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1.0 INTRODUCTION

Dengue fever is one of the most important vector-borne diseases in the world, with

significant economic, political, and social impact (Kyle and Harris, 2008). It has

become a major public health concern, with implications for health security due to

disruption, and rapid epidemic spread beyond national borders (Guzman et al., 2010;

WHO, 2009). In the last 50 years, incidence of dengue fever has increased 30-fold,

with the disease being endemic in more than 100 countries in Africa, the Americas,

the eastern Mediterranean, South-east Asia, and the Western Pacific (WHO (2014b)).

Over 2.5 billion people are at risk from dengue fever, constituting about 40% of the

world’s population. An estimated 100 million infections occur each year that are

symptomatic, but only a fraction (10%) of the cases are reported. About 500,000 of

reported cases acquire dengue hemorrhagic fever and dengue shock syndrome which

are serious forms of dengue fever. The case fatality rate (CFR) of dengue fever is

about 1%; however, in cases with DHF and DSS, the CFR can rise more than 5%.

If DHF and DSS remain untreated the CFR can rise up to 50% (Kyle and Harris

(2008); WHO (2014a)). There is no specific treatment for dengue fever or DHF,

except supportive care, including fluid replacement and pain management (Murray

et al., 2013; WHO, 2009).

In the absence of an effective vaccine, the dengue prevention and control mainly

depends on early detection and management of dengue cases and effective vector con-

trol management strategies (Murray et al. 2013; WHO 2009, 2012). However, current

surveillance systems and control strategies used in several countries have had only

a transient and limited effect on disease incidence (Wilder-Smith et al., 2012). The

growing threat of dengue worldwide has led many agencies and institutions, includ-
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ing World Health Organization (WHO), to call for a development of comprehensive

early warning and surveillance system, which has predictive capability for dengue

epidemics. Also the need for exploration of new and innovative tools for laboratory

diagnosis and vector monitoring has been emphasized (Racloz et al., 2012). In re-

cent years, mapping methods have been tried in terms of forecasting risk zones for

vector-borne diseases, through the geographic information systems (GIS) and the use

of satellite-based data (Bergquist, 2011). Dengue studies from South-east Asia and

the Americas have successfully shown the use of GIS and remote sensing to analyze

spatial-temporal patterns and relationship between the environmental factors and

dengue incidence rate. However, the science is still in its nascent stage and the uses

of such novel technologies are limited to few countries or institutions.

1.1 EPIDEMIOLOGY OF DENGUE FEVER

Dengue fever is a flu-like illness that affects infants, children and adults (WHO 2014a).

It often gets misdiagnosed, similar to other tropical diseases, or even goes unrecog-

nized. Dengue fever is characterized by high fever (40°C/104°F ), severe headache,

pain behind the eyes, muscles and joint pain, nausea, vomiting, swollen glands, or

rashes. Symptoms usually appear after 4-10 days of incubation period following a

bite from an infected mosquito. Dengue fever seldom causes death, however, severe

forms of dengue fever including DHF and DSS, can result in fatal complications due

to plasma leaking, fluid accumulation, respiratory illness, severe bleeding or organ

impairment (WHO 2014a).

1.1.1 Dengue virus

Dengue fever is caused by four distinct, but closely related serotypes of a Flavivirus

virus: DEN-1, DEN-2, DEN-3, and DEN-4. A recovery from the infection from one of

the serotypes provides life-long immunity against that particular serotype, but only
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provides temporary, and at times partial immunity to other three serotypes. Thus, a

person can be infected with dengue four different times. Epidemiological evidence also

suggest that a person’s risk of developing DHF increases with subsequent infections

(WHO 2014a). It is also suggested infants born to mothers, immune to dengue virus

are at high risk to develop more severe form of dengue during a primary infection

(Rodenhuis-Zybert et al., 2010).

1.1.2 Dengue vectors

Dengue virus is transmitted to humans through the bite of infected female Aedes

mosquitoes, principally Ae. Aegypti (WHO, 2009). This mosquito is a tropical and

subtropical species, predominantly found between latitudes 35°N and 35°S. It is a

small, black and white in color, and highly domesticated mosquito that prefers arti-

ficial containers commonly found in and around homes, for breeding. Other breeding

places include flower vases, old automobile tires, buckets that collect rainwater, earth-

enware jars, metal drums, concrete cisterns, and trash in general. Other species of

Aedes mosquito, including Ae. Albopictus, Ae. polynesiensis and several species of

Ae. scutellaris complex, have also been known to cause dengue outbreaks. Each of

these species has a specific ecology, behavior, and geographical distribution. Ae. Al-

bopictus, a secondary vector for dengue fever, has spread to Europe and the Americas.

This mosquito has been known to adapt to the environment and the eggs can survive

is cooler climates.

Ae. Aegypti is one of the most efficient vectors for arboviruses, because it

is highly anthropophilic, frequently bites several times before completing oogenesis,

and thrives in close proximity to humans. Typically, after being bitten, the virus

undergoes an incubation period of 3 to 14 days (average of 4 to 7 days), after which

the person may experience acute onset of fever accompanied by a variety of symptoms

associated with dengue fever. This results in the virus circulating in the peripheral

blood, a state of viremia, that can last from 5 to 12 days. During this time, if an

uninfected Aedes mosquito bites an infected person, the mosquito becomes infected.
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Once the virus enters the mosquito’s system in the blood meal, the virus spreads

through the body of the mosquito over a period of 8-12 days. The mosquito once

infected remains infected for its entire life. The life span of a mosquito is about three

to four weeks, during which time, an infected mosquito can infect several healthy

persons. Only the female mosquitoes of the species bites humans for blood meals.

During the bite, the mosquito injects saliva to prevent blood from clotting during the

feeding. The dengue virus enters the human blood stream through this saliva.

The complete lifecycle of an Ae. Aegypti including the stages of an egg, larvae,

pupae and adult stage takes about 4 to 6 six weeks. Several environmental factors can

accelerate or delay the growth of the mosquito to its adult stage or the time taken for

the virus to mature in the body of the mosquito. These factors are discussed below.

1.2 ENVIRONMENTAL FACTORS AFFECTING TRANSMISSION

OF DENGUE VIRUS

The dynamics of transmission of dengue is complex, and is affected by the interac-

tions between several factors, including environmental and climate factors affecting

the abundance of the adult vector per human population; the host (human)-vector

(mosquito) interactions such as human biting rate of the mosquito, proportion of bites

that would produce infections, average duration of the infection in humans; and herd

immunity (to the dengue viruses) in the human population (Focks et al., 1995; Pham

et al., 2011). Dengue disease is, therefore, strongly influenced by several environmen-

tal and ecological factors, both at the macro level and micro levels (Quintero et al.,

2014).

1.2.1 Role of temperature and rainfall on dengue transmission

The survival of the dengue mosquitoes and the dengue virus requires optimal environ-

mental conditions, including temperature, precipitation, and to a lesser extend, sea
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level, elevation, wind, and daylight duration (Alto and Bettinardi, 2013). Elevated

temperatures, relative humidity, and rainfall in endemic areas have been significantly

associated with increased number of dengue cases. Higher temperatures accelerate

the development rate of the virus by reducing incubation period, and relative humid-

ity increases mosquito biting rate, as well as decrease the adult mosquito mortality

(Naish et al., 2014; Pham et al., 2011). Studies have also found that, elevated tem-

peratures at various lag time periods ranging from 0 lag to up to 20 weeks, increased

dengue incidence (Hii et al., 2009, 2012). Rainfall, however has contrasting effects on

dengue transmission. Heavy rains may flush away eggs and larvae and pupae from

containers in a short term. But, collection of rainwater following a heavy rainfall

provides suitable breeding grounds for the mosquitoes (Sarfraz et al., 2012). Dry

weather or drought in endemic areas necessitated the storage of water in containers,

which then may become breeding sites for Ae. Aegypti.

A number of studies have analyzed the effects of temperature and rainfall on

dengue incidence using different models, including generalized linear models, time

series, Bayesian, and non-linear models (Naish et al., 2014). Dengue transmission

in endemic settings is characterized by non-linear dynamics, with strong seasonality,

multi-annual oscillations and non-stationary temporal variations. Seasonal and multi-

annual cycles in dengue incidence vary over time and space. Besides seasonality of

dengue transmission, periodic epidemics and more irregular intervals of outbreaks are

commonly observed. Overall, these studies consistently showed a positive association

between the climate variables and dengue, but the relationships varies in different

settings.

1.2.2 Role of local environmental factors on dengue transmission

Along with climate variables, local environmental factors, such as the type of hous-

ing, housing density, and peri-urban and peri-domestic areas can provide favorable

conditions for the Ae. Aegypti breeding (Arunachalam et al., 2010; Braga et al., 2010;

Ooi et al., 2006; Van Benthem et al., 2005; Vanwambeke et al., 2006; ?). A study con-

5



ducted in Thailand found that sparse vegetation in an urban area, low altitude, good

transportation routes and rapid and unplanned urban development favor breeding of

Ae. Aegypti (Van Benthem et al., 2005). A study in the US, found that older homes

may provide breeding grounds for Ae. Aegypti (Walker et al., 2011). Another study

conducted in South-western India found that housing patterns such as closely packed

terraced houses were associated with increased incidence of dengue cases (Fulmali

et al., 2008; Schmidt et al., 2011). Other studies have found that houses with gardens

containing tires, plants with temporary water pools, rainwater gutters, as well as

construction sites are favorite breeding grounds of dengue mosquitoes (Ashford et al.,

2003; Heukelbach et al., 2001; Kholedi et al., 2012).

1.2.3 Role of socio-demographic factors on dengue transmission

Changes in social and demographic factors, such as increase in population density,

unplanned urbanization, etc. can increase dengue transmission. Sudden increase in

urbanization result in crowded neighborhoods and increased construction sites which

may become breeding sites for dengue vectors (Vanwambeke et al., 2007. Other fac-

tors, such as civic services, including poor sanitation and waste disposal, economic

status of the populations, human behaviors and education, also play important roles

in spread of dengue. Other studies have found that lower socio-economic urban com-

munities with poor sanitation and waste-disposal, and limited tap-water supply are

positively associated with abundance of dengue vector species (Bhandari et al., 2008;

Bowman et al., 2014). Due to lack of personal level data for these socio-demographic

factors, researchers have used surrogate measures to quantify these factors. For ex-

ample, Khormi and Kumar (2011) used satellite data to identify inhabited areas in

Jeddah County, Saudi Arabia, to estimate population density. They also used house-

sizes and street widths to determine the neighborhood quality. They found that,

areas with higher population density and poor neighborhood quality were associated

with higher numbers of dengue cases. Other demographic factors including higher

education levels in the population, which may influence health related habits and
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increase awareness about prevention and control of breeding sites in homes, were neg-

atively associated with dengue incidence in Vietnam (Schmidt et al., 2011). Similarly,

implementation and monitoring of prevention , health education and vector-control

programs by the local health authorities negatively impact dengue transmissions.

In sum, the studies above clearly demonstrate the complexity of several socio-

environmental factors interacting with each other, to impact the distribution and

abundance of dengue vectors and its transmission. It is also clear that the dynamics

between the risk factors and dengue incidence vary from country to country. Thus,

in order to develop models for predicting dengue risks for a country or even a smaller

region within a country, country-specific or region specific risk factors of dengue are

needed. Several environmental determinants of dengue fever can be spatially mapped,

measured, and quantified with newer technologies specifically remote sensing and

GIS. These spatially mapped variables can be incorporated in risk prediction models

used for early warning systems as well for targeting surveillance efforts and control

measures.

1.3 ROLE OF GIS AND REMOTE SENSING IN DENGUE

RESEARCH

Remote sensing and GIS are geospatial tools that have been increasingly used for

spatial mapping of vector-borne diseases; and for identifying and evaluating spatial

relationships between environmental risk factors and the spread of these diseases.

Remote sensing is the science and art of obtaining information about an object, area,

or phenomenon, through the analysis of data acquired by a device that is not in

contact with the subject under investigation. Remote sensing sensors, such as earth-

observing satellites, acquire data of various earth surface features that emit and reflect

electromagnetic energy, and the data is analyzed to provide information about the

resources under investigation. The data are then displayed in form of digital images,

commonly known as satellite imagery or aerial imagery. In order to make use of the
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data from the satellites, the images are analyzed and processed to extract underlying

information of the earth’s surface that was digitally photographed. This information

could include land cover class such as lakes, mountains, tree cover, information on

land cover use such as roads, residential houses, industrial parks, and other charac-

teristics such as surface temperature, soil moisture, vegetation indices, etc. Remotely

sensed data, both historical and real-time, can generate spatial maps of environmen-

tal characteristics such as land-cover, land-use, elevations, surface temperatures, and

rainfall. Such maps can be used to visualize spatial-temporal changes over time in a

geographic area or population using a GIS software.

GIS is a technique designed to capture, manage, analyze, and display all forms

of data that can be linked by common geographical coordinate system. GIS can be

used for visualization of spread of dengue cases and its vector as well as for mapping

dengue vector habitats , abundance and density. It also enables mapping changes in

the spread of the disease over time, and identifying the spatial-temporal relationships

between environmental risk factors and dengue incidence.

Furthermore, GIS can be used to identify drivers of dengue in the initial stages

of analysis, by visually evaluating the relationship between the variables, and linking

them geographically. GIS has also been applied in studies to conduct exploratory

analyses to predict outbreak zones using cluster detection algorithms such as Kull-

dorf’s spatial and space time scan statistics, hotspot analyses, or advance mathemat-

ical modeling such as geographically weighted regression (GWR). Such models can

be integrated with disease surveillance system which can target surveillance and con-

trol measures in areas with higher risk of dengue occurrence as opposed to random

surveillance. Finally, GIS-based platforms have been used to develop spatial decision

support systems (DSSS), designed to enhance decisions at various stages of planning

process, to produce the most effective results, in terms of resources allocation and

disease control. Such systems allow for the incorporation of a wide range of data,

from entomological surveillance, dengue case surveillance, vector and disease control

intervention monitoring, and stock control (Eisen and Eisen, 2011). Using GIS and

other reporting tools, these DSS provide wide range of outputs tables, graphs, and
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maps. This information can easily be interpreted by stakeholders and policy makers

to make informed decisions regarding implementation, monitoring, and evaluation of

prevention programs.

Combined with mathematical analyses toolkits, remote sensing and GIS can

become powerful tools to analyzing and predicting spatio-temporal patters of vector-

borne diseases like dengue. Such analysis can inform risk assessment and prevention.

1.4 DENGUE IN SRI LANKA

Dengue is a major health problem in several Asian countries, where the disease has

become the leading cause of hospitalizations and death among children. As a result of

rapidly growing population, unplanned urbanization, poor water storage and unsat-

isfactory sanitation conditions, countries such as Sri Lanka, India, and Bangladesh,

have observed sudden increase in the number dengue outbreaks and epidemics in the

last two decades (Raheel et al., 2011; WHO-SEARO and WHO-WPRO, 2008). Exist-

ing surveillance systems including vector surveillance has had little effect in curbing

dengue epidemics in these countries.

Before the 1989, epidemiology of dengue fever in Sri Lanka was characterized

by low incidence of dengue fever and dengue hemorrhagic fever cases. The four

dengue virus serotypes including DENV-1, DENV-2, DENV-3, and DENV-4 have

been circulating in Sri Lanka for over 30 years (Messer et al., 2002). The main vectors

of dengue transmission in Sri Lanka are Ae. Aegypti and Ae. Albopictus. After 1989,

there has been a dramatic increase in dengue incidence in Sri Lanka, that have led

several major epidemics in the last decade. Scientists trying to understand this sudden

emergence of dengue have attributed it to increasing urban population, poor water

supply and waste disposal practices, traditional water storage facilities, and changing

lifestyles. Some genetic studies have attributed the emergence to genetics changes in

DENV-3 serotypes (Kanakaratne et al., 2009). Also, climate plays an important role

in intensity and severity of epidemics in Sri Lanka. The disease is endemic all year
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round, with peak incidence during the middle of the tear (May-June-July) following

the South West monsoon rains, and towards the end of the year (October to January)

following the North East monsoon rains (Sirisena and Noordeen, 2014).

1.4.1 Previous studies on dengue in Sri Lanka.

Several studies have discussed dengue in Sri Lanka, however, very few have evaluated

role of environmental factors in the increase of the disease incidence. A study con-

ducted in Sri Lanka found a potential impact of global climate change on the disease

transmission by increasing the salinity tolerance of mosquito vectors in coastal re-

gions (Ramasamy et al., 2011). Ae. Aegypti and Ae. albopictus larvae were found in

brackish water with salinity up to 15 parts per thousand in discarded plastic and glass

containers, abandoned fishing boats and unused wells in coastal peri-urban areas in

Jaffna and Batticola districts in norther parts of Sri Lanka (Surendran et al., 2007b).

The results indicate that Aedes mosquitoes which usually are found in freshwater

collections can also be found in brackish waters. Results from a study conducted as

part of a multi-country study found a positive temporal association between rainfall

and the number of laboratory confirmed dengue cases reported (Arunachalam et al.,

2010).The overall results of the study found that the number of pupae in household

containers showed a strong positive association with the presence of shrubbery above

the container, as well as the lack of use of the container for the previous 7 days or

more, and the complete or partial absence of a container cover. This study also re-

ported a negative association between piped-water supply in households and increased

incidence of dengue cases but the results were not significant.

An important report summary byWHO, assessing the epidemiology of dengue in

Sri Lanka in relation to intervention measures, found a decrease in dengue incidence in

2011 as compared to previous years, following interventions by the ‘Presidential Task

Force for Dengue Control’. However, the report also suggested that the possible risk

factors for resurgence are i) changing rainfall pattern, ii) abundance of various vector

breeding habitats, mainly disposed plastic containers, plastic sheets, roof gutters. etc.
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iii) existence of natural habitats such as tree holes, large land mass of Sri Lanka being

covered with vegetation, and iv) human behaviors with reference to waste water and

solid disposal management.

1.4.2 Prevention and control of dengue in Sri Lanka

The government in Sri Lanka has taken major steps towards prevention and control

of dengue. A National Dengue Control Unit (NDCU) was established in 2005 by the

Ministry of Health in Sri Lanka, following the major epidemic in 2004. Following the

Asia-Pacific Dengue Strategic Plan (2008-2016) established by the WHO, the Ministry

of Health, established a National Strategic Plan for Dengue Prevention and Control

for 2011 to 2015. The plan outlined six strategies, including vector surveillance and

integrated vector management, disease surveillance, case management, social mobi-

lization; and inter-sectoral coordination, outbreak response, and research. The vector

surveillance included sentinel site surveys and environmental surveys; integrated vec-

tor management emphasized on social mobilization and environmental sanitation for

sustainable vector control. The disease surveillance included passive surveillance or

the routine reporting of suspected or confirmed cases, special surveillance to obtain

information on clinical presentation, severity and outcome of dengue and dengue hem-

orrhagic cases, establishment of sentinel site surveillance and early warning system.

The plan also recommended promotion of E-base surveillance that used email based

reporting in parallel to existing passive surveillance. The strategic plan also identified

five key areas of research needed in the country to support control and prevention

of dengue. These five areas included information on burden of dengue in Sri Lanka,

innovative methods for vector control and Bionomics, dengue diagnostics, clinical

management and policy and behavioral studies.

Despite several efforts by the Sri Lankan government, Dengue incidence in Sri

Lanka continues to rise (Figure 1). As highlighted in the National Strategic Plan,

innovative and effective tools for vector control and disease surveillance are needed

to supplement current efforts.
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Figure 1: Dengue Incidence in Sri Lanka between 2010 to 2014 (Epidemiology Unit,

2014)

1.5 AIMS AND OBJECTIVES

The overall goal of the study is to explore the possibility of developing a dengue risk

prediction model, that integrates data on environmental and socio-economic variables

obtained from various sources within a GIS framework. Sources include, satellite

imagery and remote sensing data, meteorological and census statistics . The specific

aims of the study are:

1. To conduct a review of previous studies pertaining to GIS and RS applications in

dengue research in South Asia (Paper 1)

The literature will summarize the evidence supporting the role of GIS and remote

sensing in dengue surveillance. Further, the review will be identify the research

gaps in South Asia, particularly in Sri Lanka, in light of the increasing incidence

of dengue in the region. The review will also demonstrate how the current study

will build on the existing evidence base, and addresses some of the research gaps

in Sri Lanka.
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2. Using RS and GIS, characterize the local environmental characteristics Colombo

municipal council (CMC) area, Sri Lanka (Paper 2)

This work will analyze the remotely sensed satellite data generated on LULC

classes for the study area. These data will be imported to ArcGIS and SAS, to

evaluate their association with dengue incidence in Aim 3. The tasks under Aim

2 are as follows:

• A high spatial resolution satellite imagery (Quickbird) from April 16th, 2007,

will be used to obtain information on LULC classes. Remotely sensed data

will then be analyzed using supervised classification (maximum likelihood)

and object-based classification. A comparison of the accuracy index of these

from method will be done; a priori, we will use the object-based classifier as

it is used in most studies and will facilitate cross study comparisons.

• Spatial maps would be generated to demonstrate the distribution of the en-

vironmental variables for the CMC area.

3. To identify the environmental determinants of dengue in the CMC area, Sri Lanka

(three papers)

In this part of the study, we evaluate the association between several environ-

mental including temperature and rainfall, land cover types estimated in aim

2, population characteristics and household characteristics and dengue incidence

rate in CMC, Sri Lanka. Data on various environmental factors are available at

different temporal and spatial resolution (Figure 2). Data on dengue cases are

available between 2005 and 2011, for each day for of the 55 GNDs in the CMC

area. Data on climate variable is available daily but for the entire CMC. Other

local environmental characteristics such as LULC classes obtained from image

classification, population and household characteristics are available for each of

the 55 GNDs but only at one point in time. Thus, the analysis for aim 3 was

divided in two parts. In part I, we will evalaute the relationship between the

climate variables and daily counts of dengue cases for the entire CMC area. In

part II, we will evaluate the relationship between local environmental factors and

dengue incidence rate by GND using non-spatial and spatial analysis. The tasks
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under aim 3 are:

• Step 1. We will assess the relationship between weekly mean temperature

and cumulative rainfall, and total weekly counts of dengue cases using gen-

eralized linear regression models. We will also evaluate the effect of lagged

climate data on weekly counts of dengue data (part I).

• Step 2. Using generalized linear regression models, we will evaluate the

relationship between local environmental factors and dengue incident rates

per GNDs. The environmental characteristics include variables such as wall

and roof materials used for households, toilet facility, piped-water supply,

housing density; and population density (part II).

• Step 3. We will use Getis-Ord-Gi* statistics in ArcGIS, to demonstrate

dengue fever risk, spatio-temporally on a monthly basis across seven years

and annual basis across 12 months to generate spatio-temporal risk maps

(part II).

• Step 4. We will evaluate the spatial relationship between the environmental

variables and risk of dengue incidence rate, using ordinary least squares (OLS)

and GWR (part II).

• Step 5. We will develop a risk index based on the factors associated with

dengue incidence rate, and develop a risk map.
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Figure 2: Diagrammatic representation of temporal and spatial scale of data

1.5.1 Conceptual framework for data analysis

To address the three specific aims described above, a conceptual framework was de-

veloped. The analysis of data at different spatial and temporal resolutions required a

tier-down approach. The following questions, listed below, demonstrate the thought

process behind planning the analysis of different resolution data.

1. Which environmental risk factors are associated with dengue incidence in CMC

area in Sri Lanka?

2. What are the time periods when the number of dengue cases occur in CMC area?

Do temperature and rainfall affect these time periods?

3. Which local environmental and socio-demographic factors are the determinants

of the occurrence of higher number of dengue cases in a given location when

temperature and rainfall remain constant for the entire area?

15



The framework is illustrated in Figure 3

Figure 3: Conceptual Framework for Data Analysis

1.5.2 Ethical approval

The ethical approval for this study was obtained from the Institutional Review Board

at University of Alabama at Birmingham and from the University of Kelaniya, Sri

Lanka.
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2.0 LITERATURE REVIEW

2.1 OVERVIEW

This paper reviews the studies conducted in South Asian countries (India, Sri Lanka,

and Bangladesh), that have included application of remote sensing and/or GIS tools

to monitor, control, or prevent dengue fever. The goal of this review was to summarize

the evidence-base supporting the role of GIS and RS in dengue research in South Asia

and to identify research gaps.

2.2 METHODS

We conducted a review of the available literature, pertaining to the use of remote

sensing and GIS in the context of dengue research in South Asia. Through a com-

prehensive literature review, major databases including Pubmed, Blackwell synergy,

Google Scholar, Web of Science, CINAHL with full text, and Medline were searched.

The key words used in the search included “dengue fever, remote sensing, GIS, dengue

risk factors, Ae. Aegypti, spatio-temporal models, surveillance and early warning sys-

tems.” Studies were selected if the focus of the study was dengue fever or Ae. Aegypti,

and any component of GIS and/or remote sensing analysis. During the initial search,

studies were selected based on a review of titles and abstracts. Selected studies were

retrieved, and a synopsis was tabulated (see Table 1). All the papers included in

the review were evaluated to assess whether (i) remote sensed data was used as data

source for risk factors and; (ii) the context of application of GIS techniques such as
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mapping diseases, and evaluating relationships between the environmental risk factors

and dengue incidence rate.

2.3 RESULTS

A total of nine studies were identified from the Indian sub-continent; three were con-

ducted in Sri Lanka, India and Bangladesh each. Remote sensing was used only

three studies; two in Sri Lanka and one in Bangladesh, to obtain information on

land use/cover classification. GIS was primarily used for mapping the distribution

of dengue cases and their risk factors. Spatio-temporal mapping of dengue cases was

conducted in two studies. Five of the nine studies used GIS to identify environ-

mental determinants of dengue incidence. Exploratory spatial analyses using cluster

algorithms such as inverse distance weighting, hot-spot analysis and Local Indicators

of Spatial Association (LISA) measure were used to develop predictive risk maps,

identifying areas with high risk of disease occurrence.

2.3.1 Studies in Sri Lanka

Three studies were published from Sri Lanka (Table 1) . Pathirana et al. (2009)

conducted a study in an urban area in the western province of Sri Lanka, to evaluate

the relationship between climate factors, including daily rainfall and temperature, on

incident dengue cases in children below 18 years of age, from 2000 to 2004. Using

maps and visual comparison, a positive correlation was found between areas with

less rainfall and higher incidence of dengue cases. However, regression analyses found

inverse association between weekly rainfall and dengue outbreak in Colombo, which

reduced when other factors such as family environment, poverty, lack of proper pre-

ventive care facilities, difficulty to diagnose disease in time, unsafe drinking water,

lack of proper sanitation etc., were included in the model. A predictive model devel-

oped using an interpolation method in GIS, described as inverse distance weighting,
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found very high risk areas of dengue incidence in north-western part of the western

province.

Jayasooriyaa et al. (2009) compared relationship between Breteau indices (BI)

of Ae. Aegypti and dengue case incidence (Jayasooriyaa et al., 2009). The study was

conducted in a urban and semi-urban Kadugannawa Medical Officer of Health area

(MOH), in Kandy district in Sri Lanka. The Kandy district is located in north-central

part of Sri Lanka and comprises of 95 Gram Niladari Divisions (GNDs) (smallest

administrative units in Sri Lanka). Data on incident cases of dengue fever and dengue

hemorrhagic fever reported between 2004 and 2007 were collected from each GND.

Similarly data on BI of Ae. Aegypti and Ae. Albopictus collected from a representative

sample of 100 households from each GND between 2004 and 2007 were gathered.

Comparison between incident dengue cases and BI for Ae. Aegypti and Ae. Albopictus

found that GNDs with high BI for Ae. Aegypti positively correlated with high incident

dengue cases (r2 = 0.55); while a weak negative correlation was present between high

BI for Ae. Albopictus and incident dengue cases (r2 = −0.04). Based on these

results, a risk map was drawn for the Kadugannawa MOH area. Areas with high

BI of Ae. Aegypti were designated high risk areas for dengue, GNDs adjacent to the

high risk GNDs were considered medium risk, and GNDs with high Ae. Albopictus

BI were considered as low risk areas. Following the assessment of risk, an educational

intervention was implemented in high risk areas in the month July, 2008, considered

a peak time for dengue cases. Subsequent monitoring of cases August 2008-December

2008 indicated a decline in the incidence of dengue cases. A recent study conducted

by Kannathasan et al. (2013) identified risk factors associated with dengue incidence

to create a risk map for dengue. The study was conducted in the Jaffna municipal

area, a major cosmopolitan area in the Jaffna district of Sri Lanka. Remotely sensed

data from Quickbird satellite imagery was used obtain information on land use/cover

classes and create maps. Variables including land cover use, population density,

locations of public places like schools, hospitals, economic status, and housing types

were mapped in GIS using GND as a base unit. Spatial multi-criteria analysis was

used to assign standardized values between 0 and 1 for each level of the variables.
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Finally a composite score was assigned to each GND with a value between 0 and

1. Values approaching 1 were considered representing high risk areas and values

approaching 0 as areas having the least risk of dengue transmission.

2.3.2 Studies in India

Three studies that fulfilled the inclusion criteria were identified from India (Table 2).

A study conducted in Jalor, a rural district of Rajasthan in India, to evaluate associ-

ation between socio-cultural factors and dengue incidence (Bohra and Andrianasolo,

2001). Investigators selected a random sample of dengue cases’ households (n = 37)

and households with no dengue cases (n = 40), and collected information on more

than 60 socio-economic and cultural variables. A stepwise regression analysis found

that eight variables significantly associated with dengue incidence(r2 = 0.96). A

combined social risk score was developed using the significant variables, and weights

were assigned based on published literature. The risk was assigned to each of the 77

households included in the study. The locations of the households were mapped to

GIS and overlayed on the administrative map of Jalor. A risk map with five levels of

social risks was created. Results of the risk found that majority of the area had low

social risk for dengue incidence (61%).

An investigation following an outbreak of dengue fever was conducted in a

rural village in Southern India (Nisha et al., 2005). A house-to-house survey was

conducted to identify cases and to collect demographic information. Location of the

houses and the streets were mapped in GIS. Information on mosquito breeding sites

were collected and mapped in ArcGIS. Spatial analysis of the data demonstrated a

centrifugal spread of cases from the most affected street until it involved the entire

village. Further, space-time permutation model done using SatScan software showed

that cases occurred in clusters and that was unlikely to explain the spatial clustering

by chance.

Another study conducted in New Delhi, the capital city of India, identified

six risk factors, that significantly associated with dengue incidence (Bhandari et al.,

20



2008). In this study, geocoded incident dengue cases were mapped in GIS (n = 127).

Of the 127 suspected cases, thirty-seven were confirmed cases of dengue. Detailed

information including socio-demographic factors, climatic factors and socio-cultural

practices, such as storage of water containers in households, mosquito protection,

sanitation, and health care were collected from all the thirty-seven cases. Significant

risk factors were assigned risk scores between 1− 3 to develop four social risk levels,

ranging from very high to low risk. A spatial risk map was developed for New Delhi by

inputting data from the 37 cases and using inverse distance weighting tool in ArcGIS.

All the 127 cases were mapped using GIS and overlayed on the risk map. Almost

88 of the total cases were reported from high risk areas covering 11.18 km2, followed

10% in high risk and 2% in medium risk.

2.3.3 Studies in Bangladesh

Three studies reported from Bangladesh were included in this review (Table 3). A

household entomologic assessment, as well as an attitude and behavior survey, was

conducted in Dhaka during the peak epidemic period for dengue/dengue hemorrhagic

fever in 2000 (Ali et al., 2003). GIS was used to map the mosquito breeding sites

and households with reported dengue cases. Visual inspection of the density maps

for vector population and dengue cases indicated high and low vector density areas.

Multivariate regression models for analyzing spatial association between vector pop-

ulations, hospital locations, and dengue clusters found that the clusters were located

closer to the four major hospitals in Dhaka suggesting that proximity to hospitals

may be a determinant of diagnosis of cases. Spatial association were noted between

dengue clusters and vector populations in the area. The study also reported higher

number of dengue cases in household with Ae. Albopictus larvae suggesting a change

in disease epidemiology, since Ae. Aegypti has been the most common vector in South

Asia.

Banu et al. (2012) reported a study conducted in urban and rural areas in

Bangladesh. The study evaluated dengue cases reported over a period of 10 years from
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64 districts. A space-time statistical analysis was applied to detect high risk clusters

of DF using SaTScan software at the district level. Poisson regression analysis were

conducted to identify space-time clusters after adjustment for the uneven geographical

density of district population. Results of the analysis found that the epidemic pattern

fluctuated from 2000 to 2009. The temporal trend suggested a decrease in dengue

outbreaks after 2002. The cluster analyses showed that the space-time distribution

of dengue fever cases were clustered during three periods: 2000–2002, 2003–2005

and 2006–2009. Clusters were most likely to be found in Dhaka district followed by

Khulna and Chittagong districts.

Ali et al. (2014) conducted a study in Dhaka, for evaluating factors affect-

ing dengue incidence. Data on dengue cases were obtained between 2005 and 2010

(n = 3169) from 11 major health service providers. Data included information on

date of admission, location of patient’s residence, demographic and clinical data, and

date of discharge and outcome (dead/alive). Population data were obtained from

the 2001 census; data on mosquitoes were collected from entomological surveys. Fre-

quency of the dengue cases between 2005-2010 was mapped by census tract. Visual

assessment of the direction diffusion pattern of the dengue virus over space and time

showed that the dengue occurrences follow a diagonal South-South Easterly to North-

North Westerly pattern with little change over the years. The temporal trend over

time found decrease in dengue incidence over time. Investigator evaluated association

between several factors including seasonal rainfall and demographics using epidemio-

logical analysis and found that age 18 to 35 years and being male were significantly

associated with dengue incidence. The spatial analysis included employing autocor-

relation techniques and cluster pattern identification. Results of the Moran’s I global

spatial autocorrelation statistics indicated a clustered pattern for dengue cases. A

further investigation of the cluster analysis using automated complex Monte Carlo

randomization procedure revealed significant cluster patterns.
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2.4 DISCUSSION

Dengue has emerged as a significant health problem in Sri Lanka, India, and Bangladesh,

and the burden continues to grow each year.The current review identified nine papers

that applied remote sensing and/or GIS for ecological modeling of dengue fever. All

the studies included in this review were published since 2000, and seven in the last

five years. This suggests that the application of GIS and remote sensing in dengue

research is limited in these countries and needs to be scaled up. A review of the

available studies found that GIS was primarily used for spatial mapping of dengue

cases, highlight high risk areas of diseases incidence, and in some instances, to identify

the determinants or risk factors of dengue fever. Most studies used GIS for assessing

spatial distribution of dengue in the study area. Of nine, five studies evaluated the

association between various environmental factors such as temperature, rainfall, sea-

sonality, housing patterns/density, frequency of water storage, frequency of cleaning

garbage, presence of breeding sites around and within the households of dengue cases,

awareness of mosquito protection, and dengue incidence, to find the determinants of

dengue incidence. Four studies used inverse distance weighting, Local Indicators of

Spatial Association (LISA) measure, or nearest neighbor techniques in GIS, to gen-

erate risk maps for dengue incidence. Remote sensing was used in three studies to

obtain information on land cover use.

Overall, the studies exemplify the use of geospatial tools such as remote sensing

and GIS in dengue risk mapping. Remote sensing can be used as data source for sev-

eral risk factors including information on population density, vegetation density, and

housing density (Khormi and Kumar, 2012; Vanwambeke et al., 2007; Kannathasan

et al., 2013). GIS provides a platform for understanding of spatial relationships

between the environmental risk factors affecting the dengue vector abundance and

consequently dengue incidence. Results of the studies were useful in implementing

targeted interventions in high risk areas as well as for planning future dengue surveil-

lance at a local level. A large body of literature has been published from countries in

South -East asia and the Americas where dengue fever is a significant health prob-
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lem. The quality of papers included in this review are comparable with the previous

literature. However, the number of studies are very few indicating limited capacity

in terms of manpower and training.

2.5 CONCLUSION

Remote sensing and GIS can be included in the routine vector and disease surveillance

for dengue fever. These tools can aid in targeted surveillance and interventions in

high risk areas for dengue fever, particularly in resource limited settings. The review

underscores the need for additional studies to build the evidence-base in South Asia

that may inform policy both at the national and at the local level to incorporate the

geo-spatial tools in management of dengue fever. Training and capacity building in

the use of these tools would be a fruitful investment of resources in these countries.
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3.0 SUPERVISED AND OBJECT-BASED CLASSIFICATION FOR

QUICKBIRD IMAGERY

3.1 INTRODUCTION

Ae. Aegypti is a main vector for the spread of dengue fever world wide (Gubler,

1998). The habitats for Ae. Aegypti are closely associated with human settlements

and built urbanized environments. One of important tools currently available for

characterizing urban environments are obtaining LULC information using remotely

sensed data. This information is available at various temporal and spatial resolutions

depending on the source of remotely sensed data. With the help of high-resolution

imagery such as IKONOS and Quickbird at 1m and 0.62 m resolution, respectively, it

possible to map urban environment to an extent (Troyo et al., 2009). These mapped

environments, together with GIS could be used in spatio-temporal models to explain

spatial patterns of dengue incidence and spread. Several methods exists for analysis

of remotely sensed data depending on the spectral, spatial and temporal resolution of

the data (Lillesand et al., 2006). The choice of analysis also depends on the objectives

of the application of the remotely sensed data. The goal of the current research was

to identify urban environments that may be associated with dengue incidence in the

study area, using high resolution imagery. We proposed to compare between two

methods commonly used for analyzing high resolution data, to select the optimal

method for image classification.

The process of analyzing a remotely-sensed image to extract data is known as

image classification. Since 1970s, when satellite imagery was first available, scientists

have used several methods to classify the images, to obtain the most accurate informa-
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tion LULC on the earth’s surface. Traditionally, image classification was conducted

using decision rules solely based on the spectral radiance of the pixels in an image

data. These classification methods were referred to as ‘pixel-based classification ap-

proaches. The pixel-based approach use conventional statistical techniques for classi-

fying the pixels including parallelepiped, maximum likelihood, and minimum distance

procedures (Lillesand et al., 2006). The most commonly known and used pixel-based

approaches are the supervised and unsupervised classification methods. In the last

decade or so, the advancement of medium and high-resolution imagery has allowed for

inclusion of other image characteristics, such spatial, textural, and contextual along

with spectral response, to be used in image classification. This comparatively newer

method of classification has been described as ‘object-based classification approach.’

In this method, the basic procession units are image objects or segments and not

pixels. These image objects or segments are formed by dividing the image in smaller

segments that have similar spectral, spatial and/or textural characteristics. A fuzzy

logic is applied to each segment or image object to assign membership to a class. The

membership value usually lies between 1.0 and 0.0, where 1.0 expressed a complete

assignment to a class, and 0.0 expressed absolute improbability.

Studies comparing pixel-based and object-based classification approaches have

found that the object-based classification produces significantly better results in for

high spatial resolution multispectral imagery, such as Quickbird and IKONOS. A ma-

jor advantage of these high-spatial resolution images is that such data greatly reduce

the mixed-pixel problem Lu and Weng (2009), providing a greater potential to extract

much more detailed information on land-cover structures than medium or coarse spa-

tial resolution data. However, classification of high spatial resolution imagery present

other problems which include (1) spectral confusion between impervious surfaces and

other land covers, due to limited spectral resolution (usually only visible and near-

infrared (NIR) wavelengths) and high spectral variation within the same land cover

due to the very high spatial resolution; and (2) shadows caused by tall objects and the

confusion with dark impervious surface and water/wetland Chen et al. (2007); Dare

(2005); Zhou et al. (2009). Figure 4 is a Quickbird false color composite consisting
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of NIR, Red, and Green bands as red, green and blue, illustrating the complexity of

urban landscapes, and the potential confusion between impervious surfaces and other

land covers, as well as within these surfaces. For example, different building roofs,

roads, parking lots, and shadows appear as different colors on the images, making

an automatic extraction of impervious surfaces difficult based on spectral signatures.

These problems may lower the classification accuracy of pixel-based classification.

Figure 4: Quickbird false color composite consisting of NIR, Red, and Green bands

as red, green and blue; Courtesy: DigitalGlobe Inc.

Users of remote sensing have successfully differentiated impervious surfaces such

as buildings, roads, parking lots, etc., from other land-cover classes such as bare lands

and water areas, using object-based classification methods in their studies. However,

in these studies all the impervious surfaces have been grouped under single class

(Moran, 2010; Lu and Weng, 2009). Only few studies have attempted to classify

these land use classes separately.

Despite growing evidence supporting the preference of object-based approach for

classifying high spatial resolution imagery, it is still not clear how the spatial and other
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characteristics such as texture, size, and shapes can be effectively used. In particular,

comparison between both these approaches needs to be further investigated in densely

populated urban areas, where there is high spatial and high spectral variability within

the same land-cover class. In Figure 4, one can notice that a large number buildings

and roads show spectral homogeneity (grey buildings and grey roads), making it

difficult to separate them both spatially and texturally in the classification.

The objective of this part of the study (Aim 2) is to determine whether an

object-based analysis of remotely sensed imagery will produce a LULC classification,

that is statistically more accurate than a pixel-based analysis, when applied to the

same imagery in a densely populated urban area. The current study is part of an epi-

demiological study evaluating relationship between environmental risk factors such as

LULC, and local environmental factors and incidence of dengue fever in Colombo, Sri

Lanka. The results of this section would determine the final method of classification

for obtaining information on LULC classes for the next step in the data analysis in

Aim 3.

3.1.1 Study area

The study area was located in Sri Lanka, an island country in the Indian Ocean

(Figure 5). Sri Lanka is an island off the southern coast of India , with an estimated

population of around 20 million in 2010 (Census.lk, 2014). The global position-

ing coordinates for the area are 6°57’46.85"N˝ to 6◦53′39.00”N and 79◦54′6.93”E to

79◦50′35.31”E. It includes the city of Colombo covering an area of 37 square kilome-

ters. Colombo is the commercial capital and a major urban center in Sri Lanka. The

city has a residential population of approximately 555,031 people (Census.lk, 2014).

As a whole, the country of Sri Lanka is divided in 25 districts in nine provinces .

The districts are are further divided in Divisional Secretariats (DS) and each DS di-

vision is divided in to Gram Niladaris Divisions (GNDs). The CMC area is located

in the CMC district and comprises of 55 GNDs from the Colombo and Thimbigriya

DS divisions district (Figure 6). For administrative purposes however, the CMC is
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divided in six administrative districts which are further divided in wards. There are

a total of 47 wards in the CMC area. The digitized maps of CMC with GNDs and

Wards were overlapped and compared. It was found that most of the GNDs over-

lapped with the CMC wards except for eight wards (Figure 7). Since population

data was freely available for GNDs, and not for the Wards, it was decided to use

GNDs as the smallest geographical unit for dividing the CMC area. Figure 7 shows

the overlapping maps of GNDs and Wards maps for 55 GNDs and their respective

wards. Population demographic data for these wards was not available for the study.

To overcome this problem, we linked the CMC wards to the GND map. GNDs are

the smallest administrative units in Sri Lanka (Census.lk, 2014) .

Figure 5: Map of showing South Asia showing Sri Lanka (inset)
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Figure 6: Map of study area

Figure 7: Comparison of GNDs and Wards in CMC area to create one map that

linked GND and Wards
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3.2 DATA SOURCES

3.2.1 Satellite imagery

The data used in this study is a high spatial resolution QuickBird standard imagery

obtained on April 7th, 2007, which includes the study area in entirety. The dataset

has 2.4 meter spatial resolution with 4 channels: blue — B1 (0.45–0.52 µm), green

— B2 (0.52– 0.60 µm), red — B3 (0.63–0.69 µm), and near infrared — B4 (0.76–

0.90 µm). The radiometric resolution of the dataset is 16 bit. The area covered

by the satellite image includes urban segments, such as commercial, industrial and

residential, and other regions such as, open water, rivers, unmanaged soil, vegeta-

tion and trees. This gives a diversity of urban LULC classes. We identified seven

LULC classes, including buildings, roads, rivers, trees and shrubs, green open spaces,

lakes/ponds and shadows. These particular land-cover classes are important to the

ongoing analysis of determining environmental factors associated with risk of dengue

incidence in Colombo.

3.2.2 Data management

The methods used in this study include data pre-processing, data processing, image

classification (using pixel and object-based feature extraction), and post classification

accuracy assessment. Figure 8 provides diagrammatic representation of the method-

ology implemented in this project.
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Figure 8: Diagrammatic representation of methods implemented in Aim 2

3.2.2.1 Preprocessing.

1. Geo-referencing of the images: The images were imported in ArcGIS. The images

had existing coordinate systems of WGS 1984. Adding six control points, the

images were aligned with the base imagery from ArcGIS. The georeferenced image

was then updated to save the transformation information with the dataset and

saved to .tif files.

2. Clipping the raster datasets to the extents of the study area: After geo-referencing

the imagery, the Quickbird multispectral and panchromatic raster images were
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clipped, to extract the portion of the raster datasets that included the CMC

study area, using the CLIP tool(Figure 9a). The images completely covered the

boundaries of the CMC with an approximate area of 37 sq.km. The CMC shapefile

used for clipping the raster data had the same geographic coordinate systems as

the raster data (WGS 1984) and was projected on the World UTM 1984 44N. It

was further aligned with the base imagery in ArcGIS using the transformations

to accurately georeference the shapefile.

(a) Clipping of Raster data to specific extents

(b) Pan-sharpening of raster data

Figure 9: Pre-processing of raster data

1. Pan-sharpening of the multispectral image: Both the multispectral and panchro-

matic images were then imported in ENVI 5.1 software. The multispectral image

(low spatial-resolution) was pan-sharpened using the panchromatic (high spatial

resolution image) using the PC-spectral sharpening technique, see Figure 9b. The
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PC-spectral sharpening algorithm assumes that the low spatial resolution spectral

bands correspond to the high spatial resolution panchromatic band. If both data

sets are geo-referenced, ENVI additionally co-registers them on the fly. ENVI

applies PC spectral sharpening by: (1) performing a PC transformation on the

multispectral data; (2) replacing PC band 1 with the high spatial resolution band

and scaling the high resolution band to match the PC band 1, so no distortion of

the spectral information occurs; the PC spectral sharpening method assumes that

the first PC band is a good estimate of the panchromatic data. (3) performing an

inverse transform; (4) resampling of the multispectral data to the high resolution

pixel size using a nearest neighbor, bilinear, or cubic convolution technique. For

this study, we used the nearest neighbor technique for re-sampling.

3.2.2.2 Image processing The image was then processed using object-based fea-

ture extraction classification and pixel-based maximum-likelihood supervised classi-

fication. The classification was conducted in ENVI 5.0 software.

1. Object-based classification: Object-based classification extracts information from

a high-resolution panchromatic or multispectral imagery, based on spatial, spec-

tral, and texture characteristics of the objects contained in the image. Object-

based classification primarily includes two components; first is to ‘Find Objects’

and second is to ‘Extract Features’. The ‘Finds Object’ task is divided in to four

steps: Segmentation, Merge, Refine and Compute Attributes. In this analysis,

the pan-sharpened image was loaded in the ENVI FX module along with a shape

file of CMC boundary as a mask file.

• Segmentation: Rule-based classification is started by segmenting the image

using an edge-base segmentation algorithm at a scale level of 35. The scale

level values range from 0.0 (finest segmentation) to 100.0 (coarsest segmen-

tation, all pixels assigned to one segment). The scale level of 35 was chosen

after applying several levels to assess which level segmented the image, such

that structures, such as buildings and roads, were delineated. The result of

the segmentation is shown in Figure 10a.
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• Merging segments: Merging is an optional step used to aggregate small seg-

ments within larger, textured areas such as trees, clouds, or fields, where

over-segmentation may be a problem. In this analysis, the merge level was

chosen at value of 85. The results of merging are shown in Figure 10b .

(a) Image Segmentation (b) Merging of Segments

Figure 10: Image Processing

• Computing attributes: The ENVI feature-extraction module computes spa-

tial, spectral and texture attributes for each segmented object in the image.

The image was processed and was readied for feature extraction and classifi-

cation.

• Classification: Following object identification, rules were defined to extract

each class. A total of seven classes were defined including buildings, deep

waters/rivers, green spaces, lakes, roads, shadows, and vegetation. Table 2

provides list of rules for all the seven classes. The classification was completed

in iterative steps using the rules and the nearest neighbor classifier.
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Table 4: Rules for object-based classification

Classes Rules for object-based classification
River Band="3" Spectral_Mean between value="12.26362,

150.00000"
Shadows Band="3" Spectral_Mean between value="50.00000,

170.00000"
Band="0" Area" between value="0.75972, 10000.00000"
Band="4" Texture_Variance value="0.00020, 0.65943"
Band="0" Compactness value="0.10000, 0.28209"

Green Spaces Band="4" Spectral_Mean > value="0.30000"
Band="4" Texture_Variance" < value="0.00200"

Vegetation Band="4" Spectral_Mean > value="0.30000" Band="4"
Texture_Variance between value="0.00200, 0.23751"

Roads Band="4" Spectral_Mean between value="-0.93563,
0.30000" Band="3" Spectral_Mean between
value="170.00000, 1000.00000" Band="6" Major_Length
operation" > value="25.00000" Band="0" Compactness <
value="0.13000" Band="0" Area between value="350.00000,
50000.00000" Band="0" Rectangular_Fit between
value="0.16946, 0.75000"

Building Band="4" Spectral_Mean between value="-0.93563,
0.30000" Band="0" Area < value="150000.00000" Band="0"
Rectangular_Fit > value="0.20000" Band="0"
Compactness between value="0.13000, 0.28209" Band="3"
Spectral_Mean between value="170.00000, 1000.00000"
Band="4" Texture_Variance between value="0.00020,
0.28414"

Lakes Band="4" Spectral_Mean between value="-0.93563,
0.40000" Band="4" Texture_Variance < value="0.00500"
Band="3" Spectral_Mean between value="110.00000,
280.00000" Band="0" Area > value="32000.00000" weight

2. Pixel based supervised classification: A pixel-based approach utilizes only the

spectral information of the pixels to classify an image in different land cover

classes. In this classification, training areas that describe the typical spectral

pattern of the land-cover classes are defined. Pixels in the image are compared

numerically to the training samples and are labeled to the land cover class that

has similar characteristics. The supervised classification was conducted using the
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training areas (Table 5) and the maximum likelihood algorithm (MLC). A MLC

is a parametric classifier that assumes normal or near normal spectral distribu-

tion for each feature of interest. An equal prior probability among the classes

is also assumed. This classifier is based on a probability that a pixel belongs to

a particular class. It takes the variability of classes into account by using the

covariance matrix. Therefore, MLC requires sufficient number of representative

training samples for each class to accurately estimate the mean vector and co-

variance matrix, needed by the classification algorithm. Table 3 lists the total

number of training areas selected for each class in the current analysis.

Table 5: Training areas for supervized classification

Class Number of training areas
Buildings 94

Deep water/rivers 29
Green spaces 21

Lakes 9
Roads 79

Shadows 43
Vegetation 52

3.3 ACCURACY ASSESSMENT

The classified imagery was imported in ArcGIS to conduct accuracy assessment using

the confusion error matrix. A confusion error matrix or a classification error matrix

compares on a category-by-category basis, the relationship between known reference

data (ground truth) and the corresponding results of an automated classification.

These error matrices show the contingency of the class to which each pixel truly be-

longs (columns), on the map unit to which it is allocated, by the selected analysis
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(rows). From the error matrix, we estimated the overall accuracy, producer’s accuracy,

user’s accuracy, and kappa coefficient, for both supervised and object-based classifi-

cation methods. We also studied the classification errors of omission (exclusion) and

commission (inclusion).

The overall accuracy is computed by dividing the total number of correctly

classified pixels (i.e., the sum of elements along the major diagonal in a a error

matrix) by the total number of reference pixels. Similarly, the accuracies of the

individual categories can be calculated by dividing the number of correctly classified

pixels in each category by either the total number of pixels in the corresponding row

or column. Producer’s accuracies refer to the results from dividing the number of

correctly classified pixel in each category (on the major diagonal) by the number of

reference set pixels used for the category (column total). These numbers indicate

how well the reference set pixels of the given land cover class type are classified. The

user’s accuracies are computed by dividing the number of correctly classified pixels

in each category by the total number of pixels that were classified in that category

(row total). This number represents the measured of commission error and indicates

the probability that a pixel classified in to a given category actually represent that

category on the ground.

The omission error refers to the pixels that should have been classified as a

certain class but were omitted that class category. The commission error refers to the

pixels that were improperly included in a class category. The Kappa coefficient can

be used as a measure of agreement between model predictions and reality (Congalton,

1991). The Kappa coefficient was estimated to assess the percentage to which the

percentage correct values of an error matrix are due to true agreement versus chance

agreement (Lillesand et al., 2006). Below, we have described the steps taken to

complete accuracy assessment.

1. Creation of reference shapefile for accuracy assessment. It has been suggested

that a minimum of 50 sample points for each land-use land-cover category in the

error matrix be collected for the accuracy assessment of any image classification

(Congalton and Green, 1998). A reference database consisting of 50 or more
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points for each land cover with a total of 555 test points was prepared using the

same image that was classified. Value of each reference point was assigned based

on the visual interpretation of the object, aided by Google Earth, and from the

knowledge of the area. To be consistent, and for precise comparison purposes,

we applied the same sample points generated for the output generated by the

object based classifier as the output produced by the pixel-based classification

technique (maximum likelihood). A new empty shape file was created in ArcGIS.

Two new fields were added to the empty attributable table of the shapefile. The

first field created was the reference ‘landcover’ text field. The second field was a

numerical field for designating the land cover class by digits. Using the ‘create

feature’ tools in ArcGIS, 50 or more reference data points were added for each

class. Using ‘select by attribute’ feature and field calculator tool, information for

each land-cover class in text and in number were added to the attributable table.

2. Adding values from the classified images for the reference points. Using the ’Spa-

tial Analyst Tools/Extraction/Extract Values to Points’ tool, the class values for

the reference test points were extracted from the classified images, both object-

based and supervised. Thus, two datasets were created consisting of reference

test points, with ground truth values and their corresponding pixel values from

the classified raster, one for the object-based classification, and the other for the

supervised classification.

3. Creation of the confusion or error matrix: The frequency tool in ArcGIS was

used to create a summary table cross-tabulating frequency of the every different

value of ground truth point with the frequency of different value for the raster

points. A pivot table was then used to create the confusion matrix for each type

of the classification.
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3.4 RESULTS

The results of the classification using both object-based classification and supervised

classification are presented in Table 4. The results show the total area classified under

each class in square meters, and the percentage of the total area under classification.

The object-based approach classified the data into seven classes with buildings mak-

ing up the largest land cover class (45.7%) followed by vegetation (25.5%), roads

(10.4%), shadows (6.0%), green spaces (5.5%), rivers (2.3%) and lakes (1.6%) (Table

6). About 2.8% of the total area remained unclassified. In supervised classification,

the image pixels were classified in seven classes constituting of buildings (31.7%),

while the remaining classes constituted of vegetation (23.5%), roads (22.7%), green

spaces (9.9%), shadows (9.5%), rivers (1.3%) and lakes (1.3%). Figure11 shows the

results of the two classification methods. Results of the accuracy assessment are

presented in Tables 5 and 6.

Table 6: Total area and percentage of area covered by each land-cover class per

classification method

Object-based Supervised
Land-cover class Area in m2 % Area in m2 % P-value
Rivers 941233.2 2.3 521098.4 1.3 0.03
Lakes 642067.05 1.6 537908.7 1.3 <0.001
Green spaces 2216814.4 5.5 4004595.4 9.9 <0.001
Vegetation 10273396 25.5 9460364.4 23.5 0.26
Buildings 18389624 45.7 12759628.6 31.7 <0.001
Roads 4198725.7 10.4 9135826.7 22.7 <0.001
Shadows 2426625.3 6.0 3842642. 9.5 <0.002
Unclassified 1127288.5 2.8 0 0
Total area 40215774.15 100 40262064.6 100
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3.4.1 Classification accuracies (pixel-based supervised classification)

From Table 7, it can be observed that the supervised classification produced an over-

all accuracy of 79.3%, and with a kappa coefficient of 0.7399. The lowest producer’s

accuracy (65.7% was given by the building class indicating that only 66% of the build-

ing area was correctly identified, but almost 95% of the areas identified as buildings

were actually buildings. It was found that, almost 33% of the buildings were classified

as roads. The shadows class produced the second lowest producer’s accuracy (74%.

One of the highest producer’s accuracy was for roads (96, but the user’s accuracy for

roads was only 45%, suggesting that 96% of the roads were correctly identified, but

only 45% of the identified areas were actually roads. Other classes, including rivers

(100%), green spaces (86%, , vegetation (88% and lakes (100%, 100%), had high level

of accuracy for both producer’s and user’s respectively.

3.4.2 Classification accuracies (object-based classification)

In contrast to the traditional method, the object-based classification approach gen-

erated an overall accuracy of 79.8% and a Kappa coefficient of 0.734. The lowest

producer’s accuracy was for and vegetation (67.6%), but the user’s accuracy for veg-

etation was almost 92% (Table 6). Almost 28% of the area identified as vegetation

was classified as green spaces. The roads class had second lowest producer’s accu-

racy (68.7%, as well as the lowest user’s accuracy. This accuracy was low because of

signature confusion between building and roads.

Comparison of class proportions between individual class types.

We compared between the proportion of each across the two classification ap-

proaches. Results of the comparison found that except for vegetation, the proportions

of all other six classes were significantly different from each other (Table 6).
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3.5 DISCUSSION

In this section, we compared object-oriented with pixel-based classification (super-

vised) approach using Quickbird image. The result shows that both object-oriented

classification and supervised classification produced satisfying results. The overall

accuracy of both classifications was approximately 79%. These results are compa-

rable with previous studies in terms of overall accuracy. However, previous studies

have found that compared to a pixel, an image objects (segments) can offer impor-

tant information, that is necessary to interpret an image. Compariosn between the

LULC classes from each method of classification found that the proportion of LULC

classes differed significantly between both groups except for vegetation. Since pre-

vious studies have consistently found that object-based classification is a preferred

method for high-resolution imagery such as Quickbird, we decided to use the results

of the object-based classification on LULC classes for the next steps of the analysis.

To our knowledge, this is the first study that has used high-resolution imagery to

classify land cover in the CMC area. The analysis classified the area in seven distinct

LULC classes including buildings, roads, vegetation, open green spaces, rivers, lakes

and shadowed areas from buildings and trees. The results of the classification show

that CMC area is a densely populated urban area with both residential and commer-

cial areas covering a total area of 37 sq km. One of the limitations of our analysis was

the inability to differentiate between commercial and residential properties. Another

limitation was the miss-classification between buildings and roads for both supervised

and object-based classification. Previous studies have found that extraction of road

surfaces in densely populated urban areas is difficult (Repaka et al., 2004). These

limitations can be addressed in future with use of next-generation satellite data such

as Worldview-I and II which have higher spectral, temporal and spatial resolution. It

is alo possible to improve classification results with better geographical knowledge of

the study area. Additional data would also allow for assessment of change in LULC

over time with satellite data from different time periods within an year and between

years.
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In sum, the study found comparable results of classification using supervised

(pixel) based and object-based. classification. The results of the study show potential

to use remotely sensed data and its analysis as a useful tool to obtain information

on LULC in places where such data is not readily available. But it also highlights

limitations with data analysis with available methods and the need for better quality

and frequency of remotely sensed data for densely populated urban areas.
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4.0 ENVIRONMENTAL DETERMINANTS OF DENGUE IN CMC

AREA

4.1 INTRODUCTION

As discussed in the background, several environmental and social factors including

climate, local environmental and, socio-demographic factors have been significantly

associated with dengue incidence. In the previous chapter, we discussed the methods

used to extract data on the LULC for the CMC area. The information collected from

the image classification on LULC served as the data source for estimating some of the

local (at the GND level) environmental risk factors of dengue incidence. Information

on other risk factors including climate and demographic variables was also obtained.

In this chapter, we have described in detail research methods described under Aim 3

including information on all the data sources for independent variables and dependent

variables; data management and steps in data analysis.

4.2 STUDY DESIGN

The study is a retrospective panel study using data from 2005 to 2011.
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4.3 STUDY POPULATION

The study was conducted in the city of Colombo, the financial capital of Sri Lanka,

an island country in the Indian Ocean. The country covers an area of 64,740 square

km with the total population of about 21, 481,334. Most people in Sri Lanka are of

Sinhalese (74%) ethnicity followed by Sri Lankan Moors (7.2%), Indian Tamil and Sri

Lankan Tamil who comprise of 4.6% and 3.9% respectively. The majority of people

are Buddhist (70%) followed by Muslims (8%), Hindus (7%) and Christians (6%).

The country has a high literacy rate of 91.2%.

4.4 STUDY AREA

Refer to section 3.1.1

4.5 DATA SOURCES

The data used in this study include confirmed dengue cases, high spatial resolution

satellite data, daily temperature and rainfall collected from 2005 to 2012, and socio-

demographic factors from population census statistics in 2010.

4.5.1 Dengue cases

Dengue is a notifiable disease in Sri Lanka. The surveillance case definition for dengue

is Sri Lanka is as follows:

• In Children: An acute febrile illness of 2-7 days duration with 2 or more of the

following: headache, retro-orbital pain, myalgia, arthralgia, flushed extremities,

tender hepatomegaly, rash, leucopenia and hemorrhagic manifestations.
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• In adults: An acute febrile illness of 2-7 days duration with 2 or more of the follow-

ing; headache, retro-orbital pain, myalgia with one of the following: leucopenia,

thrombocytopenia or hemorrhagic manifestations.

All medical practitioners in Sri Lanka who attend to patients with a suspected di-

agnosis of dengue are expected to report the cases to the proper authorities along

information on patient’s contact information. On receipt of the notification, a Public

Health Inspector visits the home of the patient to collect additional data using a

standard surveillance form. These data include detailed information on patient’s per-

sonal history, results of the clinical and laboratory investigations. In the study area,

dengue related preventive activities are controlled by the department of Public Health

of the CMC. In addition to the national surveillance form, the CMC Department of

Public Health collected additional data on environmental variables. The surveillance

form is attached in appendix 1. Data on suspected and confirmed dengue cases from

January 2005 to June 2012 were obtained from the Department of Public Health for

this study.

4.5.2 GIS reference shape files

We obtained road shapefiles of the CMC area from the Department of Public Health.

We downloaded an image map of CMC area showing administrative districts (and

wards) from the CMC website. We digitized and georeferenced the map using ArcGIS

creating a ‘ward’ shapefile and projected the shapefile to WGS 1984 UTM Zone 44

N. The ward feature was linked to the road shape file in ArcGIS. The road shapefile

combined with information on ward, street name, type, zipcodes and GNDs was used

to create the address locator file. An address locator is a reference file used in ArcGIS

to geocoded addresses.

4.5.3 Temperature and Precipitation

Meteorological data including daily temperature and precipitation for the CMC area

were obtained from CMC Area Monitoring stations at Colombo Fort and Meteorolog-
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ical Department (1.5 km apart) for 2005-2011. Only one stream of data was available

for the entire area. Since the total area covered under the study is about 37 km2, and

low-lying topography, we expected no variability across the GNDs within CMC area.

Dengue surveillance in Sri Lanka reports two dengue peaks in a year, depending on the

monsoon seasons. The first peaks occurs June-July following the first inter-monsoon

season in March and April. The second peak occurs between October - December

following the second inter-monsoon season in October and November. The weekly

averages of minimum and maximum temperatures were computed for all years. The

climate of Sri Lanka is affected by the topographical features of the country and the

Southwest and Northeast monsoons regional scale wind regimes. The climate experi-

enced during 12 months period in Sri Lanka can be characterized in to four climate

seasons as follows:

1. First Inter-monsoon Season - March - April

2. Southwest monsoon season - May - September

3. Second Inter-monsoon season - October - November

4. Northeast Monsoon season - December - February

We also obtained data on daily rainfall from the Tropical Rainfall Measuring Mis-

sion (TRMM) satellite and daily temperature from Land Data Assimilation System

(LDAS), to compare with data from the local monitoring stations.

4.5.4 Socio-demographic data

We obtained data on population characteristics from the Department of Census and

Statistics in Sri Lanka. The data on population and housing characteristics following

the 2010 census surveys is freely available by GNDS on the Sri Lankan Department

for Census and Statistics. The data included information on population demograph-

ics (total population, population of males, females, and children less than 15 years,

between 15 and 60 years and greater than equal to 16 years). The housing characteris-

tics included information on type of roofs and walls, and the sources of drinking water

to the occupied houses in the GNDs. The online data was abstracted in Microsoft
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excel. It was formatted and checked for any missing data or errors. The data for

source for drinking water had nine sources listed. We re-grouped the nine categories

to three broad categories included- well water, tap water and other that included

supply from the river, tankers, rural project and bottled water. A final dataset for

population and housing characteristics was exported in ArcGIS for the 55 GNDs that

comprise the study area.

4.6 DATA MANAGEMENT

The software used in this study included ENVI 4.8 and 5.0 version and ENVI EX

module for analysis of satellite data, ArcGIS 10.1 and SAS 9.3.

4.6.1 Geocoding of dengue cases

Addresses for all dengue cases reported between years 2005 and mid-year of 2012

were reviewed and quality assurance/quality control (QA/QC) was done to check

for spelling errors, missing information in Microsoft excel 2010. The final dataset

was imported in ArcGIS for further management. Using ‘Geocode address’ tool in

ArcGIS, addresses of dengue cases were geocoded. However, there were difficulties

in matching and initial attempts matched 2 to 5 % of the addresses only. Further

geocoding was done manually with help of the address locator and Google maps.

The geocoding was done at the street level. Since the approximation of the case to

the nearest possible location of their homes was critical for this study, the nearest

distance from the street was chosen to locate the case to avoid exact location of the

case.

54



4.6.2 Creation of shapefiles and SAS files of LULC classes by GNDs from

the classified imagery

ENVI generates the results of the classification in .jpg formats as well as in shape-

file format. The results were imported in the ArcGIS. Using the overlay function in

ArcGIS, we overlapped the land cover classes with GND shapefile to create a new

shapefile that split the land cover classes by each GND. The overlay function splits

features in the input layer (Land cover shapefile) where they are overlapped by fea-

tures in the overlay layer (GND shapefile). The new areas are created where polygons

intersect. If the input layer contains polygons, the polygons are split where overlay

polygons cross them. The attributes of features in the overlay layer are assigned to

the appropriate new features in the output layer, along with the original attributes

from the input layer. A final shapefile was created that contained information on

GNDs, population data, household characteristics, and land cover classes by GNDs.

4.6.3 Combining population, household characteristics and land cover

classes with counts of dengue cases by GND

Using spatial join in ArcGIS, the total number of geocoded dengue cases were linked to

the GND that contained the location of these cases. The total counts of dengue cases

per GND were also linked to the other environmental variables include population

data, household characteristics and land cover classes within the GND that contained

the dengue cases. The attribute table of this shapefile containing counts of dengue

cases per GND, and other variables were then exported in Dbase files which were

then converted to SAS files for further analysis.

4.6.4 Other data

All the other data files included weather data and data on daily dengue cases were

checked for errors and consistency and also exported to SAS for further analysis.
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4.7 DESCRIPTION OF VARIABLES INCLUDED IN THE ANALYSIS

4.7.1 Dependent Variable

The reported daily dengue fever cases between 2005 and 2011 were geocoded. Depend-

ing on the temporal scale of the independent variables, We estimated the dependent

variable. We first assessed the total daily, weekly and annual counts of dengue cases

per GND. The dependent variable was ’total weekly counts of dengue cases’ from

2005 to 2011 for the time series analysis. The dependent variable for assessing the

spatio-temporal monthly risk for each GND was monthly incident rate of dengue cases

per GND using the formula below:

IRi = Number of total dengue cases permonth

Total population of GNDi

× 100, 000, (4.1)

where, the IRi is the incidence rate for the ith GND, and where i ranges from 1 to

55.

The dependent variable for assessing overall association between socio- demo-

graphic and non-climate local environmental factors was the overall incidence rate of

dengue cases per GND estimated using the formula below:

IRi = Number of total dengue cases per GND

Total population of GNDi

× 100, 000, (4.2)

where, the IRi is the incidence rate for the ith GND, and where i ranges from 1 to

55.

4.7.2 Independent variables

4.7.2.1 Proportion of area covered by buildings in each GND. The data

obtained on LULC classess for buildings was further manipulated in ArcGIS 10.1, to

generate proportion of built up area in square meters for each GND. Figure 12a pro-

vides the distribution of area covered by buildings for each GND. The total proportion

ranged 27% to 62%
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4.7.2.2 Proportion of area covered by vegetation in each GND. The data

obtained on LULC classes for vegetation was further manipulated in ArcGIS 10.1,

to generate proportion of area covered by trees and shrubs in square meters in each

GND. Figure 12b provides the distribution of area covered by vegetation for each

GND. The total proportion ranged from 7% to 40%.

4.7.2.3 Proportion of area covered by roads in each GND. The data ob-

tained on LULC classes for roads was further manipulated in ArcGIS 10.1, to gen-

erate proportion of area covered by roads in square meters, in each GND. Figure

12c provides the distribution of area covered by vegetation for each GND. The total

proportions ranged from 5% to 27%.

57



(a) Buildings (b) Vegetation

(c) Roads

Figure 12: Proportion of land cover classes by GND
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4.7.2.4 Population density. The population density of each district was calcu-

lated using the total population and the total area for each GND.

4.7.2.5 Housing characteristics. We were able to retrieve data on some of the

housing demographic characteristics of the population residing in the CMC area. This

data included information on the type of materials used for construction of roof and

walls, toilet facility in the homes and types of drinking water supply. This data was

retrieved from the Sri Lankan census statistics website (Census.lk, 2014). Description

of each of these variables is as follows:

1. Wall materials. The principal materials used in construction of walls in occupied

housing units in the CMC district included brick, cement blocks or stone, cabook,

pressed soil bricks, kadjan/palymrah, plank or metal sheet and other. The data

was available as ’number of houses with walls of particular material for a GND

division.’ We calculated the proportions of houses for the types of materials.

Based on the personal knowledge of the area and the International Wealth Index

(IWI), we re-categorized the materials into three categories as brick walls, cement

walls and grouped all the other materials in a third group.

2. Roof materials: The principal materials used in the construction of roofs in oc-

cupied housing units included tiles, asbestos, concrete, zinc or aluminum sheets,

metal sheets, Cadjan or Palymarah or straw and other. We used a similar ap-

proach for categorizing roof materials in to three groups. We grouped the houses

with having tiled roofs, asbestos roofs and all the other materials as the third

group.

3. Toilet facility: The toilet facility for households were divided into seven categories

including households having toilets within the unit and exclusively used by the

household, household having the toilet within the unit but shared with another

household, households having toilet outside the unit but used exclusively by the
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household, toilet outside the unit and shared by other households, household hav-

ing no toilet but sharing the toilets of other household, household using common

or public toilets and household not using toilets at all. Households with toilets

exclusive for the households and located within the unit were categorized in one

group and all other houses with shared toilet facilities were grouped in the second

group.

4. Source of drinking water supply: We categorized households into two group: (1)

those with piped-water supply within the housing units and, (2) those without

piped-water supply directly inside the housing units. The source of drinking water

in households without the piped-water included households with tap water outside

the housing unit but within the premised of the homes, wells within the household

premises or outside, rural water supply projects, tube wells, bowser or river water.

4.7.2.6 Housing density. Data was available for the number of occupied housing

units per GND. We estimated the housing density per GND using the following

formula:

Number of occupied housing units per GND

Total area of theGND inm2 (4.3)

4.7.2.7 Weekly average temperature. We computed weekly temperature av-

erage in řCelcius from data on daily average temperature for the years 2005 to 2011 .

Weekly averages were computed for both data sources; CMC meteorological depart-

ment and from LDAS. This data was available at the CMC level.

4.7.2.8 Weekly cumulative precipitation. We computed weekly average of

daily cumulative precipitation in millimeters (mm) from data, for the period of 2005

to 2011. This data was available at the entire CMC level.
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4.8 DATA ANALYSIS

Analysis began with descriptive statistics using graphs and and summary statistics

for all the variables. The continuous variables were summarized using appropriate

measures of central tendency (means, medians) and spread (variance, range). The

categorical variables were summarized using the proportions. We explored the re-

lationship between all the independent variables and the dependent variable using

correlation for continuous variables. We used Pearson’s correlation coefficient in case

of normally distributed variables and Spearman’s correlation coefficient in case of

non-normal data. We also assessed for multi-collinearity between the independent

variables. If the correlation coefficient r2was 0.75 or more, we then included the

correlated variables separately in the model to in the final analysis. We then fitted

different models for different set of variables depending on the temporal and spatial

scale of the independent and the dependent variables.

4.8.1 Part I: Relationship between climate variables and dengue cases

Weekly counts of dengue cases were computed. Similarly, weekly average temperature

and precipitation were computed. Exploratory data analysis for these these variables

were performed using box-plots, histograms, and scatter-graphs and autocorrelation

graphics. We computed lags from 1 week to up to 25 weeks, for weekly average tem-

perature and weekly average rainfall. We then estimated the correlations between

lagged temperature and rainfall, and weekly counts of dengue cases. We analyzed

the relationship between weekly temperature and rainfall at various lag periods and

dengue incidence independently, using a Poisson multivariate regression model ad-

justing for seasonality and trend. The four seasons described in section 4.5.3 were

included in the model as dummy variables. The year of incident dengue cases was also

included in the model as dummy variable. In the final model, both temperature and

rainfall were then included in the same model, adjusting for seasonality and trend.

The analysis was done using SAS/STAT® software, version 9.3.
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4.8.1.1 Sensitivity analysis. As part of the sensitivity analysis, all the analyses

were run using the secondary data sets from LDAS for temperature and TRMM for

rainfall. We also subset the data by monsoon seasons to evaluate the relationships

between the climate variables and dengue counts for all the datasets.

4.8.2 Part II: Relationship between local environmental variables and

incident dengue cases

4.8.2.1 Non-spatial analysis. We evaluated correlation between all the envi-

ronmental factors and the incident rates for dengue cases for each GND. Compar-

isons were made between each subgroup of the risk factors (for eg., roof materials

for households included tiles and cement, asbestos,other) and the incident dengue

rates. Pearson’s correlation coefficient were used for normally distributed data and

spearman’s correlation coefficient for non-normal data. We further categorized the

GNDs into two groups using the median dengue incident rate as the cutpoint. All

the variables were compared across the two groups using t-test for continuous and

chi-square or Fisher’s test for categorical variables.

The variables which were correlated significantly with dengue cases at p = 0.05

or had a positive or negative r2 more than 50% were included in the final regression

model. For the final model, we used a Poisson regression and GENMOD procedure.

The Akaike Information criterion (AICc) was used to assess the model fit.

4.8.2.2 Spatial analysis Mapping and modeling the dengue fever risk

spatio-temporally by GNDs. Dengue data has both a spatial and a temporal

component; i.e., the dengue cases may be clustered in space and in time. We used

the space-time hot-spot analysis in ArcGIS 10.1 to assess the spatio-temporal risk of

dengue incidence rate within each district. The incidence rate of dengue cases were

analyzed spatially and temporally using Getis-Ord GI* statistic to model the monthly

risk levels in each district. This approach looks at each feature within the context of

neighboring features within a fixed specified distance and fixed specified time interval.
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If a feature value is high, and the values for all of its neighboring features are also

high, within a specified time window, then the conclusion is that its part of a hotspot.

We first used the space-time window option in ArcGIS to conceptualize the spatial

relationship of dengue incidence rate in GNDs.

We generated a spacial weights matrix to quantify the spatial and temporal

relationships among the GNDs. A threshold distance of 1350 meters and a time in-

terval of one month was specified. Following the conceptualization, we used Euclidean

distance to give an output of a z-scores and p-values for each GND in CMC area.

GNDs with high z-scores and small p-values indicated spatial clustering of high level

of dengue incidence rate hotspots (a high temporal risk in a given period). GNDs

with low-scores and small p-values indicated a spatial clustering of low-level of dengue

incidence rate hotspots i.e., cold spots for dengue incidence rate (low temporal risk

in a given period). The space-time modeling generated one hotspot model for each

month of the 7-year period to identify the areas of very low, low, medium, and high

incidence probability in recorded dengue cases. The risk areas were classified based

on the z scores values: z scores ≥ 3 indicating high risk areas; z-score 2−3 indicating

medium risk, z-scores 1 − 2 indicating low risk and z scores ≤ 1 indicating very low

risk areas.

Spatial relationship between local environmental factors and socioe-

conomic factors. The data for the local environmental factors including proportion

area covered by buildings, roads and vegetation, green spaces, neighborhood quality,

types of roof and wall materials, toilet facility and piped-water supply were available

at the GND level for one period in time. Thus, the dependent variable in this anal-

ysis was the incidence rate per GND across all seven years. The incidence rate was

estimated as described in equation 4.2. We began the analysis by correlating all the

independent and dependent variables. The correlation statistics provided information

on the type of relationship between the predictor variables and the outcome variable,

whether it is positive or negative. Variables that were significantly correlated with

the outcome and those that have been found in the literature as potential risk factors

of dengue incidence rate were then included in the next step of the spatial analysis.
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Spatial data, such as in the current study do not fit traditional, non-spatial

regression requirement because (1) they are spatially autocorrelated (i.e., features

near each other are more similar than those further away), and (2) the data is non-

stationery (ie., feature behave differently based on their location variation). The

spatial relationship between the local environmental and socioeconomic factors, and

the incident dengue cases was then evaluated in ArcGIS. There are a number of

methods that can be used to determine spatial relationships. Two of the common

spatial methods are Ordinary Least Squares (OLS) and Geographically Weighted

Regression (GWR). OLS is a global regression method. GWR is a local, spatial,

regression method that allows the relationships you are modeling to vary across the

study area. This means that the relationship between the predictor variables and the

outcome variables may vary across different GNDs and thus, it allows us to identify

these relationships specific to the GND.

• Ordinary Least Squares Regression.

OLS provides a global model of the variable or process you are trying to understand

or predict (incident dengue cases); it creates a single regression equation to represent

that process. A OLS regression can be denoted as follows:

y = β0 + β1X1 + β2X2 + .....βnXn + ε (4.4)

• Geographically Weighted Regression (GWR).

GWR is a local spatial statistical technique used to analyze spatial non-stationarity,

defined as when the measurement of relationships among variables differs from loca-

tion to location (Fotheringham et al., 2002). Unlike conventional regression, which

produces a single regression equation to summarize global relationships among the

explanatory and dependent variables, GWR generates spatial data that express the

spatial variation in the relationships among variables. The conventional regression

equation can be expressed as:

ŷi = β0 +
∑
k

βkxi + εi (4.5)
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where ŷi is the estimated value of the dependent variable for observation i, β0 is

the intercept, βk is the parameter estimated for variable k, xik is the value of the

kth variable for i,and εiis the error term. Instead of calibrating a single regression

equation, GWR generates a separate regression equation for each observation. Each

equation is calibrated using a different weighting of the observations contained in the

data set. Each GWR equation may be expressed as

ŷi = β0(ui, vi) +
∑
k

βk(ui, vi)xik + εi (4.6)

where (ui, vi) captures the coordinate location of i (Fotheringham et al., 2002). The

assumption is that observations nearby one another have a greater influence on one

another’s parameter estimates than observations farther apart. The weight assigned

to each observation is based on a distance decay function centered on observation

i.In the case of areal data, the distance between the observation is calculated as the

distance between polygon centroid. The distance decay function, which may take a

variety of forms, is modified by a bandwidth setting at which distance the weight

rapidly approaches zero. The bandwidth may be chosen by minimizing the AICc

score, give as

AICc = 2nlog + e(σ̂) + nloge(2π) + n

{
n+ tr(S)

n− 2− tr(S)

}
(4.7)

where tr(S)is the trace of the hat matrix.

Because the GWR regression equation is calibrated independently for each ob-

servation (each GND in the current scenario), a separate parameter estimate, t-value,

and goodness-of-fit is calculated for each observation. These values can thus be

mapped, allowing the analyst to visually interpret the spatial distribution of the

nature and strength of the relationships among explanatory (local environmental and

socioeconomic variables for each GND) and the dependent variables (incidence rate

of dengue cases per GND).

We examined both the OLS and the GWR to determine which method would

provide a better fit to the observations. This was determined through the results of
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the AICc. The AIC resulting from GWR was compared to the AIC resulting from

OLS. Since the AIC of GWR (836.9) was lower than the AIC of OLS (848.4), GWR

provided a better fit to the observed data.

Before applying the GWR, the explanatory or independent variables were iden-

tified using the explanatory regression in ArcGIS. Exploratory regression tool tries

every combination of possible variables that explain the variability in the dependent

variable. It identifies the model that satisfies all the threshold criteria for minimum

acceptable adjusted R squared (R2), Maximum Coefficient p-value Cutoff, Maximum

VIF value cutoff and Minimum Acceptable Jarque-Bera p-value. It also runs the Spa-

tial Autocorrelation (Global Moran’s I) tool on the model residuals to see if the un-

der/over predictions are not clustered. The explanatory regression process identified

two models with three variables each that best predicted the dengue incidence rates.

These variables included proportion of piped-water-supply, proportion of households

with brick walls, housing density and vegetation cover.

Thus, for GWR, we included incident dengue cases per GND as the dependent

variable and the proportion of piped-water supply, proportion of households with brick

walls, housing density and vegetation cover as the explanatory variables. The kernel

was specified as a fixed distance to solve each regression analysis. The bandwidth was

specified as AIC (ESRI, 2010) to determine the extent of the kernel. This was the

bandwidth or the number of neighbors used for each local estimation, and was the

most important parameter for the GWR as it controlled the degree of smoothing in

the model. The significance between the predictor variables and the dengue IR was

determined by t-values. The t-values were estimated by dividing the coefficient of

parameter estimate by the coefficient of standard error. Values above 1.96 and below

-1.96 were considered as statistically significant.
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5.0 RESULTS

In this chapter, we present the results of all the analyses discussed in Chapter 4. The

results begin with descriptive statistics, followed by bivariate analysis and multivari-

able regression models, characterizing the environmental factors and dengue cases.

We present the results in two parts: Part I will characterize the relationship between

climate variables and dengue incidence; Part II will present the results of the non-

spatial and spatial analysis evaluating the relationship between local environmental

factors and dengue incidence rate.

5.1 RELATIONSHIP BETWEEN CLIMATE VARIABLES AND

DENGUE INCIDENCE (PART I)

5.1.1 Descriptive statistics

Over the seven-year period of the study from 2005 to 2011, a total of 5,379 cases of

dengue were reported. The number of reported cases of dengue varied by year. The

highest number of dengue cases was reported in 2011 and the lowest in 2007. There

was a gradual increase in the overall number of cases from 2008 onwards (Figure

13a). In each year, the dengue cases showed a similar pattern of occurrence. The

total number of cases peaked during the south-west monsoon season which lasts from

May to September (Figure 13b). There was another peak in dengue cases in December

and January which coincides with the North-West monsoon season and precede the

inter-monsoon season (Figure 13b).
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(a) Total number of reported dengue cases,
by year (2005-2011), CMC area, Sri Lanka
(n=5379)

(b) Total number of cases reported, by month
(January to December), CMC Area, Sri
Lanka (n = 5379)

Figure 13: Distribution of dengue cases

Figure 14 displays the variation in weekly average of temperature, cumulative

rainfall and total number of dengue cases across the four seasons. The mean temper-

atures are higher in first inter-monsoon and south-west monsoon seasons as compared

to second inter-monsoon and north-east monsoon seasons. The rainfall show cyclical

pattern with high rainfall during the first and second inter-monsoon seasons and low

rainfall during the south-west and north-west monsoon seasons. There is no clear

relationship observed between the temperature and total dengue counts. However,

there is distinct pattern with rainfall; the dengue incidence peaks during south-west

and north-east monsoon follow the high rainfall periods in the preceding seasons.

The average weekly counts of dengue cases were reported as 14.7 cases (SD =

18.3; median = 8.0; range = 124) (Table 9). The average weekly mean temperature

was reported as 28.2◦C (SD = 1.3; median = 27.9◦C; range : 7.4◦C). The highest

average weekly mean temperature was reported in year 2011 (30.7◦C). The average

weekly cumulative precipitation was about 6.8cms (SD = 9.7; median=4; range =

69).
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(a) Temperature (b) Rainfall

(c) Total dengue counts per week

Figure 14: Box plots for temperature, rainfall and total dengue counts across four

seasons

Table 9: Distribution of temperature, rainfall and dengue cases

Variable Mean (SD) Median Range

Weekly average of mean temperature (°C) 28.2 (1.3) 27.9 7.4

Weekly average of cumulative rainfall (in mm) 6.8 (9.7) 4 69

Weekly counts of DF cases 14.7 (18.3) 8 124

DF= dengue fever; SD = standard deviation
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5.1.2 Correlations

The results of the correlations between temperature, precipitation and dengue cases

at lags 0 to 25 weeks are presented in Table 8. We found that the total weekly counts

of dengue cases were moderately correlated with temperature from lag 0 to lag 18

weeks; and weakly correlated with precipitation between lag 5 and 11 weeks. The

temperature and precipitation have weak negative correlation with each other for the

same week but it approaches to zero with weeks further along. Table 11 display the

correlations between rainfall and temperature at various lag periods.
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Table 8: Correlation between weekly mean temperature (°C), average cumulative

rainfall (in mm) and DF cases

Lag periods
(in weeks)

Temperature Rainfall
Correlation Coefficient (R2) Correlation Coefficient (R2)

0 0.45* -0.07
1 0.44* -0.04
2 0.46* -0.01
3 0.47* 0.04
4 0.47* 0.08
5 0.48* 0.13*
6 0.49* 0.17*
7 0.49* 0.19*
8 0.53* 0.15*
9 0.51* 0.15*
10 0.51* 0.15*
11 0.52* 0.14*
12 0.52* 0.08
13 0.50* 0.06
14 0.43* -
15 0.51* -
16 0.49* -
17 0.45* -
18 0.40* -
19 0.36* -
20 0.32* -
21 0.21* -
22 0.21* -
23 0.16* -
24 0.16* -
25 0.10 -

*Significant p < 0.05
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Table 11: Correlation between rainfall and temperature at various lag periods

Lag period (in weeks) TemperatureΥ Lag period (in weeks) RainfallΨ
Rainfall at lag 0 -0.26∗ Temperature at lag 0 -0.26

” at lag 1 -0.15∗ ” at lag 1 -0.06
” at lag 2 -0.09 ” at lag 2 0.00
” at lag 3 -0.08 ” at lag 3 -0.01
” at lag 4 -0.09 ” at lag 4 0.02
” at lag 5 -0.08 ” at lag 5 0.00
” at lag 6 -0.06 ” at lag 6 -0.03
” at lag 7 -0.13* ” at lag 7 0.01
” at lag 8 -0.07 ” at lag 8 0.02
” at lag 9 -0.10 ” at lag 9 0.00
” at lag 10 -0.09 ” at lag 10 0.00
” at lag 11 -0.04 ” at lag 11
” at lag 12 -0.08 ” at lag 12
” at lag 13 -0.04 ” at lag 13
” at lag 14 0.00 ” at lag 14
” at lag 15 0.03 ” at lag 15
” at lag 16 0.03 ” at lag 16
” at lag 17 0.07 ” at lag 17
” at lag 18 0.11 ” at lag 18
” at lag 19 0.06 ” at lag 19
” at lag 20 0.06 ” at lag 20
” at lag 21 0.04 ” at lag 21
” at lag 22 0.12* ” at lag 22
” at lag 23 0.10 ” at lag 23
” at lag 24 0.06 ” at lag 24
” at lag 25 0.06 ” at lag 25

ΥTemperature at lag 0 is correlated with rainfall at
various lag periods.ΨRainfall at lag 0 is correlated
with temperature at various lag periods.

5.1.3 Multivariable regression model

The results of the regression analysis suggested a weak association between weekly

mean temperature, precipitation and dengue incidence after adjusting for seasons

and year of dengue incidence. In the initial analysis, only one climate variable was

included in the model adjusting for season and year of dengue incidence. The relative
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risk of dengue fever for temperature ranged from 1.11 to 1.21 for lag periods 0 to 16

weeks, and became non-significant for lagged 17th week (Table 9). The relative risk

of dengue incidence for weekly average rainfall significant from lag 3 to lag 12 and

ranged between 1.02 to 1.08 (Table 10).

In the final model, we evaluated the effect of temperature at various lag periods

and rainfall at lag 8th week, adjusting for seasons and year of dengue incidence. The

results found no significant changes in the relative risk of dengue fever for all other lag

period except for lag 8 (Table 11). Similarly, we evaluated the effect rainfall at various

lag periods and temperature at lag 7. We found no significant changes in relative risk

between one climate variable model and two climate variables model (Table 12).

5.1.4 Results of sensitivity analysis

Results of the analyses using the LDAS data for temperature and TRMM data for

rainfall found similar results as the original analysis. Results of the sensitivity analyses

are included in appendix 2.
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Table 12: Relationship between weekly average temperature and total weekly dengue

counts (CMC data)

Variable Crude RRφ 95% CI Pr > ChiS
Temperature (°C) Lag
0δ

1.02 0.98 1.05 0.39

Lag 1 1.03 0.99 1.07 0.10
Lag 2 1.11 1.07 1.14 <.0001
Lag 3 1.11 1.07 1.14 <.0001
Lag 4 1.12 1.07 1.14 <.0001
Lag 5 1.15 1.09 1.16 <.0001
Lag 6 1.15 1.11 1.18 <.0001
Lag 7 1.18 1.12 1.18 <.0001
Lag 8 1.21 1.15 1.22 <.0001
Lag 9 1.15 1.17 1.24 <.0001
Lag 10 1.17 1.12 1.19 <.0001
Lag 11 1.15 1.13 1.20 <.0001
Lag 12 1.14 1.12 1.19 <.0001
Lag 13 1.15 1.10 1.17 <.0001
Lag 14 1.11 1.11 1.18 <.0001
Lag 15 1.06 1.08 1.15 <.0001
Lag 16 1.03 1.03 1.09 <.0001
Lag 17 1.02 1.00 1.05 0.06
Lag 18 1.02 0.99 1.04 0.18
§ Weekly average temperature with lag period in weeks.
GENMOD, DIST=POISSON, LINK=LOG model. Model
includes total dengue count (dependent variable),
temperature (independent), dummy variable for seasons
(season 3 is referent) and year of dengue case occurrence
(year 2005 is the referent). ¥Risk ratios and 95% confidence
intervals for an increase of approximately 1°C.
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Table 13: Relationship between weekly average rainfall and total weekly dengue

counts (CMC data)

Variable Crude RRφ 95% CI Pr > ChiS
Rainfall (mm)

Lag 0δ
1.00 0.98 1.01 0.39

Lag 1 1.01 1.00 1.03 0.10
Lag 2 1.02 1.00 1.03 <.0001
Lag 3 1.04 1.03 1.05 <.0001
Lag 4 1.04 1.03 1.06 <.0001
Lag 5 1.06 1.09 1.08 <.0001
Lag 6 1.08 1.06 1.09 <.0001
Lag 7 1.08 1.07 1.09 <.0001
Lag 8 1.06 1.05 1.08 <.0001
Lag 9 1.05 1.03 1.06 <.0001
Lag 10 1.05 1.03 1.06 <.0001
Lag 11 1.04 1.03 1.05 <.0001
Lag 12 1.02 1.00 1.03 0.01
Lag 13 1.01 1.00 1.02 0.12

δWeekly average temperature with lag period in weeks.
GENMOD, DIST=POISSON, LINK=LOG model.
Model includes total dengue count (dependent variable),
temperature (independent), dummy variable for seasons
(season 3 is referent) and year of dengue case occurrence
(year 2005 is the referent).
φRisk ratios and 95% confidence intervals for an increase of
approximately 1°C.
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Table 14: Relationship between weekly average temperature and weekly total dengue

fever counts when adjusted for rainfall

Variable Adjusted RRφ 95% CI Pr > ChiS
Temperature (°C)δ
Lag 4 1.16 1.13 1.20 <.0001
Lag 5 1.21 1.17 1.25 <.0001
Lag 8 1.33 1.29 1.38 <.0001
Lag 10 1.16 1.13 1.19 <.0001
Lag 15 1.13 1.10 1.16 <.0001
δWeekly average rainfall with lag period in weeks.
GENMOD, DIST=POISSON, LINK=LOG model. Model
includes total dengue count (dependent variable),
temperature (independent), weekly average rainfall at
lagged at week 8, dummy variable for seasons (season 3 is
referent) and year of dengue case occurrence (year 2005 is
the referent).
φRisk ratios and 95% confidence intervals for an increase of
approximately 1°C.

Table 15: Relationship between weekly average rainfall and weekly total dengue fever

counts when adjusted for temperature

Variable Adjusted RRφ 95% CI Pr > ChiS
Temperature (°C)δ
Lag 0 1.00 0.98 1.01 <.0001
Lag 5 1.06 1.05 1.07 <.0001
Lag 8 1.07 1.06 1.08 <.0001
Lag 10 1.06 1.05 1.07 <.0001
Lag 15 0.97 0.95 0.98 <.0001
δWeekly average rainfall with lag period in weeks.
GENMOD, DIST=POISSON, LINK=LOG model. Model
includes total dengue count (dependent variable),
temperature (independent), weekly average temperature at
lagged at week 9, dummy variable for seasons (season 3 is
referent) and year of dengue case occurrence (year 2005 is
the referent).
φRisk ratios and 95% confidence intervals for an increase of
approximately 1°C.
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5.2 RELATIONSHIP BETWEEN LOCAL ENVIRONMENTAL

VARIABLES, AND DENGUE INCIDENCE RATE (PART II)

5.2.1 Non-spatial analysis

5.2.1.1 Descriptive statistics. A total of 5,555 confirmed cases of dengue fever

were reported between the years 2005 and 2011, from the 55 GNDs in CMC area, Sri

Lanka. Of these, 5379 cases were successfully geocoded and included in the analysis.

For descriptive analysis we presented results by comparing characteristics of dengue

cases across two groups ’above median’ and ’below median’ incidence rate per GND

(n= 937 per 100,000 population) over the seven year period. Table 16 provides the

descriptive statistics for dengue cases. The average age among all dengue cases ranged

from 0.1 to 89 years. The mean age was 13.7 years (SD=13.7). Almost 75% of

the total cases were children. Distribution of cases between the above median and

below median groups found that the average age of cases in the above median group

(14.9;±14.3 ) was older than the average age of cases in the below median group

(12.1± 12.8), (p = 0.03). Among all the cases, about 54 % cases were male and 46 %

were females. There were no significant gender differences among the cases in both

above and below median groups.
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Table 16: Characteristics of dengue cases across ’above median’ and ’below median’

dengue incidence rate per GNDs

Variables Overall > MedianΦ ≤MedianΦ P-value
Number of Cases (n) 5379
Number of GND 55
Age (mean, SD) 13.7 14.9 (14.3) 12.1 (12.8) <0.0001
Age range (in years) 0.1-89 0.1 -89 0.1 -81
Age Categories (n, %)
0-5 1688 (31.4) 884 (28.6) 804 (35.2)
5.1 - 9 1222 (22.7) 687 (22.2) 535 (23.4)
9.1 to 19 1168 (21.7) 643 (20.8) 525 (23.0)
>19 1302 (24.2) 882 (28.5) 419 (18.4) <0.0001
Sex
Males 2897 (53.9) 1658 (46.5) 1239 (45.7)
Females 2482 (46.1) 1438 (53.6) 1044 (54.3) 0.6017
ΦMedian incidence rate: 937 per 100,000 population; SD =
standard deviation; GND= Gram niladari divisions

5.2.1.2 Bivariate analysis. The comparison for local environmental character-

istics between ’above median’ and ’below median’ groups found that proportion of

households with brick walls (p = 0.0001) and the proportion of households with ce-

ment walls (p = 0.0169) were significantly different between the two groups (Table

14). ’Above median’ incidence rate GNDs’ had higher proportion of households with

brick walls as compared to below median group; while the reverse was true for house-

holds with cement walls. piped-water supply, population density and housing density

were significantly different between the two groups at p < 0.05.
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Table 17: Distribution of local environmental factors across GNDs above and below

dengue median incidence rate

Variables Overall > Medianθ ≤ Medianθ P-value
Environmental
Characteristics (mean, SD)
Buildings 0.5 (0.1) 0.5(0.1) 0.5(0.1) 0.15
Vegetation 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.71
Roads 0.1 (0.04) 0.1 (0.1) 0.1 (0.1) 0.73
Shadow 0.1 (0.1) 0.1 (0.04) 0.1 (0.04) 0.46
Green Space 0.04 (0.1) 0.04 (0.1) 0.04 (0.03) 0.95

Household Characteristics
Brick Walls 0.4 (0.1) 0.6 (0.1) 0.5 (0.1) 0.001*
Cement Walls 0.6 (0.1) 0.3 (0.1) 0.4 (0.1) 0.02*
Other wall materials 0.1 (0.1) 0.1(0.1) 0.1 (0.7) 0.52
Tile Roofs 0.1 (0.1) 0.2 (0.1) 0.1 (0.1) 0.06
Concrete roofs 0.3 (0.1) 0.3 (0.2) 0.3 (0.1) 0.37
Asbestos Roof 0.5 (0.1) 0.5 (0.1) 0.6 (0.1) 0.39
Other wall materials 0.1 (0.1) 0.04 (0.1) 0.1 (0.1) 0.03*
Toilets exclusively for

household
0.7 (0.1) 0.8 (0.2) 0.7 (0.1) 0.54

Toilets shared 0.3 (0.1) 0.3 (0.1) 0.3 (0.1) 0.54
Piped-water supply 0.8 (0.1) 0.8 (0.1) 0.9 (0.1) 0.03*

Population Characteristics
Population density (per

1000.sqm)
20 (12.7) 16.8 (11.8) 23.8(19.2) 0.04*

Housing density 4.2 (2.5) 4.9 (2.2) 3.5 (2.6) 0.03*
θMedian incidence rate of DF: 937 per 100,000 population;

5.2.1.3 Regression model. All the risk factors significant in the bivariate anal-

ysis were included in the multivariable regression analysis (Table 18). Results of the

adjusted model found that piped-water was negatively associated with dengue inci-

dence rate (RR = 0.90; 95%CI = 0.87− 0.92); higher proportion of brick walls was

associated with increased risk (RR = 1.04; 95%CI = 1.00−1.07). Since housing den-

sity and population density were highly correlated (r2=0.95; p = 0.001),we included

both the variables one at a time in the model. Higher housing density was negatively

associated with increased dengue incidence rate (RR = 0.997; 95%CI = 0.96− 1.03).
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Table 18: Results of multivariable regression model

Variables* Risk Ratio 95% CI P-value
Piped-water supply 0.90 0.87 0.92 <.0001
Brick wall 1.04 1.00 1.07 0.03
Housing density 0.997 0.995 0.998 0.0011
Cement wall 0.99 0.96 1.03 0.76
*Variables included as continuous in the model; Model:
Poisson regression with repeated statement QIC = 5124.9

5.2.2 Spatial analysis

5.2.2.1 Monthly spatio-temporal models for 2005-2011. The results are

presented on a monthly basis for 84 months (January 2005 to December 2011) with

Figures 15, 16 and 17, indicating the location of the hotspots. The spatio-temporal

dengue risk was categorized into four risk levels. Risk levels 1 denoted ’very low

risk’ for dengue incidence rate; 2 denoted ’low risk’, 3 denoted ’medium risk’ and

4 denoted ’very high risk’. The spatio-temporal monthly hotspots were distributed

in GNDs located in the center of the CMC area for most months. The maps also

demonstrated that in years 2005, 2007, 2008 and 2009, the patterns for the risk levels

of dengue incidence rate were almost similar. Risk patterns for years 2010 and 2011

were similar, but different than previous years. For example, for Kurunduwatta GND,

located in the center of the CMC, the risk pattern in the month of January was low-

risk for years 2005, 2007 and 2010. However, it was very-high risk in years 2006, 2008

and 2011. The GND had a medium risk level in 2009. Looking at the pattern changes

over the span of the year for Kurunduwatta, for year 2011, a risk level 4 was observed

in the months of January, March, April, June, and July. Risk level 3 was found in

month of August. Low, and very-low risks levels were found in months of May, and

September, October, November and December respectively.

In years 2005,2010 and 2011, the hotspot patterns and high risk areas displayed
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a shift to new GNDs, not identified in previous years, particularly in the months of

June and July.

5.2.2.2 Overall spatio-temporal model based on monthly risk models over

the 7-year study period. The average monthly risk over the 7-year period showed

most of the hotspots for dengue incidence rates in the central and western region of the

CMC area. Risk levels ranged from very low, low to medium. None of the GNDs had

a overall average risk above 3. In particular, the risks levels were highest consistently

in Kurunduwatta and the Fort, Pettah and Galle Face GNDs (Figure 18).
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Figure 15: Spatio-temporal monthly risk models of the GNDs, January to April, 2005

to 2011
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Figure 16: Spatio-temporal monthly risk models of the GNDs, May - August, 2005

to 2011
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Figure 17: Spatio-temporal monthly risk models of the GNDs, September - December,

2005 to 2011
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Figure 18: Overall spatio-temporal model of monthly temporal risk over the 7-year

study period.Risk level <1 =Low; 1-2 = Medium and 2-3= High

5.2.2.3 Spatial regression analysis. The summary of the independent and de-

pendent variables used in the OLS and GWR are described in Table 19.
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Table 19: Variables included in the spatial regression analysis

Dependent variable Independent variables

Source: DPH Source: LULC classes (%) Source: Census (%)

Incidence rate (IR)

of DF per 100,000

population per GND

Buildings Brick walls

Vegetation Cement walls

Green spaces Other walls

Tiled roofs

Asbestos roofs

Other roof materials

Piped-water supply

Population density

Housing density

DPH = CMC, Department of Public Health

The results of OLS regression found that proportion of tiled or concrete roofed

households, proportion of household with piped-water supply and neighborhood qual-

ity ratio were significantly associated with incident dengue cases. The Variance Infla-

tion Factor (VIF) values (lower than 7.5) indicated that the OLS estimations were not

biased by multi-collinearity. We further examined the residuals of the OLS model, and

found that the residuals had no spatial autocorrelation (Moran’s I = 0.06;p = 0.214)

. The OLS model explained about than the 76% of the total variance of the IR

with an AICc of 842.8. The Jarque-Bera Statistic is a test for whether the model

predictions are biased (i.e., the residuals are not normally distributed). This test

was statistically non-significant suggesting that the residuals of the model were nor-

mally distributed. However, the Koenker (BP) statistic was statistically significant

(p = 0.003),suggesting that the relationships modeled are not consistent (possibility
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due to non-stationarity or heteroskedasticity). We thus used the GWR to model

the relationship between the independent variables and the incident dengue cases lo-

cally at each GND level. Two models were selected for GWR with highest adjusted

R2 = 0.61and second highest R2 = 0.59.

γdengue incidence rate = βpipedwater supply + βBrick wall + βHousing density. . .Model I

γdengue incidence rate = βpipedwater supply + βBrick wall + βV egetation. . .Model II

Figure 19 provides the spatial description of all the independent and dependent

variables included in the final GWR model.

Figure 19: Visualization of environmental risk factors and dengue fever incidence
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Results of model I show both the magnitude and direction of association of the

parameter estimates. The grey areas indicate that the parameter estimates are not

significant for risk factor in that particular area (Figure 20). The results found that

proportion of piped-water supply and housing density were negatively associated with

dengue incidence rate. This association was significant for all GNDs. The increased

proportion of households with brick walls were significantly associated with higher

dengue incidence rate but only in one GND. The locally weighted R2between the

observed and the fitted values for each GND in figure 20 indicated how well the GWR

model fitted for each GND. GNDs in north-western part of the CMC area showed

higher R2. These areas overlapped the areas with higher magnitude of parameter

estimates for piped-water supply.

Results of model II are presented in figure 21. In this model, we included

proportion of piped-water supply in household by GNDs, proportion of brick walled

households and proportion of area covered by vegetation. As in model I, piped-water

supply and brick walled household were negatively and positively associated with

increased dengue risk, respectively. Increasing vegetation cover was positively associ-

ated with increased dengue incidence rate. All the three risk factors were significant

in most parts of the CMC area. The locally weighted R2 was highest in the north-

western parts of the CMC areas as in model I. These areas overlapped with areas with

higher magnitudes of parameter estimates for piped-water supply and brick walls.

Overall, results from both model I and II found strong association between

lower proportion of piped-water supply and higher proportion of brick walled house-

holds and dengue incidence rate. Both housing density and vegetation were weakly

associated with dengue incidence rate.
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5.2.3 Comparison of results between spatial and non-spatial analyses

The comparison between non-spatial (Poisson) regression and spatial (GWR) analysis

found that results of GWR were mostly consistent with Poisson regression (Table 20).

In both analyses, piped-water supply and brick walled households were significantly

associated with increased dengue incidence rate. Housing density was negatively

associated with dengue incidence rate in Poisson regression and in GWR model I.

However, the association was weak in both cases. Increased vegetation in an area was

significantly associated in GWR model II but not in the non-spatial analysis.

Table 20: Comparison between non-spatial (Poisson) and spatial analysis (GWR)

Type of analysis Piped-water supply Brick wall Housing density Vegetation
Non- spatial Negative£ Positive£ Negative No association
Spatial (model I) Negative£ Positive# Negative -
Spatial (model II) Negative£ Positive£ - PositiveU
GWR = Geographic weighted regression; ∗ = Not included in the model # Significant for
7% GNDs at p = 0.05; £Significant for 100% GNDs; U Significant for 93% GND
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6.0 DISCUSSION

The main purpose of this research was to investigate the association between climate,

local environmental and socio-demographic risk factors, and dengue incidence rate

in CMC, Sri Lanka. The study was done with the expectation that the results will

delineate the areas of high risk for dengue incidence within the CMC area, using

data that is currently available to the public health authorities. The study utilized

several secondary data sources that were publicly available to extract information on

risk factors. It also demonstrated the application of innovative tools such as remote

sensing, GIS and spatial statistics for modeling, and visualization of relationships

between the risk factors and dengue incidence rates.

The study found that: 1) there is a weak association between weekly tempera-

ture and rainfall and higher risk of dengue. The effect of climate variables is significant

at various lag periods but does not vary much in magnitude; 2) it identified monthly

hotspots of dengue risks based on the z-scores resulting from Getis-Ord Gi* for each

year in the study period as well as the estimated the overall spatio-temporal risk;

and 3) it identified local environmental factors such as decreased piped-water supply,

increased brick-walled housing, decreased housing density and increased vegetation

were significantly associated with high incidence of dengue fever cases.

6.1 EFFECTS OF CLIMATE ON DENGUE

This study found that increase in temperature preceded increase in dengue cases from

week 0 to week 18, but the effect remained constant. Increase in rainfall preceded the
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increase in dengue cases by 5 to 11 weeks but the risk was found to be constant across

the period. Other studies have shown positive association between temperature and

rainfall and increase in dengue cases (Hii et al., 2009, 2012; Karim et al., 2012; Jo-

hansson et al., 2009). These studies also found a lag effect of temperature and rainfall

on dengue incidence ranging between 8 to 15 weeks. Studies in Sri Lanka reported

positive association between climate variables and dengue vectors and dengue inci-

dence, but the results were non-significant. Surendran et al. (2007a) found a positive

association between monsoon rains and increase in Ae. Aegypti and Ae. Albopictus

populations in northern Sri Lanka. Similarly, Pathirana et al. (2009) found a positive

association with increased rainfall and increased vector population; but the associa-

tion became non-significant when other factors such as age and SES were included in

the model.

Dengue infections are climate sensitive and so it is important to better under-

stand how the changing climate factors affect the potential for dengue epidemics.

Studies have found that temperatures between 26řC and 36řC were highly conducive

for vector development (Morin et al., 2013). Others have reported that increasing

temperature decreases the time required for the dengue virus to become transmis-

sible to another host after initial mosquito infection (Rohani et al., 2009; Chang

et al., 1997; Lambrechts et al., 2011). Lambrechts et. al., (2011) suggested that large

changes in the daily temperature decrease the probability of vector infection. The

average daily temperature in Sri Lanka ranged from 23.6 to 36.10 (mean = 28.2; SD

= 1.45), for years 2005 to 2011. The daily temperature fluctuation between minimum

and maximum ranged between 0 to 14 with a mean of 5◦C. This suggest a favorable

environment for vector infection for most part of the year.

The climate in Sri Lanka is dominated by two monsoon seasons within a year and

two pre-monsoon season. The abundant rainfall in Sri Lanka sustains the mosquito

population creating ample breeding sites. During the first inter-monsoon season,

(March and April), there are warm conditions with thunderstorm-type rains. Over

most parts of the island, the amount of rainfall various between 10 cm and 250 cm .

In our study, we found that the median rainfall during the first inter-monsoon season
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was highest as compared to other seasons between 2005 to 2011. This period preceded

the season when the dengue incidence was highest across all the other seasons (see

Figure 14). During the Southwest monsoon season, varies from about 10 cm to over

30 cm over the entire country. The area where the study was conducted, experience

rains between 10 cm to 16 cm.

In our study, we found that the precipitation during the south-west monsoon

season ranged between 0 to 10 cm. This season coincided with peaks in the incidence

of dengue cases across all years. Studies have shown that very high rainfall potentially

washes away the breeding areas for dengue. Even though, the relationship between the

rainfall and dengue incidence is weak in our study, the lag of 5-11 weeks suggest that

amount of rainfall in the first inter-monsoon season and the reduction of rainfall in the

south-west monsoon season influences the incidence of dengue. Similarly, increased

rainfall during the second-inter monsoon season, followed by drier period during the

Northeast monsoon season results in another peak in the dengue incidence.

The effects of the mean temperature was found to be uniform on the dengue

incidence across the year. Increase in temperature 8-9 weeks prior showed slight

increase in risk of dengue incidence. This corresponds to the two dengue peaks ob-

served in the monsoon seasons each year, following the higher temperatures during

the inter-monsoon season.

Results of the sensitivity analysis using alternate data sources, were similar to

the original results. The analysis allowed comparison between data from single station

(i.e., from CMC area) with reanalyzed data (LDAS and TRMM data) that take in

to consideration large scale conditions that may influence weather in a given area.

The frequency and span of weeks with high temperature and moderate rainfall

play an important role in sustainable dengue transmission. Therefore, monitoring of

these weather conditions can provide early warning for dengue outbreaks. The time

lags occurring between the exposure to temperature and rainfall and the occurrence

of increasing dengue case or outbreaks offers a window for dengue forecast. However,

further investigations with additional data both in terms of time and space are needed

to develop a strong forecast model.
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6.2 SPATIO-TEMPORAL RISK MAPPING

The spatio-temporal mapping of dengue risk was estimated by using the hotspot

analysis, for each month, for all years in the study (2005 to 2011). The hotspot

analysis modeled the monthly incidence rates of each GND. The study identified

extreme index of hotspots across the 55 GNDs in the CMC area, thus improving the

visualization of the spread of disease over time and space. These results provide useful

information about the seasonal trends in the incidence of dengue fever as well as the

overall temporal trend during the study period. The monthly hotspot patterns of

dengue incidence were similar for most months but changes did occur. In particular,

the monthly risk patterns changed in years 2010 and 2011 reflecting the increase in

the overall dengue incidence rates during those two years as compared to the previous

years.

The results showed that these methods and tools can be beneficial for public

health officers to visualize and understand the distribution and trends of diffusion

patterns of diseases and to prepare warnings and awareness to the community (Khormi

et al., 2011). To our knowledge, this is the first study in Sri Lanka which has modeled

monthly spatio-temporal risks of dengue fever. Dengue spatio-temporal diffusion

patterns and hotspot detection may provide useful information to support public

health officers to control and predict dengue spread over critical hotspot areas only

rather than the entire CMC area.

6.3 LOCAL ENVIRONMENTAL AND SOCIO-DEMOGRAPHIC

VARIABLES

The results of non-spatial and spatial analysis found decreased piped-water supply,

increased brick-walled housing, decreased housing density and increased vegetation

were significantly associated with high incidence of dengue fever cases. Previous

studies have investigated one or more of these factors in relation with dengue incidence
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and found similar results in most cases.

The number of households with piped-water supply was negatively associated

with dengue incidence. These results are consistent with studies in Vietnam (Schmidt

et al., 2011), India (Fulmali et al., 2008), and other countries (Bowman et al., 2014).

In Sri Lanka, one study investigated the relationship between decreased piped-water

supply and Ae. Aegypti population and found positive but non-significant results

(Arunachalam et al., 2010). These studies have found that areas with poor tap water

supply have higher incidence rate of dengue fever. People without tap-water tend

to store water for drinking and cleaning purposes. These storage containers possibly

become breeding sites for Ae.Aegypti.

In our study, the association between piped-water supply and dengue incidence

was significant across all GNDs, suggesting that it was a strong predictor of dengue

fever in the CMC area. This information can help the public health authorities to

conduct dengue surveillance targeted in areas with limited or no piped-water supply.

Piped-water supply is also an indicator of socio-economic status (SES) in an urban

population. In a metropolitan city like Colombo, almost 70% of the total population

has piped-water supply in their own units. Houses in slums and lower SES neigh-

borhoods are more likely to have tap-water supply outside the units or outside the

premises of their housing. It is possible that houses with access to well water supply

belong to higher SES. We evaluated the relationship between well-water supply and

dengue incidence in a separate analysis but did not find any association.

Our study found that GNDs with higher proportion houses with brick walls had

higher incidence rate of dengue fever. Brick-walled housing has not been associated

with dengue incidence previously. However, we included it in our study as potential

surrogate for SES. In Sri Lanka, concrete plastered brick walls may indicate high SES,

while unplastered could indicate lower SES. SES may also depend of the quality of

bricks used. For example, hand-made bricks are used by families with lower incomes

as compared to commercially available bricks purchased by higher income families.

However, no data were available to verify this further.

Housing density was inversely associated with dengue incidence. This result
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is inconsistent with other studies that have found that closely spaced housing units

such as apartment complexes and walled to walled housing are likely to have higher

incidence of dengue (Schmidt et al., 2011; Vanwambeke et al., 2007; Khormi and

Kumar, 2012). Dengue vectors have a short flight distance (ranging from 50 meters

to 100 meters) in densely populated urban areas. Thus, closely packed housing or

high population density provides dengue mosqitoes higher number of hosts to feed

on, resulting in increased number of dengue infections. Previous studies in Sri Lanka

found that increasing population density was associated with increased dengue in-

cidence (Kannathasan et al., 2013). In our study, we found that housing density

was highly correlated with population density, and both had similar association on

dengue incidence. One of reason we were observing this effect was possibly due to

higher number of cases reported from GNDs with the location of National Hospital

of Sri Lanka. Several cases in the study provided addresses that were located within

the hospital campus. Due to lack of access to individual data other than what was

provided by the department of public health, we were unable to assess whether the

reported cases were residents within hospital quarters or patients admitted to the

hospital. However, this could not be verified further at this time.

Vegetation was found significantly associated with increased dengue incidence

in the spatial analysis. Previous studies in Sri Lanka have found that discarded

water containers with vegetation cover provide favorable breeding habitat for dengue

vectors (Ramasamy et al., 2011). Similarly, studies from Costa Rica and Brazil have

found similar results (Barrera et al., 2006; Bisset Lazcano et al., 2006). Localities

with less built area and more tree cover were found to have higher virus transmission

(Troyo et al., 2009). In Sri Lanka, most affluent houses have backyards with trees

and shrubs. It is possible that shade provided by trees in larger backyards and open

areas such as parks may protect mosquito habitats from heating and direct sunlight.

This can result in higher vector densities in localities with more tree cover(Barrera

et al., 2006; Bisset Lazcano et al., 2006)).
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6.4 STRENGTHS

The study included comprehensive data on dengue cases, over a period of seven years.

Data were collected using standardized forms thus, reducing interviewer bias as well

as misclassification of dengue cases. For predictor variables, all data were obtained

from secondary sources publicly available and mostly free. This reduced the overall

cost of the study.

Results of the climate-dengue analysis were further validated by comparing them

with results of alternate data sources for temperature and rainfall. Climate data

at the local level was compared with the reanalyzed data, indicating the potential

to utilize other data sources such as LDAS and TRMM for future climate studies.

We conducted both geospatial and non-spatial analysis to evaluate the relationship

between environmental risk factors and dengue fever. In most studies using geospatial

tools, results are reported only for the spatial analysis. Consistency of results using

both approaches supported internal validity of the study.

6.5 LIMITATIONS

There are certain limitations of this study, which needs consideration while inter-

preting the results. The study is a ecologic in design. Thus, no temporal or causal

relationship can be determined between the risk factors and dengue incidence.

The study was conducted in a small geographical area covering 37 sq. km. This

offered limited spatial variability in terms of LULC classes, to discern relationship

between various surface characteristics and dengue incidence. Quickbird data, ob-

tained from DigitalGlobe, Inc, used for LULC classification was a high resolution

imagery but was limited in spectral resolution to only four bands between visible

and near-infra red spectrum. This may lead to misclassification between some of

the impervious surfaces such as built-up area and roads. It is possible that with the

upcoming newer satellite imagery such as Worldview I and II, we can address some
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of these limitations. The Worldview satellites have higher spectral, temporal and

spatial resolution than the Quickbird data, and are available to the public.

Another limitation in the study was the lack of field validation of LULC clas-

sification and geocoding dengue cases. Field validation was not possible as result of

limited funding for the study. This is a common limitation of several remote sensing

studies, which then rely on Google Earth and pre-exisiting maps to validate their

findings.

The data on local environmental factors including LULC classes and population

and household characteristics were available only at one point in time. It is possible

that changes had occurred in these factors over the 7-year study period and were not

taken in to account in our analysis leading to possible misclassification of data for

risk factors.
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7.0 CONCLUSION

Dengue fever is a significant public health concern in Sri Lanka. The current study

is one of the few studies in Sri Lanka that evaluate the relationship between several

environmental risk factors and dengue incidence. Only three studies have been con-

ducted in Sri Lanka previously that have used GIS and remote sensing in context

of dengue research. The use of geospatial tools for data management and analysis

in the current study thus, contributes towards building the evidence-base for dengue

research using these tool in the country and in South Asia region.

Overall, the results of our analyses, both spatial and non-spatial are mostly

comparable with previous studies. The study explored several risk factors including

climate, environmental and socio-demographics to model risk of dengue. Future stud-

ies could use similar methods applied in this study to guide rapid population surveys

in high risk areas. These survey can help in determining appropriate interventions in-

cluding behavioral, educational and vector management, to targeted areas where the

risk of dengue was found to be high. The study also paves way for population-based

epidemiologic studies to validate the findings of this study. It shows the ability to

develop vulnerability and risk maps using existing data resources; and the potential

to incorporate geospatial tools for routine dengue surveillance in the country.

As part of our agreement with the CMC public health department, we will report

the results of the study to the department. The overall approach of this research can

be used by the decision makers in CMC department of public health for planning

and prioritizing future work in prevention and control of dengue. It could also inform

capacity building in use of geospatial tools at the local public health department.

With the help of local public health authorities we could build the foundation for
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developing dengue risk prediction model which in turn will can inform early warning

system for dengue.
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IRB APPROVAL FOR RESEARCH PROJECT

The ethical approval was obtained from both University of Alabama at Birmingham

and University of Kelaniya, Sri Lanka
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APPENDIX B

SENSITIVITY ANALYSIS

Results of the analyses using data from CMC meteorological departments and al-

ternate data sources for temperature and rainfall, were compared. There were no

significant difference between the results. Table 21-26 display these results.
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