

k
−s

(b)
k
|

|S∪|

5. Sum of squared of ranks:
∑|S∩|
k=1(r(a)

k − r
(b)
k )2

where, r(a)
k (respectively r(b)

k ) is the rank of s(a)
k (s(b)

k ) in the set La (Lb) sorted in ascending

order.

6. Subset count:
∑T
i=1 fi. Here T is the scanning time (seconds)

fi = 1 if S(m)
ai 6= ∅, S

(m)
bi
6= ∅,

(S(m)
ai ⊆ S

(m)
bi

or S
(m)
ai ⊇ S

(m)
bi

)

fi = 0 otherwise. Sai , Sbi
are the set of records by A and B respectively at the ith second

Wi-Fi: Features 1-5 are used. Since we do multiple scans in each sample, in line with current best

practices, we use the mean value of RSSI for a BSSID (m) from all of the scans as the signal

strength (s) value. θ is -100.

Bluetooth: Features 1,3 are used with BDADDR as identifier (m) and average RSSI as signal

strength (s). θ is -100.

GPS: All features are used with PRN as identifier (m) and mean SNR as signal strength (s). θ is

0.

Note that feature 6 is used only for GPS. This is because the set of satellites visible to a

device varies greatly depending on the sensitivity of GPS hardware. Thus, one device may see a
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subset of the satellites seen by the another co-present device. In such cases, metrics like Jaccard

distance perform poorly whereas the subset count could perform better. When GPS co-ordinates

are available for A and B in a sample, we also use the orthodromic distance [154] as a feature.

Features for Audio: We consider two features proposed by Halevi et al. [98], which were found

to be the most robust among all algorithms tested: Schurmann and Sigg [103], SoundSense [155],

Shazam audio fingerprinting [156], and Sound of Silence [157]. The other features either required

careful synchronization between the two audio samples or were highly sensitive to variations in

the microphone characteristics of the devices. The two features that we consider are defined as

follows:

• Max cross correlation:

Mcorr(a, b) = Max(cross correlation(Xa, Xb))

• Time frequency distance:

D(a, b) =
√

(Dc,time(a, b))2 + (Dd,freq(a, b))2

where, Dc,time(a, b) = 1 − Mcorr, Dd,freq(a, b) = ||FFT (Xa) − FFT (Xb)|| is the

Euclidean norm of the distance.

Here Xa and Xb denote the raw (16-bit PCM) audio signals recorded by A and B and FFT(Xa),

FFT(Xa) denotes the Fast Fourier Transforms of the corresponding signals.

6.3.2.2 Analysis and Results

TABLE 6.1: Overall performance vs. time budget

Time Budget (s) 5 8 10 12 15

%FN 8.95 2.19 1.67 1.40 1.49
%FP 7.14 2.67 1.98 2.15 2.15
MCC 0.841 0.951 0.966 0.964 0.964
Fm 0.921 0.976 0.983 0.982 0.982

We use machine-learning classifiers to detect the contextual co-presence. We performed

classification using ten-fold cross-validation and Multiboost [158], a state-of-the-art algorithm

widely used for different types of context recognition tasks, as the classification algorithm. In all

experiments, decisions trees (J48 Graft) are used as the weak learners. From each experiment, we
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record the 2x2 confusion matrix, containing the number of True Positives (TP), True Negatives

(TN), False Positives (FP) and False Negatives (FN). Positive and negative classes represent

co-presence and non-co-presence, respectively.

For the evaluation, as discussed in Section 4.3, we used False Positive Rate (FPR), False

Negative Rate (FNR), precision, recall and F -measure (Fm) as performance measure of

the classifiers as defined in Equations 4.1 and 4.2. Along with these, we also used Mathhews’

correlation coefficient (MCC) to evaluate the classifier’s performance. MCC is an approximate

statistical measure for deciding whether the prediction is significantly more correlated with the

data than a random guess. It can be calculated as shown in Equation 6.1.

|MCC| = TP ∗ TN − FP ∗ FN√
(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)

(6.1)

The performance of our classifier is shown in Table 6.1. In this table, we show here how the

classifiers would perform w.r.t time. The performance improves significantly when we increase

the time budget from 5 seconds to 15 seconds, however, increasing scan time means more delay,

and hence decreases usability.

In this work, we also analyzed how the classifier performance will change when we fused

different sensor modalities as shown in Table 6.2. Among individual modalities Wi-Fi performs

best (Fm = 0.989, MCC = 0.978) and GPS worst (Fm = 0.776, MCC = 0.550). Bluetooth and

Audio exhibit similar performance with the former (Fm = 0.885, MCC = 0.773) slightly better

than the later (Fm = 0.857, MCC = 0.715).

6.4 Physical Sensors for Co-presence Detection

In this section, we explore purely ambient physical sensing capabilities present on upcoming

devices to address the problem of relay attacks in authentication systems. More specifically, we

consider the use of four new sensor modalities, ambient temperature, precision gas, humidity,

and altitude, for P-V proximity detection. Using an off-the-shelf ambient sensing platform,

called Sensordrone2, connected to Android devices, we show that combining these different

modalities provides a robust proximity detection mechanism, yielding very low false positives

(security against relay attacks) and very low false negatives (good usability). Such use of multiple
2http://www.sensorcon.com/sensordrone/
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TABLE 6.2: Individual modalities vs Fusion of modalities; (A) Audio, (B) Bluetooth, (G) GPS,
(W) Wi-Fi

All samples containing Audio (sample size = 2117)
A only A+B A+G A+W A+B+G A+B+W A+G+W A+B+G+W

FN(%) 19.9 12.49 20.41 1.52 12.59 1.52 1.73 1.62
FP(%) 9.28 5.21 7.07 1.59 4.33 1.77 1.59 1.77
MCC 0.715 0.829 0.736 0.969 0.837 0.967 0.967 0.966
Fm 0.857 0.914 0.866 0.984 0.918 0.983 0.983 0.983

All samples containing Bluetooth (sample size = 1600)
B only B+A B+G B+W B+A+G B+A+W B+G+W B+A+G+W

FN(%) 15.54 7.64 18.25 0.74 6.78 0.49 0.49 0.37
FP(%) 7.35 3.55 4.18 1.27 2.66 1.01 1.14 1.01
MCC 0.773 0.888 0.782 0.980 0.906 0.985 0.984 0.986
Fm 0.885 0.944 0.886 0.990 0.952 0.992 0.992 0.993

All samples containing GPS (sample size = 782)
G only G+A G+B G+W G+A+B G+A+W G+B+W G+A+B+W

FN(%) 23.6 14.89 25.28 1.97 18.54 1.69 2.53 1.97
FP(%) 21.36 14.32 13.85 3.52 12.91 3.99 3.52 3.76
MCC 0.55 0.707 0.615 0.944 0.688 0.941 0.938 0.941
Fm 0.776 0.854 0.808 0.972 0.845 0.971 0.969 0.971

All samples containing Wi-Fi (sample size = 2269)
W only W+A W+B W+G W+A+B W+A+G W+B+G W+A+B+G

FN(%) 0.36 0.27 0.45 0.45 0.18 0.18 0.27 0.18
FP(%) 1.83 1.83 1.83 1.83 1.83 1.83 1.92 1.83
MCC 0.978 0.979 0.977 0.977 0.980 0.980 0.978 0.980
Fm 0.989 0.989 0.989 0.989 0.990 0.990 0.989 0.990

ambient sensor modalities offers unique security advantages over traditional sensors (Wi-Fi, GPS,

Bluetooth or Audio) because it requires the attacker to simultaneously manipulate the multiple

characteristics of the physical environment. These ambient sensors also yield rapid response

times and very low battery consumption, whereas traditional sensors can have noticeable scanning

times and battery drainage. These ambient sensors may also be seamlessly combined to work

with traditional sensors to further improve security.

To demonstrate the feasibility of our approach, we use an additional environmental sensing

platform (Sensordrone). However, the devices participating in the protocol themselves (P and V)

may be equipped with various environmental sensors in the future [159, 160]. Android platform

already supports broad category of environmental sensors that includes barometer, photometer

and thermometer [161] such that phones and other devices that come equipped with these sensors

will already have an interface to provide data to corresponding application.
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6.4.1 Data Collection

6.4.1.1 Sensor Modalities

We explore the use of various ambient sensor modalities to determine whether two devices

are co-present or not. In this section, we are focusing on ambient temperature, precision gas,

humidity and altitude, and combinations thereof, which are readily provided by Sensordrone (see

Figure 6.1). In this section, we describe the functioning details of these sensors.

FIGURE 6.1: Sensordrone device with different sen-
sors (ambient temperature, precision gas, humidity
and altitude are utilized in this work). Device dimen-

sions: 2.67 x 1.10 x 0.49 inch3.

Ambient temperature: It is the temperature in a given localized surrounding. Ambient tempera-

ture of different locations might be different as it changes with sensor being indoors or outdoors,

and differs from one room to another with Air Conditioning adjusted at different levels. We

recorded the current temperature, in Celsius scale, at different locations. Sensordrone uses silicon

bandgap sensor to record the ambient temperature. The principle of the bandgap sensor is that

the forward voltage of a silicon diode is temperature-dependent [162].

Humidity: It is the amount of moisture in the air which is used to indicate the likelihood of

precipitation or fog. Humidity can serve as the contextual information about the location since

the amount of water vapor present in the environment may differ when moving from one location

to the other. Capacitive Polymeric Sensor is used to detect the humidity of the surrounding.

It consists of a substrate (glass, ceramic or silicon) on which a thin film of polymer or metal

oxide is deposited between two conductive electrodes. The change in the dielectric constant
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of a capacitive humidity sensor is nearly directly proportional to the relative humidity of the

surrounding environment [163].

Precision Gas: Ambient air consists of various gases, primarily Nitrogen and Oxygen. The

gaseous content of a particular location may differ from that of another location. The Sensordrone

device comes with pre-calibrated Carbon Monoxide (CO) sensor, which measures the CO content

of the atmosphere. We used the default calibration of the device that monitors CO to get the

context information of the location. The values were measured in “ppm (parts per million)”.

Altitude and Pressure: Atmospheric Pressure of a particular location is the pressure caused by

the weight of air at that location above the measurement point. With increase or decrease in

elevation, the weight of air above the location changes and so does the pressure at that location.

Although the variation of pressure can be obtained from the altitude, it changes drastically with

the weather. Hence, pressure at a location can serve as an indicator for that location and time. In

our experiments, the pressure was recorded in “mmHg (millimeter of Mercury)” using Micro

electromechanical (MEMS) Pressure Sensor. When there is a change in pressure from the air

on a diaphragm within the sensor, the piezoresistive sensors senses the change with alternating

piezoelectric current which is used to determine the actual pressure.

This is also used to determine the altitude. Since the pressure value at any given location is

directly proportional to the amount of gases above the device and the amount of gases above the

device is inversely proportional to the altitude, the altitude value can be derived from the pressure

sensor using the equations 6.2. The units for station pressure must be converted to millibars

(mb) or hectopascals (hPa) before using following expression to convert the pressure values into

altitude [164].

haltitude = {1− (Pstation1013.25)0.190284} ∗ 145366.45 (6.2)

The haltitude measurements are in feet, and are multiplied by 0.3048 to convert them to

meters.

Although Sensordrone provides both pressure and altitude readings, we only use altitude to

classify the location as altitude is derived from pressure. We found that as the readings are taken

at a more precise scale, the classifiers result improves. In our dataset, we measured pressure

in mmHg and altitude in m. The pressure values did not vary much and were not very useful
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in providing accuracy to the classifier while altitude provided a clear difference between two

locations allowing classifier to more accurately make predictions.

Excluded Sensors: Although there are other sensors available on the Sensordrone device, we did

not use the data from those sensors for two reasons: either they did not convey information about

the ambient context or may not work when blocked. The sensors excluded from our experiments

are as follows.

• Object Temperature: This sensor uses Infrared to obtain the temperature of a nearby object

(line of sight object temperature). This measures the information about a specific object

but not about the ambient environment.

• Illuminance (Light): It measures the ambient light luminosity and may seem like a useful

modality to convey the environmental information. However, its use suffers from the fact

that light intensity greatly varies depending upon the position of the source of light and the

light sensor facing towards it. Also, the devices will not provide light measurements when

their sensors are blocked, such as when the devices are stowed inside purses or backpacks.

• Proximity Capacitance and External Voltage: The proximity capacitance sensor measures

changes in capacitive flux and is basically used for touch sensing or proximity detection

like when used on touch pads or capacitive touch screens. The external voltage sensor

gives the measure of a battery voltage level.

6.4.1.2 Dataset

The main goal here is to identify if two devices are co-present or not using the sensor data. We

collect the data from two devices and use a classifier to determine if these devices are at the same

location or at different locations. For this, we needed to collect the sensor data when the devices

are in close physical proximity as well as when they are at different locations.

To collect the sensor data described in Section 6.4.1.1, we modified the original app provided

in [165] to record the data to a file for further analysis (UI is shown in Figure 6.3). The data

from all the sensors used in our experiments (ambient temperature, precision gas, humidity, and

altitude) was recorded and labeled according to the location and time of the place. The data was

also marked how the device was held, i.e., either in hand or in pocket (although this information
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FIGURE 6.2: Original Sensordrone
app displaying sensor values

FIGURE 6.3: Modified Sensordrone
app to record the sensor values

was not used in our current experiments; it can be useful when working with the light sensor

in the future). The experiment was conducted in a variety of places, not just confined to labs

and typical university offices. The locations included: parking lots, office premises, restaurants,

chemistry labs, libraries as well as halls with live performance and driving on interstate highways.

We collected a total of 207 samples at 21 different locations. The different samples collected from

the same place are “paired” to generate co-presence data instances whereas those from different

places are paired to generate non-co-presence data instances. We ended up with 21320 instances

of which 20134 instances belonging to non co-presence class and 1186 instances belonging to

co-presence class.

6.4.2 Co-presence Detection

6.4.2.1 Features

Let Li and Lj be a sensor reading captured by two devices at locations i and j. The Hamming

distance is calculated as follows:

D(i, j) = |Li − Lj | (6.3)

Given a sensor modality k (k is in range of (1, n) where n is the number of sensor modalities)
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TABLE 6.3: Classification results for different combinations of environmental sensors

FNR(%) FPR(%) Precision Recall Fm

Single sensor modality

Temperature (T) 23.74 32.40 0.705 0.763 0.733
Precision Gas (G) 15.26 30.36 0.739 0.847 0.790
Humidity (H) 16.25 29.81 0.740 0.838 0.786
Altitude (A) 8.57 16.25 0.851 0.914 0.881

Combination of multiple sensor modalities

HA 7.93 9.85 0.905 0.921 0.913
HGA 5.30 6.83 0.934 0.947 0.940
THGA 2.96 5.81 0.944 0.970 0.957

and L
(k)
i and L

(k)
j from two samples, we have D(k)(i, j) = |L(k)

i − L
(k)
j |. With the data

corresponding to nmodalities, we obtain a feature vector of n elements ofD(k)(i, j) | 1 ≤ k ≤ n.

We consider co-presence detection as a classification task and carry out our investigation

using the Weka data mining tool [166]. All experiments have been performed using ten-fold cross

validation and Multiboost [158] as the classifier. We choose Random Forest [167] as the weak

learners in all experiments since it performs best among different base learners we have tried with

our dataset (e.g., Simple Logistics, J48, and Random Forest). From each experiment, we record

the 2x2 confusion matrix, containing the number of True Positives (TP), True Negatives (TN),

False Positives (FP) and False Negatives (FN). We denote co-presence class to be the positive

class, and non co-presence to be the negative class.

We use the F-measure (Fm), false negative rate (FNR), and false positive rate (FPR) to

measure the overall classification performance (as shown in Equations 4.1 and 4.2).

Classifiers produce reliable results when the data is balanced over all classes. Our dataset is

highly biased towards the non co-presence class which is 17 times larger than the co-presence

class. Therefore, we generate balanced data for classification by randomly partitioning the non

co-presence class into 17 subsets. Each such subset together with the co-presence class constitutes

a resampled set for classification. We run experiments with 10 resampled sets, chosen randomly.

Each of the different sensors alone may not be fully effective for the purpose of co-presence

detection, and therefore, we also explore whether combinations of different sensors improve

the classification accuracy. To analyze which combination provides the best result, we would
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need to analyze all 15 different combinations of four different sensors. However, to reduce the

underlying computations, we first analyze the accuracy provided by each individual sensor. Then

we combine best two modalities and view how the accuracy of the classifier changes. We keep

on adding the modalities to see the change in the accuracy until all the modalities are fed into the

classifier for co-presence detection.

6.4.2.2 Analysis and Results

The results of experiments for different combinations of modalities are provided in Table 6.3.

They suggest that, although each individual modality on its own does not perform sufficiently

well for the purpose of co-presence detection, combinations of modalities, especially combining

all the modalities together, is quite effective, with very low FNR and FPR, and high overall

Fm. Altitude performs the best in classifying single modality, and also ranked the best by

Chi-squared attribute evaluation but still has unacceptable FNR and FPR (FNR = 8.57%,

FPR = 16.25%, Fm = 0.881) for our targeted applications demanding high usability and high

security. The result of the combination of all modalities is clearly the best (FNR = 2.96%,

FPR = 5.81%, Fm = 0.957. The intermediary combinations of different modalities used

in experiments are also based on the ranks of each modality (evaluated by Chi-squared test).

The results for the best combinations, Humidity-Altitude and Humidity-Gas-Altitude, are also

presented in Table 6.3.

6.5 Summarizing Co-presence Detection

In this Chapter, we developed a co-presence detection approach based on information collected

from multiple different environmental sensors either embedded on the smartphones or additional

device connected to the smartphones. Further, we addressed the issue of using different sensor

modalities for co-presence detection to be used in applications that need ZIA. This approach is

geared for preventing relay attacks, a significant threat to many proximity-based authentication

systems without significantly degrading its usability. Although individually RF and Audio sensors

seems to be strong candidate to be chosen for the proximity detection, combination of physical

sensors also formed a robust relay attack defense. While each individual physical sensor does

not seem sufficient for the security and usability requirements of the targeted applications. The
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key advantages of using physical sensors compared to RF sensors are: security (manipulating

multiple environmental attributes simultaneously could be a challenging task for the attacker),

efficiency (fast response time and negligible power drainage), and privacy (user-specific sensitive

information may not be leaked or may be hard to infer).
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CHAPTER 7

ATTACKS ON CONTEXT ENHANCED SYSTEM AND STRONGER MODELS

7.1 Introduction

Most of the approaches relying on the context assume that the context cannot be manipulated in

one way or another. In this chapter, we assess whether this assumption is meaningful. In case of

our contextual malware defense, we assumed that the kernel is healthy and the malware cannot

manipulate the sensor data. We implement a malware SMASheD as proposed by [34] with strong

capability such that it can, at the systems-level, manipulate the on-board sensor embedded on

the device. We critically analyze how such assumption can be exploited. Further, we show how

these malware must execute in order to break the security provided by the system relying on the

context detection.

In our threat model in Section 6.2.2 [39], we assumed that it might be very difficult to manip-

ulate the environment without getting noticed. For example, to change the temperature/altitude

of the surroundings, the attacker may need tamper with the thermostat in the given locality,

which may not be easy. However, the environmental sensor modalities can be vulnerable to

manipulation as the attacker does not require manipulating the entire surrounding but just the

small local space near the sensing device. In this chapter, we show that such manipulating attacks

are possible in many ZIA systems as V device is mostly left unattended, such as a car parked in

underground/remote parking or a laptop during lunch time. We formally examine the feasibility

of these attacks and assess the security of our defense mechanisms under such attacks. In addition,

we investigate context manipulation attacks against RF modalities as well as audio. We will then

come up with defensive approaches and insights to counter such advanced adversaries.

Finally, we present an attack on Sound-Proof , two factor authentication system which uses

ambient audio as the second factor authentication. From our analysis on contextual system, we

successfully attack Sound-Proof by restricting ourselves within the threat model of Sound-Proof .
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7.2 Insider Attack: SMASheD

Sensing-based security and non-security applications therefore crucially rely upon the sanity of

the Android sensor security model. In this section, we show that such a model can be effectively

circumvented. Specifically, we implement SMASheD [34] to stealthily sniff as well as manipulate

many of the Android’s restricted sensors. As mentioned in Section 2.1, SMASheD exploits

the Android Debug Bridge (ADB) functionality and enables a malicious app with only the

INTERNET permission to read, and write to, multiple different sensor data files at will.

Following the design provided in [34], we implement the SMASheD framework which

encompasses three components: SMASheD server: a native service that provides the sensor data

reading and injection capabilities, scripts: two simple scripts used to copy the SMASheD server to

the device and to start the server, and SMASheD app: an app that runs a status detection module

in the background, and depending on the phone’s status and the desired functionality, it sends

requests to the SMASheD server to read or inject sensor events.

7.2.1 SMASheD Attacks

In this section, we show how we can use SMASheD to attack our context enhanced authorization

and authentication systems described in Chapters 4 and 5.

7.2.1.1 Attacking Authorization Systems

In Chapter 4, we present “Tap-Wave-Rub” [35, 40] and “WaveToAccess” [112]. We propose

multiple gestures that can be used for the purpose of authorization. An implicit gesture, such as

tapping the phone with another device (tap), is used to provide NFC permission to the requesting

app. The system uses accelerometer sensor to detect the tap gesture. An explicit gesture, such as

waving a hand in front of the phone (wave) or rubbing a finger near the proximity sensor (rub), is

used to grant permissions for the services where no implicit gesture can be used. To detect wave

and rub gestures, the system uses proximity sensor. Later, we also detected wave using light and

accelerometer sensors; the light sensors to infer the fluctuation in light due to hand waving and

the accelerometer sensor to reduce the possibility of detecting other events as hand wave. Both

Tap-Wave-Rub and WaveToAccess assume that the kernel is immune and the sensor data cannot

be manipulated by the malware.
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SMASheD attacks the assumption made by our systems. To generate the tap, wave or rub

gesture, the attacker can record his own gesture and later inject the recorded values via SMASheD.

Alternatively, SMASheD can record the gesture provided by the user during the benign case and

replay it later. A simpler attack can be performed on wave and rub gestures in Tap-Wave-Rub, in

which SMASheD fluctuates the proximity sensor in quick succession so that the system infers the

corresponding gesture.

To test the validity of our attack, as a proof of concept, we implemented the algorithm used

to detect Tap-Wave-Rub’s wave and rub gestures using our implementation described in Chapter

4. SMASheD system detects the wave and rub gestures, when the proximity sensor changes for

certain number of times (6 times) within certain period (1.5 seconds). In our attack, we recorded

the valid wave and rub gestures and replayed them. SMASheD was able to deceive the system suc-

cessfully. A demo is available at https://androidsmashed.wordpress.com/demos/.

In Section 4.3, we also present a similar defense to mobile malware using transparent human

gestures [36]. Our system uses the hand movement gesture to prevent unauthorized access of the

services such as phone calling, picture snapping and NFC tapping. It looks for multiple, motion,

position and environmental, sensor data to detect the calling, snapping and tapping gestures. The

assumption that the system makes is the device is already infected with malware. However, the

device kernel is healthy and is immune to the malware infection, and also that the malware is not

capable of manipulating the sensors.

SMASheD can attack the assumptions made by this systems as well. The attacker can record

the sensor data that is being used by these systems to detect the gesture during call, snap or tap.

Now, when malware is trying to make a call, snap photo or tap NFC tag, SMASheD can replay all

these sensor data fooling the system to believe that the user is performing the activity.

7.2.1.2 Attacking Authentication Systems

In Chapter 5, we show that our system can be used to identify using the sensors provided by

Android. We present “NFC Tap Authentication” (Section 5.2) and “WUZIA” (Section 5.3) to

authenticate users. We assume that to authenticate users using our approach, the device has not

been compromised and that the device kernel is healthy such that sensors data or flow cannot be

manipulated by the adversary.
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SMASheD can attack the assumptions made by this systems as well. The attacker can record

the sensor data that is being used by these systems to detect the implicit gesture. Once it learns all

the sensor values during one genuine authentication, it can replay the same sensor values fooling

the system to authenticate the users even when there is no real physical motion.

7.2.2 Summary

In this section, we called the Android’s sensor security model into question. We exploited

Android’s ADB workaround using SMASheD that can effectively sniff and manipulate many

sensors currently protected by Android’s access control model. We called our security system into

question by challenging the assumption made. The strong attack model as such introduces a wide

spectrum of potentially devastating attacks that can compromise user privacy and subvert many

security and non-security applications that rely upon different sensors like ours. We advocate the

importance of raising people’s awareness of the possible security risks associated with installing

services through the ADB shell.

7.3 Outsider Attack: Environment Manipulation

In Chapter 6, we showed that different sensors embedded on the mobile device as well as

additional sensor device paired with mobile device can be used for the co-presence detection of

two devices. The presence of ubiquitous and low-cost sensing capabilities on many modern mobile

devices has further facilitated a potentially more viable relay attack defense [98, 99, 105, 106].

One of the basic assumptions made in these works is that it is very hard to manipulate the

contextual environment (i.e., it considered only a Dolev-Yao attacker [52]).

In this section, we are extending this model to the realm of a context-manipulating attacker.

We show that it is feasible to manipulate the readings of different sensors (and combinations

thereof) using low-cost, off-the-shelf equipment, representing a realistic attacker. We demonstrate

attacks against a variety of modalities studied in prior work including audio, radio (Bluetooth/Wi-

Fi), and physical (temperature, humidity, gas and altitude).

Based on the above manipulation capabilities, we comprehensively examine and quantify a

zero-modality attacker, who manipulates one sensor only, as well as a multi-modality attacker,

who can manipulate multiple sensor modalities simultaneously.
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FIGURE 7.1: System model of proximity based authentication with contextual co-presence.

For systems that use multiple modalities, we investigate two different sensor fusion ap-

proaches – features-fusion (proposed in [38]) and decisions-fusion based on majority voting

(equal voting and weighted voting), and show that both approaches are vulnerable to contextual

attacks but the latter can be more resistant in some cases, at the cost of slight degradation in

usability.

7.3.1 Environment Manipulation: Background and Threat Model

7.3.1.1 Overview

The goal of the Adversary A against a challenge-response authentication system is to fool

Verifier V into concluding that Prover P is nearby and thus needs access to V even when P

is actually far away. As mentioned in Section 2.2.2.2, the attacker possesses standard Dolev-

Yao capabilities [52]: it has complete control of the communication channel over which the

authentication protocol between P and V is run but does not have physical possession of P nor is

able to compromise (e.g., through malware) either P or V . The attacker could take the form of a

“ghost-and-leech” [26] duo (Ap, Av) such that Ap (respectively Av) is physically close to P (V),

and Ap and Av communicate over a high-speed connection as discussed in Section 2.2.2.2.

In Chapter 6, co-presence detection schemes aim to address such relay attacks. Figure 7.1(a)
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shows a typical system model of an authentication/authorization protocol using contextual co-

presence, adapted from Chapter 6. Figure 7.1(b) shows how contextual co-presence can thwart

a Dolev-Yao relay attacker as described in Chapter 6. Figures 7.1(a) and (b) are comparable to

Figures 2.1 and 2.2.

Prior work has proposed the use of different sensor modalities for such co-presence detection:

ambient audio – Au [98], and radio context including Wi-Fi – W. In chapter 6, we used Bluetooth

– B [38], and physical environmental attributes, temperature – T, humidity – H, concentration of

gases – G and altitude – Al [39].

7.3.1.2 Threat Model for a Contextual Attacker

Our focus is on a context-manipulating attacker against co-presence detection (going beyond

a Dolev-Yao attacker). In our threat model, an attacker cannot compromise P and V devices.

However, based on the rationale that V is often unattended, whereas P is in the possession of a

human user, we assume that the context attacker can manipulate context without detection only

in one direction. More precisely, a contextual attacker is modeled as follows:

• Ap, Av can measure the context information that P , V would sense, respectively.

• Av can fool V into sensing the context informationAv chooses. SpecificallyAv can receive

context information from Ap and reproduce it near V .

• Av (Ap) cannot suppress any contextual information from being sensed by V (P).

Figure 7.1(c) illustrates this threat model. Later in Section 7.3.3, based on our context-

manipulation attacks presented in Section 7.3.2, this current model will be extended, to incorpo-

rate multi-modality attackers, who can perform the above (single-modality) tasks corresponding

to multiple modalities simultaneously.

7.3.2 Environment Manipulation: Attacks

In this section, we present our context manipulation attacks against audio, radio and physical

sensor modalities, and their various combinations. “Modality” refers to the raw input used by the

sensors [168, 169].
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7.3.2.1 Manipulating Audio Sensor Modality

To manipulate ambient audio, an adversary must find a way to make ambient audio on one

side similar to that on the other side. Recall from Section 7.3.1 that our threat model allows

the attacker to add to the ambient audio at V’s side without being noticed, allowing him to

relay/stream the ambient audio in real-time from P’s side to V’s side thereby causing the features

used for audio correlation almost match at both sides. The assumption that manipulating audio at

V’s side can go undetected is valid since V may be unattended in many scenarios (as our model in

Section 7.3.1 assumed). The attacker duo can use any reliable audio streaming tool to stream the

audio from P’s side to V’s side. They can execute this attack conveniently using mobile phones

and wireless data connection. We evaluated how well such an attacker can succeed in fooling

audio-based co-presence detection by streaming ambient audio using Skype. We use the features

and classifier described in prior work [98]. Our results are presented in Section 7.3.3.2.

7.3.2.2 Manipulating Radio-Frequency Sensor Modalities

Prior work suggests that manipulating the radio context is possible in general. The work presented

in [170] describes attacks on a public Wi-Fi based positioning system. They used a Linux laptop

as an Access Point (AP) with the Scapy packet manipulation program [171] to spoof Wi-Fi

APs. Similarly, spoofing Bluetooth device addresses has already been demonstrated in prior

work [38, 151], both of which reported Bluetooth-based relay attacks. An attacker can control

the received signal strength by controlling the transmission power of his masquerading devices.

Therefore, we conclude that our threat model 2.2.2 is reasonable. Furthermore, in the case

of Radio Frequency (RF) sensor modalities, it is reasonable to assume that an attacker can

also manipulate the RF environment at P’s end without being noticed (since radio waves are

imperceptible to human users). Therefore, limiting the attacker to unidirectional manipulation

only is too restrictive.

We tested the feasibility of Wi-Fi spoofing ourselves, and studied how it can be used to

match the Wi-Fi context at two ends. In our experiment, we used a Linksys router (WRT54G)

to create a spoofed hotspot. We flashed DD-WRT firmware [172] to the router since the default

firmware did not allow us to spoof the Basic Service Set Identifier (BSSID). The router used in
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our experiment is portable, easily available in the market, and much cheaper than other devices

which can also be used to spoof the hotspot such as laptops or smartphones.

The DD-WRT control panel also provides an option to change the transmission power with

which we can increase/decrease the signal strength. The normal signal strength for the router

detected by our target device (a MacBook Air laptop) was around -39 dBm. The router and the

target device were located around 30 cm apart. Merely by adjusting router settings, we were

able to vary the signal strength of the router, as sensed by the target device, between -25 dBm

and -48 dBm. By changing the distance between the target device and the spoofed router, we

were able to further reduce the signal strength down to -87 dBm. This suggests that the adversary

has a high degree of control in manipulating sensed signal strength. Based on this spoofing and

Received Signal Strength Indicator (RSSI) manipulation capability, the Wi-Fi context matching

attack becomes rather straightforward. The attacker can even have advantage in environments

where number of Wi-Fi APs is low. For example, we observed that there are less than five APs in

outdoors such as parking lot. In such cases, the attacker would only need to spoof P’s side.

7.3.2.3 Manipulating Physical Environment Sensor Modalities

As discussed in [39], it may seem hard to manipulate physical modalities, Temperature T,

Humidity H, Gas G and Altitude Al. For example, it appears that an adversary has to change the

temperature or humidity of the entire environment surrounding the victim device which may be

quite challenging or detected easily. However, in this section, we show that, by using off-the-shelf

devices, manipulating physical context is not only feasible but also realistic and effective by

tampering with the “local” environment close to one of the devices (e.g., an unattended V). Our

attacks do not require the compromise of the devices (V or P), but rather only manipulation of

environment close to their sensors. In order to monitor the current ambient readings as they are

being changed, the attacker has to use his sensors. These ambient readings serve as a feedback

for the attacker while he attempts to change the current V’s ambience. The feedback sensor needs

to be placed very close to the victim sensor so that the two provide similar readings.

Our experiments demonstrate how different contextual modalities can be manipulated,

controlled and stabilized to enable successful relay attacks. Arbitrarily changing a sensor’s

readings, at the verifier’s side, based on a physical activity may be straightforward but consistently

maintaining and controlling these readings to match those at the prover’s side, is non-trivial. For
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example, it may be obvious that temperature can be increased using a hair dryer (a simple tool

used in our temperature manipulation experiments), but how to maintain it at a desired level for a

reasonable period of time (during which the attack can be launched) is not obvious. While we

present several direct/explicit ways to manipulate many modalities, we also demonstrate some

indirect/implicit techniques. For example, we show how altitude can be manipulated by changing

pressure (i.e., without relocating the device to a different altitude). When performing the attacks,

we need to consider that the attacker will not have access to the direct readings from the actual

(V) device and hence has to use his own sensors to monitor the current ambient readings during

the attack. These ambient readings serve as a feedback for the attacker while he attempts to

change the current V’s ambience. The feedback sensor needs to be placed close to the victim

sensor so that both provide similar readings.

Temperature Manipulation

We were able to successfully alter the temperature to a desired level using various household

items, such as a hair dryer, a coffee mug, and ice cubes. All of our experiments were performed

with Sensordrone devices serving as both V and the attacker’s feedback sensor.

Increasing the Temperature: In situations where P (e.g., a car key indoors) is at a higher tempera-

ture than V (e.g., a car parked outside in winter), the attacker must increase the temperature. We

first used a hair dryer to heat-up the area around the Sensordrone such that the temperature is

increased to a desired level. To monitor how the temperature increases as we bring the hair dryer

closer to V , we first placed the hair dryer far enough and then brought the hair dryer closer to the

sensors in a way that we can handle the increase in temperature gradient. In our experiment, we

first tried to increase the temperature to 40 °C and then to 35 °C. After a few attempts, we could

successfully increase the temperature to a desired level and stabilize for almost 2 minutes ( Fig.

7.2). The lab temperature when the experiments were performed was around 26 to 27 °C. The

hair dryer we used [173] had a power of 1875 watt AC. A video demonstration of our attack has

been uploaded to YouTube [174].

Our next set-up uses two sensors, V sensor (V S) and feedback sensor (FS), to change the

temperature. Depending on whether or not the attacker knows where the sensor is precisely

located on V device, he may place FS either exactly on top of V S or away from it. We performed

the hair dryer test such that: (1) FS is placed at the same place as V S; (2) FS is placed such
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that V S is closer to hair dryer than FS; and (3) FS is placed such that FS is closer to hair dryer

than V S.
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FIGURE 7.3: V S and FS on same location; the attacker trying to increase temperature to 35
°C.

For the first case, we were able to match the temperature on both sensors to a large extent

when performing the heating activity (Figure 7.3). However, if the attacker does not know the

location of V S then the sensor device closer to the hair dryer ends up getting more heated. These

attacks are described in Appendix B.1 in detail. Hence, the attacker should heat up the whole

area as he may not be able to place his FS exactly on top of V S. Subsequently, we tried to apply

the heat not just focusing on one particular area but rather heating the entire area within a range

of 15 cm. Using this approach, we could effectively change the temperature around V S with

feedback from FS as the two temperature curves move side by side (Figure 7.4). We were able

to control the temperature to a desired level within a variance of +/-0.3 °C for more than one

minute in FS device.

Decreasing the Temperature: In some scenarios, it might be necessary for the attacker to reduce

the temperature recorded by V (e.g., when P is indoors and V is outdoors during summer

conditions). To decrease the temperature readings, we used an ice cube and rubbed it against the
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sensor. The environment on the other hand increased the temperature. By using the ice cube,

we first tried to drop the temperature below 20 °C and then let the environment increase the

temperature naturally. This natural increase of the temperature was very slow, and when the

temperature started increasing beyond the desired temperature level, we gently rubbed the ice

again to stabilize the temperature. We conducted experiment in a parking deck where the ambient

temperature was around 30 °C. Our goal was to change the temperature down to 25 °C. We

rubbed the ice cube on the sensors (both V and feedback sensors) until the temperature decreased

to less than 20 °C. Afterwards, the temperature started rising slowly naturally. When it reached

around 25.2 °C, the ice cube was rubbed gently again on the sensors such that the temperature

drops slightly. We were able to decrease the temperature and stabilize it at 25 °C for more than a

minute after a few trials within a variance of +/-0.3 °C as shown in Figure 7.5.

Humidity Manipulation

To alter humidity, we used common household items such as hot coffee (for increasing humidity)

and hair dryer (for decreasing humidity).
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Increasing the Humidity: Coffee fumes when brought close to V S would increase the humidity

level. An attacker has to move the hot coffee cup nearer to, and farther away, from the sensors to

control the humidity level. Using this strategy, we were able to increase the humidity by 10%,

i.e., from normal humidity of 55% to 65% ( Fig. 7.6). The attacker needs to use FS to control

the humidity. On our first attempt, we were able to control the humidity with a variance of +/-3%

for almost 30 seconds. In the second attempt, we could raise the humidity to the desired level for

more than one minute (106 seconds) with the same threshold.
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FIGURE 7.6: Increasing humidity with hot coffee; the attacker trying to increase to 65%.

Decreasing the Humidity: A hair dryer can be used to dry-up the air around the sensor to reduce

the humidity. The setup of this experiment is similar to the hair dryer temperature increase

experiment. We tried to decrease the humidity of V S by monitoring the humidity change on FS.

When two devices are placed exactly at the same location, the humidity decreases and matches

consistently between the two devices ( Fig. 7.7). Even when the two devices are placed 15 cm

apart, the drop in the humidity readings coincides ( Fig. 7.8).
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FIGURE 7.7: Decreasing humidity with hair dryer such that V S and FS are at same location;
the attacker trying to decrease to 50%.

Gas Manipulation

Following prior work [39], we study Carbon Monoxide (CO) level as a modality for co-presence
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FIGURE 7.8: Decreasing humidity with hair dryer such that V S and FS are within a range of
15 cm; the attacker trying to decrease to 50%.

detection. While manipulating this modality, an attacker may not be detected even when he alters

the gas content near either V or P (unlike the rudimentary model of Section 7.3.1.2), unless

there is a significantly large change, or gas monitors are installed. This provides flexibility to the

attacker to increase/decrease the CO level at both sides such that both readings match.

Increasing the Gas (CO): We performed several activities such as using a smoking cigarette to

exhale a high amount of CO gas to the sensor, and using a car exhaust to increase the CO level.

We also found out that room heaters emit gases which increase CO readings when we placed

the sensor device on top the gas vent while the heater was turned on. The aerosol spray also

increased the CO level when it was sprayed around on top of the sensor. The effect of different

propane gas heaters as well as aerosols air fresheners on gas content has been mentioned in

[175]. All these activities, though, increased the CO level abruptly, it takes a long time for sensor

reading to descend back to normal, which provides the attacker with a sufficiently long attack

window as shown in Fig. 7.9. The effects of cigarette and car exhaust on CO level are described

in Appendix B.2 in detail. We observed these activities for more than five times, and noticed that

it took more than thirty seconds to decrease by 1 ppm when gas level decreased below 10 ppm

which is already above average of normal gas level.

Decreasing the Gas (CO): To reduce the gas level, an attacker needs to “purify” the air from

the CO content around the sensors. We implemented this strategy using a kitchen exhaust fan

which is used to remove pollutants. We found that when sensor was placed near the exhaust fan,

it decreased the CO gas content.

The gas reading heavily depends upon the location of P and V . In a heavy traffic or polluted

area, this may be higher than 10 ppm while in a normal workplace, it may be around 0 ppm to 5
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FIGURE 7.9: Effect of aerosol spray in CO level; increasing the CO gas level to arbitrary value
and wait to decrease to desired level.

ppm. If P is located in low CO area while V is located in high CO area, the attacker may use the

kitchen exhaust fan activity to decrease the CO level in V’s location. However, if the attacker

cannot reduce the CO level by significant amount, he can always collude with the attacker at P’s

side to increase the CO level using an aerosol spray. This can increase the CO level by significant

amount and then it only takes a while to fall back to the normal gas level. This effect can be

confirmed from Fig. 7.9.

Altitude Manipulation

The altitude of a location is inversely correlated to the pressure at that location. The Sensordrone

device detects the pressure, and uses it to calculate the altitude based on a standard conversion

method.

Manipulating sensors so as to increase or decrease altitude directly seems very difficult. In

order to manipulate the altitude readings, one may physically carry the verifier device to a higher

or lower altitude as needed. If the verifier device is portable (such as a stolen laptop), doing so is

easy. However, there are many scenarios where directly changing the altitude is not feasible (e.g.,

when V is a car and P is a car key carried in victim’s pocket). We show that it is still possible to

manipulate altitude readings indirectly by manipulating the pressure readings.

Increasing the Altitude: To increase the altitude indirectly, an attacker must decrease the pressure

near the sensors. To achieve this functionality, we created a low-cost air compressor. We placed

the sensor inside a Ziploc bag and then used an electric air pump [176] to suck-up the air from the

bag. When V is large in size or shape (such as a car), an attacker just needs to create an enclosure

around its sensor, while if it is a portable/small device (e.g., a laptop), the device itself can be

placed inside a bag. When the air pump sucks up the air around the sensors enclosed inside the
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by pumping air in and out.

Ziploc bag, the weight of air exerted on the sensor is reduced. This reduces the pressure around

the sensor and hence increases the altitude level. In our experiment, we effectively altered the

altitude by more than 60 meters (Fig. 7.10). By using an air pump with a higher power, the

attacker can further increase the altitude level. A vacuum cleaner may also be used in place of an

air pump (as described in Appendix B.3).

Decreasing the Altitude: To decrease the altitude (i.e., increase the pressure), we placed the

sensor inside a polythene bag and applied high pressure by squeezing the bag, blowing air into

the bag, and finally using the air pump device to blow the air inside. First, we wrapped the sensor

inside a polythene bag to see if there is any change in altitude when we blow air into the bag by

mouth, or squeeze the air tight polythene bag. This increased the pressure by very high amount

and decreased the altitude correspondingly. However, it was not doable in a controlled way, i.e.,

sometimes the altitude decreased by 5 meters while on other occasions, it decreased by 50 meters.

Ideally, an attacker would want to have a relatively long time window where the desired altitude

remains constant for him to perform the relay attack. To address this issue, we used the air pump

mentioned above. Filling up the air into the bag increased the pressure and decreased the altitude

such that it remained constant for almost 14 seconds. A video demo of this experiment has been

uploaded to YouTube [177].

7.3.2.4 Manipulating Multiple Sensor Modalities Simultaneously

As demonstrated by prior work [38, 39, 98], a contextual co-presence detection system can

use combinations of several sensor modalities. In such cases, the attacker needs to manipulate

multiple modalities at the same time (multi-modality attacker). However, performing one activity
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may be altering not only the target modality but also one or more other modalities that a system

might be using for context detection, such as (T and H) or (Al and Au) even though they are not

directly correlated.

For example, hair dryer increases temperature but also dries-up the air (i.e., potentially

reduces the humidity) around the sensor where it is applied. It also changes the ambient noise.

An attacker needs to manipulate in such a way that if the multiple modalities are involved in

the system he should change the target modality without altering other modalities by effective

amount. We also found that hair dryer activity results in a huge momentary change in gas level.

However, the reading comes back to normal when hair dryer is applied for a long period of time.

Altitude and pressure did not change with the hair dryer activity. Hair dryer activity also does not

impact on RF signals. Hence, hair dryer activity can be used to manipulate the system which

uses either temperature or humidity along with gas, altitude and RF signals.

Using aerosol spray to increase the gas content does not have effective change on any other

modalities besides humidity. Similarly, updating RF signals does not seem to have any effect on

physical modalities. Therefore, an attacker can simultaneously manipulate radio, temperature

and gas while he hopes that audio, altitude and humidity either match the minimum criteria from

both sides or is not used by the system.

Using an ice cube to decrease the temperature does not affect other modalities effectively.

However, if the ice melts then it may affect the humidity of the space near the sensors. In our

experiment, we saw that humidity fluctuates when we tried to decrease the temperature using an

ice cube. Hence, using an ice cube to decrease temperature activity can be used with all other

modalities except altitude and humidity.

Hot coffee cup changes the humidity along with the temperature, while other modalities

remain unchanged. In this case, an attacker can manipulate humidity along with radio, audio and

gas while he cannot control temperature and humidity together.

When an attacker has to use an air pump or vacuum cleaner to increase or decrease the

altitude, it affects ambient noise. Also, an air pump was used in conjunction with a Ziploc bag

where the sensors were wrapped to create an enclosed space. When the attacker performs such

activity in an enclosed space, it will be difficult for him to change gas, temperature or humidity.

Thus, we only claim that the attacker can manipulate altitude along with radio modalities.
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To summarize, our attacks support the following combinations of multi-modality manipula-

tions: (1) Al, B, W; (2) Au, B, G, (increase for H), W; (3) Au, B, G, (decrease for T), W; (4) Au,

B, G, W; (5) B, G, H, W; (6) B, G, T, W. However, a more sophisticated attacker (than the one

we considered) may use different techniques to possibly attack other combinations too.

7.3.3 Environment Manipulation: Analysis

In light of the attacks presented in Section 7.3.2, we present our attack analysis on multi-modality

attackers who can simultaneously control multiple sensor modalities, in addition to the single-

modality attacker. We assume that a contextual attacker can manipulate radio contexts in both

directions. The same assumption applies to Gas sensors in light of our aerosol spray attack.

7.3.3.1 Analysis Methodology

To fairly evaluate the resilience of co-presence detection systems in the presence of our contextual

attacker, we used the same datasets and the same set of features originally used to evaluate the

systems in question. We use datasets in Chapter 6 to evaluate the resistance of the respective sys-

tems against multi-modality attackers. In addition, we conducted new audio relaying experiments

to collect data and evaluate audio-based co-presence detection performance. Furthermore, we

collected a new dataset corresponding to the audio-radio-physical system.

We used the same classification techniques as in Chapter 6 (Decision Tree and Random

Forest), implemented in Scikit-learn [178]. The results are reported after running ten-fold

cross validation. We use False Positive Rate (FPR) as a metric to represent the attacker’s

success probability. FPR corresponds to “non co-presence” samples which are mislabeled as

“co-presence”, reflecting the security of the system (higher the FPR, lower the security). We use

False Negative Rate (FNR) as a metric to represent the usability of the system. FNR represents

“co-presence” samples that are mislabeled as “non co-presence” (lower the FNR, better the

usability). F1 score is reported only for the overall performance of the classification model under

zero-modality attack. Please check Equations 4.1 and 4.2 for the definitions of FPR, FNR and F1

score.

Whenever multiple sensor modalities are used, we fuse the data from these modalities before

feeding it to the classifier. We considered the following fusion approaches.
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• Features-fusion:

The features of all sensor modalities are together fed to the classifier. The decision of

co-presence or non co-presence is made one-time only based on the output of the prediction

model. This is the approach followed our work in Chapter 6 [38, 39].

• Decisions-fusion:

Each of the n sensors (with all its features) is used separately by the classifier. As result

there are n decisions made. All decisions are then combined to produce a final decision.

This is an approach that has not been used for co-presence detection in previous works.

Decisions-fusion can aggregate decisions from single sensor modalities or from subsets

of sensor modalities, for example, three subsets can be built on top of seven sensors:

acoustic = {Au }, radio = {B, W }, physical = {Al, G, H, T }. In the latter fusion approach,

classifiers of subsets are built using features-fusion.

We consider two methods to aggregate decisions. The first method is based on a simple

majority voting (hereafter referred to as equal voting) which takes binary decisions from all

sensors with equal weights. The second method is a novel variant, we call weighted voting,

which fuses decisions with different weights assigned to each sensor. We start with a list

of sensors, S1, S2, ..., Sn, sorted by the order of attack resilience according to the single

modality attack, the weight assigned to Si is computed as: 1/N ∗ i, where N = n∗(n+1)
2 ,

i is the position of Si in the sorted list. As an example, the decisions-fusion weighted

voting for Audio-Radio is done as follows. Sensors Au, B, W have performance: 3%,

2.7%, 99.8% (Table 7.2), respectively. The sorted list is therefore [W, Au, B ]. When these

sensors are fused, their weights will be assigned as: 1/6 for W, 2/6 for Au and 3/6 for B.

Note that in equal voting, the weight of each sensor is 1/3. When more sensors are fused,

weights will be adapted with similar scheme.

7.3.3.2 Audio-Only System

Halevi et al. [98] proposed the use of (only) audio for co-presence detection. Their work showed

that audio is a good ambient context resulting in 100% accuracy and 0% False Positive Rate

(FPR). To assess how an attacker can manipulate ambient audio via the streaming attack (Section

7.3.2.1), we conducted a set of experiments to collect about 100 audio samples for the non
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TABLE 7.1: Relay attack success rate (FPR) for audio streaming via Wi-Fi and Cellular networks

Acoustic relaying environments Wi-Fi Cellular
(P freq→ V freq)

High→ Medium 100% 40%
High→ Low 100% 20%
Medium→ Medium 100% 0%
Medium→ Low 100% 60%
Low→ Low 20% 0%

co-presence case. The audio streaming was done over two different channels: Wi-Fi and cellular

data. P was a Galaxy Nexus device while V was a Galaxy S3 device. Unidirectional streaming

of the audio from P’s side to V’s side was done between a pair of devices (from a Galaxy S4

to an iPhone 5 in the case of the cellular data channel, and from a MacBook Air to a ThinkPad

Carbon X1 in the Wi-Fi channel). The attacker devices used a Skype connection as the audio

relay channel.

The audio features used in [98] are based on audio frequency. Therefore, to evaluate the

impact of frequency on the attack feasibility, we tested three different ranges of ambient audio

frequencies collected by controlled experiments where we set up the ambient noise surrounding

recording devices falling into different categories. Low ambient audio (frequency less than 100

Hz); Medium ambient audio (frequency in the human audible range, at around 500 Hz); High

ambient audio (frequency 5000 Hz or more).

We used the dataset for ambient audio of previous work [38] which collected ambient

acoustic data to build the classification model (F1 of 0.86 and FPR of 9.3%). The 100 samples we

collected via audio streaming channels are fed to the classifier for prediction. Table 7.1 presents

the FPR of non co-presence detection under the streaming attacks over Wi-Fi and cellular data

channels. The results indicate that the attacker (1) has a higher chance of success using the Wi-Fi

channel and (2) could be thwarted when either the ambient audio at P is low frequency or if the

ambient audio at V is high frequency.

This simple streaming attack with commodity devices shows that the audio-only system

is highly vulnerable to relay attacks, especially via the Wi-Fi channel. The attack has very

high success rate regardless of hardware variations and network delays inherent to streaming.

However, an attacker can succeed only when relaying ambient audio from a higher frequency

acoustic environment to a similar or lower frequency acoustic environment, such that, the higher
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frequency dominates the lower frequency, and makes V falsely record P’s ambient noise instead

of the real “localized” ambient noise.

The audio features we used, i.e., the ones proposed in [98], are not sensitive to time syn-

chronization. This is effective in terms of co-presence detection (i.e., results in very low FNR).

However, as we can see from our experiments, these features also enable the attacker to succeed

in the relay attack with a very high chance.

7.3.3.3 Audio-Radio System

To analyze the attack, in each run, the non co-presence samples in the test data were transformed

as below.

Audio: Because raw audio data is additive, and one-side context manipulation for audio is tested,

an adversary can be modelled by replacing V side audio (Xa) to be the sum of its own ambient

audio and P side audio (Xa +Xb).

Radio (B and W): In Section 6.3.2.1, the set of radio records from two devicesA andB are defined

as: Sa = {(m(a)
i , s

(a)
i ) | i ∈ Zna−1}, and Sb = {(m(b)

i , s
(b)
i ) | i ∈ Znb−1}, where (m, s) with

m is an identifier and s is associated signal strength of a beacon; na and nb denote the number

of different beacons (i.e., Wi-Fi access points or Bluetooth devices). The both-sides contextual

adversary can be modeled by replacing Sa with Sa ∪ {(m, s) ∀(m, s) ∈ Sb,m 6∈ S
(m)
a }, and Sb

with Sb ∪ {(m, s) ∀(m, s) ∈ Sa,m 6∈ S
(m)
b }.

We considered two approaches of fusing sensor data against bi-directional relay attacks and

showed which of them is more suitable for resisting against the presence of contextual attackers.

Table 7.2 (columns 1, 2 and 3) presents the analysis results of training model combining all

three audio-radio modalities (Au, B and W) and testing with different attacks. Zero-modality

attack shows the very low FPR with both fusion methods. The FNR for decisions-fusion is higher

compared to that for features-fusion. For features-fusion, the results are aligned with the ones

reported in Section 6.3.2.2.

In single-modality attack, manipulating Wi-Fi, the dominant feature, results in a very high

success rate with features-fusion. The results change when decisions-fusion was applied (equal

voting and weighted voting). In such case, manipulating any single sensor, even the most powerful

one, does not significantly degrade the overall security. The FPR in case W was manipulated

108



TABLE 7.2: FPRs with/without different contextual attacks in various audio/radio/phys-
ical systems. Notations: Sets of manipulated sensors are put inside curly braces {}. {X̃}
denotes an arbitrary set of sensor modalities. Fusion: F denotes features-fusion, D-S de-
notes decisions-fusion, equal voting from single modalities, D-S (w) denotes decision-fusion,
weighted voting from single modalities, D-M denotes decisions-fusion, equal voting from sub-
sets of modalities. Result highlights: Manipulation of sensor modalities, especially multiple of
them, can significantly reduce security (increase FPR) in most cases. Decisions-fusion can help
improve security when dominant sensors are manipulated, but it may reduce usability (increase

FNR). Grey highlights the improvement of decisions-fusion.

Audio-Radio Physical Audio-Radio-Physical

Fusion F D-S D-S (w) F D-S D-S (w) F D-S D-M D-S (w)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

2.0% 2.0% 2.5% 7.5% 13.0% 58.6% 3.0% 27.1% 6.9% 34.5%

Z
er

o-
m

od
al

ity

FNR 1.4% 12.0% 2.7% 3.9% 14.5% 7.8% 0.0% 0.3% 0.0% 1.5%

F1 0.977 0.925 0.979 0.928 0.861 0.810 0.990 0.923 0.980 0.898

{Au} 3.0% 3.0% 2.5% {T} 8.3% 17.0% 89.7% {Au} 87.7% 45.3% 36.9% 39.4%

{B} 2.7% 9.0% 14.8% {G} 11.9% 20.0% 69.0% {B} 100% 45.8% 36.9% 35.0%

{W} 99.8% 8.0% 2.5% {H} 15.3% 24.4% 68.0% {W} 12.3% 44.8% 35.0% 39.9%

{Al} 55.1% 33.1% 56.0% {Al} 5.4% 37.9% 6.9% 28.1%

{G} 5.9% 29.6% 6.9% 40.9%

Si
ng

le
-m

od
al

ity

{H} 3.4% 29.1% 6.9% 54.7%

{T} 3.4% 31.5% 6.9% 38.9%

{Au,B} 3.6% 96.0% 99.0% {G,T} 13.9% 40.1% {B}∪{X̃}: {2 sensors}: {Au, B}∪{X̃}: {2 sensors}:

{Au,W} 100.0% 96.0% 2.5% {G,H} 15.7% 57.5% 69.5% 100.0% 32.0-75.4% >97.5% 28.1-68.5%

{B,W} 99.8% 100.0% 100.0% {H,T} 29.6% 41.9% {Au}∪{X̃}: {3 sensors}: {Au, W}∪{X̃}: {3 sensors}:

{Au,B,W} 100.0% 100.0% 100.0% {Al,T} 50.6% 89.7% >74.9% 37.4-97.5% >88.2% 36.5-100%

{Al,H} 61.2% 65.0% {X̃}\{Au, B}: {Al,G,H,T}: {4 sensors}:

{Al,G} 65.5% 65.0% 12.3% 97.5-100% 9.90% 58.6-100%

M
ul

ti-
m

od
al

ity

{G,H,T} 31.1% rest: 100% {B,W}: 36.9% rest: 100%

{Al,G,H} 65.0% rest:

{Al}∪{X̃} 64.7- 6.9-87.7%

100%

rest 100% 100%

decreases from 99.8% (features-fusion) down to 8% (decisions-fusion, equal voting and 2.5%

(decisions-fusion, weighted voting). The performance of audio and radio sensors is comparable to

that reported in Section 6.3.2.2 with F1 ranges from 0.857 for Au to 0.989 for W). This explains

why decisions-fusion reduces the overall performance slightly (F1 reduces from 0.977 to 0.925)

in case of zero-modality attack but significantly improves the security under a single-modality

attack. The security is very low in multi-modality attack, and neither of the fusion approaches

could restore the security level when majority of the sensors are under attacker’s control.

7.3.3.4 Physical System

In Section 6.4, four physical modalities (Al, H, G, and T) were introduced for co-presence

detection. The performance of the features-fusion based classifier trained with their dataset is

good (F1 of 0.957, FPR of 5.81%) against a zero-modality adversary.
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Based on our attacks against physical modalities (Section 6.4), we consider an adversarial

model where an attacker can manipulate the physical context on one side (unattended verifier) to

match the sensor readings at the other side (prover). To model this attack, all non co-presence

samples in the test set were transformed to the “attack” value (distance 0). The distance is set

to 0 as data collection in [39] was done by a single device at a given point of time, hence, no

hardware effect or calibration error was taken into account. The non co-presence class in the

dataset is about 18 times larger than co-presence class. To correct this imbalance, we applied

the same under-sampling as in [39]: we divided the non co-presence samples into 19 subsets,

ran several rounds of cross validation taking 10 subsets in each round and aggregated the results

in the end. In addition to the features-fusion employed in [39], we tested the decisions-fusion

similar to our audio-radio system analysis in the previous section.

Table 7.2 (columns 4, 5 and 6) shows our analysis results. The system performance in zero-

modality attack is well-aligned with the one reported in [39]. As in [39], among four physical

modalities, Al performs the best. Consequently, manipulating only Al degrades the security vastly

with features-fusion (FPR increases to over 50%). Decisions-fusion in general brings lower

security and lower performance/usability in zero-modality attack and single-modality attack.

However, it avoids the dominance of sole sensor in case the attacker can control such sensor (Al in

this case). Decisions-fusion can also help improve security against a multi-modality attacker who

manipulates Al along with other sensors. Compared to audio-radio system, in physical system,

attacking each single modality results in higher success rate.

7.3.3.5 Audio-Radio-Physical System

With an app designed and implemented in Chapter 6, Sections 6.3 and 6.4, we recorded sensor data

from different devices. Each device, in a pair of devices, was connected to its own Sensordrone

device. Two users were involved in the data collection. Data was collected at different locations

in two countries for ten days. The resulting dataset has 203 non co-presence samples and 335

co-presence samples.

We collected data from pairs of devices, and therefore hardware variance and calibration

errors between co-presence device sensors need to be taken into account. When we try to model

the contextual attack on given sensor(s), distance 0 does not ensure that the attack will succeed.

As the classifier is trained with data which may contains noise, we compute the mode of the
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histogram for distance values for the co-presence samples. As the data aggregated is from two

participants, histograms of distance values are not uninomial but multinomial. Multinomial

distribution implies several modes. For each physical sensor, we choose a mode value and assign

it as the distance value. The mode values for Al, G, H and T are 13.54, 0.3, 6.61 and 0.153,

respectively. As the manipulation by replacing the radio data at both sides has to be identical, the

distance features for radio sensors are set to 0.

Table 7.2 (columns 7, 8, 9, and 10) reports our analysis results with different fusion methods.

Under zero-modality attack, features-fusion performs the best while decisions-fusion from single

modalities performs the worst. Features-fusion uses all possible features for training so that the

classifier can be built based on the best features or best combination of features (B and Au with

our current dataset). Thus, it returns the best results (in the absence of context manipulation)

compared to any other ways of fusing sensor data. Decisions-fusion based on single modalities

lets the worst sensors being able to contribute to the voting scheme, thus bringing down the

overall performance. This is the case in our dataset where radio sensors and audio sensor perform

better than physical sensors. Note that if all sensors perform equally well, features-fusion and

decisions-fusion would not differ much. Decisions-fusion from subsets of sensors has a moderate

performance, worse than features-fusion but better than decisions-fusion from single modalities.

This hybrid approach avoids mis-learning as in the case of using a single modality only.

Let us now assess the security of this co-presence detection system when any single modality

is controlled by the attacker. Depending on how sensors are fused, the impact of manipulated

sensor varies. In features-fusion, as the classifier decision relies on the best features of dominant

sensors, the FPR increases drastically when such sensors are manipulated (i.e., Au or B in our

dataset). In contrast, when weaker sensors (physical or W) are manipulated, it has a relatively

small impact on the security as the resulting FPR increases a bit compared to a zero-modal

attack (especially for W). Decisions-fusion reduces attacker success rate when single sensor is

manipulated, for example, FPR of manipulating B decreases from 100% to 35% (decisions-fusion,

weighted voting). Recall that manipulating single sensor is not difficult as we demonstrated in

Section 7.3.2.

An attacker has the highest chance to succeed if he can control the dominant sensors or

a subset of sensors that contain the dominant sensors. In such case, the success rate could

reach 100% with only one single dominant sensor (i.e., B in our dataset) if the system uses
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features-fusion or with majority dominant sensors (i.e., Au and B). In most cases, attacking the

set of weak sensors (e.g., {Al, G, H, T}) does not impact the security much, except when system

uses decisions-fusion from single modalities.

7.3.4 Summary

Contextual co-presence detection has been shown to be a very promising relay attack defense in

many mobile authentication settings suitable for off-the-shelf, sensor-equipped devices. We pre-

sented a systematic assessment of co-presence detection in the presence of a context-manipulating

attacker. Our work suggests that tampering with the context can be achieved with simple yet

effective strategies, and the security offered by co-presence detection is therefore weaker than

previously believed. We also suggested potential countermeasures (e.g., decisions-fusion based

machine learning, especially involving weighted voting) that may be used to strengthen the

security of co-presence detection against a multi-modality attacker.

7.4 Attack on Two Factor Authentication: Sound-Danger

7.4.1 Introduction

In Chapter 6, we showed that we can use environmental context such as RF and audio (Section 6.3)

or physical ambient parameters (Section 6.4) to detect proximity of two devices and prevent relay

attacks. Detecting proximity of the two devices can be used as an authentication based on token

(“something you have”). This can be used in conjunction with the traditional password based

authentication (“something you know”) forming a two factor authentication (2FA). Currently,

different web applications such as Google, Facebook, etc., have deployed 2FA where users

enter one-time PIN (OTP) from the token over to the authentication terminal after entering

their passwords. This improves security because the attacker now needs to not only guess the

user’s password but also the current OTP value to hack into the user’s account. The use of a

general-purpose smartphone as a token [43–45], as opposed to a dedicated device [46, 47], helps

improve usability and deployability of 2FA.

As mentioned in Section 2.1.6, Sound-Proof [30], elicits ambient sounds to detect the

proximity between the phone and the login terminal (browser) to provide 2FA with no degradation

in usability. However, in Sections 7.2 and 7.3, we showed that such systems can be thwarted by a
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context manipulating attacker with a little effort. In this section, we set out to closely inspect the

security of Sound-Proof [30], motivated by its very appealing usability and practicality features.

We identify a fundamental weakness of the Sound-Proof system, namely, the remote attacker

against Sound-Proof does not have to predict the ambient sounds near the phone, but rather can

make the phone create predictable or previously known sounds, or wait for the phone to produce

such sounds (e.g., ringer, notification or alarm sounds). Since the phone itself creates such noise,

the recordings would be dominated by these sounds rather than the ambient noises.

Exploiting this weakness, we introduce and build Sound-Danger, a full attack system that can

successfully compromise the security of Sound-Proof . The attack involves remotely buzzing the

victim user’s phone, or waiting for the phone to buzz on its own, and feeding the corresponding

sounds at the browser to login on behalf of the user. The attack works precisely under the limits

of Sound-Proof ’s threat model, only uses the information available in hacked password databases

(e.g., passwords, phone numbers or other account information [179–185]), is fully remote and can

be launched against multiple user accounts. We note that phone numbers, in particular, are readily

available in password databases as they are commonly used to facilitate account recovery in case

of forgotten username/password and are essential for 2FA-supported web services which often

need to send OTPs to users’ phones via SMS (Sound-Proof also supports fallback to traditional

2FA [30]).

7.4.2 Background

Sound-Proof [30] is claimed to be a usable and deployable zero-effort 2FA mechanism, which

does not require interaction between a user and the 2FA application on the device during the

authentication process. In Sound-Proof , the second authentication factor is the proximity of the

user’s phone and the client terminal (browser), which is verified by the application on the phone

by comparing the ambient noise recorded by the phone and the browser.

7.4.2.1 Threat Model

The primary goal of Sound-Proof is to defeat a remote attacker, who may be attempting to login

into a victim user’s account from a remote machine, which is in full control of the attacker.

Sound-Proof ’s threat model assumes that this remote attacker has the knowledge of the victim

user’s username and password. This information can be learned, for example, via leaked password

113



databases of the web service that may be using Sound-Proof or other web services for the purpose

of authenticating its users. The attacker’s goal is to authenticate to the web service on behalf

of the user and possibly compromise multiple user accounts. Sound-Proof assumes that the

attacker has not compromised the user’s phone and/or the user’s terminal. If the attacker gains

control of one of the victim’s devices, the security of any 2FA scheme reduces to the security

of password-only authentication. Also, Sound-Proof does not consider targeted attacks such as

those involving co-located malicious entities that are in close physical proximity of the victim.

This threat model may be weaker than that considered by traditional 2FA schemes involving

OTPs. However, as argued in [30], given the prominence of remote attacks, this is still a very

legitimate model. If more and more web services and users adopt Sound-Proof given its unique

zero-effort feature, and remote attackers could still be thwarted, this will be a major improvement

to the state of web authentication in practice.

As such, our proposed Sound-Danger system follows a threat model very similar to that

of Sound-Proof . We consider that the attacker gets other user information from the leaked

password database besides user credentials. That is, we assume that the password databases store

phone numbers for password-only or 2FA implementations in order to send account recovery

information or verification codes [183, 185], IP address information from which the users log

in [182–184], or even users’ physical address information [184]. The Sound-Danger attacker

uses the phone numbers to perform active attacks while it utilizes IP addresses or physical address

information to locate the users and their timezones. By identifying the timezone of the users,

the attacker can estimate when a particular noise may occur at the users’ side, such as morning

alarms. Since many users often use the same usernames across multiple web applications, the

attacker can utilize the username information to perform attacks based on notifications triggered

by apps that use the same username. For example, if a user has the same username in the leaked

database server and Skype, the attacker can send a notification (e.g., a friend’s request) to user’s

Skype account. Like in Sound-Proof ’s threat model, the Sound-Danger system does not attempt

targeted attacks. Rather, it assumes that the attacker can collect general population statistics

through online user surveys in order to devise specific attack strategies against a population of

users for compromising multiple user accounts.
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7.4.2.2 Implementing Sound-Proof Framework

As a prerequisite to evaluating the Sound-Danger attack system, we first re-implemented Sound-

Proof , as described in [30]. We implemented phone-side, server-side and browser-side applica-

tions as described below (the flow diagram of our implementation is shown in Figure 7.11):

• Phone Application: We created an Android app that stays idle in the background and is

automatically activated when a push message arrives. Google Cloud Messaging (GCM)

is used to send a push message from the browser to the Android phone. When GCM

push message arrives from the browser for recording, the Android app automatically gets

activated and starts recording the ambient noise. The app stops recording as soon as another

GCM push message arrives.

• Web Server and Browser Application: The server component is implemented using PHP

while the browser component is implemented in HTML and JavaScript. Browser applica-

tion has a simple button to control the recordings on the browser and on the phone. When

the button is pressed to “start recording”, the browser application sends GCM push message

to the Android phone. If the button is pressed to stop recording, a “stop recording” GCM

push message is sent to the Android phone. In the meantime, the browser application also

starts recording ambient noise. Thus, the browser application has two main functions: (1)

sending start/stop recording commands, i.e., GCM push messages, to the Android phone,

and (2) recording ambient noise. In order to record ambient noise through the browser, we

use HTML5 WebRTC API [186]. In particular, we use navigator.getUserMedia() API to

access the local microphone from within the browser.

Time Synchronization: As the two devices (phone and terminal running browser application)

may have two different local time clocks, our implementation, like Sound-Proof , requires the

recordings from these devices to be synchronized. For this reason, both the phone and the

browser applications run a simple time synchronization protocol with the web-server. Similar to

Sound-Proof , the protocol is implemented over HTTP that allows each device to compute the time

difference between the local time and the server time. Each device runs the time synchronization

protocol while it is recording the ambient audio. Both devices compute their round-trip time
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FIGURE 7.11: System flow diagram for our implementation of Sound-Proof . The phone and the
computer (browser) record ambient audio using their microphones. The audio from the browser
is uploaded to the server while that from the phone is stored locally. Sound-Proof sends the

browser recordings to the phone using secured channel (not implemented in our design).

delay (θ) and then clock difference (δ) with the web-server as shown in Equation 7.1.

θ = t2 − t0; δ = t2 −
θ

2 − t1; (7.1)

Here:

• t0 is the device’s timestamp of the request transmission,

• t1 is the server’s timestamp of request reception and response transmission, and

• t2 is the device’s timestamp of response reception.

During our offline analysis of audio samples, the recordings from each of the devices are adjusted

taking into account the clock difference (δ) with the web-server.

7.4.2.3 Implementing and Testing Sound-Proof ’s Correlation Engine

Correlation Analysis: Correlation analysis between an audio pair is implemented in a similar

fashion as Sound-Proof . That is, we used one-third octave band filtering and cross-correlation to

get a similarity score of an audio pair, as described below:
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• One-third Octave Bands: We divide the audio samples into different bands based on

frequency. Each band covers a specific range of frequencies. A frequency is said to be

an octave in width when the upper band frequency is twice the lower band frequency. A

one-third octave band is defined as a frequency band whose upper band-edge frequency

is equal to the lower band frequency multiplied by the cube root of two [187]. The audio

spectrum from 20Hz to 20kHz can be divided into 32 one-third octave bands with the

center frequency of 19th one-third octave band set to 1000Hz. The center frequency of the

lowest band is 16Hz covering from 14.1Hz to 17.8Hz, while the center frequency of the

highest band is 20kHz covering from 17.78kHz to 22.39kHz [188].

Since we are targeting Sound-Proof , we divide the audio into the bands ranging from 50Hz

to 4kHz. Sound-Proof utilizes only these set of bands, as these bands provided the best

Equal Error Rate (EER) in the analysis reported in [30]. Hence, we only use the sixth band

with the center frequency 50Hz to the twenty sixth band with the center frequency 4kHz,

i.e., we consider only twenty bands out of the thirty two available bands. We use twentieth

order Butterworth bandpass filter [189] in MATLAB to split the audio samples into these

bands.

• Cross Correlation: We use the same system that was implemented in [98] to correlate am-

bient noise. Sound-Proof also closely follows this system for calculating cross-correlation.

We use standard cross-correlation function to measure the similarity between the time-based

signals Xi and Xj . To calculate the similarity, we first normalize the signals according to

their energy. Then, we calculate the correlation between each signal at different lags and

use maximum correlation value. The correlation between two time-based signals Xi and

Xj is measured as:

Corr(i, j) = max(CrossCorr(Xi, Xj)) (7.2)

Sound-Proof also considers the lag to get the cross-correlation. This plays a major role to

prevent attacks on the system when an attacker submits a similar audio sample as that in

victim’s environment, which may be separated by a certain lag. Sound-Proof has bound

the lag l between 0 and lmax, where it sets lmax to 150ms. Hence, in our attack analysis,

117



we also check the maximum cross-correlation of audio pairs with the time lag bound to

150ms. This lag value yielded a low EER in Sound-Proof ’s analysis reported in [30].

Data Collection and Experiments: We collected audio samples using the framework described

in Section 7.4.2.2 at different locations such as lab/office, home, cafe, and library. We used

Google Chrome on MacBook Air and Samsung Galaxy S V to record the audio samples using our

implementation of Sound-Proof . We collected total of 525 audio pair samples and mix-matched

them to get the correlation between each audio pair. The audio recordings were around 8 seconds

long which were trimmed to 3 seconds after time synchronization for the correlation analysis

(similar to [30]).

Similar to Sound-Proof , our implementation uses one-third octave band filtering and cross-

correlation to calculate the similarity score between an audio pair, as described above. We use

octave band filtering to split 3 second long audio recordings from both devices into 20 one-third

octave bands. Maximum correlation is computed with the time-lag bound to 150ms between

these audio pairs in their respective bands. The average correlation value obtained from these

bands is the correlation between the audio pair.

The audio pairs which are co-recorded (recorded at the same location and at almost the same

time) are labeled as True Positive (TP) and the rest are labeled as True Negatives (TN). Once

the correlation values for each of the co-recorded audio pairs as well as non co-recorded audio

pairs are calculated, we compute the FPR (False Positive Rate) and FNR (False Negative Rate) as

a function of the correlation threshold. FPR for a given threshold defines the fraction of audio

pairs (out of all audio pairs) which are not co-recorded but are classified as valid (TP) at that

threshold, while FNR for a given threshold defines the fraction of co-recorded audio pairs (out

of all audio pairs) that are classified as invalid (TN) at that threshold. Using FPR and FNR at

different threshold values, we calculate EER (Equal Error Rate) and determine the optimal value

of correlation threshold (Tc) at which FNR and FPR are equal.

From the data collected in our experiments, we obtained the optimal threshold Tc of 0.1524

yielding an EER of 0.1607. The correlation threshold set in our experiment is in line with

the correlation threshold of Sound-Proof (0.13) [30]. Moreover, our other parameter settings

are exactly the same as in Sound-Proof ’s implementation [30], i.e., using the audio samples

each of length 3 seconds, filtering the audio samples into 20 different one-third octave bands,
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FIGURE 7.12: Sound-Danger Attack Flowchart: The attacker (human or bot) enforces the
ambient audio to be highly similar at both (attacker’s and victim’s) ends by making calls or
sending notifications to the victim’s phone, or waiting for an alarm to go off at the victim’s
phone, and by simultaneously feeding the same sounds at its own end. The attacker would
succeed in logging into the webservice, while the user may remain unaware of the attack or even

when the attack is detected, the account may already have been compromised.

and cross-correlating the audio samples with time lag bound to 150ms. Since our correlation

threshold is higher than that used in Sound-Proof ’s implementation, it means that attacking our

implementation will be harder than attacking Sound-Proof ’s implementation reported in [30].

In other words, the Sound-Danger attack against our implementation (threshold 0.1524) would

imply an attack against Sound-Proof ’s implementation (threshold 0.13) [30]. Nevertheless, we

analyze the performance of Sound-Danger for different (higher) correlation threshold values in

the attack analysis in Section 7.4.4, and show that the attacks still work well even at such higher

thresholdization.

7.4.3 Attacks

As the threat model of our Sound-Danger attack system suggests, we assume that the attacker is

already in possession of the victim’s username and password but is not co-located with the victim

(i.e., victim’s phone). The attacker’s goal is to satisfy the second factor requirement, which is to

fool the system into accepting the co-location of the attacker’s terminal and the victim’s phone.

We consider two types of attacks against Sound-Proof , both of which exploit the sounds

generated by the phone itself. The first type of Sound-Danger attack is the active attack, where the
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attacker performs an activity by which a sound (a phone ringing tone or an app-based notification)

would dominate the ambient audio around the victim’s device. Since the attacker is aware of the

audio produced at the phone’s end, it can generate the same sound at its own surroundings (or

feed the same sound programmatically to the browser) and succeed in proving the co-location

with the phone. The second type of Sound-Danger attack is the passive attack, in which the

attacker waits for the phone to create a previously known sound, specifically a morning alarm, at

an opportune moment and then tries to generate the same noise at its local terminal. The steps

taken by the attacker to target Sound-Proof are shown in Figure 7.12.

7.4.3.1 Active Attacks

In the Sound-Danger active attack scenarios, we assume that the attacker has already compromised

the web service that uses Sound-Proof . Since account databases on such servers typically store

other forms of user’s data (e.g., phone number for the password recovery purposes), hacking

into the server reveals other information that can be a used in the active attacks. Such data if not

stored on the main server is assumed to be obtained with data aggregation attack through other

services that user has an account with (which probably does not use 2FA).

Based on the type of information that the attacker possesses, we define (and later implement

and evaluate) the following attacks:

Ringtone Attack: In this attack, the attacker predicts the ringtone (or vibration sound) that the

victim user has set for the received phone calls. The attacker makes a call to the victim using the

knowledge it has obtained from compromised account database. At the same time, the attacker

attempts to login by entering the previously leaked victim’s credentials to the login page via

its own login terminal. To mimic the victim’s ambient noise (now the sound of the ringtone),

attacker plays the same ringtone audio at its location next to the login terminal.

Information known to the attacker: Victim’s username and password, victim’s phone number and

victim’s ringtone.

Task of the attacker: Ring the victim’s phone and create same sound around the local login

terminal.

App Notification Attack: In this attack, the attacker predicts the voice/messaging application

running on the victim’s phone and tries to activate the notification tone or ring tone of the
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application by communicating to the victim through the application. Since the user typically

registers to many of the web services using phone number or user id, the attacker can contact

the user on these applications either by their phone number (obtained by hacking the primary

account database) or user id (possibly similar to the one registered with the primary service.

Examples of such applications are Google Voice, FaceTime, Skype, Facebook, WhatsApp

and Viber. Calling or texting the user on these applications generates a default ringtone or

notification tone that is known to the attacker and is usually not changed by the users. Hence,

the attacker starts a login attempt to the primary service using the known credentials, and then

contacts the user on any of the mentioned applications. At the same time, it plays the same

ringtone or notification tone locally near the login terminal. The attacker would succeed since

it regenerates the same ambient noise as the victim’s phone locally (around the attacker’s login

terminal).

Information known to the attacker: Victim’s username and password, victim’s phone number,

victim’s installed application on the phone, victim’s id with the application (same as phone

number or primary username) and application ringtone.

Task of the attacker: Ring the victim’s messaging application and create the same sound around

the local login terminal.

Feasibility of Attacks: In all of our attacks above, the attacker would have to predict some

information necessary to execute the attacks (e.g., the type of ringtone used by the victim).

However, given predictable patterns and phone usage habits across users, this is not much of a

problem for the attacker. In Section 7.4.7, we support these assumptions and claims made here,

based on the data gathered from the participants in an online survey.

7.4.3.2 Passive Attacks

In the passive attack, the attacker predicts, or knows users’ activity and launches the attack

based on the knowledge it has from the users’ profile gathered from the leaked database. Unlike

the active attack, the attacker does not attempt to generate a sound at the user’s side but only

regenerates the same ambient sound that is supposed to be available at the user’s side. Unlike

the active attack, the passive attack does not alert the user by creating a sound, and hence can be

repeatedly attempted without triggering suspicion.
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(A) Phone Call (B) WhatsApp Call

(C) SMS Notification (D) Facebook Notification

FIGURE 7.13: Change in correlations when an attacker makes call or sends notification via
different apps at different point of time. In Figures a and b, the ringtone at the victim’s side starts
playing at the 5th second while in Figures c and d the notification audio goes off at 4th second
as depicted by highest correlation. There is no audio at the victim’s side from the ringtone when
the attacker plays the respective audio at 0th second. The correlation values are higher when the

ringer is ringing compared to that when there is no ringer, i.e., before 2 sec in call.

Although there are different scenarios where an attacker can create a similar ambient noise

to that at victim’s side such as similar media attack (both attacker and victim are watching same

media/TV channel, as also briefly considered in [30]), same event (both attacker and victim are

attending a popular event), or similar vehicles sound (attacker knows when victim commutes and

uses similar in-vehicle sound), we chose to exploit the ambient noise that is created by victim’s

phone itself such as alarms or morning reports. We believe that this attack has a higher chance of

succeeding compared to other ambience-based passive attacks since the sound of the alarm of the

phone will dominate the ambient sounds.

Alarm Attack: In this attack, the attacker knows the specific app which generates an audio at

particular time of day such as the morning alarm. Attacker attempts to log in at a specific moment

when such alarm is supposed to go off using the victim’s credential. At the same moment, the

attacker plays the alarm tone at its local login terminal to mimic the ambient noise around the

victim’s phone. In this attack apart from the victim’s username and password, the victim’s alarm

time, alarm tone is also known to the attacker.

Information known to the attacker: Victim’s username and password, victim’s alarm ringtone

and victim’s timezone.

Task of the attacker: Create the same alarm sound around its local login terminal.
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Feasibility of the Attack: Similar to the active attacks, the attacker would have to predict some

information necessary to execute the attacks (e.g., the type of ringtone used by the victim and

victim’s timezone). However, given predictable patterns and phone usage habits across users, this

is not challenging, as we demonstrate in Section 7.4.7 based on the results of an online survey.

7.4.3.3 Active vs. Passive Attacks

We introduced passive and active attacks, each of which has their own merits. With the passive

alarm attack, it is very likely that the victim user would not notice the ongoing malicious login

attempt. Therefore, the attacker might be able to repeat the attack repeatedly until it is successful.

In case of active attacks, the sounds generated by the attacker on the user’s phone (e.g., a phone

ringing tone) could notify the user and seek her attention. However, only a few seconds of audio

is enough for the Sound-Proof system to verify the co-presence of the phone and the terminal.

Therefore, by the time the user attends to the phone (e.g., to pick up the call) and even when the

user notices the malicious login attempt, the attack would have already succeeded and the user’s

account might have already been compromised.

Although Sound-Proof logs the login attempts on the device (as suggested in [30]), the users

may leave their phones unattended, in purses or bags, might not be concerned about security or be

diligent enough to the extent that they review the logs carefully and frequently. Extensive research

literature in user-centered security shows that users may not pay attention to security notifications

or heed security warnings and messages (e.g., [19, 190]). Moreover, relying upon the users to

detect such attacks will break the “zero-effort” property of Sound-Proof . Furthermore, even if

the logs were read and understood by the users, the attack may have already succeeded by the

time suspicious activity is noticed.

7.4.4 Analysis

In this section, we show the correlation analysis of different attacks using Sound-Danger intro-

duced in Section 7.4.3. In other words, we test the rate at which the attack samples (corresponding

to attacker’s browser and victim’s phone) will be accepted as valid login attempts by our imple-

mentation of the Sound-Proof app. In our analysis, we used Samsung Galaxy S5 from Verizon

as the victim’s smartphone along with Google Chrome browser in MacBook Air (mid 2012) as
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attacker’s terminal to perform the attack. The attacker makes calls or sends notification from LG

G3 from Verizon or a computer to create an audio it desires at the victim’s side.

To perform the attacks described in Section 7.4.3, the attacker follows the steps as illustrated

in Figure 7.12. The attacker who performs such attacks tries to generate or predict a similar

audio at the victim’s side while it logs into the victim’s account with the victim’s credentials. The

attacker has full control over the computer/browser that it is using. However, the attacker does

not have any direct control over the victim’s smartphone/app.

7.4.5 Ringtone and App Notification Attacks

To test our ringtone and app notification based active attacks, as described in Section 7.4.3, we

use phone ringtone (call/SMS) as well as various other ringtones from some of the popular apps

in Google Play Store, such as Facebook, WhatsApp Messenger, Viber, and Skype. We use default

ringer of the app/phone call. Although some of the victims may have customized the ringtone

for phone call or any other app, some of these apps do not allow users to customize the ringtone

for calls or notifications. The primary difference between call and notification attack is that the

ringtone audio is played longer for the call than it is for the notification.

Since the attacker does not have any direct control over the victim’s phone, the attacker faces

challenges due to two types of delays: (1) Sound-Proof recording delay, and (2) call/notification

delay. Due to Sound-Proof recording delay, the attacker cannot perfectly guess at what time

instance Sound-Proof starts recording audio from the victim’s phone for the purpose of login.

And, due to the call/notification delay, when the attacker makes call or sends notification to the

victim’s phone, the attacker also cannot make a perfect estimate to when the ringer sound will

be played at the victim’s side. To estimate these two delays, the attacker can run an experiment

by making calls or sending notifications to itself and monitor the delays. Based on this, the

attacker tries to synchronize the ringer being played at both sides as much as possible. We run

and analyze the attacks assuming that the attacker knows when Sound-Proof starts recording at

its end. This is a valid assumption since the attacker fully controls its terminal. Because of the

delays mentioned above, during the actual attack, Sound-Proof may start recording either before

or after the ringer goes off at the victim’s side. We set forth to analyze how the correlation values

change when the victim’s ringer goes off at different points of time.
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FIGURE 7.14: Analyzing Facebook notification audio sample (∼687ms long). The first audio
sample (top) represents the audio played by the attacker. The second audio sample (middle)
and the third audio sample (bottom) represent the audio recorded at victim’s side when the

notification audio rings after or before the attacker’s side, respectively.

Attack Analysis: Sound-Proof compares 3-second long audio samples, as discussed in Sec-

tion 7.4.2.3. Let us say the victim receives call/notification by an attacker at the nth second. The

attacker starts the authentication at the tth second. This is when Sound-Proof starts recording at

both sides. If Sound-Proof starts recording at t such that t < n− 3, Sound-Proof will not record

any audio component due to the ringer, and hence, there will be low correlation between the

audio pair. When t = n, the correlation will be the highest as the attacker has fully synchronized

the audio at its side with that at the victim’s side. This pattern exhibited by the correlation values

can be visualized in Figure 7.13. Here, the ringer for call goes off at the 5th second (Figures 7.13a

and 7.13b) while the sound of the notification goes off at the 4th second (Figures 7.13c and 7.13d).

Hence, the correlation is very low prior to the first 2 seconds. Now, when t > n, the correlation

should drop as the two audio samples are not synchronized. However, the correlation after the

ringer has started ringing (t > n) is higher than that when there was no audio at all (t < (n− 3)).

Therefore, we know that the correlation increases and is reasonably high as long as there is

some matching audio even if the two audio samples are not at synchronized. The increase in the

correlation values after t > (n− 3) proves this pattern as depicted in Figures 7.13a and 7.13b.

To further analyze this property, we choose Facebook notification attack instead of call attack

for simplicity. We use Audacity1 to analyze why the correlation in Figure 7.13d increases at

t = 3.4 second and drops only after t = 4.6 second while the exact match occurs at 4th second as

illustrated in Figure 7.14. The first audio signal in Figure 7.14 represents the audio signal that the
1http://www.audacityteam.org/
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attacker plays at its terminal which is 3 second long. The audio due to Facebook notification has

audible signal of length 687ms which starts at 1.26th second. The second audio signal represents

the audio recorded by the app at victim’s terminal for t = 4.6 second where the notification

ringtone goes off at 1.60th second. The third audio signal represents the audio recorded by the

app at victim’s terminal for t = 3.4 second where the notification ringtone goes off at 0.90th

second in the 3 second long audio. From these three audio samples, we can see that whenever

there is an overlap between the audible sounds, the correlation rises despite the time lag bound

to 150ms. This is because when there is some audio, the correlation values from some of the

1/3-octave bands out of 20 bands increase, increasing the overall average correlation value.

Real Attacks and Success Rates: After analyzing the attack methodologies mentioned above,

we set forth to perform the real attacks. To perform such attacks, the attacker needs to: (1) make

a call/send a message via different apps to a victim’s smartphone, (2) log in from a browser on a

terminal which it fully controls, and (3) play the ringtone or a notification sound that the victim

device may generate due to attacker’s call/message. At the attacker’s end, we used an LG G3

phone and a MacBook Air and, at the victim’s end, we used a Samsung Galaxy S5 phone. The

attacker first observed how long it takes for another device to ring in each different app when it

makes a call to the corresponding apps. Then, the attacker made calls to the victim’s device from

those apps. The attacker tried to synchronize the ringtone played when it logs in from the Google

Chrome browser on MacBook Air.

We tested different attacks (active calls and notifications) against our implementation of

the Sound-Proof system, and collected the audio samples stored in the victim’s smartphone and

the audio uploaded to the server from the attacker’s browser. The success rates for our attacks

with the correlation threshold Tc = 0.1524 for different types of attacks are shown in Table 7.3.

We can see that many of our attacks were highly successful, including WhatsApp, Facebook

and Viber calling, Viber notification and alarm. We also used vibration based attack where the

noise is produced by a vibration of the phone instead of the phone playing a ringtone during a

call. We placed the phone in different location such as on desk, inside a pocket, inside a bag,

and in hand to see if the audio detected by the phone for such placements of the phone affects

the attack success rate. Table 7.3 also shows the attack success rate when the threshold was

increased to Tc = 0.18 and Tc = 0.2. When the correlation threshold is increased, the attack

success rate decreases slightly as expected (although many attacks are still highly successful).
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TABLE 7.3: Success rate of different types of attacks with respect to different correlation
thresholds. Highlighted cells represent attack with success rate at least 90%.

Attack Type Tc= 0.1524 Tc = 0.18 Tc = 0.2

A
ct

iv
e

C
al

l

Phone Call 81.82% 72.73% 63.64%
Viber 100.00% 100.00% 90.00%
WhatsApp 100.00% 100.00% 100.00%
Facebook 100.00% 100.00% 72.73%
Skype 41.67% 25.00% 16.67%
Facetime 92.86% 57.14% 42.86%
Vibration 85.42% 81.25% 72.92%

N
ot

ifi
ca

tio
n SMS 64.71% 35.29% 17.65%

Skype 85.71% 52.38% 19.05%
WhatsApp 66.67% 33.33% 25.00%
Viber 100.00% 92.86% 85.71%

Pa
ss

iv
e

Alarm 100.00% 90.00% 80.00%

We note that increasing the threshold would make the attacks a little harder but at the expense of

usability since even legitimate user may be prevented from logging in more frequently. Further

experiments revealed that the attack success rate did not change even when the victim device was

placed in front of a television with high volume. This confirmed our hypothesis that the sounds

of the phone will dominate the sounds of the ambient surroundings.

7.4.6 Passive Alarm Attack

As described in Section 7.4.3.2, the attacker could execute the alarm attack at a specific time of

the day (assuming the attacker knows when the alarm will go off at the victim’s phone). Here,

the attacker may know the timezone of the victim (through leaked password databases). Since

the attacker has control over the browser and the device it is using at its end, the attacker can

change its own timezone to be synchronized with that of the victims. To simulate this setting,

we played LG G5’s default alarm in front of the browser while the phone was set to create the

alarm at a fixed time instance. Since both phones played the same alarm simultaneously at

different ends, we achieved high correlation for the alarm attack reflecting to 100.00% success

rate with Tc = 0.1524. The success rate decreased when we increase the correlation threshold,

but we could still achieve 80% success rate. The result for this attack for different threshold is
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summarized in Table 7.3 (last row).

7.4.7 Population Statistics

To support the claims and assumptions made in Section 7.4.3, we conducted a survey by recruiting

Amazon Mechanical Turk workers. The participation in the study was strictly voluntary and

participants could opt out of the study at any time. The survey took only about 10 minutes for

each participant, for which they were compensated $0.7. In this section, we discuss the design

and results from this survey.

7.4.7.1 Study Design

To better inform the design and execution of our attacks in the real-world, we asked the partici-

pants to answer several questions about their smartphone usage, including their habits of using

the smartphones, the smartphone applications they use, and the ringtone and the notification

sound they set or prefer to use. Following is the summary of the results for the set of questions

we asked during the survey.

Demographic Information: We asked the participants about their gender, age, education,

industry or field they belong to, country of residence, and their general computer knowledge. The

demographic information of the participants is shown in Appendix C Table 1.

Applications: We asked the participants about the applications installed and used on the phone,

particularly those that generate a ringtone or a notification sound (e.g., Google Voice, FaceTime,

Skype, Viber, Tango, ooVoo, LINE, WhatsApp, Telegram Messenger, Facebook, Phone, Text

Message, Alarm Clock, and Calendar). Such applications are the primary target of the attacker in

our Sound-Danger system.

Notifications and Sounds: We queried about the type of ringtone (e.g., default, vibrate, silent),

and notification tones that the participants set for their applications in different situations and

time of the day (e.g., while at work or asleep). If a particular popular ringtone is set often, the

attacker can possibly attack many participants with our ringtone attack.
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7.4.7.2 Study Results

General and Technical Background: We recruited 113 Amazon Mechanical Turk workers.

Almost equal number of male (50.82%) and female (49.18%) users participated in the study.

Although we did not set any geographical restriction, majority of the participants were from

United States (73%) and India (21%). The participants were falling in the age group 18 to

65, precisely 18-24 (12.30%), 25-34 (54.92%), 35-44 (22.95%), 45-54 (8.20%), and 55-64

(1.64%). The participants had high school (6.56%), college degree (25.41%), Associate degree

(7.38%), Bachelor’s degree (40%), Master’s degree (1.72%), and Doctorate degree (2.46%).

The participants were from different industrial background including: education, technical

services, marketing, information technology, health care, and financial services. The demographic

information shows that the survey covers a representative sample of real-world users.

The participants seem to have a reasonable general computer background as they ranked

their general computer skill mostly as good (40%) and excellent (45%). We asked the users

about their choice of username and password. The result shows that many users reuse the

same username and/or password over multiple services. We will discuss in Section 7.5.3 that

reusing the username may help an attacker who has compromised the web-service and knows the

username of the victim to more successfully perform the ringing attack on an application (e.g.,

Skype) with the same username.

Habits of Using Smartphone and Apps: All of our participants said they have a smartphone.

80% of the participants said they carry their phone all the time and they have their phone

connected to Internet always or most of the time. Most of the participants had voice, text and

data services activated in their plan. Apple iPhone with over 39% and Samsung with 27% were

the two most popular phone brands (other popular brands were: LG, Motorola, and HTC). The

information obtained from this part of the survey shows that launching the introduced attack

would be feasible, since many of the participants have a smartphone with voice/data/text plans

that can be used by the attacker in an active attack.

All the participants in the survey said they frequently use phone calling and text messaging

applications. The most popular instant messaging applications installed on participants’ phones

were: Facebook, Skype, Google Voice, FaceTime, WhatsApp and Viber. Application with higher

popularity (such as Skype) especially those for which people use default ringing tone are the most
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TABLE 7.4: Popularity of instant messaging applications and the default ringtones for each app
among participants.

Application Popularity Default Ringtone
Facebook 87% 67%
Skype 55% 63%
Google Voice 41% 66%
FaceTime 41% 83%
WhatsApp 36% 66%
Viber 22% 68%

attractive target applications for Sound-Danger. Table 7.4 summarizes the fraction of participants

who use a given app and the default ringtone popularity among the participants who use the app.

We asked the participants about the kind of sounds they use for each application on their

smartphone. The more predictable the ringtone is, the more successful the active ringtone attack

would be in our Sound-Danger system. For the phone calls and text messaging, vibration and

default ringtone are the most popular settings, silent and custom ringtone being less popular.

It seems people tend to set the vibration at work, and set the default ringtone while at home.

While still some participants tend to set custom ringtone for their phone calls and text messaging,

custom ringtone is not that popular for instant messaging applications. More than half of the

participants set the default ringtone for the instant messaging applications. Vibration is the second

most popular setting for the instant messaging applications. The participants said that during a

day they keep their phone on ringing mode or on vibrate mode about half the time, while they

set it on silent mode only once in a while. These measures show that the Sound-Danger active

attacks that target users by calling them on some popular instant messaging applications have

a higher chance to succeed. Apart from the instant messaging application, launching a passive

attack by playing the default alarm tone seems quite feasible. About half of the participants set

the default alarm tone that the attacker can play locally at certain time of the day to mimic the

sounds of the victim’s phone. Table 7.5 summarizes the popular ringing setting of the two most

popular phone brands, namely iPhone and Samsung among the participants, in three common

situations: at home, at work and while asleep.

7.4.8 Strategy

The survey results in Section 7.4.7 help us devise real-world attack strategies and estimate the

corresponding attack success rates. The effective success rate of the attack, for an adversary who
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TABLE 7.5: Popular ringtone setting for Samsung and iPhone.

Phone Brand Location Ringing Setting
Silent Vibrate Default Custom

Apple
At home 5% 43% 45% 30%
At work 20% 64% 16% 11%
Asleep 25% 41% 30% 18%

Samsung
At home 13% 13% 40% 37%
At work 20% 50% 13% 20%
Asleep 27% 20% 37% 20%

does not know (but can guess) the user’s behavior and their habits of using the phone, can be

calculated by multiplying the usage probabilities we obtained from the survey by the success

rates reported in our correlation analysis of the attacks (Section 7.4.4).

Preliminaries: Let us call the success rate of the correlation-based attack, as we presented in

Table 7.3, as x (e.g., success rate of a ringing attack for an attacker who knows the victim’s

ringtone). Then, such attack would succeed with the probability p = device× state× x, where

device denotes the probability of owning a specific type of device (e.g., Apple’s iPhone) and

state denotes the probability of the phone being in a particular state (e.g., default ringtone at

home). Note that the attacker can make multiple login attempts at a given point of time to increase

the chances of success. In this case, for k iterations of login, the “Iterative success rate” (termed

Itt(k)), for a particular attack (with success rate x) can be calculated as:

Itt(k) = 1− (1− x)k (7.3)

The attacker repeats the above attack, with different attack variations, in multiple rounds.

During each attack round i, the attacker performs the attack with k iterations targeting the

remaining uncompromised users from round i− 1 (i.e., UNi−1). Initially, no users have been

compromised (i.e., UN0 = 100%). Thus, the “Effective attack success rate” Effi(k), in round i

with k iterations, which represents the fraction of users the attacker has compromised in round i,

is given by:

Effi(k) = device× state× Itt(k)× UNi−1 (7.4)

Note that device, state and Itt(k) do not depend on the attack round per se, but rather they

depend on the type of attack performed, i.e., these values remain the same even when the order
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in which the attack rounds are executed is changed. In contrast, Eff and UN depend upon the

attack round.

A Concrete Sample Strategy: The attacker can devise a strategy to compromise the maximum

number of victims by choosing any subset of the attack variations discussed in Section 7.4.3 and

launching them in a particular order. In the rest of this section, we show a sample attack strategy

based on our online survey results (Section 7.4.7) and a subset of our attacks (Table 7.3) in a

specific order to compromise about 83% of user accounts in a total period of less than a day. Our

attack strategy is summarized in Table 7.6. This is only a sample strategy for demonstrating the

overall effectiveness of our attack. In practice, a real-world attacker can devise other strategies to

maximize the impact of the attack based on the target user population under question.

As in our Sound-Danger attack model, we start with the assumption that the attacker has

already obtained username, password, phone number and timezone of each of the target users

by compromising a server and is trying to login to the victim user’s account by: (1) entering

the first authentication factor (username and the password), and (2) attacking the Sound-Proof

application to prove the possession of the second factor (the phone). We also assume that the

server throttles login attempt after three login trials to prevent a login brute force attack (a

common practice employed by many web services). Therefore, we limit the attacker’s login

attempts to three, setting k = 3 in our attack strategy throughout. We test our attack strategy

against our implementation of Sound-Proof with the threshold Tc = 0.1524.

We start with UN0 equal to 100.00% of the user accounts (no account has yet been compro-

mised). Since many of the users in our survey indicated that they keep their phones in vibration

mode at work and this attack works irrespective of the device type, we attack such users in the first

round. We know that 57.00% of the users have their device in vibration mode at work (Table 7.5),

and the attack success rate x for the vibration attack is 85.42% (Table 7.3). This yields the itera-

tive attack success rate (Itt) in this round to be 99.69%. Hence, the effective attack success rate

(Eff1) for this attack is device×state×Itt×UN0 = 100.00%×57.00%×99.69%×100.00%

= 56.82%. This means that we can compromise 56.82% of the users with the vibration attack

by just making three phone calls during work hours. The calculations and success rates for this

round of the attack are summarized in Table 7.6, row 1. Compromising about 57% accounts in

just one round, for example, right after the password database was leaked, would be a significant
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TABLE 7.6: Sound-Danger Attack Strategy (Tc = 0.1524): The percentage of compromised
users at the beginning of each attack round i is denoted as CNi. Effective attack success rate
(Effi) of the attack at each round i depends upon the particular type of device victim is using
(device), the particular state of the device the attack is targeting (state), the iterative success
rate for a number of login attempts (k) the attack will be repeated for (Itt), and the percentage
of currently uncompromised users the attack is targeted towards (UNi), as shown in Equation
7.4. In our calculations, k = 3 all throughout. The last column (CNi = 1− UNi) shows the
percentage of compromised users (CN ) after each attack round. Before the start of the attack,
i.e., at round 0, CN0 = 0% (UN0 = 100%). When the attack applies to all devices (e.g.,
vibrational attacks), the device probability (device) is 100%, and when it applies to specific
device types, iPhone and Samsung, the device probabilities are 39% and 27%, respectively. The
highlighted cell represents the percentage of user accounts successfully compromised in eight

rounds, which may finish in less than a day.

Attack
Round (i)

Attack Description
Probabilities

Effi(k = 3)
CNi

device state x Itt(k = 3) (1− UNi)

1 Vibration at work 100.00% 57.00% 85.40% 99.69% 56.82% 56.82%
2 iPhone call at work 39.00% 16.00% 81.80% 99.40% 2.68% 59.50%
3 Samsung call at work 27.00% 13.00% 81.80% 99.40% 1.41% 60.19%
4 Vibrate at night 100.00% 30.00% 85.40% 99.69% 11.69% 72.60%
5 iPhone call at night 39.00% 30.00% 81.80% 99.40% 3.19% 75.79%
6 Samsung call at night 27.00% 37.00% 81.80% 99.40% 2.40% 78.19%
7 iPhone alarm 39.00% 50.00% 100.00% 100.00% 3.19% 81.38%
8 Samsung alarm 27.00% 50.00% 100.00% 100.00% 1.88% 83.27%

threat. The attacker may stop here, or continue to the next round in order to compromise more

user accounts.

To attack the rest of the uncompromised users, UN1 = 43.18%, after the first round, we

choose the next popular device and state combination based on Table 7.5. Through our survey,

we observed that 39.00% of the users have iPhone. From Table 7.5, we know that 16.00% of the

users keep their device under default ringtone at work. Therefore, in our strategy, the second attack

round would involve the default ringtone call for the “iPhone at work” users, since we can have the

maximum impact with this approach. From Table 7.3, the attack success rate for default ringtone

x is 81.80%, which amounts to Itt equal to 99.40%. The effective attack success rate (Eff2) for

this round of the attack is device× state× Itt×UN1 = 39.00%×50.00%×16.00%×43.18%

= 2.68%. Hence, after the second round of the attack, we have successfully compromised 59.50%

of the user population (56.82% in the first round plus 2.68% in the second round). This attack

round is summarized in Table 7.6, row 2. The attacker may continue for the next few rounds in a

similar fashion, as shown in Table 7.6. As we can see, after the eighth round, our Sound-Danger

system will have compromised a total of over 83% of the user accounts.

Since we started the attack “at work”, and end it in the morning time (with the alarm attack),
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it is fair to say that all the rounds of the attacks will have finished over a period of less than a day.

A persistent attacker may continue further the next day, perhaps trying other attacks at different

points of time, and may gradually compromise almost all user accounts in few days.

Finally, we re-calculated the success rate for the above attack strategy against our implemen-

tation of Sound-Proof with threshold values higher than Tc = 0.1524. We found that even when

we increase Tc, our attack strategy is still successful, by compromising 82.60% of the users with

Tc = 0.18, and 81.52% with Tc = 0.2. This shows that our attack strategy remains robust to

increased thresholdization, highlighting the overall vulnerability of Sound-Proof .

7.4.9 Sound-Proof Demo Analysis

Karapanos et al. [30] have deployed Sound-Proof demo app2 and released apps for Android3 and

Apple4. We set forth to analyze how the demo app (version 1.6 on Android) performs against

our attacks compared to our implementation of Sound-Proof . We observed that the demo app

uses higher value of correlation threshold (Tc = 0.2) than the one reported in the paper [30]

(Tc = 0.13). As we only had access to the app binary (and not source code), we could not directly

figure out the values for other parameters deployed in the demo app.

Our evaluation showed that FNR of the demo app (benign setting) when the phone was kept

beside the computer was quite high, at 27.91%. When the phone was kept inside a bag/purse,

FNR increased to 50%. Compared to the results reported in [30], the higher FNR might have

been due to the use of higher value of correlation threshold (and possibly other tighter parameters)

than that reported in the paper.

We then attacked the demo app with one active attack and one passive attack. In the active

attack trials, we made calls to the victim using WhatsApp. In the passive attack trials, we tested

the demo app against alarm audio using two different devices (victim uses Samsung Galaxy S5

while attacker uses LG G3). FPR for the active attacks was found to be 38.46% while that for

the passive attacks was 64.71%. The attack success rate on the demo app is less than that on

our implementation of Sound-Proof . This may again be due to the fact that the demo app uses

higher value of Tc (and possibly other stricter parameters). As shown in Table 7.3, the success

rate for different attacks against our implementation of Sound-Proof decreased when Tc was
2http://sound-proof.ch/
3https://play.google.com/store/apps/details?id=ch.soundproof
4https://itunes.apple.com/us/app/Sound-Proof /id1069858990
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increased. Moreover, we noticed that the average correlation provided by the demo app was

relatively high (e.g., the average correlation for the alarm clock is 0.29 with 0.16 as minimum

correlation). Hence, if the demo app had used the Tc reported in the paper [30] (Tc = 0.13), the

alarm attacks would have been 100.00% successful.

Furthermore, we analyzed for which parameters in our implementation of Sound-Proof will

produce similar results to that by Sound-Proof demo app. To this end, we recorded audio from

two devices simultaneously using both apps. We collected 30 audio instances and logged the

correlation score from the demo app. We calculated the correlation results for different length

of audio recorded (3s, 4s, 5s, and 6s) and for different threshold values (0.1524, 0.18 and 0.2).

We found that when we compared 6 second long audio with Tc = 0.2, the scores from our app

and the demo app had the maximum correlation (we used the alternative computation formula

for Pearson’s r [191] to calculate the correlation level). This suggests that the demo app is using

6-second long audio snippets rather than 3-second.

Overall, this analysis suggests that the Sound-Proof demo app uses much stricter parameters,

which resulted in very high FNRs. Notably, even with this parameterization resulting in very

low usability (high FNR), the Sound-Danger attack can still be successful against the demo app,

further validating its feasibility as a viable real-work attack against Sound-Proof .

7.4.10 Summary

Zero-effort two-factor authentication is a compelling notion that may push two-factor authenti-

cation towards wide-scale adoption on the web. The idea of using ambient sounds to verify the

user’s possession of (or proximity to) the authentication token (phone) is intriguing, which aims

to remove the human user from the loop of authentication (except of password entry). In this

section, we demonstrated that the ambient audio approach to zero-effort two-factor authentication

is highly susceptible to a remote attack that makes the phone record its own predictable sounds

in the form of a ringer, app-based notifications and alarms. Since these sounds are predictable,

the attacker can generate the same (highly correlated) sounds at the browser’s end under its full

control and succeed in logging into the user’s account. Further, by proactively collecting statistics

about a given population (not a specific user), the attacker can devise a strategy that can allow the

attacker to compromise a large fraction of users’ accounts in a short span of time.
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Since the attack exploits the sounds of the phones, one obvious defense would be to deliber-

ately mute the phone at the time the login takes place. However, this may reduce user experience

since important calls or notifications may be missed or delayed. Further work is necessary to

assess this and other potential mitigation strategies we presented in this work. Overall, our work

serves to call the security of a prominent, deployment-ready zero-effort two-factor authentication

scheme into question, highlight the tension between the security and usability of two-factor

authentication and raise a demand for utmost care when attempting to design authentication

approaches transparent to the human user.

7.5 Potential Mitigation

7.5.1 Defense against SMASheD

We suggest the following potential mitigation strategies to defend against the adversarial applica-

tions of SMASheD (Section 7.2.1).

First, we believe that it is important to raise people’s awareness of the possible security

risks associated with installing services through the ADB shell. Second, we suggest following

the permission models of Android for native services that are executed through the ADB shell.

In the current model, any native service that starts through the ADB shell is granted all the

permissions that the shell has without notifying the user. These permissions include accessing

logs, frame buffer, motion, position, environmental, and user input sensors. An attacker may not

reveal all the resources that the service is accessing. For example, the attacker could publish a

service as a snapshot service while injecting code that accesses sensor files as well. This may be

prevented if the service is only granted permissions after informing the user. Third, we suggest

enforcing security policies for the communication between processes running on the device

through sockets. We recommend that Android monitors the open sockets on the device and the

apps that are accessing those sockets. Whenever an unusual communication is detected, Android

should at least inform the user. Whether or not users would pay attention to such notifications is

an independent concern. However, we believe that the potential risks should be conveyed to the

users.

Although these strategies may not fully prevent the attacks, they may help reduce the impact

of the underlying vulnerability.
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7.5.2 Defense against Environment Manipulating Adversary

7.5.2.1 Using Decisions-Fusion

In Section 7.3.3.5, on analysis of an audio-radio-physical system, we showed that decisions-fusion

reduces attack success rates in cases where the minority of the sensors are manipulated. However,

this may come at the cost of higher FNR which represents the usability of co-presence systems.

Decisions-fusion, equal voting from single sensors improves security when individual sensors

perform well. However, it increases the attack success rate for weak sensors as they equally

contribute to the voting. For example, in the context of the audio-radio-physical system, attacking

weak sensors such as H or G brings relatively high success rate compared to features-fusion. To

avoid this issue, we introduced decisions-fusion, weighted voting which are derived from the

strength of attack resilience. Decisions-fusion, weighted voting in general further reduces FPR in

case strong sensors are attacked. However, at the same time, FPR increases for weak sensors in

such cases. For example, in (Audio-Radio system, single modality attack), Table 7.2, decisions-

fusion, weighted voting reduces FPR of Au, W, but increases FPR of B. Decisions-fusion, equal

voting from subsets of sensors reduces the FPR in general especially when dominant sensors are

controlled by the attacker.

As can be seen from Table 7.2, weighted voting results in a significant improvement in some

cases. For example, FNR decreases in Audio- Radio, zero modality and Physical, zero modality

system from 12.0% to 2.7% and from 14.5% to 7.8%, respectively, while FPR decreases in case

of single modality in Audio-Radio, when an attacker manipulates Au or W, or in Audio-Radio-

Physical system, when an attacker manipulates B only. There is a significant improvement in

FPR, when an attacker manipulates two modalities {Au, W } in (Audio-Radio system, multi

modality). Therefore, we recommend using the weighted voting variant to defeat such context

manipulating adversary.

7.5.2.2 Other Potential Countermeasures

Typically, during the authentication/deauthentication process, the prover moves nearer to/farther

away from the verifier. In this case, the radio signals changes gradually, i.e., if prover and verifier

move towards APs, then new APs will be shown, or their signal strengths will continuously grow,

while if they move further away from APs, their strengths will decrease or the APs will not be
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visible at all. If the verifier or prover device detects much more APs (or Bluetooth devices) nearby

all of a sudden, it probably indicates a radio manipulation attack. The system can be made aware

of such situations.

We noticed that when the verifier is in an environment which has high frequency noise,

an attacker tends to fail with audio streaming. This can be used to design an active defense

mechanism such that whenever audio contextual information is requested, the verifier can emit a

high frequency audio. This audio signal can be for a short duration, and does not need to be loud

(not high amplitude). As a result, the chances of attacker succeeding in a relay attack could be

reduced.

When an authentication request has been initiated or finished, the user can be passively

notified at both devices. Passive notification can be a flashing of LED light or beep on the prover

device (key or phone). Hence, even if the verifier device is left unattended, user may notice on

the prover device that someone is trying to authenticate the verifier, or has authenticated on user’s

behalf. Whether or not users would actually pay attention to such notifications should be subject

to scrutiny. It may help reduce the risk of context-manipulation relay attacks.

7.5.3 Defense against Sound-Danger

A natural defense against our attacks would be to disable the 2FA system in the scenario when

a call or a notification is received (and the corresponding sounds are played by the phone), or

when an alarm is triggered. Alternatively, the calls, notifications or alarms could be disabled

when the 2FA login takes place. However, such mitigation will prevent the user from receiving

calls/notifications or setting alarms while logging into Sound-Proof enabled accounts, and could

possibly degrade the usability of the phone system.

Another possible defense is to reduce the probability of guessing the phone sounds. This

defense relies on the user to prevent the attack by picking ringtones that are difficult for the

attacker to predict and possibly changing them frequently in order to stop the attacker from

attempting an exhaustive search. The analysis of the user survey in Section 7.4.7 shows that many

users set the default ringtone for the instant messaging applications (e.g., Skype or Facebook)

that makes it easier for an active attacker to predict the sound.

Similar to the custom ringtone, combination of sounds and/or vibration is a possible defense

mechanism. During our attack analysis, we noticed that the correlation reduces to below the
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threshold value when the notification sound is mixed with vibration and the attacker plays only

the notification ringtone at its side. Simply combining the ringtone and the vibration at the

attacker’s side to mimic the audio at the victim’s side does not work for the attacker as we noticed

that the vibration started at different point when the ringtone starts playing at the victim’s phone.

Hence, for a successful attack, the combination should be precisely synced with the one at the

victim’s side (with the occurrence of vibration at the exact position in the audio), which seems

unlikely.

Any of the above defenses possibly introduce certain usability issues. For example, users

might prefer default notification tone over custom ringtone. Or reusing the username requires the

user to remember multiple usernames associated with each account. Further study is required

to understand how these possible usability issues may impact the user experience of the phone

system while strengthening the security of Sound-Proof in the face of Sound-Danger.
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CHAPTER 8

CLOSING REMARKS

In this chapter, we provide the conclusions from our dissertation work. We further discuss some

of the key insights that we gained during our work, and point to a few research directions that we

have identified to be pursued in future work.

8.1 Summary

From this dissertation work, we conclude that it is possible to effectively use different kinds of

context to provide security for authorization and authentication for mobile devices. We presented

our work to enhance the security of mobile devices against insider and outsider attacks based on

context detection. Our work shows that context can be effectively detected explicitly or implicitly

from the users, or from the environment, using different sensors embedded within the smart

devices and off-the-shelf companion devices. Moreover, we showed that these contexts can be

used for user-transparent biometric authentication using the inertial sensors. We successfully

authenticated users with their tapping-biometrics and walk-biometrics. We also presented the

vulnerabilities associated with the context detection system and exposed our analysis against

the systems using context in the face of context manipulating adversary. First, we showed

different application failures when the context can be manipulated from inside the device in the

form of context manipulating malware (SMASheD), and then we showed co-presence detection

system can fail when the context is manipulated from outside the device in the form of context

manipulating adversary. In a similar vein, we presented an attack on the state-of-the-art 2FA

defense Sound-Proof . We further provided mitigation strategies that could be used to undermine

even such sophisticated attackers, thereby strengthening the security of the proposed systems.
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8.2 Discussion

8.2.1 Adherence to Design Criteria

Lightweightness: One of the design goals of our systems is to be light-weight as high power

consumption may reduce the effectiveness of the system. Since context detection process in

our approaches lasts for no more than a few seconds, our approach is quite power efficient and

light-weight as shown in Sections 5.2.4.4. The sensors are turned off while our process is running

in the background as a service. The sensors are activated only when context detection process is

required. Each context detection process requires sensor data for short duration and stops sensor

recording after that. The detection approaches themselves are lightweight and require negligible

amount of power.

Efficiency: Our context detection approaches take no more than a few seconds to run to provide

improved security and increased efficiency. Our approaches rely upon machine learning tech-

niques where the training of the data may take some time to build a classifier while the testing of a

particular instance of data is quick and efficient. For the NFC tap authentication, one second long

sensor data is enough to authenticate users while for WUZIA, users get authenticated as they walk

towards the device requesting the authentication. Even for the co-presence detection between two

devices, Karapanos et al. [30] have already shown that 3 second audio data is enough to verify

the co-presence with very high accuracy, which is in line with our work.

Robustness: From our results, all of our context detection systems yield very high F-measure

with very low FNR in benign setting and very low FPR against passive attackers. We also

presented the results for active attacks for the context enhanced authentication systems where we

analyzed active attackers who try to impersonate or replicate the context. Our results show that

for such attackers, our systems can be resistant in most cases with very low FPR. Our WUZIA

system is even tolerant to the sophisticated treadmill-based attacks as described in Section 5.3.5.2

since our system uses multiple uncorrelated sensor features.

We showed that environmental attacks can be manipulated by unsophisticated attackers in

Section 7.3, which would increase FPR. However, we showed that such attacks can be better

thwarted by implementing the context detection systems with multiple sensors and utilizing
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weighted decision fusion technique. We also provided other mitigation strategies that can further

lower the impact of even such sophisticated attacks.

Transparency and Consistency of Usage Model: During the context detection using implicit

and environmental context, the user is not aware of an additional layer of security that is

authenticating the users/transactions. User performs the transactions (NFC or ZIA) without the

change in usage model or authorizes an app requesting permission for sensitive resources/services.

This entire process of authentication is transparent to the legitimate user. Even for the explicit

context, our system requires the user to perform easy hand wave gestures. Hence, our systems

satisfy the design goal of being transparent and having a consistent usage model to existing

systems.

8.2.2 Fallback

Our detection approach has very low FNR with high recall. When we used sensors embedded

on the mobile devices to extract implicit and explicit gestures using motion and inertial sensors,

our system could identify the context with very low errors. However, there might be certain

situations where, because of the user or device orientation, the activity performed by the user

is so distinctive that the detection mechanism may mis-classify the gesture. For instance, the

user might be on a moving vehicle or lying in specific posture where the sensor data may be

completely different compared to when the user is in a normal position. A user may be injured,

stressed, sick, or carrying the phone in a different way other than that during the training phase,

which may significantly alter the motion of the mobile devices during the testing phase. In these

scenarios, when the context detection mechanism fails, there is a need to fall back to allow the

user to access the desired resource/service. This can be solved either by prompting the user to

press a “Yes/No” button, or by asking the user for the explicit gestures such as hand-waving or

rubbing, as proposed in [35, 112]. In situations where users are not able to make the gestures,

for example under extreme emergency, a voice command could be used. Or, we can fallback to

traditional password/key based approach for authentication/authorization.

8.2.3 Classifier Limitation

In our experiments, we recruited participants from two universities and different locations (U.S.A.

and Finland). Even though we covered diverse population and showed that our machine learning
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classifier identifies the context with very high accuracy, we do not provide the confidence of

the classifier to identify/distinguish new population. Our experiments also consist of a limited

number of participants since our primary goal is to show feasibility of our proposed approaches.

Further work is needed such that the data is collected extensively from different users and from

different locations to analyze how the proposed approaches perform in large scale data.

8.2.4 Local vs. Remote Classification

Our approaches classify the test data into binary class either based on specific threshold set from

the experiments or based on machine learning. Once the machine learning classifier is trained

offline or the thresholds are set for gesture detection, we use it to identify different gestures in

real-time. This actual test can either be performed on user’s device locally or outsourced to

a remote server. The earlier approach allows the device to independently identify the gesture

without relying on a third-party server and data connectivity. However, it may require more

resources for the testing task. This is in line with many implementations that use machine learning

for the purpose of malware detection. There already exist some apps, such as MyWeka in the

Android Play store [192], which provides Weka implementation with limited machine learning

classifiers. Similarly, Figura [193] provides a Weka library to implement machine learning

approach for Android.

In the remote classification approach, whenever there is a need to identify a gesture, the

sensor data would be sent to the server, which will perform the classification and provide the

result back to the device (all communication between the device and server takes place over a

secure channel). A similar approach of using remote server/cloud has already been proposed by

Oberheide et al. for cloud based antivirus [194, 195]. The advantage to this approach is that the

device does not require extra resources for testing the gesture and running the classifier. However,

it needs to have a data connection. In case there is no data connection, the system may fall back

to asking user for explicit gesture such as hand-waving/rubbing [35, 112]. A drawback of this

approach is the need to trust the remote service – if this service is malicious and colludes with

the device malware app, it will completely undermine the security of the system. The delay

introduced in transmitting the sensor data to the server may reduce system’s usability.
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8.3 Future Work

8.3.1 Multiple Devices and Sensors

In our work, we have shown that using multiple sensors enhances the context detection capabilities

of the system. Using more/uncorrelated features and implementing them in different ways not

only reduced the FNR but also helped decrease FPR. Further, we showed that using multiple

devices, such as using smartphone and smartwatch together, can even provide more information

gain to the classifier being used. Moreover, using these devices provided additional layer of

security to the system in case of loss of one or more devices. Future work may explore other

types of wearable devices (such as glasses, which may capture head movements, or shoes, which

may capture feet movements) or an additional environmental sensors (such as smell sensor) to

further extend our approach, study the implementation of similar techniques on context detection

systems, and conduct broader data collection campaigns with larger and diverse population

samples.

8.3.2 Defeating Vehicular Criminals

We showed that our approach can be used to authenticate a legitimate user in ZIA systems such

as Blueproximity system [138] and vehicles equipped with (Passive Keyless Entry and Start

System (PKES)) [196] to prevent relay attacks. This approach in vehicular authentication can be

further elicited to provide full-fledged car authentication system.

We can further design a vehicular system that uses different implicit and environmental

context to authenticate the driver comprehensively preventing relay attacks and other vehicular

crimes. The system can use implicit context (Section 5.3 – WUZIA) to authenticate the driver as

he walks towards the vehicle based on his unique gait pattern, thereby transparently unlocking

the vehicle door (just like current PKES systems, but with user authentication). The system

can use environmental context (Chapter 6) to detect the proximity of the two devices (vehicle’s

key and vehicle) such that the radio signals are not being relayed. Further, the system can use

implicit context to unlock the vehicle’s engine as the driver opens the door, sits on the vehicle

seat, pushes the brake pedal, and hits a button to start the engine. These implicit gestures can be

detected using multiple devices worn by a driver (phone with watch like in WUZIA) and internal
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vehicular sensors such as pressure sensor on brake pedals. Similarly, while driving, the driver can

be authenticated by extracting implicit context of the driver’s driving behavior using multiple

devices worn by the driver as well as additional sensors embedded inside the vehicle.

We believe that our work can lead to future research on building such contextual systems

extracting to authenticate the users in different settings and providing additional layer of security

transparently to the users.
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Appendix

A WUZIA: Feature Correlation

A.1 Correlation Analysis

FIGURE 1: Heatmap showing pairwise correlation values between all the 336 features. Red
depicts high positive correlation, Blue depicts high negative correlation, and Grey depicts low
correlation. The first half (first half rows and the first half columns) represents the features
associated with the phone while the second half (the second half rows and the second half
columns) represents the features associated with the watch. We can see that the features of
phones are more correlated with those of phone while features of watch are more correlated

with those of watch.

Correlation is commonly used to find the relationship between two or more objects. To find

the similarity between two different features, we calculated the correlation as follows. Let x and

y be the values of two feature vectors and we have n data samples for each feature vector.

Sxx =
∑

x2 − (
∑
x)2

n
; Syy =

∑
y2 − (

∑
y)2

n
(1)

Sxy =
∑

xy − (
∑
x)(

∑
y)

n
(2)
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FIGURE 2: Heatmap showing pairwise correlation between the features from phone only. The
color depiction is same as in previous figure. The features extracted using the same sensor have

higher correlation compared to those extracted using different sensors.

FIGURE 3: Heatmap showing pairwise correlation between the features from watch only. The
color depiction is same as in previous figure. The features extracted using the same sensor have

higher correlation compared to those extracted using different sensors.

The correlation (σ) between the features vectors x and y is

σ = Sxy√
SxxSyy

(3)

The calculation of the correlation (σ) is based on the alternative computation formula for

Pearson’s r [191]. The alternative computation for the Pearson’s r avoids the step of computing

deviation scores.
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We compute the correlation between each features from different devices (smartphone and

smartwatch) and plot the heat map as shown in Appendix A Figures 1, 2, and 3.

B Environment Manipulation

B.1 Increasing the temperature when the attacker does not know V S’s location

An attacker who does not know the location of V S will try to keep the FS as close as possible

and perform the attack activity. We placed the FS 10 cm apart from the V S and performed

experiment in two settings. In the first setting, the hair dryer is closer to V S as shown in

Appendix B Figures 4, and in the latter setting, the hair dryer is closer to FS as shown in

Appendix B Figures 5.
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FIGURE 4: Increasing the temperature; location of V S unknown to the attacker; V S is 10 cm
closer to hair dryer than FS; the attacker trying to increase temperature to 35 °C.
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FIGURE 5: Increasing the temperature; location of V S unknown to the attacker; FS is 10 cm
closer to hair dryer than V S; the attacker trying to increase temperature to 35 °C.

B.2 Increasing the CO gas level

We effectively manipulated the CO gas sensor using cigarette and car exhaust. The increase in

the gas level due to the activity is abrupt when CO is blown onto the sensors, however, it takes a
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while for the sensors to fall back to normal readings. This provides an enough time window for

the attacker as depicted in Figs 6 and 7.
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FIGURE 6: Effect of cigarette in CO level; increasing the gas content to an arbitrary value and
waiting to decrease to desired level.
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FIGURE 7: Effect of car exhaust in CO level; increasing the CO gas level to arbitrary value and
wait to decrease to desired level.

B.3 Increasing the altitude using a car vacuum

As an alternative to air pump, we tried a portable car vacuum cleaner for inducing an altitude

increase. When we hovered the vacuum cleaner pipe around the sensors, it did not have any

effect. However, when we put the pipe just on top of the sensor, it increased the altitude by 10-11

meters as shown in Appendix B Figures 8. An attacker can adjust the altitude to a desired level by

changing the power level of the vacuum cleaner, similar to the air pump manipulation. The earlier

part of the Appendix B Figures 8 shows a little fluctuation in altitude when we hovered the pipe

around the sensors while the later spikes clearly show that there was an increase of almost 10

meters when the pipe was touched to the sensors. A video demo of our attack has been uploaded

to YouTube [197] to show the effect of portable car vacuum cleaner on the pressure/altitude

sensors.
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FIGURE 8: Using a car vacuum cleaner to reduce pressure around the sensor and increase the
altitude.

C Demographic Information

In this section, we show the demographic information of the users who participated in our online

survey for the phone usage for attacking Sound-Proof . Most participants are from U.S.A. with

Bachelor’s degree and within the age of 25-34%. The detailed demographic information is shown

in Table 1.

TABLE 1: Demographic Info: Online Survey Study

N = 100

Gender
Male 50.82%
Female 49.18%

Age
18-24 years 12.30%
25-34 years 54.92%
35-44 years 22.95%
45-54 years 8.20%
55-64 years 1.64%

Education
High school graduate, diploma 6.56%
Some college credit, no degree 25.41%
Associate degree 7.38%
Bachelor’s degree 40.16%
Master’s degree 1.721%
Professional degree 0.82%
Doctorate degree 2.46%

N = 100

Industry
Information Technology 15.57%
Education 14.75%
Financial Services 10.66%
Marketing/Sales 7.38%
Healthcare 7.38%
Technical Services 6.56%
Entertainment 3.28%
Non-profit 3.28%
Others 24.58%

Country of Residence
United States 77.05%
India 22.13%
Others 0.82%

171


	Context-Enhanced Mobile Device Authorization and Authentication
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENT
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Security and Privacy Threats
	1.1.1 Insider Attacks
	1.1.2 Outsider Attacks

	1.2 Context Detection
	1.3 Contributions
	1.4 Related Publications
	1.5 Organization

	2 BACKGROUND
	2.1 Preliminaries
	2.1.1 Zero-Interaction Authentication (zia)
	2.1.2 Relay Attacks
	2.1.3 Biometrics Authentication
	2.1.4 Two Factor Authentication
	2.1.5 SMASheD
	2.1.6 Sound-Proof

	2.2 Threat Model and Assumptions
	2.2.1 Insider Attacks
	2.2.2 Outsider Attacks
	2.2.2.1 Device Theft
	2.2.2.2 Relay Attack


	2.3 Design Goals

	3 LITERATURE REVIEW
	3.1 Malware Detection and Prevention
	3.2 Biometric Authentication
	3.3 Relay Attack Resilience
	3.4 Two Factor Authentication

	4 CONTEXT ENHANCED AUTHORIZATION
	4.1 Introduction
	4.2 Explicit Gestures
	4.2.1 Using Proximity Sensor
	4.2.2 Using Light & Accelerometer Sensors

	4.3 Implicit Gestures
	4.3.1 Our Approach: Call-Snap-Tap
	4.3.2 App Design
	4.3.2.1 Call App:
	4.3.2.2 Snap App:
	4.3.2.3 Tap App:
	4.3.2.4 Snoop and Control App:

	4.3.3 Data Collection
	4.3.4 Call-Snap-Tap Detection
	4.3.4.1 Call Detection
	4.3.4.2 Snap Detection
	4.3.4.3 Tap Detection


	4.4 Summary

	5 CONTEXT ENHANCED AUTHENTICATION
	5.1 Introduction
	5.2 NFC Tap Authentication
	5.2.1 Our Approach: Tap Biometrics
	5.2.2 Application Design
	5.2.2.1 NFC Transaction Module
	5.2.2.2 Sensor Module

	5.2.3 Data Collection
	5.2.4 Tap Biometrics Detection
	5.2.4.1 Design
	5.2.4.2 Classification Results
	5.2.4.3 Summary of Results
	5.2.4.4 Power Analysis

	5.2.5 Active Adversarial Attack
	5.2.6 Summary

	5.3 WUZIA: Walk Unlock ZIA
	5.3.1 Our Approach: Walk Unlock ZIA
	5.3.2 Application Design
	5.3.2.1 Web App
	5.3.2.2 Smartphone App
	5.3.2.3 Smartwatch App

	5.3.3 Data Collection
	5.3.4 Walk Biometrics Detection
	5.3.4.1 Design
	5.3.4.2 Classification Results
	5.3.4.3 Summary of Results

	5.3.5 Active Adversarial Attack
	5.3.5.1 Human Imposter Attack
	5.3.5.2 Treadmill Attack

	5.3.6 Summary

	5.4 Summarizing Context Enhanced Authentication

	6 CONTEXT ENHANCED CO-PRESENCE DETECTION
	6.1 Introduction
	6.2 Background
	6.2.1 Proximity-based Authentication
	6.2.2 Threat Model
	6.2.3 Our Approach: Relay Attack Defense with Ambient Multi-Sensing

	6.3 RF and Audio Sensors for Co-presence Detection
	6.3.1 Data Collection
	6.3.1.1 Sensor Data
	6.3.1.2 Dataset

	6.3.2 Co-presence Detection
	6.3.2.1 Features
	6.3.2.2 Analysis and Results


	6.4 Physical Sensors for Co-presence Detection
	6.4.1 Data Collection
	6.4.1.1 Sensor Data
	6.4.1.2 Dataset

	6.4.2 Co-presence Detection
	6.4.2.1 Features
	6.4.2.2 Analysis and Results


	6.5 Summarizing Co-presence Detection

	7 ATTACKS ON CONTEXT ENHANCED SYSTEM AND STRONGER MODELS
	7.1 Introduction
	7.2 Insider Attack: SMASheD
	7.2.1 SMASheD Attacks
	7.2.1.1 Attacking Authorization Systems
	7.2.1.2 Attacking Authentication Systems

	7.2.2 Summary

	7.3 Outsider Attack: Environment Manipulation
	7.3.1 Environment Manipulation: Background and Threat Model
	7.3.1.1 Overview
	7.3.1.2 Threat Model for a Contextual Attacker

	7.3.2 Environment Manipulation: Attacks
	7.3.2.1 Manipulating Audio Sensor Modality
	7.3.2.2 Manipulating Radio-Frequency Sensor Modalities
	7.3.2.3 Manipulating Physical Environment Sensor Modalities
	7.3.2.4 Manipulating Multiple Sensor Modalities Simultaneously

	7.3.3 Environment Manipulation: Analysis
	7.3.3.1 Analysis Methodology
	7.3.3.2 Audio-Only System
	7.3.3.3 Audio-Radio System
	7.3.3.4 Physical System
	7.3.3.5 Audio-Radio-Physical System

	7.3.4 Summary

	7.4 Attack on Two Factor Authentication: Sound-Danger
	7.4.1 Introduction
	7.4.2 Background
	7.4.2.1 Threat Model
	7.4.2.2 Implementing Sound-Proof Framework
	7.4.2.3 Implementing and Testing Sound-Proof's Correlation Engine

	7.4.3 Attacks
	7.4.3.1 Active Attacks
	7.4.3.2 Passive Attacks
	7.4.3.3 Active vs. Passive Attacks

	7.4.4 Analysis
	7.4.5 Ringtone and App Notification Attacks
	7.4.6 Passive Alarm Attack
	7.4.7 Population Statistics
	7.4.7.1 Study Design
	7.4.7.2 Study Results

	7.4.8 Strategy
	7.4.9 Sound-Proof Demo Analysis
	7.4.10 Summary

	7.5 Potential Mitigation
	7.5.1 Defense against SMASheD
	7.5.2 Defense against Environment Manipulating Adversary
	7.5.2.1 Using Decisions-Fusion
	7.5.2.2 Other Potential Countermeasures

	7.5.3 Defense against Sound-Danger


	8 CLOSING REMARKS
	8.1 Summary
	8.2 Discussion
	8.2.1 Adherence to Design Criteria
	8.2.2 Fallback
	8.2.3 Classifier Limitation
	8.2.4 Local vs. Remote Classification

	8.3 Future Work
	8.3.1 Multiple Devices and Sensors
	8.3.2 Defeating Vehicular Criminals


	LIST OF REFERENCES
	Appendices
	A WUZIA: Feature Correlation
	A.1 Correlation Analysis

	B Environment Manipulation
	B.1 Increasing the temperature when the attacker does not know VS's location
	B.2 Increasing the CO gas level
	B.3 Increasing the altitude using a car vacuum

	C Demographic Information


