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ABSTRACT
In this research project, an adaptive control system was 

developed to achieve a precise dosage individualization for 
the bronchodilator theophylline. The system was designed to 
attain and maintain a serum theophylline concentration of 15 
pg/ml. Individual dosage requirements were optimized by 
estimating and incorporating patient parameters into a model 
based control law.

The performance of the system was assessed under various 
sampling schemes and stochastic disturbances in computer 
simulation studies. The system was validated for three 
subpopulations of patients, i.e., patients with normal 
parameters, smokers (high clearance patients), and cirrhotics 
(low clearance patients). The accuracy of the two parameter 
estimators (Kalman filter and minimization of the Bayesian 
objective function) were compared by computing parameter 
estimation errors.

The sampling scheme of 2, 12, and 30 hours most 
effectively individualized theophylline requirements. Of the 
stochastic disturbances considered (besides delays, sampling 
errors and dosing errors), the assay errors most significantly 
affected the performance of the system.
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For patients with normal parameters, the mean
theophylline concentrations of 15.24 +/- 0.92 ^g/ml and 15.05 
+/- 0.79 pg/ml were achieved by the system employing the 
recursive Kalman filter and the non-recurs ive Bayesian 
parameter estimator, respectively. For smokers and 
cirrhotics, the mean concentrations of 15.02 +/- 0.63 gg/ml 
and 15.12 +/- 1.12 pg/ml were achieved, respectively, by the 
system employing minimization of the Bayesian objective 
function. •

The parameter estimates obtained by minimization of the 
Bayesian objective function were more accurate than those 
obtained by the Kalman filter.
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CHAPTER I
INTRODUCTION

Pharmacokinetics is the study of time course of the 
uptake, distribution, metabolism, and elimination of a drug 
from the body. The pharmacokinetics of a drug may be 
characterized using a compartmental approach that represents 
the body as a system of compartments and assumes an inter­
compartmental transfer and compartmental elimination of the 
drug. The compartments are not necessarily anatomic or 
physiologic. In a linear elimination process, the elimination 
rate of the drug is assumed to be proportional to the amount 
of the drug in the body. The simplest way to describe the 
pharmacokinetics of a drug that equilibrates rapidly through­
out the body would be to assume the whole body to be a single 
homogeneous compartment.

The linear one-compartment pharmacokinetics are governed 
by apparent volume of distribution (Vd) and clearance (Cl). 
Other pharmacokinetic parameters, such as elimination rate 
constant and biological half-life, are functions of the volume 
and the clearance.

The apparent volume of distribution does not refer to a 
real physiologic volume. Changes in the apparent volume of 
distribution are sometimes used to explain the variations in
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the biological half-life. The clearance is a measure of the 
efficacy of drug elimination expressed as the volume of plasma 
cleared of drug per unit time. The biological half life (t1/2) 
is the time required for a 50% decrease in plasma drug 
concentration. The elimination rate constant (k.) represents 
the fraction of drug eliminated per unit time. The relation­
ship between the parameters is given equations ( 1 ) and ( 2 ).

(0.693)
£1/2 (1)

Cl = (kg) <Vd) (2)

A standard drug-dosing regimen is designed to achieve and 
maintain a desired response based on the average 
pharmacokinetic parameter values of a patient population. 
Patients invariably demonstrate a varying clinical response to 
the standard dosing regimen. Patients with average parameters 
usually demonstrate the desired response. Patients with a 
high clearance may lack response; whereas, patients with a low 
clearance may develop drug toxicity.

Variations in pharmacokinetic parameters could be 
secondary to an individual's physiology or to pathological 
states of the body, such as liver disease, heart disease, and 
kidney disease. Factors such as diet and other concomitantly 
administered drugs also could affect the pharmacokinetic 
parameters. It is not always possible to identify and avoid 
the factors that cause interpatient variability, and many 
times the causative factors may not be known. Considering the 
undesirable responses that could be induced in patients by the 
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interindividual parameter variation, it becomes imperative 
that patients with extreme parameters receive individualized 
therapy, particularly for drugs with a low therapeutic index 
(ratio of therapeutic effect to toxicity) and sparse response 
measurements.
Current Drug Infusion Protocols

The current drug infusion protocols attempt dosage 
individualization based on a patient's clinical condition and 
response measurements. Initially, a patient is treated with 
a standard dosing regimen. Response measurements are obtained 
based upon a predetermined scheme or the patient's clinical 
condition. Based on the response measurements, proportional 
changes are usually made in the standard dosing regimen. 
Individualization is thus attempted by trial-and-error dosage 
adjustments. Such dosage adjustments may be inappropriate and 
deleterious, particularly when the response measurements are 
associated with large errors.
Present Day Computer-Aided Systems

More recently, computer-aided systems have been used to 
achieve dosage optimization based on individual pharmaco­
kinetics. Utilizing a mathematical model and a parameter 
estimator, the computer-aided systems tailor the dosage 
according to an individual's needs. The mathematical model is 
used to predict the response of a patient to a given drug 
infusion, and the parameter estimator is used to compute 
individual parameters.

The dosage individualization achieved by computer-aided 
systems is not very precise because these systems do not 
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utilize a specific control strategy to design new infusion 
regimens. Following parameter estimation, proportional 
changes are usually made in the standard dosing regimen. 
Also, the computer-aided systems require time-consuming and 
cumbersome manual computer entry of the patient's dosage 
history.
Adaptive Control System

The system discussed in this research project attempts to 
achieve a more precise dosage individualization, particularly 
for drugs such as lidocaine [1 ] and theophylline, whose dosage 
adjustments are based on infrequent patient response measure­
ments . The serum concentration of these drugs is an accurate 
indicator of an impending drug toxicity and is therefore used 
as a response measurement [2].

Following the entry of a patient's response into the 
computer, the automated system would estimate patient para­
meters and incorporate them into a mathematical model and a 
specific control law. Thus, the system would be adapted to 
the pharmacokinetic characteristics of the patient. The 
system is therefore termed the "Adaptive Control System."

The adaptive control system consists of a mathematical 
model, a parameter estimator, a control law, and a feedback 
control algorithm. The mathematical model is derived from a 
pharmacokinetic model and has a discrete-time input-output 
form which is suitable for computer simulation studies. The 
model is used to predict the response of a patient for a given 
infusion. The control law is a manipulated mathematical model 
used to compute infusion rates that can attain and maintain a
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desired output in the model. The parameter estimator is used 
to compute individual parameters by selecting values of the 
volume and the clearance that minimize the Bayesian objective 
function (refer to chapter III). The feedback control 
algorithm regulates the infusion regimen via the control law. 
Mode Qf operation

Initially, each patient is considered to be an average 
patient of the population; the mathematical model and the 
control law contain the mean parameter values. The patient is 
initiated on an infusion regimen designed by the control law 
to attain and maintain a desired output in the model. As the 
patient response measurements are obtained and entered into 
the computer, individual parameters are estimated. The model 
and the control law are revised with the new parameter 
estimates.

Because time is required for handling of the blood sample 
and for the assay procedure, there is a delay between sampling 
of blood and the actual entry of response measurement into the 
computer. During the delay, the patient would continue to 
receive the drug infusion. Hence, at the time of entry of the 
response into the computer, the actual response of the patient 
would to be different from the response measurement being 
entered. Taking the delay into account, the feedback control 
algorithm designs and implements a new infusion regimen via 
the control law.
Development of the adaptive oontKol. system

The development of an adaptive control system for a 
specific drug therapy requires formulation of the system
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constituents, validation of the system in computer simulation 
studies, and demonstration of the system's efficacy in 
clinical trials. In this research project, a mathematical 
model, a control law, and a feedback control algorithm have 
been formulated for the bronchodilator theophylline and the 
system has been validated in computer simulation studies.



CHAPTER II
LITERATURE REVIEW

Theophylline
Theophylline is a potent bronchodilator that has been 

used for several decades to relieve the symptoms associated 
with increased airway resistance. Chemically, theophylline is 
a dimethylated xanthine that is similar in structure to the 
naturally occurring xanthines, such as caffeine and 
theobromine found in tea, coffee, chocolate, and cola. 
Indications

Theophylline is used in the treatment of acute and 
chronic bronchial asthma, chronic bronchitis, emphysema, and 
Cheyne-Stokes respirations. More recently, it has been used 
to treat apnea and bradycardia associated with prematurity 
[3], [4]. Theophylline also is used as an adjunct in the 
treatment of congestive heart failure and acute pulmonary 
edema [5]. 
PharmaçolpcK

By acting directly on the bronchial smooth muscles, 
theophylline relaxes the airway and alleviates the symptoms 
associated with increased airway resistance [ 6]. At a 
cellular level, several mechanisms have been proposed to 
explain the bronchodilator effect of theophylline and include
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inhibition of phosphodiesterase, prostaglandin antagonism, 
effects on intracellular calcium, and increased binding of 
cAMP to cAMP-binding proteins [ 5 ]. other pharmacological 
effects of theophylline include transient diuresis, central 
nervous system stimulation, cerebral vasoconstriction, 
increased gastric acid secretion, inhibition of uterine 
contractions, and increased cardiac biventricular performance 
[5].
Pharmacodynamics

Efficacy: The bronchodilator action of theophylline 
begins at a serum concentration of 5 ^g/ml and increases 
proportionally up to a serum concentration of 20 pg/ml. The 
optimal response is obtained over a serum concentration range 
of 10-20 pg/ml. Greater improvement in pulmonary function and 
a shorter duration of intravenous therapy have been demonst­
rated among patients receiving an infusion producing a mean 
serum concentration of 19 pg/ml compared to a similar group of 
patients with a mean concentration of 10 #g/ml [5]. In 
premature infants, lower serum concentrations in the range of 
5-10 gg/ml appear to be effective in controlling apnea and 
bradycardia. The bronchodilation effect of theophylline 
diminishes rapidly in a manner that parallels the clearance of 
theophylline from plasma.

Toxicity: Theophylline therapy is associated with a wide 
range of adverse effects. Effects of central nervous system 
stimulation and slight nausea are frequently experienced after 
a loading dose. Generally, more severe and persistent side 
effects, such as vomiting, headache, diarrhea, and insomnia, 
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are associated with serum concentrations exceeding 20 pg/ml 
[7], [8]. Serum concentrations in excess of 35 pg/ml may 
result in hyperglycemia, hypotension, cardiac arrythmia, 
seizures, and death.
Ehamaççkxnetiçs

Distribution: After entering the circulation, 40% of 
theophylline binds to plasma proteins, and the remaining free 
drug distributes throughout the body water [9]. Theophylline 
distributes rapidly throughout the body and within one hour 
following an intravenous injection, the tissue theophylline 
concentrations equal the serum theophylline concentration. 
The apparent volume of distribution, in both children and 
adults, ranges from 300 to 700 ml/kg and averages about 458 
+/- 95 ml/kg [10], [11]. In premature newborns and adults 
with hepatic cirrhosis and uncorrected acidemia, the volume of 
distribution is slightly larger due to decreased protein 
binding. In all other circumstances, the apparent volume of 
distribution remains unaltered [12].

Metabolism and excretion: Theophylline is metabolized by 
hepatic biotransformation into relatively inactive metabolites 
(a process involving multiple cytochrome enzymes), which are 
rapidly excreted by the kidneys. Because the enzymatic 
metabolism is a capacity limited process, several reports 
regard the kinetics of theophylline as being nonlinear [13], 
[14], [15], [16]. However, Tang Liu et al. [14] have demons­
trated a unique situation in which the overall clearance of 
theophylline is, in fact, linear. At high serum 
concentrations, the metabolic process being relatively slow, 
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the diuretic effect of theophylline causes rapid excretion of 
the drug from the kidneys. At low serum concentrations, the 
renal excretion of the drug is diminished because of the less 
pronounced diuretic effect, but the relatively rapid metabolic 
process elevates theophylline elimination [14]. Thus, the 
metabolic process and the diuretic effect tend to offset each 
other in maintaining an overall linear clearance of 
theophylline.

Clearance: The product of volume of distribution and the 
elimination rate constant accurately reflects theophylline 
clearance. Otherwise healthy patients have a mean clearance 
of 0.65 +/- 0.19 ml/min [5]. Several factors, such as age, 
disease state, smoking, diet, and other concomitantly 
administered drugs, induce large interpatient clearance 
variations by changing the rate of hepatic biotransformation 
of theophylline. Generally, patients with hepatic cirrhosis 
[17], [18], [19] and congestive heart failure have low 
clearances [20], and cigarette smokers have significantly 
higher clearances [10], [21]. Although, the average clearance 
in children is approximately 40% greater than that reported in 
adults [22], [23], [24], the slowest clearances have been 
reported in premature neonates [4]. Conflicting reports have 
been published regarding the influence of obesity, old age, 
and sex on theophylline clearance [25], [26], [27], but, 
sufficient evidence has suggested that subject weight and sex 
do not significantly alter theophylline clearance. Concomi­
tant therapy with cimetidine may reduce theophylline clearance 
through enzyme inhibition; whereas, rifampin, phenobarbital,
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and phenytoin have been shown to increase theophylline 
clearance through enzyme induction.
Pharmacokinetic models

Using mathematical and statistical techniques, the serum 
concentration versus time data of theophylline have been fit 
to both one- [28] and two-compartment [29] pharmacokinetic 
models. The governing equation of a one-compartment model is 
given by

(c> +1 (3) 

where C (pg/ml) is the compartmental concentration of 
theophylline, K. (min-1) is the elimination rate constant, I 
(mg/hr) is the infusion rate, and Vd (ml/kg) is the apparent 
volume of distribution.
Theophylline treatment

Theophylline may be administered both orally and 
parenterally. The intravenous loading dose for aminophylline 
(79% anhydrous theophylline) is 5-6 mg/kg given over a 15-30 
minute period, followed by a continuous infusion of the drug 
at the rate of 0.3 mg/kg/hr for severely ill patients (e.g., 
congestive heart failure, liver disease), 0.6 mg/kg/hr for 
nonsmokers, and 0.9 mg/kg/hr for smokers [30]. Theophylline 
therapy is monitored by obtaining a serum concentration 1-2 
hours after initiation of therapy. The second serum 
concentration is availed 4 hours later. Subsequent serum 
concentrations may be obtained if patients develop signs of 
toxicity.
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Present Day Computer Aided Systems

Recently, due to the development of rapid, simple and 
reliable drug assays on one hand, and the expansion of 
computer technology on the other, an increasing interest in 
the application of feedback control methods in clinical 
pharmacokinetics has resulted in the development of computer- 
aided systems for optimizing drug therapy. By estimating 
individual parameters and predicting the future serum 
concentrations of patients, the computer-aided systems achieve 
a more precise dosage individualization. Peck et al. [31], 
[32] were first to develop a microcomputer based dosing 
program for theophylline [32] utilizing the Bayesian algorithm 
of Sheiner and Beal [33]. Since then, many applications of 
this approach have been successfully developed for several 
drugs, including lidocaine [34], [35], phenytoin [36], and 
aminoglycosides [37].

The computer-aided systems consist of a mathematical 
model, a parameter estimator, and a control strategy. The 
mathematical model is used to predict the response of a 
patient for a given drug infusion. The parameter estimator 
utilizes the Bayesian technique (refer to chapter III) and 
estimates individual parameters. 
Mode of operation

Initially, every patient is considered to be an average 
individual of a patient population and is initiated on a 
standard infusion regimen. With the availability of response 
measurements, patient parameters are estimated and incorp­
orated into the model. Based on the parameter estimates, a 
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new infusion regimen is usually designed by making 
proportional changes in the standard regimen. Computer 
simulations based on the revised model, are performed to 
predict the patient's future serum concentrations for each 
regimen. The most appropriate infusion regimen is selected to 
proceed with individualization.
Advantages and disadvantages

The computer-aided systems achieve a better individua­
lization compared to the current drug-infusion protocols. The 
Bayesian technique quite accurately estimates pharmacokinetic 
parameters of the individual patient [38]. However, the 
present day computer-aided systems have some serious 
drawbacks. After parameter estimation, usually only 
proportional changes are made in the standard infusion regimen 
to design new infusion regimen. The systems do not use a 
specific control strategy to formulate a new infusion regimen. 
The burden of interpreting simulation results and choosing a 
particular regimen lies with the physician or pharmacist. The 
system also requires time-consuming and cumbersome manual 
computer entry of infusion rate and patient's dosage history.



CHAPTER III
THE ADAPTIVE CONTROL SYSTEM

The adaptive control system consists of a mathematical 
model, a parameter estimator, a control law, and a feedback 
control algorithm. The development of the adaptive control 
system consists of formulating the system constituents, 
validating of the system in computer simulation studies, and 
testing system efficacy in clinical trials. In this research 
project, the system constituents were formulated and the 
system was validated in computer simulation studies for the 
bronchodilator theophylline.
The Constituents of the Adaptive Control System

Mathematical model: The mathematical model is a 
discrete-time input-output model derived from a 
pharmacokinetic model [39] via state space transformations. 
The model is used to predict the response of a patient for a 
given infusion. The discrete-time input-output form enables 
computer simulation studies. The model is given by

y(t) = t-1) + 1) (4)

where a^ - - bx = 1/C1(1 - y(t) is the output 
or the desired patient response, and u(t) is the input or the 
infusion rate.

14
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b) Parameter estimator: The Bayesian technique for 

estimating the pharmacokinetic parameters [40], [41] involves 
the selection of parameter values that minimize the Bayesian 
objective function given by

^h^-Id^j))2 +y (InCCJ )-ln(dp )2 
# Pj £1 a j V 1

where P3 and P3 denote the j=l to p pharmacokinetic parameters 
for the population and individual, p3 are the coefficients of 
variation of the population parameters, ai is the coefficient 
of variation of the measurements, is the concentration 
predicted for the model using the population pharmacokinetic 
parameters, and Cx is one of n measured concentrations.

The means and the variances of population parameters and 
the expected and measured drug levels with their respective 
variabilities are considered in the minimization of the 
Bayesian objective function. The minimization of the Bayesian 
objective function may be achieved by the implementation of a 
Nelder-Mead simplex algorithm [38] or other off-line methods. 
The minimization technique is associated with cumbersome and 
time-consuming computations, and the problem of having it run 
off-line. A Kalman filter (a recursive filter based on the 
Bayesian technique and developed outside this research 
project) may be employed to perform on-line parameter 
estimation.

With each estimation, the Kalman filter gains knowledge 
about patient parameters and makes reductions in the 
covariance matrix of the estimator. With successive sampling, 
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the filter tends to pay less attention to measurements because 
of the filter's confidence in the previous estimates. 
Therefore the accuracy of the estimates obtained by the filter 
does not improve as much as those obtained by the minimization 
of the Bayesian objective function. To overcome this problem, 
in this research project, an adhoc modification was made in 
the covariance matrix of the estimator.

Control law: The control law is a manipulated 
mathematical model used to calculate an infusion regimen that 
can attain and maintain a desired response in the model. The 
control law is given by

mt) - (6) 
bl

where u(t) is the infusion rate required for a desired 
response yd(t+l).

Feedback control algorithm: If blood is sampled at time 
ti, the response is available at time t2 after a considerable 
delay because of the time required for assaying and handling 
the blood sample. After the response is entered, the patient 
parameters are estimated and incorporated into the model and 
the control law. A new infusion rate is calculated to proceed 
with individualization.
Computer Simulation Studies

The computer simulation studies are very effective in the 
assessment of the performance of an adaptive control system. 
By utilizing simulation studies, certain design decisions 
(e.g., sampling times) can be made, the performance of the
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system can be tested under stochastic disturbances, and the 
system can be validated for a population of patients.



CHAPTER IV
COMPUTER SIMULATION

Computer simulations are an effective means to analyze 
and validate a system. They are fast, and easy to perform, 
and a large number of patients can be simulated in a short 
period of time. Prior validation of a system in computer 
simulation studies reduces the risks involved to patients 
during the clinical testing of the system. In this research 
project, computer simulation studies were performed to design 
blood sampling schemes, to demonstrate the performance of the 
system under stochastic disturbances, and to validate the 
adaptive control system for three groups of patients, i.e., 
patients with normal parameters, smokers (patients with a 
high clearance), and cirrhotics (patients with a low 
clearance). To demonstrate interpatient response variation, 
a population of 500 patients were simulated using an open-loop 
control. An infusion regimen was designed for a patient with 
average parameters and was administered to all 500 patients. 
Simulation Procedure

To assess and validate the performance of the adaptive 
control system, Monte Carlo simulations (studies involving 
randomly generated parameters ) were performed for a population 
of 500 patients. Patients were mimicked by generating the 
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clearance and volume parameters from scaled and log-normally 
distributed random numbers. The means and the standard 
deviations of the parameters for the three groups of patients 
are presented in Table I. The measurement errors were 
mimicked by adding log-normally distributed random numbers 
with a coefficient of variation (CV = standard deviation/mean ) 
of 5% to the response measurements. Delays of 1 hour were 
incorporated into the simulation studies.

TABLE I
Statistics of the pharmacokinetic parameters for the three 
subpopulations of patients.

Patient 
Subpopulations

Clearance(ml/min) 
Mean SO

VQlumefml/kg)
Mean SO

Patients with 
normal parameters 0.65 0.19 458 95

Smokers 1.05 0.32 458 95
Cirrhotics 0.31 0.19 563 80

Initially, the model and the control law contained 
average parameter values. An infusion regimen was designed 
using the control law, to attain and maintain a serum 
theophylline-concentration of 15 gg/ml in the model. Samples 
were drawn at stipulated times and individual parameters were 
estimated. The model and the control law were updated with 
new parameter estimates and a new infusion regimen was 
calculated to proceed with individualization. Because the 
control law may at times compute infusion rates higher than 
the upper limit of 500 mg/hr or negative infusion rates, the 
infusion regimen was constrained between 0 and 500 mg/hr.
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Factors Considered in Simulation Studies 
Design factors

Number of samples: The pharmacokinetic parameters can be 
accurately estimated by obtaining many blood samples. With 
the availability of quick, accurate, cost-effective bedside 
assays, many samples could be drawn; however, injudicious 
sampling of patients may not be beneficial, because the 
samples may not provide new information. Also, injudicious 
blood samples would only mean additional expense to the 
patients and an unnecessary work-load on the nursing staff. 
Many blood samples may be required to estimate the parameters 
that are known to vary over time. Intrapatient parameter 
variation is not frequently encountered during theophylline 
therapy.

Sampling_ times: Following the administration of a 
loading dose, a drug begins to distribute throughout the body. 
During the distribution phase, the serum concentration of the 
drug is governed primarily by the volume of distribution. A 
sample drawn at the end of the distribution phase yields 
maximum information regarding the volume. The clearance, on 
the other hand, begins to exert its effect in the transient 
state and significantly governs the serum concentration during 
the steady state. A sample drawn in the steady state yields 
maximum information regarding the clearance.

Considering the aforementioned facts, the following 
sampling schemes were formulated and tested in simulation 
studies :

a) 2 and 20 hours ;
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b) 6 and 20 hours;
c) 10 and 24 hours; and
d) 2, 12, and 30 hours.
For each of the above schemes, a population of 500 

patients with normal parameters were simulated employing the 
Kalman filter for parameter estimation with sampling at the 
stipulated times. A 5% CV assay error and delays of 1 hour 
were also included in the simulation studies.
Stochastic disturbances

Assay errors: Both laboratory and bedside assays are 
available for determining serum theophylline concentrations. 
High performance liquid chromatography and immunoassay are 
some of the popular laboratory assay techniques. A rapid 
immunoassay technique (Seralyzer) and a procedure combining 
the techniques of immunoassay and thin layer chromatography 
(Syntex Medical Diagnostics) are available for use by the 
bedside [42].

Generally, the laboratory assays are more accurate than 
the bedside assays. The laboratory assays are associated with 
a 2-5% (CV) error; whereas, the bedside assays are associated 
with a 5-10% error. The assay errors affect the performance 
of the system by directly affecting the accuracy of parameter 
estimation. To demonstrate the effect of assay errors, log- 
normally distributed errors of 5, 10, and 15% CV were 
considered in the simulation studies. Monte Carlo simulations 
were performed for 500 patients with normal parameters 
employing the Kalman filter for parameter estimation with 
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sampling at 2, 12, and 30 hours. A delay of 1 hour was 
included in the studies.

Delays: The delays are a direct consequence of the time 
required for both the assay procedure and handling the blood 
sample. The later event particularly could consume more time 
if a hospital is not equipped with a laboratory facility. 
Typically, the laboratory assays require more time than the 
bedside assays. The laboratory assays are associated with 1-4 
hour delays, and the bedside assays are associated delays 
ranging from 15 minutes to an hour. The delays do not affect 
the accuracy of parameter estimation and, therefore, they 
should not affect the performance of the system in the steady 
state. However, due to the delays, patients are required to 
receive a less specific infusion until response measurements 
become available. To demonstrate the effect of delays, 30- 
minutes, l-hbur, and 4-hour delays were considered in the 
simulation studies. Monte Carlo simulations were performed 
for 500 patients with normal parameters employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
hours. A 5% CV assay error was included in the simulation 
studies.

Sampling error: In a busy hospital setting, a sample 
scheduled at time tl may be drawn at time tl +/- x minutes. 
Although sampling errors of a few minutes are not uncommon, 
errors of hours should be a rare occurrance.

The response rl at time tl is available at time t2 after 
a certain delay. Based on the response r2 at time t2, a new 
infusion regimen is designed. The sampling errors could 
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result in erroneous predictions of r2 and, thus, affect the 
specificity of the new infusion regimen designed. To 
demonstrate the effect of sampling errors, errors of +30 
minutes, -30 minutes, +1 hour, and -1 hour were considered in 
the simulation studies. Monte Carlo simulations were 
performed for 500 patients with normal parameters employing 
the Kalman filter for parameter estimation with sampling at 2, 
12, and 30 hours. A 5% CV assay error and a 1-hour delay were 
included in the simulation studies.

Dosina errors: Infusion pumps can deliver fluids only in 
integer quantities. The infusion rate computed by the control 
law may be a real number. To take this discrepancy into 
account, a 1% dosing error was added to the infusion rate. 
Because the dosing errors would not significantly affect the 
performance of the system, they were not individually 
evaluated. Instead, the dosing errors were included in the 
simulations studies performed to validate the system. 
Simulations Performed To Validate The System

The system was validated for the three subpopulations of 
patients, i.e., patients with normal parameters, smokers, and 
cirrhotics. From each group, 1000 patients were simulated, 
employing minimization of the Bayesian objective function for 
parameter estimation, with sampling at 2, 12, and 30 hours. 
All stochastic disturbances were considered concurrently in 
the studies. The assay error varied with a CV of 5%, the 
dosing error varied with a CV of 1%, and the delays varied 
between 1-4 hours.
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Comments on Parameter Estimation
In order to compare the accuracy of the parameter 

estimates obtained from the two estimators, another 1000 
patients with normal parameters were simulated employing the 
Kalman filter for parameter estimation. For each sample, the 
clearance and the volume estimation errors were computed for 
both the estimators using the formula

PE = log(P) - log(Pj) (7)
a where P denotes the estimated parameter, and P* denotes the 

patient parameter. Prior to sampling, because average 
parameter values were assumed for each patient, an initial 
error existed between the average and the patient parameters. 
The initial errors were also computed using the equation (7), 
where P denoted the mean parameter values.

The measurement errors were computed using the formula

ME = log(Cffl) - log(Cj) (8)

where C, denotes the measured concentration and Cx denotes the 
actual concentration.



CHAPTER V
RESULTS

The performance of the adaptive control system was 
assessed by inspecting the concentration versus time plots, by 
examining the mean, the standard deviation (SD), and the 
coefficient of variation (CV) of concentrations, and by 
comparing the statistics of the concentrations achieved by the 
adaptive control versus those achieved by the open-loop 
control. _
Simulation Results for Open-Loop Control

An infusion rate was designed to attain and maintain a 
serum theophylline concentration of 15 gg/ml in the model. 
The infusion rate consisted of a loading dose of 500 mg, 
followed by a maintenance dose of 40 mg/hr for a 70-kg man 
( Fig. 1 ). The response of a patient with average
pharmacokinetic parameters is illustrated in Fig. 2.

For the Monte Carlo simulations using the open-loop 
control, plots of concentrations versus time are presented in 
Figs. 3 and 4. Fig. 3 demonstrates a large clearance 
variation between patients (inferred by their widely differing 
80 hour concentrations); whereas, Fig. 4 demonstrates a wide 
volume variation (inferred by the range of initial 
concentrations).

25
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Simulation Results For The Sampling Schemes

A population of 500 patients with normal parameters was 
simulated employing the Kalman filter for parameter estimation 
with sampling at the stipulated times. A 5% CV assay error 
and a delay of 1 hour were included in the simulation studies. 
The early samples were drawn to estimate the volume, and the 
late samples to estimate the clearance.

2- and 20-hour samples: The 2-hour sample provided good 
volume estimates, and the 2O-hour sample provided fairly 
accurate clearance estimates. The concentration versus time 
of 50 patients in Monte Carlo simulations is illustrated in 
Fig. 5. A mean concentration of 15.38 +/- 1.3 pg/ml was 
achieved in 500 patients (Fig. 9).

6- and 20-hour samples: The 6-hour sample could provide 
neither good volume estimates nor good clearance estimates. 
The 2O-hour sample provided fairly accurate clearance 
estimates. The concentration versus time of 50 patients in 
Monte Carlo simulations is presented in Fig. 6. A mean 
concentration of 15.5 +/- 1.4 gg/ml was achieved in 500 
patients (Fig. 10). Fig. 13(a) compares the CV of the 
concentrations achieved by the sampling schemes of 2 and 20 
hours and 6 and 20 hours.

10- and 24-hour samples: The 10-hour sample provided 
poor estimates of both the volume and the clearance. The 24- 
hour sample provided fairly accurate clearance estimates. The 
concentration versus time of 50 patients in Monte Carlo 
simulations is illustrated in Fig. 7. A mean concentration of 
15.45 +/- 1.27 pig/ml was achieved in 500 patients (Fig. 11).
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Fig. 1 Infusion regimen calculated by the control law using 
average parameter values to attain and maintain a concentra­
tion of 15 pg/ml.
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Fig. 2 Concentration achieved in a patient with average 
pharmacokinetic parameters receiving an infusion regimen 
calculated to attain and maintain a concentration of 15 pg/ml.
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Fig. 3 Concentration vs. time in Monte Carlo simulations of 
75 patients with normal parameters using open-loop control.
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2^_12-, and 30-hour samples; The 2-hour sample provided 

good volume estimates, the 30-hour sample provided good 
clearance estimates, and the 12-hour sample reduced the 
response variation between the 2- and the 30-hour samples. 
The concentration versus time of 50 patients in Monte Carlo 
simulations is presented in Fig. 8. A mean concentration of 
15.22 +/- 0.9 pg/ml was achieved in 500 patients (Fig. 12). 
Table II summarizes the statistics of the 80 hour 
concentrations. Fig. 13(b) compares the CV of the 
concentrations achieved by the sampling times of 10 and 24 
hours and 2, 12, and 30 hours.

TABLE II
Statistics of the 80-hour concentrations achieved in Monte 
Carlo simulations using open-loop control and adaptive control 
employing the Kalman filter for parameter estimation with 
sampling at the stipulated times. (500 patients with normal 
parameters, 5% (CV) assay error, 1-hour delay).

Sampling Schemes 
(hours)

Serum.concentration(ua/ml} 
Mean SO CV(%)

Open-loop control 15.88 4.56 28.73
2 and 20 15.38 1.30 8.48
6 and 20 15.50 1.40 9.02

10 and 24 15.45 1.27 8.21
2, 12 and 30 15.22 0.90 5.92

Simulation Results for the Stochastic Disturbances
Assay errors: Considering individually the assay errors 

of 5, 10, and 15% CV, Monte Carlo simulations were performed 
for 500 patients with normal parameters employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30
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Fig. 5 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing the Kalman filter for 
parameter estimation with sampling at 2 and 20 hours. (50 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 6 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing the Kalman filter for 
parameter estimation with sampling at 6 and 20 hours. ( 50 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 7 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing the Kalman filter for 
parameter estimation with sampling at 10 and 24 hours. (50 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 8 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing the Kalman filter for 
parameter estimation with sampling at 2, 12, and 30 hours. ( 50 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 9 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing the Kalman filter for 
parameter estimation with sampling at 2 and 20 hours. (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)

1 
§

30

20

25

15

10

10 20 30 40 50 60 70 80

I 
§ u z c u
M z

TIME (HOURS)

Fig. 10 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing the Kalman filter for 
parameter estimation with sampling at 6 and 20 hours. (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 11 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing the Kalman filter for 
parameter estimation with sampling at 10 and 24 hours. (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 12 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing the Kalman filter for 
parameter estimation with sampling at 2, 12, and 30 hours. 
(500 patients with normal parameters, 5% (CV) assay error, 1- 
hour delay)
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Fig. 13(a) CV (%) of concentration vs. time in Monte Carlo 
simulations achieved by adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2 and 20 
hours (solid line) and 6 and 20 hours (dashed line). (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 13(b) CV (%) of concentration vs. time in Monte Carlo 
simulations achieved by adaptive control employing the Kalman 
filter for parameter estimation with sampling at 10 and 24 
hours (dashed line) and 2, 12, and 30 hours (solid line). (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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hours. A delay of 1 hour was also incorporated into the 
studies. The mean concentrations of 15.22 +/- 0.9 pg/ml (Fig. 
14), 15.25 +/- 1.59 pg/ml (Fig. 15), and 15.25 +/- 2.22 Mg/ml 
(Fig. 16) were achieved in patients for assay errors of 5, 10, 
and 15%, respectively. Fig. 17 compares the performance of 
the system for the three assay errors. Table III summarizes 
the statistics of the 80-hour concentrations.

TABLE III
Statistics of the 80-hour concentrations achieved in Monte 
Carlo simulations using adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
hours for assay errors of 5, 10, and 15% CV. (500 patients 
with normal parameters, 1-hour delay)

Assay errors (%CV) Serum concentration(wiZmll 
Mean SD CV(%)

5% 15.22 0.90 5.92
10% 15.25 1.59 10.40
15% 15.25 2.22 14.56

Delays: Delays of 30 minutes, 1 hour, and 4 hours were 
considered individually in Monte Carlo simulations of 500 
patients with normal parameters employing the Kalman filter 
for parameter estimation with sampling at 2, 12, and 30 hours. 
A 5% CV assay error was incorporated into the studies. The 
mean concentrations of 15.07 +/- 0.77 gg/ml, 15.22 +/- 0.9 
pg/ml, and 15.22 +/- 0.9 pg/ml were achieved in patients for 
delays of 30 minutes, 1 hour, and 4 hours, respectively. Fig. 
18 compares the mean +/- SD of the concentrations achieved for 
the delays of 1 hour and 4 hours. Table IV summarizes the 
statistics of the 80-hour concentrations for the delays.
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Fig. 14 Mean +/- SD of concentration vs. time data in Monte 
Carlo simulations achieved by open-loop control (solid line) 
and adaptive control (dashed line) employing the Kalman filter 
for parameter estimation with sampling at 2, 12, and 30 hours 
for 5% (CV) assay error. (500 patients with normal 
parameters, 1-hour delay)
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Fig. 15 Mean +/- SD of concentration vs time data in Monte 
Carlo simulations achieved by open-loop control (solid line) 
and adaptive control (dashed line) employing the Kalman filter 
for parameter estimation with sampling at 2, 12, and 30 hours 
for 10% (CV) assay error. (500 patients with normal 
parameters, 1-hour delay)
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Fig. 16 Mean +/- SD of concentration vs. time data in Monte 
Carlo simulations achieved by open-loop control (solid line) 
and adaptive control (dashed line) employing the Kalman filter 
for parameter estimation with sampling at 2, 12, and 30 hours 
for 15% (CV) assay error. (500 patients with normal 
parameters, 1-hour delay)

2 s
§
I 

8

30

o

20

10

15

25

10 20 30

TIME (HOURS)

40 50 60 70 80

Fig. 17 CV (%) of concentration vs. time data in Monte Carlo 
simulations achieved by adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
hours for assay errors of 5% (solid line), 10% (lower dashed 
line) and 15% (upper dashed line) CV. (500 patients with 
normal parameters, 1-hour delay)
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TABLE IV

Statistics of the 80-hour concentrations achieved in Monte 
Carlo simulations using adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
hours for delays of 30 minutes, 1 hour, and 4 hours. (500 
patients with normal parameters, 5% (CV) assay error).

Assay delays S.er.qm. 
Mean SD CV(%)

30 minutes 15.07 0.77 5.14
1 hour 15.22 0.90 5.92
4 hours 15.23 0.90 5.92

Sampling errors: Sampling errors of +30 and -30 minutes 
and +1 and -1 hour were considered in Monte Carlo simulations 
of 500 patients with normal parameters employing 
the Kalman filter for parameter estimation with sampling at 2, 
12, and 30 hours. A 5% CV assay error and a delay of 1 hour 
were also included in the simulation studies. Figs. 19(a) and 
(b) illustrate the CV of the concentrations achieved for 
sampling errors of +1 and -1 hour respectively. Table V lists

TABLE V
Statistics of the 80-hour concentrations achieved in Monte 
Carlo simulations using adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
hours for sampling errors of 30 minutes and 1 hour. (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay).

Sampling errors Serum concentrât! Mean SD CV(%)
+30 minutes 15.07 0.76 5.13
-30 minutes 15.07 0.77 5.15
+1 hour 15.21 0.87 5.86
-1 hour 15.24 0.91 5.96
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Fig. 18 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
hours for delays of 1 hour (solid line) and 4 hours (dashed 
line). (500 patients with normal parameters, 5% (CV) assay
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Fig. 19(a) CV (%) of concentration vs. time in Monte Carlo 
simulations achieved by adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
hours in Monte Carlo simulations performed with (dashed line) 
and without (solid line) +1 hour sampling time error. (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 19(b) CV (%) of concentration vs. time in Monte Carlo 
simulations achieved by adaptive control employing the Kalman 
filter for parameter estimation with sampling at 2, 12, and 30 
-hours in Monte Carlo simulations performed with (dashed line) 
and without (solid line) -1 hour sampling time error. (500 
patients with normal parameters, 5% (CV) assay error, 1-hour 
delay)
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Fig. 20 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing the Kalman filter for 
parameter estimation with sampling at 2, 12, and 30 hours. (50 
patients with normal parameters, 5% (CV) assay error, 1-4 hour 
delays, 1% (CV) dosing error)
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the mean, the standard deviation, and the coefficient of 
variation of the 80-hour concentrations.
Simulation Results for System Validation

A population of 1000 patients belonging to each group was 
simulated with sampling at 2, 12, and 30 hours while incor­
porating into the studies a 5% CV assay error, a 1% CV dosing 
error, and 1-4 hour delays. Initially, patients with normal 
parameters were simulated employing the Kalman filter for 
parameter estimation. The concentration versus time of 50 
patients is presented in Fig. 20. The system achieved a mean 
concentration of 15.24 +/- 0.92 jug/m 1 (Fig. 24).

Subsequently, patients from each group were simulated 
employing minimization of the Bayesian objective function for 
parameter estimation. The concentrations versus time of 50 
patients with normal parameters, smokers, and cirrhotics are 
presented in Figs. 21, 22, and 23, respectively. The mean 
concentrations of 15.05 +/- 0.79 ^g/ml (Fig. 25), 15.02 +/­
0.63 pg/ml (Fig. 26), and 15.12 +/- 1.12 pg/ml (Fig. 27) were

TABLE VI
Statistics of the 80-hour concentrations achieved in Monte 
Carlo simulations using adaptive control employing both Kalman 
filter and the minimization of Bayesian objective function in 
separate studies with sampling at 2, 12, and 30 hours. (1000 
patients with normal parameters, 5% (CV) assay error, 1-4 hour 
delays, 1% (CV) dosing errors).

Parameter estimators Serum concentration(ug/ml) 
Mean SD CV(%)

KF 15.24 0.92 6.02
BOF 15.05 0.79 5.24
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achieved in patients with normal parameters, smokers, and 
cirrhotics, respectively. Table VI and Fig. 28 present the 
statistics of concentration achieved by the Kalman filter and 
minimization of the Bayesian objective function. Table VII 
summarizes the statistics of the 8O-hour concentrations 
achieved in the three subpopulations of patients.

TABLE VII
Statistics of the 80-hour concentrations achieved in Monte 
Carlo simulations using adaptive control employing the 
minimization of Bayesian objective function for parameter 
estimation with sampling at 2, 12, and 30 hours. (1000 
patients, 5% (CV) assay error, 1-4 hour delays, 1% (CV) dosing 
errors).

Sub-populations Serum., concentration.^Mean SD CV(%)
Patients with 

normal parameters 15.05 0.79 5.24
Smokers 15.02 0.63 4.16

cirrhotics 15.12 1.22 8.08

Results of Parameter Estimation
The histogram of the natural log of initial volume error 

is presented in Figs. 29(a). The histograms of the natural 
log of the volume estimation errors for the Kalman filter and 
minimization of the Bayesian objective function are presented 
in Figs. 29(b-d) and 30(b-d), respectively. The histogram of 
the natural log of initial clearance error is presented in 
Fig. 31(a). The histograms of the natural log of the 
clearance estimation errors for the Kalman filter and 
minimization of the Bayesian objective function are presented 
in Figs. 31(b-d) and 32(b-d), respectively.
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Fig. 21 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing minimization of the 
Bayesian objective function for parameter estimation with 
sampling at 2, 12, and 30 hours. (50 patients with normal 
parameters, 5% (CV) assay error, 1-4 hour delays, 1% (CV) 
dosing error)
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Fig. 22 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing minimization of the 
Bayesian objective function for parameter estimation with 
sampling at 2, 12, and 30 hours. (50 smokers, 5% (CV) assay 
error, 1-4 hour delays, 1% (CV) dosing error)
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Fig. 23 Concentration vs. time in Monte Carlo simulations 
achieved by adaptive control employing minimization of the 
Bayesian objective function for parameter estimation with 
sampling at 2, 12, and 30 hours. (50 cirrhotics, 5% (CV) assay 
error, 1-4 hour delays, 1% (CV) dosing error)
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Fig. 24 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing the Kalman filter for 
parameter estimation with sampling at 2, 12, and 30 hours. 
(1000 patients with normal parameters, 5% (CV) assay error, 1­
4 hour delays, 1% (CV) dosing error)
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Fig. 25 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing minimization of the 
Bayesian objective function for parameter estimation with 
sampling at 2, 12, and 30 hours. (1000 patients with normal 
parameters, 5% (CV) assay error, 1-4 hour delays, 1% (CV) 
dosing error)
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Fig. 26 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing minimization of the 
Bayesian objective function for parameter estimation with 
sampling at 2, 12, and 30 hours. (1000 smokers, 5% (CV) assay 
error, 1-4 hour delays, 1% (CV) dosing error)
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Fig. 27 Mean +/- SD of concentration vs. time in Monte Carlo 
simulations achieved by open-loop control (solid line) and 
adaptive control (dashed line) employing minimization of the 
Bayesian objective function for parameter estimation with 
sampling at 2, 12, and 30 hours. (1000 cirrhotics, 5% (CV) 
assay error, 1-4 hour delays, 1% (CV) dosing error)
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Fig. 28 CV (%) of concentration vs. time in Monte Carlo 
simulations achieved by adaptive control employing the Kalman 
filter (solid line) and minimization of the Bayesian objective 
function (dashed line) for parameter estimation with sampling 
at 2, 12, and 30 hours. (1000 patients with normal parameters, 
5% (CV) assay error, 1-4 hour delays, 1% (CV) dosing error)
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Table VIII

The standard deviation of the initial volume errors (%) and 
the volume estimation errors (%) associated with 2-, 12-, and 
30-hour samples for parameter estimation using the Kalman 
filter and minimization of the Bayesian objective function. 
(1000 patients with normal parameters, 5% (CV) assay error, 1­
4 hour delays, 1% (CV) dosing error)
p==================I sampling time ffv (KF) (BOF)

Initial 20.79 20.53
2 hours 7.54 6.89
12 hours 6.81 5.84
30 hours 6.69 5.50

Tables VIII and IX list the standard deviations of the 
estimation errors of volume and clearance, respectively, for 
both the Kalman filter and minimization of the Bayesian 
objective function.

Table IX
The standard deviation of the initial clearance errors (%) and 
the clearance estimation errors (%) associated with 2-, 12, 
and 30-hour samples for parameter estimation using the Kalman 
filter and minimization of the Bayesian objective function. 
(1000 patients with normal parameters, 5% (CV) assay error, 1­
4 hour delays, 1% (CV) dosing error)

sampling time (KF) (BOF)
Initial 29.34 29.85
2 hours 28.93 29.03
12 hours 10.75 9.59
30 hours 6.01 5.06

The histogram of the measurement errors (CV 4.95%) is 
presented in Fig. 33.
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Fig. 29(a) Histogram of the initial volume errors (%) for 
1000 patients with normal parameters.
(b-d) Histogram of the volume estimation errors (%) associated 
with 2-, 12-, and 30-hour samples for parameter estimation 
using the Kalman filter. (1000 patients with normal 
parameters, 5% (CV) assay error, 1-4 hour delays, 1% (CV) 
dosing error)
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Fig. 30(a) Histogram of the initial volume errors (%) for 
1000 patients with normal parameters.
(b-d) Histogram of the volume estimation errors (%) associated 
with 2-, 12-, and 30-hour samples for parameter estimation 
using minimization of the Bayesian objective function. (1000 
patients with normal parameters, 5% (CV) assay error, 1-4 hour 
delays, 1% (CV) dosing error)
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Fig. 31(a) Histogram of the initial clearance errors (%) for 
1000 patients with normal parameters.
(b-d) Histogram of the clearance estimation errors (%) 
associated with 2-, 12-, and 30-hour samples for parameter 
estimation using the Kalman filter. (1000 patients with normal 
parameters, 5% (CV) assay error, 1-4 hour delays, 1% (CV) 
dosing error)
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Fig. 32(a) Histogram of the initial clearance errors (%) for 
1000 patients with normal parameters.
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(b-d) Histogram of the clearance estimation errors (%) 
associated with 2-, 12-, and 30-hour samples for parameter 
estimation using minimization of the Bayesian objective 
function. (1000 patients with normal parameters, 5% (CV) assay 
error, 1-4 hour delays, 1% (CV) dosing error)
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CHAPTER VI
DISCUSSION

The results obtained from the Monte Carlo simulation 
studies of the adaptive control of theophylline therapy were 
encouraging. The system performed as expected under the 
influence of the sampling schemes and the stochastic 
disturbances.
System Performance for the Sampling Schemes

Because the serum concentration of a drug is governed 
primarily by the volume during the initial stages and by the 
clearance during the later stages of therapy, the early 
samples were expected to provide good volume estimates and the 
late samples to provide good clearance estimates.

2- and 20-hour samples: As expected, the 2 hour sample 
provided good volume estimates and poor clearance estimates. 
The 2-hour sample helped to reduce the response variation 
early during therapy. The influence of the volume is limited 
to early phases of therapy, therefore, the responses of the 
patients are seen to diverge (Fig. 5). The 2O-hour sample 
provided better clearance estimates and reduced the response 
variation at 80 hours. Considerable interpatient response 
variation persisted between 2 and 20 hours.
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6- and 20-hour samples: The 6- and 20-hour scheme was 

designed to reduce the response variations between the 
samples. The scheme was expected to provide better clearance 
estimates at 20 hours by gaining information at 6 hours. The 
6-hour sample did not provide accurate estimates of either 
parameter. However, it reduced the response variation early 
during therapy (compare Figs. 9 and 10). The 20-hour sample 
did not provide very accurate clearance estimates and, 
therefore, the performance of the system (at 80 hours) did not 
differ significantly between the sampling schemes of 2 and 20 
hours and 6 and 20 hours (Fig. 13(a)).

10- and 24-hour samples: The 10-hour sample provided 
poor volume estimates and improved clearance estimates 
compared to the estimates obtained from the 6-hour sample. 
The 24—hour sample fairly accurately estimated the clearance 
(Fig. 7). As expected, the performance of the system at 80 
hours was significantly improved. However, the main drawback 
of the scheme was that it did not attempt individualization 
until 10 hours after the initiation of therapy and, therefore, 
resulted in large response variations early during therapy 
(Fig. 11).

2-. 12-. and 30-hour samples: Because the schemes 
employing 2 samples failed to reduced the response variation 
either during the initial stages or the later stages of 
therapy, the scheme with 3 samples was devised. As expected, 
the 2—hour sample provided good volume estimates and reduced 
the response variation early during therapy. The 30-hour 
sample estimated clearance fairly accurately and improved the 
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performance of the system significantly at 80 hours (Fig. 
13(b)). The 12-hour sample reduced the response variation 
between the 2- and the 30-hour samples (Fig. 8).
System Performance Under Stochastic Disturbances

Assay errors: As expected, the assay errors were 
significantly detrimental to the performance of the system. 
The assay errors directly affected the accuracy of the 
parameter estimation. Accordingly, the parameter estimates 
obtained from the studies incorporating the 5% assay error 
were more accurate than those obtained from studies 
incorporating the 10 and 15% assay errors (compare Figs. 14, 
15 and 16). The statistics of the 80-hour concentrations were 
higher for the assay errors of 10 and 15% when compared to 
those achieved for the 5% assay error (Fig. 17 and Table III).

Delays : As expected, the delays did not affect parameter 
estimation; therefore, the performance of the system at 80 
hours did not differ for the 30-minute, the 1 hour, and the 4- 
hour delays (Table IV). However, with longer delays, the 
interpatient response variations persisted for longer 
durations during the post—sampling periods (Fig. 18).

Sampling errors : Theophylline has a long half-life, 
therefore, the serum concentration of the drug (for a given 
dose) does not change rapidly over a short period of time. 
Therefore, the prediction errors introduced by the sampling 
errors were negligible. Hence, the sampling errors did not 
significantly affect the performance of the system (Fig. 19 (a 
and b) and Table V).
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System Validation

The simulation results obtained for the Kalman filter 
were satisfactory. The system achieved a mean concentration 
of 15.24 +/- 0.92 pg/ml (Fig. 24), with a CV of 6.02% in the 
steady state. The interpatient response variation was reduced 
throughout the therapy (Fig. 20). The Kalman filter is a 
recursive filter; therefore, the parameter estimates were not 
quite as accurate as those obtained by minimization of the 
Bayesian objective function and, thus, the performance of the 
system employing the Kalman filter was not as good as that 
achieved by the system employing the minimization of the 
Bayesian objective function (Fig. 28 and Table VII).

The simulation results obtained for the minimization of 
the Bayesian objective function were very satisfactory. The 
interpatient response variation was reduced throughout the 
therapy (Fig. 21). The system achieved the mean 
concentrations of 15.05 +/- 0.79 gg/ml (Fig. 25), 15.02 +/­
0.63 pg/ml (Fig. 26), and 15.12 +/- 1.12 pg/ml (Fig. 27) in 
patients with normal parameters, smokers, and cirrhotics, 
respectively. The smokers, because of their high clearance, 
attained the steady-state concentrations faster. Maximum 
clearance information provided by this group led to an 
accurate clearance estimation and a precise dosage 
individualization (Fig. 22). The cirrhotics, because of their 
low clearance, required longer period of time to reach steady 
state. Insufficient clearance information provided by this 
group of patients resulted in a poor clearance estimation and 
an inadequate dosage individualization. The performance of 
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the system might be improved for the cirrhotics either by 
postponing the 10- and the 30-hour samples or availing an 
additional sample at 45 hours.
Comments on Parameter Estimation

To compare the accuracy of the parameter estimates 
obtained by the Kalman filter versus those obtained by the 
minimization technique, the parameter estimates of 1000 
patients with normal parameters were used to compute the 
parameter estimation errors. The minimization of the Bayesian 
objection function is an iterative process and takes into 
account the previous measurements and estimates while 
estimating parameters. The Kalman filter, on the other hand, 
is a recursive filter, and it takes into account only the last 
measurement and the last parameter estimates while estimating 
the parameters. Hence, the parameter estimates obtained from 
minimization of the Bayesian objective function were more 
accurate than those obtained from the Kalman filter.

The volume was accurately estimated by both the 
estimators from the 2-hour sample (Figs. 29 and 30, and Table 
VIII). The accuracy of the volume estimates obtained by both 
the Kalman filter and minimization of the Bayesian function 
improved slightly with successive sampling.

The clearance was estimated poorly by both the estimators 
from the 2-hour sample. The accuracy of clearance estimation 
improved for both the estimators with successive sampling; 
although in the case of Kalman filter, this was more due an ad 
hoc modification made in the covariance matrix of the 
estimator. As expected, the clearance estimates obtained from
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the minimization technique were more accurate than those 
obtained from the Kalman filter (Figs. 31 and 32 and Table 
IX).



CHAPTER VII
CONCLUSION

In this research project, the performance of the adaptive 
control system was assessed in computer simulation studies. 
Various sampling schemes were designed and tested, the 
influence of the stochastic disturbances was evaluated, and 
the system was validated for the three groups of patients 
simulated. The accuracy of the parameter estimates obtained 
from the two estimators was compared.

The schemes employing 2 samples failed to reduce the 
interpatient response variations either earlier or later 
during therapy. The 2-, 12-, and 30-hour scheme most 
effectively individuali zed theophylline requirements and 
reduced the interpatient response variation throughout 
therapy. Of the stochastic disturbances considered, the assay 
errors profoundly affected the performance of the system by 
directly affecting the accuracy of parameter estimation. The 
effect of the delays, the sampling errors, and the dosing 
errors seemed negligible at 80 hours.

The system was validated for the three subpopulations of 
patients. The performance of the system for the cirrhotics 
may be improved by redesigning the 2-, 12-, and 30-hour 
sampling scheme or by availing another sample later during therapy.
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The parameter estimates obtained by the minimization of 

Bayesian objective function were slightly more accurate than 
those obtained from the Kalman filter.
Further Studies

In this research project, a mathematical modela model 
based control law, and a feedback control algorithm were 
formulated for the bronchodilator theophylline. The adaptive 
control system was validated in computer simulation studies. 
As a final stage in the development of the system, future 
studies could be directed towards testing the system's 
efficacy in clinical trials.
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