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A COMPARISON OF AGENT PARADIGMS FOR RESOURCE MANAGEMENT IN 

DISTRIBUTED SENSOR NETWORKS 

 

ANISH ANTHONY 

 

COMPUTER ENGINEERING 

 

ABSTRACT 

Management of power and other resources that effect field life is an important 

consideration in sensor networks. Sensing, data fusion, target tracking, and network 

resources are some of the factors that have to be effectively managed in order to improve 

the field life of an underwater distributed sensor network application. A hierarchical 

sensor network is considered in which the sensors report the range and bearing of the 

target to the cluster nodes. The cluster nodes then fuse data from the sensor nodes to 

generate a local estimate of the target position. The master node fuses data from the 

different cluster nodes to generate a global estimate of the target position. Intelligent 

agents present on the cluster and master nodes help to manage network resources. This 

dissertation presents and compares alternative agent paradigms applicable for resource 

management in the sensor network. The comparisons provide an increased understanding 

of how the performance of the sensor network changes with the number, functionality, 

and presence of agents at different levels in the network hierarchy. 

 A modular simulation framework based on object-oriented design was used in 

performance evaluation and to generate data for a detailed analysis of component 

interactions. The number of computations, number of communications, tracking 

performance, and intelligence quotient for different agent paradigms were compared. 

The simulation framework developed in this dissertation demonstrated the 

scalability and flexibility of an agent-based system where task-specific agents can be 
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added or removed to easily simulate different scenarios. An agent-based scenario in 

which multiple master nodes were present in the field and another scenario in which 

master and cluster agents were stacked on the same physical hardware achieved high 

field-life performance with acceptable tracking errors. Simulation results verify the 

effectiveness of using agents for resource management in sensor networks. The results 

comparing the different agent paradigms presented in this dissertation will assist 

designers of agent-based systems in using agents to their best advantage in scenarios 

similar to those explored here.  
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I. INTRODUCTION 

Sensor networks consist of many spatially distributed sensor nodes that can be 

used to detect and monitor phenomena at different locations. The sensor nodes are 

usually low-cost, low-power, multifunctional devices having limited processing power, 

communication capabilities, and battery capacity. Advances in chip manufacturing, 

sensor, and communication technologies have made it technically feasible and 

economically viable to develop small sensor nodes that can be used in a variety of 

application domains. Sensor nodes, also called motes, usually consist of a microcontroller 

unit, memory, radio for communications, batteries for power, and different sensor 

elements. Fig. 1 shows the architecture of a typical sensor node. Crossbow, Intel, Moteiv, 

and Dust Networks are some of the popular mote manufacturers [1-4]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Sensor node architecture. 
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Temperature, vibration, position, and light are some of the parameters that can be 

measured by the sensor node. Applications of sensor networks include habitat and 

environmental monitoring, health and hospital-related applications, traffic monitoring and 

management, manufacturing and process control, civil engineering applications, 

infrastructure security, and military applications, such as surveillance, enemy tracking, 

and equipment monitoring [5, 6].  

Individually, the sensor nodes are limited by their computational and 

communicational abilities. A large number of nodes that communicate and collaborate 

with each other can form a sensor network that can overcome these shortcomings. In 

addition, the small form factor and the inexpensive nature of the sensor nodes allow them 

to be deployed in large numbers. The sensor network can be formed either over a wired 

or wireless communication medium. Wireless sensor networks are being increasingly 

used in a number of application domains since they offer the advantages of reliability, 

accuracy, cost effectiveness, flexibility, and ease of deployment [5, 6].  

In spite of the advantages offered by sensor networks, an individual node's battery 

charge may be depleted through normal network operation, leaving the node useless and 

possibly weakening the network. With reduced resources, the network may no longer be 

able to deliver the required level of performance. The management of power and the 

other resources that effect field life is an important consideration in sensor networks. The 

goal of resource management is to conserve the available resources and balance the use 

of resources in the network. 

Agent systems and multi-agent systems are a new and robust paradigm for 

designing flexible architectures for systems with disparate needs. An agent is an entity 



3  

that acts in the place of another, with its authority, in order to bring about a desired result. 

Agents are capable of carrying out goals either alone or as a part of a larger community in 

which they work together to meet goals. Agents provide a level of abstraction for 

achieving goals in a system, thereby potentially simplifying the design of a complex 

system. Agents offer the advantages of lower bandwidth requirements by using processed 

data rather than raw data for functioning. A higher fault tolerance and better load 

balancing can be achieved by using multiple agents in the network. Agents can be added, 

removed, and modified, thus offering design flexibility for distributed sensor systems. 

Agents are gaining popularity because of their flexibility, modularity, and their general 

applicability, especially in the field of distributed computing [7]. 

 

A. Problem Statement and Approach 

While the use of agents for achieving goals in sensor networks has been widely 

studied, there is a lack of knowledge regarding the comparison of agent paradigms based 

on the number of agents, agent functionality, and the presence of agents at different levels 

in the network hierarchy. The primary objective of this dissertation is to present and 

compare alternative agent paradigms applicable for resource management in sensor 

networks. The comparisons provide an increased understanding of how the performance 

of the sensor network changes with the number, functionality, and presence of agents at 

different levels in the network hierarchy.  

A modular simulation framework based on an object-oriented design was 

developed to facilitate the implementation and comparison of different agent paradigms. 

This simulation framework was used to generate data for a detailed analysis of 
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component interactions and in performance evaluation. The number of computations, 

number of communications, tracking performance, and node battery charge remaining for 

different simulation scenarios in which different agent paradigms are employed were 

compared. Performance results were compared and contrasted with a measure of machine 

intelligence of agent-based systems that facilitates comparing alternatives of varying 

complexities. Comparison results presented in this dissertation may assist designers of 

agent-based systems in using agents to their best advantage in scenarios similar to those 

explored here.  

 

B. Contributions 

The principle contributions of this research include the following: 

• Development of an object-oriented framework for simulation of agent-based 

distributed sensor networks (DSNs). 

• Development of adaptive sampling algorithms for energy-efficient target tracking 

in DSNs.  

• Development of a measure of machine intelligence for comparing agent-based 

systems. 

• Implementation of agent-based resource management algorithms in DSNs. 

• Comparisons of agent paradigms for resource management in DSNs. 

 

C. Dissertation Outline 

The rest of this dissertation is organized as follows. Chapter II presents a review 

of DSNs, agents in sensor networks, and some performance metrics that might be useful 
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in comparing agent-based sensor network systems. Chapter III presents the object-

oriented simulation framework, the simulation setup, the state space representation of the 

tracking problem, and the tracking algorithm. Chapter IV presents agent paradigms based 

on the number of agents and different agent functionalities. Chapter V gives details of the 

machine intelligence quotient metric developed to compare agent-based systems. 

Simulation methods describing different agent-based scenarios are presented in chapter 

VI. Simulation results for different agent-based scenarios are presented and discussed in 

chapter VII. Finally, chapter VIII presents the conclusions of this research and some 

areas for future work.  
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II. LITERATURE REVIEW 

This dissertation focuses on agent paradigms for resource management in DSNs. 

As such, this chapter reviews important and related research in DSNs, agents in sensor 

networks, and some performance metrics used in system comparisons. The first section 

covers DSNs and their applications, the challenges faced by DSNs, and some solutions 

used to overcome these challenges. The second section covers agents and applications of 

agents in sensor networks. The third section surveys metrics that might be useful in 

comparing agent-based sensor network systems.  

 

A. Distributed Sensor )etworks 

DSNs can provide access to information by collecting, analyzing, and processing 

data. DSNs promise to revolutionize sensing in a wide range of application domains 

because of their reliability, accuracy, flexibility, cost effectiveness, and ease of 

deployment [8]. In spite of their advantages and tremendous application scope, sensor 

networks face some unique challenges due to ad hoc deployment, unattended operation, 

power constraints, and dynamic changes. An excellent overview of sensor networks is 

presented in [9, 10]. The applications of sensor networks, the challenges faced by these 

networks, and some suggested solutions for power efficiency, localization, and routing 

problems are reviewed in this chapter. 
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 1) Sensor )etwork Applications: 

a) Habitat monitoring: Disturbances caused by human presence while monitoring 

plants and animals in field environments is a big concern among researchers. A wireless 

sensor network that eliminated the need for human presence was implanted on an island 

to measure the usage patterns of nesting burrows and environmental changes in the 

burrow and surrounding areas [11]. The sensor network could be set up before the onset 

of the breeding season or other sensitive periods. The sensors could be placed in locations 

where human access might be unsafe or unwise. The sensor network deployment was 

expected to be more economical than other alternatives for monitoring over a long period 

of time.   

 

b) Building risk monitoring: Buildings are at risk for structural degradation, 

fatigue damage, gas leaks, fires, intrusions, etc. [12]. These risks stem from natural 

hazards, such as earthquakes, strong winds, and tsunamis, or from man made hazards, 

such as fire, crime, and terrorism. Therefore, monitoring the various risks in a building is 

necessary and is an ideal application for sensor networks. These sensors measure 

accelerations, strain, and displacements; detect fires and intrusions; and apply appropriate 

risk control measures, such as structural control, maintenance, evacuation guidance, 

warnings, alarms, fire fighting, rescue, and other security measures. A sensor network 

consisting of MICA2 motes was demonstrated to be an effective tool for building risk 

monitoring. A similar application using a wireless sensor network for structural health 

monitoring was presented in [13].  
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c) Firebug: The Firebug system uses wireless sensor motes that are deployed in 

wildfire environments to collect data that allows predictive analysis of evolving fire 

behavior [14]. 

 

d) Deployable autonomous distributed system: Sensor networks have been 

extensively applied in target detection, classification, and tracking. The Deployable 

Autonomous Distributed System (DADS) is a network of sensors used for the detection 

and tracking of ships and submarines [15]. For the DADS project, a large number of 

sensor nodes will be placed on the ocean floor, near the mouth of a port or bay. These 

sensors will detect and track ships and or submarines that are moving in and out of the 

harbor. Depending on the network topology, the sensors will collect data, fuse the data, 

and then send the data to higher levels in the system. Several algorithms and numerous 

sensor network architectures have been developed and tested for target detection, 

tracking, field layout, and reconfiguration [16-20]. Further investigations are being 

carried out in distributed coordination and control schemes for future distributed sensor 

network systems by identifying and exploring alternative distributed intelligent system 

architectures; methods for distributed data fusion, control, and coordination; and 

strategies that will increase the ability of the field to survive attacks, failures, and 

accidents. 

Other potential applications of underwater wireless sensor networks include 

seismic monitoring, oceanographic data collection, pollution monitoring, offshore 

exploration, disaster prevention, assisted navigation, tactical surveillance, and support of 

underwater vehicles and robots [21, 22]. 
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2) Sensor )etworks Challenges and Solutions: In spite of their advantages, the design 

and development of sensor networks present many difficult challenges. A good summary 

of the advantages and the challenges of scalability, dynamics, and stringent resource 

constraints associated with sensor networks was presented in [23]. The need for localized 

algorithms for overcoming some of these challenges was suggested. Localized algorithms 

intelligently select necessary nodes for sensing, tracking, and reasoning to avoid flooding 

the network with useless or redundant data, and are thus able to extend the field life of the 

sensor network. 

A distributed tracking algorithm to predict a target’s future position was proposed 

in [24]. This tracking algorithm was specially aimed to minimize power consumption in 

the network. The algorithm used a cluster-based architecture for scalability and 

robustness. The algorithm also provided a distributed mechanism for locally determining 

optimal sets of sensors for target tracking. The proposed architecture had a robust failure 

recovery mechanism that could locate lost targets quickly and with low power usage.  

An overview of research on cooperative behavior in distributed sensor systems 

was presented in [25]. In order to achieve cooperative behavior among sensors in the 

network, the use of a hybrid reasoning architecture based on intelligent agent networks 

was suggested. The use of an integration agent with the sole purpose of selecting optimal 

sensors and fusion algorithms for achieving the goals in the system was also suggested.  

For the power constraint problem associated with distributed sensor systems, a 

scheme of censoring sensors for increasing the field life, especially for a hierarchical 

multi-hop network, was suggested in [26]. By censoring, sensors sent only informative 

observations to the fusion center and did not transmit those observations deemed 
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uninformative. An efficient power management protocol in which only nodes that were in 

the vicinity of the target were turned on while all the other nodes were in a power-saving 

mode was presented in [27]. 

 

3) Adaptive Sampling in Sensor )etworks: The rate at which data is sampled at each 

sensor affects the communication and computational resources in a sensor network. 

Adaptive sampling schemes adjust the data sampling rate intermittently in order to 

balance system performance and the available sensor network resources.  

A Kalman Filter-based estimation technique wherein the sensor used the 

estimation error to adaptively adjust its sampling rate within a given range was presented 

in [28]. When the desired sampling rate violated the range, a new sampling rate was 

requested from the central server. The server allocated new sampling rates under the 

constraint of available resources such that the estimation error over all the active 

streaming sensors was minimized. 

Backcasting uses adaptive sampling to significantly reduce communications and 

power consumption while maintaining high accuracy [29]. For this technique, a small 

subset of the sensors communicate their information to a fusion center, which provides an 

initial estimate of the environment being sensed, and guides the allocation of additional 

network resources. The fusion center backcasts information obtained from the initial 

estimate to the network at large, selectively activating additional sensor nodes in order to 

achieve a certain target position estimation error.  

In staggered sampling, only a small percentage of sensors collect data in each 

sampling epoch, and simultaneous sampling at all nodes is not required [30]. This 
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approach schedules the sampling of each sensor to enable power conservation by 

minimizing the amount of data traffic required by each sensor node and by enabling 

nodes to enter a low-power sleep state. Prediction models were used to schedule the 

sampling required to maintain the specified data fidelity.  

A decentralized adaptive sampling scheme was used for flood monitoring in the 

FloodNET system [31]. A non-adaptive benchmark was outperformed by an algorithm 

developed to balance tradeoffs between the need to conserve power and the need to 

sample in order to gain the information needed to reduce uncertainty.  

Target tracking is a more complex application than the monitoring systems 

described above. Specific control objectives, such as reducing the uncertainty in a target 

estimate, have been difficult to achieve in multisensor systems where tracking 

performance must be balanced with the use of system resources. Covariance control 

methods developed for single-sensor management schemes have been extended to reduce 

target estimate bias in a multisensor application in which sensor combinations are 

selected based on the difference between the desired covariance matrix and that of the 

predicted covariance of each target [32]. 

 

B. Agents 

The main contribution toward the field of agents comes from the artificial 

intelligence (AI) community. Ultimately, AI is about building intelligent artifacts, and if 

these artifacts sense and act in some environment, then they can be considered to be 

agents. An agent can be defined as an entity that can carry out tasks independently and 

autonomously in order to achieve certain goals in a system. Development of agent 
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technologies is based on the theories of agency [33]. The theory of agency defines how 

an agent's information and attitudes are related, how an agent’s cognitive state changes 

over time, how the environment affects an agent’s cognitive state, and how an agent’s 

information and attitudes lead it to perform actions. Over the years, numerous definitions 

of agents have emerged. The term agent is being used so frequently that there is no 

commonly accepted notion of what constitutes an agent. In this dissertation, an agent is 

defined as a program that works on behalf of the user, getting inputs from the 

environment, making decisions, and affecting some change in the output to achieve 

certain goals. Agents are capable of carrying out goals either alone or as a part of a larger 

community in which they work together to meet goals. A list of agent properties that may 

be employed in designing agent-based systems is presented below. 

• Some agents perform tasks individually but some work in groups. Agents may be 

autonomous or they may also cooperate with other agents to carry out more 

complex tasks than they themselves can handle. 

• Some agents are static and some are mobile. Agents may move from one system 

to another to access remote resources or even to meet other agents.   

• Some agents communicate with each other but some do not. Agents have social 

ability that enables them to communicate with the user, the system, and other 

agents as required.  

• Some agents learn and adapt but some do not. Agents contain some level of 

intelligence, from fixed rules to learning engines that allow them to adapt to 

changes in the environment. Agents not only act reactively, but sometimes also 

proactively. 



13  

Agent-based approaches to systems engineering offer several potential 

advantages. Agent-based systems naturally support the representation of information-

driven processes through communication protocols that may closely resemble the way 

that people communicate. Agents therefore offer the promise of facilitating the very rapid 

construction of systems with low development and maintenance costs. Agent-based 

systems also offer high levels of flexibility and robustness in dynamic or unpredictable 

environments by virtue of their intrinsic autonomy. For example, agents can be provided 

with abstractions such as objectives and strategies that are not easily supported by 

classical object models. Agents facilitate knowledge sharing with other agents or objects 

within the system. Agents allow learning capabilities to be incorporated in a natural way, 

enabling agent behavior to change with time, based on acquired experience [33].   

 An agent is characterized by the concepts of situatedness, autonomy, and 

flexibility. Agents are especially suited for environments that are open and distributed 

[34]. Agent-based solutions are suited for problems where a classical centralized solution 

is not appropriate and where the distribution of information and decision-making is 

necessary [35]. The paper also listed the advantages of agent-based solutions and the 

barriers that might be encountered while developing practical agent-based applications. 

Agent architectures and multi-agent design and simulation environments that 

enable agent-based multi-satellite systems to fulfill their complex mission objectives have 

been discussed in [36]. This paper described the different types of agents, the functional 

breakdown of these agents, different agent skills, and how to use agents in the 

organization of distributed satellite systems to achieve certain goals. Multi-agent systems 

consist of several interacting agents and are appropriate for cases where data are 
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distributed and incomplete, individual agents have a limited viewpoint, there is no global 

control, and computation is asynchronous. Multi-agent systems enhance computational 

efficiency, reliability, extensibility, maintainability, responsiveness, flexibility, and reuse. 

With these properties, multi-agent system technology appears to be an ideal candidate to 

realize autonomous distributed system designs and provides a framework that may be 

useful in achieving survivability [37].  

An excellent overview of software agents was presented in [38]. A topology of 

agents placing different types of agents into different classes is listed below. 

• Collaborative agents – These agents emphasize cooperation with other agents to 

perform tasks for their owners.   

• Interface agents – These agents emphasize autonomy and learning in order to 

perform tasks for their owners.  

• Mobile agents – These agents are computational software processes capable of 

roaming through the network performing tasks for their owners.  

• Information agents – These agents manage, manipulate, or collate information 

from many distributed sources. 

• Reactive agents – Reactive agents do not have an internal model of their 

environment, instead they respond to the stimulus from the present state of the 

environment in which they are embedded. 

• Hybrid agents – These agents use a combination of any of the above-mentioned 

agent philosophies within a single agent.  

• Heterogeneous agent systems – These systems consists of multiple hybrid agents, 

each using different agent philosophies. 
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Some other classifications that ought to be mentioned are competitive agents, 

proactive agents, and belief-desire-intention agents that can be classified into one or more 

of the above-mentioned classes of agents. A discussion of the other classifications of 

agents is beyond the scope of this dissertation.  

The hierarchy of an agent-oriented system is shown in Fig. 2. The basic idea is 

that the environment consists of entities, some of which can be considered as objects. Of 

the set of objects, some may be agents, and of the set of agents, some may be autonomous 

agents. The relationships between agents and objects, and the role of object-oriented 

analysis in multi-agent system development were discussed in [39]. One of the important 

attributes of agents is that the agents work towards achieving certain predefined goals. 

Autonomous agents create and pursue their own agenda as opposed to functioning under 

some other agent. Agents can thus be considered as a subclass of objects, and object-

oriented methods can used to develop agent simulations. 

 

 
 

 

Fig. 2. Hierarchy of an agent-oriented system, showing autonomous agents as a part of 

the larger group of agents that in turn are a part of the object group.  

 

 

Object 

Agents 

Autonomous Agents 
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1) Agents in Sensor )etworks: Agents are being used in a wide variety of 

applications, especially in distributed computer networks systems and distributed sensor 

network systems. Either hardware or software agents can be used in a network. Some 

examples are software agents used to filter emails, manage databases, search the internet 

for data, and control air traffic [40]. Agents have much to offer in sensor networks, and 

the high interest in bringing together aspects of software agent technology and wireless 

sensor networks in this emerging research area is indicated by the planning of workshops 

related to agents in sensor networks as parts of international conferences [41, 42]. The 

following are representative applications of agents in DSNs. 

 

a) Wildfire tracking: Agilla is a middleware that allows users to create and inject 

special programs called mobile agents that move around in the wireless sensor networks 

performing application specific tasks [14, 43]. A detailed case study of Agilla for the 

Firebug fire-tracking application and a set of application-level performance results that 

demonstrate the reliability and efficiency of mobile agents in a highly dynamic 

application were presented in these papers. 

 

b) Urban traffic control system: In a proposed urban traffic control system, 

adaptive signaling can optimize traffic flow by adjusting the signal based on the current 

traffic conditions [44]. Intelligent agents provided improved control because of their 

ability to manage, learn, self-adjust, and respond to non-recurrent and unexpected events. 

Agents made decisions on how to control an intersection based on goals, perceptions, 

capabilities, and knowledge of the traffic conditions. The control strategy agent used a 
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prediction of the future traffic state to coordinate with other agents in the system and to 

plan a signal control strategy. 

 

c) Atmospheric monitoring: An agent-based power-aware sensor network for 

lower level atmospheric monitoring was presented in [45]. Sensor agents working near 

the range limit of radio communication kept their radios turned off most of the time to 

lower power expenditure at the cost of network responsiveness.  

 

d) Other applications: The use of intelligent agents in DSNs and different 

suggestions on how to use intelligent agents in sensor systems were discussed in [46]. 

Deployment of mobile agents in DSNs to form an improved infrastructure for multi-

sensor data fusion was explored [47]. A target classification example was used to 

illustrate the efficiency of a mobile agent-based computing model, and it was concluded 

that mobile agents are a promising solution for high-performance distributed computing 

[48]. 

 

C. Metrics for Comparing Agents-Based Sensor )etworks 

Existing methods for comparing different software systems can be used for the 

comparison of different agent-based systems, provided the agents are implemented in 

software. Hardware agents might use different measures. Uncertainty and complexity are 

the two important factors affecting the quality of agent-based systems [49]. In multi-

agent systems, uncertainty arises when agents are engaged in competitive acts. 

Complexity can be defined as the degree to which a system has a design or 
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implementation that is difficult to understand. Complexity can be determined by factors, 

such as the number and intricacy of interfaces, the number and intricacy of conditional 

branches, the degree of nesting, and the types of data structures. Complexity is structural 

as well as algorithmic. Structural complexity changes as the system evolves and new 

components and functions are added or removed from the system. Algorithmic 

complexity in multi-agent systems arises due to the mechanisms of knowledge processing 

and sharing as well as the ability to engage with other agents in cooperative, coordinative, 

and competitive tasks. Some of the measures that might facilitate the comparison of 

different agent-based configurations are reviewed as follows.  

 

1) Function Point Analysis: The function point metric was devised as a means of 

measuring software size and productivity [49]. It uses functional logical entities such as 

inputs, outputs, and inquiries that tend to relate more closely to the functions performed 

by the software as compared to other measures, such as lines of code. For function point 

analysis, the system is divided into five components: external inputs, external outputs, 

external inquiry, internal logical files, and external interface files. Once the system is 

broken into these components, rankings are assigned to the components, and these 

rankings are then summed to get the function point count for the system. Function points 

are becoming widely accepted as the standard metric for measuring software size.  

 

2) Halstead Complexity: The Halstead complexity measure was developed to measure 

the computational complexity of the program module [49]. This method gives a measure 

for the algorithmic complexity of the system. The Halstead measures are based on four 
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scalar numbers derived directly from a program's source code, where n1 is the number of 

distinct operators, n2 is the number of distinct operands, )1 is the total number of 

operators, and )2 is the total number of operands. Program length, program vocabulary, 

volume, difficulty, and effort are five measures derived from these numbers. 

 

3) Cyclomatic Complexity: Cyclomatic complexity is the most widely used member 

of the class of static software metrics [49]. Cyclomatic complexity may be considered a 

broad measure of the soundness and confidence of a program. Cyclomatic complexity 

measures the number of linearly independent paths through a program module. This 

measure provides a single ordinal number that can be compared to the complexity of 

other programs. Cyclomatic complexity is often used in conjunction with other software 

metrics. This measure gives the structural complexity of the system. The cyclomatic 

complexity number is generally considered to provide a stronger measure of a program's 

structural complexity than that provided by counting lines of code. 

 

4) Entropic Analysis: Entropic analysis based on the concepts of information theory 

can be used to measure the complexity of a software program. If the text of the program 

is considered as a message then the amount of information contained in the program code 

can be measured. The complexity of a program is inversely proportional to the average 

information content of its operators. A software complexity metric based on average 

information content of each operator in the program source code has been developed 

[50]. In addition, entropic analysis of probabilistic models to express the uncertainty of 
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reasoning, planning, and decision making can be done in order to compare different 

software systems. 

 

5) Machine Intelligence Quotient: Along with measuring design and code 

complexity, a measure of intelligence can be useful in comparing intelligent systems, 

including agent-based systems. However, what may seem intelligent to one person may 

not seem intelligent to another. One reason for this confusion is that the term intelligence 

has a broad meaning [51]. Numerous definitions of intelligence and numerous criteria for 

measuring intelligence have been proposed. One of the simplest defines intelligence as 

that which produces successful behavior [52]. Intelligence requires the ability to sense the 

environment, make decisions, and control actions. Advanced forms of intelligence 

provide the capacity to act successfully under a large variety of circumstances to survive, 

prosper, and reproduce in a complex and often hostile environment. In guidelines to be 

followed for developing an intelligence metric, it is asserted that the intelligence metric 

developed should be application-specific, dynamic and adaptive; reflect generalization 

capabilities; and be able to evaluate interrelations and interactions among multiple 

systems [53]. Survivability and competence are mentioned as additional criteria for 

measuring intelligence [54]. Survivability is the ability of a system to cope with diversity 

in the environment, as well as internal faults (hardware and software). In a sensor 

network, the field life can be considered as a measure of survivability. Generally, field 

life is defined as the time for which the sensor field is able to achieve a desired level of 

performance. In this dissertation, field life is defined as the simulation duration before 

which any of the sensor or cluster nodes or all of the master nodes stop working due to 
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depletion of battery charge. Competence is the ability of a system to successfully perform 

tasks. For a tracking application, tracking performance can be used as a measure of 

system competence. Expressiveness and perceptiveness have been suggested as important 

criteria for measuring the intelligence of machines [55]. Expressiveness is a measure of 

the output richness of an electromechanical system. Perceptiveness is a measure of the 

fidelity of an electromechanical system's effective mapping from environmental change 

to output. Entropy, channel sensitivity, environment sensitivity, scenario sensitivity, 

information sensitivity, and adaptation rate sensitivity are proposed as metrics of 

autonomy for an intelligent system [56]. Different schemes for measuring the machine 

intelligent quotient (MIQ) have been proposed, and two of these relevant schemes are 

discussed as follows. 

 

a) Scheme 1: A formal analysis of the systems software architecture and hardware 

configurations can be used to measure the intelligence of a system [57]. The MIQ is 

defined as the product of the complexity of the tasks the system can handle (T) and the 

performance in task execution (E). 

 = ×MIQ T E  (1) 

where  

 BE w B wδ δ= +   (2) 

 T w w w w wγ δ λ σ κγ δ λ σ κ= + + + +  . (3) 

In (2), 

 max( )i
i

B α τ= +   (4) 
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where B is the behavior response time, wB is the behavior response time weight, αi is the 

node propagation time for node i, and τ is the trigger propagation time. In (3), T is the 

task complexity ability, γ is the trigger count, δ is the average strand propagation time 

overall machine, λ is the layering depth, σ is the total strand count in the machine, κ is the 

total node count in the machine, and , , , ,w w w w wγ δ λ σ κ  are the respective weights that 

are derived from system analysis. 

 

b) Scheme 2: A systematic approach to measure the MIQ of human machine 

cooperative systems is presented in [58]. In a human-machine cooperative system MIQ is 

expressed as 

 MIQ = CIQ - HIQ  (5) 

where CIQ is the control intelligence quotient and HIQ is the human intelligence 

quotient.  

Symbols required for setting up CIQ and HIQ in (5) are defined as follows. The 

set of n tasks required to control events is  

 T = 1 2 3{ , , ,..., }nT T T T . (6) 

The intelligence required to execute task Ti is ri with 

 r = 1 2 3{ , , ,..., }nr r r r .  (7) 

The data transfer matrix is 

 F =

12 13 1

21 22 2

1 2 3

0 ...

0 ...

... 0

n

n

n n n

f f f

f f f

f f f

 
 
 
 
 
  

⋮ ⋯ ⋮
  (8) 
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where fij is the data quantity transferred from Ti to Tj. Interface complexity chm is the 

complexity of transferring data from human to machine, and cmh is the complexity of 

transferring data from machine to human. The task allocation matrix is A.  

 A =

11 12 13

21 22 23

31 32 33

1 2 3n n n

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 

⋮ ⋮ ⋮

  (9) 

The elements of matrix A can have only binary values 0 or 1. If the machine performs Ti, 

then 1 1ia = , and if the human performs Ti, then 2 1ia = . If Ti can be assigned neither to 

machine nor human, then 3 1ia = . Thus, 1 2 3 1i i ia a a+ + =  for ,1i i n∀ ≤ ≤ . Using the 

symbols defined previously,  

 1 2
1 1

n n

i i i i
i i

CIQ a r a r
= =

= +∑ ∑   (10) 

 2 1 2 2 1
1 1 1 1 1

n n n n n

i i mh i j ij hm i j ij
i i j i j

HIQ a r c a a f c a a f
= = = = =

= + +∑ ∑∑ ∑∑ .  (11) 

The equations presented above are for measuring the MIQ of a human-machine 

cooperative system. This scheme cannot be used directly to measure the MIQ of agent-

based systems that do not have a human element. However, this scheme can be adapted 

and extended to measure the MIQ of agent-based systems, as outlined in chapter V.  

 

D. Summary 

A review of literature pertaining to DSNs, agents in sensor networks, and 

performance metrics used for system comparisons has been presented in this chapter. An 

underwater DSN system used for tracking ships and submarines is used as a 
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representative application in this dissertation for demonstrating and comparing agent 

paradigms in sensor networks. Intelligent agents are used for resource management and 

improving the performance of the sensor network. Though function point analysis, 

Halstead complexity, cyclomatic complexity, and entropic analysis are good measures for 

comparing the size, productivity, and complexity of software systems, a measure of the 

intelligence quotient may be better suited for comparing software systems that have 

almost the same size and complexity but achieve different goals by virtue of their 

intelligence. MIQ is a promising metric for comparing scenarios employing different 

agent paradigms for intelligent goal achievement in sensor networks. In chapter V of this 

dissertation, the practical and systematic method of measuring the MIQ of human-

machine cooperative systems (scheme 2) is adapted and extended to measure the MIQ of 

agent-based systems.  
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III. SIMULATION FRAMEWORK 

Simulation is a valuable tool for the performance evaluation of the different 

operational scenarios of a system. Simulations are used to develop and test alternative 

scenarios, consider tradeoffs, and evaluate the ability of the system to achieve its goals. 

Simulations provide insight into the parameters that impact the overall performance of 

sensor network, expose trade-offs, and allow different alternatives to be explored with 

ease. In this work, a modular system-level simulation was developed for exploring and 

comparing agent paradigms in DSNs. The first section of this chapter describes the 

system level simulation for the sensor network system. The second section describes the 

object-oriented simulation framework. The third section describes the simulation setup, 

including the target tracking algorithm based on the Extended Kalman Filter (EKF). 

 

A. System-Level Simulation  

In this dissertation, an underwater distributed sensor network system used for 

tracking ships and submarines was used as a representative application for demonstrating 

and comparing agent paradigms in sensor networks. A pictorial representation of the 

DSN for this application is shown in Fig. 3. A modular system-level simulation of the 

underwater DSN was developed [59, 60]. The three-tier hierarchical network is shown in 

Fig. 4. An activity diagram of the sensor network simulation is shown in Fig. 5. The 

sensor nodes report the measured range and bearing of the target to cluster nodes that 

perform local data fusion. The master node then gathers the data from the cluster nodes 
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and performs global data fusion. The master node generates an estimate of the target 

position and tracks the target through the field. The master node is also responsible for 

providing information about the target and the network to an external command center. 

Since the master node is responsible for communicating the target information to the 

command center, which may be a ship or a satellite, the master node is assumed to have 

powerful communication capabilities compared to the cluster or sensor nodes. 

 

 
 

Fig. 3. Pictorial representation of a distributed sensor network (DSN) for detecting ships 

and submarines. The fusion center gathers data from the clusters and sends the global 

estimate of the target position to the command center, which may be a ship, satellite, or a 

naval base.  
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Fig. 4. Three-tier hierarchical sensor network with sensor nodes located on tier one, 

cluster nodes located on tier two, and the master node located on tier three.  
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Fig. 5. Flow of activities in the sensor network. 
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Since the system under consideration is large, having a large number of entities, 

different strategies, and detailed interactions between the different entities, a modular 

approach was considered for developing the simulations. Software modules were 

developed for mimicking the large number of entities and processes that will be present 

in the actual physical system. The system is partitioned into components that are modeled 

at a behavioral level appropriate for the goals of the simulation. This modular approach 

gives the flexibility and extensibility needed to change, add, and remove modules for 

simulating different scenarios and strategies at a fast pace.  

In the system-level simulation, a field layout is initially specified, the target track 

is generated, and events are simulated at each time step. At every simulation instant, a 

communications model is run to allow information to be transferred from one node to the 

other. Next, the node models are run. Fig. 6 shows the operational flow chart of the node 

model. At the beginning of each time step, a node receives information, such as 

commands, communication counts, and mode of operation, from the communications 

module through an inbox. A node then runs a coordination module that coordinates 

events based on the received information. At the end of the time step, the node sends 

information to the outbox for transmission. The communication model takes the 

information from the outbox and sends the message using a communications protocol and 

appropriate routing to an inbox. Hence, at their fastest, messages placed in the outbox at 

simulation instant t will be available in the receiver inbox at simulation instant t+1. 

However, increased computations at the node, reduced network bandwidth, 

environmental problems, and queuing at the sensors in the routing path introduce delays 

in the communication of information to the next level and thereby affect system 
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performance. Communication delays can be simulated inside the communication model 

in order to allow the affect of delays on tracking performance to be evaluated.   

 
Fig. 6. Operational flow chart of the node model.  

  

 

Since resource management is one primary focus of this dissertation, the 

consumption of power resources by each event occurring in the network is measured. 

Sensing, fusion, communication, and coordination are events that consume power. A 

count of the number of calls to the communications module and the tracking and control 

and coordination algorithms is maintained. Proportionate battery-draining weights are 

assigned to each event depending upon the actual practical node model used for the 

simulation [59, 60]. Based on these assigned weights, resource utilization is computed at 
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each time step and at each node. To accurately represent resource utilization and battery 

usage, a battery model is chosen that mimics the charge recovery mechanism as well as 

the rate capacity effect exhibited by real-world batteries. This phenomenon, called 

“relaxation,” models how the battery, after discharging at a high rate, regains some of its 

charge when the discharge current from the battery is reduced or cut off. The relaxation 

effect gives the battery a chance to recover some of its lost charge, thereby increasing the 

life of the battery.  

 

B. Agent-Based Object-Oriented Simulation Framework 

The system-level simulation described above was modified to accommodate 

agents in the system. Fig. 7 shows a three-tier, hierarchical, agent-based sensor network 

architecture. At the lowest level, sensor nodes detect the range and bearing of the target 

and report this range and bearing information to the cluster nodes. At the second level in 

the hierarchy, the cluster nodes fuse the data from the sensors and report the local 

estimate of the target position to the master node. At the third level, the master node fuses 

data from the cluster nodes to generate the global estimate of the target position. The 

agents are present on the master node and the cluster nodes. For the distributed sensor 

network application under consideration, agents present on the master node, called master 

agents (MA) and agents present on the cluster node, called cluster agents (CA) will be 

used for target tracking, control and coordination, and reconfiguration of the system and 

its resources in order to maximize the field life. The agent simulation framework was 

designed to use the advantages of object-oriented programming (OOP) techniques in 

system design [61]. MATLAB
©
 OOP techniques were used to develop the simulations. 
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OOP can significantly increase code reuse and make programs easier to maintain and 

extend. Fig. 8 shows the object diagram of the agent-based sensor network simulation. 

The sensor node, cluster node, master node, target, communication, agent, and battery are 

objects that are modeled for simulations. The objects carry out their functions using the 

available resources while not violating their predefined attributes. Tables I-VII illustrate 

the resources and attributes available for the various objects.  

 

 
 

 

Fig. 7. Three-tier, hierarchical, agent-based sensor network with sensor nodes located on 

tier one, cluster nodes located on tier two, and the master node located on tier three. 

Agents are present on the cluster and master nodes. 
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Fig. 8. Object diagram of the simulation framework. 

 

 

1) Sensor )ode: The primary purpose of a sensor node is to detect the target, measure 

the range and bearing of the target, and relay this information to the respective cluster 

node. The range and bearing of a target is measured with respect to the local position of 

the sensor nodes within each cluster. Uncertainty in the knowledge of the sensor positions 

and the quality of the sensors used in the sensor nodes affect the sensor measurements. 

The measurement noise variance for the sensor node can be set to accommodate these 

uncertainties. Sensing and communication weights are set to represent computation and 

communication resource utilization in the sensor node due to these activities. The sensing 

range of the sensor node is an adjustable parameter that controls the overlap of sensors in 

the field. If required, the sensors are also able to route data in the network. Table I 

presents the resources and corresponding attributes for sensor nodes.  
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TABLE I 

RESOURCES AND CORRESPONDING ATTRIBUTES FOR THE SENSOR NODE 

 

Resources Attributes 

Sensor  Sensor parameters 

• Detection range 

• Position (x, y coordinates) 

• Measurement noise variance 

Computation Sensing weights 

Communication Communication weights 

Communication buffer size 

Communication range 

Battery Battery parameters (see battery object) 

 

 

2) Cluster )ode: The cluster nodes gather the range and bearing information from 

their respective sensors, fuse this data to generate a local estimate of the target position, 

and pass these local estimates to the master node. Data fusion and communication 

weights are set to represent computation and communication resource utilization in the 

sensor node due to these activities. Table II presents the resources and corresponding 

attributes for cluster nodes.  
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TABLE II 

RESOURCES AND CORRESPONDING ATTRIBUTES FOR THE CLUSTER NODE 

 

Resources Attributes 

Cluster Cluster parameters 

• Position (x, y coordinates) 

• Number of sensors in each cluster 

Tracking algorithm Process noise  

Measurement noise 

Computation Data computation weights 

Communication Communication weights 

Communication buffer size 

Communication range 

Cluster agent Agent parameters (see agent object) 

Battery Battery parameters (see battery object) 

 

 

3) Master )ode: The master node is present at the highest level in the system 

hierarchy. The master node gathers local estimates from the cluster nodes and fuses this 

data to generate a global estimate of the target position. More than one master node can 

be present in the network, but only one master node is active at any given time in the 

simulation. Data fusion and communication weights are set to represent computation and 

communication resource utilization in the sensor node due to these activities. Table III 

presents the resources and corresponding attributes for master nodes.  
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TABLE III 

RESOURCES AND CORRESPONDING ATTRIBUTES FOR THE MASTER NODE 

 

Resources Attributes 

Master Master parameters 

• Position (x, y coordinates) 

• Number of clusters in each master 

• Active state 

Tracking algorithm Process noise  

Measurement noise 

Computation Data computation weights 

Communication Communication weights 

Communication buffer size 

Communication range 

Master agent Agent parameters (see agent object) 

Battery Battery parameters(see battery object) 

 

 

4) Target: The target moves through the sensor field. The target can be set up to have 

random initial positions and velocities or it can have a predetermined set path. The target 

object is modeled to provide Cartesian coordinates of the target position at any given 

simulation instant. Table IV presents the resources and corresponding attributes for the 

target.  

 

TABLE IV 

RESOURCES AND CORRESPONDING ATTRIBUTES FOR THE TARGET 

 

Resources Attributes 

Target Cartesian coordinate parameters 

• X axis position 

• Y axis position 
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5) Communication Model: The communication model is responsible for modeling the 

network communications. A simple outbox-inbox model is set up to transfer data from 

the outbox of the transmitting node to the inbox of the receiving node. The 

communication model takes the information from the outbox and sends the message 

using a communications protocol and appropriate routing to an inbox. Hence, at the 

fastest, messages placed in the outbox at simulation instant t will be available in the 

receiver inbox at simulation instant t+1. If there are computational or communicational 

overloads at the nodes, the communication model introduces delays in data transmission 

to represent these overloads. Table V presents the resources and corresponding attributes 

for the communications model.  

 

TABLE V 

RESOURCES AND CORRESPONDING ATTRIBUTES FOR THE 

COMMUNICATIONS MODEL 

 

Resources Attributes 

Communication Communication buffer size 

Delay Delay weights for 

• Computational overload 

• Communicational overload 

 

 

6) Agent: Agents are present on the cluster and master nodes. Agents assist their 

respective cluster and master nodes in achieving the goals in the network. Fig. 9 shows a 

simple agent architecture. The agent forms a wrapper around the node and perceives the 

environment from data collected by the sensors, messages from other agents, or from 

events that occur within the node. Depending on the goal that has been set for the agent, 

the agent applies some condition - action rules. These rules help the agent to make a 
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decision on what action has to be taken in order to achieve the goal. For the underwater 

sensor network target tracking application, the agents assist in data fusion, control and 

coordination, and reconfiguration of the system and its resources in order to maximize the 

usage of network resources while maintaining an acceptable tracking performance. Table 

VI presents the resources and corresponding attributes for the agent.  

 

Fig. 9. Simple agent architecture.  

 

TABLE VI 

RESOURCES AND CORRESPONDING ATTRIBUTES FOR THE AGENT 

 

Resources Attributes 

Agent Agent ID 

Mode (on/off) 

Agent function 
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7) Battery: Batteries are present in each node in the sensor network. In this 

dissertation, battery charge is the term used to represent the life or capacity of the battery. 

The battery charge is an adjustable parameter that is set according to the simulation 

requirements. In the node models, the battery weights are set for the active state, sensing, 

data processing, receiving, and transmitting data. For each of these activities, the batteries 

are drained proportionately. Table VII presents the resources and corresponding attributes 

for the battery.  

 

TABLE VII 

RESOURCES AND CORRESPONDING ATTRIBUTES FOR THE BATTERY 

 

Resources Attributes 

Battery Size (life) 

Battery weight for 

• Active state 

• Sensing 

• Data processing 

• Receiving  

• Transmitting 

 

 

C. Simulation Setup 

1) Simulation Flowchart: Fig. 10 shows the simulation flowchart. The various 

subroutines in the flowchart are described subsequently. 
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Fig. 10. Flowchart of the simulation.  

 

 

a) Field layout: The field layout module determines the layout of the nodes in the 

field. The nodes can be set in the field according to some specialized algorithm or the 

nodes can have random placements. Fig. 11 shows the field layout of an exemplary 

sensor network that detects and tracks a target through the field. In this research, the field 
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layout in Fig. 11 is used for simulations, although other field layouts could be easily 

implemented. The numbers of sensor, cluster, and master nodes are set in the field layout. 

For simulation purposes, nine clusters and seventeen sensors per cluster are set up in the 

field. The network has four master nodes (diamonds), nine cluster nodes (dots), and 

seventeen sensor nodes (small circles) per cluster (Fig. 11). Only one master node is 

active in the network at any time. The sensor nodes report the measured range and 

bearing of the target to the cluster nodes that perform local data fusion. The active master 

node then gathers the data from the cluster nodes, performs global data fusion, generates 

an estimate of the target position, and tracks the target through the field.  
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Fig. 11. Field layout of the sensor network. The field includes four master nodes 

(diamonds), nine cluster nodes (dots), and seventeen sensor nodes per cluster (circles). 
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Though this field layout (Fig. 11) is not optimal for any specific purpose and is 

difficult to achieve in an underwater sensor network due to ad hoc deployment, wave 

action, and ocean floor topography, this field layout (Fig. 11) is useful for simulating and 

comparing different agent paradigms used for resource management in sensor networks. 

The sensor node arrangement allows  the density of the sensor nodes to decrease from the 

center to the periphery of the cluster. Changing the sensor density presents challenges to 

the tracking algorithm. The target position is estimated better when a large number of 

sensors detect the target simultaneously at the center of the cluster than when the target is 

detected by fewer sensors at the periphery of the cluster. This field layout (Fig. 11) also 

enables sensors in adjacent clusters to detect the target when the target is located between 

clusters.  

 

b) Initialize: The initialize module initializes all the different entities in the 

network. First, the target track is set up and initialized. Next, the master, cluster, and 

sensor nodes are set up and then initialized with the different attributes presented in the 

respective node models. All the nodes are initialized with batteries having a specific 

charge. The master and cluster nodes are also initialized with the master and cluster 

agents, respectively.  

 

c) Set routing table: The set routing table module is responsible for computing the 

routing table of the different nodes in the field according to pre-selected routing 

protocols. Routing protocols such as fixed multi-hop routing, probabilistic multi-hop 

routing, modified probabilistic multi-hop routing, and localized optimization routing are 
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available [61, 62]. In localized optimization, the cluster nodes select the sensor node 

within the cluster that is responsible for routing data to the master node depending on the 

sensor battery charge remaining. Different routing nodes are thus used within the cluster 

to achieve uniform battery charge utilization in the sensor nodes. The localized 

optimization routing protocol is used for simulating the agent-based underwater sensor 

network system, since it improves the functional field life of the sensor network [61, 62]. 

 

d) Communication: The communication module is run for each time step in the 

simulation. The communication module is responsible for simulating all network 

activities related to communication. The outbox-inbox communication model described 

in the system-level simulation section of this chapter is used in the communication 

module. The communication module transfers data from the sensor nodes to the cluster 

nodes and from the cluster nodes to the master nodes. The communication module also 

transfers control signals from the master node to the cluster nodes and from the cluster 

nodes to the sensor nodes.  

 

e) Master main: The master main module is responsible for simulating all master 

node activities at each time step in the simulation. The node model (Fig. 6) is used for the 

master main module. The activities at the master node include processing data from the 

clusters and making control decisions that are then communicated to the cluster nodes.  

 

f) Cluster main: The cluster main module is responsible for simulating all cluster 

node activities at each time step in the simulation. The node model (Fig. 6) is used for the 
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cluster main module. The activities at the cluster nodes include processing data from the 

sensors and making control decisions that are then communicated to the sensor nodes.  

 

g) Sensor main: The sensor main module is responsible for simulating all sensor 

node activities at each time step in the simulation. The node model (Fig. 6) is used for 

defining activities performed in the sensor main module. The activities at the sensor 

nodes include detecting the target, measuring the range and bearing of the target, and 

communicating this range and bearing information to the cluster nodes. 

 

h) Agent: The agent modules are present on the master node and on the cluster 

nodes. Depending on the specific goals set for the agent, the agent will have access to 

specialized data fusion, tracking, control, and coordination algorithms. Based on the input 

from the nodes, the agents run these algorithms and use condition-action rules to generate 

the outputs. The agent outputs are sent back to the nodes to specify the control actions 

that will be taken to control entities in the system.  

 

i) Tracking algorithm: The tracking algorithm is an important module for 

simulating the agent-based underwater target tracking DSN. Several authors have 

considered decentralized approaches for data fusion and estimation [63, 64]. In this work, 

the EKF algorithm, which is well suited for nonlinear multi-sensor systems, is used for 

data fusion and tracking [65-67]. The EKF algorithm used in the agent-based DSN is 

described in section 2 of this chapter.  
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j) Control and coordination algorithms: Intelligent agents can be used to 

implement control and coordination strategies in order to maximize field life. Agents for 

control and coordination can gather information about the battery charge remaining in the 

nodes and modify communication routes through the network. Changing communication 

routes can help to decrease communication delays in the system as well as to manage the 

power consumption of the nodes that are being used for communication [61, 62]. Before 

a node stops working due to depletion of battery charge, the agents can switch functions 

from the dying node to nodes that still have adequate battery charge remaining [59, 60]. 

Agents can also be used to selectively turn on and off nodes in the system. Thus, sensor 

and cluster nodes that are not in the vicinity of the detected target can be temporarily 

switched off to save battery charge. 

 

2. Extended Kalman Filtering for Distributed Sensor )etworks 

a) State space representation of the tracking problem: Sensors measure the target 

range, ρ, and bearing, θ. The velocity of the target is resolved into two vectors in x and y 

directions, Vx, and Vy, respectively (Fig. 12). In a similar fashion, the range, ρ, of the 

target from the sensor can be resolved as ρx and ρy [67].  

 

 

 

 

 

 

Fig. 12. Tracking problem in two-dimensional space. 

Vx 

Vy 
y 

Target 

ρ 
ρ y 

θ 

ρ x x 

V 



46  

If the velocities are assumed to be constant, the state-space model for the target 

motion is 

 ( ) ( 1) ( )x k Fx k w k= − +  (12) 

which can also be written as 

 

( ) ( 1)1 0 0

( ) ( 1)0 1 0 0
( )

( ) ( 1)0 0 1

( ) 0 0 0 1 ( 1)

x x

x x

y y
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 (13) 

where T is the time interval and w(k) is the process noise model having process noise 

covariance 

 ( ) ( ) ( )TQ k E w k w k =   .  (14) 

The measurement model is 
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where v(k) is the measurement noise model. The measurement equation is linearized by 

evaluating the Jacobian of the nonlinear measurement matrix around the predicted state 

[67]. The linearized measurement update equation is  

 ( ) ( ) ( )z k Hx k v k= +  (16) 

which can also written as 

 

( 1)

cos( ) 0 sin( ) 0 ( 1)( )
( )sin( ) cos( ) ( 1)0 0( )

( 1)

x

x

y

y

k

V kk
v k

kk

V k

ρ
θ θρ
θ θ ρθ ρ ρ

− 
   −    = +−   −      

−  

.   (17) 
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b) Distributed target tracking: Fig. 13 shows the underwater sensor network 

architecture used for target tracking. The hierarchical sensor network architecture 

consists of sensors at the lowest level in the hierarchy. The sensors are arranged in 

clusters. These sensors measure the range and bearing of the target and pass these local 

measurements to the cluster node that fuses the measurements to generate the local 

estimate of the target position. The local estimates ( ,x Pɶɶ ) from the cluster nodes are sent 

to the master node, which fuses these local estimates to generate the global estimate 

( ˆˆ,x P ) of the target position.  

The sensor measurements at each cluster are assumed to be obtained 

synchronously but the measurements and state estimates at the different clusters are 

assumed to be sequential. The cluster nodes employ a parallel EKF, where all 

measurements from the sensors are processed at the same time. The time update equation 

for the local state at the cluster-level is given by,  

  
~ ~
( | 1) ( 1| 1) ( )x k k F x k k w k− = − − +   (18) 

where F(k) is the state transition matrix, and w(k) is the process noise as in (13). The 

local state covariance prediction is given by 

  
~ ~

( | 1) ( 1| 1) ( )TP k k F P k k F Q k− = − − + , (19) 

where Q(k) is the assumed process noise covariance 

 2( ) TQ k GG= σ   (20) 

with 
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The x and y velocities were assumed to be constant in the development of F in 

(13) and in (21). However, this assumption does not reflect the changing velocities 

observed in practice for target paths as simple as an arc. The choice for Q(k) (20) allows 

tracking of the targets for which the x and y velocities are not constant. The parameter σ 

allows tuning of the estimator to accommodate the target paths anticipated for a given 

application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Three-tier hierarchical sensor network architecture displaying local estimates 
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The measurement update equation for the local state at the cluster-level is given 

by  

 
~ ~ ~
( | ) ( | 1) ( )[ ( ) ( | 1)]x k k x k k W k z k H x k k= − + − −   (22) 

where H is the linearized measurement matrix in (17), z(k) is the measurement, and the 

local state covariance update equation is  

  
~ ~

( | ) ( | 1) ( ) ( ) ( )TP k k P k k W k S k W k= − −   (23) 

with Kalman gain  

 
~

1( ) ( | 1) ( )TW k P k k H S k−= −  (24) 

and the innovation covariance matrix  

 
~

1 1( ) [ ( | 1) ( )]TS k H P k k H R k− −= − + .  (25) 

The stacked measurement matrix H is given by 

 1 2( , ,..., )T T T T
nH H H H=  (26) 

where n is the number of sensors within each cluster having a measurement of the target 

position. The measurement noise covariance matrix R is given by 

 ( ) ( ) ( )TR k E v k v k =   . (27) 

The master node employs a sequential version of the EKF (18-27) where the 

estimates from the cluster nodes are processed one after another [67]. The assumption 

that the state estimates at the different clusters were time sequential allowed the design of 

global estimation algorithms to accommodate delayed communication of state estimates 

from the clusters. For missing state estimates from a cluster, the time update for the 
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global estimate was computed without a measurement update until the cluster estimate 

became available.  

The performance of the EKF algorithm was validated by using the algorithm to 

track a target moving in a straight line. The expected value of the estimation error 

achieved for tracking the straight-line target was zero. Also, as expected, the covariance 

of the global state estimates decreased over time as measurement updates were performed 

and more information about the target was acquired. The root mean square (RMS) error 

in the x and y position estimates was closely approximated by the square root of the (1,1) 

and (3,3) diagonal elements in P(k). 

 

D. Summary 

A modular simulation framework based on object-oriented design was presented 

in this chapter. As discussed in the subsequent chapters, this simulation framework was 

used to simulate scenarios using different agent paradigms and to generate data for 

detailed analysis of component interactions and for performance evaluation.  
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IV. AGENT PARADIGMS 

The simulation framework described in the previous chapter was used to develop 

and explore different agent paradigms. Strategies incorporating single or multiple agents, 

different agent functionalities, and agents present at different levels in the system 

hierarchy are presented in this chapter. The first section of this chapter describes agent 

paradigms based on the number of agents, and the second section describes agent 

paradigms based on different agent functionalities.  

 

A. Paradigms Based on the )umber of Agents  

Two agent-based paradigms having single and multiple agents are presented as 

follows. 

 

1) Single Stationary Agent System: A single agent located on the master node is 

responsible for target tracking and control and coordination. Centralized single-agent 

systems are easy to design but possess the disadvantages of centralized systems, 

including poor survivability. 

 

2) Multiple Stationary Agent System: In multi-agent systems, individual goals may be 

the same or different for the agents, but the agents work together to achieve the global 

goals for the system. In a multi-agent system, there may or may not be direct interaction 

between agents. For a multi-agent system in which the agents interact with each other, the 
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system design becomes complex. In a multi-agent system, agents may be located on the 

master node and on the cluster nodes. In this work, the master agents are responsible for 

target tracking, and the control and coordination of the clusters. The cluster agents are 

responsible for local data fusion and for the control and coordination of the local sensors. 

 

B. Paradigms Based on Agent Functionalities 

Different algorithms may be employed by the agents for data fusion, tracking, 

control, and coordination. The agents have the ability to decide which algorithms to use 

and when to use them in order to achieve the goal set for the agent. Some of these 

algorithms are discussed as follows. 

 

1) Agents for Intelligent Data Fusion and Target Tracking: The EKF described in the 

previous chapter was adapted and encapsulated in the agent to achieve the goals of data 

fusion and target tracking. Two approaches are described below in which adaptive 

sampling techniques are used by the agents to balance target tracking performance 

against resource utilization.  

 

a) Controlled covariance tracking (CCT): In CCT, measurement updates are 

performed at the master node only when needed to maintain a desired tracking 

performance. In CCT, the master agent running the EKF tracking algorithm uses the time 

update to predict the covariance matrix, P(k+n), of the target position estimate n steps 

ahead. The trace of the master-level P(k+n) represents the sum of the predicted variances 



53  

of the x and y position and velocity estimation errors. The trace of the master node 

P(k+n) is compared to a threshold, Th, defined as  

 var var var varx x y yTh V Vρ ρ= + + +   (28) 

where var xρ  is the desired x position variance, var xV  is the desired x velocity variance, 

var yρ  is the desired y position variance, and var yV  is the desired y velocity variance. 

Since zero is desired for the x and y velocity variances, in this work var xV  and var yV  are 

set to zero in (28). If the trace of the master node P(k+n) is less than Th, then a 

measurement update is not needed. In this case, the master agent instructs the cluster 

node to stop sending local estimates to the master node. When no local estimates are 

available at the master node, only time updates are performed by the master node EKF to 

obtain the global estimate of the target position. CCT thus reduces the rate at which 

measurement updates are performed and, as a result, reduces the communication of local 

estimates from the cluster nodes to the master node while still achieving the desired 

tracking performance set by Th.  

Due to the nature of the communication model used in this work, one simulation 

instant is required for the master agent instructions to reach the cluster node. Another 

simulation instant is required for the cluster node to act on these instructions and to stop 

sending local estimates to the master node. Therefore n is chosen as 2 when comparing 

P(k+n) to Th in order to decide when a measurement update is needed. 

For CCT, it is assumed that the performance represented by the threshold can be 

achieved by sampling at the base EKF sampling rate or slower. Since the measurement 

update is performed to prevent the variance from exceeding the threshold, the threshold 

in CCT sets a limit on the expected tracking performance. The RMS range estimation 
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error corresponds to Th . In order to achieve a tracking performance having a low error, 

Th would be smaller than that set to obtain a tracking performance having a larger error; 

however, with CCT, it should be noted that if Th cannot be achieved at the base sampling 

rate due to infrequent measurements, noisy measurements, fewer sensors detecting the 

target, or simply because of the nature of the target track, then the tracking performance 

would be above Th even if the measurement updates occur at each and every time step.  

The contribution of Q(k) in the propagation of the state covariance (19) is 

important in CCT. The addition of Q(k) causes the elements of the covariance matrix P(k) 

to increase at each time step. The diagonal terms in P(k) represent the covariance in ρx, 

Vx, ρy, and Vy. Therefore, for a given Q(k) the threshold selected for CCT implies a 

maximum time between measurement updates during CCT. Since σ is an important factor 

in Q(k) (20), the choice of the parameter σ for the cluster-level time update affects the 

tracking of targets with velocities that are not constant, but the choice of σ for the master-

level influences the tracking and the maximum time between measurement updates 

achieved during CCT. In this research, σ is chosen as one in (20). 

 

b) Timed tracking (TT): The timed tracking mode attempts to balance the need to 

use high sampling rates to track fast-moving targets against the need to avoid depleting a 

node’s battery charge. The measurement update rate is determined within the master node 

agent using a fuzzy logic algorithm. The structure of the fuzzy logic algorithm is shown 

in Fig. 14. Between successive measurements, the EKF algorithm performs a time update 

to predict the target position and velocity. The fuzzy rules set the measurement update 

rate based on the estimated velocity of the target and the battery charge remaining in the 
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master node that executes the tracking algorithm. The node battery charge is thus 

conserved using TT. For a node having full or almost full battery reserve, the 

measurement updates are done less frequently (every 30-35 seconds) when a target is 

moving slowly through the field (0-10 meters/second) than when the target is moving fast 

(Fig. 15). Measurement updates are performed less frequently as the battery charge of the 

node decreases. Therefore, as the simulation duration increases, the battery level of the 

master node decreases, resulting in a decrease in the measurement update rate, causing a 

graceful degradation in the target position estimation performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Structure of the fuzzy logic system for timed tracking (TT). 
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Fig. 15. Surface plot of the timed tracking (TT) fuzzy logic algorithm. 

 

2) Agents for Intelligent Control and Coordination: Different schemes may be 

implemented by the agents to achieve intelligent control and coordination in order to 

maximize the useful life of the field. Some of these schemes are described as follows. 

 

a) Control and coordination scheme 1 (CC1): Scheme CC1 is implemented by the 

master agent when there is more than one master node present in the DSN. In a three-tier 

architecture, the life of the master node has a significant impact on the useful life of the 

entire sensor field. The master node is responsible for gathering estimates from the 

clusters and fusing these estimates to generate the global estimate of the target position. 

This global estimate is then relayed to the command center. Since the master node has to 
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depleted at a fast rate. Loss of the master node represents the end of the useful field life 

of the network, since without the master node, information about the target cannot be 

passed onto the command center. Redundant master nodes can be used to overcome this 

shortcoming [59, 60]. Even though multiple master nodes are present, only one master 

node and master agent are active at any simulation instant. When the current master node 

is about to lose its battery charge completely, the master agent at that node transfers the 

control to a master node in the nearest proximity to the target using scheme CC1. 

 

b) Control and coordination scheme 2 (CC2): Scheme CC2 is implemented by the 

master agent. In this scheme, the master agent has the ability to instruct the cluster agents 

to turn the cluster nodes on or off. Only clusters neighboring the cluster where the target 

is estimated to be present are activated in this scheme [27]. In this research, the clusters 

are turned on every tenth simulation instant, until a target is detected in the field. Once a 

target is detected, only the cluster nodes that are at a distance of less than 15 km from the 

target are turned on, while cluster nodes that are at a distance of more than 15 km from 

the target are turned off to save battery charge. Fig. 16 shows a representation of how the 

clusters are activated as the target moves through the field in CC2.  
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Fig. 16. Activation of clusters as the target moves through the field in CC2. The arrow 

represents the target as it traverses a path through the field. The solid ellipses are the 

active cluster nodes, while the remaining clusters shown by transparent ellipses are 

inactive to conserve battery charge.  

 

c) Control and coordination scheme 3 (CC3): Scheme CC3 is implemented by the 

cluster agent. When the master agent instructs the cluster agents to turn off the cluster 

nodes in CC2, the cluster agent in turn instructs the cluster node to turn off all the sensor 

nodes within its cluster. Only the sensor nodes that act as routing (relay) nodes are kept 

on, since they are necessary to allow communication with the master node. The cluster 

nodes using CC2 and their corresponding sensor nodes using CC3 are turned back on 

when the cluster node distance from the target becomes less than 15 km.  

(a) (b) 
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d) Control and coordination scheme 3 (CC4): Scheme CC4 is implemented by the 

cluster agent. A localized optimization routing algorithm [61, 62] is used for 

communication in the sensor network. One sensor node within each cluster is used as the 

routing node. Localized optimization assumes that the cluster agents have knowledge of 

the remaining battery charge of each sensor node within its cluster. In localized 

optimization, whenever the remaining battery charge of the routing node falls below a 

preset threshold (50%), the cluster agent chooses another node within the cluster to act as 

the new routing node. Localized optimization routing thus helps to balance the power 

consumption of the sensor nodes used for routing data in the network. 

 

C. Summary 

Agent paradigms based on the number of agents and different agent 

functionalities are presented in this chapter. Adaptive sampling schemes CCT and TT and 

control and coordination schemes CC1, CC2, CC3, and CC4 used by the agents for 

resource management were discussed in this chapter.  
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V. A MACHINE INTELLIGENCE QUOTIENT FOR AGENT-BASED SYSTEMS 

The MIQ gives a theoretical measure for quantifying the benefits of the decisions 

made by agents to achieve goals in the sensor network. The measure of the MIQ of an 

agent-based DSN is developed by removing the contributions of the human element in 

(5) and extending the method used for determining the MIQ of a human-machine 

cooperative system [58].  

 

A. MIQ of Agent-Based Systems 

In the sensor network under consideration, agents provide intelligence with the 

goal of increasing network field life without adversely affecting performance. Even 

without agents, the system performs certain tasks that are achieved with what will be 

referred to as base system intelligence (BSI). The agent-based DSN is decomposed into a 

number of intelligent machines (IMs) working together to achieve system goals, with 

each IM encompassing an agent (Fig. 17).  
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Fig. 17. Agent-based distributed sensor network decomposed into a number of intelligent 

machines, IMs. 

 

Each IM is assumed to perform eight tasks (detect, observe, identify, interpret, 

evaluate, define, select actions, and execute actions) in making a decision. The MIQ of 

the total system is calculated as the sum of the BSI and MIQs of each intelligent machine 

in the system.  

 
1 1

( ) ( )
nma nca

total
ma ca

MIQ BSI MIQ ma MIQ ca
= =

= + +∑ ∑  (29) 

where BSI is the MIQ contributed by the base system, MIQ(ma) is the MIQ contributed 

by master agent ma, MIQ(ca) is the MIQ contributed by cluster agent ca, nma is the 

number of master agents, and nca is the number of cluster agents. 
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The MIQ contributed by an agent is calculated using 

  
1

n

i
i

MIQ r
=

= ∑   (30) 

where n is the number of tasks performed by each agent (n=8) and r is the intelligence 

cost required to perform a task. The task intelligence cost, ri, for each task performed by 

different decision-making functions in the IMs is presented in Table VIII. The different 

decision-making functions that may be implemented by the IM are TT, CCT, CC1, CC2, 

CC3, and CC4. An IM may implement none or a subset of these decision-making 

functions. The task intelligence costs were assigned by analyzing the algorithms 

employed by the agents and the decisions that were made by the agents.  

 

TABLE VIII 

TASK INTELLIGENCE COSTS FOR DECISION-MAKING FUNCTIONS 

PERFORMED BY THE AGENTS 

 

Task Task 

No. 

i 

No 

Agents 

BSI 

MA 

TT 

ri 

MA 

CCT 

ri 

MA 

CC1 

ri 

MA 

CC2 

ri 

CA 

CC3 

ri 

CA 

CC4 

ri 

Detect 1 5 3 5 2 5 12 10 

Observe 2 3 2 2 2 7 7 7 

Identify 3 7 2 2 2 8 8 8 

Interpret 4 10 5 8 3 8 8 8 

Evaluate 5 0 10 12 6 6 6 6 

Define 6 0 5 5 5 5 5 5 

Select 7 0 5 5 5 5 5 5 

Execute 8 0 10 20 15 18 18 18 

Sum =  25 42 59 40 62 69 67 
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For the scenarios explored in this research, the intelligence required by the IMs to 

perform two or more decision-making functions is independent. Therefore, the total 

machine intelligence quotient is given as  

 
1 1 1 1

( , ) ( , )
nf nfnma nca

total
ma f ca f

MIQ BSI MIQ ma f MIQ ca f
= = = =

= + +∑ ∑ ∑ ∑  (31) 

where f is one or more decision-making functions performed by the IM. From (29), (30), 

and (31) 

 { } { }
1 1

; ; ; ;
n n

total i i
i i

MIQ BSI r f ma r f ca
= =

= + ∀ ∀ + ∀ ∀∑ ∑ .  (32) 

 

B. Summary 

The practical and systematic method of measuring MIQ of human-machine 

cooperative systems [58] was extended to derive a method for measuring the MIQ of 

agent-based distributed sensor network systems using (32). The MIQ of an agent-based 

system is a function of the base system intelligence, the number of agents, the number of 

decision-making functions performed by the agents, and the task intelligence costs 

required to perform these functions in the system. 
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VI. SIMULATION METHODS 

Scenarios were developed to facilitate the comparison of the different agent 

paradigms described in the previous chapter using simulations. These scenarios represent 

combinations of the tracking and control and coordination algorithms implemented by the 

agents at different levels in the system hierarchy. The simulation framework (Fig. 10) 

was set up with agents turned on or off as required for each scenario. The network field 

layout shown in Fig. 11 was used for simulations, and all the nodes in the network were 

initialized with a battery charge of 100 units. 

 

A. Agent-Based Scenarios 

1) Scenario 1: Scenario 1 is the basic setup of the DSN with all the agents turned off. 

Scenario 1 thus represents the baseline system performing sensing, communications, 

computations, time updates, measurement updates, and other activities at every 

simulation instant.  

 

2) Scenario 2: One master node and one master agent are present in scenario 2. The 

master agent in scenario 2 implements TT. Depending on the measurement update rate 

set by TT, measurements are transferred from the cluster nodes to the master node; 

however, the cluster nodes continue receiving measurements from their respective 

sensors at each simulation instant. Since communication requires considerable battery 

resources, the number of communications between the master node and the cluster nodes 
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is reduced in scenario 2, thereby potentially saving the battery charge at the respective 

nodes.  

 

3) Scenario 3: Four master nodes and four master agents are present in scenario 3. 

The importance of having redundant master nodes in the network is justified in the 

description of CC1. When the battery of the active master node is about to lose its charge, 

the master agent at that node transfers control to the master node that is in the nearest 

proximity to the target (CC1). Since four master nodes are present in the system, scenario 

3 can be expected to extend the field life achieved by scenario 1. The cluster agents in 

scenario 3 also implement scheme CC4, in which the cluster agents perform localized 

optimization routing in order to balance the power consumption of the sensor nodes used 

for routing data in the network.  

 

4) Scenario 4: Four master nodes and four master agents are used in scenario 4. The 

master agents in scenario 4 implement scheme CC1, and the cluster agents implement 

scheme CC4. The master agents in scenario 4 also implement the adaptive sampling CCT 

algorithm. A measurement update is performed by the EKF if the trace of the predicted 

master node, P(k+n), is above Th. Otherwise, only the time update is performed by the 

EKF. Local estimates are transferred from the cluster nodes to the master node only when 

a measurement update is required. This intermittent transfer of estimates from the cluster 

nodes to the master node helps to reduce the number of communications between the 

master node and the cluster nodes, thereby potentially saving power at the respective 
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nodes. Scenarios 4a, 4b, 4c, and 4d are variations of scenario 4 where the thresholds are 

set at increasingly higher levels.  

 

5) Scenario 5: Scenario 5 is similar to scenario 4. The master agents in scenario 5 

implement schemes CC1 and CCT. The master agents also implement scheme CC2 to 

turn off clusters that are far away from the target. Cluster agents implement scheme CC3 

to turn off sensors that are far away from the target position. The cluster agents also 

implement scheme CC4 for localized optimization routing. For demonstration purposes, 

the CCT threshold set for scenario 5 is the same as that set for scenario 4c. 

 

6) Scenario 6: Scenarios 1-5 are employed in a three-tier sensor network architecture 

having separate physical sensor, cluster, and master nodes. However, the agent 

abstraction enables the stacking of the master and cluster agent functions on the same 

piece of hardware. Stacking functional agents helps to eliminate some hardware present 

in the three-tier sensor network architecture to form a two-tier system. Fig. 18 shows the 

architecture of the two-tier sensor network with the master agent and the cluster agent 

stacked on what is essentially a cluster node. Dotted lines represent connections between 

the cluster node that is not currently acting as a master and other entities in the system. 

Fig. 19, which is similar to Fig. 11, shows the field layout for scenario 6. The network in 

scenario 6 has nine cluster nodes (dots) that can also perform the functions of the master 

node (diamonds).  
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Fig. 18. Two-tier sensor network architecture with stacked master and cluster functional 

agents on the second tier. Connections with the master/cluster node on which the master 

agent is currently not active are shown by dotted lines. 
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Fig. 19. Field layout of the two-tier sensor network in which cluster nodes also perform 

the master node functions. There are nine master/cluster nodes (diamond) in the field.  
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The nodes on which the master and cluster agents are stacked will henceforth be 

referred to as master/cluster nodes. At any time, one master/cluster node in the network 

also functions as the master node. Master/cluster nodes that simultaneously run the 

cluster and master functions have an increased number of computations and 

communications that deplete battery charge at a fast rate. In order to minimize the battery 

drain on one cluster alone, the master node functions are transferred from one 

master/cluster node to another using scheme CC1. If the battery of the master/cluster 

node having the active master agent falls below 20% of the full capacity, the master node 

functions are transferred to a master/cluster node in the nearest proximity to the target. 

This process is repeated until the battery charges of all the master/cluster nodes have 

fallen below 20% of their capacity. The master agent implements CCT with the threshold 

set to be the same as in scenario 4c. The master agent also implements scheme CC2 in 

which only master/cluster nodes adjacent to the cluster where the target is estimated to be 

present are turned on by the master agent. Cluster agents implement scheme CC3 to turn 

off sensors that are far away from the target position. The cluster agents also implement 

scheme CC4 for localized optimization routing. 

Table IX summarizes the number of master and cluster nodes, number of master 

agents (nma), number of cluster agents (nca), and algorithms employed by the agents in 

different scenarios.  
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TABLE IX 

SCENARIO DESCRIPTIONS 

 

 SCENARIO 

 1 2 3 4a 4b 4c 4d 5 6 

Master nodes 1 1 4 4 4 4 4 4 0 

Cluster nodes 9 9 9 9 9 9 9 9 9 

nma 0 1 4 4 4 4 4 4 9 

nca 0 0 9 9 9 9 9 9 9 

MA scheme          

        TT  X        

        CCT    X X X X X X 

               Th                                     1410 4230 7050 14100 7050 7050 

        CC1   X X X X X X X 

        CC2        X X 

CA scheme          

        CC3        X X 

        CC4   X X X X X X X 

Stacked agents         X 

 

 

B. Target Track  

A simple fixed target track was used for single-trial simulations of scenarios 1-6. 

The target track (Fig. 20) was chosen for scenario comparison, though other complex 

target tracks could also be easily implemented. A simulation duration of 1100 simulation 

instants was chosen for the single-trial simulations that allowed the network to track the 

target and provide a snapshot of the system performance before a large number of nodes 

started failing. Once nodes start failing in the system, it becomes difficult to compare the 

performance of agent paradigms in different scenarios. The target track (Fig. 20) was 
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chosen to explore the system tracking performance in different agent-based scenarios 

while the target moved along a straight-line path, along a curve, along a sharp turn, 

through areas having different sensor densities, through areas where the target is detected 

by different clusters, and through areas where the target is detected by multiple clusters. 

One disadvantage of this target track (Fig. 20) is that the target was confined to only a 

part of the sensor field. Monte Carlo trials with random target paths were set up to 

overcome this disadvantage.  

The agents in scenarios 5 and 6 employ all the resource management schemes 

considered in this research, and the best field life performance can be expected from 

these scenarios. Scenarios 5 and 6 were compared using 40 Monte Carlo trials. Monte 

Carlo simulation is a method for analyzing and understanding the impact of uncertainty 

in system. Targets can follow different tracks in the field. However, it is difficult to 

perform simulations and evaluate the system performance for the entire population of 

target tracks through the field. The sample mean can be used as an estimate of the 

population mean for a large ( 30≥ ) number of samples [68]. Hence, in order to evaluate 

the mean system performance, a sample (subset) of 40 random target tracks through the 

field was chosen for Monte Carlo simulations. No constraints were set on the simulation 

duration for the Monte Carlo trials. For each Monte Carlo trial, a random initial position 

and velocity was set for the target. The target continued to move with the initial velocity 

until it was about to exit the sensor field. Whenever the target was about to exit the field, 

a random velocity was chosen that allowed the target to move while still being 

constrained to be within the field.  
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Fig. 20. Target track for single trial simulations. Points a, b, c, d, and e indicate the target 

positions at simulation instants of 100, 250, 400, 830, and 1000, respectively. 

 

 

C. Performance Metrics 

Performance measurement is important in order to understand the behavior of the 

sensor network and to ensure that the network is able to meet the design objectives. Field 

life, tracking performance, number of computations and communications, power 

reserves, and the MIQ are network-specific performance measures used to compare 

different agent-based sensor network scenarios. 

 

1) Field Life: Survivability is the ability of a system to cope with diversity in the 

environment, as well as internal faults (hardware and software). In a sensor network, the 

field life can be considered to be an indication of survivability. The field life of the 

a 

b 

c 

d 

e 
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network is defined to be the simulation duration elapsed before the battery charge of any 

sensor, cluster, or master node is depleted. In scenarios having multiple master nodes, the 

battery charge must be depleted at all master nodes in order for the simulation to end due 

to loss of the master node function.  

 

2) Tracking Performance: Competence is the ability of a system to perform tasks 

successfully. For a tracking application, the tracking performance can be used as a 

measure of system competence. For each simulation run, the error between the actual 

target position and the estimated target position is calculated. The RMS range estimation 

error and plots of the covariance, P(k), are used to reflect the tracking performance of the 

system. These tracking performance measures allow tradeoffs between the field life and 

tracking performance for the network to be examined.  

 

3) )umber of Computations: Data fusion, tracking, control, and coordination 

algorithms are computationally intensive. A counter accumulates the number of 

computations assumed to be performed by these algorithms at each node at every 

simulation instant. Proportionate weights are assigned to the computational algorithms, 

and the node batteries are drained accordingly.   

 

4) )umber of Communications: Communications use battery resources. Information 

flows from the sensor nodes to the cluster nodes and then on to the master node. The 

control signals flow from the master node to the cluster nodes and then to the sensor 

nodes. A counter accumulates the number of communications taking place in the 
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network. Proportionate weights are assigned to the communication tasks, and the node 

batteries are drained accordingly.  

 

5) Power Reserves: Power reserves indicate the amount of battery charge remaining 

in the master, cluster, and sensor nodes at the end of simulations. The power reserve is an 

inverse representation of the power consumption taking place in the node. The number of 

computations and number of communications performed by the node affect the power 

reserves for the master and cluster node. The number of sensing activities and number of 

communications performed by the sensor node affect the power reserves for the sensor 

node. 

 

6) Machine Intelligence Quotient: The MIQ gives a theoretical measure for 

quantifying the benefits of the decisions made by agents to achieve the goals in the sensor 

network. In the sensor network under consideration, agents provide intelligence with a 

goal of increasing the network field life without adversely affecting performance. The 

MIQ equation (32) presented in chapter V is used to calculate and compare the MIQ of 

different agent-based scenarios.  

 

D. Summary  

Scenarios employing different agent paradigms have been described in this 

chapter. The target tracks used for single-trial as well as Monte Carlo simulations and the 

performance metrics used for comparison of different agent-based scenarios have been 

presented in this chapter.  
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VII. RESULTS AND DISCUSSION 

The scenarios described in chapter VI were simulated using the agent-based 

object-oriented simulation framework presented in chapter III. Results using a simple 

target track in single-trial simulations are presented in the first section of this chapter. 

Results comparing the different agent paradigms employed in scenarios 1-6 are presented 

in the second section. Discussion of these comparison results is presented in the third 

section. In the fourth section, results of 40 Monte Carlo trials with random target tracks 

for scenarios 5 and 6 are presented and compared. 

 

A. Single-Trial Simulation Results 

Single-trial simulations were conducted for scenarios 1-6. The simulation duration 

and the simple target track used for single trial simulations were adequate to capture the 

behavior of different agent paradigms in the sensor network. 

 

1) Scenario 1: Figs. 21-23 show the simulation results for target tracking in scenario 

1. In scenario 1, only one master node was present. Since all the nodes in the system were 

performing activities at every simulation instant and power was used at the maximum 

rate, the simulation stopped at simulation instant 517 (Fig. 22) due to the loss of the only 

master node in the system (Fig. 21c). Battery charge was depleted rapidly in the sensor 

nodes within the clusters that were used for relaying data to the master node (circled 

region in Fig. 21a). As the target curved along its path (Fig. 20) between points b and c 
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that represent simulation instants 250 and 400, respectively, the sensor network was 

unable to follow the target, resulting in large bearing estimation errors between 

simulation instants 250 and 400 (Fig. 22). Due to the overlapping sensor ranges, multiple 

sensors were able to detect targets that were close to the center of a cluster. However, as 

the target moved away from the center of the cluster, fewer sensors were able to detect 

the target. Fewer sensors detecting the target increased the uncertainty of estimation at 

the cluster-level, which in turn was reflected by an increase in the trace of the master 

node covariance matrix, P(k) (Fig. 23). The master node P(k) indicates the uncertainty of 

estimation at the master-level; therefore, the trace of the master node P(k) (Fig. 23) was 

higher when the target was at the periphery of the clusters (Fig. 20) than when the target 

was near the center of a cluster.  
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Fig. 21. Percentage battery charge remaining at the end of 517 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the single master node (c) for scenario 1. The 

simulation in scenario 1 stopped at simulation instant 517 due to the loss of the only 

master node in the network. The circled region in (a) indicates the battery charge 

remaining in sensors nodes in different clusters that were mainly used for routing data in 

the network.  
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Fig. 22. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 1. As the target curved along its path between points b and c (Fig. 20), the 

network in scenario 1 was unable to follow the target, resulting in large bearing 

estimation errors between simulation instants 250 and 400. The simulation in scenario 1 

stopped at simulation instant 517 due to loss of the only master node in the network.  
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Fig. 23. Trace of the master node P(k) for scenario 1. The simulation in scenario 1 

stopped at simulation instant 517 due to loss of the only master node in the network.
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2) Scenario 2: Figs. 24-26 show the simulation results for target tracking in scenario 

2. In scenario 2, only one master node was present in the network. The network in 

scenario 2 was able to track the target for the entire duration of 1100 simulation instants 

(Fig. 25). TT was implemented in scenario 2 to adjust the rate at which clusters sent their 

local estimates to the master node. The master node performed measurement updates 

only when it received data from the cluster nodes. As the master node battery charge 

decreased, TT reduced the rate at which measurement updates were performed at the 

master node, resulting in increased tracking errors as the simulation progressed (Fig. 25). 

Fewer measurement updates resulted in a large uncertainty of estimation shown by an 

increase in the trace of the master node P(k) (Fig. 26). TT helped to reduce the number of 

communications between the cluster nodes and the master node. As the target curved 

along its path (Fig. 20) between points b and c, and d and e, which represent simulation 

instants 250, 400, 830, and 1000, respectively, the network was unable to follow the 

target, resulting in large bearing estimation errors between these simulation instants (Fig. 

25b). Reduced communications between the master and cluster nodes helped to conserve 

battery charge at the respective nodes (Fig. 24) and resulted in less use of the routing 

sensor nodes in the system (circled region in Fig. 24a). 
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Fig. 24. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the single master node (c) for scenario 2. 
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Fig. 25. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 2. As the simulation duration progressed, the range estimation errors 

increased due to infrequent measurement updates at the master node. Bearing estimation 

errors were exhibited when the target curved through the field between simulation 

instants 250, 400, 830, and 1000.  
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Fig. 26. Trace of the master node P(k) for scenario 2. As the simulation progressed, fewer 

measurement updates performed by the master node resulted in large values for the 

uncertainty of estimation.    
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3) Scenario 3: Figs. 27-29 show the simulation results for target tracking in scenario 

3. In scenario 3, four master nodes were present in the system, but only one was active at 

any time. Scheme CC1 was used to rotate the master node functions among the redundant 

master nodes; thus, the sensor network was able to track the target for the entire 

simulation duration of 1100 simulation instants (Fig. 28). Since the system was tracking 

the target at every instant, the range and bearing estimation errors achieved in scenario 3 

were small (Fig. 28), except when the target was moving along a curve. Bearing 

estimation errors were higher as the target curved along its path (Fig. 20) between points 

b and c, and d and e, which represent simulation instants 250, 400, 830, and 1000, 

respectively (Fig. 28b). The cluster agents in scenario 3 also implemented scheme CC4 

for localized optimization routing. In CC4, when the battery charge of the initial set of 

routing sensor nodes fell below 50%, the cluster node rotated the routing function among 

different sensor nodes, resulting in uniform battery usage at the sensor nodes (circled 

region in Fig. 27a).  
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Fig. 27. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the four master nodes (c) for scenario 3. The 

circled region in (a) shows the effect of scheme CC4 used for localized optimization 

routing. When the battery charge of the initial set of routing sensor nodes fell below 50%, 

the cluster nodes rotated the routing functions among different sensor nodes, resulting in 

uniform battery usage at the sensor nodes. 
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Fig. 28. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 3. 
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Fig. 29. Trace of the master node P(k) for scenario 3. 
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4) Scenario 4a: Figs. 30-32 show the simulation results for target tracking in scenario 

4a. In scenario 4a, there were four master nodes present in the system, but only one was 

active at any time. Similar to scenario 3, scheme CC1 was used for rotating the master 

node functions among redundant nodes, and scheme CC4 was used for localized 

optimization routing in scenario 4a. In CC4, when the battery charge of the initial set of 

routing sensor nodes fell below 50%, the cluster rotated the routing function among 

different sensor nodes, resulting in uniform battery usage at the sensor nodes (circled 

region in Fig. 30a). In addition to schemes CC1 and CC4, scheme CCT with the Th set to 

1410 was also implemented in scenario 4a. Since the trace of the master node P(k+n) was 

always above Th (Fig. 32b), the master node performed measurement updates at every 

simulation instant in order to meet the desired tracking performance. Hence, the results of 

battery consumption (Fig. 30), tracking errors (Fig. 31), and trace of the master node P(k) 

(Fig. 32) for scenario 4a were similar to the results obtained for scenario 3.  
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Fig. 30. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the four master nodes (c) for scenario 4a. The 

circled region in (a) shows the effect of scheme CC4 used for localized optimization 

routing. When the battery charge of the initial set of routing sensor nodes fell below 50%, 

the cluster rotated the routing function among different sensor nodes, resulting in uniform 

battery usage at the sensor nodes. 
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Fig. 31. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 4a. 
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Fig. 32. Trace of the  master node P(k) (a) and trace of the predicted master node P(k+n) 

(b) for scenario 4a. The matrix P(k+n) is the matrix P(k) predicted two time steps ahead 

(n=2).  
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5) Scenario 4b: Figs. 33-35 show the simulation results for target tracking in scenario 

4b. Similar to scenario 4a, schemes CC1, CC4, and CCT were implemented in scenario 

4b. In CC4, when the battery charge of the initial set of routing sensor nodes fell below 

50%, the cluster nodes rotated the routing function among different sensor nodes, 

resulting in uniform battery usage at the sensor nodes (circled region in Fig. 33a). In 

scenario 4b, CCT was implemented with the Th set to 4230. Initially, until around 150 

simulation instants, the trace of the master node P(k+n) was below Th for some 

simulation instants (Fig. 34b). Thus, CCT was able to reduce the rate at which local 

estimates were communicated to the master node and measurement updates were 

performed at the master node, while still achieving the desired tracking performance. 

Beyond 150 simulation instants, the trace of the master node P(k+n) was always above 

Th, even though a measurement update occurred at every simulation instant; therefore, 

beyond 150 simulation instants, CCT with the Th set to 4230 was unable to conserve 

resources in the network. 
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Fig. 33. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the four master nodes (c) for scenario 4b. The 

circled region in (a) shows the effect of scheme CC4 used for localized optimization 

routing. When the battery charge of the initial set of routing sensor nodes fell below 50%, 

the cluster nodes rotated the routing function among different sensor nodes, resulting in 

more uniform battery usage at the sensor nodes. 
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Fig. 34. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 4b. 
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Fig. 35. Trace of the  master node P(k) (a) and trace of the predicted master node P(k+n) 

(b) for scenario 4b. The matrix P(k+n) is the matrix P(k) predicted two time steps ahead 

(n=2).  
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6) Scenario 4c: Figs. 36-38 show the simulation results for target tracking in 

scenario 4c. Similar to scenario 4a, schemes CC1, CC4, and CCT were implemented in 

scenario 4c. In CC4, when the battery charge of the initial set of routing sensor nodes fell 

below 50%, the cluster node rotated the routing function among different sensor nodes, 

resulting in uniform battery usage at the sensor nodes (circled region in Fig. 36a). In 

scenario 4c, CCT was implemented with the Th set to 7050. Whenever the trace of the 

master node P(k+n) was below Th (Fig. 38b), CCT was able to reduce the rate at which 

local estimates were communicated from the cluster nodes to the master node and 

measurement updates were performed at the master node, while still achieving the 

desired tracking performance. Since local estimates were communicated less frequently 

from the cluster nodes to the master nodes, these nodes were able to conserve their 

battery charge (Fig. 36). Fewer measurement updates resulted in large range and bearing 

estimation errors due to the large Th in CCT (Fig. 37).  
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Fig. 36. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the four master nodes (c) for scenario 4c. The 

circled region in (a) shows the effect of scheme CC4 used for localized optimization 

routing. When the battery charge of the initial set of routing sensor nodes fell below 50%, 

the cluster nodes rotated the routing function among different sensor nodes, resulting in 

more uniform battery usage at the sensor nodes. 
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Fig. 37. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 4c. 
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Fig. 38. Trace of the  master node P(k) (a) and trace of the predicted master node P(k+n) 

(b) for scenario 4c. The matrix P(k+n) is the matrix P(k) predicted two time steps ahead 

(n=2).  
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7) Scenario 4d: Figs. 39-41 show the simulation results for target tracking in 

scenario 4d. Similar to scenario 4a, schemes CC1, CC4, and CCT were implemented in 

scenario 4d. In CC4, when the battery charge of the initial set of routing sensor nodes fell 

below 50%, the cluster node rotated the routing function among different sensor nodes, 

resulting in uniform battery usage at the sensor nodes; however, since none of the sensor 

nodes had their battery charge fall below 50%, scheme CC4 was never used in scenario 

4d (circled region in Fig. 39a). In scenario 4d, CCT was implemented with the Th set to 

14100. Whenever the trace of the master node P(k+n) was below Th (Fig. 40b), CCT was 

able to reduce the rate at which local estimates were communicated from the cluster 

nodes to the master node and measurement updates were performed at the master node, 

while still achieving the desired tracking performance. Since local estimates were 

communicated less frequently from the cluster nodes to the master nodes, these nodes 

were able to conserve their battery charge (Fig. 39). Fewer measurement updates resulted 

in large range and bearing estimation errors due to the large Th in CCT (Fig. 40). Due to 

fewer measurement updates, the master node battery charge was conserved, and only one 

master node was partially used during the simulation (Fig. 39c).  
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Fig. 39. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the four master nodes (c) for scenario 4d. In 

scenario 4d, no sensor had battery charge below 50% and hence scheme CC4 for 

localized optimization routing was never used. 
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Fig. 40. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 4d. 
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Fig. 41. Trace of the  master node P(k) (a) and trace of the predicted master node P(k+n) 

(b) for scenario 4d. The matrix P(k+n) is the P(k) matrix predicted two time steps ahead 

(n=2).  

 



103  

8) Scenario 5: Fig. 42 shows the simulation results for target tracking in scenario 5. 

Similar to scenarios 4a-4d, schemes CC1, CC4, and CCT were implemented in scenario 

5. In CC4, when the battery charge of the initial set of routing sensor nodes fell below 

50%, the cluster nodes rotated the routing function among different sensor nodes, 

resulting in uniform battery usage at the sensor nodes (circled region in Fig. 42a). In 

scenario 5, CCT was implemented with the Th set to 7050 similar to scenario 4c. Hence, 

tracking results were similar to those obtained for scenario 4c (Figs. 37 and 38). In 

addition to CC1, CC4, and CCT, schemes CC2 and CC3 were also implemented in 

scenario 5. Sensor and cluster nodes that were far away from the target were switched off 

in schemes CC2 and CC3 in order to conserve battery charge (Fig. 42). Sensor and 

cluster nodes that were switched off during the entire simulation duration had almost 

100% of their battery remaining at the end of the simulation (Fig. 42). 
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Fig. 42. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a), cluster nodes (b), and the four master nodes (c) for scenario 5. The 

circled region in (a) shows the effect of scheme CC4 used for localized optimization 

routing. When the battery charge of the initial set of routing sensor nodes fell below 50%, 

the cluster nodes rotated the routing function among different sensor nodes, resulting in 

uniform battery usage at the sensor nodes. 
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9) Scenario 6: Figs. 43-45 show the simulation results for target tracking in scenario 

6. In scenario 6, the master and cluster agent functions were stacked on the same physical 

hardware. Because of this stacking, there was an increase in the number of nodes in the 

system that could perform the master node functions without the need for extra master 

node hardware. There was an increase in the battery charge drainage of the master/cluster 

node when the node performed both the master and cluster functions. Rotating the master 

node functions among the nine master/cluster nodes reduced the burden on any one 

master/cluster node and balanced the resource utilization in the cluster nodes (Fig 43b). 

Sensors and clusters that were far away from the target were switched off in schemes 

CC2 and CC3 in order to conserve battery charge. Sensor nodes that were switched off 

during the entire simulation duration had almost 100% of their battery remaining at the 

end of the simulation (Fig. 43a). Scheme CC4 was used for localized optimization 

routing. In CC4, when the battery charge of the initial set of routing sensor nodes fell 

below 50%, the cluster agent rotated the routing function among different sensor nodes, 

resulting in uniform battery usage at the sensor nodes (circled region in Fig. 43a). In 

scenario 6, CCT is implemented with the Th set to 7050. Whenever the trace of the 

master node P(k+n) was below Th (Fig. 45b), CCT was able to reduce the rate at which 

local estimates were communicated from the cluster nodes to the master node and 

measurement updates were performed at the master node, while still achieving the 

desired tracking performance.  
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Fig. 43. Percentage battery charge remaining at the end of 1100 simulation instants in the 

sensor nodes (a) and cluster nodes (b) for scenario 6. Stacking functional agents enables 

the cluster nodes to accomplish the tasks of the master nodes and, hence, only the cluster 

is displayed for scenario 6. The circled region in (a) shows the effect of scheme CC4 used 

for localized optimization routing. When the battery charge of the initial set of routing 

sensor nodes fell below 50%, the cluster rotated the routing function among different 

sensor nodes, resulting in uniform battery usage at the sensor nodes. 
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Fig. 44. Range estimation error in meters (a) and bearing estimation error in radians (b) 

for scenario 6. 

 

 



108  

0 200 400 600 800 1000
0

0.5

1

1.5

2
x 10

4

SIMULATION INSTANT

T
R
A
C
E
 O
F
 M
A
S
T
E
R
 N
O
D
E

C
O
V
A
R
IA
N
C
E
 M
A
T
R
IX
, 
P
(k
)

Th = 7050

0 200 400 600 800 1000
0

0.5

1

1.5

2
x 10

4

SIMULATION INSTANT

T
R
A
C
E
 O
F
 P
R
E
D
IC
T
E
D
 M
A
S
T
E
R
 N
O
D
E

C
O
V
A
R
IA
N
C
E
 M
A
T
R
IX
, 
P
(k
+
n
)

Th = 7050

(a)

(b)
 

 

Fig. 45. Trace of the  master node P(k) (a) and trace of the predicted master node P(k+n) 

(b) for scenario 6. The matrix P(k+n) is the matrix P(k) predicted two time steps ahead 

(n=2).  
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B. Comparison Results for Single Trial Scenario Simulations 

Figs. 46-50 show the comparison of performance metrics for scenarios 1-6. Fig. 

46 shows the average percentage battery charge remaining, and Fig. 47 shows the 

minimum percentage battery charge remaining in the sensor, cluster, and master nodes at 

the end of simulations for each scenario (517 simulation instants for scenario 1 and 1100 

simulation instants for scenarios 2-6). Fig. 48 shows the number of computations and 

communications per simulation instant for each scenario. Fig. 49 shows the RMS target 

range estimation error, and Fig. 50 shows the number of measurement updates per 

simulation instant at the master node for each scenario.  
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Fig. 46. Average percentage battery charge remaining in the sensor, cluster, and master 

nodes at the end of simulations for each agent scenario. Only one master node was 

present in scenarios 1 and 2. The simulation in scenario 1 stopped at simulation instant 

517 due to the loss of the only master node in the network. Stacking functional agents 

enabled the cluster nodes to accomplish the tasks of the master nodes and, hence, there is 

no master displayed for scenario 6.  
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Fig. 47. Minimum percentage battery charge remaining in the sensor, cluster, and master 

nodes at the end of simulations for each agent scenario. Only one master node was 

present in scenarios 1 and 2. The simulation in scenario 1 stopped at simulation instant 

517 due to the loss of the only master node in the network. 
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Fig. 48. Number of computations and communications per simulation instant for each 

agent scenario.  
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Fig. 49. RMS target range estimation error at the master node for each agent scenario. 

The horizontal lines indicate Th  set in CCT for scenarios 4-6. 
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Fig. 50. Number of measurement updates per simulation instant at the master node for 

each agent scenario. 
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C. Discussion of Comparison Results for Single Trial Scenario Simulations 

Only one master node was present in the system in scenario 1. There were no 

agents present in the system. No resource management strategies were used. The tracking 

performance was good (Fig. 49), but because of the large communication overhead (Fig. 

48), the simulation ended due to the loss of the only master node (Fig. 21c) at simulation 

instant 517 (Fig. 22). Since there were no resource-balancing routing schemes 

implemented in scenario 1, the same sensor nodes were used for routing data over the 

entire simulation duration. Even though the simulation stopped after only 517 simulation 

instants, only 12% battery charge was remaining in one of the routing sensor nodes (Fig. 

47). This minimum battery charge in the routing sensor node indicates that even if 

scenario 1 had not stopped at simulation instant 517 due to the loss of the master node, 

the field in scenario 1 would not be able to last much longer due to the impending loss of 

the routing sensor node. 

Similar to scenario 1, only one master node was present in the system in scenario 

2. In scenario 2, TT resulted in intermittent measurements being sent from the cluster 

nodes to the master node, which resulted in fewer computations and communications 

taking place in the system (Fig. 48); therefore, more master and cluster battery charge 

remained at the end of simulations in scenario 2 than in scenario 1 (Fig. 47). Fewer 

communications, especially between the cluster and the master nodes, reduced the use of 

the routing sensor nodes, and the minimum battery charge remaining in the sensor nodes 

in scenario 2 was much larger than for scenario 1 (Fig. 47). Because of TT, fewer 

measurement updates were performed in scenario 2 (Fig. 50) than in scenario 1, and the 

tracking performance (Fig. 49) suffered. The TT parameters used in this research might 
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be useful in cases where gradual degradation of the tracking performance is acceptable, 

but the TT parameters could be modified to achieve a better tracking performance at the 

expense of battery utilization.  

Only one master node was present in scenarios 1 and 2. Multiple master nodes 

were present in scenarios 3-6. Unlike scenario 2, no adaptive sampling schemes were 

implemented in scenario 3. In scenario 3, four master nodes were present, and scheme 

CC1 was used effectively to switch the master node functions from one of the master 

nodes to another. Scenario 3 lasted for the entire simulation duration of 1100 simulation 

instants (Fig. 28) compared to scenario 1, which lasted for 517 simulation instants (Fig. 

22). Since the system performed measurement updates at every simulation instant, the 

battery consumption of the nodes (Fig. 27), as well as the trace of the master node P(k) 

(Fig. 29), were similar to scenario 1, until simulation instant 517. Scenario 3 also 

implemented the localized optimization routing scheme CC4. Scheme CC4 rotated the 

data routing function among different sensor nodes to balance the battery utilization in 

the sensor nodes. The minimum sensor node battery charge remaining in scenario 3 was 

larger than that in scenario 1 (Fig. 47).  

Four master nodes were present in scenarios 4a-4d. Scenarios 4a-4d used scheme 

CC1 effectively to switch the master node functions from one master node to another. 

Scenarios 4a-4d used scheme CCT to save battery charge (Fig. 46) while attempting to 

maintain tracking performance (Fig. 49) at a desired threshold. Scenarios 4a-4d were able 

to achieve a RMS target range estimation error less than Th  (Fig. 49). A linear 

relationship exists between the RMS target range estimation error and Th  for scenarios 

4b-4d (Fig. 49). In case of scenario 4a, because of the low Th, measurement updates were 
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performed at every simulation instant, and CCT was unable to influence the RMS target 

range estimation error. Scenarios 4c and 4d have a large desired tracking performance 

threshold (Table IX), resulting in fewer computations and communications (Fig. 48), thus 

helping to conserve battery charge at the master and cluster nodes (Fig. 46). Fig. 51 

shows the estimated target track using CCT with the Th set to 4230 and 14100. Fig. 52 

shows only a selected region of Fig. 51 for better visibility. For a Th of 14100 in scenario 

4d, the master node performed measurement updates less frequently compared to the Th 

of 4230 in scenario 4b (Fig. 50). Fewer measurement updates resulted in higher tracking 

errors for high Th, especially when the target changed directions (Fig. 52). 

In scenarios 5 and 6, schemes CC1, CC2, CC3, and CC4 were implemented along 

with CCT. The Th was set at 7050, as it was set for scenario 4c, resulting in similar 

tracking performances in scenarios 4c, 5, and 6 (Fig. 49). In scenarios 5 and 6, the 

number of communications was higher than in scenario 4c (Fig. 48), due to the 

implementation of schemes CC2 and CC3, which had additional communications 

overhead. The number of communications in scenario 6 was higher than scenario 5 due to 

the overhead involved in moving the master node functions among the nine 

master/cluster nodes. 

The primary objective of this dissertation was to present and compare alternative 

agent paradigms applicable for resource management in sensor networks. Simulation 

results verify the operation of the different agent-based adaptive sampling and control 

and coordination algorithms used for resource management. Field layout, number of 

nodes in the field, initial battery charge in the different nodes, battery-draining weights 

for different activities, uncertainty in the knowledge of the sensor node positions, and 
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target track are some of the parameters that influence the simulation results. The 

performance results of the individual scenarios might vary with different choices made 

for these parameters. However, the fixed set of parameters used in this dissertation 

established the effectiveness of using agents for resource management in different 

scenarios.  
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Fig. 51. Representative target track for single-trial simulations (solid line) and estimated 

target position using CCT with the Th set to 4230 (dash-dot line) for scenario 4b, and the 

Th set to 14100 (dotted line) for scenario 4d. Points a, b, c, d, and e indicate the target 

positions at simulation instants of 100, 250, 400, 830, and 1000, respectively. 
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Fig. 52. Selected region of Fig. 51 expanded for better visibility. Estimated target 

position using CCT with the Th set to 4230 (dash-dot line) for scenario 4b, and the Th set 

to 14100 (dotted line) for scenario 4d. Points b and c indicate the target position at 

simulation instants of 250 and 400. 

 

 

The MIQs evaluated using (32) for the different agent-based scenarios, the RMS 

range estimation errors, and the average and minimum battery charge remaining at the 

end of simulations in the sensor, cluster, and master nodes are presented in Table X. The 

number of agents in the system is an important factor in determining the MIQ for agent-

based sensor network systems. Scenario 1 did not have any agents for resource 

management in the system. The MIQ of scenario 1 was the BSI of the sensor network. 

Scenarios 2-6 employed intelligent agents for improved resource management in the 

b 

 

c 
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network. The single master agent in scenario 2 was able to manage resources at the 

expense of the tracking performance. Four master agents and nine cluster agents were 

present in scenario 3, hence scenario 3 had a higher MIQ and was better able to manage 

resources compared to scenarios 1 and 2. 

 Scenarios 4a-4d had the same number of agents implementing the same resource 

management schemes and had the same MIQ. In spite of having the same MIQ, scenarios 

4a-4d exhibited different performances as indicated by the tracking error and battery 

charge remaining in the different nodes in the network (Table X). This performance 

difference can be attributed to the different Th set in scenarios 4a-4d. Scenario 5 had a 

higher MIQ compared to scenarios 4a-4d and was able to better manage and use 

resources in the network. Unlike scenarios 1-5, scenario 6 did not have any special master 

node hardware. In spite of having fewer resources, the stacked functional agents in 

scenario 6 were able to manage resources quite efficiently. The MIQ did not guarantee 

any specific level of system performance (Table X). Along with the MIQ, simulation 

parameters and operational constraints play an important role in determining the system 

performance.  
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D. Monte Carlo Simulation Results 

40 Monte Carlo trials were conducted for scenarios 5 and 6, and the results are 

presented in Table XI. The average field life at the end of 40 Monte Carlo trials was 2540 

simulation instants for scenario 5 and 2647 simulation instants for scenario 6. For each 

trial, the simulation stopped due to the loss of a sensor or cluster node or due to the loss 

of all the master nodes in the network. The results from Table XI indicate that during the 

40 trials for scenario 5, the simulation ended 34 times due to loss of master nodes and six 

times due to loss of cluster nodes. In scenario 6, the simulations ended due to the loss of 

the master/cluster node for all 40 trials. The field life achieved in scenario 5 could be 

increased by increasing the number of master nodes or by increasing the battery 

capacities of the available master nodes. The field life achieved in scenario 6 could be 

increased by increasing the battery capacities of the available master/cluster nodes. 

Though scenario 6 had a much larger MIQ than scenario 5 (Table X), comparable field 

lives were achieved for scenarios 5 and 6 during the 40 Monte Carlo trials (Table XI). 

The simulation parameters and operational challenges in scenario 6 thus did not allow the 

capabilities of the system to be fully used in order to achieve a higher field life than 

scenario 5.  
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TABLE XI 

SIMULATION RESULTS FOR SCENARIO 5 AND 6 IN  

40 MONTE CARLO TRIALS 

  

 SCENARIO 

 5 6 

Average field life (simulation instants) 2540 2647 

Standard deviation field life (simulation instants) 480 578 

Average number of computations per simulation instant 2 2 

Average number of communications per simulation instant 6 7 

Number of times simulation ended due to loss of master nodes 34 - 

Number of time simulation ended due to loss of cluster nodes 6 30 

Average percentage battery charge remaining in the sensor nodes 

at the end of simulation 

83 80 

Average percentage battery charge remaining in the cluster 

nodes at the end of simulation 

65 23 

Average percentage battery charge remaining in the master 

nodes at the end  of simulation 

0.17 - 

 

 

E. Summary 

Single-trial simulation results for scenarios 1-6 were presented and compared in 

this chapter. For scenarios 5 and 6, 40 Monte Carlo simulation trials were performed, and 

the simulation results were presented. Scenarios 5 and 6, in which multiple master or 

master/cluster nodes were present, measurement updates were performed intermittently 

using CCT, and clusters and sensors far away from the target were switched off, were 

able to attain a good balance of tracking performance and field life. 
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VIII. CONCLUSION  

Agent-based systems are a new and robust paradigm for designing flexible 

architectures for systems with disparate needs. Agents have much to offer in sensor 

networks, but since this is an emerging field, the literature offering guiding principles or 

strategies for using agents in sensor networks is sparse. The results presented in this 

dissertation provide an insight into the use of agents in DSNs and may assist designers of 

agent-based systems in using agents to their best advantages in scenarios similar to the 

wide range of those explored. 

In this dissertation, different agent paradigms developed for an undersea 

distributed sensor network were explored and compared. The use of agents to achieve the 

goals of managing resources to increase field life in DSNs was demonstrated. Even 

though a particular undersea application was considered, many of the results from this 

research can be applicable to other agent-based systems. 

A modular simulation framework based on object-oriented design was used to 

generate data for a detailed analysis of component interactions and for the performance 

evaluation of the different agent-based scenarios. The simulation framework 

demonstrated the scalability and flexibility of agent-based systems where task-specific 

agents are added or removed to simulate different scenarios with ease. Agents were able 

to balance the tracking performance and survivability in the DSN with different adaptive 

sampling and control and coordination schemes. 
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Adaptive sampling schemes CCT and TT were implemented by the agents to 

balance tracking performance and resource utilization in the network. The TT parameters 

used in this research might be useful in cases where gradual degradation of tracking 

performance is acceptable in order to conserve battery resources. The TT parameters 

could be modified to achieve a better tracking performance at the expense of battery 

utilization. CCT, on the other hand, is useful for maintaining the tracking performance at 

an acceptable level while still balancing the network resources.  

Scheme CC1 was useful in balancing network resources by rotating the master 

node functions among multiple master nodes. Schemes CC2 and CC3 helped to conserve 

battery charges in the cluster and sensor nodes by turning off nodes that were far away 

from the target position. Scheme CC4 used localized optimization routing to balance 

power consumption in the sensor nodes by rotating the routing function among different 

sensor nodes.  

A measure of the machine intelligence quotient for agent-based systems was 

developed to facilitate comparison of different agent paradigms. The MIQ gives a 

theoretical measure for quantifying the benefits of the decisions made by the agents to 

achieve the goals in the sensor network. Scenarios having high MIQs generally achieved 

a high performance, though simulation parameters and operational challenges sometimes 

may not have allowed the capabilities of the system to be fully used. The MIQ measure 

developed in this dissertation for comparing agent-based systems can be helpful in 

making design and development decisions for other agent-based applications.  

Future work might involve adjusting the threshold in CCT frequently in order to 

achieve improved tracking performance. A combination of TT and CCT might also be 
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explored to balance field life and tracking performance. Instead of using sensor nodes 

that measure the range and bearing of the target, research in agent-based sensor networks 

using binary sensor nodes that detect only the presence or absence of the target could also 

be considered.  
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