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AN IMPROVED CONTACT METHOD FOR MULTI-MATERIAL EULERIAN 
HYDROCODES  

 
KENNETH CLINE WALLS, III 

INTERDISCIPLINARY ENGINEERING 

ABSTRACT 

 
Realistic and accurate modeling of contact for problems involving large 

deformations and severe distortions presents a host of computational challenges.  Due to 

their natural description of surfaces, Lagrangian finite element methods are traditionally 

used for problems involving sliding contact.  However, problems such as those involving 

ballistic penetrations, blast-structure interactions, and vehicular crash dynamics, can 

result in elements developing large aspect ratios, twisting, or even inverting. For this 

reason, Eulerian, and by extension Arbitrary Lagrangian-Eulerian (ALE), methods have 

become popular.  However, additional complexities arise when these methods permit 

multiple materials to occupy a single finite element. 

Multi-material Eulerian formulations in computational structural mechanics are 

traditionally approached using mixed-element thermodynamic and constitutive models.  

These traditional approaches treat discontinuous pressure and stress fields that exist in 

elements with material interfaces by using a single approximated pressure and stress 

field.  However, this approximation often has little basis in the physics taking place at the 

contact boundary and can easily lead to unphysical behavior.  This work presents a 

significant departure from traditional Eulerian contact models by solving the conservation 

equations separately for each material and then imposing inequality constraints associated 

with contact to the solutions for each material with the appropriate tractions included.  
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The advantages of this method have been demonstrated with several computational 

examples. This work concludes by drawing a comparison between the method put forth 

in this work and traditional treatment of multi-material contact in Eulerian methods. 
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CHAPTER 1 

INTRODUCTION 

	

Approaches to the Contact-Impact Problem 

Dynamic contact is an extremely important event in many engineering 

applications, however, due to the complexity associated with these types of problems it is 

often simplified. Problems involving dynamic contact are, by their nature, highly 

nonlinear and involve many unknown boundary conditions including contacting 

interfaces as well as the stresses and displacements on the contacting surfaces.  The 

behavior of contacting bodies is governed by the equations of motion, conservation 

equations, and the problem-specific initial conditions and boundary conditions. A number 

of unknowns arise from these governing equations that cannot be determined without 

solving the problem.  Therefore, the mathematical models associated with contact involve 

difficult systems of inequalities or nonlinear equations.   

As a basic example, consider the simple two-body problem shown in Figure 1.1.  

In this figure, external forces are applied to two bodies, Ω1 and Ω2, causing an impact 

condition to occur along the interface boundary.  This leads to complicated interactions 

taking place along the material interface boundary that must be modeled.  In order to 

accomplish this, it is possible to simplify the dynamic contact into a series of discrete 

contact events. 
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Accurate modeling of contact problems while taking all of these variables into 

account is extremely difficult.  However, it has become somewhat simplified with the 

introduction of sophisticated computational mechanics programs.  Additionally, the finite 

element method has also simplified the numerical analysis of contact problems.  These 

simplifications now make it possible to solve a wide range of problems with a fair 

amount of accuracy [101]. 

 

 

 

Figure 1.1:  A simple two-body contact problem 

Hydrocode Modeling 

The use of hydrocodes in the field of structural mechanics is vital for many 

applications, including hypervelocity impacts and penetrations, vehicular 

crashworthiness, fluid structure interactions, biomechanical injury analysis, and many 

more.  Hydrocodes are defined as computer software packages for solving large 

deformation, finite strain transient problems that occur on short time scales. These codes 

were developed for the analysis of hypervelocity impacts in the mid-1960s as a result of 

work by Walsh and Johnson [96], as well as later work by Anderson [1].  Development of 
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these codes continues today in specialized codes such as CTH and ALEAS, which were 

used in this work, as well as many other commercial and research codes. The use of these 

shock physics codes have seen widespread implementation for both the solution of 

defense problems, for which they were originally developed, as well as a number of 

industrial applications.  The ability of these codes to accurately represent a wide range of 

contact and impact events makes them very attractive due to the reduced need to conduct 

experiments, which are often very costly, time consuming, and yield limited data. 

However, hydrocodes should be implemented carefully.  One of the primary 

weaknesses of these codes is the validity of the material models used in the computation.  

They are also limited by the reliability of the numerical methods and algorithms being 

implemented.  Despite these limitations, hydrocodes have been used to reliably replicate 

the details of stress, strain, and deformations in many dynamic events. 

There are several features which are common to all hydrocodes.  First, all 

hydrocodes represent a continuous physical system with discretized systems in which the 

material continuum is replaced with a computational mesh.  Both finite element and finite 

difference techniques are used to evaluate system responses.  Finite element methods use 

mathematical approximations to solve differential equations.  The solutions within each 

element are then combined to model a continuum.  Finite difference techniques evaluate 

the system using difference quotients to approximate differential equations to a given 

solution at discrete times. 

Hydrocodes are categorized by the frame of reference of the computational mesh. 

Each method has advantages and disadvantages, which will be described in the next 

section, that the user must understand and take into account. For instance, due to the 
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mesh description of Lagrangian methods enforcement of the contact constraints is 

straightforward, however, since the mesh deforms along with the material these codes are 

limited to problems involving moderate stresses and deformations. Eulerian methods, on 

the other hand, naturally allow large stresses and deformations because the mesh is fixed 

in space. However, the Eulerian approach is traditionally hindered by its treatment 

elements containing more than one material since only one strain rate, velocity field, 

stress field, and pressure field are possible in an element. This makes it impossible to 

accurately model sliding interfaces. This work aims to bridge the gap between 

Lagrangian and Eulerian methods to develop an approach to accurately model problems 

that involve large stresses and deformations, but where the ability to model interface 

contact is still important. 

In this work a new approach for modeling contact in an Eulerian framework is 

developed.  It significantly differs from traditional Eulerian and ALE methods in that the 

conservation of mass, momentum, and energy equations are solved separately for each 

material and then specific contact inequalities and associated tractions are imposed.  This 

eliminates the need for traditional mixed cell algorithms and consequently greatly 

improves the accuracy of the problem at hand.  The advantages of this method are made 

clear using a variety of examples, including frictionless sliding problems, a Taylor impact 

test, and a series of oblique plate penetration problems, all of which can result in 

substantial error with traditional Eulerian methods but can be solved more accurately 

using the method developed in this work. Comparisons were also made to problems that 

traditional Eulerian methods handle well to examine the range of applicability of the 

method. As a result of this work, high stress and large deformation problems in which 
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sliding contact is important can now be carried out with greater accuracy than previously 

possible.  

 

Methods for Modeling Contact 

Dynamic contact and impact problems are usually solved using explicit finite 

element and finite difference programs.  In order to obtain an adequate degree of 

accuracy, impact problems require small time steps and a fine mesh, enabling the 

problem to model deformations with a fair degree of certainty.  Explicit finite element 

and finite difference formulations are therefore extremely useful in modeling crash 

worthiness, shock responses, and a wide range of other problems.  There are several 

methods for modeling dynamic contact-impact, including the Lagrangian method, the 

Eulerian method, and ALE methods. 

 

(a) (b) 

Figure 1.2: Lagrangian (a) and Eulerian (b) representations of the computational mesh 
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The Lagrangian formulation uses a computational mesh that is embedded in the 

material domain, as can be seen in Figure 1.2 (a), and movement of material is inferred 

directly from the motion of the mesh. Contact between materials is straightforward in that 

each computational element contains only a single material.  Material surfaces are 

prevented from interpenetrating through the implementation of contact algorithms.  These 

contact surfaces are typically referred to as “slide lines” in which one surface is defined 

as a master surface and the other is known as the slave, and the nodes contained on these 

surfaces are likewise referred to as master and slave nodes.  A number of Lagrangian 

contact algorithms exist and are typically categorized based upon their method used for 

contact search, how the method handles contact and release conditions, and how contact 

forces are determined.  Many Lagrangian hydrocodes have an extensive library of contact 

algorithms available including both automatic and manual surface to surface, node to 

surface, and single surface contact conditions.  

However, because the computational grid is fixed to the body of interest, the mesh 

will deform along with the material.  This will result in the time step decreasing as large 

deformations are introduced.  Elements become stretched, the element thickness 

decreases, and, as a result, the time step size decreases with it.  In a Lagrangian 

formulation, a mesh that has a large time step throughout the calculation that involves 

large deformations cannot be constructed.  Therefore, in cases where large deformations 

are present, it is desirable for the material to be moved relative to the mesh during the 

calculation.  This can be accomplished with Eulerian and ALE methods. 

Eulerian formulations use a mesh that is fixed in space, as show in Figure 1.2 (b). 

The material interfaces present in each element are calculated at the beginning of each 
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time step, allowing the deformation of each material in the problem to occur naturally. 

Eulerian methods permit arbitrarily large deformations and automatically allow new free 

surfaces to form.  Since the Eulerian mesh is fixed in space the problems that hinder 

Lagrangian formulations involving mesh distortion are eliminated.  However, because 

material is allowed to move through the mesh, additional information is required to 

describe the contents of each element and update the calculations being performed.  The 

addition of these material transport and advection calculations to Eulerian methods make 

them much more computationally expensive than Lagrangian methods, however, since 

the mesh is fixed in space and material is placed within the mesh the setup of these 

problems is trivial. For complex geometries Lagrangian computations can require a 

significant amount of setup time to achieve a good quality mesh, so this computational 

cost is offset by the reduced setup time for many simulations. Eulerian methods were 

originally developed for modeling fluid dynamics problems, however, Eulerian and ALE 

hydrocodes are distinguished from modern day Computational Fluid Dynamics (CFD) 

codes in that they typically include information about the strength of materials being 

modeled. 

Additionally, in problems that involve the contact and separation of surfaces, 

contact forces between interacting materials must be accounted for.  Typically, Eulerian 

hydrocodes treat subelement thermodynamics and stresses with mixture theory. In this 

work, the term mixture theory is used to describe a method used to approximate the stress 

and pressure field discontinuities that occur at interface boundaries within an element 

with a single pressure and stress field. Individual materials have their own sets of 

properties, and each material is assumed to occupy some portion of the element volume.  
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This requires the implementation of specific thermodynamic conditions to define a 

nonlinear system of equations where the volume fraction of each material within a cell 

acts as the unknown.  Several mixture theories exist, however none of these methods are 

based in the physics taking place at the interface boundary and are thus considered to be 

ad hoc methods which will affect the accuracy of the solution.  

Furthermore, traditional Eulerian methods require that a single velocity field is 

present for all materials in the problem space. This results in a single strain rate for each 

element, even in instance where multiple materials are present. Conservation of volume 

prevents multiple materials from occupying the same space at once. This implies that 

contact algorithms are unnecessary since the traction is accounted for by changes in the 

material stresses. However, this leaves Eulerian codes unable to properly account for the 

physics taking place at interface boundaries. This leads to artificial shear stresses 

developing as materials attempt to slide relative to one another, as can be seen in Figure 

1.3. This is especially problematic in cases where the interaction is occurring between a 

liquid and a gas or a solid and a gas.  This can ultimately lead to strain rates well above 

the actual values of the problem [11]. This is a major source of inaccuracy in these 

problems and removing this source of error is the principle scope of this work [13], [14], 

[19]. As a result, multi-material Eulerian formulations in the traditional sense have been 

limited to problems that involve large stresses and deformations that cannot be solved by 

other methods, but the generality of the formulation presented here makes it very 

appealing for a wide range of applications [17].  
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The Arbitrary Lagrangian-Eulerian (ALE) method has been developed to take 

advantage of the strengths of both the Lagrangian and Eulerian coordinate systems.  In 

ALE methods, the mesh is permitted to deform as it would in a Lagrangian formulation, 

 

Figure 1.3: Treatment of sliding contact in an ALE element with mixture theory 
compared to the desired result 

 

be remapped to its original location as it would in an Eulerian formulation, or be rezoned 

arbitrarily according to a specified algorithm. ALE methods allow for improved handling 

of distortions compared to Lagrangian methods while also providing more flexibility for 

handling material interfaces. ALE formulations are comprised of two steps, a Lagrangian 

step in which the solution is advanced in time and the mesh is distorted, and an advection, 

or remap, step in which the mesh is relaxed and material is transferred across element 

boundaries. This step can be simplified to restore the mesh to its original position and 

create the Eulerian formulation that was used in the validation of the contact approach 

developed for this work [90]. While ALE methods provide more flexibility in performing 

the calculation they still suffer from the same drawbacks as Eulerian methods when 

multiple materials are permitted to occupy the same element. These multi-material ALE 

formulations (MALE) uses the same mixture theory approach to mixed cells as Eulerian 

formulations. The finite element formulations in Chapter 3 are developed in the ALE 

coordinate system. For the validation problems shown in Chapters 5 and 6 the mesh is 
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remapped to its original position, eliminating the need for a mesh relaxation algorithm. 

This results in an ALE form of the Eulerian method. 

A variety of other numerical techniques have also been developed to alleviate the 

difficulties associated with Lagrangian methods.  These include r-adaptive or Single-

material Arbitrary Lagrangian-Eulerian (SALE), Coupled Lagrangian-Eulerian (CLE), 

and Smoothed-Particle Hydrodynamics (SPH).  r-adaptive and SALE techniques have 

been successfully used to improve Lagrangian calculations that involve moderate 

amounts of deformation. Since they do not allow multiple materials within a 

computational element they do not suffer from the drawbacks of mixture theory seen in 

traditional Eulerian and ALE formulations. These techniques allow for the independent 

movement of nodes, allowing element distortions to be controlled and, thus, dramatically 

increasing the time step required for numerical stability.  SALE and r-adaptive methods, 

however, are not able overcome the difficulties associated with problems that involve 

large deformations and penetrations found in Lagrangian methods.  Therefore, these 

techniques alone are insufficient to prevent severe mesh distortions [63].   

It is possible to combine Eulerian and Lagrangian mesh systems into a single 

formulation.  This method is referred to as the Coupled Eulerian-Lagrangian (CLE) 

method, and is implemented in several commercially available codes.  These codes 

facilitate the modeling of fluid-structure and gas-structure interaction by allowing some 

of the materials or subgrids to be described using an Eulerian coordinate system while 

others are simultaneously modeled using a Lagrangian construction.  CLE codes require 

special attention to be given to the interaction of subgrids, especially those comprising 

differing coordinate systems. 



	

 

11	

Another subset of methods for modeling dynamic contact that have recently 

become popular are meshless methods.  These methods aim to alleviate the need for mesh 

regeneration in problems involving large deformations altogether.  These methods rely on 

node connectivity that is bounded in time and depends completely on the total number of 

nodes in the domain.  While this eliminates the need for complex mesh generation, the 

choice for nodal connectivity may be an unbounded problem, leading to similar 

difficulties associated with traditional problems that implement a computational mesh.  

While these methods hold a great deal of potential for simplifying contact modeling, 

development in this area is still in its early stages, and thus this method will not be further 

discussed in this work [51], [86]. 

  

History of the Finite Element Method 

The idea of representing a domain using a collection of discrete parts is not 

unique to computational mechanics or the finite element method.  Ancient 

mathematicians were able to estimate the value of π to more than 40 significant figures 

by determining the perimeter of a polygon with a finite number of sides that had been 

inscribed within a circle [78].  The finite element method (FEM) has its origins in the late 

19th century when Lord Rayleigh [61] used minimization of energy principles that were 

available at the time to solve structural design problems.  In the early 20th century, Ritz 

[79] extended the theory by introducing multiple independent functions.  In 1915, 

Galerkin [39] published the method of weighted residuals, which is the foundation of the 

modern finite element method.  In 1941, Hrenikoff [49] introduced the frame-work 

method which involved replacing a continuum body with a finite number of bars that 
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express the mechanical properties of the body.  The use of piecewise continuous 

functions defined over a subdomain to approximate an unknown function dates to 1943, 

with the work of Courant.  Courant’s method made use of a continuum body that was 

discretized using triangular elements and used the principles of minimum potential 

energy to solve the St. Venant torsion problem [28].  However, the formal presentation of 

the finite element method is attributed to Turner, Clough, Martin, and Topp in 1956 [89].  

This work used triangular elements to obtain the solution of plane stress problems.  Their 

work produced the direct stiffness method, and four years later the nomenclature “finite 

element method” appeared in a paper published by Clough [29].   

Since its formal introduction, the popularity of the finite element method has 

grown significantly, as have its potential applications. With increased emphasis being 

placed on improving computing resources during the 1960s the finite element method 

became more accessible to both researchers and industry.  As computing power increased 

and the FEM theory developed, the first commercial code, the so-called NASA 

STRuctural Analysis (NASTRAN) code came to the market.  Other commercial codes 

such as SAP and ANSYS followed suit and today hundreds of finite element solvers are 

available for a variety of specialized purposes in industries such as defense, automotive 

safety, aerospace, and biomechanics [44], [50]. 

 

Background 

The simulation of contact in computational structural mechanics has a long 

history, going back over 50 years.  It would be impossible to list all of the work that has 
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been published on this topic.  However, in this section we consider several works that 

have had a major influence on this dissertation. 

Some of the early work examining impacts using hydrocodes dates back to the 

mid-1980s.  Holian and Burkett [47], Bjork [21], and Trucano and Asay [88] all produced 

work concerning phase transitions during hypervelocity impacts, while Holsapple [48], 

Bjorkman and Holsapple [22], and Schmidt and Housen [80] all studied the dynamics and 

final state of impact cratering.  Still others, including Spillman [84], Arione and 

Bjorkman [5], Piekutowski [77], Trucano and Asay [88], and Schultz [82], studied the 

dynamics of debris clouds.  While this work brought a tremendous amount of interest to 

the modeling of hypervelocity impacts, work in this area was also investigated much 

earlier during the late 1950s and 1960s when the first two-dimensional hydrocodes were 

developed by Evans and Harlow [35] and Johnson [53].  A history of the development of 

hydrocodes and their uses can be found in a paper by Johnson [54]. 

Much of this early work led the way for the development of the Eulerian and 

Arbitrary Lagrangian-Eulerian formulations that we use in this dissertation.  A large 

summative work by Benson [11] presents numerous algorithms involving explicit finite 

element and finite difference methods that are used to solve transient, large deformation 

problems in solid mechanics.  Among the many topics covered in this 200 page work are 

the detailed development of the Lagrangian and Eulerian methods, as well as operator 

splitting and interface tracking, all of which are of the utmost importance to the ALEAS 

hydrocode developed for this dissertation.  Other more recent work by Benson, including 

his work on stable time step estimation for multi-material Eulerian hydrocodes [16] and 
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his implicit multi-material Eulerian formulation [17] have served as an important 

background for this work.  

More recently, work by Lim and Taylor [62], Benson and Okazawa [19], Vitali 

and Benson [90], Okazawa, et al. [74], and Littlefield [64], [65], have focused on the 

specific treatment of contact in multi-material contact in Eulerian and ALE methods, 

while a book by Zhong [101] goes into tremendous detail involving finite element 

procedures for the contact-impact problem.  Other work by Donea, et al. [31] gives an in-

depth description of the ALE method. 

Work by Benson and his student Vitali has also attempted to bypass the use of 

mixture theory in Eulerian hydrocodes [90], [91], [92].  The approach used in this work 

was an extension to the extended finite element method (XFEM) pioneered by 

Belytschko, et al. in the late 1990s [36], [73], [85].  While the goal of Vitali and Benson’s 

work is the same as the subject of this dissertation, the approach used varies significantly.  

As mentioned previously, Vitali and Benson’s work employed XFEM, in which nodes 

are “enriched” to provide additional degrees of freedom.  In the case presented in these 

works, the enrichment allowed for the determination of independent velocity fields at the 

nodes for each material located within a mixed cell.  This was accomplished by creating 

separate elements for each material that overlay one another.  During the Lagrangian step 

each overlaying element is allowed to deform independently and a contact enforcement 

algorithm was implemented if the combined volume fractions of the cells exceeded 1.0.  

If this condition was violated the velocities and accelerations were coupled and the 

material surface normals were determined. While this work shows a great deal of 

promise, it requires the use of extended finite element algorithms that are not readily 



	

 

15	

available in many production Eulerian codes, and thus is limited to codes that make use 

of XFEM, and currently, to the knowledge of the author the use of these methods are 

currently limited to two-dimensions. In addition to the research code RAVEN discussed 

in Vitali and Benson’s work, the Sandia National Laboratories hydrocode ALEGRA has 

also been recently updated to include an XFEM Eulerian contact algorithm in two-

dimensions [75]. This implementation has proven to be very computationally expensive, 

resulting in run times three to four times greater than ALEGRA’s traditional Eulerian 

approach, though Park points out that little optimization has been made to the code at this 

point, so this speed penalty will likely decrease with time.  

Work involving rigid body contact and motion have also proven to be useful in 

the development of this dissertation.  These works include a paper by Benson and 

Hallquist [18] in which rigid body algorithms were developed for structural dynamics 

programs.  Other works of interest in this area include multi-rigid-body contact problems 

presented by Anitescu and Potra [4], an overview of rigid body contact by Mirtich [72], a 

thesis by Cline [26], as well as a study of rigid plate impact by a soft impactor by Jeng, et 

al. [52].  Other works involving penetration studies have also been a useful background 

and these include works by Anderson and Walker [2], Benson [13], Walker [93], Gee 

[40], Ben-Dor, et al. [10] and Daneshjou, et al. [30]. 

The Taylor impact test will also be simulated in this work.  In order to draw a 

comparison between experimental results and the computational results obtained in this 

work, as well as to gain background knowledge of the Taylor impact test, many works 

from the literature were reviewed.  Papers dealing with the theory of the Taylor impact 

test include papers by Jones, Maudlin, and Foster [56], Jones, Drinkard, Rule, and 
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Wilson, [58], and Lu, Wang, and Zhang [68].  Numerous papers giving experimental 

results have also been presented in the literature.  These include works by Wilkins and 

Guinan [99], Jones, Maudlin, and Foster [57], Wang, Zhang, and Lu [97], Eakins and 

Thadhani [33], [34], Brunig and Driemeier [23], and Martin, Mishra, Meyers, and 

Thadhani [69]. 

The advection approach presented in this work was developed by Littlefield [66], 

which built on Youngs’ method for interface tracking developed by Youngs [100].  Other 

works that were important to the development of this dissertation include an early paper 

on mixture theory and numerical procedures for hypervelocity impacts by Drumheller 

[32], a development of mixture theory for multi-material contact in Eulerian formulations 

by Benson [14], work involving the prioritization of material interfaces by Benson [15], 

and other advection approaches by Jun [59], and Fressmann and Wriggers [37]. 

This work is an extension of the work done by Littlefield [64], [65], [66], and 

while many of the works mentioned in this section provided valuable background 

information, the work developed by Littlefield and continued in this dissertation 

represents a significant departure from traditional treatments of contact in a multi-

material Eulerian method.  Namely, this work differs from traditional approaches in that 

no mixed-element thermodynamic or constitutive models are used in the formulation, but 

rather the governing equations are solved for each material, and are subject to the 

imposed contact constraints with the appropriate tractions included.  In the formulation 

presented here, multiple velocity fields are required per cell, whereas traditionally only a 

single velocity field is used. Through the use of multiple velocity fields it becomes 

possible to enforce contact constraints along material interfaces. The interface tracking 
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methods discussed in later chapters are also repurposed for the contact approach.  In 

addition to its traditional use in keeping track the content of advection volumes, it is also 

used to determine interface areas in the contact enforcement method developed in this 

work. The formulations developed for this work are presented in Chapter 3, and results of 

the implementation are reported in Chapter 6 to demonstrate the advantages of this 

method over traditional approaches of multi-material contact.   

 

Dissertation Organization 

The layout of this dissertation is as follows: 

In Chapter 1 we have presented the motivation for this work as well as an 

introduction to the topics to be covered and a broad overview of related works. 

In Chapter 2, a brief introduction to the notation and mathematical background 

necessary to develop the ALE form of the conservation equations developed for this work 

is presented.  This will be followed by an overview of the conservation equations in both 

the Lagrangian and Eulerian reference frames and an overview of operator splitting 

techniques. 

In Chapter 3, the formulations for the conservation equations used in this work 

will be developed.  This section will also present the contact constraints and the finite 

element formulations of the conservation of mass, momentum, and energy equations.  

This section will conclude with the development of the interface tracking formulation 

used in this work in both two- and three-dimensions, as well as a description of a number 

of other methods implemented in ALEAS. 
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Chapter 4 will provide an overview of the research code ALEAS, a multi-material 

hydrocode which will be used in this work and was initially developed by Littlefield in 

two-dimensions [63] and expanded to three-dimensions as part of this work.  This section 

will also describe the Eulerian hydrocode CTH, which was used as a means of 

comparison in this work. 

In Chapter 5, the setup of several validation and verification calculations that 

were performed to demonstrate the applicability and improvements seen in this method 

are described.   

Chapter 6 presents the results of these example problems.  By implementing the 

method developed in Chapter 3 it was possible to gain a significant improvement over 

traditional Eulerian approaches.  The advantages of using the multi-material contact 

methods developed in this work are discussed.  Additionally, solutions to complications 

that arise from this method are given.   

Chapter 7 concludes this dissertation and makes recommendations for future areas 

of research with regards to Eulerian contact modeling.   
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CHAPTER 2 

MATHEMATICAL FOUNDATIONS 

	

Mathematical Background for Continuum Mechanics 

Notation 

In continuum mechanics, physical quantities are expressed by mathematical 

representations in the form of tensors and vectors.  The physical laws are also expressed 

by tensor and vector equations.  Any physical process being represented in this form is 

the same regardless of the coordinate system being used, thus the expressions describing 

the process must be able to be expressed in any coordinate system.  This law of vectors 

and tensors is known as the law of transformation. 

Vectors are represented by both a magnitude and a direction, and are made up of 

both unit vectors and scalar coefficients.  For example, the velocity vector in a three-

dimensional Cartesian coordinate system can be expressed by: 

𝐯	 = 𝑢𝒊	 + 𝑣𝒋	 + 	𝑤𝒌 = 𝑣+𝑒+

-

+./

𝟐. 𝟏  

where i, j, and k are the associated unit vectors, and u, v, and w are scalar quantities for 

vector notation and 𝑒+ is the unit vector and 𝑣+ is velocity component in indicial notation 

where n is the number of dimensions of the problem. This summation is implied in 

indicial notation when an index is repeated, so the summation symbol is often omitted, 

but shown here for clarity.   
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The gradient operator ∇ is frequently used in the conservation equations, contact 

approach, and interface tracking methods developed in this work. It is defined as: 

𝛁	 = 𝒊
𝜕
𝜕𝑥 	+ 𝒋

𝜕
𝜕𝑦 	+ 	𝒌

𝜕
𝜕𝑧 = 𝑒+

𝜕
𝜕𝑥+

𝟐. 𝟐  

The product of ∇ and a scalar quantity, denoted here by ϕ, results in a vector 

defined as: 

𝛁𝜙	 =
𝜕𝜙
𝜕𝑥 𝒊	 +

𝜕𝜙
𝜕𝑦 𝒋	 +	

𝜕𝜙
𝜕𝑧 𝒌 = 𝑒+

𝜕𝜙
𝜕𝑥+

𝟐. 𝟑  

The product of ∇ and a vector, such as the velocity vector v, is known as the 

divergence and is defined as: 

𝛁 ∙ 𝐯	 =
𝜕𝑢
𝜕𝑥 	+

𝜕𝑣
𝜕𝑦 	+	

𝜕𝑤
𝜕𝑧 =

𝜕𝑣+
𝜕𝑥+

𝟐. 𝟒  

	 The Cauchy stress, which is the only stress used in this dissertation, is denoted by 

s, the specific internal energy is e, the density is r, the traction is t, and the body force 

per unit mass is f. In Chapter 3 the symbol 𝜙 is used to denote the volume fraction of 

material within an element, but has other uses in this chapter. 

 The velocity gradient 𝛁𝐯, which can also be denoted as Lij, is divided into a 

symmetric component, Dij, which is the deformation rate, and a skew component, Wij, 

which is the spin. This is given by the following series of equations: 
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𝐿+? =
𝜕𝑣+
𝜕𝑥+

 

𝐷+? =
1
2 𝐿+? + 𝐿?+ 	 𝟐. 𝟓  

𝑊+? =
1
2 𝐿+? − 𝐿?+  

 The deformation rate, Dij, is commonly referred to as the strain rate, 𝜀+?, as is done 

in Chapter 3, because it is conjugate to the Cauchy stress. This is not strictly correct 

because the time integral of the deformation rate does not define a measure of large 

deformation strain, but this nomenclature is common and thus used here as well [11].  

 

Conservation Equations 

The Lagrangian formulation of the conservation equations can be developed using 

the concept of a material volume where all points contained within the volume move at 

the velocity of the local continuum.  The Eulerian formulation on the other hand, uses a 

volume fixed in space to solve the conservation equations.  In an Eulerian formulation, 

the rate at which the quantity of each material decreases in the fixed space equals the 

material flux through the mesh.  This section contains a brief description of the governing 

equations for mass, momentum, and energy in both the Lagrangian and Eulerian 

reference frames.  Numerous publications and text books give detailed description of 

their derivations, so a full derivation is not presented here [25], [70], [98].  

The conservation of mass equation in the Lagrangian reference frame is written as: 

𝐷𝜌
𝐷𝑡 + 𝜌

𝜕𝑣+
𝜕𝑥+

= 0	 𝟐. 𝟔  
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where 𝜌 is the density.  

The conservation of momentum equation in the Lagrangian reference frame is: 

𝜌
𝐷𝑣+
𝐷𝑡 =

𝜕
𝜕𝑥?

𝜎?+ + 𝜌𝑓+	 𝟐. 𝟕  

where 𝜎?+ is the Cauchy stress and 𝑓+ is the body force per unit mass. 

The conservation of energy equation in the Lagrangian reference frame is: 

𝜌
𝐷𝑒
𝐷𝑡 = 𝜎+?𝜀+? + 𝜌𝑓+𝑣+ 𝟐. 𝟖  

where e is the internal energy and 𝜀+? is the strain rate. 

Here the D/Dt term is known as the material derivative. This is the time rate of 

change associated with the material. It is defined as:  

𝐷
𝐷𝑡 	 =

𝜕
𝜕𝑡 	 + 𝑣+

𝜕
𝜕𝑥+

(	) 𝟐. 𝟗  

where the first term on the right-hand side is the local change and the second term is the 

convective change. 

 The Eulerian form of the conservation equations arise from the change of the 

material quantity in a control volume over time. The rate of increase of the material 

quantity in the volume is equal to the rate of the quantity flowing into the volume minus 

the rate of the quantity flowing out of the volume. The conservation of mass equation in 

the Eulerian reference frame is given by: 
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𝜕𝜌
𝜕𝑡 +

𝜕
𝜕𝑥+

𝜌𝑣+ = 0	 𝟐. 𝟏𝟎  

The conservation of momentum equation in the Eulerian reference frame is given by: 

𝜕
𝜕𝑡 𝜌𝑣+ +

𝜕
𝜕𝑥?

𝜌𝑣+𝑣? = 	
𝜕
𝜕𝑥?

𝜎?+ + 𝜌𝑓+ 𝟐. 𝟏𝟏  

The conservation of energy in the Eulerian reference frame is given by: 

𝜕
𝜕𝑡 𝜌𝑒 +

𝜕
𝜕𝑥?

𝜌𝑒𝑣? = 	𝜎+?𝜀+? + 𝜌𝑓+𝑣+ 𝟐. 𝟏𝟐  

It is important to recognize that there is no generalized closed-form of these equations, so 

the solutions implemented in hydrocodes are approximate solutions. 

In addition to the unknowns which are solved using the conservation equations, 

which include the density r, the velocity components vi, and the specific internal energy 

e, the equations of state and constitutive laws for the materials of interest must be solved 

to determine the remaining unknowns, including the pressure and deviatoric stress 

components which combine to define the Cauchy stress.  These types of formulations are 

commonly referred to as material models and are not discussed in this work, however 

extensive work can be found in the literature [27], [43].  

 

Operator Splitting 

Operator splitting provides a convenient method for solving the ALE form of the 

conservation equations developed in this work. While the complete development of the 

ALE formulation can be found in Chapter 3, this section provides a useful background in 
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understanding how the ALE equations are split into Lagrangian and Eulerian parts. 

Unsplit methods are also available and can result in improved accuracy, however, they 

are typically more complicated to implement and are more computationally expensive. 

Operator splitting provides an efficient, robust, and simplified approach to solving the 

ALE form of the conservation equations and is used in a large majority of Eulerian and 

ALE hydrocodes under development today. 

 The operator split approach separates the ALE conservation equations into a 

source equation, typically called the Lagrangian step, and convective equations, typically 

called the advection or remap step. Figure 2.1 provides a graphical representation of the 

operator split solution process. In ALE codes that make used of an Eulerian mesh 

description, as will be used in this work, the mesh is returned to its original orientation 

during the remap step while material is allowed to pass across element boundaries. Other 

ALE implementations also allow flux across element boundaries, but the mesh can be 

restored to an arbitrary orientation using user supplied relaxation parameters. The two 

steps are solved independently and sequentially, with the remap step typically being 

solved in one-dimensional sweeps in which the order of advection directions is alternated 

with each timestep to alleviate directional bias. 

The general form of an ALE conservation equation is 

𝜕
𝜕𝑡 𝐽𝜙 + 𝐽∇ ∙ Φ = 𝐽𝑆	 𝟐. 𝟏𝟑  

where 𝜙 is the solution variable, Φ is a flux function, S is the source term, and J is the 

Jacobian. Operator splitting divides the solution variable term in Equation 2.8 into a 

Lagrangian and an Eulerian part as: 
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Figure 2.1:  Geometric interpretation of operator splitting in an Eulerian framework, with 
(a) the initial condition, (b) the Lagrangian step, and (c) the advection step 

 

𝜕
𝜕𝑡 𝐽𝜙 =

𝜕
𝜕𝑡 𝐽𝜙

VWX +
𝜕
𝜕𝑡 𝐽𝜙

YZ[	 𝟐. 𝟏𝟒  

These parts are then divided to solve the source and convective terms separately as 

follows. For the source step, or Lagrangian step as it is typically called, the flux terms are 

excluded. During this step the mesh deforms and time is advanced. The Lagrangian step 

used in most ALE and Eulerian codes uses the same algorithms used in a Lagrangian 

hydrocode. The Lagrangian step is given by: 

𝜕
𝜕𝑡 𝐽𝜙

VWX = 𝐽𝑆	 𝟐. 𝟏𝟓  

For the convective step, or remap step, the flux terms are solved. During this step the 

mesh is either restored to its original location, as would be the case for an Eulerian 
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method, or to some other configuration determined by a mesh relaxation algorithm. 

During this step material is transported between adjacent cells. The transport of mass, 

momentum, energy, stress, and other quantities is handled by advection algorithms during 

this step. The remap step is given by: 

𝜕
𝜕𝑡 𝐽𝜙

YZ[ + 𝐽∇ ∙ Φ = 0	 𝟐. 𝟏𝟔  

 

The Donor Cell Advection Algorithm 

During the remap step the distorted Lagrangian mesh must be returned to its 

original location and material flux must take place across element boundaries. It is 

important that this process be stable, accurate, conservative, and monotonic. The stability 

requirement comes from the Courant condition, i.e. vDt/Dx≤1, which states transport can 

only occur between neighboring cells, meaning that material cannot flow more than one 

element width during a single time step. The conservation requirement ensures that the 

original and remapped meshes have the same mass, momentum, and energy, and the 

monotonicity requirement ensures that the range of solution variables does not increase 

after the remap. This is important, for example, in ensuring that negative masses and 

energies are not obtained after the remap step. The donor cell algorithm used in this work 

is very simple to implement, and, with the exception of being first order accurate, meets 

all of the requirements for advection.  

The donor cell algorithm is given by 

𝜑
+]/^

-]/ = 𝜑
+]/^

- +
∆𝑡
∆𝑥 𝑓+

` − 𝑓+]/
` 𝟐. 𝟏𝟕  
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where j is the solution variable and fj is the transport volume between adjacent elements, 

which is given by 

𝑓+
` =

𝑎+
2 𝜑

+b/^

- + 𝜑
+]/^

- +
𝑎+
2 𝜑

+b/^

- − 𝜑
+]/^

- 𝟐. 𝟏𝟖  

where ai is the velocity of the contact discontinuity at node i.  

Higher order methods, including the van Leer monotonic upwind scheme for 

convection laws (MUSCL) exist, but have not currently been implemented in ALEAS. 

Implementation of a higher order advection scheme is an area of future work.  

 

The Half-Index Shift (HIS) Momentum Advection Algorithm 

Unlike advection of element centered quantities such as mass, density, and energy 

which is straightforward and done by the donor cell approach in this work, the velocity is 

a node centered quantity and determining how it is advected requires considerably more 

care to be taken. In most codes, including the one developed for this work, momentum is 

advected instead of velocity to ensure momentum conservation. The element centered 

advection algorithms must be modified in some way to advect node centered momentum. 

The method used in this work was initially developed by Benson [12] and was based on 

an analysis of other element centered advection algorithms. The Half-Index Shift (HIS) 

algorithm eliminates dispersion errors associated with other element centered advection 

algorithms while also maintaining the monotonicity of the velocity field.  

A monotonic element-centered momentum advection algorithm is obtained by 

choosing the identity matrix for the transformation and by using mass weighting for the 

inverse relationship. 



	

 

28	

Ψ
/,+]/^

Ψ
^,+]/^

= 1 0
0 1

𝑣+
𝑣+]/ 𝟐. 𝟏𝟗  

To conserve momentum, variable Ψ is advected with the transport masses. The 

updated value for Ψ is given by 

Ψ
e,+]/^

] =
𝑀
+]/^

b Ψ
e,+]/^

b + Ψ e,?b/ 𝑓+b/ − Ψ e,+]/ 𝑓+]/

𝑀
+]/^

] 𝟐. 𝟐𝟎  

where the ‘+’ and ‘–‘ denote the variable value before and after advection, M is the 

lumped mass at the node, and 𝑓 is the transported nodal mass. From this we can now 

obtain the velocity update using the following equation: 

𝑣+ =
1
2𝑀+

𝑀
+]/^

𝑀
+b/^

Ψ
/,+]/^

Ψ
^,+b/^

𝟐. 𝟐𝟏  

More details about the derivation of this algorithm can be found in [12] for 

structured meshes and [20] for unstructured quadrilateral meshes. 
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CHAPTER 3 

FORMULATIONS 

	

This work represents a significant departure from traditional treatment of sliding 

contact with Eulerian and ALE methods.  It essentially represents a generalization of a 

technique used in Lagrangian formulations and implements it in an ALE reference frame 

in order to avoid the mesh distortion drawbacks of Lagrangian methods while also 

removing contact problems associated with Eulerian and ALE methods.  In this work, 

mixed cell thermodynamic and constitutive models traditionally used in Eulerian and 

ALE methods are not used.  Rather, the governing equations are solved for each material 

separately and then specific contact constraints are imposed.  After these constraints are 

enforced the traction, which is traditionally treated implicitly through stress and pressure 

increases that occur as a result of the conservation of volume, is treated explicitly.  This 

results in a set of coupled equations which can be approximated using an uncoupled 

system. 

 

Development of the Conservation Equations and Finite Element Formulation 

The conservation of mass, momentum, and energy equations presented in Chapter 

2 must be rewritten in a manner suitable to carry out the calculations that will be 

considered in this work.  The formulation presented here is the Arbitrary Lagrangian-
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Eulerian (ALE) form of the conservation equations.  In this section we will develop the 

conservation equations in the form necessary to arrive at the finite element approximation 

of each equation using two operator splits. The first operator split is traditionally 

performed in the ALE formulation and is solved without accounting for the traction. The 

second operator split enforces contact by determining the traction and enforcing the 

Signorini contact constraints. This second operator split is valid everywhere, but since the 

traction has a value of zero everywhere except in elements where contact occurs it is only 

performed when the contact constraints are not identically satisfied.  

Let X denote the Lagrangian, or current, coordinate system of a given volume, V. 

We must also define two additional coordinate systems: the Eulerian coordinates, where 

x = x(X,t), and the ALE coordinates, where y = y(X,t).  The ALE coordinates describe 

the deformation of the volume V, while the Eulerian coordinates describe the deformation 

of a body of interest W, as shown in Figure 3.1. 

Initially, the Lagrangian, Eulerian, and ALE coordinate systems are equivalent, 

however, at later times all three can become distinct assuming deformation and 

advection.  Note that it is possible to convert between reference frames. The Lagrangian 

description is recovered from the ALE equations by setting the advection velocity c to 

zero. The Eulerian description is given by setting the material velocity v equal to c and 

the Jacobian, J, equal to one.  

Conservation of Momentum in ALE Coordinates 

From this description of motion, it is desirable to express the conservation of 

momentum in terms of the deforming ALE coordinate system. The conservation of  
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Figure 3.1:  Lagrangian, Eulerian, and ALE coordinate systems. Initially, the 
Lagrangian, Eulerian, and ALE coordinate systems are identical, however, as time 

progresses each system can become distinct. 

 

momentum equation is solved by performing one dimensional sweeps in each direction, 

so for three dimensions it would be solved a total of three times to find the three 

components of the velocity vector. The initial momentum, M0, of the body W at t = 0 is 

given by: 

𝐌h = 𝜌h𝐯h𝑑X
	

k∩m

	 𝟑. 𝟏  

 

Likewise, at some later time t =t1, the momentum of the body, M1, is given by: 

𝐌𝟏 = 𝜌𝐯𝑑𝑦
	

k∩m

+ 𝜌𝐯 𝐜 ∙ 𝐧 𝑑𝑠
	

q

r

h

	 𝟑. 𝟐  
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y
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where n is the outward unit normal vector to V along its boundary G and c is the 

advection velocity, given by: 

𝐜 = 𝐯 −
𝑑𝐲
𝑑𝑡 = 𝐯 − 𝐲 𝟑. 𝟑  

where 𝐲 is the ALE reference frame velocity. The change in momentum is given by M1 – 

M0, and the rate of change is the time derivative, which can be written as: 

𝜕𝐌
𝜕𝑡 =

𝜕𝐌𝟏

𝜕𝑡 =
𝜕
𝜕𝑡 𝜌𝐯𝑑𝑦

	

k∩m

+ 𝜌𝐯 𝐜 ∙ 𝐧 𝑑𝑠
	

q

	 𝟑. 𝟒  

Now, let 

𝐅u =
𝑑𝐲
𝑑𝐗 						or					𝐹u,+? =

𝑑𝑦+
𝑑𝑋?

𝟑. 𝟓  

be the second-order tensor describing the deformation of the ALE coordinate system.  

Using this we can transform the first term on the right-hand side of Equation 3.4 into the 

original coordinate system as follows: 

𝜕
𝜕𝑡 𝜌𝐯𝑑𝑦

	

k∩m

=
𝜕
𝜕𝑡 𝜌𝐯det 𝐅u 𝑑X

	

k∩m

=
𝜕
𝜕𝑡 𝜌𝐽𝐯 𝑑X

	

k∩m

𝟑. 𝟔  

where J = det(Fy), and is the Jacobian of the reference frame. Then applying Gauss’ 

theorem to the second integral gives: 

𝜌𝐯 𝐜 ∙ 𝐧 𝑑𝑠
	

q

= ∇ ∙ 𝜌𝐯𝐜 𝑑𝑦
	

k∩m

= 𝐽∇ ∙ 𝜌𝐯𝐜 𝑑X
	

k∩m

	 𝟑. 𝟕  
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Using Cauchy’s law the forces acting on the body are given by: 

𝐅 = 𝐧 ∙
	

q

𝜎𝑑𝑠 + 𝐟𝑑𝑦
	

k∩m

	 𝟑. 𝟖  

where f is an externally applied force per unit volume and s is the Cauchy stress tensor 

previously denoted in Chapter 2 with indicial notation as 𝜎+?.   

Using Gauss’ Theorem on the first integral in Equation 3.8 gives: 

𝐅 = 𝐧 ∙
	

q

𝜎𝑑𝑠 + 𝐟𝑑𝑦
	

k∩m

= ∇ ∙ 𝜎 + 𝐟 𝑑𝑦
	

k∩m

	 𝟑. 𝟗  

Changing the reference frame of Equation 3.9 gives: 

∇ ∙ 𝜎 + 𝐟 𝑑𝑦
	

k∩m

= 𝐽 ∇ ∙ 𝜎 + 𝐟 𝑑X
	

k∩m

𝟑. 𝟏𝟎  

So, the conservation of momentum equation now becomes: 

𝜕
𝜕𝑡 𝜌𝐽𝐯 + 𝐽∇ ∙ 𝜌𝐯𝐜 𝑑X

	

k∩m

= 𝐽 ∇ ∙ 𝜎 + 𝐟 𝑑X
	

k∩m

	 𝟑. 𝟏𝟏  

This must be valid for any choice of control volume V, so therefore the integrand must be 

zero. Using this and dividing through by J gives: 

1
𝐽
𝜕
𝜕𝑡 𝜌𝐽𝐯 + ∇ ∙ 𝜌𝐯𝐜 = ∇ ∙ 𝜎 + 𝐟	 𝟑. 𝟏𝟐  
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Using the product rule on the first term on the left-hand side gives: 

1
𝐽
𝜕
𝜕𝑡 𝜌𝐽𝐯 =

1
𝐽 𝐽

𝜕
𝜕𝑡 𝜌𝐯 + 𝜌𝐯

𝜕𝐽
𝜕𝑡 =

𝜕
𝜕𝑡 𝜌𝐯 +

𝜌𝐯
𝐽
𝜕𝐽
𝜕𝑡 	 𝟑. 𝟏𝟑  

It can be shown [105] that the time derivative of the Jacobian is given by: 

𝜕𝐽
𝜕𝑡 =

𝑑𝐽
𝑑𝑡 = 𝐽∇ ∙ 𝐲	 𝟑. 𝟏𝟒  

Substituting Equations 3.13 and 3.14 into Equation 3.12 gives: 

𝜕
𝜕𝑡 𝜌𝐯 + 𝜌𝐯∇ ∙ 𝐲 + ∇ ∙ 𝜌𝐯𝐜 = ∇ ∙ 𝜎 + 𝐟	 𝟑. 𝟏𝟓  

The first term on the left-hand side can be rewritten as: 

𝜕
𝜕𝑡 𝜌𝐯 = 𝜌

𝜕𝐯
𝜕𝑡 + 𝐯

𝜕𝜌
𝜕𝑡 	 𝟑. 𝟏𝟔  

The third term on the left-hand side of Equation 3.15 can be rewritten as: 

∇ ∙ 𝜌𝐯𝐜 = 𝜌𝐯∇ ∙ 𝐜 + 𝐜 ∙ ∇ 𝜌𝐯 = 𝜌𝐯∇ ∙ 𝐯 − 𝐲 + 𝐜 ∙ ∇ 𝜌𝐯
= 𝜌𝐯∇ ∙ 𝐯 − 𝐲 + 𝜌𝐜∇ ∙ 𝐯 + 𝐜𝐯 ∙ ∇𝜌 𝟑. 𝟏𝟕  

Using Equations 3.16 and 3.17 and canceling terms, Equation 3.15 becomes: 

𝜌
𝜕𝐯
𝜕𝑡 + 𝐯

𝜕𝜌
𝜕𝑡 + 𝜌𝐯∇ ∙ 𝐯 + 𝜌𝐜∇ ∙ 𝐯 + 𝐜𝐯 ∙ ∇𝜌 = ∇ ∙ 𝜎 + 𝐟		 𝟑. 𝟏𝟖  

From the conservation of mass equation shown later in this chapter in Equation 3.58 we 

know 𝜕𝜌 𝜕𝑡 + 𝜌∇ ∙ 𝐯 + 𝐜 ∙ ∇𝜌 = 0, so we are left with: 

𝜌
𝜕𝐯
𝜕𝑡 + 𝜌𝐜∇ ∙ 𝐯 = ∇ ∙ 𝜎 + 𝐟		 𝟑. 𝟏𝟗  
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This is the conservation of momentum expressed in the ALE coordinate system.  Note 

that the divergence operator ∇ is the divergence in the Eulerian system. 

In order to develop the finite element approximation we must express the 

momentum equation in the weak form. This is done by multiplying by a test function w 

and integrating over the volume V to give: 

𝑤 𝜌
𝜕𝐯
𝜕𝑡 + 𝜌𝐜∇ ∙ 𝐯 𝑑𝑦

	

m

= 𝑤 ∇ ∙ 𝜎 + 𝐟 𝑑𝑦
	

m

	 𝟑. 𝟐𝟎  

Using Gauss’s theorem, the second term on the left-hand side can be integrated by parts 

to obtain: 

𝑤𝜌𝐜∇ ∙ 𝐯𝑑𝑦
	

m

= − ∇𝑤 ∙ 𝜌𝐯𝐜 𝑑𝑦
	

m

+ 𝑤𝐜𝜌𝐯 ∙ 𝐧𝑑𝑠
	

q

	 𝟑. 𝟐𝟏  

Likewise, the stress term on the right-hand side can be integrated using Gauss’ theorem 

and Cauchy’s Law to give: 

𝑤∇ ∙ 𝜎𝑑𝑦
	

m

= − ∇𝑤 ∙ 𝜎𝑑𝑦
	

m

+ 𝑤𝐭𝑑𝑠
	

q

	 𝟑. 𝟐𝟐  

where t is the traction. 

So, the weak form of the conservation of momentum equation can be written in 

ALE form as: 
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𝑤𝜌
𝜕𝐯
𝜕𝑡 − ∇𝑤 ∙ 𝜌𝐯𝐜 𝑑𝑦

	

m

+ 𝑤𝐜𝜌𝐯 ∙ 𝐧𝑑𝑠
	

q

= 𝑤𝐟 − ∇𝑤 ∙ 𝜎 𝑑𝑦
	

m

+ 𝑤𝐭𝑑𝑠
	

q

	 𝟑. 𝟐𝟑
 

In traditional Eulerian and ALE formulations that use mixture theory the traction 

term is implied as part of the conservation of volume since the Cauchy stress will 

increase or decrease as material moves into and out of elements. However, in the 

formulation developed in this work the traction is included explicitly by performing a 

second operator split which enforces contact in elements where the contact constraints are 

not identically satisfied. For the first operator split this leaves us with: 

𝑤𝜌
𝜕𝐯
𝜕𝑡 − ∇𝑤 ∙ 𝜌𝐯𝐜 𝑑𝑦

	

m

+ 𝑤𝐜𝜌𝐯 ∙ 𝐧𝑑𝑠
	

q

= 𝑤𝐟 − ∇𝑤 ∙ 𝜎 𝑑𝑦
	

m

	 𝟑. 𝟐𝟒
 

Performing the first operator split gives: 

Lagrangian step 

𝑤𝜌
𝜕
𝜕𝑡 𝐯𝒍𝒂𝒈 𝑑𝑦

	

m

= 𝑤𝐟 − ∇𝑤 ∙ 𝜎 𝑑𝑦
	

m

	 𝟑. 𝟐𝟓  

Remap step 

𝑤𝜌
𝜕
𝜕𝑡 𝐯𝒓𝒆𝒎𝒂𝒑 − ∇𝑤 ∙ 𝜌𝐯𝒍𝒂𝒈𝐜 𝑑𝑦

	

m

+ 𝑤𝐜𝜌𝐯𝒍𝒂𝒈 ∙ 𝐧𝑑𝑠
	

�

= 0	 𝟑. 𝟐𝟔  

And the second operator split gives: 
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Contact enforcement step 

𝑤𝜌
𝜕
𝜕𝑡 𝐯𝒄𝒆 𝑑𝑦

	

m

= 𝑤𝐭𝑑𝑠
	

q

	 𝟑. 𝟐𝟕  

Contact remap step 

𝑤𝜌
𝜕
𝜕𝑡 𝐯𝒄𝒆	𝒓𝒆𝒎𝒂𝒑 − ∇𝑤 ∙ 𝜌𝐯𝒄𝒆𝐜𝒄𝒆 𝑑𝑦

	

m

+ 𝑤𝐜𝒄𝒆𝜌𝐯𝒄𝒆 ∙ 𝐧𝑑𝑠
	

�

= 0	 𝟑. 𝟐𝟖  

where here the superscripts lag, remap, ce, and ce remap indicate values obtained in the 

Lagrangian step, remap step, contact enforcement step, and contact remap step 

respectively, and 𝐜𝒄𝒆 is the advection velocity for the contact remap step, which is given 

by 𝐜𝒄𝒆 = 𝐯𝒄𝒆 − 𝐯𝒓𝒆𝒎𝒂𝒑. 

Finite element approximation of the conservation of momentum equation 

 The finite element approximation can be developed by replacing the test function 

w with the shape function Nl in the Lagrangian step and using a piecewise constant 

function 𝑁��, which has a value of one for element k and zero otherwise, in the remap 

step. It should be noted that Equations 3.25 to 3.28 are solved separately for each 

material, so we will now introduce the subscript m to indicate the material of interest. The 

material velocity vector, v, and the advection velocity, c, are replaced with the following 

approximations:  

𝐯e = 𝑁?𝐯e,?

-�

?./

	 𝟑. 𝟐𝟗  

𝐜e = 𝑁?𝐜e,?

-�

?./

	 𝟑. 𝟑𝟎  
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where nn is the total number of nodes and the subscript m indicates the material of 

interest. Using indicial notation the Cauchy stress, s, can be decomposed into its 

components as: 

𝜎+? = −𝑝∗𝛿+? + 𝑠+?	 𝟑. 𝟑𝟏  

where 𝑝∗ is the pressure, 𝛿+? is the Kronecker delta function, and 𝑠+? is the deviatoric 

stress, and the indices i and j have values 1, …, n where n is the number of dimensions of 

the problem. The pressure term, 𝑝∗, is the sum of the pressure, p, determined by the 

equation of state, and the artificial viscosity, q, while the six deviatoric stress terms that 

arise in three-dimensions are found through the constitutive laws. Each of these must be 

written in a form suitable for the finite element method and are given by: 

𝜎e = 𝑁��	𝜎e,�

-�

�./

	 𝟑. 𝟑𝟐  

𝑝e = 𝑁��	𝑝e,�

-�

�./

	 𝟑. 𝟑𝟑  

𝑞e = 𝑁��	𝑞e,�

-�

�./

	 𝟑. 𝟑𝟒  

𝑠e = 𝑁��	𝑠e,�

-�

�./

	 𝟑. 𝟑𝟓  

where ne is the number of elements. Furthermore, the density term, r, can be 

approximated by: 
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𝜌e = 𝑁��	𝜌e,�

-�

�./

	 𝟑. 𝟑𝟔  

So for the Lagrangian step the finite element approximation for the conservation of 

momentum equation is given by: 

 

𝑁[𝑁��𝜌e,�	 𝑁?

-�

?./

𝜕
𝜕𝑡 𝐯e,?

[WX 𝜙e,�𝑑𝑦
	

��

-�

�./

	= 𝑁[𝐟	 − ∇𝑁[ ∙ 𝑁��𝜎e,� 𝜙e,�𝑑𝑦
	

��

-�

�./

 

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟑𝟕  

where we have made use of the fact that 𝑁�� is a piecewise constant function to eliminate 

the sums for 𝜎 and 𝜌 in Equations 3.32 and 3.36. The left-hand side term 

𝑁[𝑁?𝜌e,�𝜙e,�𝑑𝑦
	
k�

-�
�./  is known as the consistent mass matrix. It is not diagonalized 

and results in a high computational cost. Therefore, to simplify the solution we can 

diagonalize Equation 3.37 by using the lumped mass, 𝑀e,[
[WX, at node l, which is defined 

as: 

𝑀e,[
[WX =

1
𝑛�[

𝑁[𝑁?𝜌e,�𝜙e,�𝑑𝑦
	

k�

-�

�./

-�

?./

	 𝟑. 𝟑𝟖  

where 𝑛�[  is the number of elements connected to node l. Equation 3.38 is usually referred 

to as the nodal mass. Furthermore, the 𝑁�� term is equal to one for element k. Thus, 

Equation 3.37 simplifies to: 
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𝑀e,[
[WX 𝜕

𝜕𝑡 𝐯e,[
[WX = 𝑁[𝐟	 − ∇𝑁[ ∙ 𝜎e,� 𝜙e,�𝑑𝑦

	

��

-�

�./

	

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟑𝟗

 

In the remap step, the test function w is replaced by the weight function 𝑁��. Likewise the 

velocity, advection velocity, and density are replaced by their approximations given in 

Equations 3.29, 3.30, and 3.36 respectively. This gives: 

𝑁��𝑁��𝜌e,� 𝑁?
𝜕
𝜕𝑡 𝐯e,?

��eW�
-�

?./

𝜙e,�𝑑𝑦
	

k�

− ∇𝑁�� ∙ 𝑁��𝜌e,� 𝑁?𝐯e,?
[WX

-�

?./

𝑁+𝐜e,+

-�

+./

𝜙e,�𝑑𝑦
	

k�

+ 𝑁�� 𝑁?𝐯e,?
[WX

-�

?./

𝑁��𝜌e,� 𝑁+𝐜e,+

-�

+./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟒𝟎

 

 

Again, we have made use of the fact that 𝑁�� is piecewise constant to eliminate the sum 

for 𝜌 in Equation 3.36. The choice of the piecewise constant function 𝑁��	limits the 

accuracy of the solution but also results in a significant simplification because ∇	𝑁�� = 0. 

Therefore, the second term in the left-hand side disappears. So we are left with: 

𝜌e,� 𝑁?
𝜕
𝜕𝑡 𝐯e,?

��eW�
-�

?./

𝜙e,�𝑑𝑦
	

k�

+ 𝑁?𝐯e,?
[WX

-�

?./

𝜌e,� 𝑁+𝐜e,+

-�

+./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0		

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟒𝟏
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The first term contains the integral 𝜌e,�𝜙e,�𝑑𝑦
	
k�

 which is the mass of element k 

denoted as 𝑚e,�
��eW�. So Equation 3.41 becomes: 

𝑚𝑚,𝑘
𝑟𝑒𝑚𝑎𝑝 𝑁?

𝜕
𝜕𝑡
𝐯e,?
��eW�

-�

?./

+ 𝑁𝑗𝐯𝑚,𝑗
𝑙𝑎𝑔

𝑛𝑛

𝑗=1

𝜌𝑚,𝑘 𝑁𝑖𝐜𝑚,𝑖

𝑛𝑛

𝑖=1

∙ 𝐧𝜙e,�𝑑𝑠
	

Γ𝑘

= 0	

	

 

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟒𝟐  

Note that Equation 3.42 contains multiple velocity unknowns and is therefore not 

diagonalized, much like Equation 3.37 was before the lumped mass approximation was 

used. There are many methods to reduce Equation 3.42 to a diagonal system. One 

approach is to use the Half-Index Shift (HIS) algorithm presented in Chapter 2, which 

was used in this work.  

At this point for the contact formulation developed for this work the materials 

have been permitted to move independently without interaction or deformation due to 

contact. The equations developed to this point could also be used with the standard 

mixture theory formulation, where they are no longer solved independently for each 

material, but rather mixture theory is applied. For the mixture theory formulation the  

𝐯e,? and 𝐜e,? terms would no longer be determined for each material, but rather for all 

materials due to the use of a single velocity field. The 𝜙e,� term in the Lagrangian step 

would become 1 − ϕ¢£+¤, and the components of the Cauchy stress tensor would be 

determined through mixture theory. There are numerous methods for determining the 

mixed element quantities, but the method implemented in the ALEAS mixture theory 

formulation shown in Chapter 6 is: 
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𝑝h,� =
𝑝e,�ϕ¥,¦

-§
e./

ϕ¥,¦
-§
e./

	 𝟑. 𝟒𝟑  

𝑞h,� =
𝑞e,�ϕ¥,¦

-§
e./

ϕ¥,¦
-§
e./

	 𝟑. 𝟒𝟒  

𝑠h,� =
𝑠e,�ϕ¥,¦

-§
e./

ϕ¥,¦
-§
e./

	 𝟑. 𝟒𝟓  

where the 0 subscript indicates the value determined through mixture theory and nm is the 

total number of materials in the problem. 

 At this point the mixture theory formulation would be complete, because forces 

exchanged between interacting materials are taken into account by replacing them with 

what is essentially an equivalent single material since only one velocity field and stress 

state is present in the element. All remaining surfaces are free surfaces, so the traction is 

always zero in mixture theory formulations. However, when mixture theory is not used 

surfaces are permitted to interact and accumulate surface forces so that a second operator 

split is necessary to conserve momentum. The momentum equation for the contact 

enforcement step is similar to the one derived for the Lagrangian step, so the procedure is 

not shown here. The contact enforcement step is given by: 

𝑀e,[
¨� ∂
∂t 𝐯e,[

¨� = 𝑁[𝐭	𝑑𝑠
	

q�

-�

�./

	

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟒𝟔
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where 𝑀e,[
¨�  is the nodal lumped mass associated the contact enforcement step. The right-

hand side of this equation can be solved in a number of different ways and in this work is 

handled by the Eulerian contact enforcement method presented later in this chapter. 

 The last step of the second operator split is the contact enforcement remap step, 

which is derived in a similar fashion to the first remap step and is given by: 

𝑚𝑚,𝑘
𝑐𝑒	𝑟𝑒𝑚𝑎𝑝 𝑁𝑗

𝜕
𝜕𝑡
𝐯
𝑚,𝑗

𝑐𝑒	𝑟𝑒𝑚𝑎𝑝
𝑛𝑛

𝑗=1

+ 𝑁𝑗𝐯𝑚,𝑗𝑐𝑒

𝑛𝑛

𝑗=1

𝜌𝑚,𝑘 𝑁𝑗𝐜𝑚,𝑗𝑐𝑒

𝑛𝑛

𝑗=1

∙ 𝐧𝜙e,�𝑑𝑠
	

Γ𝑘

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟒𝟕 	
	

 

where 𝑚e,[
¨�	��eW� is the element mass. 

Conservation of Mass in ALE Coordinates 

Using the same description as the conservation of momentum, we also need to 

express the conservation of mass in the ALE coordinate system. The conservation of 

mass equation solves for the mass and, by extension, the density, r. At t = 0, the mass of 

the body is given by: 

𝑚h = 𝜌h𝑑X
	

k∩m

	 𝟑. 𝟒𝟖  

Likewise, the mass at some later time, t = t1, can be written as: 

𝑚/ = 𝜌𝑑𝑦 +
	

k∩m

𝜌𝐜 ∙ 𝐧𝑑s𝑑𝑡
	

q

r

h

𝟑. 𝟒𝟗  
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where n is the outward unit normal vector to V along the boundary G and c is the 

advection velocity.  

Since we know that mass is conserved over all time we can now express the 

conservation of mass as: 

𝜌h𝑑X
	

m

= 𝜌𝑑𝑦 +
	

m

𝜌𝐜 ∙ 𝐧𝑑s𝑑𝑡
	

q

r

h

𝟑. 𝟓𝟎  

Here we have replaced WÇV with V by setting r = 0 in V - W Ç V. Substituting this, 

changing reference frames, and differentiating with respect to time, we get: 

𝜕
𝜕𝑡 𝜌𝐽 𝑑X +

	

m

𝜌𝐜 ∙ 𝐧𝑑s
	

q

= 0 𝟑. 𝟓𝟏  

Now using Gauss’s theorem, we find the second integral to be: 

𝜌𝐜 ∙ 𝐧𝑑s
	

q

= ∇ ∙ 𝜌𝐜 𝑑𝑦
	

¬

= 𝐽∇ ∙ 𝜌𝐜 𝑑X
	

¬

𝟑. 𝟓𝟐  

So, by substituting this, the conservation of mass equation can now be rewritten as: 

𝜕
𝜕𝑡 𝜌𝐽 + 𝐽∇ ∙ 𝜌𝐜 𝑑X

	

m

= 0 𝟑. 𝟓𝟑  

Since this must apply for any choice of control volume V, we can conclude that the 

integrand must be zero, so using this and dividing through by J gives: 

1
𝐽
𝜕
𝜕𝑡 𝜌𝐽 + ∇ ∙ 𝜌𝐜 = 0 𝟑. 𝟓𝟒  
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Using the product rule, the first term on the left-hand side gives: 

1
𝐽
𝜕
𝜕𝑡 𝜌𝐽 =

1
𝐽 𝐽

𝜕𝜌
𝜕𝑡 + 𝜌

𝜕𝐽
𝜕𝑡 =

𝜕𝜌
𝜕𝑡 +

𝜌
𝐽
𝜕𝐽
𝜕𝑡 	 𝟑. 𝟓𝟓  

Using Equation 3.14, Equation 3.55 can be rewritten: 

𝜕𝜌
𝜕𝑡 +

𝜌
𝐽
𝜕𝐽
𝜕𝑡 =

𝜕𝜌
𝜕𝑡 + 𝜌∇ ∙ 𝐲	 𝟑. 𝟓𝟔  

The second term on the left-hand side of Equation 3.54 can be rewritten as: 

∇ ∙ 𝜌𝐜 = 𝜌∇ ∙ 𝐜 + 𝐜 ∙ ∇𝜌 = 	𝜌∇ ∙ 𝐯 − 𝐲 + 𝐜 ∙ ∇𝜌 𝟑. 𝟓𝟕  

Substituting Equations 3.56 and 3.57 into Equation 3.54 and canceling terms gives: 

𝜕𝜌
𝜕𝑡 + 	𝜌∇ ∙ 𝐯 + 𝐜 ∙ ∇𝜌 = 0	 𝟑. 𝟓𝟖  

This is mass conservation expressed in the ALE coordinate system.   

 In order for this formulation to be implemented using the finite element method 

we must now express the conservation of mass equation in a weak form.  This is 

accomplished by multiplying the governing differential equation by a test function, w, 

and integrating over the volume, V, to get: 

𝑤
𝜕𝜌
𝜕𝑡 + 𝜌∇ ∙ 𝐯 + 𝐜 ∙ ∇𝜌 𝑑𝑦

	

m

= 0 𝟑. 𝟓𝟗  
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Using the Reynolds transport theorem on the first term on the left-hand side gives: 

𝑤
𝜕𝜌
𝜕𝑡 𝑑𝑦

	

m

=
𝜕
𝜕𝑡 𝑤𝜌𝑑𝑦

	

m

− 𝑤𝜌𝐲 ∙ 𝐧𝑑𝑠
	

q

𝟑. 𝟔𝟎  

The second term can be integrated by parts to obtain: 

𝑤𝜌∇ ∙ 𝐯𝑑𝑦
	

m

= − ∇𝑤 ∙ 𝜌𝐯 𝑑𝑦
	

m

+ 𝜌∇ ∙ 𝑤𝐯 𝑑𝑦
	

m

= − ∇𝑤 ∙ 𝜌𝐯 𝑑𝑦
	

m

+ 𝑤𝜌𝐯 ∙ 𝐧𝑑𝑠
	

q

	= − ∇𝑤 ∙ 𝜌𝐯 𝑑𝑦
	

m

+ 𝑤𝜌 𝐜 + 𝐲 ∙ 𝐧𝑑𝑠
	

q

𝟑. 𝟔𝟏

 

So, after canceling terms the statement of the weak form of the conservation of mass 

equation in the ALE coordinate system becomes: 

𝜕
𝜕𝑡 𝑤𝜌𝑑𝑦

	

m

+ 𝑤𝐜 ∙ ∇𝜌 − ∇𝑤 ∙ 𝜌𝐯 𝑑𝑦
	

m

+ 𝑤𝜌𝐜 ∙ 𝐧𝑑𝑠
	

q

= 0	 𝟑. 𝟔𝟐  

Performing the first operator split we arrive at the following: 

Lagrangian step 

𝜕
𝜕𝑡 𝑤𝜌[WX𝑑𝑦

	

m

= 0	 𝟑. 𝟔𝟑  
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Remap step 

𝜕
𝜕𝑡 𝑤𝜌��eW�𝑑𝑦

	

m

+ 𝑤𝐜 ∙ ∇𝜌[WX − ∇𝑤 ∙ 𝜌[WX𝐯 𝑑𝑦
	

m

+ 𝑤𝜌[WX𝐜 ∙ 𝐧𝑑𝑠
	

q

= 0

𝟑. 𝟔𝟒
 

Performing the second operator split we have: 

Contact enforcement step 

𝜕
𝜕𝑡 𝑤𝜌¨�𝑑𝑦

	

m

= 0	 𝟑. 𝟔𝟓  

Contact remap step 

𝜕
𝜕𝑡 𝑤𝜌¨�	��eW�𝑑𝑦

	

m

+ 𝑤𝐜¨𝒆 ∙ ∇𝜌¨� − ∇𝑤 ∙ 𝜌¨�𝐯¨𝒆 𝑑𝑦
	

m

+ 𝑤𝜌¨�𝐜¨𝒆 ∙ 𝐧𝑑𝑠
	

q

= 0

𝟑. 𝟔𝟔
 

Finite element approximation of the conservation of mass equation 

 In order to develop the finite element approximation of the conservation of mass 

equation we replace the test function w with a piecewise constant 𝑁�� which is equal to 

one for element k. Likewise, the density, velocity, and advection velocity are 

approximated using Equations 3.36, 3.29, and 3.30, respectively. 

 For the Lagrangian step, the finite element formulation for the conservation of 

mass equation is given by: 

𝜕
𝜕𝑡 𝑁�� 𝑁��𝜌e,�

[WX 𝜙e,�𝑑𝑦
	

k�

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟔𝟕
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Since 𝑁�� = 1 for element k Equation 3.67 becomes: 

𝜕
𝜕𝑡 𝜌e,�

[WX𝜙e,�𝑑𝑦
	

k�

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟔𝟖

 

The integral 𝜌e,�
[WX𝜙e,�𝑑𝑦

	
k�

 is equal to the element mass 𝑚e,�
[WX ,  and can be written as: 

𝜕
𝜕𝑡𝑚e,�

[WX = 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟔𝟗
 

This shows that the mass is constant in element k during the Lagrangian step, therefore it 

is not necessary to carry out the finite element approximation for conservation of mass in 

the Lagrangian step.  

 For the remap step, the finite element approximation is again obtained by 

replacing the test function w with a piecewise constant function 𝑁�� which is equal to one 

for element k and zero otherwise. The use of 𝑁��limits the accuracy of the solution, 

however it leads to a significant simplification by eliminating the ∇w term in the remap 

step of the conservation of mass equation. Using this we can write the remap step of the 

conservation of mass equation as: 
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𝜕
𝜕𝑡 𝑁��𝑁��𝜌e,�

��eW� 𝜙e,�𝑑𝑦
	

k�

− ∇𝑁�� ∙ 𝑁��𝜌e,�
[WX 𝑁?𝐯e,?

[WX
-�

?./

𝜙e,�𝑑𝑦
	

k�

+ 𝑁�� 𝑁?𝐜e,?	

-�

?./

∙ ∇ 𝑁��𝜌e,�
��eW� 𝜙e,�𝑑𝑦

	

k�

+ 𝑁��𝑁��𝜌e,�
[WX 𝑁?𝐜e,?	

-�

?./

	

q�

∙ 𝐧𝜙e,�𝑑𝑠 = 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟕𝟎
	

 

Again we have made use of the fact that 𝑁�� is piecewise constant to eliminate the sum 

for 𝜌. At the element level 𝜌e,�
��eW� is a piecewise constant, so ∇ 𝑁��𝜌e,�

��eW� = 0. Since 

∇	𝑁�� = 0 and	𝑁�� = 1	for element k we are left with: 

𝜕
𝜕𝑡 𝜌e,�

��eW�𝜙e,�𝑑𝑦 + 𝜌e,�
[WX 𝑁?𝐜e,?	

-�

?./

	

q�

∙ 𝐧𝜙e,�𝑑𝑠
	

k�

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟕𝟏

 

The first term contains the volume integral 𝜌e,�
��eW�𝜙e,�𝑑𝑦

	
k�

 which is the element mass 

for material m given by 𝑚e,�
��eW�, so Equation 3.71 becomes: 

𝜕
𝜕𝑡𝑚e,�

��eW� + 𝜌e,�
[WX 𝑁?𝐜e,?	

-�

?./

	

q�

∙ 𝐧𝜙e,�𝑑𝑠

	

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟕𝟐

 

 The conservation of mass is also performed for each material in traditional 

Eulerian and ALE formulations that use mixture theory, so the only difference between 

the traditional formulation and the contact formulation developed for this work is the use 

of individual velocity fields for the velocity, 𝐜e,?	 . In the traditional formulation with 
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mixture theory the velocity is the same for all materials in the problem space, however in 

the contact formulation developed in this work each material has its own advection 

velocity. This requires a second operator split to conserve mass. The conservation of 

mass for the contact enforcement step is similar in form to the Lagrangian step and again 

remains constant. The conservation of mass for the contact enforcement step is given by: 

𝜕
𝜕𝑡𝑚e,�

¨� = 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟕𝟑
 

where 𝑚e,�
¨�  is the mass for the contact enforcement step. 

 The last step of the second operator split is the contact enforcement remap step, 

which is derived in a similar fashion to the first remap step and is given by: 

𝜕
𝜕𝑡𝑚e,�

¨�	��eW� + 𝜌e,�¨� 𝑁?𝐜e,?¨�

-�

?./

	

q�

∙ 𝐧𝜙e,�𝑑𝑠

	

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟕𝟒

 

where 𝑚e,�
¨�	��eW� is the element mass for the contact remap step. 

Conservation of Energy in ALE Coordinates 

The initial total energy, E0, of a body W at t = 0 is given by: 

Eh = 𝜌hEh𝑑X
	

k∩m

	 𝟑. 𝟕𝟓  

Likewise, at some later time t =t1, the total energy of the body, E1, is given by: 
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E𝟏 = 𝜌E𝑑𝑦
	

k∩m

+ 𝜌E 𝐜 ∙ 𝐧 𝑑𝑠
	

q

r

h

	 𝟑. 𝟕𝟔  

The change in total energy is given by E1 – E0, and the rate of change is the time 

derivative, which can be written as: 

𝜕E
𝜕𝑡 =

𝜕E𝟏
𝜕𝑡 =

𝜕
𝜕𝑡 𝜌E𝑑𝑦

	

k∩m

+ 𝜌E 𝐜 ∙ 𝐧 𝑑𝑠
	

q

	 𝟑. 𝟕𝟕  

Using Equation 3.5 we can convert the first term on the left-hand side of Equation 3.77 to 

the original coordinate system as: 

𝜕
𝜕𝑡 𝜌E𝑑𝑦

	

k∩m

=
𝜕
𝜕𝑡 𝜌𝐽E 𝑑X

	

k∩m

=
𝜕
𝜕𝑡 𝜌𝐽E 𝑑X

	

k∩m

𝟑. 𝟕𝟖  

Applying Gauss’ theorem to the second term in Equation 3.77 gives: 

𝜌E 𝐜 ∙ 𝐧 𝑑𝑠
	

q

= ∇ ∙ 𝜌E𝐜 𝑑𝑦
	

k∩m

= 𝐽∇ ∙ 𝜌E𝐜 𝑑X
	

k∩m

	 𝟑. 𝟕𝟗  

 The total energy is the sum of the work done by the body, where 𝑊 is the rate of 

mechanical work and 𝑄 is the rate of energy supplied by heat transfer or energy sources. 

In this work we do not consider the rate of energy supplied by heat transferor energy 

sources, so 𝑄 is assumed to be zero. 

 The rate of mechanical work is the sum of the work done by external forces and 

body forces given by: 
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𝑊 = 𝐭 ∙
	

q

𝐯𝑑𝑠 + 𝐟 ∙ 𝐯𝑑𝑦
	

k∩m

	 𝟑. 𝟖𝟎  

Using Cauchy’s Law on the first integral in Equation 3.80 becomes: 

𝐭 ∙
	

q

𝐯𝑑𝑠 + 𝐟 ∙ 𝐯𝑑𝑦
	

k∩m

= 𝜎 ∙ 𝐧 ∙
	

q

𝐯𝑑𝑠 + 𝐟 ∙ 𝐯𝑑𝑦
	

k∩m

	 𝟑. 𝟖𝟏  

Applying Gauss’ theorem to the first integral on the right-hand side of Equation 3.81 

gives: 

𝜎 ∙ 𝐧 ∙
	

q

𝐯𝑑𝑠 + 𝐟 ∙ 𝐯𝑑𝑦
	

k∩m

= ∇ ∙ 𝐯 ∙ 𝜎
	

k∩m

𝑑𝑦 + 𝐟 ∙ 𝐯𝑑𝑦
	

k∩m

	 𝟑. 𝟖𝟐  

So, the conservation of total energy equation now becomes: 

𝜕
𝜕𝑡 𝜌𝐽E + 𝐽∇ ∙ 𝜌E𝐜 𝑑X

	

k∩m

= 𝐽 ∇ ∙ 𝐯 ∙ 𝜎 + 𝐟 ∙ 𝐯 𝑑X
	

k∩m

	 𝟑. 𝟖𝟑  

This must be valid for any choice of control volume V, so therefore the integrand must be 

zero. Using this and dividing through by J gives: 

1
𝐽
𝜕
𝜕𝑡 𝜌𝐽E + ∇ ∙ 𝜌E𝐜 = ∇ ∙ 𝐯 ∙ 𝜎 + 𝐟 ∙ 𝐯	 𝟑. 𝟖𝟒  

Using the product rule on the first term on the left-hand side gives: 

1
𝐽
𝜕
𝜕𝑡 𝜌𝐽E =

1
𝐽 𝐽

𝜕
𝜕𝑡 𝜌E + 𝜌E

𝜕𝐽
𝜕𝑡 =

𝜕
𝜕𝑡 𝜌E + 𝜌E∇ ∙ 𝐲 𝟑. 𝟖𝟓  
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Substituting Equations 3.85 into Equation 3.84 gives: 

𝜕
𝜕𝑡 𝜌E + 𝜌E∇ ∙ 𝐲 + ∇ ∙ 𝜌E𝐜 = ∇ ∙ 𝐯 ∙ 𝜎 + 𝐟 ∙ 𝐯	 𝟑. 𝟖𝟔  

The first term on the left-hand side can be rewritten as: 

𝜕
𝜕𝑡 𝜌E = 𝜌

𝜕E
𝜕𝑡 + E

𝜕𝜌
𝜕𝑡 	 𝟑. 𝟖𝟕  

The third term on the left-hand side of Equation 3.86 can be rewritten as: 

∇ ∙ 𝜌E𝐜 = 𝜌E∇ ∙ 𝐜 + 𝐜 ∙ ∇ 𝜌E
= 𝜌E∇ ∙ 𝐯 − 𝐲 + 𝜌𝐜∇ ∙ E + 𝐜E ∙ ∇𝜌 𝟑. 𝟖𝟖  

Using Equations 3.87 and 3.88 and canceling terms, Equation 3.86 becomes: 

𝜌
𝜕E
𝜕𝑡 + E

𝜕𝜌
𝜕𝑡 + 𝜌E∇ ∙ 𝐯 + 𝜌𝐜∇ ∙ E + 𝐜E ∙ ∇𝜌 = ∇ ∙ 𝐯 ∙ 𝜎 + 𝐟 ∙ 𝐯		 𝟑. 𝟖𝟗  

Using the conservation of mass equation shown in Equation 3.58 we can simplify 

Equation 3.89 as: 

𝜌
𝜕E
𝜕𝑡 + 𝜌𝐜∇ ∙ E = ∇ ∙ 𝐯 ∙ 𝜎 + 𝐟 ∙ 𝐯			 𝟑. 𝟗𝟎  

This is one form of the conservation of energy in the ALE coordinate system expressed in 

terms of total energy E. But the total energy E is the sum of the internal energy 𝑒 and the 

kinetic energy 𝑘, where the kinetic energy is given by: 

𝑘 =
𝐯 ∙ 𝐯
2 	 𝟑. 𝟗𝟏  
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So the total energy is given by: 

E = 𝑒 +
𝐯 ∙ 𝐯
2 		 𝟑. 𝟗𝟐  

Substituting this into Equation 3.90 gives: 

𝜌
𝜕
𝜕𝑡 𝑒 +

𝐯 ∙ 𝐯
2 + 𝜌𝐜∇ ∙ 𝑒 +

𝐯 ∙ 𝐯
2 = ∇ ∙ 𝐯 ∙ 𝜎 + 𝐟 ∙ 𝐯			 𝟑. 𝟗𝟑  

The right-hand side can be rewritten as: 

∇ ∙ 𝐯 ∙ 𝜎 + 𝐟 ∙ 𝐯 = 𝜎: ∇𝐯 + 𝐯 ∙ ∇ ∙ 𝜎 + 𝐟 ∙ 𝐯	 𝟑. 𝟗𝟒  

Substituting this and using the product rule on the kinetic energy terms gives: 

𝜌
𝜕𝑒
𝜕𝑡 + 𝜌𝐜∇ ∙ e + 𝜌𝐯

𝜕𝐯
𝜕𝑡 + 𝜌𝐜𝐯∇ ∙ 𝐯 = 𝜎: ∇𝐯 + 𝐯 ∙ ∇ ∙ 𝜎 + 𝐟 ∙ 𝐯			 𝟑. 𝟗𝟓  

Using the conservation of momentum equation given in Equation 3.19, this equation 

simplifies to: 

	𝜌
𝜕𝑒
𝜕𝑡 + 𝜌𝐜∇ ∙ 𝑒 = 	𝜎: ∇𝐯 	 𝟑. 𝟗𝟔  

This is another form of the conservation on energy equation, expressed in terms of 

internal energy. 

Taking the weak form of Equation 3.96 gives: 

𝑤 𝜌
𝜕𝑒
𝜕𝑡 + 𝜌𝐜∇ ∙ 𝑒 𝑑𝑦

	

m

= 𝑤 𝜎: ∇𝐯 𝑑𝑦
	

m

	 𝟑. 𝟗𝟕  
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Using Gauss’s theorem, the second term on the left-hand side can be integrated by parts 

to obtain: 

𝑤𝜌𝐜∇ ∙ 𝑒𝑑𝑦
	

m

= − ∇𝑤 ∙ 𝜌𝑒𝐜 𝑑𝑦
	

m

+ 𝑤𝑒𝜌𝐜 ∙ 𝐧𝑑𝑠
	

q

	 𝟑. 𝟗𝟖  

So, the weak form of the conservation of energy equation can be written in ALE form as: 

𝑤𝜌
𝜕𝑒
𝜕𝑡 − ∇𝑤 ∙ 𝜌𝑒𝐜 𝑑𝑦

	

m

+ 𝑤𝑒𝜌𝐜 ∙ 𝐧𝑑𝑠
	

q

= 𝑤 𝜎: ∇𝐯 𝑑𝑦
	

m

	 𝟑. 𝟗𝟗

	
 

This is the form of the energy equation used in ALEAS and many other hydrocodes. It 

should be noted that the traction is implied in the rate of work, and thus does not appear 

in this equation. Other forms of the energy equation are possible in which the traction is 

explicitly included, but such forms have not been examined in this work. While the 

effects of using this form of the energy equation have not been quantified, it is likely that 

using a different form for which a traction is included explicitly would result in a 

negligible difference in accuracy. This will be examined in more detail in future work. 

Performing the first operator split we arrive at the following: 

Lagrangian step 

𝑤𝜌
𝜕
𝜕𝑡 𝑒[WX 𝑑𝑦

	

m

= 𝑤 𝜎: ∇𝐯 𝑑𝑦
	

m

	 𝟑. 𝟏𝟎𝟎  

Remap step 

𝑤𝜌
𝜕
𝜕𝑡 𝑒��eW� − ∇𝑤 ∙ 𝜌𝐜𝑒[WX 𝑑𝑦

	

m

+ 𝑤𝜌𝑒[WX𝐜 ∙ 𝐧𝑑𝑠
	

q

= 0	 𝟑. 𝟏𝟎𝟏  
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The second operator split for contact enforcement gives: 

Contact enforcement step 

𝑤𝜌
𝜕
𝜕𝑡 𝑒¨� 𝑑𝑦

	

m

= 0	 𝟑. 𝟏𝟎𝟐  

Contact remap step 

𝑤𝜌
𝜕
𝜕𝑡 𝑒¨�	��eW� − ∇	𝑤 ∙ 𝜌𝐜¨�𝑒¨� 𝑑𝑦

	

m

+ 𝑤𝜌𝑒¨�𝐜¨� ∙ 𝐧𝑑𝑠
	

q

= 0	 𝟑. 𝟏𝟎𝟑  

Finite element approximation of the conservation of energy equation 

 As was described for the mass and momentum equations, the test function w is 

replaced by the shape function a piecewise constant function 𝑁��, which has a value of 

one for element k and zero otherwise. The approximations for v, c, r, and s are the same 

as those given in the derivation of the mass and momentum equations. The specific 

internal energy term is given by: 

𝑒e = 𝑁��	𝑒e,�

-�

�./

	 𝟑. 𝟏𝟎𝟒  

Using this in the Lagrangian step of the conservation of energy equation we have: 

𝑁��𝜌e,�
𝜕
𝜕𝑡 𝑒e,�

[WX 𝜙e,�𝑑𝑦
	

k§

-�

�./

= 𝑁�� 𝜎e,�: ∇ 𝑁?𝐯e,?

-�

?./

	

k§

𝜙e,�𝑑𝑦	
-�

�./

𝟑. 𝟏𝟎𝟓
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where we have made use of the fact that 𝑁�� is a piecewise constant function to eliminate 

the sums for 𝑒, 𝜌, and 𝜎.  Since 𝑁�� = 1 and ∇𝐯	 = 𝜕𝑣+ 𝜕𝑥? = 𝐷+? +𝑊+? and also 

𝜎+?𝑊+? = 0. Therefore, we can rewrite Equation 3.105 as: 

𝜌e,�
𝜕
𝜕𝑡 𝑒e,�

[WX 𝜙e,�𝑑𝑦
	

k�

-�

�./

= 𝜎e,�: 𝜀e,�

	

k�

𝜙e,�𝑑𝑦	
-�

�./

𝟑. 𝟏𝟎𝟔  

where 𝜀e,� = 𝐷e,� is the strain rate for element k. The volume integral on the left-hand 

side, 𝜌e,�𝜙e,�𝑑𝑦
	
k�

-�
�./ , is the element mass 𝑚e,�

[WX , so we can rewrite the Lagrangian 

step of the conservation of energy equation as:  

𝑚e,�
[WX 𝜕

𝜕𝑡 𝑒e,�
[WX = 𝜎e,�: 𝜀e,�

	

k�

𝜙e,�𝑑𝑦	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟎𝟕

 

For the remap step, the finite element approximation is again obtained by 

replacing the advection velocity, c, with the approximation given in Equation 3.30 and 

the test function w with the piecewise constant function 𝑁��, which is equal to one for 

element k and is zero otherwise. The finite element approximation of the remap step of 

the energy equation is given by: 

𝑁��𝜌e,�
𝜕
𝜕𝑡 𝑒e,�

��eW� − ∇𝑁�� ∙ 𝜌e,� 𝑁?𝐜e,?

-�

?./

𝑒e,�
[WX 𝜙e,�𝑑𝑦

	

k�

+ 𝑁��𝜌e,�𝑒e,�
[WX 𝑁?𝐜e,?

-�

?./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟎𝟖
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Again we have made use of the fact that 𝑁�� is piecewise constant to eliminate the sums 

for 𝜌 and e. Since ∇	𝑁�� = 0 and	𝑁�� = 1	for element k we are left with: 

𝜌e,�
𝜕
𝜕𝑡 𝑒e,�

��eW� 𝜙e,�𝑑𝑦
	

k�

+ 𝜌e,�𝑒e,�
[WX 𝑁?𝐜e,?

-�

?./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟎𝟗

 

The first term contains the volume integral 𝜌e,�𝜙e,�𝑑𝑦
	
k�

 which is the element mass 

𝑚e,�
��eW�, so we can rewrite the remap step of the energy equation as: 

𝑚e,�
��eW� 𝜕

𝜕𝑡 𝑒e,�
��eW� + 𝜌e,�𝑒e,�

[WX 𝑁?𝐜e,?

-�

?./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0	

	𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟎

 

As with the conservation of mass, the conservation of energy is solved for each 

material separately, but for the traditional formulation with mixture theory the Cauchy 

stress term, 𝜎e,�, will be the mixture theory result described in the conservation of 

momentum section. The material and advection velocity terms 𝐯e,? and 𝐜e,? as well as 

the strain rate 𝜀e,� are for all materials as a result of the single velocity field. The 

traditional ALE formulation with mixture theory stops here, however, since materials do 

not interact during the first operator split in the method developed here we must perform 

a second operator split in order to satisfy the no-penetration constraint and conserve 

energy. The contact enforcement step has similar form to the Lagrangian step and is 

given by: 
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𝑚e,�
¨� 𝜕

𝜕𝑡 𝑒e,�
¨� = 0

	𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟏
 

The last step of the second operator split is the contact enforcement remap step, 

which is derived in a similar fashion to the first remap step and is given by: 

𝑚e,�
¨�	��eW� 𝜕

𝜕𝑡 𝑒e,�
¨�	��eW� + 𝜌e,�𝑒e,�¨� 𝑁?𝐜e,?¨�

-�

?./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0	

	𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟐

 

Summary of the ALE Finite Element Contact Formulation 

 In the preceding sections we have developed the ALE finite element 

approximation of the mass, momentum, and energy equations using a four step operator 

split approach. The equations solved for each step are summarized below. Figure 3.2 

shows a graphical interpretation corresponding to each of the steps outlined in this 

section. 

Lagrangian Step: 

Conservation of Momentum 

𝑀e,[
[WX 𝜕

𝜕𝑡 𝐯e,[
[WX = 𝑁[𝐟	 − ∇𝑁[ ∙ 𝜎e,� 𝜙e,�𝑑𝑦

	

��

-�

�./

	

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟏𝟏𝟑
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Conservation of Energy 

𝑚e,�
[WX 𝜕

𝜕𝑡 𝑒e,�
[WX = 𝜎e,�: 𝜀e,�

	

k�

𝜙e,�𝑑𝑦	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟒

 

Remap Step: 

Conservation of Mass 

𝜕
𝜕𝑡𝑚e,�

��eW� + 𝜌e,�
[WX 𝑁?𝐜e,?	

-�

?./

	

q�

∙ 𝐧𝜙e,�𝑑𝑠

	

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟓

 

Conservation of Momentum 

𝑚𝑚,𝑘
𝑟𝑒𝑚𝑎𝑝 𝜕

𝜕𝑡
𝑁?𝐯e,?

��eW�
-�

?./

+ 𝑁𝑗𝐯𝑚,𝑗
𝑙𝑎𝑔

𝑛𝑛

𝑗=1

𝜌𝑚,𝑘 𝑁𝑖𝐜𝑚,𝑖

𝑛𝑛

𝑖=1

∙ 𝐧𝜙e,�𝑑𝑠
	

Γ𝑘

= 0	

	

 

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟔  

Conservation of Energy 

𝑚e,�
��eW� 𝜕

𝜕𝑡 𝑒e,�
��eW� + 𝜌e,�𝑒e,�

[WX 𝑁?𝐜e,?

-�

?./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0	

	𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟕
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Contact Enforcement Step: 

Conservation of Momentum 

𝑀e,[
¨� ∂
∂t 𝐯e,[

¨� = 𝑁[𝐭	𝑑𝑠
	

q�

-�

�./

	

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟏𝟏𝟖

 

Conservation of Energy 

𝑚e,�
¨� 𝜕

𝜕𝑡 𝑒e,�
¨� = 0

	𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟏𝟗
 

Contact Remap Step: 

Conservation of Mass 

𝜕
𝜕𝑡𝑚e,�

¨�	��eW� + 𝜌e,�¨� 𝑁?𝐜e,?¨�

-�

?./

	

q�

∙ 𝐧𝜙e,�𝑑𝑠

	

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟐𝟎

 

Conservation of Momentum 

𝑚𝑚,𝑘
𝑐𝑒	𝑟𝑒𝑚𝑎𝑝 𝜕

𝜕𝑡
𝑁𝑗𝐯𝑚,𝑗

𝑐𝑒	𝑟𝑒𝑚𝑎𝑝

𝑛𝑛

𝑗=1

+ 𝑁𝑗𝐯𝑚,𝑗𝑐𝑒

𝑛𝑛

𝑗=1

𝜌𝑚,𝑘 𝑁𝑗𝐜𝑚,𝑗𝑐𝑒

𝑛𝑛

𝑗=1

∙ 𝐧𝜙e,�𝑑𝑠
	

Γ𝑘

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟐𝟏 	
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Conservation of Energy 

𝑚e,�
¨�	��eW� 𝜕

𝜕𝑡 𝑒e,�
¨�	��eW� + 𝜌e,�𝑒e,�¨� 𝑁?𝐜e,?¨�

-�

?./

∙ 𝐧𝜙e,�𝑑𝑠
	

q�

= 0	

	𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟐𝟐

 

These equations can be used along with the problem specific equations of state 

and constitutive laws, which give the pressure and deviatoric stress terms, to solve for the 

density r, components of the velocity v, and specific internal energy e for each body Wm. 

 

Figure 3.2:  The multi-material contact process implemented in this work: This consists 
of four steps comprised of two operator splits.  Following the initial condition (a) the 
materials move along with the mesh and the solution is advanced in time, this is the 

Lagrangian step (b).  This is followed by the advection or remap step (c) in which the 
mesh is restored to its original configuration.  The contact constraints are then imposed in 

(d) followed by a second remap step (e).  Steps (d) and (e) are unique to this work. 

(a) (b)

(c) (d)

(e)

!1

!2

!1

!1

!1
!1

!2

!2 !2

!2
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The Contact Enforcement Model 

 When contact between two bodies Wa and Wb occurs a traction must be imposed 

along the interface boundary Gc.  In order for the tractions to be implemented correctly 

several contact constraints must be enforced.  In the Signorini form, these constraints are: 

The No-Penetration Constraint 

(xa – xb)•nj ³ 0
    

(3.123) 

The traction must be compressive or zero 

t•na £ 0
          

(3.124) 

And the product of the first two conditions must be zero 

(t•na) (xa – xb)•nb = 0
              

(3.125) 

In these constraints, xa and xb are the points along the interface boundary for each 

body Wa and Wb, and na and nb are the unit normal vectors on the boundaries of each 

domain.  The first constraint specifies that two materials cannot occupy the same place at 

the same time.  The second condition requires a compressive traction force to be present 

along the boundary region of interest in order for the traction to be applied.  The final 

condition dictates that the product of the first two conditions is always zero, or in other 

words, Wa and Wb do not have the same unit normal vectors. 

 These inequality constraints must be satisfied everywhere along the material 

interface boundary Gc.  Since Eulerian and ALE formulations implicitly prescribe the 

relative locality of materials, a check for satisfaction of Equation 3.123 is 
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straightforward. A volume-based interpretation of Equation 3.123 can be inferred at a 

node l by the relation: 

𝑚𝑎𝑥 ϕe,�

-§

e./

− 1, 0
-�°

�./

= 0 𝟑. 𝟏𝟐𝟔  

where 𝑛�[  is the number of attached elements, nm is the number of materials, and ϕm,k is 

the volume fraction of material m in element k. For this constraint to hold the sum of the 

volume fractions in all elements attached to node l must be less than or equal to one. 

Arbitrarily, one material can be selected as the master and one as the slave corresponding 

to the subscripts a and b in Equation 3.123. Due to the discrete approximation of the 

relative locality of these materials, the outward normals on the slave and master surfaces 

may not be equal and opposite. Likewise, the tractions on these surfaces may not be 

compressive. Enforcement of the contact constraints leads to velocity updates as 

governed by the contact enforcement steps in Equations 3.118 to 3.122.  

 The formulation presented in this work allows for forces to accumulate along 

surfaces which were originally free and then come into contact during the problem 

evolution. The numerical approximation that incorporates the accumulation of these 

surface forces is the second operator split which is needed to preserve conservation of 

mass, momentum, and energy. For example, the momentum equation for the second 

operator split is given by: 

𝑤𝜌
𝜕𝐯
𝜕𝑡 − ∇𝑤 ∙ 𝜌𝐯𝐜 𝑑𝑦

	

m

+ 𝑤𝐜𝜌𝐯 ∙ 𝐧𝑑𝑠
	

q

= 𝑤𝐭𝑑𝑠
	

q

	 𝟑. 𝟏𝟐𝟕  
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The traction t is zero except when contact occurs. 

 Performing a second operator split on Equation 3.127, as described previously, 

results in the finite element formulation developed in the previous section where the 

contact enforcement step is: 

𝑀e,[
¨� ∂
∂t 𝐯e,[

¨� = 𝑁[𝐭	𝑑𝑠
	

q�

-�

�./

	

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟏𝟐𝟖

 

The finite element formulation for the contact remap step is given by: 

𝑚𝑚,𝑘
𝑐𝑒	𝑟𝑒𝑚𝑎𝑝 𝑁𝑗

𝜕
𝜕𝑡
𝐯𝑚,𝑗
𝑐𝑒	𝑟𝑒𝑚𝑎𝑝

𝑛𝑛

𝑗=1

+ 𝑁𝑗𝐯𝑚,𝑗𝑐𝑒

𝑛𝑛

𝑗=1

𝜌𝑚,𝑘 𝑁𝑗𝐜𝑚,𝑗𝑐𝑒

𝑛𝑛

𝑗=1

∙ 𝐧𝜙e,�𝑑𝑠
	

Γ𝑘

= 0	

𝑘 = 1, 2, … , 𝑛� 𝟑. 𝟏𝟐𝟗 	
	

 

 In the first Lagrangian step we solved for each material separately without 

allowing them to interact, i.e. t = 0. A geometric interpretation of this interaction is two 

distorted elements which are remapped and then might contain overlapping volumes. If 

the contact is frictionless, then tractions accumulate only in a direction normal to the 

contacting surfaces. Thus, Equation 3.128 only needs to be cast in a direction normal to 

the contacting surface. This requires:  

𝑀W,[
¨�∆𝑣W,[- = −∆𝑡 𝑁?	

-�

?./

𝑡W,�- 𝑑𝑠
	

±²,�

-�°

�./

	

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟏𝟑𝟎𝒂
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𝑀³,[
¨�∆𝑣³,[- = ∆𝑡 𝑁?	

-�

?./

𝑡³,�- 𝑑𝑠
	

±´,�

-�°

�./

	

𝑙 = 1, 2, … , 𝑛- 𝟑. 𝟏𝟑𝟎𝒃

 

where the subscripts a and b are now being used to denote the master and slave materials 

respectively, the superscript n refers to the normal direction, 𝑡(W,³),�-  are the tractions 

resulting from contact, and 𝑁?	 is the shape function at node j attached to element k which 

is attached to the node of interest l. The ∆𝑡 term is the timestep and the ∆𝑣W,[-  and ∆𝑣³,[-  

terms are the velocity change due to contact defined by: 

∆𝑣(W,³),[- = 𝑣 W,³ ,[
-,¨� − 𝑣 W,³ ,[

-,��eW�	 𝟑. 𝟏𝟑𝟏  

where 𝑣 W,³ ,[
-,��eW� is the material specific nodal velocity from the first operator split and 

𝑣 W,³ ,[
-,¨�  is the material specific nodal velocity at the end of the contact enforcement step. 

The negative sign is Equation 3.130a results from the normal being assigned to the 

direction associated with the master surface. 

 Newton’s third law requires the tractions applied at the contacting interface to be 

equal and opposite, so the right-hand sides of Equations 3.130 (a) and (b) must be equal 

and opposite as well. This results in a momentum balance given by: 

𝑀W,[
¨�∆𝑣W,[- + 𝑀³,[

¨�∆𝑣³,[- = 0	 𝟑. 𝟏𝟑𝟐  

Equations 3.126, 3.130, and 3.132 must now be satisfied to conserve momentum while at 

the same time satisfying the constraints in Equations 3.123 to 3.125. A volume-based 

interpretation of Equation 3.123 yields an expression for the volume that must be 

removed from an element given by: 
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𝑉�,� = 𝑚𝑎𝑥 ϕe,�

-§

e./

− 1 ∙ 𝑉h,�, 0 𝟑. 𝟏𝟑𝟑  

where V0,k is the remapped volume of element k. It is important to note here that Ve,k only 

has a non-zero value when an overlap exists, resulting in the element being overfilled. 

For a given node l the total volume that must be removed from elements attached to node 

l is thus: 

𝑉�r = 𝑉�,�

-�°

�./

	 𝟑. 𝟏𝟑𝟒  

where 𝑉�r is the total excess volume for all elements attached to node l.  

 To satisfy Equation 3.123, the excess volume given in Equation 3.134 needs to be 

moved to the surrounding elements. This comes from determining the distance that the 

interface surface, which has an area denoted as 𝐴(W,³),?�¸ , must be moved in order to align 

with other material interface during the timestep. The volume fraction of each material 

that needs to be moved is given by: 

𝑉�,Wr = ∆𝑣	-∆𝑡𝑑𝑠
	

±²,�

-�°

�./

= ∆𝑡 𝑁?∆𝑣	W,?-

-��

?./

𝑑𝑠
	

±²,�

-�°

�./

	 𝟑. 𝟏𝟑𝟓𝒂  

𝑉�,³r = ∆𝑣	-∆𝑡𝑑𝑠
	

±´,�

-�°

�./

= ∆𝑡 𝑁?∆𝑣	³,?-
-��

?./

𝑑𝑠
	

±´,�

-�°

�./

	 𝟑. 𝟏𝟑𝟓𝒃  

where 𝑛-� is the number of nodes attached to element k. The term ∆𝑣	(W,³),?-  is specific to 

node j, but as a simplification we can diagonalize the right-hand side of Equations 3.135 
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(a) and (b) by setting ∆𝑣	(W,³),?- = ∆𝑣	(W,³),[- . It should be noted that this diagonalization is 

potentially a significant source of approximation error because in the double sum we are 

replacing ∆𝑣		- for all nodes on all elements attached to a node l by a single value. 

Applying this approximation allows us to remove ∆𝑣	(W,³),[-  from the integral and we are 

left with the weighted area 𝐴(W,³),?�¸  after taking the surface integral of the shape function 

Nj. After these simplifications the volume of each material that needs to be moved is 

given by: 

𝑉�,Wr = −∆𝑣W,[- ∆𝑡 𝐴W,?�¸

-��

?./

-�°

�./

	 𝟑. 𝟏𝟑𝟔𝒂  

𝑉�,³r = ∆𝑣³,[- ∆𝑡 𝐴³,?�¸

-��

?./

-�°

�./

	 𝟑. 𝟏𝟑𝟔𝒃  

 

Figure 3.3: Representation of excess volume determination  

 



	

 

69	

𝐴W,?�¸  and 𝐴³,?�¸  are defined as: 

𝐴W,?�¸

-��

?./

-�°

�./

= 𝑁?	
	

±²,�

𝑑𝑠
-��

?./

-�°

�./

𝟑. 𝟏𝟑𝟕𝒂  

𝐴³,?�¸

-��

?./

-�°

�./

= 𝑁?	
	

±´,�

𝑑𝑠
-��

?./

-�°

�./

𝟑. 𝟏𝟑𝟕𝒃  

where 𝑁?	 is the nodal shape function for node j in element k attached to node l. The total 

excess volume is the sum of the material specific excess volumes, so we can rewrite 𝑉�r 

as: 

𝑉�r = ∆𝑡 ∆𝑣³,[- 𝐴³,?�¸ −
-��

?./

-�°

�./

	∆𝑣W,[- 𝐴W,?�¸

-��

?./

-�°

�./

𝟑. 𝟏𝟑𝟖  

We now have two equations for the two unknowns, ∆𝑣W,[-  and ∆𝑣³,[- . From Equation 3.132 

we have: 

∆𝑣W,[- = −
𝑀³,[
¨�∆𝑣³,[-

𝑀W,[
¨� 𝟑. 𝟏𝟑𝟗𝒂  

or 

∆𝑣³,[- = −
𝑀W,[
¨�∆𝑣W,[-

𝑀³,[
¨� 𝟑. 𝟏𝟑𝟗𝒃  
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Substituting Equation 3.139a into Equation 3.138 and solving for ∆𝑣³,[-  gives:  

∆𝑣³,[- =
1
∆𝑡

𝑉�r

𝐴³,?�¸ +
𝑀³,[
¨�

𝑀W,[
¨� 𝐴W,?�¸-��

?./

-�°

�./

	 𝟑. 𝟏𝟒𝟎𝒂  

Likewise, substituting Equation 3.139b into Equation 3.138 and solving for ∆𝑣W,[-  gives:  

∆𝑣W,[- = −
1
∆𝑡

𝑉�r

𝑀W,[
¨�

𝑀³,[
¨� 𝐴W,?�¸ + 𝐴W,?�¸-��

?./

-�°

�./

	 𝟑. 𝟏𝟒𝟎𝒃  

The values of  𝐴W,?�¸  and 𝐴³,?�¸  are interface areas weighted by Nj for element k, 

and the method for determining these quantities is a geometric problem developed later in 

this section. At this point we have completed the contact enforcement step, so we can 

now proceed to the contact remap step that was developed in the previous section to 

conserve mass, momentum, and energy.  

There are many assumptions that can be made in order to simplify Equations 

3.140 (a) and (b). One method that was used in this work was assuming that the interface 

areas 𝐴W,?�¸  and 𝐴³,?�¸  are equal. This is done by first determining the interface area for 

each material, then taking the average of the two values. While this is a source of error in 

all cases except where the interfaces are parallel and aligned to the mesh, it results in a 

significant simplification. Doing so allows us to move the lumped mass terms out of the 

summations, resulting in Equations 3.141 (a) and (b).  

∆𝑣³,[- =
𝑀W,[
¨�

∆𝑡 𝑀W,[
¨� + 𝑀³,[

¨�
𝑉�r

𝐴?�¸
-��
?./

-�°

�./

	 𝟑. 𝟏𝟒𝟏𝒂  
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∆𝑣W,[- = −
𝑀³,[
¨�

∆𝑡 𝑀W,[
¨� + 𝑀³,[

¨�
𝑉�r

𝐴?�¸
-��
?./

-�°

�./

	 𝟑. 𝟏𝟒𝟏𝒃  

where we have set 𝐴W,?�¸ = 𝐴³,?�¸ = 𝐴?�¸ . Equation 3.141 can be further simplified given 

the definition of 𝐴?�¸ . 

𝐴?�¸
-��

?./

-�°

�./

= 𝑁?	
-��

?./

𝑑𝑠
	

±�

-�°

�./

	 𝟑. 𝟏𝟒𝟐  

where Nj is the shape function for a node j in element k, which is attached to the node of 

interest l. This can be further simplified because the sum of the shape functions for a 

given element are equal to one. Therefore, the right-hand side of Equation 3.142 

becomes: 

𝑁?	
-��

?./

𝑑𝑠
	

±�

-�°

�./

= 𝐴�

-�°

�./

	 𝟑. 𝟏𝟒𝟑  

where Ak is the average interface area for element k. The final master and slave velocities 

and can now be written as: 

𝑣W,[
-,¨� = 𝑣W,[

-,��eW� −
𝑀³,[
¨�𝑉�r

∆𝑡 𝑀W,[
¨� + 𝑀³,[

¨�
1
𝐴�

-�°

�./

𝟑. 𝟏𝟒𝟒𝒂  

𝑣³,[
-,¨� = 𝑣³,[

-,��eW� +
𝑀W,[
¨�𝑉�r

∆𝑡 𝑀W,[
¨� + 𝑀³,[

¨�
1
𝐴�

-�°

�./

	 𝟑. 𝟏𝟒𝟒𝒃  
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Determining Interface Areas 

The interface areas are determined using an approach similar to that which was 

used for determining the advection volume explained in the interface tracking section of 

this chapter. We first need to determine the normal of the contact surface in normalized 

coordinates as: 

𝐧 = −
∇𝜙
∇𝜙 	 𝟑. 𝟏𝟒𝟓  

where f is the volume fraction of the material of interest and  is given by: 

𝛻𝜙 =
𝜕𝜙
𝜕𝑥+

-

+./

	𝑒+ 𝟑. 𝟏𝟒𝟔  

Once the components of the normal vector are known we can then determine the 

shape of the plane intersecting the unit cube. To do this we need to determine the corner 

distance, d, using the method described in the interface tracking section of this chapter 

and we can then determine the hi values from: 

ℋ+ =
𝑑
𝑛+
	 𝟑. 𝟏𝟒𝟕  

where here i is the direction of the component of the normal vector. Once the ℋ+ values 

have been determined, we can then convert back to the local coordinate system and  

€ 

∇φ
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Figure 3.4: Schematic of choice for master and slave materials 

determine values of hi in the global coordinate space. We can then determine the area of 

the large blue triangles in Figure 3.5 defined by points H1 = (h1, 0, 0), H2 = (0, h2, 0), and 

H3 = (0, 0, h3), by taking the cross product of two vectors making up two sides of the 

triangle. All area calculations are performed on a unit cube. The normalized interface 

area, 𝐴, is given by: 

𝐴 =
𝐻^𝐻/×𝐻½𝐻/

2 	 𝟑. 𝟏𝟒𝟖  

Solving this gives: 

𝐴 =
ℎ^ℎ½ ^ + ℎ/ℎ½ ^ + ℎ/ℎ^ ^

2 	 𝟑. 𝟏𝟒𝟗  

where the 	 symbol denotes a normalized quantity determined for the unit cube. 
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(a)    (b) 

 

(c)    (d) 

 

(e) 

Figure 3.5: Five possible intersection conditions for the unit cube. (a) Triangular 
Intersection, (b) Quadrilateral Intersection A, (c) Pentagonal Intersection, (d) Hexagonal 

Intersection, and (e) Quadrilateral Intersection B 

 

This gives the area for the triangular section of the plane intersecting the element. If 

all of the values of hi fall within the element then we have the equation for area of the 

triangular intersection condition. If the hi values are greater than the length of the side of 

the element in any direction then we have one of the four remaining intersection 

conditions shown in Figure 3.5. The number of possible intersection conditions is 

reduced to the five shown in Figure 3.5 by applying three restrictions. First, all 

calculations are performed on a unit cube. Second, if the total volume fraction is greater 
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than ½ then the area is calculated based on the values of 1-ϕ (i.e. the other material). 

Finally, the interface is determined with respect to a specific corner of the unit cube and 

at a specific orientation with the components of the normal vector, n, being ordered from 

smallest to largest and then appropriate axis sign changes are applied. 

The areas for each of these intersection conditions can be found by finding the 

total area of the intersecting triangle and subtracting the areas of the triangles that fall 

outside the element. Following this procedure for each intersection condition we get: 

Triangular Intersection Condition 

𝐴 =
ℎ^ℎ½ ^ + ℎ/ℎ½ ^ + ℎ/ℎ^ ^

2 	 𝟑. 𝟏𝟓𝟎  

which occurs when 

𝑛/½ > 6𝜙𝑛/𝑛^𝑛½	 𝟑. 𝟏𝟓𝟏  

Quadrilateral Intersection Condition A 

𝐴 =
ℎ^ℎ½ ^ + ℎ/ℎ½ ^ + ℎ/ℎ^ ^

2 −
ℎ^ℎ½

^ + ℎ/ℎ½
^ + ℎ/ℎ^

^

2 	 𝟑. 𝟏𝟓𝟐
 

which occurs when 

𝑛/½ ≤ 6𝜙𝑛/𝑛^𝑛½ < 3𝑛/𝑛^^ − 3𝑛/^𝑛^ + 𝑛/½ = 𝑛^½ − 𝑛^ − 𝑛/ ½	 𝟑. 𝟏𝟓𝟑  
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Pentagonal Intersection Condition 

𝐴 = 	
ℎ^ℎ½ ^ + ℎ/ℎ½ ^ + ℎ/ℎ^ ^

2

−
ℎ2ℎ3

^
+ ℎ1ℎ3

^
+ ℎ1ℎ2

^

2
−

ℎ^ℎ½
^
+ ℎ/ℎ½

^
+ ℎ/ℎ^

^

2
	 𝟑. 𝟏𝟓𝟒

	

 

which occurs when either 

𝑛^½ − 𝑛^ − 𝑛/ ½ ≤ 6𝜙𝑛/𝑛^𝑛½ < 𝑛½½ − 𝑛½ − 𝑛/ ½ − 𝑛½ − 𝑛^ ½	 𝟑. 𝟏𝟓𝟓  

𝑎𝑛𝑑	𝑛/ + 𝑛^ > 𝑛½ 

or 

𝑛^½ − 𝑛^ − 𝑛/ ½ ≤ 6𝜙𝑛/𝑛^𝑛½ < 𝑛/+𝑛^ ½ − 𝑛^½ − 𝑛/½	𝑎𝑛𝑑	𝑛/ + 𝑛^ ≤ 𝑛½	 𝟑. 𝟏𝟓𝟔  

Hexagonal Intersection Condition 

𝐴 =
ℎ^ℎ½ ^ + ℎ/ℎ½ ^ + ℎ/ℎ^ ^

2 −
ℎ^ℎ½

^ + ℎ/ℎ½
^ + ℎ/ℎ^

^

2

−
ℎ2ℎ3 ^ + ℎ1ℎ3 ^ + ℎ1ℎ2 ^

2 −
ℎ^ℎ½

^ + ℎ/ℎ½
^ + ℎ/ℎ^

^

2 	 𝟑. 𝟏𝟓𝟕

 

which occurs when 

𝑛½½ − 𝑛½ − 𝑛/ ½ − 𝑛½ − 𝑛^ ½ ≤ 6𝜙𝑛/𝑛^𝑛½	for	𝑛/ + 𝑛^ > 𝑛½	 𝟑. 𝟏𝟓𝟖  
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Quadrilateral Intersection Condition B 

𝐴 =
ℎ^ℎ½ ^ + ℎ/ℎ½ ^ + ℎ/ℎ^ ^

2 −
ℎ^ℎ½

^ + ℎ/ℎ½
^ + ℎ/ℎ^

^

2

−
ℎ2ℎ3 ^ + ℎ1ℎ3 ^ + ℎ1ℎ2 ^

2 +
ℎ^∗ℎ½∗ ^ + ℎ/∗ℎ½∗ ^ + ℎ/∗ℎ^∗ ^

2 	 𝟑. 𝟏𝟓𝟗

 

which occurs when 

𝑛^ + 𝑛/ ½ − 𝑛^½ − 𝑛/½ ≤ 6𝜙𝑛/𝑛^𝑛½	for	𝑛/ + 𝑛^ ≤ 𝑛½	 𝟑. 𝟏𝟔𝟎  

For uniform meshes the physical area A is then determined from the normalized area as 

𝐴 = ∆𝑥 ^𝐴, where ∆𝑥 is the element edge length. 

Since the method for determining the contact velocities only requires the interface 

areas, and not the volume weighted components of the area the 𝐴¸	values are not 

necessary, however, they are required for other derivations of the contact method that do 

not assume equal interface areas for both materials. While this work has not explored 

these methods for determining the contact velocity updates, the 𝐴¸	equations are 

presented in the remainder of this section for completeness.  

The weighted area, 𝐴¸, is given by: 

𝐴¸ 	= 𝑁?�𝑑𝑠
	

±�

-��

?./

-�°

�./

	 𝟑. 𝟏𝟔𝟏  

where Njk is the nodal shape function at node j for element k attached the node of interest, 

which is given in three dimensional natural coordinates as 
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𝑁?� =
1
8 1 + 𝜉𝜉+ 1 + 𝜂𝜂+ 1 + 𝜇𝜇+ 	 𝟑. 𝟏𝟔𝟐  

Writing the equation for the surface we get 

𝑓 𝜉, 𝜂 = 𝜇 =
1
𝑛É

𝑑 − 𝑛Ê𝜉 − 𝑛u𝜂 	 𝟑. 𝟏𝟔𝟑  

We can then solve the equation for 𝐴¸	 by evaluating the surface integral 

𝐴¸ 	= 𝑁?� 𝜉, 𝜂, 𝑓 𝜉, 𝜂 ∙ 1 +
𝜕𝑓
𝜕𝜉

^

+
𝜕𝑓
𝜕𝜂

^
/
^

	

Ë,Ì

𝑑𝜉𝑑𝜂	 𝟑. 𝟏𝟔𝟒  

But, 

	1 +
𝜕𝑓
𝜕𝜉

^

+
𝜕𝑓
𝜕𝜂

^

= 1 +
𝑛Ê
𝑛É

^
+

𝑛u
𝑛É

^
	 𝟑. 𝟏𝟔𝟓  

Since d, nx, ny, and nz are all expressed in terms of the normalized coordinate system, in 

other words the limits the cell of interest are (0, 0, 0) to (1, 1, 1), we must move the origin 

and convert the shape functions from the natural coordinate system. Converting the shape 

function to the normalized coordinate system gives: 

𝑁?� = 1 − 𝜉+ − (1 − 2𝜉+ 𝜉) 1 − 𝜂+ − 1 − 2𝜂+ 𝜂 1 − 𝜇+ − 1 − 2𝜇+ 𝜇 				(𝟑. 𝟏𝟔𝟔) 

Replacing µ with f(x,h) from above, the equation for Njk becomes 

𝑁?� = 1 − 𝜉+ − (1 − 2𝜉+ 𝜉) 1 − 𝜂+ − 1 − 2𝜂+ 𝜂  

∙ 1 − 𝜇+ −
1 − 2𝜇+
𝑛É

𝑑 − 𝑛Ê𝜉 − 𝑛u𝜂 	 𝟑. 𝟏𝟔𝟕  
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So the surface integral we need to solve becomes 

𝐴¸ 	= 	 1 − 𝜉+ − (1 − 2𝜉+ 𝜉) 1 − 𝜂+ − 1 − 2𝜂+ 𝜂 ∙

1 − 𝜇+ −
1 − 2𝜇+
𝑛É

𝑑 − 𝑛Ê𝜉 − 𝑛u𝜂 ∙ 1 +
𝑛Ê
𝑛É

^
+

𝑛u
𝑛É

^
/
^
𝑑𝜂𝑑𝜉

	

Ë,Ì

	 𝟑. 𝟏𝟔𝟖  

where here ξi, ηi, and µi are the natural coordinates and the domain of the surface integral 

depends of the shape of the intersection projected into the ξ-η plane as shown in Figure 

3.6.  

   The domains for each of the five intersection conditions are given by: 

Triangular Intersection Condition 

𝐴¸ 	= 𝐹
Ì² /b Ë

Ë´

h

	Ë´

h
𝑑𝜂𝑑𝜉	 𝟑. 𝟏𝟔𝟗  

 

Figure 3.6: Projections of the five intersection conditions into the ξ-η plane. (a) 
Triangular Intersection, (b) Quadrilateral Intersection A, (c) Pentagonal Intersection, (d) 

Hexagonal Intersection, and (e) Quadrilateral Intersection B 
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Quadrilateral Intersection Condition A 

𝐴¸ 	= 𝐹
Ì²]Ë Ì´bÌ²

h

/

h
𝑑𝜂𝑑𝜉	 𝟑. 𝟏𝟕𝟎  

Pentagonal Intersection Condition 

𝐴¸ 	= 𝐹
/

h

Ë²

h
𝑑𝜂𝑑𝜉 + 𝐹

/] Ì´b/ ËbË²
/bË²

h

/

Ë²
𝑑𝜂𝑑𝜉	 𝟑. 𝟏𝟕𝟏  

Hexagonal Intersection Condition 

𝐴¸ 	= 𝐹
/

h

Ë²

h
𝑑𝜂𝑑𝜉 + 𝐹

/] Ì´b/ ËbË²
/bË²

h

/

Ë²
𝑑𝜂𝑑𝜉 − 𝐹

Ì² /b Ë
Ë´

h

	Ë´

h
𝑑𝜂𝑑𝜉	

	
 

	 𝟑. 𝟏𝟕𝟐  

Quadrilateral Intersection Condition B 

𝐴¸ 	= 𝐹
/

h

/

h
𝑑𝜂𝑑𝜉	 𝟑. 𝟏𝟕𝟑  

where F is given by 

𝐹 = 	 1 − 𝜉+ − (1 − 2𝜉+ 𝜉) 1 − 𝜂+ − 1 − 2𝜂+ 𝜂

∙ 1 − 𝜇+ −
1 − 2𝜇+
𝑛É

𝑑 − 𝑛Ê𝜉 − 𝑛u𝜂 ∙ 1 +
𝑛Ê
𝑛É

^
+

𝑛u
𝑛É

^
/
^
	 𝟑. 𝟏𝟕𝟒

 

For uniform meshes the physical weighted area 𝐴	¸ is then determined from the 

normalized weighted area as 𝐴	¸ = ∆𝑥 ^𝐴	¸, where ∆𝑥 is the length of an element edge. 
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Interface Tracking Formulations 

 The interface tracking algorithm is an important part of the advection step in 

Eulerian and ALE hydrocodes.  This algorithm defines the contents of the advection 

volume and is used to ensure that the correct material volumes are exchanged between 

adjacent cells during the advection step. The material contents of each element must be 

found for the solution to the conservation equations, and thus interface tracking is useful 

for determining the amounts of each material within an element.  

There are several algorithms that can be used for interface tracking.  One such 

algorithm is the SLIC algorithm.  The SLIC algorithm assumes that interfaces are aligned 

parallel to the mesh contours, as is shown in Figure 3.7 (c).  In multi-dimensional 

problems in which the material is moving in an off-grid direction, or in problems with 

material geometries that are not aligned with the grid, this algorithm often results in 

advection errors that distort the material interface artificially.  This is because it is 

possible for the incorrect material volumes to get transported between cells.  Therefore, 

the SLIC algorithm is only correct in cases with one-dimensional velocity fields and 

geometries with interfaces aligned with the mesh and should be used with caution. 

Youngs’ algorithm [100] provides a much better representation of interface planes 

than the SLIC algorithm because it assumes that interface planes are inclined at an 

arbitrary angle with respect to the mesh contours, as can be seen in Figure 3.7 (d).  

Because it represents interface boundaries much more accurately, Youngs’ method 

results in significantly reduced artificial distortion.  However, since Youngs’ algorithm is 

piecewise linear or planar in nature it is unable to accurately resolve sharp features within 

an element such as corners. Furthermore, no enforcement takes place to ensure that 
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interfaces align at mesh boundaries, resulting in discontinuities at the faces of the 

elements. These limitations affect the accuracy of the interface reconstruction, but are a 

significant improvement over SLIC.   

 

 

Figure 3.7:  Interface tracking methods. Interface tracking represent a material interface 
shown in (a) by storing appropriate volume fractions as seen in (b).  An approximation to 

the interface can be constructed using the SLIC algorithm (c), or Youngs’ method (d). 
 

The interface tracking method implemented in ALEAS is a modified version of 

Youngs’ method. In the approach taken here no material ordering algorithm is required, 

as would be the case with a traditional Eulerian or ALE formulation that makes use of 

mixture theory and is described in [7] and [65]. Instead, the interface tracking routine is 

run for each material separately and the interface is determined between the volume 

fraction of the material of interest and the volume fraction of the cell not occupied by that 

material. Since the interface tracking routine used for the contact formulation does not 

account for interaction of materials it is possible that multiple materials will overlap and 
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result in an element being overfilled. This is corrected through the use of the contact 

formulation developed in the previous section, which moves the material and aligns the 

interfaces. The form of the interface tracking algorithm implemented here allows the 

advected quantities to be determined directly once the advection volumes exchanged 

between adjacent elements are determined. However, one complication that arises from 

this is that the advection volumes can have an arbitrary shape or even become disjoint 

since each material has its own velocity field. In this work the shape of the advection 

volume is determined through interface tracking, whereas in single velocity field 

formulations interface tracking is used to determine the contents of an advection volume 

whose shape is known. In the following sections the interface tracking algorithms have 

been developed in two- and three-dimensions. It is worth noting that the two-dimensional 

equations are used in three-dimensions when the minimum component of the reoriented 

normal vector, denoted as n1 in the three-dimensional equations, is equal to zero.  

Interface Tracking in Two Dimensions 

The interface tracking scheme implemented in ALEAS is a modified version of 

Young’s method [100].  The basic strategy is to first determine the outward unit normal 

vector n separating the material of interest from other materials, and the distance d from 

the interface plane to a reference corner, measured along the direction parallel to n.  If 

there are only two materials in the cell and the interface plane is assumed to be planar, 

these two quantities uniquely define the location of the interface plane.  Based on these 

values, the volume fraction of material-specific volumes in the advection volume can 

then be determined.   
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The first step in this method is to determine the direction of n.  This is done by 

normalizing the direction for the maximum rate of change of the volume fraction as 

described in the equation below: 

𝐧 = −
∇𝜙
∇𝜙 𝟑. 𝟏𝟕𝟓  

where f is the volume fraction of the material of interest and  is given by: 

𝛻𝜙 =
𝜕𝜙
𝜕𝑥+

-

+./

	𝑒+ 𝟑. 𝟏𝟕𝟔  

where 𝑒+ is the unit vector. In order to find Ñf we must use a symmetric difference 

approach, where we can define ϕe and ϕw in terms of their Taylor series approximations: 

𝜙� = 𝜙 𝑥 + 𝛥𝑥 = 𝜙 𝑥 + 𝜙Î 𝑥 𝛥𝑥 +
𝜙ÎÎ 𝑥 𝛥𝑥 ^

2! + ⋯ 𝟑. 𝟏𝟕𝟕𝒂  

𝜙¸ = 𝜙 𝑥 − 𝛥𝑥 = 𝜙 𝑥 − 𝜙Î 𝑥 𝛥𝑥 +
𝜙ÎÎ 𝑥 𝛥𝑥 ^

2! − ⋯ 𝟑. 𝟏𝟕𝟕𝒃  

The symmetric difference for ∂ϕ/∂x can then be expressed as: 

     
(3. 178) 

The approximations for ϕe and ϕw are formed from the unit cell linear interpolation of 

values for the total material volume, that is the cell volume multiplied by the volume 

fraction, for each edge of the cell of interest parallel to the defined axis, and evaluated at 

the center of the cell.  To further illustrate this in two-dimensions consider a cell and its 

eight neighboring cells shown Figure 3.8.   

€ 

∇φ

φ '(x) = ∂φ
∂x

=
φe −φw
2Δx
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The symmetric difference approximation for ∂ϕ/∂x in cell 5 can be expressed as is 

shown in the equation above, where ϕe can be calculated as follows: 

𝛥𝑥^ 𝛥𝑦^𝜙Ñ + 2𝛥𝑦𝜙Ò + 𝛥𝑦/𝜙½ = 𝛥𝑥^ 𝛥𝑦^ + 2𝛥𝑦 + 𝛥𝑦/ 𝜙� 𝟑. 𝟏𝟕𝟗  

 

Figure 3.8:  Schematic of a central cell (cell 5) and its 8 surrounding cells. 

Normalizing with respect to Δy gives: 

𝛥𝑦^
𝛥𝑦 𝜙Ñ + 2𝜙Ò +

𝛥𝑦/
𝛥𝑦 𝜙½ =

𝛥𝑦^
𝛥𝑦 + 2 +

𝛥𝑦/
𝛥𝑦 𝜙�	 𝟑. 𝟏𝟖𝟎  

This equation can be simplified by introducing the dimensionless parameter ξi which is 

defined as: 

     
(3. 181) 

Therefore, for two-dimensional problems, fe can be expressed as: 

    
(3. 182) 

1 2 3

4 5 6

7 8 9

!x!x1 !x2

!y2

!y

!y1

€ 

ξ i =
Δyi
Δy

€ 

φe =
ξ2φ9 + 2φ6 + ξ1φ3
2 + ξ1 + ξ2( )
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Following the same procedure ϕw can also be represented as: 

    
(3. 183) 

Likewise, ¶f/¶y can be found using fn and fs, where ¶f/¶y is defined as: 

     
(3. 184) 

And  fn and fs are defined as: 

    
(3. 185a) 

     
(3. 185b) 

where  is given by: 

     
(3. 186) 

Once the normal vector has been defined, the interface plane can be located and 

the value for d can be found.  In order to minimize the number of intersections that must 

be considered, it is useful to apply restrictions to the calculation.  First, all calculations 

must be made with respect to the unit square.  Second, for volume fractions greater than 

1/2, the interface is located based on the values of 1-f, which is the volume fraction of 

the other material, for the cell of interest and each of its 8 neighboring cells. Finally, the 

interface reconstruction is made with respect to a specific corner and orientation of the 

unit square.  This corner and orientation is determined as follows.  The absolute values of 

€ 

φw =
ξ2φ7 + 2φ4 + ξ1φ1
2 + ξ1 + ξ2( )

€ 

∂φ
∂y

=
φn −φs
2Δy

€ 

φn =
η1φ7 + 2φ8 +η2φ9
2 +η1 +η2( )

€ 

φs =
η1φ1 + 2φ2 +η2φ3
2 +η1 +η2( )

€ 

ηi

€ 

ηi =
Δxi
Δx
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the components of n are ordered from smallest to largest.  Let these values be designated 

as n1 and n2.  Then, the interface determination is made in the 1-2 coordinate system 

having directions corresponding to the direction of n1 and n2.  A series of axis sign 

changes and/or axis swaps will also transform the x-y coordinate system to the 1-2 

coordinate system.  Having applied these restrictions, we must now consider two possible 

intersection conditions, including the triangle and quadrilateral sections, as shown in 

Figure 3.9. 

Depending on the relative values for n1 and n2, only one of these two intersection 

conditions can be produced.  From this comes the interface geometry as well as the value 

for d.  The development of each intersection condition is described below. 

 

Figure 3.9:  Possible two-dimensional intersection conditions include the triangle 
intersection (a) and the quadrilateral intersection (b). 

 

Triangle Intersection Condition 

The volume fraction f is the area of the triangle, and is defined as: 

     
(3. 187) 

h1

h

h2h2

h1

d

d

n

n

(a) (b)

€ 

φ =
1
2
h1h2
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We can then define h1 and h2 as: 

 
     

(3. 188) 

where i=1,2. 

This can then be solved for d as: 

     
(3. 189) 

Since we require that n1³n2, the triangle condition is true for h1<1.  At h1=1 we have the 

transition to the quadrilateral section, therefore at h1=1 we can solve to find the situations 

at which each section occurs.  At h1=1, we see that d=n1, so: 

     
(3. 190) 

Therefore, the triangle intersection condition occurs for:  

     
(3. 191) 

Quadrilateral Intersection Condition 

The quadrilateral intersection condition occurs when h1≥1, and therefore occurs when: 

     
(3. 192) 

The volume fraction of the section f, is defined as: 

     
(3. 193) 

 

€ 

hi =
d
ni

€ 

d = 2φn1n2( )
1
2

€ 

n1 = 2φn2

€ 

n1 > 2φn2

€ 

n1 ≤ 2φn2

€ 

φ =
1
2
h + h2( )
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where h1 and h2 are defined as: 

     
(3. 194) 

where i=1,2.  The height h, can be found using the property of similar triangles, which 

yields: 

    
(3. 195) 

Using this value for h, we can then solve for d by plugging h and h1 into the above 

equation for f.  This yields: 

     
(3. 196) 

 

Determining Material Specific Advection Volumes in Two-Dimensions 

 After the components of the unit normal n1 and n2 and the perpendicular corner 

distance d are determined, the material-specific volume in the advection volume can be 

determined.  In Youngs’ original work, these volumes were determined directly by 

deriving formulas for possible intersection conditions between the material volume and 

advection volume.  An alternative to this procedure is to recast the advection volume into 

a unit square using normalized coordinates.  This procedure has been used in this work. 

 For advection in the +1 direction, the components of the normal and corner 

distance in the advection volume are given by: 

€ 

hi =
d
ni

€ 

h =
h2
h1

h1 −1( ) =
n1
n2

d
n1
−1

# 

$ 
% 

& 

' 
( 

€ 

d = φn2 +
n1
2
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(3. 197a) 

    
(3. 197b) 

where, 

         
(3. 198) 

for i=1,2, and 

    
(3. 199) 

where e is the advection dimension used to normalize the coordinate system. 

It is important to note that since we require n1 < n2, then  as well.  Also, if 

, then there is no intersection condition present.  We can find determine the 

normalized advection distance  with the following relations: 

    
(3. 200) 

we can also find the value  by finding the value , which can be found using similar 

triangles as follows: 

     
(3. 201) 
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εn1

εn1( )2
+ n2

2[ ]
1
2

€ 
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n2

εn1( )2
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2[ ]
1
2

€ 

ni =
d 
h i

€ 

h 1 = h1 − 1−ε( )

€ 

˜ n 1 < ˜ n 2

€ 

˜ h 1 < 0

€ 

˜ h 1

€ 

˜ h 1 =
h 1
ε

=
1
ε

h1 + ε −1( ) =
1
ε

d
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+ ε −1
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˜ h 2
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h 2

€ 
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h2
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Using this value we can now find : 

  
(3. 202) 

Therefore, , which is readily apparent from the figure above because we are only 

normalizing in the +1 direction, so there is no transformation taking place in the 2 

direction. 

 Using the values for  and , we can now find , which can be written as: 

   
(3. 203) 

and can be further simplified as: 

   
(3. 204) 

We can also write  in terms of d as: 

 
   

(3. 205) 

Since we know , , and , we can now find the normalized volume fraction, .  For 

the triangular section, the normalized volume fraction can be written as: 

    
(3. 206) 
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Figure 3.10:  Illustration of the normalization process for determining the material-
specific advection volume.  The original unit cell containing the advection volume is 

shown in (a), the un-normalized advection volume is depicted in (b), and the normalized 
advection volume is shown in (c). 

which occurs when .  For the quadrilateral section, the normalized volume fraction 

is given by: 

     
(3. 207) 

which occurs when .  So, we can now write  in terms of , , and : 

    
(3. 208) 
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Finally, we need to transform the volume fraction from the normalized system back to the 

unit square.  Since  is in terms of , this can be done by: 

     
(3. 209) 

 

Extensions to Interface Tracking in Three-Dimensions 

All of the above mentioned interface tracking equations can be extended to three-

dimensions in a straightforward manner.  In like manner to the two-dimensional case, the 

direction of the normal vector n must be determined.  This is done by normalizing the 

direction for the maximum rate of change of the volume fraction as described previously 

and repeated in the equation below: 

𝐧 = −
∇𝜙
∇𝜙 𝟑. 𝟐𝟏𝟎  

Where f is the volume fraction of the material of interest and  is given by: 

𝛻𝜙 =
𝜕𝜙
𝜕𝑥+

-

+./

	𝑒+ 𝟑. 𝟐𝟏𝟏  

Following the method presented for the two-dimensional case, the symmetric difference 

approximations for ∂ϕ/∂x, ∂ϕ/∂y, and ∂ϕ/∂z can then be expressed as: 

𝜕𝜙
𝜕𝑥 =

𝜙� − 𝜙¸
2Δ𝑥 		 𝟑. 𝟐𝟏𝟐𝒂  

	
𝜕𝜙
𝜕𝑦 =

𝜙³ − 𝜙Ô
2Δ𝑦 	 𝟑. 𝟐𝟏𝟐𝒃  
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φ = ε ˜ φ 
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𝜕𝜙
𝜕𝑧 =

𝜙- − 𝜙Õ
2Δ𝑧 		 𝟑. 𝟐𝟏𝟐𝒄  

The approximations for ϕe, ϕw, ϕf, ϕb, ϕn, and ϕs are formed from the unit cell 

linear interpolation of values for the total material volume, that is the cell volume 

multiplied by the volume fraction, for each edge of the cell of interest parallel to the 

defined axis, and evaluated at the center of the cell.  To further illustrate this in three-

dimensions consider a cell and its 26 neighboring cells shown Figure 3.11.  

Using a symmetric difference approach similar to that used in the two-

dimensional case, it is possible to determine appropriate representations for ϕe, ϕw, ϕf, ϕb, 

ϕn, and ϕs.  For example, it is possible to determine ϕe by using the unit cell linear 

interpolation of values for the total material volume for each of the edges of cell 15 

parallel to the x-axis, evaluated at the center of cell 15.  Likewise, the values for the total 

material volume at each of these edges is determined from unit cell linear interpolation 

for each of the cells sharing that edge.  For example, as can be seen in Figure 3.12, one of 

these edges is formed by cells 12, 15, 21, and 24, as denoted by A.   

In order to determine ϕe, values for ϕA, ϕB, ϕC, and ϕD must first be determined.  

The relationship between ϕe and ϕA, ϕB, ϕC, and ϕD is given by: 

𝜙� = 𝜙± + 𝜙Ö + 𝜙× + 𝜙Ø	 𝟑. 𝟐𝟏𝟑  

The difference approximation of ϕA can be given by 

Δ𝑦/Δ𝑧^𝜙^/ + Δ𝑦Δ𝑧^𝜙^Ù + Δ𝑦/Δ𝑧𝜙/^ + Δ𝑦Δ𝑧𝜙/Ú
= Δ𝑦/Δ𝑧^ + Δ𝑦Δ𝑧^ + Δ𝑦/Δ𝑧 + Δ𝑦Δ𝑧 𝜙± 𝟑. 𝟐𝟏𝟒  
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Figure 3.11: Schematic of central cell (cell 14) and its 26 neighboring cells 

 

 

Figure 3.12: Schematic of neighboring cells used for determining ϕe for cell 14 
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This approximation can be simplified by introducing the dimensionless 

normalization parameters ηi, ξi, and ζi which are defined as: 

𝜂+ =
Δ𝑥+
Δ𝑥 	 𝟑. 𝟐𝟏𝟓𝒂  

𝜉+ =
Δ𝑦+
Δ𝑦 	 𝟑. 𝟐𝟏𝟓𝒃  

𝜁+ =
Δ𝑧+
Δ𝑧 	 𝟑. 𝟐𝟏𝟓𝒄  

Introducing these dimensionless parameters into the difference approximation for ϕA 

gives  

1 + 𝜉/ 1 + 𝜁^ 𝜙± = 𝜉/𝜁^𝜙^/ + 𝜁^𝜙^Ù + 𝜉/𝜙/^ + 𝜙/Ú	 𝟑. 𝟐𝟏𝟔  

Likewise, for ϕB, ϕC, and ϕD the difference approximations can be given as 

Δ𝑦Δ𝑧^𝜙^Ù + Δ𝑦^Δ𝑧^𝜙^Ü + Δ𝑦^Δ𝑧𝜙/Ý + Δ𝑦Δ𝑧𝜙/Ú
= Δ𝑦Δ𝑧^ + Δ𝑦^Δ𝑧^ + Δ𝑦^Δ𝑧 + Δ𝑦Δ𝑧 𝜙Ö 𝟑. 𝟐𝟏𝟕𝒂  

Δ𝑦Δ𝑧𝜙/Ú + Δ𝑦^Δ𝑧𝜙/Ý + Δ𝑦^Δ𝑧/𝜙Ñ + Δ𝑦Δ𝑧/𝜙Ò
= Δ𝑦Δ𝑧 + Δ𝑦^Δ𝑧 + Δ𝑦^Δ𝑧/ + Δ𝑦Δ𝑧/ 𝜙× 𝟑. 𝟐𝟏𝟕𝒃  

Δ𝑦/Δ𝑧𝜙/^ + Δ𝑦Δ𝑧𝜙/Ú + Δ𝑦Δ𝑧/𝜙Ò + Δ𝑦/Δ𝑧/𝜙½
= Δ𝑦/Δ𝑧 + Δ𝑦Δ𝑧 + Δ𝑦Δ𝑧/ + Δ𝑦/Δ𝑧/ 𝜙Ø 𝟑. 𝟐𝟏𝟕𝒄  

which can be normalized to give 

1 + 𝜉^ 1 + 𝜁^ 𝜙Ö = 𝜁^𝜙^Ù + 𝜉^𝜁^𝜙^Ü + 𝜉^𝜙/Ý + 𝜙/Ú	 𝟑. 𝟐𝟏𝟖𝒂  

1 + 𝜉^ 1 + 𝜁/ 𝜙× = 𝜙/Ú + 𝜉^𝜙/Ý + 𝜉^𝜁/𝜙Ñ + 𝜁/𝜙Ò 𝟑. 𝟐𝟏𝟖𝒃  

1 + 𝜉/ 1 + 𝜁/ 𝜙Ø = 𝜉/𝜙/^ + 𝜙/Ú + 𝜁/𝜙Ò + 𝜉/𝜁/𝜙½ 𝟑. 𝟐𝟏𝟖𝒄  
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The difference equation for ϕe can now be written as 

1 + 𝜉/ 1 + 𝜁^ 𝜙± + 1 + 𝜉^ 1 + 𝜁^ 𝜙Ö
+ 1 + 𝜉^ 1 + 𝜁/ 𝜙× + 1 + 𝜉/ 1 + 𝜁/ 𝜙Ø

= 1 + 𝜉/ 1 + 𝜁^ + 1 + 𝜉^ 1 + 𝜁^
+ 1 + 𝜉^ 1 + 𝜁/ + 1 + 𝜉/ 1 + 𝜁/

𝜙�	 (𝟑. 𝟐𝟏𝟗)

Which, after gathering terms and substituting the right-hand-sides of the relations for ϕA, 

ϕB, ϕC, and ϕD, the equation for ϕe can be written as 

𝜙� =
𝜁/ 𝜉/𝜙½ + 𝜉^𝜙Ñ + 𝜁^ 𝜉/𝜙^/ + 𝜉^𝜙^Ü + 2 𝜉/𝜙/^ + 𝜉^𝜙/Ý + 𝜁/𝜙Ò + 𝜁^𝜙^Ù + 4𝜙/Ú

(2 + 𝜉/ + 𝜉^)(2 + 𝜁/ + 𝜁^)
 

	 𝟑. 𝟐𝟐𝟎  

The steps for determining the difference approximations for ϕw, ϕf, ϕb, ϕn, and ϕs 

can be easily determined following the procedure outlined above and thus are not 

presented here.  The difference approximations for ϕw, ϕf, ϕb, ϕn, and ϕs are given by 

𝜙¸ =
𝜁/ 𝜉/𝜙/ + 𝜉^𝜙Ü + 𝜁^ 𝜉/𝜙/Ñ + 𝜉^𝜙^Ú + 2 𝜉/𝜙/h + 𝜉^𝜙/Ò + 𝜁/𝜙Ù + 𝜁^𝜙^^ + 4𝜙/½

(2 + 𝜉/ + 𝜉^)(2 + 𝜁/ + 𝜁^)
 

	 𝟑. 𝟐𝟐𝟏𝒂  

𝜙Ô =
𝜁/ 𝜂/𝜙/ + 𝜂^𝜙½ + 𝜁^ 𝜂/𝜙/Ñ + 𝜂^𝜙^/ + 2 𝜂/𝜙/h + 𝜂^𝜙/^ + 𝜁/𝜙^ + 𝜁^𝜙^h + 4𝜙//

(2 + 𝜂/ + 𝜂^)(2 + 𝜁/ + 𝜁^)
 

	 𝟑. 𝟐𝟐𝟏𝒃  

𝜙³ =
𝜁/ 𝜂/𝜙Ü + 𝜂^𝜙Ñ + 𝜁^ 𝜂/𝜙^Ú + 𝜂^𝜙^Ü + 2 𝜂/𝜙/Ò + 𝜂^𝜙/Ý + 𝜁/𝜙Ý + 𝜁^𝜙^Ò + 4𝜙/Ü

(2 + 𝜂/ + 𝜂^)(2 + 𝜁/ + 𝜁^)
 

	 𝟑. 𝟐𝟐𝟏𝒄  
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𝜙- =
𝜉/ 𝜂/𝜙/Ñ + 𝜂^𝜙^/ + 𝜉^ 𝜂/𝜙^Ú + 𝜂^𝜙^Ü + 2 𝜂/𝜙^^ + 𝜂^𝜙^Ù + 𝜉/𝜙^h + 𝜉^𝜙^Ò + 4𝜙^½

(2 + 𝜂/ + 𝜂^)(2 + 𝜉/ + 𝜉^)
 

	 𝟑. 𝟐𝟐𝟏𝒅  

𝜙Õ =
𝜉/ 𝜂/𝜙/ + 𝜂^𝜙½ + 𝜉^ 𝜂/𝜙Ü + 𝜂^𝜙Ñ + 2 𝜂/𝜙Ù + 𝜂^𝜙Ò + 𝜉/𝜙^ + 𝜉^𝜙Ý + 4𝜙Ú

(2 + 𝜂/ + 𝜂^)(2 + 𝜉/ + 𝜉^)
 

	 𝟑. 𝟐𝟐𝟏𝒆  

Once the normal vector has been defined, the interface plane can be located and 

the value for d can be found.  In order to minimize the number of intersections that must 

be considered, it is useful to apply restrictions to the calculation.  First, all calculations 

must be made with respect to the unit cube.  Second, for volume fractions greater than ½, 

the interface is located based on the values of 1-f, which is the volume fraction of the 

other material, for the cell of interest and each of its 26 neighboring cells. Finally, the 

interface determination is made with respect to a specific corner and orientation of the 

unit cube.  This corner and orientation is determined as follows.  The absolute values of 

the components of n are ordered from smallest to largest.  Let these values be designated 

as n1, n2, and n3.  Then, the interface determination is made in the 1-2-3 coordinate 

system having directions corresponding to the direction of n1, n2, and n3.  A series of axis 

sign changes and/or axis swaps will also transform the x-y-z coordinate system to the 1-

2-3 coordinate system.  Having applied these restrictions, we must now consider five 

possible intersection conditions, including the triangle section, quadrilateral section A, 

pentagonal section, hexagonal section, and the quadrilateral section B.   

Depending on the relative values for n1, n2, n3, and ϕ only one of these five 

intersection conditions can be produced.  From this comes the interface geometry as well 
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as the value for d.  The applicable ranges and development for each intersection condition 

is described below. 

Triangular Pyramid Intersection Condition  

The volume fraction f is the volume of a right triangular pyramid, shown in 

Figure 3.13, and is defined as: 

𝜙 =
1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟐𝟐  

 

Figure 3.13: Triangular pyramid intersection condition 

We can then define h1, h2, and h3 as: 

 
    

(3.223) 

where i=1,2,3. 

 

€ 
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Substituting the expression for hi into the expression for ϕ results in the following 

expression: 

𝜙 =
1
6

𝑑½

𝑛/𝑛^𝑛½
	 𝟑. 𝟐𝟐𝟒  

This can then be solved for d as: 

𝑑 = 6𝜙𝑛/𝑛^𝑛½
/
½		 𝟑. 𝟐𝟐𝟓  

Since we require that n1 ≥ n2 ≥ n3, the triangle condition is true for h1<1.  At h1=1 we have 

the transition to the quadrilateral section condition A, therefore at h1=1 we can solve to 

find the situations at which each section occurs.  At h1=1, we see that d=n1, so: 

𝑛/½ = 6𝜙𝑛/𝑛^𝑛½	 𝟑. 𝟐𝟐𝟔  

Therefore, the triangle intersection condition occurs for:  

𝑛/½ > 6𝜙𝑛/𝑛^𝑛½	 𝟑. 𝟐𝟐𝟕  

Quadrilateral Intersection Condition A 

The quadrilateral intersection condition, shown in Figure 3.14, occurs when 

h1≥1>h2>h3. To find the advection volume it is necessary to first determine the total 

volume of the intersecting triangular pyramid section and subtract the volume that lies 

outside the unit cube.  This can be expressed as 

𝜙 = 𝜙à£rW[ − 𝜙áZrÕ+¤�	 𝟑. 𝟐𝟐𝟖  
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Figure 3.14: Quadrilateral intersection condition A 

The total volume of the intersecting triangular pyramid is given by: 

𝜙à£rW[ =
1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟐𝟗  

The volume outside the unit cube can be written as 

𝜙áZrÕ+¤� =
1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟑𝟎  

where, 

ℎ/ = ℎ/ − 1 𝟑. 𝟐𝟑𝟏𝒂  

ℎ^ =
ℎ^
ℎ/
ℎ/ =

ℎ^
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟑𝟏𝒃  

ℎ½ =
ℎ½
ℎ/
ℎ/ =

ℎ½
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟑𝟏𝒄  
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So, ϕOutside can be rewritten as, 

𝜙áZrÕ+¤� =
1
6 ℎ/ − 1 ½ ℎ^

ℎ/
ℎ½
ℎ/

𝟑. 𝟐𝟑𝟐  

Given this relation, a value for the advection volume, ϕ, inside the unit cube can now be 

determined and is expressed as 

𝜙 =
1
6 ℎ/ℎ^ℎ½ −

1
6 ℎ/ − 1 ½ ℎ^ℎ½

ℎ/^
𝟑. 𝟐𝟑𝟑  

h1, h2, and h3 can then be defined as: 

 
    

(3.234) 

where i=1,2,3. So in terms of d and ni the expression for ϕ becomes, 

𝜙 =
1
6

3𝑑^

𝑛^𝑛½
−
3𝑑𝑛/
𝑛^𝑛½

+
𝑛/^

𝑛^𝑛½
𝟑. 𝟐𝟑𝟓  

This intersection condition is applicable for cases in which h2<1, or as it can also be 

written, n2>d, and also requires h1≥1, so n1≤d.  Therefore, the quadrilateral intersection 

condition A occurs when 

𝑛/½ ≤ 6𝜙𝑛/𝑛^𝑛½ < 3𝑛/𝑛^^ − 3𝑛/^𝑛^ + 𝑛/½ = 𝑛^½ − 𝑛^ − 𝑛/ ½ 𝟑. 𝟐𝟑𝟔  

To find d, the expression for ϕ must be rearranged as  

6𝜙𝑛/𝑛^𝑛½ = 3𝑛/𝑑^ − 3𝑑𝑛/^ + 𝑛/½ 𝟑. 𝟐𝟑𝟕  

 

€ 
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This equation can be rewritten and set equal to zero to give 

𝑑½ − 𝑑 − 𝑛/ ½ − 6𝜙𝑛/𝑛^𝑛½ = 0 𝟑. 𝟐𝟑𝟖  

This equation can then be solved for d resulting in the expression 

𝑑 =
𝑛/
2 + 2𝑛^𝑛½𝜙 −

𝑛/^

12

/
^

𝟑. 𝟐𝟑𝟗  

Pentagonal Intersection Condition 

 

 

Figure 3.15: Pentagonal intersection condition 

The pentagonal intersection condition, shown in Figure 3.15, occurs when 

h1>h2≥1>h3 and for values of ℎ/, ℎ^ ≤ 1. In a similar manner to the quadrilateral 

intersection A, to find the advection volume it is necessary to first determine the total 

volume of the intersecting triangular pyramid section and subtract the volume that lies 

outside the unit cube.  This can be expressed as 
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𝜙 = 𝜙à£rW[ − 𝜙áZrÕ+¤� 𝟑. 𝟐𝟒𝟎  

The total volume of the intersecting triangular pyramid is given by: 

𝜙à£rW[ =
1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟒𝟏  

The volume outside the unit cube can be written as 

𝜙áZrÕ+¤� =
1
6 ℎ/ℎ^ℎ½ +

1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟒𝟐  

where, 

ℎ/ = ℎ/ − 1 𝟑. 𝟐𝟒𝟑𝒂  

ℎ^ =
ℎ^
ℎ/
ℎ/ =

ℎ^
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟒𝟑𝒃  

ℎ½ =
ℎ½
ℎ/
ℎ/ =

ℎ½
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟒𝟑𝒄  

ℎ/ =
ℎ/
ℎ^
ℎ^ =

ℎ/
ℎ^

ℎ^ − 1 𝟑. 𝟐𝟒𝟑𝒅  

ℎ^ = ℎ^ − 1 𝟑. 𝟐𝟒𝟑𝒆  

ℎ½ =
ℎ½
ℎ^
ℎ^ =

ℎ½
ℎ^

ℎ^ − 1 𝟑. 𝟐𝟒𝟑𝒇  

So, ϕOutside can be rewritten as, 

𝜙áZrÕ+¤� =
1
6 ℎ/ − 1 ½ ℎ^

ℎ/
ℎ½
ℎ/
+
1
6 ℎ^ − 1 ½ ℎ/ℎ½

ℎ^^
	 𝟑. 𝟐𝟒𝟒  
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Given this relation, a value for the advection volume, ϕ, inside the unit cube can now be 

determined and is expressed as 

𝜙 =
1
6 ℎ/ℎ^ℎ½ −

1
6 ℎ/ − 1 ½ ℎ^ℎ½

ℎ/^
−
1
6 ℎ^ − 1 ½ ℎ/ℎ½

ℎ^^
𝟑. 𝟐𝟒𝟓  

h1, h2, and h3 can then be defined as: 

 
    

(3. 246) 

where i=1,2,3. So in terms of d and ni the expression for ϕ becomes, 

𝜙 =
1
6

3𝑑^

𝑛^𝑛½
−
3𝑑𝑛/
𝑛^𝑛½

+
𝑛/^

𝑛^𝑛½
−

𝑑½

𝑛/𝑛^𝑛½
+
3𝑑^

𝑛/𝑛½
−
3𝑑𝑛^
𝑛/𝑛½

+
𝑛^^

𝑛/𝑛½
𝟑. 𝟐𝟒𝟕  

There are two possible conditions for which this intersection condition is applicable.  The 

first condition requires h3<1 and ℎ/, ℎ^ < 1, or as it can also be written, n3>d and 

n1+n2>n3, and also requires h1≥1, so n1≤d.  Therefore, for this condition, the pentagonal 

intersection condition occurs when 

𝑛^½ − 𝑛^ − 𝑛/ ½ ≤ 6𝜙𝑛/𝑛^𝑛½ < 𝑛½½ − 𝑛½ − 𝑛/ ½ − 𝑛½ − 𝑛^ ½		𝑎𝑛𝑑	𝑛/ + 𝑛^ > 𝑛½ 

	 𝟑. 𝟐𝟒𝟖  

The second condition occurs when h3<1 and ℎ/, ℎ^ = 1, or when n1+n2≤n3.  For this 

condition it is necessary to include the following 

	ℎ/ =
ℎ/
ℎ^

ℎ^ − 1 = 1	 𝟑. 𝟐𝟒𝟗𝒂  

	ℎ^ = ℎ/ ℎ^ − 1 𝟑. 𝟐𝟒𝟗𝒃  
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ℎ^ =
ℎ^
ℎ/

ℎ/ − 1 = 1	 𝟑. 𝟐𝟒𝟗𝒄  

0 = ℎ/ℎ^ − ℎ/ − ℎ^	 𝟑. 𝟐𝟒𝟗𝒅  

In terms of ni and d these equations can be expressed as 

𝑑
𝑛/
=
𝑑
𝑛^

𝑑
𝑛/
− 1 	 𝟑. 𝟐𝟓𝟎𝒂  

0 =
𝑑^

𝑛/𝑛^
−
𝑑
𝑛/
−
𝑑
𝑛^

𝟑. 𝟐𝟓𝟎𝒃  

0 = 𝑑^ − 𝑑𝑛/ − 𝑑𝑛^ 𝟑. 𝟐𝟓𝟎𝒄  

From this we can apply the condition n1+n2>d, which gives 

6𝜙𝑛/𝑛^𝑛½ < 3 𝑛/ + 𝑛^ ^𝑛/ − 3 𝑛/ + 𝑛^ 𝑛/^ + 𝑛/½ − 𝑛/ + 𝑛^ ½ + 3 𝑛/ + 𝑛^ ^𝑛^ − 3 𝑛/ + 𝑛^ 𝑛^^ + 𝑛^½ 

	 𝟑. 𝟐𝟓𝟏  

Which can be simplified to give 

6𝜙𝑛/𝑛^𝑛½ < 𝑛/+𝑛^ ½ − 𝑛^½ − 𝑛/½ 𝟑. 𝟐𝟓𝟐  

Therefore, for the second condition, the pentagonal intersection condition occurs when 

𝑛^½ − 𝑛^ − 𝑛/ ½ ≤ 6𝜙𝑛/𝑛^𝑛½ < 𝑛/+𝑛^ ½ − 𝑛^½ − 𝑛/½	𝑎𝑛𝑑	𝑛/ + 𝑛^ ≤ 𝑛½ 

	 𝟑. 𝟐𝟓𝟑  

To find d, the expression for ϕ must be rearranged as  

6𝜙𝑛/𝑛^𝑛½ = 3𝑛/𝑑^ − 3𝑑𝑛/^ + 𝑛/½ − 𝑑½ + 3𝑛^𝑑^ − 3𝑑𝑛^^ + 𝑛^½ 𝟑. 𝟐𝟓𝟒  
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This equation can be rewritten and set equal to zero to give 

𝑑½ − 𝑑 − 𝑛/ ½ − 𝑑 − 𝑛^ ½ − 6𝜙𝑛/𝑛^𝑛½ = 0 𝟑. 𝟐𝟓𝟓  

which can then be solved for d. 

Hexagonal Intersection Condition 

The hexagonal intersection condition, shown in Figure 3.16, occurs when 

h1>h2>h3≥1.  In a similar manner to the previously described intersection conditions, to 

find the advection volume it is necessary to first determine the total volume of the 

intersecting triangular pyramid section and subtract the volume that lies outside the unit 

cube.  This can be expressed as 

𝜙 = 𝜙à£rW[ − 𝜙áZrÕ+¤� 𝟑. 𝟐𝟓𝟔  

 

Figure 3.16: Hexagonal intersection condition 

The total volume of the intersecting triangular pyramid is given by: 

𝜙à£rW[ =
1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟓𝟕  
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The volume outside the unit cube can be written as 

𝜙áZrÕ+¤� =
1
6 ℎ/ℎ^ℎ½ +

1
6 ℎ/ℎ^ℎ½ +

1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟓𝟖  

where, 

ℎ/ = ℎ/ − 1 𝟑. 𝟐𝟓𝟗𝒂  

ℎ^ =
ℎ^
ℎ/
ℎ/ =

ℎ^
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟓𝟗𝒃  

ℎ½ =
ℎ½
ℎ/
ℎ/ =

ℎ½
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟓𝟗𝒄  

ℎ/ =
ℎ/
ℎ^
ℎ^ =

ℎ/
ℎ^
(ℎ^ − 1) 𝟑. 𝟐𝟓𝟗𝒅  

ℎ^ = ℎ^ − 1 𝟑. 𝟐𝟓𝟗𝒆  

ℎ½ =
ℎ½
ℎ^
ℎ^ =

ℎ½
ℎ^

ℎ^ − 1 𝟑. 𝟐𝟓𝟗𝒇  

ℎ/ =
ℎ/
ℎ½
ℎ½ =

ℎ/
ℎ½
(ℎ½ − 1) 𝟑. 𝟐𝟓𝟗𝒈  

ℎ^ =
ℎ^
ℎ½
ℎ½ =

ℎ^
ℎ½
(ℎ½ − 1) 𝟑. 𝟐𝟓𝟗𝒉  

ℎ½ = ℎ½ − 1 𝟑. 𝟐𝟓𝟗𝒊  

So, ϕOutside can be rewritten as, 

𝜙áZrÕ+¤� =
1
6 ℎ/ − 1 ½ ℎ^ℎ½

ℎ/^
+
1
6 ℎ^ − 1 ½ ℎ/ℎ½

ℎ^^
+
1
6 ℎ½ − 1 ½ ℎ/ℎ^

ℎ½^
	 𝟑. 𝟐𝟔𝟎  
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Given this relation, a value for the advection volume, ϕ, inside the unit cube can now be 

determined and is expressed as 

𝜙 =
1
6 ℎ/ℎ^ℎ½ −

1
6 ℎ/ − 1 ½ ℎ^ℎ½

ℎ/^
−
1
6 ℎ^ − 1 ½ ℎ/ℎ½

ℎ^^
−
1
6 ℎ½ − 1 ½ ℎ/ℎ^

ℎ½^
𝟑. 𝟐𝟔𝟏  

h1, h2, and h3 can then be defined as: 

 
    

(3.262) 

where i=1,2,3. So in terms of d and ni the expression for ϕ becomes, 

𝜙

=
1
6

3𝑑^

𝑛^𝑛½
−
3𝑑𝑛/
𝑛^𝑛½

+
𝑛/^

𝑛^𝑛½
−

2𝑑½

𝑛/𝑛^𝑛½
+
3𝑑^

𝑛/𝑛½
−
3𝑑𝑛^
𝑛/𝑛½

+
𝑛^^

𝑛/𝑛½
+
3𝑑^

𝑛/𝑛^
−
3𝑑𝑛½
𝑛/𝑛^

+
𝑛½^

𝑛/𝑛^
 

	 𝟑. 𝟐𝟔𝟑  

This intersection condition is applicable when h3≥1 so n3≥d. Therefore, the hexagonal 

intersection condition occurs when 

𝑛½½ − 𝑛½ − 𝑛/ ½ − 𝑛½ − 𝑛^ ½ ≤ 6𝜙𝑛/𝑛^𝑛½	for	𝑛/ + 𝑛^ > 𝑛½ 𝟑. 𝟐𝟔𝟒  

To find d, the expression for ϕ must be rearranged as  

6𝜙𝑛/𝑛^𝑛½ = 3𝑛/𝑑^ − 3𝑑𝑛/^ + 𝑛/½ − 2𝑑½ + 3𝑛^𝑑^ − 3𝑑𝑛^^ + 𝑛^½ + 3𝑛½𝑑^ − 3𝑑𝑛½^ + 𝑛½½ 

	 𝟑. 𝟐𝟔𝟓  
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This equation can be rewritten and set equal to zero to give 

𝑑½ − 𝑑 − 𝑛/ ½ − 𝑑 − 𝑛^ ½ − 𝑑 − 𝑛½ ½ − 6𝜙𝑛/𝑛^𝑛½ = 0 𝟑. 𝟐𝟔𝟔

which can then be solved for d.	

Quadrilateral Intersection Condition B 

Quadrilateral intersection condition B, shown in Figure 3.17, occurs when 

ℎ/≥ℎ^≥1>h3 or when n1+n2=n3.  In a similar manner to the previously described 

intersection conditions, to find the advection volume it is necessary to first determine the 

total volume of the intersecting triangular pyramid section and subtract the volume that 

lies outside the unit cube.  This can be expressed as 

𝜙 = 𝜙à£rW[ − 𝜙áZrÕ+¤� 𝟑. 𝟐𝟔𝟕  

 

Figure 3.17: Quadrilateral intersection condition B 

The total volume of the intersecting triangular pyramid is given by: 

𝜙à£rW[ =
1
6 ℎ/ℎ^ℎ½ 𝟑. 𝟐𝟔𝟖  
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The volume outside the unit cube can be written as 

𝜙áZrÕ+¤� =
1
6 ℎ/ℎ^ℎ½ +

1
6 ℎ/ℎ^ℎ½ −

1
6 ℎ/∗ℎ^∗ℎ½∗ 𝟑. 𝟐𝟔𝟗  

where, 

ℎ/ = ℎ/ − 1 𝟑. 𝟐𝟕𝟎𝒂  

ℎ^ =
ℎ^
ℎ/
ℎ/ =

ℎ^
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟕𝟎𝒃  

ℎ½ =
ℎ½
ℎ/
ℎ/ =

ℎ½
ℎ/

ℎ/ − 1 𝟑. 𝟐𝟕𝟎𝒄  

ℎ/ =
ℎ/
ℎ^
ℎ^ =

ℎ/
ℎ^
(ℎ^ − 1) 𝟑. 𝟐𝟕𝟎𝒅  

ℎ^ = ℎ^ − 1 𝟑. 𝟐𝟕𝟎𝒆  

ℎ½ =
ℎ½
ℎ^
ℎ^ =

ℎ½
ℎ^

ℎ^ − 1 𝟑. 𝟐𝟕𝟎𝒇  

ℎ/∗ = ℎ/ − 1 = ℎ/ −
ℎ/
ℎ^
− 1 𝟑. 𝟐𝟕𝟎𝒈  

ℎ^∗ =
ℎ^
ℎ/

ℎ/ − 1 = ℎ^ −
ℎ^
ℎ/
− 1 𝟑. 𝟐𝟕𝟎𝒉  

ℎ½∗ =
ℎ½
ℎ/

ℎ/ − 1 = ℎ½ −
ℎ½
ℎ^
−
ℎ½
ℎ/

𝟑. 𝟐𝟕𝟎𝒊  
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So, ϕOutside can be rewritten after some algebraic manipulation as, 

𝜙áZrÕ+¤� =
1
6 ℎ/ℎ^ℎ½ − 6ℎ½ +

3ℎ½
ℎ/

+
3ℎ½
ℎ^

	 𝟑. 𝟐𝟕𝟏  

Given this relation, a value for the advection volume, ϕ, inside the unit cube can now be 

determined and is expressed as 

𝜙 =
1
6 ℎ/ℎ^ℎ½ −

1
6 ℎ/ℎ^ℎ½ − 6ℎ½ +

3ℎ½
ℎ/

+
3ℎ½
ℎ^

= ℎ½ +
ℎ½
2ℎ/

+
ℎ½
2ℎ^

𝟑. 𝟐𝟕𝟐  

h1, h2, and h3 can then be defined as: 

 
    

(3. 273) 

where i=1,2,3. So in terms of d and ni the expression for ϕ becomes, 

𝜙 =
𝑑
𝑛½
−
𝑛/
2𝑛½

−
𝑛^
2𝑛½

𝟑. 𝟐𝟕𝟒  

This intersection condition is applicable when  

𝑛^ + 𝑛/ ½ − 𝑛^½ − 𝑛/½ ≤ 6𝜙𝑛/𝑛^𝑛½	for	𝑛/ + 𝑛^ ≤ 𝑛½ 𝟑. 𝟐𝟕𝟓  

To find d, the expression for ϕ was found to be  

𝜙 =
𝑑
𝑛½
−
𝑛/
2𝑛½

−
𝑛^
2𝑛½

𝟑. 𝟐𝟕𝟔  

This equation can be rewritten to solve for d as 

𝑑 = 𝜙𝑛½ +
𝑛/ + 𝑛^

2 𝟑. 𝟐𝟕𝟕  
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Determining Material Specific Advection Volumes in Three-Dimensions 

Having determined the value for d it is now possible to determine the volume 

intersection with the advection volume.  For advection in the +1-direction, as was shown 

previously for the two-dimesional case, the unit normals in the normalized system are 

𝑛/ =
𝜀𝑛/

𝜀𝑛/ ^ + 𝑛^^ + 𝑛½^
𝟑. 𝟐𝟕𝟖𝒂  

𝑛^ =
𝑛^

𝜀𝑛/ ^ + 𝑛^^ + 𝑛½^
𝟑. 𝟐𝟕𝟖𝒃  

𝑛½ =
𝑛½

𝜀𝑛/ ^ + 𝑛^^ + 𝑛½^
𝟑. 𝟐𝟕𝟖𝒄  

Similar to the two-dimensional case, the values for ℎä are found to be 

ℎ/ =
ℎ/ + 𝜀 − 1

𝜀 =
1
𝜀

𝑑
𝑛/
+ 𝜀 − 1 𝟑. 𝟐𝟕𝟗𝒂  

ℎ^ =
ℎ^
ℎ/

ℎ/ + 𝜀 − 1 =
𝑛/
𝑛^

𝑑
𝑛/
+ 𝜀 − 1 𝟑. 𝟐𝟕𝟗𝒃  

ℎ½ =
ℎ½
ℎ/

ℎ/ + 𝜀 − 1 =
𝑛/
𝑛½

𝑑
𝑛/
+ 𝜀 − 1 𝟑. 𝟐𝟕𝟗𝒄  

but, it may not be necessary to determine ℎ^ and ℎ½ since advection is in the +1-direction 

in this case, and therefore there is no transformation taking place in the 2 or 3 directions.  

Also, if , then there is no intersection condition present. 

Using the value for ℎ/, we can now find 𝑑, which can be written as: 

𝑑 = 𝑛/ℎ/ 𝟑. 𝟐𝟖𝟎  

€ 

˜ h 1 < 0
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and can be further simplified as: 

𝑑 = 𝑛/
ℎ/ + 𝜀 − 1

𝜀 𝟑. 𝟐𝟖𝟏  

We can also write  in terms of d as: 

𝑑 =
𝑛/

𝑑
𝑛/
+ 𝜀 − 1

𝜀𝑛/ ^ + 𝑛^^ + 𝑛½^
𝟑. 𝟐𝟖𝟐  

Since we know 𝑑, 𝑛/, 𝑛^, and 𝑛½, we can now find the normalized volume 

fraction, 𝜙, in the normalized system.  For the triangular pyramid intersection condition, 

the normalized volume fraction can be written as: 

𝜙 =
1
6ℎ/ℎ^ℎ½ =

1
6

𝑑½

𝑛/𝑛^𝑛½
𝟑. 𝟐𝟖𝟑  

which occurs when .   

For the quadrilateral intersection condition A, the normalized volume fraction is 

given by: 

𝜙 =
1
6ℎ/ℎ^ℎ½ −

1
6 ℎ/½ − 3ℎ/^ + 3ℎ/ − 1

ℎ^ℎ½
ℎ/^

𝟑. 𝟐𝟖𝟒  

which can be written in terms of  𝑑, 𝑛/, 𝑛^, and 𝑛½ as 

𝜙 =
𝑑½ − 𝑑 − 𝑛/

½

6𝑛/𝑛^𝑛½
𝟑. 𝟐𝟖𝟓  

which occurs when 𝑛^ ≥ 𝑑.   

€ 

˜ d 

€ 

˜ n 1 > ˜ d 
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For the pentagonal intersection condition, the normalized volume fraction is given 

by: 

𝜙 =
1
6ℎ/ℎ^ℎ½ −

1
6 ℎ/ − 1

½ ℎ^ℎ½
ℎ/^

−
1
6 ℎ^ − 1

½ ℎ/ℎ½
ℎ^^

𝟑. 𝟐𝟖𝟔  

which can be written in terms of  𝑑, 𝑛/, 𝑛^, and 𝑛½ as 

𝜙 =
𝑑½ − 𝑑 − 𝑛/

½ − 𝑑 − 𝑛^
½

6𝑛/𝑛^𝑛½
𝟑. 𝟐𝟖𝟕  

which occurs when 𝑛½ ≥ 𝑑 and 𝑛/ + 𝑛^ ≤ 𝑑. 

For the hexagonal intersection condition, the normalized volume fraction is given 

by: 

𝜙 =
1
6ℎ/ℎ^ℎ½ −

1
6 ℎ/ − 1

½ ℎ^ℎ½
ℎ/^

−
1
6 ℎ^ − 1

½ ℎ/ℎ½
ℎ^^

−
1
6 ℎ½ − 1

½ ℎ/ℎ^
ℎ½^

𝟑. 𝟐𝟖𝟖  

which can be written in terms of  𝑑, 𝑛/, 𝑛^, and 𝑛½ as 

𝜙 =
𝑑½ − 𝑑 − 𝑛/

½ − 𝑑 − 𝑛^
½ − 𝑑 − 𝑛½

½

6𝑛/𝑛^𝑛½
𝟑. 𝟐𝟖𝟗  

which occurs when 𝑛½ < 𝑑 and 𝑛/ + 𝑛^ ≤ 𝑑. 

For the quadrilateral intersection condition B, the normalized volume fraction is 

given by: 

𝜙 = ℎ½ −
ℎ½
2ℎ/

−
ℎ½
2ℎ^

𝟑. 𝟐𝟗𝟎  
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which can be written in terms of  𝑑, 𝑛/,	𝑛^, and 𝑛½ as 

𝜙 =
1
𝑛½

𝑑 −
𝑛/ + 𝑛^

2 𝟑. 𝟐𝟗𝟏  

which occurs when 𝑛½ > 𝑑 and 𝑛/ + 𝑛^ > 𝑑. 

Finally, we need to transform the volume fraction from the normalized system 

back to the unit square.  Since  is in terms of , this can be done by solving 

𝜙 = 𝜀𝜙 𝟑. 𝟐𝟗𝟐  

 

Advection in Directions other than the +1-Direction 

In two-dimensions we also need to consider advection in the -1, +2, and -2 

directions.  For the -1 direction, all the equations presented above are still valid, however, 

we must find the volume of the 1-e of the unit square instead of the e side.  The volume 

we get will not be the advection volume, but rather it will be the total volume minus the 

advection volume.  To get the advection volume, we simply subtract: 

    
(3. 293) 

where  is the advection volume fraction,  is the total volume fraction, and  is the 

volume fraction determined based on the 1-e side of the unit square. 

 For advection in the +2-direction we need to normalize the 2-direction based on e, 

which can be accomplished using the following equations: 

€ 

˜ φ 

€ 

˜ n 

€ 

φA = φT −φ

€ 

φA

€ 

φT

€ 

φ
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(3. 294a) 

    
(3. 294b) 

It is important to note that  may now be less than .  If this is the case,  and  

must be interchanged before the volume fraction calculation can be performed.  After this 

interchange is made, the formulas for  given previously are the correct ones, except that 

 is now given by: 

   
(3. 295) 

In the -2-direction, the process is the same as the process described above for the -1-

direction.  

 In three-dimensions, we need to consider advection in the -1, +2, -2, +3, and -3 

directions as well.  The methodology described for the two-dimensional cases can be 

extended to three-dimensions in a straightforward fashion.  Advection in the -1, -2, and -3 

directions are done in the same manner described in two-dimensions.  For advection in 

the +2 direction, we determine 𝑑, 𝑛/, 𝑛^, and 𝑛½ as 
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𝑑 =
𝑛^

𝑑
𝑛^
+ 𝜀 − 1

𝑛/^ + 𝜀𝑛^ ^ + 𝑛½^
		 𝟑. 𝟐𝟗𝟔𝒂  

𝑛/ =
𝑛/

𝑛/^ + 𝜀𝑛^ ^ + 𝑛½^
𝟑. 𝟐𝟗𝟔𝒃  

𝑛^ =
𝜀𝑛^

𝑛/^ + 𝜀𝑛^ ^ + 𝑛½^
𝟑. 𝟐𝟗𝟔𝒄  

𝑛½ =
𝑛½

𝑛/^ + 𝜀𝑛^ ^ + 𝑛½^
𝟑. 𝟐𝟗𝟔𝒅  

 The order of 𝑛/, 𝑛^, and 𝑛½ may have to be changed at this point to insure that 

𝑛/≤𝑛^≤𝑛½.  The advection calculation can then proceed as described previously.  

Advection in the +3 direction proceeds in a manner similar to that described above for 

advection in the +2 direction. 

 

Limits on the Advection Volume Calculation 

 If the advection volume is too large, we should instead find the advection volume 

based on 1-f instead of f.  In two-dimensions, the limit is reached when .  This 

gives: 

    
(3. 297a) 

or 

     
(3. 297b) 
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˜ h 2 =1
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˜ h 2 =
˜ d 
˜ n 2
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˜ n 2 ≥ ˜ d 
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If this limit is reached, we must reverse the advection volume.  The normal stays the 

same, except it changes sign, however, the reference corner also changes, so it keeps the 

same sign.  The corner distance , however, must be changed.  This new corner distance, 

, as seen in Figure 3.18, is given by: 

    
(3. 298) 

In three-dimensions, similarly, it is required that for ℎ½ ≤ 1	or	𝑛½ ≥ 𝑑, the new 

corner distance is given by 

𝑑 = 𝑛/ + 𝑛^ + 𝑛½ − 𝑑	 𝟑. 𝟐𝟗𝟗  

 

 

Figure 3.18:  Limits on the advection calculation  
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CHAPTER 4 

SOFTWARE 

	

ALEAS 

ALEAS (Arbitrary Lagrangian-Eulerian Adaptive Solver) is a finite element 

research code initially developed in two-dimensions by Littlefield [63] and extended to 

three-dimensions as part of this work. ALEAS is capable of performing multi-material 

calculations in Eulerian, Lagrangian, simple ALE, and multi-material ALE frameworks.  

ALEAS implements the ALE form of the conservation equations presented in Chapter 3, 

along with the interface tracking algorithms and Eulerian contact algorithm developed in 

the same chapter. This section will provide a brief description of the ALEAS software 

package as well as the solution techniques implemented in the package. 

ALEAS contains an option to use the contact enforcement approach developed in 

Chapter 3, or the traditional Eulerian approach which makes use of a single velocity field 

and mixture theory. Both methods make use of the operator split approach, with the 

traditional Eulerian formulation using a single operator split, and the contact formulation 

using the two operator split method developed in Chapter 3. In both approaches, the first 

operator split consists of a Lagrangian step to advance the solution in time followed by an 

advection step in which the convection equations are solved in order to move material 

across interface boundaries. For the contact formulation a second operator split is 
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performed which enforces contact constraints and calculates changes in the solution 

variables as a result of the traction. This results in another mesh deformation, so the 

convection equations must be solved again in a second remap step to calculate the flux 

across element boundaries. Numerical integration of the Lagrangian and contact 

enforcement steps follows the usual procedure for linear, constant stress elements.  The 

advection steps are performed differently for node-centered and element-centered 

variables.  Element-centered variables, including density and internal energy, are 

advected using a simple donor cell algorithm, with fluxes across element boundaries 

computed using an upwinding scheme.  Updates to the velocities, which are node-

centered, are determined by advecting momentum, using a lumped mass approximation 

to define the momentum at each node. The Half-Index Shift (HIS) algorithm for 

momentum advection implemented in ALEAS was initially developed by Benson [12], 

[20]. The HIS algorithm was developed to overcome dispersion errors associated with 

other momentum advection methods while also preserving monotonicity. The HIS 

algorithm is described in detail in Chapter 2 of this work and more detail can be found in 

references [12] and [20]. 

ALEAS contains a multi-material momentum (MMM) option which causes the 

program to utilize the formulations developed in this work.  When this option is turned 

off the program functions as a traditional Eulerian finite element solver, allowing only a 

single velocity field to be present in each element and uses mixture theory to handle 

contact in mixed cells.  Applying this option permits multiple velocity fields per element 

and turns on the contact algorithm described in Chapter 3, and therefore was used in all 

of the problems labeled as ALEAS MMM in Chapters 5 and 6.   
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ALEAS outputs results for post-processing in an ASCII VTK file format. The 

VTK format is widely used and can be read by a number of open-source and commercial 

post-processing tools, including Paraview and VisIt, which were used to generate images 

shown in Chapters 5 and 6 of this work.  

 

CTH 

In order to ensure that the traditional Eulerian results in ALEAS were valid and 

compared well with other hydrocodes a comparison was carried out using CTH, which 

uses the traditional treatment of multi-material contact through mixture theory.  This 

section provides a general introduction to CTH, for more information about the solution 

methods used in CTH and the program package as a whole see works by McGlaun and 

Thompson [71] and Hertel, et al. [42].   

CTH is an Eulerian shock physics code under active development at Sandia 

National Laboratories used to model multi-dimensional, multi-material, large 

deformation, strong shock wave physics.  One-dimensional rectilinear, cylindrical, and 

spherical meshes; two-dimensional rectangular and cylindrical meshes, and three-

dimensional rectangular meshes are available.  A two-step Eulerian solution scheme with 

operator splitting similar to that described in Chapter 2 is used during the solution phase. 

The CTH system allows analysts to set up and examine the initial configuration, 

integrate the problem through time, and examine the results with one integrated software 

family. CTH uses an Eulerian scheme in which the mesh is fixed in space and the 

material flows through the mesh.  The conservation equations are replaced by finite 
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volume approximations.  The finite volume approximations have been carefully designed 

to conserve mass, momentum, and energy.  In some cases it is impossible to conserve all 

of these quantities.  In these cases, CTH has been designed with several options that the 

user can use to bound the effects. 

CTH is widely used for solving problems across a wide range of spatial scales of 

varying complexity. It contains a number of advanced equation of state models for gases, 

fluids, solids, and reactive materials along with strength and fracture models. CTH 

contains all tools necessary for pre-processing, execution, and post-processing within a 

single package controlled by a single text input file making for a simplified user 

experience.   
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CHAPTER 5 

VALIDATION AND VERIFICATION  PROBLEMS 

	

To demonstrate the advantages of the method developed in this work over 

traditional treatment of Eulerian contact several validation calculations were performed.  

Calculations involving the multi-material Eulerian contact algorithm developed in this 

dissertation were carried out using the multi-material momentum (MMM) option in 

ALEAS.  For comparison, calculations were also performed using the single-material 

momentum (SMM) option in ALEAS, which treat multi-material contact in the 

traditional Eulerian sense by using mixture theory. To further verify ALEAS comparisons 

were made to the production hydrocode CTH, which has undergone extensive validation. 

While there are several differences between the formulations used in CTH and those used 

in ALEAS results between the two codes, when run using the traditional Eulerian 

approach, should have close agreement. 

A total of fourteen validation problems and one verification problem have been 

carried out. The calculations include a mesh aligned normal block sliding problem, an 

offset normal frictionless block sliding problem, an angled frictionless block sliding 

problem, both mesh-aligned and offset Taylor impact problems, a long rod penetration of 

a stationary oblique plate, long rod penetrations of moving oblique plates at +10.3° and -

9.3° yaw, a normal penetration of a long rod into a 5.08 cm target, a series of tungsten 
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long rods penetrating a semi-infinite steel target, and a Sod shock tube problem [104].  

This section describes the initial conditions of the validation problems as well as some of 

the theory and experimental background associated with these test cases. 

Table 5.1 Mie-Gruneisen equation-of-state parameters used in validation problems 

 ρ0 (g/cm3) C0 (cm/s) S (-) Γ (-) Cv (erg/g-K) 

Steel (RHA) 7.85 4.5e5 1.49 2.17 4.41208e6 

Uranium 18.62 2.487e5 1.56 2.32 1.05132e6 

Copper 8.93 3.94e5 1.49 1.99 3.92951e6 

Tungsten 17.76 4.03e5 1.237 1.67 1.35292e6 

Steel (Hardened) 7.85 4.5e5 1.49 2.17 4.41208e6 

 

Table 5.2 Johnson-Cook Strength Parameters used in validation problems 

  ν           
(-) 

A    
(d/cm2) 

B      
(d/cm2) 

C          
(-) 

M           
(-) 

N            
(-) 

Tmelt     
(K) 

Steel (RHA) 0.283 1.0e10 0.78e10 0.004 1.0 0.106 1783.0 

Uranium 0.3 1.79e10 1.121e10 0.007 1.0 0.25 1497.9 

Copper 0.333 8.97e8 2.9187e9 0.025 1.09 0.31 1380.7 

Tungsten 0.281 1.365e10 0.1765e10 0.016 1.0 0.12 3695.0 

Steel (Hardened) 0.299 0.81e10 0.5095e10 0.014 1.03 0.26 1818.0 

 

Frictionless Block Sliding 

The first three validation problems involve frictionless sliding of two 3cm x 3cm 

x 3cm steel cubes sliding in opposite directions at 1.0e5 cm/s with friction forces being 

neglected. In both the normal and angled sliding problems, material was moved through a 

fixed Eulerian mesh with uniform 0.2cm hexahedral elements. To emphasize the 

improvements made by the contact algorithm developed for this work three conditions 
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were examined that sequentially increased the number of mixed elements present in the 

simulation. First, a normal block sliding problem was run with no mixed material 

elements. Second, the normal block sliding problem was run with a half element width 

offset along the material interface. Finally, to further increase the number of elements 

along the interface boundary the blocks were rotated 45º about the z-axis. The initial 

configuration of these simulations are shown in Figures 5.1, 5.2, and 5.3 for the mesh 

aligned normal sliding, half-element offset normal sliding, and angled sliding problems 

respectively. Both the ALEAS and CTH runs used the Mie-Gruneisen equation of state 

and the Johnson-Cook strength model for steel. The equation of state and constitutive 

parameters for these simulations are listed in Tables 5.1 and 5.2 respectively. In the 

ALEAS with contact enforcement runs the multi-material momentum (MMM) option 

was turned on. The MMM option implements the contact algorithm created for this work 

which assigns each material its own velocity field and then performs the contact 

enforcement described in Chapter 3. For this set of simulations there is no experimental 

analog. These simulations serve to demonstrate the improvements made by this work and 

the weakness of Eulerian methods with a single velocity field and mixture theory. The 

result in this set of simulations is considered accurate if no deformation takes place along 

the material interface boundary. The results of this set of simulations, along with all other 

simulations described in this chapter are presented in Chapter 6.   
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Figure 5.1:  Setup for the mesh aligned normal block sliding problem. 

 

 

Figure 5.2: Setup for the half-element offset normal block sliding problem.  

V1=1000 m/s 

V2=-1000 m/s 

No mixed cells 

V1=1000 m/s 

V2=-1000 m/s 

Layer of mixed cells 
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Figure 5.3:  Setup for the angled block sliding problem 

The Taylor Impact Test 

The Taylor impact test was developed in 1948 by Taylor [87] to determine the 

dynamic yield strength of solids.  This test involves flat-nosed cylindrical projectiles 

impacting a rigid target at a nominal incidence.  This test is useful because of the fact that 

it subjects the material to a wide range of strain rates. Strain rates are very high at the 

impact front, but significantly lower in the undeformed section of the bar. As such, this is 

a very good test for revealing the strain hardening behavior of materials.  Since the test is 

highly reproducible and relatively inexpensive to perform it has become a standard 

method for determining material properties in ductile metals, viscoplastic materials, and 

polymeric materials by measuring the final deformed shape. The test allows the 

estimation of mean stress, mean strain, and mean strain rate, as well as dynamic yield 

stress.  These results will make up part of the constitutive models used in many numerical 

simulations [57] [6].  

V1=1000 m/s 

V2=-1000 m/s 
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The Taylor impact test is also widely used for the verification of computational 

codes and the associated material models.  Typically, a plot of the deformed 

configuration of the impactor is superimposed on the experimental data and a visual 

judgment of the accuracy is made.  There are several other methods used to compare 

Taylor impact tests.  These include comparing the final length of the deformed cylinder 

(Lf), the radius of the mushrooming end of the cylinder (Df), the length of the elastic zone 

(Xf), and the bulge at a given distance from the deformed end (Wf), as shown in Figure 

5.4.  While the use of these criteria do not provide a complete comparison of the accuracy 

of the simulations with experimental results they do allow users to evaluate codes being 

implemented, as is the case in this work.  

Detailed development of the theory and experimental methods of the Taylor 

impact test is outside the scope of this work and can be found in numerous sources, 

including [56], [57], [58], [68], and [87] among many others. 

As a means of further demonstrating the improvements made in this work and test 

the validity of ALEAS, the Taylor impact test was performed to model rapidly evolving, 

dynamic contact.  In this case, an annealed OFHC copper cylinder with a diameter of 

7.62 mm and a length of 23.47 mm was impacted onto an infinitely rigid plate at 210 m/s 

as presented by Banerjee in [6].  For this case, a fixed Eulerian mesh with uniform 0.025 

cm hexahedral elements was used.  The impacting annealed OFHC copper cylinder was 

represented by a Mie-Gruneisen equation-of-state and a Johnson-Cook elastic plastic data 

set in both CTH and ALEAS. This problem was allowed to progress for 100 

microseconds.  Again the multi-material momentum option in ALEAS was turned on.  To 

demonstrate the effect of mixed material elements simulations were performed with no 
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initial mixed cells as well as a half element offset to create a row of mixed cells along the 

material interface between the impactor and rigid plate. The setup of this problem is 

presented in Figures 5.5.  A comparison will be made to the results of the experiment 

presented in [6] to gauge the validity of the numerical results. 

 

Figure 5.4: Schematic of Taylor impact specimen pre-deformation (dotted-line) and 
post-deformation (solid line), along with common comparison parameters 

 

Figure 5.5:  Setup for Taylor impact problem. 
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Long Rod Penetration Problems 

Due to their natural ability to form new free surfaces without mesh distortion a 

primary use of Eulerian hydrocodes is the simulation of penetration problems. However, 

due to the numerical inaccuracies that arise from mixture theory artificial bonding that 

takes place in elements with multiple materials leads to a nonphysical reductions in 

residual penetrator velocities. Therefore, to demonstrate the improvements made by 

ALEAS a number of simulations have been performed to compare a variety of 

penetration cases to experimental results to demonstrate that the artificial slowing of the 

penetrator that results from bonding that takes place in mixture theory is significantly 

reduced by implementing the method developed in this work.  

Penetration by Projectiles with Combined Obliquity and Yaw 

Many ballistic penetration and defense applications can result in yawed and 

oblique impacts. For example, in an oblique impact of an unyawed penetrator into multi-

layered spaced armor the first layer deflects and rotates the projectile resulting in a yawed 

interaction with subsequent layers. Fugelso and Taylor [38] examined the penetration of 

uranium alloy (U 0.75 wt% Ti) rods into steel targets at a variety of yaws, obliquities, 

thicknesses, and velocities. As a means of validating the advantages of the method 

implemented in ALEAS MMM this work will use the three test conditions presented by 

Cagliostro, et al. [24] which utilized data from Fugelso and Taylor [38] to validate the 

MESA code.   

Figure 5.6 illustrates the orientation of the central axis of the rod and its velocity 

vector relative to a thin plate at +10º, 0º, and -10º yaw at an obliquity of 65º. In this figure 

the obliquity, γ, is defined as the angle between the velocity vector of the rod and the 
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plate normal using a coordinate system fixed to the plate. The angle β is the angle 

between the central axis of the penetrator and the plate. Therefore, the yaw angle, α, is 

defined as γ-β, which can be interpreted as the difference between the angle of the central 

axis of the rod and its velocity vector.   

 

Figure 5.6: Rod-plate geometries for oblique impacts at positive, zero, and negative 
yaws.  

 

These calculations are performed as a means of assessing the effects of positive, 

negative, and zero yaws on oblique impacts of penetrators into thin plates. Results will be 

compared to those obtained by Fugelso and Taylor.  

In the experiments conducted by Fugelso and Taylor, stable yawed impacts were 

obtained by moving a target plate with a specified obliquity into the path of a projectile 

having little or no initial yaw. Positive yaws were obtained by explosively launching a 

thin plate away from the projectile, while negative yaws were obtained by launching the 

plate towards the projectile.  
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The penetrators were cylindrical rods with hemispherical tips composed of 

uranium alloy (U-0.75 wt% Ti). They had a length of 7.67 cm and an aspect ratio (L/D) 

of 10. The mass of the projectile was 65 g. The plates had a thickness of 0.64 cm and 

were composed of rolled homogeneous armor (RHA). The initial velocities and 

orientations of the rods and plates were designed in such a way that the rod impact 

velocity relative to the plate was 1.29 km/s at an obliquity of 65º for yaws of -9.3º, 0º, 

and +10.3º.  

Rod and plate materials were modeled using the Mie-Gruneisen equation of state 

and Johnson-Cook strength model using the characteristics for Uranium and Steel (RHA) 

in Table 5.1. The mesh consisted of 0.125 cm hexahedral elements. Simulations ran to 

100 microseconds. The initial conditions for the 0º, -9.3º, and +10.3º yaw cases are 

shown in Figures 5.7, 5.8, and 5.9 respectively.  

 

Figure 5.7: Initial conditions for 0º yaw case. 

 

V0=1.29 km/s 
65º 
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Figure 5.8: Initial conditions for -9.3º yaw case. 

 

Figure 5.9: Initial conditions for +10.3º yaw case. 

Normal Impact of Long Rods into Steel Targets 

In addition to oblique impacts with various obliquities and yaws, Fugelso and 

Taylor also present data for normal (0º obliquity, 0º yaw) penetration of long uranium 

rods into a 5.08 cm thick RHA target. As a means of further comparison these 

experiments will be modeled in ALEAS and CTH and results will be compared to 

experimental data. The penetrators used in these experiments had the same characteristics 

as those used for the oblique impacts. The impact velocity of the penetrator was 1.2 km/s. 

In the experiments the target stopped the penetrator before just before perforating, so 

V0=1.43 km/s 

54.9º 

U=-284 m/s 

V0=1.21 km/s 

73.5º 

U=217 m/s 
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comparisons will be made to PHERMEX radiographs presented in the Fugelso and Tayor 

report and comparisons will be made to penetration depth and residual length of the 

penetrator. The mesh consisted of 0.1 cm hexahedral elements. The initial conditions for 

5.08 cm plate penetration is shown in Figures 5.10.   

 

 

Figure 5.10: Initial conditions for 5.08 cm plate penetration. 

Another class of impact and penetration events considered for the validation of 

ALEAS was the penetration of tungsten alloy long rod projectiles into semi-infinite steel 

targets. This class of problem has been studied extensively by Hohler and Stilp [45], [46] 

V
0 =1200 m

/s 
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and reproduced numerically by Anderson, et al. [2]. This class of problems is frequently 

used as a validation of hydrocodes, including work done by Park, et al. [75] to verify the 

implementation of the two-dimensional Eulerian X-FEM contact method in the ALEGRA 

code which serves as the source of data for the validations carried out here. The setup for 

the simulations, shown in Figure 5.11, consists of a tungsten-heavy-alloy cylindrical 

penetrator with diameter of 0.5 cm and length of 5 cm impacting a semi-infinite hardened 

steel target at initial velocities of 500, 1000, 1500, 2000, and 3000 m/s. Results of both 

CTH and ALEAS runs will be compared to a semi-analytical empirical fit originally 

devised by Lanz and Odermatt, and modified by Rapacki, et al. as presented in [75]. The 

semi-analytic fit for normalized penetration depth (P/L), a commonly used measure of 

penetration efficiency, is given by  

𝑃
𝐿 = 𝑎

𝜌ç
𝜌à
𝑒
b ^è

éêmê
ë 	 𝟓. 𝟏  

In this equation, the target material penetration resistance is represented by the quantity 

𝑆 = 𝑘 𝐵𝐻𝑁 í	 𝟓. 𝟐  

which has units of stress. The projectile and target densities are given by ρP and ρT, then 

striking velocity of the penetrator is given by VP, and the Brinnell hardness of the target is 

given by BHN. The quantities a, k, and M are obtained from a least squares fit of the 

formula to experimental data. For the experiment considered here the fit parameters have 

values of a=1.22817, k=1.63084 GPa, and M=0.373287. 



	

 

137	

 

Figure 5.11: Initial conditions for penetration of an L/D=10 tungsten rod into a semi-
infinite steel target. 

 

Sod Shock Tube Problem 

The Sod shock tube is a commonly used verification to assess the accuracy of 

fluid dynamics code which was first introduced by Gary Sod in 1978 [104]. The test 

consists of a one-dimensional Riemann problem in which an ideal gas at two different 

pressure and density states is initially separated by a diaphragm as seen if Figure 5.12. At 

time t=0 the diaphragm is broken resulting in the formation of three regions as the shock 

progresses through the medium, as seen in Figure 5.13. Regions 1 and 5 contain the 

undisturbed states of the gases, region 2 contains the rarefaction wave, region 3 contains 

the contact discontinuity, and region 4 contains the shock discontinuity. An analytical 

solution to the Sod shock tube problem can be developed to determine how well a code 

captures and resolves shocks and contact discontinuities. Comparisons will be made for 

density, pressure, and velocity at 10 ms given the initial conditions in Table 5.3. A 

Gamma Law equation-of-state was implemented in ALEAS for this validation problem to 

allow for the simulation of ideal gases. The Gamma Law equation-of-state has the form: 

𝑝 = 𝜌 𝛾 − 1 𝑒	 𝟓. 𝟑  

V0 
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where 𝛾 = 𝐶� 𝐶¢, 𝜌 is the gas density, and e is the specific internal energy. In CTH the 

Ideal Gas equation-of-state was used with the Bv parameter set to zero, giving the Gamma 

Law equation-of-state. The verification case under consideration consisted of a 0.1 cm x 

0.1 cm x 1 cm gas filled channel with an initial discontinuity at 0.5 cm. The mesh 

consisted of 200 elements in the Z-direction and 20 elements in the X- and Y-directions, 

having a size of 0.005 cm. 

 

 

Figure 5.12: Initial condition of the Sod shock tube verification. 

 

 

Figure 5.13: Sod shock tube at time t > 0.  
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Table 5.3: Initial states for the Sod shock tube verification. 

 Left 

0 cm ≤ x ≤ 0.5 cm 

Right 

0.5 cm ≤ x ≤ 1 cm 

Initial Density (g/cm3) 1.0 0.125 

Initial Pressure (d/cm2) 100.0 10.0 

Initial Specific Energy (erg) 250.0 200.0 

Gamma (--) 1.4 1.4 
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CHAPTER 6 

DISCUSSION AND RESULTS 

	

Results of Numerical Validation and Verification Problems 

In this section the results of the numerical validation problems described in 

Chapter 5 are presented and discussed. These numerical validations will serve to 

demonstrate the advantages of the Eulerian contact method described in this work as well 

as a comparison to problems which are handled well by existing Eulerian methods. As 

discussed in Chapter 4, the Eulerian hydrocode CTH along with the single material 

momentum (SMM) mixture theory formulation of ALEAS were used to compare to the 

multi-material momentum (MMM) contact formulation of ALEAS developed for this 

work. Since CTH uses a finite volume formulation, compared to the finite element 

formulation in ALEAS, agreement between results is not expected to be exact. Further 

difference between the two codes include the use of the van Leer MUSCL algorithm for 

material flux in CTH versus the lower order donor cell approach taken in ALEAS. CTH 

also uses face centered velocities, whereas ALEAS uses node-centered velocities, and a 

variety of other factors, including differences in implementation of boundary conditions, 

treatment of the stress tensor, and handling of multi-material cells will also affect results. 
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Frictionless Block Sliding 

Three frictionless block sliding problems were conducted to demonstrate the 

issues associated with a traditional Eulerian formulation which are solved using the 

approach taken in this work. The normal frictionless block sliding problems indicated 

that no intra-cell material replacement is taking place in the multi-material contact 

scheme.  The two blocks slid normally to each other at 1000 m/s as discussed previously. 

In the ALEAS MMM runs there is no deformation of the blocks in the mesh aligned case 

as can be seen in Figure 6.1 and 6.4. The ALEAS SMM and CTH runs show an 

erroneous deformation along the material interface in both the mesh aligned and offset 

mesh cases, as can be seen in Figures 6.2 and 6.5 for ALEAS SMM, and 6.3 and 6.6 for 

CTH respectively, with the deformation being greater in the offset mesh case due to 

increased shear stresses being introduced in the mixed elements at the interface. In the 

mesh aligned case only the four nodes on the face at the interface will have a zero 

velocity, so the effects are not as pronounced. In each case an erroneous shear strain is 

added as a result of the material bonding taking place in mixture theory. This results in 

the presence of the trailing material which is evident as the blocks move away from one 

another and also imparts a moment on the blocks causing them to rotate as they move 

away from one another.  

The problems associated with multi-material contact in a traditional Eulerian 

scheme are further illustrated by the angled frictionless block sliding problem.  As 

discussed in Chapter 5, there was a large amount of deformation along the interface 

boundary in the ALEAS SMM and CTH calculations, shown in Figures 6.8 and 6.9.  This 
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also resulted in the presence of a large amount of trailing material as the blocks separated 

from one another.  This is indicative of large amounts of material replacement and 

material bonding taking place along the interface boundary.  The increased deformation 

shown in Figures 6.8 and 6.9 over Figures 6.2, 6.3, 6.5, and 6.6 can be attributed to the 

increased number of cells in which mixture theory is implemented.  By angling the 

blocks to slide at a 45º angle about the Z-axis the number of cells falling along the 

material interface is greatly increased and thus causes the problem with mixture theory to 

be emphasized.  When the contact method developed in this work was implemented, 

however, there was no deformation present along the material interface of the blocks and 

no material replacement taking place.  As such, the pure advection problems have been 

validated using the multi-material Eulerian scheme with contact described in the 

formulation section.  Figure 6.7 illustrates the ALEAS MMM Eulerian formulation with 

contact modeling, while Figures 6.8 and 6.9 depict traditional Eulerian methods 

implemented in ALEAS SMM and CTH for the angle block sliding problem.  In CTH the 

amount of trailing material can be adjusted by changing the PFRACn parameter in the 

fracture card. In the cases presented here, a reasonable value of -18.0e9 dynes/cm2 for 

RHA was used. Decreasing this value will result in a reduction of trailing material, but it 

should be noted that this is an ad hoc method for simulating sliding. Since this method 

involves fracture it does not provide a realistic description of the interface, which are not 

physically bonded. However, since ALEAS MMM does not use cell mixture theory, the 

use of a fracture model is unnecessary and, thus, not implemented here. Since no fracture 

model has currently been implemented in ALEAS the amount of trailing material in the 

ALEAS SMM cases are slightly greater than those seen in CTH. 
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Furthermore, CTH includes a pair of options that attempt to remedy the artificial 

bonding along material interfaces. The SLIDE option attempts to solve this issue by 

setting the shearing velocity gradients to zero, approximating the condition that the 

velocity is discontinuous along the sliding interface. The BLINT option creates a 

boundary layer between sliding materials. A detailed description of the BLINT algorithm 

in two-dimensions can be found in [83]. It is important to note that the CTH user’s 

manual [81] indicates that the SLIDE option can produce unexpected results and should 

be used with care, and that the BLINT option is not fully implemented in three-

dimensions. To determine the benefits and limitations of these options, runs were 

conducted using both options with the mesh aligned and mesh offset normal block sliding 

cases. As can be seen in Figure 6.10, both the SLIDE and BLINT options perform 

extremely well in the mesh aligned case where no mixed elements are present, yielding 

results comparable to those obtained in ALEAS MMM. However, when a layer of mixed 

elements was introduced both options resulted in larger amounts of trailing material than 

was seen in the CTH run without the sliding contact options activated. Subsequent tests 

with the angled sliding problem further illustrated that these options do not perform well 

for mixed element cases in three dimensions. As a result, it was determined that the 

applicability of these options was limited in three-dimensions and, as such, they would 

not be used for comparison of subsequent validation simulations. 
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(a)     (b) 

  

(c)     (d) 

Figure 6.1:  ALEAS MMM normal block sliding problem with no initial mixed elements 
at 0, 10, 20, and 30 µs. 
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(a)     (b) 

  

(c)     (d) 

Figure 6.2:  ALEAS SMM normal block sliding problem with no initial mixed elements 
at 0, 10, 20, and 30 µs. 
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(a)     (b) 

  

(c)     (d) 

Figure 6.3:  CTH normal block sliding problem with no initial mixed elements at 0, 10, 
20, and 30 µs. 
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(a)     (b) 

  

(c)     (d) 

 

Figure 6.4:  ALEAS MMM normal block sliding problem with layer of initial mixed 
elements at 0, 10, 20, and 30 µs. 
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(a)     (b) 

  

(c)     (d) 

 

Figure 6.5:  ALEAS SMM normal block sliding problem with layer of initial mixed 
elements at 0, 10, 20, and 30 µs. 
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(a)     (b) 

  

(c)     (d) 

Figure 6.6:  CTH normal block sliding problem with layer of initial mixed elements at 0, 
10, 20, and 30 µs. 
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(a)     (b) 

  

(c)     (d) 

Figure 6.7:  ALEAS MMM angled block sliding problem at 0, 10, 20, and 30 µs. 
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(a)     (b) 

   

(c)     (d) 

Figure 6.8:  ALEAS SMM angled block sliding problem at 0, 10, 20, and 30 µs. 
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(a)     (b) 

  

(c)     (d) 

Figure 6.9:  CTH angled block sliding problem at 0, 10, 20, and 30 µs. 
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CTH Option Mesh Aligned Offset Mesh 

Standard Mixture 
Theory with 

Fracture 

  

BLINT 

  

SLIDE 

  

 

Figure 6.10: Comparison of available sliding interface options in CTH 
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Taylor Impact Tests 

In addition to block sliding and advection problems it was also desired to model 

contact-impact using the algorithm developed in this work.  Since Eulerian hydrocodes 

are the primary method used for modeling problems that involve large deformations as 

well as hypervelocity impacts and penetrations, it was desirable to implement the method 

presented here for that class of problems.  This method can thus be used to much more 

accurately model the physics taking place in the problem.  In the Taylor impact test the 

effects of friction along the interface between the impactor and the rigid target can be 

neglected, and as such no material replacement along the interaction boundary of the 

materials should occur.   

While it is possible to perform the Taylor test in CTH and ALEAS SMM using a 

reflective boundary condition, the goal here is to demonstrate contact between a rigid 

target and a deforming impactor with the target explicitly modeled. CTH does include an 

option to model a rigid material, which is essentially an internal boundary condition, but 

in testing of this option parts of the impactor would pass through the rigid boundary 

rendering the solution invalid. In order to simulate a rigid plate in CTH a plate of 

uranium alloy with a yield stress of 1.0E+99 was placed on a symmetry boundary. While 

this plate is not truly “rigid” the deformation is negligible and allows for a direct 

comparison to ALEAS. As can be seen in Figures 6.11 and 6.14 for the mesh aligned and 

offset mesh cases respectively, the results of the contact algorithm are directly reflected. 

The ALEAS MMM simulations showed that the lateral velocity of the copper impactor 

was nonzero at the interface, and as can be seen in Figures 6.17 and 6.18, the deformation 

profile of the impactor shows significant improvement over the ALEAS SMM and CTH 
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profiles for both the mesh aligned and offset mesh cases. Furthermore, at late time in the 

ALEAS MMM cases the impacting bar rebounds off of the rigid target.  Material 

separation is commonly seen in multi-material algorithms that make use of a single-

material velocity field; however, in those cases the separation is due to the use of multi-

material fracture models.  The rebounding occurring in this case, rather, is a direct result 

of the contact enforcement and has nothing to do with fracture [64]. The traditional 

Eulerian calculations performed in ALEAS SMM and CTH and displayed in Figures 6.12 

and 6.15 and 6.13 and 6.16 demonstrate the advantages of using the contact enforcement 

method developed in this work. A summary of various measures of the final deformed 

shape is shown in Table 6.1. In Table 6.1 Lf is the final deformed length of the impactor, 

Rf is the maximum radius of spread at the impact interface, Xf is the length of the 

undeformed section at the rear of the impactor, and Wf is the radius of the impactor at 0.4 

cm from the impact front. Errors with respect the experimental data for each of these 

parameters is also reported. First, the spread of material along the interface was 

significantly reduced in ALEAS SMM and CTH, resulting in poor agreement to the 

deformation profiles shown in Figures 6.17 and 6.18.  This is a direct result of the 

bonding and material replacement properties of traditional Eulerian methods that utilize 

mixture theory. In reality, the material should be free to move laterally along the surface 

of the rigid plate, however, since only a single velocity field is present the velocity of 

both materials within the element are the same and the shearing velocity gradients are 

non-zero resulting in the restriction of lateral movement of material. Furthermore, in the 

ALEAS SMM and CTH runs the bar remains bonded to the target at late time as the 

deformation reaches its maximum and the sign of the velocity changes. This should result 
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in rebounding of the bar as was seen in ALEAS MMM, but since no ad hoc fracture 

method was implemented in these runs the bar remains bonded to the plate, as is typical 

of mixture theory.  

As can be seen in Figure 6.19, it is also interesting to note that at early time, 

starting around 2µs and lasting until ~7µs, in the ALEAS MMM runs the center of the 

Taylor bar lifts off the rigid plate. This phenomenon is also noted in Lagrangian 

simulations of the Taylor impact experiment, but would be impossible to recreate in an 

Eulerian simulation using mixture theory, such as the ones conducted in this work using 

ALEAS SMM and CTH.  
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(a)      (b) 

  

(c)      (d) 

Figure 6.11:  ALEAS MMM Taylor impact problem with no initial mixed cells at 0, 25, 
50, and 100 µs. 
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(a)      (b) 

  

(c)      (d) 

Figure 6.12:  ALEAS SMM Taylor impact problem with no initial mixed cells at 0, 25, 
50, and 100 µs. 
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(a)      (b) 

  

(c)      (d) 

Figure 6.13:  CTH Taylor impact problem with no initial mixed cells at 0, 25, 50, and 
100 µs. 
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(a)      (b) 

  

(c)      (d) 

Figure 6.14:  ALEAS MMM Taylor impact problem with layer of initial mixed cells at 
0, 25, 50, and 100 µs. 
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(a)      (b) 

  

(c)      (d) 

Figure 6.15:  ALEAS SMM Taylor impact problem with layer of initial mixed cells at 0, 
25, 50, and 100 µs. 
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(a)      (b) 

  

(c)      (d) 

Figure 6.16:  CTH Taylor impact problem with layer of initial mixed cells at 0, 25, 50, 
and 100 µs. 
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Figure 6.17:  Comparison of deformation profile for ALEAS MMM, ALEAS SMM, 
CTH, and experiment for mesh aligned Taylor impact. 

 

 

Figure 6.18:  Comparison of deformation profile for ALEAS MMM, ALEAS SMM, 
CTH, and experiment for Taylor impact with initial layer of mixed cells. 
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Figure 6.19:  Profile of ALEAS MMM Taylor impact at 5µs showing separation of the 

center of the bar from the rigid plate. 
 

 
Table 6.1: Summary of measures of final deformation for the Taylor impact simulations 

 Lf  
(cm) 

Lf 
Error 
(%) 

Rf 
(cm) 

Rf 
Error 
(%) 

Xf 
(cm) 

Xf 
Error 
(%) 

Wf 
@0.4cm 

(cm) 

Wf 
Error 
(%) 

Experiment 
 1.513 - 0.834 - 0.435 - 0.510 - 

MMM 
Aligned 1.530 1.124 0.736 11.75 0.429 1.379 0.491 3.725 

SMM 
Aligned 1.541 1.851 0.613 26.50 0.284 34.71 0.534 4.706 

CTH 
Aligned 1.517 0.026 0.603 27.70 0.248 42.99 0.544 6.667 

MMM 
Offset 1.561 3.173 0.717 14.03 0.414 4.828 0.492 3.529 

SMM 
Offset 1.575 4.098 0.620 25.66 0.323 25.75 0.543 6.471 

CTH  
Offset 1.534 1.388 0.611 26.74 0.303 30.34 0.550 7.843 
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Penetration by Projectiles with Combined Obliquity and Yaw 

The penetration of oblique plates by projectiles of various yaw serves as a means 

of demonstrating the shortcomings of traditional Eulerian formulations with mixture 

theory. Due to the increased interaction between materials as the rod passes through the 

plate an artificial slowing of the rod compared to experimental data is often seen due to 

material bonding when mixture theory is employed. This result is not desirable, 

especially for applications such as multi-layered armor or other events where the ability 

to accurately model a secondary or further subsequent impact is important. In the 

simulations presented here a long uranium alloy rod penetrates an oblique RHA plate at 

various obliquities and yaws. As described previously in Chapter 5, the effective yaws 

were obtained by launching the plate toward the penetrator in the negative yaw case and 

away from the penetrator in the positive yaw case. A 0º yaw case was also performed, but 

no experimental data was available to compare to. This case, shown in Figures 6.20, 6.21, 

and 6.22 for ALEAS MMM, ALEAS SMM, and CTH respectively, should result in 

relatively small slowdown of the rod since only the head of the impactor is interacting 

with the plate. As can be seen in the summary of results in Table 6.2, this was indeed the 

case for both ALEAS MMM and SMM as well as CTH, which had Vf/V0 values of 

0.9386, 0.8719, and 0.9358, respectively. The ALEAS SMM case resulted in the greatest 

slowdown due to lack of a fracture model, which was used in the CTH calculations. The 

true benefit of the contact method employed in ALEAS MMM can be seen in the positive 

and negative yaw cases. Since the plate is moving relative to the rod the contact will be 

extended along the body of the rod. Since ALEAS MMM does not employ mixture 

theory this artificial slowing of the rod is not seen. In the case of the +10.3º yaw 
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simulation the top of the rod interacts with the plate for a prolonged period of time. In the 

ALEAS SMM and CTH simulations this results in a Vf/V0 value of 0.8350 and 0.8495, 

compared to the experimental value of 0.9077. The ALEAS MMM simulation resulted in 

an improved Vf/V0 of 0.9004. Since the plate obliquity was a fairly steep 54.9º in this 

case the plate material is displaced fairly quickly, so the interaction with the rod is 

relatively small compared the -9.3º yaw case. In that case the bottom of the penetrator is 

in prolonged contact with the plate due to the relatively flat 73.5º obliquity angle and the 

upward motion of the plate toward the penetrator. In this case the performance of an 

Eulerian formulation with mixture theory is severely inhibited. This is apparent in 

Figures 6.27 and 6.28 in which nearly the entire length of the rod is interacting with the 

plate at 50 µs and a large fragment sticks to the penetrator and moves away from the plate 

at late time resulting in a Vf/V0 values of 0.6802 and 0.7771 for the ALEAS SMM and 

CTH simulations compared to an experimental value of 0.8835. In the ALEAS MMM 

simulation of the -9.3º yaw case no such bonding is present and the Vf/V0 value is 

significantly improved to 0.8982.  

Table 6.2 also reports the final length of the penetrators at 100 µs. It should be 

noted that in all cases both the ALEAS and CTH simulations resulted in residual lengths 

greater than the experimental values, however, as noted by Cagliostro [24], the final rod 

lengths from the experiments had a fairly high degree of scatter, so the simulations may 

not be picking up some complex feature that takes place in the experiment due to the 

relative simplicity and idealized nature of the models.  

It should be noted that the ripples along the top of the rod in the 100 µs image of 

Figure 6.20 and the bulge at the rear of the penetrator at the same time in Figure 6.26 are 
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a result of self-contact with debris as the rod moves through the plate. Modeling self-

contact in an Eulerian hydrocode poses significant difficulty. Since only a single volume 

fraction is present for each material in an element all material is considered to be in 

contact and homogeneous. The inability to properly handle self-contact illustrates one 

limitation that still exists in ALEAS MMM, as well as all current Eulerian hydrocodes. 

While this problem is not addressed in this dissertation it would be an interesting topic to 

examine in future work. 
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Figure 6.20:  ALEAS MMM penetration of uranium rod into steel plate with 0º yaw at 0, 
50, and 100 µs 
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Figure 6.21:  ALEAS SMM penetration of uranium rod into steel plate with 0º yaw at 0, 
50, and 100 µs 
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Figure 6.22:  CTH penetration of uranium rod into steel plate with 0º yaw at 0, 50, and 
100 µs 
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Figure 6.23:  ALEAS MMM penetration of uranium rod into steel plate with +10.3º yaw 
at 0, 50, and 100 µs 
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Figure 6.24:  ALEAS SMM penetration of uranium rod into steel plate with +10.3º yaw 
at 0, 50, and 100 µs 
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Figure 6.25:  CTH penetration of uranium rod into steel plate with +10.3º yaw at 0, 50, 
and 100 µs 
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Figure 6.26:  ALEAS MMM penetration of uranium rod into steel plate with -9.3º yaw at 
0, 50, and 100 µs 
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Figure 6.27:  ALEAS SMM penetration of uranium rod into steel plate with -9.3º yaw at 
0, 50, and 100 µs 
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Figure 6.28:  CTH penetration of uranium rod into steel plate with -9.3º yaw at 0, 50, and 
100 µs 

 

 

 

  



	

 

177	

 
 
 
 
 
 
 

 
Figure 6.29: Comparison of normalized exit velocity versus yaw angle. 
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Table 6.2: Summary of results from combined obliquity and yaw simulations and 
experiments 

 V0,rod 
(km/s) 

V0,plate 
(km/s) 

Obliquity 
(º) 

Lf      
(mm) 

Vf,rod 
(km/s) 

Vf/V0,rod  
(-) 

ALEAS MMM       
-9.3º Yaw 

1.21 0.217 73.5 64.00 1.087 0.8982 

ALEAS SMM       
-9.3º Yaw 

1.21 0.217 73.5 65.48 0.823 0.6802 

CTH                
-9.3º Yaw 

1.21 0.217 73.5 61.45 0.940 0.7771 

Experiment      
-9.3º Yaw 

1.21 0.217 73.5 55.5 1.069 0.8835 

ALEAS MMM     
+10.3º Yaw 

1.43 -0.284 54.9 58.48 1.288 0.9004 

ALEAS SMM     
+10.3º Yaw 

1.43 -0.284 54.9 56.51 1.194 0.8350 

CTH          
+10.3º Yaw 

1.43 -0.284 54.9 57.32 1.215 0.8495 

Experiment    
+10.3º Yaw 

1.43 -0.284 54.9 43.0 1.298 0.9077 

ALEAS MMM       
0º Yaw 

1.29 0 65 63.18 1.211 0.9386 

ALEAS SMM       
0º Yaw 

1.29 0 65 62.83 1.125 0.8719 

CTH              
0º Yaw 

1.29 0 65 58.62 1.207 0.9358 

Experiment    
0º Yaw 

1.29 0 65 - - - 
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Normal Impact of Long Rods into Steel Targets 

The penetration sequence of a uranium long rod impacting a 5.08 cm steel target 

presented in Figure 5 of Fugelso and Taylor [38] served as another validation of ALEAS. 

While the role of contact in both this problem and the semi-infinite target problems 

presented in the next section is less important due to erosion of material at the impact 

front these problems serve as a good comparison to the traditional Eulerian methods. To 

ensure that ALEAS is capable of producing reasonable results in problems that standard 

Eulerian methods tend to handle well the normal penetration of long rods is examined 

here. In the case presented in Fugelso and Taylor [38] we can examine two measures to 

determine the validity of the solution, the depth of penetration and the final length of the 

penetrator, Lf. The results of the ALEAS MMM, SMM, and CTH simulations are shown 

in Figures 6.30, 6.31, and 6.32 respectively and are summarized in Table 6.3. As can be 

seen all three simulations resulted in a reasonable match to depth of penetration. The 

ALEAS MMM run resulted in an error of 6.58%, compared to the experiment, while 

ALEAS SMM and CTH had errors of 3.17% and 1.48% respectively. Both CTH and 

ALEAS underestimated the Lf of the penetrator. The likely reason for this is an issue with 

the material strength model. The Cagliostro and Fugelso reports only list a yield stress for 

the depleted uranium impactor, so parameters from the CTH library Johnson-Cook 

strength model were used with the A parameters being adjusted to match the reported 

yield stress. Figure 6.33 shows a comparison between the PHERMEX radiograph of the 

test at 98.1 µs and the ALEAS MMM, SMM, and CTH results at the same time. 
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Figure 6.30:  ALEAS MMM normal penetration of uranium rod into 5.08cm steel plate 
at 0, 50, and 100 µs 
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Figure 6.31:  ALEAS SMM normal penetration of uranium rod into 5.08cm steel plate at 
0, 50, and 100 µs 
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Figure 6.32:  CTH normal penetration of uranium rod into 5.08cm steel plate at 0, 50, 
and 100 µs 
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(a)     (b) 

   

(c)      (d) 

Figure 6.33:  Comparison of normal penetration of uranium rod into 5.08cm steel plate at 
98.1 µs, (a) Fugelso and Taylor PHERMEX radiograph [38], (b) ALEAS MMM, (c) 

ALEAS SMM, and (d) CTH 
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Table 6.3: Summary of results for 5.08 cm plate penetration 

 Depth of 
Penetration (mm) 

Lf                         
(mm) 

ALEAS MMM 42.41 17.93 

ALEAS SMM 46.84 18.11 

CTH 46.07 14.11 

Experiment 45.40 21.10 
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Long Rod Penetration of Semi-infinite Targets 

As mentioned in the previous discussion of the 5.08 cm plate impact, the 

penetration of long rods is commonly used to validate hydrocodes. This section discusses 

the results of a series of tungsten long rod penetrations into hardened steel targets as 

discussed in [75]. As can be seen in Figure 6.42, ALEAS SMM and CTH perform very 

well when simulating impacts of this type. ALEAS MMM showed very good agreement 

at high impact velocities, but provided somewhat less accurate results for penetrator 

velocities of 1500 m/s and lower. Figure 6.42 shows the penetration efficiency (P/L) 

versus projectile striking velocity. While there are relatively large differences between 

the simulation results and the fit to experimental data for some cases it should be noted 

that a mesh convergence study has not been conducted due to the current limitations of 

ALEAS. As such the most refined mesh possible given ALEAS’s current memory limits, 

as discussed in the next section of this chapter, was used. While this limitation certainly 

affects the validity of the solution, as can be seen in Figure 6.42, the results obtained for 

the zoning size used in these ALEAS simulations compare favorably to those reported for 

the same zoning size at 1500 m/s in the two-dimensional axisymmetric X-FEM contact 

implementation in the ALEGRA code in [75]. While this could be coincidental, it 

provides reason to believe that an increased mesh resolution would improve the 

performance of the contact formulation. In the current implementation of the contact 

algorithm a fairly refined mesh is required due to averaging that takes place for the 

determination of the nodal contact normal vector and excess volumes. Furthermore, the 

contact model implemented in ALEAS MMM relies on averaging of interface areas in 

order to simplify the algorithm. It is possible that this results in contact velocity changes 
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that are slightly too high in the direction opposite to the impact direction and leads to 

decreased penetration depths. Future work will include improvements to the contact 

algorithm and a mesh resolution study will be conducted once the memory limitation in 

ALEAS is resolved.  

 

 

 

 

 

Figure 6.34:  ALEAS MMM penetration of L/D=10 tungsten alloy rod into steel target 
with V0=3000m/s at times 0, 25, and 50 µs 
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Figure 6.35:  ALEAS SMM penetration of L/D=10 tungsten alloy rod into steel target 
with V0=3000m/s at times 0, 25, and 50 µs 
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Figure 6.36:  CTH penetration of L/D=10 tungsten alloy rod into steel target with 
V0=3000m/s at times 0, 25, and 50 µs 
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Figure 6.37:  Comparison of maximum penetration depth for ALEAS MMM (top), 
ALEAS SMM (center), and CTH (bottom) penetrations of L/D=10 tungsten alloy rods 

into steel targets with V0 of 500 m/s 
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Figure 6.38:  Comparison of maximum penetration depth for ALEAS MMM (top), 
ALEAS SMM (center), and CTH (bottom) penetrations of L/D=10 tungsten alloy rods 

into steel targets with V0 of 1000 m/s 
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Figure 6.39:  Comparison of maximum penetration depth for ALEAS MMM (top), 
ALEAS SMM (center), and CTH (bottom) penetrations of L/D=10 tungsten alloy rods 

into steel targets with V0 of 1500 m/s 
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Figure 6.40:  Comparison of maximum penetration depth for ALEAS MMM (top), 
ALEAS SMM (center), and CTH (bottom) penetrations of L/D=10 tungsten alloy rods 

into steel targets with V0 of 2000 m/s  
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Figure 6.41:  Comparison of maximum penetration depth for ALEAS MMM (top), 
ALEAS SMM (center), and CTH (bottom) penetrations of L/D=10 tungsten alloy rods 

into steel targets with V0 of 3000 m/s 



	

 

194	

 

Figure 6.42:  Comparison of normalized depth of penetration (P/L) for ALEAS MMM, 
ALEAS SMM, CTH, and fit to experimental data [75] for L/D=10 tungsten alloy rods 

into steel targets 
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Sod Shock Tube 

	 The Sod shock tube verification problem presented here is a three-dimensional 

representation of a one-dimensional problem. The shock moves in a planar fashion as it 

propagates through the medium in the Z-direction. In these simulations the X- and Y-

directions had dimensions of 0.1 cm, while the Z-direction was 1 cm in length. Figures 

6.43 to 6.45 show the contour plots of pressure, density, and velocity at 10 ms. These 

slices were taken at the midplane in the Y-direction. Figures 6.46 to 6.48 show the 

pressure, density, and velocity values versus position in the Z-direction that correspond to 

the row of elements along the centerline of Figures 6.43 to 6.45. As can be seen in 

Figures 6.46 to 6.48, the ALEAS MMM Sod shock tube results, shown in red, show 

generally good agreement to the analytical solution, shown in black, and agreement could 

be improved by increasing the mesh refinement. ALEAS MMM also resulted in very 

close agreement to the ALEAS SMM result, shown as blue dots. The CTH simulation, 

shown as a green dashed line, tends to more closely approximate the analytical result 

with the exception of an overshoot in velocity and an undershoot in pressure and velocity 

at the tail of the rarefaction wave. An oscillation at the contact discontinuity in the 

ALEAS MMM result can be seen in the velocity plot of Figure 6.43. This is not seen in 

the ALEAS SMM or CTH results due to the smearing of the interface that takes place as 

a result of mixture theory. This can be further seen to a small extent in Figure 6.46 and to 

a greater extent in Figure 6.48 at ~0.6 cm, where ALEAS MMM showed a small 

oscillation due to small amounts of error in the change in velocity due to contact being 

introduced during the contact enforcement step. The current contact enforcement method 

implemented in ALEAS MMM tends to over-estimate the ∆v values when only one 
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interface is present in the elements surrounding a node, meaning that the eight elements 

surrounding the node of interest are completely full of one material and a sliver of 

another material is present that needs to be moved completely out of the element. 

Methods for eliminating this are under investigation and will be examined in future work.  

 

 

Figure 6.43: ALEAS MMM Sod shock tube results for pressure (top), density (center), 
and velocity (bottom) at 10 ms 
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Figure 6.44: ALEAS SMM Sod shock tube results for pressure (top), density (center), 

and velocity (bottom) at 10 ms 
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Figure 6.45: CTH Sod shock tube results for pressure (top), density (center), and velocity 
(bottom) at 10 ms 
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Figure 6.46: Comparison of pressure for Sod shock tube validation at 10 ms 

 

Figure 6.47: Comparison of density for Sod shock tube validation at 10 ms 



	

 

200	

 

Figure 6.48: Comparison of velocity for Sod shock tube validation at 10 ms 
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Discussion of Results 

There are several advantages to using the contact formulation described in 

Chapter 3 of this work.  Since this formulation treats each material separately, and there 

are no quantities associated with the whole cell, such as temperature, pressure, or strain 

rate; there is no need for the use of traditional cell mixture theory involving mixed cell 

thermodynamic, strength, and fracture algorithms, all of which provide a source of error 

in the calculations.  Additionally, the form of the conservation equations used in these 

formulations guarantees element-level conservation of mass, momentum, and energy.  

This allows for the amount of material being transferred between adjacent elements to be 

determined easily.  One other feature that distinguishes the approach used in this work is 

that each material has its own velocity field and, consequently, separate densities, 

velocities, energies, and stresses are updated for each material. As a result, contact 

constraints can be implemented and the physics taking place at the interface can more 

accurately be modeled. 

The main complication of this method is a result of the ability of each material to 

have its own velocity field.  Because of this it is possible for advection volumes to 

become complicated in shape or even disjoint.  This difficulty is accounted for by using 

interface tracking, however not in the traditional sense.  In a typical multi-material 

Eulerian contact formulation interface tracking is used to determine the contents of an 

advection volume whose shape is known.  However, in this formulation the contents of 

the advection volume are known, and thus the shape of the advection volume can be 

determined.  The advantages of using the formulation presented in this work are evident 

and can be seen in the results of the validation problems described shown in this chapter.  
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This method is most applicable to problems involving large stresses and 

deformations, but where the role of sliding contact is important. It is best suited to be 

used when stresses and deformations are too large to be handled by Lagrangian codes, 

but sliding contact, which cannot be handled properly by traditional Eulerian codes, is 

also critical to the accuracy of the solution. The normal penetration validation problems, 

which primarily rely on hydrodynamic deformation, have shown that this method 

performs admirably in cases where traditional Eulerian formulations perform well, but 

the added computational cost of the method and slightly reduced accuracy make the 

choice of the method presented here less appealing for modeling cases where accurately 

capturing the contact interface is less important. 

It should be noted that a finely zoned mesh is important for the problems 

presented here, however some of these simulations are likely under-refined. For instance, 

the mesh size used in the semi-infinite rod penetration simulations was 0.05 cm cubes, 

which [75] notes resulted in relatively poor agreement for the 1500 m/s impact case in the 

2D axisymmetric ALEGRA X-FEM code, in that work mesh convergence was reached 

with zoning of 0.0125 cm in the area of interest. Unfortunately, due to the current 

limitation of ALEAS only ~2e6 elements can be read into memory. Overcoming this 

limitation would necessitate either an overhaul of the memory allocation structure in 

ALEAS or a complete changeover from FORTRAN77 to a newer version of FORTRAN 

to allow for use of quad-precision integers in the memory management routines. 

Furthermore, ALEAS is currently limited to uniform meshes, so the use of a graded 

mesh, which would allow for high refinement in the area of interest with coarser 
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refinement in other areas of the mesh, are not currently available. These issues are 

currently under investigation and will be addressed in future revisions of the code. 

In order to maintain numerical stability a number of steps had to be taken. For 

instance, elements which contained very small volume fractions, typically less than 1e-

11, would sometimes lead to velocities many orders of magnitude greater than expected. 

To control this materials with element volume fractions less than 1e-11 were removed 

from the calculation and their content replaced with void. While this is a very small 

source of error it was necessary for stability of the calculation. Furthermore, to avoid 

issues associated with round-off error a tolerance of 1e-13 was implemented throughout 

the code. In cases where this tolerance was implemented a value less than the tolerance 

was assumed to be giving a nonzero value because of limitations resulting from the 

precision of the system and thus was reset to zero. 

An artificial viscosity consisting of both a linear and quadratic term was also used 

to improve the stability of the simulations. This is used to treat discontinuities from shock 

waves and reduce ringing in the solution. In ALEAS the artificial viscosity calculation 

has been implemented in the Lagrangian step and included with the Cauchy stress 

components to solve the momentum and energy equations. This is the method which is 

commonly implemented in hydrocodes, however, it is unknown how the addition of the 

contact enforcement step will affect ringing in the simulations and if additional 

provisions need to be made to improve stability. While this type of stability issue was not 

noticed in the validation problems presented here more extensive testing is needed. This 

will be studied as part of future work.   
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Several approximations were made in order to reduce the complexity of the 

solution process. For instance, the description of the normal vector in interface tracking 

by 𝐧 = −∇𝜙 ∇𝜙  is one of many possible options. The determination of a surface 

normal for a non-planar surface contained within an element is inherently difficult. The 

use of Youngs’ interface reconstruction algorithm, while providing a significant 

improvement over other available methods, does not accurately capture the surface 

geometry and allows for discontinuities in material interfaces at element boundaries. 

Despite its drawbacks Youngs’ method is relatively simple to implement and more 

accurate than other existing interface reconstruction methods. Furthermore, determining a 

normal vector for the contact interface is also difficult. Since the interfaces are not 

necessarily aligned during contact enforcement it is possible to have normal vectors 

which are not equal and opposite. A method of determining an average surface and using 

the normal vector associated with that surface was used in this work, but this may not 

always be the best choice, especially in cases of contact between hard and soft materials. 

While the influence of these approximations is small they do contribute a source of error 

in the calculations, however, this error is expected to be reduced as mesh resolution is 

increased. 

One further drawback of this approach is the added computational cost. A 

comparison of the computational costs for each class of validation problems when run 

using ALEAS SMM and ALEAS MMM is shown in Table 6.4. Because each class of 

validation problems resulted in similar runtimes and memory requirements Table 6.4 lists 

a typical result for each class of validations. The cost value listed is the runtime or 

memory required by the ALEAS MMM calculation divided by the value for the ALEAS 
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SMM calculation. All problems were run to 100 µs with plot dumps performed every 1 

µs. The plot format used in ALEAS is a VTK ASCII format, used for its ease of 

implementation. However, this format is also very inefficient and results in significant 

slowdowns in runtime. There is also an added cost for ALEAS MMM when generating 

plot files due to the increased velocity and material specific information. Since the cost of 

generating plot files can be greatly reduced using a variety of other approaches Table 6.4 

also lists runtime costs with the time required to generate plot dumps removed to better 

demonstrate the cost incurred by the method presented here. It should also be noted that 

since ALEAS is a research code many of the algorithms and methods used have not 

undergone optimization to improve code efficiency. Because of this it is likely that the 

cost of the contact enforcement can be further reduced.  

Table 6.4: Computational cost of the contact method 

 
Runtime Cost 

Factor  
(with plots) 

Runtime Cost 
Factor  

(without plots) 

Memory Cost 
Factor* 

 
Block Sliding 1.209 1.201 1.021 

Taylor Impact 1.107 1.065 1.023 

Oblique Penetration 1.263 1.074 1.019 

Normal Penetration   
(2” Target) 1.352 1.418 1.017 

Normal Penetration 
(Semi-infinite Target) 1.436 1.529 1.020 

 

As can be seen, the cost of using the method presented here is highly dependent 

on the number of mixed cells that must be considered during contact enforcement. It 

should be noted that since ALEAS is a research code several of these runs included job 
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specific debugging output. In some cases the amount of output was fairly substantial and 

the output may have changed between MMM and SMM runs. Therefore these runtime 

cost values may be skewed, but should provide a fairly reasonable approximation of the 

cost the user might expect for the validation runs presented here. The memory cost 

appears to be negligible, however, this is likely a result of a bug in the memory allocation 

routine which initializes arrays based on the expectation for ALEAS MMM, rather than 

reducing the memory requirement when only a single velocity field is required for 

ALEAS SMM. The actual memory cost would likely be much more substantial, on the 

order of 1.5-2.0, if the memory allocation routine was corrected due to the addition of 

separate velocity fields for each material. However, given the large amounts of memory 

available on modern computers the added memory cost can often be accommodated fairly 

easily.  

Despite the limitations of ALEAS discussed here, the results show a significant 

improvement in the accuracy of problems where sliding contact is important and 

comparable performance to the traditional Eulerian formulation in other situations.  

Readers interested in implementing the method presented here should note that 

the process requires a number of modifications to existing Eulerian and ALE finite 

element codes. First, the reader must ensure that the form of the conservation equations 

implemented in the code is the same as that described in Chapter 3 of this work. In terms 

of data structure, all velocity arrays, as well as those associated with velocity such as 

momentum arrays, must be made multi-dimensional to accommodate separate velocity 

fields for each material. Interface tracking routines must be modified to run separately for 

each material and the velocity used to determine the size of the advection volume in the 
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contact remap step must be the change of velocity due to contact. Parameters such as 

deviatoric stress, pressure, temperature, yield stress, shear stress, and artificial viscosity 

must be material specific values rather than values obtained through the use of mixture 

theory algorithms. Finally, the two operator split approach to solving the conservation 

equations must be implemented along with a method similar to what is described in 

Chapter 3 for enforcing the contact constraints. While this can take many forms, the 

outline presented in Chapter 3 can serve as a guide. 

As with most dissertations, this work builds on prior research so it is important to 

distinguish the contributions made as a result of this work. The two operator split 

approach was initially developed by Littlefield as reported in [64] in 2002, and further 

refined by both Littlefield and this author in [65], [67], [94], and [95]. All prior 

implementations of the method outlined in Chapter 3 were done in two-dimensions. The 

major contribution of this work beyond what was reported in the work that this 

dissertation builds upon was the transition to three-dimensions. This required a 

significant overhaul of the existing two-dimensional ALEAS code, which was used as a 

template to transition to three-dimensions. The derivation of the conservation equations 

and the finite element formulation presented in Chapter 3 are not presented with respect 

to a specific dimensionality, however, the addition of the third dimension required 

significant changes to almost every part of the code. Furthermore, the method for 

determining the contact interface areas during the contact enforcement step had to be 

derived in three-dimensions. Finally, the method presented here for simplifying the 

determination of the velocities due to contact enforcement by using an averaged interface 

area was developed by the author.  
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CHAPTER 7 

CONCLUSIONS  

	

 This work has presented a new method for the treatment of multi-material 

contact-impact problems in Eulerian hydrocodes used for computational structural 

mechanics.  The ALE form of the conservation equations have been solved separately for 

each material in the problem space by using a finite element approximation and contact 

constraints have been applied so that tractions arising at contact interfaces can be 

accurately modeled.  In this work the traction, which is implied as part of the 

conservation of volume in traditional approaches, is explicitly included as part of the 

conservation equations. Since each material is treated separately each contacting body 

has its own velocity field and contact is handled in a more physically accurate manner. 

This leads to a significant improvement over traditional Eulerian contact methods that 

make use of mixture theory for problems which involve large stresses and deformations, 

but where the ability to accurately model sliding contact is important. 

The model presented here provides a much better representation of the physics 

taking place in the problem.  The use of mixed-cell algorithms that replace discontinuities 

in pressure, stress, and velocity fields at material interfaces with single continuous fields 

are no longer used and as such are no longer necessary.  This work represents a major 

shift in the implementation of Eulerian hydrocodes. The use of this method is highly 



	

 

209	

advantageous over Lagrangian methods, which are incapable of handling large 

deformations and also must account for large mesh distortions, as well as traditional 

Eulerian methods, which cannot accurately model contact events due to highly inaccurate 

element mixture algorithms that assume material bonding. 

The advantages of using the method presented in this work have been discussed in 

Chapter 6.  The block sliding simulations clearly demonstrate that no material 

replacement is taking place, whereas the large amount of deformation along the contact 

boundaries in the traditional Eulerian formulation indicates the weakness of the mixture 

model used for that method.  The Taylor impact test further demonstrates the advantages 

of the method presented in this work.  Since both the rigid plate and the copper impactor 

have their own unique velocity fields and no mixed element algorithms are used the 

results are much more physically accurate.  The deformation profile of the rod in the 

ALEAS MMM cases much more closely approximates the experimental profile and 

rebounding occurs at late times indicating there is no material replacement occurring.  

Comparing this result to the traditional Eulerian method used in the ALEAS SMM and 

CTH problems emphasizes the superiority of this formulation in modeling this type of 

problems.  In the traditional approach material bonding is evident along the interface 

between the copper bar and rigid plate, and as such the spread of material at the interface 

is much more limited. The practical applications of the method presented in this work 

were further indicated by simulations of a long rod penetrator into oblique plates at 

various yaw angles.  This class of problems is especially difficult to model accurately 

using traditional Eulerian methods due to material bonding that takes place as the 

penetrator passes through the moving plate. This interaction between materials causes an 
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artificial slowing of the penetrator as it emerges from the plate, which is most clearly 

evident in the -9.3º yaw case. In this case nearly the entire length of the penetrator 

interacts with the moving plate, resulting in a significant reduction in velocity of the 

penetrator that is not seen experimentally, as well as a large fragment of the plate 

breaking off and sticking to the penetrator at late time. The ALEAS MMM result much 

more closely approximates the experimental result, with no artificial slowing of the rod 

and no plate material being erroneously bonded to the penetrator. Finally, a series of 

normal long rod penetrations into steel targets showed that the methodology developed 

here performs admirably in cases where the role of contact is diminished.    

 

Future Work 

While this dissertation has demonstrated a tremendous improvement over 

traditional Eulerian methods in cases where sliding contact is important, work in this area 

is far from complete.  For the impact types considered the validation calculations have 

demonstrated the advantages of this method over the traditional approach to Eulerian 

contact mixture theory, but further improvements can be made. A number of issues were 

mentioned in previous chapters of this work. For instance, in terms of computational 

improvements to the ALEAS code, future work will include revisions to the memory 

structure to allow problems with more than two million computational elements. 

Furthermore, a significant benefit would be realized by adding the ability to do large 

scale parallel computations using MPI. Also, much of the code in ALEAS has not been 

optimized for speed, so improvements to algorithm efficiency will be examined. Since 

ALEAS is currently limited to uniform meshes, it would be highly beneficial to include 
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the ability to model non-uniform meshes to cut down on computational cost. Future 

revisions of ALEAS will also include a number of advanced material models to allow for 

more accurate modeling of a variety of processes. 

The contact algorithm presented in this work is very promising, but its 

development is still in the early stages and there is considerable room for improvement. 

Some possible areas of future research include the following list. 

• Higher order interface tracking methods that would more accurately define non-

planar surfaces, such as corners, and eliminate discontinuities at element 

boundaries. 

• The contact algorithm currently implemented in ALEAS only allows for two 

materials to be present in the problem domain, so generalizing this to more than 

two materials would greatly improve its applicability. This will require 

determining how to model interactions between three or more materials within a 

single element. This will likely include a method for determining material 

ordering and multiple contact enforcements to ensure that the contact constraints 

are satisfied. 

• One method for reducing the cost of this method when more than two materials 

are present is to couple the contact method developed here with mixture theory. 

This would allow the contact formulation to handle interactions where contact is 

important, while the less expensive mixture theory algorithms are used elsewhere.   

• The method for calculating the contact velocity presented in this work is one of 

many possibilities. One simplification made in the contact algorithm developed in 

this work is the use of an averaged interface area for the master and slave 
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surfaces, which provides a significant simplification to derivation of the 

algorithm. More advanced contact algorithms are possible that account for 

individual interface areas, as well as providing better handling of cases where 

small slivers of material are being moved out of an element.  

• The current contact approach only accounts for frictionless sliding, so the addition 

of a friction model with slip would provide even greater applicability. 

• It may be possible to eliminate the need for a second remap step by including the 

contact enforcement as part of the Lagrangian step. This would result in a 

significant reduction in the computational cost of the method. 

• Finally, the current contact approach does not make provisions for self-contact 

within a single material. Because each material only has one volume fraction per 

element, that material is considered to be one unified group. This is a very 

difficult problem to solve, and not one that will be affected by solving the 

conservation equations separately for each material as done in this work.   
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Example ALEAS Input File 

Both ALEAS MMM and ALEAS SMM use the same input file structure. The 

ALEAS input deck consists of two files, a control file and a mesh file. The control file 

contains the ‘MMM’ option, which is set to ‘YES’ to implement the contact formulation 

presented in this work. Setting ‘MMM’ to ‘NO’ causes ALEAS to run with a single 

velocity field and use mixture theory to handle mixed cells. 

ALEAS Control File 

*  input file 
jobtitle = 'ALE on mid-sagittal section of brain' 
* 
*  Control Records 
* 
control 
  ttype = explicit     !default is explicit 
  mtype = eulerian     !default is lagrangian 
  start = yes          !this is the default  
  restart = no         !this is the default  
  amr = no             !set equal to yes to allow AMR  
  nlevel =4            !number of levels for an AMR  
  stest = no           !default is no for seed test 
  mtest = no           !default is no for mesh test 
  tmin = 0.0           !required input 
  tmax = 0.000100      !required input 
  tstep = 0.001        !required input for implicit 
  cycle_max = 5000     !default is 50000 
  gauss = 1            !default is 2 
  weight = volume      !default is volume weighting 
  file_number = 0      !required input ONLY if restart =           
                       !yes or remesh = yes 
  coordinate_system = rectangular    
  debug=no             !default is no 
  verify=no            !default is no 
  gmv=no               !default is no 
  mmm=yes              !default is no 
end_control 
* 
*  Plot and edit dump records 
* 
plot 
  ptime=0.    pdt = 1.0e-6 
  etime=0.    edt = 0.5e-1 
  pvoid=no                      !default is no 
  evoid=no                      !default is no 
end_plot 
* 
*  Region definition records 
* 
regions 
file 
eul_2mat.key 
* 
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end_regions 
* 
*  End of input file 

* 
 
Abridged ALEAS Mesh File 
 
*KEYWORD 
 
*NODE 
       1          0.0000          0.0000          0.0000 
… 
 1308125         20.0000          8.0000         15.5000 
* 
*ELEMENT_SOLID 
       1       1       1       2     163     162   10466   10467   10628   10627 
… 
 1269760       1 1297498 1297499 1297660 1297659 1307963 1307964 1308125 1308124 
* 
*INITIAL_VOLUME_FRACTION 
     21136  0.142857 0.0000000 
… 
   1248603  0.405896 0.0000000 
* 
*FECON 
           1           1           1 
… 
     1269760           6     3816352 
* 
*FACENODES 
           1           2         163       10628       10467 
     3847296     1307963     1307964     1308125     1308124 
* 
*INITIAL_VELOCITY_MMM 
         1       0.0       0.0       0.0 
         2  1.290e+5       0.0       0.0 
* 
*MAT_GRUNEISEN 
         1    7.8500   4.500e5      1.49      2.17 4.41208e6     0.283    2.5d10 
  1.000E10  0.78e+10     0.106     0.004    1.0e00    1783.0       0.0       0.0 
       0.0         0 
*MAT_GRUNEISEN 
         2     18.62   2.487e5      1.56      2.32 1.05132e6       0.3    2.5d10 
  1.790E10  1.121e10      0.25     0.007    1.0e00    1497.9       0.0       0.0 
       0.0         0 
*END 
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Example CTH Input Files 

CTH Angled Frictionless Block Sliding 

************************************************************* 
* 
*    CTH INPUT FOR ANGLED SLIDING BLOCK PROBLEM               
* 
************************************************************* 
* 
*eor* cthin 
* 
************************************************************* 
* 
* TITLE RECORD 
* 
Sliding Blocks XY 
* 
************************************************************* 
* 
*  CONTROL RECORDS 
* 
control 
  mmp 
  tstop=100.0e-6 
endc 
* 
************************************************************* 
 
* Non-AMR calculation 
 
mesh 
   geom=3dr 
      x0 0.0 
        x1 dxf=0.2 dxl=0.2 w=15 
      endx 
      y0 0.0 
        y1 dyf=0.2 dyl=0.2 w=15 
      endy 
      z0 0.0 
        z1 dzf=0.2 dzl=0.2 w=15 
      endz 
* active region 
    xact=   0, 15.0 
    yact=   0, 15.0 
    zact=   0, 15.0 
endmesh 
 
* Spymaster input 
 
spy 
 
 PlotTime(0,1e-6); 
 Save("VOLM,M,P,VX,VY,VZ,CS,VOID,DENS,DENSM,VMAG");  
 SaveTime(0,1e-6); 
 
 %ImageFormat(1024,1024); % uncomment for 1024x1024 image size 
                          % default is 800x800 
 
 define main() { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,15.0); 
   YLimits(0,15.0); 
   ZLimits(0,15.0); 
   Image("Mats",WHITE,BLACK); 
    MatColors(GRAY,BLUE); 
    Plot3DMats(); 
    DrawBlockEdges(); 
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    ClipZBelow(7.5); 
   EndImage; 
 } 
 
endspy 
 
* 
************************************************************* 
* 
* MATERIAL STRENGTH RECORDS 
* 
epdata 
* 
************************************************************** 
* 
* Steel (RHA)  
* 
*************************************************************** 
* 
 matep 1 JO=USER AJO=1.0e10 BJO=0.0 CJO=0.0 MJO=1.e99 NJO=1.0 TJO=1.e99  
         POISSON=0.283 
* 
 matep 2 JO=USER AJO=1.0e10 BJO=0.0 CJO=0.0 MJO=1.e99 NJO=1.0 TJO=1.e99  
         POISSON=0.283 
*  
  mix 3 
* 
ende 
* 
************************************************************* 
* 
*  TRACER RECORDS 
* 
tracer 
endt 
* 
************************************************************* 
* 
*  EOS RECORDS 
* 
eos 
* 
*********************************************************************** 
* 
* RHA 
* 
mat1 mgrun USER R0=7.85 CS=4.5e5 S1=1.49 G0=2.17 CV=5.12e10  
*                                            
************************************************************** 
* 
*Steel 
* 
* 
mat2 mgrun USER R0=7.85 CS=4.5e5 S1=1.49 G0=2.17 CV=5.12e10 
* 
ende 
* 
************************************************************* 
* 
*   DIATOM RECORDS 
* 
diatom 
 package 'Block1' 
  material 1 
  xvel 70710.68 
  yvel 70710.68 
  insert par 
   p1 = 6.439 6.439 6.0   
   p2 = 8.561 8.561 6.0 
   p3 = 4.318 8.561 6.0 
   p4 = 6.439 6.439 9.0 
  endi 
 endp 
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 package 'Block2' 
  material 2 
  xvel -70710.68  
  yvel -70710.68 
  insert par 
   p1 = 8.561 4.318 6.0 
   p2 = 10.682 6.439 6.0 
   p3 = 6.439 6.439 6.0 
   p4 = 8.561 4.318 9.0 
  endi 
 endp 
 
enddiatom 
 
************************************************************* 
* 
*  CELL THERMODYNAMICS RECORDS 
* 
cellthermo 
  mmp0 
  ntbad=999999999 
endc 
* 
************************************************************* 
* 
*CONVECTION RECORDS 
* 
convct 
  convection=1 
  interface=smyra    
endc 
* 
* 
************************************************************* 
* *  FRACTURE RECORDS 
* 
fracts 
  stress 
  pfrac1 -18.0e9  
  pfrac2 -18.0e9 
  pfmix  -1e12 
  pfvoid -1e12 
endf 
* 
************************************************************* 
* 
*  EDIT RECORDS 
* 
edit 
* 
  shortt 
    time=0. dt=1. 
  ends 
* 
  longt 
    time=0. dt=1. 
  endl 
* 
  restt 
    time=0 dt=5e-6 
  endr 
* 
  histt 
    time=0.  dt=1.0e-7 
    htracer all 
  endh 
* 
ende 
* 
************************************************************* 
* 
*  BOUNDARY CONDITION RECORDS 
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* 
boundary 
  bhydro 
    block 1 
      bxbot=2 
      bxtop=2 
      bybot=2 
      bytop=2 
      bzbot=2 
      bztop=2 
    endb 
  endh 
endb 
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CTH 2” Plate Penetration 

************************************************************* 
* 
*eor* cthin 
* 
************************************************************* 
* 
* TITLE RECORD 
* 
Penetration 2 inch RHA 
* 
************************************************************* 
* 
*  CONTROL RECORDS 
* 
control 
  mmp 
  tstop=100.0e-6 
endc 
* 
************************************************************* 
 
* Non-AMR calculation 
 
mesh 
   geom=3dr 
      x0 0.0 
        x1 dxf=0.1 dxl=0.1 w=18 
      endx 
      y0 0.0 
        y1 dyf=0.1 dyl=0.1 w=10.4 
      endy 
      z0 0.0 
        z1 dzf=0.1 dzl=0.1 w=10.4 
      endz 
* active region 
    xact=   0, 18.0 
    yact=   0, 10.4 
    zact=   0, 10.4 
endmesh 
 
* Spymaster input 
 
spy 
 
 PlotTime(0,1e-6); 
 Save("VOLM,M,P,VX,VY,VZ,CS,VOID,DENS,DENSM,VMAG");  
 SaveTime(0,1e-6); 
 
 %ImageFormat(1024,1024); % uncomment for 1024x1024 image size 
                          % default is 800x800 
 
 define main() { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,15.0); 
   YLimits(0,15.0); 
   ZLimits(0,15.0); 
   Image("Mats",WHITE,BLACK); 
    MatColors(GRAY,BLUE); 
    Plot3DMats(); 
    DrawBlockEdges(); 
    ClipZBelow(7.5); 
   EndImage; 
 } 
 
endspy 
 
* 
************************************************************* 
* 
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* MATERIAL STRENGTH RECORDS 
* 
epdata 
* 
*************************************************************** 
* RHA 
 matep 1 JO=USER 
         AJO=1.0e10 
         BJO=0.78e10 
         CJO=0.004 
         MJO=1.e0 
         NJO=0.106 
         TJO=0.1536473 
         POISSON=0.283 
* DU Ti 0.75% 
 matep 2 JO=USER 
         AJO=1.79e10 
         BJO=1.21e10 
         CJO=0.007 
         MJO=1.0 
         NJO=0.25 
         TJO=.129 
         POISSON=0.3 
*  
  mix 3 
* 
ende 
* 
************************************************************* 
* 
*  TRACER RECORDS 
* 
tracer 
endt 
* 
************************************************************* 
* 
*  EOS RECORDS 
* 
eos 
* 
************************************************************** 
* 
* RHA 
* 
mat1 mgrun USER R0=7.85 CS=4.5e5 S1=1.49 G0=2.17 CV=5.12e10  
*                                            
************************************************************** 
* 
* DU Ti 0.75% 
* 
mat2 mgrun USER R0=18.62 CS=2.487e5 S1=1.56 G0=2.32 CV=1.22e10 
* 
ende 
* 
************************************************************* 
* 
*   DIATOM RECORDS 
* 
diatom 
 
 package 'Block' 
  material 1 
  iter 3 
  insert box 
   p1 = 7.87 0.0 0.0   
   p2 = 12.95 10.4 10.4  
  endi 
 endp 
 
 package 'Penetrator' 
  material 2 
  iter 3 
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  xvel 1.2e5 
  insert cylinder 
   ce1 = 0.2 5.2 5.2  
   ce2 = 7.4865 5.2 5.2 
   radius = 0.3835 
  endi 
  insert sphere 
   ce= 7.4865 5.2 5.2 
   radius = 0.3835 
  endi 
 endp 
 
enddiatom 
 
************************************************************* 
* 
*  CELL THERMODYNAMICS RECORDS 
* 
cellthermo 
  mmp 
  ntbad=999999999 
endc 
* 
************************************************************* 
* 
*CONVECTION RECORDS 
* 
convct 
  convection=1 
  interface=smyra    
endc 
* 
* 
************************************************************* 
* *  FRACTURE RECORDS 
* 
fracts 
  stress 
  pfrac1 -18.0e9  
  pfrac2 -20.0e9 
  pfmix  -1.0e12 
  pfvoid -1.0e12 
endf 
* 
************************************************************* 
* 
*  EDIT RECORDS 
* 
edit 
* 
  shortt 
    time=0. dt=1. 
  ends 
* 
  longt 
    time=0. dt=1. 
  endl 
* 
  restt 
    time=0 dt=5e-6 
  endr 
* 
  histt 
    time=0.  dt=1.0e-7 
    htracer all 
  endh 
* 
ende 
* 
************************************************************* 
* 
*  BOUNDARY CONDITION RECORDS 
* 
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boundary 
  bhydro 
    block 1 
      bxbot=1 
      bxtop=1 
      bybot=1 
      bytop=1 
      bzbot=1 
      bztop=1 
    endb 
  endh 
endb 
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CTH Semi-infinite Plate Penetration 

************************************************************* 
* 
*eor* cthin 
* 
************************************************************* 
* 
* TITLE RECORD 
* 
Semi infinite penetration 
* 
************************************************************* 
* 
*  CONTROL RECORDS 
* 
control 
  mmp 
  tstop=100.0e-6 
endc 
* 
************************************************************* 
 
* Non-AMR calculation 
 
mesh 
   geom=3dr 
      x0 0.0 
        x1 dxf=0.05 dxl=0.05 w=15 
      endx 
      y0 0.0 
        y1 dyf=0.05 dyl=0.05 w=4 
      endy 
      z0 0.0 
        z1 dzf=0.05 dzl=0.05 w=4 
      endz 
* active region 
    xact=   0, 15.0 
    yact=   0, 4.0 
    zact=   0, 4.0 
endmesh 
 
* Spymaster input 
 
spy 
 
 PlotTime(0,1e-6); 
 Save("VOLM,M,P,VX,VY,VZ,CS,VOID,DENS,DENSM,VMAG");  
 SaveTime(0,1e-6); 
 
 %ImageFormat(1024,1024); % uncomment for 1024x1024 image size 
                          % default is 800x800 
 
 define main() { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,15.0); 
   YLimits(0,15.0); 
   ZLimits(0,15.0); 
   Image("Mats",WHITE,BLACK); 
    MatColors(GRAY,BLUE); 
    Plot3DMats(); 
    DrawBlockEdges(); 
    ClipZBelow(7.5); 
   EndImage; 
 } 
 
endspy 
 
* 
************************************************************* 
* 
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* MATERIAL STRENGTH RECORDS 
* 
epdata 
* 
************************************************************** 
* Steel 
 matep 1 JO=USER AJO=0.81e10 BJO=0.5095e10 CJO=0.014 MJO=1.03 NJO=0.26 
         TJO=0.156666  
         POISSON=0.299 
* Tungsten 
 matep 2 JO=USER AJO=1.365e10 BJO=0.1765e10 CJO=0.016 MJO=1.0 NJO=0.12  
         TJO=0.318411  
         POISSON=0.281 
*  
  mix 3 
* 
ende 
* 
************************************************************* 
* 
*  TRACER RECORDS 
* 
tracer 
endt 
* 
************************************************************* 
* 
*  EOS RECORDS 
* 
eos 
* 
*********************************************************************** 
* 
* Steel 
* 
mat1 mgrun USER R0=7.85 CS=4.5e5 S1=1.49 G0=2.17 CV=5.12e10  
*                                            
************************************************************** 
* 
* Tungsten 
* 
mat2 mgrun USER R0=17.76 CS=4.03e5 S1=1.237 G0=1.67 CV=1.57e10 
* 
ende 
* 
************************************************************* 
* 
*   DIATOM RECORDS 
* 
diatom 
 
 package 'Block' 
  material 1 
  numsub 8 
  iter 3 
  insert box 
   p1 = 5.1 -10.0 -10.0   
   p2 = 20.0 10.0 10.0  
  endi 
 endp 
 
 package 'Penetrator' 
  material 2 
  numsub 8 
  iter 3 
  xvel 1.5e5 
  insert cylinder 
   ce1 = 0.1 2.0 2.0  
   ce2 = 5.1 2.0 2.0 
   radius = 0.25 
  endi 
 endp 
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enddiatom 
 
************************************************************* 
* 
*  CELL THERMODYNAMICS RECORDS 
* 
cellthermo 
  mmp 
  ntbad=999999999 
endc 
* 
************************************************************* 
* 
*CONVECTION RECORDS 
* 
convct 
  convection=1 
  interface=smyra    
endc 
* 
* 
************************************************************* 
* *  FRACTURE RECORDS 
* 
fracts 
  stress 
  pfrac1 -18.0e9  
  pfrac2 -20.0e9 
  pfmix  -1.0e12 
  pfvoid -1.0e12 
endf 
* 
************************************************************* 
* 
*  EDIT RECORDS 
* 
edit 
* 
  shortt 
    time=0. dt=1. 
  ends 
* 
  longt 
    time=0. dt=1. 
  endl 
* 
  restt 
    time=0 dt=5e-6 
  endr 
* 
  histt 
    time=0.  dt=1.0e-7 
    htracer all 
  endh 
* 
ende 
* 
************************************************************* 
* 
*  BOUNDARY CONDITION RECORDS 
* 
boundary 
  bhydro 
    block 1 
      bxbot=1 
      bxtop=1 
      bybot=1 
      bytop=1 
      bzbot=1 
      bztop=1 
    endb 
  endh 
endb 
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CTH Taylor Impact 

************************************************************* 
* 
*eor* cthin 
* 
************************************************************* 
* 
* TITLE RECORD 
* 
Taylor Impact- Cu cylinder 210m/s, D=0.762cm L==2.347cm 
* 
************************************************************* 
* 
*  CONTROL RECORDS 
* 
control 
  mmp 
  RIGID=0 
  tstop=100.0e-6 
endc 
* 
************************************************************* 
 
* Non-AMR calculation 
 
mesh 
   geom=3dr 
      x0 0.0 
        x1 dxf=0.025 dxl=0.025 w=3.0 
      endx 
      y0 0.0 
        y1 dyf=0.025 dyl=0.025 w=3.0 
      endy 
      z0 0.0 
        z1 dzf=0.025 dzl=0.025 w=3.0 
      endz 
* active region 
    xact=   0, 3.0 
    yact=   0, 3.0 
    zact=   0, 3.0 
endmesh 
 
* Spymaster input 
 
spy 
 
 PlotTime(0,1e-6); 
 Save("VOLM,M,P,VX,VY,VZ,CS,VOID,DENS,DENSM,VMAG");  
 SaveTime(0,1e-6); 
 
 %ImageFormat(1024,1024); % uncomment for 1024x1024 image size 
                          % default is 800x800 
 
 define main() { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,2.0); 
   YLimits(0,2.6); 
   ZLimits(0,2.0); 
   Image("Mats",WHITE,BLACK); 
    MatColors(GRAY,BLUE); 
    Plot3DMats(); 
    DrawBlockEdges(); 
    ClipZBelow(7.5); 
   EndImage; 
 } 
 
endspy 
 
* 
************************************************************* 



	

 

238	

* 
* MATERIAL STRENGTH RECORDS 
* 
epdata 
* 
************************************************************** 
* 
* Cu Impactor  
* 
*************************************************************** 
* 
 matep 1 JO=COPPER 
* 
 matep 2 JO=URANIUM AJO=1.E+30 BJO=1.E+30 
*  
  mix 3 
* 
ende 
* 
************************************************************* 
* 
*  TRACER RECORDS 
* 
tracer 
endt 
* 
************************************************************* 
* 
*  EOS RECORDS 
* 
eos 
* 
*********************************************************************** 
* 
* RHA 
* 
mat1 mgrun COPPER  
*                                            
************************************************************** 
* 
*Steel 
* 
* 
mat2 mgrun URANIUM_TI 
* 
ende 
* 
************************************************************* 
* 
*   DIATOM RECORDS 
* 
diatom 
 
 package 'Rod' 
  material 1 
  yvel -0.21e5 
  insert cylinder 
   ce1 = 1.5 0.5 1.0  
   ce2 = 1.5 2.847 1.0 
   radius = 0.381 
  endi 
 endp 
 
* package 'Plate'     
*  rigid    
*  insert box    
*   p1 0.05 0.0 0.05 
*   p2 1.95 0.125 1.95 
*  endi    
* endp 
 
 package 'PlateiVIZ' 
  material 2 
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  insert box 
   p1 0.0 0.0 0.0 
   p2 3.0 0.5 3.0 
  endi 
 endp 
 
enddiatom 
 
************************************************************* 
* 
*  CELL THERMODYNAMICS RECORDS 
* 
cellthermo 
  mmp0 
  ntbad=999999999 
endc 
* 
************************************************************* 
* 
*CONVECTION RECORDS 
* 
convct 
  convection=1 
  interface=smyra    
endc 
* 
* 
************************************************************* 
* *  FRACTURE RECORDS 
* 
*fracts 
*  stress 
*  pfrac1 -9.44e9  
*  pfrac2 -7.0e9 
*  pfmix  -1e20 
*  pfvoid -1e20 
*endf 
* 
************************************************************* 
* 
*  EDIT RECORDS 
* 
edit 
* 
  shortt 
    time=0. dt=1. 
  ends 
* 
  longt 
    time=0. dt=1. 
  endl 
* 
  restt 
    time=0 dt=5e-6 
  endr 
* 
  histt 
    time=0.  dt=1.0e-7 
    htracer all 
  endh 
* 
ende 
* 
************************************************************* 
* 
*  BOUNDARY CONDITION RECORDS 
* 
boundary 
  bhydro 
    block 1 
      bxbot=0 
      bxtop=0 
      bybot=0 
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      bytop=0 
      bzbot=0 
      bztop=0 
    endb 
  endh 
endb 
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CTH -9.3º Yaw Plate Penetration 

************************************************************* 
* 
*eor* cthin 
* 
************************************************************* 
* 
* TITLE RECORD 
* 
Yaw -10 
* 
************************************************************* 
* 
*  CONTROL RECORDS 
* 
control 
  mmp 
  tstop=100.0e-6 
endc 
* 
************************************************************* 
 
* Non-AMR calculation 
 
mesh 
   geom=3dr 
      x0 0.0 
        x1 dxf=0.125 dxl=0.125 w=20.0 
      endx 
      y0 0.0 
        y1 dyf=0.125 dyl=0.125 w=10.0 
      endy 
      z0 0.0 
        z1 dzf=0.125 dzl=0.125 w=15.5 
      endz 
* active region 
    xact=   0, 20.0 
    yact=   0, 10.0 
    zact=   0, 15.5 
endmesh 
 
* Spymaster input 
 
spy 
 
 PlotTime(0,1e-6); 
 Save("VOLM,M,P,VX,VY,VZ,CS,VOID,DENS,DENSM,VMAG");  
 SaveTime(0,1e-6); 
 
 %ImageFormat(1024,1024); % uncomment for 1024x1024 image size 
                          % default is 800x800 
 
 define main() { 
   pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
   XLimits(0,15.0); 
   YLimits(0,15.0); 
   ZLimits(0,15.0); 
   Image("Mats",WHITE,BLACK); 
    MatColors(GRAY,BLUE); 
    Plot3DMats(); 
    DrawBlockEdges(); 
    ClipZBelow(7.5); 
   EndImage; 
 } 
 
endspy 
 
* 
************************************************************* 
* 
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* MATERIAL STRENGTH RECORDS 
* 
epdata 
* 
************************************************************** 
* RHA 
 matep 1 JO=USER  
         AJO=1.0e10  
         BJO=0.78e10  
         CJO=0.004 
         MJO=1.e0 
         NJO=0.106 
         TJO=0.1536473 
         POISSON=0.283 
* DU Ti-0.75% 
 matep 2 JO=USER  
         AJO=1.79e10  
         BJO=1.21e10  
         CJO=0.007 
         MJO=1.0  
         NJO=0.25 
         TJO=.129 
         POISSON=0.3 
*  
  mix 3 
* 
ende 
* 
************************************************************* 
* 
*  TRACER RECORDS 
* 
tracer 
endt 
* 
************************************************************* 
* 
*  EOS RECORDS 
* 
eos 
* 
*********************************************************************** 
* 
* RHA 
* 
mat1 mgrun USER R0=7.85 CS=4.5e5 S1=1.49 G0=2.17 CV=5.12e10  
*                                            
************************************************************** 
* 
*Uranium 
* 
* 
mat2 mgrun USER R0=18.62 CS=2.487e5 S1=1.56 G0=2.32 CV=1.22e10 
* 
ende 
* 
************************************************************* 
* 
*   DIATOM RECORDS 
* 
diatom 
 
 package 'Block' 
  material 1 
  iter 3 
  xvel -0.61631e4 
  yvel 0.20806e5 
  insert par 
   p1 = 1.787 0.4999 0.25   
   p2 = 16.169 4.76 0.25 
   p3 = 1.605 1.114 0.25 
   p4 = 1.787 0.4999 15.25 
  endi 
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 endp 
 
 package 'Penetrator' 
  material 2 
  iter 3 
  xvel 1.21e5 
  insert cylinder 
   ce1 = 0.5 3.345 7.75  
   ce2 = 7.7865 3.345 7.75 
   radius = 0.3835 
  endi 
  insert sphere 
   ce= 7.7865 3.345 7.75 
   radius = 0.3835 
  endi 
 endp 
 
enddiatom 
 
************************************************************* 
* 
*  CELL THERMODYNAMICS RECORDS 
* 
cellthermo 
  mmp 
  ntbad=999999999 
endc 
* 
************************************************************* 
* 
*CONVECTION RECORDS 
* 
convct 
  convection=1 
  interface=smyra    
endc 
* 
* 
************************************************************* 
* *  FRACTURE RECORDS 
* 
fracts 
  stress 
  pfrac1 -18.0e9  
  pfrac2 -20.0e9 
  pfmix  -1.0e12 
  pfvoid -1.0e12 
endf 
* 
************************************************************* 
* 
*  EDIT RECORDS 
* 
edit 
* 
  shortt 
    time=0. dt=1. 
  ends 
* 
  longt 
    time=0. dt=1. 
  endl 
* 
  restt 
    time=0 dt=5e-6 
  endr 
* 
  histt 
    time=0.  dt=1.0e-7 
    htracer all 
  endh 
* 
ende 
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* 
************************************************************* 
* 
*  BOUNDARY CONDITION RECORDS 
* 
boundary 
  bhydro 
    block 1 
      bxbot=1 
      bxtop=1 
      bybot=1 
      bytop=1 
      bzbot=1 
      bztop=1 
    endb 
  endh 
endb 
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