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DEVELOPMENT OF EFFICIENT ALGORITHMS FOR FLUID-STRUCTURE 
INTERACTION FRAMEWORK AND ITS APPLICATIONS 

 
YOUNG HO KIM 

 
ABSTRACT 

 
Computer-based simulation tools are becoming integrated to solve multiphysics 

and interactions between different disciplines. One of such problems that is of importance 

is fluid structure interaction (FSI). The goal of this study is to develop efficient and 

robust algorithms for a FSI framework. Due to the advantages of reusability of well-

validated simulation codes for fluid and structural analysis, loosely-coupled methods are 

now dominant over directly-coupled methods. In loosely-coupled methods, it is important 

to transfer data efficiently and accurately between inherently unmatched grids used in 

different disciplines. In addition, efficient moving grid algorithms and time mapping 

techniques are essential. A new hybrid interpolation method for deformation mapping is 

suggested. The method provides efficient, accurate, and smooth interpolations in 

comparison to traditional methods. A partitioned volume grid movement algorithm is 

developed in which a local reference system is used for the viscous layer, and existent 

linear and semi-torsional spring analogy is used for the inviscid region. The algorithm 

reduces computational time significantly, and it prevents vertex-to-edge or vertex-to-face 

interpenetrations incurred in a large deformation by traditional spring analogy methods. 

Numerical results with test functions and an aircraft wing deformation illustrate the 

efficiency and accuracy of the suggested deformation mapping and volume grid 

movement methods. The validated algorithms are integrated into a FSI framework. Three 

FSI applications are demonstrated: pulsatile blood flow in an artificial straight/curved 
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stenotic artery with considering vessel compliance; pulsatile blood flow in in-vivo 

patient-specific femoral artery bifurcation; and an aircraft wing flutter.  
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CHAPTER 1 

INTRODUCTION 

 

1.1    Background 

Numerous computational fluid dynamics (CFD) and computational structural 

dynamics (CSD) solvers have been developed over the decades independently. The 

results from computational simulation are now accurate enough to predict real physical 

phenomena. In addition, computer hardware has been improving rapidly. However, in 

real physical problems, certain phenomena such as FSI are related to the interaction of 

two or more disciplines. To solve multiphysics problems using computational methods, 

an efficient and accurate numerical scheme or tool is required.  

There have been a number of approaches to solve fluid structure interaction (FSI) 

problems. They can be categorized into two groups: directly-coupled and loosely-coupled 

methods. The directly-coupled method is to generate a monolithic program by combining 

the governing equations used in two different media (fluid and structure) [1, 2], while the 

loosely-coupled method is to utilize an interface code to couple independent CFD and 

CSD solvers. The overview of modeling of FSI problem in aeroelasticity can be found in 

Bennett et al. [3] and Dowell et al. [4]. The review of FSI in liquid filled pipe systems 

can be found in Tijsseling et al. [5]. 

The directly-coupled method provides more accurate results than the loosely-

coupled one. Aeroelasticity, a major application area of FSI, has been studied by many 
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researchers with this method. Behr [6] analyzed incompressible flow over two-

dimensionalairfoil and cylinder using implicit stabilized space-time formulation for 

moving boundaries and interfaces, and a new stabilized velocity-pressure-stress 

formulation. Kroyer [7] solved supersonic flow past moving fins in two-dimensions using 

ADINA/ADINA-F. Carstens et al. [8] analyzed the flutter behavior of turbo-machinery 

blades in the time domain. The structural part of the governing aeroelastic equations is 

time-integrated according to the Newmark algorithm, while the unsteady air-loads are 

computed at every time step by a Navier–Stokes code. However, their applications with 

the directly-coupled methods are limited to two-dimensional or simple three-dimensional 

geometry, because the possibility of divergence of solution is increased as geometries 

become complicated. Another problem on the direct method is to yield ill-conditioned 

matrix system from the differences of properties and scales used in CFD and CSD 

formulations. Other applications with this method in aeroelasticity can be found in Refs. 

[9-13].  

Another FSI application with this method is blood flow through flexible arteries. 

Tang et al. [14-16] analyzed the mechanical properties of carotid arteries and 

pulsatile/steady blood flow with simplified flexible artery wall. They also investigated the 

effect of lipid pool on wall mechanical properties of stenotic arteries interacted with 

blood flow [17].  

  Loosely-coupled method comes from an idea that FSI problems can be obtained 

efficiently and accurately using the well-proven CFD and CSD codes. With the 

advantages of reusability of well-proven simulation codes for each discipline, loosely-

coupled methods have been employed by many researchers in the complex and large 
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scale problems. For example, an entire airplane, A502 Model, was analyzed by Whiting 

and Neill [18] using the panel method and an infinite plate spline interpolation technique. 

The flow over fighter F-16 was analyzed with non-uniform B-spline interpolation method 

using MDICE program by Love et al. [19]. 

  In order to combine two different codes, an interface tool should be developed to 

control entire processes. This involves CFD and CSD data transfer using mapping 

techniques, time step control for job assignment to each discipline with/without parallel 

computer, and mesh control for moving boundary using numerical algorithms. There are 

many interpolation methods used in aerodynamic problems. The structural response of 

wing was monitored using inverse interpolation method [20]. Bilinear interpolation 

method was employed in analyzing micro aero vehicle wing with implicit multi-block 

pressure based Navier-Stokes equation [21]. Potsdam and Guruswamy [22] blended 

surface spline approximation and nearest surface point movement in analyzing transonic 

flow. Doi [23] analyzed turbo-machinery blade with iso-parametric interpolation 

function, parallel multiblock structure and dual time stepping. Other application with this 

method can be found in Refs. [24-28]. 

Assuming that the interaction between fluid and structure is not severe to the 

extent of considering remeshing the domain of fluid or structure, the following 

procedures must be considered to develop a tool (refer to as FSI framework) for loosely-

coupled methods that can adopt any CFD and CSD solvers.    

First, it is important to transfer data efficiently and accurately between inherently 

unmatched grids of different disciplines. In most cases, the fluid domain is discretized by 

a fine grid while the structural domain is discretized by a relatively coarse grid due to the 
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different nature of physics and numerical procedures. Among a variety of interpolation 

methods, making the right choice is a key factor in obtaining accurate solutions.  

For the load transfer from fluid (fine grid) to structure (coarse grid), tracking 

methods with point-search algorithms and shape functions yield accurate results. For the 

deformation mapping from structure to fluid, two types of interpolation methods have 

been used: surface tracking and spline methods. The spline methods are popular because 

of smoothness and ease of implementation. However, these methods require significant 

computation time and the system matrices are prone to becoming ill-conditioned when 

used with unstructured grids, particularly with large numbers of nodes in complex three-

dimensional systems. On the other hand, the surface tracking method can be applied to 

complex geometries with the advantage of finding matching pairs easily, but it may yield 

low accuracy at highly curved geometries.  

Secondly, the fluid volume grid movement must be considered based on the 

interpolated deformation of fluid domain from the first step. The popular spring analogy 

methods require significant computation time. Moreover, the method yields the vertex-to-

edge or vertex-to-face interpenetrations in case of large deformation especially in viscous 

layers. 

1.2   Objectives and Outline  

The goal of this study is to develop efficient algorithms for FSI framework and its 

applications to real world problems. The framework is comprised of a load projection, 

surface deformation, volume deformation, time mapping, and input/output control 

modules.  
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Chapter 2 describes a FSI framework using loosely-coupled method. The pre-

requisites of CSD and CFD codes that can be used in FSI framework are explained. The 

roles of each module in the FSI framework are briefly introduced.  The flow chart of 

loosely-coupled FSI framework is illustrated. 

Chapter 3 explains a load projection module which is a component of the FSI 

framework. A surface tracking interpolation method used in the load transfer module 

guarantees the load transfer from fluid to solid in conservative and robust ways. The 

searching algorithms required for the implementation of the surface tracking method are 

described.  

Chapter 4 presents a new hybrid interpolation method using Curvature gradient 

Index Local Fitting (CILF) for motion transfer used in surface deformation transfer 

module. CILF uses a surface spline method at local geometries having a high curvature 

gradient and a tracking method at the remaining geometries.  

Chapter 5 addresses a new hybrid moving grid algorithm for volume deformation 

module. The new method uses an averaged point normal of moving surfaces at local 

geometries having a high curvature gradient, and it uses a simple local coordinate at the 

remaining geometries for viscous layers. A conventional spring analogy method is used 

for inviscid layers. 

Chapter 6 explains the classical serial staggered time mapping method 

implemented in FSI framework with Perl script and Dos batch command. 

Chapter 7 shows three applications of FSI framework. First, pulsatile flow 

through artificial straight/curved stenotic arteries is simulated. The pulsatile flow is 

modeled by sinusoidal waves and nonlinear hyper-elastic model is used for wall of the 
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arteries. The arteries are pre-stretched and pre-stressed to take residual stress into account. 

Secondly, flow patterns of an in-vivo complicated non-planar femoral artery bifurcation 

are analyzed and compared to the realistic magnetic resonance imaging (MRI) data. The 

pressure boundary condition at inlet is calculated from MRI velocity profiles. The 

velocity mapping of MRI data using an interpolation method at outlets is applied to 

observe the effect of skewed velocity profile from curvature of the arteries. An inverse 

method to find material coefficients in a constitutive model for in-vivo materials is 

employed. The last application is flutter simulation of an aircraft wing using time 

marching full dynamic FSI analysis instead of conventional modal approach. 

 

 

 



 7

CHAPTER 2 

FLUID STRUCTURE INTERACTION FRAMEWORK USING 
LOOSELY-COUPLED METHOD 
 

2.1    Pre-requisites of CSD and CFD Solvers 

To maximize the advantage of re-use of existent well-validated CFD/CSD solvers 

without any modification in loosely-coupled method, some pre-requisites are needed as 

follows: 

• Adoption of script command for batch of work 

• Accessibility of input/output files for data transfer 

• Arbitrary Lagrangian-Eulerian (ALE) in CFD solvers for moving grids 

• Embedment of user-defined function for boundary/initial conditions and 

material constitutive models (optional) 

Most of CFD/CSD solvers satisfy first three requirements. The last requirement is 

not embedded in most CFD/CSD solvers. Time-dependent boundary conditions or user-

customized material properties are indispensable for some biomechanics applications.  

2.2  Modules of FSI Framework 

Assuming that CSD/CFD codes meet the pre-requisites, a FSI Framework can be 

developed to solve FSI problems. The framework consists of a load projection, surface 

deformation, volume deformation, time mapping, and input/output control modules. The 

data communication is transferred using natural files in the framework, because the 
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source code of two chosen commercial CFD/CSD solvers can not be accessed. This data 

communication scheme requires significant computation time to read and write data in 

hard drive, but it saves computational memory. This scheme is essential for enormous-

memory-requirement application. In addition, the scheme can be used for CFD/CSD 

solvers in different platforms such as Linux, Windows, Unix, and etc [30]. However, if 

source codes of the existent CFD/CSD solvers in the same platform can be accessed by 

users and the memory is enough for saving all interface data, the data communication 

should be performed through run-time memory.  The entire procedures of loosely-

coupled FSI framework are illustrated in Fig. 2.1. The main roles of each module in the 

framework are as follows:  

 

• Load projection module 

1. Convert fluid pressures to forces for all nodes on wetted fluid surface 

(common boundary between fluid and structure) 

2. Transfer the forces to all nodes on the wetted structural surface 

• Surface deformation module 

1. Deform the wetted fluid surface based on deformation of the wetted 

structural surface with an interpolation method  

• Volume deformation module 

1. Move fluid volume grids based on the wetted surface deformation 

2. Check negative volumes resulting from penetration of nodes into faces or 

edges 
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Obtain node pressure on flow 
field surface mesh

Solve CFD Flow field 

Identify relative coordinates of 
nodes on the wetted surface

Solve structural equation  
with the transferred pressure 

Transfer the pressure to 
structural surface mesh 

Subtract wetted surface 
from CFD/CSD solver

Obtain displacement on 
structural surface 

 Deform the CFD volume mesh based 
on structural displacement 

Fig. 2.1 FSI flowchart 

T
i
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m
a  
p
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n
g

Input/Output 
Module 

Load Projection  
Module 

Surface Deformation  
Module 

Volume Deformation 
Module 

Time Mapping 
Module 

• Time mapping module 

1. Control iteration procedures for explicit/implicit coupling 

2. Generate script and batch files for automatic iterations 

• Input/output module 

1. Convert input and output formats of each codes into a general format  

2. Extract the wetted surface information such as coordinates and node 

connectivity information 

3. Update the data transferred from each solver 
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CHAPTER 3 

LOAD TRANSFER 

 

3.1    Introduction 

In loosely-coupled fluid structure interaction analysis, the data transfer between 

fluid and structure using interpolation techniques is required in space due to naturally 

unmatched grids between the two media. Load transfer, one mode of data transfer, 

enforces the equilibrant loads on the structural boundary interface based on pressure and 

tractions on the fluid boundary interface obtained from flow solvers.   

3.2    Surface Tracking Interpolation Method 

The surface tracking interpolation method requires a searching algorithm for 

identifying local coordinates of fluid nodes on the nearest structural element using the 

element connectivity information and area coordinates (shape functions). The integrated 

or given pressure/tractions of fluid cell element are converted to forces. Then, these 

forces are transferred to structural nodes using the linear shape functions. Fig. 3.1 shows 

the flow chart. The detail description of this method can be found in Ref. [31]. 

3.2.1  Searching algorithms 

Several searching algorithms have been suggested such as neighbor to neighbor, 

brute-force, advanced-front, octree and vectorized grid for unstructured grids. Overview 

of these methods can be found in Ref. [32]. One of these methods, neighbor to neighbor 
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algorithm is outperformed in terms of speed and easy implementation. This method, 

however, may fail to identify the locations in some cases having specific geometries. Fig. 

3.2 shows one of these cases. The other method called brute-force method shows slow 

performance but may yield robust results. The method searches all of the structural 

elements for one fluid node until a criterion meets.  

In this study, the former method is mainly used to guarantee efficiency, and the 

latter is used for some nodes where the former fails to identify.    

 

 

 

 

 

 

 

 

Fig. 3.1 Flow chart of the surface tracking interpolation method

Convert the pressure to force

Identify relative coordinates 
(shape functions) of fluid nodes 

using searching algorithms 

Transfer the forces to 
structural mesh using the 

shape functions 

Obtain node pressure on flow 
field surface grid
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Fig. 3.2 Failure of neighbor to neighbor searching algorithm 

 

3.2.1.1     Neighbor to neighbor search algorithm 

This method is to find the shortest path starting from an arbitrary element to the 

destination (host) element using connectivity information of unstructured grid and area 

shape functions iN  (Fig. 3.3) with the path direction as shown in Fig. 3.4.  The 

algorithms can be explained as follows: 

 

1. Constitute a list of surrounding elements of each structural element using the 

connectivity information 

2. Find  ds, the shortest distance between any two structural nodes 

3. Choose a starting element arbitrarily, and calculate iN  of the point to be 

interpolated 

4. Test a criterion as  

iNN ii ∀≥− ,0)1,min(                                                                      (3.1) 

 

Starting 
Element Point to be 

interpolated 
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5. If the criterion is satisfied and the projected distance from fluid node to structural 

element is shorter than ds, save the index of the host structural element and exit. 

Otherwise, move to the neighbor element indicated by )min( iN  and go to step 4   

 

 

 

 

 

 

 

 

 

Fig. 3.3 Shape functions using area coordinate in a linear triangular element 

 

 

 

 

 

 

 

 

Fig. 3.4 Neighbor to neighbor search algorithm 

 

321 AAAA ++=  

AAN /11 =  
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In the step 5, if the algorithm fails due that the projected distance is greater than ds, the 

brute-force algorithm is employed.  

3.2.1.2     Brute-Force algorithm 

This method can be implemented easily by testing Eq. (3.1) until the criterion 

satisfies for all of the fluid nodes. It’s robust but slow. 

3.2.2  Load transfer 

Let’s call the common boundary between two media wetted surface. In order to 

evaluate the fluid pressure and tracking forces on the structure, the load on a given wetted 

fluid surface ( FΓ ) must be transferred to a wetted structure surface ( sΓ ) in a conservative 

way. The force at each structural node can be written as 

[ ] [ ]lk

l

l
lk cf

F

∑
=

Φ=
1

                                     (3.2) 

where, Fl  is the number of fluid nodes on the structural element, lkc are constants 

depending on the chosen approximation schemes, and  

∫Γ ⋅+−=Φ
F

dsDnpn lFl )( σ                                          (3.3) 

where, p is the pressure, Fσ  is fluid viscous stress tensor, n is the normal at a point on the 

wetted surface, lD  are some functions with global and local supports on FΓ . In order to 

obtain lΦ , the pressure and wall shear stress in each direction are extracted. 

Because the pressure and stresses cannot be transferred directly due to different 

areas of the unmatched grids, they must be converted to an equivalent force. Every fluid 

node can be projected to the nearest structural element by the neighbor-to-neighbor and 
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brute-force search algorithm. Then, the equivalent forces on the fluid node can be 

distributed to structural elements as 

 3,2,1== iFNF
i
fj

e
s j                              (3.4)                        

where 
i
fF  is the equivalent force at the fluid node i, 

e
s jF  is the point force at each node 

of structural element, e, as shown in Fig. 3.3.  

After the forces at each node using Eq. (3.4) for all elements on the wetted structure 

surface are evaluated, the summed forces at each node will be used in computational 

structural analysis. Fig. 3.5 illustrates the load transfer from fluid to structural grid. 

 

 

Fig. 3.5 Load transfer from fluid to structural grid 

 

3.2    Results and Discussion 

The load transfer of AGARD 445.6 wing is performed to demonstrate the 

accuracy of the method in three-dimensional domain. The unstructured fluid and 

 Fluid Grid  

 Structural Grid  

Pressure and tracking force 
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structural grids enclose the actual three-dimensional wing with 62,399 and 5,010 nodes, 

and 334,935 and 15,839 tetrahedron elements, respectively. The wetted surfaces as 

shown in Fig. 3.6 extracted from the tetrahedron elements have 21,414 for fluid and 8766 

triangular elements for structural wing. 

 

 

 

 

 

 

Fig. 3.6 Wetted fluid and structural surface grid 

In order to test the implemented code, total pressure and shear stresses on each 

coordinate obtained at a time step of the flutter simulation of AGARD 445.6 wing are 

converted to forces, and the forces are transferred to the structural nodes. For the 

visualization purpose, the absolute forces on both grids are converted to pressure again as 

shown in Fig. 3.7. A good agreement was found between the pressure data on two grid 

sets. On the structural grid, however, the spotted force concentration is shown locally due 

to the different grid resolution. The spots may be smeared and smoothed considering 

higher order approximation using first derivative of load distribution, or graphical 

approximation such as overset grids and subdivision and interpolation.  
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Fig. 3.7 Load transfer of AGARD 445.6 Wing
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CHAPTER 4 

NEW HYBRID INTERPOLATION METHOD FOR SURFACE 
DEFORMATION 

 

4.1    Introduction 

  In the loosely-coupled method, the information between the independent codes 

needs to be transferred in efficient and accurate way. However, due to the inherently 

different spatial discretization of two codes, interpolation techniques are indispensable.  

  The numerous interpolation methods used in deformation mapping can be 

categorized into two groups: surface spline and tracking methods. The surface spline 

methods solve a linear equation consisting of radial basis functions to obtain a globally 

representative surface. Harder [33] presented a surface spline method for a plate known 

as infinite-plate spline (IPS). The IPS method provides reasonable results without 

additional constraints, such that input grid should be a rectangular array. This method is 

one of the most popular interpolation methods because of its ease of use and 

implementation. Duchon [34] presented a thin-plate spline (TPS) method that can 

represent an irregular surface with a function that minimizes the bending energy of a thin 

plate. TPS can be easily extended to multi-dimensional problems. In addition, TPS is a 

powerful tool for data interpolation on unstructured grids because the splines are 

invariant during scaling, rotation, and translation. Hardy [35] suggested a multiquadrics 

(MQ) method for reconstructing irregular topologies with scattered data using quadratic 
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basis functions similar to TPS. The basis functions used in IPS, TPS and MQ methods are 

recalled as radial basis functions (RBF). Beckert [20] addressed a multivariate 

interpolation scheme using RBF in three-dimensions. Samareh [36] proposed a method

that uses a non-uniform rational B-spline (NURBS) representation to reduce the data 

transfer time. For all of the interpolation methods that can be categorized as surface 

spline methods, a system of equations needs to be solved to obtain interpolated 

information. 

  The surface tracking methods use natural coordinates associated with the 

deformed grid and a point-search algorithm. Murti and Valliappan [37] presented a 

method that uses inverse isoparametric mapping (IIM) for isoparametric finite elements 

to find a local coordinate (computational domain) from given global coordinate (physical 

domain). After finding the local coordinate, the shape functions of finite elements are 

used to interpolate physical quantities. Based on this method, Pidaparti [38] transferred 

structural and aerodynamic data for FSI application, and Byun and Guruswamy [39] 

solved wing-body aeroelasticity on a parallel computer using a domain decomposition 

approach. Maman and Farhat [40] provided a program called ‘Matcher’ using a 

consistent interpolation-based algorithm (IBA) by projecting fluid nodes to the structural 

mesh. Cebral [41] suggested a variation of ‘Matcher’ that guaranteed conservation of 

forces using the Galerkin method and an adaptive Gaussian integration scheme. This 

method, however, needs matrix inversion similar to spline methods. Farhat et al. [31] 

modified ‘Matcher’ to guarantee the conservation of forces without matrix inversion. 

Smith et al. [42] evaluated six interpolation methods, IIM, IPS, TPS, finite plate spline, 
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NURBS and MQ. They indicated that TPS and MQ are the most robust, cost-effective 

and accurate among the tested methods.  

  In FSI analysis solved in the loosely-coupled manner, spline methods are popular 

in mapping structural deformation onto the fluid domain because of smoothness and ease 

of implementation. However, these methods require significant CPU time and the system 

matrices are prone to becoming ill-conditioned when used with unstructured grids, 

particularly with large numbers of nodes in complex three-dimensional systems. A 

subdomain approach has been applied to TPS and MQ to reduce this instability [43]. On 

the other hand, the surface tracking method can be applied to complex geometries with 

the advantage of finding matching pairs (e.g. fluid node and structure element in FSI) 

easily, but it may yield low accuracy at highly curved geometries.  

  In this study, a new hybrid mapping method referred to as Curvature gradient 

Index Local Fitting (CILF) is suggested. CILF uses a surface spline method at local 

geometries having a high curvature gradient and a tracking method at the remaining 

geometries. The goal of this study is to develop an accurate and efficient surface-to-

surface mapping method between unstructured fine and coarse grid systems by 

integrating three-dimensional TPS (one of the spline methods) and one of the tracking 

methods. The suggested method is applicable not only to FSI analysis, but to any 

multiphysics simulation with heterogeneous grids. Numerical results using two-

dimensional analytical test functions, and three-dimensional applications such as sphere 

[44] and wing deformation are presented.  
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4.2    Mapping Methods 

 Due to the use of heterogeneous grid systems in multiphysics simulations, the 

mapping process is essential for data transfer. For instance, in FSI analysis, the pressure 

in flow field must be transferred to structural surface by equivalent tractions. On the other 

hand, the deformation of structure must be mapped to the fluid surface to accommodate 

remeshing or mesh motion of the fluid domain. In most cases, the fluid domain is 

discretized by a fine grid while the structural domain is discretized by a relatively coarse 

grid due to the different nature of physics and numerical procedures.  

 Alternatively, in general multiphysics modeling there may be two grid systems; 

one fine grid and another relatively coarse one as is shown in Fig. 4.1. It is necessary to 

transfer physical quantities (scalars or vectors) from one grid to the other in an accurate 

and efficient way.   

 

                           

 

 

 

 

 

a) Coarse grid                          b) Fine grid 

Fig. 4.1 Two different grid configurations 
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4.2.1  Mapping data from a fine grid onto a coarse grid 

 Physical quantities defined on the fine grid can be easily mapped onto a coarse 

grid using surface tracking methods with point-search algorithms. A quantity at a node in 

the coarse grid can be estimated by the values at nodes of the enclosing element in fine 

grid using the shape functions employed in previous load transfer. For a triangular 

element as shown in Fig. 3.3, this becomes 

     ∑
=

=
3

1j

e
fj

i
c j

qNq         (4.1) 

where i
cq  and e

f j
q  are any physical quantity (e.g. displacement vector) on the coarse and 

fine grids, respectively. The superscripts i and e are node and element indices, 

respectively.  

4.2.2  Mapping data from a coarse grid onto a fine grid 

  For mapping data from coarse grids onto fine grids, there have been two different 

approaches: surface tracking and spline methods. In a manner similar to that outlined 

above, a quantity at a node in the fine grid can be estimated by the values at nodes of the 

enclosing element on the coarse grid using the shape functions 

                                                        ∑
=

=
3

1j

e
cj

i
f j

qNq                        (4.2) 

  Node-based physical quantities can be transferred with these mapping methods. 

To understand the process clearly and visualize the results, geometry deformation will 

now be considered as an example of a physical quantity to be mapped.  

 When the surface tracking method is used for geometry mapping, Eq. (4.2) may not 

yield acceptable results for mapping of data from the coarse grid onto the fine grid due to 
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the non-smoothness introduced by different grid resolutions. To overcome this problem, 

nodes of the fine grid can be moved by initial distances [37] with the calculated 

displacement i
frq  written as 

              i
f

i
f

i
f

i
fr dnqq +=                                                 (4.3) 

where i
fn is a unit normal vector to the nearest coarse grid, and i

fd is the initial distance 

measured from the initial grid configuration. 

  Another approach to yield a smooth interpolated surface is to use spline methods, 

in which the deformation of the coarse grid can be expressed as a surface function. For 

example, if a set of nodes on a curved thin plate is given, a function for the curvature can 

be obtained using splines based on the given nodes.  TPS was indicated as a robust, cost-

effective, and accurate method in Ref. [39]. The splines can be obtained by minimizing 

following energy function in the two-dimensional space 
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This equation can be solved by using weighted sums of a radial basis function as follows: 

 yaxaayxKayxf mmmi
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+++=∑                         (4.5) 

where  ),(ln),(
16

1),( yxyxyxKi φφ
π

= ,    22 )()(),( ii yyxxyx −+−=φ ,  

m is the number of nodes on the plate, and ix  and iy are the coordinates of the given 

nodes. The spline coefficients ia in Eq. (4.5) are determined by solving the system of 

linear equations 

 bAa =                                                      (4.6) 
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where a  is a spline coefficient vector, A  is a system matrix comprised of radial basis 

functions and b  is a displacement vector.  

4.2.3  A new hybrid mapping method 

A new hybrid method referred to as CILF is suggested that uses a surface spline 

method for local grid regions where the curvature gradient index is satisfied by a 

criterion, and a tracking method for the rest of the grid. TPS without a subdomain 

approach is used for the surface spline method in CILF. A tracking method with initial 

distance vectors [37] is employed for the tracking scheme in CILF. 

4.2.3.1    Curvature gradient index and criterion 

  In the first step, the curvature gradient indices of the coarse grid are calculated 

from the gradient of dihedral angles at a time step:  

   
11 )(cos
+− ⋅=

k

k

l
e

l
e nnCI                                                    (4.7) 

where l
eCI denotes a curvature gradient index corresponding an adjacent element of 

element (e) in the coarse grid, k is a time step index, and en  and ln are unit normal 

vectors of the element and its adjacent element respectively.  

  The absolute value of the curvature gradient can be used as a criterion. 

Alternatively, a relative criterion can be determined as a percentage of the elements used 

in three-dimensional local TPS. After computing the index, all of the curvature gradient 

indices are sorted as an array in descending order. Then, a three-dimensional local TPS 

technique is applied. 

l = 1,2,3  
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4.2.3.2    Three-dimensional local TPS 

  The key feature of CILF is to apply TPS to the local grid that is assigned the 

spline method by the absolute or relative criterion based on the curvature gradient index. 

The three-dimensional local TPS suggested in this paper uses element-based local splines 

with a small data set, comprised of all nodes adjacent to the two end nodes along the edge 

of an element satisfying the threshold criterion, as is shown in Fig. 4.2. The local TPS can 

be achieved by the following steps: 

 

Step 1:  Project nodes (data set) to a plane parallel to the element flagged for TPS  

Step 2:  Calculate distances ( d ) from the nodes to the projected nodes ( p ) 

Step 3:  Form the three-dimensional matrix A  and vector b as given in Eq. (10) 
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 where 

 ),,(ln),,(
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=   

222 )()()(),,( iii zzyyxxzyx −+−+−=φ  

and m is the number of the nodes projected onto the plane. 
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Step 4:  Obtain interpolated distances of all nodes on the fine grid of the element by 

 zayaxaazyxKazyxf mmmmi

m

i
i 4321
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++++= ∑            (4.9) 

 

                               

 

 

 

 

 

 

  

Fig. 4.2 Data set used for local TPS 

 

4.3   Results and Discussion 

4.3.1    Two-dimensional test functions 

 In order to demonstrate the accuracy and efficiency of the suggested method, four 

two-dimensional analytical test functions were chosen: 

 122
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a) Neighbor nodes in case of 
criterionCICICI eee ≥321 ,,  
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b) Neighbor nodes in case of 
criterionCI e ≥1 and, 

criterionCICI ee ≤32 ,                       
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where 5.1,5.1 ≤≤− yx . In this study, fine grid is comprised of 1968 nodes and coarse one 

has 128 nodes irregularly spaced on a plate as shown in Fig. 4.1. The coarse grid is 

deformed by the above equations, and then the deformed coarse grid is mapped onto the 

fine grid using conventional methods and CILF. The criterion for CILF is set to an 

absolute value, ±5 deg. To evaluate the accuracy of CILF method compared to IPS and 

the tracking method with an initial distance vector, the root mean-squared (RMS) errors 

are calculated as  

 [ ] nyxfyxFerrorRMS
n

k
kkkk∑

=

−=
1

2),(),(                            (4.14) 

where ),( kk yxF  is the original function, ),( kk yxf the interpolated function, and k and n 

are node indices and the total number of nodes on the fine grid, respectively. 

  In terms of the accuracy, RMS errors of CILF are much smaller than those of 

surface tracking as shown in Table 4.1. The interpolated and original data of the four 

functions are illustrated in Fig. 4.3 and show the smoothness of CILF compared to 

surface tracking. In terms of the efficiency, CILF for the function 1F , applied with 37.5% 

of the elements interpolated by TPS, is about four times faster than the IPS method as is 

also shown in Table 4.2. The method is still 1.7 times faster than IPS, although CILF 

employs 96.2 % local TPS for the function 3F .  

 To demonstrate that CILF is much faster than IPS as the number of nodes is 

increased, the bell shape function 1F  with 236, 369, and 920 nodes is interpolated. The 

results shown in Table 3 indicate that CILF is up to 215 times faster than IPS. IPS 

requires significant CPU time to allocate and invert the matrix for the solution to the 

linear algebraic system needed to generate a global spline. CILF reduces the required 
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time by taking a maximum of 15 neighbor nodes for generating local splines. In addition, 

the use of small numbers of nodes can decrease a possibility of yielding ill-conditioned 

systems. The RMS errors of CILF shown in Table 4 are similar to those of IPS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 4.3 Graphical comparison of surface tracking, IPS and CILF for four analytical 
test functions 
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d) F4 

Surface tracking 

IPS 

CILF 

Exact function 
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Table 4.1 Comparison of RMS errors of test functions 

 Surface Tracking IPS CILF 

1F  0.0124 0.0041 0.0048 

2F  0.0065 0.0026 0.0036 

3F  0.0112 0.0007 0.0023 

4F  0.0110 0.0033 0.0039 

 

Table 4.2 Comparison of relative CPU time of test functions 

* percentage of the number of elements interpolated by local TPS 

Table 4.3 Relative CPU time versus total number of nodes 

 

 Surface Tracking IPS CILF  

1F  0.16 3.80 1   (37.5)* 

2F  0.10 2.30 1  (77.9) 

3F  0.07 1.74 1  (96.1) 

4F  0.14 2.12 1  (63.9) 

Number of nodes Surface Tracking IPS CILF 

128 0.16 3.80 1  
236 0.14 11.94 1   
369 0.11 30.29 1   
920 0.08 215.85 1   
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Table 4.4 RMS errors versus total number of nodes 

 

 

4.3.2  Three-dimensional mapping of a sphere deformation 

  Three-dimensional mapping can be achieved without any difficulty using CILF. 

An example of sphere deformation is chosen as shown in Fig. 4.4. The coarse grid is 

deformed into an ellipsoid using scaling factors of 2.5, 1.25, and 1.5 in x, y, and z 

direction respectively, and then mapped onto the fine grid. The sphere has unit radius, 

with 441 and 3789 nodes for coarse and fine grids, respectively. The result using the IPS 

is not shown here because a global spline cannot be obtained without using a subdomain 

technique. Therefore, only the surface tracking method and CILF are compared in this 

case. The efficiency and accuracy of CILF are controlled by a relative criterion that 

determines the number of elements used in local TPS. As illustrated in Fig. 4.5, RMS 

errors and CPU times are approximately in reverse proportion. The relative criterion can 

thus be chosen by considering the trade-off between accuracy and efficiency for a given 

problem. The RMS errors are not changed appreciably, but the roughness around edges 

from the surface tracking method is smoothed notably by CILF, as shown in the 

magnified view in Fig. 4.6.  

 

 

Num. of nodes Surface Tracking IPS CILF 

128 0.0124 0.0041 0.0048 
236 0.0090 0.0023 0.0030 
369 0.0061 0.0013 0.0017 
920 0.0029 0.0003 0.0006 
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     a) Coarse grid        b) Fine grid                                               

Fig. 4.4  Sphere grids used for three-dimensional mapping 
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Fig. 4.5 CPU time and RMS error versus number of elements used in local TPS 
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   Fig. 4.6 Graphical comparison of surface tracking and CILF for mapping of  sphere 
deformation 

 

4.3.3 AGARD wing deformation 

As an example of CILF applied to a FSI problem, the motion transfer of the fourth 

vibration mode of the AGARD 445.6 wing is performed. The unstructured fluid and 

structural grids enclose the actual three-dimensional wing surface with 35870 and 3282 

nodes respectively. Fig. 4.7 shows interpolated fluid grid based on the structural 

deformation using CILF. Fig. 4.8 shows that CILF and IPS provide smoother contour 

lines than the tracking method. The CPU time in Table 4.5 shows that CILF is 130 times 

faster than IPS. The effect of the relative criterion on smoothness is shown in Fig. 4.9. 

The CPU time required varies approximately in proportion to the value of the criterion, as 

shown in Table 4.6. The relative criterion can thus be chosen by considering the trade-off 

between smoothness and efficiency for a given problem.   

Coarse grid 

      Fine grid by CILF 

Fine grid by surface tracking 
CILF   

Zoom 
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b) Interpolated fluid grid by CILF 

 

a) Structural grid 

 

 

 

 

 

 

 

Fig. 4.7 A mode shape of the AGARD 445.6 wing. 

 

Table 4.5 Comparison of CPU times for wing deformation mapping 

 

 

 

 

 

 

 

 

Methods Relative CPU time 

Tracking 0.32 

IPS 130.48 

CILF 1.0 
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Fig. 4.8 AGARD 445.6 wing deformation contour 

 

 

 

 

 

 

c) IPS  

a) Structural deformation  b) Tracking

d) CILF
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Fig. 4.9 Smoothness by relative criteria  

 

 

Table 4.6 CPU time by relative criteria 

Structural elements (%) Relative CPU time 

0 1.000 

25 1.865 

50 2.506 

75 3.130 

a)  0 %  b) 25 %  

c) 50 %   d) 75 %  
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4.4    Summary 

  A new hybrid mapping method, named as Curvature gradient Index Local Fitting 

(CILF) for data transfer between unmatched unstructured grids is suggested to map 

surfaces in loosely-coupled FSI problems. This approach overcomes numerical 

instabilities and excessive computation time incurred by interpolating a large data set in 

the spline methods as well as the low accuracy from tracking methods. The results 

presented show that the method provides efficient, accurate and smooth interpolations in 

comparison to the traditional methods.  
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CHAPTER 5 

MOVING MESH ALGORITHM FOR VOLUME DEFORMATION 

 

5.1    Introduction 

In solving fluid structure interaction (FSI) problems using the loosely-coupled 

method, an efficient and robust volume mesh movement algorithm is indispensable to 

moving the fluid volume mesh based on the common interface surface deformation 

mapped by CILF (described in chapter 4). The most common scheme used for 

unstructured grids is the spring analogy method. Batina [45] suggested a simple method 

by replacing each mesh edge with a spring whose stiffness is inversely proportional to the 

edge length. This method, however, did not prevent some vertices from crossing over 

opposite edges. The vertex crossing problem was partly solved by adding torsional spring 

to each vertex in a two-dimensional application. This problem was also solved by 

attaching additional linear spring to confine the movement of each vertex [47]. The 

method was revealed to be more stable on iterating procedure required in FSI simulation 

than the torsional spring method in some cases. The method was applied to a three-

dimensional problem [47]. Degand and Farhat [48], Murayama et al. [49] and Burg [50] 

presented a three dimensional extension of the torsional spring method. Zeng and Ethier 

[51] suggested a semi-torsional spring that substitutes for entire complex 3-D torsional 

spring. This method is easy to implement and provides good quality of mesh. 
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Another approach in moving mesh is to make use of the elastostatic analogy 

method. In the method, the fluid field is asssumed as a pseudo-elastic solid [52, 53]. The 

method, however, has the same penetration problem as spring analogy when a linear 

elastostatic field is confront with severe element distortion. To solve this problem, a 

method using pseudo non-homogeneous material based on geometrical information has 

been introduced. The elastic modulus is inversely proportional to the cell volume/area [54, 

55], or the distance from the deforming surface [56]. This modulus is changed to the 

weighted coefficients and applied to the spring analogy [57, 58]. These methods worked 

well, but they required significant computation time and memory especially due to 

condensation of nodes at boundary layer. 

In this study, a partitioned volume mesh movement algorithm is suggested. The 

new method employs a simple and efficient topological local coordinate method for 

moving the meshes in boundary layer, and the conventional semi-torsional spring analogy 

for moving the meshes in inviscid region. The local coordinate method uses two types of 

local coordinates depending on a curvature gradient index to construct boundary layers 

normal to the moved surface. An averaged point normal of moving surfaces and its 

relative angle to the local directional vector is used at local geometries having a high 

curvature gradient, while a simple local coordinate is used at local geometries having a 

low curvature gradient.  Entire volume grid movements from the fourth vibration modes 

of the AGARD 445.6 and NACA0012 wings are tested to show the efficiency of the 

suggested method. 
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5.2    Volume Deformation Algorithms for Viscous Layers 

High aspect ratio grids are required for analyzing fluid flow such as turbulence 

and shear thinning right around the wall in the rheology and aerodynamics. It is, however, 

difficult to implement the movement of high aspect ratio grids due to the silver type 

tetrahedral elements that yield negative volumes easily. Moreover, they make the system 

of linear equation used in spring analogy method more ill-conditioned than moderate 

aspect ratio grids. In this study, a partitioned method is suggested in moving unstructured 

boundary layer grid based on a curvature gradient index to solve the problem.  

The local coordinate of a node in boundary layers is determined based on the 

curvature gradient. At local geometries having a high curvature gradient, a relative angle 

and shape functions of the node are employed to identify its local coordinate. The relative 

angle can be calculated using an averaged point normal of surrounding surface elements. 

The shape functions are calculated by identifying the location of projected node of the 

node at the closest surface element. At local geometries having a low curvature gradient, 

the nearest node on the moving surface and two neighbored nodes of its surrounding 

elements are used to find its local coordinate.     

5.2.1 A local coordinate with an angle and shape functions (LCAS) 

 Consider a node 0P , its nearest node 01P  on the moving fluid interface surface, and 

surrounding nodes of the 01P in Fig. 5.1. An angle α  can be calculated with  
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where, 
01pn is a point normal of 01P . 
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After projecting 0P on the nearest surface element along 
01pn direction, the shape 

functions iN  (i = 1, 2, and 3) can be calculated from the definition of shape functions with 

the projected node pP0     
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a) Before movement       b) After movement 

Fig. 5.1 Local coordinates of 1P with an angle and shape functions 

With the calculated angle and shape functions, the moved point 0P′  can be determined as 

following steps 

Step 1:  Calculate a new point normal 
01pn ′ based on the moved fluid common 

interface surface. 

 

Step 2:  Obtain pP0′ , a projected point of 01p′  using 



 41

     
































′′′
′′′
′′′

=
















′
′
′

3

2

1

030201

030201

030201

0

0

0

N
N
N

ppp
ppp
ppp

p
p
p

zzz

yyy

xxx

px

py

px

                (5.3) 

 and draw a line from pP0′  along 
01pn ′  direction 

Step 3:  Draw a line from 01P′  with the calculated angle as shown in Fig. 5.1 on the 

plane including 
0pn ′ and the line obtained from step 2. The drawn line will 

intersect the line drawn from step 2. The cross point is the moved point 0P′of 

0P  

 

5.2.2    A local coordinate with two nodes (LCTN) 

  In order to determine three arbitrary axes to define a local coordinate for a node 

P , the nearest node 1P  and its two neighbored nodes 2P and 3P whose angle is close to 90 

degrees are chosen as shown in Fig. 5.2.  Based on the three nodes, two unit vectors 

21 ppn , 
31 ppn , and one normal vector of the triangle 321 ppp , 

321 pppn    representing three 

axes for the local coordinate system are determined as following equations [59]. 
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A new coordinate lP  of P in the local coordinate system can be written with origin 1P  as: 
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a) Before movement                                                   b) After movement 

Fig. 5.2 Local coordinate of P with three arbitrary axes  

 

With the lP , the moved point P′  can be calculated using  
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5.3    Volume Deformation Algorithms for Inviscid Region  

5.3.1   Linear spring analogy 

In the three-dimensional linear spring analogy, spring stiffness is inversely 

proportional to the distance of the edges. Let’s consider the stiffness ijk  of the edge ije  in 

Fig. 5.3. The stiffness is 

 1−= ijij lk                                                    (5.6) 

where ),,( iii zyx and ),,( jjj zyx are the coordinate of nodes i and j, and ijl  is 

2/1222 ])()()[( ijijij zzyyxx −+−+− . Given a set of nodal displacements from the 

movement of the wetted surface, the interior nodal displacement can be obtained by 

solving following equations iteratively until all the forces are in equilibrium  
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where, n is iteration number and m is the number of the nodes connected to node i.  

A local displacement iju  must be considered in the global coordinate system to 

get the global displacement ijU of nodes in a network of springs. Then ijU  is  

 ijijij uTU =                                                        (5.8) 

Similarly, a global force ijF  can be obtained from a force ijf  at the local coordinate 

system following as: 

 ijijij fTF =                                                   (5.9) 

The local force ijf  can be calculated as: 
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 ijijij ukf =                                      (5.10) 

Substitute ijf  to ijF  using Eq. (5.8) and (5.9) 

 ijijijijij UTkTF 1−=                                     (5.11) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Diagram of nodes of one tetrahedron element surrounding a node i 

 

Let’s define 1−
ijijij TkT  as linear

ijK , then the linear
ijK in the three-dimension is  
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After summing up the forces at each node, the static equilibrium equation can be solved 

using a Gauss-Seidel iterative method.  

5.3.2    Semi-torsional spring analogy 

The stiffness of a conventional torsion spring on a node is inversely proportional 

to the sine of the angle which prevent intrusion of the node to its opposite faces or edges. 

In the three-dimensional conventional torsional analogy, the derivative of φ with respect 

to a spatial variable ξ is [50] 
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where, ijklV is the volume of a tetrahedron element in Fig. 5.3 and ijkA  is the area of 

triangular face associated with nodes i, j, and k.  

Substitute ξ to x, y, and z of four nodes i, j, k, and l, then torsional vector ijklQ can be 

written as: 
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A torsional stiffness matrix torsion
ijklK  can be calculated as: 

 T
ijklijkl

torsion
ijkl QQK

ϕ2sin
1

=                                   (5.15) 

The stiffness matrix results in complexity in constructing a system of linear equation for 

force equilibrium and adding the computational time. Moreover, due to the assumption of 

infinitesimal displacement in calculating derivative of each directional cosine, the 

incremental small deformation method is required for a large deformation.  
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 The semi-torsional spring method saves the computing time and removes 

infinitesimal displacement limitation using a simple semi-torsion stiffness as:[51] 

 ∑
=

− =
ijNE

m
ij
m

torsionsemi
ijK

1
2sin
1
θ

κ                                      (5.16) 

where ijNE is the number of elements sharing edge i-j, ij
mθ  is the facing angle defined as 

the angle that face the edge i-j on the mth element attached to the edge,  and κ is a 

coefficient having the dimension of the stiffness. The stiffness matrix is added to the 

linear stiffness one.  

5.4    Results and Discussion 

In order to demonstrate the efficiency of the suggested method, volume grid 

deformation based on the surface motion of the fourth vibration modes of NACA0012 

and AGARD 445.6 wings are implemented. NACA0012 and AGARD 445.6 wings have 

714,105 and 1,604,519 tetrahedral elements comprised of 121,256 and 274,292 nodes, 

respectively. Fig. 5.4 and 5.5 shows deformed boundary layer grids of two wings. 

Different colors indicate ten deformed boundary layers. The computation time 

comparison in Table 5.1 and 5.2 demonstrates that the new hybrid method is about 30 

times faster than semi-torsional analogy.  The computation time depends mainly on the 

number of nodes in inviscid region determined by the number of deformed viscous layer 

without having negative volumes.   

The new hybrid method for viscous layer works well. However, movement of 

grids in the inviscid region using weighted semi-torsional spring analogy fails sometimes 

in relatively large deformation. The best way to solve this problem for inviscid region 
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may be successive incremental spring analogy or smoothing method with checking 

negative volumes.   

 

 

Fig. 5.4 Viscous layer deformation of NACA0012 wing 

 

 

Fig. 5.5 Viscous layer deformation of AGARD 445.6 wing 
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   *number of nodes in inviscid region 

   *number of nodes in inviscid region 

 

 

Table 5.1 Comparison of relative CPU time used in NACA0012 deformation 

Methods Relative CPU time 

Hybrid with LCTN (56,036)* 1 

Hybrid with LCAS (79,361) 3.651 

Semi-torsional (121,256) 29.15 

Table 5.2 Comparison of relative CPU time used in AGARD 445.6 

Methods Relative CPU time 

Hybrid with LCTN (59,612)* 1 

Hybrid with LCAS (91,814) 6.693 

Semi-torsional (274,292 ) N/A 
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CHAPTER 6 

TIME MAPPING 

 

6.1    Introduction 

Due to inherent different time integration methods used in fluid and structural 

analyses, time mapping algorithms are needed to synchronize computational fluid 

dynamics (CFD) and computational structural dynamics (CSD) solvers. There are two 

types of time mapping algorithms: explicit and implicit mapping. Explicit mapping can 

be used when structural movements or load differences are very small during one time 

step period. This method is easy to implement, but it would be unstable if the time step is 

not small enough to consider the differences of load or displacement between consecutive 

time steps. The main concern of this method is how to determine a time step that does not 

take too much CPU time and makes two different solvers stable. 

The conventional serial staggered (CSS) method is one of explicit mapping 

methods. The roadmap of CSS is illustrated in Fig. 6.1. Most FSI application problems 

need finer temporal integration for the fluid than that for the structure. So that, subcycling 

method in the fluid solver is used for an efficient time mapping. Piperno [61-63] 

suggested a partitioned procedure for solving transient coupled aeroelastic problems 

using the subcycling staggered method in solving 1-D piston, 2-D wing airfoil,

 and 3-D AGARD 445.6 wing. This method, however, has only first-order time-accuracy 

that yields inaccurate results that would make FSI results inaccurate. To overcome the 
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problem, an improved serial staggered method has been suggested by Farhat and 

Lesoinne [60]. The method has second order and is one of the implicit coupling method 

that allows large time step. The procedure is illustrated in Fig. 6.2. This method was 

applied to the aeroelastic analyses of an entire F16 fighter [64]. Kim et al. [57] used the 

method with subcycling in solving FSI of an aircraft. 

 

 

 

 

 

 

 

Fig. 6.1 CSS: the conventional serial staggered procedure (from Ref. [60]) 

 

Fig. 6.2 ISS: the improved serial staggered procedure (from Ref. [60]) 

W: Solution from CFD 
U: Solution from CSD 
u: Displacement extracted from U 
P: Loads extracted from W 
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6.2    Conventional Serial Staggered Method 

The first step of this method is to determine a reasonable FSI time step t∆  for 

synchronizing the time step ft∆  for a CFD and st∆ for a CSD solver that guarantee the 

convergence and accuracy of two solvers. In many FSI problems, fluid flow analysis 

needs finer temporal resolution than structural analysis. For this, the time step ft∆ can be 

chosen for t∆ , but this takes excessive computational time to exchange data between two 

solvers at every time step ft∆ . In order to solve this problem, a subcycling method with a 

factor fsfs ttn ∆∆= //  was suggested [60]. In this study, the factor =fsn / 200 is used for 

a flutter analysis of a wing.  

In order to perform FSI simulation with the determined time step and subcycling 

in fluid domain iteratively, the entire modules in FSI framework can be controlled 

automatically. Using Perl scripts and Dos batch commands, an example of Perl scripts 

used in this study is illustrated in Fig. 6.3.   

  

 

 

 

 

 

Fig. 6.3 An example of Perl Script for CSS method   

 

 

$file4 = "Swing.key"; 

$file1 = "Fwing.key"; 

$file2 = "Fwing.cas"; 

$file3 = "FwingRes.cas"; 

for($i = 0; $i < 200 ; $i++){ 

 $d = $i/200 +0.05; 

 $j = $i+10; 

    system("Iter.bat $file1 $file2 $file3 $file4 $j $d"); 

}
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CHAPTER 7 

APPLICATIONS 

 

7.1    Introduction 

Pulsatile flow through artificial straight/curved stenotic arteries and an in-vivo 

non-planar femoral artery bifurcation, and flutter of AGARD 445.6 wing are simulated to 

validate the FSI framework. For these applications, two commercial codes, ANSYS 

(ANSYS, Inc.) and FLUENT (Fluent Inc.), are used for CSD and CFD solvers, 

respectively.  

7.2 Application I - Pulsatile Flow through Straight/Curved Carotid Stenotic 
Arteries 

7.2.1 Introduction 

This section consists of two sub-sections: 1) Straight/Curved carotid stenotic 

arteries; 2) Constitutive models for arteries 

7.2.1.1    Straight/Curved carotid stenotic arteries 

It has been well accepted that arterial stenoses may yield artery fatigue, additional 

adhesion of lipoproteins to wall due to the recirculation at post-stenotic regions, and 

abrupt plaque rupture that are main causes of heart attack and stroke.  Many researchers 

believe that a right understanding of blood flow mechanism inside vessel could provide 

useful insights into vascular diseases.  Many experimental studies have been carried out 
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over the past few decades to analyze the blood flow through straight or curved stenotic 

arteries.  Li et al. [65] showed the reduced intraluminal pressure by stenotic amplification 

using in-vitro dog carotid arteries. Pulsatile flow through in-vitro asymmetric 75 % and 

95 % area reduction stenotic carotid vessels were observed by Cao and Rittgers [66]. The 

downstream (laminar, fully turbulent, and transition flow) of an abrupt axissymmetric 

75% stenosis was measured by ultra-fast magnetic resonance imaging (MRI) in Ref. [67]. 

Doriot [68] showed the axial wall stress due to the arterial axissymmetric stenosis might 

be one of the factors of development of atherosclerosis. Above studies were performed 

using straight rigid stenotic arteries which are not like in-vivo arteries. In order to 

consider the nonlinear properties of arteries which are more physiological, Ku et al. [69, 

70] analyzed the fluid flow through non-rigid straight stenotic tube using non-linear 

materials such as Odgen and PVA hydrogel.  

Computational methods have been widely employed in the area of biomechanics 

because of the rapid improvement of computer facilities and numerical algorithms.  

Mittal et al. [71] used large-eddy simulation technique for the study of turbulent flow 

through arterial stenosis. Mallinger [72] showed the instability of flow at the poststenotic 

region although the pulsatile flow is simulated in three-dimensional axissymmetric 

stenotic artery. Lee et al. [73] analyzed the turbulent flow through series stenoses using 

two-dimensional κ-ω turbulent model. Varghese and Frankel [74] compared κ-ω 

turbulent model with κ-ε turbulent one and showed the former model is better in low 

Reynolds number. Ryval et al. [75] suggested two simple equations for analyzing 

turbulent blood flow. Tang et al. [15] made an experiment on the steady flow through 

asymmetric/axis-symmetric stenosis silicon tube and simulated the flow with ADINA 
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that used directly-coupled method. The Ogden material used and their stress-strain curve 

were determined from experimental data. They simulated the steady flow through thick-

wall tube whose mechanical properties is similar to bovine carotid considering important 

pre-stretched and pre-stressed effects [14]. With same thick-wall tube, they simulated 

pulsatile flow and showed artery collapse due to the negative pressure resulting from 

recirculation at the post-stenotic regions [16]. 

While many researchers have studied the flow through straight stenotic tubes, the 

flow in curved stenotic tubes was studied by only a few researchers. Yao et al. [76] 

simulated stead flow in curved arteries with elliptic stenosis changing two parameters 

such as angles of curvature and degrees of stenosis. Their results indicated that the 

parameters must be considered for measuring the severity of stenosis.  

In this study, a three-dimensional model of pulsatile flow through a simplified 

curved stenotic artery is presented and simulated using FSI framework to take into 

account the interaction between the flow and artery wall. A finite element code, ANSYS, 

is used for CSM analysis.  A material constitutive model, hyperelastic Mooney-Rivlin 

model, is used for simulating realistic structural behavior of artery wall, which is initially 

pre-stretched and pre-pressurized for considering residual strain that influences the stress 

distribution of the wall [77].  The blood flow is analyzed as an unsteady laminar flow 

with full Navier–Stokes equations with convective terms.  For time mapping algorithm, a 

serial staggered method is used.  The results show the phase lag, pressure difference, and 

wall shear stress of the curved stenotic artery. The results are compared with those of 

straight artery.  
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7.2.1.2    Constitutive models for arteries 

It is well known that large compliant arteries have highly nonlinear, visco, and 

hyper elasticity with anisotropic mechanical behaviors. To analyze the effect of pulsatile 

blood pressure on stenosis and plaque on arteries or assess the mechanical properties in 

the deployment of stent in an analytical/computational way, representative mathematical 

models of the large arteries are essential. Strain energy density functions (SEDF), one of 

the mathematical models, have been commonly used because constitutive stress-strain 

relations are easily derived directly from the SEDF.  Earlier researchers developed many 

constitutive models. Among their works, Fung et al. [78]; Chuong and Fung’s 

exponential [79], Takamizawa and Hayashi’s logarithmic [80] and Vaishnav et al.’s 

polynominal [81] are predominantly basis functions of many recent newest constitutive 

models. Humphrey [82] compared their SEDFs and showed that the exponential form 

provided best fit for certain arteries, although it needed some alternations for muscular 

arteries. 

 Those three SEDF forms were obtained by oversimplifying parameters such as 

limited transmural pressure range, axis-symmetric, only circumferential stress-strain, and 

etc. To identify realistic physiological properties of typical individual arteries, mixed and 

modified SEDFs have been developed.  Holzapfel et al. [83] developed the combined 

SEDFs using neo-Hookean SEDF for isotropic and exponential SEDF for anisotropic 

layer (collagen fiber) to consider residual stress [84] and anisotropic properties.  This 

SEDF is modified with wavy nature of the collagen and fraction of both elastin and 

collagen contained in the media by Zulliger et al. [85]. Other modified ones can be found 

in Vito and Dixon [86].  
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The above SEDFs do not consider viscoelastic properties that Gow and Taylor 

[87]; Anliker et al. [88] pointed out important structural properties of arteries. The fact 

that viscoelasticity especially in the hypertensive arteries becomes increased has been 

reported in many studies [89-92]. 

Viscoelastic constitutive models were developed considering symmetric and 

principal strain direction coincided with base vectors in cylindrical coordinates in the 

earlier studies [93-95]. Demiray [96] proposed quasi-linear constitutive model for 

determining viscoelastic coefficients using the solution of a torsional wave in a pre-

stressed thin tube. Holzapfel et al. [97] proposed three dimensional generalized Maxwell 

model including SEDF developed by Holzapfel et al. [83] for a viscoelastic structural 

model of healthy young arterial walls in the passive state of the smooth muscles. 

 Assuming that users can use only already-built-in CSD solvers without source 

program, the implementation of constitutive models is not possible. For this reason, most 

applications with arteries using the CSD solvers take a built-in constitutive model such as 

Mooney-Livlin [17, 98, 99] instead of specific constitutive model. However, some 

advanced CSD solvers such as ANSYS and ABAQUS have the interface tool that have 

still limitation to the constitutive models without taking viscoelasticity into account 

though. Using usermat function in ANSYS, Zhang [28] implemented two-dimensional 

orthotropic exponential pseudo-elastic, and incompressible model. Holzapfel et al. [97] 

simulated balloon angioplasty with layer-specific three dimensional constitutive model 

using the UEL programming interface in ABAQUS. 
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7.2.2    Geometry and grid 

The straight artery geometry is shown in Fig. 7.1. The radius )(zR of the inner 

wall of the artery is defined as: 

                     (7.1) 

where 0R is the radius of the non-stenotic part of the artery inner wall, 0S is the stenosis 

severity by diameter , which is usually calculated from 
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and 1z  and 2z are the beginning and ending  positions of the stenosis. 

 

 

Fig. 7.1 Geometry of stenotic artery (from Ref. [16]) 

 

Because the available displacement experimental data is measured with 80% stenosis 

severity in Ref. [16], the severity is applied in this study to compare the results. 

Using the HyperMesh grid generator, structural grid of the artery and fluid grid of 

blood inside artery are made. The structural grid comprises 3220 nodes and 13667 

tetrahedral elements and the fluid grid has 18769 nodes and 101885 tetrahedral elements 

as shown in Fig. 7.2. The finer grids are generated at the throat and shoulder to more 

accurate results. To make pre-stretched (36.5%) and curved geometry, ANSYS is used. 
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The degree of freedom is constrained in x direction at the center of the straight artery and 

displacement at the both ends of the artery are imposed as shown in Fig. 7.3. 

 

 

 

a) Structural grid 

b) Fluid grid 

Fig. 7.2 Structural and fluid grids of stenotic artery  

 

 

 

 

 

 

 

 

 

Fig. 7.3 Geometry of curved stenotic artery from straight one  
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7.2.3    Parameters and boundary conditions 

7.2.3.1    Structure 

The material of the artery is polyvinyl alcohol (PVA) hydrogel. The PVA 

hydrogel is homogenous, hyperelastic, nonlinear, and nearly incompressible material. 

Young’s modulus of the material is 2×105 Pa and Poisson’s ratio is 0.4999 which is as 

close to 0.5 as possible. Hyperelastic Mooney-Rivlin model is chosen to describe the 

material. This model is selected because of the excellent fit to experimental data as 

shown in Fig. 7.5 and availability in ANSYS. Given the principal stretch ratios at any 

deformation state of a material point as 1λ , 2λ , and 3λ  , the strain invariants are defined 

as: 

 2
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and, the ratio of the deformed elastic volume over the undeformed volume of the material 

J can be calculated as: 

 321 λλλ=J  (7.5) 

The deviatoric strain invariants are written as: 
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The strain energy potential W for five parameters ijC ’s Mooney-Rivlin model is 
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where, κ is bulk modulus. The parameters in Table 7.1 are determined using curve fitting 

tools in ANSYS with 18 experimental data as shown in Fig. 7.4. Fig. 7.5 shows that the 

constitutive model with the five parameters from ANSYS agrees with the experimental 

data.  

Table 7.1 Five parameters for Mooney-Rivlin model of PVA hydrogel 

 

 

 

 

 

 

To simulate physiological conditions of blood vessel, the artery is pre-stretched 

and pre-stressed.  The displacement 2.92 cm in the axial direction is first imposed and 

curved as shown in Fig. 7.3. Next, the flow in the pre-stretched artery is analyzed with 

flow initial boundary condition to obtain the pressure on inner wall. The pressure is 

transferred to structural artery to impose pre-stress. The residual strain from the pre-

stretched and pre-stressed plays an important role in wall stress distribution.  

7.2.3.2    Fluid 

The flow is assumed to laminar, Newtonian, viscous and incompressible. Navier-

Stokes equation is chosen for analyzing the flow in FLUENT. The viscosity of blood is 

Parameters Values(MPa) 

10C  0.00483831337749 

01C  0.0157456261132 

20C  0.0630274350665 

11C  -0.06934258113 

02C  0.0214277129574 
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0.004 kg/m-s and the density is 1055 kg/m3. The cosine function )(tIP  for the pressure at 

inlet of the artery is used to make the flow pulsatile flow.    

 

Fig. 7.4 Stress –strain curve of PVA hydrogel (from Ref. [16]) 

 

Fig. 7.5 Strain Vs. stress(y, MPa) of PVA hydrogel  fitted using ANSYS 
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 70)0.1))75.0(*2(cos(*30)( +++= ttIP π                         (7.8) 

)(tIP depicts approximately the experimental data as shown in Fig. 7.6. In the Fig. 

7.6, the time is shifted by 0.27 sec to fit maximum value of )(tIP  to experimental 

maximum one. If curve fitting to experimental data were used, the accurate 

corresponding function could be obtained. In order to set the pulsatile flow condition in 

FLUENT, a user defined function (UDF) is used. The UDF is written by C language as 

followings: 

 

The UDF is complied and embedded in FLUENT. 

 

#include "udf.h" 

DEFINE_PROFILE(unsteady_pressure, thread, position)  

{ 

  float t, pressure; 

  const double pi = 3.1415926535897931; 

  face_t f; 

 

  t = RP_Get_Real("flow-time"); 

   

  pressure = (30.0*(cos(4.0*pi*(t+0.75)/2.0)+1.0)+70.0)*133.3; 

 

  begin_f_loop(f, thread) 

  { 

   F_PROFILE(f, thread, position) = pressure; 

  } 

  end_f_loop(f, thread) 

} 
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Fig. 7.6 Experimental and numerical inlet pressure for stenotic arteries 

 

7.2.4    Time mapping 

After simulating the ANSYS and FLUENT with initial and boundary condition, 

time step is determined as 0.05 and 0005 for solid and fluid, respectively. 20 iterations of 

FSI are implemented for one period using CSS method and subcycling method with Perl 

script and Dos batch command as shown in Fig. 7.7,. The auto-time step option in 

ANSYS is turned on to reduce CPU time and prevent divergence of solution.  
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Fig. 7.7 Perl Script for CSS method   

7.2.5    Results 

7.2.5.1    Straight stenotic artery 

For validating the FSI framework, the displacement of the artery in the radial 

direction is compared with those of the artery from Ref. [16] in Fig. 7.8. The maximum 

displacement value 1.7679 mm in radial direction at cross section z = 2.0 cm occurs at 

0.325 sec (the time is shifted by 0.27). The maximum displacement does not agree with 

experimental one (1.2655mm). The error may result from different boundary conditions, 

and material properties. In ANSYS, uniaxial, biaxial, or volumetric strain-versus-stress 

information for Mooney-Rivlin model is needed, However, Ref. [16] only has an area 

strain-stress curve. This may cause the error in terms of material properties.  The 0.075 

second phase delay well agrees with experimental one as illustrated in Fig. 7.9 [100]. The 

delay was not detected by Tang’s numerical simulation [16]. The time-dependent velocity 

magnitude distribution on the cutting plane is illustrated on Fig. 7.10. The maximum 

velocity is 5.2 m/s. The wall shear stress magnitude due to the dynamic pressure is shown 

in Fig. 7.11. The maximum wall shear stress is 604 Pa. The Von-Mises stress distribution 

$file4 = "STube.key"; 

$file1 = "FTube.key"; 

$file2 = "FTube.cas"; 

$file3 = "FTubeRes.cas"; 

for($i = 0; $i < 20 ; $i++){ 

 $d = $i/20 +0.05; 

 $j = $i+3; 

    system("Iter.bat $file1 $file2 $file3 $file4 $j $d"); 

}
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is shown in Fig. 7.12. The maximum stress is 328,199 Pa when the maximum 

displacement occurs.  

  

 

 

Fig. 7.8 Experimental and numerical displacement of straight stenotic artery 
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Fig. 7.9 Experimental and numerical displacement with inlet pressures of a straight 
stenotic artery 
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Fig. 7.10 Velocity magnitude distribution in varying time and pressures a straight 
stenotic artery 

      outlet                           t =0.05 s, inlet pressure = 109.2705 mmHg                               inlet 

t =0.35 s, inlet pressure = 124.2705 mmHg 

t =0.20 s, inlet pressure = 128.5317 mmHg 

t =0.50 s, inlet pressure = 100.0000mmHg 

t =0.95 s, inlet pressure = 90.7295mmHg 

t =0.80 s, inlet pressure = 71.4683mmHg 

t =0.65 s, inlet pressure = 75.7295mmHg 
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Fig. 7.11 Wall shear stress distribution in varying time and pressures a straight 
stenotic artery 

t =0.95 s, inlet pressure = 90.7295mmHg 

t =0.80 s, inlet pressure = 71.4683mmHg 

   outlet                              t =0.05 s, inlet pressure = 109.2705 mmHg                              inlet 

t =0.35 s, inlet pressure = 124.2705 mmHg 

t =0.20 s, inlet pressure = 128.5317 mmHg 

t =0.50 s, inlet pressure = 100.0000mmHg 

t =0.65 s, inlet pressure = 75.7295mmHg 
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Fig. 7.12 Von-Mises stress distribution in varying time and pressures 

          outlet                             t =0.05 s, inlet pressure = 109.2705 mmHg                              inlet 

t =0.35 s, inlet pressure = 124.2705 mmHg 

t =0.20 s, inlet pressure = 128.5317 mmHg 

t =0.50 s, inlet pressure = 100.0000mmHg 

t =0.95 s, inlet pressure = 90.7295mmHg 

t =0.80 s, inlet pressure = 71.4683mmHg 

t =0.65 s, inlet pressure = 75.7295mmHg 
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7.2.5.2    Curved stenotic artery 
The initial displacement of curved stenotic artery is about 1.25 mm, which is 

greater than that of straight one by the amount of 0.65mm. To compare the displacements 

of two arteries, displacement of straight and curved artery is plotted as shown in Fig. 7.13. 

The straight one keeps the periodic displacement, but the curved one dose not. The 

realistic periodic simulation must be considered to investigate this problem.  

 

 

Fig. 7.13 Displacement of straight and curved stenotic artery 

 

The velocity magnitude distribution on the cutting plane is illustrated on Fig. 38. 

The maximum velocity is 5.02 m/s, which is lower than 5.2m/s in the straight artery. The 

wall shear stress magnitude due to the dynamic pressure is shown in Fig. 7.14. The 
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maximum wall shear stress is 570 Pa, which is lower than 604 Pa in the straight artery. 

The Von-Mises stress distribution is shown in Fig. 7.15. The maximum stress is 320,848 

Pa when the maximum displacement occurs. 

Severe recirculation at the poststenotic region is shown in Fig. 7.16 when inlet 

pressure is 75.7295 mmHg. The recirculation may be one of causes of the development of 

atherosclerosis. 
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Fig. 7.14 Velocity magnitude distribution in varying time and pressures of a curved 
stenotic artery 

 

t =0.1 s, inlet pressure = 117.6336 mmHg 

t =0.35 s, inlet pressure = 124.2705 mmHg 

t =0.6 s, inlet pressure = 82.3664 mmHg 

t =0.85 s, inlet pressure = 75.7295 mmHg 
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Fig. 7.15 Wall shear stress distribution in varying time and pressures of a curved 
stenotic artery 

 

 

t =0.1 s, inlet pressure = 117.6336 mmHg 

t =0.35 s, inlet pressure = 124.2705 mmHg 

t =0.6 s, inlet pressure = 82.3664 mmHg 

t =0.85 s, inlet pressure = 75.7295 mmHg 
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Fig. 7.16 Von-Mises stress distribution in varying time and pressures  

t =0.10 s, inlet pressure = 117.6336 mmHg 

t =0.35 s, inlet pressure = 124.2705 mmHg 

t =0.60 s, inlet pressure = 82.3664 mmHg 

t =0.85 s, inlet pressure = 75.7295 mmHg 
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7.3   Application II - Hemodynamics of the In-Vivo Common Femoral Artery 
Bifurcation  

7.3.1 Introduction 

Peripheral arterial disease (PAD) is prevalent in 12-20 percent of Americans age 

65 and older [101].  Especially, almost one in four people screened annually through a 

nation wide screen programming are identified to have moderate or high risk of lower 

extremity PAD [102]. Lower limb PAD develops most commonly as a result of 

atherosclerosis. The atherosclerosis may result from consequent reduction of blood flow, 

and in turn it may affect the accumulation of plaque or genesis of atheroma 

simultaneously on the vessel wall.  

It has been well demonstrated that wall shear stress (WSS) calculated from 

velocity near the wall, which is strongly related to interactions between pulsatile flow and 

compliance of blood vessel or/and vascular geometry such as bifurcation, high curvature, 

junction, graft and stenosis, is a leading factor of the development and process of 

atherosclerosis on the femoral [103-106] and the other ateries [107-110] in many 

experimental ways. The WSS comparative studies of femoral and carotid arteries can be 

found in Refs. [111-113].  

Many hemodynamic factors relating WSS implicated in atherogenesis have been 

overviewed well in Ref. [114]. Therefore, accurate WSS calculation may be a leading 

factor in diagnose onset and progress of atherosclerosis. In the patient-specific diagnosis 

of the diseased artery, however, due to the inherent complex features of patient-specific 

arteries, the findings from previous works to obtain the hemodynamic factors may not be 

applicable to the patient. Nowadays, the MRI and Doppler Ultrasound (DUS) [115-118] 

are commonly used as in-vivo diagnostic tools. However, the DUS is not suitable for 
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analyzing velocity in femoral artery bifurcation which is not obviously circular [119]. 

Then, the MRI may be the best choice for making diagnosis patient artery disease. 

Current velocity measurement from MRI, however, in especially bifurcation of diseased 

femoral artery does not provide accurate data due to the non-circular geometry and low 

flow downstream which cause to signal-to-noise ratio (SNR) [120, 121].   

Because of improvement of computer facilities and accurate and robust numerical 

algorithms over two decades, computational fluid dynamics (CFD) has been employed 

and proven in calculating WSS in many simplified, averaged, and physiologically 

equivalent arteries [122-128]. Recent advances in computational reconstruction 

techniques and/or quantification of velocity profile from MRI and computerized 

tomography (CT) make the CFD method powerful tools in analyzing the blood flow 

characteristics such as secondary flow, circulated flow and vortices of realistic patient-

specific arteries in accurate and relatively cost-effective ways [129-137] 

The combination of three-dimensional reconstructed from MRI and/or CT images 

for the patient-specific geometry with/without disease and realistic velocity profile for 

boundary condition can help interpreting in-vivo data especially around lumen of artery 

and in turn contributing to the findings of right MRI extraction from images. As 

mentioned before, the compliance of wall is an important factor of hemodynamics. It is 

well proven in many studies that the consideration of compliance of the wall with 

pulsatile flow is required for capturing biofidelic and realistic hemodynamic properties 

[138-147].  

To my knowledge, the studies for patient-specific femoral artery bifurcation have 

not been done yet with considering compliance of wall and pulsatile flow simultaneously. 
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In this study, a realistic three-dimensional model of pulsatile blood flow through image-

based common femoral artery bifurcation using a loosely-coupled FSI framework is 

simulated to obtain accurate WSS by taking into account the interaction between the 

blood flow and arterial wall motion.  

7.3.2 Geometry and grid  

A biofidelic femoral artery bifurcation about 4 cm in length of 55 year old female 

volunteer suffering from paraplegia has been reconstructed by ETLab [148] using 40 

slices of total 992 CT scan images from the abdomen to the toes using GE LightSpeed 

Pro Scanner with 1.25mm slice thickness including 0.25mm overlap. The image 

resolution was 512x512 pixels, each pixel representing 0.7929x0.7929mm2 area. Image 

segmentation and geometry extraction from the images were achieved using open source 

libraries (Insight Segmentation and Registration Toolkit, ITK, and Visualization Toolkit, 

VTK). Two methods, a direct advancing front method and a modified decimation method, 

were developed to create high-quality surface meshes. An advancing front-based meshing 

method was employed for three-dimensional volume meshing [149]. These images do not 

have enough resolution to detect wall thickness due to the high SNR. The 0.74mm wall 

thickness of common femoral artery (CFA) is adopted from [150]. The 4.122 averaged 

ratio of radius-to-thickness of CFA is used for determining the thickness of superficial, 

profunda, and lateral circumflex artery (SFA, PFA, and LCA). Reconstructed patient-

specific femoral artery bifurcation is shown in Fig.7.17. The flow domain and artery 

structure is arranged simultaneously to show the inherent different resolution between 

two grids which is essential in loosely-coupled method. The flow domain has 367,315 

tetrahedral and 18,695 triangular elements for flow analysis and common interface 
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respectively. The fine mesh is employed in the near-wall region to calculate WSS. The 

structural artery has 43,774 tetrahedral and 4,761 triangular elements for structural 

analysis and common interface to save the CPU time in structural analysis.    

 

 

A: Anterior, P: Posterior, L: Left, R: Right 

Fig. 7.17 Structural and fluid grid of in-vivo femoral artery bifurcation    
reconstructed from MRI 
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7.3.3    Parameters and boundary conditions 

7.3.3.1    Structure 

In order to consider mechanical consequent properties of surrounding tissues on 

the in-vivo artery, the relationship between stress and strain rate should be observed in 

MRI. Due to the high SNR of image, however, the relationship can not be found in this 

study. The blood vessel is assumed as homogenous, hyperelastic, nonlinear, and nearly 

incompressible material. Poisson’s ratio is chosen as 0.4999 which is as close to 0.5 as 

possible to depict incompressible material. The density of the vessel is 1100 kg/m3. The 

five coefficient Mooney-Rivlin model which is used in Ref. [151] is chosen to describe 

the material as shown in Table 7.2. The reconstructed in-vivo geometry has already 

expanded with equivalent displacement and residual stress due to the pre-stressed and 

pre-stretched. If the normal intraluminal pressure were loaded on this expanded geometry, 

the extra pressure could cause sudden expansion of the artery. Therefore, the pressure 

load should start at zero pressure in order to conserve the original in-vivo geometry at the 

starting cardiac cycle.  

Table 7.2 Five parameters for Mooney-Rivlin model of femoral artery 

 

 

 

 

 

 

 For doing this, one of five coefficients is modified using inverse FEM. With 

changing first one of the five coefficients, the relationship between stress and stretch ratio 

Parameters Values (kPa) 

10C  18.90 

01C  2.75 

20C  590.42 

11C  857.18 

02C  0 
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in the uniaxial expansion with zero pressure at the boundary conditions can be obtained 

using 
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where, 11T  is first principal stress in Cauchy stress tensor, and 11B  is one of left Cauchy-

Green tensor. Mean expansion of diameter is set to 6.2% of CFA diameter [152] for the 

PAD patient at the systolic phase. Using Eq. (7.9) and inverse FEM, the final first 

coefficients is modified to 4000 Pa. The plot in Fig. 7.18 shows the uniaxial constitutive 

models depending on different coefficients. 

 

 

Fig. 7.18 Uniaxial constitutive models depending on different coefficients      

 

 



 81

7.3.3.2    Fluid 

The flow is assumed to laminar, Newtonian, viscous and incompressible Navier-

Stokes equation is chosen for analyzing the flow in FLUENT. The viscosity of blood is 

0.0035 kg/m-s and the density is 1085 kg/m3. 

7.3.3.2.1    Inlet 

Typically, the only flow rates calculated from MRI is required at the boundary for 

rigid wall boundary condition. However, the time-dependent pressure profile is 

indispensable for compliant wall simulation. In order to calculate pressure at the second 

locations  of CFA as shown in Fig. 7.19,  two physiological flow rate curves at the first 

and second location based on velocity profiles from magnitude and phase images are 

obtained as shown in Fig. 7.20.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.19 Four locations for measuring velocity profiles 
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Fig. 7.20 Flow rates of CFA inlet and outlet 

 

Navier-Stokes equation for one dimensional flow in an elastic tube can be reduced 

to [153] 

        
dt

tdP
hE
rtQtQ o

oi
)(

2
3)()(

3π
=−                                            (7.10) 

where iQ and oQ is the flow rate at the inlet and outlet respectively, oP  is the pressure at 

the outlet,  r is the radius of tube,  h is the wall thickness, and E is the elastic modulus. 

The shape of pressure waveform can be obtained using Eq. (7.10) as illustrated in 

Fig. 7.21. The pressure waveform was used for boundary condition at the end of CFA by 

UDF in FLUENT. 
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Fig. 7.21 Pressure at the second location of CFA 

7.3.3.2.2    Outlet 

Phase contrast MRIs is acquired for measuring blood flow velocity at four 

different locations, 39.2mm, 19.2mm above branch and 11 mm, 21 mm under branch,  

along the femoral artery, 60.2mm in length by a GE MR scanner (1.5 T, Signa). The scan 

parameter are 4mm slice thickness, 40 ms TR, 6 ms TE, 32 cardiac phases, 20deg FA, 

113*150 cm FOV, and 512*512 matrix. The encoding velocity was 150 cm/s 

corresponding to 180 deg phase shift. Only axial velocity was measured under the 

assumption of relatively trivial in-plane velocity components.  The 0.5894mm in-plane 

resolution is not enough to capture accurate velocity due to the strong disturbances at the 
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main bifurcation so that the four locations were chosen away from main bifurcation as 

shown in Fig. 7.19. 

The measured velocity at the first location is used for the calculation of pressure 

drop between the first and second location. The pressure drop information is put on the 

inlet boundary condition in this simulation. The detail of calculation of the pressure drop 

will be described in the next section. Due to the phase image at the systole which has 

relatively high SNR, the region of interest was determined simultaneously checking 

magnitude image and signal gradient.  The boundary of the defined ROI at the systole is 

used through entire cardiac cycle considering movement of center of ROI. The different 

centers of ROI at each time level were found by comparing maximum number of 

magnitude value over a threshold at the surrounding pixel of manually determined center. 

The velocity can be calculated with [154] 

                            °Φ∗= 180/vVENCV , ]180,180[ °⋅⋅°−=Φ v                       (7.11)                        

where, VENC is encoding velocity, and vΦ  is the phase angle obtained by phase image. 

The calculated velocity is mapped utilizing smoothing interpolation method [155].  

Time-dependent velocity profiles were mapped through 32 cardiac phase. Around 

40 pixels for SFA and PFA and 20 pixels for LCA to quantify velocity from their MRI 

was used. From the velocity, the velocities of 74 (SFA), 60 (PFA) and 147 (LCA) nodes 

are interpolated.   

The flow rates at SFA, PFA and LCA outlets is consistent with MRI data of them 

through cardiac cycles globally as shown in Fig. 7.22. The smoothed and biased velocity 

profiles of them at systolic phases shown in Fig. 7.23 were reasonably consistent with 
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MRI velocity profiles which can not be generated from Womersley velocity profile. 

These time-varing mapped velocity files are used in FLUENT via UDF.  

 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 7.22 Flow rate comparison of MRI and mapped velocity profiles at the SFA, 

PFA    and LCA outlets.   
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a) MRI                               b) Mapped (TPS) 

 
Fig. 7.23 Comparison of MRI and mapped velocity at the systolic phase 

 

7.3.4    Time mapping 

After simulating the ANSYS and FLUENT with initial and boundary condition, 

time step is determined as 0.0121 and 0.00305 for solid and fluid for 0.78 second cardiac 

period, respectively. 64 iterations of interaction are implemented for one cardiac cycle 

using CSS method and subcycling method with Perl script and Dos batch command. 

Total 160 iterations that are the same as two and half cardiac cycles are performed to 

avoid initial perturbation for FSI. The auto-time step option in ANSYS is turned on to 

reduce CPU time and prevent divergence of solution.  

7.3.5    Results 

7.3.5.1    Flow pattern comparison 

 Fig. 7.24 shows the velocity contours in the z direction and secondary flow 

especially around bifurcation area at a deceleration phase for rigid and compliant arteries.  

The flow on the compliant artery show more reduced velocity than that on the rigid one. 

The streamlines in Fig 7.25 at the deceleration phases provide recirculation on the bulb 
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and PFA regions of compliant artery is stronger than that on them of rigid one. In 

addition, the stream lines in the SFA and PFA of both arteries follow commonly the 

curvature of the artery and slightly bias toward the anterior which has relatively high ratio 

of radius of curvature.  

 The effects of compliance on the flow pattern shows well when the maximum 

expansion of diameter on maximum pressure as shown in Fig. 7.26. The more biased 

flow pattern on the compliant artery is observed [156].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Rigid                            b) Compliant 

 
 
Fig. 7.24 Velocity contours in z direction of rigid and compliant artery (t = 0.3172 s)  
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a) Rigid                            b) Compliant 

 
 

t = 0.2928 sec  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Rigid                            b) Compliant 

 
 

t = 0.5368 sec  
 
 

Fig. 7.25 Stream line of rigid and compliant artery 
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Rigid                           Compliant 

 

 a) CFA Section at the second location in Fig. 7.19 
 

 
 
 b) SFA Section at the third location in Fig. 7.19 
 

Fig. 7.26 Velocity contour of CFA and SFA cross sections 
 

7.3.5.2    Velocity validation with MRI  

  In order to validate computational and physiological data, the four position 

velocities of rigid, compliant, and MRI cross sections at the third location in Fig. 7.19 are 

extracted and compared as shown in Figs. 7.27 and 7.28. The results of rigid and 

compliant arteries do not demonstrate the severely skewed velocity near the anterior and 
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left wall at the peak systolic phase and small amplitude due to the reflection of pulse 

wave at the diastolic phase. However, the differences of velocity between anterior-left 

and posterior-right wall around the peak diastole are shown only in compliant artery. The 

differences may be strongly influenced by expansion of diameter, because the maximum 

pressure is loaded on the artery wall around the peak diastole. During the peak diastole, 

the velocity profiles of SFA cross section measured at the third location in Fig. 7.19 are 

compared as illustrated in Fig. 7. 29. The biased velocity profile of compliant artery is 

consistent with MRI data.  

7.3.5.3    Wall displacement  

  Time-varing lumen diameters of CFA and SFA are measured at the second and 

third locations in Fig. 7.19. The maximum anterior-to-posterior lumen diameters of CFA 

and SFA at the peak pressure load are 6.3457 and 4.67 mm which is 5.7 and 3.7 

percentage expansion of lumen diameter during diastolic cycle respectively as shown in 

Fig. 7. 30. Increase of anterior-to-posterior lumen diameters of CFA and SFA is larger 

than that of right-to-left ones. The much difference between anterior-to-posterior and 

right-to-left lumen diameter of SFA may be affected by the curvature of it.   

7.3.5.4    Wall shear stress 

  The WSS distribution at the peak systole is illustrated in Fig. 7.31. It seems to be 

no differences between the rigid and compliant arteries in the figures. For finding the 

differences, the WSS values of entire rigid and compliant wall are compared and two 

locations of maximum difference are found in the range of 0 to 4 Pa as shown in Fig. 7.32. 

The WSS’s of posterior wall of rigid/compliant CFA and PFA are shown in Fig. 7.33. 

The WSS of rigid artery is bigger than that of compliant one. In addition, the differences 
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of WSS of CFA and PFA around maximum pressure load are relatively big as plotted in 

Fig. 7.34. Therefore, the WSS is primarily affected by the velocity of blood flow and 

secondary by the compliance of arteries wall in the main effects of geometry of the 

arteries.  
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                      a) Anterior 

 

 

 

 

 

 

 

 

 

 

                       b) Left 

Fig. 7.27 Time-dependent velocity near anterior and left wall 
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                     a) Posterior 

 

 

 

 

 

 

 

 

 

 

                     b) Right 

Fig. 7.28 Time-dependent velocity near posterior and right wall 
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           a) Compliant 

 

 

 

 

 

 

            b) MRI 
 

 

 

 

 

 

 

             c) Rigid 

Fig. 7.29 Comparison of MRI and velocity of compliant/rigid SFA model  
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           a) CFA 

 

 

 

 

 

 

 

 

 

 

 

           a) SFA 

Fig. 7.30 Time-dependent lumen diameters of CFA and SFA 
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a) Rigid (Right)                                                b) Compliant (Right) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) Rigid (Left)                                                   d) Compliant (Left) 
 

Fig. 7.31 Wall shear stress distribution at peak systole 
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Fig. 7.32 Locations of measurement of WSS in CFA and PFA 
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   a) CFA 

 

 

 

 

 

 

 

 

 

 

   b)PFA 

Fig. 7.33 Wall Shear Stress on posterior wall of CFA and PFA 
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a) CFA 

 

 

 

 

 

 

 

 

 

 

   b)PFA 

Fig. 7.34 Wall Shear Stress Differences between rigid and compliant CFA and PFA 
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7.4    Application III - Flutter of AGARD 445.6 Wing  

7.4.1    Introduction 

Flutter phenomena, one of aeroelastic instabilities of aircrafts, can be elucidated 

by FSI analysis. Recent advances in computational algorithms and hardware enable to 

analyze flutter problems of flight vehicles in an efficient and accurate manner [12, 157-

159]. Especially, the flutter analysis of the AGARD 445.6 wing is a milestone for 

validating new developed FSI tools because the experimental data of the analysis are well 

documented [160]. Most of the FSI studies have used the conventional modal method that 

provides only flutter frequency and mode shape [161-163].  

In this study, for a better insight of physical responses of the flutter, time 

marching full dynamic method is employed. The results from newly developed loosely-

coupled FSI framework show good agreement with experimental data. 

7.4.2 Geometry and grid  

AGARD 445.6 wing has a quarter-chord sweep angle of 45 degrees, 1.65 for a 

panel aspect ratio, 0.66 for a taper ratio, and a NACA 65A004 airfoil type for cross 

section of the wing. The root chord of the wing is 0.559 m and the semi-span is 0.762 m. 

The detailed graphical geometry information can be found in Ref. [160].  

The flow domain and common interface are discretized by 334,935 tetrahedral 

and 21,414 triangular elements, respectively. Fine mesh is employed in the leading and 

trailing edges to catch flow disturbance and generate exact NACA00649 airfoil type. The 

wing structure and common interface are discretized by 15,839 tetrahedral and 8,766 

triangular elements, respectively. Fig. 7.35 illustrates the fluid and structural grid and 

grids for common interface. 
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   a) Fluid domain 

 

 

 

 

 

 

 

 

 

           

  b) Structural domain 

Fig. 7.35 Fluid and structural grids for AGARD 445.6 wing 
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7.4.3  Parameters and boundary conditions 

7.4.3.1    Structure 

The original wing used in the experiment [160] is made of laminated mahogany 

wood. The wing is perforated with holes along the leading and trailing edges. Ref. [160] 

provides total mass information, but it does not provide enough information for entire 

parameters for wing structures.  

The wood has fibers along the wing span (x axis) which is swept 90 degrees with 

respect to y axis. The z axis is defined along the thickness of airfoil. Based on the 

coordinate systems defined above, the orthotropic mahogany wood properties [164] are 

listed in Table 7.3.  The Poisson’s ratios are shown in Table 7.4. The density is 415 kg/m3.  

Table 7.3 Elastic properties used for AGARD 445.6 wing 

 

 

 

 

 

 

 

  For validating the finite element model with the material properties, a modal 

analysis is performed. The results of modal analysis agree with experimental data as 

shown in Table 7.5. 

 

 

 Elastic modulus (GPa) 

xE  9.239 

yE  0.604 

zE  1.011 

xyG  0.623 

xzG  0.794 

yzG  0.264 
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Table 7.4 Poisson’s ratios used for AGARD 445.6 wing 

 

 

 

 

Table 7.5 Natural frequency comparison of experimental and computational data  

 

 

 

 

 

 

7.4.3.2    Fluid 

The fluid field is assumed as a laminar, Newtonian, viscous and incompressible 

flow. Navier-Stokes equation is chosen for analyzing the flow in FLUENT. The viscosity 

and density of air are set to 3.563e-05 kg/m-s and 0.428 kg/m3, respectively. From the 

experimental results in the Ref. [160], the flutter frequency is 20.38 Hz at Mach number 

0.499. In the FSI analysis, two tests are performed with Mach number 0.294 (dynamic 

pressure 2,209 Pa) and 0.499 (dynamic pressure 6,373 Pa) to capture stable and flutter 

conditions, respectively. 

 

 

 

 Poisson’s ratio Values 

xyν  0.034 

xzν  0.033 

yzν  0.326 

 Natural Frequency (Hz) 

Mode Experimental data Computational data 

1 9.60 9.59 

2 38.10 39.30 

3 50.70 53.36 
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7.4.4 Time mapping 

Time steps are determined as 0.005 and 0.0005 for CSD and CFD solver 

respectively. The time step for CSD solvers is set to be small enough to catch the 

experimental flutter frequency. Only CFD simulation is executed base on the time step 

until the solution is converged. From the convergence information, 10 subcycling time 

step for the CFD solver is determined. With the determined time step, 200 and 150 

iterations for flutter and non-flutter cases are implemented, respectively. The auto-time 

step option in ANSYS is turned on to reduce CPU time and prevent divergence of 

solution.  

7.4.5 Results 

Fig. 7.36 illustrates the time-history displacement of leading and trailing edge at 

the tip of the wing at Mach 0.499 and 0.294 without structural damping. Since the 

structural damping effect is not considered in the FSI simulation, the wing tip of the case 

of Mach number 0.294 oscillates with constant amplitude and its tip of the case of Mach 

number 0.499 oscillates with increasing amplitude. However, the flutter frequency 19.5 

Hz is similar to experimental flutter frequency 20.38 Hz. The snapshots of total pressure 

distribution at the time intervals are illustrated in Fig. 7.37.   

7.5 Summary 

The effects of compliance of blood vessel wall on arterial flow patterns or vice 

versa have been investigated through the simulation of straight/curved stenotic artery and 

in-vivo femoral artery bifurcation with the new FSI framework. In addition, the structural 

responses of aircraft wing in the flight envelops have been analyzed via simulating the 

flutter of AGARD 445.6 wing.  
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In the analysis of pulsatile flow through compliant straight/curved carotid stenotic 

arteries, the pulsatile flow was modeled by sinusoidal waves and Mooney-Rivlin model 

was used for the arteries. The arteries were pre-stretched and pre-stressed to consider 

residual stresses that play an important role in the mechanical response of the wall. The 

results from the simulation of the straight artery showed a little difference with the 

experimental results in terms of displacement, but the phase delay that can be detected 

only by FSI simulation was consistent with the experimental results. The strong 

recirculation of flow and high velocity on the outer wall in the curved stenotic artery 

demonstrated that the curvature an compliance of the artery plays a key role in the flow 

patterns and consequently affects WSS distribution on the wall.  

For one of biofidelic and physiological applications, hemodynamics and structural 

responses of the in-vivo common femoral artery bifurcation have been performed. The 

pressure boundary condition at the inlet which was calculated from one-dimensional 

Navier-Stokes equation in elastic tube utilizing patient-specific MRI velocity profiles. 

The velocity mapping by the smoothing interpolation of MRI data at the three outlets 

(SFA, PFA, and LCA) was applied to observe the effect of skewed velocity profile from 

the curvature of the arteries. An inverse method for finding material coefficients used in 

an in-vivo material constitutive model was employed to prevent sudden expansion of 

blood vessel corresponding blood pressure during diastolic phase. Comparison of the 

flow pattern and WSS of rigid and compliant femoral artery bifurcation demonstrated that 

the FSI simulation with the FSI framework was more in line with experimental data than 

rigid body simulation. The results of two biomechanical applications demonstrated that 

the FSI framework can be a useful tool to enhance our understandings of the effects of 
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mechanical behaviors occurred by FSI on the development and progress of 

atherosclerosis.   

 Flutter and non-flutter cases of AGARD 445.6 wing using time marching full 

dynamic FSI analysis instead of conventional modal one were described in the third 

application. At Mach 0.499, a flutter boundary from the experiment, the wing oscillated 

with increasing amplitude due to the deficiency of realistic structural damping in this case. 

However, the flutter frequency 19.5 Hz was similar to experimental flutter frequency 

20.38 Hz. Time marching full dynamic method, which is easily performed by the loosely-

coupled FSI framework, enables to analyze large amplitude and time-dependent motion 

and nonlinear fluid behavior such as separated flow and turbulence, although it requires 

more computing time than conventional modal approach.  

The results of three applications demonstrated that the new FSI framework is a 

useful and powerful tool for investigating and analyzing physical FSI phenomena.  
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   a) Trailing edge 

 

 

 

 

 

 

 

 

 

 

   b) Leading edge 

Fig. 7.36 Tip displacement comparison of Mach 0.499 and 0.294 at leading and   

trailing edge  
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  a) Mach 0.499                                                                             b) Mach 0.294 

Fig. 7.37 Total pressure distribution of AGARD 445.6 wing  
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CHAPTER 8 

CONCLUSIONS 

 

A fluid structure interaction (FSI) framework was developed to solve FSI 

problems using a loosely-coupled method that has advantages of reusability of well-

validated simulation codes for computational fluid dynamics (CFD) and computational 

structural dynamics (CSD) solvers. The framework consists of load projection, surface 

deformation, volume deformation, time mapping, and input/output control modules.  

In this study, new algorithms for surface and volume deformation modules were 

developed. In the loosely-coupled method, interpolation (mapping) techniques are 

essential to transfer the data between CFD and CSD solvers that use different spatial 

discretization. A new hybrid deformation mapping method, Curvature gradient Index 

Local Fitting (CILF), was developed for motion transfer between unmatched unstructured 

grids on the common surfaces. CILF uses a surface spline method at local geometries 

having a high curvature gradient and a tracking method at the remaining geometries. This 

approach overcomes numerical instabilities and excessive computation time incurred by 

interpolating a large data set in the spline methods, as well as the low accuracy from 

tracking methods. Numerical results using two-dimensional analytical test functions and 

three-dimensional applications such as sphere and AGARD 445.6 wing deformation 

showed that the method provided efficient, accurate, and smooth interpolations in 

comparison to the traditional methods. 



 110

The movement of viscous (boundary) layers requires enormous computation time 

and memory due to grid condensation on the viscous layers. A simple and efficient 

topological local coordinate method was suggested for moving boundary layers. Based on 

the curvature gradient index, the new method uses an averaged point normal of moving 

surfaces and its relative angle to the local directional vector at local geometries having a 

high curvature gradient, and it uses a simple local coordinate at the remaining 

geometries. Whole volume grid movements from the fourth vibration modes of the 

AGARD 445.6 and NACA0012 wings were tested using the new method for boundary 

layers, and linear and semi-torisonal spring analogy for inviscid regions. The results 

demonstrated the efficiency of the suggested method. 

For the purposes of validating the FSI framework developed, pulsatile blood 

flows through artificial straight/curved stenotic artery and in-vivo patient-specific 

femoral artery bifurcation and AGARD 445.6 wing flutter were simulated. In the 

artificial straight stenotic artery, the phase delay that can be detected only in FSI 

simulation was consistent with the experimental results, although there is a minor 

difference between the simulation and experimental results in terms of displacement. In 

the curved stenotic artery, strong recirculation of flow and high velocity on the outer wall 

indicates that the compliance and curvature of the artery plays a key role in the flow 

patterns and consequently affects wall shear stress (WSS) distribution on the wall.  

The comparison of the flow patterns and WSS of rigid and compliant femoral 

artery bifurcation demonstrated that the FSI simulation that accounts for artery 

compliance is more in line with experimental data than flow only analysis in which the 

artery is just considered as a rigid one. The results of the biomechanical applications 
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demonstrated that the FSI framework can be a useful tool to enhance our understandings 

of the effects of biomechanical behaviors such as WSS and secondary flows on the 

development and progress of atherosclerosis. 

Aircraft wing flutter is a physical phenomenon resulting from aeroelastic 

instability. Using the FSI framework, the flutter mode and frequency were obtained and 

their values were similar to experimental results. Instead of conventional modal approach, 

the time marching full dynamic method was performed in the FSI framework to provide a 

better insight of physical responses of the flutter such as large amplitude and time-

dependent wing motion, separated flow, and turbulence. 

The results of this study demonstrated that the FSI framework can be a useful and 

powerful tool to investigate and analyze real-world FSI phenomena.  
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