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COUNT MODELS WITH MULTIPLE INFLATIONS 

ARVIND TRIPATHI 

BIOSTATISTICS 

ABSTRACT 

 The goal of this research is to develop new statistical models for the analysis of 

count data even if data exhibit over dispersion or under dispersion and has multiple 

inflated counts. Although many statistical models are available for the analysis of count 

data, there is no available statistical model that can address the presence of more than 

expected multiple counts together with over/under dispersion. In our first paper, we 

develop a multiple-inflation negative binomial (MINB) model and use the expectation 

maximization (EM) algorithm along with a numerical optimization to obtain maximum 

likelihood estimates. We applied the one step smoothly clipped absolute deviation 

(SCAD) for the variable selection. In the second paper, we develop a multiple-inflation 

generalized Poisson (MIGP) model and also use the EM algorithm along with a 

numerical optimization to obtain maximum likelihood estimates. In the third paper, we 

apply our novel MINB and MIGP models to data related to oral hygiene among systemic 

sclerosis (SSc) patients. 

 Based on the results from simulated data sets, we find that the MINB model, 

when used to analyze count data in the presence of multiple inflations and over dispersion, 

outperformed other existing models in terms of the average square loss (ASL).  In our 

second paper, we obtain similar results for the MIGP model. We find that the MIGP 

model had the smallest ASL among the other models which can be used to model over 
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dispersed counts. Furthermore, in the second paper, we applied the MIGP model in real 

data set of social survey.  In the third paper, after applying the MINB and MIGP models 

for analysis of oral hygiene data for systemic sclerosis (SSc) patients, we find that there is 

no significant association between the dental caries and SSc subtypes after adjusting for 

"Age" and "Income". This discovery suggests that modeling the count data without 

incorporating the multiple inflated counts in the analysis could provide substantially 

misleading results. Therefore, we strongly recommended considering the multiple 

inflation models when inflation in multiple counts is present. 

 

 

 

 

 

 

 

 

 

Keywords: count model, multiple-inflation, negative binomial, generalized Poisson, 

dental caries, systemic sclerosis 
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INTRODUCTION 

Background and Motivation 

The present research, namely “Count Models with Multiple Inflations,” provides 

novel statistical models for analysis of count data with inflations at multiple counts even 

if data is dispersed. Many statistical models have been developed and used to describe the 

quantitative relationship between the response and the predictor variables. However, to 

select an appropriate model, the distribution of the response variable plays an important 

role. When the response variable is count, then we generally expect the response variable 

to follow a distribution specified for the counts such as a Poisson or negative binomial 

(NB). Often when looking at the empirical distribution of the response variable, we find 

some counts have a much higher frequency than expected under the Poisson or NB 

distribution. When only the zero count has much higher frequency than expected under 

the Poisson or NB distribution, then it is referred as a zero inflated (ZI) count. When two 

or more counts have higher frequency than expected under the Poisson or NB distribution, 

then we refer to them as multiple inflated (MI) counts (Su et al., 2013). Typical examples 

of MI counts include traffic crash data, hospitalization frequency data in health-care, 

DMFT/DMFS count (i.e. count of the number of the decayed, missing, filled 

TEETH/tooth SURFACES in a person's mouth) in dental research, and cigarette smoking 

data. 

  An example will help clarify the nature of data with the multiple inflated counts: 

the data archive provided by National Health and Nutrition Examination Survey 
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(NHANES) offers “a program of studies designed to assess the health and nutritional 

status of adults and children in the United States. The survey is unique in that it combines 

interviews and physical examinations” (mentioned in 

http://www.cdc.gov/nchs/nhanes.htm) (NHANES 2001-2002). Plotting any count 

variable (e.g. cigarettes smoked per day) from the NHANES 2001-2002* survey reveals 

the presence of the MI counts. More precisely, when a variable which is the response to 

the question “On average, how many cigarettes {do you/does SP} now smoke per day?” 

(NHANES 2001-2002) was plotted (Figure 1), the presence of the MI counts can easily 

be seen in the data set. Information about the inflated zeros can be obtained from number 

of non-smokers.  

There are always some mechanisms which are responsible for the observed 

multiple inflated counts, and these mechanisms could be found with the proper 

investigation about the experiments generating the data. For example, in cigarette 

smoking, according to the CNN article, “Pack-a-day smokers decline” (Gardner, 2011), 

23% of all smokers smoked at least one pack a day in 2007. This fact indicates that the 

inflated count twenty (one pack) in the cigarette smoking data set is generated by one 

pack a day cigarette smokers.  

 

 

 

 

 

*The discussion about NHANES data set here is purely for demonstration purposes and no other 

information is used in the present research. For demonstration, the figure is created using the 

NHANES dataset. 

http://www.cdc.gov/nchs/nhanes.htm
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Figure 1. Histogram plot for the variable “Cigarettes smoked per day now” as given in 

the NHANES data set. 

 

Similarly, the inflated count ten (half pack) in the cigarette smoking data set is 

generated by half pack a day cigarette smokers. Overall, ‘no cigarette smokers’, ‘half 

pack a day cigarette smokers’ and ‘one pack a day cigarette smokers’ contribute in the 

inflations of zeros, tens and twenties and may occur in a dataset with the certain 

probabilities. In the above histogram for the NHANES 2001-2002 survey data, counts of 

20 (one pack of cigarettes) and 10 (half pack of cigarettes) have very high frequency 

relative to other counts and should be considered as inflated.  

 There are other types of data with multiple inflated counts. It is a widely known 

policy that in order for a person to receive nursing home benefits under medicare, a three-

day hospital stay in the previous thirty days is required. In practice, thus it is very obvious 

to observe the presence of inflated zero to three counts in the thirty days hospitalization 

stay data, in patients with non-fatal diseases. The presence of the multiple inflated 

DMFT/DMFS counts has also been noticed.  Preisser et al. (2012) indicated that over the 

past five to ten years, models for zero inflated counts have been increasingly applied to 
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the analysis of dental caries indices (e.g., DMFT, DMFS, etc.; dental caries result from a 

destructive process which not only causes decalcification of the tooth enamel but also 

leads to continued destruction of enamel and dentin, and cavitation of the tooth). The 

authors noticed that the main reason for this is linked to the broad decline in children's 

dental caries experience. As a result, the DMF indices more frequently generate low or 

even zero counts. Frequent generation of low or zero counts simply indicates the presence 

of the MI counts. 

 The statistical models that analyze count data without considering any inflated 

counts have long been used in many disciplines. Whenever the outcome of interest had 

been a count variable, investigators typically applied the Poisson regression model. 

However, the Poisson regression model can only be applied when the variance is 

approximately equal to the mean. In practice, we often sample the data from a population 

in which the variance of the count outcome is much different from the mean. When the 

variance is more than the mean, then the data is called "over dispersed". To model the 

over dispersed data, the NB regression model has been used much more frequently. 

When the variance is less than the mean then the data is called "under dispersed". The 

Poisson distribution is generalized in many ways, and generalized Poisson regression 

models are used to model the under dispersed data. The generalized Poisson models are 

also often found useful for over dispersed data, and they have been applied whenever 

data is heterogeneous.    

 In the above discussed models, when only the zero count is inflated, zero-inflated 

Poisson (ZIP), zero-inflated generalized Poisson (ZIGP) and zero-inflated negative 

binomial (ZINB) have been introduced and discussed below. Basically, the zero inflated 
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models are obtained using the concept of the mixture distribution. In fact, in a real world 

situation, it is not always possible to get the data from one distribution; the data may 

arrive from the different distributions. Lambert's (1992) work on zero-inflated Poisson 

(ZIP) model was motivated from such an experiment in which the counts came from the 

two states (perfect and erroneous) and the counts in each state followed different 

distributions. The perfect state followed a degenerate distribution at zero and was mixed 

with an untruncated Poisson distribution of the erroneous state. Eventually, the model 

was expressed as a mixture of two components: one component was a degenerate 

distribution at zero and the other component was count data following the Poisson 

distribution. Because no error represents the zero count, the author found more zeros in 

the data set were coming from the perfect state. In other words, it is observed that the 

perfect state was adding more zeros. However, when the number of errors in the 

erroneous state was modeled by a negative binomial or generalized Poisson distribution, 

then the zero-inflated negative binomial (ZINB) model (Greene, 1994) and the zero-

inflated generalized Poisson (ZIGP) model (Famoye et al. 2006) were used, respectively. 

The need for an appropriate model to deal with the presence of the multiple 

inflated counts had mostly been ignored till 2013, when Su et al. proposed a multiple-

inflation Poisson (MIP) model to deal with the presence of multiple inflated counts. The 

authors extended the idea of inflation in the zero count to inflations in multiple counts. 

They also assumed a mixture distribution in which non-inflated counts were following a 

Poisson distribution and multiple inflated counts were following a degenerate distribution 

at the respective inflated counts. The MIP was used to model the data related to the 
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frequency of visits of the doctors and/or health professionals in two weeks which had two 

inflated counts, zero and one.  

While the MIP is a valuable step, but involvement of Poisson distribution make it 

restrictive to equidispersed non-inflated counts and we still need an appropriate more 

general model to address the presence of multiple inflated counts in any situation (e.g. 

presence of hetrogenity). In the present research, we propose commonly used negative 

binomial and generalized Poisson distributions to model dispersed non-inflated counts. In 

particular, we propose two new models namely the multiple-inflation negative binomial 

(MINB) and the multiple-inflation generalized Poisson (MIGP). When there is no 

heterogeneity (over dispersion or under dispersion) in the data, the MINB and MIGP 

models will reduce to the MIP model, and when only one count zero is inflated they will 

reduce to the ZINB and ZIGP models respectively. Specifically, in the present research, 

we assume a mixture model in which discrete distributions for inflated counts is mixed 

with either a negative binomial or generalized Poisson distribution followed by non-

inflated counts. The models presented are also more general in another sense: they 

incorporate the information provided by the data to model the parameters for mixing 

probability. In the present research, we also proposed the use of a one-step smoothly 

clipped absolute deviation (SCAD) method to select the important variables. The use of 

SCAD makes the variable selection less time consuming and more flexible in the MI 

models in comparison to such pre-existing methods as testing based methods, best subset 

selection methods and least absolute shrinkage and selection operator (LASSO). We also 

illustrated the application of our models (MINB and MIGP) in both simulated and real 

data sets. Finally, we applied our models to identify and then explore the association of 
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dental caries with two main subtypes of systemic sclerosis limited and diffuse cutaneous 

among adults. Using the above simulated and real data sets, we demonstrated that without 

considering multiple inflated (MI) count models, the results would have been misleading. 

Therefore, we strongly recommend the use of the multiple inflated count models in cases 

marked by the presence of significant inflation in multiple counts. 

Review of Literature 

Count data and its distribution have been explored in great detail for the last few 

centuries. The Poisson distribution and NB distribution have long been frequently used 

for count data. Later on, generalization of the Poisson distribution was also found useful 

for dispersed (over/under dispersed) counts, but the NB is preferred for the distribution of 

the over dispersed counts. Since the study on count data and on their distributions began 

centuries before, to appreciate the extraordinary contributions of the researchers’ books 

presenting the concise history of the statistics are very useful. Dodge (2008) provided the 

history of the Poisson and NB distribution in his book “The Concise Encyclopedia of 

Statistics”. The author mentioned that Pascal (1679) was the first who treated the NB 

distribution. Furthermore, to assess the number of times a coin should be flipped in order 

to get fixed number of heads Montmort (1714) used the NB distribution. Equally 

important, Poisson distribution carries this name due to Siméon-Denis Poisson and is the 

limiting case of the binomial distribution. In fact, Poisson (1837) found this distribution 

by considering the limits of the binomial distribution. Later on, the famous Polish 

statistician Ladislaus Josephovich Bortkiewicz (1898) published a book about the Poisson 

distribution called “The Law of Small Numbers.”  His book is famous for Prussian horse-

kick data, he suggested that the number of soldiers killed each year by mule-kicks in the 
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Prussian cavalry follow a Poisson distribution. In his book, he also examined the data on 

child-suicides. Dodge (2008) also mentioned in his book that the use of the NB 

distribution as an alternative to the Poisson distribution was implemented by Student 

(1907), and that the application of the NB distribution is further explored by Greenwood 

and Yule (1920) and Eggenberger and Polya (1923).  

The above details provide only a snapshot of the some important works which 

have been done to explore count data and their distributions in the past few centuries. 

Although the importance of the NB distribution to deal with real world problems could 

never be undermined, when the data are not over /under dispersed then the Poisson 

distribution comes in handy. Moreover, the need for handling over as well as under 

dispersed counts in a more detailed and appropriate way prompted statisticians to  

generalize the Poisson distribution. Consul and Jain (1973) introduced the generalized 

Poisson distribution with two parameters which was subsequently extensively studied by 

Consul (1989). 

The Poisson distribution has only one parameter to estimate, i.e., mean. The 

variance of the Poisson distribution is same as the mean. By contrast, generalized Poisson 

and NB distributions have two parameters to estimate—namely mean and dispersion 

parameter. The variance of the NB distribution could be greater than the mean depending 

on the dispersion parameter. However, the variance of the generalized Poisson 

distribution could either be greater or less than the mean. Figure 2 illustrates the density 

function of the Poisson distribution for the different values of the mean parameter. 

Figures 3 and 4 illustrate the density function of the NB and generalized Poisson 

distribution for the different values of the dispersion parameter and fixed mean. 
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Figure 2. Probability density functions of the Poisson distributions with the means at 0.5, 

1, 3, 5, 7, 9. 
 

 

Figure 3. Probability density functions of the negative binomial distributions for a fixed 

value of the mean (µ), i.e. 10 and for the different values of the dispersion parameter 

(alpha), i.e. 1,  3, 5, 7 and 9 along with the Poisson distribution with the mean (µ), i.e.  10. 
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Figure 4. Probability density functions of the generalized Poisson distributions for a fixed 

value of the theta (mean=   ), i.e. 3 and for the different values of the lambda (dispersion 

parameter   
 

   
), i.e. 1.1,  1.3, 1.5, 1.7, 1.9 and 2.1. 

 

Incorporating the above discussed distributions of the count data into the 

regression analysis initiated the advent of count models. For regression analysis of the 

count data, a unified approach developed by Nelder et al. (1972) in which dependent 

variables come from the different distributions of the exponential family (including count 

data) became very useful. Nelder et al. (1972) unified the Poisson and NB regression with 

other regression models and proposed generalized linear models. 

Moreover, it is usually understood that in real world situations, often data come 

from two or more probability distributions. At first, Pearson (1894) considered the two-

component normal mixture distribution. Later, the mixtures of the degenerate distribution 

at zero with the different count distributions became very popular and remain in common 

use.  These are known as zero inflated (ZI) models. The idea is further extended to the 

multiple inflation (MI) count models using the mixture of degenerate distributions at 

multiple counts and Poisson distribution (Su et al., 2103). Eventually, some important MI 
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models are proposed in the present research which use mixture of discrete distribution 

and NB/ generalized Poisson distribution.  

Among the above discussed models, NB2 parameterization is used for the 

standard NB regression model. In fact, the standard NB regression model is also termed 

as the NB2 model owing to the quadratic nature of its variance function (Hilbe, 2011). At 

the same time, NB1 parameterization, like the NB2, has a variance as linear function of 

the mean. NB1 model is also called linear NB model. In fact, this notion is based on the 

value of the exponent of the mean present in the variance function and could be 

generalized for any value of exponent e.g. for exponent P the parameterization is referred 

as NB-P (Hilbe,2011). Cameron and Trivedi (1986) were the first to explore the 

distinction between the NB1 and NB2 models. The parameterization of the NB2 is the 

traditional parameterization of the NB model and is used in the current research. 

The probability density plots given in Figure 2 to 4 show that the expected 

number of counts under the Poisson or NB distribution may vary based on their 

parameters. However, the experiment produces some counts in a higher than expected 

frequency and some counts may not be produced at all.  This leads to the concept of 

inflated counts and truncated counts distributions. Let us first discuss truncated 

distributions. For this, an example provided by Hilbe (2011) with a good explanation is 

used here. For the length of the stay in a hospital, as it takes value starting from 1 because 

a stay starts after registration and so a stay could never be zero days unless it is defined 0 

for the one who never stayed in the hospital. The author further mentioned, the Poisson 

and NB distribution both incorporate zeros. Subsequently to exclude the zeros from the 

underlying distribution in accordance with the data, the distribution itself needed to be 
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changed. However, at the same time all the probabilities must also sum to 1, as per the 

definition of the density function. The zero-truncated models are proposed to 

accommodate the above amendments. However, the mean of the distribution is shifted 

towards to the left and thus results in under-dispersion. Now, as some counts may show 

higher frequencies than expected, the count data may also have more zeros than expected 

under a reference model which leads to over-dispersion. Mullahy (1986) found that there 

might be different mechanisms leading to these excess zeros. For example, the data may 

be generated from two processes with different distribution functions, where the one 

process generates the zero counts and the other process generates non-zero counts. Such a 

process leads to a model referred as a hurdle model. The author also stated that whether 

or not a count outcome will take a positive or zero realization is governed by a binary 

outcome that has a binomial probability. When the realization is positive, the hurdle is 

crossed and modeled with truncated-at-zero count data model. Heilbron (1994) proposed 

a special type of hurdle model called the zero-altered model. Zero-altered Poisson and 

zero-altered negative binomial models are referred as ZAP and ZANB respectively. They 

have also been termed overlapping models, or also zero inflated models.  

Lambert (1992) found that the mechanisms leading to the excess zeros consist of 

two processes with different distribution functions, where one process generates the zero 

counts while the other process generates the counts following Poisson distribution. She 

proposed the zero-inflated Poisson (ZIP) regression, with an application to defects in 

manufacturing. Greene (1994) generalized the ZIP model to accommodate heterogeneous 

data and proposed zero-inflated negative binomial (ZINB) model. Hall (2000) proposed 

the zero-inflated binomial (ZIB) regression model and incorporated random effects into 
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ZIP and ZIB models; and Lee et al. (2001) provided the mixed ZIP model and 

accommodated the extent of individual exposure. Famoye et al. (2006) proposed a zero-

inflated generalized Poisson (ZIGP) regression model and used it to model domestic 

violence data with too many zeros. Su et al. (2013) extended the idea of more than 

expected zero count by also including more than expected non-zero and/or more than one 

counts. They proposed multiple-inflation Poisson (MIP) model. 

The present research is analogous to the MIP in that we propose a multiple-

inflation negative binomial (MINB) model and a multiple-inflation generalized Poisson 

(MIGP) model and demonstrate their importance by using a data set related to the dental 

carries.  

Generalized Linear Model (GLM) 

Nelder and Wedderburn (1972) unified various statistical models, including linear 

regression, logistic regression and Poisson regression to formulate Generalized Linear 

Models (GLM). 

The following three elements are used to generalize the linear model: 

1. Any probability distribution which belongs to the exponential family. 

2. A function of the predictors linear in regression parameters ,X    

where X is the design matrix and   is the vector of the regression 

parameters. 

3. A link function g such that    ,g    where Y  is a dependent variable 

or outcome variable and  E Y  . 

When the outcome of interest is the count model, then the Poisson distribution 

becomes the obvious choice for the first element (i.e. a probability distribution from the 
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exponential family) and then the generalized linear model is referred as Poisson 

regression model. However, for the over dispersed counts most often the negative 

binomial (NB2) distribution is used and in such a case the generalized linear model is 

referred as negative binomial regression model.      

Poisson regression model 

 The conditional probability distribution for a Poisson random variable iY , given 

the vector of covariates iX   is given by 

    
 

; 0,1, ,
!

ii
y

i

i i i i i

i

e
Prob Y y |X p y y

y

 

       

where i  is the parameter to be estimated, known as mean occurrence rate per unit of time, 

and is a function of covariates. 

Therefore, we have 

       exp logT T

i i i i i i iE Y|X X E Y|X X       , 

where,    is a vector of regression parameters. The Poisson regression model is also 

called log-linear model because the logarithm of the conditional mean is linear in the 

parameters. 

The Poisson model is very restrictive in the sense that it could only be applied 

when the conditional variance is equal to the conditional mean. Therefore, the Poisson 

model is not often found useful to handle real-world situations because of the presence of 

over or under dispersion, i.e. the variance is either more or less than the mean.  

Negative Binomial Regression model 

 When the variance of the count data exceeds its mean then the negative binomial 

(NB) regression model is considered as a remedy. In the NB regression model, an 



15 
 

unobserved heterogeneity term for the observation i  is introduced to allow the presence 

of over dispersion. Therefore, the NB regression model is more generalized than the 

Poisson regression model. The following parameterization of the NB model is very 

frequently used. 

  '

i i i i i i iE(Y | X , τ ) μ τ exp X β τ    

where iτ  is the unobserved heterogeneity and, 

   i iτ gamma ν, ν E τ 1    and  iVar τ 1\ ν.   

 But the dependent count variable iY  conditional on ix  and iτ  follows Poisson 

distribution, i.e.,  

 
   iy

i i i i

i i i i

i

exp μ τ μ τ
P(Y y | x , τ )

y !


    

and iy  follows NB distribution for given ix  

  
 

   

iν y

i i
i i i

i i i

Γ ν y μν
P Y y x

Γ y 1 Γ ν μ ν ν y
|

    
     

     
  

where the conditional mean is given as iμ  and conditional variance is given as 

i
i

μ
μ 1

θ

 
 

 
 which is quadratic in iμ  therefore this parameterization is called NB2. The 

NB1 is different from the NB2 model and has a variance i
i

μ
μ ,

θ
   a linear function of iμ . 

Taking  
1

α
θ
   variance term becomes  i iμ 1 αμ .   
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 By using the fact that when we restrict a parameter in a more complex model to 

be zero then the result is called a nested model. Notice that when  α 0  the NB  

Poisson model. The Poisson and the NB models are nested. 

Generalized Poisson Regression Model 

The Poisson model does not provide flexibility to model dispersed counts 

outcome due to an underlying assumption about equality in mean and variance. The 

generalization of the Poisson model is considered an option other than the negative 

binomial model. The generalization of the Poisson model can also be used to model the 

under dispersed (population variance is less than the population mean) counts. Moreover, 

NB can only be used when over dispersion (population variance is greater than the 

population mean) is present. Among the available generalizations, the Lagrangian-

Poisson distribution has been a popular alternative (Johnson et al.,1992, p.189) to the 

Poisson distribution and is also known as generalized Poisson distribution (GPD)(Consul 

and Jain,1973). The probability density function of generalized Poisson distribution is 

given by:   

        
1 1

, ! exp , &
y

P Y y| y y y y I      
           

where, 0   and max 1, 1
m




 
    
 

, where 4m   is the greatest positive integer 

satisfying 0m    when 0   (and then   0P Y y   when )y m . The mean and 

variance of GPD are given by  
1

1 


  and  
3

1 


 respectively (Consul,1989), 

hence when sample variance is greater than sample mean, this distribution is more 

appropriate than Poisson distribution.  
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For regression purpose, we write  ; , ) , 0i i i iE(Y|X X        where   a 

vector of regression parameters and iX   is the design matrix. Considering 
1

1






, the 

mean  (i.e. ; , )i iE(Y|X    ) and the variance (i.e. ; , )i iVar(Y|X    ) of GPD can be written 

as i  and 2

i    respectively where, 
1

1






 represents the square root of index of 

dispersion, incorporating this we get the following density function  

      
 1 1 1

, , 1 ! exp
i

i
y i iy

i i i i i

y
P Y y |X y y

 
     



 
              
 

  

where  0 logi i and  modeled  as X    . 

Zero- Inflated Count Models 

The generalized Poisson distribution (GPD) was introduced by Consul and Jain 

(1973) to handle count data with over-dispersion. The generalized Poisson distribution is 

similar to the NB distribution in the sense that it also incorporates an extra parameter for 

heterogeneity or dispersion. However, the difficulty arises when the zeros in the data set 

are in excess. For this purpose, the zero-inflated model was introduced by Lambert 

(1992) in its formal sense to deal with the problem related with the excess of zeros. The 

zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) regression 

models are often used to analyze data with inflated zeros. However, hurdle models 

preceded zero inflated count models in the development to analyze the counts with many 

zeros.    
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Hurdle Model 

The hurdle model was proposed by Mullahy (1986) using a two-stage modeling 

process. In the model, a binary variable that measures whether the response falls below or 

above the hurdle is modeled in the first stage and in the second stage a truncated model is 

used to model the observations above the hurdle. In the zero inflated count data, the 

hurdle is taken as zero. In this way, zero-inflated Poisson model could be considered a 

special case of the hurdle model. More precisely, a close relationship between the hurdle 

model and the zero inflated models can easily be observed as both are mixtures of two-

components with one component a degenerate distribution at zero and the other 

component a count model. The second component in a hurdle model is different from the 

zero inflated model and follows a zero-truncated distribution whereas in a zero inflated 

model, it follows a non-truncated distribution.  

Zero- Inflated Poisson Model 

The Poisson model with mean    and sample size n  must have λne expected 

number of zero counts (e.g. items without defects) with probability of getting the zero 

count (e.g. no defects) 
λe .  

However, in real world situations, the number of zero counts (e.g. no defects) 

could be more than expected. Often times, no defects are coded as zero, hence more than 

expected zeros means more than expected no defects. The Poisson model with more than 

expected zeros is called the zero-inflated Poisson (ZIP) model. 

In other words, the Poisson model of count data suggests that the variance of the 

data should be equal to the mean. The problem arises when we find out that the data is 

sampled from the population having variance not equal to the mean. The two possibilities 
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may be there, either the variance is less than the mean, or the variance is greater than the 

mean. The problem that the variance is greater than the mean has been termed as over 

dispersion and the variance is less than the mean as under dispersion. There are many 

possible reasons for the over dispersion determining the specific reason requires proper 

investigation of the experiment that provides the data. The one possible reason which 

many researchers have been encountered is the excess of zeros. This problem arises when 

the zeros are generate by a different process in the experiment and cannot be ignored.  

Lambert (1992) encountered with such a problem in which properly aligned 

manufacturing equipment produced zero defects, while misaligned equipments produced 

other defects. The zero-inflated Poisson model was first introduced by Lambert (1992) to 

analyze such data and then has been widely applied to health-care, economics and social 

sciences data that contain an excess of zeros. 

In the zero-inflated Poisson (ZIP) model of Lambert (1992), the probability P is 

used for the possible zero observations, and  1 P  for the observed Poisson ( )  random 

variable. The ZIP model is given by considering that the independent response variables 

 
'

1 nY Y , ,Y   follow:  

 
   i

i i

0 P
y

Poisson λ 1 P

i                                    With probability 

       With

       

 probability           


 


  

So that, 
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
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 Furthermore, the parameters  
'

1 nλ , ,λ     and   
'

1 nP P , ,P    are modeled 

as  log λ B  and,  
P

logit p log Gγ
1 P

 
  

 
 where B and G  are the matrices of 

covariates   and   are regression parameters. 

The discussion about the number of parameters needed to be estimated provided 

by Lambert (1992) is worth mentioning here. As per Lambert (1992), the covariates that 

affect the Poisson mean of the imperfect state may or may not be the same as the 

covariates that affect the probability of the perfect state. When they are the same (i.e. 

B G ) and    and P  are not functionally related, then the ZIP regression requires twice 

as many parameters as the Poisson regression. At the other extreme, when the probability 

of the perfect state does not depend on the covariates and G  is only a column of ones, 

then the ZIP regression requires only one more parameter to estimate than the Poisson 

regression. As per this discussion, the presence of more regression parameters to estimate 

in the ZI models than their non-zero-inflated counts model analogues cannot be 

overlooked. This underscores the importance of the variable selection in inflated count 

models and discussed in more detail later in the related section.     

Due to the presence of two separate model components, the variable selection has 

become an important part of the ZIP. Not only the presence of two model components in 

the ZIP, but also advances in information technology have made the variable selection 

even more important. Modern technology has made data collection and storage easier, 

and thus the range of potential explanatory variables is becoming wider, including not 

only demographic, disease history, and medical variables but also socio-economic status, 

lifestyle, and genetic information. If we have k  potential predictors and want each to be 
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either included in or excluded from each of the two model components of the ZIP than 

we have k4 possible models. However, in one model component the possible models are 

only k2 . Recently for this purpose, Buu et al. (2011) proposed a new variable selection 

method for the ZIP model and applied it to the substance abuse field. Su et al. (2013) also 

used the 1  -regularization to aid in variable selection in the multiple-inflation Poisson 

(MIP) model. The discussion of MIP is provided below. In the present research, the 

method adapted by Buu et al. (2011) is implemented to aid in variable selection.   

The two states assumption used by Lambert (1992) requires some further 

discussion. Lambert (1992) considered two states: namely, a perfect state and an 

erroneous state (following Poisson distribution). For estimation, she supposed that we 

knew which zero is coming from the perfect state and which is coming from the Poisson; 

that is, she introduced dummy variable iZ  such that 

 
 

i

i

i i

1 when Y is from the perfect, zero state and
Z

0 whenY is from the Poisson λ state 

        

               

 

 


 


  

 She used this random variable in estimating the parameters by using the EM algorithm. 

Heilbron (1994) proposed the zero altered Poisson and zero altered Negative 

binomial regression models similar to the ZIP.  But both the models (ZIP and zero 

altered) were developed independently. Heilbron (1994) considered a model of mixture 

distributions by assigning a point mass at 0 along with a positive Poisson. Figure 5 

provides plots of the ZIP models and compares them for different values of mixing 

probabilities. 
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Figures 5. Zero-inflated Poisson (ZIP) models with the mean 5 and for different mixing 

probabilities i.e.  0.1, 0.3, 0.5 and 0.7 along with the Poisson distribution with the mean 5. 

 

Zero-Inflated Negative Binomial (ZINB) model 

 

The ZIP model has also been extended in several ways. When over or under 

dispersion exists, the one remedy might be the zero-inflated generalized Poisson (ZIGP). 

However, the zero-inflated negative binomial (ZINB) model is preferred when the non-

inflated counts are sampled from the over dispersed population.  

As mentioned earlier, the underlying assumption in the zero-inflated (ZI) models 

is the existence of entities in two states in which one state is called a true-zero state or the 

inherently safe state and another state is called a non-zero state that follows a distribution 

like Poisson, negative binomial (NB2) or generalized Poisson. For the ZINB model, the 

non-zero state follows a negative binomial (NB2) distribution i.e.:- 

  
 

   

1
iτ y1 1

i i
i i i i1 11

i ii

Γ y τ μτ
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
 

 

    
     

     
  

The ZINB model is defined as 
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where the iz  is defined as above (see the ZIP model) and the iμ  is modeled using the log-

linear model and the iP  is modeled using the logistic model in the way similar to the ZIP 

i.e. 

 log μ B   and  
P

logit p = G
1 P

log 


 

where the B and G are the matrices of the covariates and     and     are the regression 

parameters. The probit models instead of logit models are also used to model the iP . The 

concern about the variable selection in the ZINB is the same as in the ZIP. However, to 

decide on the variables in each model component, the variable selection is performed 

before applying the zero inflated models. For example, in a study by Genuer et al. (2011) 

to find the relationship between Plasmodium gametocytes and their infectiousness to 

mosquitoes, the authors analyzed data for which the number of variables plus attendant 

interactions was of the order of the sample size. They first performed variable selection 

by applying a variable selection procedure based on the random forests score of 

importance and then used the ZINB on the selected variables to assess the infection 

prevalence. 
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The existence of a random effect has also been explored when there is 

dependency among the data due to longitudinal measures taken repeatedly on the same 

subjects and/or clustered design (Yau et al., 2003). Figure 6 provides plots of ZINB 

models and compares them for different values of mixing probabilities.  

 

Figure 6. Zero-inflated negative binomial (ZINB) models with the mean 5, dispersion 

parameter 0.3 and for the different mixing probabilities, i.e.  0.1, 0.3, 0.5 and 0.7 along 

with the negative binomial distribution with the  mean 5 and dispersion parameter 0.3. 

Zero-Inflated Generalized Poisson (ZIGP) model 

Famoye et al.(2006) proposed a zero-inflated generalized Poisson (ZIGP) model 

in a fashion similar to the ZIP and ZINB. They used following parameterization for the 

generalized Poisson distribution. 

  
   

 

1

i

1 1
, , exp ; y 0,1,2,

1 ! 1

i i
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i i ii
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y

  
 

 


   

    
    

  

where       1 2exp , 1, , ,i i i ij j i i i ikx x x x x x        is the  
thi   row of the 

covariance matrix X and   1 2, , ,i k      is given as unknown k dimensional column 

vector of regression parameters,   is defined as dispersion parameter.  
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Similar to the other ZI models, 

 
   

   
i i i

i i i
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 

 

  
 

 
  

The symbols in the above formulation are slightly changed in order to maintain 

the consistency across all the ZI models. The Pi and the     are modeled in a fashion 

similar to the ZIP and ZINB, i.e. using the log linear and logistic model respectively.  

Figure 7 provides plots of ZIGP models and compares them for different values of 

mixing probabilities.  

 

Figure 7. Zero-inflated generalized Poisson (ZIGP) models with the mean 5, dispersion 

parameter 0.3 and for the different mixing probabilities, i.e.  0.1, 0.3, 0.5 and 0.7 along 

with the plot for generalized Poisson distribution with mean 5 and dispersion parameter 

0.3. 

Multiple-Inflation Poisson Model (MIP) 

In real world scenarios, the zero count is not the only one which is observed with 

the higher frequency than expected. In fact, looking at the histogram often time reveals 

that any count other than zero could be inflated. Even the presence of many counts as 

inflated counts can be easily observed. The inflation in the counts carries logic behind it 
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which provides information about the possible mechanism leading to these inflations. 

This fact was mostly overlooked until the proposal of the multiple-inflation Poisson 

(MIP) model. However, multiple inflation and over/under dispersion are two major 

problems associated with modeling the count outcome. The multiple inflations in the 

counts in the presence of over/under dispersion is addressed in the present research. 

Similar to the underlying assumption in zero inflated (ZI) models about the existence of 

two states i.e. perfect and erroneous, the states in the multiple inflated (MI) models are 

the inflated count state (i.e. a state inherently prone either to a perfect state or to a state 

generating some particular counts of errors) and an erroneous count state following a 

distribution for count data i.e.  a Poisson, NB, or generalized Poisson distribution.  

Su et al. (2013) proposed the MIP model. Instead of considering that count 

response iy  has only one value, i.e. zero as inflated, Su et al. (2013) considered that it 

contains a total of M inflated values. These inflated values may or may not be 

consecutive and denoted them as   0,1, , M 1 .  They proposed MIP model as follows:  
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They used log-linear model to model the Poisson mean i   i.e. 

    T T

i i i ilog μ B β or μ exp B β     
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and the cumulative logit or proportional odds model is used to model the inflated counts 

i.e. 

  
 

i 1 0

Pr
logit log ,

Pr( )

i T

i m

i

y m
y m G

y m
 


   


  

where the iy  represents the count response,  0,1, , 1m M    represents the inflated 

values, the i iB and  G  associated covariate vectors and the 1 0, mand    the vectors for 

regression parameters of loglinear model, slope parameters and intercept parameters  of 

cumulative logit model respectively.  

They also expressed the MIP model by using  1M   states. It should be noticed 

that Lambert (1992) used two such states which were referred as perfect state and 

erroneous state. For M inflated counts, i.e.  0,1, , 1 ,M   the authors took state 0 for 

0iy   , state 1 for 1iy  , and so on, state  1M   for   1iy M   and at state M for iy

following Poisson ( )i . 

They introduced dummy variables imz  such that  1imz   if iy  is from the 
thm state 

and 0  otherwise, for m 0,1, ,M   and i 1, ,n  . Thus, im

m

z 1  and  im im'z z 0  for 

any m m'  .Conditioning on these dummy variables, they provided the distribution of iy  

as 
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
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They also proposed a different model formulation obtained via a mixture of a 

discrete distribution over all inflated values   0,1, , M 1   and a Poisson distribution, 

where the mixture probability is supplied by a Bernoulli model. 

 
    

 

' '

i0 iMi M 1

i

iM

Discrete{ 0, , M 1 ;(p , ,p } .1 p
y

with prob.pi

    with prob

Poisson                                              


    

 


  

where,  
M 1

'

im

m 0

p 1




  and other parameters are modeled as follows: 
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The zero-inflated models are called the ZIP models when the non-inflated counts 

follow a Poisson distribution having variance equal to the mean. However, equidispersion 

(i.e. population variance is equal to mean) is found very restrictive and the NB 

distribution and generalized Poisson distribution are used frequently for over/under 

dispersed data to model the non-zero state and the models are referred as the ZINB and 

ZIGP models. Similarly, multiple-inflation negative binomial (MINB) and multiple-

inflation generalized Poisson (MIGP) models are proposed in this research to model the 

data when non inflated counts are present without equidispersion and with over/under 

dispersion. It is recommended in the present research that multiple inflated models should 

be applied if inflation is present in the data to avoid misleading results. 

It worth mentioning here, the Poisson, NB and generalized Poisson distributions 

were not always the only choice as one of the mixing distributions in zero inflated models. 

The possibility of mixing other distributions has also been explored. Mixing zeros with 
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right censored continuous distributions to model survival data (Farewell, 1986 and 

Meeker, 1987) and mixing zeros with a gamma distribution to model rainfall data 

(Feuerverge,1979) are a few such examples. Hence, multiple-inflated models have also 

potential to be explored for the choices other than Poisson, NB and generalized Poisson 

distributions as mixing distributions.  

As mentioned earlier in the above sections related with the ZIP and ZINB, the 

variable selection again plays a very important role in the application of such models. Su 

et al. (2012) used 1  regularization to select the important variables. They minimized the 

following: 

   j 1j
θ

j

min L θ λ θ    

where  .L  is a log-likelihood function and 
jλ 0  are the tuning parameters, which after 

local quadratic approximation of log-likelihood changes into the quadratic programming 

problem.  

Variables Selection 

 As mentioned earlier, the zero inflated (ZI) models have two separate model 

components. Lambert (1992) used a log-linear model and a logistic model as two separate 

model components. The predictors for these model components may be the same and 

could also be entirely different. Due to the two model components, there are at the most 

 # of predictors 2# of predictors4 2  possible models (instead of at the most # of predictors2  possible 

models in non-zero-inflated analogs of ZI models). Therefore, it becomes even more 

difficult in ZI models than in their non-zero-inflated analogues to find the important 

variables associated with the outcome variable. Consequently, variable selection has 
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always been an issue whenever the zero inflated model is used. Selecting the important 

variables which are associated with the outcome variable has been the topic of interest 

from a very long time. The recent developments in this area have made variable selection 

very straight forward and less time consuming. 

Testing based Methods 

 Some widely used variable selection methods are based on the sequential 

hypothesis testing. These methods are in much use because they provide a simple way to 

choose the predictors which are significantly associated with the outcome variable. But 

these methods somehow lack the well justified theoretical background.  

 Stepwise selection method. The forward, backward and bidirectional sequential 

testing procedures are among the most widely used variable selection procedures and are 

in very common use. Efroymson (1960) proposed this as a widely used algorithm. In the 

forward selection method, we start with the null model and then sequentially add 

predictors if they are significant on the basis of t or F tests based on pre-specified Type-I 

error rate. Conversely, in the backward selection we start with the full model and then 

remove the non-significant predictors one by one taking the pre specified Type-I error 

rate for the significance level. The bidirectional is the combination of the backward and 

the forward selection methods. In this, at each step we test which variable should be 

included or excluded at the pre specified probabilities for selection and staying in the 

model. But when the variables are large, this method is computationally prohibitive.     

 Best Subset Selection. The best subset selection method based on all subset 

comparisons is an alternative to the stepwise selection method. This method is based on 

an algorithm known as branch-and-bound or leaps-and-bound (LB) algorithm provided 



31 
 

by Furnival and Wilson (1974). Furnival and Wilson solved the following problem i.e. 

for all integer k  such that 1 k p    

 
2

2x
min y βx   

subject to: 
0

β k   

where 
2

2
.  is a  2l   norm, i.e., it denotes the sum of squares of the elements of a vector. 

0
. card()  (i.e., cardinality) is a 0l quasi-norm i.e. the number of non-zero entries in a 

vector, y  is a response variable,   is a regression coefficient, x  is a predictor variable 

and p is the number of predictors.  Unfortunately, the best subset selection method is not 

very useful because it gets infeasible when the number of predictors gets large. 

Penalized likelihood Criteria 

 The algorithm provided by Furnival and Wilson (1974) is connected with many 

widely used model selection methods. These methods basically address the following 

optimization problem: 

 
2

02 0x
min y βx λ β    

where 
2

2
.   is a 2  norm i.e. denotes the sum of squares of the elements of a vector.

0
.   

is a 0  quasi norm, i.e. the number of non-zero entries in a vector  and the 0   an 

algorithmic parameter. 

 Since in the linear models setting, minimizing the residual sum of squares is 

equivalent to maximizing the log-likelihood, the algorithm given above can also be 

written in the following way: 

   minimize L X,Y,β c β  
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where  .L  is a log-likelihood function and β  is the estimate of the regression coefficient. 

 Akaike Information Criterion (AIC). Akaike (1974), a Japanese statistician, first 

provided the Akaike Information Criterion and then Sugiura (1978) proposed it for the 

linear regression models. For the AIC, we optimize the below objective function: 

 
2

02 0
y βx λ β    

by taking 0λ  as 
2

2σ  , where 
2

σ  is an unbiased estimate of the common variance of the 

random error (Ni et al., 2006). 

 The more frequently appearing form of the AIC is  

  AIC 2L X,Y,β 2p     

where  p  is the number of parameters in the model.  

 In order to select the best model, we calculate AIC values for each model with the 

same data set, and the “best” model is the one which has minimum AIC value. The 

problem associated with this method is that the value of AIC depends on y  (data), this 

leads to uncertainty in the model selection. 

 Bayesian information criterion (BIC) or Schwarz criterion (SBC). The Bayesian 

information criterion (BIC) was first proposed by Gideon E. Schwarz (1978). For BIC, 

we optimize the following algorithm: 

 
2

02 0
y βx λ β    

by taking 0λ  as 
2

2σ logn , where 
2

σ  is an unbiased estimate of the common variance of 

the random error  (Ni et al., 2006). 

The more frequently appearing form of the BIC is: 
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    BIC 2L X,Y,β pln n     

where p  is the number of parameters in the model and n  is the total number of 

observations.  

In order to select the best model, we calculate BIC values for each model with the 

same data set, and the “best” model is the one which has minimum BIC value. The 

difference between AIC and BIC is that AIC penalizes the number of parameters less 

strongly than BIC. The situation where the number of observations is much lower than 

the number of exposure variables arises in many fields, including genetics data analysis. 

In this situation, traditional methods (regression) do not work. Therefore, the researchers 

started using “penalized regression” to come up with a better solution. Penalized 

regression uses a penalty term and depending upon the penalty term many different 

methods are proposed including LASSO and ridge regression. Typically, LASSO is 

found superior to ridge regression, but if there are groups of variables among which the 

pairwise correlations are very high, then LASSO tends to select only one variable from 

the group and does not care which one is selected. LASSO is provided by Tibshirani 

(1996). 

 Before LASSO, it would be worth mentioning about ridge regression. Ridge 

regression was proposed by Hoerl and Kennard (1970) who suggested the use of the 

following algorithm:  

 
2 2

2
1

minimize
p

j

j

y x  


     

where λ  is a tuning parameter. 
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 Ridge regression provides continuous shrinkage and achieves better prediction 

performance than ordinary least square (OLS) through a bias-variance trade-off (biased 

estimates with lower variance). Ridge regression keeps all the predictors in the model, 

and therefore cannot produce a parsimonious model. 

  In LASSO, we use the following algorithm  

 
2

2 1
minimize y βx λ β    

where      is a 1 norm i.e. the sum of the absolute values of the elements of the vector 

and  λ  is a tuning parameter. 

 LASSO uses 1  penalty instead of 0  penalty. Tibshirani (1996) has demonstrated 

that LASSO is more stable and accurate than traditional variable selection methods such 

as best subset selection. A remarkable property of LASSO is that it can automatically 

achieve variable selection by shrinking some coefficients to zero. Due to the shrinkage, 

only important variables remain in the model. 

 Bridge Regression. Frank and Friedman (1993) proposed bridge regression, a 

broad class of the penalized regression method which can be obtained by minimizing 

 
p

α2

j2
j 1

minimize y βx λ β


     

such that λ,α 0   

where the   is known as a concavity parameter that controls the concavity of the function, 

and   is known as a tuning parameter. Bridge regression includes subset selection with 

 = 0, LASSO with  = 1 and ridge regression with  = 2 as special cases. Bridge 

regression does both the variable selection (when         and shrinks the 
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coefficients (when  > 1). Frank and Friedman (1993) did not solve the bridge regression 

for any given  > 0, but they pointed out that optimizing the parameter   is desirable. 

 Smoothly Clipped Absolute Deviation (SCAD). It is soon realized that variable 

selection with a convex penalty is achieved at the cost of bias in the estimators. The need 

of the penalty function to get unbiasedness, continuity and sparsity in the estimators is 

always being realized. Fan and Li (2001) introduced the SCAD penalty which not only 

aids in the variable selection, but also provides the estimates with the above three (i.e. 

unbiasedness, continuity and sparsity) properties. The SCAD penalty is non convex in 

nature and is given as follows:  

 
 

 

2 2

2

0

2

2 1

1

2

                             if  

a
p      if a

a

a
                       if a         


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 


  

  

   


 
 


 

 The conventional convex optimization algorithm is found not very suitable to 

optimize the objective function with such a singular and non-convex penalty. Hence, Fan 

and Li (2001) suggested local quadratic approximation (LQA) of the penalty function.  

However, Fan and Li (2001) realized that LQA suffers the drawbacks similar to the 

backward variable selection and the variable once removed could never be considered 

again. Later, Zou and Li (2008) proposed the local linear approximation (LLA) of the 

likelihood function with non-concave penalty and found this algorithm as 

computationally efficient as LASSO and suggested the use of efficient algorithm like 

least angle regression (LARS) to solve it. 
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 Along with a SCAD variable selection other methods such as minimax concave 

penalty (MCP) proposed by Zhang (2010) has been studied extensively and is also 

considered to satisfy the three properties, namely unbiasedness, continuity and sparsity.  

 Recently, the new variable selection method, namely subtle uprooting has been 

proposed by Su (2014). The subtle uprooting method approximates the cardinality 

involved in the information criterion with a smooth function and provides variable 

selection in one step. The author used modified BFGS algorithm for non-convex 

optimization in variable selection with subtle uprooting.  

 In the previous discussion, the catalog of methods and models with some brief 

commentary on their historical development is provided to set forth the key terms. The 

following paragraphs offer a brief explanation of the issues which motivate the whole 

work and contents of the subsequent chapters showing how they are organized to address 

these issues. 

As per the discussion provided above, the none of the models except  MIP  

address the issue of multiple inflated counts, however inclusion of Poisson distribution 

make it restrictive to equidispersed non-inflated counts and need of an appropriate more 

general model to address the presence of multiple inflation in heterogeneous counts 

remained unanswered.  

 In the discussion about MIP model, Su et al. (2013) provided many examples with 

the multiple inflated counts such as traffic data where, for example, the number of 

monthly car crashes on high speed roadway segments is mostly zeros, ones, and twos;  

the number of insurances that are of different types and of different policies; the number 

of hospitalization days in healthcare applications, and the cigarette smoking data from the 
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“National Health and Nutrition Examination Survey (NHANES)” in which number of 

cigarettes smoked per day is dominated by zeros, tens (half pack of cigarettes) and 

twenties (one pack of cigarettes).   

 In all aforementioned examples (Su et al., 2013), there is also a strong possibility 

of getting over dispersed non-inflated counts. For example, we found that in most of 

cigarette smoking data sets from NHANES, the non-inflated counts are over dispersed 

and should not be modeled with the Poisson distribution. There are no existing models 

that address such a situation (i.e., the presence of the multiple inflations in over dispersed 

counts) precisely and appropriately. We propose a multiple-inflation negative binomial 

(MINB) model in first paper and multiple-inflation generalized Poisson (MIGP) model in 

second paper to deal with such situations. When there is no heterogeneity (over 

dispersion or under dispersion) in the data, the MINB and MIGP models will reduce to 

the MIP model, and when only one count zero is inflated they will reduce to the ZINB 

and ZIGP models respectively. In this way MIGP model proposed in the second paper 

provides more general framework and can be applied to model any count data even if it is 

heterogeneous and have multiple inflated counts. In the first paper, we also applied the  

one-step smoothly clipped absolute deviation (SCAD) method to select the important 

variables. The use of SCAD makes the variable selection less time consuming and more 

flexible in the MI models (with the three model components) in comparison to such pre-

existing methods as testing based methods, best subset selection methods and LASSO. 

We also illustrated the application of our models (MINB and MIGP) in simulated data 

sets. Finally in third paper, we applied our models to identify and then explore the 

association of dental caries with two main subtypes of systemic sclerosis limited and 
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diffuse cutaneous among adults. In the third paper, using the data related with dental 

caries among systemic sclerosis patients, we demonstrated that without considering 

proposed novel multiple inflated (MI) count models the results would have been 

misleading. Therefore, we strongly recommend the use of the multiple inflated count 

model in cases marked by the presence of significant inflation in multiple counts. 
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1. ABSTRACT 

In modeling count data, difficulties often arise when the outcome variable is not 

only dispersed but also has more than one inflated count. Analogous to the multiple-

inflation Poisson (MIP) model (Su et al., 2013), we propose a multiple- inflation negative 

binomial (MINB) regression model by using a mixture of a cumulative logit model and 

negative binomial model, whereas the mixing probabilities are formulated with a logistic 

regression. An EM algorithm is developed to obtain maximum-likelihood estimates. 

Moreover, the smoothly clipped absolute deviation (SCAD) with some important 

modifications is adapted to aid in the variable selection issues with the MINB model. The 

simulated data are used to assess the performance of the proposed model and compare it 

with the other available competitive count models. 
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2. INTRODUCTION 

 The Poisson and negative binomial (NB) are two commonly used models for the 

analysis of count data. However, the count data may have certain counts in higher 

frequencies than was expected under a Poisson or NB distribution so cannot be readily 

modeled by either Poisson or NB model. We refer to such counts as inflated counts or 

inflation in counts. There might be certain reasons for getting inflated counts, and 

understanding these reasons requires a proper investigation of the data. But, even if we 

find a legitimate reason behind the inflation in the certain counts, accurate analysis 

remains a challenge. Although, if only zero count is inflated, zero inflated (ZI) models 

including the zero-inflated Poisson (ZIP) model (Lambert, 1992) and the zero-inflated 

negative binomial (ZINB) model (Greene, 1994) can be used for the analysis. The ZI 

models are based on the concept of mixture distributions. Lambert's (1992) work on the 

ZIP model was motivated from an experiment in which the counts were from two states 

and the counts in each state followed different distributions: the counts from one state 

followed a degenerate distribution at zero and was mixed with an untruncated Poisson 

distribution of the counts from the other state. However, when the counts from the other 

state were dispersed and followed the NB distribution, then ZINB model can be used to 

obtain more accurate results.  

 The possibilities of getting other than zero or more than zero counts as inflated 

exist in many real world data sets.  Su et al. (2013) found that the inflation in zeros and 

ones in data related to a healthcare study on the frequency of medical visits, and they 

proposed the multiple-inflation Poisson (MIP) model as a mixture of the Poisson 

distribution and a discrete distribution. They provided many other examples with the 
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multiple inflated counts such as traffic data where, for example, the number of monthly 

car crashes on high speed roadway segments is mostly zeros, ones, and twos. For this 

example, the authors also mentioned about the transportation literature that have 

concerned about the two states assumption of the ZIP model along with the multiple state 

crash process as recommended solution and suggested the use of the multiple-inflation 

count model, i.e., MIP model as a solution. The authors also listed several other examples 

with the multiple inflated counts including the number of insurances that are of different 

types and of different policies; the number of hospitalization days in healthcare 

applications; and the cigarette smoking data from the “National Health and Nutrition 

Examination Survey (NHANES)” in which number of cigarettes smoked per day is 

dominated by zeros, tens (half pack of cigarettes) and twenties (one pack of cigarettes).    

 In all aforementioned examples (Su et al., 2013), there is also a strong possibility 

of getting over dispersed non-inflated counts. For example, we found that in most of the 

cigarette smoking data sets from NHANES, the non-inflated counts are over dispersed 

and should not be modeled with the Poisson distribution. There is no existing model that 

addresses such a situation (i.e., the presence of the multiple inflations in over dispersed 

counts) precisely and appropriately. We propose a multiple-inflation negative binomial 

(MINB) model to deal with such situations. 

 In the MINB model, we use a mixture of the discrete distribution and NB 

distribution to model the multiple inflated counts and the non-inflated counts, 

respectively. We further use the logit model to model the mixing probability. Hence, the 

proposed MINB model consists of three model parts to model the multiple inflated counts, 

non-inflated counts and the mixing probability. To select appropriate covariates in each 
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of the three models, we use one-step smoothly clipped absolute deviation (SCAD) which 

is used and recommended by Buu et al. (2011) for zero inflated count data for variable 

selection due to its high specificity, sensitivity, exact fit and lowest estimation error in 

comparison to least absolute shrinkage and selection operator (LASSO).  

 This paper is organized as follows. In Section 3, we propose a multiple-inflation 

negative binomial (MINB) model including its mixture model representation, 

identifiability, and (over and under) dispersion. In Section 4, we derive the maximum 

likelihood (ML) estimation along with EM algorithm. In Section 5, we describe one-step 

smoothly clipped absolute deviation (SCAD) method for the variable selection in the 

MINB model.  Sections 6 to 8 consist of evaluation and comparison of the MINB model 

with the other models in simulated data. 

3. MULTIPLE-INFLATION NEGATIVE BINOMIAL (MINB) MODEL 

For the MINB model, we considered a data set with n independent observations, 

namely {( , ) : 1, , }i iy i n=X �  where, iy  represents the count outcome and iX  the 

associated predictor vector for observation i. Suppose that the count outcome has M

inflated values. These inflated counts have a natural order in it and thus can be arranged 

either in an ascending or descending order. Without loss of generality, we arrange the 

inflated counts in the ascending order and denote them as ci, where i represents the order 

of the count. Hence, the set of the inflated counts is denoted as 

1 1 2{ , , : }.M Mc c c c c= … ≤ ≤ ≤�I  For example, in the case of the one inflated count, e.g., 

zero (i.e. zero-inflated count data), we have 1M =  and 1{ . .0}c i e=I , in the case of the 

two inflated counts, e.g., 10 and 20, we have 2M =  and 1 2{ , } . .{10, 20}c c i e=I and with 
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the three inflated counts, say 10, 15 and 20, we have 3M =  and 

1 2 3{ , , } . .{10,15, 20}c c c i e=I .  

3.1 Model Specification 

The multiple-inflation negative binomial (MINB) model is given by:  

 
{ } ( )

( )
1 2 1 2Discrete , , , ; , , , with probability 1

Poisson , with probability

M i i iM i

i

i i

c c c p p p    
y

                                                  

φ

µ τ φ

… … −
∼ 


 ..(0.1) 

where, ~Gamma( , )τ ν ν  with ( ) 1E τ =  and var( ) 1/ .iτ ν= After incorporating this, the 

equation (1.1) is further  written as: 
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M i i iM i

i
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c c c p p p   
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φ
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 Essentially, the MINB assumes a mixture model of a discrete distribution over the 

inflated values in I  and a negative binomial i.e. NB( , )iµ ν  distribution, where the mixing 

probability is guided by iφ . While other forms of defining the NB components, i.e.,

NB( , )iµ ν  are available, the Poisson-Gamma model form has been conveniently used in 

the MINB. 

Other involved parameters { , , : 1, ,   and i=1, ,n}im i ip m M= … …φ µ  are further 

specified with three regression models. To proceed further, we first introduce a 1M + -

dimensional dummy variable vectors ( )i im
δδδδ = δ  and 

( 1)M

im Rδ +∈  with 1, 2, , 1m M= … +  

for each unit- i  such that: 

 
{ }
{ }
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y c               for  m M

y I                 for  m M        
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∉ = +
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Since the inflated values in I  are naturally ordered, it is convenient to apply a 

cumulative logit or proportional odds regression model as follows: 

 
( )( )
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Secondly, a logistic regression is used to model the mixing probability 

 log
1
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i

i

αααα
 

= 
− 

φ

φ
h .  

Finally, a NB regression model is used to model the regular counts in NB( , )iµ ν  with 

 ( )log T

i i
ββββ=µ b   

  In the above specifications, { }, ,
i i i

g h b  are the covariate vectors of appropriate 

dimensions; they consist of selected components from iX . For convenience, we denote 
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T

M
γ γγ γγ γγ γ

−
= …γ γ γ  and let ( ), , ,

T
T T Tθ α γ β νθ α γ β νθ α γ β νθ α γ β ν=  be the vector that collects all the 

parameters involved in the model.   

 From the model specified in the above equations, it follows that

( ) ( )exp and T T

i i i i
  expitβ αβ αβ αβ α= =µ φb h  where the expit function is given by 

1expit( ) {1 exp( )} .t t
−= + − As per the cumulative model, we have 
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when 2M = , we have { }1 1 ( 1)
Pr | 0

i i i M
p y c δ += = = and { }2 2 ( 1)

Pr | 0
i i i M

p y c δ += = =  only. 
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3.2 Dispersion 

The presence of the multiple inflated counts also induces either the over 

dispersion or under dispersion (Su et al., 2013). The condition for the over and under 

dispersion along with the expected value and variance for the MINB model is provided as 

follows: 

3.2.1 Expectation 

According to the MINB model, the mean of iy  is given by: 

 ( ) ( ) ( ) ( )
1

( 1 exp
M

T

i i i i m im i i

m

E y E E y | c p ββββ
=

= = − +∑δ φ φ b   

This result can be used for prediction purpose. 

3.2.2 Variance 

  The variance of iy  is given by: 

 ( ) ( )( ) ( ( | ))
i i i i i

Var y Var E y | E Var y δ δ= +   

Or we can write it as, 

 

( ) ( ) ( ) ( )

( )
( )

( ) ( )

2

2

1 1 1

1 1

exp
exp exp exp

M M M

i i i m im i m im m im

m m m

T

iT T T

i i i i i

Var y E y c p c p c p

ββββ
β β ββ β ββ β ββ β β

= = =

  
= + − − − −  

   

 
 + + −
 
 

∑ ∑ ∑φ φ

φ φ
ν

b
b b b

  

2 2

1 1

1
( ) (1 ){ ( 1) (1 ) } exp(2 )( (1 ))

M M
T

i i m m im i m im i i i

m m

E y c c p c p ββββ
= =

= + − − − − + + −∑ ∑ bφ φ φ φ
ν

 

 

( ) ( ) ( ) ( )

( ) ( )

2

2

1 1 1

1 1

1
exp 2 1

M M M

i i i m im i m im m im

m m m

T

i i i

Var y E y c p c p c p

               ββββ

= = =

  
= + − − − −  

   

 
+ + − 

 

∑ ∑ ∑φ φ

φ φ
ν

b

  

The over-dispersion can be obtained if 
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 ( ) ( ) ( ) ( )
2

2

1 1 1

1
1 1 exp 2 1 0

M M M
T

i m im i m im m im i i i

m m m

c p c p c p ββββ
= = =

    
− − − − + + − >    

    
∑ ∑ ∑φ φ φ φ

ν
b   

Therefore, the condition for the over-dispersion is 

 ( ) ( ) ( ) ( )
2

2

1 1 1

1
exp 2 1 1 1

M M M
T

i i i i i m im m im m im

m m m

c p c p c pββββ
= = =

   
+ − > − − + −    

     
∑ ∑ ∑φ φ φ φ

ν
b   

 Similarly, the condition for the under dispersion is  

 ( ) ( ) ( ) ( )
2

2

1 1 1

1
exp 2 1 1 1

M M M
T

i i i i i m im m im m im

m m m

c p c p c pββββ
= = =

   
+ − < − − + −    

     
∑ ∑ ∑φ φ φ φ

ν
b   

The point should be noticed that the left side of the inequality depends upon the 

parameters of the NB model and the mixing probability, while the right part of the 

inequality depends upon the parameters of the discrete distribution and the mixing 

probability. For the NB model, i.e., on taking mc =0 and iφ =1, the above expression 

provides the over dispersion for the 0ν >  and the under dispersion for the 0ν < . 

3.4 Identifiability 

The identifiability is a very important property of a model in order to make an 

inference. Moreover, to correctly identify the model, it must provide different 

distributions for different sets of parameters. If the two sets of the different parameters 

are giving the same distribution of the observations, then the model is called not 

identifiable.  We could also impose certain restrictions in order to achieve identifiability 

for a model; the set of these restrictions or requirements is called the identification 

conditions. A model can be identifiable, partially identifiable or non-identifiable 

(unidentifiable). If a model is non-identifiable, but it is possible to find the true values of 

a certain subset of the model parameters then the model is called partially identifiable. 
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 For mixture models, if any one of the models in the class (family) can be uniquely 

characterized then the mixture of models is considered identifiable.  

 Teicher (1961) has defined the identifiability of the mixture models as follows. 

Assuming a measurable subset 
'

1

κ
R of the Euclidean 'κ -space 

'κ
R  and 

1

'{ ( ; ), }κα= ∈F x αF R  where ( ; )F x α ( measurable on the product space of the x  andαααα ) 

is a cumulative distribution function in the variable x  for each 1

'κα ∈R  then for any non-

degenerate 'κ -dimensional c.d.f. G such that the induced Lebesgue-Stieltjes measure of 

G (i.e. Gµ ) assigns measure one to
'

1

κ
R , the c.d.f. 

1
'

( ) ( ; ) ( )F= ∫x x α dG α
κ
R

H  is called a 

mixture  or more precisely a G mixture of F . The family 1

'( ; ),  F αααα ∈x α
κ
R   and G are 

known as the Kernel of the mixture and a mixing distribution function respectively. The 

mixture H  is said to be identifiable if there is unique G yieldingH . According to Tallis 

et al. (1982), after imposing the restriction on 
'

1

κ
R  that it consists of a finite number of 

elements, i.e., 1 1 2

' { , ,... }n

κκκκ α α αα α αα α αα α α=R , the ( )xH  can be written as 
1

( ) ( )
n

i i

i

ω
=

=∑x F xH  where 

1

1i

i

η

ω
=

=∑ . They suggested that the above mixture is identifiable if and only if 

( ) ( ) ( ){ }1 2, , ,F = …
n

F x F x F x   is linearly independent. 

Proposition 3.1 

The MINB model is identifiable (See supplementary material). 
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4. MAXIMUM LIKELIHOOD ESTIMATION 

Analogous to the MIP (Su et al., 2013), the MINB model is fully specified with 

the three regression models, as mentioned above. To write down its likelihood function, 

we note that 

 { }
( )1 . 1, 2, ,

Pr
.

i im i i

ic i

i i

      

                                 

p for  c I  and  m M
y c

   for  c I                 

φ φ Ψ
π

φ Ψ

 − + ∈ = …
= = = 

∉
  

where iψ  denotes the probability density function associated with the NB( , )iµ ν , namely, 

 
( )

( )
Γ

.
!Γ

iy

i i
i

i i i

y

y

ν
ν µν

ψ
ν ν µ ν µ

+    
=    

+ +   
  

The likelihood function ( )l θ  of MINB model is then given by: 

 ( ) ( ){ } ( ) ( )1

1 1

1 .
im i M

n M

i im i i i i

i m

p
δ δ

φ φΨ φΨ +

= =

 
= − + 

 
∏ ∏Θ�   

The corresponding log-likelihood ( )L θ  is 

 ( ) ( ) ( )
1

Θ log Θ Θ
n

i

i

L L
=

= =∑�   

 ( ){ } ( ) ( )1

1 1

log 1 log
n M

im i im i i i ii M

i m

pδ φ φΨ δ φΨ
+

= =

  
= − + +  

  
∑ ∑   

 Su et al. (2013) suggested the use of quasi-Newton method to find the estimates 

of the MIP model because of the complicated form of the hessian matrix. They used 

BFGS quasi-Newton method and suggested the use of L-BFGS when the number of 

parameters is very large. However, we used the default method provided in R optim() 

function which is Nelder-Mead simplex algorithm. We found that it is a commonly used 

technique for nonlinear optimization when the derivatives are not known, even though it 

is a heuristic approach and could also some time converge in non-stationary points.     
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4.1 EM Algorithm 

The expectation-maximization (EM) algorithm is an iterative method for finding 

the maximum likelihood estimates of the parameters of the mixture models. Though the 

EM algorithm was used previously by some authors, it is more formally introduced by 

Dempster et al. in 1977. The EM algorithm consists of the iteration of the two steps, 

namely E-Step and M-step, and breaks the likelihood into the components which can be 

easily optimized but is slow in convergence. In each iteration, the E-step involves taking 

the conditional expectation over the complete-data log likelihood conditional upon the 

observed data and the parameters that we use to evaluate the expectation. The complete 

data consists of unknown data or latent variable Z and the observed data X and the 

current parameter estimates. The M-step in each iteration only requires maximizing the 

expectation of the log likelihood function. For the EM algorithm, we introduce a random 

variable Z consist of im
Z  and ( )1i M

Z
+

 as follows, i.e., for given i 

 
i im im

i

1 if y c c : 1, 2, , M

0 if y NB                                   
im

            I m
Z

                

= ∀ ∈ = …
= 

∈
  

and 

 ( ) ( )1 1

1

1 if  y   NB
notice that 1

0 otherwise

m
i  

imi M i M

i

            
Z  ;   Z Z

              
+ +

=

∈
= = −


∑   

 For given m, the random variables imZ  and ( 1)i MZ + are partially observable; imZ 's 

value is known only if  i imy c≠  and it is unknown otherwise. The subscripts i and m for 

the Z are used in the above description to incorporate the i
th

 random variable 

corresponding to the th
m  inflated count. 
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When the cumulative logistic and log-linear models have no parameters in 

common and given an estimate of imZ , an iteration of the EM algorithm reduces to the 

estimation of the αααα  using the logistic regression model and taking the ( 1)i MZ +  as the 

response variable and the estimation of  the ββββ  and ν  by using the NB regression model 

with iy  as the response variable and  the ( 1)i MZ +  as a weight. 

For given m, the complete-data likelihood associate with the cY  = ( ; )i imY Z  and 

the parameter space Θ is obtained as follows: 

 ( | ) ( , | ),c i imf Y f Y Z=Θ Θ   

where { }, , ,α β γ να β γ να β γ να β γ ν=Θ   

 ( ), ( | , ) ( | )
i im i im im

f Y Z | f Y Z f Z=Θ Θ Θ   

Hence, the complete data likelihood can be written as follows: 

 ( ) ( ){ } ( ){ } ( )1

1 1 1 1

, , 1 , 0
im i M

n M n M
Z Z

i im i im i im

i m i m

f Y Z | f Y Z | f Y Z |
+

= = = =

= = = =∏∏ ∏∏Θ Θ Θ�   

or 

 ( ) ( ){ } ( ) ( ){ } ( )1

1 1

1, 1 0, 0
im i M

n M
Z Z

i im im i im im

i m

f Y |Z f Z | f Y |Z f Z |
+

= =

= = = = =∏∏ Θ Θ Θ Θ   

 ( ){ } { } ( )1

1 1

1
im i M

n M
Z Z

im i i i

i m

P φ Ψ φ +

= =

⇒ = −∏∏�   

Therefore, the log-likelihood of complete data is given by: 

 ( ) ( ) ( ){ } ( ) ( )1

1 1

Θ log log 1 log log
n M

c c im im im i i ii M

i m

L |Y Z p Z Zφ φ Ψ
+

= =

 
= + − + + 

 
∑ ∑   

Noticing the fact that, 
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 ( ) ( ) ( ) ( ) ( )( )1 1

1

log 1 log log 1 exp
M

T T

im i i i ii M i M

m

Z Z Z α αα αα αα α
+ +

=

− + = − +∑ φ φ h h   

 ( ) ( ) ( )( ) ( ) ( )1

1 1

[{ log } log 1 exp log ]
n M

T T

c c im im i i ii M

i m

L  | Y Z p Zα αα αα αα α Ψ
+

= =

= − + + +∑ ∑Θ h h   

where, 
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( )
( )

Γ
. and log

!Γ

iy

i Ti
i i i

i i i

y

y
ββββ

+    
= =   

+ +   

ν
ν µν

ψ µ
ν ν µ ν µ

b   

This reduces into 

= ( ) ( ) ( ) ( ) ( )( )1 1

1 1

[{ log } log log 1 exp ]
n M

T T

im im i i ii M i M

i m

Z p Z Z α αα αα αα α
+ +

= =

+ + − +∑ ∑ Ψ h h  

 Noticing that  ( |  )cY� ΘΘΘΘ   is linear in imZ  for m=1,� , M and ( 1)i MZ + , therefore at 

( 1)th
k +  iteration of the algorithm, the E- step consists of replacing imZ  for m=1,� , M 

and ( 1)i MZ +   by their conditional expectations, given observed data iy and parameters 

, ,  and  α β γα β γα β γα β γ ν . 

 More detailed expression of the EM algorithm at the 1th
k +  iteration involves the 

following steps: 

4.1.1 E-Step 

 Computation of the conditional expectation of the imZ  for 1,.....,m  M= and 

( 1)i MZ +  denoted by ( )ˆ k

im
Z  and ( )

( 1)
ˆ k

i MZ +
( i.e.  ( ) ( ) ( ) ( )[ | , , , , ]

k k k k

im i
E Z Y α β γα β γα β γα β γ ν  = �

( )k

imZ  and    

( )
( ) ( ) ( ) ( )

1
[ | , , , , ]

k k k k

ii M
E Z Y α β γα β γα β γα β γ ν

+
= � ( )

( )
1 )

k

i MZ +  respectively. 
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�
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�

( )

�
( )

( )
�

( )
1

1

1

1, 2 ,

1 ( | , )

1
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i im im
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im i
k k k k

i im i i

Mk k

i M im
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| p

Z           if  y I  and

 

  

                                                                     

 m M

| p | 

Z Z    

αααα

α α βα α βα α βα α β

φ δ

φ φ ψ ν

+

=

  −   
  = ∈ = …

    − +    
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









  

So that,  

( ) ( ) ( ) ( ) ( )

1 2 3

1 1 1

ˆ ˆ ˆ ˆ ˆ( | ) ( ( | ) | , ) ( | ) ( , | ) ( | )
n n n

k k k k k

c c i i i

i i i

Q E l Y Y Q Q Qγ β αγ β αγ β αγ β αν
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= = + +∑ ∑ ∑Θ Θ Θ Θ Θ Θ ΘΘ Θ Θ Θ Θ Θ ΘΘ Θ Θ Θ Θ Θ ΘΘ Θ Θ Θ Θ Θ Θ  

where, 

 �
( )

�
( )

( )1

1

log
Mk k

imi im

m

Q  | Z pγ
=

  = 
 

∑Θ ;  

( ) ( )

2 ( 1)

( ) exp( )ˆ ˆ( , | ) { }
! ( ) ( ) ( )

iy
T

k k i i
i i M T T

i i i

y
Q Z log

y exp exp

ββββ
ββββ

β ββ ββ ββ β
+

   Γ +
=    

Γ + +   

b

b b

ν
ν ν

ν
ν ν ν

ΘΘΘΘ  

and 

( ) ( )

3 ( 1)
ˆ ˆ( | ) (1 exp )k k T T

i i M i iQ Z logα α αα α αα α αα α α+= − +h hΘΘΘΘ
 

4.1.2. M-Step 

In the M-step, we estimate ββββ and	�, by maximizing ( )

2
ˆ( , | )k

i
Q ββββ ν ΘΘΘΘ  which is the 

log-likelihood for a weighted NB regression of iy  on ib   with the weights � ( )
( )

1

k

i MZ + . In the 

M-step, we also estimate γγγγ  and in this step, we maximize ( )

1
ˆ( | )k

i
Q γγγγ ΘΘΘΘ  which has a form 

similar to the log-likelihood obtained from a proportional odds model with responses 

( )ˆ .k

im
Z  The conjugate gradients method (with commonly used Polak-Ribiere formula) does 

not store a matrix and is used for the fast and straight forward maximization. However to 

get the estimates of αααα , in the M-step, we maximize ( )

3
ˆ( | )k

i
Q αααα ΘΘΘΘ , which has a form 
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similar to the log-likelihood obtained from an un-weighted binomial logistic regression of 

( )

( 1)
ˆ k

i MZ +
on ih . 

 The iterations are repeated until 
( 1) ( )ˆ ˆ k k+ −‖ ‖Θ ΘΘ ΘΘ ΘΘ Θ  is sufficiently small, 0, 1,K  =  in 

order to supply the initial values for the parameters, we used the similar strategy which 

was used by Su et al. (2013), i.e., a NB model to the data with no inflated counts and a 

cumulative logit model to the inflated counts is fitted. After fitting these models, the 

resulting estimates are used as the initial values for the ββββ   and γγγγ  respectively. The 

resulting estimates of a logistic regression model (using a dichotomous variable with 0 

for inflated and 1 for non-inflated counts) are used as the initial value for the	�. However, 

these values are not directly supplied as the initial values to the EM algorithm and used as 

the initial values for the numerical optimization first. The estimates obtained after the 

numerical optimization are supplied as initial values to the EM algorithm. Hence, we 

adopted a three step procedure to obtain maximum likelihood estimates. Precisely, this 

procedure to fit the MINB model consists of the following three steps i) getting initial 

values by fitting the NB model to the non-inflated counts, cumulative logit model to the 

inflated counts and logit model to dichotomous variables discussed above; ii) using these 

values as the initial values for running the default method for optim(), i.e. derivative-free 

optimization routine, Nelder-Mead simplex algorithm to provide the initial values for the 

EM algorithm; iii) using the EM algorithm to update the estimates. Do et al. (2008) has 

mentioned, in most of the non-concave optimization methods, the EM algorithm provides 

assurance only for convergence to a local optimum of the objective function. The 

derivative-free optimization routine Nelder-Mead simplex algorithm which is default in 
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optim() is used to get the initial values for the EM algorithm to facilitate its convergence 

to the global optimum.  

The Hessian matrix obtained from R function optim() is used to approximately 

estimate the variance-covariance matrix of � �( )( . . ov ) i e  Cθ θθ θθ θθ θ=Σ via observed Fisher’s 

information matrix as � { }
1
.

−
= −Σ H However, the optim() function uses the finite 

difference method to approximate the hessian matrix. 

5. VARIABLE SELECTION VIA ONE-STEP SCAD METHOD 

The presence of more than one model components in the zero and multiple-

inflation count models makes the variable selection an important issue and thus addressed 

in the present research.  

Due to the three model components, there are at the most 

8#	��	�	
��
��	�	(2�
#	��	�	
��
��	�

)	 possible models (instead of at the most 

2#	��	�	
��
��	�		possible models in non-inflated counts analogs of MI models); therefore, it 

becomes even more difficult in MI models to find the important variables associated with 

the outcome variable. 

The forward, backward and bidirectional sequential testing procedure is among 

the most widely used variable selection procedures and are very common in use. 

However, when the variables are large, this method is computationally prohibitive. The 

best subset selection method based on all subset comparisons is an alternative to stepwise 

selection method. However, this method is also not very useful because it gets infeasible 

when the number of predictors gets large.  Tibshirani (1996) has demonstrated that 

LASSO is more stable and accurate than traditional variable selection methods such as 

best subset selection. A remarkable property of the LASSO is that it can automatically 
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achieve variable selection by shrinking some coefficients to zero. However it is soon 

realized that the variable selection with convex penalty (e.g. LASSO) is achieved at the 

cost of biasedness in the estimators. The need of the penalty function to get unbiasedness, 

continuity and sparsity in the estimators has long been realized. Fan and Li (2001) 

introduced the SCAD penalty which not only aids in variable selection but also provides 

the estimates with the above three (i.e. unbiasedness, continuity and sparsity) properties. 

 The conventional convex optimization algorithm is found not very suitable to 

optimize the objective function with a singular and non-convex penalty like SCAD. 

Hence, Fan and Li (2001) suggested local quadratic approximation (LQA) of the penalty 

function.  However, Fan and Li (2001) realized that LQA suffers the drawbacks similar to 

the backward variable selection and the variable once removed could never be considered 

again. Later, Zou and Li (2008) proposed the local linear approximation (LLA) of the 

likelihood function with non-concave penalty and found this algorithm as 

computationally efficient as LASSO, and they suggested the use of an efficient algorithm 

like least-angle regression (LARS) to solve it. Buu et al. (2011) used one step SCAD for 

the variable selection in the ZIP model after local linear approximation (LLA) of the 

likelihood function. To aid variable selection, we are also using one step SCAD for the 

variable selection in the multiple inflated counts setting.   

After adding the penalty term in the likelihood, we maximize the following 

penalized likelihood function for the MINB model:  

 ( ) ( ) ( ) ( ) ( )
1 2

j k

p p 3

ζ j η k

j 1 k 1 1

Q , , , , n p n p ,
l

p

l

l

n p γγγγ
= = =

= − − −∑ ∑ ∑α β γ α β γ α β� κ   
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where
j

pζ , 
k

pη  and 
l

pκ are penalty functions with tuning parameters ,
j k l

a nd  ζ η κ  

respectively. We used different tuning parameters for different regression parameters and 

did not apply any penalty on the intercepts of the model components. However, the above 

formulation can be used for several choice of penalty functions but in the present research 

we are using SCAD penalty proposed by Fan and Li(2001).The SCAD penalty is given 

by  

 ( ) ( )
( )

( )

( )

2 2

2

,0

2
,

2 1

1
,

2

                                     

c
p f x            c

c

c
                                c         

θ θθ θθ θθ θ

θ θθ θθ θθ θ
θ θθ θθ θθ θ

θθθθ


 ≤ <

  − +  = = − < ≤  −   
 +

>


τ

τ τ

τ τ
τ τ

τ
τ

  

           The c =3.7 is suggested by Fan and Li (2001) and used here. One-step sparse 

estimation method was proposed by Zou and Li (2008) and was used for the 

maximization of penalized likelihood of zero inflated count models by Buu et al. (2011). 

The algorithm provided by Zou and Li (2008) for the implementation of one step 

sparse estimation for SCAD penalty (Buu et al. 2011) is used in the current research. For 

this, the likelihood function is locally approximated at the initial value
( ) ( ) ( )( )0 0 0

, ,α β γα β γα β γα β γ  and 

after taking initial values as maximum likelihood estimates, i.e., � � �( ), ,αααα ββββ γγγγ , the likelihood 

function is reduced into the following form: 

 � � �( ) �( ) �( ) �( ) � � �( )

�( )
�( )
�( )

'

' ' ' '
2

'

1
, , [ , , ]∆ , ,

2

α αα αα αα α

α β γ α α β β γ γ α β γα β γ α α β β γ γ α β γα β γ α α β β γ γ α β γα β γ α α β β γ γ α β γ β ββ ββ ββ β

γ γγ γγ γγ γ

 − 
 

+ − − −  −
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This form is obtained because at the maximum likelihood estimates the first order 

derivative of the likelihood function is zero � � �( )( ). . ∆ , , 0i e  αααα ββββ γγγγ =� . Also, the local linear 

approximation (LLA) to the penalty function is given as below: 

 ( ) �( ) �( ) �( ) �' | ,
j j j

j j jj jp p p |  for ζ ζ ζζ ζ ζζ ζ ζζ ζ ζα α αα α αα α αα α αα α α αα α α αα α α αα α α α≈ + − ≈   

 ( ) �( ) �( ) �( ) �' | ,
k k kk k kk kp p p |  for  andη η ηη η ηη η ηη η ηβ β ββ β ββ β ββ β ββ β β ββ β β ββ β β ββ β β β≈ + − ≈   
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l l lk l ll lp p p |  for κ κ κκ κ κκ κ κκ κ κγ γ γγ γ γγ γ γγ γ γγ γ γ γγ γ γ γγ γ γ γγ γ γ γ≈ + − ≈   

The first derivative of SCAD penalty is given by: 
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using locally approximated penalty function, the penalized likelihood reduces in the 

following form:  
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The maximum likelihood estimates can be obtained by maximizing the objective 

function Q  , the constant terms in the local approximation of the penalty function are 

ignored in the above expression as they do not contribute in the estimation. Therefore, the 

one step sparse estimates � � �( ), ,α β γα β γα β γα β γ may be obtained as follows: 
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Since we are using SCAD penalty, the one step sparse estimator is the one step 

SCAD and can also be viewed as an adaptive LASSO where the weights are obtained 

from the SCAD penalty. Since the objective function reduced into a quadratic term plus a 

weighted �� penalty, hence LARS algorithm can be applied to obtain the one step SCAD 

estimates. Following the similar strategy used by Fan and Li(2001) and Buu et al. (2011), 

to save the computational cost, we rewrite tuning parameter as  

 
�( ) �( ) �( ),j k l SE  SE and  SEα β γα β γα β γα β γζ τ η τ κ τ= = =   

where, �( )SE αααα , �( )SE ββββ  and �( )SE γγγγ  are the standard error of maximum likelihood 

estimates obtained without penalizing the likelihood. In this way, different penalty is used 

for different regression slope parameters. Tuning parameter �  is selected using the 

minimum Bayesian information criterion (BIC).  

6. SIMULATION  

As mentioned by Burton et al. (2006) simulated data should be close to the 

structure of the real data. Therefore, we simulated the datasets having outcome variable 

similar to the NHANES cigarette smoking data sets. In the NHANES cigarette smoking 

data set, we observed higher frequency of either no cigarette smokers ( )0  or half pack 

( )10 a day and full pack ( )20  a day cigarette smokers. Also, the non-inflated counts are 
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observed highly dispersed. Hence, we took three inflated counts, i.e., { }0, 10, 20   in the 

NB distributed response variable and a predictor variable in each model component. The 

data are simulated from the following MINB model:  
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Data sets are simulated by choosing the population parameters 0 1( , )α α = (-1,2), 

0 1( , )β β = (1,1), 00 01 1( , , )γ γ γ = (-0.5,0.5,1.2) and θ =3. Each data set includes three 

covariates 1 2 3( , , )X X X  which are independently generated from the uniform distribution. 

Three sample sizes, small (n = 500), medium (n = 700) and large (n = 900), were chosen 

keeping in mind the large number of observations (more than 7000) in the survey samples 

such as NHANES cigarette-smoking data sets (Notice:- NHANES cigarette-smoking data 

sets  for the years :-2005 – 2006, 2007-2008, 2009-2010, 2011-2012 have around 7000 

obs.). The sample consists of 10% observations of the cigarette-smoking data set is 

considered of medium sample size. Using the above population parameters and 1000 

simulation runs, firstly, the estimates of the population parameters and their standard 

errors are obtained for each data set in each run and then the mean of parameter estimates 

and standard errors along with the standard deviation of the parameter estimates are 

calculated for all the 1000 runs, which are given in Table 1.  As mentioned earlier, the 
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variance-covariance matrix is approximately estimated by using hessian matrix provided 

by R Optim() function using finite difference approximation. 

Table 1: Average value of the parameter estimates obtained after applying the MINB 

model on simulated data set. 

 

Sample 

Size 

Parameter True 

Value 

       Estimates Average 

      SE Average        SD 

500 
01γ  -0.50 -0.548 0.334 0.276 

02γ  0.50 0.460 0.318 0.267 

1γ  1.2 1.294 0.608 0.458 

0α  -1 -1.004 0.212 0.215 

1α  2 2.013 0.369 0.381 

0β  1 0.995 0.115 0.123 

1β  1 1.003 0.182 0.198 

ν  3 3.162 0.696 0.447 

700 
01γ  -0.50 -0.513 0.289 0.231 

02γ  0.50 0.491 0.279 0.224 

1γ  1.2 1.232 0.553 0.385 

0α  -1 -1.002 0.173 0.181 

1α  2 2.010 0.311 0.322 

0β  1 0.996 0.099 0.104 

1β  1 1.002 0.158 0.167 

ν  3 3.111 0.521 0.38 

900 
01γ  -0.50 -0.516 0.263 0.202 

02γ  0.50 0.489 0.257 0.197 

1γ  1.2 1.220 0.506 0.338 
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0α  -1 -1.009 0.159 0.160 

1α  2 2.015 0.282 0.283 

0β  1 0.998 0.086 0.091 

1β  1 1.004 0.137 0.146 

ν  3 3.076 0.466 0.339 

 

In Table 1, we not only found that the average of the parameter estimates is close 

to the true value but also that the average of SEs of estimates is also close to the standard 

deviation of the estimates. We also observed that the mean of the standard error for the 

regression parameter estimates in the loglinear model component, i.e. �β , are smaller than 

the mean of the standard error for the regression parameter estimates in the cumulative 

logit model component, i.e. �γ ; this reflects the need of relatively more observations in 

each category of the cumulative logit model. Our results are in accordance with the 

results obtained by Su et al. (2013). The 95% CI coverage rate for each sample size is  

found to be 100%; hence, it is not mentioned explicitly in Table 1.The comparison of the 

standard error with the standard deviation allows us to evaluate the asymptotic 

performance of the results hence are included in Table 1. 

7. COMPARISON OF THE MINB WITH THE OTHER COUNT MODELS USING 

SIMULATED DATA 

 

In this section, we compared the MINB model with the other competitive count 

models frequently used to model the over dispersed counts, mainly the NB  regression 

and ZINB regression models, using the three covariates { }1 2 3, , .X  X  X  For this, we 

simulated a test data set and a training data set with 500 independent observations in each 

data set. We fitted the count models in the training data set and then applied the fitted 
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models in the test dataset to get the predicted value of the count outcome. Then the 

average square loss (ASL) was calculated using the following formula:  

2

1

1 ˆ{ ( )}
n

i iASL Y E Y
n

= −∑ , where, Ŷ  is vector of n predicted values and Y  is the true value. 

The averages of ASLs over 1000 runs are given in Table 2, and as expected the 

MINB model has the smallest ASL. The MINB performs better than the log-linear and 

ZIP models. This was expected because the simulated datasets are dispersed and violate 

equidispersion assumption required for the Poisson distribution. We simulated the data to 

evaluate the performance of the MINB in the situation in which application of the MINB 

is preferred, i.e., the presence of the over dispersion. However, for the multiple inflated 

data having equidispersed non-inflated counts, the MIP model is already presented. 

Moreover, a separate study is needed to observe their (i.e. log-linear, ZIP and MIP 

models) behavior in the presence of the dispersed counts with multiple inflations. 

Specifically, we used all the three covariates in the Poisson and NB model. 

However, for the ZIP and ZINB models, the variables 1X  and 2X are taken as covariates 

for the logit model part whereas 1X  and 3X are taken as covariates in the loglinear model 

part. This model specification was adapted by keeping in mind the role of the covariates 

in the simulation of the data.     

Table 2: Comparison of the MINB model with the other models 

MINBASL  LOG LINEARASL −  NBASL  ZIPASL  ZINBASL  

0.26 0.44 0.45 0.50 0.50 
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8. VARIABLE SELECTION 

Finally, the variable selection using the one step SCAD estimator is evaluated as 

discussed above. We used the MLEs as the initial values for the local approximation of 

the likelihood and also for the local linear approximation of the penalty function. For 

variable selection, we simulated a dataset of 500 independent observations by choosing 

the population parameters 0 1 2 3,( ),,α α α α =(-1,2,0,0), 0 1 2 3( , , , )β β β β =(1,1,0,0),

00 01 1 2 3( , , , , )γ γ γ γ γ =( -0.5,0.5,1.2,0,0) and θ =3. Using these population parameters and 

1000 simulation runs, the estimates of the population parameters are obtained for each 

data set in each run then specificity and sensitivity for each parameter is calculated. The 

specificity is the percentage at which the zero coefficients are correctly estimated to be 

zero, and sensitivity is the percentage at which a non-zero coefficient is correctly 

estimated to be non-zero. These percentages are given in Table 3. The percentage at 

which each model component is correctly identified (i.e. in each model components, the 

percentage at which non-zero parameter is estimated as non-zero as well as zero 

parameters are estimated as zero) is also given in the table.  

The possibility of having the confounding variable is also explored in the variable 

selection process. For this purpose, the same covariate associated with non-zero 

coefficient present in the cumulative logit model is taken into the logit model component 

(results are given in Table 4). However, the same covariate associated with non-zero 

coefficient present in the cumulative logit model or logit mode is also taken into the NB 

model component and results are given in Tables 5 and 6 respectively. The presence of 

the same variables in different model parts causes difference in the parameter estimates. 

However, the performance of the variable selection taking specificity and sensitivity into 
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the account remain almost similar and does not affect much. The tuning parameters we 

are taking here are the function of the standard errors (SEs) of the parameter estimates 

and therefore a greater penalty for larger standard errors is applied. Therefore, the effect 

of confounding variables in variable selection remains the topic of further research. 

However, when all the models have different covariates, one step SCAD not only 

provides good estimates but also provides the variable selection with high sensitivity.  

When covariates are different in all the three model components, we used the following 

model. Table 3 gives the performance of the one step SCAD in such scenario.  
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Table 3: Sensitivity and specificity when the covariates associated with the non-zero 

coefficients are different in all the three model components. 

. 

 

Model Component Sensitivity Specificity  Correct 

Selection  

Average of non- zero 

slope parameter 

estimates ( True value) 

Cumulative logit 86.6 51.1 43.4 1.049 (1.2) 

Logit 100 57.1 57.1 2.032 (2) 

Negative Binomial 100 68.2 68.2 1.006 (1) 

 

 To demonstrate the confounding effect the same covariate associated with non-

zero coefficient are taken in the cumulative logit and the logit model parts. In particular, 

we used the following model : 
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Table 4: Sensitivity and specificity when the covariates associated with the non-zero 

coefficients in the cumulative logit and logit model components are same. 

 

Model Component Sensitivity Specificity  Correct 

Selection  

Average of non-zero 

slope parameter 

estimates ( True value) 

Cumulative logit 83.8 49.3 40.2 1.052 (1.2) 

Logit 100 58.6 58.6 2.049 (2) 

Negative Binomial 100 68.3 68.3 1.011 (1) 

 

 In the subsequent discussion, to demonstrate the effect of the same independent 

variables in the other different model parts the models are given before the corresponding 

tables. 
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Table 5: Sensitivity and specificity when the covariates associated with the non-zero 

coefficients in the cumulative logit and NB model components are same. 

 

Model Component Sensitivity Specificity  Correct 

Selection  

Average of non-zero 

slope parameter 

estimates ( True value) 

Cumulative logit 88.3 47.7 41.3 1.131 (1.2) 

Logit 100 58.5 58.5 2.005 (2) 

Negative Binomial 100 65.1 65.1 1.008 (1) 
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Table 6: Sensitivity and specificity when the covariates associated with the non-zero 

coefficients in the logit and NB model components are same. 

 

Model Component Sensitivity Specificity  Correct 

Selection  

Average of non- zero 

slope parameter 

estimates ( True value) 

Cumulative logit 80.5 46.1 36.6 0.871 (1.2) 

Logit 100 58.6 58.6 2.022 (2) 

Negative Binomial 100 67.5 67.5 0.992 (1) 

 

CONCLUSION 

We developed the MINB model and applied it on the simulated data sets. The 

performance of the MINB model was compared with the other competitive count models 

which are frequently used to model the over dispersed data. The ASL was used to 

evaluate the performance of the MINB and other models. We found that the MINB 

performs better than the other models in the data set we simulated. However, an 
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evaluation of the performance of the model in different scenarios is needed. The variable 

selection issue was also successfully handled using the one step SCAD variable selection 

method. Using the simulated data sets to evaluate the performance of the variable 

selection methods, we found very promising results with very high sensitivity even when 

any two model components have the same independent variables associated with the non-

zero coefficient. The high sensitivity ensures the selection of all the important variables. 

However, the specificity found to be moderate but variables associated with non-zero 

coefficient are selected with very high percentage even when two model components 

have same independent variables associated with the non-zero coefficient.  The one step 

SCAD estimates are found very close to the true value. 
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SUPPLEMENTARY MATERIAL 

S1 Proof of Proposition 3.1 

 Taking  { ( ); } { ( ); }
c c

c c= ∈ ∪ ∈/F x F xI IF  and noticing that the number of 

parameters of the MINB depends on c . Taking 

1 1

2

2 1 2{ , ,... ; } { , ,... ; }
c c c c c c

c cκ
κ

κτ τ τ τ τ τ′ ′ ′= ∈ ∪ ∈/R I I  
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 ( ) ( ) { } { }0 1 1, 0, where,
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 According to Tallis et al. (1982), the above mixture ( )xH  is identifiable if and 

only if  F  is linearly independent. We are providing the proof of this proposition by 

contradiction. 

 In order to prove this proposition, we will also use the definition of linear 

independence of the set of functionsF . Tallis et al. (1982) mentioned the definition of the 

linear independence as follows:  

A set of functions F is said to be linearly independent if for real constant i
a

0

( ) 0 0
M

i i i

i

a F x a
=

≡ ⇒ =∑  , for 0,1, .i M= �  More precisely,

( ) { } { } { }0 1 1, 0 0 0,1, , .
i M M i

a NB a Y c a Y c a i Mµ ν⋅ ⋅ ⋅+ = +…+ = ≡ ⇒ = ∀ ∈ …Ι Ι …3.1 

 Suppose that F is not linearly independent. Therefore, 
0

( ) 0
M

i i

i

a F x
=

≡ ⇒ ∃∑ at least 

one i such that 0
i

a =/ . 
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Case-I. 

Suppose that 0
i

a =/  for 0i = . Then by eq. (3.1), 

( ) ( )0 , 0 , 0
i i

a NB NBµ ν µ ν≡ ⇒ ≡⋅ ⇒ Contradiction (as per the model definition of the 

MINB). 

 Therefore, 0a =0, this implies that F  is linearly independent. Therefore, by Tallis 

et al. (1982) ( )xH  is identifiable. 

Case-II 

Without loss of generality, suppose that 0
i

a =/  for any 1, ,i M= � . Then by eq. 

(3.1), 

{ } 0 { } 0
i i i

a Y c Y c⋅ = = ⇒ = =1 1 ⇒ i
c ∈ ⇒/ I Contradiction (as per the model definition of 

the MINB).  

 Therefore, 0, {1,2, , }
i

a i M= ∀ ∈ �  this implies that F  is linearly independent. 

Therefore, by Tallis et al. (1982) ( )xH  is identifiable. Therefore, the MINB is 

identifiable. 

S2 Technical Details about the implementation of LARS 

 As proposed by Zou and Li (2008), implementation of the one step sparse 

estimator in the MINB model starts with the creation of working data. We are following 

Buu et al.(2011) but the steps suggested by him are rearranged little bit as per 

convenience. 

Step1:- We find the Cholesky decomposition of  

� � �( )2

0 ∆ , ,α β γα β γα β γα β γ=Σ �  

0Σ 'L L=  
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using this, we get 

�*
Y Lθθθθ=  

where �θθθθ  is the set of maximum likelihood estimates of the slope parameters for the 

cumulative logit, logit and NB model respectively. 

Now in-order to obtain working data, we proceed as follows:- 

Step2:- We fist get the index, i.e., 

�( ){ } �( ){ } �' ' '
: 0 : 0 { : ( 0} 

k l
j kj lU j p k p l p andα β γα β γα β γα β γζ η κ= = ∪ = ∪ =  

�( ){ } �( ){ } �( ){ }' ' ': 0 : 0 : 0j k lj k lV j p k p l pα β γα β γα β γα β γζ η κ= ≠ ∪ ≠ ∪ ≠  

�( ) �( )

{ }

�( )

* * * * * * *

''

* * *

'

: ;  : ;  

                                             : ;  

V j j j k k k

j kkj

l l l

ll

X x x j V x x k V
npnp

x x l V
np

ββββαααα

γγγγ

ηζ

κ

τ τ

τ

   
   

= = ∀ ∈ ∪ = ∀ ∈ ∪   
   

  

 
 

= ∀ ∈ 
 
 

� �

�

 

where { }* * *,
U V

X X X=   

Step 3:- This step involves obtaining the projection matrix in the space of 
*

U
X  i.e.  

 ( )
1

* *' * *

U U U U U
H X X X X

−

=   

and then computation of 

 
** * * ** * *,

U V V U V
Y Y H Y X X H X= − = −   

Step 4:- In this step, we apply LARS algorithm and solve 

 �
*

** **

1

1
arg

2

j k l

U i

i

min Y Xθθθθθ θ θθ θ θθ θ θθ θ θτ
+ +

=

 
= − + 

 
∑   

Then, the one step SCAD estimator is given by 
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�( )

 *  *  *

'
:  

u j j

jj

j V
np

θ θ θθ θ θθ θ θθ θ θ
θθθθτ

τ
 
 

∪ ∀ ∈ 
 
 
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1. SUMMARY 

In modeling count data, the presence of over/under dispersed counts and 

occurrences of more than expected counts (i.e., inflation in many counts / multiple 

inflated counts) are two major problems and inappropriate models can lead to 

substantially misleading results. The available methods, such as the multiple-inflation 

Poisson model (Su et al., 2013) can accommodate the multiple inflations in count data. 

However, equidispersion property of the Poisson distribution is not suitable to model the 

over/under dispersed non-inflated counts. In this paper, we proposed a multiple-inflation 

generalized Poisson (MIGP) regression model by using a mixture of a cumulative logit 

model and generalized Poisson model since the generalized Poisson distribution (GPD) 

(Consul and Jain, 1973) can be used to accommodate the dispersion among count data, 

the mixing probabilities are formulated with a logistic regression. We applied the MIGP 

model to simulated data and found that it outperforms other commonly used count 

models. We also applied the MIGP model to a data from General Social Survey and 

found results from models without consideration of multiple inflated counts can be 

misleading. 
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2. INTRODUCTION 

 Health surveys provide rich source of publically available data to investigate the 

association between individual’s behaviors and human diseases. Often information about 

such a behavior is collected in the form of count data which involves dispersed counts. 

From a publically available data on substance abuse at “National Health and Nutrition 

Examination Survey (NHANES)” website (NHANES 2011-2012), we noticed the 

presence of the unusual higher frequency for many counts merely by inspecting the 

histogram plots (Figures 1 and 2). Here unusual higher frequency means that the counts 

were in higher frequencies than the expected frequency under the Poisson and/or negative 

binomial (NB) distribution. Su et al. (2013) referred this as multiple inflated counts. 

When only count zero is inflated then this is referred as zero inflated counts. However, 

the inflation in counts may reflect sample-to-sample variation and could just show the 

variation across the samples. Moreover, it may reflect that some counts in the sample are 

following different distribution than just a Poisson/ NB distribution. The difference in 

distribution is mainly caused by the data generating mechanism. 

 Lambert (1992) observed many zero counts than expected under the Poisson 

distribution and proposed a zero-inflated Poisson (ZIP) model. Lambert found that the 

mechanisms leading to the excess zeros consist of two processes with different 

distribution functions, where one process generates the zero counts while the other 

process generates the counts following Poisson distribution. She proposed the zero-

inflated Poisson (ZIP) regression, with an application to defects in manufacturing.  

 Figures 1 and 2 clearly show the multiple inflations at 16-20 and at 2-6 for the 

variables “Age first injected the drug” (0 to 49) and “Last time injected drugs”, 
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respectively (NHANES 2011-2012 ). The presence of inflated counts may reflect the 

vulnerable behavior of the certain population at particular age and producing the counts 

with different mechanism. The “Sexual Behavior” questionnaire survey available at 

NHANES website is also among the other examples in which we encountered with the 

multiple inflated counts (NHANES 2011-2012). For example, we found that the count 

variables such as number of male sex partner (from 0 to 600) in lifetime have a few 

counts with inflation (Figure 3). The inflation in count 1 may refer monogamous 

population and may have different counts generating mechanism whereas for the 

mechanism of inflation in other counts, proper investigation of population is needed.  

 

Figure 1. Histogram plot of the variable “Age first injected drugs” along with the fitted 

Poisson distribution and negative binomial distribution with parameters estimated from 

the data. 
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Figure 2. Histogram plot of the variable “Last time injected drugs” along with the fitted 

Poisson distribution and negative binomial distribution with parameters estimated from 

the data. 

 

 

Figure 3. Histogram plot of the variable “number of male sex partners/lifetime” along 

with the fitted Poisson distribution and negative binomial distribution with parameters 

estimated from the data.  
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For data with multiple inflated counts, neglecting such inflations could provide 

misleading results. Su et al. (2013) proposed a multiple-inflation Poisson (MIP) model 

for count data with inflations in multiple counts. The MIP model assumes a mixture of a 

Poisson and a discrete distribution. However, the equidispersion assumption of the 

Poisson distribution characterized by equality in mean and variance is largely violated in 

many situations. To deal with this shortcoming of the Poisson distribution, Lagrangian-

Poisson distribution, also known as the generalized Poisson distribution (GPD), was 

proposed by Consul and Jain (1973) and is considered as one of the popular alternative 

(Johnson et al., 1992). Therefore, when the data exhibit substantial extra (or less)-Poisson 

variation, or over (or under) dispersion, relative to a Poisson model, the GPD should be 

preferred over the Poisson distribution. Similar to the NB distribution, the GPD also 

incorporates a dispersion parameter which follows lognormal distribution instead of a 

single parameter gamma distribution with the mean 1. Thus, the GPD can be used for 

modeling both under dispersed as well as over dispersed data (Hilbe, 2011). 

 To model data with multiple inflations in under or over dispersed counts, we 

proposed a multiple-inflation generalized Poisson (MIGP) model which would not only 

be able to provide the adjustment for the multiple inflated counts but will also be able to 

provide better estimates when non-inflated counts are dispersed. We also provided an EM 

algorithm and used it along with the numerical optimization to obtain maximum-

likelihood estimates of the parameters in the model.  

 This paper is organized as follows. Section 3 contains detailed formulation of the 

multiple-inflation generalized Poisson (MIGP) model. The identifiability, and (over and 

under) dispersion is also discussed in Section 4. The EM algorithm is proposed along 
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with the numerical optimization to obtain the maximum likelihood (ML) estimates in 

Section 5. Sections 6 and 7 consist of the application of the MIGP in the simulated data 

sets to evaluate its inferential performance and its comparison with the frequently used 

relative existing models that address over dispersion. However, section 8 consists of 

application of MIGP model in data from General Social Survey (GSS). 

3. MULTIPLE-INFLATION GENERALIZED POISSON (MIGP) MODEL 

We consider a data set with i
y as the count outcome variable and i

X as the 

associated predictor vectors from n independent observations namely{( , ) : 1, , }
i i

y i n=X � . 

Suppose that the M inflated counts are present in the count outcome. Due to the presence 

of the natural order in the inflated counts, we can arrange them either in the ascending or 

descending order. Without loss of generality, the inflated counts are arranged in the 

ascending order and collected in a set  I such that 

{ }1 2 1 2 , , , , : .
m M m M

I c c c c c c c c= … … ≤ … ≤ … ≤ For data with inflated zero counts, we 

have M=1and { }0I = .For three inflated counts at 0, 1, and 2, we have M=3 then 

{ }0,1,2I =  . 

3.1. Model Specification 

Analogous to the MIP distribution (Su et al., 2013), the multiple-inflation 

generalized Poisson (MIGP) model is given as follows: 

{ } ( )
( )

1 2 1 2
, , , ; , , ,     with probability 1                  

    
,                                               with  probability                         

M i i iM i

i

i i

Discrete c c c p p p
y

GPD

φ

µ ν φ

… … −
∼ 


, 

 

where the probability density function of the ( ),GPD µ ν  is given as follows: 

 ( ) ( ) ( )
( )1 1 1

| , 1 ! exp
y y

y
P Y y y y

µ ν
ν µ µ µ ν ν

ν

− −−
 + −  = = + − −      
 
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 The MIGP model is a mixture of a discrete distribution over the inflated values in

I  and a generalized Poisson distribution, ( ),
i

GPD µ ν , where the mixing probability is 

specified by i
φ . 

 Furthermore, the parameters  ,  and 
im i i

p φ µ are further specified by using three 

different regression models. First, i
φ is specified by the logistic regression model, 

log
1

Ti

i

i

αααα
φ

φ

 
= 

− 
h . Second, i

µ is determined by the log-linear regression model, 

( )log T

i i
ββββµ = b . Third, , 1,2, ,

im
p m M= � are specified through the cumulative logit or 

proportional odds regression model (as the inflated values in I  are naturally ordered). To 

describe the proportional odds regression model, we first introduce a ( 1)M + -dimensional 

dummy variable vector ( ) ( ){ }1
 : 1, 2, , 1 ,

M

i im im
R m Mδδδδ δ δ +

= ∈ ∀ = … +  where  

 
{ }

{ }

1           for 1,2, ,   

1             for 1         

i m

i

y c

im

y I

m M

m M
δ

=

∉

= …
= 

= +
. 

Now the cumulative logit or proportional odds regression model is given as follows: 

 
( )( )

( )( )
1

0 1

1

Pr | 0
log 1, 2, , 1, .

Pr | 0

i m i M T

m i

m i M i M

y c
m M

c y c
γγγγ

δ
γ

δ

+

+

≤ =
= + ∀ = … −

< ≤ =
g  

where ( )( )01 02 10 1
, , , ,

T
T

M
γ γγ γγ γγ γγ γ γ

−
= … is a vector for the regression parameters involved in the 

cumulative logit model and includes the 1M − intercept parameters, i.e., 0 '
j

sγ  and a 

slope parameter vector 1

Tγγγγ . Moreover, { }, ,
i i i

h b g and { }, ,α β γα β γα β γα β γ represent the covariate 

vectors of the appropriate dimensions (consist of the selected components from the i
X ) 

and corresponding regression parameter vectors respectively. 

 The above model specifications can be further written as follows: 
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( )exp T

i i
ββββµ = b ..................(1.1) 

( )expit T

i i
ααααφ = h  ................(1.2) 

and 

( )( )1
| 0

im i m i M
p P y c δ

+
= = =  

 

( )

( ) ( )( )

( )( )

01 1

0 1 10 1

10 1

expit                      1

expit expit    2,3, , 1.......1.3

1 expit           

T

i

T T

m i im

T

iM

for m

for m M

for m M

γγγγ

γ γγ γγ γγ γ

γγγγ

γ

γ γ

γ

−

−

 + =



= + − + = … −

 − + =


g

g g

g

                   

where the function ( ) ( ) ( )
expit is given as expit

1

x

x
ex x

e
=

+
. 

3.2. Dispersion 

Different from the dispersion present in the distribution of non-inflated counts, the 

multiple-inflation (MI) counts themselves induce over and under dispersion. As noted by 

Su et al. (2013), the inflation present in the multiple counts causes the over dispersion or 

under dispersion. To illustrate, the expected value and variance of i
y are first obtained as 

follows: 

 ( ) ( ) ( ) ( )
1

( | 1 exp
M

T

i i i i m im i i

m

E y E E y c pδ βδ βδ βδ βφ φ
=

= = − +∑ b  

and 

 
( ) ( ) ( ) ( )

( ) ( ) ( )( )
1

2

1 1

2

2

1 1

              exp exp exp 1

M M M

i i i m im i m im m im

T T T

i i i i i

m m m

Var y E y c p c p c p

β β ββ β ββ β ββ β β

φ φ

φ ν φ

= = =

  
= + − − − −  

   

+ + − −

∑ ∑ ∑

b b b

 

 ( ) ( )i i i
Var y E y ξ⇒ = +  

where the additive term  i
ξ  is given as follows: 

( ) ( )

( ) ( ) ( )( )
1

2

1 1

2

2

1 1

     exp exp exp 1

M M M

i i m im i m im m im

T T T

i i i i i

m m m

c p c p c p

β β ββ β ββ β ββ β β

ξ φ φ

φ ν φ

= = =

  
= − − − −  

   

+ + − −

∑ ∑ ∑

b b b
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 The presence of the additive term ��  suggests the possible over or under 

dispersion. The positive value of �� gives the over dispersion. Therefore, the condition for 

the over dispersion (i.e., 0
i

ξ > ) is given as follows: 

( ) ( ) ( ) ( ) ( ) ( )
1

2

2

1

exp 1 exp 1 [ 1 { 1 1 }]
M M

T T

i i i i i m m i m im

m m

c c c pβ ββ ββ ββ βφ ν φ φ φ
= =

  + − − > − − + −   
 

∑ ∑b b  

Also the condition for the under dispersion is given as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )
1

2

2

1

exp 1 exp 1 [ 1 { 1 1 }]
M M

T T

i i i i i m m i m im

m m

c c c pβ ββ ββ ββ βφ ν φ φ φ
= =

  + − − < − − + −   
 

∑ ∑b b  

The left side of the inequality involves the parameters of the generalized Poisson 

model whereas the right part of the inequality involves the parameters of the discrete 

distribution. If no inflation in the counts is present (i.e., 0
j

c = ) and the counts are coming 

only from the GPD (i.e., 1
i

φ = ), the above expression reduces into the GPD and provides 

the over dispersion for the 1ν >  and the under dispersion for the 1ν < . As we mentioned 

that the MIGP also induces the under dispersion in the some cases, e.g., for the two 

inflated counts 0 and 1 with the probability 0.25 and 0.75, and for the fixed value of  

,   andφ µ ν  such as 0.7, 2 and 0.03, we get the under dispersion. However after changing 

the to  0.50
i

φ , we get the over dispersed counts as per the given inequalities (For the 

derivation of ( )i
Var y  see Supplementary Material). 

4. IDENTIFIABILITY 

 In order to provide the valid inference for a model, the model must be identifiable 

which means two distinct sets of parameters are not giving the same distribution. 

However, the identifiability could also be achieved for a model by imposing certain set of 

the restrictions known as identification conditions. A model can be identifiable, partially 



85 

 

identifiable or non-identifiable. In particular, even if a model is non-identifiable, but the 

true values of a certain subset of the model parameters could be found then the model is 

called partially identifiable. 

 According to Tallis et al. (1982), the 'κ  dimensional parameter space 
'

1

κ
R  with 

the restriction that it consist of the finite number of the elements, i.e.,
'

1 1 2 '{ , ,... }κ
κα α α=R , 

the mixture of the distribution ( ) ( ) ( ) ( ){ } ( )1 2
, , , , , . . i e xη… …

i
F x F x F x F x H can be written 

as 
1

( ) ( )i i

i

η

ω
=

=∑x F xH  where 
1

1i

i

η

ω
=

=∑ . The authors found that the above mixture is 

identifiable if and only if ( ) ( ) ( ) ( ) ( ){ }1 2
, , , , ,H η= … …

i
x F x F x F x F x   is linearly 

independent. 

Proposition 4.1 

 The MIGP model is identifiable (See Supplementary Material). 

5. MAXIMUM LIKELIHOOD ESTIMATION 

 The three regression models mentioned by the equations 1.1 to 1.3 fully specify 

the MIGP model. Utilizing these, the likelihood function is given by 

 { }
( )      

                

1 for  and 1, 2, ,
Pr

for                                        

i im i i

ic i

i i

p c I m M
y c

c I

φ φ Ψ
π

φ Ψ

 − + ∈ = …
= = =

⋅

∉⋅



 

where ( ),
i i

GPDΨ µ ν∼  and is given by: 

 ( ) ( )
( )1 1 1

1 ! exp
i

i
y i iy

i i i i i

y
y y

µ ν
Ψ µ µ ν ν

ν

− −−
 + −  = + − −      
 

 

The likelihood function ( )Θ� (where { }, , , ν=Θ α β γ ) of the MIGP model is given by: 

 ( ) ( ){ } ( ) ( )1

1 1

1
im i M

n M

i im i

i

i i i

m

p
δ δ

φ φΨ φΨ +

= =

 
= − + ⋅ 

 
∏ ∏Θ�  

The corresponding log-likelihood ( )L θ  is given as follows: 
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 ( ) ( )Θ log ΘL = =�  

 ( ) ( ){ } ( ) ( )1

1 1 1

Θ log 1 log
n n M

i im i im

i i

i i i ii M

m

L pδ φ φΨ δ φΨ
=

+
= =

  
= − + +  

  
∑ ∑ ∑  

 Su et al. (2013) used EM algorithm and BFGS quasi-Newton method to find the 

estimates of the MIP model and also recommended the use of limited-memory variant, L-

BFGS when the number of parameters is very large. Here we use the EM algorithm and 

an optimization algorithm- Nelder Mead simplex algorithm implemented in R function 

optim() for numerical optimization.  

5.1. EM Algorithm 

 Dempster et al. (1977) proposed the expectation-maximization (EM) algorithm to 

find the maximum likelihood estimates of the parameters of the mixture models. This 

algorithm consists of the iterations of the two steps namely E-Step and M-step. The E-

step involves the computation of the conditional expectation of the complete-data log 

likelihood conditional upon the observed data and the current parameter estimates. In 

mixture models, the complete data generally consists of a latent variable Z and the 

observed data X. The M-step involves the maximization of the expectation of the log 

likelihood function, in the every iteration. Following this, we first introduce the latent 

random variables im
Z as follows: 

 

1    if  : 1, 2, ,  and 

0    if   GPD                                                 

,i im im

im

i

y c c I m M i I
Z

y

+ = ∀ ∈ = … ∈
= 

∈  

 Subscripts i  and m  in im
Z represent the 

th
i random variable for the 

th
m inflated 

count. Similarly, for the 
th( 1)M + count, the 

th
i random variable ( )1i M

Z
+

 is given by 

 ( ) ( )1

1

1

1  if GPD
  and also 1

0    otherwise
.

m
i

ii M

i

mM i

y
Z Z Z

+ +
=

∈
= = −


∑
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 The random variables im
Z for the given values of m and the random variable 

( )1i M
Z

+
are partially observable. Indeed, the value of the variable im

Z  is only known when 

i m
y c≠  and it is unknown otherwise. 

 Finally, the EM algorithm reduces into the estimation of the αααα by using the 

logistic regression model and by taking the ( )1i M
Z

+
as the response variable, the estimation 

of the ββββ  andνννν  by using the generalized Poisson regression model with i
y as the response 

variable and the ( )1i M
Z

+
 as a weight, and also the estimation of theγγγγ  using a form similar 

to the proportional odds model. 

 After including the observed and the latent data, the complete data is given as 

{ },
c i im

Y Y Z= . Furthermore, the probability density function of the complete data is given 

as follows: 

( | ) ( , | ),
c i im

f Y f Y Z=Θ Θ  

whereΘ  is the associated parameter space, i.e., � = {�, �, 	, 
} . This can be further 

written as: 

 ( ), | ( | , ) ( | )
i im i im im

f Y Z f Y Z f Z=Θ Θ Θ  

Hence, complete data likelihood can be written as follows: 

 ( )
1 1

, |
n M

i

m

im

i

f Y Z
= =

= ∏∏ Θ�  

 ( ){ } ( ){ } ( )1

1 1

, 1 | , 0 | 
im i M

n M
Z Z

i im i im

i m

f Y Z f Y Z
+

= =

= =∏∏ Θ Θ  

or 

( ) ( ){ } ( ) ( ){ } ( )1

1 1

| 1, 1 | | 0, 0 |   
im i M

i

n M
Z Z

i im im i im im

m

f Y Z f Z f Y Z f Z
+

= =

= = = = =∏∏ Θ Θ Θ Θ  
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 ( ){ } { } ( )1

1 1

1
im i M

n M
Z Z

im i i i

i m
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Therefore, the log-likelihood of complete data is given by: 
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However,  
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Therefore, we get, 
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This reduces into 
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 Now since ( )|
c c

L YΘ is linear in the im
Z for each 1, 2, ,m M= � and ( )1i M

Z
+

, 

therefore, the
th( 1)k +  iteration of the algorithm involves there placement of the im

Z  for 

1, 2, ,m M= � and ( )1i M
Z

+
 with their conditional expectations, conditioned on observed 

data i
y  and parameters , ,  and α β γα β γα β γα β γ ν . However, in more details, the EM algorithm at the 

th
( 1)k +  iteration involves the following steps: 

 The E step involves the computation of the conditional expectation of im
Z  for 

every 1, 2, ,m M= � and ( )1i M
Z

+
denoted by �

( )k

imZ  and �
( )

( )
1

k

i MZ + (i.e.,
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 In the M-step, we estimate ββββ and	
 by the maximization of �( )2 ,  | 
k

iQ ββββ ν Θ which 

is the log-likelihood for a weighted generalized Poisson regression of i
y  on i

b with the 

weights � ( )
( )

1

k

i MZ + . In the M-step, we also estimate γγγγ  and this step involves the 

maximization of �
( )

1  | 
k

i
Q γγγγ 

 
 

Θ  which has a form similar to the log-likelihood obtained 

from a proportional odds model with responses �
( )k

imZ  .The conjugate gradient method 
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which does not store a matrix is used for the fast and straight forward maximization in 

this step. However to get the estimates of αααα , in the M-step, we maximize �
( )

3  | 
k

i
Q αααα 

 
 

Θ

which has a form similar to the log-likelihood obtained from an un-weighted binomial 

logistic regression of � ( )
( )

1

k

i MZ + on i
h . 

 A similar strategy used by Su et al. (2013) is employed to supply the initial values 

for the parameters. Specifically, a truncated Poisson model is fit to the data with no 

inflated counts and a cumulative logit model to the inflated counts. The estimates 

obtained after fitting these models are used as the initial values for the ββββ and γγγγ

respectively. The estimate of the index of dispersion is used as the initial value for theν . 

The logistic regression model is used to obtain the initial value for the αααα , for this a 

dichotomous variable with 0 for the inflated and 1 for the non-inflated counts is created 

and used. However, these values are not directly supplied as the initial values to the EM 

algorithm, rather these are used as the initial values in a numerical optimization of the 

likelihood first and a second set of the estimates is obtained which is used as the initial 

values for the EM algorithm to aid convergence. Specifically, a three step procedure to 

obtain the maximum likelihood estimates for the MIGP model is used as follows: 

(1) As we discussed, the regression parameter estimates of the truncated Poisson model, 

cumulative logit model and logit model along with the index of dispersion are obtained. 

(2) The estimates obtained in the previous step are used as the initial values for the 

numerical optimization of the log likelihood (for this purpose the default method present 

in R optim(), i.e., a derivative-free optimization routine, Nelder-Mead simplex algorithm 

is used) and another set of estimates is obtained 
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(3) The estimates obtained in the second step are used as the initial values in the EM 

algorithm and the maximum likelihood estimates are obtained by updating the estimates 

in EM algorithm until convergence. 

 Do et al. (2008) has mentioned that in most of the non-concave optimization 

methods, the EM algorithm provides assurance only for convergence to a local optimum 

of the objective function. Therefore, the three steps procedure is used to facilitate the 

convergence of the EM algorithm to the global optimum. In addition, the Hessian matrix 

obtained from the R function optim() is used to approximately estimate the variance-

covariance matrix of � � ( . . Cov( ))i eθ θθ θθ θθ θ=Σ via observed Fisher’s information matrix by

� { }
1

ΣΣΣΣ
−

= −H . The optim() function uses the finite difference method to approximate 

hessian matrix. 

6. SIMULATION 

We simulated data sets that are close to the real data in structure (Burton et al., 

2006) and had an outcome variable that are similar in inflated counts to the NHANES 

cigarette smoking data sets. In the NHANES data, high frequency of the no cigarette 

smokers (0), half pack (10) a day and full pack (20) a day cigarette smokers is observed 

along with the highly dispersed counts of the smokers who smoke other than that many 

(i.e., 0, 10 and 20) cigarettes a day. Therefore, we took three counts, i.e., {0, 10, 20} as 

the inflated counts to form the following MIGP model: 
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 The three covariates 1 2 3( , , )X X X were independently generated from the uniform 

distributions. The following set of the parameters were used to simulate the data sets

0 1( , )α α  =(-1, 2), 0 1( , )β β = (1, 1), 00, 01, 1(  )γ γ γ =(-3, 0.5, 0.5) and ν = 3.Three sample sizes 

small (n = 500), medium (n = 700) and large(n = 900) were chosen due to the presence of 

the large number of the observations in the survey samples such as NHANES data sets. 

We used the population parameters and covariates to generate an outcome variable 

following a GPD with 0, 10 and 20 inflated counts. 1000 datasets were simulated.  

 The MIGP model was then applied to each data set to obtain the estimates of the 

parameters. The estimates of the population parameters and their standard errors were 

obtained for each data set in each run. The mean of the parameter estimates and the 

standard errors along with the standard deviation of the parameter estimates were 

calculated for all the 1000 simulated data sets, which are given in Table 1. The variance-

covariance matrix was approximately estimated by using the hessian matrix provided by 

R Optim() function that uses finite difference approximation. 
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Table 1: Average value of the parameter estimates obtained after applying the MIGP 

model on simulated data sets. 

 

Sample 

Size 

Parameter True Value          Estimates  Average 

    SE  Average     SD    

500 
01γ  -3 -2.124 0.231 0.754 

02γ  0.5 0.782 0.196 0.283 

1γ  0.5 0.298 0.384 0.492 

0α  -1 -1.167 0.009 0.230 

1α  2 2.098 0.003 0.371 

0β  1 1.027 0.005 0.172 

1β  1 0.946 0.003 0.244 

ν  3 2.954 0.010 0.281 

700 
01γ  -3 -2.122 0.180 0.674 

02γ  0.5 0.781 0.153 0.240 

1γ  0.5 0.299 0.299 0.416 

0α  -1 -1.167 0.007 0.196 

1α  2 2.098 0.002 0.313 

0β  1 1.027 0.004 0.146 

1β  1 0.946 0.002 0.206 

ν  3 2.954 0.008 0.239 

900 
01γ  -3 -2.118 0.166 0.571 

02γ  0.5 0.783 0.141 0.210 

1γ  0.5 0.297 0.277 0.365 

0α  -1 -1.168 0.006 0.172 

1α  2 2.098 0.002 0.275 
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0β  1 1.028 0.004 0.128 

1β  1 0.946 0.002 0.181 

ν  3 2.953 0.007 0.209 

 

 From Table 1, we can see that the average of the parameter estimates is close to 

their true values. The standard deviations are smaller than the SEs. This might be because 

the computation of the standard errors is based on the hessian matrix obtained in the 

numerical optimization. However, the standard deviation was computed for the parameter 

estimates obtained after the application of the EM algorithm. Not much difference in the 

mean of the estimates is found across the different sample size. The difference in the 

mean estimates for the cumulative logit model from their true values may be due to the 

difference in the frequency of the inflated counts across three levels. Most of the data sets 

were considered more likely to have higher frequency for individuals smoking 10 

cigarettes a day during simulation. The 95% CI coverage rate for each sample size is 

found to be 100% hence it is not mentioned explicitly in Table 1.The comparison of the 

standard error with the standard deviation allows us to evaluate the asymptotic 

performance of the results hence are included in Table 1. 

7. COMPARISON OF MIGP WITH OTHER RELATED COUNT MODELS USING 

SIMULATED DATA 

 

We compared the MIGP model with the other related count models, i.e., the NB 

and ZINB models along with loglinear and ZIP models using the three covariates

1 2 3( , , )X X X .  

Specifically, we used all the three covariates in the Poisson and NB model. 

However, for the ZIP and ZINB models, the variables 1X  and 2X are taken as covariates 
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for the logit model part whereas 1X  and 3X are taken as covariates in the loglinear model 

part. This model specification was adapted by keeping in mind the role of the covariates 

in the simulation of the data.     

For the comparison, the test and the training data sets with 500 independent 

observations are simulated. We fitted the models in the training dataset and then applied 

the fitted models in the test dataset to get the predicted value of the count outcome. Then 

the mean average square loss (ASL) over 1000 data sets was calculated and given in 

Table 2, where 
2

1

1 ˆASL { ( )}
n

i iY E Y
n

= −∑ and Ŷ  is vector of n predicted values and Y is the 

true value. 

 The MIGP performs better than the log-linear and ZIP models (Table 2) with a 

smallest average ASL of 0.163 while the log-linear model and the ZIP model have an 

average ASL of 0.511 and 0.996, respectively. This was expected because the simulated 

datasets are dispersed and violate equidispersion assumption required for the Poisson 

distribution. We simulated the data to evaluate the performance of the MIGP in the 

situation in which application of the MIGP is preferred, i.e., presence of over/under 

dispersion. However, for the data having equidispersed non-inflated counts the MIP 

model is already available. Moreover, a separate study is needed to observe their (i.e., 

log-linear, ZIP and MIP models) behavior in the presence of dispersed counts with 

multiple inflations. The model, zero-inflated generalized Poisson was not used for 

comparison due to the lack of the appropriate R package to model the ZIGP. 
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Table 2: Comparison of the MIGP model with the other models. 

MIGP
ASL  LOG LINEAR

ASL −  NB
ASL  ZIP

ASL  ZINB
ASL  

0.163 0.511 0.547 0.996 1.004 

 

8. REAL DATA ANALYSIS 

We provided several examples to bring forth the fact about the presence of the 

multiple inflated counts in the dispersed count settings in the social science studies. 

However, this fact has been mostly overlooked till date and the analysis were performed 

without incorporating multiple inflated counts. In this section, we applied the MIGP 

model to a data from General Social Survey (GSS, 2012).  

 Here the “GSS 2010 merged” (GSS, 2012) data has 4,901 observations and 1,223 

variables. We only considered the complete cases of 1,784 subjects. We used "How 

MANY SEX PARTNERS R HAD IN LAST 5 YEARS" as the response variable and 

sexual orientation, general happiness, and change in financial situation as the predictors. 

The variable sexual orientation has three levels, i.e., homosexual (gay, lesbian), bisexual 

and heterosexual (or straight). The three levels very happy, pretty happy and not too 

happy were also used for general happiness whereas information about change in 

financial situation was gathered as better, worse and stayed same. In the following 

discussion, we took 5% as the level of significance.  

 Without considering any inflation and after applying the Poisson regression model, 

we found strong association of number of sex partners in last 5 years with sexual 

orientation (p-value < 0.0001), financial situation (p-value < 0.0001) and happiness (p-

value = 0.002). Furthermore, after using the NB regression model, we obtained the 
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similar association between sexual orientation (p-value < 0.005), financial situation (p-

value < 0.0008), and happiness (P=0.03) with the response variable. However, after 

applying the ZIP model, no variable was found significant in zero model while sexual 

orientation (p-value < 0.0001), financial situation (p-value < 0.0001) and happiness (p-

value = 0.003) were found significantly associated in count model part. Similarly, after 

applying the ZINB model, no variable was found significant in zero model while sexual 

orientation (p-value < 0.0007), financial situation (p-value = 0.002) and happiness (p-

value = 0.02) were found significant in count model part. When we took count {1, 5, 9} 

as inflated counts due to the presence of higher frequency in comparison with the NB and 

Poisson distribution (Figure 4), financial situation was not found significant in both 

model components (Table 5) whereas, sexual orientation (p-value < 0.015) and happiness 

(p-value = 0.04) were found significant only in cumulative logit model part. Inflation in 

counts {1, 5, 9} may have certain mechanism which needs proper investigation of 

population. Here these counts are takes to bring forth the possible effect of not 

incorporating multiple inflated counts in analysis. Moreover advice of expert of social 

science is needed to decide on inflated counts. 

 The AIC (Akaike 1974) values and BIC-corrected Vuong's (1989) test were used 

to compare the performance of the model. The MIGP not only has minimum AIC but also 

found superior based on the Vuong's test (see Tables 3 and 4). 



98 

 

Figure 4. Histogram plot for the “number of sex partners R had in last five years” and its 

comparison with the Poisson distribution and negative binomial distribution with 

parameters estimated from the data 

 

Table 3: The results of the Vuong's test. 

 

Comparisons Results 

NB vs Poisson  Test statistics 

(BIC-corrected ) 

|ν|= 7.40 

P-val  P<0.0001 

Result  Favors NB  

ZINB vs ZIP  Test statistic 

(BIC-corrected ) 

|ν|= 7.28  

P-val  <0.0001  

Result  Favors ZINB  

ZINB vs NB Test statistics 

(BIC-corrected ) 

|ν|= 9.6  

P-val  <0.0001  

Result  Favors ZINB  

ZINB vs MIGP Test statistics 

(BIC-corrected ) 

|ν|= 2.37  

P-val  0.018 

Result  Favors  MIGP 
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Table 4: AIC values.  

 

 Poisson NB  ZIP ZINB  MIGP  

AIC  6693.1 6339.2 6690.1 6343.3 5515.209 

 

Table 5. Parameter estimates and their p-values along with the 95% CI 

 

Parameter Estimates SE z p-value LCI UCI 

01γ  -0.632 1.160 -0.545 0.586 -2.905 1.641 

02γ  0.788 1.154 0.683 0.495 -1.474 3.049 

1γ 1
 0.906 0.372 2.437 0.015* 0.177 1.635 

2γ 2
 0.099 0.149 0.663 0.508 -0.194 0.391 

3γ 3
 -0.370 0.180 -2.054 0.040* -0.723 -0.017 

0α  0.917 0.804 1.140 0.254 -0.659 2.493 

1α 1
 -0.529 0.254 -2.087 0.037* -1.026 -0.032 

2α 2
 0.064 0.084 0.763 0.445 -0.101 0.229 

3α 3
 0.350 0.111 3.142 0.002* 0.132 0.569 

0β  0.753 0.299 2.518 0.012* 0.167 1.338 

1β 1
 -0.073 0.092 -0.792 0.428 -0.252 0.107 

2β 2
 -0.073 0.042 -1.727 0.084 -0.156 0.010 

3β 3
 -0.076 0.053 -1.427 0.153 -0.181 0.028 

ν  1.320 0.044 30.272 <0.0001* 1.235 1.406 

* Significant at the 5% level of significance, sexual orientation
1
, financial situation

2
, general happiness

3
 

9. DISCUSSION AND CONCLUSION 

We proposed a MIGP model and applied it on the simulated sets of the data as 

well as on the real data. We used the EM algorithm to obtain the maximum likelihood 
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estimates. The fact about the convergence of the EM algorithm to the local optima was 

also taken into the consideration so the numerical optimization was used to aid finding 

the global optimum. The performance of the MIGP model was evaluated and compared 

with the other related count models whose R packages are available. The NB and the 

ZINB models were primarily used for the comparisons as they always been preferred to 

model the over dispersed counts. The ASL was used to evaluate the performance of the 

MIGP and other two models. We found that the MIGP outperforms the other models.  

We used a GSS data to illustrate that without including multiple inflated counts, 

results can be misleading and our results from the GSS data also have some implications 

in social science. We explored how the number of sex partners in last 5 year is associated 

with the financial situation and happiness of an individual. We also explored the 

association between sexual orientation and number of sex partners. Using our novel 

model, we found that financial situation is not associated with the number of sex partners 

in last 5 years however this predictor was significant in the ZI models and in their non-

inflated analogues.  
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SUPPLEMENTARY MATERIAL 

S1 Proof of Proposition 4.1 

 Taking  { ( ); } { ( ); }
c c

c c= ∈ ∪ ∈/F x F xI IF  and noticing that the number of 

parameters of the MIGP depend on c . Taking 

1 1

2

2 1 2{ , ,... ; } { , ,... ; }
c c c c c c

c cκ
κ

κτ τ τ τ τ τ′ ′ ′= ∈ ∪ ∈/R I I  

Writing 

 ( ) ( ) { } { }0 1 1, 0, where,
i M M

H x GP Y c Y cω µ ν ω ω= + = +… = =⋅ ⋅+⋅Ι Ι  

 

1

1
i

M

i Y Iω −

=

= ∀ ∉∑  

 According to Tallis et al. (1982), the above mixture ( )xH  is identifiable if and 

only if  F  is linearly independent. We are providing the proof of this proposition by 

contradiction. 

 In order to prove this proposition, we will also use the definition of linear 

independence of the set of functionsF . Tallis et al. (1982) mentioned the definition of 

the linear independence as follows.  

A set of functions F is said to be linearly independent if for real constant i
a

0

( ) 0 0
M

i i i

i

a F x a
=

≡ ⇒ =∑  , for 0,1, .i M= �
 
More precisely,

( ) { } { } { }0 1 1, 0 0 0,1, , .
i M M i

a GP a Y c a Y c a i Mµ ν⋅ ⋅ ⋅+ = +…+ = ≡ ⇒ = ∀ ∈ …Ι Ι …4.1 

Suppose that F is not linearly independent. Therefore,  
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0

( ) 0
M

i i

i

a F x
=

≡ ⇒ ∃∑ at least one i such that 0
i

a =/ . 

Case-I. 

Suppose that 0
i

a =/  for 0i = . Then by eq. (4.1), 

( ) ( )0 , 0 , 0
i i

a GP GPµ ν µ ν≡ ⇒ ≡⋅ ⇒  Contradiction (as per the model definition of the 

MIGP). 

Therefore, 0a =0, this implies that F  is linearly independent. Therefore, by Tallis et al. 

(1982) ( )xH  is identifiable. 

Case-II 

Without loss of generality, suppose that 0
i

a =/  for any 1, ,i M= � . Then by eq. 

(4.1), 

{ } 0 { } 0
i i i

a Y c Y c⋅ = = ⇒ = =1 1 ⇒ i
c ∈ ⇒/ I Contradiction (as per the model definition of 

the MIGP).  

 Therefore, 0, {1,2, , }
i

a i M= ∀ ∈ �  this implies that F  is linearly independent. 

Therefore, by Tallis et al. (1982) ( )xH  is identifiable. Therefore, the MIGP is 

identifiable. 

A.2. Variance 

( ) ( )( ) ( )( )| |
i i i i i

Var y Var E y E Var yδ δδ δδ δδ δ= +  

( )( ) ( )2 2| exp T

i i i i
Var E y δ βδ βδ βδ βφ ν= b  

( ) ( ) ( ){ }
22| | |

i i i i i i
Var y E y E yδ δ δδ δ δδ δ δδ δ δ= −  

( ) ( ) ( ){ }
22| | |

i i i i i i
Var y E y E yδ δ δδ δ δδ δ δδ δ δ= −  

 ( ) { }( ) ( ) { }( )
2

1

2

1

2
1 | 1 |

M M

i m im i i i i i m im i i i i

m m

c p y y I c p y y Iδ δδ δδ δδ δφ φ φ φ
= =

 
= − + ∈ − − + ∉ 

 
∑ ∑  
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1. ABSTRACT 

Objective 

 The aim of this study was to determine the association between dental carries and 

two main subtypes of systemic sclerosis (SSc), i.e., limited and diffuse cutaneous SSc 

among adults. 

Methods 

 Two novel models, namely multiple-inflation negative binomial (MINB) and 

multiple-inflation generalized Poisson (MIGP) models were used for modeling the counts 

of dental carries that typically have inflations in multiple counts, and the results were 

compared with existing competitive models, i.e., negative binomial (NB) and zero-

inflated negative binomial (ZINB) models. Analysis to identify possible confounders was 

also performed and the association was explored after adjusting for the confounder Age 

and other covariate Income. 

Results 

 Seventy two diffused cutaneous SSc patients and one hundred eighteen limited 

cutaneous patients were analyzed. In the present sample of the population of adult SSc 

patients, after controlling for the covariates, the zero-inflated negative binomial (ZINB) 

suggests that the dental caries are significantly associated with the subtypes of SSc but no 

significant association was found after taking into account the inflation in other counts i.e. 

7 and 28. 
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Conclusion 

 This is the first study to incorporate inflation in multiple counts into the modeling 

of dental caries, and we found that the analysis could be misleading without taking into 

account the inflations in the counts other than zero. Therefore, we strongly recommend 

incorporating the inflation present in any counts in the analysis along with zeroes. 
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2. INTRODUCTION 

 Systemic sclerosis (SSc, scleroderma), one of a group of an autoimmune 

connective tissue diseases, is characterized by vascular dysfunction, inflammation and 

excessive fibrosis of connective tissues supporting the skin and visceral organs [1, 2]. 

SSc is classified into two main subtypes: limited cutaneous SSc (lcSSc) is characterized 

by restricted skin involvement and slow progression; diffuse cutaneous SSc (dcSSc) is 

characterized by rapid progression, visceral organ and symmetrical widespread skin 

involvement [3]. 

 SSc affects the skin and musculoskeletal tissues along with the oral and perioral 

tissues [4-7]. A major clinical manifestation, orofacial dysfunction (e.g., microstomia and 

xerostomia) may lead to oral health problems among people with SSc [8-10]. Excessive 

dry mouth resulting from salivary hypofusion is known as Xerostomia which not only 

promotes the development of dental plaque but also increases the risk of the development 

of the dental caries [11-13]. Recently, Yuen et al. performed a cross-sectional study to 

identify factors associated with increased gingival inflammation in adults with SSc [10]. 

The increased gingival inflammation represents the poor oral health and the authors 

found SSc subtype a significant factor of gingival inflammation. Oral clinical conditions 

also affect our daily performance [14].  

 Baron et al. found that SSc patients have more dental caries and periodontal 

disease when compared with the general population [15]. In another study consisting of 

163 SSc patients (72% with limited and 28% with diffuse cutaneous disease), Baron et al. 

found that tooth loss is associated with poor upper extremity function, gastro-esophageal 

reflux disease (GERD) and decreased saliva [16]. In the first study, the authors compared 
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the SSc patients with the general population, but the second study consisted of only SSc 

patients. However, the association between the dental caries and SSc subtypes remained 

unaddressed. Mahjour et al. investigated and discussed the association of SSc with its 

possible oral manifestations and concluded that early diagnosis of oral symptoms of SSc 

is extremely important [17].   

 The DMFT index is commonly used in dental research and is regarded as the 

“gold standard” to measure the cumulative dental caries. DMFT index represents the 

total number of Decayed (D), Missing due to caries (M), and Filled (F) permanent Teeth. 

Thus, count data arise from DMFT index are gathered and analyzed for oral health 

problem. In epidemiological studies, Coxe et al. characterized a count as the number of 

occurrences of an event during a certain period of time [18]. The maximum score of 

DMFT could be either 32 or 28 (depending on the inclusion of the third molars); the 

minimum score is 0. 

 Statistical modeling plays an important role in understanding dental caries, their 

development and the associated risk factors.  In determining the appropriate model choice, 

several aspects need to be considered. First of all, the presence of over dispersion 

characterized by the greater population variance than the mean should be acknowledged. 

The subsequent discussion is provided only to bring forth a few studies reflecting the 

dispersion present in the dental caries data and the application of the NB to model them 

[19-21]. For example, Grainger and Reid in 1954 worked on the distribution of the dental 

caries in children and found that the NB satisfactorily describes the distribution [19]. 

They also suggested that “this is in agreement with the idea that the dental caries is a 

chance phenomenon with individuals differing in their susceptibility to tooth decay” [19]. 
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Thitasomakul et al. in 2009 also applied the NB distribution to model risk for early 

childhood caries [20]. Brennan et al. in 2007 also used the NB distribution to model the 

dental caries for indigenous adult public dental patients in Australia [21].  

 Diesendorf mentioned that with the mandated addition of fluoride to the drinking 

water in many communities, significant reductions in the prevalence of dental caries in 

the last few decades have been observed [22]. As a result, the presence of many zero 

counts have been observed in the dental caries data. Therefore, zero inflated models were 

applied extensively for analysis; for example, Javali et al. applied zero inflated count 

models to model the dental caries [23]. Böhning et al. applied the zero-inflated Poisson 

(ZIP) model to analyze DMFT counts [24], whereas Mwalili et al. applied the zero 

inflated negative binomial (ZINB) model with correction for misclassification in the 

dental caries research [25].  

 Despite the popular use of the zero inflated models, inflation in other 

DMFT counts is frequently observed, for example, the high prevalence of dental caries 

among older adults (age 65+) was shown by an average score of 18 in the DMFT index 

(United States, National Health and Nutrition Examination Survey, 1999–2004) [26]. A 

high count of 28 is also prevalent due to the fact that fitting a full denture requires taking 

out all teeth. The above facts indicate that in the population under study, not only 0 but 

also other counts such as 28 could also have inflation. No study provides the analysis to 

address the presence of such inflation in the counts other than the zero counts mainly due 

to unavailability of the appropriate statistical models to address such issues. The 

commonly used count models such as the Poisson and negative binomial (NB) do not 

provide adjustment for the inflated counts. While the NB model can be used for over 
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dispersed (i.e. Population variance is greater than the mean) counts, the equidispersion 

assumption (i.e. population variance is equal to mean) of Poisson model make it more 

restrictive in use. A generalized Poisson model can be applied in over/ under dispersed 

(i.e. population variance is less than mean) counts and mitigate the restrictive assumption 

of equidispersion of Poisson model, but this solution does not provide adjustment for 

inflated counts. Similarly, zero inflated analogues of the Poisson, NB and generalized 

Poisson models, i.e. ZIP, ZINB and ZIGP provide the adjustment for excess in zero 

counts but remain silent when other than zero count is inflated. Fortunately, some recent 

developments in the count modeling open the new avenues to model the count data with 

multiple inflated counts. Recently, Su et al. (2013) has proposed multiple-inflation 

Poisson (MIP) model to address the issues of multiple inflated counts present in 

equidispersed counts[27], and two novel models the multiple-inflation negative binomial 

(MINB) and the multiple-inflation generalized Poisson (MIGP) have also been proposed 

[28] to handle situations when multiple inflated counts are present with highly dispersed 

non-inflated counts. The superiority of the MINB and MIGP models over ZINB model 

was also found to analyze the multiple inflated counts in a simulated data set [28]. 

Considering the presence of the multiple inflated counts along with highly dispersed non 

inflated DMFT counts, we applied MINB and MIGP model to explore any true 

significant association between DMFT counts and SSc subtypes.  

As indicated in the literature, adults with SSc were at greater risk for oral disease, 

and dental caries are more prevalent among SSc population than the general population. 

However, no studies have investigated the disease severity as indicated by the type of 

SSc and the dental caries. Knowing whether the severity of SSc disease (as indicated by 
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its type) has any impact on dental caries may help clinicians better prepare themselves 

when educating their patients and researchers better understand the complex 

manifestations of disease severity on oral disease in this population. Therefore, one 

specific aim of the present analysis is to determine whether or not there is a significant 

association between dental caries and the subtypes of SSc. The association of the dental 

caries with many other severe health conditions and/ or socioeconomic consequences 

cannot be denied. Therefore covariate adjustment is critical in terms of teasing out 

possible confounding effects on association of SSc subtypes with dental caries.  

2. METHOD 

2.1. Participants 

 The study included adults more than eighteen years of age who were diagnosed 

with SSc and who fulfilled the preliminary classification criteria of American College of 

Rheumatology for SSc [29]. However, the individuals with the localized scleroderma (e.g. 

morphea, linear scleroderma, and en coup de sabre) were excluded and not considered 

eligible for the participation. 

2.2. Recruitment 

 Study participants were recruited through the Medical University of South 

Carolina (MUSC) scleroderma clinic and a local connective tissue disease database 

(CTDD). The CTDD, a database of medical information of SSc patients, contains 

information about the majority of patients who received treatment and/or consultation 

from the MUSC scleroderma clinic beginning in 2001. In the start of the study (October, 

2007), the contact information of 509 SSc patients was obtained from the CTDD; This 

information was used to invite them to participate in the dental survey study. To 
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participate in the study, the patients were contacted via phone or personally by the 

research coordinator for participation on behalf of the physicians at the MUSC 

scleroderma clinic. The study was explained by the research coordinator to the potential 

participants. Information about their time commitment, obtaining verbal consent and 

scheduling an oral examination appointment was provided. A single dental visit of about 

1.5 hours duration was required in the study. 

2.3. Procedure 

 After obtaining the informed consent, the oral examination was conducted by two 

trained and calibrated dental hygienists at the MUSC General Clinical Research Center. 

The examination included measurement of the oral aperture, assessment of manual 

dexterity to perform oral hygiene, and dental and periodontal health, as well as 

completion of the Center of Epidemiological Studies Depression (CES-D) Scale (30), a 

self-report instrument to assess depressive symptomatology, and a package containing an 

oral health-related questionnaire. A mouth cavity assessment (31) was also conducted. 

The protocol was approved by the MUSC Institutional Review Board. The clinical trial 

protocol number was NCT01817361. 

2.4. Statistical Methods 

 We applied the NB, ZINB, MINB, MIGP models for modeling the data. The NB 

model has been applied when the outcome variable (e.g. DMFT) was over dispersed. The 

over dispersion means population mean is greater than population variance. When there 

is equality in population mean and variance (referred as equidespersion) then it reduces 

into the Poisson model by itself. However, the ZINB has been applied when outcome 

variable was over dispersed and also presented an excess of the count zero. Here excess 
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means more than expected counts or inflated counts. Moreover, the MINB can be applied 

when the outcome variable is over dispersed with multiple inflated counts. On the other 

hand, the MIGP could also be applied when outcome variable is under dispersed with 

multiple inflated counts. In the NB, we model mean by using loglinear model. However, 

in ZINB along with loglinear model for mean of the regular counts, excess of zeros are 

modeled using logit model. Moreover, in the MINB and MIGP, inflated counts are 

modeled using cumulative logit model along with loglinear model for the mean of the 

regular counts and logit model is also used to model the mixing probability of mixing the 

inflated counts with the regular counts. For variable selection, L1 regularization method 

was used to select the variables in the NB model and step wise variable selection method 

was used to select the variables in logit model. 

3. DATA ANALYSIS 

To assess the association of DMFT with two main subtypes of SSc, a data set of 

190 patients with SSc was used. The list of variables considered for the analysis is 

provided in Table 1. Among the 190 observations, only 169 (72 diffused cutaneous SSc 

patients and 118 limited cutaneous patients) had complete cases, i.e. without missing 

values, which were considered for the analysis.   The histogram plot for the distribution 

of the DMFT along with its comparison with the NB distribution is given in Figure 1, 

whereas Figure 2 provides a comparison of the DMFT with the Poisson distribution. JMP 

Pro 10 statistical software (SAS Institute Inc., Cary, NC) [32] was used to create 

histogram plots of DMFT. The discrete fit option of the JMP was used to compare it with 

the NB (Gamma Poisson) and the Poisson distributions. The R programming language 

[33] was used in the development of the MINB and MIGP models. The application of the 
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NB model, ZINB model, Vuong’s test, minimum AIC criterion and the generation of 

Figures 3-6 were also performed using R. 

Table 1:  Description of variables used in the analysis 

No. Var Name  Description 

1 Diag 
 

1 if diffuse cutaneous SSc  and 2 if limited cutaneous  
SSc 
 

2 dental_visit 1 if within the past year (1 to 12 months ago), 2 if 
within the past 2 years (1 to 2 years ago), 3 if within 
the past 5 years (2 to 5 years ago), 4 if 5 or more years 
ago and  5 if don’t know/not sure/never 
 

3 floss_evening 1 if yes and 2 if no 
 

4 Drymouth 1 if yes and 0 if no 
 

5 M_aperture Mean oral apartue 
 

6 Siccasymptoms 1 if yes and 0 if no 
 

7 Sjogren 1 if yes and 0 if no 
 

8  Age Age in years 
 

9 Race_minority  1 if non -white and 2 if white / caucasian 
 

10 GenderNm 1 if male and 2 if female 
 

11 marital_status 1 if married, 2 if living with partner / not legally 
married, 3 if divorced / separated, 4 if widowed and 5 
if single / never married 
 

12  Education 1 if grade school, 2 if high school, 3 if technical school,  
4 if college( BA/BS), 5 if some or complete graduate 
school 
 

13  Employment 1 if currently full time job,  2 if currently part time job, 
3 if unemployed,  4 if retired, 5 if homemaker and 6 if 
disability 
 

14  income 1 if the household’s total combined income in the last 
year before taxes is below $10,000, 2 if the 
household’s total combined income in the last year 
before taxes is between  $10,000 –$ 14,999, 3 if the 
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household’s total combined income in the last year 
before taxes is between $15,000 – $19,999, 4 if the 
household’s total combined income in the last year 
before taxes is between $20,000 – $24,999, 5 if the 
household’s total combined income in the last year 
before taxes is between $25,000 – $29,999, 6 if the 
household’s total combined income in the last year 
before taxes is between $30,000 – $34,999, 7 if the 
household’s total combined income in the last year 
before taxes is between $35,000 – $39,999, 8 if the 
household’s total combined income in the last year 
before taxes is between $40,000 – $44,999, 9 if the 
household’s total combined income in the last year 
before taxes is between $45,000 –$ 49,999, 10 if the 
household’s total combined income in the last year 
before taxes is between $50,000 – $54,999, 11 if the 
household’s total combined income in the last year 
before taxes is between $55,000 – $59,999, 12 if the 
household’s total combined income in the last year 
before taxes is between $60,000 – $64,999, 13 if the 
household’s total combined income in the last year 
before taxes is between $65,000 – $69,999, 14 if the 
household’s total combined income in the last year 
before taxes is between $70,000 – $74,999 and 15 if 
the household’s total combined income in the last year 
before taxes is $75,000 and over 
 

15  Smoking 1if regularly smoker, 2 if occasional smoker, 3 if 
former smoker and 4 if  non smoker 
 

16 chew_gum In the past week, number of days of chewing gum. 
 

17 sugar_snack_days In the past week, number of days of consuming sugar-
containing snacks. 
 

18 sugar_snack_freq Frequency of eating sugar-containing snacks past days. 
 

19 sweet_drink_days In the past week, how many days did you drink regular 
non-diet soda/sweet tea between meals 
 

20 soda_freq Number of  cans of 12 oz regular non-diet soda 
consumed last day 
 

21 sweet_tea_freq Number of glasses of regular sweet tea drunk last day 
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Figure 1. Histogram plot for the DMFT counts and its comparison with the negative 
binomial distribution. 

 

 

 

 

 
Figure 2. Histogram plot for the DMFT counts and its comparison with the Poisson 

distribution. 

Location and the over dispersion parameter estimates (along with the 95% CI) of 

the NB distribution obtained after using the discrete fit option were 6.59 (5.38, 8.17) and 

14.0 (10.64, 19.10) respectively. However, the estimate of the scale parameter of the 
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Poisson distribution (along with the 95% CI) was 6.59 (6.23, 6.96). These two histogram 

plots (Figures 1 and 2) suggest that the NB distribution fits better to DMFT counts than 

the Poisson distribution. Moreover, when we compared the fitted NB distribution with the 

distribution of DMFT, the inflation in the counts 0, 7 and 28 was easily observed at the 

histogram plot (Figure 1). Therefore, { }0, 7, 28I    =  was considered as a set of counts 

with inflation. Since no formal test for the inflation in multiple counts is available, it 

depends on researcher’s discretion to decide on the inflation in the counts and it is also 

research area specific. The presence of even fewer inflated counts may need to be 

adjusted based on the research field and the researcher hypothesis. However sample 

specific variation should always be taken into account and only those counts should be 

considered inflated which are present in the relatively higher frequencies. Moreover, the 

proper investigation of the data prior to analysis is always recommended, and for this 

purpose histogram plot has obvious advantages and is used frequently. Therefore, we 

recommend use of the histogram plot to find the inflation in the counts. 

To find the possible confounders, the association of the variables provided in the 

list in Table 1 with DMFT as well as with SSc subtypes was explored. The variables 

associated with the both, i.e., with DMFT and with SSc subtypes were considered as 

confounders. The summary statistics of the categorical and ordinal variables (given in 

Table 1) across different type of SSc is provided in Tables 2 and 3 respectively.  

However, the mean (standard deviation) of the continuous variables Age and mean oral 

aperture was 55.07 years (13.03 years) and 37.9 mm (8.4 mm) respectively.  The analysis 

is performed after adjusting for the confounders. 
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Table 2: The summary statistics for categorical (i.e. nominal) variables across subtypes of 
SSc 
 

Name of Variable Diffuse cutaneous 
SSc n (%)  

Limited cutaneous  SSc 
n (%) 

Dental visit Within the past 
year (1 to 12 
months ago) 
 

55 (76.39) 86 (73.50) 

 

Within the past 
2 years (1 to 2 
years ago) 
 

5 (6.94) 12 (10.26) 

 

Within the past 
5 years (2 to 5 
years ago) 
 

4 (5.56) 10 (8.55) 

 
5 or more years 
ago 
 

6 (8.33) 7 (5.98) 

 

if don’t 
know/not 
sure/never 
 

2 (2.78) 2 (1.71) 

Floss evening Yes 33 (46.48) 51 (44.74) 

 
No 
 

38 (53.52) 63 (55.26) 

Dry mouth Yes 19 (27.14) 31 (27.68) 

 
No 
 

51 (72.86) 81 (72.32) 

Sjögren's 
syndrome 

Yes 3 (6.4%) 7 (9.7%) 

 No 44 (93.6%) 65 (90.2%) 

Sicca 
Symptoms 

Yes  8 (12.3%) 31 (31.3%) 

 No  57 (87.7%) 68 (68.7%) 

Race Non white   34 (47.22) 31 (26.27) 

White / 
Caucasian 

38 (52.78) 87 (73.73) 

Gender   Male   22 (30.56) 9 (7.63) 

Female 
 

50 (69.44) 109 (92.37) 

Marital Status Married 43 (59.72) 68 (58.12) 
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 Living with 
partner / not 
legally married 

2 (2.78) 5 (4.27) 

Divorced / 
separated 

11 (15.28) 17 (14.53) 

Widowed  2 (2.78) 17 (14.53) 

Single / Never 
Married 
 

14 (19.44) 10 (8.55) 

Education  Grade School 3 (4.17) 3 (2.56) 

High school 23 (31.94) 30 (25.64) 

Technical school 20 (27.78) 17 (14.53) 

College 
( BA/BS) 

21 (29.17) 43 (36.75) 

 Some or 
complete 
graduate school 
 

5 (6.94) 24 (20.51) 

Employment Currently full 
time job 

16 (22.22) 33 (28.21) 

Currently part 
time job 

6 (8.33) 9 (7.69) 

Unemployed 3 (4.1) 2 (1.71) 

Retired 11 (15.28) 42 (35.90) 

Homemaker  6 (8.33) 6 (5.13) 

Disability 
 

30 (41.67) 25 (21.37) 

Smoking Regularly 
smoker 

2 (2.78) 4 (3.42) 

Occasional 
smoker 

3 (4.17) 5 (4.27) 

Former smoker 13 (18.06) 30 (25.64) 

Non smoker 54 (75.00) 78 (66.67) 
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Table 3: The summary statistics for categorical (i.e. ordinal) variables across subtypes of 
SSc. 
 

Name of variables Diffuse cutaneous SSc 
Median 

(Q1*,Q3*) 

Limited cutaneous  
SSc 

Median 
(Q1*, Q3*) 

Income 7 (3, 13) 10 (4, 15) 

In the past week, number of days of 
chewing gum. 

0 (0, 3) 0 (0, 3) 

In the past week, number of days of 
consuming sugar-containing snacks. 

4 (2, 7) 4 (2, 7) 

Frequency of eating sugar-containing 
snacks past days. 

1 (1, 2) 1 (0, 2) 

In the past week, how many days did 
you drink regular non-diet soda/sweet 
tea between meals. 

2 (0, 6) 1 (0, 3) 

Number of  cans of 12 oz regular non-
diet soda consumed last day 

0 (0, 1) 0 (0, 1) 

Number of glasses of regular sweet 
tea drunk last day 

0 (0, 1.5) 0 (0, 1) 

*Q1 = Lower quartile, Q3= Upper quartile 

The TCOUNTREG (count regression, SAS 9.3 (SAS Institute))[34], penalizing 

the likelihood with L1 norm, procedure was used for the variable selection in the NB 

model to model DMFT counts. Penalizing the likelihood provides the variable selection 

by shrinking the coefficient to zero. The selected variables were then used in the NB 

model part of the ZINB and MINB model. The TCOUNTREG procedure is useful in 

analyzing regression models in which the dependent variable takes nonnegative integer or 

count values (SAS Institute). The variables given in Table 1 are used for the variable 

selection. Since the presence of collinearity and missingness across the variables hinders 

the variable selection process by stopping the optimization, only important demographic, 

disease related and eating habit related factors are considered.   
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The variables Age ( )( )1 5.69, 0.0001t  df    P= = < and Income 

( )( )1 5.24, 0.0001t  df    P= = − <  were selected with the optimal tuning parameter 0.45. 

The dispersion parameter was estimated to be 0.85 and found to be significantly 

( )( )1 5.51, 0.0001t df   P= = < different from zero. For all the tests, the statistical 

significance was set at 0.05α = . The presence of dispersion was in accordance with the 

finding of the histogram plot (Figure 1) where the counts were over dispersed and the NB 

distribution was the best fit. Due to the presence of over dispersion, only NB, ZINB, 

MINB and MIGP models were used to model DMFT counts in order to assess its true 

association with the SSc subtypes. 

As mentioned earlier, the confounding variable is a covariate that is associated 

with both the dependent (i.e. DMFT in the present study) and the independent (i.e. SSc 

subtype in the present study) variables. We found that only Age and Income are 

associated with the DMFT, so either of them that has association with the SSc subtype 

would be a confounder. For this purpose, the logistic regression model was used by 

taking SSc subtypes as the dependent variable and Age and Income as the independent 

variables. Only the variable Age was significantly ( 2

1 8.43, 0.0037)Wald Pχ = =  

associated with the SSc subtypes. As a result, among the variables mentioned in Table 1, 

only Age was found to be associated with both the DMFT and SSc subtype and hence 

considered a confounder.  

The commonly known fact that has also been mentioned by Arlene Flink (2008), 

“Confounder can lead to the false conclusion that the dependent variable is in the casual 

relationship with the independent or the predictor variables” [35]. Since Age was a 

confounder, the true association between DMFT and SSc subtypes was explored after 
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adjusting for the variable Age. Since in the variable selection for the NB model discussed 

earlier, other than the Age, variable Income was also found significantly associated with 

response variable DMFT, so Income was also included as covariate in the MI-models.  

Further analysis was performed by taking DMFT as a response variable, SSc 

subtype as a predictor, Age as a confounder and Income as a covariate. For the ZINB, 

MINB and MIGP models, DMFT as dependent variable and SSc subtypes, Age and 

Income as independent variables were taken to model both the inflated counts and regular 

DMFT counts following NB/ GP distribution. 

In order to decide on the best model among the NB, ZINB, MINB and MIGP 

models, the minimum Akaike information criterion, i.e., AIC (Akaike 1974) [36] along 

with Vuong’s (1989) non nested test [37] were used, due to the presence of the non-

nested models. However, due to the presence of the three model components, the 

multiple- inflation models involve the estimation of several more parameters than the 

zero inflated models and their non-zero inflated analogs. This creates a bias in Vuong’s 

test in favor of the more complex model.  To address the issue, we used the Schwarz 

correction[38]. 

After using Vuong’s test and comparing the NB with the ZINB model, the ZINB 

model was preferred over the NB model. Further, the ZINB model was compared with 

the MINB and MIGP models. In the ZINB model, DMFT was found to be significantly 

associated with the SSc subtypes in the count model part (P=0.0175) as well as in the 

zero model part (P=0.0185) (See Table 4 for the parameter estimates and their P-values).  

However, after applying the multiple inflation models, i.e. MINB and MIGP, the variable 

SSc subtypes was found no longer significantly associated with the DMFT (See Table 4 
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for the parameter estimates and their P-values). This suggests that incorporating other 

than zero counts as inflated can affect the significance of the result. If inflation in the 

other counts is not incorporated, the results could be inaccurate and could thus mislead 

researchers. 

Table 4: Parameter estimates and their p-values. 

Model Variables Parameter estimates SE P-Value 

ZINB Count Model Intercept -0.03 0.45 0.94 

Age 0.04 0.01 <0.0001
*
 

Income -0.10 0.02 <0.0001
*
 

diag 0.37 0.16 0.02
*
 

Zero Model Intercept -0.86 1.53 0.57 

Age -0.06 0.02 0.002
*
 

Income 0.05 0.05 0.31 

diag 1.45 0.61 0.02
*
 

MINB Count Model Intercept 0.74 0.43 0.09 

Age 0.03 0.01 <0.001
*
 

Income -0.11 0.02 <0.0001
*
 

diag 0.09 0.15 0.55 

nu 2.29 0.71 <0.0001
*
 

Model for counts 
with inflation. 
(Cumulative 
logit Model) 

Intercept 1 5.76 2.17 0.01
*
 

Intercept 2 6.89 2.28 <0.0001
*
 

Age -0.12 0.04 <0.0001
*
 

Income 0.19 0.08 0.01
*
 

diag 0.29 0.82 0.72 

Model for 
Mixing 
Probability. 
(logit Model) 

Intercept -0.87 0.90 0.33 

Sweet drink days 0.24 0.09 0.01
*
 

Employment 0.06 0.10 0.53 

Age 0.02 0.02 0.27 

MIGP Count Model Intercept 1.20 0.44 0.01
*
 

Age 0.03 0.01 <0.0001
*
 

Income -0.10 0.02 <0.0001
*
 

diag 0.07 0.16 0.68 

nu 2.35 0.34 <0.0001
*
 

Model for counts 
with inflation. 
(Cumulative 
logit Model) 

Intercept 1 5.55 2.23 0.01
*
 

Intercept 2 7.10 2.38 <0.0001
*
 

Age -0.11 0.04 <0.0001
*
 

Income 0.15 0.08 0.05
*
 

diag 0.29 0.85 0.73 

Model for 
Mixing 
Probability. 
(logit Model) 

Intercept -1.30 0.97 0.18 

Sweet drink days 0.25 0.10 0.01
*
 

Employment 0.07 0.10 0.47 

Age 0.02 0.02 0.15 
*significant at the o.o5 level of the significance
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The mixing probability in the multiple inflation count models was used to obtain 

the mixture of the discrete distribution and the NB/generalized Poisson distribution. The 

logistic regression was used to obtain the mixing probability. For this purpose, a 

dichotomous variable with the value 0 for the non-inflated DMFT counts and 1 for the 

inflated DMFT counts was used as the response variable. The explanatory variables in the 

logistic regression model were selected by using the stepwise variable selection method. 

For this purpose, SAS 9.3’s (SAS Institute) logistic procedure with the option of stepwise 

variable selection was used. The variables Age, Employment and “number of days of 

drinking sweet drinks in the past week” are entered in the model (with the probability to 

enter and probability to stay at 0.05) and used as the explanatory variables to model the 

mixing probability. 

4. RESULTS AND DISCUSSION 

As indicated in the histogram plot (Figure 1), the inflation in the counts 7 and 28 

along with the inflation in the count 0 were obvious. In Figures 5-6, the MINB and the 

MIGP models provide better fit to the data when compared to the ZINB and the NB 

models. Figures 3-6 provide the histogram plot of the DMFT counts superimposed on the 

fitted value of the best-fit NB, ZINB, MINB and MIGP models. Vuong’s test and the 

minimum AIC criterion were used to select the best model. The AIC of the NB, ZINB, 

MIGP and MINB model were 999.05, 980.48, 862.76 and 861.01 respectively. Therefore, 

based on minimum AIC criterion MINB was found the best model. However, only a 

slight difference in the AIC across MINB and MIGP model was found.  
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Figure 3. Histogram plot of the DMFT counts superimposed with the fitted values 
obtained from the NB model. 

 

Figure 4. Histogram plot of the DMFT counts superimposed with the fitted values 
obtained from the ZINB model. 
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Figure 5.  Histogram plot of the DMFT counts superimposed with the fitted values 
obtained from the MINB model. 

 

Figure 6.  Histogram plot of the DMFT counts superimposed with the fitted values 
obtained from the MIGP model. 
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Similar results were obtained by using Vuong’s test. Vuong’s test significantly 

(Test statistics ν = 2.51, 0.006P < ) favors the ZINB in comparison to the NB model. 

However, both the MIGP (Test statistics ν = 11, P < 0.0001) and the MINB models 

(Test statistics ν  = 11, 0.0001P <  ) were preferred over ZINB. Moreover, neither 

MIGP nor MINB were significantly (Test statistics ν  = 0.667, 0.50P < ) preferable over 

each other. 

In the present sample of the population of the adults with SSc, we found that SSc 

subtypes are not associated with DMFT. We also found that we can easily get misleading 

results if we consider only the zero count as inflated. This was in accordance with the fact 

that not considering the significant information provided by the data and applying only 

the existing methods for sake of the convenience of the analysis could easily provide 

misleading results. 

Although no formal test for identifying the inflation in counts is available, a 

thoughtful inspection of the data before analysis (e.g. inspecting the histogram plot) is 

always recommended and could reveal the inflation in counts if any. 

5. STUDY LIMITATIONS 

 The small size of sample is one of the major limitations of the study. Due to the 

presence of three model parts in the multiple inflation models, the larger the sample size, 

the more precise the results.  
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CONCLUSION 

Summary 

 In medical research, it is important to choose appropriate analytical tools to model 

the outcome/response variable and predictors in order to find the significant predictors 

associated with the progression or remission of diseases. The choice of appropriate 

models depends on the distribution of outcome/response variables.  When the response 

variable is a count, the Poisson distribution or the negative binomial (NB) distribution is 

generally used to characterize the response variable. The Poisson distribution is 

appropriate when outcome variable is sampled from a population having the variance 

same as the mean (i.e. an equidispersed population), whereas the NB is appropriate when 

the population variance is more than the mean (i.e. an over dispersed population). The 

equidispersion property of the Poisson distribution makes it very restrictive to use, and 

thus the amendment in the distribution to generalize it was made earlier by many 

researchers. As a result different generalizations of the Poisson distribution are proposed. 

The generalized Poisson distribution is found useful when the outcome variable is 

sampled from a population having the population variance either less or more than the 

mean (over/under dispersed counts). Observing some counts in higher frequencies than 

expected under the above discussed distributions is common in real world situations. 

These counts are referred as inflated counts. The presence of inflated counts itself is 

responsible for inducing over / under dispersion in the data. The mixture of distributions 
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is used to model such a count outcome appropriately and precisely. When the frequency 

of the zero count was higher than expected, the zero-inflated models have been 

extensively used. However, when the inflation appears in multiple counts other than zero, 

we realized the lack of appropriate models for the analysis. This problem is the focus of 

the present research. Specifically, in the current research, the multiple inflated (MI) 

models such as multiple-inflation negative binomial (MINB) and multiple-inflation 

generalized Poisson (MIGP) models are proposed for over/ under dispersed response 

variable with multiple inflated counts. Moreover, the one step smoothly clipped absolute 

deviation (SCAD) is also adapted to aid in the variable selection in the MI models.      

In particular, in the first paper, we developed the MINB model and assessed its 

performance with simulated data. To obtain the maximum likelihood estimates, we used 

the expectation maximization (EM) algorithm along with the numerical optimization. A 

three-step procedure is adapted which involves the combination of the application of the 

truncated NB model, cumulative logit model, logit model, numerical optimization and the 

EM algorithm. The performance of the MINB model was compared with the other 

competitive count models which are frequently used to model the over dispersed data 

such as the NB and ZINB models along with the log-linear and ZIP models. The average 

square loss (ASL) is used to evaluate the performance of the MINB and the other models. 

We found that the MINB performs better than the other above mentioned models in 

simulated data. The presence of more than one model component in the zero and 

multiple-inflation count models makes the variable selection also an important issue 

which is also addressed in the first paper. The most widely used variable selection 

procedures—the forward, backward, bidirectional sequential testing method and the best 
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subset selection method—become computationally prohibitive when the variables are 

large. The SCAD penalty does not only aid in variable selection but it also offers better 

estimates; hence, it is used in this paper along with the local linear approximation (LLA) 

of the penalty. In particular, we used one step SCAD variable selection method and found 

that it has high sensitivity and moderate specificity. We defined specificity and sensitivity 

as correctly identifying the zero covariates as zero and correctly identifying non-zero 

coefficient as non-zero respectively.  

In the second paper, we developed the MIGP model and evaluated its 

performance with simulated data. To obtain the maximum likelihood estimates, we again 

used the EM algorithm along with the numerical optimization. The performance of the 

MIGP model was compared with the other related count models. The NB and ZINB 

models were mainly used as the candidates for the comparisons as they always were 

preferred to model the over dispersed counts. The ASL was used to evaluate the 

performance of the MIGP and other two models. We found that the MIGP outperforms 

the other models. 

 In the third paper, the newly developed models (MINB and MIGP) were applied 

to a real data set consisting of 190 systemic sclerosis (SSc) patients. The data contain 

seventy two diffused cutaneous SSc patients and one hundred eighteen limited cutaneous 

patients. The DMFT (i.e. decayed, missing and filled teeth) is a count variable and one of 

the most commonly used indicators of the oral health and was thus used as the response 

variable in our analysis. The objective of this paper was to find any significant 

associations between the DMFT and SSc subtypes. In addition to the SSc subtypes, age 

and income were used as covariates, since both of them were found associated with the 
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DMFT. In the observed data, the DMFT is found highly dispersed along with multiple 

inflated counts. The zero-inflated negative binomial (ZINB) was used and the results 

suggested that the DMFT was significantly (p= 0.02) associated with the subtypes of the 

SSc at the 5% level of significance, but no significant association was found after taking 

into account the inflation in other counts, i.e. 7 and 28. We find that there is no 

significant association between SSc subtypes and the DMFT. We also find that we can 

easily get misleading results if the inflation at multiple counts is not appropriately 

modeled. 

Future Research 

This research could be expanded in the future in several ways.   

Development of a test for multiple inflations 

 The presence of the multiple inflated counts can easily be recognized by using 

histogram plot, but the development of a formal test would be of great value to settle on 

the inflation in the counts. In addition, a test to detect the over dispersion could also be 

extended for the presence of multiple inflated counts in future. 

Mixed model 

 In statistical analysis, we often encounter correlated data, predominantly due to 

the grouping of the subjects, due to the repeated measures on each subject over the time 

or space, or due to the multiple related outcome measures at one point in time.  The 

presence of such correlation makes the multiple-inflation count modeling even more 

challenging. However, neither ignoring the grouping entirely nor fitting each group with 

separate model is recommended. The mixed effect model could be used to analyze such 
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data. Therefore one of our future projects is to develop a mixed effect model that can be 

used for correlated multiple-inflated count data.   

Bayesian models 

 Incorporating the prior information about parameters can sometimes lead to a 

better estimation and inference. Since no Bayesian analogue to handle such an issue of 

multiple inflations is available, Bayesian multiple inflated count models could be 

considered for future research.  

Multiple inflated count models for spatial data 

  The presence of multiple inflated counts is often observed in environmental data 

that are spatial and temporal. The inflation of the zero counts in such a data has been 

found and zero inflated spatial models have been proposed. Therefore, the development 

of the multiple inflation count spatial models will be our future extension.  

Multiple inflated truncated count models 

 In our research, we encountered many examples in which multiple counts were 

present but the logical structure of the variable excluded certain counts, typically zeros. 

This suggests the need to develop multiple inflated truncated count models. 
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