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AN INVESTIGATION OF THE NEUROBIOLOGICAL HETEROGENEITY IN 

AUTISM, ADHD, AND TYPICAL DEVELOPMENT 

 

MELISSA THYE 

LIFESPAN DEVELOPMENTAL PSYCHOLOGY PROGRAM 

ABSTRACT 

Standard fMRI studies of healthy as well as clinical populations rely heavily on 

group-level averages to draw inferences about brain and behavior. This presumes neural 

and behavioral homogeneity within diagnostic groups resulting in group-level models 

which may not capture individual variability. This problem is especially relevant for 

studies of neurodevelopmental disorders such as autism spectrum disorder (ASD) and 

attention deficit hyperactivity disorder (ADHD) which clinically present with widespread 

individual differences. The prevalence of comorbidity between these disorders is roughly 

28% highlighting the possibility that there may be shared behavioral and neural markers 

which cut across the diagnostic boundaries delineating the disorders. In order to better 

characterize these similarities and differences, the current study used a number of data-

driven analyses which were blind to diagnostic classification to derive clusters of 

participants based on functional connectivity among regions within known brain 

networks. In the first approach, a unified structural equation modeling technique (Group 

Iterative Multiple Model Estimation) was used to derive subgroups based on connections 

among regions within three core brain networks: Default Mode, Salience, and Executive 

Control. For the second analysis, an independent component analysis was used to define 

components of functionally correlated brain networks. Voxel intensity values were 

extracted from the component maps of each participant and used in a community 

detection analysis to identify the community structure of the participants based on 
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deviations from the group-level components. For the first analysis, 2-3 heterogeneous 

subgroups were identified for each network, but limitations inherent to the data prevented 

more robust, generalizable results. Only one cluster was derived from the community 

detection algorithm, but a number of outlier participants were identified. These results 

indicate that heterogeneity is a core concern in fMRI analyses and, despite limitations 

with the data, the analyses presented here provide a useful framework for researchers 

attempting to conduct neuroimaging analyses that account for individual variability.  
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CHAPTER 1 

INTRODUCTION 

Human development is characterized by varied profiles of biological and behavioral 

outcomes. However, individual variability in both typical and atypical development has 

largely been treated as noise in standard behavioral and human neuroimaging data 

analyses which draw inferences from a group-level model. This approach is skewed as it 

assumes normal distribution of cognitive and neural data across research samples and 

overlooks the heterogeneity in the sample which is a core issue that affects the reliability 

and generalizability of fMRI-based inferences (Miller & Van Horn, 2007; Ramsey et al., 

2010). This is particularly relevant for researchers attempting to use basic science as a 

means to inform clinical interventions. The reported results which should serve as the 

basis for future research and clinical interventions are built upon a model that ignores 

variability at the individual level. For instance, designing an intervention that targets a 

group-level deficit in a heterogeneous sample will likely prove only conditionally 

effective within a subsample of participants that most closely match the group average. 

Although this homogeneity assumption is especially inflated in clinical populations, it is 

also problematic in the study of typical development which encompasses wide-ranging 

developmental outcomes. It is well-established that genetic predispositions and 

experiences impact an individual’s development resulting in unique characteristics and 

outcomes (Belsky & Pluess, 2009; Bronfenbrenner & Morris, 2007). The non-linear 
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pattern of human development may introduce the problem of trying to encapsulate 

“typical” development into a monolithic sample representative of the neurodiversity in 

the general population. Given the significant heterogeneity within clinical populations as 

well as across typical development, the present study incorporated data-driven 

approaches which are blind to diagnostic classification to arrive at subgroups based on 

neurobiological similarities and differences. 

 

Clinical Populations 

The use of individualized neuroimaging analyses is especially pertinent in studies of 

neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention 

deficit hyperactivity disorder (ADHD) which clinically present with widespread 

individual differences (Lenroot & Yeung, 2013; Wåhlstedt, Thorell, & Bohlin, 2009). 

ASD is characterized by two core domains: disrupted social communication and 

restricted and repetitive interests and behaviors (American Psychiatric Association, 

2013); and the prevalence of ASD is estimated to be roughly 1 in every 68 children 

(Center for Disease Control, 2012). ADHD, a separate neurodevelopmental disorder, is 

diagnosed according to three subtypes: inattentive type, hyperactive/impulsive type, and a 

combined type. The inattentive type predominately displays symptoms of inattention 

whereas the hyperactive/impulsive type is characterized by more symptoms of 

hyperactivity rather than attention. The combined type is diagnosed when a number of 

both inattentive and hyperactive symptoms are displayed. Similar to the spectrum 

construct seen in ASD to communicate symptom severity, ADHD diagnosis falls within a 

mild, moderate, or severe classification depending on the number of symptoms and 
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disruption to daily functioning (American Psychiatric Association, 2013). The prevalence 

of ADHD is estimated to be around 6-7% of children and adolescents with the inattentive 

subtype being the most commonly diagnosed (Willcutt, 2012).  

There are several shared characteristics between these diagnostic groups. For 

instance, both ASD and ADHD are neurodevelopmental disorders with core symptoms 

emerging in early childhood. Roughly 28% of individuals with ASD are also diagnosed 

with ADHD (Simonoff et al., 2008) but estimates indicate that between 30-80% of 

children with ASD and 20-50% of children with ADHD also meet diagnostic criteria for 

either ADHD or ASD respectively (Rommelse, Franke, Geurts, Hartman, & Buitelaar, 

2010). The relatively high incidence of comorbidity between the two disorders highlights 

the need to further characterize these disorders in tandem due to the possibility of shared 

or similar etiology. Previous researchers have studied these disorders in conjunction 

believing that significant insight will be gained by studying the etiological mechanisms 

contributing to both disorders (Rommelse, Geurts, Franke, Buitelaar, & Hartman, 2011), 

and have proposed that ADHD and ASD share a similar heritability profile including 

related genetic traits (Rommelse et al., 2010). In addition, participants with comorbid 

diagnoses may display a constellation of behaviors that are not characteristic of either 

disorder (Yerys et al., 2009) suggesting that this comorbid group represents a distinct 

disorder that requires targeted considerations (Gargaro, Rinehart, Bradshaw, Tonge, & 

Sheppard, 2011; Leitner, 2014). Some researchers argue for the reconceptualization of 

ASD and ADHD as different developmental outcomes of a single disorder whereby ASD 

and ADHD and the comorbid group represent subtypes of the overarching disorder 

(Brieber et al., 2007; van der Meer et al., 2012). Thus, data-driven algorithms that are 
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blind to diagnostic classification and provide information about subgroups existing within 

and across these populations are sensitive to detecting the presence of a shared 

neurobiological mechanism among participants with either disorder. There may be sub-

diagnostic features of ASD that overlap with the behavioral profile of ADHD and vice 

versa. For instance, problems with attention (Schatz, Weimer, & Trauner, 2002) and in 

some aspects of executive functioning (Miranda-Casas, Baixauli-Fortea, Colomer-Diago, 

& Roselló-Miranda, 2013) have been reported by individuals with ASD, and deficits in 

pragmatic language (Bishop & Baird, 2001) and perspective taking (Marton, Wiener, 

Rogers, Moore, & Tannock, 2009) have been reported by individuals with ADHD. 

Furthermore, across participants with ASD and/or ADHD, no consistent demarcations in 

executive functioning have been found between the two diagnostic groups (Dajani, 

Llabre, Nebel, Mostofsky, & Uddin, 2016). Thus, there is a significant need to address 

heterogeneity both within and across these neurodevelopmental disorders. 

The variability displayed across participants with ASD and ADHD further 

underscores the significance of research directed toward disentangling individual 

differences. It is understood that disorders such as ASD and ADHD are not fully 

explained by a single gene model, and more recent research efforts have focused on 

polygenic approaches to studying clinical populations. These approaches are limited, 

however, in that the variability seen across the severity and symptom expression 

spectrum in both ASD and ADHD is not fully captured by a single polygenic explanation 

(An & Claudianos, 2016; Sharp, McQuillin, & Gurling, 2009; Szatmari, 1999). Recent 

research has supported the idea that different subtypes of neurodevelopmental disorders 

such as ASD and ADHD display varied genetic profiles; thus, meaningful biological 
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advances in understanding these disorders necessitates characterizing robust disorder 

subgroups (Bruining et al., 2010; Jeste & Geschwind, 2014; Sharp et al., 2009). 

In ASD specifically, the search for reliable structural or functional brain-based 

markers has largely been unsuccessful, possibly due to neurobiological variation across 

the autism spectrum that is not captured by a single biomarker model. For instance, 

despite a general trend toward a reduction in brain volume differences between ASD and 

healthy controls with increasing age, many individuals with ASD still display significant 

structural differences compared to healthy controls across the lifespan (see Lenroot & 

Yeung, 2013 for review). In addition to biological heterogeneity in genetic mechanisms 

and brain structure, there are consistent differences in functional activation and 

connectivity of regions typically associated with the core symptom domains in ASD. In 

the domain of social cognition, mixed results have been found in ASD populations with 

atypical activation in the medial prefrontal cortex (Schulte-Rüther et al., 2011), inferior 

frontal gyrus (Rojas et al., 2006), superior temporal sulcus (Pelphrey, Morris, & 

McCarthy, 2005), and amygdala (Nacewicz et al., 2006; Schumann, Barnes, Lord, & 

Courchesne, 2009) which seem to, in part, be driven by the level of symptom severity. 

Similarly, research on language processing in ASD has suggested general differences in 

superior temporal gyrus volume (Bigler et al., 2007) and right lateralization of language 

processing (Herbert et al., 2002) that relates to language comprehension skills. The 

relation between severity and neurobiological heterogeneity is also seen in the domain of 

restricted and repetitive behaviors (RRB) where aberrant structural and functional 

differences in the caudate (Rojas et al., 2006) and dorsolateral prefrontal cortex (Shafritz, 

Dichter, Baranek, & Belger, 2008) have been shown to relate to RRB severity. 
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Although there is support for re-conceptualizing ADHD and ASD as emerging from 

partially shared biological mechanisms, the neurobiological variability in ADHD is 

typically studied in isolation. The predominant finding in neuroimaging studies of ADHD 

converges on an aberrant fronto-striatal network, but the extent and behavioral correlates 

of altered fronto-striatal network functioning in ADHD are not fully understood (Durston, 

2008). In addition, there are conflicting findings regarding volumetric differences in 

ADHD versus healthy controls in areas such as the caudate, corpus callosum, and 

cerebellum. These inconsistences may, in part, be influenced by a similar developmental 

profile seen in ASD where increased global brain volume is noted in early development, 

but these volumetric differences decrease over time (Valera, Faraone, Murray, & 

Seidman, 2007). Similar to studies on ASD, the level of symptom severity relates to the 

presence and degree of altered structural and functional connectivity findings in ADHD 

(Castellanos, Sonuga-Barke, Milham, & Tannock, 2006). A lack of convergence may 

stem from a failure to account for symptom severity in both behavioral and neuroimaging 

studies. Similar to ASD, meaningful subtyping has not been successful in ADHD 

research. Thus, there is significant neurobiological diversity that extends from genetic 

heterogeneity to individual differences in brain function and structure within ASD and 

ADHD populations that has traditionally been studied as noise rather than an outcome of 

interest.  

 

Brain Connectivity 

Although the field of fMRI research has historically relied on areas of brain 

activation to understand and interpret cognitive processes, more complex models of 
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human brain functioning provide information about the brain and behavior. Such models 

offer insight into activation across time, spatial distance, and brain region thus facilitating 

a more complex and sophisticated understanding of large-scale brain networks (Smith, 

2012). Functional connectivity provides information about the synchronous connections 

between and among different brain regions and helps elucidate the role of brain networks 

in normal and pathological conditions (van den Heuvel & Hulshoff Pol, 2010; Van Dijk 

et al., 2010). Thus, connectivity analyses are able to discern patterns of regional 

recruitment across the brain in a way that standard functional activation analyses cannot. 

With a goal of deriving subgroups of participants based on shared neural mechanisms 

regardless of diagnostic label, the present project used functional connectivity as the 

primary neural index. Specifically, intrinsic functional connectivity, measured when the 

brain is at rest, provides insight into baseline brain functioning that can be predictive of 

cognitive performance (Grady et al., 2010; Shirer, Ryali, Rykhlevskaia, Menon, & 

Greicius, 2012). Therefore, connectivity analyses allow for a comprehensive network-

level examination of brain functioning. 

 

Connectivity Based Methods to Study Heterogeneity 

Group Iterative Multiple Model Estimation 

Although there are numerous methods to study functional connectivity (see 

Mumford and Ramsey, 2014 for review), a relatively recent approach addresses the 

problem of ignoring within-group heterogeneity implicit to standard fMRI analyses. The 

Group Iterative Multiple Model Estimation (GIMME) algorithm adopts a unified 

structural equation modeling (uSEM) framework to derive both a group-level 
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connectivity map that is optimally suited for the majority of the group as well as 

individual-level connectivity maps that further characterize each participant. Using a 

simulated dataset, this method has been shown to reliably recover both the presence and 

direction of connections among regions within a network (Gates & Molenaar, 2012). The 

GIMME algorithm runs a null network on all of the participants to identify the 

connectivity map that best represents the group. This is accomplished by examining 

which paths, if freed from the model, would optimize the fit of the model for the group. If 

paths are included in the group model that are not reflective of a significant portion of the 

individuals, they are removed from the group-level model. The default group-level 

threshold in GIMME (e.g. .75 or 75% of the group) has been used in other neuroimaging 

research (van den Heuvel & Sporns, 2011) and is thought to capture the majority of the 

group. After this optimized group-level connectivity map is established, the GIMME 

algorithm then applies this map to the individual level in a semi-confirmatory analysis to 

assess if there are pathways that, if added, will improve the fit of the individual-level 

model. The connectivity model is then optimized at the individual level, although no 

pathways that were present in the group-level analysis are removed from the individual 

models. A final confirmatory analysis is run to assess individual model fit (see Gates & 

Molenaar, 2012 for review of method). If the individual-level connectivity maps for 

participants are similar, the algorithm will cluster participants into subgroups and output 

a subgroup-level connectivity profile which characterizes the members of the subgroup. 

If no convergence among individual-level connectivity maps exists, the algorithm does 

not force subgroups to emerge. Building upon standard connectivity analyses, which 

recover the presence of the connection, as well as effective connectivity approaches, 
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which provide information about the direction of the connection, adopting a uSEM 

approach to calculate the presence and direction of pathways has been suggested to be a 

more robust alternative to standard non-SEM based connectivity approaches (Gates, 

Molenaar, Hillary, Ram, & Rovine, 2010). In deriving functional connectivity maps of 

each participant, GIMME primarily relies on contemporaneous connections across the 

regions. However, the model also accounts for lagged connections which allows for the 

detection of autocorrelations of each region with itself to arrive at a more reliable 

outcome. Previous attempts to study brain connectivity within a uSEM framework have 

been found to be successful, and this method offers an ideal solution to uncovering the 

presence and directionality of neural pathways (Kim, Zhu, Chang, Bentler, & Ernst, 

2007). Thus, the novelty of the statistical model adopted by the GIMME algorithm 

coupled with the sensitivity to individual variation make this a promising approach to 

study heterogeneity in intrinsic functional connectivity across typical development and 

clinical populations. 

 

Community Detection 

Community detection is a statistical approach that is grounded in graph theory which 

applies mathematical constraints to uncover the community structure within a dataset. 

The Girvan-Newman community detection algorithm (Girvan & Newman, 2002) relies 

on four network principles to recover communities within the dataset: 1) small world 

property, originally developed through the study of social networks (Milgram, 1967), 

posits that the connections among a set of nodes (or vertices) within a network are short 

and the number of edges required to travel from one node to another node is relatively 
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few. This property is typically quantified by taking the logarithmic function of the total 

number of nodes in a given network; 2) power-law degree distributions describe a scale-

free network where nodes that are added to a given network preferentially attach to nodes 

that are well connected (e.g. hubs). Typically, the number of well-connected nodes is 

small, and a power law constrains the relationship between the introduction of new nodes 

and the connections to well-established nodes. Modifying one feature inadvertently 

impacts the other in a systematic way. This property suggests that an organizational 

principle dictates the connection of nodes to established hubs and is considered an 

alternative to a randomly organized network (Amaral, Scala, Barthelemy, & Stanley, 

2000; Barabasi & Albert, 1999); 3) network transitivity (e.g. clustering) describes the 

principle where nodes that share a neighboring node are more likely to be neighbors 

themselves (Newman, Strogatz, & Watts, 2001). This principle forms the basis of how 

nodes are clustered together; 4) community structure defines the relationships among the 

identified communities within a given network. For instance, communities of dense 

connections are connected to other, distant communities through relatively sparse 

connections.  

The Girvan-Newman community detection algorithm relies on the edge-betweenness 

centrality metric to identify the underlying community structure (Girvan & Newman, 

2002; Newman, 2004). Relying on the efficiency principle that information will tend to 

travel over the shortest path, betweenness centrality examines the influence of a given 

edge by counting the number of short paths connecting other nodes that run along the 

examined edge. The edges with the highest edge betweenness are then progressively 

removed from the network and the consequences of their removal are quantified by 
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recalculating the betweenness centrality of the remaining edges. The edges with the 

highest betweenness centrality are likely those edges that connect distant communities as 

the number of edges available to travel along are sparse resulting in a higher number of 

connections. When these edges are removed only the identified communities (e.g. 

groups) remain. This algorithm has been shown to accurately recover the community 

structure in simulated networks (Girvan & Newman, 2002) and has been applied to 

varied data types ranging from neuropsychological measures (Fair, Bathula, Nikolas, & 

Nigg, 2012; Karalunas et al., 2014) to functional brain networks (Meunier, Achard, 

Morcom, & Bullmore, 2009; Wang et al., 2009) making this approach flexible and 

applicable to data with a complex network structure. 

 

Independent Component Analysis 

Independent component analysis (ICA) is uniquely suited to multidimensional fMRI 

data. ICA breaks down the multivariate signals inherent to fMRI and extracts the signal 

from each voxel. This signal is subsequently analyzed as an independent function from 

all other voxels. The result is the isolation of spatially independent components. The 

benefit of this analytic approach is that ICA can recover signals that would be excluded 

or inappropriately modeled if a Gaussian distribution is assumed (Calhoun, Pearlson, & 

Adali, 2004; McKeown et al., 1998). When provided with resting-state fMRI data, the 

ICA derives group-level spatially independent components which reflect brain regions or 

networks with shared time-courses. Thus, this analysis is a measure of functional 

connectivity. In the present study, ICA was conducted on the data from all participants 

(ADHD, ASD, and TD) together as a large group. This resulted in components that best 
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represent the entire group of participants. The participant z-scores indicating the fit of 

each component at the individual level were then statistically analyzed using the Girvan-

Newman community detection algorithm to cluster participants into communities. The 

novelty of this analytic approach is the use of a rigorous statistical pipeline that is blind to 

diagnostic and behavioral information. 

 

Brain Networks 

Default Mode Network 

The Default Mode Network (DMN) is the primary brain network that is active 

during rest and provides a large-scale understanding of baseline neuronal activity 

(Greicius, Krasnow, Reiss, & Menon, 2003). Measuring the intrinsic functional 

connectivity (e.g. connectivity during rest) provides valuable information about the 

spontaneous fluctuations of this brain network which can be broadly informative in 

elucidating the role of this network in other cognitive processes. Although the DMN is 

shown to be active during rest, it is not a passive network and rather serves an important 

role in the various cognitive processes including self-referential thinking, ToM 

processing, and memory retrieval (Andrews-Hanna, Smallwood, & Spreng, 2014). 

Successful modulation of the DMN from passive to active processing also impacts 

cognitive performance and has been shown to be disrupted in clinical populations such as 

ASD (Kennedy, Redcay, & Courchesne, 2006). For instance, altered connectivity within 

this network has been implicated in ASD and related to the social deficits inherent to the 

disorder (Lynch et al., 2013; Yerys et al., 2015). Deficits in DMN up-regulation 

(Sidlauskaite, Sonuga-Barke, Roeyers, & Wiersema, 2016b) and altered connectivity 
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within DMN has also been noted in ADHD (Sidlauskaite, Sonuga-Barke, Roeyers, & 

Wiersema, 2016a). Thus, examination of the connectivity profile of DMN during resting-

state may provide insight into clinical populations with suspected DMN abnormalities. 

Disrupted DMN connectivity has been widely reported in ASD and it has been 

suggested as an endophenotype of the social deficits characteristic of ASD (Yerys et al., 

2015). An ICA analysis revealed decreased functional connectivity across DMN regions 

which was related to the severity of social symptoms as measured by the Autism 

Diagnostic Observational Schedule (ADOS) and the Social Responsiveness Scale (SRS; 

Assaf et al., 2010). The maturation of DMN connections is also delayed in many 

individuals with ASD compared to typically developing peers who establish functional 

connections among the regions of the DMN between the ages of 11-13 (Washington et 

al., 2014). There have also been consistent reports of reduced activation during social 

processing in the prefrontal cortex and posterior superior temporal sulcus which are 

nodes within the DMN (Dichter, 2012).  

Children with ADHD generally display an underdeveloped brain with structural 

abnormalities noted in core regions of the DMN such as reduced volume in the ACC and 

dorsolateral prefrontal cortex (DLPFC; Moreno-Alcázar et al., 2016). Individuals with 

ADHD also have trouble modulating between task and rest as evidenced by activation of 

DMN during task (Sidlauskaite et al., 2016b). Additional research suggests that 

individuals with ADHD are hyperconnected to various networks during rest including the 

DMN (Sidlauskaite et al., 2016a). Thus, there are numerous reports of altered intrinsic 

connectivity of regions comprising the DMN in both ASD and ADHD populations. 
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Salience Network 

In addition to the DMN, two additional networks have been proposed to be critical in 

studying cognition in both typical and clinical populations (Menon, 2011): the salience 

network (SN) and the executive control network (ECN). The salience network is involved 

in attending to stimuli in the environment by selectively detecting and filtering out 

relevant and superfluous information. The SN is also involved in integrating information, 

and is thus a critical system for a variety of executive functions and behavioral tasks 

(Seeley et al., 2007). Research suggests that the SN is altered in a variety of clinical 

disorders ranging from schizophrenia to anxiety disorders (see Menon, 2011 for review). 

Using a trained classifier, researchers have been able to accurately distinguish ASD 

versus TD individuals based on hyperactivity of the SN (Uddin et al., 2013). However, 

there are conflicting reports of SN functioning with some studies reporting SN 

hypoconnectivity in ASD (Abbott et al., 2016). Inconsistences in the reported 

connectivity profiles in ASD may suggest that heterogeneity exists in SN functioning 

across individuals with ASD, and the analyses proposed here are sensitive to detecting 

such differences and potentially reconciling these conflicting findings. In ADHD, 

connectivity differences are seen between the SN and other intrinsic brain networks 

which distinguish participants with ADHD from typical controls (Sidlauskaite et al., 

2016a). Given the importance of this network in investigations of psychopathology and 

the previous research findings of altered SN connectivity in both ASD and ADHD, the 

current study investigated whether connectivity among core SN regions is altered in ASD 

and ADHD in any systematic or overlapping way.  
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Executive Control Network 

The last network that is proposed to be broadly impacted across clinical populations 

is the executive control network (e.g. fronto-parietal control network) which is involved 

in a wide-range of functions including working memory, goal-directed behavior, decision 

making, and problem solving (Menon, 2011). The role of the ECN in a variety of 

cognitive tasks underscores the importance of studying this network and identifying 

whether deficits inherent to the ECN result in specific cognitive or behavioral 

impairments downstream. In ADHD, regions within this network have been consistently 

reported as hypoactive in response to both inhibition tasks such as go/no go and 

attentional tasks (Castellanos & Proal, 2012) which aligns with the characteristically poor 

behavioral performance of individuals with ADHD within these cognitive domains. 

Interestingly, altered ECN connectivity has also been reported in ASD, but, unlike 

individuals with ADHD, recent findings indicate that individuals with ASD are 

characterized by hyperconnectivity between the ECN and other intrinsic brain networks 

such as the DMN (Abbott et al., 2016). In addition, intrinsic functional connectivity 

within the DMN, SN, and ECN has been shown to predict long-term outcomes of ASD 

symptom progression beyond what standard behavioral batteries are able to predict (Plitt, 

Barnes, Wallace, Kenworthy, & Martin, 2015). There are varied findings across both 

ASD and ADHD and a lack of research investigating these three core networks with a 

sample of ASD, ADHD, and TD participants in conjunction. Thus, the current study 

sought to understand how these networks relate to behavioral profiles and to determine 

whether connectivity profiles among these networks cluster along diagnostic boundaries. 
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Significance and Innovation 

The proposed project used a novel, multifaceted data-driven approach to classifying 

participants into subgroups based on brain connectivity (not on clinical diagnosis) which 

is a departure from standard fMRI analyses. Identifying subgroups that include 

participants with different diagnostic labels has the potential to highlight shared neural 

patterns that can account for comorbidity in clinical diagnoses in a way that has not been 

previously considered. Although previous researchers have examined these disorders in 

tandem, this is the first study, to our knowledge, which targeted heterogeneity within and 

among ASD, ADHD, and TD populations using an individualized GIMME framework as 

well as a unique application of ICA and community detection. 

The Research Domain Criteria (RDoC) Initiative of the National Institute of Health 

(NIH) aims to encourage the study and application of analyses to identify shared 

mechanisms across diagnostic groups. The present study directly addressed this initiative 

by studying the shared and differential neural mechanisms of three groups traditionally 

studied as mutually exclusive: ASD, ADHD, and typical development. This study is 

novel and innovative as it adopted data-driven, individualized approaches to 

classification that are grounded in brain connectivity rather than behavioral observation. 

This approach further challenges researchers and clinicians alike to re-conceptualize 

human brain and behavior as an all-encompassing spectrum with individuals with both 

typical and divergent development falling at different points along a single continuum. 

The subgrouping of individuals with ASD or ADHD based on brain connectivity can 

provide clinicians with a better understanding of underlying neural deficits that are 

associated with core diagnostic behaviors which can be further used to predict response 
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to treatment and to individualize treatment planning. The inclusion of typically 

developing participants allows researchers to identify individuals with a sub-diagnostic 

behavioral profile, but shared neural mechanisms of a given disorder like ASD or ADHD. 

This can provide important information about compensatory behaviors or neurobiological 

mechanisms that can directly impact intervention design and treatment planning for at-

risk individuals. Data analysis that prioritizes the individual over the group provides 

increased specificity about subtypes within a clinical population. Human development is 

heterogeneous and applying a model that forces group level uniformity at best relies on 

assumptions that are flawed and at worst disseminates research that directly informs 

clinical interventions that are ineffective for a large portion of individuals within a given 

diagnostic group and perpetuates an oversimplified representation of human functioning. 

 

Specific Aims 

The present project examined the common and differential patterns of brain 

connectivity across participants regardless of diagnostic status using two distinct, but 

complementary methodological aims: 

 

Aim 1 

Subgroup participants across groups of clinical (ASD and ADHD) and non-clinical 

(typical development) populations based on connections among a priori regions of 

interest within known networks (DMN, ECN, SN) regardless of diagnostic classification.  

This aim was accomplished by applying the GIMME algorithm to resting-state 

fMRI data to derive group-level, subgroup-level, and individual-level functional 
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connectivity maps among a priori regions of interest within the DMN, SN, and ECN. The 

data were analyzed using the freely available R package (gimme; Lane et al., 2015).  

 

Hypothesis 1. It was hypothesized that subgroups would emerge that differed from 

the group-level model, and these subgroups would consist of individuals from both 

clinical populations studied due to the comorbidity between ASD and ADHD (Simonoff 

et al., 2008). Reduced connectivity across all three networks was expected in the 

subgroups containing the largest percentage of ASD and ADHD participants. 

 

Aim 2 

Apply a community detection algorithm to brain connectivity data to cluster 

participants into groups based on variations from ICA-derived group-level components. 

This aim was accomplished by using the freely available Group ICA of fMRI 

Toolbox (GIFT; http://www.nitrc.org/projects/gift) to conduct a whole-brain independent 

component analysis of the resting state data from all participants to arrive at both group-

level and individual-level components comprised of temporally correlated, spatially 

distinct regions. The group-level components were then used as binarized masks to 

extract average or thresholded z-scores from the corresponding individual-level 

component maps. These z-scores are a reflection of the average contribution of the voxels 

to each component and were used in a Girvan-Newman community detection algorithm 

to derive the community structure among the participants. Unlike the first aim, this 

analysis did not rely on a priori regions of interest to ascertain subgroups which allows 

http://www.nitrc.org/projects/gift
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component maps to incorporate regions outside of those specified in aim 1 which can 

highlight patterns of atypical connections outside of the DMN, SN, or ECN. 

 

Hypothesis 2. It was hypothesized that clusters of participants would be derived, due 

to the heterogeneity in the sample, and that these clusters would correspond to the 

subgroups identified using the uSEM GIMME algorithm. Additionally, it was 

hypothesized that clusters which contain the largest percentage of ASD and ADHD 

participants would be characterized by individual-level components with the greatest 

deviation from the group-level component maps. 
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CHAPTER TWO 

METHODS 

Participants 

The data for the present study were taken from both the Autism Brain Imaging Data 

Exchange II (ABIDE II: http://fcon_1000.projects.nitrc.org/indi/abide/; Di Martino et al., 

2014) and the ADHD-200 databases (http://fcon_1000.projects.nitrc.org/indi/adhd200/) 

which are publically available larger repositories of structural and resting state MRI data. 

The data collected at Oregon Health & Science University from the ABIDE II and 

ADHD-200 databases were used due to correspondence between the scanner and 

scanning parameters. All participants in both datasets were instructed to withhold the 

administration of psychostimulant drugs or other medications for at least 24 hours prior 

to scanning. Only participants who were instructed to keep their eyes open were used in 

this analysis as past research has illustrated the varying effects of eyes open versus eyes 

closed during resting state (Patriat et al., 2013). 

Prior to excluding participants based on motion and data quality, there were 172 

participants (37 ASD; 37 ADHD; 98 TD) between the ages of 7 to 15 years. Data from 

ABIDE I were not used due to the overlap in TD participants between the ABIDE I and 

ADHD-200 databases. Additionally, unlike the ABIDE II and ADHD-200 sample, 

participants included in the ABIDE I database did not complete the entire WISC-IV 

assessment. A total of 43 participants were excluded due to motion or data quality 

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
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resulting in a final sample of 129 participants. The ADHD participants who were 

excluded did not significantly differ in age or on any of the available measures (e.g. 

ADHD subscales, IQ) when compared to the retained participants. See Table 1 for 

information about excluded participants. 

 

Table 1. 

Excluded Participants 

Exclusion Criteria Group ABIDE II ADHD-200 

>20% time points exceed .5mm 

 

TD 

 

6 

 

12 

ASD 5 - 

ADHD 

 

- 13 

Visual quality assurance 

 

TD 0 3 

ASD 0 - 

ADHD 

 

- 

 

4 

 

    

Total 11 32 

Note: TD = Typically Developing; ASD = Autism Spectrum Disorder; ADHD = 

Attention Deficit Hyperactivity Disorder. 

 

 

After excluding participants, the remaining sample was not evenly divided among 

the diagnostic groups (77 TD; 32 ASD; 20 ADHD). The analyses utilized in this project 

are data-driven such that models are derived from the entire sample of data without a 

priori knowledge concerning diagnostic classification. Therefore, in order to avoid 

overweighting the models with typically developing participants and to address a 

potential confound where the TD group had more power and influence, the participant 

groups were limited to a final sample of 20 participants per diagnostic group. 

Additionally, the groups were only matched on IQ because the ASD participant group 
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was older on average compared to either the TD or ADHD groups. To allow for a more 

thorough investigation of the heterogeneity among the full sample of participants, the 

analyses for aim 2 were performed on the matched sample group (n = 60) as well as the 

full sample group (n = 129) with the understanding that there are significant limitations to 

both approaches in isolation. When excluding ASD participants for the matched sample 

group, the excluded participants did not differ from the retained participants on any of the 

available autism measures (e.g. ADOS-2, ADI-R, SRS) and were excluded based only on 

IQ and age. Age of the participants was the only significant difference between the final 

matched sample ASD group and the ASD participants who were excluded from the 

sample. Additionally, the TD group in the matched sample were comprised of 10 

participants from ABIDE II and 10 participants from ADHD-200. See Table 2 and Table 

3 for demographic information on the matched and full sample of participants 

respectively.  

 

Table 2. 

Participant Demographics for Matched Sample 

 TD ASD ADHD F p 

N 20 20 20 - - 

Age (SD) 9.67 (1.18) 10.90 (1.77) 9.04 (1.17) 9.11 <.01 

IQ (SD) 111.55 (11.33) 109.35 (14.34) 111.30 (11.76) .184 .83 

Gender (M:F) 14:6 17:3 14:6 - - 

Note: TD = Typically Developing; ASD = Autism Spectrum Disorder; ADHD = 

Attention Deficit Hyperactivity Disorder; SD = Standard deviation of the mean. M = 

Male; F= Female. 
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Table 3.  

Participant Demographics for Full Sample 

 TD ASD ADHD F p 

N 77 32 20 - - 

Age (SD) 9.94 (1.69) 11.63 (2.30) 9.04 (1.17) 15.01 <.01 

IQ (SD) 117.71 (12.57) 106.28 (17.85) 111.30 (11.76) 8.00 <. 01 

Gender (M:F) 43:34 26:6 14:6 - - 

Note: TD = Typically Developing; ASD = Autism Spectrum Disorder; ADHD = 

Attention Deficit Hyperactivity Disorder; SD = Standard deviation of the mean. M = 

Male; F= Female. 

 

 

Measures 

ABIDE II 

To confirm diagnosis, participants were administered the third module of the Autism 

Diagnostic Observation Schedule – Second Edition (ADOS-2; Lord et al., 2012). The 

ADOS-2 contains subscales measuring restricted and repetitive behaviors (RRB), social 

affect, and severity of symptoms, and provides a total score. Module 3 is given to 

children who are verbal, and higher scores on all of these measures indicate greater 

impairment within that domain with social affect scores greater than 8 and a total score 

greater than 9 indicating ASD (Gotham, Risi, Pickles, & Lord, 2007). Parents completed 

the Autism Diagnostic Interview-Revised (ADI-R; Lord et al., 1994) and the Social 

Responsiveness Scale – Second Edition (SRS-2; Constantino & Gruber, 2012). The ADI-

R is a structured interview assessment which contains questions regarding the 

development of the participant across several domains including social development, 

presence of restricted and repetitive behaviors, and communication. A social interaction 
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score greater than 10, a verbal communication score above 8, and a restricted and 

repetitive behavior score above 3 are the ASD cutoff scores. The SRS is a measure of 

ASD traits administered to children and adults which has five subscales: social 

awareness, social cognition, social communication, social motivation, and restricted and 

repetitive interests. On each of the subscales, a T-score below 59 is considered typical, a 

T-score from 60 to 65 indicates mild impairment, a T-score from 66 to 75 indicates 

moderate impairment, and a T-score greater than 76 suggests severe impairment.  

Participants were given the three-subtest short form (Block Design, Vocabulary, and 

Information) of the Wechsler Intelligence Scale for Children – Fourth Edition (Wechsler, 

2003) and were excluded if their estimated IQ was below 70. The researchers did not 

explicitly exclude ASD participants who had comorbid diagnoses.  

 

ADHD-200 

Parents of each of the participants were administered the Conners’ Parent Rating 

Scale-Revised, Long version (CPRS-LV; Conners, 1997) which is an ADHD symptom 

checklist. Inclusion into the ADHD group required a T-score greater than 65 on at least 

one of the ADHD subscales of the CPRS-LV, whereas inclusion in the typically 

developing group required a T-score below 60 for the Inattentive and 

Hyperactive/Impulsive scales on the CPRS-LV. All participants were administered the 

Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), and were excluded 

if their Full Scale Intelligence Quotient (FSIQ) was below 80. ADHD participants were 

excluded if they had a comorbid ASD diagnosis.  
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Data Analysis 

Scanning parameters 

Resting-state data from both ABIDE II and ADHD-200 were acquired using the 3T 

Siemens Magnetom TrioTim scanner at Oregon Health & Science University. Structural 

MRI T1-weighted scans were acquired using a MPRAGE (Magnetization Prepared Rapid 

Acquisition Gradient Echo) sequence with the following parameters: repetition time (TR) 

= 2300ms, echo time (TE) = 3.58ms, field of view (FOV) = 256 x 240, 1.0mm isotropic 

voxels, flip angle = 10. The resting state data were acquired using an interleaved 

sequence with the following parameters: TR = 2500ms, TE =30ms, FOV = 240 x 240, 

3.8mm isotropic voxels, flip angle = 90.   

 

Data Preprocessing 

Functional images were preprocessed using Analysis of Functional NeuroImages 

(AFNI; Cox, 1996) and FMRIB Software Library (FSL; Smith et al., 2004). The FAST 

automated segmentation program implemented in FSL was used to skull strip and 

segment the white matter, cerebrospinal fluid (CSF), and grey matter in the raw 

anatomical images which were then bias corrected and nonlinearly transformed into MNI 

space. Functional images were motion-corrected by registering each functional volume to 

the middle time point in the scan, co-registered with the anatomical, normalized and 

resampled to a 3mm isotropic MNI template, smoothed with a 6mm Gaussian kernel, and 

bandpass filtered (0.008 < f < 0.08 Hz). Nuisance variables (e.g. white matter, CSF, the 6 

rigid-body motion regressors, and the derivatives of these variables) were deconvolved 

with the processed functional volumes resulting in a total of 16 nuisance regressors. 
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Quality Assurance 

Participant head motion during scanning can result in artefacts and data distortion 

and is a significant concern in functional connectivity analyses (Satterthwaite et al., 2012; 

Van Dijk, Sabuncu, & Buckner, 2012). To account for this problem, the Euclidean 

distance from the six rigid-body motion parameters (three rotation parameters: roll (y 

axis), pitch (x axis), yaw (z axis); three translation parameters along the x, y, and z axes) 

was calculated across the time points and any shift greater than .5mm was deemed 

excessive head motion. Participants with greater than 20% of time points exceeding this 

motion threshold were excluded from the subsequent analyses (n = 36). Time points 

where motion exceeded the desired cut-off of .5mm were not censored because the 

analyses required equal data across all participants.  

In addition to accounting for head motion, a rigorous quality assurance pipeline was 

used which involved visually inspecting the raw and final preprocessed anatomical and 

functional data for each participant. Participants with artefactual raw data or poorly 

registered functional or anatomical volumes were excluded from the subsequent analyses 

(n = 7).  

 

Group Iterative Multiple Model Estimation 

Regions of Interest 

GIMME uses the time series from regions of interest (ROIs) to build a model of 

connectivity which derives both the presence and direction of connections among the 

specified regions. Initially, the ROIs were derived from the Shirer group (Shirer, Ryali, 

Rykhlevskaia, Menon, & Greicius, 2012) which identified important intrinsic networks in 
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the brain by applying ICA to resting state data from typically developing participants. 

These functionally derived regions were used due to the interest in studying large scale 

networks across the participant groups. Additionally, the use of purely anatomical regions 

would have constrained the analysis to structural boundaries which ignores information 

regarding the functional recruitment of regions within a network. Recent research has 

highlighted the need to incorporate information from multiple levels (e.g. function, 

architecture, connectivity, and topography) to identify new, more informative boundaries 

in the brain (Glasser et al., 2016).  

Despite the advantages of using ROIs derived from information regarding functional 

connectivity, there were a number of limitations. The ROIs varied significantly in size 

across the networks (SD = 682-1478 voxels). This has direct implications when averaging 

the time series of voxels within each ROI. Voxels within smaller regions would 

contribute significantly to the ROI average, whereas voxels within larger ROIs would 

have relatively less contribution. Additionally, differences in ROI size introduces varied 

levels of susceptibility to noise and degrees of power to detect the real signal. Many of 

the Shirer ROIs from the same network overlapped which created a problem where some 

voxels were contributing to multiple regions. To partially address these concerns, the 

regions from the Shirer lab were modified in the following ways. First, regions with 

fewer than 50 voxels were excluded (n = 4). Second, overlapping voxels from regions 

within the same network were removed from the larger region and were retained in the 

smaller region. Thus, the time series from the voxels only contributed to whichever 

region initially had fewer voxels. Third, regions that were considered irrelevant or less 

crucial to the network were removed when necessary (DMN: Right Lobule IX, Left 
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Middle Occipital Gyrus; SN: Left and Right Lobule VI, Crus I). Fourth, similar regions 

were combined (DMN: Left and Right Hippocampus, Left and Right Parahippocampus; 

SN: Left Middle Frontal Gyrus). Fifth, regions that were exceedingly large were reduced 

in size. This occurred with the MPFC region in the DMN (k = 5,257). To avoid 

discarding this ROI due to the role of the MPFC in this network, the ROI was broken into 

two smaller regions. This was done using the Automated Anatomical Labeling atlas 

(AAL; Tzourio-Mazoyer et al., 2002) to define a structural ROI for the regions 

comprising the larger functionally defined ROI. The regions chosen in the atlas were 

"Frontal_Sup_Medial (bilateral)" and "Frontal_Med_Orb (bilateral)". The structural ROIs 

were then individually multiplied by the larger functional ROI to derive a mask of 

overlapping voxels. Visual examination suggested that these new structural/functional 

hybrid regions appeared to capture the approximate area of the original functional ROI. 

The approach adopted here is preferable to using the unaltered structural ROIs because 

research has shown functionally defined regions of interest to be more informative when 

studying continuous cognitive states such as in resting-state analyses (Shirer et al., 2012). 

Thus, this ROI is a structural/functional hybrid that shows correspondence between a 

strictly structural or strictly functional approach. After modifying the ROIs, there were 15 

regions for the DMN, 14 for the SN, and 11 for the ECN (Table 4 and Figure 1). 

 

Table 4. 

Modified Shirer Regions of Interest 

Region Hemisphere No. of Voxels 

Default Mode Network   

Medial Prefrontal Cortex - 2153 

Precuneus - 1921 
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Posterior Cingulate Cortex - 1390 

Orbitofrontal Cortex - 891 

Angular Gyrus Right 752 

Retrosplenial Cortex Right 590 

Hippocampus - 510 

Retrosplenial Cortex Left 462 

Middle Frontal Gyrus Left 405 

Middle Frontal Gyrus Right 399 

Parahippocampal Gyrus - 224 

Thalamus - 220 

Superior Frontal Gyrus Right 137 

Midcingulate Cortex - 114 

Angular Gyrus Left 97 

 

Executive Control Network 

  

Crus I Left 2403 

Inferior Parietal Gyrus Left 2110 

Superior Frontal Gyrus Right 2093 

Inferior Parietal Gyrus Right 1873 

Middle Frontal Gyrus Left 1501 

Inferior Frontal Gyrus Left 437 

Middle Frontal Gyrus Right 356 

Middle Temporal Gyrus Left 350 

Crus I Right 310 

Caudate Right 188 

Superior Medial Gyrus Right 83 

 

Salience Network 

  

Anterior Cingulate Cortex/ 

Supplementary Motor Area 

- 2887 

Inferior Parietal Lobule Left 1205 

Inferior Parietal Lobule Right 1002 

Middle Frontal Gyrus Left 741 

Middle Frontal Gyrus Right 470 

Insula Right 319 

Insula Left 305 

Thalamus Left 142 

Posterior Insula Right 134 

Precuneus Right 133 

Posterior Insula Left 114 

Precuneus Left 98 

Thalamus Right 63 

Midcingulate Cortex Right 56 
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Figure 1. Shirer ICA-Derived Networks. 

 

 

There were two significant methodological concerns that resulted in the group and 

individual models not converging when using the modified Shirer ROIs. First, there was 

an insufficient number of time points in the data (e.g. 78) to model connectivity among 

the regions of interest (S. Lane, personal communication, July 24, 2017). The maximum 

number of regions for a given network was 15, but GIMME accounts for both lagged and 

contemporaneous connections which results in a total of 30 variables that are fit to the 

data. Standard structural equation modeling analyses require a sample size of at least 10 

observations or time points per variable (Bentler & Chou, 1987). With 15 regions of 
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interest, a minimum suggested requirement is approximately 150 observations or time 

points which is almost twice the number of data points in the current study. In a standard 

SEM framework, when the number of observations is insufficient, the fit indices will be 

poor. However, GIMME uses an iterative SEM procedure to optimize fit indices by 

adding and removing paths until the fit indices pass an acceptable threshold indicating 

good model fit. In this case, the fit indices were never able to surpass this threshold 

despite adding all possible paths, and the program terminated before providing any 

results. The second problem with the modified Shirer ROI analysis was the degree of 

multicollinearity among the ROI time series (r > .80) suggesting that these variables 

should be dropped or used as composite variables by merging regions together (S. Lane, 

personal communication, July 24, 2017). 

In order to address these problems, new regions of interest were defined. To account 

for the number of data points, only 7-8 10mm spherical regions were defined for each 

network (Table 5 and Figure 2). The coordinates used to define the DMN spheres were 

adapted from a meta-analysis (Laird et al., 2009) and have been used in other 

investigations of the network (Fallon et al., 2016). The coordinates for the ECN and SN 

were adapted from a previous study which isolated both networks (Seeley et al., 2007) 

and were used in a recent study (Androulakis et al., 2017). Although it is expected that 

the time series from regions within the same network would be highly correlated, the 

correlations among the spherical ROIs were not as high as the modified Shirer ROIs 

which helped reduce the multicollinearity problem. This is likely because the spherical 

regions were more spatially separated than the modified Shirer ROIs. The GIMME 
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algorithm was able to successfully fit both group-level and individual-level connectivity 

maps using these new ROIs. 

 

Table 5. 

Spherical Regions of Interest 

Region Hemisphere x y z 

Default Mode Network 

Precuneus Left -4 -58 44 

Posterior Cingulate Left -4 -52 22 

Medial Prefrontal Cortex Left -2 50 18 

Ventral Anterior Cingulate Right 2 32 -8 

Inferior Parietal Lobule Right 52 -28 24 

Inferior Parietal Lobule Left -56 -36 28 

Middle Frontal Gyrus Left -26 16 44 

 

Executive Control Network 

Dorsolateral Prefrontal Cortex Left -34 46 6 

Dorsolateral Prefrontal Cortex Right 46 46 14 

Dorsomedial Prefrontal Cortex - 0 36 46 

Inferior Frontal Gyrus Right 56 14 14 

Ventromedial Caudate Right 10 12 2 

Lateral Parietal Left -48 -48 48 

Lateral Parietal Right 38 -56 44 

     

Salience Network     

Dorsomedial Thalamus Right 12 -18 6 

Dorsal Anterior Cingulate Left -6 18 30 

Orbital Frontal Insula Left -40 18 -12 

Orbital Frontal Insula Right 42 10 -12 

Substantia Nigra/ 

Ventral Tegmental Area 

Left -10 -14 -10 

Substantia Nigra/ 

Ventral Tegmental Area 

Right 8 -8 -14 

Ventral Striatum/Pallidum Left -22 12 -6 

Ventral Striatum/Pallidum Right 22 6 -2 

Note: x, y, and z correspond to the MNI coordinates used to generate each region. 
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Figure 2. Spherical Regions of Interest 

 

 

Fit Parameters 

In order to test whether the results obtained after running the GIMME algorithm 

were stable, a number of default parameters were modified. The first parameter that was 

modified was the group-level cut-off which by default is set at .75 indicating that at least 
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75% of the participants have connectivity maps with good model fit as indexed by 

standard SEM fit indices (e.g. root mean square error of approximation, RMSEA < .05; 

standardized root meansquare residual, SRMR < .05; non-normed fit index, NNFI > .95; 

comparative fit index, CFI > .95). A similar parameter that was modified was the sub-

group-level cut-off which by default is set at .50 indicating that at least 50% of the 

subgroup is well described by the subgroup-level connectivity map as indexed by the 

standard SEM fit indices. These parameters were modified such that the algorithm 

examined the combination of the group-level cut-off set at .70, .75, and .80 and the sub-

group level cut-off set at .50 and .55 resulting in a total of 6 results for each network.  

 

Independent Component Analysis 

Independent component analysis was run on the final preprocessed functional images 

in the Group ICA of fMRI Toolbox (ICA GIFT v4.0a) to establish networks of spatially 

distinct, temporally correlated regions (Calhoun et al., 2004; Calhoun, Adali, Pearlson, & 

Pekar, 2001). Two separate ICAs were run. The first ICA was run on the matched 

sample, and the second ICA on the full sample of participants. In each ICA, the data were 

reduced through single-subject principle component analysis (PCA) with temporal 

concatenation and group level PCA. The number of independent components within the 

data were freely estimated using minimum descriptive length (MDL) criteria. There was 

variability in the number of estimated components across individual participants, but 25 

components were estimated for both the matched and full sample of participants. Spatial 

ICA with Infomax was run on this reduced data and independent spatial component maps 

were constructed for the group as well as each subject. A stability analysis was run using 
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ICASSO to estimate the reliability of the components over 10 iterations of this ICA 

algorithm. After visual inspection of the resulting components, artefactual (matched 

sample: n = 5; full sample: n = 4) and unstable components (matched sample: n = 0; full 

sample: n = 1) were eliminated from the dataset. This resulted in a final set of 

independent components for each task. A Monte Carlo simulation was run on the average 

component mask using 3dClustSim in AFNI and yielded a threshold of 31 and 43 

contiguous voxels for the matched and full samples respectively at an uncorrected p value 

of .001 (FWE = .05). These voxel thresholds were used to define the group-level 

component masks prior to creating the binarized mask.  

The 20 identified group-level components were used as masks to investigate 

variation from the group average at the individual level. A number of values were 

extracted from the voxels falling within the masked region in the individual-level 

component maps: 1) the average z-score, 2) the average positively thresholded (> 0) z-

score, and 3) the total count of the positively thresholded (> 0) z-scores. The count of the 

average positively thresholded voxels was highly consistent across participants (r > .90), 

and was thus not used as the basis for the clustering algorithm. The z-scores in the 

individual component maps indicate the contribution of individual voxels to that 

component. Thus, a higher z-score reflects a greater contribution to the component, and a 

positive score indicates that the voxel is positively correlated with the component (e.g. is 

not anti-correlated). 
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Community Detection Analysis 

The z-scores extracted from the individual component maps were configured into a 

participant by z-score matrix which was used for the community detection analysis which 

was implemented in R. Briefly, the algorithm calculates a correlation matrix and sets the 

diagonal of this matrix to 0 to avoid generating an adjacency matrix with looped 

connections. An adjacency matrix is then created by applying a threshold to the 

correlation matrix such that a “1” indicates a connection between participants and a “0” 

indicates no connection. The threshold was set to ensure that no participant had no 

connections (e.g. every participant had to have at least one connection in the adjacency 

matrix). Additionally, to ensure that the results were stable and not overly sensitive to 

minor fluctuations in the threshold, the algorithm was run at varied thresholds. After 

establishing these connections, the edge betweenness was calculated for each edge, and 

the edges with the highest betweenness centrality were removed until no more edges 

remained in the network and the community structure was identified.  

The community detection analysis was run on both the matched sample and the full 

sample of participants. The analysis was run using the mean z-scores and the mean 

positively thresholded z-scores for the matched sample group and only the mean z-scores 

for the full sample group.
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CHAPTER THREE 

RESULTS 

Overview 

The results of both the GIMME analysis and the community detection analysis were 

limited due to the quality and length of data resulting in either no meaningful subgroups 

emerging from the data or in subgroups that were unstable and uninterpretable. The 

GIMME group-level connectivity maps varied across the tested thresholds and were 

sparse for each of the networks with no group-level connections arising in the DMN and 

ECN. The subgroup connectivity maps for each network were also threshold dependent 

suggesting that the identified subgroups were not robust. For the community detection 

analysis, one large cluster was identified which contained the majority of participants. 

The remaining participants were classified as outliers. This same pattern of results was 

seen when the community detection algorithm was run using the larger, more 

heterogeneous sample. Despite limitations inherent to the data, the results of the present 

study provide methodological pipelines which can be used to study highly heterogeneous 

datasets. 

 

GIMME Analysis 

Although the GIMME algorithm was able to arrive at group connectivity maps with 

adequate fit, the resulting maps were both unstable and weakly connected. The algorithm 
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favors the identification of a sparse group-level connectivity map with additional 

connections appearing at the subgroup level. However, in order to arrive at acceptable 

model fit, the algorithm removed all of the group-level paths among the ROIs. 

Additionally, for some of the networks, the group and subgroup results were not 

consistent across the varied thresholds. There were a number of subgroups identified that 

contained very few participants and many of these smaller subgroups were excluded after 

the subgroup-level cut-off was applied (e.g. .50 or .55). This resulted in several outlier 

participants who were not well described by the group or subgroup connectivity maps. 

The number of TD, ASD, and ADHD participants in subgroups derived across the 

modified parameters is presented in Table 6. For ease of reporting the results concisely, 

only the connections among the connectivity maps derived from the default threshold 

parameters (e.g. group threshold: .75, subgroup threshold: .50) will be discussed in depth, 

but all results across the modified thresholds are presented graphically (Figures 3-11). A 

comparison of the behavioral information for participants within the subgroups identified 

using the default parameters is presented in Figure 12. 

 

Default Mode Network 

For the DMN, no group level paths were identified, and this result was roughly 

consistent across the modified group-level thresholds (Figure 3). A total of 7 subgroups 

were identified, but, depending on the group threshold, 4-5 of these subgroups contained 

only 1 participant, and thus connectivity maps were not generated for these subgroups. 

When the group threshold was set at .70, the results differed from the results obtained at 
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the other group-level thresholds resulting in a divergence in the obtained connectivity 

maps and the number of subgroups.  

There were two subgroups identified when using the default thresholds (Figures 6-7). 

The first subgroup which was comprised of 9 TD, 8 ASD, and 11 ADHD participants 

was characterized by connections from Left Posterior Cingulate Cortex to Left Middle 

Frontal Gyrus, Left Medial Prefrontal Cortex, and Left Precuneus. The second identified 

subgroup was comprised of 9 TD, 12 ASD, and 6 ADHD participants and was 

characterized by the following connections: Left Medial Prefrontal Cortex  Left 

Posterior Cingulate Cortex; Right Ventral Anterior Cingulate Cortex  Left Medial 

Prefrontal Cortex; Right Inferior Parietal Lobule  Left Inferior Parietal Lobule. There 

were a total of 5 outlier participants who were not included in either of the subgroups. 

Overall, there were no significant differences on the behavioral measures between the 

participants within the identified subgroups. The mean scores for the Inattentive and 

Hyperactive/Impulsive subscales were moderate (range: 59.94 to 66.56) as were the 

ADOS-2 scores. The mean scores on the SRS subscales indicated mild impairment for 

each subgroup (range: 57.64 to 65.27). Across both subgroups, mean scores on the ADI-

R were high for the social (> 18), verbal (> 15) and RRB (> 5) subscales. Demographic 

information for the participants in the subgroups identified using the default group and 

subgroup threshold are displayed in Table 7. 

 

Executive Control Network 

Across all of the modified group-level thresholds, no group-level paths were 

identified among the ECN regions (Figure 4). The results were highly consistent across 
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the group-level results and the subgroup-level results. A total of 8 subgroups were 

identified, but 6 of these subgroups contained only 1 participant and connectivity maps 

were not generated resulting in 2 robust subgroups (Figures 8-9). The same participants 

were represented in the subgroups across the modified parameters and the connectivity 

maps were relatively consistent with minor differences seen at the more conservative 

subgroup threshold of .55. 

In the first subgroup, there were 8 TD, 12 ASD, and 15 ADHD participants who 

were characterized by two connections: Right Ventromedial Caudate  Dorsomedial 

Prefrontal Cortex and Left Lateral Parietal  Right Lateral Parietal. A total of 9 TD, 6 

ASD, and 4 ADHD participants were included in the second subgroup which was defined 

by two connections: Left Lateral Parietal  Left Dorsolateral Prefrontal Cortex and 

Right Dorsolateral Prefrontal Cortex  Right Inferior Frontal Gyrus. There were 6 

outlier participants who were not included in either of the subgroups. Overall, there were 

no significant differences on the behavioral measures between the participants within the 

identified subgroups. The mean scores for the Inattentive and Hyperactive/Impulsive 

subscales were mild (< 63).  The ADOS-2 scores were moderate across both subgroups. 

The mean scores on the SRS subscales indicated mild to moderate impairment for each 

subgroup (range: 53.83 to 76.36). Across both subgroups, mean scores on the ADI-R 

were high for the social (> 17), verbal (> 15) and RRB (> 4) subscales. Demographic 

information for the participants in the subgroups identified using the default group and 

subgroup threshold are displayed in Table 8.  
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Salience Network 

Modification of the group-level thresholds resulted in instability in SN results 

(Figure 5). At a group-level threshold of .70, the SN had one connection from the Right 

Ventral Striatum/ Pallidum to the Left Ventral Striatum/ Pallidum but this connection was 

not seen at the other thresholds. Similar to the DMN results, connectivity maps generated 

at a group-level threshold of .70 were roughly consistent across the modified subgroup 

parameters, but these results were dissimilar from the connectivity maps obtained at the 

other group-level thresholds. A total of 9 subgroups were identified, but 6 of these 

subgroups contained only 1 participant and thus connectivity maps were not generated for 

these subgroups. 

With the default parameters, a total of three subgroups were identified (Figures 10-

11). The first subgroup was comprised of 12 TD, 14 ASD, and 11 ADHD participants 

and was characterized by connections from the Right Ventral Striatum/ Pallidum to Left 

Ventral Striatum/ Pallidum, Right Dorsomedial Thalamus, and Left Dorsal Anterior 

Cingulate Cortex. The second subgroup had 4 TD, 4 ASD, and 7 ADHD participants and 

had the following connections: Left Substantia Nigra/ Ventral Tegmental Area  Left 

Orbital Frontal Insula, Right Dorsomedial Thalamus, and Right Substantia Nigra/ Ventral 

Tegmental Area; Right Dorsomedial Thalamus  Right Ventral Striatum/ Pallidum and 

Left Dorsal Anterior Cingulate; Left Orbital Frontal Insula  Right Orbital Frontal 

Insula; Right Ventral Striatum/ Pallidum  Left Ventral Striatum/ Pallidum and Left 

Dorsal Anterior Cingulate. The third subgroup only had 2 TD participants who had the 

following connections: Left Substantia Nigra/ Ventral Tegmental Area  Right 

Dorsomedial Thalamus and Right Substantia Nigra/ Ventral Tegmental Area; Left Orbital 
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Frontal Insula  Right Ventral Striatum/ Pallidum; Right Dorsomedial Thalamus  

Right Ventral Striatum/ Pallidum; Right Ventral Striatum/ Pallidum  Left Ventral 

Striatum/ Pallidum and Left Dorsal Anterior Cingulate; Left Dorsal Anterior Cingulate  

Left Ventral Striatum/ Pallidum. There were 6 outlier participants who were not included 

in any of the three subgroups. Overall, there were no significant differences on the 

behavioral measures between the participants within the identified subgroups. The mean 

scores for the Inattentive and Hyperactive/Impulsive subscales were mild to moderate 

(range: 60.18 to 66.44).  The ADOS-2 scores were mild to moderate across both 

subgroups. The mean scores on the SRS subscales indicated mild to moderate impairment 

for each subgroup (range: 59.00 to 71.50). For subgroup 1, the mean ADI-R scores were 

high for the social (20.43), verbal (17.21), and RRB (5.79) subscales. For subgroup 2, the 

mean ADI-R scores were also high but slightly lower than the subgroup 1 for the social 

(11.75), verbal (12.75), and RRB (6.25) subscales. Demographic information for the 

participants in the subgroups identified using the default group and subgroup threshold 

are displayed in Table 9.



 

 

 

 

Figure 3. Group Connectivity Maps for the Default Mode Network. Results are shown across group-level thresholds: .70 (left), .75 

(middle), .80 (right). Group level paths are shown in black, subgroup level paths are shown in green, and individual level paths are 

shown in grey. The line thickness corresponds to the number of individuals with a connection. Contemporaneous connections are 

depicted with solid lines, and lagged connections are depicted with dashed lines. LIPL = Left Inferior Parietal Lobule; LMFG = 

Left Middle Frontal Gyrus; LMPFC = Left Medial Prefrontal Cortex; LPCC = Left Posterior Cingulate Cortex; LPCUN = Left 

Precuneus; RIPL = Right Inferior Parietal Lobule; RvACC = Right Ventral Anterior Cingulate Cortex. 
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Figure 4. Group Connectivity Maps for the Executive Control Network. Results are shown across group-level thresholds: .70 (left), 

.75 (middle), .80 (right). Group level paths are shown in black, subgroup level paths are shown in green, and individual level paths 

are shown in grey. The line thickness corresponds to the number of individuals with a connection. Contemporaneous connections 

are depicted with solid lines, and lagged connections are depicted with dashed lines. dmPFC = Dorsomedial Prefrontal Cortex; 

LdlPFC = Left Dorsolateral Prefrontal Cortex; LLP = Left Lateral Parietal; RdlPFC = Right Dorsolateral Prefrontal Cortex; RIFG = 

Right Inferior Frontal Gyrus; RLP = Right Lateral Parietal; RvmCN = Right Ventromedial Caudate Nucleus. 
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Figure 5. Group Connectivity Maps for the Salience Network. Results are shown across group-level thresholds: .70 (left), .75 

(middle), .80 (right). Group level paths are shown in black, subgroup level paths are shown in green, and individual level paths are 

shown in grey. The line thickness corresponds to the number of individuals with a connection. Contemporaneous connections are 

depicted with solid lines, and lagged connections are depicted with dashed lines. LdACC = Left Dorsal Anterior Cingulate Cortex; 

RdmTh = Right Dorsomedial Thalamus; LOFIn = Left Orbital Frontal Insula; LSN/VTA = Left Substantia Nigra/ Ventral 

Tegmental Area; LVS/PD = Left Ventral Striatum/ Pallidum; ROFIn = Right Orbital Frontal Insula; RSN/VTA = Right Substantia 

Nigra/ Ventral Tegmental Area; RVS/PD = Right Ventral Striatum/ Pallidum. 
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Figure 6. Subgroup Connectivity Maps for the Default Mode Network (.50 threshold). 

Results are shown across group-level thresholds: .70 (left), .75 (middle), .80 (right). 

Subgroup level paths are shown in green, and individual level paths are shown in grey. 

The line thickness corresponds to the number of individuals with a connection. 

Contemporaneous connections are depicted with solid lines, and lagged connections are 

depicted with dashed lines. LIPL = Left Inferior Parietal Lobule; LMFG = Left Middle 

Frontal Gyrus; LMPFC = Left Medial Prefrontal Cortex; LPCC = Left Posterior 

Cingulate Cortex; LPCUN = Left Precuneus; RIPL = Right Inferior Parietal Lobule; 

RvACC = Right Ventral Anterior Cingulate Cortex. 
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Figure 7. Subgroup Connectivity Maps for the Default Mode Network (.55 threshold). 

Results are shown across group-level thresholds: .70 (left), .75 (middle), .80 (right). 

Subgroup level paths are shown in green, and individual level paths are shown in grey. 

The line thickness corresponds to the number of individuals with a connection. 

Contemporaneous connections are depicted with solid lines, and lagged connections are 

depicted with dashed lines. LIPL = Left Inferior Parietal Lobule; LMFG = Left Middle 

Frontal Gyrus; LMPFC = Left Medial Prefrontal Cortex; LPCC = Left Posterior 

Cingulate Cortex; LPCUN = Left Precuneus; RIPL = Right Inferior Parietal Lobule; 

RvACC = Right Ventral Anterior Cingulate Cortex. 
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Figure 8. Subgroup Connectivity Maps for the Executive Control Network (.50 

threshold). Results are shown across group-level thresholds: .70 (left), .75 (middle), 

.80 (right). Subgroup level paths are shown in green, and individual level paths are 

shown in grey. The line thickness corresponds to the number of individuals with a 

connection. Contemporaneous connections are depicted with solid lines, and lagged 

connections are depicted with dashed lines. dmPFC = Dorsomedial Prefrontal Cortex; 

LdlPFC = Left Dorsolateral Prefrontal Cortex; LLP = Left Lateral Parietal; RdlPFC = 

Right Dorsolateral Prefrontal Cortex; RIFG = Right Inferior Frontal Gyrus; RLP = 

Right Lateral Parietal; RvmCN = Right Ventromedial Caudate Nucleus. 



49 

 

 

Figure 9. Subgroup Connectivity Maps for the Executive Control Network (.55 

threshold). Results are shown across group-level thresholds: .70 (left), .75 (middle), 

.80 (right). Subgroup level paths are shown in green, and individual level paths are 

shown in grey. The line thickness corresponds to the number of individuals with a 

connection. Contemporaneous connections are depicted with solid lines, and lagged 

connections are depicted with dashed lines. dmPFC = Dorsomedial Prefrontal Cortex; 

LdlPFC = Left Dorsolateral Prefrontal Cortex; LLP = Left Lateral Parietal; RdlPFC = 

Right Dorsolateral Prefrontal Cortex; RIFG = Right Inferior Frontal Gyrus; RLP = 

Right Lateral Parietal; RvmCN = Right Ventromedial Caudate Nucleus. 
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Figure 10. Subgroup Connectivity Maps for the Salience Network (.50 threshold). 

Results are shown across group-level thresholds: .70 (left), .75 (middle), .80 (right). 

Group level paths are shown in black, subgroup level paths are shown in green, and 

individual level paths are shown in grey. The line thickness corresponds to the 

number of individuals with a connection. Contemporaneous connections are 

depicted with solid lines, and lagged connections are depicted with dashed lines. 

LdACC = Left Dorsal Anterior Cingulate Cortex; RdmTh = Right Dorsomedial 

Thalamus; LOFIn = Left Orbital Frontal Insula; LSN/VTA = Left Substantia Nigra/ 

Ventral Tegmental Area; LVS/PD = Left Ventral Striatum/ Pallidum; ROFIn = 

Right Orbital Frontal Insula; RSN/VTA = Right Substantia Nigra/ Ventral 

Tegmental Area; RVS/PD = Right Ventral Striatum/ Pallidum. 
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Figure 11. Subgroup Connectivity Maps for the Salience Network (.55 threshold). 

Results are shown across group-level thresholds: .70 (left), .75 (middle), .80 (right). 

Group level paths are shown in black, subgroup level paths are shown in green, and 

individual level paths are shown in grey. The line thickness corresponds to the 

number of individuals with a connection. Contemporaneous connections are 

depicted with solid lines, and lagged connections are depicted with dashed lines. 

LdACC = Left Dorsal Anterior Cingulate Cortex; RdmTh = Right Dorsomedial 

Thalamus; LOFIn = Left Orbital Frontal Insula; LSN/VTA = Left Substantia Nigra/ 

Ventral Tegmental Area; LVS/PD = Left Ventral Striatum/ Pallidum; ROFIn = 

Right Orbital Frontal Insula; RSN/VTA = Right Substantia Nigra/ Ventral 

Tegmental Area; RVS/PD = Right Ventral Striatum/ Pallidum. 



 

 

Table 6. 

 

Participant Subgroup Membership across Modified Thresholds 
 Subgroup: .50 Subgroup: .55 

 Group: .70 Group: .75 Group: .80 Group: .70 Group: .75 Group: .80 

DMN 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

SG 1 10 8 4 9 8 11 9 8 11 10 8 4 9 8 11 9 8 11 

SG 2 9 9 15 9 12 6 9 12 6 9 9 15 9 12 6 9 12 6 

SG 3  2 1 1   1    2 1 1   1   

SG 4  1  1   1    1  1   1   

SG 5 1     1   1 1     1   1 

SG 6      1   1      1   1 

SG 7      1   1      1   1 

ECN 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

SG 1 8 12 15 8 12 15 8 12 15 8 12 15 8 12 15 8 12 15 

SG 2 9 6 4 9 6 4 9 6 4 9 6 4 9 6 4 9 6 4 

SG 3   1   1   1   1   1   1 

SG 4  1   1   1   1   1   1  

SG 5 1   1   1   1   1   1   

SG 6 1   1   1   1   1   1   

SG 7  1   1   1   1   1   1  

SG 8 1   1   1   1   1   1   

SN 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

SG 1 9 6 14 12 14 11 12 14 11 9 6 14 12 14 11 12 14 11 

SG 2 6 9 1 4 4 7 4 4 7 6 9 1 4 4 7 4 4 7 

SG 3 5 5 5 2   2   5 5 5 2   2   

SG 4     1   1      1   1  

SG 5     1   1      1   1  

SG 6    1   1      1   1   

SG 7      1   1      1   1 

SG 8    1   1      1   1   

SG 9      1   1      1   1 

Note. Group 1 = TD, 2 = ASD, 3 = ADHD; SG = subgroup. Bolded numbers indicate outlier participants. 

5
2
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Table 7. 

Demographics for DMN Subgroups 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The subgroups described here were identified using the default group threshold 

(.75) and subgroup threshold (.50). TD = Typically Developing; ASD = Autism Spectrum 

Disorder; ADHD = Attention Deficit Hyperactivity Disorder; M = Male; F = Female; 

FIQ = Full IQ Standard Score; ADI-R = Autism Diagnostic Interview-Revised; RRB = 

Restricted, Repetitive Behavior; ADOS = Autism Diagnostic Observation Schedule; SRS 

= Social Responsiveness Scale. 

 

 Subgroup 1 Subgroup  2 

Demographics N Mean (SD) N Mean (SD) 

TD 9 - 9 - 

ASD 8 - 12 - 

ADHD 11 - 6 - 

M:F 21:7 - 22:6 - 

Age 28 9.72 (1.65) 27 10.15 (1.57) 

FIQ 28 112 (11.58) 27 108.44 (13.39) 

ADHD Measures     

Inattentive 16 62.13 (11.74) 9 64.89 (15.71) 

Hyper/Impulsive 16 59.94 (16.16) 9 66.56 (16.93) 

Autism Measures     

ADI-R Social Total 8 18 (5.13) 12 18.75 (5.24) 

ADI-R Verbal Total 8 16.25 (4.10) 12 15.58 (3.42) 

ADI-R RRB Total 8 6.88 (2.03) 12 5 (2.09) 

ADOS-2 Total 7 11.14 (1.57) 11 11.55 (3.47) 

ADOS-2 Severity 7 6.57 (0.79) 11 6.33 (2.42) 

ADOS-2 Social Affect 7 8 (1.41) 11 9 (3.38) 

ADOS-2 RRB 7 3.14 (0.69) 11 2.55 (1.13) 

SRS Total 11 63.27 (18.87) 17 63.71 (16.50) 

SRS Social Awareness 11 65.27 (15.74) 17 62.59 (18.03) 

SRS Social Cognition 11 57.64 (16.10) 17 59.53 (13.25) 

SRS Social Communication 11 62.91 (18.05) 17 64.12 (17.10) 

SRS Social Motivation 11 59.36 (16.75) 17 58.53 (13.03) 

SRS Mannerisms 11 64.45 (19.41) 17 65.06 (16.51) 
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Table 8. 

Demographics for ECN Subgroups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The subgroups described here were identified using the default group threshold 

(.75) and subgroup threshold (.50). TD = Typically Developing; ASD = Autism Spectrum 

Disorder; ADHD = Attention Deficit Hyperactivity Disorder; M = Male; F = Female; 

FIQ = Full IQ Standard Score; ADI-R = Autism Diagnostic Interview-Revised; RRB = 

Restricted, Repetitive Behavior; ADOS = Autism Diagnostic Observation Schedule; SRS 

= Social Responsiveness Scale. 

 

 Subgroup 1 Subgroup  2 

Demographics N Mean (SD) N Mean (SD) 

TD 8 - 9 - 

ASD 12 - 6 - 

ADHD 15 - 4 - 

M:F 24:9 - 16:5 - 

Age 33 9.90 (1.77) 21 10.03 (1.33) 

FIQ 33 111.48 (12.70) 21 111.57 (11.55) 

ADHD Measures     

Inattentive 20 62.95 (13.71) 9 62.89 (14.29) 

Hyper/Impulsive 20 62.15 (15.84) 9 62.89 (17.48) 

Autism Measures     

ADI-R Social Total 12 17.67 (5.30) 6 19.00 (4.29) 

ADI-R Verbal Total 12 15.92 (4.27) 6 15.50 (3.02) 

ADI-R RRB Total 12 6.58 (2.15) 6 4.83 (1.72) 

ADOS-2 Total 10 11.30 (2.26) 6 12.17 (3.87) 

ADOS-2 Severity 11 6.09 (2.21) 6 7.17 (1.60) 

ADOS-2 Social Affect 10 8.50 (2.42) 6 9.17 (3.82) 

ADOS-2 RRB 10 2.80 (1.14) 6 3.00 (0.63) 

SRS Total 11 74.00 (10.28) 12 58.33 (17.26) 

SRS Social Awareness 11 72.00 (12.28) 12 61.25 (18.14) 

SRS Social Cognition 11 68.82 (8.74) 12 53.83 (13.72) 

SRS Social Communication 11 72.73 (9.76) 12 58.91 (17.66) 

SRS Social Motivation 11 66.09 (11.48) 12 55.67 (14.84) 

SRS Mannerisms 11 76.36 (11.91) 12 57.92 (16.02) 



 

 

Table 9. 

 

Demographics for SN Subgroups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Subgroup 1 Subgroup  2 Subgroup 3 

Demographics N Mean (SD) N Mean (SD) N Mean (SD) 

TD 12 - 4 - 2 - 

ASD 14 - 4 - - - 

ADHD 11 - 7 - - - 

M:F 28:9 - 10:5 - 1:1 - 

Age 37 9.89 (1.63) 15 9.64 (1.52) 2 9.88 (2.65) 

FIQ 37 109.27 (13.19) 15 111.60 (10.77) 2 102 (2.83) 

ADHD Measures       

Inattentive 17 62.65 (12.59) 9 66.44 (14.47) 1 46 (-) 

Hyper/Impulsive 17 60.18 (13.78) 9 65.89 (19.10) 1 53 (-) 

Autism Measures       

ADI-R Social Total 14 20.43 (4.09) 4 11.75 (1.26) - - 

ADI-R Verbal Total 14 17.21 (3.36) 4 12.75 (2.22) - - 

ADI-R RRB Total 14 5.79 (2.39) 4 6.25 (2.22) - - 

ADOS-2 Total 12 11.67 (3.26) 4 10.50 (1.00) - - 

ADOS-2 Severity 12 6.38 (2.33) 4 6.25 (0.50) - - 

ADOS-2 Social Affect 12 9.00 (3.13) 4 7.50 (1.00) - - 

ADOS-2 RRB 12 2.67 (1.23) 4 3.00 (0.00) - - 

SRS Total 18 64.72 (15.26) 6 68.00 (22.54) 1 39 (-) 

SRS Social Awareness 18 63.06 (15.54) 6 71.50 (17.78) 1 38 (-) 

SRS Social Cognition 18 59.39 (11.90) 6 63.33 (19.65) 1 39 (-) 

SRS Social Communication 18 65.72 (15.79) 6 66.50 (21.46) 1 38 (-) 

SRS Social Motivation 18 60.39 (13.50) 6 59.00 (18.93) 1 42 (-) 

SRS Mannerisms 18 65.39 (15.27) 6 71.50 (23.86) 1 43 (-) 

5
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Figure 12. Behavioral Demographics across GIMME-Derived Subgroups. DMN = Default Mode Network; ECN = Executive Control 

Network; SN = Salience Network; SG = Subgroup; TD = Typically Developing; ASD = Autism Spectrum Disorder; ADHD = 

Attention Deficit Hyperactivity Disorder; M = Male; F = Female; ADI-R = Autism Diagnostic Interview-Revised; RRB = Restricted, 

Repetitive Behavior; ADOS = Autism Diagnostic Observation Schedule; SRS = Social Responsiveness Scale. 
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ICA and Community Detection Analysis 

The results of the community detection analysis for the matched sample are shown in 

Figure 13. The algorithm was run on the extracted mean z-scores and the positively 

thresholded z-scores from the matched sample group. Using the criteria that all 

participants had to have at least one connection, the thresholds applied to the correlation 

matrices for the mean z-score analysis (r = .58) and the positively thresholded z-score 

analyses (r = .45) differed slightly. With the exception of slight changes in the number of 

identified outlier participants, results were consistent across multiple thresholds. The 

results of both analyses were similar with one large cluster identified and several (n = 19 

- 24) outlier participants who were each clustered into their own individual group. All of 

the outlier participants for the mean z-score analysis and all but three of the participants 

for the positively thresholded z-score analyses were from the ADHD-200 database. The 

z-score analysis was repeated with the full sample of participants. The threshold applied 

to the correlation matrix was similar to the corresponding analysis with the matched 

sample (r = .59). The result was consistent with the matched sample results (Figure 14), 

and, as expected, more outlier participants were detected in the larger sample (n = 49). 

The average neuropsychological and behavioral battery scores for the primary matched 

sample cluster are presented in Table 10. The outlier participants from the mean z-score 

analysis using the matched group are characterized in Table 11. 
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Table 10. 

Demographics of Participants in Matched Sample Cluster 

Demographics N Mean (SD) 

TD 13 - 

ASD 20 - 

ADHD 8 - 

M:F 33:8 - 

Age 41 10.22 (1.66) 

FIQ 41 109.32 (13.16) 

ADHD Measures   

Inattentive 11 62.91 (11.84) 

Hyper/Impulsive 11 65.91 (15.81) 

Autism Measures   

ADI-R Social Total 20 18.45 (5.07) 

ADI-R Verbal Total 20 15.85 (3.62) 

ADI-R RRB Total 20 5.75 (2.22) 

ADOS-2 Total 18 11.39 (2.83) 

ADOS-2 Severity 19 6.42 (1.95) 

ADOS-2 Social Affect 18 8.61 (2.77) 

ADOS-2 RRB 18 2.78 (1.00) 

SRS Total 28 63.54 (17.12) 

SRS Social Awareness 28 63.64 (16.92) 

SRS Social Cognition 28 58.79 (14.17) 

SRS Social Communication 28 63.64 (17.16) 

SRS Social Motivation 28 58.86 (14.31) 

SRS Mannerisms 28 64.82 (17.35) 

Note: M = Male; F = Female; FIQ = Full IQ Standard Score; ADI = Autism Diagnostic 

Interview-Revised; RRB = Restricted, Repetitive Behavior; ADOS = Autism Diagnostic 

Observation Schedule; SRS = Social Responsiveness Scale 



 
 

Table 11. 

Outliers 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Group 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 

Age 9 11 8 11 8 8 8 11 8 7 9 8 8 9 8 8 8 9 9 

Gender F M M M M F M M M F F M M M F M F M F 

FIQ 106 126 124 100 126 112 126 110 116 98 126 110 112 114 108 96 120 126 106 

ADHD 

In 48 40 55 46 41 56 43 69 70 80 69 63 70 67 90 63 79 70 79 

H/Im 44 45 57 53 47 41 42 69 85 90 48 66 50 60 90 57 74 69 54 

Note. Group: 1 = TD; 3 = ADHD; M = Male; F = Female; FIQ = Full IQ Standard Score; In = Inattentive Measure from the 

Conners’ Rating Scale-3rd Edition; H/Im = Hyperactive/Impulsive Measure from the Conners’ Rating Scale-3rd Edition 
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A B 

Figure 13. Community Detection Derived Clusters for Matched Sample. Results for the mean z-score analysis (A) and the 

positively thresholded mean z-score analysis (B) are shown. Each participant is represented with a circle. Circle color corresponds 

to assigned group membership. Dark orange circles represent participants assigned to the primary cluster.  
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Figure 14. Community Detection Derived Cluster for Full Sample. Results for the mean z-score analysis are shown. Each 

participant is represented with a circle. Circle color corresponds to assigned group membership. Dark orange circles represent 

participants assigned to the primary cluster.  
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CHAPTER FOUR 

DISCUSSION 

This project was an attempt to address heterogeneity within neuroimaging data 

using complex mathematical models. The results of this study are broadly informative to 

researchers interested in applying mathematical models to study heterogeneity across 

different participant groups using resting-state fMRI data. Although the results of the 

GIMME algorithm and the ICA to community detection pipeline resulted in relatively 

unstable or null findings, these approaches provide a conceptual framework to model 

future investigations into heterogeneity across these participants groups. Specifically, the 

errors encountered in the GIMME analysis suggest that the data were insufficient and 

data with more time points may have provided a more robust result. The results of the 

ICA to community detection pipeline may also indicate an overall issue with the data or 

the methodological pipeline, but the lack of significant heterogeneity across the 

participants groups may also be a limitation. 

Although the GIMME analysis of our dataset did not result in the findings we 

hypothesized, it is important to investigate the possible reasons for this outcome. The 

methodological issues encountered in this analysis limit the generalizability of the 

findings. Insufficient data resulted in an inability to use more than eight regions of 

interest, and using too few regions of interest resulted in unstable or uninterpretable 

results. This is primarily due to the lack of significant network connectivity seen at the 
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group level. It is possible that no group-level paths were identified due to the 

heterogeneity of the sample which resulted in the algorithm removing all paths, as the 

addition of any group-level paths did not adequately describe the majority of participants. 

The GIMME algorithm, however, is still a useful tool for researchers interested in 

investigating heterogeneity using resting-state data, task fMRI data, or behavioral data 

with a sufficient number of observations. The utility of this approach has been seen in 

recent research investigating olfactory networks (Karunanayaka et al., 2014), daily diary 

behavioral data (Lane & Gates, 2017), and resting-state data from depressed patients 

(Price et al., 2016), smokers (Zelle, Gates, Fiez, Sayette, & Wilson, 2016), and traumatic 

brain injury patients (Hillary, Medaglia, Gates, Molenaar, & Good, 2014). 

Given the methodological limitations, the results of the GIMME analysis should be 

interpreted with caution. The GIMME analysis was run to piece apart individual 

differences in a highly heterogeneous sample; however, the groups were limited to equal 

sizes and roughly matched on age and IQ in order to avoid any inherent confounds 

between the groups This is not an ideal solution as it severely restricts the variability 

within the sample and forces relative homogeneity on age and IQ which runs counter to 

the conceptual framework of this project. In addition, the connectivity maps generated by 

GIMME only include the set of regions identified prior to the analysis; therefore, ROI 

selection constrains the analysis and is an important consideration. The challenges 

regarding ROI selection may have, in part, impacted the outcome and the stability of the 

derived connectivity maps. Despite slight differences at the more liberal group-level 

threshold, the participants were consistently clustered into the same subgroups across the 

other group-level and subgroup-level thresholds. Additionally, with the exception of the 
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third SN subgroup, the subgroups were highly mixed with participants from each 

diagnostic group classified into all of the subgroups. This may suggest that heterogeneity 

exists at multiple levels: 1) within diagnostic groups as evidenced by the distribution of 

the participants from a given group across the subgroups; and 2) across diagnostic groups 

as evidenced by the mixture of participants from different groups within a single 

subgroup. It is known that individuals with ASD and ADHD display significant 

variability in cognition and behavior (Lenroot & Yeung, 2013; Wåhlstedt et al., 2009), 

but the results provided here may suggest that variability is also present across typical 

development. Theories of human development suggest that there are varied outcomes 

each within a typically developing group that are driven by contextual factors and genetic 

predispositions (Belsky & Pluess, 2009; Bronfenbrenner & Morris, 2007), but generally 

less attention is paid to individual variation in standard behavioral and neuroimaging 

studies. 

The subgroups that were identified using the GIMME algorithm were characterized 

by mostly mild to moderate ADHD or ASD symptoms. Interestingly, a pattern of high 

scores for the ADI-R subscales was seen in conjunction with lower scores indicating less 

severity across the ADOS-2, SRS, and ADHD subscales of the CPRS-LV. Given the 

nature of neuroimaging studies which typically sample higher functioning individuals 

from clinical populations, it is expected that the behavioral scores would tend to reflect a 

mild or moderate symptom profile. The typically developing participants in the ABIDE-II 

database completed the SRS, but did not complete the ADI-R or the ADOS-2 thus the 

ADI-R scores are inflated in comparison to the other behavioral scores because they are 

derived from only participants with ASD who have higher scores. Conversely, the ADHD 
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subscales reported across all of the identified subgroups were completed by the ADHD 

and TD participants in the ADHD-200 database. Thus, the mild to moderate range of 

these scores reflects the fact that both TD and ADHD participants contribute to the 

average score. 

In addition to the limitations inherent to the data, there are a number of potential 

problems that could have resulted in the community detection algorithm deriving one 

homogenous group. First, similar to the GIMME analysis, the data length may have been 

insufficient to capture the heterogeneity across the groups and the mathematical models 

may have been constrained by a lack of data. Second, the method itself may be flawed or 

may simply not be sensitive to detecting differences in network-level connectivity across 

participants groups. Both ICA and community detection have been used to study clinical 

populations, and the community detection algorithm used in the present study has been 

successfully used to subgroup participants with ADHD based on behavioral information 

(Fair et al., 2012; Karalunas et al., 2014). Despite the previous application of this 

algorithm to study ADHD in particular, a different community detection algorithm that 

does not rely on a small world principle with dense local connections and sparse long 

distance connections may prove more sensitive to detecting nuances in connectivity 

profiles. It is also possible that the community detection pipeline was overly sensitive to 

data quality which is highlighted by the finding that many of the outlier participants were 

from the ADHD-200 database which is older than the ABIDE-II database. Third, 

although the groups are from three distinct diagnostic groups, the heterogeneity among 

the participants is significantly limited considering only high functioning participants 

who can tolerate an hour-long scan session were included. Additionally, rigorous quality 
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assurance measures resulted in the removal of many of the ADHD participants and some 

of the ASD participants who had excessive motion during the scan. Matching participant 

groups also introduces an avenue where the participants become overly homogenous, but 

the same outcome was seen when the more heterogeneous full sample group was used. 

Fourth, the result may be a true finding suggesting that the groups do not differ in any 

coherent way in resting-state network connectivity. More likely, the groups may not 

differ systematically enough to identify patterns within network connectivity that are 

informative for clustering.  

Although the analyses proposed here were largely stymied by methodological 

problems due to the amount and quality of the data, the primary goal of analyses of this 

nature should be to provide clinically meaningful information that can be used to better 

understand how variability across both clinical and typical populations impacts 

intervention, treatment, and developmental trajectories. There is a significant need to 

relate brain and behavior in a clinically meaningful way, and there is a corresponding 

need to understand how individual differences relate to both brain and behavior 

(Molenaar, 2015). Abnormalities in functional connectivity in each subgroup may relate 

to shared behavioral traits. Relating behavioral and diagnostic measures to the 

connectivity derived subgroups will allow for the study of TD participants who share 

common functional pathways with ASD or ADHD participants but fail to meet diagnostic 

criteria for the disorder. Finding altered connectivity in the absence of behavioral 

symptomatology consistent with a clinical disorder offers researchers and clinicians 

insight into any adaptive or compensatory mechanisms used by these participants which 

can serve to better future interventions. Additionally, studying how behaviors relate to 
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specific neural mechanisms can highlight whether subgroups exist in a given clinical 

disorder which is the first step in individualizing treatment. This information can also be 

used to predict response to treatment if a subgroup of a given disorder displays a pattern 

of functional connectivity that is markedly different from another subgroup comprised of 

individuals with the same clinical diagnosis. Thus, the focus of ongoing research should 

be in the individualized analysis of the interplay between brain and behavior in order to 

promote meaningful conclusions and personalized intervention planning. 
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