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I. INTRODUCTION

Distributions of sizes of things have been of a great deal of 

interest to men for many centuries. The earliest written accounts of 

men’s lives and cultures are composed of lists of accomplishments of 

rulers. These are recorded in terms of territorial measures, popula­

tion counts, amounts of supplies possessed or needed, battles won and 

enemies confounded. According to the Inca Garcilaso de la Vega, the 

Inca had, supplied to him each lunar month by his subordinates, records 

of births and deaths occurring in the territory under their control as 

well as any conscripts dead in battle. He had lists not only of all 

inhabitants in each of his provinces, but province by province lists of 

all goods produced therein (Gheerbrant, 1961).

In Egypt an inventory made in 1164 B.C. under Ramses III shows 

that the temple to Amon at Karnak owned sixty-five towns or villages, of 

which seven were in Asia, 433 gardens and orchards, 700,000 areas con­

sidered to be fertile, 81,000 servants, 420,000 head of cattle and some 

forty-six factories of various flavors. Tithes to Amon were registered 

at 310,000 sacks of grain, 12,000 pounds of gold, 2.2 million pounds of 

silver and 5.2 million pounds of copper (Langer, 1968).

From biblical times one is told that the dimensions of the ark were 

three hundred by fifty by thirty cubits, that it had three decks. In 

Solomon’s temple the Hall of the Forest of Lebanon was one hundred by 

fifty by thirty cubits. The Hall of Pillars was fifty by thirty cubits.

1
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The two bronze pillars reached a height of eighteen cubits and a girth 

of twelve, with five cubit capitals (Jones, 1966).

Today one views the past partially through the window of size. One 

considers the size of the wooden horse that could contain enough men to 

open the gates of a city. One marvels at the precision of the measured 

dimensions of the Great Pyramid, at the accuracy with which it regis­

tered the astronomical dimensions and relationships known in that age. 

One compares the size and amount of effort involved in constructing the 

pyramids of Giza versus those of Yucatan. One carefully records the 

dimensions of the skeletal remains of the past and uses them to discuss 

the evolution of life forms (including that of man himself) on this 

earth.
Mining engineers measure sizes of particles obtained in the pro­

cess of digging coal or iron or copper or gold. Power plant personnel 

worry about the size of particle which may be allowed in a steam tur­

bine. Farmers are concerned with the size of an ear of corn, the 

amount of the harvest. Poultry breeders are involved with maximizing 

the size of mature chickens or, perhaps, of their eggs.

In medical and dental fields, size may record a list of normal 

values for a patient or it may indicate the degree of abnormality pre­

sent and the prognosis for the patient given this particular measurement 

set. The oral surgeon, faced with cleft palate reconstructive surgery, 

judges hope for success by the size of the total lesions and the degree 

of involvement of different tissues, e.g., whether hard palate, soft 

palate or both. A soaring white cell count signals trouble to the phy­

sician. Depending upon its actual size, the diagnosis can vary from 
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minor infection to major infection to infectious mononucleosis to leuke­

mia. Size of a tumor can indicate operability and prognosis for recov­

ery. Size of cells in a smear may indicate a pre-cancerous condition 

to be checked regularly. Enlargement of the heart may be followed by 

x-ray as a check on a certain type of coronary disease process. The 

amount of plaque in an artery warns of trouble ahead. A measure of 

cardiac output forms an overall indication of the pump's efficiency and 

ability to maintain life. The results of cardiac catheterization, by 

indicating the amount of heart tissue injured, point toward the advis­

ability of surgery and the likelihood of survival.

There is a sense in which any thing which is measurable has a size. 

The range of items discussable in this manner is tremendous. It may be 

a length, a mass, a volume, a diameter. It may be the frequency of word 

usage, the number of species in genera, the number of individuals in the 

different species in one genus. It may be the lengths of polymer chains 

or the amount of products of some chemical reaction, a precipitant or a 

condensate. It may be the successively measured counts of particles 

passing through sieves with successively smaller holes so that the re­

sulting data are gathered in the form of an empirical distribution func­

tion, not normalized. It may be the population counts for the world's 

largest cities, the volumes of its seas, the lengths of its river sys­

tems, the incomes of its citizens or the yields of its agricultural 

efforts. It may be the number of crimes of various sorts in American 

cities, the number of cells in a bacterial colony or the mass of a 

cancer.
It is not true that all of these possible examples of size dis­

tributions have arisen in the same manner. Fundamentally, things have
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acquired their current size as the by-product of one of several kinds 

of processes. They may have been produced by the destruction of some­

thing larger. Examples could include asteroids, chunks of coal mined 

and broken for sale, size of particles in geological strata, size of 

particles of fly ash. On the opposite side, they may have grown to 

their current form and size. In this case, growth should be inter­

preted not merely as biologic growth, but as a process of adding units 

to form the whole, whatever may be the particular type of that unit. 

From this point of view a ship or a building may grow as well as a 

single cell. There is provision in such a pure growth process to dis­

cuss the respective contributions of both anabolic and catabolic 

forces. A more complex formulation of the size problem considers not 

only pure birth (or pure death) processes but the so-called birth-death 

processes in which both are allowed. In this latter case, the time 

pattern may not be monotonically increasing or monotonically decreasing 

but may pass through an extremum or even be oscillatory in nature.

In this paper are considered distributions of size which follow 

from an underlying growth process; however, the section on the history 

of the development of size distributions would be incomplete without 

some remarks on distributions that have more usually been derived to 

describe sizes arising from comminution. One might well ask whether it 

would not be more informative to study the growth process curves them­

selves to gain knowledge about that process than to discuss distribu­

tions of sizes measured cross-sectionally in time on different units. 

Of course, such an objection is often quite valid. Any experimental 

scientist, any historian or any archeologist could make the following 

response. There is frequently a big difference between what one would 
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prefer to measure and the reality which is allowed by the nature of the 

observation desired, or by other circumstances. As an example, consider 

the Viking probe on Mars. It has taken samples of the geologic material 

around it and returned reports of the chemical composition at this time. 

Scientists have no way of knowing what it was like in the past. They 

were not there. Nor are they likely to know very far into the future. 

Equipment wears out and the expense of the mission will limit the num­

ber of future attempts. Besides, the time scale involved for the incre­

ments of change is rather too vast. If one prefers a biologic example, 

one may choose that of studies of organ sizes in embryos. Since the 

taking of the measurement permanently ends growth (the rat or chicken 

or kitten is sacrificed), only one measurement in time is possible per 

animal. The data must be cross-sectional. Other laboratory experiments 

calling for longitudinal studies may simply prove prohibitively expen­

sive, although not technically impossible. If it is not a question of 

laboratory-controlled experimental measures, but of diagnostic measures 

taken on a patient admitted to an emergency unit, the past measures may 

well not have been taken and, even if they were, they have an excellent 

chance of not being available to those who need them.

Perhaps, for a rather different example, one is a marine biologist 

interested in cataloging the number of species within each genus of the 

order Octopoda, found in a given region of the ocean. A count estimate 

of the current distribution from repeated samples is possible, but such 

a past census is unknown. It is clear, then, that cross-sectional data 

are what one often has to deal with in practice. This does not mean 

that one has no interest in the growth process. It does mean that the 

data available often will not support direct investigation of the
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"appropriate" growth curves.

The past scientific literature is full of such data, cross­

sectional data. What was often done was to assume away the individual 

differences in growth function and to average the information from 

several animals at the same time point. These mean values at differ­

ent time points with different animals at each point and from one to 

the next such point were treated as observations on one and the same 

growth curve. Then the chosen growth function’s path through these 

points was estimated and compared for different choices of the growth 

function. Many papers were written in this manner with lengthy dis­

cussions of how to get the "best" fit and of the relative merits of the 

models compared. The other type of data, in which there were no time 

measurements at all, even on different units, was given as a descriptive 

account or case study and left largely unanalyzed. The exceptions to 

this would be contained in such early work as Yule's 1924 paper on genus 

and species distributions or, perhaps, Fisher's 1943 work on abundance 

of species. About these two important papers, more is said in the 

second chapter.
The conclusion to this line of thought is as follows. If one were 

able to construct a system of size distributions at a point in time, 

which would still contain information about the form of the underlying 

growth process without requiring longitudinal data to be collected, one 

might have a very interesting tool indeed. If this system were somehow 

nested so that the usual growth equations yielded different members of 

the system according to some hierarchical form, it would be possible 

to test statistically whether any given function is adequate or even 

necessary to describe a given data set. Another problem with past 
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attempts is the lack of variability allowed. Each individual organism 

is assumed to march in step along the growth curve, beginning and end­

ing in the same places. Of course, such a scheme is unrealistic. At 

the very least, members of such a sample are of different ages, at 

different points on their individual time scales. If the growth curve 

were to be assumed in a deterministic fashion and some probability 

distribution were to be assigned to the distribution of ages in the 

population under discussion, one would be able, through a simple trans­

formation process, to derive a new distribution of the sizes for a popu­

lation heterogeneous with respect to age. Such a procedure is actually 

mentioned as a very rough approximating technique in the derivation of 

Yule’s distribution (Yule, 1924). The parameters of the new distribu­

tion of sizes would be related to the parameters of the original growth 

curve and to those of the age distribution. They are not all neces­

sarily preserved in the transformed distribution in an estimable form, 

although some may be.
The approach described above is the one used in this dissertation. 

It is still an oversimplification. A great may factors cause sizes to 

vary. Growth itself, as defined biologically, is the change of size 

with time. For young organisms it is usually a monotonically increasing 

(or, at least, nondecreasing) function. For organisms of adult size, 

however, changes are often nonmonotonic. The type of growth function 

differs according to inherent properties of the class of items described 

thereby. Secondly, even given the "proper” growth function for a type 

of organism, one may consider its parameters to vary in a multivariate 

manner according to probabilistic laws governing genetic changes. 

Thirdly, organisms may be examined at different stages of growth because 
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their ages are different. Then a probability distribution for the ages 

of the organisms in a colony, for instance, is a relevant factor. A 

fourth possibility is the existence of a mixture, mixed in either random 

or fixed proportions, of different growth functions in a population. 

This could occur in a population in which different species were inter­

mingled . It is also possible that the growth functions are not inde­

pendent from one organism to another in the population. Competition 

for a fixed food supply or a limited living space could cause this type 

of effect. Then, of course, there is the probability that the measure­

ment obtained of a size is not the same as the actual size. Depending 

upon the variety of measurement and the general situation, such an 

observation may be an unbiased estimate of the size or it may be, 

rather, a function of the measurement process. A last consideration 

is the existence of a birth—death process in which members of the 

population are selectively added or deleted from the population due to 

any of a large number of factors, some of which may be size dependent.

So, one sees that many extensions are possible. There is every 

reason to believe that the parameters of a growth curve are not identi­

cal from one organism to another. Genetics, environment and other kinds 

of random variability all play a part. One could also place a prior 

probability distribution upon any or all of the parameters of the growth 

function. Then there are many alternative choices for an "appropriate' 

age distribution. One can introduce more complications by assigning 

functional forms to the parameters or restrictions among them— 

hopefully, for sound theoretical reasons.

In this paper, discussion is limited to a family of size distri­

butions based upon a family of monotonically nondecreasing growth 
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curves and a single distribution of ages in the population. The flexi­

bility of the system of curves derived by the method adopted in this 

paper is determined partly by the nature of the distribution of ages 

chosen and partly by the shapes allowed in the system of growth curves 

chosen. The ability of the derived family of size distributions to 

describe real data is increased according to the degree of flexibility 

it retains. It is reasonable that to begin such an investigation one 

would do well to examine simple hypotheses for the functions consid­

ered as age distributions. These simplified assumptions will undoubt­

edly limit the shape of the resulting curve.

Because of the interest in obtaining as much information on an 

underlying growth process as possible, it was decided to permit the 

use of the full range of usual growth functions as incorporated in the 

family derived by Turner et al. (1976). It was chosen to place the 

simpler assumptions instead on the distribution of ages, which was con­

sidered to be negative exponential in form. This would be character­

istic of a population having many young members and few older ones. 

Shapes produced easily by the resulting size distributions include J 

shapes, twisted J shapes, U shapes and, more generally, distributions 

with a definite left-skewness and a very abrupt descent toward the axis 

on the right. Only one of the limiting cases, which is a form of the 

Weibull, will really allow much right-skewness. This limitation in form 

is a direct result of the exponential choice for a distribution of ages. 

The next step in increasing flexibility would be to choose a Weibull age 

distribution. This choice would retain a closed form for the resulting 

cumulative distribution function. The number of parameters to be esti­

mated would be increased for each comparable member in the new system
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(the corresponding members derived from the corresponding growth 

curves). Beyond that, perhaps a generalized Gamma distribution should 

be considered. In an unpublished manuscript, Professor Turner has 

shown that such a choice yields some of the old chestnuts used as size 

distributions, e.g., the lognormal. The price for this expanded capa­

bility, however, is the confounding of more of the original parameters 

and the sacrifice of a closed form for the cumulative distribution 

functions.

In this dissertation, the problem discussed has been limited to 

distributions of size derived from a negative exponential distribution 

of ages (or, from another point of view, to a constant acquisition rate 

for acquiring the size information on a particular item to one s rec­

ords, whatever its actual age) and to the family of growth curves pub­

lished by Turner et^ al_. In the second chapter, there is presented a 

brief review of the historical work on the development of distributions 

of sizes. This includes both the empirical choices with their ration­

ales and those derived from theoretical modelling considerations. The 

third chapter contains a brief review of the history of growth curves in 

the literature and includes sketches of the derivations used for the 

most popular ones. The fourth chapter centers upon the generic family 

of growth curves derived by Turner et al. (1976). This is the system of 

curves upon which our corresponding system of size distributions 

depends. The whole chapter is devoted to the discussion of the rela­

tive shapes and the relative merits of the individual members of this 

growth curve group. The fifth chapter begins the derivation and dis­

cussion of the size distributions themselves. This involves a detailed 

discussion of the shapes of the curves, followed by a selection of 
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illustrative graphs. The sixth chapter is devoted to two characteriza­

tions of the distributions, their moments and their intensity functions. 

The moments for each of these distributions are displayed and a few 

words are said about their usefulness—or lack of it. Their respective 

intensity functions are presented along with a graph and comparisons of 

the intensity functions to other well-known curves. The seventh chap­

ter is reserved for a discussion of possible estimation techniques : 

maximum likelihood, weighted and unweighted least squares using the 

empirical cumulative distribution function and "quick and dirty" methods 

best used to get starting values for more sophisticated procedures. The 

eighth chapter contains a selection of examples—some from literature, 

some from practice-to which some of the derived size distributions have 

been fitted. The ninth and final chapter presents a brief review of the 

work contained herein and closes with a thought for future research.



II. THE HISTORY OF SIZE DISTRIBUTIONS

Most of the distributions used as size distributions were chosen 

because they were well-known and thoroughly studied distributions which, 

although derived for some other application, possessed a shape that was 

reminiscent of that generated by data. Such distributions used empiri­

cally would include the Gaussian, the Poisson, the Gamma, the log­

normal, the harmonic, the so-called Phi and the Rosin-Rammler curve or, 

as it is usually called, the Weibull. See G. Herdan (1953).

The Gaussian or normal distribution is thought to occur rarely in 

natural size distributions. It is usually considered in the guise of 

its role as the limiting distribution of a sum of Bernouilli variates, 

representing the accumulated effect of a sequence of small changes each 

of which contributes the same amount of change toward an end product. 

Such an example of an effect produced by a series of elementary, small 

causes combining at random would be the sizes in some particulate sub­

stance produced by a chemical reaction, a condensate or a precipitant.

The lognormal would be appropriate if one considers that ratios 

rather than the net differences of equal amounts from a mean value are 

relevant. This distribution is thought to be useful in describing sizes 

produced by comminution. Particularly indicating its suitableness in a 

given data set would be a large ratio between the extreme observations 

in the sample, showing the large range of observable values.

12
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If, instead, one measures the amount of a substance present in some 

medium by counts of the numbers of particles found in small observa­

tional fields, so small that the probability of finding a particle in 

the field is very slight, one derives from the binomial distribution 

the distribution of rare events, the Poisson. See Herdan (1953).

Other possibilities would include the harmonic distribution used 

by Keynes in 1910 and 1911 in the form.
2 2f(x) = c • exp[—h (p—x) /x] 

where p is the population mean and h measures the precision of the dis­

tribution of 1/x. Kapteyn in 1903 developed a generalization of the 

normal law which would make it invariant for all powers of the variable. 

Thus diameters, surface areas, weights or volumes would all have the 

same distributional form. Krumbein preferred the transformation 

(D = -log x which was useful in the sieving analysis of sediments or 

powders in which the ratio of successive mesh sizes is intended to be 

constant. See Herdan (1953).
One rather interesting development is contained in a series of 

papers from 1927 to 1933 by Rosin and Rammler. Their new distribution, 

later called the Weibull, was proposed for the distribution of broken 

coal, but was later used, by them, for cement, ores of many varieties, 

dye-stuffs and glass. It had two advantages over the other distribu­

tions used in mining at that time: it allowed for more skewness than 

did the lognormal and its cumulative distribution function existed in 

closed form (which made it easily applicable to data from sieving ex­

periments). This latter property also made simple graphical methods 

of parameter estimation feasible. See Herdan (1953).

The Weibull distribution was rediscovered about 1939 by Waloddi
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Weibull as an appropriate distribution for the size effect upon failures 

in solids. This work was published with seven examples in 1951. The 

idea was as follows. If X is a random variable indicating an attribute 

possessed by members of a population, the probability that X is less 

than or equal to a given value x is denoted by

P(X - x) = F(x) .
This F(x) may always be written as 1 - P(X > x). If the probability 

that X is greater than x is written as e , then it is true that any 

distribution function may be written as

F(x) = 1 -
Next he considered a chain of n links, in which a failure in any one 

link causes a failure in the whole chain. So the probability of non­

failure is equal to the simultaneous non-failure of all links. If the 

probability of non-failure of each link is e * , the probability of

non-failure of the chain is e'^^. Then the probability of failure 

of the chain is of the form 1 - e’^'^. The requirement for T(x) is 

that it be a positive, non-decreasing function of X vanishing at some 

point x , not necessarily equal to zero. A power function would be 

the simplest such function. The resulting function has the form

X0 
F(x) = 1 - e ,

where xQ is a dimensionless parameter. It is interesting to note that 

four of Weibull’s seven examples are, in fact, size distributions. fly 

ash, length of Cyrtoideae, statures for adult males born in the British 

Isles, and breadth of beans of Phaseolus Vulgaris. His choice of form 

for T(x), however, was motivated solely by mathematical simplicity and 



15

bore no theoretical relationship, as far as he was concerned, to any 

underlying growth or deterioration process.
Gittus (1967) rewrote the Weibull distribution in its "standard 

form" as

F(x) = 1-exp{-C(x-x^)/xQ]“} 

and pointed out that it is a particular solution of the following dif­

ferential equation:

d{P(x)}/dx = kxm{l-P(x)}n

If n is equal to 1 and x^ is interpreted as the origin of x, 

in+lP(x) = 1-exp(-kx /(m+1))

which is a form of the Weibull. If, however, n is greater than 1, a 

more general class of distributions is obtained :

P(x) = l-(k(n-l)/(m+1) x™+l +1)

The restrictions on his parameters are k, positive; m, greater than -1 ; 

and n greater than or equal to 1. His approach was, therefore, also 

purely empirical, intended only to extend the class of Weibull-type dis 

tributions. He proposed applications to data from physical processes 

involving nucleation and growth or relaxation phenomena.

For a new view in the variety of empirical approaches, one might 

mention the paper of Keiding, Jensen and Ranek (1972) on the size dis­

tribution of liver cell nuclei from the observed distribution in a 

plane section. They defined g(x) to be the density of radii of sphere 

sections on the surface, f(r), to be the density of sphere radii and 

m, to be the expected radius. By t, they meant the thickness of the 

section. Then they assumed



16

g(x) = (2m+t) 1{/”[2x/(r2-x2)^]f(r)dr+tf(x)}.

As the thickness approaches zero, this distribution becomes 

g(x) = m ^/^[x/(r —x )2]f(r)dr.

Then for empirical reasons, they assumed that the distribution of nu­

cleus radii for any given cell type in the liver may be approximated 

by a X distribution. Since the liver is composed of three different 

cell types—diploid, tetraploid and octaploid, they saw the distribu­

tion of nucleus radii in the liver as a whole as a mixture of three 

X distributions with possibly different parameters.

Lastly, among the empirical models, one may mention the work of 

Vilfredo Pareto (1897) on the distribution of income over a population:

N = Ax a

where A and a are parameters of the system and N is the number of per­

sons whose income is greater than some specified value x. Pareto 

noticed that the logarithm of the number of persons N was linearly re­

lated to the logarithm of the size of income x for various sets of data. 

His law of income distribution follows immediately. The so-called 

Willis distribution, a discrete counterpart of the Pareto has been used 

more in species abundance data. This distribution has the form

p(x) = LÇ(9+1)3 y y = 1,2,3,...

for positive 9. The zeta function is well tabulated. It is defined as 

follows :

S(s) = E i"S 
i=l

The Pareto distribution was later obtained in much the same way for 

application to population sizes of cities (Zipf, 1949). The rank-size 
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relation thus produced is often called Zipf’s law. It was thought by 

Zipf to have been caused by some vague balancing between the forces of 

diversification and those of unification, but no more complicated 

theoretical basis was proposed.
Of these various distributions usually chosen for empirical rea­

sons, one, the lognormal, was developed for the purpose theoretically 

by Kolmogorov (1941) and Cramer (1946). Kolmogorov followed what 

would today be called a stochastic method of proof. He defined N(t) 

to be the total number of pieces of whatever size at time t. Then 

N(r,t) is the number of those pieces having size less than or equal to 

r. Q(k) is the number of pieces expected to arise from one piece that 

was size r at t in the next unit of time from t to t+1. The he set

A = EQd)]"1^ log k dQ(k) 

and

B = [Q(1)]-1/q (log k-A)2 dQ(k)

Let P be the probability of getting n pieces from one in one time unit 
n

of change. If k± = rjr is the ratio of the size of the ith new piece 

to that of the old piece, then the joint distribution of the n propor­

tions can be written as
Fn(ai,a2,...,an) = P (k^a^k^a^ . . . .k^) .

If one assumes these pieces are listed in rank order according to rela­

tive size, one has
00 tQ(k) = % Pn{Fn(k,l,...,l)+Fn(k,k,l,...,D+Fn(k,k,...,k)d

n=l
Kolmogorov next made three following simple assumptions : that 

P F and the fate of the other pieces are all independent of 
n* n
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their previous histories, that Q(l) is finite and greater than 1, and 

that the integral Zq |log k|3 dQ(k) is finite. He added that at t equal 

to 0 a fixed number, N(0), of pieces are present, distributed according 

to N(r,0). From these assumptions he deduced that the expectation of 

the number of pieces at time t is constant : N(t) = N(O)Q (1), 

and that the proportion k for sufficiently large t approaches arbitrar­

ily closely

T(x,t) = N(eX,t)/N(t) = N(eX,t)/(N(0)Qt(l)).

Now the assumptions assure that

N(r,t+l) = fo N(r/k,t)dQ(k).

Setting Q(k) = Q(l) S(log k), one obtains by substitution that 

0
T(x,t+1) = T(x-Ç,t)dS(Ç)

where x corresponds to log r and Ç, to log k. Then according to 

Liapounoff’s theorem for t approaching infinity, it is true that

i -■ x 2 2T(x,t) ■* (2nt) 2B _/ exp{-(Ç-At) /(2B t) }dÇ 

0 2 0 2where A = / xdS(x) and B =_/ (x-A) dS(x).

Cramer’s derivation was similar in spirit, but a bit easier to fol­

low. He assumed that there are n impulses, call them ?1»?2’*”’?n 

acting sequentially. The size produced by the first Y such impulses, 

he named x . Then the next size depends upon the size already reached 
Y

plus some function of that size times the next impulse : 

\+i ■ VW'V-

Then for the sum of the n impulses, one has 
x n n-l . n

ï L = Ï [(x )/g(x )] = / Eg(t)] dt.
i=l 1 i=0 1+1 1 1 X0
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Next assume that the effect of each impulse is directly proportional to 

its current size, i.e., g(t) = t. Then it follows that 

n
l = log xn - log Xq. 

1=1
So, by the central limit theorem, log x is normally distributed.

The next part of the history of size distributions must concern 

those which were derived as theoretical models for an underlying growth 

process. Most of these models were developed in a slightly different 

context from that of growth of an organism, that of species abundance 

theory or that of word frequencies in a published work. The earliest 

and, judging by the frequency with which others cite it, the most impor­

tant is Yule's 1924 paper. In it, he presented a mathematical theory of 

species evolution, the increase in the number of species within genera 

with time. Yule began with N prime species of different genera. If p 

is the probability of a new species occurring in a time interval and 

q = 1-p, then after one time interval there would be Nq monotypic genera 

and Np ditypic genera. In the next time interval either set could pro­

duce new species by mutation. At the end of the second time period, 
2 there would be Nq2 monotypic genera, Npq(l+q) ditypic genera, N(2p q) 

genera with three species and Np3 genera with four species. This 

pattern would continue in the same manner for each successive time 

interval. Now if the size of the time interval, At, is allowed to de­

crease toward zero and the number of such intervals, n, is to increase 

in such a way that nAt = t is finite, it is true that

p = sAt and pn = st.

It follows then that one has
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lim q11 = lim (1—p) — lira (1-st/n) — e •
n-x» n^°°

nAt^t nAt^t nAt->t
At^O At^O At->0

So, if f is the probability of monotypic genera at time t, one has

h =
Likewise, define f^ as the probability of ditypic genera at time t.

Then for f2, one has
f2 = e~s\l-e~st).

Through the recursive relationship one obtains finally that 

n
Since this is a simple geometric sequence, it is easily shown that the 

mean for this distribution is = eSt. By exactly the same argument, 

Yule developed the distribution of the number of genera belonging to 

distinct families at time t:
f^ = e St 

f -

f 1 ^(l-e-SV1 
n

The mean number of genera in a family at time t is tMg = egt. The next 

question would be to find the distribution of those aged x at time t. 

The total number of genera at time t is Neg\ The number of new genera 

appearing in a time interval is Nge"gtdt. So the number of age x at 

time T can be written as Ngeg<^dx or (Ne^)(ge"^dx) which implies 

the distribution of ages at time t is ge gXdx. So, if one takes the 

distribution of species all at a given age and compounds that with the 

distribution of ages, the resulting Yule distribution will be the 
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distribution of species of all ages. The general term of the distribu 

tion so obtained is

f = [r(l+p-1)r(n)]/[pr(n+l-p bl where p = s/g. 
00 n

This approach of Yule's was for an infinite time scale. For that reason 

he had been able to ignore in the limit the number of prime genera as 

compared with the number of derived genera. He then considered the case 

of finite time and introduced the additive corrections for this case.

Fisher (1943) tackled the problem of repeated sampling (many traps) 

and the number of species represented by one, two, three, and so forth 

individuals. He assumed that for any one particular species, the num­

ber of individuals caught in a trap would follow a Poisson distribution 

(because of the relatively small probability of being caught at all) 

with the parameter varying from one species to the next. Then he 

assumed a Gamma distribution for the Poisson parameter, partly because 

its argument is positive and partly because it is the natural conjugate 

prior for the Poisson. The probability of observing n individuals 

found in this manner is

[(k+n-1)! pn]/[(k-l)! n! (l+p)k+n] 

where k and p are the parameters of the Gamma distribution. Now in 

practice, n equal to zero cannot be observed since there is no informa­

tion in the traps on the number of species not present. Fisher then 

proceeded to construct the zero-truncated form of this negative binomial 

distribution :

f(n) = {(k+n-l)!p^}/{(k-1)!n!(l+p)^[(l+p)k-l]} 

for n = 1,2,... . Next taking the limit of the zero-truncated negative 

binomial as k tends toward zero and the expression log (1+p) is replaced 
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by the new constant a, he derived the logarithmic series distribution: 
lim {(k+n-l)!k}/{k!n![(l+p)k-l]}Lp/^ = (%/n)[p/(p+l)f

k+0 
log (l+p)=a

If p/(p+l) is replaced by x, the expected number of species with n indi­

viduals is a/nx\ Summing the series, he found the total number of 

species expected as -«log (1-x). Then multiplying the original term by 

n and summing that series, he found the total number of individuals 

expected as ax/(1-x).
D. G. Kendall (1948) undertook an exploration of possible modes of 

population growth which might lead to Fisher's logarithmic series dis­

tribution. He mentioned first a simple sampling approach and then 

presented a more complicated approach in terms of discontinuous Markov 

processes. For the initial motivation, he noticed that in the limit as 

k tends to zero, Fisher's distribution of intrinsic abundance (his Gamma 
prior) becomes a distribution of the form Aw 1e ^&dw with w chosen so 

that the integral of total probability converges. It is this form, a 

continuous analogue of the logarithmic series distribution, that puzzled 

him. With his first method, he showed that if the number, z, of species 

in the population is finite, this prior may be replaced by the logarith­

mic series distribution and Fisher's results re-obtained. Then v is the 

true number of individuals in a particular species in the population, it 

is distributed as XV/(vY) where v = 1,2,... . Y is equal to 

-log (1-X). Next he let the probability of catching any individual in 

time t, p, be equal to l-e"Yt. Using generating functions, he showed 

that the probability of a species not being represented in the sample, 

P , is equal to 1-y/Y where y = -log (1-x). Now the probability any
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species will have n individuals in the sample for n greater than zero 

may be written as

P = (l-Pn)xn/(nyn). 
n u

The expected number of species in the catch is S = X(1-PQ) = yZ/Y and 

likewise, the expected number of individuals is N = (e -1)Z/Y. Taking 

the limit as time, t, increases without bound, one sees that S 

approaches Z, and N approaches (eY-l)Z/Y. Then for all values of t, S 

is equal to alog (1+N/a) where « is Z/Y, Fisher's diversity index.

For Kendall's stochastic approach, he considered his population s 

size to be the result of a birth-death process with immigration allowed 

By n, he denoted the population size at time t. His three parameters 

included B, representing an individual's reproductive power by binary 

fission, p, representing a mortality factor and k, representing immi­

gration into the colony. The time t at which any of these might occur 

is assumed to follow a negative exponential distribution appropriate 

for the event :

-Bt -ut, . -ktge dt, pe di or ke dr.
So, if n is the current state of the population, the transition proba­

bility from n to n+1 is (ng+k)dt. A move from n to n-1 occurs with 

probability npdt and n may remain n with probability l-(np+ng+k)dt. 

For n greater than 0, the differential difference equations of the 

process are
d/dt P (t) = (n+1) Pn+1(t)-{n(B+y)+k}Pn(t)+{(n-l)B+k}Pn_1(t) 

and for n = 0,

d/dt PQ(t) = P1(t)-kP()(t).
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Using generating functions, Kendall obtained solutions which yield forms 

of Fisher’s logarithmic series distribution when either the k/B ratio 

becomes negligibly small or in the absence of immigration (k = 0) .

Mandelbrot (1970) provided a "thermostatistical" theory for taxo­

nomic systems with Willis structure. By this structure, he referred to 

the property often employed in constructing taxonomic trees that if the 

number of lowest level items classified follows a designated distribu­

tion, the sum of such lowest level items is also distributed in the same 

form and the items at the next level up likewise. In particular, he 

commented that the Willis or discrete Pareto was a good approximation 

to such a stable distribution under certain conditions. If the sum of 
1 / Ct • ,a large number, 1, of Willis variables is divided by I , its distri­

bution as I increases will approach that of a Cauchy-Paul Levy random 

variable. This stable distribution is not available in closed form,

although its characteristic function is. (Unless a - %, in which case 

the distribution function has closed form also.) So if one had I inde

pendent random variables each following a Willis distribution with

parameter a., then the total number of such categories would follow a

Willis distribution with 

a -

with exceptions for small values of

I. If the a. are all equal to each

the random variable increasing with 
1 /q .

other, then a = a^I . The median

number of species increases in the same manner as I . Mandelbrot

actually preferred to use the approximating distribution which he called 

the Modified Willis. It has the advantage of having both its distribu­

tion function and its generating function in closed form. The Modified
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Willis distribution is obtained from the zero-truncated negative bino­

mial by adding the zeros back in and taking the limit as p tends to 

zero, q tends to one and B replaces -k:

«k k. BP(0) = lim l+(py) (1-P ) = 1-Y 
p-O 
k=-B

P(x) = lim y ^(1-p^) [T(x+k)]/[x!F(k)]p q
p->0 
k^-B

= -Y3[F(x-B)]/[r(-B)x!].

The generating function can be written as G(s) = 1-Y3(l~s)3. This 

theory allowed for three situations found often in the field: (1) 

the case of very few common species and a large number of local spe­

cies, (2) the reverse case of many common species few of which are 

represented locally, and (3) the case of a median number of common 

species and, for two adjacent areas x and y, many species found in x 

and not in y with few species found in y and not in x.

Good (1953) was concerned about the estimation of a population fre­

quency, q , for an arbitrary species which occurs r times in a sample 

size N. His n denoted the number of species drawn r times in the 
r

sample. About n^, the number of species not represented in the sample, 

little is known. He proposed methods for estimating q^, the proportion 

of the species in the population actually occurring in the sample and 

some of the measures of heterogeneity sometimes employed in discussing 

a population. If p^ is the true population frequency of the pth species 

where p is less than or equal to s, the total number of species in the 

population, then observing it r times in a sample of N has a likelihood 

of f ypr(l-p if the final probabilities are proportional to the 
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initial ones times the likelihoods, the probability that a species rep 

resented r times is the pth one is

P(qr=pJH) = Ep^(l-p^

Then the expected value for for any m, a positive integer, is

E<<|H) -[ *E P^U-PI^I/C "e 

r 11=1 P u=l

which may be rewritten as

E(q™|H) = (r+m)(m)/(N+m)(m)[EN+m(nr+^ |h)3.
His result was that the expected value of qr is approximately equal 

(r+l)n +1/(nrN) although he would prefer to substitute for and 

n' and n' respectively where the primed numbers represent sample 
r+1 r
frequencies smoothed by some "locally appropriate" method. Because 

to

of

nr ’

this approximation, he was able to show that for the successive moments, 

it is approximately true that

E(q^ = E(qr)E(qr+1)...E(qr4in_1

so that the variance may be written as

V(qr) = E(qr)[E(qr+1)--E(qr)].

Accordingly, he found that (r+Dn^/N is the approximate value of the 

expected total chance of all species being represented r times in the 

sample. Then the expected total chance of all species represented in 

the sample is roughly 1-n^N, which implies the next animal sampled 

will come from a new species with rough probability n^/N.

Simon (1955) developed a class of skewed distribution functions 

having three properties commonly found in observed distributions of 

sizes and word frequencies: (1) they have very long upper tails with 
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respect to their lower tails and may in fact be J-shaped with the tails 

well approximated by f(i) = (a/i^b1 where a, b and k are constants, 

(2) k is usually greater than one and often close to two and (3) in 

many cases the approximation of this above mentioned function is good 

for small values of i as well as in the tail areas. His distribution, 

which is a modification of the Yule distribution, is derived in terms 

of a stochastic process. His derivation is formulated as a discussion 

of a written work of length k words, in which the number of different 

words, each occurring 1 times is indicated by f(i,k). He made two 

initial assumptions: the probability that the next word, the (k+l)-st, 

has already appeared 1 times is proportional to if(i,k) and that the 

probability that the next word has not been used before is equal to a 

constant, ex. This may be given in difference equation form as

E[f(i,k+l)]-f(i,k) = K(k){(i-l)f(i-l,k)-if(i,k)}

where 1 is between 2 and k+1 or as

E{f(1,k+l)}-f(1,k) = a-K(k)f(1,k)

for i equal to 1. Several relationships are implied : 

k k
1) Z K(k)if(i,k) - K(k) L if(i,k) = 1-a, 

i=l 1=1

k
2) % if (i,k) = k and

i=l

3) K(k) = (l-a)/k.

Then he assumed that all the frequencies increase at a rate proportional 

to k so that their relative size is maintained:

{f(i,k+l)}/{f(i,k)} = (k+l)/k for i less than or equal to k 

and f(i,k) = 0 for i greater than k.
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This implies that the ratio f (i ,k)/f (i-l ,k) is equal to some function 

B(i) which does not contain k. If f*(i) is used to refer to the rela­

tive frequencies, then B(i) can be solved for as f (i)/f (i-l) for 1 = 

2,3,...k. Substituting p = 1/(1-a), he obtained that 

f*(i) = g(i,p+l)f*(l) for i = 2,3»...,k.

where B(i,p+1) is the Beta function for i and p+1. Now the total number 

of different words, n^, is ak. Recalling that k is the total number of 

words in the work, he found that f*(l) is equal to ka/(2-a) or n^/(2-a). 

This final distribution is often re-parameterized as

P(i) = A(k)B(i,p+l) 

where 1 < i < k and A(k) = kot/ (2-a).

In reviewing a number of the more important papers on size distri­

butions, the aim has been to indicate a variety of the approaches taken 

and interest pursued rather than to catalogue every existing paper in 

the field. There are many other contributions by these and other 

authors whose work deserves an attentive reading. For a last look at 

the possibilities already tackled, one may mention one in which no ana­

lytical solution was achieved. The work of Saidel (1968) is interesting 

because of the scope of the factors he incorporated in his model. Con­

sider a bacterial colony. Let f(x,t)dx be the number of cells in the 

size interval from x to x+dx at time t and x^ be the smallest cell size. 

Then let G, B and D be rates of growth, birth and death respectively, 

each of which is dependent on the size x and the time t. By x, the 

cell size, he denoted a radius in a spherical cell or an axial length 

if the cell is rod-like (assuming the radius to be constant in that 

case). Then he set up a system of assumed differential equations:
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(1) L3f(x,t)]/(3t) + {d[G(x,t)f(x,t)])/(3x) = B(x,t)-D(x,t)

where x - x ; m
(2) G(x,t) = dx/dt = g(t)c^(t)x^

where B(t) is the time-dependent growth-rate coefficient, 

c^(t) is the concentration of nutrient present in the solution 

and r is 0 for spheres or 1 for rods;

(3) the net rate of production of cells of size x is 

g(x,t) = 2/a(y)f(y,t)ô(x-y/2S)dy-a(x)f(x,t) where 0(x) is the 

Dirac delta function, a(x) is the division rate coefficient 

and x = 1/3 for spheres or 1 for rods;

(4) the cell death rate is D(x,t) = y (Cp^) f (x, t) where yCcpC^ 

is the death rate coefficient which is a function of the con­

centration of nutrient, Cp and of the amount of toxic product 

produced in the solution, c^.
Combining these equations, he reconstructed the new dynamic equation for 

the size distribution as

df/dt + BCimxrf ]}/dx = 2^a(2\)f(2^x)-af-yf

for x x and the initial condition m

£lt-0 -

He assumed next that the probability of cell division increases expo­

nentially with size, providing that the cells are large enough to divide 
at all, that is, are greater than 2%: «(x) = aQe^/=mu(x-2%) where 

u is the unit step function. Next he assumed that the growth rate B(t) 

is a constant, and the death rate increases if either the nutrient

supply drops or the amount of toxic product rises:
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Y(Cpep = +cp + (Y2c2)/(ys2+c2)

where y , y , Y and y are constants. He postulated that the diffu- 
1 2 81 G g

sion rate of nutrient to the cells is a function of the nutrient present 

and of the surface area of the cells and that the process is diffusion

controlled :

dc1/dt = -k1c1/xPf(x,t)dx; = ^(0)

where p = 2 for spheres or 1 for rods. On the other hand, the toxic 

product is assumed to rise according to the volume of the cells present:

dc2/dt = k2/xqf(x,t)dx; c2|t=Q = 0

where q is 3 for spheres and 1 for rods. After he reparameterized and 

transformed his variables seeking a set of dimensionless groups of equa­

tions to characterize his rather complex system, he proceeded to the 

computer to solve the equations numerically for a few selected cases. 

The difficulty of such a system, of course, is that the amount of time 

and money required to solve any given example numerically is often pro­

hibitive. The merit is that it explicitly accounts for much of the 

variability in a real system.



III. A BRIEF HISTORY OF DETERMINISTIC GROWTH CURVES

The size distributions derived in this paper are based on growth 

curves. These growth curves are obtained in a deterministic manner 

from relatively simple postulates. They belong to the genre of classi— 

cal" growth processes and are produced as members of a family of growth 

curves published by Turner et al. (1976). In order to understand the 

development of such a system, one may read the review in this rather 

brief chapter of the history of deterministic growth curves of this 

general type. Developments as birth-death processes and stochastic 

developments of growth curves are plentiful, but they are beyond the 

scope of this paper. They are derived in quite a different spirit. 

Readers who are interested in this approach are referred to the work 

of Feller (1966), Bartlett (1969, 1955) , D. G. Kendall (1948, 1949), 

Goodman (1953, 1967), Keyfitz (1967) and J. H. Pollard (1966, 1969).

The earliest mathematical model for growth of a population is 

generally credited to Thomas Malthus in 1798. According to his theory, 

two things were necessary to the existence of man, food and sex. Food 

increases in an arithmetic ratio while population increases geometri­

cally at a rate dependent on the current size and an unknown constant. 

If x represents the population size and dx/dt is the rate of growth of 

x with respect to t, then his differential equation is dx/dt — Bx where 

g is the positive growth rate constant. The solution yields the 

31
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geometric growth model x = c • exp( Bt) where c is the original size of 

the population at time zero. This model is an unbounded, rising curve 

consistent with unlimited population growth (Pollard, 1973).

The model known as the logistic was first proposed by Daniel 

Bernoulli in 1760 as the growth of the proportion of immune persons 

in a smallpox epidemic (Todhunter, 1865). Verhulst, in 1838, rederived 

the logistic equation for population growth (Ahuja and Nash, 1967). 

The idea was that growth could not proceed indefinitely, but was limited 

according to the needs of the population for food, space and other 

necessities. Call this upper bound to the supportable size of the 

population k. Then it must be that some inhibition factor is present 

that slows the rate of growth down as it approaches that upper limit k. 

Restated, it could be said that the growth rate increases proportionally 

with the current size and decreases proportionally as the ratio of the 

current size to the maximal size approaches unity. In mathematical 

terms, this is the equation 

dy/dt = By(l-y/k) 

whose solution may be written as

-1 
y = k[l+a*exp(-Bt) ] ,

where a is the constant of integration. The logistic curve was re­

examined by Robertson (1923) from the point of view of analogy with an 

autocatalytic chemical reaction. He postulated a reversible reaction 

in which three molecules of different substances combine to produce 

two molecules of the first substance and one of a new substance. Call 

the forward rate of reaction k^ and the backward rate k^. This reaction 

could be written as a group of four differential equations :
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• , 2?1 = " ^2^4^!

• 2
y2 "

• 2
y3 - IWl ’ ^ly2^3yl

• , 2^4 = ^2^3^! " V4?l

If one assumed that y2, y3 and are effectively constant because the 

substances which they represent are present in such abundance, this 

would mean that the product k^gy^ is also approximately constant (B) 

and k y, is approximately constant (B/K). Then the equations would 

become

• 2y^ = By^ ~ (B/K)y^ = 0

• 7y2 = ^/Ky^ “ By^ = 0

• 2y3 = B/Ky^ - By^ = 0

• 2y4 = By^ - ( 3/K) y-L = 0
• 2So the approximating differential equation for y^ is y^ - By^ (B/K)y^ 

the Verhulst differential equation whose solution is

-1
y = K{l+[(k-y10)/y10]exp(-Bt)}

where y Q is the initial concentration of the first substance. Lotka 

(1925) developed the same equation from the Taylor's series approxima­

tion approach. Probably its best known exponents, however, were Pearl 

and Reed who utilized this curve in fitting a number of sets of growth 

data including that of the United States population. See Pearl (1921), 

Pearl, Edwards and Miner (1934) and Pearl and Reed (1920). Since that 
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time the logistic growth equation has been successfully applied to the 

growth of many small animals although not typically to members of a 

group as complex as that of humans. See Krause et al. (1967) for 

examples from the growth of chickens.
Another well-worn curve in the annals of growth is that due to 

Gompertz (1825). This curve is characterized by an asymmetry in the 

direction of a much faster initial growth period with a long period 

of approaching maximal growth very slowly, from not very far away. 

It is interesting to note that Gompertz did not intend to derive a 

growth curve when he did his work in 1825, but was, instead, seeking 

a function with which to graduate mortality tables. His argument went 

as follows. Suppose by L* one means to indicate the number of persons 

who are alive at age x. Then suppose one knows that the difference in 

the logarithm (Gompertz used common logs) of the number of persons 

alive at time a and the logarithm of the number of persons alive at 

time a+r is a constant, m. Then a similar difference for another time 

period of length r will be mp and for the next such time period will be 

mp2. Thus one has made the following set of difference equations:

log(La)-log(La+r) = m

l°8(\+r)-l°8<\+2r) = mp

2
■mp

. . n/r-1^^a+n^108^-^ " mp

These are terms of a geometric series which when summed give 
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log(Lq)-log(La+n) = m(l-pn^r)/(l-p).

Next substituting the results of these transformations, 

p^^ = q, qr = p and log e = m/(l-qr) , 

one has

log(La)-log(La+n) = (l-qn)log e

which may be rearranged as

log(La+n) = log(La/£)+qnlog e

Again transforming the indices using x = a+n or n = x-a and 

d = log(La/e), one finds

log Lx = d+qX aiog c.

Now solving for one obtains the original form of the Gompertz curve 

as

L = deq = d(Eq"a)q 
x 

x -a
or Lx = dgq where g = sq .

These days, to simplify the estimation of the parameters by bounding 

them positive, one tends to write the growth form of the equations as 

x = gxlog(k/x) and x = kexp{-c-exp(gt)}. This curve was later modified 

by Makeham (13 9 0) as

y = cexp(At+gbt) , 

which is unbounded for positive values of A.

It was Medawar (1940) who provided an interpretation for the Gom­

pertz curve as a growth model. His derivation introduced the concept 

of a growth energy of tissue which was defined as the magnitude of 
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the threshold for total growth inhibition. Call this growth energy 

quantity g. Then if t is the age of the growing organism and m is 

its mass, his three growth assumptions may be written as

(1) g = a-exp(-kt), the growth energy declines as a negative 

exponential with time,

(2) <(>(m) = g/b where *(m) is the specific growth rate and b is

an unknown constant,
and (3) m = <Xm)-m, the rate of change of mass over time is equal 

to the specific growth rate times the current mass.

Combining these assumptions and solving for m, he rederived the Gompertz 

model :

m/m = g/b = (a/b)•exp(-kt) 

log m = log c -Ea/(bk)]-exp(-kt) 

m = c exp{E-a/(bk)]•exp(-kt)};

however, for this version the unknown parameters have more biologic 

meaning. Medawar then applied his theory to the embryonic development 

of chicken hearts. For an interesting example of applied Gompertz 

models, see Laird, Tyler and Barton (1965).

Putter (1920) proposed a differential equation for growth based 

upon a theory of anabolism and catabolism. The rate of growth, he 

said, should be equal to the difference between the forces of anabolism 

and catabolism. Mow if anabolism were proportional to the amount of 

absorbent surface area (s) present and catabolism were proportional to 

the weight (w) of the organism, this differential equation could be 

stated mathematically as dw/dt = n's - k'w, where n and k are the 

proportionality constants. Bertalanffy (1938, 1957) offered a parti­

cular solution to this equation by assuming that the surface area in 
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turn was proportional to the two-thirds power of weight. This can be 

formulated as s = (n/nOw^ with the resulting rate equation as 

w = nw2/3-k/w. Then the solution to this equation was found as

W = {n/k'-En/k'-wÿ173^

In general, Bertalanffy investigated the situation in which anabo­

lism is proportional to the mth power of weight (w) and catabolism is 

proportional to the nth power of weight where m is less than or equal to 

n. The rate equation became w = nw™-kwn where mln and w is the time 

derivative of weight. Then he assumed n was equal to 1 and listed 

three metabolic types of solutions : that for m = 2/3, which is a sur­

face area type; that for m = 1, which is a weight type; that for 

2/3<m<l, which is an intermediate type. No solutions were considered 

for m<2/3 or m>l or for n not equal to 1. This particular rate equa­

tion was w = nw —kw and its solution was

» -
where w^ is the weight at time t = 0. Richards (1959) extended the 

results of Bertalanffy to include values of m down to zero and to all 

positive real numbers. The special case of the limiting form as m 

approaches one and the maximal size remains finite, he noted, was the 

Gompertz. The case of m = 2 was the logistic or autocatalytic curve. 

As m approaches zero, the monomolecular or Mitscherlich equation 
appeared: w = k(A-w), w = A(l-be"kt), where kA equals the n of the 

Bertalanffy formula. He, as did Bertalanffy, noticed the special 

limit as m approaches one and there is no upper bound to growth, the 

exponential or Malthusian growth curve. So values of m between 0 and 

1 were considered to shade between monomolecular growth and Gompertzran 
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growth, while values between 1 and 2 were shading between the Gom 

pertzian and the logistic curves. It is often overlooked that the 

so-called Bertalanffy-Richards growth curve was actually first derived 

by Verhulst, not only for the logistic case in 1838, but for a general 

power m>l in 1845, which corresponds partially to the work of Richards 

(1959). Verhulst should also be credited with the Mitscherlich equa­

tion in 1847. See Ahuja and Nash (1967).

A number of writers have since based their work on the set of 

curves already mentioned. Nelder (1961a) considered the Bertalanffy- 
Richards case when dw/dt = kwEl-(w/A)^^. This final equation for w 

was w = A{l+exp[-(X+kt)/er9} where 6 was greater than zero. Then 

Nelder (1962) reparameterized his earlier model to allow for negative 

values of 9, which he had found necessary for the fitting of data on 

the growth of carrots. His new equation read

w = where » = 1/6

of the previous work, X' = -lne+X/6 and V = k/0. In this version * 

could be negative as well as positive. 0 equal to 1 gave the logistic 

equation. » equal to -1 gave a form of the Mitscherlich equation and 

the limit as $ approached zero gave the Gompertz.

Ahuja and Nash (1967) suggested a generalization for each of three 

basic, historical growth curves

(1) the Gompertzian: F^t) = for -»<t«»,

(2) F (t) = (1+pe ^7^) 9 for —°°<t<°°, which is the logistic if 

6 = 1 and the Bertalanffy-Richards in general,

and (3) Fg(t) = (l-pe'^)9 for alogp<t<”, the Mitscherlich equa- 

for 6=1.
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The structures of these equations are more easily seen if one makes 

the transformation s = p[exp(-t/o)] or t = o(log p-log s) with 

dt = -a/s ds:

(1) g^(s) = e" , for 0<s<OT;

(2) g2(s) = e(l+s)"(^\ for 0<s<=;

(3) g3(s) = 8(l-s)®^, for 0<s<l.

Ahuja and Nash assumed that these distributions of s were respectively 

special cases of the following distributions when the new, positive 

parameter ip was equal to 1 :

(1) the gamma distribution :

g (s;*) = l/ErW^-V® for 0<s<«;

(2) the beta distribution of the second kind :

g^(s^) = l/EB^^JJs^Cl+s)"^^ for 0<s<œ;

(3) the beta distribution of the first kind: 

g (s;^) = l/EB(^,e)]s^-l(l-s)8 1 for 0<s<l.

Then the corresponding densities for t were obtained by reversing the

transformation process :

Yt;p,o,^) = l/EorW](pe ^^^e pe for 

. —(tp+9)
f2(t;p,o,*) - l/toBW.eWpe^'Va+pe )

and
/ 8—1f3(t;p,o,iP) = !/EoB(iP,6)](pe^^)^(l-pe^^) for ologp<t<..

One disadvantage of their general system, however, is that the cumula­

tive distribution functions will, in most cases, lack a closed form and 
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must be evaluated in terms of incomplete beta and gamma functions.

Will (1936) pursued a model generalizing the logistic. He made 

five basic assumptions : the rate of growth is finite and continuous; 

its magnitude is a positive real number; growth is restricted to defi­

nite bounds ; growth is a function of time; the whole growth process is 

free of cataclysmic disturbances. He postulated three kinds of gener­

alizations which he called types a, B and y. If L is the lower limit 

of growth and H is the upper limit, these types are as follows:

Type a: p = L+H/{1+exp[a+bt+s sin(m(t+q))]};

2 2Type B: P = L+H/{1+exp[a+bt+s log(l+m (t+q) )]};

Type y: p = L+H/{l+exp[a+bt+s/l+n/(t+q)^]}

There is a whole host of other proposed models for various growth 

processes. Before beginning a more lengthy discussion of two more corn 

plex proposals involving systems of differential equations, a partial 

list of these other investigators is presented with an indication of 

their approaches. Nelder (1921b) noted that simple enzyme systems 

mimic the growth of bacterial cultures. Three of his four curves are 

in the guise of mixtures of two curves. Using n as the size at time 

t, his equations were

(1) n = pet+(l~p)(1+t)»

(2) n = pet+(l-p),

(3) n = pet+(l-p)(2-e ), 

and (4) n = e -t.
Takahashi and Inouye (1967) discussed the characteristics of an

1/3 -assumed cube root growth in transplantable tumors: N(t) = (NQ +st)
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Williams (1967) proposed a particular form for the constants of the 

logistic model in which M is the mass, MQ is the mass at time t = 0 and 

Cq is the initial concentration of nutrient :

M = (C0+M0)/[l+(C0/M0)exp(-k1t/(C0+M0))l

where k is a constant. Laird (1969) provided an explanation of the 

Gompertz "fit" to tumor data in terms of human tumor cell kinetics in 

the National Cancer Institute’s Monograph Number 30. Turner et al. 

(1969) developed a generalization of the logistic growth law in which 

k, the maximal size, is a function of time and approaches the ultimate 

maximum size K as t increases without bound. Welch (1970) simply re­

turned to the use of orthogonal polynomials to represent growth curves.

Borg (1971) considered a quantity f, growing over time or as a 

function of another quantity, a. If and f^ correspond to the quanti­

ties measured at and o^, Aoi is equal to o^-o^ and k represents a term 

containing parameters for any other factors influencing growth, this 

relationship is written as f 2 = f^f^(Aa) . The function representing 

the ratio of the current value of f to the final value fis

%f < <
f/ff = exp[^ Kda] where O-a-a^.

One possible choice for the function K( Act) yields

f/ff = exp{/ £ k^"1/^ da).

Borg applied this system to a panorama of different problems ranging 

from the "growth" of specific heat with temperature, to the weight of 

a human brain over time, to the "growth" of oxygenated hemoglobin as 

dependent upon the concentration of oxygen. Wingert (1971), as did 

Pearl much earlier, proposed a generalization of the logistic 



42

substituting a cubic polynomial for the usual linear exponent of the e 

term:

S(t) = Pi/[l+e?(T)] 

2 3where P(T) = P^+P^T+P^T fP^T . Wenk (1973) derived two generalizations 

of Gompertzian growth for particular application to the volume growth 

of forest trees :

w(t) = exp{-c^[l-exp(-Cgt(1-exp(-c^t)))]} 

and

w(t) = exp{-c^t[1-exp (-c^t)J}.

Blum (1974) modelled the growth of cell populations in cancer. If 

N is the number of cells present, then N is equal to Nq, the number of 

initial cancer cells times 2 to the power rAt, where r is a constant 

and At is the time change. This relationship may be rewritten in terms 

of powers of e:

N . no2r6t . el^e<loS

Then the growth in volume, by transformation, is

V = exp{f(s)+(log 2)f(r)At} 

where f(s) represents the changes in the number of clones and non­

duplicating factors with time. The volume at the end point V& was 

found to be

V& = exp{l+(log 2)(tc~t^)F(D)Pc}

where t is the final time point, P is the end-point probability and c c
F(D) is a function describing the interaction of the carcinogenic 

agent with the tissue. He assumed that the natural logarithm of V& 

was equal to a constant, K. Fletcher (1974) produced what he called 
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a quadric law of damped exponential growth using the differential equa­

tion y'+ay2+by+g(yO2+hy< = 0 where y' is the time derivative of y.

In concluding this section on the history of "classical growth 

curves, mention should be made of two versions which involve the solu­

tion of systems of differential equations, that of Parks (1970) and that 

of Weiss and Kavanau (1957). First, for the approach of Parks, a few 

definitions are needed:

W = biomass at time t,

Wq = initial biomass,

F = cumulative amount of food consumed,

dF/dt = food intake,

A = mature biomass,
(In 2)/B = feed required for a growth increment of (A-W)/2,

t = age,

C = mature feed intake,

D = initial feed intake,
(in 2)t = time required for a feed intake increment of (C-dF/dt)/2. 

Next he constructed two postulates :

(1) dW/dF = AB-BW where W^W^A

and (2) d2F/dt2 = df/dt = (c/T)-(1/T)f where D^C.

Solving these two equations, he obtained, in the first instance,
—t fl 

w_Wq = (a-w0)(l-e"BF) and, in the second instance, f-D = (C-D)(1-e )•

Integrating this second equation again, he obtained an expression for F 

as

F = Ct-(C-D)t(1-e t/^).

Combining this equation for F with the equation for W, he wrote his
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final model as

W-Wq = (A-Wq){1-exp[-BCt+B(C-D)t(1-e 

which is a generalization of the Gompertz growth curve.

Lastly, a treatment of the theory due to Weiss and Kavanau (1957) 

is in order. Before beginning a summary of their theory, one may note 

that this is a rather long and sophisticated paper whose contents bear 

a careful scrutiny. For readers who would wish to pursue theories of 

growth in their own work, a thorough consideration of this work is 

highly recommended. The assumptions of the Weiss-Kavanau model can 

be stated in the following manner. Growth is the expression which 

designates the gain in organic mass. It is the net difference between 

the mass created and retained and mass destroyed or lost through some 

process such as excretion. There are two fundamental kinds of mass, 

generative mass, used in reproduction, and differentiated mass, which 

is derived from generative mass but does not have reproductive ability. 

The mechanism by which cells reproduce involves key compounds called 

templates which act as catalysts for the reproduction of particular 

cell types. There are also antitemplates produced by each cell and 

freely diffusible which can act as blocking agents to the action of 

the templates, thus inhibiting reproduction. A decline in the growth 

rate is due to an increased release of the antitemplate compounds, 

which acts as a negative feedback mechanism blocking more of the tem­

plates. The concept of a terminal size for growth should be thought 

of as the point of a stationary equilibrium between the forces for 

growth and those for destruction. This stationary equilibrium occurs 

when there is also an equilibrium between the intracellular and the 
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extracellular concentrations of antitemplate compounds. Both types of 

mass along with the antitemplates are continually renewed and destroyed 

according to various metabolic cycles. Briefly stated, they have three 

main differential equations. Firstly, a change in the generative mass 

over time is equal to the basic rate of reproduction of generative 

mass over time times the generative feedback term minus the initial 

rate of conversion of generative mass into differentiated mass over 

time times the differentiation feedback term. This corresponds to the 

difference between generative mass formed and generative mass lost. 

Secondly, a change in differentiated mass over time is equal to the 

rate of gain of differentiated mass by conversion from generative mass 

over time minus the rate of loss of differentiated mass due to catabo­

lism. This corresponds to the difference between differentiated mass 

produced and differentiated mass lost. Thirdly, for the feedback com­

ponent, the change in the number of inhibitor molecules over time is 

equal to the difference between the rate of production of inhibitors 

and the rate of their catabolic loss.

Now, one may show this trio of equations mathematically.

(1) dG/dt = (G log 2)[l-{b(G -Go^^Ge“GO^

-k]_GE l-{ Gn-G^ } / { G^-Gq } l-k2G,

(2) dD/dt = k^G[l-{G -Gq}/{Ge~GQ]+k2G-k^D,

(3) dl/dt = k^G-k^I or dl/dt = \D-k5I

or dl/dt = k4dGg-k5I or dl/dt = ^dG^-k^I.

Definitions of terms for these equations are as follows :

D = differentiated mass of organ,
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e = subscript referring to terminal size,

G = generative mass of organ,
dG = change in generative mass as the result of conversion from 

d
G to D,

dG = change in generative mass via reproduction,

% = number of inhibitor molecules,

k = rate constant for the accretion component of differentiation,

k2 = rate constant for the maintenance component of differentia­

tion,

= rate constant for the catabolic loss of D,

k = rate constant for the formation of inhibitor molecules,
4

k$ = rate constant for the catabolic loss of inhibitors,

0 = subscript referring to initial size

n = an unknown power parameter,

t = physiological time, the doubling time for a unit of G in pure 

growth.

The solutions to these equations are

(1) G = Ge/(l+ae-n^Y^ where a = (G^-G^^O' Y = and

a = log 2-k1-k2, which is of the Bertalanffy-Richards type 

of equation,

(2) D = D/e • 

n z
{e [l+n1(y-l)s1-k1n1ys2/k2]

- (a+l)n[l+n1 (y-D 9ia-k^iYS2^/k2J }
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where p = a/(a+e ^ ), — k^/(nay), y 1/n+n^,

eZ = a/p = (a+e^^) and s^, S^, and represent 

infinite series. The feedback component solution, however, 

requires a more complicated discussion which will not be 

undertaken here.



IV. A GROWTH CURVE BASIS LEADING TO DISTRIBUTIONS OF SIZES

In selecting a group of growth curves upon which size distributions 

could be based, there were several considerations. One would, of 

course, like to include most of the oldest, most heavily used curves 

and to include generalizations thereof which would provide the extra 

flexibility of shape needed to describe the more complicated forms of 

growth. One would also prefer that such a group or family of curves 

have a simple interpretation for its parameters in terms of usual 

biological meaning. Such an example is the family of growth curves 

published by Turner et al. (1976) In Mathematical Biosciences. In 

the development of this theory, X is defined as the size of the popu­

lation at any point to time t. This x could be some dimension of a 

particular organism such as length, height, weight or surface area. 

Now x could equally well be a measurement on some specific organ within

that organism. On the other hand, x could be interpreted as approxi­

mately (since continuity of measure is assumed) counting the number of 

individuals in a population of cells, species, city residents or words

in a manuscript. The maximum size to which the population (or an orga

nism) is able to grow is k. The limitation of growth may be taken as

due to factors Inherent to the organism or to inhibiting factors

present in the environment. For example, a cell culture may exhaust 

the nutrient solution supplied unless it is constantly renewed. This

48
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maximal growth is assumed to be the limit of x as t increases without 

bound (although in three main cases, this maximum will actually occur 

at a finite time t). The rate of growth or rate of change of size 

per unit of change in time is x or dx/dt. One might easily hypothesize 

that this rate of growth may not be constant. It seems reasonable that 

growth may depend upon some function of the distance between the origin 

(just before growth begins) and the current size at time t. For this 
reason, Turner has defined 6^(0,x) = (xn-0n) * = x, a generalized 

distance from the origin to the current size. Symmetrically, a growth 

may depend upon the distance between the current size and the maximum 

size. This generalized distance function is called ^(x, <) and is 

. , n n.l/nequal to (k —x ) •
For this development of the theory, Turner chooses three basic 

postulates of growth. Firstly, the rate of growth is assumed to be 

jointly proportional to monotonically increasing functions both of the 

distance from the origin to the current size and of the distance from 

the current size to the maximum size. Formally this may be represented 

by
^l^n^°'^ ^E^(x, K)].

Secondly, these monotonically increasing functions and $2 are both 
91 ° 2

assumed to be power functions, so that ] = [•] and 3 =

where 6^ and 9^ are both greater than zero. Under the third assumption 

0 and 02 obey a pair of constraints: 9^ = 1-np and 9g = n+np. These 

constraints allow for greater mathematical tractability. They also 

cause the generation of a master or generic curve for which simple 

limits and/or assignation of particular parametric values can easily 

reduce to the historically important cases derived by Verhulst in
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1838, Gompertz (1825), Bertalanffy (1957) and Richards (1959). Of 

course, since 6 and 8^ were assumed to be positive, constraints are 

implied for both n and p. Originally when n was defined in the con­

text of the distance functions, it became apparent that in order for 

the distance meaning to remain intact, n must be a positive quantity.

Coupled with these additional constraints, one sees that -l<p<l/n and

n>0 so that 8^+8^ - n+1. Under these definitions and assumptions, the

generic rate relation is obtained as

If the proportionality constant is called 6/<n (which may be done with­

out loss of generality), 6 may be considered as an intrinsic growth 

constant measureable in reciprocal time units. Then the generic rate 

equation becomes

in an as yet unpublished manuscript, Professors Turner and Pruitt 

have derived the same generic curve for growth of an organism consider­

ing growth to be a result of the interacting forces of anabolism and 

catabolism. In this derivation, which follows the approach of Putter 

(1920) and Bertalanffy (1957), the growth rate is seen to be propor­

tional to some power, call it N, of the difference between the results 

of anabolism and those of catabolism. The anabolic part is assumed 

to be directly proportional to some power, a, of the current size, 

while the catabolic contribution is directly proportional to another 

power, b, of the current size. If the following constraints are 

imposed, the problem becomes mathematically tractable:
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a = (1-np)/(1+p) 

c = (l+n)/(l+p)

N = p+1.
Supplying proportionality constants as before, they obtain the following 

form of the generic rate equation :

Note, however, that in this formulation, it is not necessary to place 

restrictions upon the sign of either n or p. Nor is it necessary that 

p be less than 1/n, as the other derivation required. Of course, for 

the case of a positive-valued n, the generic rate equation reduces to 

its previous form :

for which the growth equation itself is solvable as

x = K{l+[l+6np(t-T)] P} •

t, the constant of integration, is a function of all of the parameters 

in the equation and of the smallest value (greater than zero) which can 

be measured. Let this smallest size, which occurs at t = 0, be called 

Y. Rewriting t in this manner may in some instances provide a conven­

ience.
It would seem that a discussion of the subcases and their charac­

teristic shapes is the next order of business. A flow chart of the 

published list of subcases would have three main branches: the limit­

ing case as n approaches 0 provides the Gompertz type subclass; the 

limiting case as p approaches 0 provides the Bertalanffy-Richards type 

subclass; setting n equal to 1 in the generic curve yields a subclass 

of logistic style models. Of course, these three main subclasses may 
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be further interconnected by selecting parameter values or taking limits 

involving subclass members. All three lines of development include the 

case of exponential or geometric increase growth as the bottom special 

case when the upper limit to growth is allowed to increase without 

bound. Taking these subcases one at a time, one may start with the 

Gompertz variety of curve. A curve, termed hyper-Gompertzian, is 

derivable from the generic rate equation as the limit when n approaches 

0 and 6n^^ approaches some new constant, call it 5 . The new rate 

equation becomes x = ^x[log(K/x)]^ for which the solution is

x = Kexp{-[5 ^p(t-T)] /P}.

If the limiting process is then applied to this curve as p approaches 

zero, one obtains the curve due to Gompertz (1825). This rate equa­

tion has the form x = 6'x[log( k/x)] which, upon solution, displays the 

well-known

x = KBxp{-exp[-5 (t-i) ]} .

The Gompertzian growth function, in turn, reduces to the old exponen­

tial growth function with x = ôx and x = exp[6(t-T>] as the limiting 

case when k approaches infinity and 6'log k approaches some constant 

5 (the same 6 as that of the generic curve).

Characteristic of the Gompertz curve, and even more so of the 

hyper-Gompertzian curve, is a very early and steep rise in the growth 

function, a maximum growth rate (occurring at the inflection point of 

the curve) being virtually maintained over an extended segment of the 

actual growting period which is followed by a relatively abrupt leveling 

off as a longer period (indicated by the long right-hand tail to the 

distribution) of nearly maximized size begins. This type of extremely 
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rapid early growth has often been thought to characterize growth of 

abnormal tissue, particularly that of transplanted tumors. See Laird 

et al. (1965) and Thurman et al. (1971). It may also prove useful in 

studying embryonic growth. Geometric increase growth is more useful 

to describe a portion of such early growth (before the leveling off can 

be observed) or perhaps the early growth of primary tumors. See Thurman 

et al. (1971). It has also been used by many researchers to describe 

the "steady-state" growth of cell cultures for which the nutrient solu­

tion is being constantly replenished. There is, for this subcase, no 

leveling off or indication of reaching a finite growth limit.

A second subclass of curves, logistic in type, may be seen to 

arise from the generic rate equation with the parameter n set equal to 

1. This produces the so-called hyperlogistic curve with rate equation 

x = 6/k x1"^^)1^. The corresponding growth equation is

x = k/{1+El+ôp(t-T)] P}.

If the limit is taken as p approaches 0 in the hyperlogistic rate equa­

tion, the rate equation of the Verhulst logistic appears.

x = 5/K x( K-x). The growth equation which is probably the most often 
employed in practice results: x - K/tld-e"61. As K Is allowed to 

increase without bound in the logistic rate equation, the geometric 

increase rate equation reappears.

The logistic curve, in contradistinction to the Gompertz curve, 

is skew symmetric, having a long, slow beginning followed by a gentle 

rise to its inflection point with a gentle (and equal) falling away 

from this maximum growth rate and an equally long, slow leveling off 

as maximum growth is reached, t is here not only the constant of 
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integration for the curve but indicates the point having the maximum 

growth rate, the inflection point, and a kind of half-life, the point 

at which half of maximum growth is obtained. Such curves have often 

been used to describe the normal growth of populations and of indi­

vidual organisms. See Pearl and Reed (1920), Pearl (1921), Pearl, 

Edwards and Miner (1934) and Krause et al. (1967). The hyperlogistic 

curve is no longer necessarily skew symmetric although the t does still 

represent the half-way point to ultimate size. It is not necessarily 

true that the slope of the growth curve shows a maximum at this point, 

however. On the other hand, 6 is equal to (4/^)x^, so 6 does actually 

measure that slope, whatever it is. The effect of increasing the value 

of p upward from zero is to lengthen the right-hand tail differentially.

So far, very little has been said about the effects of a possibly 

negative p. In this circumstance, maximum growth occurs in finite time 

at t equal to t-1/(6P). This causes a much faster rise to the maximum 

than would have been true for positive values of p. The value of x at 

t equal to t is still k/2, but the rise to the maximum is fairly abrupt 

from there. For the left-hand tail, the intersection with the axis at 

t equal to zero occurs at a larger value of x, perhaps implying a more 

severe truncation on that side. The left-hand tail will be longer, in 

general, than the right-hand tail and will retain the more gradual 

acceleration of slope as the inflection point is approached.

Returning for a moment to the other side of this system of curves 

based on the generic curve, one should mention the character of the 

hyper-Gompertz growth function for negative values of p. In this case 

also maximum size occurs in finite time, at t equal to r. The point 
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at which half of the maximum size is attained occurs at t equal to 

t+1/(ô'p)[log 2]"P and 5" is a rough measure of the slope, the half­

life (or half-growth), for fixed p and k:

S' = { </2[log 2] P} 2»

As p approaches -1, the function becomes more and more like the 

geometric increase curve. The case of a negative value of n, with 

its subsequent change in the formal manner of constructing the generic 

curve and its other family members, is not considered in this develop­

ment.
The third subclass of curves flows out of the generic growth rate 

if one proceeds to take the limit as p approaches zero. The resulting 

rate equation is the familiar version due to Bertalanffy (1938, 1957) 

and to Richards (1959):

' „ -n , n n.X = 6 K x( K —x ) .
Solving this equation, one can display the growth curve itself: 

x = <{l+e-^<f)

For this function, t equal to t yields the half-life point only if n 

equals 1, the logistic case. In the case of n more generally defined, 

the point at which half of maximum size is found will be located at t 

equal to t-1/(6n)log(2n-l). As for the parameters 0 and n, the recip­

rocal of n is a measure of the logarithm of the ratio of maximum size 

to size at t equal to T:

n = (log 2}{log[K/x^]} 1-

The slope at t equal to t for fixed values of n is still related to 6 

« -
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For fixed values of 6 and k, an increase in the size of n causes 

the value of x at t equal to t to approach the maximum size k. This 

has the effect of steepening the rise of the curve and of shortening 

the right-hand tail of the function. If n is allowed to become smaller 

than 1 and to approach zero, the function resembles more closely the 

Gompertz, the limiting case from the Bertalanffy-Richards as n 

approaches 0 and 6n approaches the constant 6 . The apparent lengthen­

ing of the right-hand tail also follows. Here again taking the limit 

as k approaches infinity reduces the function to the geometric increase 

curve.
One other special case of some interest has been obtained from 

this generic growth system. That is the case in which the rate of 

growth is proportional to some power of the current size, not necessar­

ily equal to 1. This relationship is obtainable as a limiting case 

from the hyper-Gompertz, from the hyperlogistic and from the generic 

curve itself. From the hyper-Gompertz equation, one requires the limit 

of x as k increases without bound such that (p+1)/log k approaches a 

constant, call it ex, and 6(log approaches another constant, call

it 6". The rate equation thus deduced is x = {"x . The correspond-
1 / Ct ,ing growth equation can be written as x = [<x6-"(t-T) ] , where a is

greater than zero since the lower limit of p allowed in this discussion 

is -1. From either the generic or the hyperlogistic rate equations, 

this power function rate equation is derived as the limiting form when 

k increases without bound and 6 approaches the constant 6 . In

this form, the product np contains the only appearance of the two 

parameters, which are, therefore, no longer separable. Call this



57

product a new parameter, a. In this last derivation, it is not apparent 

that a must be positive. If, in fact, « is negative, this implies that 

an infinite size could be approached at a finite time t. The shape of 

the growth function varies according to the size and sign of a. If a 

is equal to 1, growth is linear. If a is greater than 1, growth fol­

lows a slowly rising curve with a curvature concave away from the ordi­

nate axis. If a is between 0 and 1, growth follows a swiftly rising 

curve, concave upward. As a approaches 0, this swiftly rising curve 

reduces to the limiting form of exponential growth. As a moves far­

ther negative, away from 0, the curve maintains its upward concavity 

but becomes flatter and flatter at the early time points as a decreases. 

As t comes nearer to t, however, the rise in the flat curve becomes 

quite suddenly steep and each succeeding unit of time pushes the growth 

curve a considerable step forward toward its infinite asymptote.



V. THE SIZE DISTRIBUTIONS

Now the exploration of the new family of size distributions begins. 

The family is intended to represent the distribution of observations 

taken in a cross-section of time from an underlying "growth" process. 

The word "growth" is placed in quotation marks as a reminder that, by 

it, is intended any process of accretion, including but not limited to 

biological growth. The growth curves upon which these distributions 

are founded are those of the Turner family of curves discussed in the 

preceding chapter. The general method employed is the simultaneous 

solution of two differential equations in time and the elimination of 

time between them. This approach to the size problem was probably 

first used by Yule (1924) to obtain a rough estimate for his own 

species abundance distribution. The second of the two differential 

equations is always one specifying a particular member of the growth 

curve family. It is a deterministic equation. Every individual in a 

given population is assumed to follow exactly the same curve with the 

same starting and ending points and the same scale and shape parame­

ters. It would be possible to insert probability distributions for 

the parameters and so to generalize. This, however, is a subject for 

future research.

The first differential equation has two possible interpretations. 

It may be thought of as an acquisition rate equation for the collection 

58
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of a new member of the population to some set of records or it may be 

considered to be the differential equation for the probability distri­

bution of ages of the members of the population. For the acquisition 

rate explanation t is defined to be the time point in the growth of an 

organism at which it is acquired to the record set in question. It is 

not necessary that this time point be the same for all such organisms. 

Then the acquisition rate equation is of the following form:

F(t)/[l-F(t)] = g(t).

So the acquisition function itself has the form 

-log[l-F(t)] = y

where y is /g(t)dt + a constant, c. Clearly dy/dt is g(t). If this 

function F(t) is suitably normalized so that

F(t) =0, t < 0

0 < F(t) 1 1, 0 — t — t

and F(t) = 1, t > t .
and if, in addition, F(t) is monotonically nondecreasing, then F(t) may 

be interpreted as a distribution function for t. One could, in this 

case, call y the log odds of some tQ being greater than t.

In this paper, the assumption made is that this acquistion rate, 

g(t), is a constant, cQ. Integrating and applying the initial condi­

tion that F(t) = 0 for t = 0, one sees that the log odds or acquisition 

function becomes

-log[l-F(t)] = cQt 

or y = cQt.
More and more organisms are acquired as time increases upward from 0. 

Or, restated, only a few organisms are acquired for small values of t 
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and more are added as t increases toward t (or toward infinity, depend­

ing upon whether maximal growth is postulated to occur in finite time 

or not). This increasing chance of being acquired to the records as 

the individual grows over time naturally results in distributions of 

sizes of individuals which tend to stack at the large end; that is, 

they tend to be left-skewed. It is interesting to note that the 

acquisition rate function is sometimes known in other applications as 

the intensity function or the hazard rate function, while the recipro­

cal is known as Mill’s ratio.

If the first equation is seen as an acquisition rate equation, 

the development proceeds in this manner. First the two differential 

equations are solved in terms of t and the appropriate constants deter­

mined by the application of the initial conditions. The first equation 

yields a cumulative distribution function for the time in an organism’s 

growing cycle at which its size may be recorded. The second yields the 

size of the organism deterministically as a function of its time since 

"birth". It is the same time point in both equations. By inverting 

the solution for the growth function, one can easily find an expression 

for t in terms of x, the current size of the organism. The substitu­

tion of this expression into the cumulative distribution function for 

acquisition time produces a new cumulative distribution function for 

the sizes of the organisms recorded. Whether or not all the organisms 

in the recorded set are really of the same age is not relevant here. 

Either may be true. The observations differ because they were taken 

at different time points in the growth of the organisms.

On the other hand, the first differential equation may be thought 
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of as the defining equation for a probability distribution of ages in a 

population of mixed ages. Again, if the growth equation gives a size 

for any t, or any age, it can be solved backwards for the age t in 

terms of size x. Making this transformation in the distribution func­

tion for ages yields the corresponding distribution function for sizes 

in a population heterogeneous with respect to age. It is quite possi­

ble to encounter cross-sectional data of either variety in practice, 

although a mixture of these types is probably more common-place. It 

is useful to have a formulation that is able to cover both circum­

stances .
All of the size distributions in the family presented here have 

the same choice for the first differential equation. It is the second, 

the growth equation, that has been allowed to vary from one member of 

the family to the next. For the first equation, the simplest possible 

model was chosen so that the equations might be more easily manipulated 

and the properties of such a family studied. Therefore, the choice was 

a constant acquisition rate or a negative exponential distribution of 

ages, depending upon the interpretation one prefers. This means that 

the probability of getting another observation in the next interval 

from t to t+dt given that there will be another observation obtained 

after time t is the same, constant, for any choice of the t to t+dt 

interval. From the hazard function point of view in life tables, this 

would correspond to getting another death in the next interval. For 

the age distribution version, this would describe a population in 

which there were very many small children, for instance, and a few 

adults of advanced age with a gradually declining proportion of per­

sons with ages in between these extremes. One should make haste to 
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add that many other interesting distributions of ages may be postulated. 

The Weibull distribution as a generalization of the exponential is 

rather more flexible and would make a nice step upward in complexity. 

Both distributions have the advantage of possessing a closed form 

cumulative distribution function. For this investigation, the simpler 

of the two was used. The resulting distributional forms are more con­

strained than would have been so otherwise. The possible shapes 

attained by family members include J-shaped curves, U-shaped curves, 

twisted J-shaped curves, reversed J-shaped curves and unimodal curves 

with long tails and a more gentle rise on the left followed by a rapid 

descent on the right. Now one may advance to the first and simplest 

case.
The most primitive member of the Turner growth curve family is the 

case of geometric or Malthusian growth. For the initial conditions, 

one may state that at the original time, t = 0, the cumulative distri­

bution function F(t) is equal to 0 and the initial size of x, the 

point at which size may first be measured, is equal to some small posi­

tive quantity, y. This assumption will allow the determination of the 

nature of the constants of integration. Now the equation for a con­

stant acquisition rate is of the form F(t) = B6(l-F(t)) where F(t) is 

the time derivative of F(t), the cumulative distribution function of 

t. Let 36 represent a single positive quantity, the rate constant. 

It is written here as the product of two positive parameters B and 6 

to simplify the naming of the corresponding parameter in the final 

distribution of sizes. No loss of generality is incurred by doing so. 

Now one solves this equstion for F( t)•
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F(t) = B6(l-F)

-F(t)/[1-F(t)] = -gô 

log(l-F(t)) = -gôt+log c

l-F(t) =

F(t) = 1-ce .

Applying the initial conditions, one determines that the value of the 

constant of integration, c, is 1. Thus, the distribution of the acqui­

sition time, t, or of ages in a population heterogeneous with respect 

to age, is

F(t) = l-e~^\

This same derivation and solution are applicable for all the size dis­

tributions developed in this paper and will only be repeated in summary 

form hereafter. The terminal conditions for this member of the family 

are that, as t approaches infinity, F(t) approaches unity and x, the 

size, increases without bound. If x is the time derivative of size at 

time t, then the differential equation for Malthusian growth is of the 

form x = 6x where 6 is the positive growth rate constant. Solving this 

equation for x, one has

x/x = 5

log x = 6t+log c' 

, &t x = c e .

Again applying the initial conditions, one sees that the constant of 

integration c' is equal to the minimal size, y » and the equation 

becomes

at x = ye .



64

Solving this equation, in turn, for t in terms of x, one finds the 

deterministic relation that

t = 1/6 log(x/y).
This relationship may then be used as an ordinary transformation in the 

equation for F(t), which becomes an equation for F(x), the cumulative 

distribution function of sizes given a negative exponential distribu­

tion of acquisition times (or of ages) and geometric increase growth: 

„ . _ -B6[l/6 log(x/y)]
F(x) = 1-e

F(x) - 1-e'6

-R 
F(x) = l-(x/y) .

This distribution will be readily recognized as the Pareto, discussed 

in chapter two. Differentiating with respect to x, one obtains its 

probability density function,

f (x) = B/yEx/y)""^1) ; Y<x<“, B>0.

The first derivative of f(x) with respect to x is

f'(x) -
Since B and Y are positive, f'(x) is negative for all values of x 

greater than y. The second derivative of f(x) is positive for all x 

greater than y :

f~(x) = B(B+1) (g+2)y^x'^^)>0.
—1 

Thus one can see that f(x) is a J-shaped function declining from By 

at x = y toward 0 as x increases without bound.

For the next size distribution, the assumption, along with the 

constant acquisition rate, is a logistic growth pattern. The initial 

conditions remain as before: at t equal zero, F(t) equals zero and 
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x approaches y. The final conditions are changed to indicate a finite 

limit for growth: as t approaches infinity, F(t) approaches unity and 

x approaches the finite quantity k. The first differential equation 

and its solution remain unchanged:

F(t) = B6(l-F(t))

F(t) = l-e'^t.

The second differential equation becomes that equation which specifies 

a logistic growth function, 
•
x = 6k x(k-x).

Solving the equation in the usual manner, one has

(l/x+l/[K-x])dx = 6dt

log x-log(K-x) = fit+log c'

log(K/X™1) = -6t-log c"
-fit 

k/x-1 = 1/c'e

—<51" 
k/x = 1+1/c'e

-fit -1x = k(1+1/c'e °E)

, fir . -6t .
Note that the expression 1/c' is the same as Turner s e since e is 

his form for the constant of integration. Applying the initial condi­

tions, one sees that, in terms of k and y, 1/c' is the same as (k/y-1). 

So the final form for the logistic growth curve solution is

x = kLI+Ck/y-!)6 ] •
Now one must solve this deterministic equation backward to find t in 

terms of x:
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—Ô t
k/x = l+(K/y-l)e

“ô ü(k/x-1) = (K/y-l)e

(k/y-1) (k/x-1) = e

-ôt = log[(K/y-1) (k/x-1)]

t = -1/6 log[(k/y-1) 1(k/x-1)]. 

Substituting this expression in the equation for F(t), one obtains F(x) 

as

, . , -B6{-l/6 log[(k/y-1) 1(k/x-1)
F(x) = 1-e 

or

g logE(k/y-1) 1(k/x-1)]
F(x) = 1-e 

or

F(x) = 1-(k/y-1) S(k/x-1)

Differentiating, one finds the form of the probability density function: 

f(x) = Bk(k/y-1) ^x (k/x-1), y<x<K.

To investigate the behavior of this function, one may produce the first 

and second derivatives of f(x) with respect to x.

f " (x) = -8K(K/Y-l)-^X^(K/x-l)^"^{2x(K/x-l) + (B-l)K} 

and

C(x) = @k(k/y-1) ^x ^(k/x-1)^{6x -6(8+1)kx+(8+1)(B+2)k }. 

Setting f'(x) equal to zero, one sees that there is a critical point at 

x = k/2(8+1) and, checking the boundary conditions for x, one sees that 

this point is in the range from y to k for 8 such that

sup(0,2y/K-1)<8<1"
Next evaluating the second derivative at the critical point, one finds 
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that for O<B<1, it is positive, indicating the presence of a minimum if 

also sup(0,2y/k-1)<B<1- There is no maximum at the critical point with­

in the allowable range y<x«- In other words, for B between 

sup(0,2y/k-1) and unity, the distribution will be U-shaped. If B is 

greater than or equal to unity, the curve will always be J-shaped. If, 

however, it does happen because of the scaling that (2y/x-l) is greater 

than zero, implying that x<2y, and 0<B^(2y/k-D , the form of the curve 

will be a reversed J with the supremum at k instead of at y. This 

serves to point out an important fact about this system of curves. They 

are not shape invariant with respect to different choices of y and k.

The third member of the family is the case of Gompertzian growth. 

The acquisition rate equation and solution remain as before :

F(t) = B'6'(l"F(t))

and F(t) = l—e .

The growth differential equation becomes instead

x = 6'x log(tc/x) .
In this equation, it is easily seen that 6'x represents a Malthusian 

growth piece while for x«e~l the function log(</x) will be greater 

than one and will accelerate the growth rate above that for straight 

Malthusian growth. The point x = xe 1 would coincide with the Malthu­

sian curve point at that value. Then for e^«x« the rate of growth 

x declines below that of Malthusian growth. Integrating this growth 

rate equation, and applying the initial conditions, which are the same 

as for the logistic, one obtains the Gompertzian growth function 

-[log(K/y)]e 5 t 
x = xe •
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Then t may be written as a function of x as

t = l/<T[log log(</y)-log log(K/x)]-

Substituting in the acquisition time or age cumulative distribution 

function, one has
' , -S^^l/6^log log(K/y)-log log(c/x)]}

F (x) = 1-e .

which reduces to
z . n -g'[log log(K/y)-log log(k/x)] 

F(x) = 1-e

or
-B' g 'F(x) = l-[log(K/y)] [log(K/x)l .

The probability density function is found to be 

f(x) = B'[log(K/y)]”e x 1[log(k/x)]1.

As with the logistic, one proceeds now to investigate the nature of 

this function through its derivatives :

f'(x) = -ElogU/y)]"6 B'x~2[log(K/x)]B "^{log(K/x)+(6'-l)}

and
f"(x) = [log(K/y)]~S B'x“3[log(K/x)]B 3« 

{2[log(K/x)]2+3(g'-l)[log(K/x)]+(B'-l)(B'-2)}.

Setting the first derivative equal to zero and solving for x, one finds 

that f(x) has a critical point at x = <e . This point is in the 

range from y to k for all B' such that sup (0,1+log (y/i<) ) <g <1. Evalua­

ting the second derivative, f"(x), at this critical point, one sees 

that it is greater than zero for g' less than unity. Again one has 

the presence of a minimum. There is no maximum in the range y<x<< for 

any value of g'. If g" is greater than or equal to unity, f'(x) will 
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be negative for all x between y and k. In this case, the curve will be 

J-shaped with a supremum at x = y. If, however, l+log(y/K) is greater 

than zero, which implies <<ye, then for 0<6^-l+log(y/<) the curve will 

have a reversed J shape with a supremum at x = k. So this curve, as 

well as the logistic based curve, may be J-shaped, U-shaped or reversed 

J-shaped. It is never unimodal. The difference in type of J- or U- 

shaped curve produced by a Gompertz growth pattern versus a logistic 

form is that the logistic-based curve bends more slowly, tending to 

put a long section of linear movement in the curve. The Gompertz-based 

curve has more curvature and tends to have a steeper initial drop in the 

density function.

The fourth curve considered and the first with more than three 

parameters is that based upon a constant acquisition rate and Berta- 

lanffy-Richards growth. The acquisition rate equation and its solution 

are as before :

F(t) = Bô Q-F(t) ]

and F(t) = 1-e .

The Bertalanffy-Richards growth rate equation is 

' -n . n n. . _ x = ok x(k -x ); n, o>0.

Solving this equation for x in terms of t and applying the initial con­

ditions, which are the same as for the Gompertz and the logistic, namely 

at t = 0, x = y and F(t) = 0, one finds the Bertalanffy-Richards growth 

equation to be

x = k{1+ [(K/y)n-l]e $nt}

Now reversing the solution, one obtains an expression for t in terms of 

x:
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t = l/ôn{log[(K/y)n-l]-log[(k/x) -1]}.

Transforming the cumulative distribution function F(t), one derives the 

Bertalanffy-Richards based size distribution function,

F(x) = 1-E (k/y)11-!] ^^"[(k/x) -13^^ •

The size density for this case is

f(X) . Y<x«.

Now the limit for this distribution as n approaches zero is the Gom­

pertz-based distribution while, for n equal to one, the logistic-based 

distribution is obtained. Clearly, then, for values of n between zero 

and one, this distribution graduates change between the Gompertz-based 

and the logistic-based models. One may study this curve's character­

istics through its first two derivatives:

f-w -

{(n+l)xn-(B+l)Kn}

and

f-(x) - E

{(k/x)2*(B+l)(B+2)+(n+l)(n-3g-4)(K/x)n+(n+l)(n+2)}. 

One sets the first derivative f'(x) equal to zero and solves for the 

critical point which is located at

x = <[(S+l)/(n+1)] / •

One finds that this critical point is actually in the range from y to 

k for all B such that

sup(0,(n+1)(y/<) -1)<B<n.

Next one evaluates the second derivative, f " (x), at this point:
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r"<^x.K[(W)/<n+l)]l/'^^ •

One sees that this second derivative is negative if n is less than g, 

zero if n is equal to B and positive if n is greater than B. However, 

only in the last case of n greater than g is the point in the range. So 

the conclusion for the Bertalanffy-Richards based curve is similar to 

that for the Gompertz and logistic based forms. The curve is U-shaped 

with its minimum at x = K[(B+l)/(n+l)]^^ for the case of

sup(0,(n+1)(Y/K) -1)<^<n.

If n is less than or equal to g, f'(x) is always negative and the curve 

is J-shaped with its supremum at y. If it should happen that 

[(n+l){(y/K)^}-l] is positive, which implies that y>c(n+l) , and if

g is in the range 0<B<E (n+1) { (y/K)n}-H, then the curve will be of the 

reversed-J type with its supremum at k. As n increases above unity, 

the Bertalanffy-Richards based curve will be pushed increasingly toward 

the Pareto case of Malthusian growth and exponential acquisition.

These four size distributions have in common that they are a sub­

family of J and U shaped curves which may be either right-skewed or 

left-skewed. None of them may be either of a twisted J shape or uni- 

modal . In discussing the estimation and the choice of model in subse­

quent chapters, it sometimes proves useful to be able to refer to this 

set as a group. For this reason, they are dubbed here "the lower four 

or "the lower curves". One may also refer to the other members of the 

general family as "the upper four" or "the upper curves".

To begin the discussion of the upper curves, one may note that 

for each growth curve used, there are two size distributions generated- 



72

one for values of the parameter p that are greater than zero and one 

for values between zero and -1. The terminal conditions are differ­

ent in the two cases. For positive values of p, the initial and 

terminal conditions are the same as for the Gompertz, the logistic 

and the Bertalanffy-Richards curves : at t = 0, one has x = y and 

F(t) = 0; as t increases without bound, x approaches < and F(t) 

approaches unity. For negative values of p, however, x reaches k 

and F(t) reaches unity at a finite time whose exact mathematical 

representation will vary from one growth function to another. The 

correct one for each member will be discussed as the corresponding 

size distribution is developed.

For the first derivation in the upper curve group, one may con­

sider the hyperlogistic growth rate. The acquisition rate equation 
remains F(t) = B5(l-F(t)) and its solution, F(t) = 1-e B . The 

growth rate equation has two terminal conditions depending upon whether 

p is positive or negative. For both cases, the initial conditions are 

that for t = 0, x = Y and F(t) = 0. One may start with p greater than 

zero. Here one has the usual terminal conditions: as t approaches 

infinity, x approaches k and F(t) approaches one. The hyperlogistic 

growth rate equation postulated by Turner et al. and discussed in the 

previous chapter is

; = 6K-Y-P(K-X)1+P.

Now solving this equation for x in terms of t and applying the initial 

conditions, one produces the hyperlogistic growth equation:

x = k{1+[Ôpt+(x/Y~l) P] /P) •

Solving this deterministic equation in reverse for t as a function of 
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x, one finds

t = 1/ (6p) [ (k/x-1) P-(k/y-1) PL

Next one may substitute this expression for t into the cumulative dis­

tribution function, F(t) , to yield the distribution of sizes assuming 

hyperlogistic growth:

, . , -B/pE(k/x-1) P-(k/y-1) P]
F(x) = 1-e r •

The corresponding probability density function is found to be

f(x) .

For negative values of p, between zero and -1, the current size x 

reaches its maximum < at a finite time. Professor Turner's original 

expression of his growth function's constant of integration is in terms 

of t. If this formulation is used, the finite time at which growth is 

maximal may be written as t-1/(6P) for the hyperlogistic. Then the sum­

mary of the terminal conditions is that, as t approaches t-1/(Sp), x 

approaches k and F(t), given that t is less than or equal to t-1/(6P), 

approaches unity. In other words, a conditional cumulative distribution 

function given that t is less than or equal to t-1/(Sp) is needed. This 

function may be written as

F(t 11—t-1/ (ôp)) =

The growth rate equation remains the same

Its solution, written using Professor Turner's t, is

x = <{l+Ll+Sp(t-x)] P) ,

or, noting that his t is equal to -1/(6p)[(k/y) P-H, here, one sees 

that the form of the growth equation also remains unchanged:
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x = K{l+[6pt+(K/y-l) P]

As before, the reversed equation for t as a function of x is written as 

t = 1/(6p)[(k/x-1) P-(</y-l) P].

Substituting this function for t into the conditional cumulative distri­

bution function, one sees that, for -l<p<0, one has

F(x|

One may examine the condition in terms of x also : 

t-T-l/(6p),

1/(ôp)[(k/x-1) ^-(k/y~1) ^]--l/(dp)[(c/y-l) ^-1]-1/(dp), 

l/(dp)(k/x-1) P-l/(dp)(k/y-1) P^-l/(dp)(k/y-1) P+l/(dp)-1/(dp), 

l/(dp)(k/x—1) P^0*

Since d is positive and (k/x-1) is positive or equal to zero for all x, 

it follows that the condition only reduces to p<0, which is the case 

under consideration. So, one may drop the statement of the condition 

in terms of t and t and write that, for -l<p<0, one has

F(x) - (l-e"67^^"1^-^^ \

The density function for -l<p<0 is

f(x) - 
e~B/pL(k/x-1) p-(k/y~1) P]

One is able to cover both positive and negative p with the same expres­

sion if one makes the following definition:
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c = 1, if p>0,

and c - if -l<p<0.

Then one may write in general

. . ri -B/p[(</x-l) P-(k/y~1) PL 
F(x) = c{l-e J

and 

f(x) -

It would be desirable to be able to study the various shapes of the 

curves analytically, in the same manner as is possible for all of the 

lower curves. So, one may proceed as before to find the first dériva 

tive, f'(x):

f-(x) -

^-^x—^x(x/x—•

Since all of the first pieces of this derivative are positive, the sign 

of the slope will depend only upon the last expression which is enclosed 

in braces. In this expression, the first two parts will always be nega­

tive while the third will be positive. It is not possible to solve for 

the critical point explicitly. The implicit relationship may be stated 

as follows :

x& = </2[l-p+g(K/x&-l) PJ

where x stands for the critical point. Secondly, one may note that 
c

there is no reason to believe this solution to be unique. There may be 

more than one such critical point. Applying the boundaries for x, one 

sees that x is in the range for x from y to k for all B such that



76

(k/xc-1)P(2y/k+P-1)<B<(p+1)(k/xc-1)P.

It is possible to go further and to obtain the second derivative with 

respect to x. This has been done. The resulting expression, however, 

is long and complicated. Given the implicit nature of the result for 

the critical point(s) and the complexity of the second derivative, it 

is not immediately apparent that any further analytic information is 

easily obtained. For this reason, curves based upon hyperlogistic 

growth and exponential acquisition in the range from y = 1 to k = 101 

were simulated. For these values, the following curve types are possi­

ble: J, U, reversed J, twisted J, a left-skewed unimodal curve and 

another form which has a supremum at y followed by a minimum which in 

turn is followed by a maximum and another steeply approached minimum. 

This last curve has somewhat of the appearance of a contour chair and 

is reminiscent of pictures of mixtures of densities, perhaps of a nega­

tive exponential and a negatively skewed Beta. The breakpoints in 

parameter values which determine the type of curve cannot, it seems, be 

as neatly found or discussed as for the lower curves. Too many moving 

parameters are involved.
The last four-parameter model to be developed is based upon a con­

stant acquisition and hyper-Gompertzian growth. This model also has to 

be considered in two pieces, for p greater than zero and for p between 

zero and -1. First, one may tackle the case for positive p. At t equal 

to zero, one has x equal to y, a small positive quantity and F(t) equal 

to zero. As t increases without bound, one has x approaching its maxi­

mum k and F(t) approaching unity. The equation for F(t) and F(t) are
• z . _ -B^tthe same as previously used : F(t) = B'S (l-F(t)) and F(t) e .
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Choosing the hyper-Gompertzian rate equation, one writes 

‘ p+1x = 5'x[Log(K/x)] ,

a form allowing a much steeper initial growth than even the Gompertz 

with a very long period of growth at close to maximal size. The solu­

tion for this equation after applying the initial conditions to deter­

mine the constant of integration is

x = k1exp{-(5^pt+[log(K/y)] P) )-

Reversing this solution, one finds t in terms of x as

t = l/(p6 9{[log(K/x)]^-[log(</y)] P).

If one transforms the cumulative distribution function, F(t), one 

derives the size distribution function, F(x) as

, , , -6 Vp{ [log(c/x) ]~P-[log(K:/y) ] P)
F(x) = 1-e

with its density as
-1 , , ^-(p+1) -g Vp{ [log(K/x) ]"P-[log(K/y) ] P}

f(x) = B'x [log(x/x)] "e •

If, on the other hand, p is between zero and -1, one is in a situation 

comparable to that of the hyperlogistic development. Maximal size is 

attained at a finite time point, which for the hyper-Gompertz is the 

same as Professor Turner's t. Again one needs the conditional distri­

bution function for t given that t is less than or equal to t• The 

initial conditions are unchanged, but the terminal conditions are that 

as t approaches t, x approaches its upper limit, k, and F(t) approaches 

unity. As before, one has F(t) = B'6'(l-F(t)) and F(t) = 1-e .

Then one obtains the conditional distribution as

F(t|t-tO = [1-e^^ ^]/[l-e^^^ L
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The assumption of hyper-Gompertzian growth with a negative value of p 

leaves the same growth rate equation and solution as for positive p:

x = 6'x[log(</x) 

and

x .
where the solution is written this time using Professor Turner’s t 

form for the constant of integration. It is this < which is the time 

point of maximal size. By checking the initial conditions, one sees 

that T" is equivalent to -1/(pSQ LlogU/y) ]“P. Reversing the solution, 

one finds t in terms of x and t" as

t = 1^+1/(ô^p)[log(c/x)] P.

If one then substitutes 1" =-1/(pô[log(K/y)into the equations for 

t and for F(t|t-r9, one has

t = l/(pô){[log(K/x)] P-[log(K/y)] P)

and
—p

Transforming t, one obtains, F(x|t—r):

-gVp{[log(K/x)]'P-[log(K/y)] P} 
F(x1t—t ) = {1-e

/{l-e^^P^°g^^^ P}.

Again, one may examine the condition :

t-T "

l/(pô'){[log(K/x)] P-[log(K/y)] P}--1/(p6 ')[log(K/y)]

l/(p^)[log(K/x):FP^0.
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Now since ô'>0 and [log(</x)] P^0, since k-x, this implies that p<0, 

which is the case under consideration. So, the condition may be removed 

here to write

. T1 -S'/p{[log(K/x)] P-[log(K/y)] P}} 
F(x) = tl-e j

P}

and for the density function

f(x) -

e~g'/p{[log(K/x)] P-[log(K/y)] p}_

Both cases could be covered under the same expression by defining a new 

parameter, c\ as follows :

c' = 1, if p>0,

and e' - {1-e6^7p[log(K/Y) 1£ _1<p<0.

Then one may write

-g/p{[log(r/x)] P-[log(K/y)l P}}
F(x) = c tl-e j

and

f (x) = c'B'x 1[log(K/x) ] ^P^\

-g"/p{[log(K/x)] P-[log(K/y)] P) 
e •

In trying to discuss the analytic properties of these hyper-Gompertz 

based curves, one has the same difficulties that one encountered in the 

hyperlogistic based set. It is easy enough to display the first 

derivative function:
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f"(x) = c'g'x 2[log(c/x)]

-g'/p{[log(K/x)J ^-[log(r/y)] P}.

{-[log(</x) ]P^+(p+l) [log(ic/x) ]P-8 '} •

All of the first factors are positive. The sign of the derivative 

depends only upon the last factor. Of the terms in that factor, the 

first and last are always negative and the middle one is always posi­

tive. If one sets the derivative equal to zero and solves for x, one 

obtains, however, only an implicit solution:

g'[log(K/x )] P-p-l 
x = kg c ,c

where x stands for the critical point. It is also a bit unclear as 
c

to exactly when this critical point is within the range from Y to k, 

since the bounds deduced for &' must be dependent upon the unknown 

critical point. The point, x^, is in the range from Y to k for all 

8" such that

[p+l+10g(Y/K)][10g(K/Xc)]P<8"<(p+l)[10g(K/Xc)]P.

The second derivative, f "(x), is easily obtainable, but, as with the 

hyperlogistic based curve, the expression is too complicated to allow 

simple conclusions to be drawn, particularly since there is no explicit 

solution. From simulation of the f(x) function between y equal to 1 

and k equal to 101, one may see a few hints of the behavior. As p 

increases, the central portion of a unimodal curve will become narrower 

and steeper. As g increases for a given value of p, the curve is 

forced toward the Gompertz-based limiting form. The shape, however, 



81

is not independent of the range chosen. Curve forms seen are of the 

same sorts as those producible by the hyperlogistic based form, 

although they tend to have sharper rises and falls with closer con­

tact to the x-axis in low regions of the density than do those from 

the hyperlogistic. Shapes seen include a J, a reversed J, a U, a 

bulging J (as if a wave form were trying to emerge), a twisted J, 

a left-skewed unimodal curve and a contour chair type curve.

The next curve to be considered is the most complex of the 

group and the only five parameter model. It is the size distribution 

based on the generic growth curve itself. In it, one has the Y and k 

of the minimum and maximum size values, the n of the Bertalanffy- 

Richards, the p of the hyper-Gompertz and hyperlogistic forms. One 

also retains the g of the acquisition function. As with the two higher 

curves already discussed, it is necessary to deal with two cases: one 

for values of p between 0 and -1 and one for values of p greater than 

0. One may recall the equations for the exponential distribution of 

ages (or acquisition times):

F(t) = B6(l-F(t))

and F(t) = 1-e
Assuming this distribution, one may discuss the size distribution using 

a generic growth model for positive values of the parameter, p. The 

initial and final conditions for this case are the same as for the other 

distributions for positive p’s already developed : at t equal to zero, 

x approaches y and F(t) equals zero; as t increases without bound, x 

approaches k and F(t) approaches unity. The growth rate equation for 

the generic curve is
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and its solution is found to be

Now flipping the deterministic growth function, one displays t in terms 

of x as

t = 1/(6np){[(k/x) -1] P-E(k/y) -1] }«

Making this transformation in F(t), one gets the cumulative distribution 

for sizes as

-B/(np){[(</x)n-l] P-[(k/y) -1] 
F(x) = 1-e

and notes that its corresponding density function is 

f (x) = gx ^(r/x)^[ (K/x)^-l] (p

e~g/ (np){[ <K/x)n-lJ P-E (k/y) -1] P\

If one has a negative p between zero and -1, one is again in the situa­

tion of reaching maximal size at a finite time. The initial conditions 

are unchanged. The final conditions are that, as t approaches a finite 

time which is equal to T-l/(Snp) where t is Professor Turner’s form for 

the constant of integration, x approaches k and F(t) approaches unity. 

So one needs the conditional cumulative distribution function for t 

given that t is less than or equal to t-1/(<5np):

F(t|t-T—1/(5np)) = [l-F(T-l/(ônp))] ^[l-F(t)] 

or

F(t|A-l/(6np>) -

The generic growth rate equation and its solution in terms of t are:
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and x = K{l+d+ônp(t—r) J •

Looking at the initial conditions, one sees that t is equivalent to

-1/(ônp)(C(K/y)n-ll~P-l}. The equation for t in terms of x and t is

t = t+1/(6np){C(K/x)n-lJ P-l} 

or, substituting for r,

t = 1/(6np){ [(c/x) -1] P— C(K/y) -1] }•

Now, replacing t and t in the conditional distribution function, one 

gets:

-8/ (np) { C(K/x)n-l] P- [(ic/y) -1] P)i 
tl-e J ■

Rewriting the condition t<T-l/(ônp) in terms of x and y, one sees that 

it reduces to the condition that p is negative. So for negative p, one 

may write

(1_e-B/(np){ [(K/y)"-l] P)}

and, for its density,

= (l-eB/(np) t(K/ï)n-n"P)-i.

e-B/(np){ [<K/x)n-13 P- [<k/y) “13 P}

If one defines a parameter c such that 

c = 1, for positive p,
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and

c = V1, for -l<p<0,

one may write these two functions for all p as:

, -g/(np){[(K/x)^-l] ^-[(K/y)"-l]
F(x) = c{l-e s

and

f (x) = cgx "*"(K/x)n[ (K/x)n-l] \

-g/(np){[(</x)^-l] P-[(k/y) -1] P) 
e •

The nature of the size curves based upon generic growth is that they may 

take on any of the shapes allowed in the size densities already covered. 

It is still restricted somewhat in shape. The unimodal curves tend to 

be left-skewed, dropping off more sharply on the right than on the left. 

This drop, however, is not as steep as that in the hyper-Gompertz and 

hyperlogistic based curves, but is more rounded. It does not have the 

freer slope on the right that may be found in the Weibull, as will be 

discussed soon. An implicit equation for critical values is derivable 

from the first derivative of the density in the usual fashion. One has

-B/(np){[(K/x)n-lj P-[(k/y) -1] P). 
e

{-(n+l)[(K/x)n-l]p+l+n(p+l)(K/x)n[(K/x)n-l]P-g(K/x)*} 

with the implicit solution as

x = <(n+l)-l/^l-np+B[(</x 
c c

By using the range for x, one sees that any given critical point is 

within the range from y to k for all g such that
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{n[p+(Y/K)*]-[l-(Y/K)*]}[(</Xc)"-l^

Such a critical point is often not unique and may be either a maximum 

or a minimum or a point of inflection. For any particular critical 

point solution, one may easily determine its type by substitution into 

the second derivative, f~(x). In general, however, this function is 

rather complicated and it is not possible to come to any simple ana­

lytic conclusions, especially in the light of the lack of explicit 

solutions for x&. Perhaps the only clue to the nature of the shape 

change with variation of the parameters is the one mentioned for the 

hyper-Gompertz based curve (which is also true for the hyperlogistic 

based curve): as B increases, the function for x is forced more and 

more toward one of the lower curves, the Bertalanffy-Richards based 

curve in this case.
The last curve in the series of size distributions considered in 

this paper is a limiting curve as k increases without bound. It is 

obtainable from all of the three other upper curves. Depending upon 

which of the other curves one believes it to be a limiting form of, 

the range of the parameter, a, to be discussed, may be positive only 

(from the hyper-Gompertz based form) or positive and negative, but not 

zero (from the generic and the hyperlogistic based forms). The a 

equal to zero case yields the Pareto size distribution, which has 

already been developed as a limiting case for all of the lower curves. 

For this last size distribution, one assumes exponential acquisition and 

a growth rate proportional to some power of x, 1-a, which is not 

necessarily unity. For a more complete discussion of the limits in­

volved and the relationship between the n and p parameters and the new 
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a parameter, see the review in the fourth chapter. As was the situation 

with the other upper curves, this derivation must treat separately the 

curves for positive and for negative a. The equations for constant 

acquisition are as before.

F(t) = '(l-F(t) )

and

F(t) = 1-e -
For positive values of a, the initial conditions are that for t equal 

to zero, x equals y and F(t) equals zero. The terminal conditions are 

that as t increases without bounds, x also increases without bounds 

and F(t) approaches unity. Now the growth rate equation may be stated 

as

x = 6 "x where cx>0-

Solving this equation, one has, after the initial conditions are 

applied to determine the constant of integration :

X - (ed-W)1 /O-

Now obtaining t in terms of x in this deterministic growth equation, 

one writes

t = 1/ (aô ") (x^-y ) -

When one makes this substitution in the cumulative distribution func­

tion for t, one finds

F(x) -
which one recognizes as a nonstandard representation of the Weibull 

distribution function. Differentiating, one displays the density

function as
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f(x) = 8
a—1 -g'^/aCx^-y") 
: e

If one moves lastly to the development of the curve for a negative a, 

one is once more in the situation of assuming a finite time, t", for 

the end of growth. Growth, however, is assumed to be unbounded. In 

other words, the initial conditions are the same as for positive 

the terminal conditions are that as t approaches x", x increases with 

out bound and F(t) approaches unity. One may recall the conditional 

acquisition time distribution for t less than or equal to t .

F(t|t^T-) = (l-e-9'^n^^

Next returning to the growth rate equation, one writes its solution in 

terms of x" as

x = Eaô " ’’(t-T ") ] •
Clearly, it is true from the initial conditions that t = -l/(a5 )y • 

Making the transformation to t in terms of x and t", one writes

t = l/(a6~)xa+r~.

Using the transformations for t and r" in the conditional distribution 

for t, one derives for negative a :

One notes that the condition reduces in terms of x and y simplify to 

the condition that a is negative which is the premise. Therefore, one 

may remove the condition and write :

FW . =<o

and
f (x) = [1-e^/^ J'S-"1 ) , y<x<°°, a<0.
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If one is willing to define a parameter c'", one may write the two cases 

for a as :

c~ = 1, for a>0,

and c" = [l-e$ ] 1, for a<0.

Then for the Weibull form one has derived, one has

and

The Weibull size distribution is the only one of the upper curves whose 

analytic properties are as easily discussed as those of the lower 

curves. First one may obtain the first derivative of the density func­

tion with respect to x: 

it is obvious that the sign of the last factor determines the sign of 

the derivative or the slope along the curve. The second term in this 

factor will always be negative since Q" is positive as is x. If a 

is less than or equal to 1, the first term in the factor will also be 

negative. So for a less than or equal to 1, the density will be J- 

shaped with supremum at x equal to Y. The equation may be solved 

explicitly for a unique critical point which is

x = { (a-1)/8") / 
c

Using the range of x from y to °°, one sees that this critical point 

falls within the range for all 8" such that

0<B^<(a-l)y a
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Secondly, one may obtain the second derivative of the density with 

respect to x as

+3B"/+(B") V").

Again the first factors are all positive, so the sign of the derivative 

depends only upon the last factor. One may call this factor H. Now 

one has :

H = (a-1) (a-2)-3B''ax“+36''x +(B") x

Evaluating H at the critical point, x^ one finally gets: 

c
Summarizing, one may state that H, for a greater than 1, is always

-a negative and that for a greater than 1 and 8" between 0 and (a-1)y

a maximum will exist in the range from y to infinity. If is 

greater than or equal to (a-l)y"“ or a is less than or equal to unity, 

no maximum or minimum will exist in the range. The Weibull size den­

sity never has a true minimum. It is either J-shaped or unimodal. 

Its skewness, unlike the other curves in this set, may be either to 

the left, or to the right.
This completes the assembly of size distributions based upon an 

exponential distribution of ages (or acquisition times) and the growth 

curves which are members of the Turner family. In the following chap­

ter are presented a couple of characterizations of these size distribu 

tions through development and discussion of their moments and of their 

intensity functions. Then in the seventh chapter, the problem of 

estimation is approached. There is a discussion of some standard 
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techniques, one not-so-standard technique and a method of obtaining 

starting values for use in any of these other procedures. The eighth 

chapter considers a few interesting examples from "real” data. For 

a few selected illustrations of the types of size distributions which 

can be produced by these family members, one may study the following 

seven graphs before continuing with Chapter VI.
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VI. TWO CHARACTERIZATIONS OF THE CURVES

A. The Moments

Since the time of Karl Pearson, it has become customary to describe 

a distribution or family of distributions in terms of certain mathemati­

cal expectations, the moments, and of their ratios. The rth such moment 

is designated by E(xC). By constructing ratios of these moments, one 

would hope to obtain information on the degree of skewness and of kur­

tosis for different values of the curve's parameters. For the family of 

size distributions developed in this dissertation, the moments, although 

obtainable, do not prove to be very useful. In general, for cases of 

finite upper limit, k, they do exist, but in infinite series form. In 

the well-known cases of the Pareto and the Weibull, the moments will 

sometimes be infinite.

First one may work through the moments for the Pareto distribution : 

E(xr) = B/y / xr(x/y) ^+1^dx

E(xr) = Yr{B/Y / (x/Y)r"6-1Mx.

Now there are three situations to be considered:

1. r-B=0

2. r-g<0

3. r-g>0.

If (r-g)=0, one has

98
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E(xr) = YrS[lim log x-log yJ*».
x-x»

If (r-B)<0, one has

E(xr) = (0yr)/(r-e){lim (x/y)r ^-1} = (-By )/(r-B). 
x*°

If (r-B)>0, one has

E(xr) = (Byr)/(r-B){lim (x/y)? ^-l^.

This means that as long as the order of the moment (r) is less than the 

value of B, the moment will exist and will be equal to (By )/(B-r). 

Once the moment order becomes equal to or greater than B, that moment 

and all of the moments higher than it, will be infinite. So, for in­

stance, if B is less than or equal to unity, no moments will be finite. 

For B less than or equal to 2 and greater than 1, only the mean, E(x), 

will be finite.
The exponential-logistic size distribution has a finite range from 

Y to k and its moments always exist and are finite. They may be written 

as
E(xr) = Bk(k/y-1) 8 f xf 2(</x-l)$ 1. 

y
Through a proper choice of transformations and expansions, it is possi­

ble to find a series solution for the moments as

E(xr) = B/"ByB r(B) f r(B+l) . 
r(B+i) tr(i-r+B)r(B) 

00 4.E r(.i+i-r-B)r(j+B) [1-y/k]j I 
i=o r(j+B+l) 3 ! /

which may be recognized as an incomplete Beta integral or as a Gaussian 

hypergeometric series,



100

E(xr) = /-ByBFfg.i-r+g.g+iid-y/K)).

If B is an integer, the series will reduce to a polynomial in (1-y/ic) 

for all r greater than or equal to B+1. The degree of that polynomial

will be 1—r+B.
The exponent ial-Gompertzian size distribution also has a finite 

range from y to k and finite moments. They may be displayed as

E(xr) = [log(K/y)] 8' f x [log(</x)] dx.
Y

Transforming the integral, one finds that the solution in series form 

is 
°° l 1E(xr) = 6"Kr E (-1) [r log(K/y)] 
1=0 i! i+B'

This series may be recognized as an expansion of the Pearson incom­

plete Gamma function; therefore, an equivalent form for the solution is

E(xr) = [logCK/y^'^Vr"3 r(B'+l)I({r log (k/y) }//H, B '-D . 

The moments clearly exist for all greater than zero. The series re­

duces to a finite Poisson sum for integral B". As a confluent hyper­

geometric series, the notation changes to

E(xr) = /M(B';B'+l;-r log(</y)) 

or

E(xr) = Kr(K/y)"rM(l;B'+l;r log(c/y))

= yrM(l;B"+l;r log(r/y)).

The moments for the exponential-Bertalanffy-Richards size distri­

bution are closely related to those of the exponential-logistic. The 

moment equation is
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B(x5 - 
Y

This may be transformed to an incomplete Beta integral form.

0

The solution may be written as a series in the following way: 

. n o/ r, , . 6 r (8/n) [ r(g/n+l)_____  .
E(x ) = B/hk (y/k) r(e/n+1) |r(B/n)r(l-(r-B)/n)

” r(j+l-(r-B)/n)r(B/n+j) [1-(y/<) 3^1 
r(B/n+j+l) j! J-

j-u
In a Gaussian hypergeometric series notation, the solution becomes

E(xr) = Y^K^"^F(B/n,l-(r-B)/n;g/n+l;[l-(Y/K)"])-

If l-(r-g)/n is zero or a negative integer, the series terminates as 

a polynomial in [l-(y/k) ].
For all of the upper curves, in which the distribution will take 

two forms according to the sign of p or a, the moments also must be 

found separately for the two situations.

For the exponential-hyperlogistic size distributions, if p is 

negative, one has

E(x5 = [i-eB/p(K/Y-l) P]-lgK f xr-\</x-l)-^\ 

Y

e“g/p[(k/x-1) P-(K/y-l) Pldx

and, if p is positive, one has

E(xY . 6k /
Y
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These two functions may be evaluated by careful selection of transfor­

mations and expansions. The moments for negative values of p will be 

the more closely related to those of the exponential-logistic size 

distributions, as should be expected from the restriction of shapes for 

negative p distributions. For p between -1 and 0, the integral may 

be written as a double series :

E(xr) - .k i=0 i![-p(i+1)]

°° rr-p(i+l)+l]r[l-r-p(i+l)+j ]r[j-p(i+l) ](1-y/<_)£ 
Z r[-p(i+l)]r[l-r-p(i+l)]r[j-p(i+l)+l]j! .

3=°

The second series is a Gaussian hypergeometric series:

E(xr) = Z .
i=0 (i+1)!

F[-p(i+l) ,l-r-p(i+l) ;-p(i+l)+l; (1-y/k)L

So it is possible to represent the rth moment of the distribution for 

negative values of p as an infinite sum of Gaussian hypergeometric 

series. For p greater than zero, the integral may be found as the sum 

of the upper ends of incomplete Gamma integrals, which always exist:

E(/) - Z •
i— 0

/ _ u-i/Pe-"du
S/p(k/y-1) P

This last integral may be replaced by F[l-i/p, 8/p(k/y~1) P]« Then 

the expectation may be written as

E(x5 - Z '
i=0

r[l-i/p,@/p(</Y-l) P] 
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or

E(xr) - eB/p«/y-»"pKr £ -

i—0

The exponential-hyper-Gompertzian size distribution has for its

moments

E(xr) = / x^[log(</x)]"^^ .

Y

e-gVp{[log(K/x)]"P-[log(</Y)] P}dx

for negative values of p and

E(xr) = &' f xr-1[log(K/x)] *
V

e-B'/p{[lOg(K/x)]~P-[lOg(K/ï)] P)dx

for positive values of p. Again it is the moment form for negative p 

which has more kinship to the limiting case as p approaches zero, the 

exponential-Gompertzian distribution. If P is between zero and -1, 

the expectation, as a double series, is

E(xr) = {iV/p^°g(^^ rW I (-e/p)1 . 
i=0 i !

In the notation for Pearson's incomplete Gamma function Iit is 

written as
—n oo .

E(xr) . {1_eB'/pOog(K/y)] )-l6V z W/p)^ .
i=0 i !
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rP(i+1)p[_p(i+1)]l[{r log(k/y)}//-p(i+l),-p(!+!)-!] 

or as a sum of confluent hypergeometric series in either of two forms:

—n oo ,
E(Xr) - S W/pf .

i=0 i !

[-p(i+l)]"1[log(K/Y)]"p(:L+1) •

M[-p(i+l),l-p(i+l),-r log(K/y)] 

or 
—n co ,

- {1-e^ /p I^bV Z (-B7P)1 .
i=0 i!

[~p(i+l) ] 1[log(K/y) ] •

eP(1+l)M[ljl-p(i+1) ,r logCx/y) ].

For positive values of p, one again finds the moments as an infinite 

sum of the upper ends of incomplete Gamma distributions, which always 

exist. In terms of the incomplete Gamma integral, the function is

—n co ,
E(/) - Z Z Mi (r/p)^p .

i=0 i! Y

7 _ u^Pe^du
B'/p[log(K/y)] P •

Collapsing the integral notationally to r(l-i/p,6'/p[log(x/y)] P), one

may write the expression for the moments as

r e'/pLlogU/y)] P r [~r(B'/p)1^]1 , 
E(x ) = e k l -,

i=0 

r(l-i/p,B'/p[log(K/y)] P)

For the most complicated of the upper curves, the exponential­

generic growth size distribution, the results are much the same as for
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the exponential-hyperlogistic distribution. For negative p, the moment 

equation is

E(xr) = / x^(</x)" •
Y

r, , ,n ,,-(p+D -S/(np){[(K/x)n-irP-[(</Y)n-13'P)dx.
L(k/x) -1J e

For positive p, the moment equation is

E(xr) = B / x^'^(K/x)"[(K/x)^-l] •
Y

e~g/(np){[(</x)n-ll P-[(k/y) -1]

Through several transformations and two carefully chosen expansions, one 

sees that the double series representation for the moments in the nega­

tive p situation is 
n ——p æ •

E(xr) = {1_ee/(np)[(K/Y) "U (-g/(np)) . .

CO Q
2 r[l-r/n-p(i4-l)+j]r[j-p(i+l)][l-(Y/^) J

j=0 r[j-p(i+l)+l]j! )‘

Replacing the last summation with the notation for the Gaussian hyper­

geometric series, one has

E(xr) - {1_ee/(nP)U^/Y)n-l] I {-g/(np)[l-(Y/K)"]"P}^ .
1 i=0 (i+D !

F[-p(i+l) ,l-r/n-p(i+l) ;-p(i+l)+l;l-(Y/t<) 1

Now if p is greater than zero, one obtains, as for the two upper curves 

already discussed, a sum of the upper ends of incomplete Gamma inte­

grals. One has
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E(xr) = eB/<np)[(K/Y)”-l]"PKr " r(l-r/n)(8/(np))^P .
1=0 r(l-r/n-i)i!

“ _ du.
B/ (np)[ (K/v)n-U P

This equation can be rewritten either as

E(xr) = eS/(npH(</Y)n-irPKr “ r(l-r/n)(6/(np))^P . 
i=0 r(l-r/n-i)i!

r(l-i/p,B/(np)[(K/Y)n-l] P) 

or

E(xr) = gg/(np)[(</Y)"-l] PKr s r(r/n+i)[-(B/(np))^P]"-_ 
1=0 T(r/n)i!

r(l-i/p,B/(np)L(K/Y)n-l] P).

The last of the upper curves, the Weibull size distribution, is 

like the Pareto in having an infinite upper bound for growth and, like 

the Pareto, some of its moments may not be finite. If its parameter, 

a, is less than zero, E(Xr) will exist for all r less than -a. For r 

greater than or equal to -a, E(x ) will be infinite. The equation 

for the rth moment is

E(/> . (1-e^YV- "

Y 

if a is negative, and is

E(xr) -
Y 

if a is positive. For negative ot, the series form for the moments for 

r less than -a is

E<x5 . .
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ci i. E r(i+l+r/a) (~f/ay ) 
1=0 r(i+2+r/a) ü •

In the notation of the confluent hypergeometric series, this solution 

may be recorded as

E(xr) -

(r/n+l)~1M(r/<x+l;r/a+2;-B^/aya) • 

If the incomplete Gamma form is preferred, it is

r(r/a+l) T({&" / /l+r/a ,r/a) .

The moments for positive values of a. are a multiple of a single upper 

end of an incomplete Gamma function. As an integral, the expectations 

are

E(xy -
g/uy

Replacing the integral notationally by T(l+r/a,B"/ay ), one has

E(xr) = lay r(l+r/a,B"/ay^)-

These moments exist for all r with a greater than zero.

This completes the list of moments for this family of size dis­

tributions. In general, one sees that the moments for the upper curves 

with p between zero and -1 (excluding the Weibull) bear more resemblance 

to those of the lower curves since they are sums of elements which are 

of the same form as the moments of the corresponding lower curves. The 

lower curves other than the Pareto all have moments which are able to 

be written in terms of a single summation. This is also true of the
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Weibull. The upper curves other than the Weibull have their moments in 

terms of a double summation. For positive values of p, they are a 

weighted sum of upper ends of incomplete Gamma integrals.

B. The Intensity Functions

Another method of characterizing distributions used especially in 

the realm of reliability theory and in the theory of extremes (Gumbel, 

1958) is to discuss the nature of the intensity or hazard functions 

derivable from the distributions. This would be more easily done in 

distributions whose cumulative distribution functions exist in closed 

form, as do those of this size distribution family. The intensity 

function is defined to be the relative proportion of items falling 

between x and x+dx out of those known to be larger than some specified

value x:

I(x) f(x)dx 
l-F(x) .

I(x) is not, in general, a density function and, since the integral 

of i(x) over the range is often infinite, cannot be normalized as one

For the Pareto case, one obtains

I (x) = , Y<x<œ,
l-[l-(x/y)

which reduces to I(x) = gx \ Its first and second derivatives are

= -px-2 
dx 

2 and d l (x)
dx2

The slope is negative for all x>y>0; therefore I(x) is a J-shaped

-3 = 2gx .
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curve, decreasing from By 1 toward 0 as x increases without bound.

The second intensity function is that from the exponential- 

logistic size distribution. Here one finds that, after simplification, 

I(x) = Bkx 2(k/x-1) » Y<x<k.

Its first two derivatives with respect to x are

= -Bkx %(<-x) ^+gKx 1(<-x) 
dx

and

d 1(^2 = 2Bkx~3(k-x) 1-2@kx 2(k-x) 2+2B<x 1(<-x) .
dx2

Setting the first derivative equal to zero and solving for x, one finds 

a unique solution at x = c/2. Evaluating the second derivative at that 
point, one sees that it is equal to 25Bk \ which is always positive.

So I(x) has a minimum at </2. This will be in the range from y to k if 

y is less than k/2 and the function l(x) will be U-shaped. Otherwise, 

the function will be a rising curve (reversed J-shape) from y to k. 

Checking the second derivative for solutions, one sees that it is equal 

to zero only at a pair of imaginary points. Therefore, I(x) has no 

real points of inflection.
For the exponential-Gompertzian size distribution, the intensity 

function simplifies to

I(x) = g'x 1[10g(K/x)] 1.

Its first and second derivatives are, respectively, 

dI^- = -g V2[log(K/x) V2[log(K/x)] 2 
dx

and d = 2B V3[log(K/x) ]~1-3B V3[log(K/x)] 2 

dx
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-3 -3+2g'x [log(K/x)]

Setting the first derivative equal to zero, one finds a critical point 

the second derivative there, one sees that at x = Ke . Evaluating 

7 dZI(x)
2 X=K6 1 

which is always positive 
at x = Ke 1. This point 

e. Otherwise, the

for and k positive. So I(x) has a minimum 

is in the range from y to < if k is greater 

point would fall to the left of y and the 

curve would be a rising curve, concave upward, from y to k, rather 

than U-shaped. I(x) has no real points of inflection, as may be seen 

by setting the second derivative equal to zero.

The exponential-Bertalanffy-Richards size distribution has as its 

intensity function, 

. . -n n+1-.-lI (x) = g[x-< X ] .

Its first derivative with respect to x is

diGO .
dx

which, when equated to zero and solved, yields a critical point at 

x = K(nfl)~l/n, The second derivative is easily found to be

d2I(x) _ gn(n+l)xn""1[x-K *x*+l]+2gK^[l-(n+l)K x ]_ 
2 ~ nr -n n+l-.3_______________ •dx K [x-K x J

If the second derivative is evaluated at the critical point, the 
result is seen to be gn^K^^n+l)^^ which is positive for all B, 

n and k greater than zero. Thus one has that I(x) has a minimum at 

x = K(n+1)-1/*. This minimum falls within the range from y to k if 

k is greater than (n+l)l/ny. By studying the second derivative, one 
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sees that a rare occurrence would be the finding of a point of inflec­

tion in the range from y to k, which may happen if n is greater than 

7. Such a point would be found at

f-l±/(n-4)^-8(n+2)/(n+1) 1 
% = c ( 2(n+2) j •

The intensity functions for the upper curves (excluding the Wei­

bull) are more complicated to describe than are those for the lower 

curves. The properties for negative values of p are not easily found 

at all. For the hyperlogistic based curve, the intensity function, 

if p is positive, is

I(x) = Bkx ^[k/x-I] (P .

The first derivative with respect to x and its solution when set equal 

to zero are

^5^1 = gKX~4 (</x-1) "(P+2) [2x+K (p-1) ] 
dx

and

X .

Clearly this point cannot be in the range for p greater than or equal 

to 1. For p between 0 and 1, this point will only be in the range 

from y to k if k is greater than 2y and is less than l-2y/i<. Differ­

entiating again with respect to x, one produces the second derivative 

as

dxZ

{6(k-x)2-6k(p+1)(k-x)+(p+1)(p+2)k }.

If one evaluates this derivative at x = <(l-p)/2, one sees that it is 
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positive for p between zero and unity, zero for p equal to unity, and 

negative for p greater than one. So there is a minimum at this point 

for I(x) if 0<p<1-2y/k<1. Otherwise, the point will not be in the 

range from y to k. If the second derivative is also checked for solu­

tions, one sees that an inflection point may occur at

-3(p-1)k+k/3(p^-l) x = -------- - c ,

if p is greater than 1 and less than 2. The intensity function for the 

hyperlogistic based curve for negative p is

IW -
Because of this function's complexity, no analytic discussion of its 

properties will be attempted; however, see Figure 8.

For the case of a positive p and the exponential-hyper-Gompertzian 

size distribution, the intensity function has the form

I(x) = B'x 1[log (k/x) ] ^P+1\

Its first and second derivatives respectively may be written as

dI^- = 8 'x"^[log(ic/x) [p+l-log(K:/x) ]
dx

and

d = 8'x-3[log(K/x) ]“^p+3\2[log(K/x) ]2-3(p+l)*

dx

[log(k/x)]+(p+l)(p+2)}

The critical point found by setting the first derivative equal to zero 

and solving is at

x = Ke~(p+D.

Evaluating the second derivative there, one sees that it is equal to
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, which is positive for all 8\ « and p positive.

So one finds that the point x = xe is a minimum which is in the

range from y to k for all p between {[log(x/y) 3-1} and zero if oye. 

A look at the solution for the second derivative tells one that inflec­

tion points may occur at

x . K.exp {râtelÆÏM}

and that these points will be real for p greater than or equal to 7.

If p is equal to 7, only one such point will exist. The point is in 

the range from y to x if one has

log(«/T)> > 0.

The intensity function for negative p is

I(ri - B'x-^logCK/riJ-^U-e6'7^^

No discussion of properties has been attempted for this case. Again 

see Figure 8.
The intensity function for the exponential-generic growth size 

distribution with p greater than zero is

I(x) .

From the first derivative,

dx

{-(n+l)[(K/x)n-l]+(p+l)n(K/x)n}, 
one obtains a critical point at x = x[(l-np)/(n+1)] * . This point is 

within the range from y to x if k is greater than (n+D^^Y and p is 

between zero and l/n[l-(n+l)(y/xf ]. The second derivative is a
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complicated function which finally simplifies to

dx
{[n(1+pn)+2(1+pn)](k/x)2n

-[n2+5n+4n2p+4+3np+n2p2](K/x)n

2 nand d = r'(n-l)(u-2)x^ , 
dx2

respectively. I(x) has no critical points or points of inflection 

between y and infinity. For a greater than unity, I(x) is an unbounded 

rising curve moving upward from If “ ls «quai to unity, I(x)

is a constant, horizontal line at I(x) equals 8" for all x between 

y and k. If a is less than one, I(x) is a J-shaped curve decreasing

2 2+[3n +5n+n p+np+2]}.

By checking the sign of the first derivative on either side of the 

root, one sees that it changes from negative on the left to positive 

on the right, implying the presence of a minimum. The second deriva­

tive is not particularly useful for this most involved situation. The 

intensity function for negative p in the generic growth case is

I (x) = Bx 1 (K/x)^«/xr-i]-(^)
{1_eB/(np)[(</x)n-U P

The last of the upper curves, the Weibull, has a simpler mt en 

sity function than any of the other size family member except the 

Pareto. For positive values of the parameter a, the function is

I (%) = Its first and second derivatives are

dlW- = g"(a-l)x»-2 
dx 
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from irV"1 toward zero. For the situation of a negative «, the 

intensity function is 

l(x) = 

Its first and second derivatives are found to be

AIM . .
dx 

and 

dx2

An implicit solution for a critical point or points may be found from 

the first derivative as

x = [-a/B '^log(l+{ Ç>"x }/{1-a}) ] .
c

If the boundary conditions are checked, one sees that the point is 

always within the range for x>y>0 if 

c
Further information on this intensity function is not easily obtained 

by these means.
By way of comparison with other frequently used functions, one may 

note that the intensity functions presented here tend to be concave 
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upward as U-shaped or reversed J-shaped curves for the cases having a 

finite upper limit k. The two cases of unlimited size, the Pareto and 

the Weibull, tend to have J-shaped curves. The intensity function for 

the normal or Gaussian distribution, however, is a bounded rising curve 

concave downward. That for the log-normal rises quickly to a maximum 

and then declines more gradually. That for the logistic is similar to 

the intensity curve for the normal, with a more gentle slope. That 

for the exponential is a horizontal line and the function for the 

Gamma is close to those of the logistic and the normal. The uniform's 

intensity function is a concave upward rising curve as are some of 

those from this family of size distributions. (See Gumbel, 1958).



VII. ESTIMATION

A. Starting Values

One of the convenient properties of the generic family of size 

distributions is that the distribution functions are available in 

closed form. A second is that the various models bear specific 

relationships through nesting or through limits with each other. 

These two together make it possible to estimate the parameters from 

an empirical distribution function in a straight-forward manner. 

Then for the parameters y and k which are the lower and upper bounds 

respectively, one may always construct simple estimates in terms of 

the minimum and maximum sample observations. For y, one can choose 

either the minimum observation itself or perhaps some multiple of it 

based upon the size of the sample, N. For example, one may choose 

(N-l)/N min(x), where x represents the vector of observations {xp 

Xg,...,x^}. However, it is not unusual in real data to find that 

the least squares estimate (weighted or unweighted) for y subject to 

the restriction that it is at least less than or equal to the small­

est observation is indeed the minimum of x. For maximum likelihood 

estimation y is the minimum of x in all cases, for all family members 

One should also notice here that y is interpretable either as the 

smallest measureable size or as a lower truncation point. The forms 

of the functions will remain the same in either situation. The 

118
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presence of an upper truncation point which is less than the upper end 

of the range, by contrast, does change the forms of the distributions. 

Besides, the parameter k is heavily intertwined with the parameter B 

in determining the shapes of the various functions. Although one might 

wish to use a multiple of the maximum sample observation to estimate 

k, one may not use that maximum observation by itself. The distribu­

tion functions and the density functions are not defined at x equal to 

k and may actually be infinite there. This difficulty has more signi­

ficance in estimation by maximum likelihood techniques. A possible 

recommendation for a starting value for k is (N+1)/N max(x)» which at 

least avoids the problem for a first guess. Another point to mention 

here is that this initial guess for k is generally farther from the 

mark than that for y. The reason is that the value of k does not only 

indicate an end-point of the range for x as does that of y. It is 

also very intimately connected to the shapes and characteristics of 

the functions which contain it.

First one should examine the estimation for the simplest case, 

the two—parameter Pareto. Recalling that the distribution function has 
the form F(x) = l-(x/y)~6, one may invert it to find an expression 

for the value of x corresponding to any particular point, c, of the 

distribution function: for example, a median, a quartile or a decile. 

For the Pareto, this expression is x& = y(l-c) For the median,

this becomes Xj = y(^) . If one were to construct an empirical

distribution function with its graph, it would be possible to read 

off a value for x^ . In the case of the median, however, the value 
'i

is easily calculable from a frequency distribution of the variable.
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If X(r)
designates the value of the rth ranked (in ascending order) 

observation in a set of N observations with r being the average rank 

for tied values, the empirical distribution function F(x) may be esti 

mated by F(x, >) = r/(N+l). If one solves for g in terms of x^ and y 

for the Pareto and, in addition, one uses (N-l)/N as the y esti­

mate and Xi for % , one may obtain a simple starting value for 8 by 
-5 -3

substituting in the following equation:

B = (log 2)/Clog x^-log y].

So for the Pareto one has that y = (N-l)N xæ and B = (log 2)/[log x^

-log((N-l)/N x^))]-

Using the same methods for the exponential-logistic size distri­

butions, one may solve for any percentile point, c, as

x = K{l+(l-c)^^(K/y-l)} . 
c

In this case, there are only three parameters to estimate y,B and k 

For ÿ and K, one may use (N-l)/N x^ and (N+l)/N x^, respectively. 

Then if one again uses the relationship for the median as estimated 

from an empirical distribution function, one gets

X, = KQ+Cs/^U/y-l)}"1 
"I

which, upon substituting for y, k and x^, yields an estimate for B as

B = (log 2){log(K-y)-log(y)-log(K-x^)+log x^} .

Now checking the exponential-Gompertzian distribution, one sees 

that for any percentile point, c, the relationship for x& is

, , ,(1-C)V = -
X = k(y/k) c
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If one solves for [T instead, the corresponding relationship is 

g- = log(l-c)/log{(log K-Iog Xc)/(log K-Iog y)}.

Again one may use (N-l)N xæ for y and (N+l)/N x(N) for k. Using the 

relationship at the median and estimating x^ from the empirical distri­

bution function, one finds

g" = (-log 2)/log[(log K-log x^)/(log K-log y)J.

As is already apparent, these models are presented in hierarchi­

cal form partly as a help in understanding their characteristics and 

partly so that this relationship may be exploited to give clues for 

estimation. The exponential-Bertalanffy-Richards is the most com­

plicated of the lower curves and, because of its shape limitations 

already discussed, the simplest of the curves having more than three 

parameters. It is related to the Gompertz based curve as a form 

which produces it as the limiting distribution when n approaches 0 

and g/n approaches the 8' of the exponential-Gompertz. This is the 

parallel limit to that shown for the growth curves themselves. Non­

linear fitting has well-known difficulties which increase with the 

number of parameters in the model. The three curves presented 

earlier are relatively easy to fit. For this reason, it would be 

better to proceed by fitting the Gompertzian and logistic based 

functions to a given set of data. The fitted estimates can then be 

used in conjunction with knowledge of the curve structure to get 

better starting values for the four-parameter Bertalanffy-Richards 

based curve. Suppose, for instance, that one were to have a data 

set for which the Gompertzian and the logistic based models had been 

fitted. If, by some measure, the Gompertzian based curve were judged 
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to have given the better fit, but systematic deviation from fit 

remained, it would be reasonable to try a Bertalanffy-Richards based 

model with a starting value for n between 0 and 1. Placing it at n=^ 

is a good choice. The fitting of this model is not particularly sen­

sitive to small misses for the starting value of n. Then for the 

estimate, there are several choices. One may choose to use the Gom- 

pertzian estimate for B' and the limiting relationship to calculate

as nfT or, in this case, W. One might also reach for the empiri­

cal distribution function. The equation for g in terms of any percen­

tile point c is

g = n log(l-c){log[(K/xc)n-l]-log[(K/Y)n-l]}.

Using n = % and the estimates from the Gompertzian based curve for y 

and k along with an estimate of from the empirical distribution 

function, one obtains
~ ~ 1/ ~ ~ u
g = -^(log 2){log[(k/x^)2-l]-log[(k/y) -1]}.

If the logistic-based curve appeared to fit better than the Gompertz­

based curve, one could simply start the more complicated fit from the 

estimates for the exponential-logistic with n = 1. If, on the other 

hand, one prefers not to start by fitting a lower model, one might use 

(N+D/N x(N) to estimate k, (N-l)N x^ to estimate y and an iterative 

estimate for both 6 and n (not necessarily a converged estimate, but 

one pursued several cycles) based upon two points, perhaps at 1/3 and 

2/3, of the empirical distribution function. To begin this iterative 

cycle, it is usually acceptable to use n = 1. Then the two equations 

at 1/3 and 2/3 are
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B = n log(2/3)/{[log(</x1/3)n-l]-Elog(K/Y)n-lB 

and

n = B{log[(K/x2/3)°-l]-log[(K/y)*-l]}/^

This last method for obtaining starting values is preferable if there 

is reason to suspect an n much larger than one.
Now the exponential-hyperlogistic curve for negative p is not hard 

to estimate. The value of p may only be between zero and -1. Selecting 

a p of -1/2 is quite adequate. This used with the estimates of y, k and 

g from the logistic-based function will usually converge quite rapidly. 

Again, if one would rather not start from the logistic, but use the 

empirical distribution function, one may use the 1/3 and 2/3 points with 

g = 1 and p = -1/2 and iterate a few cycles for a pair of starting 

values. With these and (N-l)N x(1) for y and (N+l)/N for k, the 

two equations are 
~ ~ ~ ~ ~ -p

and

For positive values of p and the hyperlogistic based model, one 

might arbitrarily choose to start at p = 1 and the estimates from the 

logistic-based fit of y, < and B. In many cases that would be quite 

adequate; one might also try a p of I and a B of 1 with y = (N-1)/N x(1) 

and k = (N+1) /N x^^ . Or one might wish to use the empirical distribu­

tion function at 1/3 and 2/3 to iterate a few cycles for the starting 

values for B and p beginning with either of the above suggestions.
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These equations are

3 = -p[(K/x^yg-l) P-(k/y-1) P] log(2/3) 

and

p = -g[(K/Xgy3-1) P-(k/y~1) P]/l°g(l/3).

The estimation for the exponential-hyper-Gompertzian distribution

is similar to that just considered. For negative values of p begin-

ning with p = -1/2 and the y, K and 6" from the exponential-Gompertzian

form is usually good. One could use also p = -1/2, - 1,

Y = (N-l)/N x^) and k = (N+l)/N x^N). Particularly in this latter case

one often gains from using the empirical distribution function estimates

of x1y3 and x^y3 to improve the starting values iteratively. For this 

purpose, the two equations are

6'- p[log(K/h]PU=g(2/3)-log[e B7pElog<K/x1/3)] P_1/3])

and

For positive values of p, one can consider either set of starting

values for y, < and g' which were covered above along with an estimate 

of p at 1. Using the empirical distribution function estimates of x^y3 

and x%y3 to improve these estimates iteratively yields the following 

pair of equations for estimates of g' and p:

g '= -p{[log(K/x1y3) ] P-ClogWy) ] P) 1log(2/3)

and

p =-g^^log^/x3y3^ j P-[log(K/y)] P }/log(l/3) .



125

Like the exponential-hyperlogistic distribution, this distribution s 

ability to yield converged estimates in a data set is relatively insen­

sitive to small misses in the estimate of p. In both cases, it is more 

important (but not crucial) for the relative magnitudes of B'and p to 

be correct.
The exponential-generic growth size distribution is approached 

cautiously, as a model of last resort. It has five parameters. Most 

data contain insufficient information to make this model very practical 

or the estimates, if at all obtainable, very stable. When it is used, 

it is because one of the four-parameter models fits better than the 

others, but leaves too much unexplained systematic deviation from the 

theoretical curve. The method used to produce starting values for the 

generic-based curve must depend in part upon which of the four-parameter 

curves gave the best fit. It is not the best approach to proceed from 

the empirical distribution function in view of the fact that fairly 

good estimates of four, if not five of the parameters should be obtain­

able from the best four-parameter model. From a fit of the exponentlal- 

hyper-Gompertzian model, one would have perfectly proper estimates for 

y, k, p and g', in either the positive or negative p situation. With a 

reasonable starting value for n, an estimate for 6 may be found by 

noticing that the g' of the hyper-Gompertz based distribution is the 

limit of gn-1-p as g and n approach zero. So g could be estimated as 

given estimates for g", n and p. The problem is the estimation 

of n. Of course, if the exponential-Bertalanffy-Richards has also been 

used, the estimate of n obtained therein could be tried. If this has 

not been found, but the hyper-Gompertz based model looks better than the 
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hyperlogistic—based model, n = 1/2 would seem appropriate. If, instead, 

one finds that the hyperlogistic-based model is the best of the four- 

parameter models, estimates of y, k, g and p are present from that model 

and may be used as starting values for the five-parameter version. 

Again a value for n can be taken from the exponential-Bertalanffy- 

Richards if it has also been fit. If not, a value of n = 1 is probably 

not so bad. If the exponential-Bertalanffy-Richards curve was the best 

of the three four-parameter models, it gives good starting values for 

y, k, g and n for the exponential-generic curve. It is the estimate of 

p in this case which gives the most difficulty. If both the other 

models have also been tried, one could take the p from the better of 

them. If they seem to be roughly equivalent, one could use the average 

p of the two. If neither model has been used, one could evaluate the 

situation (and measures of fit) for p = -1/2 and p = 1 and proceed 

using the better of the two. In this case more than the others men­

tioned, it may do some good to iterate a few cycles for some or all 

of the estimates using points from the empirical distribution function. 

For negative p and the c^ c^ and c^ points, these equations are:

g = np[ (K/y)n-l]P{log(l-c1)-log[e

n = g/p[(K/yf-l]~P{log(l^^ "1]

and

p = g/n[(K/y)n-l]"P{log(l-c3)-^ ~1]

If only one is to be used, one could set that c to 1/2. If two are to 

be used, one could choose 1/3 and 2/3. If all three are to be used,
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1/4, 1/2 and 3/4 are reasonable choices for c^, c^ and c^. For posi­

tive values of p, the same situation is present, but the three equations 

are :

3 = -np[log(l-c )]{[(k/x )"-l] P-E(k/y)n-l] P} 
C1

n = -3/p[log(l-c )] l{[(c/x )n-l] P-[(k/y)n-l] P} 
2 C2

and

p = -g/n[log(l-c^)] ^{[(k/Xc )n-l] P-E(k/y)n-l] P}.

In discussing the possible starting values for the Weibull 

parameters y, 8" and a, one should recall the relationship with the 

exponential-hyper-Gompertz, the exponential-hyperlogistic and the ex­

ponential-generic curves. The Weibull has been obtained here as a 

limiting case from each of these. Depending upon which of these others 

is considered the best, one can use the nature of the appropriate lim­

iting forms to use its parameters to estimate the 8" and a of the 

Weibull. The y estimate from the more general curve may be used in­

tact. If the hyper-Gompertz based curve is the "best fitting" one, 

the limit to the Weibull is achieved as k increases without bound, 
(p+1) /log k approaches a and 3log k] ^P^^ approaches 8" (or 

6^[log K]p+1 approaches 6" in the growth curve) . So, if there are 

estimates of k, p and from the hyper-Gompertz based curve, these 

may be used to estimate a and 3":

a = (p+1)/log(<)

and 8" = [log(K)]-(p+lV.
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If the Weibull is found, instead, as a limiting form from the hyper- 

logistic or generic growth based curves, the appropriate estimates 

for p, n and g may be used to estimate a and 8" with the limiting 

relationships for these cases which state that as k increases without 

bound, up approaches a and 6%^ approaches B" (or approaches 6"

in the growth curves). Remember here that n is equal to 1 in the 

exponential-hyperlogistic. The equations for estimating the Weibull 

parameters this way are:

a = up 

and

i" -
The estimate for y may remain that from the generic or hyperlogistic 

curves.
Note that in the limit from the hyper-Gompertz based curve a 

should only be positive while, in the cases of the hyperlogistic or 

generic based curves, a may be positive or negative (not necessarily 

greater than -1). If a were to approach 0, the curve would reduce to 

that of the Pareto, a limiting case of the Weibull also.

The Weibull distribution is notoriously difficult to fit to real 

data. This is because it is one of the most sensitive distributions 

to the choice of starting values for non-linear estimation. It is by 

far the most sensitive, in that way, of the members of this size 

family. In particular, many attempts to apply the Weibull in differ­

ent data sets show the importance of correctly assessing the relative 

magnitudes of a and Q". In this formulation, ft" is often quite 

small, perhaps of order 10 6 in magnitude and yet significantly 
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different from 0. The parameter a, however, is usually of a more 

reasonable" size. If a is greater than 1, the distribution function 

has a point of inflection at It is sometimes possible,

if this point is distinct enough in an empirical distribution function, 

to solve for in terms of et and the estimated inflection point, .

B" = (n-l)x^.

For this point to be within the range, one should also notice that B 

must be less than (à-l)Ç““, «>1. From these, one may gain some know­

ledge of the relative magnitude of a and The above approach is

more to be recommended if the other upper curves have not been tried. 

The parameter y can be estimated as before, as (N-l)/N . A rough

guess starting point for a, if a is positive, can be used in equations 

from the empirical distribution function to produce iterative esti­

mates of a and B". If the empirical distribution function has no 

apparent point of inflection, a must be less than or equal to 1. So 

et = 1/2 makes a good trial value. If it appears to have a point of 

inflection, et must be greater than 1. One might try ot = 2 for a trial 

value. In either case, these values may be improved using

B" = -n(Xi/3-?)-llog(2/3)

and

Ù = -B"(x2/3-?)/l°g(l/3)-

If one thinks that et is more likely to be negative, the distribution 

function will have no useful point of inflection. One could try 

guesses for 8" and a at 1 and -1 respectively and try to improve them 
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using the empirical distribution function:

~ ~~ ~ -B'VÙx" _
ft" = ay a{log(2/3)-log(e -1/3)}

and

~ * a~ ~~~ -6"/ax _2
a = gy^{log(l/3)-log(e -2/3)} .

B. Maximum Likelihood Estimation

In the case of the Pareto size distribution, the maximum likeli­

hood estimators of the parameters y and g are the simplest of the 

estimators considered in this paper. Recalling the density function, 

f(x) = g/y(x/y)~(B+l), y<x«=, 

one may form the likelihood function for a sample of size N:

i=l

The log likelihood function is shown to be

N
L(y,g|x) = N log g-Ng log y-(g+l) E log 

1=1

Now taking the first partial derivatives of L with respect to the 

parameters, one has

N ■
= § -N log y- S log x

°P P 1=1

and

9L _ Ng 
By y .

Clearly L is maximized for y as large as possible subject to the re­

striction that it is at least less than or equal to the smallest 
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sample value for x, xq) ’ and for B equal to (log x log 

where

_____ 1 ? ,
log X = - 1 log X . 

i=l

So the explicit solution for the Pareto maximum likelihood estimators 

is the pair

Y= X(i),

6 = (log x

The matrix of second

d2L 
9 y2

92L 
d Bd Y

- log x_ J .

partial derivatives is

32L
9y9B

-NB N
Y

92L N -N
98^ Y B^

■J

So, for this distribution, one may easily write the information 

matrix as

NBN
Y

-N
Y

-NB? N
B

-NB
Y^

Since the estimate for y cannot be obtained from the partial derivative 

of L with respect to y in the "usual" manner by equating that deriva­

tive to zero and solving for y, one should really only consider the 

conditional likelihood given that y = xæ and then solve for the B 

which maximizes this conditional function. So the only relevant 

information matrix is the conditional one:
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2 2I = —E( —N/5 ) = N/B • 
Since -N/g2 is negative, the conditional likelihood is indeed maximized.

It is necessary to note here that with both range parameters, y 

and k, to be estimated, it is not known whether or not the usual asymp­

totic properties of maximum likelihood estimators hold in these cases. 

The usual regularity conditions are not met. See Rao, 1973. It is 

also not known whether these properties hold in the likelihood estima­

tion conditional on y equal to the minimum observation, particularly 

since the first partial derivatives of the log likelihood function 

are undefined at k equal to the maximum observation. Thus the proper­

ties of maximum likelihood estimators could be a good subject for 

future research.
Now for the logistic based size distribution, the density is 

f(x) = Bex 2(x/y-l) $(k/x-1)$ .

The likelihood function for a sample of size N is

i=l i=l 

and the log likelihood is

L(y,B,x|x) = N log B+N log k+NB log y-NB log(x-y)-(B+l) •

N N
I log x.+(B-l) S log(x-x ). 

i=l 1 i=l

The partial derivatives are seen to be:

9L NB . N   =   H----  
3y-------y K-y

N N
= J + N log y-N log(K-y)- I log x.+ I log(x-x^) 

SB B i=i i=l
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3L
3k

--^-+(6-1) X (k-x.) 1.
K K-Y 1=1 1

Again the estimate for y is » although this is not found by using

the partial derivative. Considering the conditional likelihood given

that y = X(D one finds that it is possible to solve for B explicitly

in terms of y, k and the observations :

g = {log x - log(k-x) + log(K-y) - log y}

where

----- N ---- ---- T N .
log x = — E log x. and log(K-x) = — E log(K-x ).

An estimate for k, however, is only available implicitly.

A A A A  "J "I _1 1 —1 —1
K = {BE(k-y) - E (K-x ) ] S (K-x ) }

N i=l 1 i=l

In order to use the method of scoring to maximize the conditional log 

likelihood, one needs the matrix of second partial derivatives whose 

elements are :

32L
38

= -NB-2,

32L
3B3K

32L
3<3g

' -1 = -N(k-y)
N -1
E (k-x.)

i=l 1

and
a 2t o —2-^-4 = -Nk“ + NB(k-y) - (8-1) E (k-x ) .
9K 1=1 1

The expected values of these two last elements are not easily found 

and, since they exist as series, would not be very useful. For the 

exponential-logistic distribution, the best starting values for 



134

maximum likelihood estimation are k-(N+l)/N x(n) and the g of the

Pareto.
The exponential-Gompertzian distribution has a density function 

of the form
f(x) = g'[log(K/y)]~B x^[log(K/x)]^ 1.

The likelihood function and the log likelihood functions are

4>(y,g', <|x) = g N[log K-log y] [ it x^ ] * 
i=l

N ri , -,g"-l
r [log ic-log x^J 
i=l

and
N

L(y, g"» K|x) = N log g "-Ng'log[log K-log y]- x log x± 
i-1

N
+(g'-l) 2 logElog K-log X±L 

i=l

The vector of first partial derivatives with respect to the parameters

is

9L
9y

Ng" y 1[log K-log y] 1

9L

=

N(g")-1-N logElog K-log y]

N
+ Z logElog K-log xJ 
1=1

9L
9k

—N g " K ^Elog K-log y] 1+(g"-l)K •

N -i
Z Elog K-log X±] 

i=l
L -
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Again the maximum likelihood estimate of y is x^ , but this may not be 

found by setting the partial derivative to zero and solving. Consider­

ing the conditional likelihood given this y estimate, one finds an 

explicit expression for in terms of y, k and the observations.

= {log[log K-log y] - logClog k-log x]}

where

_________________± N 
logClog K-log x] = — E logClog K-log . 

i=l

An implicit relationship for k may be written as

k = y[exp{NB^(B -1) [ (l°g K-log x.) J II.
i=l

If one wishes to use the method of scoring for estimation of and k, 

the matrix of second partial derivatives is needed. Its elements, for 

the conditional likelihood, are :

— = ^-,= -Nk 1(log K-log y) 1+k 1 E (log K-log x ) 
ag^K a k3B 6 1=1 T

and
= K~2 W[ (log K-log y)-1+(log K-log y) 2]-(B'~D ' 

a kz

N -1 , \ -2 Ti
S [(log K-log X.) +(log K-log X^) J) 

i=l 1

The expected values of these second partials are not of simple form, 

therefore the information matrix is not displayed here. For starting 

values, one of the techniques from the earlier discussion may be used, 

or one might use y = x(1), k = (N+D/N x^ and ft' = [log k]B, where B 
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is the maximum likelihood estimate of & in the Pareto. This approach 

uses the limiting relationship between the Pareto and the exponential-

Gompertz.
The exponential-Bertalanffy-Richards has a density of the form

f(x) . E .

Its likelihood and log likelihood functions are

<1=1 J

N 
IT [ (k/x 

1=1 

and

L(y,B,n,K|x) = N log B+nN log K-gN/n log[(</y)“-l]

N N n
-(n+1) I log x.+(g/n-l) I log[(k/x.) -1J• 

i=l 1 1=1

The first partial derivatives of L are as follows:

= BNY~1[1-(Y/K)n]~1,

N2L = -Nn-1log[ (k/y)11-!^^”1!-^1 S logE (k/xY-U , 
3 g 1=1

9L = gNn^logE(</Y)"-l]-BNn^E(</Y)"-l]^(K/Y)"log(K/Y) 
3n

N _2 N n
+N log K- I log x.-gn I logE(</xp -1J

1=1 1 1=1

+(g-n)n-1 I E (k/x. Al]"1 (c/x^n log(</xi) 
1=1 1

and



137

— = -gN< ^[l-(y/ ^+nNK ^+(3-n)K S [1-(x./k) J • 
3k ' 1=1

The same situation as before prevails with respect to Y and 0. For y 

the estimate is For B there is an explicit expression in terms

of the other parameter estimates and the observations :

- N A ia a M — I r z A, »n --in 10 = n{logE(k/y) —1]—N S log[(k/x ) —1]} •
1=1

The expressions for n and k are only available implicitly. The second 

partial derivatives for use with the method of scoring and the likeli­

hood function conditional on the estimate of y being x^ are:

N= n“2{N log[(K/y)^-l]- log[(K/x )n-l]}
a Ban anag i=1 T

„ N
-n"^{N[ (</ y)^-l]"^( K/ y)niog( k/ y)-J 

i=l

[ ( K/xp"-l]^ ( K/X.)"log(</X^) 1 ,

N ,-NK-kl-(Ÿ/K)"]^+K^ S [1-(X /«)"]" , aga < a Ka g i=1 T
= -26Nn"^log[ ( </y)n-l]+2gNn~2[ ( </y)^-lf\</ y)^log(</ y) 

3nz
+gNn"^{[ ( </ y)"-!]"2 ( K/ y) ^[log( </ y) ]2-[ ( </y)"-l]"^ -

N 2( k/ y)n[log( k/y) ]2}+2gn Z log[ ( k/x. ) -l]-2gn •
i=l

Z [(K/x^)"-!] 1( K/xi)niog(K/x1)-(g-n)n • 
i=l
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? [(K/x.)n-U ( K/xp^[log( K/Xj.) ]^+(B-n)n 1«
i=l 1

Z [ ( K/x.)I1-l]~1(K/xi)n[lOg( k/x^ ]2 , 
i=l 1

ïilL_ = = - gN [ 1- ( y/ K) ]"2 ( v/ K) ( w <) +N K 1-K 1«
3n9 k a <dn

Z [l-(x./K)n]-1+(e-n) k"1 E Ll-(x./<)n] 2' 
i=l 1 1=1

(xj K)^lOg(x^/ K)

and

N i — 9 T1^4= gK^{N[l-(y/K)"]-^- 2 [l-(x /<)"] }-BnK {N(y/<) • 
a kz i=i

[l-(y/K)^]"2- S (X./K)n[l-(X./K)n] 2 }+nK 2. 
1=1

{ Z [l-(x./K)n]-1-N}-n2K-2{ L (x±/K)nCl-(xi/K)n] }. 
1=1 1 1=1

The density function for the exponential-hyperlogistic for the p 

greater than zero case is

f(x) = gKX~2(K/x-l)-(P""-\xpW P-(K/y-l) PB.

The likelihood function and the log likelihood functions are

1=1

N _p
—g/p Z ( k/x -1)

e _ N
and L(y,B,p,c|x) = N log B+N log ^B/p N(</Y-l) P-2 J log x. 

1—1

N N
-(p+1) Z log( k/x.-1)-g/p E (k/x^-1) .

1=1 1 1=1
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Now the first partial derivatives of L( ï, B,p, k|x) with respect to the 

parameters are seen to be :

= SkY-2N(k/Y-1)"(p+1>, 
a Y

N _— = Np"1 ( k/ y-D^+NB-1-? 1 Z (</x -1) P, 
SB i=l

— = -BNp”2 ( k/ Y-l) ~P-BNp-1 ( k/ Y-l) Plog( k/Y-1) 
3p

+Bp"2 Z (k/x.-1)"P+Bp-1 S (K/x^-l)"Plog(K/x^-l) 
i=l 1 1=1

N 
- E log( k/x -1) , 
i=l

and

— = BY"^N(K/Y-1)-^P^^+NK E x^C k/x±-1) ^P
S k i=l

N -1 -1
—(p+1) E x. (k/x. 1) ■

i=l T

After noticing that Y must be x^^ as for the lower curves, one 

may again consider the conditional likelihood. Solving for B in terms 

of the other parameter estimates and the observations, one obtains an 

explicit solution for B as

A A N A A -T) -fB = p{l/N E (k/x.-1) -(k/Y-l) p? .
i=l

Then implicit expressions for p and k are

p = BE E log(K/x.-l)] E E (k/x -l)'p[p +log(K/x.-l)] 
i=l 1 i=l

-N(k/Y-1) P[p +log(K/Y-l) ]}
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and

K = {BN"1 Z x.1(</x.-l) ^4(p+l)N 1 S x^Ck/x^I) 
i=l 1 1

The elements of the matrix of second partial derivatives for use in 

the method of scoring are:

= = p 2{ (</x,-l) P-N(k/y-1) P}+p 1.
3 B3p 3p 3 B i=l 1

{ E (k/x.-1) Plog(</x^-l)-N(k/y~1) Plog(K/Y-l)}, 
i=l

32L
3B3<

= -Ny'^Ck/y-I) ^P^^+ x?"(K/x -1) ^P^^ ,
3k3B i=i

^7 = 2Bp 3{N(k/y-D P- .Z^k/x -1) P}+2Bp 2 •
dp^ 1 x

_ N _{N(K/Y-D-Plog(K/Y-D- % (k/x^I) Plog(</x^-l)} 
i=l

N _+Bp~1{N(K/Y-l)'PLlog(K/Y-l) 3 " £ (k/x^I) P 
i=l

[logCK/x^l) ] 2},

= B{ z x.^k/x.-I) (p+1\og(K/x -1)-Ny 1 •
3P3k 3k3P p , ii i

(K/Y-l) (p+1)log(K/Y-l)}- J x^Ck/x^I) 1

and
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= g(p+l){ E x/(</x.-D 2(k/y-1)
3k 1=1 1 1

N _2 _2
+(p+l) E x. (k/x.-1) .

1=1
Now for negative values of p, the equations are more complicated, 

but somewhat similar to those already found. The density, one recalls, 

has the form

f(x) = {1-e^P^/^ V^kx^Ck/x-I)'^^

-B/p{(k/x-1) ^-(k/y-1) P} 
e •

So the likelihood and log likelihood functions are

^.e.P.Kto -

-s/p{ E (k/x.-1) P-N(k/y-1) P} 
i=l 1

e 

and

L(y,B,p,k|x) = -N log{l-e^P^^'^ P)+N log B+N log k

N N
-2 E log x.-(p+l) E log(K/x -1)—B/p • 

i=l 1 1=1

E (k/x.-1) P+NB/p(k/y-D P« 
i=l 1

The first partial derivatives of the log likelihood function with re­

spect to the parameters are as follows :

3y
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= NB 1+Np 1[(k/y-1)~P-1/N Z (k/x -1) P]+Np 1(k/y-1) P' 
SB i=l 1

[e-B/p(K/Y-l)~P_1]-ls

_ _ N
— = -BNp 1(</y-1) P[p 1+log(K/Y“l)]“ S log(K/x±-l) 
9P 1=1

N _ N+Bp~1[p~1 Z (k/x.-1) P+ % (k/x.-1) Plog(ic/x^-l)] 
1=1 1 1=1

-NBp-^[e'^^P^^^^ ^-l]-^(K/Y-l)-p[p-^+log(</Y-l) ] 

and

— = [^B/P(</Y-1)-P_i]-1+NK^-(P4-D S (k-x.)"1 
9 k 1=1

1=1 1 1

One finds that the maximum likelihood estimate of Y is still xq) an^ 

one must consider the conditional likelihood function given that Y is 

X(i). There is no explicit solution possible for any of the other 

parameter estimates. One may easily go on to find the elements of 

the matrix of second partial derivatives. They are

SB

IrÏÏd = = -Np 1(k/y-D PEp ^logU/Y-l)]
dpop dpd p

+p-1 2 {(K/x.-l)-P[p-1+lOg(K/xi-l)]} 
i=l 1
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32L
3g3K

32L
9P2"

-NBp-2(K/Y-l)-2P[p-l+los(K/T-l) 3e

[e-S/p(K/Y-l) P-1J-2,

3k3B p

i=l

Plog(K/y-l)

N _+3Np-1(K/y-l) PElog(K/y-l)]2-2Sp (k/x^I)

32L
3pdK

-2Bp 2 Z (k/x.-1) Plog(K/x -1) 
1=1 1

N 2-Bp-1 £ (k/x.-1) P[log(K/x^-l)] 
1=1 1

^p-^/Ÿ-D-'i^/Ÿ-i^

+BP-1(k/y-1) P[log(K/y-l)]2},

= = Bp^(K/Y-l)"P[p-^+log(K/y-l)
3k3p

" -n N . N 1B/P(k/y-1) P_n-2_ g (k-x.) Z x
1=1 1 1=1

(k/x^I) ^P^\og(K/x^-l)
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and

0 ' p[e-B/p(K/Y-D

-Nk"2+(p+1) Z (k-x.) 2-g(p+l) S x 2(k/x.-1) ^2^. 
i=l 1 i=l 1

Using these derivatives and the method of scoring, one may obtain iter­

ative estimates of the parameters B, p and k given y is x^.

For the exponential-hyper-Gompertzian size distribution and a

positive value of the parameter p, the density function is

f(x) -

The likelihood and log likelihood functions respectively are found to be

<j)(y,B"',p,K |x) = (6')N{ if x 1[log(K/x.)] ^p+1^} • 
i=l 1

N _ _-B'/p{ X [log(x/x.)1 P-N[log(K/y)] P 
i=l 1

e

and

N N
Uy.^p.kIx) = N log B'- E log xi-(p+l) E log[log(x/x^)] 

i=l i=l

N _-BVp E [log(K/x.)]^+NBVp[log(x/y)] P. 
i=l T

To obtain estimates of the parameters, one may first display the first

partial derivatives with respect to the parameters. For simplicity,

g' is written as B:

= NBy 1[log(K/y) ] ^P^^ , 
dy

= NB 1-p "^.E [log(x/x )] P+Np l[log(x/y)] P, 
O D 1 =1 1
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~ = Bp 2{ S [log(c/x.)] P-N[log(K/y)]~P}- Z log[log(</x )]
9P i=i 1 i=l

1 IN —n “P+Bp 1{ S [logCK/xp]-plog[log(K/Xi)]-NElog(K/y)] 
1=1

log[log(K/y)]}

and

BL
9k

= -NBk l[log(</y)] ^P -(p+1)k 2 [log(K/Xi)]

+Bk 1 E [log(</X^) ] ^P^^

The maximum likelihood estimate for y is, as in the cases already dis­

cussed, x_y Then if the conditional likelihood is considered, one 

can find an explicit solution for B in terms of the estimates of the 

other parameters and the observations as

A. A IN A —T> A “P -| “ 1
B = Np{ E [log(K/x^)] P-N[log(</y)] }

1=1

No explicit solution of this kind for p or k is possible. The ele­

ments of the matrix of second partials are

= P 2{ E [log(K/x )] P-N[log(K/y)] P) 
dpdp dpdp

+P-1{ E [log(</xp]-plog[log(K/x^)]-N[log(</y)] P •
i=l

log[log(K/y)]},
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E [logCK/x.jl-^^’-NClogtK/Y)]
363k 3 k3 B • _q ■*-

32L
3P7

A N= 2Bp^{N[log(K/y)]"^- E Clog(</x )] P} 
1=1

A N _+2Bp~2{NElog(K/y) ] PlogElog(</y)3- E Elog(i</x^)] P • 
1=1

A 2logE log ( K/xp ] }+Bp {NElog (k/y)] p{ log Elog( k/ y) ] }

N _ 2- e Elog(k/x.)3 p{logElog(K/xi)33 3, 
1=1 1

32L 
dpdK

= -gK 1{ E [log ( k/X . ) ] ^P^^lOgElog(K/Xj_)] 
3k3p i=1 T

a N-NElog( K/Y)]-^P^\ogElog(K/Y) ]}-K E Elog(K/x^)]

and

32L
3^

-K 2g{ E [log( K/x ) ]~(p+D -N [log( K/y) ] ^P^^ } 

1=1

9 N _i -2 N . ..-(p+2)
r2(p+l) E [log(K/x.)] "(p+l)< % E Elog(K/xp]

1=1 1 i=1

-N[log(K/y)]
_9 N -2
: E Elog( k/x ) ]

1=1

If p is between zero and -1, the form of the density is 

f(x) = {l-e^P^°S^/^ ^}Sx^[log(K/x)]"(^- 

e-B/p{Elog(i</x)] p-Elog(K/y)3 p3.

In this case, the likelihood and log likelihood functions are written 

as
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1=1

[10g(K/xi)] 1 *

-g/p{ Z [log(K/x.)] P-N[log(K/v)] P} 
i=l 1

e

and
—p N

L(ï,B,p,k|x) - -N )+N log B-.^log

N N -p
-(p+1) % logElogCK/x^)]-B/p z ElogCx/x^)] 

1=1 1=1

+g/pN[log(K/y)] •

As before, one may easily display the first partial derivatives, which 

are :

£ - ^nog(x/Y)l^n-o^ 
3y

N _ -i= Nf ^+Np--'-[log(K/y) ]"P-p-^ % [log(K/x^>] P+Np • 
a g i=i

N _ _niL = gp-2{ E Elog(K/x.)] P-N[log(</y)] }- z log[log(K/x^)]
9P i=i 1 i=l

M —p+gP"1{ I [10g(K/x.)] P10g[10g(K/xi)]-N[10g(K/y)] • 
i=l 1

iogEiog(x/Y)^-^o-^""^^^^^-i^^p^nog<x/Y)iy
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{p 1+log[log(K/y) ]}

and

= -Ng K-1 E log ( k/ y) ] ” p+1 ) -Ng K-1 [ log ( k/ y) ]

^-g/p[log(K/ y) <-1 E [log(</x J]"1
i=l

+gK-1 Z [ log ( k/x ) ] 
i=l

By examining the likelihood function, one sees that the estimate for y 

must be as large as possible subject to the restriction that it is 

not greater than the smallest observation, x^. So, y is x^. The 

other parameter estimates should maximize the conditional likelihood 

function given y is x(1). No explicit solutions for g, p and k are 

possible. One may solve for them iteratively, however, using the 

method of scoring. The second partial derivatives, for this purpose, 

are as follows :

O p

^-g/p[log( K/y) ]

= p 2{ Z [log(K/x.)l P-N[log( k/y) ] p} 
9p3g ±=1 i

N - _D+p-1{ Z [log(K/x.)]-plog[log(K/xi)]-N[log(K/y)] • 
i=l 1

logClog(</y) ] }-Np-1[log( k/y) ]"P{p"1+log[log( k/ y) ] } •

{e-B/p[log(K/Y)rP_1}-l_Np-2e[log(K/;)]-2p#
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(p-^logElogUMne-6^10^^

r -B/p[log(K/x)3 P 11-2 
i e »

= k 1 { % [log(K/x.)]-(p+l)-N[log( (P+1^}
338k 8k83 1

£ e~ B/p Elo g ( K / Y ) 1 P„1}-2>

= -23p-3{ 2 [log(K/x.)J P-N[log(K/y) ] P}
9P i=l 1

N ——-2gp"2{ Z Clog(K/x.)] Plog[log(K/x )]-N[log(K/y)] •
i=l X

N 10g[10g(K/Ç)]}-gp"1{ S [log(K/x )]-P{lOg[lOg(K/xp]} 
i=l

-N[log(K/y)J P{log[log(K/y)]}2}+N3 p [log(K/y)J P.

{p-^iog[iog(K/;)]}V^p[^<^^]'"

{e-B/p log(K/y) P-l}-1 •

3p~1[log(K/Ç)]"P{2p"2+2p"1log[log(K/y)]+{log[log 

* 9(K/y)]} },

----- Bk"1! £ [lOg(K/x.)J-'P+"lOg[l.g<K/x )J 
8p8K 8k8p--------------------- 1

-N[log(K/y) ] ^^\og[log(K/y) ]}+NB p k •
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[log(^)]-(2P+l){p^ .

{e-f3/p[log(K/Y)]"P_1}-2+Ng^

^-g/p[log(K/y)] % [log(K/x )]^
1=1

and

d K£

{l_e^P[los(^Y)]^}-l+Ng2^-2[iog(K/Y)]^(p^\ 

e-g/p[log( k/y) 1 P^e~B/p[log( k/y) 3 P-i}-2

N N _2+(p+l) k”2{ 1 [log( k/x ) ] + % [log( k/x±) ] }
1=1 1=1

-gr2{ E [log(K/x.)]"(p+1)+(p+D S [log(K/xp]"^h. 
1=1 1 1=1

Now for the exponential-generic curve with its five parameters, the 

equations for maximum likelihood estimation become exceedingly compli­

cated. For that reason, only the first partial derivatives are given 

(or, indeed, obtained) in both the positive and the negative p cases. 

Of course, to estimate the parameters by the method of scoring, one 

may either obtain them or construct the matrix as the product of the 

column vector of first partial derivatives and its transpose. For 

positive values of p, the density is written as

f(x) = Bx~l(K/x)n[(K/xyn-l] (p+1\ 

e-g/(np) {[ (K/x)n-H P-E ( k/ y) -U P\ 

Then the likelihood function is
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= BN{ IT (K/%P 1] }
i=l

- B/(np) { z E(K/x^)n-l] P-N[(k/y) "U P1

and the log likelihood function is
N N

L(y,B,n,p,K|x) = N log 6- E log x.+nN log K-n Z log

-(p+1) S lo^ (i</xi)n-l]-B/(np) •

Z [ (K/x.)n-l] P+SN/(np)[ (k/y)11"!] P. 
i=l 1

The first partial derivatives of the log likelihood function with 

respect to the parameters are.

— = BNY^(i</Y)^[ (</7)^-1] ,
3 Y

It = Ng'^-l/(np){ E C(K/x^)^-l] P-N[(k/y) -1] I’
9 g i=l

it = gn~Vi{ ” [(K/x.)"-l]"p-N[(</y)"-l]'P)
3n i=l 1

+gn-1{ S [(K/x.)^ir^\</Xi)" log(</x.) 
i=l 1

-HE(K/Y)^-l^^^^^7)^log(K/Y)^+^ log K

- Z 10g X.-(p+1) % [(K/x.)"-l]"\K/x.)"lOg(K/x.),
i=l 1 1=1

it - gn-V2{ S [(K/x.)n-l]"P-N[(K/Y)n-irP}+Bn 1p 1.
3p i=l 1
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{ Z [ ( </x. )"-l]^log[ ( K/xp^-l]-N[ ( K/ Y)*-l] p • 
1=1 1

N n
log[(K/y)^-l]}- Z log[ ( k/ y) -1] 

1=1

and

3K 1=1 1 1

[(K/Y^-lJ-^+l^+NnK-^ E xi1(K/xi)n 1.
1=1

[(K/xp"-!]"1.

The maximum likelihood estimate of y remains xæ as in all the previous 

cases. An explicit solution for g in terms of the observations and the 

other parameter estimates is obtainable as

6 = np{l/N E [(k/x )n-l] P-[(K/Y)^-1] P) 1* 

i=l
It is not possible to solve for the other parameter estimates explicit­

ly. Of course, only the conditional likelihood given Y is x^ should 

be considered in solving the equations iteratively.

If p is between zero and -1, the density function, one recalls, 

is

f (x) =

e-g/(np) { [ (K/x)n-U P-E(</y) -1]

The likelihood and log likelihood functions for this case are, respec­

tively :
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-B/(np){ E [(k/x )n-l]"P-N [<«/v)n-13 P> 
i=l e

and
L(y,B,n,p, k|x) = -N log{l-e^^nP^ }+N logg

N N
- s log x.+nN log K-n Z log x -(p+1) ’ 
1=1 1 1=1

Z log[(</x.) -1J-B/(np) 2 E(k/x^) -1] 
1=1 1 1=1

+NB/ (np) [( k/ "Y)n-1] P

The first partial derivatives of the log likelihood function with

respect to the parameters are :

3y

— = MB 1-n \ 1 E [(K/x.)n-U P+Nn 1p 1E(K/y)n-13 P • 
38 1=1 X

B/(np) [(</y)"-l] Pi-1 
tl-e > »

9L = -N{l-e^("p)
9n

{n”V1+E(K/Y)n-13"1(</Y)niog(K/ï)}+N log k

- Z log x.-(p+l) Z [(k/x^H-I] (K/x.)niog(k/x.) 
1=1 1 1=1
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+f3n'1{n"V1 2 [(k/x )n-U“P+ % [(k/x )n-l] 
1=1 1 1=1

(K/xi)niOg(K/xi)},

9p

(nP) C(k/y) ”1-1 ] s log [(k/x.) -l]+@n p . 
1=1 1

{p"1 Z [(K/x.)n-irP+ E [(K/xp^-l]"PlOg[(K/xp^-l]} 
1=1 1 1=1

and
P}"1C(K/y)n-l]"(p+1)('</Y)n

9k

N
+Nhk (p+l)nK E (k/x.) E(K/x^) —13 

1=1

+BK-1 E (K/xp"[(K/x.)°-13-<^\ 

1=1
Again the maximum likelihood solution for y is x^^* The other para 

eters must be estimated conditional on y being x^ and in an itérât

manner.
The last of the upper curves, the Weibull, has a simpler set of 

maximum likelihood equations. The density, for a positive value of « 

is

fW . e-r-/.(x“V>

Then the likelihood and log likelihood function are
N
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and
N

L(y,3~,a|x) = N log g"+(a-l) S log x± 
1=1

N a
-g"/a E x.+(B"N) /ay . 

1=1 1

Differentiating, one finds the first partial derivatives with respect 

to the parameters :

3L 
dy

B^Ny“ 1,

= N(B-)"1-» 1 Z x“+a
38 1=1

and

= Z log x.+Ba“2[ Z E x“ log x^Ny* log y].
9 Y t=i 1 1=1 1=1

Now it is apparent that the estimate for y in the Weibull has two 

cases according to whether a is known to be greater than unity or not. 

If a is greater than 1, y must be 0. If « is less than or equal to 1, 

y is X(i) as for all the other size curves developed in this disserta­

tion. An explicit expression for in terms of y and a is obtain­

able as

l" = a{l/N I x^-y*}"h 
1=1

It is not possible to get an explicit expression for a in terms of 

y and the observations only. In order to estimate B and a 

conditionally given y is x^ by the method of scoring, one can easily

find the second partial derivatives as
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92L

92
3B"aa

32L a 2{ E x^-Ny^l-a 1 • 
i=l i

{ Z x? log x?-Nya log y} 
1=1

and

^4= -2B-a-3[ X x“-N?]+2B-a"2[ X x" log x -Ny* log y] 
3“ i=i 1 1=1

t N o A 9
Z x. (log x ) -Ny (log y) L 

1=1 1

If, however, a is known to be greater than 1 (a reasonable guess if 

the empirical distribution function appears to be that of a J-shaped 

density function), x is 0. Then the conditional log likelihood 

becomes 
a N -1 N a

—,a|^=0,x) = N log C+(a-l) % log x±-B~a / \ 
i=l 1-1

and the first partial derivatives become

N = N(B")"1-a"1 x“ 
i=l 

and

= Z log x.+B-a"2 Z x"-B"a~l £ \ xf 
3a i=i 1 i=l i=l

So solving for B", one finds

- - N ; _
= a(l/N Z x.) .

i=l
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There is still no explicit solution for a. The second partial dériva-

tives become

L = -N(B~)“2

92L d2L
3a3

a
i=l

a x.-a 1 Z x^ log x± 
1=1

and

= 
da2

-3?

1=1
x%2Ba a , x. log X

-1
-B"a

N «n
Z x (log 

1=1
2

If a is less than zero, the form of the density is changed to

With the corresponding change, the likelihood and log likelihood

functions become, respectively,

*(Y,
N }"N(g^)N( ir 
i=l

a-1 x.

N
Z

a a.x.-Ny )
e

and

L( Y,B'\a|x) = -N log{l-e^^"^ }+N log B"+(a-l)

N
I

N
log x.-$"/a[ Z 

1 i=l

Taking the first partial derivatives, one obtains

2L . 
a y
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ex N3L _ M(@--)-l+Na-1Y"{l-e6"/"Y Z
38 i=l

and

a N}-Y'crl{a-V-Y" log Y)+ log x
3 a i—1

_1 i N N
a {a E x?- Z x. log x }.

1=1 1=1

It is clear that for negative a, a is x^. No explicit solutions 

for 8 or a are able to be found. The second partial derivatives of 

the conditional likelihood given y is x^^ are as follows.

o VP )

-Nc^Y’C^-log 1

and

5^ - vl2
3œ2

-N{l-e^' }-18 ""a"1 ya{ -2a~2+2a-1 log y-(log y)2}

N N N 2-28^a"3 E x“+28' « S x“ log x -8'% I x^log x±) . 
i=l 1 i=l 1 1=1

These derivatives may be used to produce the conditional maximum like­

lihood estimates of 8" and a by the method of scoring.
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C. Least Squares

Since all of these size distributions have a simple, closed form 

representation of their respective distribution functions, another 

possibility for a fitting method is to minimize the sum of squared 

weighted deviations of the estimated parametric distribution function 

evaluated at the ordered observation points from its expectation, the

empirical cumulative distribution function, by means of nonlinear 

least squares. Some notation must be introduced here to facilitate 

the discussion. By the column vector 6, is meant the vector of parame­

ters for the particular size distribution under consideration. For 

the Pareto, _e contains only y and B. For the exponential-generic 

curve, 0 contains y, B, n, p and k. For the Weibull, it has y, B 

and a. If x^ is the rth observation in the ordered sample arranged 

from smallest to largest, then the empirical distribution function,

S(X(r))’ has the value r/ (N+l) corresponding to that x^^. In case

of tied observations, the average rank is assigned to those in the

tie. F(x, ) is the size distribution evaluated for x It is

dependent upon the parameters included and could well be written as

F(x(r)I.D- Let

be the column vector of partial derivatives of F(x^^)

s = S(X(i))

S(X(2))

and F, = F(X(i))

F(x(2)>

Now let 9F(X(r)) 

with respect to
g

the parameters. So one may write VF(x^^)=g-Q'F(x^^) . 
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An asterisk beside a vector or an element of a vector is used to indi­

cate the evaluation of the expression for a particular choice of 0_, 

call it 0_*. Accordingly let

1* - ïU* and «-W1 - W.

Now since F(x) is a distribution function, it is well-known that the 

expectation of F(x(r)) is r/(N+l) or S(x(r)). The variance-covariance 

matrix for F(x(1)), F(x^^), F(x^) is also well-known and has

the form

tridiagonal form which greatly simplifies calculational problems :

N N-l N-2 N-3 ... 1

N-l 2(N-l) 2 (N-2) 2(N-3) ... 2

N-2 2(N-2) 3(N-2) 3(N-3) ... 3

V = (N+1) -2 -1(N+2) 1 N-3 2(N-3) 3(N-3) 4(N-3) ... 4

1 2 3 4 ... N _

The inverse of the -1 variance-covariance matrix, V , has a convenient

as

2 -1 0 0 ... 0

-1 2 -1 0 ... 0

0 -1 2 -1 ... 0

V-1 = (N+l)(N+2) 0 0 -1 2 ... 0

• • • .
• • • . «
• • • . «

0 0 0 0 ... 2

In terms of the usual nonlinear least squares , the model may be written
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S_ = F + £
where the vector £ is a vector of errors such that the expectation of 

e, E(e), is the zero vector £ and the variance-covariance matrix of 

the e is V. In other words,

e (£) = 2 and E(£ £0 = V.

Now the least squares solution for linear unbiased estimators of the 

parameters requires the minimization of the expression

(S-F)'V-1(S-F) or £'V 1£.

Since F(x) is a nonlinear function of the parameters, it may be 

approximated by a Taylor’s series expansion about 8* which is trun­

cated after the first order derivative terms :

F(X(r) ) =

Then the fit may be made iteratively using one of the many nonlinear 

fitting techniques descended from the Newton-Raphson approach. Because 

of the high correlation often encountered among the parameter estimates, 

a Marquardt-type algorithm is probably to be preferred. If the model 

is written in terms of the approximation, it becomes

= F*+vF*(e*-0)+£ 

where
VF* = (VF*(x(1))VF*(x(2)) ... VF*(x(n)))*.

Then the expression to be minimized by some iterative method is 

[S-F*-VF* (£*-£) ]-V"1 [ S-F*- F* ) ] .

Since the solution to this problem often requires programming which 

is different from that available in standard computer libraries, one may 

sometimes wish to settle for an approximate solution which assumes that 
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V is the identity matrix so that only e/e_ is minimized. It may, however, 

yield quite satisfactory estimates of the parameters for many sets of 

data.
Either of these two least squares methods requires the first par­

tial derivatives of the distribution function. These are given for all 

the size distributions studies in this paper. The second comment to be 

made is that, as with the maximum likelihood estimation procedures, one 

would prefer least squares solutions which are restricted so that the

estimate of y is always less than or equal to x^) and that of k is

greater than X(N) ’ It is not in general true that the

estimate for y is x^. If the estimate for y appears

least squares

to be stuck on

the bound at X(D it is necessary to consider the conditional least

squares solution for the other parameters given that y is , 1 

the same manner as for the maximum likelihood solutions, y must also

be greater than zero.

be arbitrarily set to

If the estimate is stuck on that bound, y may 

some very small positive number and the condi

tional solution there obtained. If k appears to be stuck on the 

bound at x (N) it may be set to x^ and the conditional solutions

found; however, in this case, any calculations at x^^ itself must 

be handled as special points to be separately calculated since the 

usual computer routines can not proceed for the limiting forms in­

volved. An alternative choice is to set k instead at x^ plus some 

very small positive number and to obtain the least squares condi­

tional solutions for the other parameters at this bound. In the 

following pages, the function and its partial derivatives are given 

for all of these size distributions.
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For the Pareto, the distribution function is

-1 . -B F(x) = l-(y x) .
Taking the first partial derivatives with respect to y and B, one finds 

them to be

®. -bvVV6 
dy

and

O p
For the exponential-logistic, the distribution function is

— B RF(x) = 1-(k/y-1) (k/x-1) .

and the three first partial derivatives are

_Bkt-2(k/Y-1)-(S+1)(K/x-1)6,
9y

= (k/y-1)"6 (k/x-1) P[log(K-y)+log x-log y-log(K-x)]
9 B 

and

= gY-1(K/y-l)"^+1\K/x-l)0-Bx 1(K/y-l) (k/x-1) .

For the exponential-Gompertzian size distribution, the cumulative 

distribution function has the form

—B B "F(x) = l-[log(K/y)] [log(K/x)] .

Then the first partial derivatives with respect to y, B^ and k are

^21- = -B'y-1[log(K/y) ^^[log(K/x) ]^,
9 Y

= [log(K/y)]”e [log(K/x)]^ {log[log(K/y)J 
d B

-log[log(K/x)]} 
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and

o K

2 Clog(K/y)] }.

For the last of the lower curves, the exponential-Bertalanffy- 

Richards size distribution, it simplifies the expressions to intro­

duce some collapsing notation. Let A = (k/y) -1 and Y = (k/x) -1 

so that (K/y)n is (A+l) and (c/x)* is (Y+l). Then the cumulative 

distribution function may be written as

F(x) = 1-A'^^Y^^.

Likewise, the first partial derivatives with respect to the parame­

ters y, 3, n and k may be written as

Sy

= n"V^^Y^[log(A)-log(Y)], 
O p

= 3n'^A"^^^^ En^log(Y/A) -{ (Y+l) /Y}log(</x) 
9n

+{(A+l)/A}log(k/y)] 

and "

9 K

The first of the upper curves to be presented is the exponential- 

hyperlogistic size distribution. Again one may make use of "accordion" 

mathematics. Let A = k/y-1 and Y = k/x-1 so that (A+l) is (k/y) and 

(Y+l) is (k/x). Then one may also define an expression H such that

H = 1-exp[3p ^(A P-Y P)].



165

For positive values of the parameter p, the cumulative distribution 

function is

F(x) = H.

The partial derivatives of F(x) with respect to the parameters y, B, 

p and k are

3y

dp

= (l-H)Bp-1[ (A-p-Y-P)p-1+A Plog(A)-Y Plog(Y)] 
dp

and

d K
For negative values of the parameter p, one may add the shorthand 
expression D such that D = l-exp(Bp 1A P) and (1-D) is exp(Bp A P).

Then the cumulative distribution function becomes

F(x) = D

The first partial derivatives with respect to y, B, p and k are

3y

= d~1p"1[(d"1h-i)a"p+(i-h)y"p],
3 B

3.F (%) = -D-2(l-D)HBp-1A-p[p-1+log(A)]-D 1(l-H)Bp 1 • 
3p

[p-1(Y-p-A"P)+Y~Plog(Y)-A~Plog(A)] 

and

W2X . -d-2(i-d)hby"1a-(p+1>-d-1(i-h)6 •3k
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The second of the upper curves, the exponentia1-hyper-Gompertzian 

distribution, requires some similarly defined expressions. Let 

A = [log(</y)]~P and Y = [log(c/x)]~P. Then H is defined such that

H = l-exp[g^p ^(A-Y)].

If p is positive, the distribution function, F(x), is H. For the 

first partial derivatives of F(x) with respect to y, 6", p and <, one 

obtains

Sy

= -(l-H)p"1(A-Y), 
op

= (1-H) (A-Y)p"^+A log[log(K/y) ]-Y log[log(</x) ] }
9p

and

Again for negative values of p, one may denote, by D, the expression 

[l-expCB-'p^A) L So for this situation the distribution function 

becomes
-1 F(x) = D II.

The first partial derivatives are

’em . 6vV^D^H-Dciogd/Y)r(p+1). 
dy

^4- = p^D-1: (D-1H-1) A+(l-H) Y] , 
o p

= -D-2(l-D)HB"p~1A{p"1+log[log(K/y)]}-D~1(l-H)B-'p 1.
dp

{p-1[Y-A]+Y log[log(k/x)]-A log[log(K/y)]}
and
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3FW = -D^d-Djg^HClogCK/Y)] 1(1-H)6'k 1
3k

{[10g(K/x)]"^^-[10g(K/Y)]"^^}.

For the exponential-generic curve, one may make the parallel

definitions of expressions :

A = (k/y)11-!, A+l = (k/y)

Y = (K/x)n-l, Y+l = (</x)"

and

H = l-exp[gn p (A -Y )].

Then for positive values of the parameter p, the cumulative distribu­

tion function is

F(x) = H.
Differentiating with respect to the five parameters, y, B, n, P and <, 

one obtains

3y

WSX - -(l-H)n-1p'1(A-p-Y-p)>
3B

(x) _ gn ^{(A P-Y P)n ^p ^+[A \A+l)log(K/Y) 
3n

-Y"^+F) (Y+l)log(i</x) ]},

ajW = (1-H) Bn'(A"P-Y"P)p'1+A"Plog(A)-Y-plog(Y) ] 
3p

and

3k
To take care of the exponential-generic curve for a negative value of 
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p, one may define D such that 
“1 ”1 “p. D = 1-exp(8n p A ).

Now the cumulative distribution function is

-1 F(x) = D H.

The set of first partial derivatives is as follows:

^21. ÜT-hA+DA-^’D'hD'Vl), 
9y

= n-1p-1D-1[ (D-1H-1)A~P+(1-H)Y P], 
d 8

BESsi- = D-^l-D^Bn-^n-S'^+A'^tA^^ 
9n

+D"\1-H) 8n-\n-\-\A-p-Y-p)+A-(p^) (A+l) -

log(K/y)-Y~(p+l)(y+l)log(K/x)],

-D-2 (l-D)H8n~1p""1A~P[p 1+log(A)]-D 1(l-H)3n p
BP

[p-1(Y~P-A~P)+Y-Plog(Y)-A Plog(A)]

and
9F^ = -D~2 (1-D)H6k~^ (A+l) A ^P^^ -D (1-H) 8k 1 
9k

[ (Y+^Y-^"1”1)- (A+l) A~(p+1) 1.

The last of the size distributions covered here is the Weibull.

Here one may use the letter H to represent the expression

{l-expCB^^a l(y -x )]}.

So the cumulative distribution function for the case of positive a is

F(x) = H.
The first partial derivatives with respect to y, 8 and a are
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= -(l-H)B'Y 1, 
ay

d p 

and

= -(1-H) (x°-Y^)+Y°log(Y)-x^log  (x) ].
da

If a is negative, one may define a D such that

— 1 Q, 
D = 1-exp(By ).

Then the cumulative distribution function is written as

-1 F(x) = D H.

The corresponding set of first partial derivatives is

= B^y^D^CD^H-I),
° y

(D" Vl) y^+(l-H) x" ] 
d p

and

(l-D)HB'"a"V (u^-log y)-d"1(1-H)B"cx~1. 
da

[a (x -y )+y log(y)-x log(x)].

This completes the list of functions needed in order to use either the 

weighted or the unweighted least squares methods of parameter estima­

tion discussed at the beginning of this section. In the next chapter, 

several interesting examples are presented and practical aspects of 

the nonlinear fitting are discussed.



VIII. EXAMPLES AND PRACTICAL CONSIDERATIONS

Before proceeding with the presentation of seven examples of size 

distributions fitted to data, a few practical considerations must be 

stated. The lower curves are relatively simple to handle. Conver­

gence can often be easily obtained even with very poor initial values. 

The methods for acquiring starting values discussed in the preceding 

chapter, however, provide good starting values for data following 

shapes covered by the lower curves. In turn, the upper curves are 

easily handled from the estimates found for the parameters of the 

lower curves in this case. These general comments are true whichever 

the method of fitting is chosen. If the curve form needed is not one 

of those typical of the lower curves, the process becomes much more 

difficult for several reasons. These curves tend to have values for 

p or a which are much farther from zero than is tolerable for the 

estimates of Y, k and g or 6' to bear much relationship to those 

taken from the lower curves. It is better in such cases to use a 

method of getting starting values which assigns y and k and constrains 

the initial estimates to pass through particular percentile points of 

the empirical distribution function. With modern hand calculators, 

an iterative process of this kind may be quickly accomplished. For 

the upper curves, it is especially important that these starting 

values be quite close to the actual estimates. The reason for this 

170
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is to be found in the close relationship to the Weibull. This distribu­

tion is notoriously difficult to fit because very small changes in the 

parameter which designates the power of the random variable create 

dramatic changes in the values of the function to be fitted. The usual 

approach necessary for such a situation, even with adequate initial 

guesses for the parameter estimates, is to step the values assigned 

to that parameter systematically and to obtain converged estimates of 

the other parameters at each of these stepped points. It is usually 

possible by this method to get close enough to the estimates sought to 

turn the fitting process loose and to obtain converged values for all 

of the parameter estimates. Sometimes, however, one finds oneself in 

the situation of having many local minima (or maxima) or of having an 

extremely flat surface in the parameter space (usually due to over­

parameterization) . Either of these problems can be spotted with 

mapping the adjacent points for the function to be maximized or mini­

mized.
The other problems which plague attempts to fit the upper curves 

are numerical in nature. There are primarily two such types of prob­

lems. In those of the first sort, there tends to be a greater range 

in the sizes in the data so that the estimates of the k to y ratio 

is larger than 2. If the estimate required for p is fairly large 

(perhaps greater than 6) or if the initial guess for p is too large, 

the sequence of events encountered in the fitting process tends to 

be of this variety. First the exponential piece of the function which 

contains the parameter y becomes effectively zero. There is no con­

tribution being made from the normalizing term. This causes an 
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apparent singularity with respect to the estimate for Y. It also causes 

the loss of the terms involving this correction factor from the calcu­

lation of the partial derivatives. As a direct result, the possibility 

of the partial derivatives' ever becoming near zero is lost. They are 

forced to continue to change the parameters' estimates in the same 

direction in constant or even increasing steps. The estimates for all 

of the remaining parameters tend to become quite large, although a 

pseudoconvergence may appear as the limits of the accuracy of the cal­

culations are reached. If this difficulty has been caused by a poor 

guess for p (or, even more likely, by a poor combination of initial 

guess for p and g or 30, this state of affairs may often be overcome 

by returning to those initial guesses and mapping the function to be 

minimized or maximized around those points for fixed values of Y and 

k. If this is successful, better staring values will be obtained. 

If the range of the data is indeed large, however, one may be forced 

to abandon the upper curves which contain < in favor of the Weibull s 

simpler assumptions. One should note that this solution must be 

adopted if the data in question appear to run out when the distribu­

tion function is still rising. In this case, there is insufficient 

information in the data to allow the estimation of the parameter k. 

If the problem appears to be purely a numerical one so that the esti­

mate of 3 or 3' is large and very highly correlated with those of p 

and k, a model retaining k but placing a restriction upon 3 or 3 

may give a preferable solution. What has happened in these cases is 

most easily shown in the exponential-hyperlogistic function in the 

least squares case. The factor (x/y-1) P is gone from the equations 
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and the effect upon the function to be minimized of the smaller observa­

tions is also greatly decreased so that the fit of the estimated func­

tion to the smaller observations is actually worsened with each 

successive iteration. The estimate of k is forced upward until the 

effective difference between (k/x-1) and (k/x) is lost. It is as if 

the expression £k~P has become a new parameter; the parameters B and 

k are no longer separable. In this situation, a useful restriction 

for B might have the form B = Wy-l)^. Of course, if this choice 

is made, it is necessary to reconstruct the function to be maximized 

or minimized with its partial derivatives accordingly. The sixth 

example considered in this chapter, that of the weight of male chick­

ens, is a good illustration of this phenomenon.
The second numerical trouble tends to appear conversely when the 

range covered by the data is shorter so that the k to y ratio is 

between 1 and 2 and closer to 1. Estimates of k that are near the 

maximum sample value in size cause the appearance of large negative 

values in the expression to be exponentiated. For this situation 

the estimate of the distribution is essentially unity for large obser­

vations. When this has happened, it is common for the parameter esti­

mate for p to be large, for that of B or B" to be small and for that 

of k to be reasonably close to the maximum observation. Although 

there is a considerable loss of accuracy both in the function estima­

tion and in the estimates of the partial derivatives, the fit obtained 

may still yield quite an adequate description of the data. There will 

be some systematic deviation from fit in that the estimate of the 

function will be slightly too large for large values of the observa­

tions (symptomatic of the trouble with rounding error in the machine) 



174

and those for smaller values of x will be slightly too small. It may 

be possible to check the convergence or to adjust the values slightly 

by mapping around the apparently converged values. One should be 

aware that if the values which cause this problem are not really 

necessary to describe the data but are an artifact of a poor choice 

of starting values, most of the nonlinear fitting techniques will be 

unable to recover and to proceed, unaided, toward better estimates. 

They can not pull out of this sort of numerical trouble. It must 

only get worse until a pseudoconvergence is reached. Again the way 

out of trouble involves mapping the function for values of the param­

eters removed from those which led to difficulty. The importance of 

the initial estimate for p or for a in the Weibull can not be overem­

phasized if a reasonable fit of one of the upper curves to real data 

is to be obtained. It is only slightly less important for the ratio 

of 3 to p in the exponential-hyperlogistic function or in the expo­

nential-generic function, that of 6' to p in the exponential-hyper­

Gompertz function and that of ?" to a in the Weibull to be approxi­

mately correct, certainly within the correct order of magnitude. 

Both of these requirements are more relevant for the ability of a 

particular program to converge than are the initial estimates for y 

and k. The remainder of this chapter is devoted to the illustration 

of these points through examples.
Three methods for fitting these size distributions to data have 

been discussed in the seventh chapter. Maximum likelihood and 

weighted nonlinear least squares with a nondiagonal weight matrix 

are both more difficult to use than unweighted nonlinear least 

squares since they cannot be done using standard computer programs 
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without much additional specialized programming for a given model. For 

this reason, the three techniques are all used on only one of the 

examples, the first. All of the estimates included in this section 

were obtained using the Statistical Analysis System (SAS) of Barr et al. 

(1976). The maximum likelihood estimates were obtained using the method 

of scoring. Both the maximum likelihood and the weighted nonlinear 

least squares techniques were implemented with special purpose pro­

grams using the matrix manipulation procedure in SAS. For the un­

weighted nonlinear least squares estimates, the nonlinear procedure 

already available in SAS was used. The algorithms utilized varied 

with the examples. They included Gauss-Newton, steepest descent, a 

Marquardt algorithm and grid search. The Marquardt approach has 

usually proved the most efficient ; however, it may accentuate the 

numerical problems if they are present. In this event, Gauss-Newton 

together with careful grid searches is better.

The first example, taken from the Pocket Data Book USA 1973, issued 

by the U.S. Department of Commerce (Lerner et, al. , 1973), is the list 

of sizes measured in thousands of persons of the one hundred largest 

metropolitan areas in the United States according to the 1970 census. 

The smallest observation is Binghampton, N.Y. - Pa. at 303,000 per­

sons. The largest is New York City at 11,529,000. One point which is 

brought out by this example is the nature of the family of size dis­

tributions when the data are truncated from the left, on the small 

side. There is no change in the form of the distributions. Only the 

interpretation of the parameter y is affected. Instead of represent­

ing the smallest measurable size, y becomes the truncation point for 
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the distribution. Firstly, the unweighted nonlinear least squares solu­

tions for the estimates of the parameters in all of the size distribu­

tions in this family are considered. The empirical distribution 

appears to be J shaped in form so that the fitting of the lower curves 

is reasonable. The starting values for the upper curves are taken 

from the estimates of the appropriate lower curves in each case. Note 

that the data are recorded in thousands. The total uncorrected sum of 

squares is 33.168. For a summary of the various models for this exam­

ple, see Table 1. For the Pareto, the simplest model, the estimate of 

y is 296.522 with an asymptotic standard error of 2.071. The estimate 

of g is 0.949 with an asymptotic standard error of 0.013. The sum of 

squared residuals is 0.074 with 98 degrees of freedom. For the expo­

nential-logistic model, the parameter estimates are y = 294.442 with 

asymptotic standard error 2.001, B = 0.894 with standard error 0.020 

and k = 11933.878 with standard error 3556.091. The sum of squared 

residuals is 0.057 with 97 degrees of freedom. The increase in the 

sum of squares explained by the model over the Pareto is 0.015 which 

is clearly significant. For the exponential-logistic model, there 

is a clear improvement in fit over the Pareto. Next the exponential- 

Gompertz model is tried. The unweighted least squares estimates are 

found to be y = 282.850 with standard error 2.199, B' = 2.798 with 

standard error 0.227 and k = 12012.494 with asymptotic standard error 

2808.188. The residual sum of squares is 0.035. This is an improve­

ment of 0.039 in the model sum of squares over the Pareto which is a 

greater improvement than that produced by the logistic based model. 

The Bertalanffy-Richards based model produces these estimates: 

y = 284.370 with standard error 2.684; g = 0.176 with standard error
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0.608; n = 0.070 with standard error 0.290 and k = 11805.614 with stan­

dard error 10732.159. The residual sum of squares is 0.035 with 96 

degrees of freedom. This is an improvement in explaining power over 

the logistic based model of 0.022 in the sum of squares which is sig­

nificant. It is not, however, a significant improvement over the 

exponential-Gompertz model since the sum of squared residuals differs 

only in the fourth decimal place. The exponential-hyperlogistic 

model yields the following estimates : Y = 283.788 with standard error 

2.707, B = 1.828 with standard error 0.933, p = 0.244 with standard 

error 0.087 and < = 12000.011 with standard error 9896.118. Again 

the residual sum of squares is 0.035 with 96 degrees of freedom. 

Apparently this model is a significant improvement over the logistic 

based model but not very different in explaining power from the expo­

nent ial-Bertalanffy-Richards  . The exponential-hyper-Gomper tz model 

gives estimates from the formulation for negative values of p as 

y = 284.135 with an asymptotic standard error of 2.577, g' = 2.560 

with standard error 2.975, p = -0.082 with standard error 0.598 and 

k = 12002.673 with standard error 19707.088. The residual sum of 

squares with 96 degrees of freedom is 0.035. There is no signifi­

cant improvement in sum of squares explained by the model for the 

exponential-hyper-Gompertz over the exponential-Gompertz. The fit 

is essentially equivalent to that from the exponential-Bertalanffy- 

Richards model. The attempt to fit the exponential-generic model 

with all five parameters returned to the Bertalanffy-Richards based 

model. With the presence of the parameter n, it is not possible to 

add the parameter p. This estimation try gives these results: 

y = 284.361 with standard error 3.509, g = 0.175 with standard error 
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5.460, n = 0.070 with standard error 2.873, p = -0.000 with standard 

error 5.079 and < = 11805.614 with asymptotic standard error 61480.811. 

The residual sum of squares again is 0.035, now with 95 degrees of 

freedom. The last of the size models, the Weibull, was also used. 

The estimates it gives are: Y = 282.470 with an asymptotic standard 

error of 2.477, 8" = 0.109 with an asymptotic standard error of 0.024 

and “ = 0.337 with an asymptotic standard error of 0.034. The resid­

ual sum of squares is 0.036 with 97 degrees of freedom. This is a 

significant improvement over the Pareto model with a reduction in the 

error sum of squares of 0.038. Of the collection of models fitted 

here by unweighted nonlinear least squares, the best model to describe 

the data, from the point of view of residual sum of squares and of 

economy in terms of number of parameters needed, is the exponential- 

Gompertz distribution. Figure 9 presents the results of this model 

graphically.
The exponential-Gompertz model was also fitted to these data 

using the maximum likelihood technique. It is always the case for 

this family of distributions that the maximum likelihood estimate 

for y is the smallest observation. For the cities this means that 

y = 303. Maximization of the log likelihood function conditional 

upon this value for Y yields a log likelihood value of -755.319. 

The estimates for 6 and k are: 3 = 4.539 with an asymptotic stan­

dard error of 0.454 and k = 53029.7 with an asymptotic standard 

error of 20719.0. The asymptotic information matrix conditional on

Y = 303 is _
F -44.855 -1.032 x 10

-1.032 x 10"4 2.329 x 10 9
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and convergence was obtained after a total of 51 iterations.

The weighted nonlinear least squares approach gives the following 

estimates : y = 284.594 with standard error 5.522, g = 3.150 with 

asymptotic standard error 0.142 and k = 16970.9 with standard error 

8905.2. The variance-covariance matrix of the parameter estimates 

has a determinant of approximately 2247963. Its trace is 79301848 
-6 approximately and its sphericity is roughly 4.956 x 10 . Its eigen­

-3 values are 79301840, 7.886 and 3.595 x 10 . If the log likelihood

function is evaluated for these estimates, it is found to be -760.999. 

The weighted sum of squares for the model with 3 degrees of freedom is 

140257 with mean sum of squares 46752.5. The error sum of squares 

is 799.418 with 97 degrees of freedom and the mean error sum of squares 

is 8.241. The total weighted sum of squares (uncorrected) is 154386. 

These estimates used in the unweighted formulation produce a residual 

sum of squares of 0.035 so that they differ in the unweighted sum of 

squares for error from the unweighted estimates only beyond the third 

decimal place.

The second example is the number of murders and/or instances of 

manslaughter in 16 selected cities in the United States as recorded 

in the United States Statistical Abstract for 1970 and cited by Harti­

gan (1975) . The sizes per 100,000 population ranged from 2.5 for 

Hartford to 18.1 for Dallas. These data follow an empirical distribu­

tion function which has a slight inflection point toward the lower 

end, but is relatively linear on the whole. There is a good deal of 

scatter in the observations. In this case, nonlinear unweighted least 

squares fits are made for several of the size models. The lower 

curves are computed mostly to get starting values for the upper curves.
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They should not provide an adequate description of the data since some 

slightly S shaped appearance is present. The Pareto estimate for y 

is stuck upon the bound at 2.5. The estimate for 8 is 0.637 with an 

asymptotic standard error of 0.097. The residual sum of squares is 

0.215 with 14 degrees of freedom. The exponential-logistic model 

also has an estimate for y which is fixed at the bound, 2.5. The 

estimate for 8 is 0.387 with a standard error of 0.032 and the esti­

mate of k is 18.140 with a standard error of 0.147. The residual 

sum of squares is 0.052 with 13 degrees of freedom. This model is a 

highly significant improvement over the Pareto. It reduces the error 

sum of squares by 0.163. The exponential-Gompertz fit yields an esti­

mate for y at 2.368 with an asymptotic standard error of 0.246. Then 

B' = 0.635 with standard error of 0.051 and k = 18.379 with standard 

error 0.492. The error sum of squares is 0.030, which is a reduction 

of 0.185 over the Pareto. The exponential-Bertalanffy-Richards fit 

goes to its limit as n approaches 0 and returns the exponential- 

Gompertz fit. One finds y = 2.368 with standard error 0.237, 8 - 
~ —3

6.000 x 10~$ with standard error 0.000, n = 9.000 x 10 with standard 

error 0.000 and k = 18.379 with asymptotic standard error 0.475. Again 

the error sum of squares is 0.030. There is a clear indication that the 

Gompertz based fit is to be preferred over the logistic based fit. The 

hyper-Gompertz based model produces a y of 1.441 with standard error 

1.022, a 8' of 2.252 with a standard error of 5.926, a p of 1.667 with 

a standard error of 2.112 and a k of 34.384 with a standard error of 

33.382. The residual sum of squares is 0.021 with 12 degrees of free­

dom. If the significance of this model over the exponential-Gompertz 

is studied by means of a pseudo-F statistic with 1 and 12 degrees of
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freedom, one obtains a value of 4,763 which appears to be significant. 

The exponential-hyperlogistic does not do quite as well. The esti­

mates are as follows: ÿ = 1.325 with standard error 1.268, B = 1.360 

with standard error 1.809, p = 0.964 with standard error 0.534 and < 

= 27.233 with a standard error of 12.358. The residual sum of squares 

is 0.022 with 12 degrees of freedom. It is not possible to fit the 

exponential-generic curve in this case. Apparently the exponential­

hyp er-Gompertz distribution gives the best description of the murder 

data.
Since much of the development of size distributions historically 

has been concerned with data on the number of individuals in a group 

of related species or the number of species in a group of related 

genera, it seems desirable to include one example of that type. This 

third example is that of Dr. J. C. Willis on the number of genera of 

Cerambycinae with 1, 2, 3 or more species, used by Yule (1924). The 

data range from 469 genera with only 1 species to 1 genus with 125 

species. The total number of observations is 1024. The data appear 

to follow a steep J shaped curve. The Pareto distribution gives an 

error sum of squares of 0.081 with 1022 degrees of freedom. The 

parameter estimates are y = 0.704 with a standard error of 0.001 and 

g = 0.738 with a standard error of 0.001. The exponential-logistic 

model produces a y of 0.700 with an asymptotic standard error of 

0.001, a 8 of 0.721 with a standard error of 0.001 and a k of 125.000 

which is the lower bound for k. The error sum of squares is 0.040, 

half of that for the Pareto. The exponential-Gompertz model has an 

error sum of squares of 0.017, which is much smaller than that for 

logistic based model and less than one-fourth the size of that for 
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the Pareto. The parameter estimates are y = 0.673 with a standard error 

of 0.001, 8^ = 6.220 with a standard error of 0.093 and k = 10219.558 

with a standard error of 1288.364. The exponential—Bertalanffy-Richards 

model, however, yields the best fit to these data. Its error sum of 

squares is only 0.009 with 1020 degrees of freedom. The parameters are 

estimated as y = 0.683 with a standard error of 0.001, 8 — 0.613 with a 

standard error of 0.006, n — 0.452 with a standard error of 0.022 and 

k = 125.000 with a standard error of 8.927 (not actually stuck on the 

bound in later decimal places). The attempt to fit the exponential- 

hyperlogistic is a significant improvement over the logistic based 

model, but not quite as good as that of the exponential-Bertalanffy- 

Richards. The error sum of squares is 0.012 with 1020 degrees of 

freedom. Estimates are y = 0.676 with a standard error of 0.001, 8 

= 1.003 with a standard error of 0.020, p = 0.082 with a standard error 

of 0.003 and k clings to the bound at 125. The attempt to fit the 

exponential—hyper—Gompertz fails and the attempt to fit the exponential— 

generic curve essentially returns to the Bertalanffy—Richards based 

model with an estimated value for p which is smaller than 0.0002.

The fourth example is the diameter at breast height in inches of 

a stand of 220 Shorea leprosula trees, ranging in size from 6 to 22 

inches. The data are truncated on the left. This data set and other 

related ones were communicated to H. Fairfield Smith in 1954 by G.G.K. 

Setten of the Forest Research Institute in Selangor, Malaya. The 

measurements were recorded there in 1952. The model that seems appro­

priate as a first try is the exponential-hyperlogistic. This actually 

fits the data quite well. The parameter estimates are the following: 

y = 1.664 with an asymptotic standard error of 3.697, 8 = 34.560 with
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an asymptotic standard error of 17.112, p = 2.885 with an asymptotic 

standard error of 0.115 and < = 53.785 with an asymptotic standard 

error of 4.698. The error sum of squares is 0.012 with 216 degrees of 

freedom.

The fifth example is the size of brain cells located behind the 

optic nerve in a kitten which has had one eyelid sutured shut from 

shortly after birth. This study of brain cells in light-deprived 

kittens was done by Dr. Terry Hickey of the University of Alabama in 

Birmingham School of Optometry. The data set consists of sizes 

(areas) of 100 such cells ranging in size from 99.9 to 767.6 square 

microns. The empirical distribution function is an example of an S 

shaped curve which is still rising when the data terminate. Although 

an attempt was made to fit both the exponential-hyperlogistic curve 

and the exponential-hyper-Gompertz distribution, it became obvious in 

both cases that there is insufficient information in the data to do 

so. For this reason the Weibull fit, which describes the curve beau­

tifully, is given here. The estimates are these: y = 99.9 (the upper 

bound for y) , a = 2.134 with an asymptotic standard error of 0.071 and 
~ -5 -5Q" = 0.737 x 10 with a standard error of 0.295 x 10 . The error

sum of squares is 0.078.

The sixth example is rather different from those already presented 

in that the data are calculated measures of size produced by an assumed 

model. They are taken from the doctoral dissertation of Gary F. Krause 

(1963). The model assumed is the logistic. Longitudinal data on the 

weights of each of 78 male, Athens-Canadien chickens, in grams, was 

fitted by the logistic. The least squares parameter estimates for each 

of the three parameters of the logistic were recorded for each bird.
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The data used here consist of the estimates of the upper limit to this 

juvenile growth cycle for each of these birds. The model chosen to 

describe these sizes is the exponential-hyperlogistic distribution. 

One should know that the empirical distribution function follows an S 

shaped rising curve. - There are several points in the flatter area on 

the right end. There should be enough information in the data to get 

an idea of the size of c. It is also true, however, that the p value 

required is at least greater than 5, because of the slope of the rise. 

This curve is an example of the numerical problem encountered when p 

is this large and the k estimate is such that the k to y ratio is 

greater than 2. There is an apparent singularity with respect to y. 

The estimate of y is on the bound at 2249 grams. The estimate of B 

is 24480.654 with a standard error of 445777.076 and the estimate of 

p is 6.601 with an asymptotic standard error of 3.272. The estimate 

of k is 12664.043 with a standard error of 20360.926. This is roughly 

28 pounds, more like a large turkey. The error sum of squares is 

0.027 with 74 degrees of freedom. This is one of the occasions when 

applying the B constraint that B = (r/y-1)^ provides a stabilizing 

influence. The estimate of y remains on its upper bound at 2249 

grams. The estimate of p is lowered slightly to 6.276 with a standard 

error of 1.346. The k estimate is also lowered slightly to 11595.173 

grams with a standard error of 6142.840. The residual sum of squares 

is increased by only 0.001 which is not at all a significant change. 

There are 75 error degrees of freedom. Again all of the estimates 

for this example are the unweighted nonlinear least squares estimates 

subject to the constraint that the estimate of y must be less than or 

equal to the smallest observation.
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The last example is a unimodal curve of the sort quite representa­

tive of this size family. It has an abrupt descent to the size axis 

on the right side and a more gradual rise, although still a steep one, 

on the left. The data are the by-product of a hypertensive survey con­

ducted by optometrists in the southeastern part of the United States 

under the direction of Dr. John R. Pierce of the University of Alabama 

in Birmingham School of Optometry. The sample included 5326 white 

males over 18 years of age. The data ranged from 48 inches to 83 

inches. Unweighted nonlinear least squares estimates are obtained 

using the exponential-hyperlogistic model. Note that the value of p 

required is high, greater than 9. The value of « required is reason­

ably near the maximum observation. The result is the second type of 

numerical problem discussed. There still appears to be some system­

atic deviation from fit, but it is not possible to improve the situa­

tion due to the noise levels of the techniques involved and the unit 

of rounding error in the machine (16 13 in double precision in an 

IBM 370/158). Again the estimate for y is on the bound at 48 inches. 

The estimates of the other parameters are as follows: 6 = 0.010 with 

an asymptotic standard error of 0.002, p = 9.694 with a standard error 

of 0.246 and k = 105.900 with a standard error of 1.377. It is amusing 

to notice that, according to the Guinness Book of World Records (McWhir­

ter and McWhirter, 1975), the actual height of the world’s tallest man 

was 107.1 inches. The sum of squared deviations from fit for this 

model is 1.174 with 5322 degrees of freedom. For a picture of the 

empirical distribution function and the fitted curve, see Figure 10.

This completes the list of chosen examples for the various members
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of the family of size distributions derived and discussed in this dis­

sertation. The following chapter provides a brief summary of this

work.



IX. SUMMARY AND FINAL COMMENTS

The purpose of this dissertation is to derive and to describe a new 

family of distributions of sizes of individual units which have arrived 

at their current sizes by some process of accretion. There are two 

basic assumptions, out of the host of such, which are possible, which 

are actually utilized. The first assumption is that of an exponential 

distribution of ages for the units in the population. This may be 

thought of alternatively as the resulting distribution if one assumes 

a constant rate of acquisition for a single unit to one’s records, 

whatever the age of the unit may be. The second assumption is that 

growth occurs in a deterministic manner with each member of the group 

to be studied following the same growth curve and that this growth 

curve is a member of the family indexed by the generic growth curve 

of Turner et al. (1976). The general member of this growth family, 
the generic curve, has the form x = k{l+[l+ônp(t-T)] ' . In­

cluded as special members of this family are the geometric increase 

curve, the Gompertz curve, the logistic curve and the Bertalanffy- 

Richards curve. The family of size distributions arising from these 

two assumptions has two forms for the generic size curve depending 

upon the sign of the parameter p. If p is greater than 0, the dis­

tribution function has the following form:
F(x) = l-exp(-g/(np) {[ (c/x^-l] ^-[ (c/y^-l] ^}) .

If, instead, p is negative, between 0 and -1, the distribution must 

190
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be renormalized (maximal growth may occur at a finite time). In this 

case, the distribution function assumes the form:

F(x) = (l-exp(g/(np) [ (k/y)11-!] P) }

{l-exp(-B/(np){[(i</x)^-l] P-[ (</y)"-l] P}) } .

There are basically eight members of this size family, obtained as 

limiting forms when n = 1, when n approaches 0 and when p approaches 

0. Two of these members are well-known curves: the Pareto and the 

Weibull. The lower curves (the Pareto, the exponential-Gompertz, the 

exponential-logistic and the exponential-Bertalanffy-Richards) may be 

J shaped, U shaped or reversed J shaped. The shapes for the other 

size curves include these. They may also be unimodal or look some­

what like a mixture of a unimodal curve and a negative exponential. 

The unimodal curves tend to have long tails to the left and an abrupt 

drop toward the axis on the right for the density functions. The 

moments exist for all of the curves with finite limits although the 

form changes for those containing p according to whether p is posi­

tive or negative. These moments are, however, typically in terms of 

one or more infinite series. Some of the upper moments for the Pare­

to and the Weibull do not always exist. The intensity functions tend 

to be J shaped or U shaped.

Estimation is discussed here in three guises : maximum likeli­

hood, weighted nonlinear least squares fitting the distribution func­

tion against the empirical distribution function using a nondiagonal 

weight matrix, and unweighted nonlinear least squares fitting the 

distribution function against the empirical distribution function. ■ 

This last technique is much the easiest to apply since standard 



192

nonlinear programs may be used without the excessive amounts of addi­

tional programming required for the other methods. It should be noted 

that these techniques are all used here as ad hoc methods. The esti­

mation properties are not well-known for either of these least squares 

approaches or for the maximum likelihood approach in the event that 

the usual regularity conditions are not met. This dissertation con­

cludes with the presentation of eight examples of which the first, the 

size of the one hundred largest metropolitan areas in the United 

States, is the most thoroughly explored.

As with most works of this type, there remain many unresolved 

questions and many areas which would lend themselves well to future 

^gs^apch. For the set of size distributions developed here, the logi 

cal next step is the study of the properties of the three estimation 

methods. One might prefer instead to create another new family of 

size distributions, hopefully with more flexibility of shape, by 

choosing a different distribution of ages. The Weibull or perhaps 

a three—parameter Gamma distribution might be a good choice. Then, 

too, one may investigate the effect of allowing one or more of the 

growth curve parameters to follow a random distribution in the popu­

lation. For each of these possibilities for extending or generalizing 

the family of size distributions, the problems of description and 

estimation will be correspondingly magnified. In any of these latter 

proposals, it would be helpful to have some idea of the estimation 

properties of the techniques used in this paper. They could easily 

prove relevant for new distributions to be derived.

A last point which should be mentioned is that the nested struc­

ture of this exponential-generic family of size distributions, even 
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as it currently stands without generalizations, is quite appealing from 

the point of view of hypothesis testing. Knowledge of the properties 

of the various estimators would certainly be necessary to the proper 

discussion of tests of hypothesis. Any expansion of the family of size 

distributions based upon the Turner growth curves would still have a 

nested structure including these curves as a single branch. A whole 

system of such similar branches is a possible product of future 

research.
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