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AN EVALUATION OF SAMPLE SIZE RE-ESTIMATION ADAPTIVE DESIGNS 

AND DELAYED-START DESIGNS FOR ALZHEIMER’S DISEASE TRIALS 

 

GUOQIAO WANG 

 

BIOSTATISTICS 

 

ABSTRACT 

 

The goal of this dissertation is to investigate the effect of novel clinical trial 

designs for Alzheimer’s disease (AD), and to provide applications for their use in real 

trials. The data used for our simulation is a meta-data base of completed trials. In the first 

paper, we investigate the sample size re-estimation (SSR) adaptive design based on the 

effect size and the variance without taking into account the longitudinal feature of the 

trials. In the second paper, we take advantage of that feature to explore the SSR based on 

the variance of the rate of change in the longitudinal measurements. Finally, in the third 

paper, we extend the delayed-start (DS) design to AD by proposing some of the crucial 

design parameters. We also investigate the power of the DS design, and compare it to the 

power of the typical randomized parallel-group design.   

Through our simulations, we discover that SSR based on the effect size or the 

variance without taking into account of the longitudinal feature of the trial can be 

effective for trials with small or moderate initial sample sizes. However, when the initial 

sample size is over 200, the gain in power after SSR is no longer significant. After 

incorporating the longitudinal feature, we show that SSR based on the rate of change is 

not only effective, but also allows the luxury to adapt the sample into two ways: increase 

the number of recruits or add the number of measurements. However, increasing the 

number of recruits is more likely. Finally, for the DS design, we prove that the optimal 
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sample size allocation ratio is 1:1:1; the optimal weight has a simple formula; the 

correlation between slopes can be negative and positive; and the optimal treatment-switch 

point is the middle point or the second one of the middle two.  
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Literature Review 

Background and Motivation for Research 

Mild Cognitive Impairment, Alzheimer’s disease, and their negative impact 

  “AD is an age-related, progressive neurodegenerative disorder that gradually 

destroys a person's ability to remember, think, and even carry out the simplest tasks”. AD 

is diagnosed mostly in people age 60 or older, and it is becoming increasingly common as 

the oldest "baby boomers" in U.S. turn 65 [1]. As of 2012, an estimated more than 5 

million Americans are suffering from AD. The disease ravages the patients as well as the 

entire family, in emotional, physical, and financial ways. Currently, AD costs the health 

care system $200 billion a year [2]. The number of people affected in America by AD 

will jump to 13.5 million by 2050 [2]. Therefore, it is imperative that effective treatments 

be developed to prevent or delay the onset of AD, or to stop the progression of AD. 

 “Mild cognitive impairment (MCI) refers to the clinical condition between normal 

aging and AD in which persons experience memory loss to a greater extent than one 

would expect for age, yet they do not meet currently accepted criteria for clinically 

probable AD” [3]. It causes cognitive changes that may be noticed by the individuals 

experiencing them, but are not serious enough to affect daily activities. Although not all 

of those with MCI will develop Alzheimer’s disease (AD) or another type of dementia, 

their risk is increasing [2]. 
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Symptomatic and Disease-modifying Therapeutics for AD 

 There are two main AD therapeutics: symptomatic treatments and disease-

modifying treatments. The former only mitigates the symptoms of AD, such as 

improvements on cognitive scores, relief in anxiety, and amelioration in low mood and 

irritability. The latter not only lightens the symptoms, but is also expected to delay the 

onset of the disability caused by AD or to slow down the progression of the disease 

course [4].  

Available Therapeutics for AD, the Dominant Clinical Design Used in AD and Its Future 

Alternatives   

 Clinical trials for AD have been conducted for a little over 30 years. Prior to 1986, 

the methodology for conducting clinical trials in AD was virtually non-existent. In 1990, 

the US Food and Drug Administration (FDA) established guidelines for anti-AD drug 

trials. Under the 1990 guidelines, several drugs have been approved for symptomatic 

therapies [5, 6], including tacrine, donepezil, rivastigmine, galantamine, and memantine. 

But still no disease-modifying drugs are available.  Currently, there are approximately 80 

drugs for AD being investigated in over 200 clinical trials mostly phase I/II [7]. As part 

of the consequence of investigations, the randomized, double-blind, placebo-controlled, 

parallel-group clinical trial design has become the standard design according to FDA 

guidelines [8]. During the 1990's, a trial of 6 months duration with about 100-120 

subjects per arm was generally considered sufficient to detect the treatment effects. 

However, due to the almost uniformly negative results of the initial clinical trials, sample 
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sizes have increased remarkably for both phase II (40 to 200 per arm) and phase III (201 

to 842 per arm) and the trial duration has extended from 6 months up to 24 months[5]. 

Despite the enormous increase in the trial duration and the sample size, the lack of 

success in detecting an effective treatment using the typical design remains. Moreover, 

there has not any approved disease-modifying therapeutics.  Potential causes of these 

negative trials included the lack of efficacy in the treatments, insensitivity of the primary 

outcome to cognitive changes, underpowered trials due to the inaccurate pre-trial 

estimates of treatment effect, and so on. Therefore, clinical trial designs which allow 

interim analyses and resultant modification of the ongoing trial to increase or adjust 

power, such as adaptive designs,  have been recommended as alternatives[9]. One such 

adaptive design is the SSR adaptive design, which allows sample size adjustment based 

on the comparison between the interim treatment effect (or the interim variance) and the 

pre-trial treatment effect (or the pre-trial variance) [10]. However, both the typical design 

and the adaptive design are parallel group designs, which may not be able to distinguish 

the disease-modifying therapeutics from the symptomatic ones [11]. In order to facilitate 

the detection of disease-modifying treatments, the delayed-start (DS) design has been 

proposed. In the DS design, patients are randomly assigned to placebo or treatment for a 

pre-specified frame of time and then those (or a randomized portion of those) in the 

placebo group are also given the treatment. If patients who are on the treatment from the 

beginning of the study show similar effects as those who received the treatment later, the 

treatment effect if any is considered symptomatic, but not disease-modifying [4, 11]. 

These two novel designs have many advantages over the typical design. For example, the 

SSR adaptive design has the flexibility to adjust the trial for better efficacy, minimize the 
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number of patients exposed to the inferior treatment, avoids the long-term trials for drugs 

with limited efficacy, and better utilizes the most recent external or internal information 

in the ongoing trial. The DS design has the unique ability to declare the disease-

modifying effect. However, there are also concerns when employing SSR, such as the 

reliability in estimating the overall treatment effect based on a relatively small interim 

sample (or, for longitudinal trials, the precision in predicting the final treatment effect 

using only the early measurements), and the tradeoff between the gain in estimated power 

versus the burden to recruit more subjects. The former concern is particularly relevant for 

clinical trials in AD, as heterogeneity in the course of the disease may introduce 

significant inaccuracies in estimating the final treatment effect based on interim analyses 

[12]. 

 On the other hand, due to the complexity in determining the crucial design 

parameters such as the sample size allocation ratio in different treatment arms, the 

optimal time of treatment switch, the length of the before-treatment-switch period, the 

test statistic, and the power for given sample sizes; the DS design has not been 

successfully applied in any AD clinical trial to detect disease modifying treatments [6].  

Therefore, this paper addresses the practical necessity to investigate the applicability of 

these novel designs before their implementation.  

 

Clinical Design Background and Statistical Methods 

A Brief Review of the SSR Adaptive Design 

 The concept of adaptive designs was first introduced into statistical community in 

1978 [13], since then it has accumulated increasing interests. An adaptive design refers to 
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a clinical trial design that uses accumulating data at the interim analysis to modify certain 

aspects of the trial as it is ongoing without undermining the validity and integrity of the 

trial, and these adaptations are pre-determined rather than impromptu in order to avoid 

bias [14]. Therefore, adaptive designs offer the flexibility to learn from the accumulating 

data and apply what is learned quickly to an ongoing trial.  

 Compared to the typical parallel group design, the adaptive design is 

advantageous in several aspects: 1) it offers the flexibility to learn from the accumulating 

data and apply what is learned quickly to an ongoing trial; 2) it can improve efficiency 

either by reducing the number of patients exposed to the treatment with limited efficacy 

or by stopping the trial earlier for futility; 3) it reflects medical practice in the real world 

in that we want to learn from an ongoing trial and then use what we learned to improve it; 

and 4) it is proved efficient in early or late phase of clinical development [15]. As a 

consequence of rapid development in adaptive design methodology, adaptive designs 

now include a general set of methods such as adaptive randomization; adaptive dose-

finding studies, seamless phase II/III designs, and sample size re-estimation (SSR), etc. In 

this dissertation, we focused on the SSR adaptive design. 

 The typical parallel design starts the trial with a pre-specified sample size, and 

modification regarding the sample size would not be allowed after the trial has started. In 

the absence of dropouts, the trial would end with the same sample size as specified at the 

beginning. The SSR adaptive design starts with a typical parallel design, and then allows 

the sample size to increase when the pre-trial treatment effect size was overestimated or 

the pre-trial variance of the outcome was underestimated, leading to a trial that concludes 

using a larger sample size retaining the more power specified at the beginning; and 
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allows early stopping or an overall decrease in the sample size when the pre-trial 

treatment effect size was underestimated or the pre-trial variance was overestimated, 

leading to a trial with the pre-specified power, but a smaller sample size (Figure 1). 

 

Figure 1. The simplified comparison between the typical clinical design and the SSR 

adaptive design: the former requires a fixed sample size; whereas the latter allows sample 

size adjustments  

As noted previously, the SSR adaptive design offers some significant advantages over the 

typical parallel-group design including minimizing the number of patients exposed to 

potential toxic or inferior drugs, avoiding underpowered trials by adjusting the sample 

size, stopping the trials earlier for futility, and incorporating the most recent internal or 

external information into an ongoing trial [14]. All these unique features of the SSR 

adaptive design are potentially beneficial to clinical trials for AD. For example, the 

heterogeneity in the course of the disease leads to patients’ inconsistent response over 

different treatments, thus information obtained from previous trials might not accurately 

reflect what would happen in the next trial, resulting in inaccurate estimates of the 

treatment effect or the sample size; so it is helpful to conduct SSR in order to right-size 

the trial to demonstrate efficacy or to right-end the trial to enhance efficiency.  
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 When planning a trial, at least two design parameters are required to appropriately 

power a trial: the treatment effect to detect and the nuisance parameter related to the 

primary outcome such as its variance. Consequently, misspecification of these two design 

parameters may lead to overpowered, expensive, and lengthy trials or underpowered and 

inefficient trials. Correspondingly, a SSR can be conducted at the interim analysis to re-

evaluate either or both of these two design parameters, thus generally speaking leads to 

two types of SSR: 1) SSR based on the treatment effect or based on a combination of the 

treatment effect and the nuisance parameter, which inflates type I error and thus requires 

corresponding adjustments; and 2) SSR based on the nuisance parameter only, which 

does not inflate type I error and thus requires no adjustments [16-19]. Regardless of the 

SSR method, a typical SSR adaptive design involves several steps: 1) obtaining pre-trial 

estimates design parameters such as the variance of the primary outcome, the treatment 

effect, and the sample size for beginning the trial; 2) performing an interim analysis at a 

specified time point re-estimates all or some of the design parameters; 3) based on the 

comparison of the re-estimated design parameter with the pre-trial ones, invoking a 

decision rule about the next phase of the trial such as increase or decrease the sample size; 

4) analyzing the final trial results without inflating the type I error.    

 At the interim analysis, the design parameters can be re-estimated in a blinded 

fashion, meaning the patients’ treatment assignment is unknown to trial personnel such as 

clinicians and statisticians; or in an unblinded fashion, meaning the treatment assignment 

is known to some of the trial personnel. The blinded SSR is usually preferable, especially 

for the SSR based on variances for a continuous outcome [14]. The blinded SSR is 

superior to the unblinded for reasons including: 1) it generally behaves as well as the 
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unblinded [17]; 2) it tends to minimize the inflation of type I error if any, particularly for 

moderate or large sample sizes [20]; 3) it is less likely to induce biases and to undermine 

the integrity of the trial [14]; and finally, 4) it is preferred from a regulatory standpoint 

[16]. In this study, both the blinded SSR based on the variance of the primary outcome 

and the unblinded SSR based on the effect size were investigated. When conducting a 

blinded SSR based on the variance, the variance needs to be estimated blindly at the 

interim analysis, and the estimate can be done by two main methods: the expectation–

maximization (EM) algorithm [21] and “the pooled sample variance with adjustment 

based on the difference between the means presumed in the alternative hypothesis” [19]. 

A detailed comparison between the two methods will be presented later.   

Comparison between the SSR adaptive design and the group sequential design in the 

context of AD clinical trials 

 From the standpoint of frequentist statistics, two main designs provide the luxury 

to adjust the ongoing trials based on the accumulating data: the group sequential design 

(GSD) and the adaptive design [22]. The GSD samples groups of observations for interim 

analyses, and consequently, the trial can be stopped at any interim analysis and after any 

of these groups for safety, efficacy/futility or both [15]. The GSD was introduced in 1947, 

and has been well-developed and well-accepted [23]. Additionally, GSDs were argued to 

perform more efficiently than adaptive designs in certain circumstances such as when the 

key parameters are known in the beginning of the clinical trials [24]. Therefore, we make 

the following comparison between the two methods in the context of AD to justify our 

choice of the SSR adaptive design over the GSD. 
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1) The main objective 

The two types of designs serve fundamentally different purposes. The 

GSD aims for early stopping, whereas, the SSR adaptive design aims to 

increase the sample size flexibly to ensure the study power. The failed 18- 

and 24-month trials in AD have showed that early stopping is not realistic; 

instead, increasing the power is the primary purpose of using novel 

clinical trial designs, which means the SSR adaptive design fits the goal 

better. 

2) The time and number of interim analyses 

The GSD usually involves more than two interim analyses, and thus 

requires earlier first interim analysis than the adaptive design, which, in 

most situations, involves only one interim analysis. In addition, AD is 

chronic and progresses slowly, thus an early interim analysis may not 

reveal useful information or provide accurate estimates. 

3) The sample size in the beginning of the study 

The GSD generally “starts large, and if you can, stops early”, meaning 

GSDs usually start with a relatively large sample size, sometimes even 

with a maximal sample size evaluated using the smallest treatment effect. 

On the other hand, the SSR adaptive design “starts small and asks for 

more if necessary”, meaning it usually starts with a relatively small sample 

size, and then uses the accumulated data at the interim analysis to decide 

whether or not to increase the sample size [25]. Many failed clinical trials 

with relatively large sample size in AD have indicated that the “start large” 
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strategy probably is not the optimal one. Furthermore, given the small 

effect sizes typically observed in AD, the “start large” method would 

likely yield such a large sample size that it could not realistically be 

implemented.  

4) The impact of the length of the recruiting time 

The recruiting time for AD trials usually is not long relative to the trial 

duration, thus patients’ outcome measurements will cluster in a very short 

time interval, which means that to sample groups of measurements orderly 

with pre-determined time space when all of them are available is 

inefficient and even unethical.  

On the contrary, the clustered measurements serve the SSR adaptive 

design very well since the study starts with a small sample size and data 

are intended to be collected as much as possible within a short period of 

time for the purpose of reliable estimates. 

5) The flexibility in the sample size 

The GSD, like the traditional randomized, placebo-controlled, parallel-

group design, generally requires a fixed sample size from the beginning to 

the end of the trial, whereas, the SSR adaptive design allows the interim 

analysis to determine the final sample size, and thus produces a flexible 

maximum sample size. This flexible maximum sample size is a helpful 

and new paradigm, and enables the SSR adaptive design to have larger 

power than the GSD. On the other hand, due to the multiple interim 

analyses, the GSD usually results in loss of power [26]. 
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6) The preferable study object 

Studies with GSDs almost always involve mortality or irreversible 

morbidity as primary efficacy endpoints (thus ethics require possible early 

termination), while the SSR adaptive design is often used for trials with 

non-life-threatening or chronic diseases with continuous or binary 

outcomes [26]. The chronic nature of AD along with Alzheimer’s disease 

assessment scale cognitive sub-scale (ADAS-Cog) as the primary 

continuous outcome certainly fits the frame of the latter properly. 

7) The type of sample adjustment 

For clinical trials with longitudinal data, the sample can be adjusted in two 

ways: 1) recruit more subjects while retain the number of longitudinal 

measurements, meaning extend the duration of the trial; and 2) increase 

the number of longitudinal measurements while retain the number of 

subjects. The GSD generally requires the duration of the trial to be pre-

determined in order to schedule multiple interim analyses in the design 

stage, and thus it limits the sample adjustment to the number of subjects 

only. 

In sum, the SSR adaptive design is a superior option for AD over the GSD.  

Methods for blinded estimate of the variance 

 A SSR adaptive design starts with a typical parallel-group design: the treatment 

group and the placebo group. At the interim analysis, outcomes from both groups are 
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collected for the estimate of the common variance without knowing the groups they 

belong to. 

 Two methods for the blinded estimate of the interim variance were proposed by 

Gould and Shih [21]: “the pooled sample variance with adjustment based on the 

treatment effect presumed under the alternative hypothesis” (henceforth, referred as the 

pooled-sample-variance method); and the EM algorithm which is independent of the 

presumed treatment effect. Govindarajulu extended the pooled-sample-variance method 

to outcomes from arbitrary distributions [19]. Gould and Shin claimed that the maximum 

likelihood estimate (MLE) of the common variance by the EM algorithm preserves the 

blindness and is very satisfactory. However, Friede and Kieser showed that the EM 

algorithm: 1) depends on the initial values; 2) its stopping rule may not be able to 

guarantee the convergence of the MLE to the true variance; 3) it is only appropriate for 

trials with the simple randomized assignment, e.g. 1:1 sample allocation ratio [27]. 

Waksman improved Gould and Shin’s procedure and his updated version overcomes the 

aforementioned flaws; however, the new procedure still leads to a negatively biased 

estimate with a large standard deviation. Additionally, he concluded that “when the 

standardized treatment effect is 1 or less, which is typical in most trials”, the pooled-

sample-variance yields a better estimate despite of its positive bias [28]. We extended 

Waksman’s work and investigated the impact of skewness on the estimate for both 

methods.  

 The non-normal data with given skewness and kurtosis were generated by 

Fleishman’s polynomial method [29, 30]. Assume random variance         , then let  
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with                            and              where    and    are the 

pre-specified values of skewness and kurtosis. Then the corresponding coefficients 

satisfy the following equations. 

     

                    

                         

                                                  

Fleishman solved the 3
rd

 equation for  , and then substituted the resultant expression into 

the 2
nd

 and the 4
th

 equations. That yielded two equations for solving two variables. 

Fleishman used a modified Newton method to accomplish this. We applied the same 

method and obtained a list of the coefficients with corresponding values of skewness and 

kurtosis (Table 1).  

Table 1. The combinations of skewness, kurtosis, and corresponding coefficients 

Combination Skewness Kurtosis b c d 

1 0.5 0.5 0.97343 0.08045 0.006647 

2 0.6 0.5 0.98755 0.10020 0.000784 

3 0.7 0.5 1.00633 0.12311 -0.007253 

4 0.8 0.5 1.03156 0.15154 -0.018621 

5 0.5 0.6 0.96255 0.07872 0.010305 

6 0.6 0.6 0.97572 0.09777 0.004867 

7 0.7 0.6 0.99310 0.11957 -0.002505 

8 0.8 0.6 1.01622 0.14606 -0.012761 

9 -0.5 0.5 0.97343 -0.08045 0.006647 

10 -0.6 0.5 0.98755 -0.10020 0.000784 

11 -0.7 0.5 1.00633 -0.12311 -0.007253 

12 -0.8 0.5 1.03156 -0.15154 -0.018621 
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Combination Skewness Kurtosis b c d 

13 -0.5 0.6 0.96255 -0.07872 0.010305 

14 -0.6 0.6 0.97572 -0.09777 0.004867 

15 -0.7 0.6 0.99310 -0.11957 -0.002505 

16 -0.8 0.6 1.01622 -0.14606 -0.012761 

17 1.0 0.5 1.11465 0.25852 -0.066013 

18 1.2 0.5 -0.91451 0.15709 -0.024614 

19 -1.0 0.5 1.11465 -0.25852 -0.066013 

20 -1.2 0.5 -0.91451 -0.15709 -0.024614 

21 0.4 1.0 0.91613 0.05736 0.026170 

22 0.6 1.2 0.91664 0.08706 0.024639 

23 0.8 1.4 0.92471 0.11985 0.019872 

24 1.0 1.6 0.94243 0.15938 0.010500 

25 1.2 1.8 0.97458 0.21578 -0.007486 

26 -0.4 1.0 0.91613 -0.05736 0.026170 

27 -0.6 1.2 0.91664 -0.08706 0.024639 

28 -0.8 1.4 0.92471 -0.11985 0.019872 

29 -1.0 1.6 0.94243 -0.15938 0.010500 

30 -1.2 1.8 0.97458 -0.21578 -0.007486 

 

 Based on these lists, we generated non-normally distributed data based on         

and          ,         and         ,         and          ,         and         , 

and finally         and          , and then estimated the common variance using the 

EM algorithm and the pooled-sample-variance method for different sample sizes per 

group. Our simulation showed that the EM algorithm is more vulnerable to skewness and 

kurtosis (Figure 2).  
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Figure 2. The impact of skewness on the blinded estimate of variances by estimate 

methods based on        and          .   

  

 All things considered, in this study, the pooled-sample-variance method is chosen 

for the blinded estimate of the interim variance.  

Real patient data used in the simulation 

 Participants for the simulations were drawn from a meta-database of clinical trials 

and observational studies [31]. Of all the studies, 8 of them were used for this dissertation 

(Table 2). 
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Table 2. Studies used in this dissertation  

Study (code) Design N 
Duration 

(months) 

Selegiline, vitamin E (SL) RCT, moderate to severe AD 341 24 

Prednisone (PR) RCT, mild to moderate AD 138 16 

Conjugated estrogens (CE) RCT, mild to moderate AD 120 15 

Memory impairment study (MIS) RCT, MCI 769 36 

Simvastatin (LL) RCT, mild to moderate AD 406 18 

Vitamins B (HC) RCT, mild to moderate AD 409 18 

DHA (DHA) RCT, mild to moderate AD 402 18 

ADNI (ADNI) 
Observational, AD, MCI,  

normal 
800 

36 (AD) 

48 (MCI) 

48 (NL) 

Abbreviations: RCT, randomized clinical trial; LL, lipid lowering; HC, homocysteine; 

DHA, Docosahexaenoic Acid; ADNI, Alzheimer’s Disease Neuroimaging Initiative; NL, 

normal. 

     

Research Goals 

Paper 1 

 We begin with the SSR based on the effect size and the variance using only a 

single measurement. We evaluate the impact of SSR on power and final sample sizes. We 

also consider other factors that potentially affect the behavior of SSR, such as the time of 

SSR, the initial sample size, and the duration of the trial. 

Paper 2 

 Taking advantage of the longitudinal data, we evaluate the SSR method based on 

the variance of the rate of change of the longitudinal data. This method leads to 

adjustments in the final sample size or in the total number of measurements for each 
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subject. We examine the differences between these two types of adjustments and 

potential factors that may affect them.   

Paper 3 

 First, we improve and propose the values of the crucial design parameters in DS 

design. Second, we extend the assumption of the variances. Finally, through simulation, 

we compare the power of the DS design with the typical randomized parallel-group 

design, and evaluate the impact of the variance assumption on power.  

Future Research 

 We conclude this dissertation with a discussion on limitations of our current work 

and directions for future research. 
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1 INTRODUCTION 

 The number of individuals with AD continues to grow worldwide with the aging 

of the population [1]. Although a handful of modestly effective symptomatic treatments 

have been developed using the typical randomized clinical trial (RCT) design, clinical 

trials to identify effective disease-modifying treatments to slow the progression of AD 

have been uniformly negative [2-4]. There are several potential causes of these negative 

trials, including the lack of efficacy in the treatments, insensitivity of the primary 

outcome to treatment changes, and low power due to the inaccurate pre-trial estimates of 

the treatment effect. Therefore, clinical trial designs which allow interim analyses and 

resultant modification of the ongoing trial to increase power (adaptive designs)  have 

been recommended [5]. One such approach is the sample size re-estimation (SSR) 

adaptive design, which allows sample size adjustment based on the comparison between 

the interim treatment effect (or the interim variance) to the pre-trial treatment effect (or 

the interim variance) [6].  

A simplified comparison between the typical RCT design used in AD and the SSR 

adaptive design is illustrated in Figure 1. The typical RCT design starts the trial with a 

pre-specified sample size, and modification regarding sample size would not be allowed 

after the trial has started. In the absence of dropouts, the trial would end with the same 

sample size as specified at the beginning. The SSR adaptive design allows the sample 

size to increase when the pre-trial treatment effect size was overestimated or the pre-trial 
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variance of the outcome was underestimated, leading to a trial that concludes using a 

larger sample size to retain the power specified at the beginning. It also allows early 

stopping or an overall decrease in the sample size when the pre-trial treatment effect size 

was underestimated or the pre-trial variance was overestimated, leading to a trial with the 

pre-specified power, but a smaller sample size. This flexibility can not only adjust the 

trial to improve efficacy, but also provide other advantages over the typical RCT design, 

such as minimizing the number of patients exposed to inferior treatment, avoiding long-

term trials for drugs with limited efficacy, and better utilizing the most recent external or 

internal information of the ongoing trial. However, there are potential concerns when 

employing SSR, such as the reliability in estimating the overall treatment effect based on 

a relatively small interim sample (or, for longitudinal trials, the precision in predicting the 

final treatment effect using only the early measurements), and the tradeoff between the 

gain in power versus the burden to recruit more subjects. The former concern is 

particularly relevant for clinical trials in AD, as heterogeneity in the course of the disease 

may introduce significant inaccuracies in estimating the final treatment effect based on 

interim analyses. This study was designed to use simulations based on real patient data to 

investigate the behavior of SSR in an adaptive trial design for AD.         
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Figure 1. The simplified comparison between the typical clinical design and the SSR 

adaptive design: the former requires a fixed sample size; whereas the latter allows sample 

size adjustments  

2 METHODS 

2.1 Study Overview 

 Participants for the simulations were drawn a meta-database of 9 clinical trials 

and observational studies [7]. The primary outcome was the ADAS-Cog, which evaluates 

memory, reasoning, orientation, praxis, language, and word finding difficulty, and is 

scored from 0 to 70 errors, with higher scores indicating greater impairment [8]. Clinical 

assessments were done at 6-month intervals over the first 2 years.   

2.2 Simulation Methods 

 Simulations were conducted under a detailed protocol [9], similar to our 

previously published approach [7, 10], to reflect clinical trials for an experimental drug 

for AD or MCI with one treatment group and one placebo group, 1:1 allocation ratio, and 

parameters for the distribution of ADAS-Cog selected to be consistent with previously 

published trials and ADNI [11, 12]. Clinical trials with sample sizes of 50, 100, 200, 300, 

and 400 per group, trial durations of 12 months or 18 months for AD and of 18 months or 

24 months for MCI, and dropout rates of 20% or 40% in both groups, were simulated. 

For each scenario, a separate set of patients was constructed by randomly choosing from 

the meta-database with replacement, i.e., patients from the dataset could be present in the 

simulated groups more than once in the same or different treatment groups. The placebo 

group outcome was the score for the subject at the specified time point in the meta-

database, with normally distributed random error with mean 0 and standard deviation 1 
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added to minimize ties in the outcome. For each subject in the treatment group, effect 

sizes of 0.15 and 0.25 (representing treatment effects of small to medium size) were used 

to compute simulated treatment results. The individual treatment effect was randomly 

generated from a    distribution with mean equal to the expected treatment effect (effect 

size times the pooled group standard deviation) to allow for a more realistic distribution 

of declines over time, where a few patients may fail or worsen more markedly because of 

the skewness of the    distribution than would be predicted by a normal distribution. As 

successful treatments would lead to smaller increases on the ADAS-cog than placebo, the 

individual treatment effect was shifted by subtracting two times the expected treatment 

effect, then adding the result to the patient’s score at the specified time point in the 

database. For example, if   is the ADAS-Cog score at a given time point in the database, 

then      
       is the corresponding score in the simulated treatment group, where 

                 and    is the sample standard deviation of the change in ADAS-

Cog from baseline. Assume     , effect size is 0.25,    is 8, and the randomly 

generated treatment effect from the   
  is 3, then the ADAS-Cog score used in the 

simulation would be 23.  While a patient may be reused in the analysis, the actual value 

used would be modified by this randomly selected amount, hence making it slightly 

different. 

2.3 Time Points Used for SSR 

 For a typical RCT AD, patients’ enrollment times vary (Figure 2), leading to 

different number of available measurements for each patient at the interim analysis. In 

this example, at 12 months, patient 1 had 3 measurements available; patients 2 to 5 had 2; 

while patient 6 had only 1. In this paper, for a given trial with an initial sample size of 50 
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per arm, ‘SSR at 12 months’ means that all the patients enrolled and had been measured 

for up to at least 12 months. Notably, some patients were followed longer and their 

measurements were truncated at 12 months implying each patient would have the 

opportunity for 3 measurements. This truncation leads to power loss, but depends heavily 

on the recruitment rate. Thus for simplicity, we truncated the follow-up at this point so 

our results were not strictly dependent on the recruitment rate.    

 

Figure 2. The enrollment times vary in a trial. The number of measurements per patient 

varies depending on enrollment times and the time of SSR performed. For example, at 12 

months, patient 1 has 3 measurements; patients 2 to 5 have 2; and patient 6 has only 1. 

2.4 Estimation Methods Used for SSR 

 SSR based on interim variances (henceforth, referred as “variance only method”) 

and SSR based on interim effect sizes (henceforth, referred as “effect size method”) were 

used, and both methods assumed equal variances in the treatment group and the placebo 

group. The “variance only method” assumes that the pre-trial estimate of the mean 

difference between treatment and placebo groups is accurate, and only the variance is 

uncertain, thus needs re-estimation. At the interim analysis, the variance of ADAS-cog 
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was estimated and compared with the pre-trial estimate, and then the sample size was 

adjusted based on the following equation:  

  
   

 

   
      

Where,   is the re-estimated sample size,    is the initial sample size, and     
  and    

  are 

the interim and the estimated pre-trial variances of the outcome, respectively.  In our 

analysis,    
  was estimated using pooled data (to mimic blinding to treatment in a clinical 

trial) as    
                        , where    is the total sample size at the 

interim analysis,    is the pooled sample variance, and   is the pre-trial estimate of the 

treatment effect [13]. This method does not inflate type I error, thus no adjustment to the 

  level is required.  

 The “effect size method” assumed that the estimate of the pre-trial estimate of the 

mean difference between treatment and placebo groups, as well as the pre-trial variance, 

is uncertain.  At the interim analysis, both would be re-estimated and the initial sample 

size was adjusted based on the formula given by Chang [14]:  

    
  

  
 
 

    

where,    and    are the pre-trial and the interim observed effect sizes, and   is a tuning 

parameter and that is often chosen to be 2 because of the squared relation between the 

sample size and the effect size.    was approximated as         , where,    is the 

observed treatment difference at the interim analysis, and   is the pooled sample 

deviation. This method requires unblinding of the treatment code, which must be 
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monitored carefully and kept to a minimum of individuals to preserve trial integrity. In 

addition, it does not preserve the type I error, so adjustment to the   level is required.  

 The pre-trial variances of ADAS-Cog scores for MCI and AD trials used in this 

study were 16 and 64 respectively, which were conservatively estimated based on the 

placebo outcomes of previous trials [3]. A single SSR was conducted at 6 months and 12 

months. Increases in sample size are not necessary if significance of the treatment 

difference is achieved at the interim analysis, or if the treatment effect is as large as or 

larger than that hypothesized a priori, or if the variance is as small as or smaller than that 

hypothesized. For both methods, we assumed restricted designs [15], which means the 

initial sample size may be increased but not decreased. The latter restriction was a 

practical consideration, since in many chronic conditions; recruitment is often completed 

by the time of SSR.   

2.5 Statistical Analysis 

 The primary analysis method was the Wilcoxon test of differences in ADAS-cog 

between the treatment group and the placebo group; missing values were imputed using 

last observation carry forward (LOCF) because of its simplicity and the assumption of 

non differential dropout as well as the longitudinal nature of the data [16]. The secondary 

analysis method was a mixed effects linear model, which tested the difference in the 

slopes of the ADAS-cog between the treatment group and the placebo group. For all 

analyses, the missing data pattern present in the meta-database was used to realistically 

simulate dropouts.  Observations were missing in simulated datasets in cases where they 

were originally missing in the meta-database.  Because of our use of treatment effect 
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applied to selected samples, differential dropout caused by informative censoring was not 

included into the comparison. 

 One thousand simulations were carried out for each scenario so that estimates of 

power could be obtained up to three digits. Power is defined as the proportion of 1000 

simulated trials per scenario with p values less than or equal to 0.05. All analyses were 

performed using SAS software, Version 9.2 (SAS Institute, 2008).  

3 RESULTS 

 SSR at 6 months resulted in highly variable outcomes for both sample size 

increases and power improvement regardless of SSR method (Figures 3 and 4). 

Approximately 25% of trials required at least a doubling of the sample size regardless of 

initial sample sizes. When the initial sample size per treatment group was 50, half of SSR 

projected no increase in sample sizes. After SSR, the gain in power varied by initial 

sample sizes, trial durations, and effect sizes. For example, given an MCI trial with effect 

size 0.25, duration of 18 months, and SSR at 6 months based on variances, the power of 

the trial on average increased from 38.8% to 61.3% for initial sample sizes of 50 per 

group and from 64.7% to 88.1% for initial sample sizes of 100 per group. In contrast, the 

gain in power is less dramatic for an AD trial under the same setting, e.g. the power on 

average increased only from 30.8% to 42.2% for initial sample sizes of 50 per group and 

from 53.0% to 69.4% for initial sample sizes of 100 per group. However, when the initial 

sample size was over 200, the gain in power was negligible regardless of the type of trials. 

When the effect size was smaller, the power before SSR as well as after also became 

smaller; however the gain in power actually increased over larger initial sample sizes 
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(Figure 3). Under the same SSR method, the longer trial duration did not generate larger 

gain in power (Figure 5). In contrast, SSR at 12 months showed greater gains in power, 

but were still highly variable, ranging from 0% to 44%, with no clear increase in power 

over larger initial sample sizes (Figure 6).  

 The “effect size method” generally resulted in greater gain in power than the 

“variance only method” (Figure 4). However, the greater gain was at the price of larger 

increase in the re-estimated sample sizes (Table 1), and it diminished over larger initial 

sample sizes. The two SSR methods generated very similar results for both AD and MCI 

clinical trials. On average, both the gain in power and the increase in sample sizes after 

SSR are slightly larger for Wilcoxon tests than for the mixed effects linear model tests. 

Table 1. Increase in sample sizes after SSR by initial sample sizes and by SSR methods. 

SSR method 

Initial Sample Sizes 

50 100 200 300 400 

Increase in sample sizes after SSR (mean(std)) 

SSR based on 

variances 
43(18) 85(25) 170(35) 253(43) 338(50) 

SSR based on 

effect sizes 
166(219) 210(226) 272(244) 303(253) 341(259) 
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Figure 3. Power comparison before and after SSR based on variances at 6 months 

 

Figure 4. Comparison between SSR at 6 months based on variances and based on effect 

sizes 
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Figure 5. Power comparison by trial durations and by the time of SSR based on variances. 

 

Figure 6. Power comparison by the time of SSR. 

4 DISCUSSIONS 
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 Based on our simulation, the SSR adaptive design can be effective for clinical 

trials in AD and MCI under certain circumstances. However, the effectiveness depends 

on several factors, such as the number of subjects accumulated for the interim analysis, 

the true treatment effect size, and the type of uncertainty in the pre-trial estimates (effect 

sizes or variances). Too few subjects accumulated for the interim analysis might lead to 

imprecise estimates of the treatment effect or the variance, thus resulting in poor 

prediction of sample size adjustments; with too many subjects, subjects are already 

enrolled and the trial without SSR already has adequate power. The smaller the true 

treatment effect, the more subjects are needed at the interim analysis in order to obtain 

precise estimates. Although the uncertainty in the pre-trial estimates determines the SSR 

method, the “variance only” method would be preferred over the “effect size” method [17, 

18]  and emphasizes the importance of pre-trial estimates of the difference between 

treatment and placebo groups. Based on our simulation, the former on average resulted in 

less gain in power than the latter; however, the latter tends to overshoot the final sample 

size, leading to recruitment of a much larger number of subjects than necessary. 

 For a longitudinal study, longer trials lead to more power for an effective 

treatment. However, our simulation indicated little difference in power between 18 

months and 24 months trials after SSR. One explanation is that the relatively small 

treatment effect was not enough to overcome the heterogeneity and inconsistency in 

ADAS-Cog within a 6-month frame of time. This would also explain the lack of 

differences between SSR at 6 months and 12 months. An alternative would be to measure 

more frequently, e.g. every 3 months, and use more measurements at the interim analysis 

to estimate the variance or the effect size. 
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 Perhaps the most interesting result of this study is that when the sample size per 

arm is larger than 200, SSR generates no major advantages over the typical design 

because the typical design itself already offers adequate power. This is in contrast to the 

results of many finished clinical trials with equally large or even larger sample sizes [3, 

4]. The reason for this difference may be that, in our analysis, a moderate effect size was 

assumed to exist at each measurement and persist from the beginning to the end of each 

simulated trial (Tables 2 and 3). This difference might indicate that if a moderate clinical 

meaningful treatment effect indeed persists and can be reflected in the change of ADAS-

Cog, it probably won’t take a very large sample to detect it. However, in reality, large 

degree of uncertainty in the effect size or the variance prevents efficient trials with 

relatively small sample sizes.  

Table 2. The average change in ADAS-Cog from baseline by groups and the average 

difference between the two groups at each visit after the added treatment effect for 

sample size 50 per arm based on the SL trial 

Added 

effect size 
Groups m1 m3 m6 m9 m12 m15 m18 m21 m24 

.25 

Placebo -0.68 0.35 1.8 3.34 5.36 7.05 8.62 9.47 11.29 

Treatment -1.35 -0.5 0.95 2.00 3.94 5.23 6.63 7.28 8.9 

Difference 0.67 0.86 0.85 1.33 1.42 1.82 1.99 2.19 2.38 

.15 

Placebo -0.49 0.56 1.85 3.69 5.77 7.08 8.69 9.62 11.52 

Treatment -1.1 -0.58 0.88 2.54 4.47 6.14 7.52 7.81 9.9 

Difference 0.60 1.15 0.96 1.15 1.3 0.95 1.175 1.815 1.63 

 

Table 3. The average change in ADAS-Cog from baseline by groups and the average 

difference between the two groups at each visit after the added treatment effect for 

sample size 50 per arm based on the HC trial 

Added 

effect size 
Group m3 m6 m9 m12 m15 m18 

.25 

Placebo 1.28 1.44 3.03 4.25 5.54 6.34 

Treatment -0.18 0.4 1.1 2.72 4.4 4.47 

Difference 1.46 1.03 1.93 1.53 1.14 1.87 

.15 

Placebo 1.21 1.41 2.28 3.17 4.79 5.44 

Treatment 0.63 1.04 1.66 2.92 4.7 5.28 

Difference 0.58 0.38 0.62 0.25 0.08 0.17 
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  Although our analysis demonstrates the effectiveness of SSR for relatively small 

initial sample sizes, there are some limitations that must be considered. First, the gain in 

power after SSR depends on the initial sample sizes.  Though we have recommended 

SSR for trials with initial sample sizes less than 200 per arm, the optimum pre-trial 

sample size was not determined. Second, the possible impact of the recruitment rate on 

the time of SSR has not been investigated. Very fast recruitment rates mean that at the 

interim analysis, most or even all of the subjects have been enrolled, and it might not be 

necessary to conduct SSR given a relatively larger initial sample size, e.g. larger than 200 

per arm. However, considering failures in completed clinical trials in AD with large 

sample sizes, SSR can still be used to determine whether to stop larger trials early for 

futility, or whether to increase the number of longitudinal measurements instead of the 

number of recruits [19]. Third, unique features of longitudinal trials might be 

incorporated in SSR in the future. For example, when the recruitment period is shorter 

than the trial duration, the interim analysis may not contain any complete data. In 

addition, as the variances of the outcome increase over time, the estimate of the variance 

at the interim analysis may underestimate the variance of the later time points. Research 

to address these questions is in progress. Fourth, the flexibility to recruit additional 

subjects and the gain in power after SSR introduces added complexity of logistics, 

masking, telegraphy of results, and statistical analysis. 

CONCLUSIONS 
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 The SSR adaptive design can be effective for AD and MCI trials with small to 

medium initial sample sizes. It can not only lead to significant gains in power, but also 

avoid the exposure of a large number of patients to ineffective treatment by starting the 

trial with a relatively small initial sample size and stopping the trial early for futility. 

Considering the need to identify effective treatments, the continuous increase in sample 

size for AD trials, and the difficulty in estimating pre-trial treatment effects, the SSR 

adaptive design can be a superior alternative to the typical randomized, placebo-

controlled, parallel-group design.   
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1 INTRODUCTION 

 The number of individuals with AD continues to grow worldwide with the aging 

of the population [1]. Although a handful of modestly effective symptomatic treatments 

have been developed using the typical randomized clinical trial (RCT) design, clinical 

trials to identify effective disease-modifying treatments to slow the progression of AD 

have been uniformly negative [2-4]. There are several potential causes of these negative 

trials, including the lack of efficacy in the treatments, insensitivity of the primary 

outcome to treatment changes, and low power due to the inaccurate pre-trial estimates of 

the treatment effect. Therefore, clinical trial designs which allow interim analyses and 

resultant modification of the ongoing trial to increase or adjust power, such as adaptive 

designs, are recommended [5]. One such adaptive design is the sample size re-estimation 

(SSR) adaptive design, which allows sample size adjustment based on the comparison 

between the interim treatment effect (or the interim variance) to the pre-trial treatment 

effect (or variance) [6].  

 For longitudinal data, SSR can be conducted based on a single measurement of 

the primary outcome. For example, the variance of ADAS-Cog at 6 months can be 

estimated at the interim analysis and then compared to the pre-trial variance, and the ratio 

of these two will determine the necessity of sample size adjustment (Figure 1). This 

method can be problematic for at least two reasons: 1) the estimated variance at the 

interim analysis likely underestimates the variance of the primary outcome at the end of 

the study since it has been observed that the variance of the longitudinal outcome 

increases over time [3]; 2) it does not take advantage of the other available measurements 

at the interim analysis. 



39 
 

 

 

Figure 1. SSR based on a single measurement at 6 months of the primary outcome in a 

longitudinal study 

  

 Alternatively, SSR can also be conducted based on the rate of change of the 

longitudinal measurements. For example, the variance of the rate of change in ADAS-

Cog scores can be estimated at the interim analysis using all the available measurements, 

and then compared to the pre-trial estimate so that the decision as to whether or not adjust 

the sample can be made (Figure 2). This method uses all the available measurements at 

the interim analysis, and its accuracy is not affected by the increasing variance of the 

primary outcome provided that the model used is correct.  
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Figure 2. SSR based on the rate of change of the primary outcome in a longitudinal study 

 The application of SSR based on a single measurement in AD showed that it can 

increase the power effectively; however, the gain in power varied remarkably due to the 

poor estimates of the interim effect size and/or the interim variance since only a single 

measurement was used. This paper examined the advantages of using all the available 

measurements at the interim analysis in performing SSR based on the rate of change in 

longitudinal data, which is expected to yield estimates with more accuracy and less 

variation, using simulations derived from real patient data.     

2 METHODS 

2.1 Study Overview 

 Participants for the simulations were drawn from two clinical trials: the vitamins 

B (HC) using its duration of 18 months, and the selegiline/vitamin E (SL) with duration 

of 24 months, as well as the pooled data of HC and SL. Clinical assessments were done at 

3-month intervals with the exception of 1
st
-month assessments for SL trial (Table 1). 

These two trials were chosen from the meta-database because of their longer duration and 
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more frequent and regular measurements. Patients with missing measurements of 3 or 

more in the last 5 measurements were excluded in order to avoid heavily underestimated 

rates of change due to the use of the last observation carry forward (LOCF) imputation 

method. Since the results are based on simulations, this restriction was not seen as very 

important despite the potential for informative censoring. After the exclusion, 136 

patients from the SL trial (136/341 =40%) and 335 patients from the HC trial 

(335/459=73%) were selected for simulation.   

Table 1. The assessment schedule and the estimates of the pre-trial between-subject and 

within-subject variances based on the chosen AD clinical trials  

Trials 
Time of clinical  

assessments (months) 

ES=.15 

(within/between) 

ES=.25 

(within/between) 

SS=100 SS=100 

ADNI 0, 6, 12, 24 12.6(1.1)/14.6(3.0) 13.1(1.1)/15.5(2.9) 

DHA 0, 6, 12, 18 12.6(1.0)/18.7(3.4) 13.3(1.1)/18.7(3.3) 

ES 0, 2, 6, 12, 15 8.6(0.7)/23.4(3.3) 8.9(0.7)/23.9(3.2) 

HC 0, 3, 6, 9, 12,15, 18 14.3(1.2)/16.0(2.8) 15.0(1.2)/16.0(2.8) 

LL 0, 3, 6, 12, 18, 20 14.4(0.8)/17.0(3.3) 15.1(1.0)/17.6(3.4) 

PR 0, 1, 2, 7, 12, 17 8.2(0.7)/17.4(2.1) 8.6(0.7)/17.9(2.1) 

SL 0, 1, 3, 6, 9, 12,15, 18, 21, 24 10.9(0.6)/10.5(1.4) 11.4(0.7)/10.6(1.3) 

 Mean of the means Mean: 11.6/16.8 Mean: 12.2/17.1 

Abbreviations: SS, sample size; ES, effect size; within, the within-subject variance which 

is the variability of ADAS-cog measurements over time; between, the between-subject 

variance which is the variability of the patient-specific slopes 

  

 The separate and then combined use of data from the two trials with same 

measurement spacing provided the opportunity to compare the effect of SSR over 

different trials and durations, and to evaluate the reliability of the pre-trial variances 

estimated from all of the available clinical trials in our meta-database. The primary 

outcome chosen for simulation was the ADAS-cog, which evaluates memory, reasoning, 

orientation, praxis, language, and word finding difficulty, and is scored from 0 to 70 
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errors [7]. The baseline characteristics of all the clinical trials in the meta-database were 

shown in Table 2.  

Table 2. The baseline characteristics of all the AD clinical trials in the meta-database   

Study N Age 
Education 

(years) 

*Gender 

(M/F)(%) 

*Race 

(Non White/White) 

*Marital Status 

(Y/N)(%) 

**Baseline 

ADAS-Cog 

HC 459 76(8) 14(3) 
180 

(44.0) 

229 

(56.0) 

104 

(22.7) 

355 

(77.3) 

293 

(63.8) 

166 

(36.2) 

22.7 

(8.8) 

SL 341 73(8) 12(3) 
119 

(34.9) 

222 

(65.1) 

40 

(11.7) 

301 

(88.3) 

250 

(73.3) 

91 

(26.7) 

30.7 

(9.6) 

* The percentages of different categories are significantly differently between the studies 

(p<.0001) based on the chi-square test. 

**The means of the baseline ADAS-Cog scores are significantly different among the 

studies even after adjustment for age and education (p<.0001) based on the general linear 

model. 

2.2 Estimate of the Pre-trial Variances 

    For each clinical trial in the meta-database, 100 clinical trials of sample size 100 

were simulated, and the within-subject and between-subject variances were estimated and 

averaged accordingly. The mean of all the means of those clinical trials were considered 

as the pre-trial within-subject and between-subject variances in the simulation study 

(Table 1). 

2.3 Simulation Principles and Parameters 

 Simulations were conducted under a detailed protocol [8], similar to our 

previously published approach [9, 10], to reflect clinical trials for an experimental drug 

for AD or MCI with one treatment group and one placebo group, and parameters for the 

distribution of ADAS-Cog selected to be consistent with previously published trials and 

ADNI [11, 12]. Parameters used to simulate the clinical trials are shown in Table 3. 
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Table 3. Parameters used in the simulation  

Parameters Scenarios 

Data source (duration)* HC (18), SL (24) and the pooled (18) 

Primary outcome  ADAS-Cog 

Trial duration** 15/(6, 9)/18, 18/(6, 9, 12)/24 

Initial sample size per arm 50, 100, 200 

Effect size  0.15, 0.25 

Random error in placebo groups        

Treatment effect     

Allocation ratio  1:1 

Time of SSR  6 months, 9 months, and 12 months 

Pre-trial variances  Average of 7 trials (Table 1) 

Interim variance estimate The pooled-sample-variance with adjustment 

*The pooled data of HC and SL are used to increase variability in the outcome over time  

**15/(6, 9)/18 means that the HC trial is truncated so that trials of 15 months are 

simulated, SSR at 6 months and 9 months are conducted, and if warranted, the duration 

simulated trials can be extended to 18 months.  

 

2.4 Duration of the Simulated Trials and the Time of SSR 

 In order to allow for an extension in time over the initial duration of the trial after 

SSR, trials with initial duration 15 months were simulated based on HC trial and the 

pooled of HC and SL trials. A single SSR was conducted at 6 months and 9 months, and 

the initial duration was then extended to 18 months if warranted. Trials of initial duration 

of 18 months were simulated based on SL trial. A single SSR was done at 6 months, 9 

months, or 12 months, the initial duration was extended to 24 month if warranted.    

2.5 The Placebo Group and the Treatment Group 

 For each scenario, a separate set of patients was constructed by randomly 

choosing from the meta-database with replacement, i.e., patients from the dataset could 

be present in the simulated groups more than once in the same or different treatment 

groups, but were perturbed with random components, thus lessening the correlations due 
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to sampling with replacement. The placebo group outcome was the score for the subject 

at the specified time point in the meta-database, with random error added to minimize ties 

in the outcome and thus making even the same patient if selected again slightly different. 

For each subject in the treatment group, effect sizes of 0.15 and 0.25 were used to 

compute expected treatment results representing treatment effects of small to medium 

size. The individual treatment effect was randomly generated from a    distribution with 

a mean equal to the expected treatment effect (effect size times pooled standard deviation) 

to allow for a more realistic distribution of declines over time, where a few patients may 

fail or worsen more markedly than would be predicted by a normal distribution. As 

higher scores on the ADAS-cog reflect poorer performance, the individual treatment 

effect was shifted by subtracting two times the expected treatment effect, then adding the 

resultant to the patient’s score at the specified time point in the database. For example, if 

  is the ADAS-Cog score at a given time point in the database, then      
       is 

the corresponding score in the simulated treatment group, where                  

and    is the sample standard deviation of the change in ADAS-Cog from baseline. 

Assume     , effect size is 0.25,    is 8, and the randomly generated treatment effect 

from the   
  is 3, then the ADAS-Cog score used in the simulation would be 24 + 3 – 

2*0.25*8= 23.  While a patient may be reused in the analysis, the actual value used 

would be modified by this randomly selected amount, hence making it slightly different. 

The resultant mean differences at each time point between the treatment group and the 

placebo group after the added treatment effect were shown in table 4 and table 5. The 

difference between the two groups continued to increase over time, although they are 

quite variable.  
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Table 4. The average change in ADAS-Cog from baseline by treatment groups and the 

average difference between the two groups at each visit after the added treatment effect 

for sample size 50 per arm based on the SL trial 

Added 

effect size 
Groups *m1 m3 m6 m9 m12 m15 m18 m21 m24 

0.25 

Placebo -0.68 0.35 1.8 3.34 5.36 7.05 8.62 9.47 11.29 

Treatment -1.35 -0.5 0.95 2.00 3.94 5.23 6.63 7.28 8.9 

Difference 0.67 0.86 0.85 1.33 1.42 1.82 1.99 2.19 2.38 

0.15 

Placebo -0.49 0.56 1.85 3.69 5.77 7.08 8.69 9.62 11.52 

Treatment -1.1 -0.58 0.88 2.54 4.47 6.14 7.52 7.81 9.9 

Difference 0.60 1.15 0.96 1.15 1.3 0.95 1.175 1.815 1.63 

*m1 represents that the measurement was taken after the first month, and so on 

Table 5. The average change in ADAS-Cog from baseline by treatment groups and the 

average difference between the two groups at each visit after the added treatment effect 

for sample size 50 per arm based on the HC trial 

Added 

effect size 
Group m3 m6 m9 m12 m15 m18 

0.25 

Placebo 1.28 1.44 3.03 4.25 5.54 6.34 

Treatment -0.18 0.4 1.1 2.72 4.4 4.47 

Difference 1.46 1.03 1.93 1.53 1.14 1.87 

0.15 

Placebo 1.21 1.41 2.28 3.17 4.79 5.44 

Treatment 0.63 1.04 1.66 2.92 4.7 5.28 

Difference 0.58 0.38 0.62 0.25 0.08 0.17 

 

 

2.6 SSR Method 

 Clinical trials for AD are generally longitudinal studies in which each patient is 

followed over a period of time and is repeatedly measured multiple times with even or 

uneven spacing, leading to a series of measurements in chronological order. For these 

longitudinal data, the rate of change has been used as a key response or outcome variable 

[13-15]. The rate of change can be obtained through the following model which was 

recommended by Aisen [2] and was reproduced based on a paper by Shih [13]. Let      
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be the     measurement for the     patient in the     group,                assuming 

equal allocation in both groups;         assuming the same number of measurements 

for each patient. The outcome measurements      at time      can be related to a patient-

specific intercept     and a patient-specific slope     through the following linear 

regression model: 

                               

where,        
    

 

 
   . The error term      is assumed to be independently and identically 

distributed (i.i.d) as        . In order to facilitate comparison of slopes of the two 

treatment groups, the patient-specific slope is expressed as the sum of the fixed treatment 

effect    of group   and a random patient effect    , 

             

where, the random effect term     is i.i.d as        . Here    and    are referred to as 

the within-subject measurement error variance and the between-subject variance, 

respectively.  

The null and alternative hypotheses to test the treatment effect are: 

                                     . 

The statistic for testing    based on the least-square estimate       of     is the   statistic: 

  
               

  
   

    
   

 
              

        
 , 



47 
 

where      
      

 
, and      

       

 
 

Under   ,   follows a non-central   distribution with          degrees of freedom 

and non-centrality parameter 

  
   

     
  

  
 

   

            
  

where                
  

   , and         refers to the minimal clinically 

meaningful (important) difference. The power of a non-central   distribution is a 

monotonically increasing function of  . To preserve the power of the test, we keep the 

non-centrality parameter unchanged. Let   
  and   

  denote the pre-trial estimate of    

and   , respectively. Suppose that at the interim analysis with    patients per arm, who 

completed        of the   measurements, the estimates of    and    are   
  and   

 . 

Then in order to preserve the power, we require: 

  
   

    
  

  
 

  

 
    

     
  

  
 

  
 

  

This implies that we may need to adjust either or both   and  . If the sample size   is to 

be changed, and  , the number of measurements is to be unchanged, we increase the 

sample size and retain the duration of the trial, then  

   
      

    
  

   
    

                             

If   is to be unchanged, and   is to be changed, meaning to retain the same sample size 

but increase the duration of the trial, then 
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2.7 Estimates of the Within-subject and Between-subject Variances at the Interim 

Analysis 

Let      denote the total numbers of patients in the two groups. The estimates of 

patient-specific intercepts and slopes using the least-square method can be shown to be: 

             
 
         , 

                                  
 
   . 

Then the within-subject measurement variance is estimated by 

   
  

    
   

 
                              

  

      
. 

The between-subject variance was estimated using a method similar to Lefante’s [16] 

assuming that the two groups have equal variances. First, we estimate the grand mean 

slope, 

              
 
   

 
   . 

Then the between-subject variance and the within-subject variance are related by 

equating the measures of variability to their expectation, 

                    
  
   

   
 
            . 

That leads to the estimate of 
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. 

This estimate of the between-subject variance is biased [17], and overestimates the true 

variance and thus needs to be adjusted by 
  

 
        

  leading to the unbiased 

estimate of    to be     
                      

   
 
    

   
 

 
 

  

 
. Once the interim 

variances are obtained, using formulae (1) and (2), either   and/or   can be re-estimated. 

2.8 Estimate of the Drug Effect         

No estimate of the difference in mean slopes   has been provided by the results of any 

recent AD clinical trials, however, a     reduction from the placebo group has been 

recommended as the minimal clinically meaningful drug effect [18]. Assuming a     

reduction in the mean slope   
 
  of the placebo group, then the mean slope of the 

treatment group is  
 
     

 
. When both groups have the same number of patients, the 

overall mean slope can be calculated as 

 
  
 

     
 

     
 
, 

which implies 

      
 
     

  
. 

Thus the estimate of   is 

       
      

 
   

 
   

 
. 
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3 RESULTS 

 There exists significant variation among the different AD clinical trials in baseline 

characteristics such as gender, marital status, race, and baseline ADAS-Cog score. 

Clinical trial SL had the most severe patients on entry and this may explain the heavy 

losses to follow-up allowing us to utilize only 40% of the data, which if true would 

underestimate the true slopes. HC had the least severe patients in terms of baseline 

ADAS-Cog score (Table 2). The within-subject variance increased slightly, while the 

between-subject variance decreased remarkably, when the number of measurements used 

to estimate the slope increased (Table 6). However, the estimates of the mean slopes were 

stable over the increase of 3 or less measurements used in the estimation. The assumption 

of equal variances including the equal within-subject variance, the equal between-subject 

variance, and the equal total variance is satisfied based on the estimates of the pooled 

data; and this assumption is independent of the measurement spacing and the total 

number of measurements (Table 7).  

Table 6. The stability in the estimates of the within-subject and between-subject 

variances over the numbers of measurements used 

Trials 
Time of measurements 

(months) 

(Within/Between) 

Effect Size=.25 

SS=100 

HC 

0, 3,6,9,12 14.0/17.2 

0, 3,6,9,12,15 14.8/13.0 

0, 3,6,9,12,15,18 14.9/16.4 

SL 

0, 1,3,6,9,12 9.5/19.2 

0, 1,3,6,9,12,15,18 10.2/15.0 

0, 1,3,6,9,12,15,18,21,24 11.4/10.3 

The pool of 

HC and SL 

0, 3,6,9,12 12.9/18.5 

0, 3,6,9,12,15 13.7/14.0 

0, 3,6,9,12,15,18 13.7/15.9 
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Table 7. The estimates of the between-subject variances, the within-subject variances, 

and the total variances of the patient-specific slopes for trials in the meta-database with 

sample sizes 100 per arm and effect size 0.25 

Trials Time of 

measurement 

Variances(between/within/total) 

  Placebo Treatment 

ES 0, 2, 6, 12, 15 23.7/9.7/31.3 24.2/8.2/32.3 

HC 0-18 by 3 16.9/13.8/24.8 16.6/16.1/25.8 

LL 0, 3, 6, 12, 18, 20 18.5/13.7/24.6 18.6/16.4/25.7 

PR 0, 1, 2, 7, 12, 17 18.8/7.8/24.0 18.5/9.5/24.1 

SL 0-24 by 3 12.6/10.3/14.9 12.3/12.5/15.1 

 

 When trials were simulated based on HC data and the pooling of both HC and SL 

data with an initial duration of 15 months, the use of SSR at 12 months with an extension 

of the duration to 18 months if warranted, the gain in power was greater for adjustments 

to the sample size than for adjustments in the number of measurements. When only the 

single study SL was used with an initial duration of 18 months, the use of SSR at 12 

months with an extension of the duration to 24 months if warranted, the gain in power for 

the former was less than for the latter (Figure 3). When an increase in the sample size was 

required, the number of extra samples needed does not depend on the initial trials used 

for the simulation as long as the time of SSR remained the same (Figure 4). 



52 
 

 

Figure 3. Power comparison before and after sample size adjustment.  Initial duration: 15 

months, Extension of duration: 18 months, SSR at: 12 months, Interim SSR sample size: 

50 per arm, Sample size per arm: 50, Effect size: 0.25, pre-trial variances: 10 and 10 for 

SL, 11 and 16(between) for HC and HC-SL, NM: number of measurements 

 

Figure 4. The increase in sample size after SSR at 12 months for trials simulated based on 

different initial trials, for HC or HC-SL trials: initial duration of 15 months and an 

extension to 18 month; for SL only trials: initial duration of 18 months and an extension 

to 24 month  

 Varying the time of SSR did not significantly affect the gain in power (Figure 5), 

however, it did result in large differences in the frequency of different types of 
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adjustment (Figure 6). For trials simulated based on the SL study, SSR at a later time was 

more likely to lead to adjustments in both the sample size and/or the number of 

measurements than SSR at an earlier time. When an increase in sample size occurred, the 

former on average required less extra samples. Similar results were obtained when trials 

were simulated based on the HC data with an initial duration of 15 months, SSR at 9 

months and 12 months, and pre-trial within- and between-subject variances 11 and 16, 

except that SSR at 9 months actually resulted into more frequent increases in sample size 

than at 12 months.  

 

Figure 5. The gain in power after SSR at different time based on SL. Initial duration: 18 

months, Extension of duration: 24 months, Interim SSR sample size: 50, SS per arm: 50, 

Effect size: 0.25, pre-trial variances: 10 and 10 
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Figure 6. The percentage of different types of adjustment by the time of SSR based on SL. 

Initial duration: 18 months, Extension of duration: 24 months, Interim SSR sample size: 

50, SS per arm: 50, Effect size: 0.25, pre-trial variances: 10 and 10 

 

4 DISCUSSIONS 

 The application of the SSR adaptive design in AD has evolved as an option to 

insulate against poor or uninformed planning and may become necessary due to the 

dominant portion of negative trials with large sample sizes and long durations. If SSR is 

to be done, this paper extends our previous work to the longitudinal trials when the 

patient-specific slopes are the key response. The two-stage random effect model was used 

to allow the estimation of the within-subject and the between-subject variances of the 

slopes [19]. Both variances were blinded estimated at the interim analysis sparing the 

Type I error, but allowing for effective increases in sample size or duration.  

 Based on our study, the SSR based on the rate of change can be effective. It not 

only increases the power, but also helps to determine the type of sample adjustment. Our 
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simulation results show that although the SSR can lead to either increase in the sample 

size or in the number of measurements, the frequency of adjustments falls to increase the 

sample size is rather higher than that to increase the number of measurements provided 

the timing of SSR is the same. This is a useful result because the logistics of extending 

the duration of a trial in terms of adding measurements is far more complicated than 

adding sample size. This result can be explained by the larger between-subject variances 

in the pooled trials compared to the within-subject variances and would likely hold in 

general. Given the same time of SSR, the adjustment in sample size generally leads to 

slightly more gains in power than that in the number of measurements when the latter 

only requires an increase of 2 or fewer measurements which would translate to 6 months 

of trial time even with these minimal increases.    

 The time of SSR significantly affects the frequency of different types of sample 

adjustments, particularly the adjustment in the number of measurements. It is interesting 

that the later the SSR, the more likely the sample adjustment. This result is due to the 

increase of both the between-subject and the within-subject variances over the increased 

number of measurements used in the estimation. It also explained why the SSR at a later 

time requires more extra samples if the sample size to be increased. Therefore, the time 

of SSR is crucial. The simulation results show that given the number of measurements, 

the estimates of the slopes and their variances become reasonably stable when the sample 

size is over 50; on the other hand, given the sample size, the estimates become reasonably 

stable over 5 or more measurements, which is equivalent to a 12 months trial with one 

measurement every 3 months. These results were also observed by Shih, et al. [13]. 
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  The results obtained in our simulation are very similar regardless of the original 

data used for the simulation, meaning that not only the SSR method does behave 

consistently across trials, but also it is safe to use the data of previous trials given that 

trials employed the same measurement schedule. In addition, the results are also 

consistent over different treatment effect sizes; particularly, in our simulation, small (.15) 

to moderate (.25) effect sizes were used.  

 Despite the effectiveness of SSR for different types of trials, there are some 

limitations in this study. First, the outcomes of the SSR depends on the pre-trial estimates 

of the corresponding variances, and how to use the pooled data to get these estimates 

when the data are not all equally spaced, needs further investigation. Second, the 

simulation results are based on only two trials with the same measurement schedule (one 

measurement every 3 months), and they might not be applicable to trials with different 

measurement schedule. Third, the LOCF imputation method may underestimate the 

progression rate if missing values are consecutive and are in the end of the study; in 

addition, missing data usually decrease the power of tests when the key response is the 

rate of change in the longitudinal data. However, the magnitude of this negative impact 

has not been investigated [20]. Fourth, although the method to add a treatment effect in 

this study resulted in a group difference in ADAS-Cog comparable to the existing results, 

our method also generated a group difference in the early and middle stage of the trial 

[21]. This consistent group difference in ADAS-Cog scores may or may not reflect what 

would happen in a real trial. Thus, these results need to be verified through a real trial. 

 In this study, the SSR is based on the variances of the slopes where the slopes are 

directly estimated for each patient; an alternative is to conduct the SSR based on the 
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variance of the interaction coefficient between the treatment and time using generalized 

estimating equation (GEE) method discussed by Jung [22].    
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1 INTRODUCTION 

 The number of individuals with AD continues to grow worldwide with the aging 

of the population [1]. Although a handful of modestly effective symptomatic treatments 

have been developed using the typical randomized clinical trial (RCT) design, clinical 

trials to identify effective disease-modifying treatments to slow the progression of AD 

have been uniformly negative [2-4]. Without any effective treatments to slow down the 

progression or delay the onset of AD, as many as 7.1 million people in the United States 

are estimated to live with AD [5]. Disease-modifying treatments should not only 

ameliorate the symptoms of AD, but also be able to affect the underlying pathology of the 

disease [6]. However, the disease-modifying effect may not be distinguished from the 

symptomatic effect using the typical parallel-group design [7]. In order to facilitate the 

detection of disease-modifying treatments, a number of novel clinical designs have been 

proposed as the alternative to the standard RCT. One of them is the delayed-start (DS) 

design (also referred to as the randomized-start design). In the DS design, patients are 

randomly assigned to placebo or treatment for a pre-specified period of time and then 

those (or a randomized portion of those) in the placebo group are given the treatment. If 

patients who are on the treatment from the beginning of the study have similar outcomes 

to those who received the treatment later, the treatment effect, if any, is considered 

symptomatic, but not disease-modifying [6, 7].  
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   The DS design has been used in at least one study for Parkinson’s disease. 

Despite the inconclusiveness of the Parkinson’s disease study to declare the disease-

modifying effect of the tested treatment; it has attracted extensive interest among AD 

researchers, leading to various proposals to exploit its application in AD [8-12]. 

Depending on whether or not all the patients in the placebo group receive the treatment at 

the later stage of the study, the DS design yields two main patterns (Figure 1).  

 

Figure 1. The two main ramifications of the DS design   

 The one on the left starts with two groups: a treatment group and a placebo group. 

During the first period of the study, when the goal is to demonstrate the symptomatic 

effect of the drug, patients are randomly assigned to either receive the drug or the placebo. 

In the second period of the study, in order to maintain the blinding, a second 

randomization is performed with the initial placebo group, so that a proportion of the 

patients would receive the drug and the other would remain on placebo throughout the 

study [10]. Thus, at the end of the study, there are, in fact, three groups: the constant-

treatment group, the constant-placebo group, and the treatment-switch group. The three 

groups consist of four subsets of patients: those in the constant-treatment group 

(henceforth referred as the treatment group), those in the constant-placebo group 

(henceforth referred as the placebo group), those on placebo in the treatment-switch 

group (henceforth referred as the before-treatment-switch (BTS) group), and those on 
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treatment in the treatment-switch group (henceforth referred as the after-treatment-switch 

(ATS) group). The one on the right also starts with the treatment group and the placebo 

group. However, after the first period of study, all the patients who are initially on 

placebo would receive the active treatment [8, 9, 11]. The latter design eventually has 

only two groups (the constant-treatment group and the treatment-switch group) including 

three subgroups of patients: those in the constant-treatment group, those on placebo in the 

treatment-switch group, and those on treatment in the treatment-switch group. The two- 

group design might be preferred in that all the patients on placebo eventually receive the 

treatment under test. However, because of the lack of effective disease-modifying 

treatments, putting patients on placebo is still a common practice in the ongoing trials for 

AD [13] and should yield smaller sample sizes than the active comparative trials. In 

addition, a placebo group can avoid the risk of bias caused by unblinding.      

 However, due to the complexity in determining the crucial design parameters such 

as the sample size allocation ratio in different treatment groups for the three- group DS 

design, the optimal time of treatment switch, the length of the BTS period, the test 

statistic, and the power for given sample sizes; the DS design has not been successfully 

applied in any AD clinical trial to detect disease-modifying treatments [7]. 

  In this study, we extend the investigation of the three- group DS design which 

was first studied by Xiong [10]. We first provide results as to the sample size allocation 

ratio among the 3 different groups, the time of treatment switch, the correlation between 

the primary outcome in the BTS group and the ATS group, and the optimal weight to be 

used in the final test statistic. We then simulate trials of different durations to compare 
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the power of the DS design with the typical parallel-group design based on simulated data 

and on real patient data.     

2 METHOD 

2.1 Study Overview 

 This study aimed to improve and propose the design parameters of the DS design 

and to use simulations based on simulated data and on real patient data to investigate the 

behavior of the DS design in AD. Data from a meta-database consisting of 5 completed 

clinical trials (ES, HC, LL, PR, and SL) were used. The primary outcome was the ADAS-

cog, which evaluates memory, reasoning, orientation, praxis, language, and word finding 

difficulty, and is scored from 0 to 70 errors [14]. The spacing of the clinical assessments 

varied over different clinical trials. 

2.2 The Statistical Model 

 Clinical trials for AD are generally longitudinal studies in which each patient is 

followed over a long period of time and is repeatedly measured multiple times usually 

(but not always) with even visit spacing, leading to a series of measurements in 

chronological order. For these longitudinal data, the rate of change has been suggested as 

a key response variable [15-17].  Assume that a linear model is appropriate to describe 

the longitudinal data in both the treatment group and the placebo group, and then the 

slope over time can be used to measure the rate of change. In addition, assume that the 

start of the delayed treatment only delays the treatment effect, thus affecting the slope of 

the longitudinal data. For each group, the rate of change can be evaluated through a two-

stage random effects model [18]. The following statistical model was based on papers by 
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Xiong [10], Lefante [19], and Shih [15].  Let      be the     measurement for the     

patient in the     group,          and   with   representing the treatment group,   the 

placebo group,   the BTS group, and   the ATS group;           meaning that each 

treatment group may include different number of patients;           meaning that 

patients in different groups may have different numbers of measurements. The outcome 

measurements      at time      can be related to a patient-specific intercept     and a 

patient-specific slope     through the following generalized linear regression model: 

                               

where,                 
  
   . The error term      is independently and identically 

distributed (i.i.d) with        . In order to compare the slopes of the two treatment 

groups, the patient-specific slope is expressed as the sum of the fixed treatment effect    

of group   and a random patient effect    , 

             

where, the random effect term     is i.i.d with        . Here    and    are referred to as 

the within-subject measurement error variance and between-subject variance, 

respectively.  

 Assume that the treatment switch only affects the rate of change, then the rate of 

change in the treatment group would be the same as that in the ATS group; and the rate of 

change in the placebo group would be the same as that in the BTS group. Therefore, the 

difference between the estimated mean rate of change of the treatment group and that of 

the placebo group (i.e.        ) is an unbiased estimator to the treatment effect (     ); 
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Further, so is the estimated difference between that of the BTS group and that of ATS 

group. The patient-specific slopes estimated using the least-square method can be shown 

to be: 

        
                           

  

   
  

where                 
   

   , is referred as the length and frequency of follow-up. Let 

   denote the measurement from which point a randomized portion of patients in the 

placebo group start the treatment, which is the same for all patients. Let 

             
   

     

     
  
  

  

   
  

            
 

 

    

  

     
  

      

 

    

  

Then the estimates of patient-specific slopes in the BTS group are 

        
                         

  

   
  

and in the ATS group are 

       
                         

 

  

  

The estimates of the patient-specific slopes are normally distributed with mean          

   and variances              
  

  
 

  
. Moreover, 
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Because patients in the BTS and in the ATS group are the same, their patient-specific 

slopes are correlated and we assume that             follows a bivariate normal 

distribution with mean          and covariance matrix 

 
var( )bj var( ) var( )bj aj 

var( ) var( )bj aj  var( )aj
  

Let                denote the estimated treatment effect from the BTS group and the 

ATS group, then  

  
                                                 . 

Let the null hypothesis be            , and the alternative be                , then 

taking advantage of the two estimates of the treatment effect, the test statistic is the 

combination of two unbiased estimators: 

                                            

where       is a constant weight. The variance of    is  
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where,    represents the sample size of the placebo group,    represents the sample size 

of the treatment group, and     represents the sample size of the BTS group and of the 

ATS group.   

2.3 Consideration in Conducting of a DS Trial 

 With the model specified by (1) and (2) above, we investigated the following 

design parameters: 1) the sample size allocation ratio between the treatment group, the 

placebo group and the treatment-switch group; 2) the time of the treatment switch in the 

treatment-switch group; 3) the optimal weight   in the test statistic; 4) the estimate of the 

correlation   between the slopes of the BTS group and those of the ATS group as well as 

its impact on the test statistic; and 5) the assumption on the variances of the estimated 

slopes in the four groups. In addition, we also compared the power of the DS design to 

the typical design. In the following sections, we will address them one by one. 

3 RESULTS 

3.1 The Variance Assumptions 

 The assumption on the variances of the estimated slopes of the four groups is 

crucial for determining some of the design parameters. Two different assumptions will be 

considered in this study. 

1) The variances of the estimated slopes of the four groups are equal: 

   
     

     
     

        
   

where,    
    

  
  
 

  
,    

    
  

  
 

  
,    

    
  

  
 

  
, and    
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2) The variances of the estimated slopes of the treatment group and the placebo group are 

equal; however, they are different from those of the BTS group and the ATS group, 

which is 

   
     

     
     

   

The second assumption was proposed based on what was observed from trials in the 

meta-database (Table 1). The table showed that the variance of the slopes decreases as 

the number of measurements increase; and when the time of treatment switch is half way 

through the trial, the variances of the BTS group and the ATS group are closest to each 

other.  

Table 1. The variances for each group by clinical trials with effect size 0.25 and sample 

sizes 100 per group 

Trial 
Time of 

measurement 
OBS 

Variances(Between/within) Overall variance 

Placebo Treatment BTS ATS Placebo Treatment BTS ATS 

ES 0, 2, 6, 12, 15 3/3 23.7/9.7 24.2/8.2 21.1/6.1 26.2/11.6 31.3 32.3 67.9 65.4 

HC 
0, 3, 6, 

9, 12, 15, 18 

3/5 16.9/13.8 16.6/16.1 21.7/11.7 21.6/15.9 24.8 25.8 107.2 47.7 

HC 4/4 16.9/13.9 16.3/16.1 29.4/11.7 39.4/14.5 24.9 25.5 66.7 85.7 

HC 5/3 16.6/13.8 16.4/16.1 18.2/12.3 56.1/13.7 24.5 25.6 37.8 163.9 

LL 0, 3, 6, 12, 

18, 20 

3/4 18.9/13.8 18.5/16.4 23.7/12.5 17.3/16.8 24.9 25.7 111.9 37.9 

LL 4/3 18.5/13.7 18.6/16.4 23.4/12.5 13.4/17.6 24.6 25.7 46.0 76.1 

PR 0, 1, 2, 7, 

12, 17 

3/4 18.8/7.8 18.5/9.5 173.2/4.6 17.4/9.9 23.7 24.4 498.1 28.9 

PR 4/3 19.2/7.8 18.5/9.5 36.2/5.2 25.6/9.3 24.0 24.3 62.0 52.4 

SL 

0, 1, 3, 6,  
9, 12, 15,  

18, 21, 24 

3/8 12.5/10.3 12.3/12.5 99.0/5.5 12.1/12.8 14.8 15.1 267.5 17.0 

SL 4/7 12.6/10.3 12.4/12.5 26.3/6.5 12.7/12.8 14.9 15.1 70.5 20.0 

SL 5/6 12.5/10.3 12.4/12.5 20.9/7.6 14.3/12.3 14.8 15.2 40.9 25.5 

SL 6/5 12.6/10.4 12.2/12.5 21.0/7.9 15.6/12.4 14.9 15.0 31.3 35.5 

SL 7/4 12.6/10.3 12.3/12.5 18.1/8.3 28.7/11.3 14.9 15.1 24.2 64.4 

 

3.2. The Sample Size Allocation Ratio between the Treatment Group, the Placebo Group, 

and the Treatment-switch Group 

First, we investigated the design parameters under the assumption of    
     

     
  

   
        

 . 
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(i) The allocation ratio for two independent and normally distributed samples with equal 

variances  

 First, for simplicity, start with only two groups: the treatment group and the 

placebo group. We want to determine the optimal sample size allocation so that the 

variance of the test statistic will be minimized. Let   denote the total sample size, let    

and    denote the smaller and the larger sample sizes, respectively. Without loss of 

generality, let       ,      . When assuming equal variances, for a two-tail test, 

the formula to calculate the sample size for type I error   and type II error   given that 

the test statistic follows a normal distribution with a difference   between the means, can 

be derived based on Figure 2, 

 

Figure 2. Illustration of sample size calculation for two-tailed test with equal variances 

 
  

 
 
  

 

  
 

 

  
         

 

  
 

 

  
  

Solving the above equation for   , we obtain 
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thus, the total sample size is 

                
      

 
 

  
  

 
 
      

 

  

  
                       

Straightforward mathematical derivation shows that equation     reaches its minimum 

when    , indicating that given the total sample size and the pre-determined type I and 

type II error rates, the equal sample size allocation minimizes the variance of the test 

statistic, thus leading to maximal power.  

(ii) The allocation ratio for two independent and normally distributed samples with 

unequal variances  

 When the variances are not equal, without loss of generality, we assume the 

variance of one group is    and the variance of the other is          . Furthermore, 

assume the sample means follow normal distributions, then the variance of   which is the 

difference between the two sample means, is   

  

  
 

   

  
    

 

  
 

 

    
   

where,    represents the sample size corresponding to the larger variance and    

represents the sample size corresponding to the smaller one. 

 In order to maximize the power, the samples need to be allocated in such a way to 

minimize the variance of  . Straightforward mathematical calculation shows that the 

variance is minimized when  
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Which has a limit    
 

 
 , when    . Thus 

        
    

   
                

Thus, the allocation ratio is: 

              

The ratio indicates that given the total sample size and the pre-determined type I and type 

II error rates, in order to maximize power, a larger portion of the samples need to be 

assigned to the group with the larger variance as might be expected. 

(iii) The allocation ratio for two independent and normally distributed samples with 

unequal variances plus a weight       such as  

                 

where,     and     are the sample means of two normally distributed samples with unequal 

variance    and          . Again, let   denote the total sample size, let    and    

denote the sample sizes of the     group and the     group, respectively. Then 

  
  

    

  
 

         

  
    

  

  
 

       

    
   

 In order to obtain   and    so that   
  is minimized, we take partial derivatives 

with respect to each separately and then solve the following equations simultaneously: 
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From    , we obtain 

  
   

        
               

and substituting     into     , yields  

        

On the other hand, solving      first, we obtain 

   
 

     
   

 

               

then substituting     into    , we obtain  

        

The combination of     and     indicates that the minimal variance cannot be obtained 

by solving   and    simultaneously using the partial derivatives. So we try it from 

another perspective.  

 Rewrote 

  
     

  

  
 

       

    
  

  

 
 

  

  
  

 
       

  
  

  
   

In order to reflect the real trial, we restrict             and 
  

 
          , meaning 

reasonable samples and weights would be put into each group. Then we employ the 

interior-point algorithm to solve the function iteratively for the minimum given         

or         [20]. Part of the solutions is listed in table 2. Not surprisingly, the 

minimums are achieved on the boundaries of  . That is because there are no critical 
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points in the whole domain, meaning the minimums can only be achieved once 

boundaries are set. The interior-point algorithm is carried out using Matlab.  

Table 2. The combination of   and the sample size allocation ratio to achieve the minimal 

variance 

  0.2 0.2 0.2 0.2 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
  

 
 0.36 0.28 0.24 .22 0.5 0.79 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.705 0.698 

  0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3.0 

 

 Although, the combinations yield the mathematical minimums, they are not 

meaningful from the clinical trial standpoint. They basically require the information of    

first, and then use   to determine the sample size given the ratio between the variances. 

However, in a real clinical trial, without knowing the sample size, the trial cannot be 

carried out, thus resulting in no information of the variances, consequently,   cannot be 

determined. Therefore, these purely mathematical minimums are not applicable.  

 Thus, we decide to investigate the allocation from the clinical perspective, 

meaning we first put certain restrictions on the variances and corresponding sample size 

allocation ratios. When        ,       , thus based on our earlier arguments, it is 

reasonable to allocation more samples (  ) to the group with larger variance    in order 

to minimize the variance, meaning      , where,    corresponds to the sample size of 

the group with the smaller variance    . So, 
  

 
 

 

 
 where,        .  

First, for any given        , assume that we have 
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solving it for  , we obtain    
 

  
 

  

, and    
 

  
 

  

     for        .  

Applying these results to formula    , 

      
  

   
   

  
      

   
  

 

         
                    

with a limit 
 

 
 , when   

 

  
 

  

. That leads to 

      

   
    

      

   

  
      

   
  

       

         
                    

Substituting both    and    into    
  

  
 

       

    
 , we obtain 

       
  

  
 

       

    
  

  

 

 

 
   

  
   
   

  
      

  
 

 
       

   
    

      

  
 

  
      

  
  

 
 

 

                                      
  

 
                                      

                                      
  

 
           

 
         

Taking the first derivative of      with respect to  , we obtain  
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for any given    
 

  
 

  

    and        .      is an increasing function of  , thus it 

achieves the minimum at the lower bound   
 

  
 

  

, which leads to     
 

 
  and 

    
 

 
 . Therefore, the sample size allocation ratio is    . Notice that solving 

     

  
 

   

 
                     for   gave us   

  
 

  
  

  , which is not in the 

domain    
 

  
 

  

   . 

On the other hand, if  

                
      
                 

which implies   
 

  
 

  

 
 

 
, and 

 

  
 

  

 
 

 
 when    . We follow the above arguments 

and solve for   , which is the sample size corresponding to     , we obtain 

       

 

       
 

  

       

  
  

       

  
 

         
  

 

 
   

which conflicts with 
  

 
 

 

 
 when    . Therefore, this scenario is not appropriate from 

the clinical perspective because it assigns more samples to the group with the smaller 

variance.  
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 If        , then       , thus it is reasonable to allocate less sample (  ) to 

the group with the smaller variance   , meaning      , and    corresponds to the 

sample size of the group with the larger variance    . So, 
  

 
 

 

 
 where,        . 

First, for any given          we assume  

                

Then   
 

  
 

  

, and 
 

  
 

  

 
 

 
 with 

 

  
 

  

 
 

 
 when    .  

Applying formulas     and     with     corresponding to the smaller variance and     the 

larger one, we obtain 

       

 

       
 

  

       

  
  

       

  
 

         
   

       

  
 

       

  
  

       

  
       

         
   

Subsituting both    and    into    
  

  
 

       

    
 , we obtain 
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Taking the first derivative of      with respect to  , we obtain  

     

  
 

   

 
                     

for any given      
 

  
 

  

  and        . That means      is a decreasing function of  , 

thus it achieves the minimum at the upper bound   
 

  
 

  

, which corresponds to     

 

 
  and     

 

 
 . Therefore, the sample size allocation ratio is    . Notice that solving 
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  , which is not in the 
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On the other hand, if  

               
      
                 

which means   
 

  
 

  

 
 

 
, and 

 

  
 

  

 
 

 
 only when    . Applying formulas     and 

   , solving for    , we obtain 
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which conflicts with 
  

 
 

 

 
 when    . Therefore, this scenario is not appropriate from 

the clinical perspective because it assigns fewer samples to the group with the larger 

variance. 

 (iv) The optimal sample size allocation ratio and the optimal weight in the test statistic of 

the DS design                             .  

 In the DS design, the first part of the equation, the estimated difference         

can be considered as the estimated mean difference between the treatment group and the 

placebo group with equal variances, thus, the optimal allocation ratio is    . Under the 

assumption of    
     

     
     

        
 ,                       

   Because the 

slopes in the BTS group and those in the ATS group were calculated based on 

observations of the same patients, they are correlated. Assume the correlation is  , then 

                           
 , thus      . The test statistic can be considered as 

a sum of two estimated treatment effects from two samples with unequal variances. The 

first sample is the estimated treatment effect from the treatment group and the placebo 

group; and the second is the estimated treatment effect from the BTS group and the ATS 

group. Assume the sample sizes of the treatment group, the placebo group, and the 

treatment-switch group, are   ,   , and     respectively; in addition, assume       

 .  

When    ,        , the allocation ratio is 

                

Moreover, this allocation ratio also yields an optimal test when comparing the mean 

slopes from the treatment group and the ATS group under the null hypothesis: 
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and the alternative: 

               

 In sum, under the assumption of    
     

     
     

        
 , the optimal 

sample size allocation ratio for the test statistic                             , is 

     .  

3.3 The Time of Treatment Switch in the Treatment-switch Group 

 The time of treatment switch affects the variances in both the BTS group and the 

ATS group; and it should be chosen to minimize                in order to achieve 

maximal power given the same sample size. It has been shown that the optimal switch 

point is the middle one if the measurements are evenly spaced and the total number of 

measurements is odd; and the optimal switch point is either one of the middle two 

measurements if the measurements are evenly spaced and the total number of 

measurements is even [10] (Figure 3).  

 

Figure 3. Illustration of the time of treatment switch derived theoretically by Xiong  

 We estimated the variances of the two groups varying the number of 

measurements in each group, and the results were presented in Table 1. From Table 1, it 

is shown that in order to satisfy the equal variance assumption, the optimal switch is the 

middle measurement when the number of the total number of measurements is odd; and 
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is the second one of the middle two measurements when the total number of 

measurements is even regardless the measurement spacing. Therefore, based on the 

theoretical results and the practical calculation, we recommend that in order to minimize 

the total variance and meet the equal variance assumption, the optimal switch point 

should be the middle one when the number of the total number of measurements is odd; 

and is the second one of the middle two when it is even, regardless whether the 

measurement spacing is regular or irregular (Figure 4).   

 

Figure 4. Illustration of the time of treatment switch   

3.4 The Optimal Weight   in Equation     

 Under the assumption of equal variances among the four groups,      , thus 

the optimal weight   
 

  
 

  

 
 

  
 

    

 with a limit 
 

 
 as    . 

3.5 The Correlation   between the Slopes in the BTS Group and Those in the ATS Group 

 For each clinical trial with 6 or more measurements, we simulated with 

replacement, 100 replicates of the treatment-switch group with sample sizes 100 from the 

individual trials in our meta-database. The means and the standard deviations of   were 

estimated. Despite the differences in the duration, number of measurements, and the 

measurement spacing,   is uniformly small with an upper bound     ; in addition, more 

than half of the estimates are negative (Table 3). 
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Table 3. The estimates of the correlation   between the slopes of the BTS group and the 

ATS group based on different clinical trials 

Trial 
Time of 

measurement 
#  

Positive 

Mean(SD) 

Negative 

Mean(SD) 

*Ratio 

of 

+/- 

Mean slopes 

(BTS) 

Mean slopes 

(ATS) 

ES 0, 2, 6, 12, 15 3 -0.15(0.08) 0.06(.04) 20/80 4.607(0.963) 1.290(0.794) 

HC 
0, 3, 6, 9, 

12, 15, 18 

3 -0.10(.06) .06(.05) 23/77 3.421(0.983) 3.237(0.652) 

4 -0.20(.11) .06(.06) 14/86 3.336(0.847) 2.519(0.888) 

5 -0.13(.08) .08(.05) 37/63 3.724(0.501) 0.744(1.431) 

LL 
0, 3, 6, 12, 

18, 20 

3 -0.15(.1) .09(.08) 25/75 3.906(1.291) 3.770(0.950) 

4 -0.17(.11) .08(.06) 22/78 4.755(0.984) 2.142(1.210) 

PR 
0, 1, 2, 7, 

12, 17 

3 -0.15(.1) 0.13(.1) 37/63 1.151(3.303) 3.050(0.700) 

4 -0.18(.1) .09(.08) 25/75 3.776(1.057) 2.157(0.937) 

SL 

0, 1, 3, 6, 9, 

12, 15, 

18, 21, 24 

3 -0.1(.08) .09(.07) 37/63 3.820(1.292) 5.092(0.634) 

4 -0.1(.07) 0.1(.06) 40/60 4.840(0.909) 4.643(0.646) 

5 -0.11(.08) .08(.07) 51/49 5.725(0.850) 3.916(0.790) 

6 -0.15(.09) .07(.06) 23/77 5.999(0.862) 3.145(1.124) 

7 -0.22(.12) .07(.05) 23/77 6.191(0.622) 1.443(1.274) 

*”+” represent the positive correlation, and “-“ negative. 

3.6 Power Comparison between Three Designs based on Simulated Data 

 The random intercepts (also referred as patient-specific intercepts) are simulated 

from a normal distribution: 

                          

The random slopes (also referred as patient-specific slopes) are also simulated from a 

normal distribution: 

                 

The primary outcomes are calculated based on the simulated intercepts and slopes: 
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For these simulated outcomes, its variance is  

            
    

      

and the variance of the corresponding slopes is 

            
  

 
  

Suppose, the DS trial has a sample size of   , meaning   per group. Then we use “the 

small typical trial” to refer a randomized, placebo-controlled trial with sample size of   

per group; and we use “the large typical trial” to refer a randomized, placebo-controlled 

trial with sample size of 
  

 
 per group.     

 First, we compare the power of the DS trial, the small typical trial, and the large 

typical trial when     , meaning no within-subject error (Figure 5). For the DS trial, 

the   

 

Figure 5. Power comparison between the DS trial (sample size:      ), the large typical 

trial (sample size: 
  

 
 
  

 
), and the small typical trial (sample size:    ) when within-

subject error is 0. Given the total sample size, the DS trial has more power than the 

typical large trial.  
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test statistic are the ratio of     to    . Formula     yields un unbiased estimate of the 

treatment effect. Under the assumptions of     ,     and    , formula     yields: 

   
    

  

 
   

  

 
  

The test statistic for the large typical design is: 

   
       

  
       

  

 where,  

  
        

  

  
 

   
  

 
 
 

 
  

So, the large typical trial has larger variance than the DS trial, consequently, leading to 

less power. 

 In order to evaluate the impact of within-subject error on power of the three types 

of trials, we simulate longitudinal trials of 24 months duration with measurement spacing 

3 months,     and    . Under these conditions,         ; the optimal time of 

treatment switch is at 12 months, and         . It is shown that when the within-

subject error increases, as expected, the power of all the three types of trials decreases. 

The decrease in power is quicker for the DS trial than the typical trials. When 
 

 
    , 

the DS trial no longer has power advantage over the large typical design (Figure 6). We 

further investigate the cutting point where the DS trial starts to have less power than the 
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large typical design by equating the variance of the test statistic of the DS trial to that of 

the large typical trial under the aforementioned conditions: 

       
  

   
 

 
 

           
  

   
 

 
 

     
  

   
 

  
 

  

solving it for 
 

 
, we obtain: 

 

 
      

 

Figure 6. Power comparison between the DS trial (sample size:      ), the large typical 

trial (sample size: 
  

 
 
  

 
), and the small typical trial (sample size:    ) when within-

subject error increases. 

  

 So far, we have shown that given the pre-trial estimates of the between-subject 

variance and the within-subject variance, and the trial design parameters such as the 

duration and the measurement spacing, we can determine whether or not the DS trial 

would have large power than the large typical design.  



87 
 

3.7 Power Comparison between Three Designs when Assuming Equal Variances based 

on Real Patient Data 

 Assume that the goal is to detect the treatment difference using the rate of change 

as the key response through both the typical parallel-group trials and the DS trials. Then 

the null and alternative hypotheses for the typical trials are: 

            

            

and the null and alternative hypotheses for the DS trials are: 

                                

                                

 Patients with missing measurements of 3 or more in the last 5 measurements are 

excluded in order to avoid inaccurate estimates of the rate of change. After the exclusion, 

136 of 341 patients from the SL trial and 335 of 459 patients from the HC trial are 

remained for simulation.  

 As in the previous section, three types of trials were simulated under a detailed 

protocol [21], similar to our previously published approach [22] [23], to reflect clinical 

trials for an experimental drug for AD, and design parameters for the distribution of 

ADAS-Cog selected to be consistent with previously published trials and ADNI [24, 25]. 

The key simulation parameters for the three types of trials are presented in table 4. The 

goal is to compare the power between the three types of trials. Trials simulated based on 

the SL trial have duration of 24 months and the treatment is switched at 12 months. Trials 

simulated based on the HC trial have duration of 18 months and the treatment is switched 
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at 9 months. Trials simulated based on the truncated SL trial only have duration of 18 

months and the treatment is switched at 9 months.  

Table 4. The key simulation parameters for the 3 different types of trials 

 
Parameters Values 

Assumption of 

variance 
   

     
     

     
        

  

            

  
  

 

  
 

    

                 

Allocation ratio       

Trial designs 

in comparison 

1 treatment-placebo (   per arm) 

2 delayed-start (           ) 

3 treatment-placebo (
   

 
 per arm) 

 

 Trials simulated based on the SL trial with duration of 24 months showed that the 

power of the DS trials is significantly larger than that of the other two. As expected, when 

the positive correlation increases, so is the power. However, trials simulated based on the 

truncated SL trial with duration of 18 month showed the opposite, so are the trials 

simulated based on the HC trial with the same duration (Figure 7). This conflict might be 

attributed to the smaller mean slope in the ATS group of trials simulated based on the SL 

trial (Table 5). The smaller mean slope is more likely caused by the informative dropout, 

meaning that sicker patients dropped out in the last 6 months and only the healthier 

remained in the study, thus leading to less progression in ADAS-cog than would be 

expected. For trials simulated based on the HC trial and the truncated SL trial, the 

difference in the power between the typical trials and the DS trials increases over sample 

sizes. 
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Table 5. The mean slopes and their corresponding variances by initial trials and by trial 

groups 

The initial trial 
HC SL SLS 

Slope Variance Slope Variance Slope Variance 

The treatment group 4.3  24.9 5.9  14.9 6.1  21.7 

The placebo group 3.2  25.4 5.2  15.3 5.1  22.2 

The BTS group 3.3  66.9 5.8  34.5 4.9  45.5 

The ATS group 2.6  85.5 3.8  35.3 4.4  51.0 

 

 

Figure 7. Power comparison between the 3 types of trials by sample sizes and by the 

original trials used for the simulation 

  

3.7 Under the Assumption of    
     

     
     

  

  Assume    
     

        
 . Based on what is observed from the meta-database, 

assume    
     

         
 ,    . 
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The test statistic is the same, 

                                            

where            is a constant weight. The variance of    is  

   
  

            

  
 

            

  
 

        
 

   
                    

In the context of the AD data, it can be further simplified by the facts that          

             
  and   

                              
 , where   is the correlation 

between      and     , and is mostly negative based on the meta-database. After 

simplification, it yields 

   
  

         
 

  
 

                   
 

  
        

  
  

  
 

            

  
   

This matches the scenario which yielded the results      and     , thus by the same 

arguments, we obtain: 

1) The sample size allocation ratio is      ; 

2) The optimal weight   
 

  
 

  

 with         ; 

3) The optimal treatment-switch time is the same as that under the assumption of 

equal variances; 

4) So are the estimate of the correlation;  

 In order to compare the power of the DS trials with that of large typical trials 

under the assumption of unequal variances, we simulate trials following the same 
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protocol used under the assumption of unequal variances. The key simulation parameters 

for the two types of trials were presented in table 6. Trials simulated based on the HC 

trial have duration of 18 months and the treatment is switched at 9 months. Trials 

simulated based on the truncated SL trial have duration of 18 months and the treatment is 

switched at 9 months.  

Table 6. The key simulation parameters for the 2 types of trials 

Parameters Values 

Assumption of 

variances 
      

     
     

     
     

         
  

  
    for HC trials,  

 =2 for truncated SL trials 

              

  
  

 

  
 

       

  

Allocation ratio       

Sample sizes 
Large typical trials (

  

 
 
  

 
) 

Delayed-start trials (     ) 

 

 The simulation results are the same as those under the equal variance assumption. 

Again, the DS trials generally had less power than the large typical trials, and the 

difference between them increased over sample sizes (Figure 8). However, with the right 

assumption for AD trial, the power of the DS trials increased. And the gain in power also 

increased over larger sample sizes, meaning that the impact of misspecification of the 

variance assumption on power increases over the increase of sample sizes (Figure 9).   
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Figure 8. Power comparison between the DS trials and the large typical trials by sample 

sizes and by the original trials under the unequal variance assumption   

 
Figure 9. Power of the DS trials under the equal variance assumption and the unequal 

variance assumption by sample sizes 
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4 DISCUSSIONS 

 In this study, we extended the investigation of the DS design with three groups: 

the constant-treatment group, the constant-placebo group, and the treatment-switch group 

[10]. First, we obtained the optimal weight   and the optimal sample size allocation ratio 

through the interior-point algorithm and showed that although the combination of these 

two yields the mathematical minimum variance of the test statistic, they are not 

applicable from the clinical trial standpoint because the combination requires knowing   

in order to calculate the optimal sample size allocation ratio, which is contradicted to the 

order of conducting clinical trials in that in a real clinical trial, the sample size allocation 

ratio has to be determined first to begin the trial. Next, from the clinical trial standpoint, 

we theoretically proved the optimal sample size allocation ratio and its corresponding 

optimal weight in the test statistic. We proposed a simple and closed formula for the 

optimal weight. Our result showed that the optimal sample size allocation ratio is      , 

which was first obtained by Xiong through simulation [10]. The same allocation ratio was 

also used in the only DS trial in Parkinson’s disease [26], which, however, employed 

only the constant-treatment group and the treatment-switch group. We also showed that 

the optimal weight actually varies over the range of correlations, which is different from 

the conclusion made by Xiong that “the optimum   is only minimally changed when the 

correlation varies in a wide interval between     and    ” [10].  

 Based on a meta-database of 7 completed trials in AD, we estimated the absolute 

correlation to be less than    . More than half of them are actually negative, which have 

not been considered in the previous study [10].  If the treatment under investigation is 
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effective, patients’ cognition should stop progressing or even get better after they are 

switched from placebo to treatment. Thus the rate of change in the ADAS-Cog scores 

will decrease or even change from positive to negative, implying the negative 

correlations are very likely to happen. The mixture of both negative and positive 

correlations makes it hard to pre-estimate the correlation in order to calculate the sample 

size for a future trial. We suggested that data from previously completed trials be used to 

evaluate the magnitude of the correlation. On the positive side of this mixture, a new type 

of DS design including only the treatment-switch group with the correlation as the 

primary outcome may be considered. Under this setting, if the treatment is effective, the 

rates of change in the ADAS-Cog when patients are on placebo should be negatively 

correlated with those after patients are switched to the active treatment. So a negative 

correlation with a large magnitude may be enough to declare the treatment as at least 

symptomatically effective. A major advantage of this design is that all the patients would 

receive the treatment, thus it may be better perceived by both patients and trial personnel 

[11]. However, a downside is the confounding of treatment with the increased decline 

that occurs over time, potentially making it more difficult to detect treatment effects. 

Apparently, more research is needed to determine the proper sample size, the test statistic, 

and the cutting point for a significant negative correlation.      

 We also compared the power of the DS designs to that of the typical design with 

only the treatment group and the placebo group based on simulated data. We proved that 

when the within-subject error is too large, the DS design has no advantages to the typical 

large design. Moreover, we also proposed the cutting point to decide whether or not the 

DS design yields more power than the typical design with the same sample size given the 
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other design parameters such as the duration, the measurement spacing, the estimated 

optimal weight, and the estimated correlation. This finding conflicts with the conclusion 

that the DS design generally requires a larger sample size to obtain adequate power 

compared to the typical design [7, 10, 12]. However, we notice that the DS design with 

only two groups probably requires larger sample size due to the multiple comparisons, 

which   

 Under the assumption that the rate of change is linear and the effect of the 

treatment switch is only on the rate, it is statistically reasonable to assume that the 

variances of the four groups are equal. However, what is observed from the meta-data is 

that the variances of the treatment group and the placebo group are equal, those of the 

BTS group and the ATS group are equal, and the former is much smaller than the latter. 

Furthermore, the simulation based on the meta-data showed that the variances are equal 

as long as the number of measurements in each group is equal; the fewer of the 

measurements, the larger is the variance. This observation promoted the investigation of 

the impact of the underlying assumption on the power of the DS design. When assuming 

the unequal variance, the DS design gains more power, and the gain increases 

significantly with sample sizes. Considering that the variance assumption not only affects 

the power, but also determines some of the design parameters, an interim analysis at the 

point of treatment switch may be necessary.  

 There are some limitations in this study. First, our study is not able to determine 

the optimal duration of a DS design. Additionally, the impact of the duration on the 

power has not been definitely quantified. Second, the simulation is based on only two 

trials with the same measurement schedule, so whether or not the results are generalizable 
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may be debatable. Third, whether or not the simulation results are associated with the 

baseline characteristics such as age, and gender, severity of the dementia has not been 

investigated. Forth, our simulation results need to be verified in a real trial. Finally, we 

only investigate the DS design with three arms. Some of the design parameters are not 

applicable for DS designs with only two arms or even one.          

 

 

 

 

 

 

  

 

 

 

 

 

 

 



97 
 

 

 

 

REFERENCES 

[1] Thies W, Bleiler L. 2013 Alzheimer's disease facts and figures. Alzheimer's & 

dementia: the journal of the Alzheimer's Association. 2013;9:208-45. 

[2] Aisen P, Andrieu S, Sampaio C, Carrillo M, Khachaturian Z, Dubois B, et al. Report 

of the task force on designing clinical trials in early (predementia) AD. Neurology. 

2011;76:280-6. 

[3] Schneider LS, Sano M. Current Alzheimer's disease clinical trials: methods and 

placebo outcomes. Alzheimer's & dementia. 2009;5:388-97. 

[4] Knopman DS. Clinical trial design issues in mild to moderate Alzheimer disease. 

Cognitive and behavioral neurology: official journal of the Society for Behavioral and 

Cognitive Neurology. 2008;21:197. 

[5] Association zs. 2013 Alzheimer's disease facts and figures. Alzheimer's & dementia: 

the journal of the Alzheimer's Association. 2013;9:208. 

[6] Cummings JL. Defining and labeling disease-modifying treatments for Alzheimer's 

disease. Alzheimer's & Dementia. 2009;5:406-18. 

[7] Mani RB. The evaluation of disease modifying therapies in Alzheimer's disease: a 

regulatory viewpoint. Statistics in Medicine. 2004;23:305-14. 



98 
 

[8] Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-

blind, delayed-start trial of rasagiline in Parkinson's disease. New England Journal of 

Medicine. 2009;361:1268-78. 

[9] D'Agostino Sr RB. The delayed-start study design. New England Journal of Medicine. 

2009;361:1304-6. 

[10] Xiong C, van Belle G, Miller JP, Morris JC. Designing clinical trials to test disease-

modifying agents: application to the treatment trials of Alzheimer’s disease. Clinical 

Trials. 2011;8:15-26. 

[11] Zhang RY, Leon AC, Chuang-Stein C, Romano SJ. A new proposal for randomized 

start design to investigate disease-modifying therapies for Alzheimer disease. Clinical 

Trials. 2011;8:5-14. 

[12] Schneider L, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R, et al. 

Clinical trials and late‐ stage drug development for Alzheimer's disease: an appraisal 

from 1984 to 2014. Journal of internal medicine. 2014;275:251-83. 

[13] trials.gov C. Clinical trials.gov. 2014. 

[14] DA W. Wechsler memory scale-revised. San Antonio: Psychological Corporation. 

1987. 

[15] Shih WJ, Gould AL. Re‐ evaluating design specifications of longitudinal clinical 

trials without unblinding when the key response is rate of change. Statistics in Medicine. 

1995;14:2239-48. 

[16] Dawson JD, Lagakos SW. Analyzing laboratory marker changes in AIDS clinical 

trials. JAIDS Journal of Acquired Immune Deficiency Syndromes. 1991;4:667-76. 



99 
 

[17] Love RR, Mazess RB, Barden HS, Epstein S, Newcomb PA, Jordan VC, et al. 

Effects of tamoxifen on bone mineral density in postmenopausal women with breast 

cancer. New England Journal of Medicine. 1992;326:852-6. 

[18] Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Longitudinal data analysis: 

CRC Press; 2008. 

[19] Lefante JJ. The power to detect differences in average rates of change in longitudinal 

studies. Statistics in medicine. 1990;9:437-46. 

[20] Thapa GBDMN. Linear programming. 2003. 

[21] Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in 

medical statistics. Statistics in medicine. 2006;25:4279-92. 

[22] Kennedy RE, Cutter GR, Schneider LS. Effect of< i> APOE</i> genotype status on 

targeted clinical trials outcomes and efficiency in dementia and mild cognitive 

impairment resulting from Alzheimer's disease. Alzheimer's & Dementia. 2013. 

[23] Schneider LS, Kennedy RE, Cutter GR. Requiring an amyloid- < sub> 1-42</sub> 

biomarker for prodromal Alzheimer's disease or mild cognitive impairment does not lead 

to more efficient clinical trials. Alzheimer's & Dementia. 2010;6:367-77. 

[24] Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. 

Vitamin E and donepezil for the treatment of mild cognitive impairment. New England 

Journal of Medicine. 2005;352:2379-88. 

[25] Doody R, Ferris S, Salloway S, Sun Y, Goldman R, Watkins W, et al. Donepezil 

treatment of patients with MCI A 48-week randomized, placebo-controlled trial. 

Neurology. 2009;72:1555-61. 



100 
 

[26] Olanow CW, Hauser RA, Jankovic J, Langston W, Lang A, Poewe W, et al. A 

randomized, double‐ blind, placebo‐ controlled, delayed start study to assess rasagiline 

as a disease modifying therapy in Parkinson's disease (the ADAGIO study): Rationale, 

design, and baseline characteristics. Movement Disorders. 2008;23:2194-201. 



 

101 
 

 

 

CONCLUSIONS 

Summary 

 Most randomized parallel-group clinical trials to detect symptomatic treatments or 

disease-modifying treatments have been negative. Novel adaptive designs and the 

delayed-start (DS) design are perceived to have advantages. How well these novel 

designs behave in AD clinical trials has never been investigated. Additionally, some key 

design parameters in the DS design need careful evaluation. Important contributions of 

this dissertation include evaluating the effect of these novel designs using meta-database 

of completed AD trials and proposing values for some key design parameters for the DS 

design. 

 We presented a thorough comparison between two main designs which allow the 

use of accumulating data for adaptation of an ongoing trial: the group sequential design 

and the adaptive design (specifically the SSR adaptive design). We justified that the 

adaptive design is more fitting, and the GSD should be avoided or used with caution for 

AD trials.  

 Different SSR methods were evaluated. SSR using only a single measurement is 

effective for small or moderate initial sample sizes. However, it generates large variation 

in both the sample size increases and gains in power. SSR based on the effect size 

generally results into greater gains in power than SSR based on the variance, however the 
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former also tends to overshoot the final sample size. SSR at 6 months and SSR at 12 

months led to very similar results. But maybe due to LOCF, trials of 24 months did not 

have more power than those of 18 months; neither did SSR at 12 months than SSR at 6 

months. The reason is that 6-month progression in AD cannot overcome the 

heterogeneity of patients’ response to those treatments under investigation. Due to the 

limitation of the meta-data, the optimal SSR time using only a single measurement was 

not determined. Considering the increase in variances of the primary outcome over time 

in a longitudinal study, SSR at 12 months might be more reliable. In summary, when 

using only a single measurement, SSR based on the variance at 12 months is 

recommended for trials with small or moderate initial sample sizes.  

 When SSR was based on the variance of the rate of change in the longitudinal 

data, it can not only increase the power, but also provide the flexibility between 

increasing the sample size and increasing the number of measurements. For SSR at the 

same time, the frequency for the former is much larger than for the latter. Therefore, it is 

crucial to be realistic about the right length of the trial from the beginning since not only 

is obtaining more measurements from the same group of patients potentially more 

difficult than recruiting more patients but also SSR is less likely to lengthen the trial. For 

this SSR method, the time of SSR still does not impact the gain in power, but it does 

significantly affect the frequency of sample adjustments including both the sample size 

and the number of measurements. This speaks volume of the merit of taking advantage of 

all the information available at the interim analysis. Overall, this method in our opinion is 

preferable than SSR based on a single measurement, however this conclusion depends on 

the assumption that a linear model (or mixed effects linear model) is appropriate for 
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modeling the longitudinal outcome in AD. One main concern about this method is that 

two variances instead of one need to be determined beforehand, which increases the 

likelihood of inaccurate estimates. 

 For the DS design, we not only improved some of the design parameters which 

were proposed mostly based on simulation, but also extended the variance assumption. A 

key finding is that violation of the variance assumption could significantly undermine the 

power of a DS design. We also proposed a cutting point for determining whether or not 

the DS design has larger power than the typical design given the same sample size. This 

cutting point is calculated from the pre-trial estimates of the between-subject variance 

and the within-subject variance, the duration of the trial, the measurement spacing, and 

the estimate of the correlation between the slopes in the treatment-switch group. This 

information is also required for planning a typical randomized and placebo-controlled 

trial. Therefore, our proposal provides the advantage to determine the applicability of the 

DS design without any extra information. It is widely perceived that the DS design 

generally needs a larger sample than the typical randomized parallel-group design. The 

proposed cutting point demonstrates that whether or not the DS design requires a larger 

sample depends on how many groups the DS design contains. For the DS design with 

three groups investigated in this dissertation, it is not necessarily true. However, for DS 

design with only two groups, it is probably true due to the multiple comparisons.  

 Overall, this dissertation has demonstrated that the novel designs can be effective, 

and should be employed in future trials. We discovered that the SSR based on the rate of 

change is less vulnerable to the heterogeneous response of AD patients, and is preferable 
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if the linear model is indeed the appropriate model. The DS design should be used when 

the within-subject error is relatively small compared to the between-subject error. 

Future Research 

 SSR based on the variance of the interaction between time and treatment may be a 

good starting point for future research. For this method, the variance can be estimated 

using GEE method. This method not only takes advantage of the longitudinal data, but 

also requires only one pre-trial estimate of the variance. Although it requires assuming a 

covariance pattern, GEE is robust to misspecification of this pattern.      

 We started our simulation with a large meta-database for SSR based on the 

variance or the effect size of a single measurement; however, we ended up only using two 

trials for SSR based on the variance of the rate of change and for the DS design due to the 

limitations in trial duration and in the total number of measurements. Thus pooling more 

trials with equal measurement spacing and long durations to verify the generality of our 

results might be insightful. Furthermore, with more trials at hand, the impact of baseline 

characteristics such as age, education, race, and severity of dementia should be examined.        

 A crucial assumption in SSR based on the variance of the rate of change and in 

the DS design is that the longitudinal data follows a simple linear trend. So alternatively, 

nonlinear models could be investigated. However, in order to apply those models, first, it 

is important to know the turning point of the rate of change in the longitudinal data. So it 

is helpful to pool more data from trials with long durations to decide where the turning 

point is and whether or not it is affected by the baseline characteristics. 
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 For the DS design, there are different patterns. We will investigate more of them 

and provide comparison so that the most appropriate one may be chosen. 

 Despite all the clinical trials conducted for AD, there is no consensus in the best 

way to calculate the sample size or power. It will be helpful to have a review paper on 

this subject. 

 While this dissertation begins a systematic evaluation of two types of novel 

designs, as mentioned earlier, there is more to be work on.   
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