
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2006

A Framework For Improving Tractability In Software Development A Framework For Improving Tractability In Software Development

Sambit Patnaik
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Patnaik, Sambit, "A Framework For Improving Tractability In Software Development" (2006). All ETDs from
UAB. 3629.
https://digitalcommons.library.uab.edu/etd-collection/3629

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/3629?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

A FRAMEWORK FOR IMPROVING TRACTABILITY IN SOFTWARE

DEVELOPMENT

by

SAMBIT PATNAIK

MURAT M. TANIK, COMMITTEE CHAIR

GARY J. GRIMES

MURAT N. TANJU

A THESIS

Submitted to the graduate faculty of The University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Master of Science

BIRMINGHAM, ALABAMA

2006

A FRAMEWORK FOR IMPROVING TRACTABILTY IN SOFTWARE
DEVELOPMENT

SAMBIT PATNAIK

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

ABSTRACT

Present software development methodologies suffer from a common disadvantage

that they do not allow seamlessly mapping the final implementations to the originating

requirements. Most of the advances made in this area have been in the form of policy

rather than processes and framework which support that kind of tractability. New

software environments constituting component-based software promise to change the

present picture.

Web services and semantic web are upcoming technologies. Their popular use in

the software industry is inevitable, dependent only upon how fast they mature into

reliable technologies. Web services evolved from component software technology which

is based upon the concept of software reusability. Reusability of functionalities has been

in existence since object oriented programming came into being. Semantic web

technology on the other hand is an aggregation of various technologies and is a concept

which is being implemented in different ways by different research groups. The common

ground of most of these groups is representative data formats like XML and rule engines

which would be able to act automatically on the data.

Since the aforementioned technologies are new, they haven’t been used in

collaboration to develop a software environment. The objective of my research is to build

such a framework which makes uses of web services and semantic web and to deal with

 ii

some of the problems associated with software development most markedly the

intractability of requirements.

iii

DEDICATION

I dedicate this thesis to Dr. Tanik for his insight into web services which motivated me to

think in those directions. I am thankful to my brother for continuously educating me

about various J2EE technologies.

iv

TABLE OF CONTENTS

Page

ABSTRACT.. ii

DEDICATION... iv

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS.. ix

CHAPTER

1. INTRODUCTION: THE AIM OF THE RESEARCH...1

2. PROBLEMS IN THE CURRENT SOFTWARE DEVELOPMENT

SCENARIO...4

2.1. Software Development Methodologies...4
2.1.1. Waterfall Model ...4
2.1.2. Iterative models..5
2.1.3. Rapid Application Development..7
2.1.4. Cleanroom..9

2.2. Problems in Software Development ...10

3. A BACKGROUND OF SOA: WEB SERVICES ..13

3.1 Web Services Technologies...15
3.1.1. SOAP Messages...15
3.1.2. UDDI..16
3.1.3. WSDL ..17

3.2 Software Development Using SOA...18

4. SEMANTIC WEB AND ITS TECHNOLOGIES ..19

 4.1 The Semantic Web...19

v

4.2 Progresses in Semantic Web..22

4.3. Semantic Web Technologies...23

4.3.1. Resource Definition Framework..23
4.3.2. Web Ontology Language ...26
4.3.3. Jena Inference Engine ..27
4.3.4. Jess Rule Engine ..28

 5. CASE STUDY: A PROPOSED FRAMEWORK - SOA, SEMANTIC WEB,
 AND RULE ENGINES ...30

 5.1. Implementing software components using web services...............................30
5.1.1 Authenticator component..32
5.1.2 Search Component ..34
5.1.3 Database component ...37
5.1.4 Logging Component ...41

5.2. Implementing Service Registries and Inference Engines for Locating
Services ..42

5.3. Integration of the Layers: Service Integration Using the Intelligent
 Framework ...47

5.4. Software Development Problems Solved by the Proposed Framework53

6. CONCEPTS IN IMPROVISATION OF A SERVICE BASED
ENVIRONMENT ..57

6.1 Dynamically Defined Systems...58

6.2 Services Clusters..58

6.3 Service Gradation...59

7. UNIQUENESS OF THE APPROACH: A BRIEF COMPARISON.....................62

8. CONCLUSION..65

LIST OF REFERENCES...68

vi

APPENDIX

A. AUTHENTICATION USING CERTIFICATES AND PROXIES.........................70

B. FRAMEWORK PSEUDO CODE ...73

vii

LIST OF FIGURES

Figure Page

1. Traditional software development vs. RAD ..7

2. The find-bind-execute paradigm..15

3. The semantic web layers as described by Tim Berners-Lee..22

4. An example RDF document...25

5. The authentication system of the framework...33

6. The example WSDL for the search component...36

7. SOAP with attachments ...39

8. Sample Java code to create RDF model ..46

9. The RDF model of a web service ..47

10. The high level block architecture of the framework..49

11. The sequence diagram for the framework ...51

viii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

CA Certificate Authority

CORBA Common Object Request Broker Architecture

CRL Certificate Revocation List

DAML DARPA Agent Markup Language

DIME Direct Internet Message Encapsulation

DOM Document Object Model

DTD Document Type Definition

EJB Enterprise Java Beans

FIPA Foundation for Intelligent Physical Agents

HTML Hyper Text Markup Language

HTTP Hyper-Text Transfer Protocol

J2EE Java 2 Enterprise Edition

JAXP Java API for XML Processing

JDBC Java Database Connectivity

JMS Java Message Service

JMX Java Management Extensions

JSP Java Server Pages

ix

LDAP Lightweight Directory Access Protocol

MIME Multipurpose Internet Mail Extensions

OASIS Organization for the Advancement of Structured Information
Standards

RAD Rapid Application Design

RDBMS Relational Database Management Service

RDF Resource Description Framework

RDFS RDF Schema

RDQL RDF Query Language

RUP Rational Unified Process

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSO Single Sign On

UDDI Universal Description, Discovery, and Integration

UI User Interface

URI Uniform Resource Identifier

W3C World-Wide Web Consortium

WMI Windows Management Instrumentation

WSDL Web Services Description Language

XDB XML Database

XML Extensible Markup Language

x

1

CHAPTER 1

INTRODUCTION: THE AIM OF THE RESEARCH

The primary aim of the research is to examine some of the problems faced in the

development of commercial software, in particular, the problems faced by the technical

team in mapping the user requirements to the software architecture, the architecture to

low level design, and the design to the final implementation in the form of software

modules.

In present day software development practice, there are various aspects of user

requirements that are unaccounted for as one moves from the requirement stage to the

end of the development phase. Each of these phases is loosely coupled to the other; hence

there is considerable effort spent on connecting the initial requirements with the final

implementations in the intermediate phases. During each of the intermediate phases, the

development group spends a considerable amount of effort in analyzing the work product

that was created as a result of that particular phase and in verifying whether the product

satisfies the specifications that were laid out in the previous phase. For example, during

the development phase, the code reviews and unit test cases verify the correctness of the

code with respect to the previous phase’s specification, i.e., the design solution.

Similarly, in the design phase, the design team analyzes how well their design conforms

to the architecture laid out by the architect and if any aspect has been overlooked. The

system architects in the architecture phase attempt to capture each functional

specification in their model and examine in detail all the functional specifications so that

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

2

none of it is left out or misinterpreted. This kind of verification, which is present in

almost all of the phases of software development and comprises an entire software

development phase by itself (system testing and user testing, which on an average

account for approximately 30% of the total software development time), uses up a major

portion of the total development effort. Ready-to-use components would be a big factor

in cutting down such effort because of their reusability, hence the popularity of

component architecture and web services since they were developed.

The goal is to focus on various technical solutions that will result in greater

efficiency in software development; use of component-based technologies or automation

technologies will be the foremost approaches. The primary focus of this research is a case

study of a framework that can achieve effectiveness in software development by dealing

effectively with some of the major problems. The problems are described in greater detail

in Chapter 2. In the process of designing such a framework, considerable time will be

spent in researching the various technical options available. Web services and semantic

web technologies have been explored in detail and are found to be appropriate for

building such a framework. The basic understanding of each of these technologies is

explained in the later chapters of this document. These two technologies are presently

evolving and might end up in being of much greater use in solving the problems that are

being addressed. The importance of web services in software development is widely

recognized already, and various research organizations are focusing on its use in this

scenario [1]. Some of the problems that are being faced by software architects are also

described, along with a proposed framework for solving them. Software architecture

faces problems primarily because of the limitations of the available tools for architecture.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

3

Software architecture would benefit greatly from more advanced and comprehensive

tools or from frameworks that make better use of presently available tools. Making use of

web services and the semantic web in a typical software development scenario would

also help in developing a better understanding of these technologies.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

4

CHAPTER 2

PROBLEMS IN THE CURRENT SOFTWARE DEVELOPMENT SCENARIO

Software engineering, as practiced in all major software development

organizations, follow certain norms as regards models or methodology. Of the many

methodologies in existence, there are a few very popular models that have been in

existence for a good period of time. The following section briefly introduces each of

those methodologies.

2.1 Software Development Methodologies

2.1.1 Waterfall Model

In the waterfall model, the phases of software engineering are in sequence and

one phase must be completed before the succeeding one can start. The development

process starts with the requirements specification phase and ends with the maintenance

phase. When the requirement phase is completed, the development team moves ahead

with the architecture and then the design phases. After the design phase is completed, the

developers begin the application coding and, at the end of the development phase, various

implementations are integrated to create the complete product. Thus the waterfall model

maintains that one should move to a phase only when it’s earlier phase is completed and

perfected. The various phases of the waterfall model in sequence are as follows:

 Requirements specifications,

 Design,

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

5

 Construction (involves design and coding),

 Integration,

 Testing,

 Installation, and

 Maintenance.

Major disadvantages of the waterfall model from the stand point of this research are as

follows: this model mandates that the requirements should be perfectly laid out at the end

of the requirements specification phase and that the various implemented modules at the

end of construction must be integrated. These and other disadvantages will be discussed

later in this chapter. The waterfall model has been the most popular of all of the software

development methodologies and the problems associated with this model are also present

in most of the software projects that use the pure form of this methodology.

2.1.2 Iterative Models

The iterative models are based on the idea that software can be developed

incrementally, so that the knowledge gained in one cycle can be applied to succeeding

cycles, and the errors can be minimized by the time the full product is implemented. The

basic idea behind iterative enhancement is to develop a software system incrementally,

allowing the developer to take advantage of what was being learned during the

development of earlier, incremental, deliverable versions of the system. At the end of

every iteration, design modifications are made and new functional capabilities added.

The process can be divided into three aspects: the initialization, which creates a base

version of the project in which the most basic features of the system are implemented; the

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

6

iteration step which involves the redesign and implementation of the task; and project

control list to guide the iteration process. The project control list includes such items as

new features to be implemented and areas of redesign of the existing solution. The

control list is constantly being revised as a result of the analysis phase [2]. Rational

Unified Process (RUP) is an iterative model of software development and is widely used

in the industry. RUP is an advanced version of the unified process for software

development. The RUP deals with most of the problems that were discussed in the first

chapter using a set of software development principles [4]. These principles are as

follows:

 Develop software iteratively,

 Manage requirements,

 Use component-based architecture,

 Model software visually,

 Verify software quality, and

 Control changes to software.

Using component-based architecture of software development forms an important

principle of the RUP. Requirement management is defined by the following set of

guidelines:

 The correct requirements generate the correct product; the customer's needs are

met and

 Necessary features will be included, reducing post-development costs.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

7

2.1.3 Rapid Application Development

 Rapid application development (RAD) is a development methodology that takes

advantage of automated tools and techniques to restructure the process of building

information systems. RAD operates exclusive of software practices that require a

minimum of labor intensive design and coding practices that are related to individual

performance. It relies instead on automated design and coding, which is an inherently

more stable process [3]. In addition to being more stable, RAD, as depicted in Figure 1, is

a more capable process. It is much faster and less error-prone than hand coding. In

addition to reduced development time and effort optimization, RAD also decreases the

effort expended on the maintenance of existing systems, which typically have minimum

documentation and legacy development using legacy technologies.

Figure 1. Traditional software development vs. RAD

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

8

RAD depends on effective implementation of four essential factors: the

development methodology, the development team, the software management group, and

the tools used for development. If any one of these factors is inadequate, the development

will not progress at the expected pace. Development life cycles, which weave these

ingredients together as effectively as possible, are of the utmost importance.

Rapid prototyping is another form of software development methodology that

focuses on requirements management. A prototype is defined as an initial version of the

desired system. A prototype involves partial implementation of the total set of

requirements; the aim being analysis to arrive at the final product rather than using the

prototype system as a production system. Since the construction activity to build a

prototype is rapid, the practice itself is called rapid prototyping. Rapid prototyping is an

effective technique for clarifying requirements and eliminating the large amount of effort

currently wasted on developing software to meet incorrect or inappropriate requirements

in traditional software life cycles. A lack of agreement on the requirements as specified

by the customer and as analyzed by the designer is a cause of inconsistencies between the

delivered system and customer expectations, leading to expensive rebuilding. This

problem is especially acute for large systems and systems with real-time constraints

because the requirements for such systems are complicated and difficult to understand.

The requirements are firmed up iteratively in a rapid prototyping approach through the

examination of executable prototypes as well as by negotiations between customer and

designer. The designer constructs a prototype based on the requirements and examines

the execution of the prototype together with the customer. The requirements are adjusted

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

9

based on feedback from the customer, and the prototype is modified accordingly until

both the customer and the designer agree on the requirements [8].

2.1.4 Cleanroom

Cleanroom development methodology originated from the semi-conductor

manufacturing industry and emphasizes on defect prevention rather than the detection

and removal of defects from the software products. Most of the effort in Cleanroom

methodology therefore involves producing defect-free software before it goes to testing.

Cleanroom methodology defines the software system or component by a total function

called a black box function. The domain is the set of all possible sequences of input

stimuli, including illegal sequences, and the range is the set of possible system responses.

The sequence-based specification method is used to derive the initial black box function

from an informal specification; it is the vital bridge between formal and informal worlds.

The starting point is the informal, natural language requirements specification, written

according to current practice in domain-specific terms. The original terms and domain

concepts are used together with the traceability; this enables the critical project

stakeholders to establish by inspection that the formal specification specifies the same

system as the informal specification. This addresses the problem of different starting

points and the need for traceability between the formal specification and the customer's

requirements specifications [5].

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

10

2.2 Problems in Software Development

There are various problems associated with current software development

techniques. The pure form of the waterfall model, which is the oldest software

development method, is associated with many of the problems listed below. Many of the

aforementioned development technologies attempt to solve some of these problems, but

none of them except RUP provide a comprehensive solution to each. The following is a

representative list of problems associated with software development:

 Ambiguous and imprecise communication,

 Brittle architecture (architecture that does not work properly under stress),

 Overwhelming complexity,

 Undetected inconsistencies in requirements, designs, and implementations,

 Insufficient testing, and

 Subjective assessment of project status.

A problem that affects almost every phase is imprecise and erroneous

communication, which starts during the requirements specification. This happens because

of a lack of guiding principles for directing communications between the involved

parties. Imprecise communication at the requirement phase between the customer and

software managers may be one of the biggest reasons for the introduction of errors into

the software product even before it is built. A proper framework for standardizing

communication and capturing requirements should be established.

The next point, brittle architecture, is a result of the inability of the architecture

team to imagine every aspect of the software product being developed. The architecture

generally fails when the system size increases and the initial architecture envisioned for

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

11

the system does not scale accordingly. For a tightly formed architecture, which would

hold true in all scenarios, the architecture team should brainstorm all use cases and use

correct tools or other available methodologies to estimate the various use cases and

performance requirements for the product. Reusing tried and tested sub-systems

(equivalent to component architecture) is a possible way of avoiding architecture

problems later in the development cycle.

Complexity in most applications happens due to absence of a clean separation of

functionalities and entangled code blocks. This results in difficulties in the analysis of

existing code. This becomes harder when the original development team is no longer

involved with application maintenance. The different platforms, languages, and physical

locations of the servers, which are almost always involved in any large-scale enterprise

application, can be a nightmare for any software team. Code complexities affect the total

effort in building and maintaining a software system, hence the total investment made in

it. Complexity can be avoided by using a reliable, well-tested development methodology

and by making use of reliable architecture that focuses on avoiding complexity in the

code.

In the absence of standards, the various aspects of software development,

including the architecture, the requirements gathering, and the implementation processes,

can be inconsistent and diverge from any optimized process. These inconsistencies may

result in the requirements being different from the design, and the code being different

from the design. This results in the intractability of the requirements to implementation.

The most problematic result of such inconsistency would be that some requirement might

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

12

be ignored and the final product might end up not satisfying the requirement. This is the

worst problem that can be faced by a software development team.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

13

CHAPTER 3

A BACKGROUND OF SOA: WEB SERVICES

Service-oriented architecture (SOA) is a framework that is rapidly gaining

popularity. The concept was defined by Sun Microsystems in the late 1990's to describe

Jini, an environment for dynamic discovery and use of services over a network. Web

services have taken the concept of services introduced by Jini technology and

implemented it as services delivered over the web using such technologies as Extensible

Markup Language (XML), Web Services Description Language (WSDL), Simple Object

Access Protocol (SOAP), and Universal Description, Discovery, and Integration(UDDI).

SOA is emerging as the premier integration and architecture framework in today's

complex and heterogeneous computing environment. Legacy systems were based on

proprietary set of application programming interfaces and required a high degree of

coordination between the groups that built them. The possibility of inter-operability was

remote for such systems. SOA would help organizations streamline their business

processes to a much greater extent and increase their efficiency greatly. This would also

allow companies to adapt to changing needs and competition by enabling software as a

service concept. Presently many companies, including Google and eBay, have such

practices in place. The way they use their services is by opening them up for use by other

companies; eBay has opened up its auction service and Google its search service for use

by other companies. The goal of eBay is to drive developers to make money around the

eBay platform. Through the new Application Programming Interface (API), developers

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

14

can build custom applications that link to the online auction site and allow applications to

submit items for sale. Such applications are typically aimed at sellers, since buyers must

still head to ebay.com to bid on items. This type of strategy, however, will increase the

customer base for eBay.

SOA and web services are two different things, but web services are the preferred

standards-based way to realize SOA. This chapter provides an overview of SOA and the

role of web services in realizing it.

SOA is an architectural style for building software applications that use services

available in a network, such as the web. It promotes loose coupling between software

components so that they can be reused. Applications in SOA are built based on services.

A service is an implementation of a well-defined business functionality, and such

services can then be consumed by clients in different applications or business processes.

SOA allows for the reuse of existing assets where new services can be created

from an existing IT infrastructure of systems. In other words, it enables businesses to

leverage existing investments by allowing them to reuse existing applications, and

promises interoperability between heterogeneous applications and technologies. SOA

provides a level of flexibility that wasn't possible before in the sense that:

 Services are self-contained and loosely coupled,

 Services can be dynamically discovered, and

 Composite services can be built from aggregates of other services.

Services are software components with well-defined interfaces that are implementation-

independent. An important aspect of SOA is the separation of the service interface and

implementation. Such services are consumed by clients that are not concerned with how

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

15

these services will execute their requests. SOA uses the find-bind-execute paradigm, as

shown in Figure 2. In this paradigm, service providers register their service in a public

registry, which is used by consumers to find services that match certain criteria. If the

registry has such a service, it provides the consumer with a contract and an endpoint

address for that service [6]. SOAP is a simple XML based protocol to let applications

exchange information over hyper-text transfer protocol (HTTP). SOAP is used for

exchanging data while accessing web services.

Service
Consumer

Service Provider

RegistryContractBind and Execute

Find

Register

Figure 2. The find-bind-execute paradigm

3.1 Web Services Technologies

3.1.1 SOAP Messages

A SOAP message is an ordinary XML document, all the rules that are applicable

to a regular XML document are also valid for SOAP. The structure of SOAP can be

described as follows:

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

16

 SOAP Envelope: This element is used at the beginning of the SOAP message and

is used to mark the XML document as a SOAP message

 SOAP Header: This element is used to specify the header information of the

SOAP message.

 SOAP Body: This element contains the call and response information of the

SOAP message.

 SOAP Fault: This element is optional and provides information about errors that

occurred while processing the SOAP message.

The default namespace for the SOAP envelop for the above elements is defined in

http://www.w3.org/2001/12/soap-envelope. The default namespace for SOAP encoding

and data types is http://www.w3.org/2001/12/soap.

3.1.2 UDDI

UDDI is like any other business registry, with the exception that it uses XML for

the exchange of information. UDDI allows a business entity to register itself on the

internet. Once a business registers itself in UDDI, it can be found by any calling web

service and can also be invoked by the web service. UDDI is platform-independent.

UDDI is an open industry initiative sponsored by the Organization for the Advancement

of Structured Information Standards (OASIS). In UDDI, a business entity publishes its

service listings and defines how the services interact over the internet. UDDI is one of the

core web service standards. The calling service finds all the information about the WSDL

file of the called web service from UDDI. UDDI provides information such as protocol

bindings and message formats about a registered web service, information that is required

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

17

by any calling web service. All of this information about the web service is listed in the

directory of UDDI.

3.1.3 WSDL

A web service can be defined as a self-describing, self-contained, and modular

unit of application logic that provides some functionality to other applications through a

network connection. Applications access web services via ubiquitous web protocols and

data formats, such as HTTP and XML, with no need to worry about how each web

service is implemented. By providing a standards-based framework for exchanging

information dynamically on demand between applications, web services show promise in

addressing the information integration needs of an enterprise application.

In order to describe a web service, the features of the services should be listed in a

file. The contents of the file would relate to the features of a web service; i.e., the input

for the requested service, the format or data type, and the output. This file, which is called

WSDL, would give an insight or a description of a particular web service. WSDL is an

industry standard used for web service description, discovery, and invocation. The

application that tries to use the web service first tries to read and interpret the WSDL.

WSDL is a simple XML file and therefore all of the rules and customizations that are part

of XML standards are also applicable to a WSDL file. The WSDL file has the same

structure as a XML file. The main purpose of a WSDL file is to define and describe a

web service. The WSDL file defines the location of a web service and the operations

(methods) that are exposed by that service.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

18

3.2 Software Development Using SOA

Service-oriented software is one of the most evolutionary approaches to software

development ever. Service orientation gives enormous flexibilities in developing

software: it allows organizations to rapidly and dynamically form new software

applications to meet changing business needs, thus alleviating the software evolution

problems that occur with traditional applications. There are many problems associated

with current methods of building software. The current software is tightly integrated and

grows vertically one layer above the other. The ultimate promise of a SOA based

software development scenario is the automated construction of service-oriented

software, and the chance to discuss software in the context of service orientation and to

identify potential problems [7]. Of the many present day possibilities with software

development using services is software component reuse; a develop-once and use-forever

scenario [9].

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

19

CHAPTER 4

SEMANTIC WEB AND ITS TECHNOLOGIES

4.1 The Semantic Web

The semantic web, in its entirety, is an entity that does not operate in isolation

from, but in collaboration with, the world-wide web. It is an integrated part of the internet

that gives well-defined meaning to data and allows various systems to operate

intelligently on the data. Semantic web technologies are presently in a developmental

state, and a very small portion of the data has been given meaning using XML-based

technologies so that computers can operate on this data without human interference to

draw conclusions and perform the necessary actions for the users.

The world-wide web is universal, and the data in it is presently for the

consumption of a variety of systems, the purpose being to display it to the end user. The

data is variable and is presently specific to the technology that operates on it, and as such

it differentiates between the systems that operate on it. One of the aims of the semantic

web is to make data generic, such that various systems can operate on the data. To make

the data generic, some widely agreed upon technology such as XML is used; most of the

technologies in the semantic web are XML-based. The other essential part of such a web

would be a rule-based system to operate on the data so that automated reasoning can be

performed. Artificial intelligence (AI) has been in existence for a long time, and the AI

researchers have come up with innovative solutions that allow AI modules to be plugged

into various systems. The present AI systems allow a wide variety of inference and rule-

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

20

based operations. Advanced operating algorithms can also be implemented by using these

AI systems. The ultimate conclusion of the expanding semantic web would be to realize

the web as a single, inter-linked, global system.

Current systems operate in a centralized way; a central processing mechanism

controls most of the data and flows for the entire web around it. This centralized control

of the web is somewhat restrictive and results in an unmanageable system when the

system grows in size. Scalability is a desired property for most of the systems. These

systems, as they grow larger in size and complexity, somehow get limited in reliability

and provide answers reliably to fewer scenarios. To deal with such a situation, the present

systems provide a specialized set of rules so that such scenarios can be addressed

reliably. The semantic web accepts that paradoxes and unanswerable questions are

unavoidable in versatile systems and focuses on improving versatility. The aim is to

make the language of the web as expressive as possible so that a variety of engines with a

fixed set of rules can operate on this set of information. The paradigm is shifted from

processing logic to processed information (i.e., the data). A mechanism to increase the

expressiveness of the data in such a way that it is locatable is one of the major aims of

semantic web researchers. Such a mechanism would provide a reliable way for the

systems operating on the data to locate the data. The expressive power of the system has

made vast amounts of information available, and search engines (which would have

seemed quite impractical a decade ago) now produce remarkably complete indices of a

lot of the material out there. The challenge of the semantic web, therefore, is to provide a

language that expresses both data and rules for reasoning about the data, and that allows

rules from any existing knowledge representation system to be exported onto the web.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

21

Adding intelligence to the internet by using systems that make inferences based

on existing rules is the task before the semantic web community. The problem before the

community involves a mixture of mathematical and engineering decisions.

The logic must be powerful enough to describe complex properties but must also

be understood by the rule-based software system. Such existing languages as Resource

Definition Framework (RDF) provide suitable solutions to this problem. Minor

modifications to existing languages can help make a new language that operates on the

data of the web.

The real power of the semantic web will be realized when programs are created

that are able to collect web content from diverse sources, process the information, and

exchange the results with other programs. The effectiveness of such software agents will

increase exponentially as more machine-readable web content and automated services

(including other agents) become available. The semantic web promotes this synergy;

even agents that were not expressly designed to work together can transfer data among

themselves when the data come with semantics.

An important facet of agents' functioning will be the exchange of evidence written

in some ontology describing language of the semantic web. With such a language in

existence, one can locate a service to satisfy the functionality and then verify the results

given out by the first service by making use of other agents, which would use the

ontology language used to describe the result. The layers of the semantic web are

described in Figure 3.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

22

Data

Self
Describing

Doc

Rules

Unicode URI

Ontology Vocabulary

Logic

Proof

Trust

RDF and rdfSchema

Figure 3. The semantic web layers as described by Tim Berners-Lee

The major application of the semantic web has been in life sciences, where it is

used to integrated ontologies from various medical disciplines. Many other disciplines are

adopting what began in the life sciences. Environmental scientists are looking forward to

integrating data from hydrology, climatology, ecology, and oceanography [10].

4.2 Progresses in Semantic Web

The semantic web shifts the emphasis from documents to data. Much of the

motivation for the semantic web comes from the value locked in relational databases. To

release this value, database objects must be exported to the web as first-class objects and

therefore must be mapped into a system of Uniform Resource Identifiers (URI). Many

languages have evolved for the purpose of providing meaning to the data; RDF and Web

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

23

Ontology Language (OWL) are the most popular among these languages. RDF has so far

had two specifications, the later of which came out in February 2004. This took the basic

RDF specification and extended it to support the expression of structured vocabularies. It

has provided a minimal ontology-representation language that the research community

has widely adopted. RDF has gained popularity, and the need for repositories that can

store RDF content has grown. Some focus on providing a rich means to reason over the

RDF (Jena is one such mechanism, which is discussed in the next section); while others

focus on storing large quantities of data (Oracle’s RDF database is one such example). As

the stores themselves have evolved, the need has arisen for reliable, standardized data

access into the RDF they hold. The SPARQL language, now in its final review stages for

the World Wide Web Consortium (W3C) recommendation status, is designed to fulfill

this requirement.

4.3 Semantic Web Technologies

4.3.1 Resource Definition Framework

RDF is a language for representing information about resources in the internet

and is an extension of XML. Its purpose is mostly to present metadata about resources on

the web, such as the availability schedule for some shared resource on a network. RDF is

intended for situations in which this information needs to be processed by applications,

rather than being only displayed to people. RDF provides a common framework for

expressing this information so it can be exchanged between applications without loss of

meaning. Since RDF is a common framework, application designers can leverage the

availability of common RDF parsers and processing tools. The ability to exchange

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

24

information between different applications means that the information may be made

available to applications other than those for which it was originally created [11]. RDF is

based on the idea of identifying things and describing resources in terms of simple

properties and property values. This enables RDF to represent simple statements about

resources as a graph of nodes and arcs representing the resources and their properties and

values.

RDF is indeed quite simple at its core; though it can become difficult in short

order. It is a model of statements made about resources. A resource is anything with an

associated URI. This simplicity and uniformity make RDF statements generic. They can

be used to encode the above natural-language statement, as well as, say, an object-

oriented model.

RDF allows for the expression of such statements in a formal way that software

agents can read and act on. It lets us express a collection of statements as a graph, as a

series of (subject, predicate, object) triples, or even in XML form. The first form is the

most convenient for communication between people, the second for efficient processing,

and the third for flexible communication with agent software.

An example RDF document is shown in Figure 4. The first document element,

rdf:RDF, tells an RDF parser that the child elements can be interpreted as RDF

constructs. The first one defines the core namespace for RDF constructs. The second is a

special namespace that is controlled by the controlling web organization.

The first child is an rdf:Description element, which tells the RDF parser that we

have a resource to describe. The rdf:about attribute notes the URI of the resource being

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

25

described. In this case, it's a local resource to the community site that refers to the overall

topic of snowboarding (according to some agreement the community will have made).

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www. xyz.org">

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">

 <ex:editor>

 <rdf:Description>

 <ex:homePage>

 <rdf:Description rdf:about="URL">

 </rdf:Description>

 </ex:homePage>

 </rdf:Description>

 </ex:editor>

</rdf:Description>

</rdf:RDF>

Figure 4. An example RDF document

The ideal scenario in a web community would be that each web page maintaining

its own metadata. The RDF specification provides a convention for people to place RDF

within HTML pages. The empty rdf:about="" attribute is a special URI convention that

refers to the current document. Other than that, the code is similar to that in the RDF

directory. Note that this data can be maintained in tandem with regular HTML <meta>

tags to support existing search engines and RDF agents. One hopes that vendors of

popular web authoring tools will soon produce products that automatically represent

metadata in both RDF and <meta> formats.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

26

4.3.2 Web Ontology Language

OWL is a language for defining and instantiating ontologies in the web. Ontology

is a term that is used for describing the kind of entities in the world and their

interrelations. In computer science, an ontology is a data model that represents a domain

and is used to reason about the objects in that domain and the relations between them.

OWL is more of a markup language for publishing and sharing data using ontologies on

the internet. OWL is an extension to RDF and a derivative of DARPA Agent Markup

Language (DAML), which started in August 2000 and as is similar to OWL in its motive.

OWL describes various objects and their relationship with other related objects in such a

vocabulary that it is understandable for a software system. The OWL specification is

maintained by the W3C. OWL is seen as a major technology for the future

implementation of a semantic web. OWL was designed specifically to provide a common

way to process the content of web information. OWL is written in XML and hence can be

exchanged among systems implemented in different software platforms. OWL's main

purpose will be to provide standards that provide a framework for asset management,

enterprise integration, and a language for the semantic web. OWL was developed mainly

because it has more facilities for expressing meaning and semantics than XML, RDF, and

RDF Schema (RDFS), and thus OWL goes beyond these languages in its ability to

represent machine-interpretable content on the web. OWL currently has three flavors,

OWL Lite, OWL DL, and OWL Full. These flavors incorporate different features, and in

general it is easier to reason about OWL Lite than OWL DL and OWL DL than OWL

Full.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

27

One advantage of OWL ontologies is that a wide variety of tools already exist that

can understand OWL. The tools available will provide support to OWL ontologies in all

domains. Many groups would be involved collaboratively in the construction of

ontologies for the internet. The tools available for processing OWL will help an

organization that has developed ontologies for its resources.

4.3.3 Jena Inference Engine

Jena is an API in the Java programming language for the creation and

manipulation of RDF graphs. It implements the interpretation of RDF specifications. Jena

has two primary purposes; to provide an API that is easier for the programmer to use than

alternative implementations, and to conform to RDF specifications.

Jena was first released in 2000 and was followed by Jena2 in August 2003. The

main contribution of the first version of Jena is the rich Model2 API for manipulating

RDF graphs. The Jena API for RDF had many capabilities, such as parsing the RDF,

querying RDF documents, and generating input or output for RDF-based systems. Using

the API the user can choose to store RDF graphs in memory or in persistent stores. Jena

had also the capability of manipulating DAML+OIL. Jena’s second version provides

additional functionality for general developers to support RDFS and OWL. There are

new APIs for accessing ontologies and processing vocabularies. Jena2 also offers two

new extension points to system programmers: the first allows the flexibility of developing

new APIs to developers, and the second allows the development of new triple sources,

particularly of virtual triples that are generated dynamically as a result of some

processing, such as inference or access to legacy data sources.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

28

The heart of the Jena architecture is the RDF graph. This layer, following the

RDF abstract syntax, is minimal by design; wherever possible, functionality is done in

other layers. This permits a range of implementations of this layer. The Jena2 (second

version) architecture supports a fast-path query that goes all the way through the layers

from RDQL (RDF Query Language) at the top right through to an SQL database at the

bottom, allowing user queries to be optimized by the SQL query optimizer. Some inbuilt

implementations of the graph layer are provided with Jena2 give a variety of concrete

triple stores and some built-in inference, specifically for RDFS and for a subset of OWL.

Jena2 maintains the Model API from Jena1 as the primary abstraction of the RDF graph

used by the application programmer. This gives a much richer set of methods for

operating on both the graph itself (the Model interface) and the nodes within the graph

(the Resource interface and its subclasses). Java’s single inheritance model is sidestepped

to provide polymorphic objects within the layer. This allows the multiple inheritances

and typing of RDFS to be reflected in Java [12], [13].

4.3.4 Jess Rule Engine

Jess is a rule engine and scripting environment written entirely in Java

programming language at Sandia National Laboratories in Livermore, CA. Using Jess,

one can build Java applications that have the capacity to reason by using a declared set of

rules. Jess is small, light, and one of the fastest rule engines available. It is suitable for

cases where the scope of rule-based reasoning is smaller and where performance

constraints exist. Jess uses an enhanced version of the Rete algorithm to process rules.

Rete is a very efficient mechanism for solving the difficult many-to-many matching

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

29

problem. Jess has many unique features, including backwards chaining and working

memory queries, and of course Jess can directly manipulate and reason about Java

objects. Jess is also a powerful Java scripting environment, from which one can create

Java objects, call Java methods, and implement Java interfaces without compiling any

Java code [14].

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

30

CHAPTER 5

CASE STUDY: A PROPOSED FRAMEWORK - SOA, SEMANTIC WEB, AND RULE

ENGINES

5.1 Implementing Software Components Using Web Services

As discussed earlier in section 3.2, SOA framework is seen as a new methodology

for software development. An application can be designed that would implement all of

the functionalities using services. An enterprise application is among the most popular

areas for which software is currently being developed. In fact, web applications and e-

business-related software investments for enterprise accounts for nearly 30 to 50% of all

information systems spending [15].

All enterprise applications would have common functionalities that would get

built over and over for all of the applications. The modularity and reusable concepts of

Sun Microsytems’ Java 2 Enterprise Edition (J2EE) framework and Microsoft’s .Net

framework have significantly reduced the effort expended in developing the same set of

functionalities. Component software technology, as exemplified first by Common

Request Broker Architecture (CORBA), and then by Enterprise Java Beans (EJB), was a

step ahead in the reusability of already developed applications. Various middleware

technology products such as BEA Tuxedo allowed reuse of existing software

infrastructure developed in legacy languages such as C and assembly language. SOA is

another step towards the same end and is much more popular and standardized. The

typical scenario would involve a company developing web services and using them

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

31

within their intranet so that many applications would share common components. When

there is a robust security infrastructure in place and a mechanism for establishing trust

exists among organizations, the same set of services will be shared among partner

organizations. The application that is described in the following sections assumes that

such mechanisms and collaborations among the organization’s groups and partners are

already in place. The scale of effectiveness of the described framework depends upon the

number of recurring functionalities that are implemented as services.

Recently in the enterprise environment, concepts such as single sign-on (SSO),

which address the cross-platform security concerns of an organization, have made it

possible for diverse applications to make use of existing infrastructures. In a typical

enterprise applications environment, the most commonly used functionalities that can be

implemented as reusable components are the utility modules, including authentication

systems, messaging systems, data validators, and error logging systems. The other

reusable components can be the database exposing components, template engines for

look and feel, and search modules.

Since there is repeated use of these functions in almost all enterprise applications

and, moreover, since the business functionalities tend to remain identical for most of the

applications within the same organization or the organizations operating in the same

domain, it would be more profitable to adopt a component-based approach. A

component-based approach would involve building possible functionalities as reusable

components, which would follow the basic rules of object-oriented programming, such as

encapsulation and polymorphism.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

32

 As an example of such a framework, let us briefly analyze what goes into

implementing such components by describing how to build a few essential

aforementioned functionalities as services.

5.1.1 Authenticator Component

Authentication systems can be loosely described by the following scenarios.

 An anonymous user can access the unsecured parts of an application without

authenticating himself.

 When a user tries to access a secured part of an application, his identity, if

existing in the session or application memory, is propagated to the authenticator,

which makes a decision depending upon his permissions.

If the application is a web application, the session is maintained by an exchange of

cookies, which are unique identification strings in the user’s machine. If a particular user

is accessing the application from his browser, the application would identify him using a

cookie. A web application can exist in one of the following states with respect to security:

 There is no session between the user and the application, and the user has not yet

supplied his credentials.

 There is a user session with the application but the user still has not supplied his

credentials; this is similar to accessing an unsecured part of the application.

 There is no user session with the application, but the user has supplied his

credential. This is the state in which the user has just authenticated himself to the

application: he is no longer in the anonymous state, but he yet to start any

interaction with the application.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

33

 The user has authenticated himself and is in a session with the application.

The authentication system of the framework, shown in Figure 5, satisfies the

aforementioned requirements.

Figure 5. The authentication system of the framework

A web-services-based system would have security requirements that are a

superset of a web application. For instance, in most of the web applications, user identity

sessions can be maintained using HTTP cookies. Web-services-based systems are

expected to have components that are built on different platforms, and maintaining a

session using cookies might not be possible for multiple platforms. The platform-

independent way to establish a session would be to use XML signatures. Since there

might be different physical domains in which the components would be located, the user

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

34

should be authenticated to various other applications within the enterprise using a single

set of credentials. The security component should allow various modes of signing-in the

user and mapping his credentials across the domains where the components are based.

The variety of authentication supported would include such means as digital certificates,

userId – password, and tokens. The security component would also be able to query a

variety of user databases, including Lightweight Directory Access Protocol (LDAP)

based and Relational Database Management Service (RDBMS) based databases, to verify

user identity. For all the deployed web services that are registered, the system would

provide centralized authorization and access control services. The assertion message

exchange would be added to the underlying SOAP-based messages by which web

services normally communicate. The architecture would be similar to a proxy-based

system in grid computing [16], where after verification of the user’s existence his proxy

credentials would be stored in the local system, so that the user can be identified locally

for the lifetime of his interaction with the system. This would allow for the effective

implementation of SSO in the system [17].

5.1.2 Search Component

The search engine is one of the most commonly used functionalities and is

normally a part of every web application. Building a versatile search component, which

takes in parameters as inputs and returns the results, would help in greatly implementing

code reuse. The search component would be optimized to perform faster searches. As a

result the performance of all of the applications that use the search component would be

improved by performing optimizations only for the search component.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

35

The search component would allow the application to specify a variety of search

targets. The targets could be databases, flat files, or a machine’s file structure in the

corporate intranet. Since the user would authenticate himself using the authentication

component described in the preceding section, which would use the SOAP message

mechanism internally to send out requests to other components, the search component

would expect the user’s identity to be encrypted with the user’s request message (in most

cases the user’s request might also be encrypted by using his private key). The search

component would decrypt the request using the user’s public key. This mechanism of

authentication holds good for the rest of the component. For a discussion on

authentication using certificates, please see Appendix A.

The search component would expose itself using a WSDL as per the web services

standard. The WSDL would contain information about the search component, such as the

unique name of the service, the URL, the types of search input parameters, the type of

output to be expected, the search targets, the binding name, and the endpoints.

The search input parameters would be normal words or characters; numbers

would also be allowed in the search input text. The input can be a combination of words,

single words, or strings. The special characters would be ignored, as they cause errors in

processing the search.

The results of the search can be returned in a variety of forms. The search

component would either generate files in the specified format and save them in a

common location or send the results back to the calling component in XML format [18].

The main structure of a WSDL document looks like the listing in Figure 6.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

36

<definitions name="IntraSearch" targetNamespace="urn: Search" xmlns:typens="urn:

Search" xmlns:xsd="http://www.w3.org/ "

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:Search">

 <xsd:complexType name="SearchResult">

 <xsd:element name="documentFiltering" type="xsd:boolean"/>

 <xsd:element name="searchComments" type="xsd:string"/>

 <xsd:element name="estimatedTotalResultsCount" type="xsd:int"/>

 <xsd:element name="estimateIsExact" type="xsd:boolean"/>

 <xsd:element name="resultElements" type="typens:ResultElementArray"/>

 <xsd:element name="searchQuery" type="xsd:string"/>

 <xsd:element name="startIndex" type="xsd:int"/>

 <xsd:element name="endIndex" type="xsd:int"/>

 <xsd:element name="searchTips" type="xsd:string"/>

 <xsd:element name="directoryCategories" type="typens:DirectoryCategoryArray"/>

 <xsd:element name="searchTime" type="xsd:double"/>

 </xsd:complexType>

 </xsd:all>

 </xsd:complexType>

Figure 6. The example WSDL for the search component

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

37

5.1.3 Database Component

Exposing a database as a web service would form another important component in

a web-services-based system environment. The database can then be accessed by other

web services in the environment, and the needed information can be queried and retrieved

from the database. In the case of updating the database with information, the web service

would take in the necessary information and, after proper authorization, insert it into the

database tables.

The basic architecture of the database web service component would be a web

service layer in the front that exposes itself to the network, a Java-based layer, and a

database in the backend that communicates with the Java-based layer using present

database connectivity techniques, such as Java database connectivity (JDBC). It is

possible that an environment could have numerous databases, which would be from

different vendors and hence be different in their properties (e.g., Oracle 9i, Sybase, and

IBM DB2), each of them could expose itself using a web service so that an application or

another web service in the network would implicitly access it depending on the data it

needs. The database components would then enlist themselves using web services

registries and other such optimizations as discussed in later chapters. In our case, to prove

that such a collaborative environment could exist, we take a simpler case of just one

database component.

The exposed web service module can be implemented using J2EE or .NET

framework, which are the currently, most common ways of implementing a web service.

More options for implementing web services using any programming language should be

available in the near future as web-services-based technologies evolve. Communication

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

38

with external services will be achieved using SOAP, as described previously. Since the

amount of data that needs to be transferred would be sizeable in most cases, SOAP with

attachment is the best option available. SOAP with attachment uses SOAP envelope and

an encapsulation technique, such as Direct Internet Message Encapsulation (DIME) or

Multipurpose Internet Mail Extensions (MIME) data. The different parts of the message

can be unassembled by the receiving application. As per the W3C specifications of SOAP

with attachments in RFC 2387, the following rules would apply for SOAP with

attachments depicted in Figure 7.

 The primary SOAP 1.1 message must be carried in the root body part of the

multipart/related structure. The type parameter of the MIME will be same as the

body type of the rest of the SOAP document, i.e., XML or text.

 Referenced MIME parts must contain either a Content-Id MIME header

structured in accordance with RFC 2045, or a Content-Location MIME header

structured in accordance with RFC 2557.

The security can be implemented in a manner similar to the normal application security

implemented in J2EE components, such as encrypted keys in a web service environment

and userId-password based authentication in normal applications. The web services layer

would decide on the authorizations of the user and would attach a role to it so that

authorization decisions would be possible in the other layers.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

39

.

Figure 7. SOAP with attachments

In the search component, the web services layer would also process the

information in the SOAP messages and would pass it in a processable format to the Java

layer. Processing the information would involve deciding on the action the interacting

component or application wants to perform on the database. This might be the normal

create-read-update-delete operations of the database or a request for the metadata of the

schema structure.

The Java layer would take in the user inputs from the web services layer, which

would then be passed as processable string parameters in relevant method calls to the

Java layer. The Java methods would use these parameters and make a call to the database

using either JDBC or messaging services. The messaging services implemented in Java

that form a part of J2EE are called Java message services (JMS). The JDBC calls would

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

40

use prepared statements or queries as applicable. Wherever the queries are expected to

take a greater return time, messaging techniques would be used to send the queries to the

database. There could be a scenario in which the same database is being used by system-

level legacy applications at the same time; messaging can be an effective way of dealing

with scenarios in which multiple interactions would be handled asynchronously. The Java

layer would avoid complicated business logic; such complex interaction with the

database would be taken care of by stored procedures in the database layer itself. The

Java-based layer would only make calls to such preexisting logic when required. Such

complex business logic would even be exposed through the web services’ descriptors

directly so that clients could make calls directly to get desired results. Finally the results

returned from the database layer should be converted to XML format and returned to the

web service layer, which would then put it in the SOAP response message and send it to

back to the calling component or application.

The database layer would be any normal relational database, which includes such

popular relational databases such as Oracle and Sybase. The database itself need not have

any specialties except for supporting XML and XML queries. XML Database (XDB) is a

database feature in Oracle (Oracle 9i Release 2) that supports XML data storage and

retrieval. It also offers manipulation of that XML data. Standards such as XQuery and

XPath are aimed at supporting XML in the database.

Many schemas in a database can be exposed by a single web service front end.

The database information can be configured in an XML file that is readable by the web

service client. Web services assembler products such as those from Oracle (Oracle

Enterprise Manager) help in automating this process. Once the web services database

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

41

components are packaged and deployed in the intranet, all eligible applications are able to

see the information published using WSDL.

5.1.4 Logging Component

 Logging is the final element in the list of functionalities that would be discussed

in implementing web service components. Logging code is present in almost every

method (assuming that the programming methodology is Java) in all of the modules of a

system. If logging is implemented as a component, the overhead of implementing logs for

each method can be delegated to it. The application would simply register itself with the

web service component and define its log messages in a commonly readable file; the

details of implementing and maintaining logs would be taken care of by the component.

There are currently many utilities that allow logging code built into the system, with per

package level control of log data generation. Apache’s Log4J is one example of a J2EE

platform logging utility, and the Apache Avalon project’s Logkit is another. The logging

component would be built on similar lines and would be configurable; it would be

support multiple configuration mechanisms that are determined by the platform it is set

up in.

For the web service components in general there would be management

interfaces. This would be a Java Management Extension (JMX) for Java-based web

services or a Windows Management Instrumentation (WMI) service interface for .NET

framework services. Such management mechanisms allow for the control of the web

services’ behavior. The variety of control that would be allowed by using management

interfaces includes the setting of attributes such as control access, measure data about the

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

42

access to the web service, monitor the way web service accesses other critical resources,

and measure the performance of the web service.

5.2 Implementing Service Registries and Inference Engines for Locating Services

Inference engines were discussed in some detail in the previous chapter. The

purpose of including an inference engine in the present framework is to use it in

identifying and dynamically federating web services. The concepts of dynamic web

services federation will be discussed in detail later in the chapter. In this section we

discuss how inference engines can be used to intelligently locate the needed services

when we configure a service definition in it.

Before we discuss how the inference engine can be used in this framework, a brief

discussion about how UDDI would expose services in the intranet is necessary. UDDI for

a particular group of service would expose information about the entity and its APIs.

These registries would be run by multiple service groups and would be used by the

groups within the organization or partner organization who would desire to share their

web service entities, as well as by the inference engine layer of the system that would

contain the links to all these registries in order to find the desired service.

In order to prepare an application to take advantage of a remote web service that

is registered within the UDDI registry by other businesses or entities, the application

needs to use the information found in the registry for the specific service being invoked.

This type of inter-business service call has traditionally been a task that is undertaken

during the development of the application. By implementing UDDI registries, this will

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

43

not necessarily change completely, but one significant problem can be managed if a

particular invocation pattern is employed.

The web service groups would use category codes provided by UDDI to publish

the service; for example, a specific category code such as DBEMP will be used for the

employee database component group. These would classify the web services in that

group of the registry as the ones that expose the employee database. The web services

components layer which would make use of the UDDI API for adding the classification

codes for the web services.

The bindingTemplate data obtained from the UDDI registry represents the

specific details about an instance of a given interface type, including the location at

which a program starts interacting with the service. The inference engine, upon finding

this service would be able to create a new RDF document for the web service component

that would store the name and properties of the service for future use. This information

would be stored in a local cache. If a service is moved from the location, the data stored

in the cache would be refreshed. In this case the inference engine layer should make a

fresh call to the UDDI registry and update the previous RDF with the web service

information. Since this would significantly affect performance, it is assumed that, web

services would very rarely be moved to new locations (meaning that the URI should

change rarely).

By using this pattern with web services and the inference engine, a business using

a UDDI operator site can automate the process of web services discovery and

choreography without significant overhead in the invoking application. The application

side, as mentioned earlier, would be automated using inference engines and the

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

44

technologies of the semantic web, such as RDF. Effort would be involved is coding the

application once and enhancing or modifying the application to support a new group of

requirements. The inference engine layer would then be used to locate services and

theoretically be used with all kind of front-end applications that would send as input the

functionalities they need for a particular use-case and in return would receive a

composition of services to satisfy that need. For this, an intelligent inference engine layer

that would require minimum human interference and would work automatically needs to

be built [21].

The Jena Inference engine from HP Labs, which was introduced in the previous

chapter, is the inference engine that would be used for the framework. For the application

being discussed, an RDFS RuleReasoner would be used as the reasoner for the model

data which would be represented in RDF. The RDFS RuleReasoner would be extended

and customized for the inference engine layer to operate in a web services environment.

The set of RDFS RuleReasoner Java classes that would be created would be

SearchReasoner, LoginReasoner, DatabaseReasoner, LogReasoner,

GenericWebServiceFinder, and GenericWSCommunicator. Each of these classes would

be assigned the function of reading the RDF model data, which would be used to model

the four core functionalities of the application (i.e., login, search, log, and database

access) and making decisions on which web service to call. The

GenericWebServiceFinder would be responsible for associating with a particular web

service, and the GenericWSCommunicator would perform the communication with the

web services on behalf of all of the functionalities in the application.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

45

A reasoner would be attached to the RDF documents that are specific to the web

service groups. An RDF would be a model from which the built-in reasoners would read

and process the application logic. The reasoners would then derive logic from this data to

create an instance RDF; the web services group information would be RDF model data,

whereas the information about a specific web service would be instance data.

The RDFS RuleReasoner would be configured to work in the full mode. This would

implement all of the RDFS axioms

There are times when the data in a model bound into an InfModel can be changed

"behind the scenes" instead of through calls to the InfModel. If this occurs, the result of

future queries to the InfModel would be unpredictable. To overcome this and force the

InfModel to reconsult the raw data, the InfModel.rebind() call would be used. This

reasoner would be accessed using ModelFactory.createRDFSModel or manually via the

method call ReasonerRegistery.getRDFSReasoner().

The RDFS RuleReasoner would be a hybrid implementation. The subproperty and

subclass lattices would be eagerly computed and stored in a compact in-memory form

using the TransitiveReasoner. The identification of which container membership

properties (properties like rdf:1) are present would be implemented using a preprocessing

hook. The rest of the RDFS operations would be implemented by explicit rule sets

executed by the general hybrid rule reasoner. The three different processing levels would

correspond to different rule sets. These rule sets would be located by looking for files

"etc/*.rules" on the classpath and so could, in principle, would be overridden by

applications wishing to modify the rules.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

46

RDF would be used to describe web services locally in the inference layer. RDF

would exist as XML documents in the inference engine. A web service group or category

would be described as a resource in the RDF sense. The UDDI registry path would be the

URI of the resource; all web services belonging to the same domain, group, or category

would be represented by the same UDDI registry. For example, the WSDL property has

value that would point to the URI of the description, and the name property of the web

service has value equal to the web service published name.

Once a web service is discovered, a RDF model would be prepared by using the

Jena RDF writer classes. This RDF document would encapsulate the details of a web

service and would be the point of reference when similar calls are made to the web

service in the future. A sample of how to create a model RDF is shown in the code block

in Figure 8.

Public static void rdfDBEmpWriter(String args[]) {
 // some definitions
 String webServiceEP = "http://somewhere/JohnSmith";
 String wsName = "DBWebService";
 // create an empty model
 Model model = ModelFactory.createDefaultModel();
 // create the resource
 // and add the properties cascading style
 Resource dbEmpWebService
 = model.createResource(webServiceEP)
 .addProperty(WS.NAME, name)
 .addProperty(WS.DESCR,
 model.createResource()
 .addProperty(VCARD.Given,
givenName)
 .addProperty(VCARD.Family,
familyName));
 // now write the model in XML form to a file
 model.write(System.out);
 }

Figure 8. Sample Java code to create RDF model

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

47

The resulting RDF model would be similar to the one shown in Figure 9. The Jena

RDF Reasoner for the database group would process the semantic data about the related

web service group and would decide which web service to call, depending on the

scenario. Each of the RDF models of a web service would adequately represent a

particular web service so that the inference engine calls the correct web service when the

criteria described in the RDF model is met. The suitability of the web services would be

based on the decision made by the RDFS Reasoner and would be as per the functionality

that is requested by the interface layer.

<rdf:RDF
 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#'
 >
 <rdf:Description rdf:about='http://context/WS'>
 <ws:Name> </vcard:FN>
 <vcard:N rdf:nodeID="A0"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A0">
 <vcard:Given>John</vcard:Given>
 <vcard:Family>Smith</vcard:Family>
 </rdf:Description>
</rdf:RDF>

Figure 9. The RDF model of a web service

5.3. Integration of the Layers: Service Integration Using the Intelligent Framework

In the previous sections of this chapter, the individual components of the

framework were discussed. In this section, the application is presented as an integrated

entity with a description of how each layer fits into the overall picture of a tractable

software framework where it would be possible to forward and backward map the

requirements, architecture, and implementation. Such a system concept would try to

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

48

answer some of the problems that are faced in current software engineering practices,

specifically the ones described in the first chapter. The example system design shows

how a reliable framework with limited complexity can be built (the scenario shown in

this case would be a system which has straightforward functionalities); more complex

systems would be difficult to implement and would require advanced versions of the

inference engines. The overall picture would present the architecture and then describe

the interaction of each layer with the other. The system architecture can be described in

layers, as shown in Figure 10. The topmost layer, which would interface with the user,

will be the user interface (UI) layer. As is the case in most web based or systems

applications, the UI layer would allow users to request information and show the results.

In the present system it will be realized using standard technologies such as Java Server

Pages (JSP), XML, and HTML. There would be different JSPs for different views to be

shown to the user for different information requested. Each page would have specific

information and would be processed by a related Java Servlet class in the controller layer.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

49

Figure 10. The high level block architecture of the framework

The controller layer would be a group of Java servlets that would each process a

specific user request type and would be related to particular JSPs in the UI layer. This

group of Java classes in the controller layer would communicate with a corresponding

group of classes in the inference engine layer. The servlets would be responsible for

taking in the request from the JSPs in the UI later, processing it, and making a decision as

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

50

to which inference engine group to call based on mapping rules. It would make a call to

the inference engine layer with the user request passed as parameters. This sequence is

shown in Figure11. The protocol for communication between the controller and the

inference engine would be XML; between the UI and the controller it would be HTTP.

Because of this the user would be able to parse XML data using standard XML parsers,

such as Java API for XML Parsing (JAXP). The parsers in the controller would be mostly

Document Object Module (DOM) parsers and would, as a result, parse whole XML

documents. The decision for the parser type is made under the assumption that the data

passed between the layers is not very large in size. The results passed onto the controller

from the inference engine as a result of user queries would not hinder the performance of

the controller under such situations. The controller would make use of special APIs to put

in the user’s requests parameters to the XML defined using a standardized Document

Type Definition (DTD) for the system. The DTDs for the system would define XMLs for

passing in requests and for getting results. The XML format for errors and other scenarios

would also be defined by the DTD. Similarly when the controller receives result data

from the inference engine, it would receive a defined type of XML that would carry the

result to be shown to the user and other meta-information.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

51

Figure 11. The sequence diagram for the framework

The inference layer would be very much similar to any other middleware layer in

an enterprise application except that most of the logic would be implemented using the

Jena and Jena RDF API. In doing so, the system would be able to operate without

implementing the business logic; the business logic would be implemented at runtime by

the artificial intelligence of the inference engines. The XML data received as input from

the controller layer would, as discussed earlier, contain the requests from the user. The

user request would be satisfied by some existing component. The controller would be

responsible for directing to the module in the inference engine which would be

responsible for providing the related group of functionality; the service that finally

processes the user’s requirement is satisfied by the web service that is located by the

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

52

inference engine layer. For example, in the scenario of authentication, the user would

input his credentials, the controller would redirect it to the authentication module in the

inference engine, and the inference engine would parse the input data to make sure

exactly which authenticating web service to call, is based on the user’s credentials and

domain. In another scenario, the search parameters entered by the user to search

information in the network would be passed on to the search module of the inference

engine layer, which would then locate the services that would be able to perform the

search and also the database web service that would provide the data that is to be

searched, hence providing a federation of web services to satisfy the user’s request. The

second scenario describes a situation where two or more web services collaborate to

provide service to the user. Such a federated situation would be supported by the

inference engine layer; the inference engine would dynamically compose a workflow for

the composition of web services.

The final layer is the group of web services exposed by the group’s directory

services. This group of web services would include the databases exposing their data, the

important difference from other enterprise applications being the fact that there would be

no database in the backend, but a layer composed of a group of components (this would

be effectively the backend) that by themselves provide a complete functionality.

The system would consist of various services that are already developed. The

services would be generic enough to satisfy the requirements of the systems. The

databases would be also exposed by services.

The next section describes the various advantages that would be offered by such a

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

53

system in the area of software development and in dealing with various problems

associated with software development.

5.4. Software Development Problems Solved by the Proposed Framework

The various problems associated with the current software development are

discussed in Chapter 1. The case study described a system that integrated various

technologies and thereby developed a framework that can be used in software

development. Such a framework assumes that one could develop web services that are

generic so that could be used easily with other systems. The role of such a system and

how it would evolve during the software development lifecycle is described in the next

paragraph. The solution it provides to development problems is mentioned along with a

description of the system.

In the requirements phase, a set of requirements that initiate the software

development lifecycle would be elicited from the client by an architect and an domain

expert. At the beginning of this phase, the client requirement would be further

decomposed into individual functionality requirements and mapped with existing

services. In cases where a composition of services might help meet the requirement, the

architect would map the requisite services with the requirement. At the end of the

requirements phase, a requirements-implementations graph would be created which that

map each requirement node with specific components. In a case where the specific node

of requirement is not currently implemented by any service, a new service would be

written to satisfy that requirement. Since the requirement and components would be

explicitly mapped and requirements would be initially decomposed into sub-requirements

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

54

nodes, the problem of imprecise communication would be solved. The concept would be

similar to existing pair programming techniques, but in this case an architect would be

the pair up with the customer. Suitable tools would be used to record these activities and

generate the necessary documentation and diagrammatic representations at the later

stages. The mapping would also allow the architecture to be traced back to the

requirements at later stages, thereby doing away with the problem of intractable

requirements and design. The detail to which the requirements are decomposed would

ultimately depend on the size of the requirement itself and the components that would be

required to satisfy it. Typically the requirements decomposition would be detailed enough

to allow the architect to map it to components. The mapping additionally creates a

backward mapping, such that in the case of the decrease of scope of the application, the

individual components can be ruled out.

In the architecture phase, the architect would consult the graph created in the

requirements phase to list the services that would realize the system. The architect would

then design the additional services that need to be created for the nodes of requirements

that were not mapped to any services. The general approach when building new services

would be to design generic services that have a wider scope and would possibly be of use

to other systems. The list of services would then be prepared, and the mock-up for the

various use cases of the system would be done with the services that were identified to

satisfy those requirements. Each of these use-cases would typically need many services,

and the federation of various services at various stages of the use case scenario would be

worked out. Web services, when operating in composition, should have a workflow; this

workflow needs to be implemented in the inference engine layer. The architecture would

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

55

also ensure that all of the utility services such as loggers, comparators, and error handlers

are common to all systems in the environment and would be implicitly called from within

a service whenever needed; these services would not form a part of the workflow. The

architect would add the inference rules for the various phases of the use cases if they are

not in existence already, so that the system behavior is as expected for a particular input

from the user. Because services would be involved in executing all of the scenarios, and

because all of the systems in the environment will have a common inference layer as an

interface to service layers, the architect would end up adding new rules to the inference

layer and new web services to the service layer for those not in existence. This would

make the architecture integrated, and the system would scale very well. The problem of

unforeseen factors is almost non-existent in this case because of the component approach

adopted and also because of the requirements to architecture mapping.

The detailed design phase would involve designing the needed services as per

existent standards and also designing the additional rules needed in the inference layer.

The services would be designed such that they are generic enough to satisfy future

requirements also. For example, the search service component described in the earlier

section would accept any type of search parameter as input, search a variety of targets,

and output the desired number of results in the desired format; the only condition is that

these parameters would be described in XML syntax in the SOAP message. Similarly, all

other services would also be designed such that it would be a superset of the present

requirements: any future demand of a similar functionality would also be met by the

service. Because of the web services approach, the platform dependency and the

programming language in which the functionality is implemented would not be a

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

56

constraint. The tangling of code blocks in various modules would also be absent because

the utility and core functionalities would be built as separate entities, so the clean

separation of concerns similar to that promised by aspect-oriented programming can be

achieved. The modules in the service would be conveniently mapped back to the

architecture components, which would also be very strongly mapped with the individual

nodes of requirement. The result is a very tightly mapped system which retains mapping

between phases and avoids the problem of traceability in each phase, requirements,

architecture, and detailed design.

Finally the effort expended in system testing phase would be greatly reduced

because the requirements verification which forms a considerable portion of the system

testing phase would not be necessary, as that would already be taken care of in the initial

phases.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

57

CHAPTER 6

CONCEPTS IN IMPROVISATION OF A SERVICE BASED ENVIRONMENT

 An environment consisting of numerous web services that form a system that

operates independently without much human intervention is a focus for many researchers.

Among such groups the most noted ones are engaged in intelligent software agent

research. An agent is a software component that is able to perform operations in an

automated way without any human user interference. A system of agents system is an

entity or a piece of software which sends and receives messages and acts on behalf of the

web service. An agent is an implementation of web services. The major groups engaged

in the research of intelligent agents are the Foundation for Intelligent Physical Agents

(FIPA) and the IBM Watson Lab. The Intelligent Software Agents Lab at Carnegie

Mellon University is another such body.

The framework described earlier as a case study has the essential ingredients of an

agent-based framework, except for the fact that the intelligence is not embedded in the

web services; it is a separate layer and forms a different module of the application.

Nonetheless there are many concepts that can optimize either kind of environment (i.e.,

an agent based or a web service based environment) that are discussed in the following

sections. Some of the concepts described are at an incipient stage, and there is

considerable research directed towards them.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

58

6.1 Dynamically Defined Systems

Let us look more closely at the service framework described earlier. Such a

framework negates the concept of a defined system. There is no particular module which

by definition belongs to one of the systems in the environment. Moreover, in this

environment, there is nothing that separates and completely defines a system with its

boundary. The user requirements are satisfied by a federation of web services and some

module of the inference engine and user interface layer. In such an environment a system

can be only loosely defined. A system is actually constructed on the fly whenever a user

makes a specific request. A system that satisfies some specific request would come to

being for that request and would not exist in the very next request. We could call such a

system a system on the fly, an ephemeral system that exists for the time of the user’s

request and does not exist anymore upon the completion of that request. The only thing

that would be truly defined for the system would be the system’s UI layer, built using

JSP. It is possible that the user interface layer can also be built at run time using template

engines and content management tools. In the near future the concept of a well-defined

system might be redundant, and the environment might consist of many short-lived

systems. A corporation’s IT investments would be directed towards a reusable

components environment rather than towards particular applications, as is the case

currently.

6.2 Services Clusters

In a web services environment, it might be difficult for a service requestor to

identify the particular service that would completely satisfy his or her requirements. In

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

59

such scenarios, web services can be grouped together logically and exposed using a

common UDDI. A group of related services can be clustered such that, for a related

functionality, the application would access the cluster for finding the particular web

service. The specific web service that would process the caller’s request would be

decided by the kind of request the calling application sends across to the web service

groups. A cluster’s description would be same in concept as that of an interface; it would

provide an overall description of the services, and the constituent web services would be

specialized implementations. The web services belonging to a cluster might not be

physically in the same network, they would probably be deployed in different physical

machines. The foremost advantage of a cluster would be that it would provide an

aggregation of related functionalities so that web service clients would find the related

services without the overhead of searching through all of the published web services. The

UDDI for the cluster would expose the entire group of services in it, and hence the clients

would be accessing the published information for the group rather than searching

individual published web services. The performance would improve more that ever as the

overhead associated with accessing the published information of individual web services

is eliminated. This kind of clustering would particularly be helpful in a scenario in which

partner organizations having web services which provide related functionality would

group together these services under one cluster.

6.3 Service Gradation

Of the many web services that might be available to serve the user’s request, the

calling application may find a few to be very useful. These web services might become

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

60

the ones which the application uses most frequently, and it makes sense for an application

to cache the location of these web services for use in the future. This concept can be

taken further to include a list of web services, none of which would permanently remain

in the web services list. A cache would store the initial handshaking parameters which the

application would need to establish a connection with the web service. Whenever one of

the web services was used less frequently, it would be downgraded by the application and

would ultimately be cleared out of the cache. The concept is similar to the J2EE

application servers like BEA Weblogic caching policy for session EJB components in

their local cache and more similar to operating systems’ caching technique. Since the

cache would change in its configuration this kind of gradation is dynamic; no web service

would remain in the cache for ever, and the contents of the cache would depend solely

upon the kind of services the user needs.

Web services in the network would also be sorted out by an application as per its

usability. For a particular category of web services (which would all cater to the same

functionality), the application would find the accurate results from a very few, and it

would associate those web services for that particular functionality. These optimizations

would greatly improve the general web services operating environment.

A local configurable and updatable listing of the source of web services will be

maintained. The list will be stored in the local database as a table or may be in some other

machine readable format as XML. The list will be initially created by the domain experts

and will be updated through an interface when there are updates to the list of services.

The listing will be also be updated by agents, i.e., the local service agents. The listing will

be divided into categories and sub-categories depending on the classification. A new

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

61

service will be added to the corresponding category whenever it is discovered. A service

which is provided by a partner organization can be in many of the categories if the

ontology fits into multiple categories.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

62

CHAPTER 7

UNIQUENESS OF THE APPROACH: A BRIEF COMPARISON

The technologies described in the last chapter can be included in the framework

described. One of the features, i.e., dynamic definition of systems, is already ingrained in

the framework. Since the framework supports a purely web services based environment,

service clustering and grading can be incorporated into individual segments of the

framework. The framework would be more efficient with features that generally improve

the performance of a web services environment. Web services is presently an area of

many innovations and would mature technologically with a wider user base and better

products developed for it in the near future. Such a framework which has web services as

its primary constituents would profit from any developments in the area of web services.

Hence an inherent advantage of such a system, which uses web services and semantic

web technologies, is that the scope of its innovation is not limited because it avoids

dependencies on legacy technologies; any such systems present in the environment would

be exposed by web services hence obliterating the legacy technologies used in the

backend.

Software development methodologies that recognize SOA and make use of web

services generally use the previously mentioned development methodologies for

developing the interface to the web services layer. Even the web services are developed

using the older methodologies of software development. In many cases, web services lose

their rich nature because of their development with a particular application in view.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

63

Service functionalities are replicated and services become application specific due to this

narrow focus during the requirements phase of the project. The proposed framework’s

focus is opposite in the sense that it recognizes web services as the focal point and

develops the application around existing services. Hence the framework can be thought to

be more services-centric than applications-centric in its approach.

Existing frameworks do not support seamless mapping of all phases as the

proposed framework does. As described in the beginning chapters, the existing

methodologies except RUP do not have any proper requirement management technique.

Additional requirements, which creep into the later phases of software development

which ultimately creep in most cases result in implementation confusions even in a well

managed software development processes. The proposed framework takes into account

any kind of requirements and makes the process of requirements management much

simpler, since it relies on mapping requirements to components. The simplification of the

requirements management process is one of the unique features of the framework.

The other major unique feature of the framework in terms of software

development methodology is the well-focused design process that results due to the fact

that the design is nothing but a design of components. Architecture and design phases in

existing methodologies generally initiate the application design in most cases; the

application is built from scratch in most cases. In contrast, the proposed framework has

very well-focused design objectives. The design phase focuses exclusively on building

service components whose functionalities are well defined and in providing an inference

layer wrapper if it is not in existence already. All the inference layers modules would be

very similar in their basic design and the individual implementations would vary. This

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

64

similarity in design helps in constant improvement of the inference layer design.

Optimizations to the inference layer design would be a direct result of this similarity in

the modules and would help in cutting down the design time.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

65

CHAPTER 8

CONCLUSION

In the previous chapters, the framework was discussed in detail and the need for

such a framework was justified by listing some problems with the current popular

methodologies. There are many certified processes and products that are constantly being

developed to help solve these issues. Quality control processes are being adopted

universally. Whereas processes like Six Sigma [19] were introduced in the manufacturing

industry to help improve the quality of products, they are being used widely in the

software industry and affect each phase of software engineering. Frameworks have been

designed to implement the Six Sigma methodology. Another similar methodology is the

Capability Maturity Model (CMM), which in its concept is related to the entire software

development cycle [20]. CMM has five defined levels and companies gradually move up

the level beginning at Level 1. There are products that support a company to adopt CMM

and there are many consulting companies which help in implementing CMM standards.

The popular standards of today are being developed with investments and interest from

major companies in the software development arena. Most of these standards and

frameworks are a result of the existing collaboration in the industry to deal with common

problems, and collaborative effort and continuous research is necessary for the

sustenance and use of any new framework.

The proposed framework presents a comparatively simplistic scenario of software

development world and tries to solve the major problems by assuming the absence of

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

66

many of the real world factors. In reality, many problems ranging from conflicting

software environments to human factors would pose some problems in implementing

such a framework. For example, each of the groups implementing the web services would

try to customize the services to meet its own set of problems, rather than putting in the

extra effort in making it generic for use with each of the groups. The inference engine

layer might be designed and implemented in a non-standard way by the developers.

Problems would arise in the automating web services discovery and workflow

composition because of irregularities in the implementation of the inference layer. The

biggest threat to such a framework would be complex requirements that would be

impossible to map to individual components and which might get spread across many

components. In such a scenario, the succeeding phases would suffer, and it would be

impossible to implement an inference engine which would call the appropriate service

due to the present limitations of the current AI based technologies.

However, a hybrid approach would solve most of the aforementioned problems;

proper research in further developing a modification of the proposed framework and the

development of advanced tools to support the framework would help in realizing the use

of such a framework. The biggest factors that would support the proposed and other

similar frameworks would be the process of standardizing and reducing unpredictability

in the way software is implemented. If the challenges one would have to meet in

implementing a design is properly predicted, components which are very similar in their

functionality as assumed in the design process, would be built. Building components

which have predictable behavior would improve the practicality of such a framework.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

67

Technologies such as intelligent agents, which are already in existence, as mentioned

earlier, embed the intelligence inside the components themselves. Such an approach is

comparable to the proposed framework and results in an automated web services

environment where none of the supporting layers (inference engine or interfacing

application) are required.

Other approaches can be studied and the existing methodologies can be suitably

modified to focus on improving the traceability in software development. Of the

processes that are being practiced, RUP achieves the desired results in complex

development environments and has been a tried and tested methodology. Present

processes can be further improved to map requirements and implementations to a greater

degree. Better development practices can also help in improving the traceability in

software development. But the framework or standard processes are the desired way of

solving the problems as practices have the unpredictability of human behavior associated

with it.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

68

LIST OF REFERENCES

[1] C. Emig, J. Weiser, and S. Abeck, “Development of SOA-based Software Systems –
an Evolutionary Approach,” in Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applications and
Services, 19-25 Feb. 2006, pp.182-192.

[2] M. Korsa, R. Olesen, and O. Vinter.(2002, Feb.). Iterative Software Development- A
Practical View. DataTekniskForum. Horsholm, Denmark. [Online]. Available:
http://inet.uni2.dk/~vinter/df-16a.pdf

[3] CASEMaker Inc. (2000, Jan.). What is Rapid Application Development. Santa Clara,
CA. [Online]. Available:
http://www.casemaker.com/download/products/totem/rad_wp.pdf

[4] Rational Software Corporation. (1998). Rational Unified Process: Best Practices for
Software Development Teams. Cupetino, CA. [Online]. Available:
http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practic
es/rup_bestpractices.pdf

[5] J. Foreman. (1997, Jan.). Cleanroom Software Engineering – Software Technology
Roadmap. SEI, Carnegie Mellon University, Pittsburg, PA. [Online]. Available:
http://www.sei.cmu.edu/str/descriptions/cleanroom_body.html

[6] Q. H. Mahmoud. (2005, Apr.). Service-Oriented Architecture and Web Services: The
Road to Enterprise Application Integration (EAI). Sun Microsystems Inc., CA. [Online].
Available: http://java.sun.com/developer/technicalArticles/WebServices/soa/

[7] MomentumSI. (2006). SODA-Service Oriented Development of Applications. Austin,
TX. [Online]. Available: http://www.serviceoriented.org/soda.html

[8] M. M. Tanik and R. T. Yeh, “Rapid Prototyping in Software Development,” IEEE
Computer, vol. 22, No. 5, pp. 9-11, May 1989.

[9] N. Gold, C. Knight, A. Mohan, and M. Munro. (2004, Mar.). Understanding Service-
Oriented Software. IEEE Software. [Online]. 21(2), pp. 71-77. Available:
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1270766

[10] T. Berners-Lee, J. Hendler, and O. Lassila. (2001, May). The Semantic Web.
ScientificAmerican.com. [Online]. May-2001 Issue. Available:

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

69

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21

[11] G. Klyne and J. J.Carroll. (2004, Feb.). Resource Definition Framework: Concepts
and Abstract Syntax. W3C. [Online]. Available: http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/#section-concepts

[12] J. J. Carroll, I. Dickinson, et al. (2003, Dec.). Jena: Implementing the Semantic Web
Recommendations. HP Laboratories, Bristol, U.K. [Online].
Available:http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf

[13] Semantic Technology Conference. (2006). Semantic Technology Primer. Wilshire
Conferences Inc. [Online]. Available: http://www.semantic-conference.com/primer.html

[14] E. J. Friedman-Hill. (2006, Sep.). Jess, Version 7.0RC1. Sandia National
Laboratories, CA. [Online]. Available: http://www.jessrules.com/jess/docs/70/index.html

[15] C. LeVasseur. (2001, Jul.). IT Spending: Its History and Future. Gartner Inc.
[Online].Available:http://www.gartner.com/4_decision_tools/measurement/measure_it_a
rticles/july01/mit_spending_history1.html

[16] NCSA. (2006, Jul.). MyProxy:Credential Management Service. University of
Illinois, Urbana-Champaign, IL. [Online]. Available: http://grid.ncsa.uiuc.edu/myproxy/

[17] D. Felton. (2006, Aug.). Zend Framework: Zend_Authentication Component
Proposal. Zend Technologies Inc. [Online]. Available:
http://framework.zend.com/wiki/display/ZFPROP/Zend+Authentication+Component+Pr
oposal+-+Darby+Felton

[18] Google SOAP Search APIs.(2006). Google Inc.[Online]. Available:
http://code.google.com/apis/soapsearch/index.html

[19] Six Sigma Questions. (2000-2006). iSixSigma LLC. [Online]. Available:
http://www.isixsigma.com/library/content/c010204a.asp

[20] Capability Maturity Model for Software (2006, Jan.). SEI, Carnegie Mellon
University. [Online]. Available: http://www.sei.cmu.edu/cmm/

[21] J. Hendler. (2001, Apr.). Agents and the Semantic Web. Department of Computer
Science, University of Maryland, College Park, MD. [Online]. Available:
http://www.cs.umd.edu/users/hendler/AgentWeb.html

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

70

APPENDIX A

AUTHENTICATION USING CERTIFICATES AND PROXIES

A public key infrastructure (PKI) is a framework for trusted third-party vouching

for user identities. It allows the binding of public keys to users as another mode of

associating identity to user. The PKI framework is usually coordinated by software at a

central location together with other interacting software at distributed locations. The

public keys are typically in certificates.

The term is used to mean the certificate authority (CA) and related arrangements

as well as the use of public key algorithms in electronic communications. The latter sense

is erroneous since PKI methods are not required to use public key algorithms.

PKI arrangements enable users to be authenticated to each other and to use the

information in identity certificates (i.e., each other's public keys) to encrypt and decrypt

messages exchange. In general, a PKI consists of client software, server software such as

a CA, hardware, and operational procedures. A user would have his private key (as the

term suggest, this key would be confidential to the user) and would digitally sign

messages using this key; another user can check that signature (using the public key

contained in that user's certificate issued by a CA within the PKI). This enables two (or

more) communicating parties to establish confidentiality, message integrity and user

authentication without having to exchange any secret information in advance.

Most enterprise-scale PKI systems rely on networks of certificates to establish a

party's identity, as a certificate may have been issued by a CA whose authority is

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

71

established for such purposes by a certificate issued by a higher-level CA, and so on. This

produces a certificate hierarchy composed of, at a minimum, several groups, often more

than one organization, and often assorted interoperating software packages from several

sources. Standards are critical to PKI operation, and public standards are critical to PKIs

intended for extensive operation. Enterprise PKI systems are often closely tied to an

enterprise's directory scheme, in which each employee's public key is often stored

(embedded in a certificate), together with other personal details The present leading

directory technology is LDAP and, in fact, the most common certificate format (X.509)

stems from its use in LDAP's predecessor, the X.500 directory schema.

The problem of assuring correctness of match between data and entity when the

data are presented to the CA, and when the credentials of the person asking for a

certificate is likewise presented, is difficult, which is why commercial CAs often use a

combination of authentication techniques. In many enterprise systems, local forms of

authentication such as Kerberos can be used to obtain a certificate which can in turn be

used by external relying parties.

Proxy repository management is best exemplified best by MyProxy, an open

source software for managing X.509 Public Key Infrastructure (PKI) security credentials

(certificates and private keys).

MyProxy combines an online credential repository with an online certificate

authority to allow users to securely obtain credentials when and where needed. Users run

myproxy-logon to authenticate and obtain credentials, including trusted CA certificates

and Certificate Revocation Lists (CRL). Storing credentials in a MyProxy repository

allows users to easily obtain RFC 3820 proxy credentials, without worrying about

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

72

managing private key and certificate files. They can use MyProxy to delegate credentials

to services acting on their behalf (e.g., a grid portal) by storing credentials in the

MyProxy repository and sending the MyProxy password to the service. They can also

allow trusted servers to renew their proxy credentials using MyProxy, so, for example,

long-running jobs don’t fail because of expired credentials. A professionally managed

MyProxy server can provide a more secure storage location for private keys than typical

end-user systems. MyProxy can be configured to encrypt all private keys in the repository

with user-chosen passwords, with server-enforced policies for password quality. By using

a proxy credential delegation protocol, MyProxy allows users to obtain proxy credentials

when needed without ever transferring private keys over the network.

For users that do not already posses PKI credentials, the MyProxy CA provides a

convenient method for obtaining them. The MyProxy CA issues short-lived session

credentials to authenticated users. The repository and CA functionality can be combined

in one service or can be used separately.

MyProxy provides a set of flexible authentication and authorization mechanisms

for controlling access to credentials. Server-wide policies allow the MyProxy

administrator to control how credentials may be used. Per-credential policies provide

additional controls for credential owners. MyProxy supports multiple authentication

mechanisms, including password, certificate, Kerberos, Pubcookie, PAM, LDAP, SASL,

and one-time passwords (OTP).

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

73

APPENDIX B

FRAMEWORK PSEUDO CODE

1. RDF WRITER JAVA CLASS

/**
 * File: RdfWriter.java
 */

/**
 * RdfWriter - Converting a model to serialization in rdf/xml
 *
 * Date: August 30, 2006
 *
 * @version 0.1
 * @author Sambit Patnaik
 *
 *
*/

import java.io.PrintStream;

import java.util.ArrayList;
import java.util.List;
import org.apache.commons.lang.StringEscapeUtils;

public class RdfWriter {

 /** Default prefix namespace */
 public static final String NAMESPACE_PREFIX_DEFAULT = "sweto";

 /**
 * Prints the header information for the RDF file
 *
 * @author Sambit Patnaik
 * @version 0.1, created
 *

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

74

 * @param printStream the stream to print to
 * @param namespacesList List of namespaces and abbreviations
 * array[0] = namespace
 * array[1] = abbreviation
 */
 public static void printHeader(PrintStream printStream, List namespacesList) {

 //Create the header string
 StringBuffer rdfString = new StringBuffer();
 rdfString.append("<?xml version='1.0' encoding='UTF-8'?>");
 rdfString.append("\n<!DOCTYPE rdf:RDF [");
 rdfString.append("\n\t<!ENTITY rdf '" + IURI.RDF + "'>");
 rdfString.append("\n\t<!ENTITY rdfs '" + IURI.RDFS + "'>");

 String[] currNamespace = null;
 String[] xmlBase = null;

 for(int i = 0; i < namespacesList.size(); i++) {
 currNamespace = namespacesList.get(i);
 rdfString.append("\n\t<!ENTITY " + currNamespace[1] + " '" + currNamespace[0]
+ "'>");
 if(i == 0) {
 xmlBase = new String[]{ currNamespace[1], currNamespace[0] };
 }; // if
 }; // for
 rdfString.append("\n\t]>");
 rdfString.append("\n<rdf:RDF xmlns:rdf=\"&rdf;\"");
 rdfString.append("\n\txmlns:rdfs=\"&rdfs;\"");
 for(int i = 0; i < namespacesList.size(); i++) {
 currNamespace = namespacesList.get(i);
 rdfString.append("\n\txmlns:" + currNamespace[1] + "=\"&" + currNamespace[1]
+ ";\"");
 }; // for

 // add xml-base
 if(xmlBase != null) {
 rdfString.append("\n\txml:base=\"&" + xmlBase[0] + ";\"");
 }; // if

 rdfString.append("\n>");
 rdfString.append("\n\n");

 printStream.print(rdfString.toString());
 }; // printHeader

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

75

 /**
 * Prints the footer for the RDF file
 *
 * @author Sambit Patnaik
 *
 * @param out the stream to print to
 */
 public static void printFooter(PrintStream out) {
 out.print("\n</rdf:RDF>");
 }; // printFooter

 /**
 * Gets the abbrev:type version of a class or property
 *
 * @author Sambit Patnaik
 *
 * @param uri the uri of the instance
 * @param namespaces the List of namespaces
 * array[0] = namespace
 * array[1] = abbreviation
 * @return the abbrev:type form of the type of this class or property
 */
 public static String getShortType(String uri, List<String[]> namespaces) {
 String abbrev = getAbbrevForURI(uri, namespaces);
 int hashIdx = uri.indexOf("#");
 if(hashIdx < 0) {
 hashIdx = uri.lastIndexOf("/");
 }; // if
 String name = uri.substring(hashIdx + 1);

 return abbrev + ":" + name;
 }; // getShortType

 /**
 * Prints the classes to the writer
 * @param ontologyModel the ontology model
 * @param printStream the print stream
 */
 public static void printClasses(IOntologyModel ontologyModel, PrintStream
printStream) {

 ILiteral literal = null;
 String literalValue = null;
 String uri = null;

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

76

 String propertyUri = null;

 for(ISchemaClass schemaClass : ontologyModel.getSchemaClasses()) {
 printStream.println("<rdfs:Class rdf:about=\"#" + schemaClass + "\">");
 // output literals
 for(ILiteralStatement literalStatement : schemaClass.getLiterals()) {
 literal = literalStatement.getObject();
 literalValue = literal.getValue();
 propertyUri = literalStatement.getPredicate().getURI();
 if(IURI.RDFS_LABEL.equals(propertyUri)) {
 propertyUri = "rdfs:label";
 literalValue = RdfWriter.getImprovedLabel(literalValue);
 }; // if
 printStream.println(" <" + propertyUri + ">" + StringEscapeUtils.escapeXml(
literalValue) + "</" + propertyUri + ">");
 }; // for
 // whenever no literal was found, create one using the class-name
 if(literalValue == null) {
 printStream.println(" <rdfs:label>" + RdfWriter.getImprovedLabel(
schemaClass.getURI()) + "</rdfs:label>");
 }; // if
 // output parent classes
 for(ISchemaClass parentSchemaClass : schemaClass.getParents()) {
 uri = parentSchemaClass.getURI();
 printStream.println(" <rdfs:subClassOf rdf:resource=\"#" + uri + "\"/>");
 }; // for

 printStream.println("</rdfs:Class>");
 printStream.println();
 }; // for

 }; // printClasses

 /**
 * Prints the properties
 * @param ontologyModel the ontology model
 * @param printStream the printsStream
 * @param namespaces the namespaces
 */
 public static void printProperties(IOntologyModel ontologyModel,
 PrintStream printStream, List<String[]> namespaces) {

 ILiteral literal = null;
 String literalValue = null;
 String uri = null;

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

77

 String propertyUri = null;

 for(ISchemaProperty schemaProperty : ontologyModel.getSchemaProperties()) {
 if(IURI.RDFS_LABEL.equals(schemaProperty.getURI()) == false) {
 printStream.println("<rdf:Property rdf:about=\"#" + schemaProperty + "\">");
 for(ILiteralStatement literalStatement : schemaProperty.getLiterals()) {
 literal = literalStatement.getObject();
 literalValue = literal.getValue();
 propertyUri = literalStatement.getPredicate().getURI();
 if(IURI.RDFS_LABEL.equals(propertyUri)) {
 propertyUri = "rdfs:label";
 }; // if
 printStream.println(" <" + propertyUri + ">" + StringEscapeUtils.escapeXml(
literalValue) + "</" + propertyUri + ">");
 }; // for
 // whenever no literal was found, create one using the class-name
 if(literalValue == null) {
 printStream.println(" <rdfs:label>" + RdfWriter.getImprovedLabel(
schemaProperty.getURI()) + "</rdfs:label>");
 }; // if
 // output subproperties
 for(ISchemaProperty parentSchemaProperty : schemaProperty.getParents()) {
 uri = parentSchemaProperty.getURI();
 printStream.println(" <rdfs:subPropertyOf rdf:resource=\"#" + uri + "\" />");
 }; // for
 // output domain
 for(ISchemaClass schemaClass : schemaProperty.getDomain()) {
 uri = schemaClass.getURI();
 printStream.println(" <rdfs:domain rdf:resource=\"#" + uri + "\" />");
 }; // for
 // output range
 String abbreviation = null;
 for(IRange range : schemaProperty.getRange()) {
 uri = range.toString();
 abbreviation = RdfWriter.getAbbrevForURI(uri, namespaces);
 if(abbreviation.equals(uri) == false && uri.indexOf("#") != -1) {
 uri = "&" + abbreviation + ";" + uri.substring(uri.indexOf("#") + 1);
 }
 else {
 uri = "#" + uri;
 }; // if
 printStream.println(" <rdfs:range rdf:resource=\"" + uri + "\" />");
 }; // for
 printStream.println("</rdf:Property>");
 printStream.println();
 }; // if

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

78

 }; // for
 }; // printProperties

}; // class RdfWriter

2. ACTION JAVA CLASS

package framework.controller.action;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionMessage;
import org.apache.struts.action.ActionMessages;
import framework.inference.*;
import framework.util.*;

public class SearchAction extends BaseAction {

 public ActionForward executeSubmit(ActionMapping mapping, BaseActionForm
form, HttpServletRequest request, HttpServletResponse response){

 LogUtils.TRACE("-->Enter method executeSubmit on class
SearchAction");

HttpSession session = request.getSession();

String [] searchParams = session.getAttribute("seachParams");
String [] searchType = session.getAttribute("stype");
String target= session.getAttribute("starget");

if (//serach params are not null)
// Construct the XML with the search Parameters
// Call the appropriate method in inference layer and pass the

XML
forward = mapping.findForward(FORWARD_NEXT);

 }
 }

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

79

 LogUtils.TRACE("<-- Exit method executeSubmit on class
EnterSerialNumberAction");
 return forward;
 }

public ActionForward executeBack(ActionMapping mapping, BaseActionForm
form, HttpServletRequest request, HttpServletResponse response) {
 LogUtils.TRACE("<-- Enter method executeBack on class
SearchAction");
 HttpSession session = request.getSession();
 SessionGlobalData sessionGlobalData =
SessionManager.getSessionGlobalData(session);

//if new search
if (sessionGlobalData.getCustomerTypeFlow().equals("Existing")){

 forward = mapping.findForward(BACK_NEW_SEARCH);
 }
 else{
 forward = mapping.findForward(SEARCH_REFRESH);
 }
 LogUtils.TRACE("<-- Exit method executeBack on class
SearchAction");

 return forward;
 }

 public ActionForward executeOther(
 ActionMapping mapping,
 BaseActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)throws ClientException{
 HttpSession session = request.getSession();

//if not authenticated
if (sessionGlobalData.getCustomerId().equals("")){

forward = mapping.findForward(LOGIN);

}

 return mapping.findForward(SEARCH_RESET);
 }
}

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

	A Framework For Improving Tractability In Software Development
	Recommended Citation

	InitialPartRevised.pdf

