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A GENERALIZED NOISY COMMUNICATION CHANNEL APPROACH FOR 

QUANTUM COMPUTING  

 

FAN XIONG 

 

CONPUTER ENGINEERING 

 

ABSTRACT  

 

 Quantum computing is considered to be a promising technology for some specific 

types of computing purposes. Modeling of quantum computing could help study and 

research of this field. In this dissertation, we approach quantum computing from a 

communication perspective that is to model quantum computing with a generalized noisy 

communication channel approach.  

 We proposed a generalized noisy communication channel approach (GNCom) for 

quantum computing. The proposed GNCom approach is applied to quantum computing 

as a universal quantum register. GNCom further extended the noisy communication 

channel framework by associating it with Quantum Electrodynamics (QED). Based on 

GNCom and QED, we proposed a quantum computer design technique.   

 

 

Keywords: Quantum computing, quantum electrodynamics, information theory, noisy 

communication channel, Fourier analysis  
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1. INTRODUCTION 

 

“System” is a very complex concept, but it could be simplified as follows: a 

system is composed of two parts: a target and the associated processes to reach the target 

[1,4]. People usually use modeling to study complex systems. Mathematical models of 

real world applications help us understand the phenomena around us in a more effective 

way. More specifically, a model is a simpler realization or idealization of more complex 

real world entities in the form of a physical miniature, mathematical equations, or a 

computer simulation of a real world system. The purpose of such models is to increase 

one’s understanding of real world systems, to help analyze the system, or to reveal some 

new information about it [2,3]. In addition, it could provide a computation tool to help 

people in study and research.  

Traditionally, the natural or artificial phenomena had been mathematically 

modeled with either wave or particle equations. Within this study, however, we approach 

modeling from a new perspective---a communication-based perspective. Based on Dr. 

Murat M. Tanik’s synthesis [1,4], the modeling of natural or artificial phenomena could 

be classified into three categories: material-based modeling, energy-based modeling, and 

communication-based modeling, as shown in Figure 1. The first category of modeling has 

been very well developed, and not much space is left for study; the second category is 

also well developed, though not as much as the first category; compared to the first two 

categories, communication-based modeling is not as well developed. Not much work has 
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been done, and a lot of space, possibilities and potentials remain open [1,4]. The core of 

our research is to approach modeling using the communication paradigm, and to apply 

the communication-based modeling technique to quantum computing.  

 
 

Figure 1 Modeling paradigms 

 

The communication-based model is an original idea which is beyond particle or 

wave equations [1,4]. The communication-based model is a universal model and can 

potentially behave at the limiting end points like particle or wave equations as the energy 

of the system being modeled varies, as shown in Figure 2 [1,4].  
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Figure 2 Communication-based modeling 

 

Due to the rapid change of technology in today’s environment, interdisciplinary 

research has played an increasing role to deal with the problems brought by such changes. 

Moore’s law has been the reference to the rate of technological progress for computer 

chips during the past decades. There are indications that Moore’s law is reaching its limit: 

the switch size cannot be further scaled due to the physical limitations [5-8]. Suppose that 

alternative materials could be found to take the place of silicon for chip design, and we 

still follow Moore’s law in the future; then computers would be the size of an atom 

around the year 2050 [9,10].  “Strange” phenomena happen within atomic-sized systems 

since atomic systems function under the laws of quantum theory. On the other hand, 

quantum computing is also considered to be a promising technology for some specific 

types of computing purposes. However quantum computing is still a young research field, 

and modeling of quantum computing could help study and research of this field. Thus 
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communication based modeling of quantum computing is a promising modeling 

technique.  

Keeping the multidisciplinary demand of system modeling and analysis in mind; 

we proposed a generalized noisy communication channel approach (GNCom) for 

quantum computing building on the noisy communication channel model developed in 

our research group [11-33]. In this dissertation, following the research program of our 

research group, we cover a broad variety of research fields: quantum computing, 

information theory, Fourier analysis, complex analysis, combinatorial analysis, Riemann 

Zeta analysis, and quantum electrodynamics.  [13-16,19-33] 

For the convenience of the reader, the necessary background on these concepts is 

given in the appendices.   

 

Contributions 

This dissertation develops a generalized noisy communication channel approach 

(GNCom) and develops a quantum computing model using the generalized noisy 

communication channel approach. The GNCom approach includes new matrices and 

transformations, which are utilized to represent quantum computing with the noisy 

communication channel. The proposed GNCom approach is also applied to quantum 

computing as a universal quantum register to replace quantum gates. GNCom further 

improved the noisy communication channel framework [11,12] by connecting quantum 

electrodynamics (QED). The framework is also improved by new techniques such as 

Amplitwist and multivalued logic. Based on GNCom and QED, we further proposed a 

quantum computer design technique. The contributions are listed below:  
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1) This dissertation develops a generalized noisy communication channel approach 

(GNCom) building on the noisy communication channel model developed in our 

research group.   

2) This dissertation develops the noisy communication channel representation of 

quantum computing.   

3) The GNCom approach extended the noisy communication channel framework by 

connecting QED. 
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2. THE GENERALIZED NOISY COMMUNICATION CHANNEL 

APPROACH  

 

 The generalized noisy communication channel approach is developed based on 

Claude E. Shannon’s communication paradigm [34, 35]. Our group had intensively 

researched the noisy communication channel and had successfully applied it to software 

component modeling [17,19] and general system modeling [11].  In this dissertation, we 

develop a generalized noisy communication channel framework for quantum computing.  

 The noisy communication could be described with a bipartite graph [34]. Based 

on the communication error probability, it could be represented as an error content graph 

either in a regular polygon or an irregular polygon shape [36]. We proposed a numerical 

algorithm based on Fourier series to connect the noisy communication channel with the 

polygons [15,31]. We developed the generalized noisy communication channel to 

represent quantum computing by introducing Fourier series to each edge of the polygon 

or to each communication channel, thus making it powerful to model quantum computing.    

 

Shannon’s noisy communication channel paradigm 

A communication channel is a medium through which information can be sent or 

conveyed from the source (transmitter) to the sink (receiver).  However due to noise, the 

receiver may not receive the original information the transmitter sends. For example, a 
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symbol received differs from a symbol that has been sent. Claude E. Shannon proposed 

his famous zero error capacity channel theorem in his work [34]. An example of a typical 

noisy communication channel is shown in Figure 3. 

 

Figure 3 An example of communication channel 

 

The noisy communication channel can be depicted as in Figure 4. The left side 

lower case letters represent the source symbols, and the right side upper case letters 

represent the received symbols. If the receiver side letter is the same as the source letter, 

then there is no error during transmissions, but it is possible that a source symbol can be 

received as different symbols.   

The symbols sent and received through the communication channel can be 

expressed in detail as shown in Figure 4. Symbols a, b, c, d, and e are the 5 signals that 

need to be transmitted through a finite, discrete, and memory-less communication 

channel. The receiver can interpret each of these signals in two different ways. For 

example, a can be received as either A or B, b can be received as either B or C, etc. 
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Channel 
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Figure 4 A noisy communication channel interpretation 

 

Shannon represents the noisy communication channel in terms of error 

probabilities during communication [35], thus the channel capacity could be derived 

based on error probabilities. Figure 5 shows Shannon’s representation of the noisy 

communication channel. In this representation, the vertices represent the input and output 

signals, and the arrows show the probability of the signals received at the receiver side. 

For example for the first two vertices, a is received as A with probability    , and a is 

received as B with probability    . For a given input signal, the sum of all the 

probabilities should be equal to 1.  

 

Figure 5 Shannon’s representation of noisy communication channel 
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Noisy communication polygon representation 

The noisy communication channel could be further represented as an error content 

graph [36]. Graphs of this type provide a visual representation of the transmitter-receiver 

connections specified by the communication error probability representation.  

By observing Figure 5, we can see that the error pairs of the symbols are aB, 

bC, cD, dE, and eA, which produces the error content graph shown in Figure 6.  

 

Figure 6 Error content graph representation of noisy communication channel of Figure 5 

 

Here we can see that the communication channel can be represented by polygons 

in the form of error content graph (regular polygons in this case). For other kinds of noisy 

communication channels, the error content graph representation could be non-convex 

irregular polygons [15].  Figure 7 gives an example of a noisy communication channel 

and its corresponding non-convex irregular polygon.  
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Figure 7 A communication channel with non-convex irregular polygon error content 

graph representation 

 

U matrix  

 Robert discussed the relationship of Fourier series and polygons [37].  Fourier 

representation of noisy communication channel had been studied by our group as well 

[20, 22-24].  Following our research group’s work, we further explored the U matrix, 

which is a complex matrix obtained by introducing Fourier series to the noisy 

communication channel.  The U matrix is the basis of the generalized noisy 

communication channel approach. We will cover the Fourier representation of polygons 

first, and then introduce U matrix features and new transforms. 

 

Fourier series representation of regular polygon 

The Fourier series of a regular polygon is given as 
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By expanding equation (1.1), we introduce an algorithm to construct regular polygons 

using Fourier series. An example of the expansion is shown below.  

For                                       

      ∑
    

  

      

   
       

  
 

      

 
 

      

  
  

For                          

                          

      ∑
    

  

      

  
       

  
  

       

  
 

      

 
 

      

  
 

       

   
 

The corresponding polygons are shown in Figure 8. 

 

Figure 8  Fourier series for polygons with p=1, and p=2. 

 

It is highly observable that as p increases, the number of the elements increases as does 

the resolution. The following parameters are defined to represent the polygon with 

Fourier series: 

      Corresponds to the jump step value of uniform polygon, more specifically, 

defining the destination point to go from the present point.  

 n     Corresponds to the number of vertices of a uniform polygon. 
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      Determines the interval        in which the Fourier series will be 

calculated. 

      is the sampling factor for the numerical algorithms, and it determines the 

number of samples             . 

Introducing all the parameters of the algorithm, we obtain our new equation, 

       ∑
          

       

      

                                                                                 

where                        , and                          . 

Since the resulting Fourier series calculation is the sum of each Fourier term at time   , 

the equation (1.2) can be rewritten as  

       ∑
          

       

 

    

                                                                                 

Then an algorithm would be expected to realize the following equation: 

       ∑
         

       

 

    

                                                                                 

The Fourier series matrix defined by (1.4) has the following form [22-24]. Note that the 

parameter   denotes the rows of the resulting matrix. 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             

           

             

           

             

           

⋮
            

          

           

         

           

         

⋮
             

           

             

           

         

       ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                         

The matrix in (1.5) has a row for each value of          with a total of      rows. 

The matrix           will have N columns, each corresponding to an instant of time.  

We can rewrite the matrix explicitly as shown in Figure 9.  
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⋮
               

            

              

           

              

           

⋮
                

             

              

           

   

                 

            

                   

              

⋮
                 

            

                

           

                

           

⋮
                  

             

                

           

               

            

                 

              

⋮
               

            

              

           

              

           

⋮
                

             

              

           ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9 Explicitly written U matrix 

 

Since the resulting Fourier series calculation is the sum of each Fourier term for every 

time  , the equation for           could be rewritten as  

          ∑
         

       

 

    

                                                                                 

By changing the limits of the sum, we get 

          ∑
              

           

  

   

                                                                         

We implemented the numerical algorithm using Matlab.  

The polygons of                    are shown in Figure 10.  
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Figure 10 Evolution of 5 by 2 polygons with increasing resolution 

 

The polygons of                     are shown in Figure 11.   

 

Figure 11 Evolution of 11 by 4 polygons with increasing resolution 
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Figure 12 shows the polygons for                                           . The 

resolution parameter for all the drawings is constant (p=10). 

 

 

Figure 12 Some Polygon examples for                                             

 

Note that when n and q are not relatively prime, numbers of vertices in the 

resulting polygon are not equal to n as shown in Figure 12 for                        .  

 

Fourier series of irregular polygon 

The Fourier series representation of regular polygons is very powerful and is easy 

to use, but not all the real world problems could be represented by regular polygons [22]. 
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Therefore, we make further efforts to extend the regular polygon Fourier series 

representation to irregular polygon representation.  

Let           denotes a regular polygon that has n vertices and a jump speed of q. 

Time      and 

                                 

The function           is linear in every time interval         . 

Correspondingly, let               denote an irregular polygon that has n vertices. 

Instead of having a constant jump speed, the jump speed q is a vector that has n elements. 

In addition, [p] does not have to be constant for each side of the irregular polygon.  

Example 1. Let                  , the length of the jump speed vector q is n. An 

irregular polygon               is composed of pieces of the regular polygons: 

                                                                               . 

Thus, the irregular polygon               is defined as: 

              ∑        
                               

   

   

                    

with     , and       . The overall time span      is divided into n equal intervals.  

   in (1.8) is a transformation, which rotates the regular polygon      
        

counterclockwise by an amount of       , and scales the inscribed circle radius to be 1, 

which is an amplitwist operation referred to in Appendix 2. The scale is important, since 

the jump speed and number of vertices of the original regular polygons vary a lot. It is 

difficult to define what point on the complex plane maps to what time.  So the process for 

constructing the irregular polygon involves starting from time 0 for all the regular 

polygons, rotating them, scaling them and extracting pieces needed. The rotation of 
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regular polygons enables using the first side of the corresponding regular polygon for 

constructing the irregular polygon. The final irregular polygon is made of different 

Fourier series concatenated one after another for different time intervals. An example is 

shown to illustrate how an irregular polygon was constructed with Fourier series.  

Example 2. Give a permutation matrix which forms an irregular polygon 

[
   
   

     
  
  

    
   
   

] 

The irregular polygon representation is shown in Figure 13.  

   

Figure 13 Irregular polygon formed by permutation matrix of Example 2. 
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clockwise with the specified amount. In order to make it clear, we will use mod n for the 

“speed vector.” The speed vector for this example is [5, -2, 3, -7, 3, 2, -3, -1]. After the 

mod n operation, the speed vector turns out to be [5,6,3,1,3,2,5,7]. This vector 
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corresponds to the jump speed of the irregular polygons, which indicates that the irregular 

polygon is constructed from pieces out of various regular polygons:  

                                                                

The resolution parameters    are all set to 10. Figure 14 shows the Fourier series 

representation regular polygons used to construct the irregular polygon. 

 

          (a)(8,5)                                       (b)(8,6)                          (c)(8,3) 

 

          (a)(8,1)                                  (b)(8,3)                           (c)(8,2) 

 

 

                   (a)(8,5)                                              (b)(8,7)                                            

Figure 14 The regular polygons used to construct irregular polygons. 
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The detailed construction process of the irregular polygon by taking pieces from 

regular polygons is shown in Figure 15.  

 

Figure 15 The process of the irregular polygon formed by pieces taken from regular 

polygons  

 

The Fourier series representation of irregular polygons of n=8 is shown in Figure 16. 

     

Figure 16 Fourier series representation of irregular polygons of 8 vertices 
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Based on our analysis, there exist regular or irregular Fourier polygon 

representations for the noisy communication channel in the form of error content graph 

[23-25]. For the noisy communication channel in permutation form 

[
   
   

     
  
  

    
   
   

], the corresponding Shannon’s representation of the noisy 

communication channel and the Fourier polygon representation are shown in Figure 17.  

 

Figure 17 Shannon’s representation and Fourier polygon representation of noisy 

communication channel 

 

We further visually investigated the Fourier series numerical algorithm 

          ∑
         

       

 

    

                     

especially the Fourier series matrix          . An example plot of the U matrix, SumU 

matrix and inverse FFT of U matrix is shown in Figure 18. 
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Figure 18 U matrix, SumU matrix, and Inverse FFT of U matrix for           

 

Besides changing n and q, which corresponds to number of polygon vertices and 

jump step, we investigate further by tuning the parameters p and t. The relationship of the 

parameters, the U matrix and the polygon is shown in Table 1. 

Table 1 Relationship of equation parameters and U matrix 

Parameters of numerical algorithm U matrix Polygon 

n  Number of vertices  

q  Jump step 

l Rows of the U matrix Summation interval 

p  Resolution 

t Columns of the U matrix Sampling factor 

 

Table 2 shows an example of the polygon plot of n=7 and q=1. The results of 

changing p from 1 to 10 are shown in Table 2.  
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Table 2 p changes from 1 to 10 for n=7 and q=1 

q=1 q=2 q =3 

   

q=4 q=5 q =6 

   

q=7 q=8 q =9 

   

 

  

 

Table 3 shows the plots of the U matrix changing as row number increases or as p 

changes from -10 to 10. The first plot corresponds to U matrix with only one row with 

p=-10. The second row corresponds to the U matrix with two rows with p=-10, -9. 
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Table 3 U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,14,17,20 L=3,6,9,12,15,18,21 
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These plots show the expansion of the U matrix by row numbers. For example, 

L=1 corresponds to a U matrix with only one row; L=2 corresponds to a U matrix with 

two rows; L=21 corresponds to the U matrix with 21 rows, since P=10 in this example, so 

          , which indicated 21 rows [31]. 

The inverse Fourier transform of the U matrix is shown in Table 4. 

Table 4 Inverse Fourier transform of U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,11,14,17,20 L=3,6,9,12,15,18,21 
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If we draw each row of the U matrix, we could obtain Figure 19.  

 

Figure 19 Rows of the U matrix of           

 

The other plots of U matrix with n=7, q=2,3,4,5,6 are shown in Appendix C. 

U transform  

Let us recall the Fourier Matrix and Fast Fourier Transform (FFT): for a given 

signal S, the FFT process of the signal could be considered as the multiplication of the 
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SFFT(S)                                        SFourier Matrix   S 
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We propose a new terminology U transform based on the U matrix. The U 

transform is simply defined as the multiplication of U matrix and a signal. In this section, 

we compare the results of FFT and U transform. The two transforms are shown in Table 

5. 

Table 5. FFT and U transform 

 Matrix  

Fast Fourier Transform Fourier Matrix S Fourier Matrix 

U transform U matrix S U matrix 

 

Figure 20 shows example plots of a 21x21 Fourier matrix and U matrix with n=7, q=1, 

p=10 

 

Figure 20 Fourier matrix and U matrix 

 

For visual inspection and comparison purposes, we showed two examples of 

applying FFT and U transform to a harmonic signal                             

and a random signal. The comparison results show that the U transform has better 

symmetry and is more visually uniform from a geometric point of view. The harmonic 

signal S and its FFT and U transform are shown in Figure 21. 
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Figure 21 FFT and U transform of a harmonic signal 

 

 We also carried out simulations of U transform with more samples to compare the 

results with FFT. The harmonic signal S and its FFT and U transform with 629 samples 

are shown in Figure 22. The results further confirm the uniform and symmetric feature of 

the U transform. Furthermore, it can tell visually that FFT only captures part of the result 

U transform captures.  

   

Figure 22 FFT and U transform of a harmonic signal with more samples 

 

 Other than harmonic signals, we carried out more simulations to compare the 

results of FFT and U transform. Comparison is also done for random signals which could 

show more generality. The random signal and its corresponding FFT and U transform 

plots are shown in Figure 23. 
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Figure 23 FFT and U transform of a random signal 

 

We also applied the simulation to a random signal with more samples, and the 

comparison results are shown in Figure 24. 

   

Figure 24 FFT and U transform of a random signal with more samples 

 

Zeta Transform 
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which converges when the real part of s is greater than 1 [38]. It is implemented in 

Matlab as function zeta and also implemented in Mathematica as Zeta. 

The Riemann zeta function      is a function of a complex number       . 

     is defined as  

     ∑
 

  

 

   

 
 

  
 

 

  
 

 

  
                            

The infinite series converges for all complex numbers s with real parts greater than 1.  

Research shows that there was a connection between the Riemann Zeta function 

and atomic energy level [39-42]. The spacing between consecutive zeros of the zeta 

function behaves statistically like the spacing between consecutive eigenvalues of 

Gaussian Unitary Ensemble large random matrices [40].  

We further apply our proposed algorithm to the Riemann Zeta function. First, we 

replace the S term in the equation with our U matrix, and we can obtain a raw Riemann 

Zeta matrix.  Then, we filter the infinite elements in the matrix and obtain our Riemann 

Zeta matrix. The process is shown in Figure 25. 

 

Figure 25 Deriving Riemann Zeta Matrix from U matrix 

 

The plots of the Riemann zeta matrix are shown in Figure 26. 
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Figure 26 Riemann Zeta matrix 

 

We can observe a more complex compound system of communication channels as 

shown in Figure 27.  

 

Figure 27 The side and top views of a compound system of communication channels 

 

-0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Inverse FFT of Zetamatrix matrix

0

500

1000

02468101214161820

-0.53

-0.52

-0.51

-0.5

-0.49

-0.48

-0.47 3D new Zetamatrix matrix

-0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-3

-2

-1

0

1

2

3
x 10

-3

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01



33 

 

We further extended the U transform to Zeta Transform by replacing the U matrix 

with Zeta matrix as shown in Table 6. 

Table 6 FFT, U transform, Zeta transform 

 Matrix  

Fast Fourier Transform Fourier Matrix S Fourier Matrix 

U transform U matrix S U matrix 

Zeta transform Zeta matrix S Zeta matrix 

 

An example to compare FFT, the U transform, and Zeta transform is shown in 

Figure 28.  

  

  

Figure 28 Comparison of FFT, U transform, and Zeta transform 
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U matrix grouping 

By tuning the parameters of the numerical equation, the proposed U matrix could 

produce any polygons as needed. We grouped the polygons based on six alpha principles 

to show the modular pattern [33]. The polygons shown in Table 7 are constructed based 

on the following pattern. Each polygon is a        polygon; n and q are given as shown in 

the rows and columns in the table. Table 7 shows the case of    , so the plot of the 

first row and first column is                   . Substituted with    ,    , the plot 

is for        . The plot of the second row and first column is                       . 

Substituted with    ,    , the plot is for        . Following this pattern, it is easy to 

obtain the corresponding U matrix of the plots.  

Table 7 Fourier polygon grouping based on N changes 
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We also studied another way of grouping the polygons by changing α [33]. The 

polygons shown in Table 8 are constructed with the similar pattern used to construct 

polygons in Table 7. Each polygon is a        polygon; n and q are given as shown in the 

rows and columns in the table. The plot of the first row and first column of Table 8 is 

                   . Substituted with    , the plot is for        . The plot of the 

second row and first column is                        . Substituted with    , the plot 

is for        . Following this pattern, it is easy to obtain the corresponding U matrix of the 

plots. There are some overlaps of Table 7 and Table 8. 

Table 8 Fourier polygon grouping with α change 
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Chebyshev matrix eigenvalues, Polygon geometry and Amplitwist 

 In our research group we found that there was a close connection between the 

polygon geometry and the Chebyshev matrix eigenvalues; that is, the eigenvalue of the 

Chebyshev matrix equals to the polygon edge and radius ratio [15,21]. Combined with 

the amplitwist analysis, the tool set could be used to further study these relationships and 

their implications. 

 

Amplitwist 

The term amplitwist comes from Tristan Needhan [43]. The idea is that a 

complex-valued function is differentiable at a point where it has an “amplitwist” there. 

The amplitwist is a combination of amplification and twisting, or rotation. The 

“amplification” is the expansion factor, and the “twist” is the angle of rotation. Under this 

definition, the amplitwist of f,       may be thought of locally as a linear transformation, 
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Example 3. If       , this represents the combination of an origin-centered expansion 

by a, and a rotation by α as shown in Figure 29. Hence  

                           

 

Figure 29 An example of amplitwist 

 

Eigenvalues of Chebychev matrix 

The corresponding Chebyshev polynomial matrix [15, 46] is defined as 
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The eigenvalues of       is  

            
  

    
                

The corresponding Chebyshev matrix of the second kind is  
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The eigenvalues of       is  

            
  

    
                

 

Amplitwist, Eigenvalue and polygon geometry 

Let us start from Heisenberg’s uncertainty principle in quantum mechanics [53] 

     
 

  
 

Here    is the deviation of position  , and    is the deviation of momentum   of 

a particle. Let us rewrite the equation in the form of  

       
 

 
 

Let       , we obtain 

    
 

 
 

which corresponds to a circle in geometry, and a simple model of the “particle movement” 

is shown in Figure 30. 

 

Figure 30 A simple model of particle movement model 
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As demonstrated by Bunyamin Ozadin [11, 46], there is a connection between the 

eigenvalues of the Chebychev matrix and polygon geometry. The radius and polygon 

edge ratio equals to the eigenvalues of the certain Chebychev matrices [15,46].  

Let us take the regular polygon with 8 vertices for example. Figure 31 shows the 

edges of regular polygons {
 
 
}  { 

 
}  { 

 
} , which correspond to AB, AC and AD 

respectively.   

  

Figure 31 Polygon geometry and probability amplitude 

 

A, B, C, D equally distributed the circle and they correspond to roots of unity. It is 

obvious that  

  ̂    ̂    ̂  
  

 
 

Triangle OAB is an isosceles triangle, and if we make E the middle point of A and B, 

OM is the altitude of triangle AOB, and OM is perpendicular to AB. Thus, we have 
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Let us look at right triangle AOM,  

  ̅̅ ̅̅           ̅̅ ̅̅    
 

 
   ̅̅̅̅̅  

 

 
  ̅̅ ̅̅  

Thus, we can obtain 

  ̅̅ ̅̅

  ̅̅ ̅̅
     

 

 
 

Applying similar analysis to isosceles triangles OAC and OAD, we have 

  ̅̅ ̅̅

  ̅̅ ̅̅
     

  

 
 

  ̅̅ ̅̅

  ̅̅ ̅̅
     

  

 
 

Since   ̅̅ ̅̅ ,   ̅̅ ̅̅ , and   ̅̅ ̅̅  correspond to the edges of the regular polygon {
 
 }  for the case 

n=8, q=1, 2, 3 in the example, let us use    to replace   ̅̅ ̅̅ ,   ̅̅ ̅̅ , and   ̅̅ ̅̅ , and we can 

havethe  equation 

  

  ̅̅ ̅̅
     

  

 
 

or  

  

 
     

  

 
 

Let us recall the Chebyshev matrix, the eigenvalues of        and       equal to 

the square of a polygon edge and radius ratio  
  

 
   under certain conditions [11,15,21]. 

Let us look back to Figure 30, and we could connect this model with amplitwist 

and polygon geometry as shown in Figure 32.  
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Figure 32 Amplitwist and “particle movement” model 

 

Let us look back to the polygon geometry equation: 

  

 
     

  

 
 

Giving                 , let us start with           first; we have 

  

  
     

  

 
 

  

  
 

  

  
    

  

 
 

Let us take the example of n=8 and q=1, the equations correspond to the geometry shown 

in Figure 33. 
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Figure 33 Corresponding polygon geometry example 

 

  

  
     

 

 
 

  

  
 

  

  
    

 

 
 

From the two equations, if we keep    and the angle the same, we just change   , and 

the new ratio 
  

  
 corresponds to a new eigenvalue of the Chebychev matrix.  

We could obtain another form of the equation for   . If we replace the edge with 

the same length for polygon n=10, q=1, for example, then we have 

  

  
     

 

  
 

To be strictly mathematical, there always exists another polygon {
 
 } such that 

     
 

  
      

 

  
 

Thus, we have 

 
B 

A 

O 
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The deduction and observation could further be used in our analysis of the new 

quantum computer design technique. 
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3. GNCOM FOR QUANTUM COMPUTING  

 

In this chapter, we illustrate in detail how the generalized noisy communication 

channel approach is applied to quantum computing. First we start with a brief 

introduction to quantum computing, then follow with a discussion of the GNcom 

representation of quantum computing, and conclude with an application of a universal 

linear equation derived from the multiple-input multiple-output communication channel 

to quantum computing by using the U matrix as a quantum register.  

 

Introduction to quantum computing 

Quantum computing has become a fascinating research area for physicists and 

computer scientists over the last 20 years. Quantum computing is an interdisciplinary 

research field, since it combines physics, mathematics, and computer science. Quantum 

computing shows another perspective of computation, which is to think computation 

physically.  Furthermore, quantum computation provides new tools to solve the class of 

problems that are hard or impossible to solve with traditional computing [67].  

 

History of quantum computation 

Quantum computation is a branch of theoretical physics. Dating back to 1970s, 

the interest of developing single quantum systems contributes to the development of 
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quantum computation [47, 53]. Richard Feynman’s speech on the simulation of quantum 

mechanical systems further inspired the research. Overall, much progress had been made 

in the 20
th

 century in the field of information theory, which connects the abstract notion 

of information to the laws of thermodynamics [64]. A great deal of excitement was 

triggered in the mid-1990s when Shor’s factoring algorithm and Grover’s search 

algorithm were discovered. Both of the algorithms have been applied to real world 

problems other than just simulations; in addition, both show significant speed up over the 

best known classical algorithms.  For example, Shor’s factoring algorithm enables 

someone to break an encryption scheme in a very short time.  

Due to these intense interests, a great deal of efforts has been made to build 

quantum computers, but the state of the art of quantum computer design is limited to 

small quantum computers with a few qubits operation.  The state of the art of quantum 

computers is listed in Table 9.  The development of large-scale quantum computers still 

remains as a great challenge. 
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Table 9 The-state-of-the-art of quantum computers 

Year Institute Chip Function 

2005 University of 

Michigan 

Ion trap chip[48] scalable quantum computing 

tools 

2009 Yale university rudimentary solid-state 

quantum 

processor[49,50] 

Two-qubit superconducting 

chip could run elementary 

algorithms 

2009 University of 

Bristol 

silicon-based quantum 

computing chip[51-53] 

Could run Shor’s algorithm 

2011 University of New 

South Wales 

quantum 

teleportation[54,55] 

successfully transferred a 

complex set of quantum data 

2011 D-Wave Systems the first commercial 

quantum annealer[56] 

128 qubit processor chipset. 

2011 University of 

Bristol 

an all-bulk optics 

system[57] 

run an iterative version of 

Shor's algorithm 

2011 University of 

California, Santa 

Barbara 

Quantum Processor 

Hooks Up with Quantum 

Memory[58] 

proof of a quantum computer 

can be made with a Von 

Neumann architecture 

2012 IBM Sapphire chip[59] close to the minimum 

requirements for a full-scale 

quantum computing system 

2012 University of 

Southern 

California, Delft 

University of 

Technology, the 

Iowa State 

University of 

Science and 

Technology, and 

the University of 

California, Santa 

Barbara 

two-qubit quantum 

computer[60] 

Grover's algorithm for four 

variants of search has 

generated the right answer 

from the first try in 95% of 

cases 

2012 University of New 

South Wales 

the first working 

"quantum bit" based on a 

single atom in 

silicon[61,62] 

The same technological 

platform that forms the 

computers, laptops and phones. 

 

Basics 

Bits and functions operating on bits are the basic theory of classical computing. 

By analogy, quantum bits and their associated linear transformations form the basics of 
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quantum computing.  A classical computer is built from electrical circuits with logic 

circuits and interconnects. A quantum computer is built from quantum circuits with 

interconnects and quantum logic circuits. A special interest of quantum computing 

research is quantum behaviors that are hard to simulate on a classical computer, like 

superposition and interference.   

In this section, we will give a simple introduction to quantum computing. Starting 

with the basic unit of quantum computing - qubits, and then followed by the basic logical 

operations - quantum gates. 

 

The Qubit 

The fundamental concept of quantum computation and information is the 

quantum bit, or qubit for short. Qubits are mathematical objects with specific properties 

and can be realized as actual physical systems. Treating qubits mathematically has the 

flexibility to construct a general theory of quantum computation that is independent of a 

specific system. On the other hand, the beauty of qubits is that computation is very much 

a physical process and not just a mathematical formulism [53, 69]. 

A classical bit has two states, 0 or 1. Analogous to this, a qubit also has a state. 

Two possible states corresponding to the classical bit 0 and 1 of a qubit are| ⟩ and| ⟩. A 

notation like |⟩ is called the Dirac Notation, which is a standard notation for states in 

quantum mechanics. However unlike a classical bit, a qubit can have more than just two 

states. Qubits can also be a normalized superposition, as linear combination of the basic 

states,  

| ⟩    | ⟩   | ⟩ 
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where   and   are complex numbers, and |  |  |  |   . 

However, if we make a measurement of superposition states, it is impossible for 

us to measure all the terms in the superposition states. When we measure the qubit, it will 

produce | ⟩ with probability |  | and | ⟩ with probability|  |, since |  |  |  |   .  

A qubit can be rewritten in a geometric representation.  

| ⟩    | ⟩   | ⟩ 

|  |  |  |    

which yields[63] 

| ⟩      
 

 
|  ⟩        

 

 
| ⟩  

The numbers    and   are real numbers, and they define a point on the unit three 

dimensional sphere, which is often called the Bloch sphere [64]. This geometric mapping 

is very helpful to visualize the state of a single qubit as shown in Figure 34. 

 

Figure 34 The Blotch sphere representation of a single qubit  
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Multiple qubits 

Analogous to classical bits, multiple qubits also exist. For two classical bits, there 

exist four possible states, 00, 01, 10 and 11. Correspondingly, a two-qubit system has 

four basic states |  ⟩, |  ⟩, |  ⟩ and |  ⟩. 

If we have two qubits whose states are given by  

|  ⟩     | ⟩    | ⟩ and 

|  ⟩     | ⟩    | ⟩, 

then the state of the whole system is: 

| ⟩  |  ⟩  |  ⟩ 

| ⟩     | ⟩    | ⟩     | ⟩    | ⟩  

| ⟩      |  ⟩      |  ⟩      |  ⟩      |  ⟩ 

Thus we obtain the general two-qubit state form 

| ⟩   |  ⟩   |  ⟩   |  ⟩   |  ⟩ , 

|  |  |  |  |  |  |  |   . 

The equation above can only be written as a product of two single qubit states if 

ad=cd. This gives a definition for an extremely important phenomenon in quantum 

computing, entanglement. An entangled state is a multi-qubit state that cannot be 

separated into a product of single qubits [65].  

Extending the concept to n qubits, we can denote the n bit binary expansion of x,  

| ⟩ . A general n qubit state is written as 

 ⟩  ∑   | ⟩ 
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∑ |  |    

    

   

 

  

Quantum gates 

A single qubit only shows classical values 0 or 1 with certain probability after 

measurement. As a result, the superposition state will irreversibly change to a basic state, 

“collapsing” it from the superposition to the outcome of the measurement. From the 

above description, we can see that, unless the superposition state is measured, the amount 

of “hidden” information is still stored under the dynamic evolution. This makes 

manipulation of the information stored in unmeasured qubits possible with quantum gates.  

The well-known classical Boolean logic gates are: NOT, AND, OR, NAND, NOR, 

XOR etc. Let us start with the simplest 1 bit logic gate NOT; the truth table of a classical 

NOT gate is shown in Table 10. 

Table 10 Truth table of a NOT gate 

Input Output 

0 1 

1 0 

 

Due to the superposition state of qubit, a quantum NOT gate is not just simply 

interchange | ⟩ to | ⟩, or | ⟩ to | ⟩. The quantum NOT gate behaves linearly; that is, the 

roles of | ⟩ and | ⟩ are interchanged.  

 | ⟩   | ⟩
      
→     | ⟩   |  ⟩  

The quantum NOT gate could be written in matrix form. Let us define a matrix  
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  [
  
  

] 

for the quantum NOT gate. The state  | ⟩   | ⟩ can be written as a vector, 

[
 
 ] 

and the output state  | ⟩   | ⟩ is [47] 

 [
 
 ]  [

 
 
]  

The matrix representation of quantum gate is unitary. If U is a matrix 

corresponding to a single qubit gate, then U†U=I, where U† is the adjoint of U, obtained 

by transposing and then complex conjugating of U. There is only one single bit gate for 

classical NOT gate, but there are many single qubit gates. Any unitary matrix specifies a 

valid quantum gate.  

An important gate in quantum computing is the Hadamard gate. The Hadamard 

gate H is defined as 

 | ⟩  
 

√ 
 | ⟩  | ⟩ ,  | ⟩  

 

√ 
 | ⟩  | ⟩ , 

The matrix form is [66] 

  [
  
   

] 

For the classical computing case, there exists a universal gate NAND that could 

be used to represent any combinations of other gates for computation. By introducing the 

phase operator φ, together with the Hadamard gate, one can construct an arbitrary one-

qubit gate [67]. The phase operators φ are defined by 

 | ⟩  | ⟩       | ⟩     | ⟩  

and the corresponding matrix form is  
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  [
  
    ]. 

In quantum computing, any multiple qubit logic gate may be composed from a 

quantum CNOT gate and a single-qubit gate [68]. This CNOT gate has two input qubits: 

the control qubit and the target qubit. If the control qubit is 0, the target qubit remains 

unchanged. If the control qubit is 1, the target qubit is flipped. The action can be written 

as: 

|  ⟩  |  ⟩  |  ⟩  |  ⟩ |  ⟩  |  ⟩ |  ⟩  |  ⟩ 

The circuit representation for the CNOT is shown in Figure 35. The top line 

indicates the control qubit, and the bottom line represents the target qubit.  

 

Figure 35 The CNOT quantum gate 

 

The CNOT gate could also be written in Matrix format.  

    [

  
  
  

    
  
  
  

        

] 

Another important feature of CNOT gate is that it generates an entangled state. 

For example, given an input state 

  

| ⟩  |  ⟩|  ⟩    | ⟩   | ⟩ | ⟩ 

applying the CNOT gate to it, we obtain 

 

|A

|B> 

|A> 

|B⊕A> 
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 | ⟩   |  ⟩     ⟩, 

which cannot be separated into a product of two single qubit states.  

Any unitary transformation acting on n qubits can be constructed by combinations 

of CNOT, Hadamard, and phase gates [69]. These form the universal sets of quantum 

gates. However, CNOT is not the only choice in the set. The CNOT gate could be 

replaced by any other two qubit gates that can produce entanglement.  

One unique feature of quantum gates is that they are always reversible.  Since the 

inverse of a unitary matrix is also a unitary matrix, a quantum gate can always be 

inverted by another quantum gate.  

 

Algorithms 

The features of quantum computer make it possible to design new algorithms to 

solve problems which are hard to solve or require tremendous resources to solve with 

classical computers.  However, algorithm design is a highly complicated and difficult 

task, especially for quantum computing, due to the following reasons. First, the 

algorithms are designed to speed up computation or reduce complexity with quantum 

mechanical features. Second, we are lacking a general approach: current method 

approaches each problem in its own way. Third, quantum computing is so different from 

classical computing that developers find it difficult to overcome classical concepts and 

develop new algorithms. Due to the reasons mentioned above, there are only a few 

powerful quantum algorithms that have been proposed. Among these, Shor’s algorithm 

[71] was considered as one of the major milestones in this field and generated a great deal 

of excitement in the quantum computing research domain.   
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Shor’s factoring algorithm 

Shor's algorithm [71] could successfully factor, a positive integer in polynomial 

time, while the most successful classical algorithm takes sub-exponential time. Here is 

the argument: 

Given a positive integer  , two prime factors   and   that satisfy      can be 

found by finding the period of a function 

              

where any     has no common factors with N other than 1. 

The period r of      is determined by y and N. Once the period is known, N can 

be factored if r is even and  
  

 
         . The factors of N are the greatest common 

divider of 
  

 
   and N, which can be found in polynomial time. In short, Shor’s 

algorithm reduces the problem of finding the period of a certain periodic function, 

            [71]. 

Shor’s algorithm became so popular because it could break the heavily used RSA 

encryption protocol in an exponentially shorter time than a classical computer. This 

example shows that quantum computing can also have a real-world advantage over 

classical computing. The quantum speed up of computation shown by Shor’s algorithm 

had a dramatic effect economically and scientifically.  
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Applications: Field programmable Gate Array (FPGA) 

Quantum computing has been utilized to solve many hard computational 

problems. FPGA routing is such a computation intensive problem. Existing methods are 

unable to perform the breakthrough in terms of time, cost, and complexity. Quantum 

computing shed some light on it [72].  In the proposed method, the FPGA routing 

problem was transferred to a Boolean satisfiability (SAT) equation. The candidates that 

satisfy the SAT equation to “1” indicate a valid routing. Quantum search algorithms are 

applied to the Boolean equation to solve the routing problems with properties of quantum 

superposition and quantum parallelism. The proposed approach could reduce the number 

of iterations to find a solution [72]. 

 

Noisy communication channel representation of quantum computing 

In this section, we will discuss the noisy communication channel representation of 

quantum computing. We start with entangled quantum states and the polygon connection; 

then we connect quantum computing and noisy communication channel through Fourier 

polygons [32]; finally, we further connect quantum computing with multiple input 

multiple output communication channels with the proposed U matrix.  

Entangled quantum states and Fourier polygon 

As introduced in the previous section, entanglement is a very important feature in 

quantum computing. In short, the entangled states are dependent on each other, and the 

more entangled a system is, the more computation power it offers.  
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The possible quantum states of a chain of particles could be represented as 

particles in space as shown in Figure 36, and the lines connecting states could be 

swapped without changing the energy of the chain [73,74].  

 

Figure 36 Entangled states in a particle chain 

 

Let us recall our Fourier representation of polygons with 6 vertices as shown in Figure 37.  
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Figure 37 Fourier polygon with 6 vertices 

 

Here we see a close visual similarity between the particle chain and the Fourier 

polygon representation. The particle chain is the vertices of Fourier polygons, and the 

entangled quantum states are edges of the Fourier polygons.  This observation implies the 

possibility of modeling the quantum states in a particle chain with Fourier polygons.  

Under ideal cases, the particle chain could form a regular polygon, but for the real 

cases either the particle chain or the entangled states could be in the form of irregular 

polygons. An example of entangled quantum states is shown in Figure 38. 
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Figure 38 Example of entangled states 

 

As shown in Figure 38, each arrow could be modeled as a quantum state in the form of   

| ⟩    | ⟩   | ⟩ 

The example of the entangled quantum states is shown in the form of  

| ⟩  |  ⟩  |  ⟩    |  ⟩ 

 ⟩  ∑   | ⟩ 

    

   

 

∑ |  |   

    

   

 

The entangled states could be modeled with Fourier representation of irregular 

polygons as shown in Figure 39 by taking pieces from regular polygons.  
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Figure 39 Irregular polygon formed by permutation matrix 

 

The “jump speed” for the line goes from 2 to 7 is 7-2=5 [15, 31]. Similarly, the 

speed for the line goes from 7 to 5 is 5-7=-2. Since the direction to plot the irregular 

polygon is defined as counterclockwise, the direction of the negative speed moves 

clockwise with the specified amount. In order to make it clear, we will use mod n for the 

“speed vector.” The speed vector for this example is [5, -2, 3, -7, 3, 2, -3, -1]. After mod 

n operation, the speed vector turns out to be [5,6,3,1,3,2,5,7]. This vector corresponds to 

the jump speed of the irregular polygons, which indicates that the irregular polygon is 

constructed from pieces of regular polygons:  

                                                                

The resolution parameters    are all set to 10. Figure 40 shows the Fourier series 

representation regular polygons used to construct the irregular polygon. One side of each 

polygon is the piece needed to construct the irregular polygon shown in Figure 39. 
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          (a)(8,5)                                       (b)(8,6)                          (c)(8,3) 

 

          (a)(8,1)                                  (b)(8,3)                           (c)(8,2) 

 

 

                   (a)(8,5)                                              (b)(8,7)                                                            

Figure 40 The regular polygons used to construct irregular polygons. 

 

Tuning the parameters of our U matrix, more complicated entangled quantum 

states could be modeled as shown in Figure 41 [16, 31]. 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5



67 

 

 

Figure 41 U matrix and entangled quantum states 

 

Noisy communication channel representation for quantum computing 

In this section, we summarize the connection between entangled quantum states 

and the noisy communication channel based on the analysis in the previous sections.  

Based on our research group’s analysis [15-27, 31-33], there exist regular or 

irregular Fourier polygon representations for the noisy communication channel in the 

form of an error content graph. For the noisy communication channel in permutation 

form [
   
   

     
  
  

    
   
   

], the corresponding Shannon’s representation of the 

noisy communication channel and the Fourier polygon representation are shown in 

Figure 42.  
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Figure 42 Shannon’s representation and Fourier polygon representation of noisy 

communication channel 

 

The relationship of the noisy communication channel, entangled quantum states 

and polygons are shown in Figure 43. The connection lies in the following aspects: 1) 

Shannon’s noisy communication channel can be represented as polygons; 2) there is a 

geometric connection between the entangled quantum states and polygons; 3) the 

probability amplitude expression in a complex plane can be represented by the edges of a 

Fourier polygon; 4) applying Fourier analysis, the noisy communication channel can be 

represented as quantum states.    

As illustrated in Appendix B, the noisy communication channel has been modeled 

with common tool sets: combinatorial analysis in terms of permutation, Fourier analysis 

in terms of Fourier series, and complex analysis in terms of an error content graph. 

Analysis of entangled quantum states with Fourier series had been illustrated in the 

previous sections. It is observable that we can apply combinatorial analysis, and complex 

analysis to the entangled quantum states.  
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Figure 43 Relationship of probability amplitude and communication channel 

 

Multiple-input Multiple-output (MIMO) channels representation of quantum 

computing  

A baseband discrete-time model for a flat fading MIMO channel is shown in 

Figure 44. As this model depicts, there are N signals transmitted from N transmitters 

simultaneously. In a wireless communication system, the N signals of the MIMO system 

are with M outputs. Each transmitted signal arrives at each of the M receivers through the 

wireless channels. Each output of the channel is a linear superposition of the faded 

version of the inputs added by noise [75].  
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Figure 44 A multiple-input multiple-output channel 

 

The signal     , which is received at time t at antenna m, is in the form of  

     ∑              

 

   

 

where      is the noise sample of the receiver antenna m at time t. 

The input-output relationship could be extended to the form of 

        

where C is a matrix that represents the signals transmitted from N transmit antennas 

during T time slots: 

  [

         

         

⋮ ⋮  

   
    

    

⋮
                    

] 

R is a     matrix constructed to represent all the received signals in T time slots: 

  [

         

         
⋮ ⋮  

   
    

    

⋮
                    

] 

H is the path gains in a     channel matrix 

1 
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  [

         
         

⋮ ⋮  
   

    

    

⋮
                    

] 

N is the     noise matrix 

  [

         

         
⋮ ⋮  

   
    

    

⋮
                    

] 

The MIMO model linear equation could be applied to quantum computing.  Recalling our 

U matrix 
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and we could rewrite the equation as  

        

Here U functions as a quantum register to store the information in the 

computation process, which is similar to the function of quantum gates. Since 
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measurement collapse superposition states, a quantum register could store the 

information with superposition states. Using U matrix as a quantum register provides a 

possible new technique to simulate and eventually build a quantum computer. This 

equation also corresponds to the U transformation we proposed earlier with a special case 

for N=0. 

The plots of the U matrix and entangled quantum state results are shown in Figure 

45. The entangled quantum states were randomly generated, and the inverse FFT of the 

computation result is really visually intriguing, which shows certain patterns from the 

pseudo randomness.  

 

 

 

Figure 45 U matrix as a quantum register 
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4. THE EXTENDED NOISY COMMUNICATION CHANNEL 

FRAMEWORK  

 

The GNCom approach improved the noisy communication framework by further 

associating quantum electrodynamics to the framework [31, 32].. Finally, GNCom results 

in an enhanced noisy communication channel framework to a broader range.  

 

The extended noisy communication channel framework 

 Our research group initiated the research of communication based modeling [11-

27, 31-33]. We approached systems from an information theoretical perspective and 

proposed a noisy communication channel framework for general system modeling. We 

proposed to model systems by noisy communication channels and analyzed systems by a 

structure of relationships whose elements could commonly be used as analysis tools in 

science and engineering. The formal mechanisms we integrated include: roots of unity, 

special permutations and polynomials, Fourier series, and uniform polygons. The 

framework connected the noisy communication channel with a series of mathematical 

analysis tools including combinational analysis, complex analysis, Chebyshev analysis 

and Fourier analysis, as shown in Figure 46 [11-15]. The noisy communication channel is 

connected to complex analysis through roots of unity and an error content graph. Also, 

the noisy communication channel is connected to combinatorial analysis through 
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permutation. Further, the noisy communication channel is connected to Chebyshev 

analysis through the Chebyshev matrix and polygon geometry. Finally, the noisy 

communication channel is connected to Fourier analysis through Fourier polygon 

representations.  

 

Figure 46 The noisy communication channel framework for general system modeling 

 

The GNCom approach extended the noisy communication channel framework to the 

quantum computing field so that people can use it as a computation tool to model real-

world problems. The extended framework is shown in Figure 47. One implication tool set 

of the GNCom approach was added to the framework: QED.  

Chebyshev 

analysis 

Complex 

analysis 
 

Communication 

channel 

Fourier 

analysis 

Combinatorial 

analysis 



75 

 

 

Figure 47 The extended noisy communication channel framework 

 

QED 

In this section, we will start with the introduction of QED, then Fourier analysis 

of QED, and follow with Amplitwist analysis of QED.  

QED is short for quantum electrodynamics. QED is the quantum field theory of 

electrodynamics. It describes the interaction of light and matter. In particular, the QED 

theory talks about the interaction of photon and electron. Photons and electrons “move” 

from one point to another. Electrons can emit and absorb photons. The QED theory 

calculates the probabilities of this phenomenon happening.  

One of the founders of QED, Richard Feynman, proposed three basic visual 

elements to represent photon, electron, emit and absorb, which are called Feynman 
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diagrams, as shown in Figure 48 [76]. In this figure, a wavy line represents photon; a 

straight line represents electron; and, two straight lines and a wavy line represent a 

photon emission or absorption by an electron.  

 

Figure 48 Feynman diagram for photon and electron 

 

Light partial reflection 

We start explaining QED with a series of light partial reflection experiments. 

Light partial reflection is a very commonly observable phenomenon in our daily life. For 

example, if someone is standing in a room and looking at the view outside through the 

window, he will see the view outside; and, he will also see part of his body image shown 

on the window glass. This is a light partial reflection phenomenon [76].  

Monochromatic Light is emitted from a source to the surface of a block of glass 

as shown in Figure 49. In an experiment, a photon detector was placed at point A above 

the surface to detect the number of photons reflected. Based on the experiment, an 

average of 4% photons were detected at point A, and the other 96% got through.  
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Figure 49 Light partial reflection experiment with one surface 

 

      The experiment also considered the effects on the back surface of the glass block, as 

shown in Figure 50. Logically thinking, we should measure 4% of the photons from the 

front surface and another 4% of the remaining 96% of the photons from the back surface 

at point A. That is approximately 8% of the photons. However, the results were quite 

surprising. The photons measured at point A changed from 0 to a maximum value of 16% 

periodically, as shown in Figure 50. 

 

Figure 50 Light partial reflection experiment with two surfaces 

 

    From Figure 50, we can see the continuous nature of the partial reflection. This 

phenomenon cannot be explained with any other theory but QED [76].  

Probability Amplitude 

Feynman explained the calculation of the probability of photons moving by a 

series of light partial reflection experiments [76].  In an experiment to measure the partial 

A Monochromatic 

light source 

Photons 

Surface 

A Source light 
Photons 

Two 

surfaces 

80 100 120 140 160 180 200 220 240 260 280 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
e
rc

e
n
ta

g
e
 o

f 
re

fl
e
c
ti
o
n

Thickness of glass



78 

 

reflection of light, it was found that only 4% of the photons were reflected by a single 

surface, while the other 96% were transmitted by the front surface. In order to explain 

this feature, more experiments were carried out by adding the number of surfaces and 

changing the thickness of the surface. After repeating these experiments a number of 

times, it was found that the photons reflected by the first surface changes periodically 

from 0 to a maximum value of 16%.  

In order to calculate the probability of the phenomenon, we define the problem as 

follows: Light reflects from two surfaces, and there are two possible routes: one route is 

from the source to point A from the front surface; the other route is from the source to 

point B from the back surface. The probability of reflection can be calculated from the 

two surfaces.  

The resultant probability can be calculated by adding the probabilities of the two 

routes. We use the concept of probability amplitude to do the addition. The probability of 

an event is equal to the square of the length of an arrow representing the probability 

amplitude. We represent each route with an arrow, and the length of the arrow is the 

square root of the probability of the event. For example, in the experiment described in 

section II, the probability of light reflection of a single surface is 4%, and the length of 

the arrow is 0.2, as shown in Figure 51.  

 

Figure 51 Probability representation of arrow length 

4% 0.2 
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A similar rule applies to the second surface. The probability of reflection from the 

second surface is also 4%, and the length of the arrow is 0.2. When adding the two 

arrows, vector algebra is utilized. The resultant probability amplitude arrow of the event 

must be squared to calculate the probability.  

After defining the length of the arrow, one needs to define the direction of the 

arrow. Feynman adopted an external imaginary stopwatch to define the direction of the 

arrow. When the light leaves the source, we start the stopwatch. When it reaches the 

photon detector, we stop the stopwatch. The direction of the arrow will point in the 

direction of the stopwatch hand if the arrow represents a back surface reflection. For the 

front surface, the direction of the arrow will be opposite to that of the stopwatch hand.  

The direction of the arrow is related to the thickness of the reflection surfaces, or, 

more specifically, it reflects the time. See Figure 52 for an example. In this example, the 

two arrows are with a small angle. Based on the law of cosines, the length of the third 

arrow is calculated; thus, we can obtain the final probability by the square of the final 

arrow length. 

 

Figure 52 Partial reflection event and the probability amplitude 

Source Photons 

Glass 

  Probability 
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When vectors are added, the sum of the vectors shows the probability. An 

example of two surfaces in Figure 53 shows how it works. Within the example shown, 

upon adding the two arrows with length 0.2 and making a small angle, the probability 

amplitude of the final product, based on the law of cosines, is calculated as follows: 

√                                     

Thus, the probability is             . 

 

Figure 53 The final probability of photons reflected by two surfaces 

 

Based on the thickness of the glass, the probability change from 0 to maximum 16% 

is shown in Figure 54. When the two arrows are in opposite directions, they cancel out, 

and the final probability amplitude is 0, which results in a probability of 0. When the two 

arrows are in the same direction, the probability amplitude is of the maximum 0.4, which 

results in a probability of 16%. All the other probabilities are the cases between.    
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Figure 54 The probability change based on the thickness of the glass for reflection 

 

All the cases discussed in previous sections are related to two surfaces. But two 

surfaces cannot cover all the cases in the real world. Rather, there can be multiple 

surfaces; also the thickness of the glass can also change. We expand the two surface cases 

to the probability of multiple surfaces.  With expansion of the addition of two vectors, the 

probability of multiple surfaces can be calculated with similar vector algebra, as shown in 

Figure 55. The final probability amplitude can be drawn by connecting the tail of the first 

arrow to the head of the last arrow. These multiple probability amplitudes shed light on 

our research. Importantly, the probability amplitude could be mapped to a complex plane 

and be represented as complex numbers. All the connection points could be mapped to a 

circle, and we could further study this phenomenon with analysis tools like complex 

analysis and Fourier analysis [31-33]. 
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Figure 55 Addition of multiple probability amplitudes 

 

Fourier series and QED 

In this section, we will introduce the connections of Fourier series and QED by 

removing the external stopwatch concept. Instead we integrate space, phase, and time 

domain by introducing an internal “clock” using Fourier series. Let us recall Fourier 

polygons and its noisy communication channel representation. As can be seen intuitively, 

there is a connection between the probability amplitude of QED and the Fourier series 

representation of polygons. Introducing Fourier series to the amplitude probability 

calculation, we could conceptually integrate an internal clock to the event. Note that in 

the Fourier series representation of polygon,  

                                  

The approach to calculate probability amplitude can be analyzed using Fourier 

series polygon representations; that is, each arrow corresponds to a value of the Fourier 

series by introducing the internal clock. Therefore, we can see the analogy of the 

quantum electrodynamics and the communication channel model. More specifically we 

can use the communication channel model to analyze quantum electrodynamics theory 

[31-33].  
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When we apply our approach to the light partial reflection phenomenon, we will 

show that the probability amplitudes can be represented as a noisy communication 

channel. The entanglement of the probability amplitudes is considered as a group of 

communication channels. In detail, we can model the light partial reflection phenomenon 

as Fourier polygons of the noisy communication channel on the complex plane.  

Let us recall the Fourier series equations for the noisy communication channel 

       ∑
         

       

 

    

       

Tuning the parameter of this equation, any probability amplitude can be 

represented as a piece of a Fourier polygon.  

Example 4. The  probability amplitude calculation shown in Figure 56, can be connected 

to the irregular Fourier polygon, which is formed by parts of regular polygons.  

 

Figure 56 Probability amplitudes of 6 surfaces 

 

The probability amplitude corresponds to an irregular Fourier polygon formed by the 

permutation 
   
   

     
  
  

    
  
  

, as shown in Figure 57. 
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Figure 57 Irregular polygon formed by permutation matrix with 7 elements 

 

Following the procedure described earlier, the jump speed is [2 -3 6 -2 -2 3 -4], and it 

turns out to be [2 4 6 5 5 3 3] after mod 7. The irregular polygon is formed by pieces 

from the regular polygons: 

                                                       . 
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The regular polygons and the pieces are shown in Figure 58 with the pieces marked. 

 

    (a)(7,2)                                      (b)(7,4)                                 (c)(7,6) 

 

     (d)(7,5)                                      (e)(7,5)                               (f)(7,3) 

 

                  (g)(7,3) 

Figure 58 Regular polygons used to construct the irregular polygon with 7 vertices 

 

As can be seen from the analysis, the probability amplitude could be directly 

broken into pieces taken out from regular polygons. 
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Probability amplitude representation of noisy communication channel 

As illustrated in Chapter 1, the noisy communication channel could be 

represented as polygons. Each edge of the polygon is part of a communication channel. 

By introducing Fourier series analysis, each edge of the polygon could be represented as 

probability amplitude, and the frequency can be varied. The relationship of Richard 

Feynman’s probability amplitude in green and the communication channel “probability 

amplitude” in red are shown in Figure 59.   

 

Figure 59 Richard Feynman’s probability amplitude and communication channel 

“probability amplitude” 

 

Polygon geometry and probability amplitude 

In this section, we analyze the connection of QED, or probability amplitude and 

Fourier representation of polygons. Let us recall Feynman’s “arrow”—the probability 

amplitude, the connection point of the arrow and the clock, or the “circle” with roots of 

unity or vertices of a Fourier polygon based on our equations. There is a connection 
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between the magnitude of the probability amplitude and the length of the Fourier polygon 

edge. Let us take the regular polygon with 8 vertices for example. Figure 60 shows the 

edges of the regular polygons {
 
 
}  { 

 
}  { 

 
} , which correspond to AB, AC and AD, 

respectively.   

  

Figure 60 Polygon geometry and probability amplitude 

 

Similar to the polygon edge and radius ratio derivation, we can derive the 

relationship of the magnitude of the probability amplitude and the edge length of the 

Fourier polygon. A, B, C, D are equally distributed throughout the circle, and they 

correspond to roots of unity. It is observed that  

  ̂    ̂    ̂  
  

 
 

Triangle OAB is an isosceles triangle, and with E as the middle point of A and B, OM is 

the altitude of triangle AOB, and OM is perpendicular to AB. Thus we have 
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Let us look at right triangle AOM,  

  ̅̅ ̅̅           ̅̅ ̅̅    
 

 
   ̅̅̅̅̅  

 

 
  ̅̅ ̅̅  

Thus, we can obtain 

  ̅̅ ̅̅  
 

 

  ̅̅ ̅̅

   
 
 

 

Applying similar analysis to isosceles triangles OAC and OAD, we have 

  ̅̅ ̅̅  
 

 

  ̅̅ ̅̅

   
  
 

 

  ̅̅ ̅̅  
 

 

  ̅̅ ̅̅

   
  
 

 

Since   ̅̅ ̅̅ ,   ̅̅ ̅̅ , and   ̅̅ ̅̅  correspond to the edges of the regular polygon {
 
 }  in the case of 

n=8, q=1, 2, 3 in the example, let us use    to replace   ̅̅ ̅̅ ,   ̅̅ ̅̅ , and   ̅̅ ̅̅ , and we can have a 

universal equation 

  ̅̅ ̅̅  
 

 

  

   
  
 

 

Since   ̅̅ ̅̅  is the magnitude of probability amplitude, we substitute it with |  |, and we 

have 

|  |  
 

 

  

   
  
 

 

Applying complex analysis, we can represent the probability amplitude on a complex 

plane, 

  ⃑⃑⃑⃑  ⃑  
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Tuning the parameters of the proposed Fourier polygon equation, we can obtain 

any regular polygon and thus we can represent all the probability amplitudes. In this 

example, by further applying the amplitwist concept, we can obtain the complex 

expression of all probability amplitudes by twisting the angle of 
  

 
 with the same 

magnitude from the previous probability amplitude. More specifically here,    ⃑⃑ ⃑⃑  ⃑  

  ⃑⃑⃑⃑  ⃑  
  

 ,   ⃑⃑⃑⃑  ⃑    ⃑⃑ ⃑⃑  ⃑  
  

 , … 

 

Amplitwist analysis of QED 

Let us recall the Amplitwist concept, Feynman’s probability amplitude, and the 

imaginary stopwatch. In fact the imaginary clock Feynman adopted was a phaser.  Let us 

look at the multiple probability amplitudes example first and then apply amplitwist 

analysis to it. We can map all the probability amplitudes into a complex plane, and arrow 

1 and arrow 2 are mapped as an example, as shown in Figure 61. If we can discover the 

magnitude difference, or the amplification of arrow 1 and arrow 2, and the phase 

difference of arrow 1 and arrow 2, we can obtain an expression of the arrows by applying 

the amplitwist concept.   
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Figure 61 Amplitwist and multiple probability amplitudes 

 

Let us extend amplitwist to more arrows, as shown in Figure 62. It is easy to 

calculate every arrow based on the amplification and rotation.  

 

Figure 62 Amplitwist example with multiple vectors 
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As we explained in the previous section on the close relationship of probability 

amplitude and Fourier polygon geometry, we can easily model the behavior of 

probability amplitude by combining amplitwist analysis. An example is shown in Figure 

63.  

 

Figure 63 Amplitwist analysis of QED 

 

As Feynman defined, the direction of the arrow was determined by an imaginary 

stopwatch. The frequency of the quantum clock rotation is 

  
 

 
 

   

 
 

where h is the quantum of action called Planck constant, and L is called the Lagrangian. 

For single-particle moves at non-relativistic speeds, the Lagrangian is the difference 

between the Kinetic energy K and the potential energy U [76].   

We consider a free particle with potential energy     and     
 

 
   ; thus, 

the rate of arrow rotation is  
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Assume the length of the glass is d, and the wavelength of the light used in the 

experiment is λ. Over a time t, the photon goes through the first surface, incident to the 

second surface and bounce back to the first surface. During this period, the rotation of the 

arrow is the difference of the phase change between the first arrow and second arrow; the 

number of rotations can be represented as, 

  
   

  
  

On the other hand, the number of rotations can be represented as 
  

 
; thus, we have 

  
   

  
  

  

 
 

Solving this equation, we have  

  
   

    
 

So the rotation angle is  

       
   

 
 

We demonstrated by example that by applying the polygon geometry, we can 

represent the probability amplitude. Further applying amplitwist, we can obtain the 

compute the next probability amplitude. 

 

Generalized noisy communication channel approach for QED analysis 

In this section, we summarize the connection between QED and the noisy 

communication channel based on the analysis in the previous sections. The relationship 

between the noisy communication channel, probability amplitudes and polygons are 

shown in Figure 64. The connection lies in the following aspects: 1) Shannon’s 
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representation of the noisy communication channel could be represented as polygons; 2) 

there is a geometry connection of the probability amplitudes and polygons; 3) the 

probability amplitude expression in a complex plane could be mathematically represented 

by the edges of the Fourier polygon; 4) applying Fourier analysis, the noisy 

communication channel could be represented as probability amplitudes.   

As illustrated in Appendix B, the noisy communication channel has been modeled 

with common tool sets: combinatorial analysis in terms of permutation, Fourier analysis 

in terms of Fourier series, and complex analysis in terms of error content graph. Analysis 

of QED with Fourier series has been illustrated in the previous sections. It is observable 

that we can apply combinatorial analysis and complex analysis to the QED. Furthermore, 

Fourier series representation of each “arrow” incorporates Feynman clock.  
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Figure 64 Relationship of probability amplitude and communication channel 

 

QED and quantum computing 

In addition, QED could be considered as a mechanism for quantum computing. 

As shown in Figure 56, each arrow in the multiple probability amplitude diagram can be 

studied as a quantum state in the form  

| ⟩    | ⟩   | ⟩ 

The multiple probability amplitude diagram can be studied as entangled quantum states in 

the form 
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 ⟩  ∑   | ⟩ 

    

   

 

∑ |  |   

    

   

 

 

Quantum computer design technique based on QED and Quantum Fourier Series 

Even though quantum computer design is still at its infancy, researchers are 

mimicking the classical computer design technique starting from quantum gates [52, 53]. 

In this dissertation, we propose a quantum computer design technique inspired from our 

communication channel model. Let us recall the Fourier polygons and the entangled 

multiple probability amplitude shown in Figure 65. By introducing Fourier series to the 

communication channel, we proposed the U matrix and related transforms. Any polygons 

could be represented as noisy communication channel with the GNCom approach.  

In terms of quantum computing, the entangled quantum states could be 

represented with the noisy communication channel based on the GNCom approach; also 

the proposed U matrix could further be utilized as a quantum register to store quantum 

information in quantum computing process as illustrated in chapter 3.  
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(a) Fourier polygons 

 

(b) Multiple entangled states 

Figure 65 Fourier polygons and multiple probability amplitudes 

 

The generalized noisy communication model approach provides an approach for 

quantum computing. Based on the approach, we further proposed a quantum computer 

design technique from the example of light partial reflection. We enhanced the noisy 

communication channel framework by connecting QED to the framework and applying 

new techniques like amplitwist and eigenvalues of Chebyshev matrix. The probability 

amplitude or the quantum state could be modeled by the polygon geometry, the polygon 

edge and circle radius ratio or the eigenvalues of Chebyshev matrix.Based on the 

generalized noisy communication model, we hypothesize that a quantum computer can be 

designed by shining light through multiple-layer glass or crystal materials if controlling 

the reflection coefficient is possible, as shown in Figure 66. Quantum computing can be 

done by masking or etching the material based on the communication channel model. Our 

future research will further investigate this technique.  
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Figure 66 Paths of reflecting light 
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5. CONCLUSIONS 

 

In this dissertation, we developed a generalized noisy communication channel 

approach and developed the noisy communication representation for quantum computing 

based on the GNCom approach. The GNCom improved the noisy communication 

channel framework by connecting QED analysis. Ultimately, the dissertation provides a 

computation tool for study purposes that can be used as a steping stone for further 

research. It is also useful for education and interdisciplinary research purposes because it 

connects practical and complex concepts from multiple disciplines. 

 

Future research 

The U transform and Zeta transform we proposed show potential advantages 

visually, and we carried out preliminary experiments to apply the transforms to textbook 

engineering problems. The results were visually compared with Fast Fourier Transform. 

The U transform seemed to show more symmetry than FFT, but practical applications 

still needs to be further explored. 

 

Engineering application of the transform 

Fast Fourier Transform is very popular in engineering applications. One example 

of it is signal filtering. If we mix a couple of signals with different frequencies, FFT can 

successfully separate the frequencies, and the original signal with different frequencies 
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can be successfully restored by inverse FFT. Here we are going to show a signal filtering 

example with U transform and Zeta transform, then compare the results with FFT. 

The original signal is a harmonic signal: S=sin(t)+sin(2t)+sin(2.5t). The signal 

and the corresponding FFT, U transform, and Zeta transform results in the frequency 

domain, are shown in Figure 67. 

 

 

 

Figure 67 Harmonic signal and FFT, U transform, Zeta transform signal in the frequency 

domain 

 

 Another experiment was also carried out using a damping signal, and the results 

are shown in Figure 68. Due to the large computation cost of the Zeta transform, the Zeta 

transform result is not shown here.  
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Figure 68 Damping signal and FFT, U transform in the frequency domain 

 

Information content 

Usually information is measured by entropy [35]. When applying our algorithm to 

the noisy communication channel, we can explain how much information a system has by 

observation. Here is how it works: observe the polygons; check the size of the circle in 

the middle. The smaller the circle is, the larger information it contains.   

As shown in Table 7, Table 8, and Table 11, the information content shows 

periodicity if we look at the y axis direction of the table. If we look at the x axis of the 

table, we can tell that the information is getting smaller with the increase of N. This 
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phenomenon also matches a quantum level example: atomic model [16]. In the future, we 

will study in our research group further grouping of the U matrix and information content.  

Table 11 Information content 
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APPENDIX 

 

Appendix A:  Math Background 

In this chapter, various math tools are introduced to provide a foundation for the 

quantum modeling and framework. Each of the math topics covered can be written in 

several books. Only brief and necessary math for understanding this dissertation is 

introduced here.  

Basically five categories of math are introduced: complex numbers and function, 

permutation matrix, Fourier matrix, Pauli matrix and Riemann zeta function. Only 

exponential form and roots of unity of complex numbers are introduced. The definition of 

permutation matrix is given, and a special forward shift permutation matrix and the 

relation of roots of unity are investigated. Fourier matrix and Riemann zeta function are 

quickly reviewed.  

 

Complex numbers 

Polar forms of complex numbers powers and roots 

The complex numbers in the complex plane with xy-coordinates could be further 

extended to polar form with polar coordinates r, θ, which is defined by 

                         

Thus polar form of        is 
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r is called the absolute value or modulus of z and is denoted by | |.  

| |    √      √  ̅ 

θ is called the argument of z and is denoted by arg z. 

            
 

 
 

 

The polar form of a complex number in the complex plane is shown in Figure 69. 

 

 

 

 

 

 

Figure 69 Polar form of a complex number in the complex plane. 

 

Multiplication and Division in Polar form 

Given                      and                     , multiply    and    

yields  

                                   

Taking absolute values on both sides, we obtain 

|    |  |  ||  | 

and 

                       

 

θ 

 

      

  

  



109 

 

Let  
  

  
 . Hence |   |  | ||  |  |  |,                           , which 

yields 

|
  

  
|  

|  |

|  |
 

and 

   (
  

  
)              

  

  
 

  
  

                          

 

Integer powers: De Moivre’s formula 

Let        , for          , 

                     

This could be proven by induction. Similarly, with      and      , for   

       , for | |     , we obtain De Moivre’s formula 

                             

 

Roots 

For a given    , there exists precisely n distinct values of w, which satisfy   

            . Each of these values is called an nth root of z, and   √ 
 

. w has n 

values. The values can be obtained in polar forms as 

                    and                       

The equation      becomes 

                                      . 
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Solving the equation, we obtain 

  √ 
 

, and   
 

 
 

   

 
,                . 

Finally the n values of √ 
 

 is 

√ 
 

 √ 
 

    
     

 
    

     

 
 ,                  

These n values are distributed in a circle of radius √ 
 

 with a 

 center at the origin, which form a regular polygon of n sides. For a special case z=1, we 

have | |                    

√ 
 

     
   

 
    

   

 
 ,                 

These n values are called the roots of unity. They are equally distributed in the circle with 

a radius of 1 and a center of 0, and they are called the unit circle. Figure 70 shows the 

roots of unity of           
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Figure 70 Roots of unity for           

 

Exponential form 

The exponential function   is defined in terms of   ,     , and     , 

                   

For     , we have  
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               , 

which is also called the Euler formula.  

Thus, the polar form of a complex number,                 , can also be written as  

       

 

Amplitwist 

The term amplitwist comes from Tristan Needhan. The idea is that a complex-valued 

function is differentiable at a point where it has an “amplitwist” there. The amplitwist is a 

combination of amplification and twisting, or rotation. The “amplification” is the 

expansion factor, and the “twist” is the angle of rotation. Under this definition, the 

derivative of f or the amplitwist of f,      , may be thought of locally as a linear 

transformation: 

                               

                          

 |     |     [     ] 

 

Complex function 

For a complex function, both the independent and dependent variables are both complex 

numbers. A complex function’s range is in the complex numbers. 

A complex function can be written as 
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where                         are real value functions. It is difficult to graph a 

complex function, since there are 2 dimensions for the range and 2 dimensions for the 

domain, creating a total of 4 dimensions.  

 

Complex logarithm 

A complex logarithm is the inverse of a complex exponential function. The logarithm of 

a complex number z is defined as every complex number   that satisfies the equation 

      

Recalling the exponential form of complex numbers, we have 

         

where   | |           ; solving the equation, we have 

         | |        . 

Here   | | is the natural logarithm of the real number | |. Note that the logarithm of 

complex function is multivalued. If        , we can write 

       | |                          

The values with n=0 are called the principal values of the logarithm.  

 

Permutation matrices 

For a set   {       }, there exists    distinct permutations of N, including the 

identity permutation. Given a permutation σ of set N, 

  {       }  {       }, 

which can be written in two-line form 
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{
    

         
     

 
    }. 

The permutation matrix is the     matrix    whose entries are all 0 except that, in row 

I, the entry      is 1. Therefore, every row and column contain precisely a single 1 with 

0’s everywhere else.  

Example 5. 

  (
   
   

    
 
 
)  ,    (

   
   

    
 
 

   
   

    
 
 

) 

A permutation matrix is non-singular, and the determinant is always   . Given a 

permutation matrix   and its transpose   , the following equation holds,  

     , where   is the identity matrix. 

 

Forward shift permutation matrix 

Permutation                                  generates a forward shift 

permutation matrix 

  (

   
   
⋮ ⋮ ⋮

    
   
   
⋮  ⋮

          

). 

Thus, we have  

   (

   
   
⋮ ⋮ ⋮

    
   
   
⋮  ⋮

          

) 

Similarly for    and   , the matrix    corresponds to      so that     . 
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Permutation matrix and roots of unity 

Let      indicate an     permutation matrix,   could be factored to a product of 

disjoint cycles. Suppose that the length of the cycles in the product are             and 

the sum of            is  . By properly arranging the rows and columns, the cycles in 

   can only contain contiguous indices with successive integers. Let    
 designate as the 

  matrix of order   , the characteristic polynomial of     
 is 

              

The eigenvalues of the permutation matrix   are the roots of unity of all the roots of the 

m equations: 

     ,           

Example 

   

(

  
 

   
   
   

    
   
   
   

   
   
   

    
   
   
   )

  
 

 

  is the permutation of 1,2,3,4,5,6, and                             

              .  

  can be cycled as               . Thus, m=3, p1=3, p2=1, p3=2. The eigenvalues of 

   are the roots of                  . 

If the factorization of a permutation   consists of one cycle of full length n, the 

permutation is called primitive. The eigenvalues of a primitive permutation matrix are the 

nth root of unity.   
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Fourier matrices 

The Fourier matrix is defined as  

   
 

√ 

(

 
 

                                                                
                                                         

                                                       

             ⋮               ⋮                             ⋮           
                                               )

 
 

; 

w could be roots of unity, where      (
   

 
)     

  

 
    

  

 
. Since the sequence 

            is periodic,    can be rewritten as  

   
 

√ 

(

 
 

                                                   
                                            

                                           

              ⋮               ⋮                    ⋮      
                                           )

 
 

 

We can tell that    is a complex symmetric matrix, and its transpose is the same as it is. 

Some important characteristics of the Fourier matrix are: 

1) The Fourier matrix is a unitary matrix, which means that the inverse is the adjoint.  

2) The Fourier matrix plays a role in the theory of circulants, which also behaves 

like a shift register. Every row vector is shifted one element to the right with 

respect to the previous row vector.  

3) The columns of the Fourier matrix are eigenvectors of the circulant matrix of the 

same size. 

4) The multiplication of the Fourier matrix by the first row of the circulant matrix 

gives the eigenvalues corresponding to the eigenvectors of the circulant matrix.  

The Fourier Matrix is a concept related to the roots of unity. The Fourier Matrix is a 

matrix organization of the Discrete Fourier Transform. Its structure for     size 
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consists of n roots of unity arranged in different orders in every row or column of the 

matrix. The example below shows a      Fourier matrix. 


































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The Fourier Matrix generates regular polygons, as shown in Figure 71. For the proper 

choice of points from the Fourier Matrix, any polygon can be drawn. 

 

 

Figure 71. Regular polygon generated by 7x7 Fourier Matrix. 

 

Discrete Fourier transform 

In a complex n-tuples Z and   ̂,                ,   and  ̂     ̂   ̂     ̂  . 

The linear transformation  ̂     is known as the discrete Fourier transform, where F is 

the Fourier matrix. The inverse is given by     ̂    ̂  . The transform is called 

harmonic analysis or periodogram analysis, and the inverse transform is called harmonic 

synthesis.  
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Example 6.                      is a polynomial. The polynomial is 

determined by n distinct points              in the complex plane. Choose    as the 

n roots of unity              . Then we have  

√  (

  

  

⋮
    

)  (

    

    
⋮

       

) 

The passage from coefficient values to functional values “synthesized” the function value. 

Based on this equation, we also have  

(

  

  

⋮
    

)  
 

√ 
 (

    

    
⋮

       

) 

This passage from functional values to coefficients is an analysis of the function.  

 

Pauli matrices 

Matrices  

   (
  
  

),  

   (
   
  

),  

   (
  
   

) 

are called Pauli matrices. The Pauli matrices and the unit matrix   (
  
  

) can be used 

to form     matrices. For any     matrix 

  (
      

      
) 

There exists complex numbers             such that 
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with 

   
 

 
           

   
 

 
           

     
 

 
           

   
 

 
          

For a given matrix  

                    , 

if   
    

    
    

   , then M has an inverse, which is 

    
 

   
    

    
    

                     . 

 

Riemann zeta function 

The Riemann zeta function is an important special function of mathematics and 

physics, which is denoted by Riemann in his 1859 paper. The Riemann zeta function is 

defined over the complex plane for one complex variable. The Riemann zeta function ζ(s) 

is a function of complex variables that analytically continues the sum of the infinite series 

∑
 

  
 
    , which converges when the real part of s is greater than 1. It is implemented in 

Matlab as function zeta and also implemented in Mathematica as Zeta. 

The Riemann zeta function      is a function of a complex number       .      is 

defined as  
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     ∑
 

  

 

   

 
 

  
 

 

  
 

 

  
                            

The infinite series converge for all complex numbers s with real parts greater than 1.  

Euler product formula 

Euler discovered the connection between zeta function and prime numbers. Euler proved 

the identity 

∑
 

  

 

   

 ∏
 

     

       

 

The left-hand side is     , and the right-hand side is extended to all the prime numbers. 

The expression is called Euler products: 

∏
 

     

      

 
 

     
 

 

     
 

 

     
 

 

     
 

 

      
 

 

     
  

The converge condition (        ) holds on both sides.  

 

Chebyshev polynomial 

By applying the identity of cosines 

                           

we have 

   (      )                      

We could rewrite the equation for any non-negative integer n and   , such that 

        ∑       
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This equation indicates that         is a polynomial in     . The nth Chebyshev 

polynomial for fixed n is defined as 

               

Let          , this results in 

                    

We could easily obtain the polynomial up to degree n. Let us start by n=0, 

               

                     

                                             

Then, when we apply the recursive property of the Chebyshev polynomial [44], we have 

                        

Thus, 

                                       

As we continue on, the Chebyshev polynomial up to degree 10 is shown in Table 12: 

Table 12 Chebyshev polynomial of degree 10 

      1 
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We could also derive the Chebyshev polynomial of the second kind, which we 

will use in our analysis. If we differentiate              in terms of x, 

we have  

  
     

      

    
 

The general form of the Chebyshev polynomial of the second kind with degree p is [45] 

      
         

    
 

The Chebyshev polynomial of the second kind up to degree 10 is shown in Table 13. 

Table 13 Chebyshev polynomial of the second kind up to degree 10 

      1 

         

            

             

                  

                   

                       

                          

                               

                                   

                                           

 

Multivalued logic 

For a classical, two-valued logic as shown in Figure 72, R and ᴚ represent truth 

and falsehood, respectively. The arrow indicates the results of the inversion. The truth 

value is flipped upside down. Truth turns to falsehood, and falsehood turns to truth. If we 

flip truth twice, it will get back to the original setting, which is also called double 

negation.  
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Figure 72 Classical two-valued logic 

 

If we consider the possibility of adding a third truth value, ‘I’ for intermediate or 

indeterminate state, the representation can be illustrated, as shown in Figure 73. Since 

there are three values, the structure rotates 120 degrees, and it will take three negations to 

get back to the original settings. 

 

Figure 73 Three-valued logic 

 

We can extend the examples to a general case. For any number n of distinct truth 

values            , we can imagine a corresponding regular polygon representation as 

the result of a rotation of 360/n degrees, as shown in Figure 74. Here the negation of each 

value is the next clockwise value, and, since the polygon is closed, the negation of the 

last value    will return to the initial value   .  
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Figure 74 N-valued logic 
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Appendix B: The Noisy Communication Channel Framework 

 

Communication channel representations 

There are different representations of the communication channel, and this section briefly 

reviews the communication channel representation.  

 

Communication error probability representation 

Shannon represents a noisy communication channel with its communication error 

probabilities, as shown in Figure 75. In this representation, the arrow indicates the 

transmission from the sender to the receiver with certain probability. If there are no 

arrows between two symbols, then there is no possibility that the source symbol can be 

received as a sink symbol.  

 

Figure 75 Communication error representation of noisy communication channel 

 

Note that the sum of the probabilities from the same source symbol is 1. For example, 

         . The representation could be easily written in matrix format as  

𝑃𝑎𝑎  

𝑃𝑒𝑒 

a 

b 

c 

d 

e 

A 

B 

C 

D 

E 
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Error content graph representation 

Error Content Graphs are another common approach of representing the 

communication channel. Graphs of this type provide a visual representation of the 

transmitter-receiver connections specified by the communication error probability 

representation. This type of representation makes it easy to immediately estimate the 

capacity of the channel. The area in the middle of the graph corresponds to the capacity 

of the channel. The capacity of the channel is bigger if no lines cut close to the center of 

the circle, i.e. when there are no connections between symbols that are far from each 

other.  

By observing Figure 5, we can see that the error pairs of the symbols are aB, bC, 

cD, dE, and eA, which produces the error content graph shown in Figure 6.  

We can see that communication channel can be represented by polygons, regular 

polygon in this case. As described earlier cases of irregular polygons also exist. 
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 gives an example of a communication channel and its corresponding irregular polygon.  

Stability number representation 

From Figure 6, we can tell that the adjacent vertices of the graph are only those 

signals can be confused at the receiver. For example, a can be confused as b as shown in 

Figure 6, so a and b are adjacent vertices in the graph.  

A stable set of G is a subset of vertices with no edge between any two of them. 

For example, a and b are not a stable set of graph in Figure 76, since there is an edge 

between them; a and c, or a and d, or b and d etc are stable sets. Given a set S, the 

neighborhood of S is T(S), if T(s)∩S=Φ, S is stable. Take a and c for example, the 

neighbors  of a are e and b, the neighbors of c are b and d; the neighborhood set T(S) is 

{b, d, e}, obviously T(s)∩S={b, d, e}∩{a, c}=Φ, so a and c is a stable set. 

Stability number is not a commonly used term in English graph theory. Stability 

number, or independent number is the number of vertices in the largest totally 

disconnected sub-graph of a graph, or is the maximum cardinality (the count) of a stable 

set. The Stability number for the communication channel can be also seen as the count of 

the largest set of vertices in its error content graph with no two vertices are connected. 

There could be many stable sets of a graph, some of which with the same stability 
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number. For the graph in Figure 6, the stability number α(G)=2 which is equal to clique 

number θ(G), this is a perfect graph. For the graph in Figure 7, the stability number is 3. 

The example state sets of regular and irregular polygons are shown is Figure 76.  

 

Figure 76 Example state sets of the error content graph representations 

 

Permutation matrix representation 

Similar to the communication error probability matrix form, a communication channel 

can also be represented by permutation matrix.  The permutation matrix representation of 

the communication channels in Figure 6 is 

                

The permutation matrix representation of the communication channel in Figure 76 is  

                        

which could be also written in the form 
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These symbols are used to specify a particular location in the grid of the matrix. In case 

of communication channel, 1s can specify the location of particular code words in the 

code space. These representations are very useful in observing the separation between the 

code words. The symbols in adjacent rows are likely to be confused. The communication 

channel has higher capacity if the adjacent symbols are far from each other. 

Roots of unity representation 

Roots of unity can also be used to represent the communication channel. For the 

communication channel with n symbols, nth roots of unity are used to specify n equally 

spaced points on the unit circle. These n equally spaced points represent n symbols. The 

connections, which are specified by the transmitter-receiver misinterpretation 

possibilities in the channel, are then drawn between the points within the unit circle to 

obtain the Error Content Graph. For the 7-symbol Communication Channel shown in 

Figure 76, the coordinates of 7 symbols on the unit circle are 
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The 7 roots of unity on the unit circle are shown in Figure 77, with the connections 

between the adjacent points. This arrangement of connections also forms a perfect 

communication channel (with the highest capacity) for set of 7 source symbols. 
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Figure 77 Roots of unity of a 7 symbol communication channel 

 

Fourier matrix representation 

As discussed in chapter 1, Fourier matrix generates regular polygons and irregular 

polygons. For the proper choice of points from the Fourier matrix, any polygon or any 

error content graph for the communication channel can be drawn. 

The choices of points from the Fourier matrix, which are to be used for generating 

error contents graphs, are specified by permutation matrix representation of the particular 

communication channel. The points from the second row or column of the matrix table 

are mapped around the unit circle according to the permutation matrix specification. The 

error content graph for the 7 symbol communication channel given in Figure 76 can be 

generated as follows: 
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Modeling and Analysis of Noisy Communication Channels 

As illustrated in the previous sections, one can see that there exists connections 

among complex numbers, combinatorial theory, Fourier series, graph theory and 

communication channel. A noisy communication channel framework has been proposed 

to model systems in general with four analysis tools: complex analysis, combinatorial 

analysis, Chebyshev analysis and Fourier analysis [11,22].  

The work can be concluded in Figure 78. The noisy communication channel 

framework is connected to complex analysis with roots of unity. The framework is 

connected to combinatorial analysis with permutation matrix. The framework is 

connected to Fourier analysis with polygons, which has been illustrated in detail in 

chapter 2. The framework is connected to Chebyshev analysis with Chbyshev polynomial.  

 

Figure 78 The communication channel framework and its connections to common 

analysis 
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Appendix C: More results of U matrix 

Now let’s show the example of n=7 and q=2. The results of changing p from 1 to 10 are 

shown in Table 14. 

Table 14 p changes from 1 to 9 for n=7 and q=2 

q=1 q=2 q =3 

   

q=4 q=5 q =6 

   

q=7 q=8 q =9 
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Table 15 U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,14,17,20 L=3,6,9,12,15,18,21 
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The inverse Fourier transform of the U matrix is shown in Table 16. 
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Table 16 Inverse Fourier transform of U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,11,14,17,20 L=3,6,9,12,15,18,21 
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If we draw the each row of the U matrix, we obtain the result as shown in Figure 

79, which responds to the atomic orbital.  

 

Figure 79 Row drawing of        

 

Now let’s show the example of n=7 and q=3. The results of changing p from 1 to 10 are 

shown in Table 17. 
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Table 17 p changes from 1 to 10 for n=7 and q=3 

q=1 q=2 q =3 

   

q=4 q=5 q =6 

   

q=7 q=8 q =9 
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Table 18 U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,14,17,20 L=3,6,9,12,15,18,21 
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Table 19 Inverse Fourier transform of U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,11,14,17,20 L=3,6,9,12,15,18,21 
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Figure 80 Row drawing of        

 

Now let’s show the example of n=7 and q=4. The results of changing p from 1 to 10 are 

shown in Table 20. 

Table 20 p changes from 1 to 10 for n=7 and q=4 

q=1 q=2 q =3 
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q=7 q=8 q =9 

   

 

  

 

Table 21 U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,14,17,20 L=3,6,9,12,15,18,21 
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Table 22 Inverse Fourier transform of U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,11,14,17,20 L=3,6,9,12,15,18,21 
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Figure 81 Row drawing of        

 

Now let us show the example of n=7 and q=5. The results of changing p from 1 to 

10 are shown in Table 23. 
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Table 23 p changes from 1 to 10 for n=7 and q=5 

q=1 q=2 q =3 

   

q=4 q=5 q =6 

   

q=7 q=8 q =9 
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Table 24 U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,14,17,20 L=3,6,9,12,15,18,21 
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Table 25 Inverse Fourier transform of U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,11,14,17,20 L=3,6,9,12,15,18,21 
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Figure 82 Row drawing of        

 

Now let’s show the example of n=7 and q=6. The results of changing p from 1 to 10 are 

shown in Table 26. 

Table 26 p changes from 1 to 10 for n=7 and q=6 

q=1 q=2 q =3 
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Table 27 U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,14,17,20 L=3,6,9,12,15,18,21 
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Table 28 Inverse Fourier transform of U matrix changes as row number increases 

L=1,4,7,10,13,16,19 L=2,5,8,11,14,17,20 L=3,6,9,12,15,18,21 

   

   

   

   

   

0 1 2

x 10
-4

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10
-5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
-4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 10
-4

-3 -2 -1 0 1 2 3

x 10
-4

-3

-2

-1

0

1

2

3

x 10
-4

-3 -2 -1 0 1 2 3

x 10
-4

-3

-2

-1

0

1

2

3

x 10
-4

-4 -3 -2 -1 0 1 2 3 4

x 10
-4

-4

-3

-2

-1

0

1

2

3

4

x 10
-4

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-4

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 10
-4

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

-1 -0.5 0 0.5 1

x 10
-3

-1

-0.5

0

0.5

1

x 10
-3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 10
-3

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06



154 

 

   

   

 

 

Figure 83 Row drawing of        
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