
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

1977

A New Algorithm, And The Evaluation Of Current Algorithms, A New Algorithm, And The Evaluation Of Current Algorithms,

Concerning Graph Isomorphism. Concerning Graph Isomorphism.

Virginia Charmane Perry May
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
May, Virginia Charmane Perry, "A New Algorithm, And The Evaluation Of Current Algorithms, Concerning
Graph Isomorphism." (1977). All ETDs from UAB. 4034.
https://digitalcommons.library.uab.edu/etd-collection/4034

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/4034?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original

submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

I.The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
"sectioning" the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again - beginning below the first row and continuing on until

complete.

4. The majority of users indicate that the textual content is of greatest value,
however, a somewhat higher quality reproduction could be made from
"photographs" if essential to the understanding of the dissertation. Silver
prints of "photographs" may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

78-627

“SSSs--
ISOMORPHISM.
The University of Alabama,
Ph.D., 1977
Computer Science

University Microfilms International, Ann Arbor, Michigan 48io6

A NEW ALGORITHM,
AND THE EVALUATION OF CURRENT ALGORITHMS,

CONCERNING GRAPH ISOMORPHISM

by

VIRGINIA CHARMANE PERRY MAY

A DISSERTATION

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department
of Computer and Information Sciences in the Graduate School

University of Alabama in Birmingham

BIRMINGHAM, ALABAMA
1977

ACKNOWLEDGEMENTS

I thank my research advisor Dr. C. C. Yang for his inspiration

and guidance in my research efforts. I acknowledge Dr. A.C.L. Barnard,

Chairman of the Department of Computer and Information Sciences, for

providing moral support and scientific advice during my graduate

studies. Also, I acknowledge help from the following people:

Ms. Susan Dean of the Computer and Information Sciences Department,

Mr. Wayne Satterwhite of the Biostatistics Department, and Mr. James E.

Allen of the Multiple Laboratory Computer Center. Finally, I thank

Ms. Joyce Perry for her perseverance in the typing of the rough draft

of this dissertation.
Financial assistance was provided by a half-time instructionship

in the Department of Computer and Information Sciences and by a

Graduate School Fellowship.

ii

Page
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .

LIST OF FIGURES.. vx

LIST OF TABLES..

LIST OF DEFINITIONS.. x

CHAPTER
I. INTRODUCTION .. 1

1.1 The Graph Isomorphism Problem................... 1

1.2 Previous Mathematical Research.............. • 2

1.3 Previous Computer Science Research 5

1.4 Applications of Graph Isomorphism Algorithms . . 19

1.5 Summary of Original Research Reported in this
Dissertation 22

II. A NEW GRAPH ISOMORPHISM ALGORITHM BASED ON FINITE
AUTOMATA...................................... 25

2.1 Introduction................................... 2^

2.2 Graph Representations from Finite Automata ... 27

2.3 An Algorithm for Transforming a Graph into a
Moore Sequential Machine................... 30

2.4 A Necessary and Sufficient Condition for Graph
Isomorphism................................ 38

2.5 Partitioning on the State Set of a Moore
Sequential Machine 44

2.6 The Graph Isomorphism Algorithm................ 46

iii

iv

Page

A REVIEW of THE CURRENT BACKTRACKING GRAPH
ISOMORPHISM ALGORITHMS

3.1 Introduction

3.2 Berztiss* Backtracking Algorithm

3.3 Ullmann’s Refinement/Backtracking Algorithm . . .

3.4 Schmidt and Druffel’s Backtracking Algorithm . .

V. EVALUATION PROCEDURE FOR DETERMINING EFFICIENCY OF
* THE GRAPH ISOMORPHISM ALGORITHMS

4.1 Introduction

4.2 PL/I Implementations

4.3 Input Data

4.4 Analysis Procedure

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

5.1 New Algorithms.................................

5.2 Berztiss’ Algorithms

5.3 Ullmann’s Algorithms

5.4 Schmidt and Druffel’s Algorithms

5.5 Comparison of the Algorithms

5.6 Conclusions

LIST OF REFERENCES .

APPENDICES

A. RELEVANT DEFINITIONS AND NOTATIONS .

A.1 Graph Related Terms . . .

A.2 Special Types of Graphs .

A. 3 Algorithms.............

V

Page

A PL/I SOURCE LISTING OF THE RANDOM GRAPH GENERATING
PROCEDURE GRAPHS

AN ASSEMBLY LANGUAGE LISTING OF THE TIMING PROCEDURE
ASMTME ..

D. THE PL/I IMPLEMENTATION OF THE NEW GRAPH ISOMORPHISM
ALGORITHM..................................

E. BERZTISS’ BACKTRACKING ALGORITHM AND PL/I
IMPLEMENTATION

E.I Algorithms

E.2 PL/I Source Listing

F. ULLMANN’S REFINEMENT/BACKTRACKING ALGORITHM AND
PL/I IMPLEMENTATION

F. 1 Algorithm 6.........

F.2 PL/I Source Listing

G. SCHMIDT AND DRUFFEL’S BACKTRACKING ALGORITHM AND
" PL/I IMPLEMENTATION

G.1 Algorithms

G.2 PL/I Source Listing

LIST OF FIGURES

Figure
1.2.2.1 Collate and Sinogowitz Graphs 4

Q1.3.1.1 Isomorphic Graphs °
2.1.1 A Counter Example for Yang’s Conditions 26

35
2.3.1.1 Graph 7 ...
2.6.1.1 Graph 8.. 50

2.6.1.2 Generation of all Closure Classes for {5,si’} 53

5.1.1.1 Plot of New Graph Isomorphism Algorithm Using
Nonisomorphic Regular Graphs 89

5.1.1.2 Plot of New Graph Isomorphism Algorithm Using
Isomorphic Regular Graphs

5.1.1.3 Plot of Graph Representation Algorithm (New) Using
Isomorphic Regular Graphs

5.2.1.1 Plot of Berztiss’ Isomorphism Algorithm Using
Nonisomorphic Regular Graphs

5.2.1.2 Plot of Berztiss’ Isomorphism Algorithm Using
Isomorphic Regular Graphs

5.2.1.3 Plot of Graph Representation Algorithm (Berztiss)
Using Isomorphic Regular Graphs

5.3.1.1 Plot of Ullmann’s Isomorphism Algorithm Using
Nonisomorphic Regular Graphs

5.3.1.2 Plot of Ullmann’s Isomorphism Algorithm Using
Isomorphic Regular Graphs . •

5.3.1.3 Plot of Graph Representation Algorithm (Ullmann)
Using Isomorphic Regular Graphs

5.4.1.1 Plot of Schmidt and Druffel’s Isomorphism
Algorithm Using Nonisomorphic Regular Graphs

vi

vil

Figure Page

5.4.1.2 Plot of Schmidt and Druffel’s Isomorphism
Algorithm Using Isomorphic Regular Graphs .

5.4.1.3 Plot of Graph Representation Algorithm (Schmidt
and Druffel) Using Isomorphic Regular Graphs

5.5.1.1 Plot of Total Time for New Algorithms Using
Isomorphic Regular Graphs

5.5.1.2 Plot of Total Time for Berztiss* Algorithms Using
Isomorphic Regular Graphs

5.5.1.3 Plot of Total Time for Ullmann’s Algorithms Using
Isomorphic Regular Graphs

5.5.1.4 Plot of Total Time for Schmidt and Druffel’s
Algorithms Using Isomorphic Regular Graphs

LIST OF TABLES

Table

1.3.1.1

1.3.1.2

1.3.1.3

1.3.1.4

1.3.2.1

1.3.2.2

2.2.1

2.2.2

2.3.1.1

2.6.1.1

2.6.1.2

3.3.1

3.3.2

3.3.3

3.3.4

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

Initial Partition Using Unger’s Algorithm

Application of Unger’s Adjacency Heuristic

Iteration of Unger’s Adjacency Heuristic

Necessary Conditions Used for Heuristics

Adjacency Matrix for Graph 1

Canonical Reordered Matrix for Graph 1.......... .• •

NDSM N and DSM D Corresponding to Graph 5

A MSM M Corresponding to D of Table 2.2.1

MSM M Corresponding to Graph 7

MSM M’ Corresponding to Graph 8

Output-consistent Closure Classes for (s,s') C
Sr * S; ..

Initial Matrix M for Graphs 7 and 8

Matrix M after Vertex Assignment 1-1’

Inconsistent Vertex Assignment for Graphs 7 and 8 . .

Matrix M after Refinement of Vertex Assignment 1-6’ .

Distance Matrices D and D’ for Graphs 7 and 8 . • • .

Row Characteristic and Column Characteristic
Matrices for Graph 7

Row Characteristic and Column Characteristic
Matrices for Graph 8

Characteristic Matrices for Graph 7 and 8

Class Vectors Generated by Vertex Assignment 1-1’ . .

Page

9

10

12

13

16

17

28

31

36

51

54

61

64

65

66

69

70

71

72

74

viii

ix

Table - Page

4.4.1 Classification of the Algorithms Used by the Graph
. 82

5.1.1 Performance of Implementation for New Algorithms
. 86

5.1.2 Performance of New Graph Isomorphism Algorithm
. 87

5.2.1 Performance of Implementation for Berztiss
Algorithms Using Regular Graphs 93

5.2.2 Performance of Berztiss’ Graph Isomorphism
Algorithms Using Regular Graphs 94

5.3.1 Performance of implementation for Ullmann s
Algorithms Using Regular Graphs 100

5.3.2 Performance of Ullmann*s Graph Isomorphism
Algorithm Using Regular Graphs 101

5.4.1 Performance of Implementation for Schmidt and
Druffel’s Algorithms Using Regular Graphs 107

5.4.2 Performance of Schmidt and Druffel’s Graph
Isomorphism Algorithm Using Regular Graphs 108

5.4.3 Performance Results for Schmidt and Druffel’s
Algorithms Using Strongly Regular Nonisomorphic

. 109

5.4.4 Performance Results for Schmidt and Druffel s
Algorithms Using Nonisomorphic Steiner Graphs

. 110

5.4.5 Performance Results for Schmidt and Druffel s
Algorithms Using Nonisomorphic Latin Square

. Ill

5.5.1.1 Performance of Implementation of Four Methods
Based on Total Execution Times Using Isomorphic

. 118

5.5.1.2 Equations of Fit for Total Raw Execution Times
. 119

list of definitions

Term Page

Adjacency matrix . . .

Adjacency vertices . .

Algorithm

Arcs.................

Automorphism

Backtracking algorithms

Bag.................

Chain

Characteristic matrix

Circuit ..

Closed and output-consistent partition

Closure Class ..

Coefficient of determination

Column characteristic matrix

Complete graph ..

Component of a graph ..

Connected graph ..

Degree ..

Deterministic state machine

Directed graph

Distance matrix . .

Edges

132

131

135

131

133

136

29

133

67

32

44

45

137

67

132

132

133

133

27

133

x

xi

Term Page

Effective algorithm

Exponential algorithm

Factorial algorithm

Genus of a graph

Heuristic algorithm

Incidence matrix

Indegree

Isomorphism between two graphs

Isomorphism between two Moore sequential machines

K-formula ..

k-regular graph

Latin Square graph

Length of a path

Loop...

Moore Sequential machine

Mondeterministic state machine................

Nontrivial partition

NP-complete

Order of a graph

Order of an algorithm

Origin ...

Outdegree

Partition over the state set S...............

135

136

136

5

136

133

131

133

43

58

133

134

132

132

27

27

45

137

131

135

132

132

44

Path

Planar graph .

132

Term Page

Point symmetric graph . • •

Polygon

Polynomial algorithm . . .

Reachable

Row characteristic matrix .

Simple graph

Steiner graph .

Strongly connected graph

Strongly regular graph

Subgraph

Terminus

132

134

132

132

Trivial partition

Undirected graph

Vertices 131

CHAPTER I

INTRODUCTION

1.1 The Graph Isomorphism Problem

The graph isomorphism problem is to determine whether two

directed graphs are isomorphic, by finding an isomorphism if one

exists. More formally, it is the problem of determining whether an

isomorphism y exists between two directed graphs G = (V,A) and

G’ = (V*,A*) where V and V are the sets of vertices and A G V x V

and A’ G V’ x V* are the incidence relations or sets of arcs. An

invertible (one-to-one and onto) mapping y: V ■> V is an isomorphism

from G to G* (or between G and G’) if and only if (iff) it preserves

graph incidences, i.e., for every arc (vi$Vj) G A, there is a

corresponding arc (y(v^),y(vj)) C A' and vice versa.

The graph isomorphism problem can be solved theoretically by an

enumeration algorithm which lists all possible invertible mappings

and checks each mapping for incidence preservation. However, for a

pair of isomorphic directed graphs, each having n vertices, there are

up to n! possibilities to be considered, and for a pair of non—

isomorphic directed graphs, each having n vertices, there are exactly

n! possibilities to be considered. As n becomes large, this type of

algorithm becomes totally impractical. Berztiss (1973) states that

even with today’s fastest computers, the resolution of all iso­

morphisms between two directed graphs, each having 20 vertices, would

take 75,000 years. Thus, the development of more practical algorithms,

1

2

for solving the graph isomorphism problem, is important.

1.2 Previous Mathematical Research

Mathematicians have used two primary approaches for solving the

graph isomorphism problem based respectively on graph enumeration

theory and adjacency matrix properties. Because an undirected graph

is a special case of a directed graph, the term "graph" is used to

refer to a directed graph unless otherwise stated. Note also that

each element in the incidence relation on the vertex set of an

undirected graph is called an edge rather than an arc.

1.2.1 Graph Enumeration

Some graph theorists tried to link the graph isomorphism problem

with problems in graph enumeration. Using graph enumeration, the

graph isomorphism problem became part of the unsolved enumeration

problem with a given group, and was restated as the problem of

counting the number of mutually nonisomorphic graphs. All of these

problems from graph enumeration theory could be solved by determining

the number of equivalence classes under the isomorphism relation.

Much of the graph enumeration research was based on the Combinational

Theorem due to Pdlya (1937). Essentially, this theorem related the

equivalence relation to a group of permutations of finite objects. A

proof of Polya’s Theorem, in a more general form than that presented

by Polya himself, was given by de Bruijn (1964). Harary (I960, 1964)

summarized his effort, and the contributions of others, in extending

and applying this theorem to various types of graphs.

What is often referred to as non-Polya enumeration turned out to

be more applicable to the graph isomorphism problem, but only for the

3

special class of planar graphs. Specifically, Tutte (1962, 1963,

1964) and Brown (1963, 1966) developed an enumeration theory for

planar graphs by using the properties of these graphs to simplify

the theory of Polya. This simplified theory was successfully used by

Weinberg (1966), Hopcroft and Tarjan (1972), and Hopcroft and Wong

(1974) in developing isomorphism algorithms for planar graphs. Of

these algorithms, the recent one developed by Hopcroft and Wong was

more efficient and guaranteed a solution in linear time. However, no

efficient algorithm was developed for non-planar graphs.

1.2.2 Adjacency Matrix Properties

Several theorists tried to find a necessary and sufficient con­

dition for graph isomorphism based on the properties of the adjacency

matrix of a graph. Harary (1962) conjectured that two graphs were

isomorphic if their adjacency matrices had the same eigenvalue spec­

trum. However, Hoffman (1963) and Fisher (1966) provided numerous

counter examples. Specifically, Fisher cited, as a counter example,

the two 8-vertex undirected graphs which were published by Oollatz and

Sinogowitz (1957). Each of the Collatz and Sinogowitz graphs as shown

in Figure 1.2.2.1 had the same eigenvalues, (+ 2.3027756, + 1.3027756,

0,0,0,0), but the two graphs were not isomorphic. Turner (1967)

showed that the eigenvalue spectrum for the special case of an

adjacency matrix of a point symmetric graph with a prime number of

vertices characterized the graphs up to an isomorphism. Using this

result as a basis, Turner (1968) reported failure in finding a more

powerful matrix function for characterizing graphs up to an iso­

morphism. Since generalized matrix functions were difficult to com-

4

2
5

Undirected Graph 1

6
o

8
-o

5
0 7

8

Undirected Graph 2

Figure 1.2.2.1 Collatz and Sinogowitz Graphs

5

pute, and since they did not characterize a graph, Turner concluded

that it was impractical to use such functions in devising a graph

isomorphism algorithm.

1.2.3 Other Mathematical Approaches

Other researchers tried to determine mathematically whether an

efficient .gorithm existed for the graph isomorphism problem.

A. B. Lehman communicated a conjecture to Corneil (1968) that if a

graph was embedded on a surface whose genus did not exceed a fixed

integer, k, then there existed an efficient solution. The genus of a

surface is the largest number of simple closed curves which do not

disconnect the surface. Since no non-exponential algorithm was known

for calculating the genus of a graph, this conjecture was not useful as

a basis for an isomorphism algorithm. However, the importance of the

conjecture was its implication that no efficient solution to the

general graph isomorphism problem could exist. Karp (1972) showed

that a number of graph related problems for which there was no known

polynomial algorithm belonged to a class called nondeterministic

polynomial complete (NP-complete). If a polynomial algorithm existed

for any one of these problems, then a polynomial algorithm existed for

all problems in that class. However, Karp concluded that, while it

was known that the graph isomorphism problem was in the class NP

(computable in polynomial time by a one-tape nondeterministic Turing

machine), it was still not known whether the problem belonged to the

class of NP-complete.

1.3 Previous Computer Science Research

Because of the failure by mathematicians to find a necessary and

6

sufficient condition which could serve as a basis for an efficient

graph isomorphism algorithm, computer scientists tried to develop

effective, and perhaps efficient, graph isomorphism algorithms needed

for applications (see Section 1.4). Most of the algorithms developed

were based on conditions necessary for graph isomorphism. These graph

isomorphism algorithms belonged to one of three general classes:

heuristic, coding, and backtracking.

1.3.1 Heuristic Algorithms

The most popular approach for solving the graph isomorphism used

heuristics as a basis. These heuristic algorithms exploited a number

of conditions necessary for graph isomorphism, in an effort to reduce

the number of possible invertible functions tested for isomorphism.

For example, the necessary condition that two isomorphic graphs must

have the same number of vertices and the same number of arcs or edges,

could be used in an algorithm to decide initially if an isomorphism

existed.
The graph isomorphism problem was so well suited for the use of

heuristics that Unger (1964) used the problem to illustrate heuristic

programming. Since his algorithm very clearly illustrated the

heuristic approach, it is described in detail below.

Unger first used the necessary condition for graph isomorphism that

if (v±,v!) & V x V is an element of an isomorphism, then the

indegrees (id) and outdegrees (od) of the vertices were equal, i.e

id(vp = id(vj) and od^) = od(vl). This necessary condition was

used initially to partition the set of vertices of each graph. Bo

of these partitions, in some cases, reduced the possible number of

7

invertible functions to be checked. As an example, let graphs G and

G’ be graphs 3 and 4 of Figure 1.3.1.1 respectively. After applying

this necessary condition to G and G* and after assigning a unique

class to each subset of vertices each having the same indegree and

outdegree, the initial partitioning shown in Table 1.3.1.1 was obtained.

If for each unique class of G there was a corresponding unique

class of G’, then an isomorphism y was defined. However, for the

current example, the initial partition while reducing the number of

possible vertex assignments to be checked did not completely determine

an isomorphism y.

If the mapping y was an isomorphism from G to G*, then as seen

from Table 1.3.1.1, y(3) = 5* and y(4) = 1*. The remaining images for

vertices 1, 2, and 5 could be determined either by checking the 3!

possibilities or by applying another heuristic in an effort to further

reduce the possibilities.

At this point, Unger used another heuristic based on the adjacency

relation. Let A± and A^ denote the sets of vertices adjacent to v± and

vj respectively. If v^ and vj had the same class assignment, then

y(v^) = v* belonged to an isomorphism only if the number of vertices

in each class in Ai was equal to the number of vertices in the

corresponding class in A^. Unger used a weaker form of this condition,

in that he required only that the sum of the classes of vertices in A-^

must equal the sum of the classes of the vertices in Aj . The results

of the application of this weaker condition to the initial partition

of Table 1.3.1.1 is shown in Table 1.3.1.2. For this example, the

heuristic reduced the number of possibilities to be checked from 3 ! to

2!. Thus, the remaining 2! possible images for vertices 1 and 5 could

8

1

5 2

Graph 3

1*

4* 3*

Graph 4

5* 2'

Figure 1.3.1.1 Isomorphic Graphs

9

TABLE 1.3.1.1

INITIAL PARTITION USING UNGER’S ALGORITHM

Graph 3 Graph 4 ___

Vertex id od Class Vertex id od Class

1 2 2 1 1* 1 2 3

2 2 2 1 2' 2 2 1

3 3 2 2 3* 2 2 1

4 1 2 3 4* 2 2 1

5 2 2 1 5* 3 2 2

10

u
H
H

TA
BL

E
1.
3.
1.
2

Ne
w

Cl
as
s

,-H CM CO t-l CO H H <f CM

Su
m

r~ so r~
il ll ll
h <t h -y cn
+ n + ll, +
î H H

ISSAS

r- so
Il II ll,

7 $ + 7 +

+ + + + ^

% A A A A

Ad
ja

ce
nc

y

in m

<r m <r tn m

cn m cm co cm

CM rH iH r—l rH,

in tn <r

m <r in cn

CO CO CM CO CM

CM i—l H CM 1—4

Ol
d

Cl
as
s

H H CM CO H CO t—1 rH r—1 CM

od CM CM CM CM CM CM CM CM CM CM

id

CM CM CO i-l CM H CM CM CM CO

Ve
rt

ex

i—i cm co <r Ln h cm co <r m

Gr
ap
h

Gr
ap

h
3

Gr
ap

h
4

11

either be checked or further reduced.

Since the heuristic succeeded, it was repeated and the results

are shown in Table 1.3.1.3. Since no further refinement was achieved,

the algorithm checked the remaining 2! possibilities by enumeration

and determined the isomorphism y = (1-3*,2-4*,3-5*,4-1*,5-2*).

In this example, two heuristics were used to reduce the 5! (120)

possibilities to 2! (2) possibilities. However, in some cases the

number of possibilities required further reduction through the use of

other heuristics. Unger called these extended heuristics and listed

in his paper several heuristics which could be used.

Other existing graph isomorphism heuristic algorithms, some of

which were applicable only to undirected graphs, were developed by

Salton and Sussenguth (1964), Sussenguth (1965), Steen (1969), Corneil

(1968), Knodel (1971), Morpurgo (1971), Saucier (1971), Sirovich (1971),

Levi (1974), and Yang (1975). Nearly all the algorithms obtained their

initial partitions based on the vertex degree heuristic. After ob­

taining the initial partition, each algorithm then used various

heuristics based on one or more necessary conditions for the iso­

morphism. A list of necessary conditions which was proposed by

Corneil (1968) and Druffel (1975) is shown in Table 1.3.1.4. in which

K(V) means the cardinality of the set V.

As illustrated by Unger, heuristic algorithms generated successive

partitions by applying necessary conditions which reflected the

relation of a vertex with its neighbors. For most pairs of graphs the

heuristics worked well. However, for many highly symmetric graphs all

the known heuristics failed to reduce the number of possibilities

because the heuristics could not distinguish between vertices with

12

TA
BL

E
1.
3.
1.
3

co
to
«

u

T3

O

&
s

u
s
u «
<

&
e

<r
on

CM

s
u
p>

o
I

I CM
+

+

O

A
3

*

o\ II
I

A
I

o
i

I

<t

o
I

<r II <r ii
A
+

<r*

to
to
CO

U

§
3

u
H
H tn
Ï

8

9

tn
i

s

8

i

H

13

TABLE 1.3.1.4

NECESSARY CONDITIONS USED FOR HEURISTICS

Property of the Graph The Corresponding Necessary Condition

Vertices y is an isomorphism only if K(V) = K(V*).

Arcs y is an isomorphism only if K(A) = K(A*).

Degree Y is an isomorphism only if indegree and out-
degree of a vertex v.^ €- V is equal to those of
Y(vp G V* for all i.

Components Y is an isomorphism only if the number of
components of two graphs are equal.

Strongly Connected
Component Size

Y is an isomorphism only if £ V and
Y^) C- V’ belong to strongly connected
components of the same size.

Complete Subgraph Y is an isomorphism only if the number of com­
plete subgraphs of order k to which v± and
Y(v^) belong is the same for all k.

Circuit Structure Y is an isomorphism only if the number of
circuits of length k to which Vj, and yC^)
belong is the same for all k.

Reachability
Relationships

Assume there are n paths of length k from
v! €■ V* to a vertex with properties
(11,A2,....Ai). Vertex Vf £ V and vj may be
mapped by y only if there exists a vertex
v^^V with properties (Ai$...,Ai) such that
there are exactly n paths of length k from
vi to v^ for all k.

Automorphism Y is an isomorphism only if V£ and y(vi)
belong to similar cells of the automorphism
partition.

F Relationships Y is an isomorphism only if the graphs induced
by the removal of V£ and Y(v^) have the same
number of arcs.

14

similar characteristics. If a heuristic partitioned the vertices into
h classes, and k(i) was the number of vertices in the ith class, then

the remaining possibilities were given by k(l)!*k(2)!•...*k(h)!. If

there was some class of graphs of n vertices for which the heuristic

was unable to generate refined partitions and h = 1, then k(h) = n,

and the number of possibilities was still n!. A strongly regular

graph was an example of a class of graphs for which existing heuristics

were not very effective. In this case some other type of procedure

which systematically assigned remaining vertices was required to make

the algorithm more practical.

1.3.2 Coding Algorithms

Although based on heuristics, coding algorithms represented a dif­

ferent approach, in that the backtracking technique was used to

construct a canonical code for the two graphs, Shah, Davida and

McCarthy (1974) developed a coding algorithm for undirected graphs.

This algorithm used the adjacency matrix of a graph to derive a canoni­

cal code for the graph. A code for a graph was defined as the binary

number formed by concatenation of successive rows of the upper

triangle of the adjacency matrix. A code was called "canonical if the

rows and the corresponding columns of the adjacency matrix were

permuted such that the resulting binary number was maximal. Of course

in order to determine if a code was maximal, all permutations which

possibly could result in a larger binary number were checked. This

checking was performed by a backtracking algorithm.

For an example, the two nonisomorphic undirected graphs 1 and 2

of Figure 1.2.2.1 were used. From the adjacency matrix of graph 1 as

15

shown in Table 1.3.2.1, the canonical code was generated by first

interchanging labels of vertex 5 and vertex 1. This permutation

caused row one to contain ones in columns two through six. Since

vertex 6 had a degree greater than that of any other vertices adjacent

to vertex 5, it was renumbered as vertex 2. This reordering given by

(5-1,6-2,3-3,4-4,1-5,2-6,7-7,8-8) produced the canonical code F810001

(hexadecimal number) shown in the upper triangle of Table 1.3.2.2.

If the canonical codes for two graphs were equal then the mapping

specified by the reordering was an isomorphism. Using the reordering

given by (4*-1*,5’-2*,3*-3*,1'-4*,2*-5*,6*-6',7*-7*,8*-8’) the

canonical code F038000 for graph 2 was produced. Thus, it was con­

cluded that graphs 1 and 2 were not isomorphic, a fact obvious from

visual inspection of Figure 1.2.2.1.

Proskurowski (1974), using the incidence matrix of a graph,

developed a similar coding scheme for undirected simple graphs called

the maximal incidence matrix. Both of these coding algorithms were

based on a necessary and sufficient condition, i.e., two graphs were

isomorphic iff their canonical codes were equal. However, neither

algorithm was efficient for graphs with large numbers of vertices

(probably greater than 10), since the amount of backtracking necessary

to check possible maximal codes increased rapidly as the numbers of

vertices of the graphs increased.

1.3.3 Backtracking Algorithms

A third approach to solving the graph isomorphism problem was to

use some necessary conditions and a backtracking technique to select

possible vertex assignments to test for isomorphism. The backtracking

16

TABLE 1.3.2.1

ADJACENCY MATRIX FOR GRAPH 1

1

2

3

4

5

6

7

8

1 2

-o o

0 0

0 0

0 0

1 1

0 0

0 0

0 0

3 4 5

0 0 1

0 0 1

0 0 1

0 0 1

110

0 0 1

0 0 0

0 0 0

6 7 8

0 0 o'

0 0 0

0 0 0

0 0 0

10 0

0 10

10 1

0 10

17

TABLE 1.3.2.2

CANONICAL REORDERED MATRIX FOR GRAPH 1

2

3

123 -4 5678

000

00000

0000 000

000000

0000000

0000000

00000

000008

The canonical code is given by the binary
number

1111100000010000000000000001

or the hexadecimal number

F810001

18

approach represented an improvement over the heuristic approach be­

cause, if the heuristic part of the backtracking algorithm failed to

reduce the number of possible vertex assignments, then the back­

tracking technique insured a stepwise elimination of all inconsistent

vertex assignments. Backtracking algorithms for finding graphs iso­

morphisms were recently developed by Berztiss (1973), Ullmann (1976),

and Schmidt and Druffel (1976) (see Chapter III for detail reviews).

1.3.4 Performance of the Algorithms

Except in the case of Corneil, performance of each algorithm if

given, was based on experimental results using various classes of

graphs. Corneil, using a conjecture, stated that the upper bound of

his algorithm was of the order 0(n5+k), 2 < k £ n. However, it was

shown by a counter example of R. Mathon that the conjecture was not

true (Corneil, 1974).

All heuristic algorithms which completely solved the graph iso­

morphism problem had some type of permutation procedure to check the

remaining vertex assignments. Thus, reported estimates on the

efficiency of these algorithms were usually based on random graphs.

Furthermore, not all the authors reported the complexities of their

algorithms. Corneil, using only undirected graphs, claimed the orders:

0(n5) if the graph did not contain a k-strongly regular subgraph,

O(n^) for polygons, and 0(n2) for random graphs. Sirovich stated that

his algorithm, which also was based on a conjecture, was of the order

0(n5) for most graphs. Levi claimed that his algorithm performed on

the order 0(n6) for most undirected graphs tested. However, neither

Sirovich nor Levi described the classes of graphs used.

19

The orders of efficiency for the coding algorithms were not

reported. However, Proskurowski stated that his algorithm was

efficient only for undirected graphs with a small number of vertices

and edges.

For random nonisomorphic simple n/2 regular graphs, Berztiss

claimed a statistical order 0((2.15 x 10"5) exp(1.07n)). Ullmann gave

no order, but stated that his algorithm performed as well as, or

better than, that of Berztiss. Schmidt and Druffel claimed an order

0(n2) for non-regular random graphs, simple polygons and other special

graphs. Using strongly regular graphs of order 25 (Paulus, 1973)

Druffel gave an order 0(n^). He also conjectured that is was reason­

able to expect performance better than O(n^) for most graphs since the

predicted dynamic bound never exceeded 0(n^) for all graphs tested.

Other authors provided running times and storage estimates.

However, since all algorithms were executed on different computers and

using different languages, any direct comparison would be meaningless.

1.4 Applications of Graph Isomorphism Algorithms

Graph isomorphism algorithms were applied in such fields as

information retrieval, chemistry, circuit and network theory, and pat­

tern recognition. Most of the initial algorithms were by-products of

a particular application. As the graph isomorphism problem became

better known, the emphasis switched to the development of more

efficient algorithms for existing applications.

1.4.1 Information Retrieval

In automatic information retrieval, comparison between a descrip­

tion of the stored information and the requested information was one of

20

the principal tasks performed. Salton and Sussenguth (1964) suggested

that graph matching techniques could compare graphs representing

requests for information. They developed a topological structure­

matching procedure. This procedure matched the information graph and

query graph in parallel by identifying certain simple properties of

the vertices of the two graphs, and by equating those subsets of

vertices in the two graphs that exhibited similar properties. A

standard process was then used to break down matching subsets of

vertices into smaller and smaller sets, until a complete correspon

dence was determined for all vertices of the two graphs. Salton

(1968) discussed topological and other types of structure—matching

procedures which could be used in an automatic document retrieval

system to identify matching phrases included in documents and search

requests.

1.4.2 Chemistry

There was probably no science in greater need of an automatic

information retrieval than chemistry. Many compounds were known, and

many new ones were produced daily. The chemist had two main problems.

first, he wanted to find out whether the substance in his test tube

was already known ; second, given a substance, he wanted to know the

properties of similar substances. Both problems reduced to a

matching process between the given substance and the millions of

substances already known and cataloged.

Sussenguth (1964, 1965) described a method of cataloging chemical

compounds as undirected graphs. In his model, the atoms of a compound

corresponded to the vertices and the interatomic bonds corresponded to

21

the edges. Given a compound, a search was made to determine if its

graph was isomorphic to any graph or any subgraph in the library.

Further applications in this area were described by Tate (1967), and

Lynch et al. (1971).

1.4.3 Network and Circuit Theory

In developing an algorithm for an efficient layout of micro­

electronic circuits, Weinberg (1966) devised an algorithm to find the

isomorphisms between two triply connected graphs. Cornog and Bryan

(1966) described a search method for transistor patents which used the

Seshu and Reed model (1961) of an electrical network.

1.4.4 Pattern Recognition

In the automatic recognition of printed characters, techniques

had to be devised specifically for the recognition of characters

printed by hand. Handprinted characters were difficult to recognize,

because of the major differences that existed between a character

printed by one person and the same character printed by a different

person. Sherman (1960) suggested a technique for recognizing characters

based on a graph representation of the character. Sherman regarded the

limbs of the character as edges and the junctions and ends of the limbs

as vertices of a graph. He then explored the idea that if two graphs

of two characters were isomorphic, then the characters belonged to the

same recognition class. Barrow and Popplestone (1971) extended the

idea of using a graph to represent a character, by adding further rules

to assign attributes to each vertex or edge. They suggested that if

the graphs of the two characters were isomorphic, then the two

characters belonged to the same recognition class. Grimsdale e£ al.

22

(1959) provided another example of this type of technique, using dif­

ferent rules for constructing a graph from a pattern. Ullmann (1973,

1976) further explored the idea of using a graph isomorphism algorithm

as the basis for a character-recognition technique. He noted that

determining whether two graphs were related by an isomorphism was very

similar to determining whether two patterns were related by a dis­

tortion which conserved spatial relationships within known limits.

Another pattern recognition problem was the detection of a re­

lationally described object embedded in a pattern. Barrow et al. (1972)

and Sakai et^ al. (1972) suggested subgraph isomorphism be used to solve

this problem. Sakai et^ al. developed a system to detect areas of over­

lap in aerial photographs taken sequentially, in order to combine the

many small pictures into one large picture of the area.

1.5 Summary of Original Research Reported in this Dissertation

A new graph isomorphism algorithm is described. The algorithm is

based on a necessary and sufficient condition for the existence of an

isomorphism between two graphs. The condition is based on the

isomorphisms between the Moore sequential machines (MSM) corresponding

to the two graphs. Thus, in addition to the isomorphism algorithm, an

algorithm is given which transforms any graph to a MSM. Using a method

which partitions the union of the state sets of two MSM’s into closed

output-consistent partitions, the isomorphism algorithm finds any iso­

morphism between two graphs by examining any isomorphism between their

MSM’s. An analysis of theoretical and experimental bounds of both

algorithms is made. The result is that, while the algorithms are not

guaranteed to run in polynomial time, they do perform efficiently for

23

a large class of regular graphs.

In order to gain some insight into actual computing performance

of the current graph isomorphism algorithms, an experimental evaluation

and comparison of the new isomorphism algorithm and three other recent

algorithms is presented. First, the three recent algorithms by

Berztiss, Ullmann, and Schmidt and Druffel are reviewed. The computer

implementation of the four algorithms and experiments which consist of

several classes of graphs are described. Using the experimental

results, the four methods are compared using performance criteria based

on the execution time performance of their PL/I implementations and the

performance of their algorithms measured by the number of vertex

assignments required to process a pair of graphs. The evaluation and

comparison leads to the conclusion that in the general case Schmidt

and Druffel’s algorithm is superior to the other three algorithms.

However, when regular graphs are used, the proposed new graph iso­

morphism algorithm is superior to the isomorphism algorithm by Schmidt

and Druffel.
Chapter 11 presents the new graph isomorphism algorithm. Chapter

III reviews the other current graph isomorphism algorithms, i.e., the

three backtracking algorithms by Berztiss, Ullmann, and Schmidt and

Druffel. Chapter TV deals with the evaluation procedure used in com­

paring the graph isomorphism algorithms of Chapters II and III. Chapter

V presents the experimental results and conclusions obtained from the

evaluation of these four algorithms. Appendix A lists all relevant

definitions and notations which are used but not defined in this

dissertation. Appendices B—G contain the listings of the programs and

algorithms which are used in the experimental evaluation of the four

24

graph isomorphism algorithms.

CHAPTER II

A NEW GRAPH ISOMORPHISM ALGORITHM BASED ON
FINITE AUTOMATA

2.1 Introduction

In a recently published article, Yang (1975) introduced a new

method for determining the isomorphisms between two graphs based on

the isomorphisms between their corresponding Moore sequential machines

(MSM). Isomorphisms between two MSM’s were determined by partitioning

all states of both MSM's to satisfy the conditions of Corollary 1 which

is restated below as Theorem 2.1.1 in which I and I are the input

alphabets of the MSM’s, S and S’ are the state sets of the MSM’s, and

cf> is the empty set. ..

Theorem 2.1.1. Let K(I) = K(I’) = 1 and S fl S’ = *. There is an

isomorphism between M and M* iff there is a nontrivial closed and

output-consistent partition over S U S’ such that each element of the

partition contains exactly two states: one belonging to S and the

other belonging to S’.

However, a partition which induced an isomorphism between two

MSM’s could fail to induce an isomorphism between the represented

graphs as evidenced by P^ and or and in Illustration 6

of Yang’s paper. This counter example is shown in Figure 2.1.1.

Thus, as is proved in Section 2.5, an isomorphism between two MSM’s

provided only a necessary condition for graph isomorphism. This proof

corrected Yang’s initial results and led to a new method based on

25

26

4

1

Graph 5

5

3

2

2’

4’

1’

Graph 6

3’5’

Two nontrivial closed and
representing Graphs 5 and

output-consistent partitions of MSM’s
6

P21 = {1-4*,2-3',3-1',4-5’,5-2',6-7',7-8',8-6’,9-9',10-10’,11-11
12-12’}

P22 = {1-2*,2-5*,3-1',4-3',5-4',6-7’,7-9’,8-6’,9-8',10-10’,11-11
12-12’}

The corresponding induced isomorphisms between Graphs 5 and 6

y21 = {1-4*,2-3’,3-1',4-5’,5-2’}

Y22 = {1-2*,2-5*,3-1',4-3’,5-4’}

Figure 2.1.1 A Counter Example for Yang’s Conditions

27

finite automata for solving the graph isomorphism problem. The new

method is developed in this Chapter.

2.2 Graph Representations from Finite Automata

A finite automaton without outputs known as a nondeterministic

state machine (NDSM) is a triplet N = (V,I,F), where the state set V

and the input alphabet I are finite nonempty sets, and the next state

function F is mapping from V x I into 2^, the power set of V. A

deterministic state machine (DSN) is a triplet D = (S,I,H), where the

state sets S Ç 2V and the input alphabet I are finite nonempty sets,

and the next state function H is mapping from S x I into S. It is

noted that H(4>,i) = <f>, where i € I.

A finite automaton known as a Moore sequential machine (MSM) is a

quintuple M = (S,I,O,H,J), where S, I and H were previously defined,

the output alphabet 0 is a finite nonempty set, and the output function

J is mapping from S onto 0.

Any graph G can be represented by a NDSM N = (V,I,F) with V, its

set of states, being the same as the set V of vertices of G = (V,A);

I = {i} (2.2.1)

being its input alphabet containing the single input i and

F: V x I -> 2V such that

F(a,i) = {b | (a,b) €• A} (2.2.2)

being its next state function. It is noted that if for some a €- V

there is no arc (a,b) €- A for all b C V, then F(a,i) = <#>• Using (2.2.1)

and (2.2.2), the NDSM N of graph 5 of Figure 2.1.1 is constructed and is

shown in Table 2.2.1.

28

TABLE 2.2.1

NDSM N AND DSM D CORRESPONDING TO GRAPH 5

NDSM N

State a Next State F(a,i)

1 {2,4}
2 {1,3}
3 {1,5}
4 {3,5}
5 ' {2,4}

DSM D

State s Next State H(s,i)

{1}
{2}
{3}
{4}
{5}
{2,4}
{1,3}
{1,5}
{3,5}
{1,3,5}
{1,2,4,5}
{1,2,3,4,5}

{2,4}
{1,3}
{1,5}
{3,5}
{2,4}
{1,3,5}
{1,2,4,5}
{2,4}
{1,2,4,5}
{1,2,4,5}
{1,2,3,4,5}
{1,2,3,4,5}

29

In order to describe the DSM corresponding to N, F is extended as

F: V x I* -* 2V such that

F(a,X) = {a} for all a G V (2.2.3)

and
F(a,wi) = U F(v,i) for every (a,w) G V x I* (2.2.4)

v G F(a,w)

where I* is the free monoid generated by i and has the identity A.

The DSM corresponding to N (or G) is D = (S,I,H) with

S = {s [s = F(a,w) for each (a,w) G V x I*} (2.2.5)

being its set of states ; and H: S x I -* S such that

H(s,i) = U F(a,i) for each s G S (2.2.6)

a G s

being its next state function. Using (2.2.5) and (2.2.6) the DSM D of

Table 2.2.1 corresponding to N of Table 2.2.1 (or graph 5) is con­

structed. The first five rows of D represent, as sets, the states of

N (or vertices of graph 5).

A MSM corresponding to D (or N, or G) is M = (S,I,O,H,J) with 0

being its output alphabet, whose elements are bags called outputs, and

J: S -> 0 being its output function. It is noted that a bag is an

ordered set whose elements are not necessarily distinct. A bag is

enclosed by a pair of square brackets. Before defining 0 and J, it is

noted that a graph G has, within an isomorphism, a unique DSM. However,

a graph G has more than one MSM because both 0 and J can be defined

differently for a given DSM.

In general, the output function should define outputs which can

reflect information about the graph structure. There are a number of

output functions which reflect different properties of the graph

30

structure. The outdegree of each vertex of the graph G is reflected

by
J(s) = [K(H(s,i))] for each s ■& S. (2.2.7)

The indegree of each vertex of the graph G is reflected when the

output of each state s G S of the DSM is defined by

J(s) = [K([H(t,i) | s Ç H(t,i)])] for each t -G- S (2.2.8)

This definition is defined to consider only distinct next states by

J(s) = [K((H(t,w) | s G H(t,w),(t,w) €- S x (I* - {A})))] (2.2.9)

The output of each state also may reflect the output of each element of

that state. For instance, the indegree of each state could be defined

as the union of the indegrees of each of its elements by

J(s) = U [K([H(t,w) | {a} C H(t,w), (t,w) £ S x (I* - {A})])]

a-Gs (2.2.10)

Finally J is defined to reflect all circuits of length two which

originate from each vertex of G by
J(s) = U [K{ t | t€-H((a},i) A a G H({ t} ,i)}]. (2.2.11)

a G s
The MSM of Table 2.2.2 corresponding to D (or N) of Table 2.2.1

is constructed by using equations (2.2.7) through (2.2.11) to define

the output for each state of D. In practice, only the outputs which

reflect the most graph structure are used. In this example, output

definition (2.2.9) can be chosen.

2.3 An Algorithm for Transforming a Graph into
a Moore Sequential Machine

The process defined by (2.2.5) through (2.2.11), of transforming a

graph into a unique DSM or MSM, is described by Algorithm 1. Algorithm

1, which is presented below, first transforms a graph G into a unique

31

CM

CM

(2
.2
.1
1)

[1
]

[1
]

[0
]

[1
]

[1
]

[1
,1
]

[0
,1
]

[1
,1
]

[o
,i
]

[0
,1
,1
]

[1
,1
,1
,1
]

[o
,i
 i

 i
 :

«

(2
.2
.1
0)

00

00 00

CO 00 00

00 00 00 00 CO 00 00
m ।—i i—i i—i n « * * * », * *
oo oo in co co co m co m co m
t i i « * i । * । « । : 1—J 1—J 1 1 LJ 1 1 l—l

s)
 D

ef
in

ed
(2
.2
.9
)

1—1 1—1 1—1 1—1 l—1 l—l 1—1 1—1 1—1 |—| 1—1 ' l
incn-crcnincncn-d'cncMCMH
■__ । ।___ । ।___ । ।___ i i___ । ।___ । i—। i—i ।—। i—। t—i ।—।

Ou
tp

ut
 J

(

(2
.2
.8
)

ooooinoooocO'd-r><rcnincM
■__ । । । ■ ■ t__ । ।__ । ।__ i ।___। ।—। ।—i ।—। ।—। ।—।

(2
.2
.7
)

CM CM CM CM CM CO CM in in
1 । | | l i 1 l 1 1 1 1 1 1 1 1 1 1 1—1 1—I 1 1

(D

co
F

<u

cd co
4J
tn

in

<r

co

CM

m

m <r

<r en m m co cm

in CM rH T—l CO r4 rd

m

m <r

in tn <r cn CM

tH cn cm i—i t—i

32

DSM by (2.2.5) and (2.2.6). Next, the MSM is constructed by defining

0 and J for each state of the DSM. For each s C S, J(s) is defined to

be the bag of the outputs which are defined by (2.2.9) and (2.2.11).

It is noted that any combination of the equations defining J(s) can be

used. First, Algorithm l is presented and illustrated by an example.

Then, the computational complexity of the algorithm is discussed.

2.3.1 Algorithm l

Algorithm 1 transforms a graph G into a MSM M. The graph G is

represented by the adjacency matrix GA, and the MSM M is represented

by the arrays H and J. The variables ns and h represent respectively

the current number of states and the current number of next states

implied by or contained in the constructed array H. K(V) is the

cardinality of the set of vertices V of graph G. The variable si is

the index for the states of the MSM. The variable KG contains the

number of states which are elements of the next state of the state

indexed by si. The arrays J9 and J11 contain the outputs of each

state as defined by (2.2.9) and (2.2.11) respectively.

Step 1. (Initialize variables.)

ns 0, h *■ K(V).

Step 2. (If all next states are states of the constructed DSM, then

proceed to construct the MSM by defining outputs.)

If ns = h then go to Step 12.

Step 3. (Otherwise, determine next states of all states in the con­

structed DSM by using array H to contain all next states.)

si ns + 1, ns h.

Step 4. If si > ns then go to Step 2.

33

Step 5. If KG 4- K({j | GAgi^ = 1,1 £ j £ K(V)}) < 2

then go to Step 10.

Step 6. (Check if next state is a state of DSM.)

If there exists a j such that GAg^A = GAj * for 1 £ j £ si-1

then H . H. , go to Step 11. SI J
(^si,* represents row si of matrix GA).

Step 7. h h + 1.
Step 8. For 1 < k < K(V), if GA^^ = 1 then GAh>* = GA^ * V GA^ *.

(V is the OR operation).

Step 9. Hgi + h, go to Step 11.

(At this point, matrix CA has been expanded to include all

next states for each state in S indexed by si.)

Step 10. If KG = 1

then Hgi j such that GAg^ j = 1

else Hgi *■ -1 (where -1 represents the empty set <£).

Step 11. si si + 1, go to Step 4.

Step 12. (At this point, the DSM has been defined by H. By defining

the outputs of DSM, the MSM is constructed. The array J

contains the bag of outputs J9 as defined by (2.2.9) and J11

as defined by (2.2.11) for each state in the DSM indexed by

si.)

For 1 £ si £ K(V)
J9gi + [K({Hj | GAj,gi = 1,1 < j £ ns})].

For K(V)+1 si £ ns

J9gi *■ [K({Hj I GAkj* = GAj * A GAk,*

where Hk = si for the least k and l£j£ns})].

(A is the AND operation).

34

Step 13. For 1 £ si <_ K(V)
JH_4 * [K({j | GA . . = 1 A GA- i = 1, 1 1 j S K(V)})].

□1 ox,J J"
For K(V)+1 si ns

Jllsi - [Jj I GAkjj - 1

where = si for the least k and 1 £ j £ K(V)].

Step 14. For 1 £ si £ K(V)

Jsi *

Step 15. Stop.

For demonstrating Algorithm 1, graph 7 in Figure 2.3.1.1 is used.

The first six iterations of Steps 4-11 produce the NDSM equivalent to

graph 7. The next state of each state {v}, such that v €- V, is the

union of all states {t}, such that (v,t) €■ A. For instance, the next

state of state {1} is {2,5,6}, since (1,2), (1,5), and (1,6) are all

arcs of graph 7. Since the next states which are generated in the

first six iterations are not states of DSM, i.e., the closure condi­

tion of Step 2 is not satisfied, five more iterations of Steps 4-11

are performed. For each of these states, the next state is obtained

by taking the union in Step 8 of the set of next states of its elements.

For example, for state {2,5,6}, the next state {1,2,3,4,5} is obtained

by {1,3,4} U {3,4,5}. These five iterations produce four next states

which are not states of DSM, and thus, four more iterations of Steps

4-11 are performed. After these iterations, the closure condition of

Step 2 is satisfied, and the DSM equivalent to graph 7 is obtained.

Columns two and three of Table 2.3.1.1 represent the DSM.

The rightmost column of Table 2.3.1.1 represents, for each state,

the outputs J(s) which are defined by Steps 12-14. For example, in

Step 12, the first output [6] of state {1} is obtained by counting the

35

6

2

Figure 2.3.1.1 Graph 7

36

o u
S
i

TI

g

i

O H

g
i

s

en
<ü
4J
eu
4J
en

vO

m

<r

en

CM

\D

m

Mi­

en

CM

KO

m

CM

CM

CM

CM

KO

m

CM

CM

CM

CM

KO

un

Mi­

en

CM

to

•“J

■M
9
CL

5

kO

un

<r

m

CM

।—i
CM

CM

CM

CM

CM

KO

m

<r

en

CM
KO

un

CM

KO

un

Mi­

en

CM

I—I
CM

CM

CM

CM

H

KO

m

Mi­

en

CM

CM

CM

CM

CM

•H
en

(U
d

en
4-1
g
B

en un

CM MT

H en

KO

un
H cT en mt un ko cm

en

CM

S

37

number of distinct next states which contain the element 1. In Step

13, the output [2] of state {1} is obtained by counting the 1’s in the

next state of each element contained in the next state of {1}. Since

the next state of {1} is {2,5,6}, the l's of the next states of {2},

{5} and {6} are counted, and a value of 2 is obtained. By defining in

Steps 12-14 the outputs for each state of the DSM, the MSM is obtained.

For ease of implementation, an index is used for each state of the MSM

and is shown in column 1.

2.3.2 The Computational Complexity of Algorithm 1

The theoretical computational complexity of Algorithm 1 is dif­

ficult to analyze, since for the DSM or a MSM, the state set S S 2 .

However, based on the definitions of the state set S and the next

state function H given respectively by (2.2.5) and (2.2.6), it is

conjectured that Algorithm 1 requires less than 2n states to represent

a graph of n vertices as a MSM.
n

Conjecture 2.3.2.1. Algorithm 1 requires at most I + S(min(n,nCi))

states to represent a graph of n vertices as a MSM.

It is obvious that the minimum number of states, which is required

to represent a graph as a MSM, is n. The minimum number is achieved

when for all a €■ V, H({a},i) = {b}, where b €■ V or H({a},i) =

Using Conjecture 2.3.2.1, the upper bound of Algorithm 1 is

derived.
Theorem 2.3.2.1. Algorithm 1 transforms a graph of n vertices into a

DSM or MSM in less than time O(n^).

Proof. The upper bound of Algorithm 1 is determined by its innermost

loop which is given by Step 8. In Step 8, for each distinct next

38

state, up to "OR" operations can be required. By Conjecture 2.3.2.1,
n

there are at most 1+2 (minCnj^C^)) next states. Since
n 9 i = 1

1+2 (min(n,nCi))<n . Thus, the upper bound of Step 8 is
I n 7 2 2 4

1 + 2 (min (n^C^))) • n < n • n = n .
i = 1 ,

This implies a bound less than 0(n). Q.E.D.

The lower bound of Algorithm 1 occurs when the number of states of

the MSM is the minimum n. In this case, Step 5 determines the

algorithm’s bound. Since Step 5 takes n comparisons to determine the

number of elements in the next states of the n states, it is bound by

n^. Thus, the lower bound is O(n^).

2.4 A Necessary and Sufficient Condition
for Graph Isomorphism

As previously stated, the graph isomorphism problem is to deter­

mine any isomorphism which exists between two graphs G = (V,A) and

G’ = (V*,A*). Using the equations of Section 2.2, a graph G can be

represented as the NDSM N, the DSM D, and a MSM M. Analogously, the

graph G’ can be represented by the NDSM N’, the DSM D', and a MSM M’

with primed symbols used in the definitions except for (2.2.1) and the

outputs in 0’.

Since any graph can be alternatively represented by a NDSM which

is unique within an isomorphism, it is concluded that an isomorphism

exists between two graphs iff an isomorphism exists between their

NDSM’s. This result is stated as the following theorem.

Theorem 2.4.1. An isomorphism y between two given graphs G and G’

exists iff there is an isomorphism between their corresponding NDSM’s

N and N’.

39

Proof. Since the NDSM representing a graph is unique within an iso­

morphism, it is not necessary to use two different symbols for

differentiating an isomorphism between two graphs and that between

their corresponding NDSM* s.

Let y : V -> V’ be an invertible function. The theorem is proved

by showing that y preserves state transitions in N and N* , i.e. ,

{y(b) | b £ F(a,i)} = F’(y(a),i), (2.4.1)

iff y preserves graph incidences in G and G’, i.e.,

(a,b) £ A iff (y(a) ,y(b)) £ A*. (2.4.2)

Suppose that y preserves state transitions as defined by (2.4.1).

Note that the left-hand side of (2.4.1) cannot be denoted by y(F(a,i))

since F(a,i) is a subset of V rather than an element of V. However,

for a later convenience, y can be extended so that

y (F(a,i)) = {y(b) [b €■ F(a,i) } (2.4.3)

Then by means of (2.2.2), y being invertible, (2.4.1), (2.4.3) and

(2.2.2) again, for any arc (a,b) & A

(a,b) C A iff b & F(a,i)

iff y (b) €■ y (F(a,i))

iff y(b) e F*(y(a),i)

iff (y(a) ,y(b)) €■ A*

Thus, y satisfies (2.4.2).

On the other hand suppose that y satisfies (2.4.2). Then by

means of (2.2.2), (2.4.2), and (2.2.2) again,

{y(b) | b £ F(a,i)} = (y(b) | (a,b) £ A}

= {y(b) | (y(a),y(b)) £ A*}

= F’(y(a),i)

Thus, y satisfies (2.4.1). Q.E.D.

40

Since a NDSM is generally not closed, the corresponding DSM,

which is closed and unique within an isomorphism, is constructed.

However, as will be stated in the following theorem, it cannot be

concluded that an isomorphism between two DSM’s determines an iso­

morphism between the corresponding NDSM’s.

Theorem 2.4.2. If there is an isomorphism y between the NDSM’s N and

N’ corresponding to the given graphs G and G’, then there exists an

isomorphism & between the DSM’s D and D’. The converse may not be

true.
Before proving Theorem 2.4.2, it is noted that if X is a finite

set, then X^ denotes a subset of X. For proving Theorem 2.4.2., the

NDSM Dr = (Sr,I,Hr) is defined from D with

Sr = {{v} | v €■ V}

and Hp: Sr x I ** S such that

Hf({v},i) = F(v,i) for all {v} G S^.

(2.4.4)

(2.4.5)

By (2.2.5), (2.2.3) and 2.4.4), Sr is a subset of S and by (2.2.1),

(2.2.2), (2.4.4) and (2.4.5), Dr and N are isomorphic. Similarly,

= (S^,I,H^), from D’, is defined to establish an isomorphism

between D^ and N*. Then, for every function y: V -> V’, the function

gr: sr -> s; is defined such that Br ({ v}) = (y(v)} for all v 0 V.

Thus, y is an isomorphism from G to G’ (or from N to N) iff is an

isomorphism from Dr to D^. Consequently, Theorem 2.4.2 is easily

proved based on $r rather than y because it is easier to extend Sr.

The proof is now given.

Proof. The function Br: Sr -> S^ is extended in such a way that

g:S •* S’ satisfying

41

g(s) = U Br({vJ) for all s & S (2.4.6)

v €■ s
Suppose that is an isomorphism from Dr to D\ Then Sr is

invertible and preserves state transitions in Dr and i.e.,

U 6r ({u}) = H^(Sr({v}),i) for all {v} & Sr (2.4.7)

u û Rg. ({v},i)
where the union on the left-hand side is equal to S(Hr({v),i)).

To show that g is one-to-one, let s^ and s2 be any states in S

satisfying S(s^) = B(sg)« Then (2.4.6) implies that

U gr ({vxI) = U Br((vy}).

vx s^ vy e s2

Since 6r is one-to-one, it must be true that s^ = s^.

To show that g is onto, 1Ç is extended in such a way that

Hr: Sr x I* -> S such that Hr({v},X) = {v}, and Hr({v} ,wi) = F(v,wi).

Similarly, IÇ is extended. Then, let H[({v’},w) for some ({v'},w) €■

x (i* _ {x}) be a state in S’ - S\ Since 6r is onto, there exists

at least one state {u} in Sr such that ^({u}) = {v’}. Thus,

H^({v’},w) = S(Hr({u], w)).
To show that g preserves state transitions, for any s G S,

3(H(s,i)) = S(U F(a,i))

a G s •

= u g(F(a,i))

a €■ s

= U g(Hf({a},i))

a -G- s

= u H;(Sr({a}),i)

a f s

42

= H'(U Br({a}),i)

a G s

= H*(B(s),i)

The above equalities are established by applying (2.2.6), B being

invertible, (2.4.5), (2.4.7), B being invertible again, and (2.4.6).

Thus, 6 defines an isomorphism from D to D'.

On the other hand to show that the converse may not be true,

suppose 6 is an isomorphism from D to D1 and Br is its restriction

from Dr onto D*. If B(s) + U B({u}) for some next state

U û s

s = H({v} ,i) , then
U B(fu}) / H'(B({v}),i) (2.4.8)

u €■ H((v} ,i)

although
B(H({v},i)) = H’(B({v}),i) (2.4.9)

Comparing (2.4.8) with (2.4.7), it is clear that the restriction Br

does not preserve all state transitions in Dr and D\ Thus, the

converse of Theorem 2.4.2 may not be true. Q.E.D.

As a direct consequence of Theorems 2.4.1 and 2.4.2, the following

corollary is obtained.

Corollary 2.4.1. If there is an isomorphism y between two given

graphs G and G*, then there exists an isomorphism y between their

corresponding DSM’s D and D*.

This corollary provides only a necessary condition for two graphs

being isomorphic. By adding an additional requirement, a necessary and

sufficient condition for the existence of an isomorphism between two

graphs can be stated as the following corollary.

43

Corollary 2.4.2. An isomorphism y between two given graphs G and G

exists iff there is an isomorphism g between their corresponding DSM's

D and D’ and
H’(g({v}),i)) = U |3({u}) (2.4.10)

u C H({vl,i)

for all states { v}in Sr.

Proof. For proving Corollary 2.4.2, it needs only to show that if g is

an isomorphism between the DSM’s D and D', and (2.4.10) is satisfied,

then the restriction gr of g is an isomorphism between NDSM Dr and D^.

Suppose that g is an isomorphism between the DSM’s D and D’. Then the

restriction gr of g is obviously invertible and g(Hr({v},i)) =

(gr ({ v}),i) for all states in Sr as easily seen from (2.4.9). If

(2.4.10) is also satisfied for all (v) in Sr, then (2.4.7) holds for

all {v} in Sr. Then gr preserves all state transitions in NDSM’s Dr

and D[. Q.E.D.

Definition 2.4.1. A function a: S -> S’ is called an isomorphism from

M to M’ if a is invertible and preserves state transitions and outputs,

i.e., for all {v} in S,

a(H({v),i)) = H’ (a({v}),i)

and
J (H({ v} ,i)) = J’(H’(a({v}),i)). (2.4.11)

Since every isomorphism between two MSM’s must not only preserve

state transitions but also outputs as defined in (2.4.11), it is

obvious that this additional requirement implies that the set of all

isomorphisms between two MSM’s M and M' constructed from DSM’s D and D’

is a subset of that between D and D’. Thus, the following corollary

which is a consequence of Corollary 2.4.3 is stated without proof.

44

Corollary 2.4.3. An isomorphism y between two given graphs G and G’

exists iff there is an isomorphism a between their corresponding

MSM’s M and M*, and

H* (a({ v}) ,i) = U a({u}) (2.4.12)

u €" H({ v} ,i)

for all {v} in Sr.

Thus, either Corollary 2.4.2 or 2.4.3 can be used as a necessary

and sufficient condition for graph isomorphism. The advantage of using

Corollary 2.4.3 instead of Corollary 2.4.2 occurs when the number of

isomorphisms between M and M’ is fewer than those between D and D*.

However, the disadvantage of using Corollary 2.4.3 is the additional

requirements of defining outputs and of checking condition (2.4.11).

These and other considerations are discussed in Sections 2.5 and 2.6.

In order to determine any isomorphism y between two graphs, all

isomorphisms a between the two corresponding MSM’s must first be found.

Thus, before presenting the graph isomorphism algorithm, a discussion

of the partitioning method which is used to determine all isomorphisms

between two MSM’s is presented.

2.5 Partitioning on the State Set of a
Moore Sequential Machine

Definition 2.5.1. A partition P over the state set S of a MSM M is a

set of pairwise, disjoint sets called blocks such that the union of all

blocks B is S.

Definition 2.5.2. A partition P is called closed and output-consistent

if H(Bj,1)Ç Bk and K(J(Bj)) = 1,

for each (Bj,i) €- P x I and some Bk & P, where

45

H(Bj ,1) = U {H(s,i)} and J(Bj) - U {J(s)}.

s €- Bj s C Bj

Definition 2.5.3. A partition P is called trivial if K(P) = K(S) or

K(P) = 1; otherwise, it is called nontrivial.

Yang (1975) determined all isomorphisms between two MSM’s by

using a modified version of his earlier method (Yang, 1974) in which

all closed partitions over the state set of a sequential machine were

generated. The modified method first constructed a MSM M* =

(S U S’,I,H*,0 U O’,J*) where

H(s*,i) if s* & S
H*(s*,i) =

_H* (s*,i) if s* e S’

and

J(s*) if s* G S
J*(s*) =

j’(s*) if s* e S’.

Next, all nontrivial closed and output-consistent partitions were

generated by taking the union of the closure classes of the subsets

{s,s’} for each (s,s') G S x S’.

Definition 2.5.4. The closure class of a subset {s,s’} is the set

containing 1) {s,s*}, 2) all sets {sk,sp = H({s,s’),i) such that

{sk,s£} i {s,s’}, and 3) all distinct sets {sr,s4 = H({s,s'},w) such

that {sr,sp $ {s,s* } and {sr,s^.} ^{sk,sp for all w.

If the union of the closure classes were closed, then the union

defined a partition and consequently, defined an isomorphism a between

the MSM’s M and M’.

Since a modified version of the above partitioning method is used

by the graph isomorphism algorithm, an illustration of the method is

presented in Section 2.6.

46

2.6 The Graph Isomorphism Algorithm

The necessary and sufficient condition of Corollary 2.4.3 is

implemented by Algorithm 2 which is presented below. Algorithm 2

determines all isomorphisms between two MSM's and then, determines all

isomorphisms between the corresponding graphs by checking the state

transitions for all states s in Sr using (2.4.12). The algorithm

finds all isomorphisms between two MSM's by using a modified version of

the partitioning method which was developed by Yang. In Algorithm 2,

only those closed and output-consistent partitions which are generated

by the union of the closure classes of the subsets {s,s*} for each

(s,s’) €- Sr x are considered in determining if an isomorphism

exists between two MSM's. #

First, Algorithm 2 is presented and illustrated by an example.

Then, the computational complexity of Algorithm 2 is discussed

2.6.1 Algorithm 2

Algorithm 2 determines all isomorphisms between two graphs G and

G'. The MSM's M and M' are represented by the arrays H,J and H*,J',

respectively. These arrays are created by two successive calls to

Algorithm 1. The two graphs G and G' are respectively represented by

an adjacency list GL and an adjacency matrix GA'. By using different

data structure for each graph, the algorithm can easily check (2.4.12).

Other data structures which are used by Algorithm 2 are: the matrix

Class to contain all output-consistent closure classes for all subsets

{s,s*} for each (s,s') in Sr x the matrix Candidate to hold all

possible closed and output-consistent partitions which require checking

for covering condition; the matrix Partition to define all isomorphisms

47

between M and M*; the array Gamma to define all isomorphisms between

G and G* (all isomorphisms of Partition which satisfy (2.4.12); and the

variables si and si' to index the states of S and S' respectively.

Step 1. (If the numbers of states in M and M' represented respectively

by K(S) and K(S') are not equal, then no isomorphism exists.)

If K(S) K(S') then no isomorphism exists, stop.

Step 2. If every output in J does not have a corresponding output in

J* then no isomorphism exists, stop.

Step 3. (Steps 3-11 generate the output-consistent closure classes for

all subsets {si,si'} for each (s,s*) & Sr x S£.)

si 1, do Steps 4—11 until si > K(V) , go to Step 12.

Step 4. si' + 1, do Steps 5-10 until si' > K(V'), go to Step 11.

Step 5. (In order to know the subset {si,si'} whose closure class is

being generated, the indices iptr and jptr must be used.)

iptr *■ si, jptr si* .

Step 6. (If the outputs of the states represented by iptr and jptr

are not equal, the two states are not output-consistent.)

If Iiptr * Jjptr 8» to Step 9.

Step 7. (Otherwise, the states represented by iptr and jptr are

output-consistent and become an element of the output-

consistent closure class of {si,si'}. If (iptr,jptr) is

already an element of {si,si'} closure class, then all

elements of the closure class have been generated and the

closure class for {si,si'+l} must be generated.)

If (iptr,jptr) is already an element of Glassythen go

to Step 10.

48

Step 8. (Otherwise, (iptr,jptr) becomes an element of the closure

class of {si,si’}. Since this is not the last element of the

closure class, the indices for the next states of iptr and

jptr are determined, and the process of checking for output­

consistency begins again.)

Place (iptr,jptr) in Classgi,si,, iptr * Hiptr, jptr Hjptr,

go to Step 6.

Step 9. (In order to indicate that the state of Sr represented by si

and the state of S^ represented by si’ do not have an output-

consistent closure class, Classg^ is set to zeros.)

Classai,g! " (0,0).

Step 10. si* *■ si* + 1.

Step 11. si si + 1.

Step 12. (Steps 12-13 define all possible closed and output-consistent

candidate partitions by taking the union of all output-

consistent closure classes and by checking the covering

condition.)

t O, n *• 0.

Step 13. t t + 1.

If there does not exists a

Candidate^ = U {u-v | (u,v) €■ Classy,si* for

Classais!» / (0,0) A u / ux A v / vp

for any u^-vp £■ Candidate^}

where Candidate^ / Candidatem (1 <_ m <_ t),

for 1 £ si £ K(V) and 1 £ si’ <_ K(V’)

then go to Step 15.

49

Step 14. (Check each candidate partition for covering condition. If

the covering condition is satisfied, then the candidate

partition becomes a partition which defines an isomorphism

between M and M*.)

If for all 1 <_ si £ K(S), si-si* G Candidatet

then n n + 1, Partitionn *■ Candidatet.

Go to Step 13.

Step 15. (This step determines if each Partition generated in Step 14

satisfies (2.4.12) of Corollary 2.4.3. Each Partition which

satisfies (2.4.12) induces an isomorphism between G and G*.)

For each 1 < m < n

if for all 1 < si < K(V)

GA*(si*,sl’) =
1, for all sk O GL^

0, otherwise

where GL . is the adjacency list for vertex si and si-si’ si ,•
and sk-sl’ are elements of Partitionm

then Gamma {si-si* j si-si* G Partition^ 1 £ si £ K(V) }

defines and isomorphism between G and G*.

Step 16. Stop.

For illustrating Algorithm 2, graph 7 of Figure 2.3.1.1 and graph

8 of Figure 2.6.1.1 are used. The corresponding MSM’s M and M* which

are generated by Algorithm 1 are shown in Table 2.3.1.1 and Table

2.6.1.1. After determining in Step 1 that the number of states of M

is equal to the number of states of M*, Algorithm 2 proceeds to check

the outputs of the MSM’s. Step 2 determines each output in M has a

corresponding output in M*. In Steps 3—11, the output—consistent

50

2

5

Figure 2.6.1.1 Graph 8

51

kO

CM

0)

es)

CM

CM

CM

CM

CM

CM

n
CM

CM

CM

m
CM

CM

CM

g
â [[

1]
,[

1,
1,
2,
2,
2,
2]
]

%

CO

0)
4J

4J
W

œ

S
13

*

4J
ai
4J
œ
4J
S
S

52

closure classes for (s,s*) •& Sr x S£ are generated. Indices si and

si* are used to represent each state of S and S’. As an example, the

generation of the closure classes for {5,si'} is illustrated in

Figure 2.6.1.2. The downward arrows represent the next state function

with the outputs of the states written in parentheses. For state 5,

the only output-consistent closure class is generated from {5,5'1.

Similarly, the closure classes for the other (s,s*) C Sr x S^ are

generated and are shown in Table 2.6.1.2. The only candidate which

is also the only closed and output-consistent partition generated in

Steps 12-14 is Partition^ = {1-6*,2-1',3-2*,4-3',5-5',6-4’,7-9',8-7',

9-8*,10-11',11-10’,12-14’,13-12’,14-13’,

15-15'}

This partition defines an isomorphism between M and M', and also, by

satisfying the condition of Step 15, defines an isomorphism between G

and G'. The isomorphism between G and G’ is

Gamma = {1-6',2-1',3-2',4-3',5-5',6-4*}.

As seen from this example, when using the MSM representation of

graphs 7 and 8, 6 equations of (2.4.12) are checked for the one

partition generated in Step 14. If the DSM representation is used,

2 • 4! or 48 equations of (2.4.12) require checking. Of course, the

time required to check the 48 equations must be weighed against the

time required to define and check the outputs for M and M'. However,

as the K(V) increases, it becomes impractical to store and check a

factorial number of equations. Thus, it is obvious that the MSM,

rather than the DSM, representation of a graph leads to a more

practical and efficient graph isomorphism algorithm.

53

5([[6],[1]]), 1*([[6],[2]) 5([[6],[1]]), 2*([[6],[2]])

5([[6],[1]]), 3'([[7],[2]]) 5([[6],[1]]>, 4'([[6],[2]])

t------- -------1

t_ _*
5([[6],[1]]), 5'([[6],[1]])

10([[3],[l,2,2,]]), 11’([[3],[1,2,2]])

15([[1],[1,1,2,2,2,2]]), 15’([[1],[1,1,2,2,2,2]])

15([[1],[1,1,2,2,2,2]]) 15’([[1],[1,1,2,2,2,2]])

5([[6],[1]]), 6’([[6],[2]])

Figure 2.6.1.2 Generation of all Closure Classes for {5,si’}

54

TABLE 2.6.1.2

OUTPUT-CONSISTENT CLOSURE CLASSES FOR (s,s*) G S^ x S^

Index Pair (si,si’) Output-Consistent Closure Classes

d,6') { (1,6'),(7,9'),(12,14*),(15,15')}

(2,1') {(2,1'),(8,7’),(13,12*),(15,15')}

(3,2') {(3,2'),(9,8*),(14,13'),(15,15*)}

(4,3') {(4,3'),(7,9*),(12,14*),(15,15*)}

(5,5') {(5,5’),(10,11'),(15,15’)}

(6,4') {(6,4'),(11,10'),(15,15')}

55

2.6.2 The Computational Complexity of Algorithm 2

The worst case for Algorithm 2 exists when the outputs of the

states of the MSM's are all the same. If the outputs are the same,

the number of output-consistent closure classes for the states of

the MSM's are equal to the number of closure classes for the states of

the corresponding DSM’s.

Theorem 2.6.2.1. Algorithm 2 processes a pair of graphs in at most

0(n^-n!) time.

Proof. If the outputs of the states of the MSM's are the same, there

can be up to n2 output-consistent closure classes generated in Steps

4-11 of Algorithm 2. In Steps 12-14, these n2 closure classes can

define up to n! isomorphisms between the MSM's. Each of these n! iso­

morphisms can have at most n equations of (2.4.12) to be checked. Each

equation can have up to n terms. Thus the upper bound of Algorithm 2

is 0(n2-n!). Q.E.D.

The lower bound for Algorithm 2 can be determined from the special

case that exists when the graphs are not isomorphic, and the corre­

sponding MSM's reflect this fact by having a differing number of states.

The algorithm terminates in Step 1; and the lower bound is 1.

Since the upper bound and lower bound of any algorithm reflect

the worst and best cases, they are of theoretical interest only.

Because many practical problems contain neither the worst nor the

best cases, it is very important to obtain experimental bounds.

Experimental bounds for both Algorithms 1 and 2 are discussed in

Chapter V.

CHAPTER III

A REVIEW OF THE CURRENT BACKTRACKING GRAPH ISOMORPHISM ALGORITHMS

3.1 Introduction

In recent years, the most popular approach for solving the graph

isomorphism problem has been the use of the backtracking technique.

Backtracking algorithms used some necessary conditions to partition

the sets of vertices of the two graphs and the backtracking technique

to select possible vertex assignments to test for isomorphism. The

backtracking approach represented an improved method over the

heuristic approach, since if the heuristic part of the backtracking

algorithm failed to reduce the number of possible vertex assignments,

the backtracking technique insured a stepwise elimination of all

inconsistent vertex assignments. Since backtracking algorithms could

process graphs of large orders, this approach also represented an

improvement over the coding algorithms.

In this Chapter, the graph isomorphism backtracking algorithms

which were developed by Berztiss (1973), Ullmann (1976), and Schmidt

and Druffel (1976) are reviewed. Each such algorithm is described

and illustrated by using graph 7 of Figure 2.3.1.1. and graph 8 of

Figure 2.6.1.1.

3.2 Berztiss’ Backtracking Algorithm

This method specified the graph G by a linear notation called a

K-formula and then derived a similar K-formula for the graph G’ by

56

57

using permissible K-formula transformations, a condition necessary for

graph isomorphism, and a backtracking procedure. If the K-formulas

which represented G and G* had the same pattern, then the corresponding

vertices defined an isomorphism.

The K-formula notation was based on the representation of an are

(a,b) by the K-formula *ab. The representation *ab was derived by an

application of K-operator * to the vertices named a and b. For

instance, the arc (1,2) of graph 7 can be represented by *12. In

general, a K-formula, which represented n arcs originating from a

given vertex in a graph, consisted of n K—operators, followed by the

name of the given vertex, followed in turn by the names of the n

vertices at which the arcs terminated. Using the K—operator * in this

way, the adjacency relation of a vertex could be completely specified.

For example, vertex 1 of graph 7 can be specified by the K-formula

***1256. Thus, graph 7 can be completely specified by the set of K-

formulas ***1256, ***2134, ***3146, ***4256, ***5123, ***6345. By

using the switch transformation, the terminal vertices could be

written in any order, i.e., ***1256 can be rewritten as ***1562.

The K-formulas could then be combined, using the substitution

transformation by which vertex in a K—formula could be substituted

by its respective K—formula. Thus, the vertex 2 in ***1256 can be

substituted by ***2134 to give ***1***213456. Continuing in this way,

the K-formulas of graph 7 are transformed to yield a single K-formula

121***31***42***5123***63456456.

Formally, Berztiss defined a K-formula as (1) a single vertex

symbol or (2) *F^ where Fj and F2 are K-formulas. The algorithm

published by Berztiss (1973) which describes the above process of

58

generating the set of K-formulas which represent a graph is given in

Appendix E.l as Algorithm 3. From the definition, it is noted that a

K-formula of a graph usually consist of several K-formulas which are

called K-subformulas. In order to establish whether a given string of

a K-formula is a K-subformula, Berztiss used an equivalent iterative

definition of a K-formula.

Definition 3.2.1. The string s-^.. .s^.. .s^, consisting of K-operators

and vertex symbols and containing a substring s-^.-.s^ having K-

operators and n^ vertex symbols, is a K-formula iff n^ <_ for

i = l,2,...,m-l and + 1.

Processing the K-formula of graph G from left to right, the back­

tracking algorithm of Berztiss would attempt to construct a partial

K-subformula of graph G* that was isomorphic to the K-subformula of G,

which was defined by the processed vertices. If on processing the

next vertex in the K-formula of G, it was found that the K-subformula

of G* could not be extended on the basis of the current vertex cor­

respondence, then the procedure backtracked to the vertex in the

K-formula of G that last caused an addition to the tentative vertex

correspondences, and a different vertex of G* would be chosen to

correspond to the vertex of G. The procedure would continue in this

manner, until a complete K-formula of G* was generated, in which case

an isomorphism existed; or, until no feasible vertex correspondence

existed. Berztiss’ backtracking algorithm (1973) is given in Appendix

E.l as Algorithm 5. Algorithm 4 (Berztiss, 1973) of Appendix E.1 is

used to construct the data structures used in Algorithm 5.

As an illustration of this backtracking algorithm, the K-formula

of graph 8 is constructed to have the same pattern as the K-formula of

59

graph 7. First, graph 8 can be completely specified by the set of

K-formulas {***!'2*3*6', ***2*3*4*6*, ***3*1*4*5*, ***4*2*3*5*,

***5’1’2’6’, ***6’1’4’5’}. Since all the K-formulas of graph 8 match

the first subformula ***5123 of graph 7, each of the K— formulas of

graph 8 are extended, by using the switch and substitute trans forma­

tions , in an effort to produce a K—formula that has the same pattern

as the next sub formula ***42***5123***6345. After a number of vertex

correspondences and backtracks, in an attempt to extend the first two

K-formulas of graph 8, the procedure successfully extends the K-formula

3'1’4’5’ to ***3’1’5*2*1*6****4’2’3*5’ based on the vertex

correspondence 2-1*, 4-3*, 5-5’, and 6-4*. Using these correspondences,

the K-formula is further extended to ***2 * 5 * ***3 * 1’***5 *6’1*2*

4’2* 3’5*4* in order to match the next subformula ***3142***5123

***63456. From these K-formulas the vertex correspondences 3-2* and

1-6’ are made. Using these correspondences the K-formula is extended

to

1’6’2’6’***3’1’***5’6*1*2****4'2’3’5’4’3’

to match the next subformula

2131***42***5123***634564.

Finally, the K-formula of graph 8 is extended to

6’1’6’***2’6’*** 3’1’***5 *6’1’2’***4 *2’3’5’4’3’5’4*

to match the K-formula of graph 7

121***31***42***5123***63456456.

Since the two patterns are the same, the corresponding isomorphism

y = (1-6*,2-1’,3-2*,4-3’,5-5’,6-4*) is defined.

60

3.3 Ullmann’s Refinement/Backtracking Algorithm

The basic idea of this method was to construct a matrix M which

represented possible vertex assignments between the vertices of the

two graphs G and G’, and then, after making possible vertex assign­

ments, to refine M by using a necessary condition for graph isomor­

phism. The necessary condition was based on the adjacency relations

of the vertices. If the graphs were isomorphic, then M would, after

possible backtracking to reassign vertices, be refined to a matrix

which specified a one-to-one mapping from V onto V’.

The initial matrix M which represented possible vertex correspon­

dences was constructed according to

l, if the indegree and outdegree of vertex
i of G is the same as the indegree and

mij outdegree of vertex j and G’,

0, otherwise,

where M = [m^]. For example, the matrix M for graphs 7 and 8 is

constructed. Since the indegree and outdegree of each vertex of

graphs 7 and 8 are both three, the construction of M results in a

matrix having 1’s for all entries as is shown in Table 3.3.1.

The constructed matrix M would then be used in making the initial

vertex assignments. After a vertex of G was assigned to one of G ,

the remaining entries in the corresponding row of M were set to O’s,

and M would be refined as follows: m^j = 1 was changed to m^j = 0

unless
(Vx) ((glx = 1) => Oy) (%y * gjy = D) (3.3.1a)

1 S x S K(V) 1 < y 1 K(V’)

and (Vx) ((gxi = 1) => Oy) (™Xy • gyj = 1))- (3.3.1b)
1 < X < K(V) 1 < y S K(v’) y y

61

TABLE 3.3.1

INITIAL MATRIX M FOR GRAPHS 7 AND 8

1* 2’ 3* 4’ 5’ 6*

1111111

2 111111

3 111111

4 111111

5 111111

6 111111

62

where [g^j] and [gL] represented the adjacency matrices of graphs G

and G*. Conditions (3.3.1a) and (3.3.1b) represented the adjacency

relations of the vertices of G and G’. From the definition of graph

isomorphism, it is necessary that if v± of V corresponded to vj of V*

in an isomorphism, then for each vertex v^x adjacent to v^, there must

exist a v!^ that is adjacent to vj such that y(v^x) = vjy’ ^or
each vxi to which v± is adjacent, there must exist a v^ to which vj

is adjacent such that y(vxf) - vyj"

The refinement procedure would continue refining M until no more

m..'s were changed or until a row of M became all 0 s, in which case

the last vertex assignment was inconsistent. Ullmann’s algorithm used

a depth first tree search method in making vertex assignments. In

general, a depth d corresponded to row d of the matrix M. The refine­

ment procedure, by eliminating some of the 1 s of M, eliminated

successor nodes in the tree search. If at level d > l, all vertex

assignments were found inconsistent, i.e., the refined M contained a

zero row, the algorithm would then backtrack to depth d—1. Using the

matrix M at level d-1, the procedure would try another vertex

assignment of vertex d—1 of G. If a level d, matrix M was left un­

changed by the refinement procedure, then G would be concluded iso­

morphic to G’. However, if upon backtracking to depth 1, no more

possible vertex assignments could be made, then G would be concluded

nonisormophic to G*, and the algorithm would terminate. Ullmann s

refinement/backtracking algorithm (1976) is given as Algorithm 6 of

Appendix F.I.

As an illustration of Ullmann’s isomorphism algorithm, the matrix

M of Table 3.3.1 is used in making a vertex assignment for vertex 1 of

63

graph 7. Since m-æ = 1, the procedure first tries vertex assignment

1-1’. This assignment causes the other entries in row 1 of M to become

O’s as is shown in Table 3.3.2. The initial matrix M of Table 3.3.2.

is refined until the refined M of Table 3.3.2 is obtained. This

refined M indicates that 1—1’ is inconsistent, since it implies no

vertex correspondence exists for vertex 5 (row 5 being all Os). The

algorithm then attempts based on the last valid M, in this case the

matrix of Table 3.3.1, to assign vertex 1 to another vertex of graph 8.

The assignments 1-2’, 1-3’, 1-4’, and 1-5’ all produce a refined M with

a zero row, and thus, these assignments are all inconsistent. These

vertex assignments and the corresponding refined M is shown in Table

3.3.3. However, the last possible vertex assignment 1-6’ results in

the refined M of Table 3.3.4. Based on this matrix, the vertex

assignments 2-1’, 3-2’ , 4-3’, 5-5*, and 6-4’ are made, and since at

each level M remains unchanged, the matrix M of Table 3.3.4 is the

desired matrix which specifies the isomorphism y = (1-6’,2-1',3-2’,

4-3’,5-5’,6-4’). For this example, no backtracking was required.

3.4 Schmidt and Druffel's Backtracking Algorithm

This method used information contained in the distance matrix

representation of a graph initially to partition the sets of vertices

of graphs G and G’ into like classes. Next, a backtracking procedure

selected vertices from like classes and then, based on the distance

matrix information, checked the vertex assignments for consistency.

The algorithm terminated when the two graphs were found either iso­

morphic or nonisomorphic.

64

CM

CO

mi

*

oo1

5 4J=

<0
f

M

H
O

M-ls 1

to
f
M

H
O

M-ls

I
H W

I
g % sX
I

65

TABLE 3.3.3

INCONSISTENT VERTEX ASSIGNMENTS FOR GRAPHS 7 AND 8

Vertex Assignment Corresponding Refined M

1-2* ~oioooo-
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1

1-3* ~0 0 1 0 0 0
10 0 10 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 0 0 0

_1 1 1 1 1 1-

1-4* ~0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 1
10 0 110
0 1 0 0 0 0

0 0 0 0 1 0

1-5* ~0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

1 1 1 1 1 1

66

TABLE 3.3.4

MATRIX M AFTER REFINEMENT OF VERTEX ASSIGNMENT 1-6*

1

2

3

4

5

6

1* 2* 3* 4* 5' 6*

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

M defines the isomorphism

y = (1-6*,2-1',3-2',4-3*,5-5*,6-4*)

67

For every pair of vertices v^ and Vj of a graph there is a

unique minimum distance which can be represented by a distance matrix.

Definition 3.4.1. The distance matrix D of graph G having n vertices

is an n x n matrix in which the element d^j represents the shortest

path between vertices v^ and vj. If i = j, then d^j =0. If no path

exists between v^ and Vj , then d^j = 00 (infinity).

Since the distance matrices were unique representations of graphs

G and G’ and since they contained information concerning the relation­

ship between the vertices of the graphs, they were used initially to

partition the sets of vertices into like classes. By comparing the

row characteristic matrices with the column characteristic matrices,

the initial partitioning procedure formed the characteristic matrices

of G and G’.

Definition 3.4.2. A row characteristic matrix XR is an n x (n-1)

matrix such that the element xr^m is the number of vertices which are

at a distance m away from v^.

Definition 3.4.3. A column characteristic matrix XC is an n x (n-1)

matrix such that each element xc^ is the number of vertices from

which V£ is at a distance m.

Definition 3.4.4. A characteristic matrix X is formed by composing

the corresponding rows of XR and XC.

The initial partition was then generated from the characteristic

matrices by assigning the same class to all vertices having identical

rows. Class vectors C and C’ were used to contain the classes for

each vertex of G and G*. The initial partitioning algorithm is given

as Algorithm 8 (Schmidt and Druffel, 1976) of Appendix G.I.

To illustrate the formation of the initial partition, graphs 7

68

and 8 are used. First, using Definition 3.4.1, the distance matrices

D and D* are constructed. These matrices are shown in Table 3.4.1.

Using Definitions 3.4.2 and 3.4.3, the matrices XR, XC, XR , and XC

are generated and are shown in Tables 3.4.2 and 3.4.3. Next, the

characteristic matrices X and X* are generated by composing the

corresponding rows of XR with XC and XR’ with XC . The resulting

matrices are shown in Table 3.4.4. Since all the rows of X and X are

generated by composing the corresponding rows of XR with XC and XR*

with XC’. The resulting matrices are shown in Table 3.4.4. Since all

the rows of X and X’ are identical, the initial partition defined by

C = (1,1,1,1,1,1) and C* = (1,1,1,1,1,1), consist of just one class.

After the initial partition was generated, the graph isomorphism

algorithm selected two vertices belonging to the smallest class and

checked to determine if the assignment was consistent. The assignment

of vertex i of G to vertex j of G* was consistent if (1) every element

dir = djs and dri = dsj where vertex r had been assigned to vertex

s and (2) every element d^ (vertex k not previously assigned) had a

corresponding dj^ (vertex p not previously assigned) such that

ck = cp where c^ and cp represent the class of vertices k and p.

Thus, a consistent vertex assignment implied that row i and column i

of D had corresponding elements in row j and column j of D' at least

for all previously assigned vertices, and that the remaining elements

of those rows and columns did not preclude further consistent vertex

assignments, if any remained. This condition was checked by composing

the class vector for the appropriate graph with the respective rows

and columns of the distance matrix. This composition generated a new

class vector which could define a refined partition. If the vertex

69

en

i

I
Q
a
Q
CA
S
i

I
en
O

70

u SS
O

O ,
U
aS
□ 6
H 2
en H
r

u
H en
S

E-i
U

TA
BL

E
3.
4.
2

71

TA
BL

E
3.
4.
3

u

I

SC 00
° SC
0

O , U #
Is

< en
=1

P

U

U
H
H
en
I

72

TA
BL

E
3.
4.
4

I

I
UI § ! o H
UD

I

73

assignment was inconsistent, another pair of vertices was chosen. If

a partition is reached such that there are no consistent vertex

assignments, then an assignment between two vertices which did not

belong to an isomorphism had been made, and it became necessary to

backtrack to try another vertex assignment. This process would be

continued either until each vertex of G was assigned to a vertex of

G’ and all assignments were verified as consistent, in which case G

was concluded isomorphic to G’, or until nonisomorphism was

established. Two graphs were concluded nonisomorphic, if a level I

of the tree of vertex choices, there were no more untried vertex

pairs. The graph isomorphism algorithm is given as Algorithm 9

(Schmidt and Druffel, 1976) of Appendix G.I.

As an illustration of this backtracking method, the class

vectors C = (1,1,1,1,1,1) and O' = (1,1,1,1,1,1) are used to define
Ç

the initial partition. Since there is just one class in this

partition, the vertex assignment 1-1’ is first selected. The assign­

ment is checked by composing C with row 1 and column 1 of D and C’

with row 1’ and column 1* of D’. This composition yields the new

class vectors C = (1,2,3,4,2,5) and C’ = (1,5,2,4,3,2). The process

is illustrated in Table 3.4.5. These class vectors indicate 1-1’ is

consistent, since the number of vertices of each class of 0 equals the

number of vertices for the corresponding class of O’. At this point,

a choice of which vertex pair to use next is made based on choosing a

vertex pair from the smallest class. Then, the vertex pair 3-5* is

selected. The checking for consistency generates the new class

vectors C = (1,2,3,4,2,5) and C* = (1,6,2,7,3,8). Since these class

vectors indicate the 3-5* is inconsistent, the algorithm backtracks to

74

TA
BL

E
3.
4.
5

Ne
w C’ t-4 m N <r m cN

Co
lu
mn

1’
of
 D
*

O CS, H Cvl H H

Ro
w

1*

of
 D
*

O r-1 t—l Cj r-1

Ol
d C H H t-4 H H H

Ne
w C r4 eg m -a- cm io

Co
lu

mn

1
of
 D O H H eg H eg

Ro
w

1
of
 0 O 1-4 CM CM 1-4 1-4

Ol
d C r—I rd rH rd rH rH

75

the last consistent vertex assignment, 1-1’, and attempts another

assignment for vertex 1. Vertex assignments 1-2*, 1-3*, 1-4*, and

1—5* are either inconsistent or lead to other inconsistent vertex

assignments. Finally, the vertex assignment 1—6 , after being checked

for consistency induces the class vectors C — (1,2,3,4,2,5) and

C* = (2,3,4,5,2,1). The next consistent assignment 3-2* induces the

class vectors C = (1,2,3,4,2,5) and C’ = (2,3,4,5,2,1). Then, the

consistent vertex assignment 4-3* induces the class vectors

C = (1,2,3,4,5,6) and C = (2,3,4,6,5,1). Since there are no more

arbitrary choices of vertex pairs, the algorithm checks the remaining

assignments 2-1*, 5-5', and 6-4* for consistency. Since these are all

consistent, the graphs are concluded to be isomorphic with the iso­

morphism y - (1—6',2-1*,3-2*,4-3*,5-5',6—4*).

CHAPTER IV

EVALUATION PROCEDURE FOR DETERMINING THE EFFICIENCY
OF THE GRAPH ISOMORPHISM ALGORITHMS

4.1 Introduction

All of the previously described graph isomorphism algorithms

which were reviewed in Chapters I and III either employed heuristics

or used a necessary and sufficient condition. The heuristics were

used to reduce the number of possible invertible functions to be

checked for isomorphism either by an enumeration method or by a

backtracking technique. A necessary and sufficient condition was

used efficiently only for graphs with a small number of vertices.

For each of these algorithms, and also for the new graph isomorphism

algorithm of Chapter II, the upper computational bound was factorial

and the lower computational bound was dependent upon the types of

graphs. Since a theoretical evaluation of the graph isomorphism

algorithms would consider only the worst (upper bound) and the best

(lower bound) case analyses, it would give little insight into the

actual computing performances. However, since all the previous graph

isomorphism algorithms were implemented by different languages,

executed on different computers, and tested by using random graphs,

experimental evaluation based on the algorithm’s reported execution

time performance would be inaccurate.

Thus, in order to make a comparison of the graph isomorphism

algorithms, the new graph isomorphism algorithm and the graph

76

77

isomorphism algorithms of Berztiss (1973), Ullmann (1976), and Schmidt

and Druffel (1976) were chosen for evaluation, since these algorithms

represented the four most current graph isomorphism algorithms.

In this Chapter, the procedure which was used to evaluate the

four algorithms is presented. The procedure involved using PL/I to

implement the graph isomorphism algorithms ; using several classes of

graphs to test the PL/I implementations ; and using the results of the

tests to analyze the performance of the algorithms.

4.2 PL/I Implementations

Each of the four algorithms was implemented by PL/I and compiled

under the IBM PL/I OS Optimizing Compiler Version 1, Release 2.2.

Since the implemented algorithms were evaluated and compared based on

their execution time performance, efficiency of the implemented steps

using PL/I was more important than the structure of the implemented

steps. Thus, the programs were written with the concept of efficiency

rather than with the concept of structured programming. The programs

were executed on an IBM 370/158 with a 192 K partition size. The size

of the necessary partition could be reduced by using the features of

PL/I to allocate and free storage; however, execution times would be

increased.
The implementation of the new graph isomorphism algorithm involved

writing PL/I programs for Algorithm 1 of Section 2.3 which transformed

each graph into a MSM and for Algorithm 2 of Section 2.6 which deter­

mined all isomorphisms between the two graphs. The PL/I source list­

ings are given in Appendix D. For efficiency of implementation of

Equation (2.4.12), graph G was represented by an adjacency list, and

78

both graphs G and G* were represented by a bit adjacency matrix.

Using PL/I, the bit adjacency matrix was processed element by element

and row by row.

Berztiss’ method was implemented by writing PL/I programs for

Algorithm 3 of Appendix E.l which produced a K-formula for graph G,

for Algorithm 4 of Appendix E.l which created the data structures

representing the K—formula, and for Algorithm 5 of Appendix E.l which

determined all isomorphisms between graphs G and G1. The PL/I

source listings are given in Appendix E.2. Algorithm 5, the backtrack­

ing algorithm, was programmed to terminate after one isomorphism was

found or nonisomorphism was established. Since the performance of

the backtracking algorithm was very dependent on the structure of the

K-formula, Algorithm 3 was programmed to produce a K-formula with the

adjacency structural information contained in the beginning of the

formula. Thus, for graph 7 of Figure 2.3.1.1, the K-formula

121***31464***5123***63***42565

would be produced instead of the K—formula

121***31***42***5123***63456456

which was used for illustration in Section 3.2.

The implementation of Ullmann’s algorithm involved writing PL/I

programs for the calculation of the initial matrix M, which is defined

in Appendix F.I and for Algorithm 6 of Appendix F.1 which determined if

the two graphs were isomorphic. The PL/I source listings are given

in Appendix F.2. Ullmann’s isomorphism algorithm was modified and

programmed to terminate when the matrix M, after refinement, contained

exactly one 1 in each row and each column. The refinement conditions

(3.3.1a) and (3.3.1b), which were used by Algorithm 6, were programmed

79

as an internal procedure. In order to efficiently execute the

refinement conditions, each row of M, and each row and column of the

adjacency matrix of G* were stored in separate computer words. Thus,

(3.3.1a) and (3.3.1b) were implemented by "ORing" word by word the

appropriate row of M with the appropriate row or column of G . This

proved to be much faster than the corresponding element by element

computation.
Schmidt and Druffel’s algorithm was implemented by writing PL/I

programs for Algorithm 7 (Floyd, 1962) of Appendix G. 1, which con­

structed the distance matrices, for Algorithm 8 of Appendix G.1, which

generated the initial partition, and for Algorithm 9 of Appendix G.1,

which determined if an isomorphism existed between two graphs. The

PL/I source listings are given in Appendix G.2. Step 6 of Algorithm 9

was programmed as an internal procedure which chose from the smallest

class a previously unassigned vertex G. This strategy of choosing

a vertex from the smallest class could refine the partition by reducing

the size of its larger class and hence, could reduce the searching

required at the next level of the vertex assignment tree. Thus, the

overall effect of using this strategy was that usually the breadth of

search was reduced while the depth of search was increased.

4.3 Input Data

The programs were then executed by using several classes of

regular graphs. Regular graphs were chosen since all previous graph

isomorphism algorithms encountered difficulty in processing regular

graphs. The difficulty was due to the fact that all previous graph

isomorphism algorithms employed heuristics which could not distinguish

80

between vertices having the same characteristics. In the case of

regular graphs, all vertices had the same degree characteristic, i.e.,

all vertices of a k-regular graph had the same indegree and outdegree

k. Thus, a graph isomorphism algorithm which used a heuristic based

on the degrees of the vertices could not effectively process k-regular

graphs.

The PL/I program "GRAPHS" of Appendix B was used in randomly gen­

erating both nonisomorphic and isomorphic regular graphs. Twenty-five

pairs of random n/2 regular nonisomorphic graphs having n vertices,

for n = 6, 8, 10, 12, 20, 30 were generated. Each pair of noniso­

morphic graphs was produced by first, randomly constructing an n/2

regular graph, and then, by randomly permuting its rows, a second n/2

regular nonisomorphic graph was produced.

Twenty-five pairs of random n/2 simple regular graphs having n

vertices for n = 6, 8, 10, 12, 16, 20, 26, 30, 40 were generated. Each

pair of isomorphic graphs was constructed by first, randomly producing

an n/2 simple regular graph, and then, by randomly permuting its rows

and columns, a second n/2 simple regular isomorphic graph was

produced.

Several published sets of strongly regular nonisomorphic graphs

were also tested. The set of strongly regular graphs produced by

Paulus (1973) was used. This set contained fifteen nonisomorphic

graphs of order 25 with the indegree and the outdegree of each vertex

equal to 12 (d(v±) = 12, for all i). From these fifteen graphs,

fifteen random pairs were chosen. A similar collection of strongly

regular nonisomorphic graphs of orders 35 and 36 were developed by

Bussemaker and Seidel (1970). From this collection, fifteen random

81

pairs of the first 35 (numbered 1—35) of the 80 Steiner graphs of order

35 with d(vp = 19, for all i, and five random pairs of the 12

(numbered 81-92) Latin Square graphs of order 36 with d(v±) = 16, for

all 1, were used.

4.4 Analysis Procedure

Since each of the four methods required some initial preparation

of the graph representation used by the isomorphism algorithm, each

method was considered to contain two primary algorithms : the graph

representation algorithm and the graph isomorphism algorithm. The

classification for the algorithms of each method is shown in Table

4.4.1.
Each of the four methods was tested by using the collection of

graphs which were described in the previous section. The execution

time results of each procedure were obtained by using a Basic Assembly

Language routine "ASMTME". ASMTME, given in Appendix C, accumulated

in units of 26.04166 microseconds the CPU time which was used by a

specified section of a procedure. This unit of time was directly

dependent upon the power supply used by the IBM 370/158 and thus, may

be different for other computers.

In evaluating any algorithm, the performance of its implementation

should be distinguished from the performance of the algorithm itself.

The performance of the implementation is both language and computer

dependent, whereas the performance of the algorithm is data dependent.

The performance of the implementation of the algorithms of each

graph isomorphism method was obtained by measuring the execution time

required by the algorithm to process a pair of graphs. As an aid to

82

TA
BL

E
4.
4.
1

CL
AS

SI
FI

CA
TI

ON
 O

F
TH

E
AL

GO
RI

TH
MS

 U
SE

D
BY
 T

HE

GR
AP

H
IS

OM
OR

PH
IS

M
ME

TH
OD

S

Gr
ap
h

Is
om

or
ph

is
m

Re
fe

re
nc

e

Se
ct
.

2.
6

Ap
p.
 E

.1
.3
.

Ap
p.

F.
1

Ap
p.
 G

.1
.2

Ap
p.
 G

.1
.3

Al
go

ri
th

m
No
.

CM m 6
(S
te
ps
 1

-7
)

00 Ct

Gr
ap

h
Re

pr
es

en
ta

ti
on

__
__
__
__
__
_

Re
fe

re
nc

e

Se
ct
.

2.
3

Ap
p.
 E

.1
.1

Ap
p.

E.
1.
2

Ap
p.
 F

.1

Ap
p.
 G

.l
.l

Al
go

ri
th

m
No
.

m <r 6
(S
te
p

0)

r-

Me
th

od
s

Ne
w

Be
rz
ti
ss

Ul
lm

an
n

Sc
hm
id
t

an
d

Dr
uf

fe
l

83

evaluating this performance, the execution times, for the set of

nonisomorphic and isomorphic regular graphs were experimentally fitted

by using the Statistical Analysis System (SAS) developed at the North

Carolina State University.

The raw data, up to 25 observations for each value of the number

n of vertices tested, were input to the linear regression procedure of

SAS. Next, linear and quadratic polynomial curve fits of the raw data
were tried. If the coefficient of determination R2 of either of these

curves was the calculated maximum, i.e., the maximum percentage of

variation of execution time which could be explained by a polynomial

curve fit, then no higher degree polynomial was tried. Otherwise, the

polynomial fitting would continue by increasing the degree of the

polynomial until the maximum was achieved. If the R of any

polynomial curve was above 90%, then the data were assumed to be
2 polynomial in behavior, and the polynomial curve with the highest R

was chosen. However, if the R2*s of the polynomial curves were less

than 90%, then linear and quadratic exponential fits were tried. As

above, the exponential fitting was terminated at the degree which
achieved the maximum R2. The curve, either polynomial or exponential,

with the highest R2 was then chosen to fit the raw data.

For the nonisomorphic regular graphs, the performance of the

implementation was measured only for the graph isomorphism algorithms.

However, for the isomorphic regular graphs, the performance of the

implementation was measured for both the graph representation

algorithms and graph isomorphism algorithms.

On the other hand, the performance of the algorithm was measured

only for the graph isomorphism algorithm using all classes of graphs

84

tested. The performance of the new graph isomorphism algorithm was

measured by the number of isomorphisms between the two MSN* s, each of

which was checked by (2.4.12), and by the number of vertex assignments

required to establish either isomorphism or nonisomorphism. Both of

these measurements reflected the power of the output function J(s)

used in defining the MSM’s. The performance of the three backtracking

algorithms was measured by the number of times the algorithm had to

backtrack in processing a pair of graphs and by the number of vertex

assignments required to established either isomorphism or nonisomor­

phism. These measurements reflected the power of both the heuristics

and the backtracking technique used by each algorithm.

CHAPTER V

EXPERIMENTAL RESULTS AND CONCLUSIONS

5.1 New Algorithms

The new graph isomorphism algorithm was tested using the set of

nonisomorphic regular graphs which were described in Section 4.3.

Then, the graph representation algorithm and the graph isomorphism

algorithm (see Table 4.4.1) were applied to the set of isomorphic

regular graphs (see Section 4.3). The performance of the implementa­

tion for each algorithm using these regular graphs is summarized in

Table 5.1.1. The performance of the graph isomorphism algorithm is

summarized in Table 5.1.2. Next, the sets of strongly regular graphs

(see Section 4.3) were used. However, since the isomorphism algorithm

failed to complete the determination of nonisomorphism for one pair of

each type in 4 minutes, the testing was terminated.

5.1.1 Performance of the Implementation

Using the procedure which was described in Section 4.4, the raw

execution times, t, summarized in Table 5.1.1 were fitted by linear and

quadratic polynomial functions of the number of vertices, n. It is

noted that all execution times are given in milliseconds. Since for

the nonisomorphic regular graphs the raw execution times generated by

the isomorphism algorithm were centered around a constant line, the

fit was the following equation independent of the number of vertices n

t = 1.89.

85

86

PE
RF

OR
MA

NC
E

OF
 I

MP
LE

ME
NT

AT
IO

N
FO

R
NE

W
AL

GO
RI

TH
MS

 U
SI

NG
 R

EG
UL

AR
 G
RA
PH
S

(T
im
e

in
 m
il
li
se
co
nd
s)

Is
om
or

ph
ic
 G

ra
ph
s

Gr
ap

h
Re
p.
 A

lg
.

St
. D

ev
. KOKor^moo<f<foicn

enmcN\oaomcor4

u~> vo csi o ।— o un in
H nt H H <—1 <—1

Me
an

r4Ncnr'<r<r<roo
<rmoooomH'»iom

<t<rmcor-ocn<-i<T
oooCTimcMt^oooon
ioomior~o<Tir^un

HHHCM<rvOOOy
Gr

ap
h

Is
o.
 A

lg
._
__
_

St
.

De
v. r»OOcnvOHlOHO<N

-crcoooioinHunr~.cn

ocnoniio-d-munco
H H CO

Me
an

co io oo r~. i—i «—i nj o o
r~.<roooniooinmo

oor~ooHCT>unmm
Hm<runr~.a\<rr~ai

i—1 r~1 cs

No
ni

so
mo

rp
hi

c
Gr
ap
hs

Gr
ap
h

Is
o.
 A

lg
.

St
.

De
v. <r id io id o

O O O O • O • H •

H O O O • O • O •

Me
an

*
r~ \o -ct io -K io
O oo oo co • oo • oo •

CM H H 1—1 • H • H •

No
.

of

Te
st
s unminmunininunm

CMCMCMCMCMCMCMCMCM

No
.

of

Ve
rt
ic
es

vOOOOCMiOOlOOO
H H H CM CM cn -cf

tn
3nS
000

•H
cn
cn

•rls
M
O

0)

cd
n
a

00

a

0)
n

S

m&
I
cnC ê* *

87

co
y
B

5

M

**
 N

on
is

om
or

ph
ic
 g

ra
ph
s

we
re

 n
ot
 g

en
er

at
ed

 f
or
 m

is
si

ng
 e

nt
ri
es
.

No
.

à

•H
CO
CO o MD 00 ID 00 o CM o o< o m in CM CM in o

■ * A a a a a a

cd x \D m o ,—1 in O \D -d"a) 0) CM Ox 00 co m m ID
s 4Jn

n cu
cd >
M

CD

O
•H
33
A
M
o
e •
o • o
co o co
H « H o CM 00 00 00 MD CM co o 0)

Me
an

MS
M’
s o Cx

CM

-d" oo o
m MD

m co ID u
•H
4J

<U >
MD

33

gn
.

s
CO No

.
ss
i co

33
& an X o O O o a CD • o e

&
k <u 0) • ■ w

CD S 4J u
U

•H

&

Ve ft
g

§

co

O

•H
1

No
.

Is
o. •K•K fo
r

ea
n CO

S3
o O O o • O • o • TD

<U
to

S cn
a COc

O
•Hu

m o CO

co
•K m m m m in in in in m

I
0)

o 0) CM CM CM CM CM CM CM CM CM co
K H •o

MD

tw
CO
0)

O u
•H kD 00 o CM xD O MD O o B
4J CM CM m o

o %a
> •K

88

This equation with raw execution times is plotted in Figure 5.1.1.1.

The constant 1.89 was calculated by averaging the averages of the

execution times for each n. Using the isomorphic regular graphs, the

raw execution times generated by the isomorphism algorithm were fitted

by the quadratic equation
t = 0.123n2 + 2.216n + 3.891, R2 = 97.40%

where the calculated maximum R2 for a polynomial fit was 97.50%. This

equation with the raw execution times is plotted in Figure 5.1.1.2.

Based on the same isomorphic graphs, the raw execution times generated

by the graph representation algorithm were fitted by the quadratic

equation
t = 9.705n2 - 8.523n + 403.195, R2 = 99.90%

where the calculated maximum R2 for a polynomial fit was 99.92%. This

equation with the raw execution times is plotted in Figure 5.1.1.3.

Based on these equations, the performance of the implementation

of the new algorithms was of an experimental order 0(n2). Thus, based

on the implementation results, the algorithms performed efficiently

for the class of regular graphs tested.

5.1.2 Performance of the Graph Isomorphism Algorithm

The isomorphism algorithm determined nonisomorphism for the non­

isomorphic regular graphs based on their MSM representations. Either

their MSM's had a different number of states or a different set of

outputs. Thus, the number of MSM’s isomorphism and the number of

vertex assignments of Table 5.1.2 are all zero. This indicated that

the output function J(s) was very effective in distinguishing non­

isomorphic graphs. In order to evaluate the performance of the

89

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

2.4O-]

2.2CH

2.00-

1.80-

1.60-

*

*

T=1.89

*

10

*

12

*

*

20

*

*

30

%

*
a
*

*

*

*
♦

*
a

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.1.1.1 Plot of New Graph Isomorphism Algorithm Using
Nonisomorphic Regular Graphs.

90

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

320-1

240

160-

*

*

*

8 10 12 16 20 26 30 40
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.1.1.2 Plot of New Graph Isomorphism Algorithm Using
Isomorphic Regular Graphs.

91

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

20000-1

15000-

10000-

5000-

T=9.705'N«-2-8.523«N+403.195

*

10 12 16 20 26 30 40
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.1.1.3 Plot of Graph Representation Algorithm (New) Using
Isomorphic Regular Graphs.

92

isomorphism algorithm for the isomorphic regular graphs, only those

isomorphic graphs having one isomorphism were used. Thus, only 16

observations were used for graphs of 6 vertices since the other 9

contained more than one isomorphism. Based on the data of Table

5.1.2, the algorithm was effective in determining isomorphisms for

graphs of low and high orders, and reasonably effective for graphs

between the two extremes.

5.2 Berztiss’ Algorithms

The performance of the implementation for each of Berztiss*

algorithms (see Table 4.4.1) using regular graphs is summarized in

Table 5.2.1. The performance of the graph isomorphism algorithm is

summarized in Table 5.2.2. Results for either nonisomorphic or iso­

morphic regular graphs having 20 or more vertices were not obtained,

since the isomorphism algorithm was unable to process one pair of

these graphs in 4 minutes execution time on the IBM 370/158. Also,

for the same reason, no results were obtained for any of the noniso­

morphic strongly regular graphs.

5.2.1 Performance of the Implementation

For the isomorphism algorithm, the raw execution times, t,

summarized in Table 5.2.1 were fitted by linear and quadratic poly­

nomials and by linear and quadratic exponential functions of n. For

the nonisomorphic regular graphs, the calculated maximum R for a
polynomial fit was 30.22%, and the calculated maximum R2 for an

exponential fit was 83.20%. Thus, the following second order

exponential equation was chosen:
t = exp(0.025n2 + 0.236n + 3.946) x 26.04166 x 10 R2 — 83.19%.

93

o

a

en

8
O CD

TA
BL

E
5.
2.
1 U

- 0)
en en
en -H

A Ü

o a)
Pu B •H
Z H

I
M

CL)

cm

St
.

De
v. ot to o o <t

m oo m m cn

o O H i-i CM

Gr
ap
hs Gr
ap
h

Re

1
at r-t en at co

m <!• cm

m O
h cm cm en m

Is
om
or
ph
ic

to
<
o
co

St
.

De
v. m o r~ at co

to at o at m

<r co <o to cm
cm at o <t

H

\D

Gr
ap

h
I

Me
an

at co CM r~ co
m oo to md <r

to o oo at
i—i tn o co cm

CM CM to

co

ph
ic

 G
ra

ph
s

to
<
o
CD

St
.

De
v. h <r at o

o en cm h •

cn <t cM at •
CM to o

CM to

No
ni
so

mo
r

Gr
ap

h
I

Me
an

un o co en «
at co to at •

en r- in r4 ■
i-4 <t- to o

cm en

No
.

of
Te
st
s m in in in in

CM CM CM CM CM

o

4 Ve
rt

ic
es

tO 00 O CM to
T—f r—1 1—t

94

TA
BL

E
5.
2.
2

en

S

U)

CO

en

o

o

m

CM

o

xO

en

CM

CO

en

*

Z

Z

ZZ

Z

Z

xo CO O <M xo

00
• «H

<d
Z

cd

S

cd

3

m
<N

en
xO

ex)
CXJ

xD m

o

xo

CN

o o

xO
<r
xo
xo

xO
en

co
CM

xO
Ox

un
CM

H8 to

xo
en

00

CM

en o

eu
M
>

O
00

xD
m

m o en \o

cd
n

m
CM

U

5

en
CM
O o <r en

n
i

CO

<D

s

XO
<r
xo
xD

cd

6
U

•H

CO
eu
s

n
(U
>

CM
O

O
XO en

CD

U
•H

5
cd
M

O
cd

PQ

cd

S

00
•H

CO

-4

CO

44
O C0

4J
• CO

O 0)
EH

xD

C
H
O

MH

0)
4J
CQ

9
§

60

g

0)

S
CO

td

00

n8 o>
C
3
•K

95

This equation with the raw execution times is plotted in Figure 5.2.1.1.
• 2For the isomorphic regular graphs, the calculated maximum R for a

2 polynomial fit was 16.45%, and the calculated maximum R for an expo­

nential fit was 85.17%. Thus, the following second order exponential

equation was chosen:
t = exp(0.029In2 + 0.0829n + 4.8736) x 26.04166 x 10-3, R2 = 85.13%.

This equation with the raw execution times is plotted in Figure 5.2.1.2.

Based on the same isomorphic graphs, the raw execution times generated

by the graph representation algorithm were fitted by the quadratic

equation
t = 0.165n2 + 0.229n + 8.255, R2 = 98.83%

where the calculated maximum R2 for a polynomial fit was 98.85%. This

equation with the raw execution times is plotted in Figure 5.2.1.3.

Based on these equations, the performance of the implementation of

Berztiss’ graph isomorphism algorithm was of an experimental order

0(exp(n2)). Similarly, the performance of the implementation of the
graph representation algorithm was of the experimental order 0(n2).

Thus, although the graph representation algorithm performed efficiently

for the regular graphs tested, the isomorphism algorithm displayed

exponential growth in processing time as the number of vertices

increased and thus, could not be considered efficient.

5.2.2 Performance of the Graph Isomorphism Algorithm

In evaluating the performance of the isomorphism algorithm, the

number of backtracks and the number of vertex assignments of Table

5.2.2 were considered. Based on these data, the isomorphism algorithm

was ineffective in establishing either nonisomorphism or isomorphism.

96

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

2200-1

1650-

1100-

550-

T=EXP(0.025"N»2+0.236«N+3.946)-0.02604166

10

*

*

12

*

*

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.2.1.1 Plot of Berztiss’ Isomorphism Algorithm Using
Nonisomorphic Regular Graphs.

97

8OOOO-1 T=EXP(0.0291 -N-2*0.0829-N+4,8736)-0.02604166
*

*

60000-

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS *

400004

20000-

G t
6 8 10

Figure 5

1612
NUMBER OF VERTICES N (NONLINEAR SCALE)

2.1.2 Plot of Berztiss’ Isomorphism Algorithm Using
Isomorphic Regular Graphs.

98

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

NUMBER OF VERTICES N (NONLINEAR SCALE)
Figure 5.2.1.3 Plot of Graph Representation Algorithm (Berztiss)

Using Isomorphic Regular Graphs.

T=0.165-N-*2+0.229-N+8.255

IQ
6 10 12

T
16

99

The number of backtracks and vertex assignments grew exponentially as

the number of vertices increased. Thus, it could be concluded that

the K-formula representation of a graph was not a good heuristic for

the graph isomorphism problem, and that the backtracking technique of

Berztiss was ineffective.

5.3 Ullmann’s Algorithms

The performance of the implementation for each of Ullmann’s

algorithms (see Table 4.4.1) using regular graphs is summarized in

Table 5.3.1. The performance of the graph isomorphism algorithm is

summarized in Table 5.3.2. Only 10 observations of isomorphic

regular graphs were made, due to the amount of execution time required

by each pair of graphs. Results for nonisomorphic graphs having 20

or more vertices and for isomorphic graphs having 26 or more vertices

were not obtained, since the isomorphism algorithm was unable to process

one pair of these graphs in 4 minutes. Also, for the same reason, no

results were obtained for any of the nonisomorphic regular graphs.

5.3.1 Performance of the Implementation

For the isomorphism algorithm, the raw execution times, t,

summarized in Table 5.3.1 were fitted by linear and quadratic polynomials

and by linear and quadratic exponential functions of n. For the non—

isomorphic regular graphs, the calculated maximum R^ for a polynomial

fit was 69.94%, and the calculated maximum R2 for an exponential fit

was 81.37%. Thus, the following second order exponential equation

was chosen:
t = exp(0.0096n2 + 0.241n + 10.880) x 26.04166 x 10-3, R2 = 81.36%.

This equation with the raw execution times is plotted in Figure 5.3.1.1.

100

TA
BL

E
5.
3.
1

> co m r~ uo uo -d-
CD n cm ex H r- m

■ Q A A • • • •
6t en o o os oo oo

A
l

4J
H rH

- en

o.
en (U
g 3
g

un m oo oo so os
U CO cd m r>. r~ cm os

n c • •••••
pd & U cd xo en un co <t un
<3 cd (U cm un un m oo h
IJ n s "d" LT)
ED U
UM U
pd •H

r~ «er r~ oo as vo
O & A \o en r~ r~ co Os
g P > • •••••

O CD CM un SD 00 rH O
en 6 ■ Q o h ~d- en -<r h
P O 6C os oo sd en \o en

CO A CM sO CM un HE
en H c 4J CM CM

en

o

H o en o un r~ o
O CO oo o o cm os un
O T3 JJ • •••••
p s Pu oo <r en en rH CM
<3 o cd un h un o st vd

U n a un cm so o un o
en eu o cd H <r 00 H CM
* CO CD CM \O O
S3 S

<î HS 'HS G CO A 00 CM xD m
J > H un H o • •
p 0 CL CD

cd • n CM OS O 00 • •
pd M 6£ en cm en o
o a) O A os en en <r
tu e < 4J en r* en m

•H U en CM St
3 R •H •
O v 35 o
H Pu CO •K
H H so en sp sD de de

O cm un -d- st • •
H B • •••••
p O P. <r sd cm un • •
H CO cd en un oo H
S •H u c o o sd en
M a o cd as os un oo
J o cp H st o
§ 3 S

H
PuO

U4M o CO
o un un un un un o
Z A en CM CM CM CM CM H

O CDi 3 H

§

MPU en
tw CD
o u

•rl
A 4J sO 00 O CM SD O

O M H H H CM
3 CD

>

vD

II
c

O

0)
%

K
i

B

0)
n

&

0)

cd
b
Ml

U

!

CO
•H
a
â

•K

<u

s

0)

I

CO
CO
m
*

O

S
CM

a
p
o

03
0)

P

5

60
S

U)
CO

*
•K

101

a

. -H
O CD
2 m

cd X
<y <d

CD

0)
cd

O

g

o
M

8

VD
Ch

cn
EC

TA
BL

E
5.
3.
2

O H
2 a)

CD
y-i a)
o u

oo

co

cd
k
oo

u

8
CD

g

2

o co
4J

• to
O 0)

o
B

FL|

n
c
n o

**
 M

is
si

ng
 e

nt
ri
es

 f
or
 n

 =
 2

0
du

e
to
 e

xc
es

si
ve

 t
im
e

re
qu
ir
ed
.

g
tn

5
CD

CD

cd
n

U

CD
•

o u
2 Cd

C -U
cd
<o u
S cd

9)

• *rl
o CO
» 9

c
Cd X
0) 0)
s ti

Q) <D
u
cd
nI 00

CD

2 cd

5S
0) u
S Cd

c

cus
CD

8
CDC£

102

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

200000-1

Ï50000-

100000-

50000-

T=EXP(0.0096-N--2+0.241-N+10.88)-0.02604166

10

*

%

*

*

12

*

*

*

I

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.3.1.1 Plot of Ullmann’s Isomorphism Algorithm Using
Nonisomorphic Regular Graphs.

103

For the isomorphic regular graphs, the calculated R2 for a polynomial

fit was 62.33%, and the calculated R2 for an exponential fit was 73.59%.

Thus, the following second order exponential equation was chosen:
t = exp(-0.0084n2 + 0.5470n + 7.8639) x 26.04166 x 10-3, R2 = 72.91%.

This equation with the raw execution times is plotted in Figure 5.3.1.2.

Based on the same isomorphic graphs, the raw execution times generated

by the graph representation algorithm were fitted by the quadratic

equation
t = 0.066n2 + 3.868n + 407.988, R2 = 82.13%

where the calculated maximum R2 for a polynomial fit was 88.23%. This

equation with the raw execution times is plotted in Figure 5.3.1.3.

Based on these equations, the performance of the implementation

of Ullmann’s graph isomorphism algorithm was of experimental order

0(exp(n2)). Similarly, the performance of the graph representation

algorithm was of the experimental order 0(n2). Thus, although the

graph representation algorithm performed efficiently for the regular

graphs tested, the isomorphism algorithm displayed exponential growth

in processing as the number of vertices increased and thus, could not

be considered efficient.

5.3.2 Performance of the Graph Isomorphism Algorithm

Based on the number of backtracks and on the number of vertex

assignments of Table 5.3.2, the isomorphism algorithm was more effective

in establishing isomorphism than it was in establishing nonisomorphism.

Because Ullmann’s isomorphism algorithm was modified to terminate when

the matrix M, after refinement, contained exactly one 1 in each row and

each column, the number of mean vertex assignments was sometimes less

104

320000-] T=EXP(-0.0084-N■■2+0.547•N+7.8639)-0.02604166
*

*

*

*

240000-

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

160000-

80000-

O.
10

*

*

12 16

*

*

20

*

*

*

*

%

*

number of vertices n (nonlinear scale)

.1.2 Plot of Ullmann’s Isomorphism Algorithm Using
Isomorphic Regular Graphs.

Figure 5.

105

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

400

480-

520-

560-1

*

6

T=0.066-N--2+3.868-N+407.988

8 10

*

12 16 20

*

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.3.1.3 Plot of Graph Representation Algorithm (Ullmann)
Using Isomorphic Regular Graphs.

106

than the order of the graphs being tested. However, as the number of

vertices increased, both the number of backtracks and the number of

vertex assignments increased exponentially. Thus, it could be

concluded that the refinement conditions of (3.3.1a) and (3.3.1b) per­

formed as an effective heuristic for graphs of 16 or less vertices but

was not effective for the general graph isomorphism problem, and that

the backtracking technique of Ullmann also became ineffective as the

number of vertices increased.

5.4 Schmidt and Druffel’s Algorithms

The performance of the implementation for each of Schmidt and

Druffel’s algorithms (see Table 4.4.1) using regular graphs is

summarized in Table 5.4.1. The performance of the graph isomorphism

algorithm is summarized in Table 5.4.2. For the three sets of strongly

regular graphs, the overall performance for the algorithm is given in

Tables 5.4.3, 5.4.4, and 5.4.5. Because of the large amount of time

required to process each pair of Latin Square graphs, only five pairs

of these graphs were tested.

5.4.1 Performance of the Implementation

For the isomorphism algorithm, the raw execution times, t,

summarized in Table 5.4.1 were fitted by a linear and quadratic poly­

nomial. For the nonisomorphic regular graphs, the raw execution times

were fitted by the quadratic equation

t = 0.056n2 + 0.117n + 5.593, = 99.56%

where the calculated maximum for a polynomial fit was 99.57%. This

equation with the raw execution times is plotted in Figure 5.4.1.1.

107

M

en
g

o

g gi
U

- CD
i-q tj
m c
Fm o
Pu U

B

§ U

g

!
O
H

BPU

No
ni

so
mo

rp
hi

c
gr
ap
hs
 w

er
e

no
t

ge
ne

ra
te

d
fo
r

n
=

16
,

26
,

40
.

__
__
__

Is
om
or

ph
ic

 G
ra
ph
s_
__
__
__
__
__

__
__

__
__
_G

ra
ph
 R

ep
.

Al
g.

St
.

De
v.

Me
an

sâssassas

H cs| 00 h <r
H CM

Gr
ap
h

Is
o.
 A

lg
._
__
_

St
.

De
v. vDcN^cnmcoHa^oi

Me
an

S$S8S§S5S

sfvDO^cnmHHin^D
H CXI -<t oo H <f

H CM

No
ni

so
mo

rp
hi

c
Gr
ap
hs

Gr
ap

h
Is
o.
 A

lg
.

St
.

De
v. in in m r- ÏP

H co <r <r • co • •

O o o o • o • CM •

Me
an

in <f ox -K cm O
rd in CM ■ co • o •

..J ‘ '
” s 2 ■ ° * S ■

No
.

of

Te
st
s 5^5555555

No
.

of

Ve
rt

ic
es «

108

TA
BL
E

5.
4.
2

o

00

en

*

CM

O

O

O

O

O

O
00

O
en

ê
g

g

3

8

8

8

m
cq

m
CM

m
CM

m
CM

m
CM

O
53CO

rd

oo
oo

m
CM

m
CM

m
CM

m
CM

vO
CM

KO
en

(+4 o

'ri
CO

O O

VD 00 O

U«cü

8

u
rt
M

00
•H
CO

CM
en

CM

oo
MO

CM

MO
O

en

oo
oo

00

00
CM

CM

CO
4J
CO
0)

oo
VD

m
kO

00
KO

en

CM
O'

CM

O
KO

en
CM

M
i

œ

o
oo

oo
en

00
(U
•P
P
0
>

O

U
•H

a
p
i

0)

00

KO
un

oo o
CM

CO
3

CO
P
P
•8

«
M

en
I

5

U

en
M-l 0)
° ü
• P

O P
8 eu

>

CM \D O
H H CM No

ni
so

mo
rp

hi
c

gr
ap
hs

 w
er

e
no
t

ge
ne
ra

te
d

fo
r

n
=

16
,

26
,

40
.

109

TABLE 5.4.3

PERFORMANCE RESULTS FOR SCHMIDT AND DRUFFEL'S ALGORITHMS
USING STRONGLY REGULAR NONISOMORPHIC GRAPHS OF ORDER 25

(Time in milliseconds)

Graph Pairs
G-G' Backtracks

Vertex
Assign.

Total Run
Time

4-12 1880 4788 29989.26

13-9 1541 4767 27589.75

1-2 894 3161 16219.87

13-15 1587 4837 28078.14

7-10 1421 4291 23858.61

15-11 1635 5473 31549.71

13-9 1541 4767 27436.63

3-7 423 2113 8519.66

10-1 327 1825 7013.18

7-3 1446 4360 24197.42

5-4 2325 6259 44012.20

10-4 1155 3877 21029.08

10-7 423 2113 8501.87

11-9 1541 4768 28214.91

14-11 1713 4976 30602.02

110

TABLE 5.4.4

PERFORMANCE RESULTS FOR SCHMIDT AND DRUFFEL'S ALGORITHMS
USING NONISOMORPHIC STEINER GRAPHS OR ORDER 35

(Time in milliseconds)

Graph Pairs
G-G* Backtracks

Vertex
Assign.

Total Run
Time

9-26 2009 12243 64483.03

30-22 1737 10795 61987.48

1-5 5829 13651 149035.24

30-14 2289 14107 85157.19

19-24 1909 7751 50776.68

33-25 2441 5814 49426.45

26-22 2733 ' 12811 83181.97

9-15 2237 13343 70138.55

24-1 597 3955 19358.38

19-5 2997 10579 78309.25

14-9 2747 9153 77575.92

24-9 2749 12819 85840.68

24-15 2581 12171 82169.28

25-22 3129 12379 91342.29

33-25 2441 5814 50127.23

Ill

TABLE 5.4.5

PERFORMANCE RESULTS FOR SCHMIDT AND DRUFFEL’S ALGORITHMS
USING NONISOMORPHIC LATIN SQUARE GRAPHS OF ORDER 36

(Time in milliseconds)

Graph Pairs
G-G’ Backtracks

Vertex
Assign.

Total Run
Time

83-90 3997 20196 115413.43

91-87 3493 21636 122977.57

81-82 10573 24252 362458.44

91-84 3989 22132 142182.88

86-88 8677 26388 261802.92

112

72-| T=O.056-N--2+0.117-N+5.593

*

56-

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

4Cb

*

24-

8-J-

Figure 5.4

NUMBER OF VERTICES N (NONLINEAR SCALE)
3020106

1.1 Plot of Schmidt and Druffel’s Isomorphism Algorithm
Using Nonisomorphic Regular Graphs.

113

For the isomorphic regular graphs, the raw execution times were fitted

by the quadratic equation
t = 2.294n2 - 35.856n + 210.124, R2 = 97.72%

where the calculated maximum R2 for a polynomial fit was 97.84%. This

equation with the raw execution times is plotted in Figure 5.4.1.2.

The execution times used by the graph representation algorithm in

processing isomorphic regular graphs were fitted by the quadratic

equation
t = 2.159n2 - 30.402 + 175.786, R2 = 99.85%

where the calculated maximum R2 for a polynomial fit was 99.85%. This

equation with the raw execution times is plotted in Figure 5.4.1.3.

Based on these equations, the performance of the implementation

of each of Schmidt and Druffel’s algorithms is of experimental order

0(n2). Thus, for these classes of regular graphs, the algorithms of

Schmidt and Druffel performed efficiently.

For the strongly regular graphs, the total average processing

times, summarized in Tables 5.4.3, 5.4.4, and 5.4.5 were: 23.79

seconds for the graphs of order 25; 73.26 seconds for the Steiner

graphs; and 200.97 seconds for the Latin Square graphs. Total pro­

cessing time was calculated by taking the sum of the execution times

for the graph isomorphism algorithm and the graph representation

algorithm. While it could not be concluded that the algorithms pro­

cessed these graphs efficiently, it was concluded that since the graphs

were processed, the graph isomorphism algorithm was effective.

5.4.2 Performance of the Graph Isomorphism Algorithm

Based on the number of backtracks and the number of vertex

114

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

2400-

1600-

3200-1

800-

T=2.294•N--2-35.856-N+210.124

*

Ml

*

6 8 10 12 16 20 26 30 40
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.4.1.2 Plot of Schmidt and Druffel’s Isomorphism Algorithm
Using Isomorphic Regular Graphs.

115

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

2600-j

1950-

1300-

650-

T=2.159-N-«2-30.402-N+175.786

Figure 5.4.1.3 Plot of Graph Representation Algorithm (Schmidt and
Druffel) Using Isomorphic Regular Graphs.

10 12 16 20 26 30 40
NUMBER OF VERTICES N (NONLINEAR SCALE)

116

assignments summarized in Table 5.4.2, the isomorphism algorithm was

effective in establishing for the class of regular graphs either

nonisomorphism or isomorphism. Since the number of backtracks and

vertex assignments of Table 5.4.2 for the class of nonisomorphic graphs

were all zero, the isomorphism algorithm determined the nonisomorphism

of the regular graphs from the initial partition.

For the sets of strongly regular graphs, the number of vertex
o assignments of Tables 5.4.3, 5.4.4, and 5.4.5 always fell between n

and n^. This performance measurement suggested that the isomorphism

algorithm was probably of experimental order 0(n3) for the strongly

regular sets of graphs.

Hence, for all the graphs tested, the distance matrix proved to

be a very effective heuristic for solving the graph isomorphism

problem. Also, since the number of backtracks for any set of

observations or any pairs of graphs never exceeded n3, it was con­

cluded that the backtracking technique was quite stable and effective.

5.5 Comparison of the Algorithms

The four methods were compared based on the performance of their

implementations and the performance of their algorithms.

5.5.1 Comparison of Performance of the Implementations

For the set of nonisomorphic regular graphs, the performance of

the implementation of the new isomorphism algorithm was superior to

that of the other three isomorphism algorithm, since the algorithm

required the least amount of processing time, t = 1.89 milliseconds.

Schmidt and Druffel’s isomorphism algorithm, while slower than the new

isomorphism algorithm, processed on the average all nonisomorphic

117

regular graphs in less than a minute and thus executed much faster than

either Berztiss’ or Ullmann’s. These last two algorithms were very

slow, Ullmann’s being slower than Berztiss*.

For the isomorphic regular graphs, the new isomorphism algorithm

processed the graphs faster than Schmidt and Druffel’s, however, the

execution time of the MSM representation algorithm was much slower

than the distance matrix representation algorithm. Thus, in order to

compare these methods based on execution time, the total execution

times for all methods were calculated and are summarized in Table

5.5.1.1. The total raw execution times, t, for all methods were fitted

by using polynomial and exponential functions of n. The equations

which best fit the raw execution times are given with the corresponding

R2's in Table 5.5.1.2. These equations with the total raw execution

times are plotted in Figures 5.5.1.1-5.5.1.4. Thus, based on total

execution time, Schmidt and Druffel’s algorithms, of order 0(n2), were

faster than the new algorithms, also of order 0(n2). However, the new

algorithms were much faster than those of Berztiss or Ullmann, both of

which were very slow.

For the set of strongly regular graphs, it is obvious that Schmidt

and Druffel’s method was superior to the other three methods, since it

was the only method of the four tested which was able to process any

of the nonisomorphic strongly regular graphs.

5.5.2 Comparison of the Performance of the Graph
Isomorphism Algorithms

For the nonisomorphic regular graphs, the new isomorphism algorithm

and Schmidt and Druffel’s isomorphism algorithm performed equally well.

For the new isomorphism algorithm, nonisomorphism was established based

118

TA
BL

E
5.

5.
1.

1
PE

RF
OR

MA
NC

E
OF

 I
MP

LE
ME

NT
AT

IO
N

OF
 F

OU
R

ME
TH

OD
S

BA
SE

D
ON

 T
OT

AL
 E

XE
CU

TI
ON

 T
IM

ES

US
IN

G
IS

OM
OR

PH
IC

 R
EG

UI
AR

 G
RA

PH
S

(T
im

e
in

 m
il

li
se

co
nd

s)

nd
 D

ru
ff

el

St
.

De
v. ses s sass a

Sc
hm

id
t

ai

Me
an

ssRSsasaa

•SS5SS|j8

Ul
lm

an
n St

.
De

v.
8 s R a 8 $: : :

3 5 S S 3 S • • •

» a s a § §

Me
an 2 5 5 5 5 S : ; :

Be
rz

ti
ss

__

St
.

De
v. ^554^ : : : :

H ' 5

Me
an

8 3 8 3 8 ; : : :

00

i
4­
6
6

1

St
.

De
v. 28 = 588385;

»S8§88 «33

Me
an H H i H H

No
.

of

Te
st

s
No

.
of

Ve

rt
ic

es

* O
nl

y
16

 t
es

ts
 w

er
e

us
ed

 f
or

 N
ew

 A
lg

or
it

hm
s.

**
 O

nl
y

10
 t

es
ts

 w
er

e
us

ed
 f

or
 U

ll
ma

nn
’s
 A

lg
or

it
hm

.

119

KO
00
O

i

O O
O'
O

+

a

o
en

\D

O
CO

\O

a>
en

en

s
CM

&e
Cpd

C
o•H W CS 9 cr M

rQ
O

J5
4J

S

X
KO
KO

a\
en
CM
KO

00

+

a

o

KO
CM

X

CM

»
CM
00

Ch

II

4J

C0
C0

43
N

s

g
II
-w

G
en
m
<r

-ti­

ll

•M

CM
G

CM
KO
en
o

o
I

II
4-)

X
KO KO
-tiO
KO
CM

X

o

Ch

m
co
en

+
Æ

m
CM

KO
KO

un ■ti-
o
+

CM G un un o o
o

en
I

H

§
H
lh
W H
to un
S un

to

M

M
H H si

ê I

CO
en
§
I

to

I
I.

(U
4-1 4-4
TJ 4-1
P

en

120

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

15000-

10000-

5000-

T

20000-1 T=g. 828- N- -2-6.307-N+407.086

6 8 10 12 16 20 26 30 40
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.5.1.1 Plot of Total Time for New Algorithms Using
Isomorphic Regular Graphs.

121

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

80000-]

60000-1

40000-

20000-

=EXP(0.0362.N-•2-0.142•N+6.648)■0.02604166

12

*

(nonlinear scale)

*

*

*

16

*
*
*

Figure 5.5.1.2 Plot of Total Time for Berztiss’ Algorithms Using
Isomorphic Regular Graphs.

10
NUMBER OF VERTICES N

122

320000-1 T=EXP(-0.0055-N--2*0.4517-N*8.5299)-0.02604166
*

240000-*

EX
EC
UT
IO
N
TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

160000-

80000-

-X

6 8 10 12 16 20

*

*

*

I *
I
$

*

*

*

*

0

Figure 5.5.

NUMBER OF VERTICES N

.3 Plot of Total Time for Ullmann's Algorithms Using
Isomorphic Regular Graphs.

123

EX
EC
UT
IO
N

TI
ME
 T
 I

N
MI
LL
IS
EC
ON
DS

6400-,

4800-

3200-

1600-

T=4.453-N-«2-66.258-N+385.910

10 12 16 20 26 30 40
NUMBER OF VERTICES n (nonlinear scale)

Figure 5.5.1.4 Plot of Total Time for Schmidt and Druffel’s
Algorithms Using Isomorphic Regular Graphs.

124

on the MSM’s representation of the graphs, and for Schmidt and Druffel s

isomorphism algorithm, nonisomorphism was determined from the initial

partition. Of the two remaining isomorphism algorithms, Ullmann’s was

more effective than Berztiss’, since the number of backtracks and

vertex assignments were considerably less than those of Berztiss.

For the isomorphic regular graphs, based on the number of vertex

assignments, the new isomorphism algorithm performed better than

Schmidt and Druffel's for isomorphic regular graphs having 26 or more

vertices and compared favorably with theirs for the other graphs.

Again based on the number of backtracks and vertex assignments, Ullmann's

algorithm performed better than Berztiss'.

For the strongly regular graphs, no comparisons could be made,

since Schmidt and Druffel’s algorithm was the only one of the four to

process these graphs in less than 4 minutes execution time of the

IBM 370/158.

5.6 Conclusions

The experimental data,contained in the Tables presented in the

previous sections, provided a basis for choosing a graph isomorphism

algorithm for particular types of graphs. The general case would

probably not include graphs any more difficult than the set of

nonisomorphic strongly regular graphs tested. Thus, Schmidt and

Druffel’s isomorphism algorithm was superior to the other three iso­

morphism algorithms, since it was usually able to process all graphs.

However, for the regular graphs tested, the new isomorphism

algorithm, based on overall performance measurements, was superior to

the other three algorithms. Thus, if the graphs being considered were

125

regular, the new algorithm should be used.

Both Berztiss* and Ullmann’s algorithms required large amounts of

execution time. Neither algorithm appeared to be practical for graph

isomorphism problems.

LIST OF REFERENCES

Barrow, H. G. and J. R. Popplestone. 1971. "Relational Descrip­
tions in Picture Processing". In Machine Intelligence, ed. by
B. Meltzer and D. Michie. Edinburgh University Press, 377-396.

Barrow, H. G., A. P. Ambler, and R. M. Burstall. 1972. "Some
Techniques for Recognizing Structures in Pictures". In Frontiers Of
Pattern Recognition, ed. by S. Watanabe. Academic Press, New York,
1-29.

Berztiss, A. T. 1973. A Backtrack Procedure for Isomorphism of
Directed Graphs. J. ACM, 20, 3, 365-377.

Brown, W. 1963. Enumeration of Non-separable Planar Maps.
Canad. J. Math., 15, 526-545.

Brown, W. 1966. On the Enumeration of Non-planar Maps. Mem.
Amer. Math. Soc. , No. 65.

Bussemaker, F. C. and J. J. Seidel. 1970. Symmetric Hadamard
Matrices of Order 36. T.H.-Report 7O-WSK-O2, Dept, of Mathematics,
Technological University Eindhoven, Netherlands.

Collatz, L. and U. Sinogowitz. 1957. Spektrem endlicher Graphs.
Abh. Math. Sem. Univ. Hamburg., 21, 63-77.

Corneil, D. G. 1968. Graph Isomorphism. Ph.D. Diss., Dept, of
Comp. Sc., Univ, of Toronto, Toronto, Ontario, Canada.

Corneil, D. G. 1974. The Analysis of Graph Theoretical
Algorithms. Tech Rep. No. 65, Dept. of Comp. Sc., Univ, of Toronto,
Ontario, Canada.

Cornog, J. R., and H. L. Bryan. 1966. Search Methods Used with
Transistor Patent Applications. IEEE-Spectrum, 2, 116-121.

de Bruijn, N. G. 1964. "Polya’s Theory of Counting". In Applied
Combinatorial Mathematics, ed. by E. F. Beckenbach. Wiley, New York.

Druffel, L. E. 1975. Graph Related Algorithms Isomorphism,
Automorphism, and Containment. Ph.D. Diss., Dept. of Comp. Sc.,
Vanderbilt Univ.

Fisher, M. E. 1966. On Hearing the Shape of a Drum. J. Comb.
Th., 1, 105-125.

126

127

Floyd, R. W. 1962. Algorithm 97, Shortest Path, Comm. ACM, _5,
6, 345.

Grimsdale, R. L., F. H. Sumner, C. J. Tunis and T. Kilburn. 1959.
A System for Automatic Recognition of Patterns. Proc. IEEE, W6.» 211­
221.

Harary, F. 1960. Unsolved Problems in the Enumeration of Graphs.
Magyar Tud. Akad. Mat. Kutato Int. Kozl., 5, 63—95.

Harary, F. 1962. The Determinant of the Adjacency Matrix of a
Graph. SIAM Rev. , 4_, 3, 202-210.

Harary, F. 1964. "Combinatorial Problems in Graphic Enumeration".
In Applied Combinatorial Mathematics, ed. E. F. Beckenbach. Wiley,
New York.

Hoffman, A. J. 1963. On the Polynomial of a Graph. Amer. Math.
Monthly, 70, 30-36.

Hopcroft, J. E. and R. E. Tarjan. 1972. "Isomorphism of Planar
Graphs". In Complexity of Computer Computations, ed. by R. E. Miller
and J. W. Thatcher. Plenum Press, New York, 143-150.

Hopcroft, J. E. and J. K. Wong. 1974. Linear Time Algorithm for
Isomorphism of Planar Graphs. Proc. 6th Annual ACM Symp. on Theory of
Computing, Seattle, Wash., 172-184.

Karp, R. M. 1972. "Reducibility Among Combinatorial Problems".
In Complexity of Computer Computations, ed. by R. E. Miller and
J. W. Thatcher. Plenum Press, New York, 85-103.

Knodel, W. 1971. Ein Verfahren zur Feststellung der Isomorphic
von endlichen, zusammenhangenden Graphen. Computing, 8^ 329-334
(Abstract).

Levi, G. 1974. Graph Isomorphism: A Heuristic Edge-partioning-
oriented Algorithm. Computing, 12, 291-313.

Lynch, M. F., J. M. Harrison, W. G. Town, and J. E. Ash. 1971.
Computer Handling of Chemical Structure Information. Macdonald, London.

Morpurgo, R. 1971. Un Metodo Eurisicu per la Verifies dell’
Isomorphismo di due Grafi Semplici non Orientât!. Calcolo, 8., 1-31
(Abstract).

Paulus, A. J. L. 1973. Conference Matrices and Graphs of Order 26.
T.H.-Report 73-WSK-06, Dept, of Mathematics, Technological University
Eindhoven, Netherlands.

128

Polya, G. 1937. Kombinatorische Anzahtlbestimmungen fur Gruppen,
Graphen und chemische Verbindungen. Acta. Math., 618, 145-254 (Abstract).

Proskurowski, A. 1974. Search for a Unique Incidence Matrix of
a Graph. BIT. 14, 209-226.

Sakai, T., M. Nagao, and H. Matsushima. 1972. Extraction of
Invariant Picture Substructures by Computer. Comput. Graphics and
Image Process., _1, 1, 81-96.

Salton, G. 1968. Automatic Information Organization and
Retrieval. McGraw-Hill, New York.

Salton, G. and E. H. Sussenguth, Jr. 1964. Some Flexible
Information Retrieval Systems Using Structure Matching Procedures.
Proc. AFIPS, 25, 587-597.

Saucier, G. 1971. Un Algorithme Efficace Recherchant
l'isomorphisme de 2 Graphes. Rev. Française d'informat. Recherche
Operationelle, 5^ R-3, 39-51. (Abstract).

Schmidt, D. C. and L. E. Druffel. 1976. A Fast Backtracking
Algorithm to Test Directed Graphs for Isomorphism Using Distance
Matrices. J. ACM, ^3^, 3, 433-445.

Seshu, S. and M. Reed. 1961. Linear Graphs and Electrical
Networks. Addison Wesley, Reading, Mass.

Shah, Y. J., G. I. Davida and M. K. McCarthy. 1974. Optimum
Features and Graph Isomorphism. IEEE-TSMC, 4_, 313-319.

Sherman, H. 1960. A Quasi-topological Method for the Recognition
of Line Patterns. Information Processing-59. North Holland, Amsterdam,
232-238.

Sirovich, F. 1971. Isomofisco fra Grafi: un Algoritma
Efficiente per Trovare tutti gli Isomorfismi. Calcolo, 8^ 301-337.
(Abstract).

Steen, J. P. 1969. Principe d'un Algorithme de Recherche d'un
Isomorphisme entre deux Graphes. Rev. Française d'Informât. Recherche
Operationelle, R—3, 51—69. (Abstract).

Sussenguth, E. H., Jr. 1964. Structure matching in Information
Processing. Ph.D. Diss., Harvard Univ.

Sussenguth, E. H., Jr. 1965. A Graph-theoretic Algorithm for
Matching Chemical Structures. J. Chem. Doc., _5, 1, 36-43.

Tate, F. A. 1967. Handling Chemical Compounds in Information
Systems. Ann. Rev. Inf. Sci. Tech., 2, 285-309.

129

Turner, J. 1967. Point Symmetric Graphs with a Prime Number of
Points. J. Comb. Th., 3^ 136-145.

Turner, J. 1968. Generalized Matrix Functions and the Graph
Isomorphism Problem. SIAM J. Appl. Math., 16, 3, 520—526.

Tutte, W. T. 1962. A Genus of Planar Triangulations, Gand. J.
Math., 14, 21-38.

Tutte, W. T. 1963. A Genus of Planar Maps. Canad. J. Math., 15,
249-271.

Tutte, W. T. 1964. A Genus of Hamiltonian Polygons. Canad. J.
Math.,]^4, 402-417.

Ullmann, J. R. 1973. Pattern Recognition Techniques. Crane,
Russak & Company, Inc., New York.

Ullmann,. J. R. 1976. An Algorithm For Subgraph Isomorphism.
J. ACM, 23, 31-42.

Unger, S. H. 1964. GIT-A Heuristic Program for Testing Pairs of
Directed Line Graphs for Isomorphism. C. ACM, 7^ 1, 26-34.

Weinberg, L. 1966. A Simple and Efficient Algorithm for Deter­
mining Isomorphism of Planar Triply Connected Graphs. IEEE-TCT, 13,
142-148.

Yang, C. C. 1974. Generation of all Closed Partitions on a State
Set of a Sequential Machine. IEEE Trans. Comput. C-23, 530-533.

Yang, C. C. 1975. Structure Preserving Morphisms of Finite
Automata and an Application to Graph Isomorphism. IEEE Trans. Comput.
C-24, 1133-1139.

130

APPENDICES

APPENDIX A

DEFINITIONS AND NOTATIONS

Terms and notations which are used in this dissertation are defined

in this Appendix. The terms and notations are classified into three

areas. First, the definitions and corresponding notations of graph

properties and graph representations are presented. Special types of

graphs are then defined. Next, since this dissertation is concerned

with the analyses of graph isomorphism algorithms, terms used in the

analyses of algorithms are defined and explained.

A.1 Graph Related Terms

Definition A.1.1. A directed graph G is a pair (V,A) where V is a

finite set called the set of vertices, and aQv x V is a binary

relation on V called the incidence relation or the set of arcs.

Definition A. 1.2. The number of vertices of a graph is called the

order of the graph.

Definition A. 1.3. Two vertices v^ and vj of a graph are said to be

adjacent if (vi,Vj) C A or (vj ,v^) €- A.

Definition A.1.4. The indegree of a vertex v± (id(v^)) is the number

of arcs that terminate on it, and the outdegree of a vertex v± (od(v£))

is the number of arcs that originate from it.

131

132

Definition A. 1.5. Given an arc (v^Vj) in A, the vertices v± and Vj in

V are called the origin and terminus of the arc, respectively. A path

P of G is a sequence of arcs such that for each pair of consecutive arcs

in P, the terminus of the first arc, and the origin of the second arc -

coincide. The number of arcs along a path is called the length of the

path.

Definition A.1.6. A circuit is a path such that the origin of the first

are coincides with the terminus of the last.

Definition A.1.7. A circuit of length 1 is called a loop.

Definition A.1.8. A vertex v± is said to be reachable from a vertex Vj,

if v-[= Vj or there is a path from Vj to Vj,.

Definition A.1.9. A graph G is said to be strongly connected if for

every pair of vertices v^ and Vj in G, there is a path from v-^ to vj .

Definition A.1.10. A graph Gs = (Vs,Ag) is called a subgraph of a graph

G = (V,A) if Vg V and if AgC A and AgC Vg x Vg.

Definition A.1.11. A component Gc = (VC,AC) of a graph G = (V,A) is a

strongly connected subgraph of G.

Definition A.1.12. A graph G is said to be complete if every pair of

vertices in G is joined by one arc.

Definition A.1.13. An adjacency matrix [gy] of a graph G having n

vertices in a n x n array in which

1, if (visVj) C- A
gij =

0, otherwise

Definition A.1.14. An incidence matrix [by] of a graph G having n

vertices v^ through vn and m arcs a^ through am is an m x n array in

which

133

1, if is incident on Vj
bt- = '

0, otherwise.

Definition A.1.15. An invertible (one-to-one and onto) mapping

y: V V is an isomorphism from G = (V,A) to G* = (V1,A*) iff it

preserves graph incidences, i.e., for every arc (v^,Vj) G A there is

a corresponding arc (y(v£), y(vj)) C- A’ and vice versa.

Definition A.1.16. An automorphism is an isomorphism of G onto itself.

2.2 Special Types of Graphs

Definition A.2.1. If the incidence relation of a directed graph is

symmetric, i.e., for distinct v^ and v^ in V, every arc (v^vj) in A

implies the arc (vj,vp in A, then the graph is called undirected. An

undirected graph is denoted by a pair (V,E) where E A is called the

set of edges. In an undirected graph, the number of edges incident on

a vertex is called the degree of the vertex, and a path is called a

chain.

Definition A.2.2. A simple graph is a directed graph which has no

loops.

Definition A.2.3. A finite undirected graph is planar if it can be

drawn in a plane in such a way that no two of its edges intersect

except, possibly at vertices.

Definition A.2.4. A directed (undirected) graph is called k-regular if

for all vertices v^, the indegree and outdegree (the degree) are each

equal to k.

Definition A.2.5. An undirected graph G is connected if for each pair

of vertices v^ and Vg in G, there is a chain between v% and Vg.

134

Definition A. 2.6. An undirected graph is a polygon if it is connected

and 2-regular.
Definition A.2.7. Two vertices of a graph are similar if there is an

automorphism which maps one into the other. A graph is point symmetric

if all vertices are pairwise similar.

Definition A.2.8. An undirected graph which is not complete and whose

(i) vertices adjacent to

(iii)P^

vertices

vertices

adjacent to

adjacent to

both v^ and Vj

V£ but not adjacent to Vj

neither v^ nor Vj,

and
(2) for every two nonadjacent vertices v^ and Vj, i.e., (vf ,Vj) E,

there are

(i) vertices adjacent
11

(ID vertices adj acent

(iii)p^ vertices adjacent

to V£ and Vj.

to v^ but not adjacent to Vj.

to neither v^ nor Vj.

Definition A.2.9. A Latin square of order 6 consists of 36 triples

selected from 6 symbols such that for each pair of coordinates, every

pair of symbols occurs exactly once. The Latin Square graph

(Bussemaker and Seidel, 1970) is a strongly regular graph which has as

its vertices the 36 triples of a Latin square, and any two vertices are

adjacent iff the corresponding triples have one symbol in common.

For example, the two vertices v^ and Vj which are represented

respectively by the two triples (a,b,c) and (c,d,e), from the six

set of edges is not empty is strongly regular if constants ’^12’
19 7 9'^2^22 exist such that
Zz II -* L*’

(1) for every two adjacent vertices v^ and Vj, i.e., (v^,Vj) C- E,

there are

135

symbols a,b,c,d,e,f, are adjacent since they have the symbol c in

common.
Definition A. 2.10. A Steiner triple system of order 15 consists of

35 unordered triples selected from 15 symbols such that every unordered

pair of symbols occurs in exactly one triple. A Steiner graph

(Bussemaker and Seidel, 1970) is a strongly regular graph which has as

its vertices the 35 triples of a Steiner triple system, and any two

vertices are adjacent iff the corresponding triples have one symbol in

common.

A.3 Algorithms

Definition A.3.1. An algorithm is a finite set of rules which gives a

sequence of operations for transforming some input set into an output

set. In terms of a graph isomorphism algorithm, the input set is the

set of vertices and arcs defining the two graphs and, the output set is

the function which defines an isormorphism or a message which indicates

no isomorphism between these two graphs.

Definition A.3.2. An algorithm is said to be effective if its

operations are sufficiently basic, i.e., the operations can be

performed manually in a finite length of time.

Definition A.3.3. The order of an algorithm is a measure of the

efficiency of the algorithm and is determined by considering the

number of steps required for the algorithm to terminate as a function

of input set size. The order of an algorithm is given by the 0

notation. In this dissertation the following conventions have been

used

136

f(n) = O(f(n))

c • O(f(n)) = O(f(n))

where c is a constant.
Definition A. 3.4. A polynomial algorithm terminates in a number of

steps bounded by some polynomial function of input set size.

Algorithms which belong to the polynomial class of algorithms are said

to be efficient.
Definition A.3.5. An exponential algorithm terminates in a number of

steps bounded by some exponential function of input set size.

Algorithms which belong to the exponential class of algorithms are

impractical for very large problems but sometimes can be applied to

smaller real problems.

Definition A.3.6. A factorial algorithm terminates in a number of

steps bounded by some factorial function of input set size. The time

required to execute algorithms of the factorial class even for a small

problem is prohibitive.

Definition A.3.7. A heuristic algorithm is based on a strategy, some­

times called a "rule of thumb", which may or may not improve the

efficiency of the algorithm in discovering the solution of a particular

problem. For the graph isomorphism problem, the strategy is the

application of some necessary conditions for isomorphism which may or

may not immediately show that no isomorphism exist or may greatly

reduce the number of functions to be checked for isomorphism.

Definition A.3.8. A backtracking algorithm is based on a depth-first

tree search through the space of all possible solutions. A backtracking

technique systematically attempts all possible solutions, eliminates

potential solutions as quickly as possible, and never retries a potential

137

solution that has already been tried.

Definition A. 3.9. All NP-complete problems can be solved in polynomial

time on a nondeterministic Turing machine. If any one NP-complete

problem can be solved in polynomial time on a one—tape deterministic

Turing machine, then all NP—complete problems can be solved in

polynomial time on such a machine. The graph isomorphism problem is not

known to be NP-complete.
2 Definition A.3.10. The coefficient of determination R is defined by

R* 2 = 1 - SSE/SST

where SSE is the sum of squares of residuals 1(1^ - t±) for ti the

observed value and tthe predicted value, and SST is the corrected

total sum of squares, I(t^ - t^)^ for t^ the mean value. In this
2 dissertation, the coefficient of determination is given as 100 • R

which is the percent variation of t explained by the experimental

equation.

APPENDIX B

A PL/I SOURCE LISTING OF THE RANDOM GRAPH
GENERATING PROCEDURE GRAPHS

GRAPHS: PROCEDURE OPTIONS(MAIN);
/* ./* THE MAIN PROCEDURE GRAPHS GENERATES TWO ISOMORPHIC N/2 RANDOM */
/* SIMPLE REGULAR GR^HS OR TWO NONISOMORP’JIC N/2 REGULAR GRAPHS. */
/* FIRST, THE PROCEDURE MATRIX IS CALLED TO GENERATE THE GRAPH GK, */
/* next/THE RANDOM NUMBER GENERATOR PROCEDURE PRAND IS CALLED TO */
/* SPECIFY A VERTEX ASSIGNMENT TO BE USED TO GENERATE THE SECOND */
/* GRAPH GK. IF GK IS TO BE ISOMORPHIC TO GJ, ISO=’1‘B, THEN THE */.
/* ROWS AND COLUMNS OF GJ ARE PERMUTED ACCORDING TO THE VERTEX */
/* ASSIGNMENTS SPECIFIED BY THE ARRAY MAP AND GRAPH GK IS PRODUCED. */
/* IF GK IS TO BE NONISOMORPHIC TO GJ, ISO='O'B, THEN THE ROWS OF */
/* GJ ARE PERMUTED ACCORDING TO THE VERTEX ASSIGNMENTS OF ARRAY MAP.*/
/* THE SET OF ARCS OF BOTH GRAPHS ARE WRITTEN TO THE FILE GRAPH. */
/* */
DECLARE (GJ(64,64),GK(64,64),ISO) BIT(l),(NGJ,NGK,IOUT)

nTvm nt*t / 1 .

DECLARE YFL FLOAT;
DECLARE (NPGJ,NPGK) FIXED BIN(15);

GET LIST(NUM_GR,NGJ,NGK,TOUT,ISO);
NPGJ=NGJ*1OUT; NPGK=NGK*IOUT;
PUT FILE(GRAPH) EDIT(îIUM_GR,NGJ,NGK,NPGJ,NPGK) (F(4));
DO II =1 TO NUM_GR;
GJ=’0 * B; GK= * 0’B;

/* CALL MATRIX TO GENERATE GRAPH GJ J
/* f

CALL MATRIX(GJ,NGJ,TOUT); .
/* BY CALLING PRAND, DETERMINE VERTEX ASSIGNMENTS TO BE USED IN */
/* GENERATING GK. VERTEX ASSIGNMENTS ARE STORED IN ARRAY MAP. */

BEGIN;
DECLARE MAP (NGK) FIXED BIN(15), VERTEX(NGK) BIT(I);
VERTEX=’0’B; MAP=O;
DO 1=1 TO NGK;
CALL PRAND(YFL); IYFL=YFL*NGK + 1;
IF ^VERTEX(IYFL) THEN DO; MAP(I)=IYFL; VERTEX(IYFL)=’l’B;

END;
EITO;

K-l;
DO 1=1 TO NGK;
IF MAP(I)=O
THEN DO;

NXT_VERTEX: IF VERTEX(K) THEN DO; K=K + 1; GO TO NXT_VERTEX; END;

138

139

ELSE DO; VERTEX(K)=*1*B; MAP(I)=K; K-K + 1; EITO;
END;

END;
/* */
/* GENERATE GRAPH GK BY USING VERTEX ASSIGNMENT IN MAP */
/* */

IF ISO
THEN DO; •

DO 1=1 TO NGJ; DO J=1 TO NGK;
IF GJ (I, J) THEN GK(MAP(I) ,MAP(J))=U'B;
END; EITO;

PUT SKIP(2) EDIT((MAP(I) DO 1=1 TO NGK)) ((64)F(3));
END;

ELSE DO 1=1 TO NGJ;
GK(MAP(I),*)=GJ(I,*);
END;

/* */
/* WRITE OUT ADJACENCY LIST FOR EACH GRAPH TO FILE GRAPH */
/* */

DO 1=1 TO NGJ; DO J=1 TO NGJ;
IF GJ(I,J) THEN PUT FILE(GRAPH) EDIT(I,J) (F(3)); EITO; END;

DO 1=1 TO NGK; DO J=1 TO NGK;
IF GK(I,J) THEN PUT FILE(GRAPH) EDIT(I,J) (F(3)); END; END;
END;

EITO;
END GRAPHS;

MATRIX: PROCEDURE(G,NG,IOUT);
/* */
/* THE PROCEDURE MATRIX GENERATES A SIMPLE RANDOM GRAPH HAVING */
/* ADJACENCY MATRIX G, NG VERTICES, AND THE INDEGREE AND OUTDEGREE */
/* OF EACH VERTEX EQUAL TO IOUT. */
/* THE ARRAY IN CONTAINS THE INDEGREE FOR EACH VERTEX. */
/* THE ARRAY INDEX HOLDS THE LIST OF POSSIBLE VERTICES, I.E., ALL */
/* VERTICES WHOSE INDEGREE < IOUT. */
/* CON_TO ARRAY INSURES THAT A GIVEN VERTEX IS CONNECTED TO IOUT */
/* DIFFERENT VERTICES. */
/* */
DECLARE G(*,*) BIT(l),(NG,IOUT) FIXED BIN(15),

(IN(64),IITOEX(64)) FIXED BIN(15), CON_TO(64) BIT(1),YFL FLOAT;
/* */
MATRIX_BEGIN:

G=’O’B; IN=0;
N»NG - 1;
DO 1=1 TO N; INDEX(I)=I + 1; EITO;

/* */
f* RANDOMLY GENERATE THE FIRST NG-1 ROWS OF ADJACENCY MATRIX G SUCH */
/* THAT THERE ARE NO SELF LOOPS,I.E., G(I,I)=O. */
/* */

DO 1=1 TO NG - 1;
CON_TO=’O‘B; CON_TO(I)=*1*B;
DO J=1 TO IOUT;

140

USED: CALL FRAUD(YFL);
IYFL=YFL*N + Ij
IF CON_TO (I’JDEX(IYFL)) THEM GO TO USED;
IN(INDEX(IYFL))=IN(IHDEX(IYFL)) + 1;
CONJTO(INDEX(IYFL))=*1*B; G(I,INDEX(IYFL)
IF IN(INDEX(IYFL))=IOUT
THEN DO; N=N - 1;

DO K=IYFL TO N; INDEX(K)«INDEX(K + 1); END;
END; "

/* */
/* CHECK NUMBER OF POSSIBLE VERTEX CHOICES REMAINING. */
/* */

NPOSS=N;
/* */
/* FOR ANY REMAINING VERTEX CHOICES WHICH HAVE BEEN USED IN ROW I */
/* SUBSTRACT 1 FROM NPOSS. */
/* */

IF N < IOUT
THEN DO K=1 TO N; IF CONJTO(INDEX(K)) THEN NPOSS=NPOSS - 1;

END;
/* */
/* IF THE NUMBER OF CHOICES IS GREATER THAN THE REMAINING POSSIBLE */
/* VERTEX CHOICES, THEN FROM THE ROWS LESS THAN I, MAKE MORE POSSI- */
/* BLE VERTEX CHOICES BY INCREASING THE INDEGREE OF THE VERTICES */
/* WHICH WERE LEFT BY FREEING A VERTEX FROM THE GIVEN ROW. */
/* */

IF IOUT - J > NPOSS
THEN DO;

NEND=N;
DO KK=1 TO NEND;
IF CON_TO(INDEX(KK)) THEN
DO;
K“INDEX(KK);
DO L=1 TO NG;
IF IN(L) = IOUT & L~= I
THEN DO 11=1 TO I - 1;

IF G(II,L) & ~G(II,K) & K~= II •
THEN DO;

EXCHANGE: G(II,L)=*0*B; G(II,K)=*1*B;
IN(L)=IN(L) - 1; IN(K)=IN(K) + 1;
IF IN(K)-IOUT
THEN DO; INDEX(KK)=L; NPOSS=NPOSS+1;
GO TO KK_END; END;
ELSE DO; N=N+1 ; IND^(N)=L;
NPOSS=NPOSS+1; GO TO L_END; END;
END;

END;
L_END: END;

END;
KK_END: END;

END;
IF IOUT - J > NPOSS THEN GO TO MATRIX_BEGIN;
END;

141

/* */
/* PLACE VERTEX I ON AVAILABLE VERTEX ASSIGNMENT LIST. */
/* */

IF IN(I + 1)=IOUT
THEN IF IN(I) IOUT

THEN DO; N= N + 1; INDEX(N)=I; GO TO FIXED; END;
ELSE GO TO FIXED;

DO K=1 TO N; '
IF INDEX(K)=I + 1
THEN IF IN(I) IOUT

THEN INDEX(K)=I;
ELSE DO; N=N - 1;

DO KK=K TO N; INDEX(KK)=INDEX(KK + 1); END;
GO TO FIXED; END;

END;
FIXED:

END;
/* */
/* MAKE VERTEX ASSIGNMENTS FOR VERTEX NG. */
/* */

DO J=1 TO NG - 1;
IF IN(J) OP IOUT
THEN DO; IN(J)= IN(j) + 1; G(NG,J)=*1*B;

END;
END;
IN_DEG=O;
DO WHILE(1N_DEG IOUT);

IN__DEG= I OUT ;
DO J=1 TO NG;
IF IN(J) ~= IOUT
THEN DO K-l TO NG - 1;

IF ^G(K,J) & K ~= J THEN DO L=1 TO NG - 1;
IF G(K,L) & ~G(NG,L)
THEN DO; G(NG,L>’I’B;
G(K,L)=*O,B; G(K,J)=*1*B;
IN(J)=IN(J) + 1; IF IN(J) IOUT
THEN IN_DEC=IN(J);
GO TO NXT_IN;
END;

END;
END;

NXT_IN: END;
END;

END MATRIX;

BRAND: PROCEDURE(R);
/* */
PRAND: PROCEDURE(R);
/* THE PROCEDURE PRAND GENERATES RANDOM NUMBERS BETWEEN 0 ATTO 1 */
/* FROM A UNIFORM DISTRIBUTION. THE RANDOM NUMBER IS RETURNED IN */
/* PARAMETER R. TO CALL THE PROCEDURE, DECLARE THE ENTRY POINT FOR */
/* IX AS FIXED BIN(31). */

142

DCL IX FIXED BIN (31) STATIC INITIAL (54321),R FLOAT;
IX-IX*3125;
IF IX > 65536 THEN IX=IX-(IX/65536)*65536;
R-IX;
R-R/65536.;
RETURN;

END BRAND; '

APPENDIX C

AN ASSEMBLY LANGUAGE LISTING OF THE
TIMING PROCEDURE ASMTME

ASMTME STARTASM
A

A THE ROUTINE ASMTME ACCUMULATES EXECUTION TIME USED BY A TASK.
A WHEN CALLING, IT IS NECESSARY TO PASS ONE PARAMETER TO ASMTME. IF
A THIS PARAMETER CONTAINS A NEGATIVE NUMBER, THEN ASMTME SETS THE
A SYSTEM TIMER TO TWO BILLION TIME UNITS. IF THE PARAMETER CONTAINS
A A POSITIVE NUMBER, THEN THE REMAINING TIME IS SUBTRACTED FROM THE
A TWO BILLION TIME UNITS IN ORDER TO GET THE AMOUNT OF TIME USED BY
A TASK, THIS TIME IS RETURNED TO THE CALLING PROCEDURE IN UNITS OF
A 26.04166 MICRO SECONDS THROUGH THE PARAMETER.
A .

A ESTABLISH OS LINKAGE
A

L R2,O(,R1) GET FARM ADDRESS
L R3.0GR2) GET NUMBER

A

LTR R3,R3 DIFFERENCE OR ACTUAL TIME?
BNP SETTIME NOT POS- GO SET TIME

A

TTIMER CANCEL,TU GET THE REMAINDER FOR TASK
A

L RI,TIMEINTL GET THE TIME INTERVAL
SR RI,RO GET AMOUNT TIME USED
ST Rl,0(,R2) SAVE RESULT IN FARM
B RETURN GO TO RETURN -

A
SETTIME DS OH

MVC TIMEINTL(4),WKTME
STIMER. TASK,TUINTVL- TIMEINTL SET TIMER FOR LONG TIME

A

RETURN DS OH
L R13,4(,R13) GET OS SAVE AREA ADDRESS BACK

A

RETURN (14,12),RC=0 RETURN CLEAN
A

A

SAVE DC 18A(0) OS SAVE AREA
WKTME DC F’2000000000'
TIMEINTL DC F'2000000000' TWO BILLION TIME UNITS

CNOP 0,4
143

144

END

SAV DS 18F REG SAVE AREA
TEMPI DS D
TEMP2 DS D

APPENDIX D

THE PL/I IMPLEMENTATION OF THE NEW GRAPH
ISOMORPHISM ALGORITHM

MAY: PROCEDURE OPTIONS(MAIN);
/* */
/* THE MAIN PROCEDURE MAY IMPLEMENTS ALGORITHM 2. THE STATEMENT */
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITHM 2. IN */
/* STEP 0, THE PROCEDURE CALLS GENGR TO CREATE THE ADJACENCY LIST */
/A FOR GRAPH GJ (G) AND THE ADJACENCY MATRIX FOR GRAPH GK (G*). */
/* MOOREM IS THEN CALLED TO CREATE THE CORRESPONDING MOORE SEQUENT- */
/* IAL MACHINES (MSM’S) AJ (II,J) AND AK (H* ,J’). IN STEPS 1-15,
/* ALGORITHM 2 IS IMPLEMENTED. THE REMAINDER OF THE PROCEDURE */
/* GATHERS PERFORMANCE INFORMATION. THE ASSEMBLY LANGUAGE ROUTINE */
/* ASMTME IS USED TO OBTAIN THE EXECUTION TIME FOR SECTIONS OF A */
/* PROCEDURE. ‘ */
/* THE PROCEDURE CAN HANDLE TWO GRAPHS OF UP TO 64 VERTICES AND */
/* 800 ARCS EACH, AND TWO MSM’S OF UP TO 100 STATES. IF MORE */
/* VERTICES, ARCS OR STATES ARE NEEDED, THEN THE DIMENSIONS OF THE */
/* APPROPRIATE ARRAY NAMES MUST BE INCREASED. */
/* */
DECLARE (GJ(64,2),ADJYJ(800)) FIXED BIN(15) EXT,

GK(64,64) BIT(l) ENT, ADJCNT(64) FIXED BIN(15) EXT,
(NGJ,NGK,NPGJ,NPGK,NOPRAJ,NOPRAi:) FIXED BIN(15) EXT;

DECLARE (AJ(100,2),AK(100,2)) FIXED BIN(15) EXT;
DECLARE (JS_AJ(200),JS_AK(200)) FIXED BIN(15) EXT;
DECI.ARE (S VMAX , S V CL AS S, MAXOUT, CI AS S CNT) FIXED BIN (15) EXT;
DECLARE (TMGR(25),TMTR(25),T?ELAY(25)) FIXED BIN(31) EXT,

(MNGR,MNTR,MNMAY,NO_GRAPH_PRS) FIXED BIN(31) EXT,
(NOGR,TOTAL) FIXED BIN(31), (MEGR,METR,MEMAY,METOT) FLOAT
DEC(16);

DECLARE ITME FIXED BIN(31), ASMTME ENTRY(FIXED BIN(31));
/* */
/* read IN THE TOO GRAPHS AND CREATE CORRESPONDING MSM’S */
/* */

GET FILE(GRAPH) LIST (NGPRS,NGJ,NGK,NPGJ,NPGK);
GET LIST(NO_GRAPH_PRS);
NOGR=NO_GRAPH_PRS ; JDIGR-Oj tCITR=O ; MNMAY=0; TMTR=0;
TMGR=0; TMMAY=0;

STEPO: CALL GENGR;
IF(NGJ ~= NGK | NPGJ ~= NPGK)
THEN GO TO NO_ISOMORPHISM;
ELSE CALL MOOREM;

/* */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 */

145

146

ITME- -1; CALL ASMTME(ITME);
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 2 */
/* */

STEPl! IF NOPRAJ NOPRAK
THEN GO TO NO_ISOMORPHISM^

IF SVCLASS CLASSCNT | SVMAX ~= MAXOUT
THEN GO TO NO_ISOMORPHISM;

IF MAXOUT < NOPRAJ THEN MAXOUT-NOPRAJ; .
STEP2; BEGIN;

DECLARE HASH(0:MAXOUT,0:MAXOUT,2) FIXED BIN(15),
(FIRST,LAST) FIXED BIN(15);

HASH=0; JS_NO=O; FIRST-1; NOUT=2; LAST-NOUT;
DO 1=1 TO NOPRAJ;
JJ=JS_AJ(LAST); .

STEP2_1: J=JS_AJ (FIRST) ;
IF HASH(J,JJ,1)=O
THEN DO; JS_NO=JS_NO + 1; HASH(J,JJ,1)=JS_NO; END;
IF FIRST-LAST | FIRST= LAST - 1
THEN DO; HASH(J,JJ,2)=HASH(J,JJ,2) + 1;

AJ(I,2)=HASH(J,JJ,1); FIRST-LAST + 1; LAST-LAST + NOUT;
END;

ELSE DO; JJ=HASH(J,JJ,1); FIRST-FIRST + 1;
GO TO STEP2_1 ;
END;

END;
/* */

FIRST-1; LAST-NOUT;
DO 1-1 TO NOPRAK;
JJ-J S_AK(LAST);

STEP2_2: J-JS_AK(FIRST) ;
IF HASH(J,JJ,1)=O THEN GO TO NO_ISOMORPHISM;
IF FIRST-LAST | FIRST-LAST - 1
THEN DO;

IF HASH(J,JJ,2)=0 THEN GO TO NOJESOMORPHISM;
HASH(J,JJ,2)= HASH(J,JJ,2) - 1; AK(I,2)=HASH(J,JJ,1);
FIRST-LAST + 1; LAST-LAST + NOUT;
END; •

ELSE DO; JJ-HASH(J,JJ,1); FIRST-FIRST + 1; GO TO STEP2_2;
END;

END;
END;

/* */
BEGIN;
DECLARE PART(NOPRAJ,NOPRAK,2) FIXED BIN(15);
DECLARE (ICOMB,J COMB) FIXED BIN(15);
DECLARE (COLCNT(NGK),NOSAME) FIXED BIN(15);
ON SIZE BEGIN; PUT SKIP(4) EDIT(’DUE TO AN EXCESSIVE NUMBER*,

* OF POSSIBLE COMBINATIONS TO BE CHECKED, THIS METHOD'
,* IS NOT APPLICABLE FOR THE ABOVE TWO GRAPHS.*)
(A,A,A); GO TO CHECK_NO_GRAPHS;
END;

PART-0; ICOMB-1; COLCNT-O;

147

STEP3î
DO 1-1 TO NOJ;
JCOMB-O; NOSAME-O;

STEP4:
DO J=1 TO NGK;

STEPS:
JPTR=I; KPTR=J;

STEP6: IF AJ(JPTR,2)=AK(1<PTR,2) .
THEN DO;

STEP7_8:
PART(JPTR,KPTR,1)«AJ(JPTR,1);
PART(JPTR,KPTR,2)=AK(KPTR,1);
JPTR=AJ(JPTR,1); KPTR=AK(KPTR,1);
IF JPTR= -1 & KPTR= -1

THEN GO TO STEP7_8_END;
IF JPTR= -1 | KPTR= -1 THEN GO TO STEP9_1 ;
IF PART(JPTR,KPTR,1)=O THEN GO TO STEP6;
IF PART(JPTR,KPTR, 1)=-l & PART(JPTR,KPTR,2) -1
THEN GO TO STEP9_1;

STEP7_8_END:
COLCNT(J)=COLCNT(J) + 1;
IF COLCNT(J) > 1 THEN NOSAME=NOSAME + 1;
JCOMB=JCOMB + 1;

END;
ELSE DO;

STEP9:
/* */
/* PART (CLASS) IS SET EQUAL TO (-1,0) (0,0) IF STATES ARE NOT */
/* COMPATIBLE. */
/* */

PART(JPTR,KPTR,1)=-1;
STEP9_1 : JPTR-I; KPTR=J; .

DO WÎILE(KPTR > 0 & PART(JPTR,KPTR,1) ~= -1);
JSAV=JPTR; JPTR=PART(JPTR,KPTR,1);
PART(JSAV,KPTR,1)= -1; KPTR=PART(JSAV,KPTR,2);
END;

END; ‘
STEP10:

END;
IF JCOMB=O THEN GO TO N0_IS0M0RPHISM;
IF J COMB > 1 & JCOMB=NOSAME THEN JCO’fB=JCOMB - 1;

(SIZE): ICOMB=ICOMB*JCOMB;
STEPH:

END;
STEP 12: BEGIN;

/* */
/* ISOAJ_AK AND ISOAK_AJ REPRESENT CANDIDATE, PARTITION , AND GAMMA */
/* OF ALGORITHM 2;
/* */

DECLARE (ISOAJ_AK(ICO? 3,NGK),ISOAK_AJ(ICOMB,NGJ))
FIXED BIN(15);
ISOAJ_AK=O; ISOAK_AJ=0; IALL0O1;

148

STEP13_14:
DO 1=1 TO NGJ;
IASAV-IALLOC;
DO J=1 TO NGK;
IF PART(I,J,1) %- -1 | PART(I,J,2)= -1
THEN DO;

DO K=1 TO IASAV;
IF ISOAK—AJ(K,J)=O '
THEN IF ISOAJ_AK(K,I)=O
THEN DO; ISOAJ_AK(K,I)=J; ISOAK_AJ(K,J)=I;

GO TO STEP13_14_END; END;
ELSE DO; IALLOC=IALLOC + 1;

IS OAJ_AK(IALLOC,*)=IS OA J_AK(K,*);
ISOAK—AJ(IALLOC,*)=ISOAK_AJ(K,*);
IS OAK_AJ(IALLOC,ISOAJ_AK(IALLOC,I))=0;
ISOAJ AK(IALLOC,I)=J; ISOAK AJ(IALLOC,J)=I;
END;

STEP 13-1END:
END;
END;

END;
END; .
TMGR(NO—GRAPH—PRS)=IALLOC;

STEP15: DO K=1 TO IALLOC;
DO 1=1 TO NGJ;
JEND=GJ(I,2) + GJ(1,1) - 1;
DO J=GJ(I,2) TO JEND;
IF GK(ISOAJ—AK(K,I),ISOAJ_AK(K,ADJYJ(J)))
THEN;
ELSE GO TO STEP15—END;

END;
END;
PUT SKIP(4) EDIT
(•THE FOLLOWING DEFINES AN ISOMORPHISM FROM GJ TO GK’) (A);
PUT SKIP EDIT((I DO 1=1 TO NGJ)) (F(3));
PUT SKIP EDIT((ISOAJ_AK(K,I) DO 1=1 TO NGJ)) (F(3));

STEP15_END:
END;

END;
END;
GO TO CHECK—NO_GRAPHS;

NO_ISOMORPHISM: PUT SKIP(2) EDIT
(’NO ISOMORPHISM EXISTS FOR GIVEN GRAPHS’) (A);
IF ITME= -1 THEN; ELSE GO TO TOTALING;

/* */
/* END OF ALGORITHM 2 */
/* */
/* THE REMAINDER OF THE PROCEDURE GATHERS PERFORMANCE INFORMATION. */
/* */
CHECK NO GRAPHS:

/* */
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE */
/* */

149
ITME= 1; CALL ASI-miE(ITME) ;
TMMAY (NOJGRAPI l_PRS)=ITME ;

TOTALING:
MNGR=MNGR + TMGR(NO_GRAPII_PRS) ;
MNTR=MNTR + TI1TR(NO_GRAPH_PRS) ;
MNMAY=MNÎ1AY + TMMAY (NO_GRAPH_PRS) ;
NO_GRAP1I_PRS=NO_GRAP H_PRS - 1;
IF NO_GRAPII_PRS ~= 0
THEN GO TO STEPO; "
ELSE DO; PUT PAGE EDIT(’ANALYSIS OF RUN USING *,NOGR,

’ GRAPH PAIRS OF ’,NGJ,’ VERTICES EACH*) (A,F(2),A,F(2),
A); PUT SKIP(2) EDIT('NUMBER*,’MSM ISO*,*TRANSFO*,'MAY',
’TOTAL*) (COL(l),A,COL(15),A,COL(34) ,A,COL(6O),A,COL(75)
,A); J=l;
DO I=NOGR TO 1 BY -1;
TOTAL=TMTR(I) + TMMAY(I);
PUT SKIP EDIT(J,TMGR(I),TMTR(I),TMMAY(I).TOTAL) (F(2),
COL(10),F(11),C0L(30),F(11),COL(50),F(11),
COL(7O),F(11));
J=J + 1;
END;
TOTAL=MNGR+MNTR+MNMAY;
PUT SKIP(2) EDIT(’TOTAL’,MNGR,MNTR,MNMAY,TOTAL)
(A,COL(10),F(11),COL(30),F(11),COL(50),F(11),
COL(7O),F(11));
MEGR=FLOAT (1E4GR) /NOGR ; METR=FLOAT (MNTR) / NOGR ;
MEI-IAY=FLOAT(MNMAY) /NOGR; MET0T=FL0AT(TOTAL) /NOGR;
PUT SKIP(2) EDIT(’MEAN’,MEGR,METR,MEMAY,METOT)
(A,COL(10),F(15,3),C0L(30),F(15,3),COL(50),F(15,3),
COL(7O),F(15,3));
PUT SKIP(2) EDIT(*a**EACH ABOVE UNIT=26.04166 X 10 -6’,
’ SEC.’) (A,A);
END;

END MAY;

GENGR: PROCEDURE; .
/* */
/* THE PROCEDURE GENGR BUILDS AN ADJACENCY LIST FOR GRAPH GJ (G) */
/* AND AN ADJACENCY MATRIX FOR GRAPH GK (G*). ADJACENCY LISTS FOR */
/* BOTHS GRAPHS ARE PRINTED. */
/* */
DECLARE (GJ(64,2),ADJYJ(800)) FIXED BIN(15) EXT,

GK(64,64) BIT(l) EXT, (ADJCNT(64),NGJ,NGK,NPGJ,NPGK) FIXED
BIN(15) EXT;

/* */
/* BUILD ADJACENCY LISTS FOR GRAPH GJ */

GJ(*,1)=O; LAST=1; IPTR=1;
DO 1=1 TO NPGJ;
GET FILE(GRAPH) LIST(II,J);
IF II LAST
THEN DO;

IF GJ(LAST,1) ~= 0 THEN GJ(LAST,2)=IPTR;

150
ELSE GJ(LAST,2)=0;
IPTR“I; LAST-II;
END;

GJ(II,1)=GJ(II,1) + 1; ADJYJ(I)-J;
END;
DO I=II TO NG J;
IF GJ(I,1)=O THEN GJ(I,2)=0; ELSE GJ(I,2)=IPTR;

END; .
/*
/A BUILD ADJACENCY MATRIX AND ADJACENCY COUNT FOR GRAPH GK
/*

GK=’0’B; ADJCNT=O; LAST=1;
DO 1=1 TO NPGK;
GET FILE(GRAPH) LIST(II,J);
GK(II,J)='UB; ADJCNT(II)=ADJCNT(II) + 1;

END;
/*
/* PRINT ADJACENCY LIST FOR EACH VERTEX OF GRAPHS GJ AND GK
/*

PUT PAGE EDIT(’ADJACENCY LIST FOR GRAPH GJ’) (A);
DO 1=1 TO NGJ;
PUT SKIP EDIT(I) (F(2));
IF GJ(I,2) ~= 0
THEN DO; IEND=GJ(I,2) + GJ(I,1) - 1;

PUT EDIT((ADJYJ(J) DO J=GJ(I,2) TO IEND)) (COL(6),
(50)F(3)) ;

END;
END;
PUT SKIP(4) EDIT(’ADJACENCY LIST FOR GRAPH GK’) (A);
DO 1=1 TO NGK;
PUT SKIP EDIT(I,’ ’) (F(2),COL(5),A);
DO J=1 TO NGK;
IF GK(I,J) THEN PUT EDIT(J) (F(3));
END;

END;
END GENGR;

*/
*/
*/

*/
*/
*/

MOOREM: PROCEDURE; ' ,/* */
/* THE PROCEDURE MOOREM CALLS TRANSFO (ALGORITHM 1) TO TRANSFORM */
/* GRAPHS GJ (G) AIR) GK (O’) INTO THE CORRESPONDING MSM’S AJ (H,J) */
/* AND AK (H’,J’)./* *1
DECLARE (GJ(64,2),ADJYJ(300)) FINED BIN(15) EXT,

GK(64,64) BIT(1) EXT,(ADJCNT(64),NGJ,NGK,NOPRAJ,NOPRAK)
FIXED BIN(15) E)rr, (AJ(100,2),AK(100,2)) FIXED BIN(15) EXT;

DECLARE A(100,64) BIT(l), (NOBORUS,CNT(lOO)) FIXED BIN(15);
DECLARE (JS AJ(200),JS_AK(200)) FIXED BIN(15) EXT;
DECLARE (SVI’LAX,SVCLASS,MAXOUT,CLASSCNT) FIXED BIN(15) EXT;

/* */
/* BUILD MOORE MACHINE AJ FOR GRAPH GJ */
/* */

151
NO_WORDS=CEIL(NGJ/32); "
A=*O*B;
DO 1=1 TO NGJ;
IF GJ(I,1)=O THEN GO TO INIT_CNT;
J-GJ(I,2); DO K=1 TO GJ(1,1); A(I,ADJYJ(J))=’1*B; J=J + 1;

END;
INIT_CNT: CNT(I)=GJ(1,1);

END; .
MAXOUT=O; CLASSCNT=O;
CALL TRANSFO(A,CNT.NGJ,NOJIORDS,AJ,MOPRAJ,JS_AJ);
SVCLASS=GLASSONT; SVMAX=MÆXOUT;

/* */
/* PRINT MOORE MACHINE AJ */
/* */

PUT PAGE EDIT(’MOORE SEQUENTIAL MACHINE CORRESPONDING TO GJ’)
(A); PUT SKIP EDIT(’STATE S ’,’NEXT STATE H(S,I) ’,
’OUTPUT J(S)’) (A,A,COL(32),A);
II=O;
DO 1=1 TO NOPRAJ;
PUT SKIP EDIT(I,’---> ’,AJ(1,1),’ ’) (F(3),A,C0L(15),F(3)
,C0L(34),A);

DO K=1 TO 2; II=II + 1; PUT EDIT(JS_AJ(II)) (F(3)); END;
END; -

/* */
/* BUILD MOORE MACHINE AK FOR GRAPH GK */
/* */

A=’O’B; DO 1=1 TO NGK: A(IS*)=GK(I,*): CNT(T)=ADJCNT(T); END ;
CALL TRANSFO(A,CNT,NGK,NOJJORDS.AK,NOPRAK, JS_AK) ;

/* */
/* PRINT MOORE MACHINE AK */
/* */

PUT SKIP(4) EDIT
(’MOORE SEQUENTIAL MACHINE CORRESPONDING TO GK’) (A);
PUT SKIP EDIT(’STATE S ’,’NEXT STATE H(S,I) ’,
•OUTPUT J(S)’) (A,A,C0L(32),A);
11=0;
DO 1=1 TO NOPRAK; •
PUT SKIP EDIT(I,’-- > ’,AK(I,1),’ ’) (F(3),A,C0L(15),F(3)
,C0L(34),A);

DO K=1 TO 2; II=II + 1; PUT EDIT(JS_AJ(II)) (F(3)); END;
END;

END MOOREM;

TRANSFO: PROCEDURE(A,CNT,NG,NOJ‘JDS,ANR,NO_PR_ST, JS_ANR) ;
/A */

/* THE PROCEDURE TRANSFO IMPLEMENTS ALGORITPCI 1. THE STATEMENT */
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITHM 1. */
/A GIVEN THE ADJACENCY MATRIX A (G) OF A GRAPH WITH NG (K(V)) */
/A VERTICES, THE PROCEDURE CREATES A MSM ANR (II,J) WITH NO_PR_ST (S)*/
/A STATES. NXT AVAL ST REPRESENTS H OF ALGORITHM 1. */
/A - - */

DECLARE A(100,64) BIT(l) CO:E1,WORDA(1QO,2) BIT(32) DEF A,

152
(NG,NOJJDS,NO_PR_ST) FIXED BIN(15),
(CNT(100),ANR(100,2)) FIXED BIN(15) CONN;

DECLARE JS_ANR(2OO) FIXED BIN(15) CONN;
DECLARE (MAXOUT,CLAS S CNT) FIXED BIN(15) EXT, CLASS(100,36)

FIXED BIN(15);
DECLARE ITME FIXED BIN(31), ASMTME ENTRY(FIXED BIN(31));
DECLARE (TMGR(25),TMTR(25),TTCIAY(25)) FIXED BIN(31) EXT,

(MNGR,MNTR,MI4MAY,N0_GRAPll_PRS) FIXED BIN(31) EXT;
/* */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 */
/* */

ITME= -1; CALL ASMTME(ITME);
/* */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 1 */
/* */

STEP1:
NO_PR_S T=0; NXT_AVAL_ST=NG;

STEP2:
DO WHILE(NXT AVAL ST NO PR ST);

STEP3:
IBEGIN=NO_PR_ST + 1; NO_PR_ST=NXT_AVAL_ST;

STEP4:
DO I=IBEGIN TO NO_PR_ST;

STEPS:
IF CNT(I) > 1
THEN DO;

STEP6:
DO J=1 TO I - 1;
IF CNT(I)=CNT(J) THEN DO; DO K-l TO NOJJDS;

IF W0RDA(I,K) WORDA(J,K)
THEN GO TO STEP6_END;
END;
ANR(I,1)=ANR(J,1);
GO TO STEPH;
END;

STEP6_END: END;
STEP7: -

NXT AVAL ST=NXT AVAL ST + 1;
STEPS:

DO K=1 TO NG;
IF A(I,K) THEN
A(NXT_AVAL_ST,*)=BOOL(A(NXT_AVAL_ST,A),A(K,*),*0111’B);
END;

STEP9:
ANR(I,1)=NXT_AVAL_ST;
CNT(NXT_AVAL_ST)=O;
DO K=1 TO NG;
IF A(NXT_AVAL_ST,K)
THEN CNT (NXT_AVAL_ST)=CNT (NXT_AVAL_ST) + 1;

END;
END;

ELSE
STEP10:

153
IF CNT(I)-0
THEN ANR(I,1)" -1;
ELSE DO J=1 TO NG;

IF A(I,J) THEN DO; ANR(I,1)=J; GO TO STEPH;
END;

END;
STEPH:

END;
END;
JS INDEX=1; NO=2;

/* */
STEP12AND14: IBEGIN=JS_INDEX;

DO JJ=1 TO NG;
NEXT=O; 11=0; IDIFF=0;
DO WHILE(NEXT NO_PR_ST);
11=11 + 1;
IF ANR(II,1) > NEXT | ANR(II,1)=JJ
THEN DO; IF A(II,JJ) THEN IDIFF=IDIFF + 1;

IF ANR(II,1) > NEXT THEN NEXT=ANR(II,1);
END;

END;
JS_ANR(IBEGIN)=IDIFF;
IF MAXOUT < JS_ANR(IBEGIN) THEN MAXOUT=JS_ANR(IBEGIN);
IBEGIN=IBEGIN + NO;

END;
LAST=NG; JJ=O;
DO WHILE(LAST < NO_PR_ST);
JJ-JJ + 1;
IF ANR(JJ,1) > LAST
THEN DO; LAST=ANR(JJ,1); NEXT=0; 11=0; IDIFF=0;

DO WHILE(NEXT ~= NO_PR_ST);
II=II + 1;
IF ANR(II,1) > NEXT
THEN DO; NEXT=ANR(II,1);

DO J=1 TO NO_WDS;
IF W0RDA(JJ,J) = (WORDA(JJ,J) & W0RDA(II,J))
THEN; ELSE GO TO AN0TH_ST; •

END;
IDIFF=IDIFF + 1;

ANOTII_ST: END;
END;
JS_ANR(IBEGIN)=IDIFF;
IF MAXOUT < JS_ANR(IBEGIN)
THEN MAI[0UT=JS_ANR(IBEGIN) ;
IBEGIN=IBEGIN + NO;
END;

END;
JS INDEX=JS INDEX + 1;

/* “ “ */
STEP13AND14: IBEGIN=JS_INDEX; MAX=0;

DO JJ=1 TO NG;
NSNS=0;
DO J=1 TO MG;

154

IF A(JJ,J) THEN IF A(J,JJ) THEN NSNS-NSNS + 1;
END;

J S_ANR (IBEGIN)=NSKS;
IF MAX < JS_ANR(IBEGIN) THEN MAX-JS__ANR (IBEGIN) ;
IBEGIN=IBEGIN + NO;
END;
LAST=NG; JJ=O;
DO WHILE(LAST < NO_PR_ST); .
JJ-JJ+1;
IF ANR(JJ,1) > LAST
THEN DO; LAST=ANR(JJ,1); CLASS(OLASSONT + l,*)=0;

DO J=1 TO NG;
IF A(JJ,J)
THEN DO; IFROM=JS_INDEX + (J-1)*NO;
CLASS(CLASSCNT+1,JS_ANR(IFROM))=
CLASS (CLASSCNT+1, JS_z\NR(IFROM)) + 1;

END;
END;
DO J=1 TO CLASSCNT;
DO K=1 TO MAX;
IF CLASS(CLASSCNT+1,K) ~= CLASS(J,K)
THEN GO TO NXT_CLASS;
END; '

NSNS-MAX + J; GO TO INIT_JS;
NXT CLASS: END;

GLAS S CNT=CLAS S CNT + 1; NSNS=MAX + CLASSCNT;
INIT_JS: IFROM=JS_INDEX + (LAST - D^NO;

J S_ANR(IFROM)=NSNS;
. END;

END;
IF MAXOUT < MAX + CLASSCNT THEN MAXOUT=MAX + CLASSCNT;

/*
/* END OF ALGORITHM 1
/*
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE
/*

ITME= 1; CALL ASMTME(ITME);
TMTR (NO_GRAPH_PRS) =T2 ITR (NO_GRAPH_PRS) + ITME;

END TRANSFO;

*/

*/
*/
*/

APPENDIX E

BERZTISS’ BACKTRACKING ALGORITHM AND PL/I IMPLEMENTATION

E. 1 Algorithms

E.1.1 Algorithm 3

Algorithm 3 generates a set of K-formulas that represent a given

graph D = (A,P). A K-formula is a K-formula of the vertex whose name

is the left most vertex name in the K-formula, and this vertex is the

leading vertex of the K-formula.

Step 1. For every isolated vertex a €■ A write the K-formula.

Step 2. For every vertex b from which originate arcs (b,tj), (b,t2),

...,(b,t^) write the K-formula **...*bt^t2...t^, where k

K-operators precede the b.

Step 3. Combine the K-formulas according to the following substitution

rule: If there exists a K-formula of a vertex and there

exists another K—formula in which the name of the vertex

appears, substitute the K—formula of the vertex for this name.

Apply the substitution rule until it can no longer be applied.

Step 4. (Check step.) Denote the K-formulas produced in Step 3 by

f1’f2’*’’’^n’ and the leading vertex of an f^ by a±. If some

f£ contains as a subformula a K—formula of vertex b in which

a^ occurs, and the b occurs in one of fj.,...»fi-i>.••>fi+l>

...,fn, extract the K-formula of b from f^, inserting b in its

place, substitute what now remains of ff into this formula,

and return to Step 3. Otherwise stop.

155

156

E.1.2 Algorithm 4

Algorithm 4, given a K-formula, creates arrays N,S, and T.

Array N contains the vertex symbols in the order they have in the

K-formula. Array S contains the structural information which is

represented by the K—formula. Array T is used in backtracking.

Array P, which must be initialized to zeros, is used for temporary

storage. The algorithm makes use of a stack (last-in-first-out push­

down store). The K-formula which is created by Algorithm 3 is given

by s1s2..-sm.

Step 1. Set J = 0, K = 0, LL = 1, S(l) = 0, i = 1.

Step 2. If S£ is a vertex symbol, then go to Step 5.

Step 3. Set K = K + 1, Switch = 0.

Step 4. Set i = i + 1. If i > m, then stop; else go to Step 2.

Step 5. Set J = J + 1, N(J) = sp

Step 6. If P(S£) = 0, then set T(LL) = J, P(s±) = LL, LL = LL + 1.

Step 7. If J / 1, then pop up the number LP from the stack and go to

Step 9.
Step 8. Push P(s±) down K times; set K = 0, Switch = 1; go to Step 4.

Step 9. If Switch = 0, then set S(J) = LP and go to Step 8; else set

S(J) = -LP and go to Step 4.

E.1.3 Algorithm 5

Algorithm 5 tests pairs of graphs for isomorphism. Arrays N, S

and T which describe the first graph are created by Algorithm 4. Arrays

L and B describe the set of arcs of the second graph. The vertex

correspondences defining an isomorphism are generated in Array R.

Initially the elements of R are assumed to be all zero. Arrays P, Q,

157

and the sign bits of T are used for temporary storage. Parameters n

and k define respectively, the number of vertices in the reference

graph and the number of entries in Array N. If the procedure stops

without having produced an output, then the graphs are not isomorphic.

Step 1. Set V = 1, X = 0, M = 1.

Step 2. If L(M) / 0, then set I = M, J = N(l), and go to Step 5.

Step 3. Set M = M + 1.

Step 4. If M £ n, then go to Step 2; else stop.
Step 5. Set X = X + 1, P(X) = L(I), Q(X) = M, R(J) = I, T(I) = -T(I).

Step 6. Advance in reference K-formula: Set V = V + 1; if V <_ k,

then set K = | S(V) |, M = P(K), J = N(V), and to to Step 8.

Step 7. An isomorphism exists : Output J, R(J) for J = 1,...,n. If

all isomorphisms are to be found, then to the Step 13 ; else

stop.

Step 8. If R(J) / 0, then go to Step 11.

Step 9. Set I = B(M). If T(I) > 0 and, moreover, either or both

L(I) / 0 and S(V) < 0 hold, then go to Step 5.

Step 10. Set M = M + 1. If B(M) = 0, then go to Step 13, else go to

Step 9.

Step 11. If B(M) = R(J), then go to Step 6.

Step 12. Set M = M + 1. If B(M) / 0, then go to Step 11.

Step 13. Backtrack step: Set V = |l(X)|, J = N(V), K = R(J)5

R(J) = 0, T(K) = -T(K), M = Q(X) + 1, X = X - 1. If X = 0,

then go to Step 4.

Step 14. If B(M) = 0, then go to Step 13; else go to Step 9.

158

E.2 PL/I Source Listing

BERZTIS: PROCEDURE OPTIONS(MAIN);
/* */
/* THE MAIN PROCEDURE BERZTIS IMPLEMENTS ALGORITHM 5. THE */
/* STATEMENT NAMES ROUGHLY CORESPOND TO THE STEP NUMBERS OF */
/* ALGORITHM 5. IN STEP 0, THE PROCEDURE CALLS BGENGR TO CREATE */
/A ADJACENCY LISTS FOR REFERENCE GRAPH DR AND TEST GRAPH DT. BALG2 */
/* (ALGORITHM 4) IS THEN CALLED TO CREATE THE K_FORMULA OF DR AND */
/* THE DATA STRUCTURES WHICH REPRESENT THE K_FORMULA. THESE DATA */
/* STRUCTURES ARE USED BY THE PROCEDURE BERZTIS. IN STEPS 1-14, */
/* ALGORITHM 5 IS IMPLEMENTED. THE REMAINDER OF THE PROCEDURE */
/* GATHERS PERFORMANCE INFORMATION. THE ASSEMBLY LANGUAGE ROUTINE */
/* ASMTME IS USED TO OBTAIN THE EXECUTION TIME FOR SECTIONS OF A */
/* PROCEDURE. */
/* THE PROCEDURE CAN HANDLE TWO GRAPHS OF UP TO 64 VERTICES AND */
/* 800 ARCS EACH. IF MORE VERTICES OR ARCS ARE NEEDED, THEN THE */
/* DIMENSIONS OF THE APPROPRIATE ARRAY NAMES MUST BE INCREASED. */
/* THE VARIABLE AND ARRAY NAMES USED IN THIS PROCEDURE CORRESPOND */
/* TO THOSE USED IN ALGORITHM 5. */
/* */
DECLARE (DR(64),DRADJ(840),L(64),B(840)) FIXED BIN(15) EXT,

(KN,N(801),S(801),T(64)) FIXED BIN(15) EXT,
(V,X,M,I,J,K) FIXED BIN(15),
(NR,NT,NPR,NPT) FIXED BIN(15) EXT;

DECLARE (TMBALG(25),NO_GRAPH_PRS) FIXED BIN(31) EXT,
(TMBER(25),NORJ(25),NOBACK(25),MNBER,MNBALG, MNRJ, MNBACK,
NOGR,TOTAL) FIXED BIN(31),(MEBER,MEBALG,MERJ,MEBACK,METOT)
FLOAT DEC(16);

DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));
/* */
/* READ IN GRAPHS AND CREATE THE K_FORMULA FOR GRAPH DR */
/* */

GETJ FILE(GRAPH) LIST(NOPRS,NR,NT,NPR,NPT);
GET LIST(NO_GRAPH_PRS);
MNBALG=0; MNBER=0; IG1RJ=O; MNBACK=0; .
TMBALG=0; TMBER=0; MORJ=O; N0BACK=0; NOGR=NO_GRAPH_PRS;

STEPO: CALL BGENGR;
IF NR ~= NT | NPR NPT THEN GO TO NO_ISOMORPHISM;
CALL BALG2;

/* */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 */
/* */

ITME- -1; CALL ASMTME (ITME) ;
/* */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 5 */
/* */
STEP1: BEGIN;

DECLARE (P(NR),R(NR),0(NR)) FIXED BIN(15);
V=l; X=0; M-l; R=0;

STEP2: IF L(M) ~= 0
THEN DO;

159

I=M; J»N(l)î
GO TO STEPS;
END;

STEP3: M=M + 1;
STEP4: IF M <= NR

THEN GO TO STEP2;
ELSE GO TO NO_ISOMORPHISM;

STEPS: X=X + 1; P(X)=L(I); .
Q(X)=M; R(J)=I; T(I)= -T(I);
NORJ(NO_GRAPH_PRS)=NORJ(NO_GRAPH_PRS) + 1;

STEP6: V=V + 1;
IF V <= KN
THEN DO;

K=ABS(S(V)); M-P(K);
J=N(V); GO TO STEPS;
END;

STEP7: PUT SKIP(4) EDIT
(•THE FOLLOWING DEFINES AN ISOMORPHISM FROM DR TO DT’) (A) ;
PUT SKIP EDIT((JJ DO JJ=1 TO NR)) (F(3));
PUT SKIP EDIT((R(JJ) DO JJ=1 TO NR)) (F(3));
GO TO CHECK_NO_GRAPHS;

STEP8: IF R(J) ~= 0 THEN GO TO STEPH;
STEP9: I=B(M);

IF(T(I) > 0 & (L(I) ~= 0 | S(V) < 0))
THEN GO TO STEPS ;

STEP 10: M=M + 1;
IF B(M) - 0 THEN CO TO STEP13; ELSE GO TO STEPS ;

STEPH: IF B(M) = R(J) THEN GO TO STEPS ;
STEP12: M=M + 1;

IF B(M) ~= 0 THEN GO TO STEPH;
STEP13:

NOBACK (NO_GRAPH_PRS) =N0BACK (NO_GRAPH_PRS) + 1;
V-ABS(T(X)); J=N(V); K=R(J); R(J)=O; T(K)= -T(K);
M-Q(X) + 1; X=X - 1;
IF X = 0 THEN GO TO STEP4;

STEP14: IF B(M) = 0 THEN GO TO STEP13; ELSE GO TO STEP9;
END;

NO_ISOMORPHISM:
PUT SKIP(2) EDIT
(•NO ISOMORPHISM EXISTS FOR GIVEN GRAPHS’) (A);

IF ITME= -1 THEN; ELSE GO TO TOTALING;
/* */
/* END OF ALGORITHM 5 */
/* */
/* THE REMAINDER OF THE PROCEDURE GATHERS PERFORMANCE INFORMATION . */
/* */
CHECK NO GRAPHS :

/* */
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE */
/* */

ITME=1; CALL ASMTME(ITME);
TMB ER (NO_GRAP11_P RS)=ITME ;

160

TOTALINGî
MNBALG=1INBALG + TItBAI,G(NO_GPAP!I_PRS) ;
MNBER=MNBER + TMBER(NO_GPAPII_PRS) ;
MNBACK=MNBACK + NOBACK (NOJIRAPIHPRS) ;
MNRJ=hMRJ + NORJ(NO_GRAPH_PRS) ;
NO_GRAPH_PRS=NO_GRAPII_PRS - 1;
IF NO_GRAPI1_PRS 0
THEN GO TO STEPO;
ELSE DO; PUT PAGE EDIT(’ANALYSIS OF RUN USING ’,NOGR,

* GRAPH PAIRS OF ’,NR,’ VERTICES EACH’) (A,F(2),A,F(2),
A); PUT SKIP(2) EDIT(’NU?IBER’,’BACKTRACK* ,
’NODE CORRESPONDENCES’,’BALG1-2’,’BERZTISS’,’TOTAL*)
(COL(l),A,COL(15),A,COL(34),A,COL(56),A,COL(75),A
,COL(95),A); J-l;
DO I=NOGR TO 1 BY -1;
TOTAL=TNBER(I) + TMBALG(I);
PUT SKIP EDIT(J,NOBACK(I),NORJ(I),TMBALG(I),TMBER(I),
TOTAL) (F(2) ,C0L(10) ,F(11) ,COL(30) ,F(11) ,COL(50) ,F(U) ,
COL(70),F(11),COL(90),F(11));
J=J + 1;
END;
TOTAL=MNBALG + MNBER;
PUT SKIP(2) EDIT
(’TOTAL* ,MNBACK,tfilRJ.I-MBALG,MNBER,TOTAL)
(A,COL(10),F(11),COL(30),F(11),COL(50),F(11),
C0L(70),F(11),COL(90),F(11));

MEBACK=FLOAT (I GIB ACK) /NOGR; MERJ=FLOAT (MNRJ) /NOGR;
MEBALG=FLOAT(1INBALG)/NOGR; MEBER=FLOAT(MNBER) /NOGR;
METOT=FLOAT(TOTAL)/NOGR;
PUT SKIP(2) EDIT
(’MEAN* ,MEBACK,MERJ,MEBALG,MEBER,METOT)
(A,C0L(10),F(15,3),COL(30),F(15,3),C0L(50),
F(15,3),COL(70),F(15,3),COL(90),F(15,3));

PUT SKIP EDIT(**A*EACH ABOVE UNIT=26.04166 X 10 -6*,
’ SEC.’) (A,A);

END;
END BERZTIS;

BGENGR: PROCEDURE;
/* */
/* THE PROCEDURE BGENGR BUILDS THE ADJACENCY LISTS FOR GRAPH DR */
/* (DR, DRADJ) AND GRAPH DT (L,B). ADJACENCY LISTS FOR BOTH GRAPHS */
/* ARE PRINTED. */
/* */
DECLARE (DR(64),DRADJ(840),L(64),B(840)) FIXED BIN(15) EXT,

(NR,NT,NPR,NPT) FIXED BIN(15) EXT;
/* */
/* BUILD AND PRINT ADJACENCY LIST FOR REFERENCE GRAPH DR */
/* */

PUT PAGE EDIT(’ADJACENCY LIST FOR REFERENCE GRAPH DR’) (A);
LAST=0; JPTR=0;

161
DO I“1 TO NPR;
GET FILE(GRAPH) LIST(II,J);
IF II LAST .
THEN DO;

IF JPTR 0 THEN DO; JPTR=JPTR + 1; DRADJ(JPTR)=0 ;
END;

PUT SKIP EDIT(II) (F(2)); LAST=II;
DR(II)= JPTR + 1; .
END; -

JPTR-JPTR + 1; DRADJ(JPTR)=J; PUT EDIT(J) (F(3));
END;
DRADJ(JPTR + l)=0;
IF II ~= NR THEN DO; DR(NR)=0; PUT SKIP EDIT(NR) (F(2)); END;

/* */
/* BUILD AND PRINT ADJACENCY LIST FOR TEST GRAPH DT */
/* */

PUT PAGE EDIT(’ADJACENCY LIST FOR TEST GRAPH DT’) (A);
LAST=0; JPTR=0;
DO 1=1 TO NPT;
GET FILE(GRAPH) LIST(II,J);
IF II LAST
THEN DO;

IF JPTR ~= 0 THEN DO; JPTR=JPTR + 1; B(JPTR)=0; END;
L(II)=JPTR + 1;
PUT SKIP EDIT(II) (F(2)); LAST=II;
END;

JPTR=JPTR + J; R(.TPTR)=J: PUT EDIT (J) (F(3)) :
END;
B(JPTR + l)=0;
IF II ~= NT THEN DO; L(NT)=0; PUT SKIP EDIT(NT) (F(2)); END;

END BGENGR;

BALG2: PROCEDURE;
/* */
/* THE PROCEDURE BALG2 IMPLEMENTS ALGORITHM 4. THE STATEMENT */
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITHM 4. IN */
/* STEP 0, THE PROCEDURE CALLS BALG1 (ALGORITHM 3) TO CREATE THE */
/* K_FORMULA (K_FOR) FOR GRAPH DR. BALG2 USES THIS K_FORMULA TO */
/* CREATE THE DATA STRUCTURES USED BY BERZTIS. THESE DATA */
/* STRUCTURES REPRESENT THE STRUCTURAL INFORMATION CONTAINED IN THE */
/* K FORMULA REPRESENTATION OF DR. THE VARIABLE AND ARRAY NAMES */
/* CORRESPOND TO THOSE USED IN ALGORITHM 4. BALG2 ASSUMES THAT THE */
/* GRAPH DR CAN BE DESCRIBED BY A SINGLE K_FORMULA. */
/* */
DECLARE (NR,NT,KN,N(801),S(801),T(64)) FIXED BIN(15) EXT,

(SWITCH,ST_PTR,SI,LP,J,K,LL,I) FIXED BIN(15), CHARNODE CHAR(2)
,NUMNODE PIC*99’ DEF CHARNODE,K_FOR CHAR(2402) VAR EXT;

DECLARE (TMBALG(25),NO_CRAPH_PRS) FIXED BIN(31) EXT;
DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));

/* */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 */

162

ITME- -1: CALL ASMTME(ITME);
/* */
/* CALL BALG1 (ALGORITHM 3) TO GENERATE THE K_FORMULA OF GRAPH DR */
/* */

STEPO: CALL BALG1;
M=LENGTH(K FOR);

/* */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 4 */
/* */

STEP1: BEGIN;
DECLARE (STACK(NR,2),P(NR)) FIXED BIN(15);
STACK=O; P=0; ST_PTR=O;
J=0; K=O; LL=1; S(1)=O; 1=1;

STEP2_4: DO MULE (I < = M) ;
IF SUBSTR(K_FOR,I,1) ~=
THEN DO;

STEPS: J-J + 1; CHARNODE=SUBSTR(K_FOR,I,2);
I-I + 1; SI=NUMNODE;
N(J)=SI;

STEP6: IF P(SI) = 0
THEN DO;

T(LL)=J; P(SI)=LL; LL=LL + 1;
END; '

STEP7: IF J = 1
THEN DO;

LP=STACK(ST_PTR,1);
STACK(ST_PTR,2)=STACK(ST_FTR,2) - 1;
IF STACK(ST_PTR,2) = 0 THEN ST_PTR=ST_PTR - 1;

STEP8_9: IF SWITCH = 0
THEN DO;
S(J)=LP;
ST PTR=ST_PTR + 1;
STACK(ST_PTR,1)=P(SI) ; STACK(ST_PTR,2)=K;
K=0; SWITCH®1 ;

END;
ELSE S(J)= -LP;
END;

ELSE DO;
ST PTR=ST_PTR + 1;
STACK(ST_PTR,1)=P(SI); STACK(ST_PTR,2)=K;
K=0; SWITCH®1;
END;

END;
ELSE DO;

K=K + 1; SWITCH-O;
END;

1=1 + 1;
END;
KN=J ;
END;

/* */
/* END OF ALGORITHM 4 */

163

/* */
/* CALL ASMTME TO GET EXECUTION TINE FOR THIS SECTION OF CODE */
/* */

ITME=1; CALL ASNTME(ITME);
TMBALG(NO_GRAPH_P RS)=ITME;

END BALG2;

BALG1: PROCEDURE;
/* */
/* THE PROCEDURE BALG1 IMPLEMENTS ALGORITHM 3. THE STATEMENT */
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITHM 3. */
/* SINCE ALL THE GRAPHS TESTED COULD BE SPECIFIED BY A SINGLE */
/* KJORMULA, IT IS NOT NECESSARY TO IMPLEMENT STEP 4 OF ALGORITHM */
/* 3, the K_FORMULA IS STORED IN THE CHARACTER STRING K_FOR. ALL */
/* VERTICES ARE REPRESENTED BY A TWO CHARACTER NUMBER, I.E., VERTEX */
/* 1 IS REPRESENTED BY THE CHARACTERS 01. THE PROCEDURE PROCESSES */
/* VERTEX BY VERTEX THE ADJACENCY LIST DRADJ, UNTIL ALL VERTICES */
/* AND THEIR CORRESPONDING ARCS HAVE BEEN REPRESENTED. THE BEGIN- */
/* NING OF THE K_FORMULA CONTAINS AS MANY ADJACENT VERTICES WITH */
/* THEIR CORRESPONDING ARCS AS IS POSSIBLE. THIS TYPE OF K_FORMULA */
/* LEADS TO A MORE EFFICIENT EXECUTION OF BERZTIS (ALGORITHM 5). */
/* */
DECLARE (DR(64),DRADJ(840),NR) FIXED BIN(15) EXT, K_FOR CHAR(2402)

VAR EXT, FOUND BIT(1),CHARNODE CHAR(2),NUMNODE PIC *99* DEF
CHARNODE,K_N0DE CHAR(102) VAR, (JSAV,ASTER,LNKSTR,KIN) FIXED
BIN(15),FIRST BIT(l);

/* */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 3 */
/* */
STEPO: BEGIN;

DECLARE ROW(NR) BIT(l),ROWSTR BIT(NR) DEF ROW,BINONE BIT(NR);
ROW= *0*B; K_FOR=”; BINONE=~ ROWSTR;
DO WHILE(ROWSTR ~= BINONE);
LNKSTR=LENGTH(K_F0R);

STEP1 2: IF LNKSTR=0 .
THEN DO; NUMNODE"1; K_FOR=CHARNODE; R0W(l)=’l*B; J=DR(1);

DO WHILE (DRADJ(J) ~= 0);
NUimODE=DRADJ(J); JSAV=DRADJ(J);
K_FOR='** | | K_FOR || CHARNODE;
J=J + 1;
END;

KIN=J-DR(l)+3;
NEW_K : LNKSTR=LENGTH(K_F0K) ;
NXT K: IF KIN < LNKSTR & ROWSTR ~= BINONE
- THEN DO;

CHARNODE=SUBSTR(K_FOR,KIN,2); JSAV=NUMNODE;
IF ROW(JSAV) & (DRADJ(DR(JSAV))=1)
THEN DO; CALL KDERIVE;

IF KIN=LNKS^R - 1
THEN K_FOR»SUBSTR(K_FOR,1,KIN-1) |I K_NODE;
ELSE K FOR»SUBSTR(K_FOR,1,KIN-1) | | K_NODE | |

SUÏÏSTR(iC_F0R,KIN+2,LNKSTR-(KIN+1)) ;

164

DO WHILE(SUBSTR(K_FOR,KIN,1)
KIN=KIN+1; END; KIN=KIN+2;
GO TO NEW_K;
END;

ELSE KIN=KIN+2;
GO TO NXT_K;
END;
ELSE GO TO NEXT_ROW; .

END;
STEP3: KIN=LNKSTR - 1; FOUND=’O*B;

DO WHILE (''FOUND);
CHARNODE=SUBSTR(K_FOR,KIN,2); JSAV=NUMNODE;
IF ROW(JSAV)
THEN DO; CALL KDERIVE;

IF KIN = LNKSTR - 1
THEN K__FOR=SUBSTR(K_FOR, 1,KIN-1)
ELSE K FOR=SUBSTR(K FOR,1,KIN-1)

K NODE;

FOUND=*1*B;
END;

ELSE DO; KIN=KIN
KIN=KIN
KIN=KIN

END;

. _ . . . _ , K_NODE | |
SUBSTR (K_FOR,KÎN+2,LNKSTR-(W ;

- 1; DO WHILE(SUBSTR(K_FOR,KIN,!)=•A*)
- 1; END;
- 1;

END;
NEXT_ROW;

END;
KDERIVE: PROCEDURE;

ROW(JSAV)=*1‘B; K_NODE=” ; JJ=DR(JSAV) ;
DO WHILE (DRADJ (J J) 0) ;
NUMNODE=DRADJ(JJ) ; K_NODE=K_NODE | | CHARI^ODE
JJ-JJ + 1;
END; .

NUMNODE=J SAV; K_NODE=CHARNODE || K_NODE;
DO ASTER = DR(JSAV) TO JJ-1;
K_N0DE=*** || K_N0DE;
END;

END KDERIVE;
END;

END OF ALGORITHM 3

PUT
PUT

END BALG1;

SKIP(4) EDIT(’K_FORMULA OF REFERENCE GRAPH DR*) (A)
SKIP LIST(K_FOR);

APPENDIX F

ULLMANN’S REFINEMENT/BACKTRACKING ALGORITHM AND PL/I IMPLEMENTATION

F.1 Algorithm 6

Algorithm 6 finds an isomorphism, if one exists, between two

graphs Ga and G^. The algorithm first constructs a matrix M which

represents possible vertex assignment. After making a possible vertex

assignment, the algorithm then refines M by using a necessary and

sufficient condition for graph isomorphism. This compound condition

is based on the adjacency relations of the vertices. If the graphs

are isomorphic, then M, after possible backtracking to reassign

vertices, is refined to a matrix which specifies an isomorphism

between GA and Gg. The number of vertices and arcs of GA and GB are

given by pa, qa and pb, qb. The algorithm uses a pb-bit binary vector

»Fpb^{ F1 » • • • ; to record which columns have been used at an inter

mediate state of computation: F^ — 1 if the i^h column has been used.

The algorithm also uses a vector { H]^,... ,Hj,... ,Hpa} to record which

column has been used at which depth : Hj = k if the k^h column has been

selected at depth d.

Step 0. Construct M° according to

1, if the indegree of the i^ point in GA is the same as

the indegree of the jth point in GB and the outdegree

of the ith point in GA is the same as the outdegree of

the 3^ point in Gg,

0, otherwise;

165

166

Step 1. M := M°; d := 1; Hj := 0

for all i := 1,—,pb set := 0;

refine M; if exit FAIL then terminate algorithm;

Step 2. If there is no value of j such that m^j = 1 and f^ = 0

then go to Step 7 ;

Md := M;

if d = 1 then k := else k := 0;

Step 3. k := k + 1;

if mdk = 0 or fk = 1 then go to Step 3;

for all j k set := 0;

refine M; if exit FAIL then go to Step 5 ;

Step 4. If d < pa then go to Step 6 else give output to indicate

that an isomorphism has been found ;

Step 5. M := Md;

if there is no j > k such that mdj = 1 and f^ = 0 then go

to Step 7 ;

go to Step 3 ;

Step 6. Hd := k; Fk := 1; d := d + 1;

go to Step 2;

Step 7. If d = 1 then terminate algorithm;

d := d - 1; k := Hd; Fk := 0;

go to Step 5;

Refine M. m^ = 1 is changed to m^ = 0 unless

(Vx) ((aix = 1) => (3y) (m^ • bjy = 1))
1 < x <_ pa 1 1 y S pb

and

167

(Vx) <(axl = 1) =» (ay) (m%y • byj = 1))
1 < x S pa 1 1 y 1 Pb

where [a^j] and [b^] are the adjacency matrices for graphs

G a and Gg.

F.2 PL/1 Source Listing

ULLMANN: PROCEDURE OPTIONS(MAIN);
/* */
/* THE MAIN PROCEDURE ULLMANN IMPLEMENTS ALGORITHM 6. THE */
/* STATEMENT NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF */
/* ALGORITHM 6. IN STEP 0, THE PROCEDURE CALLS UGENGR TO CREATE */
/* THE ADJACENCY MATRICES FOR GRAPHS A AND B. CALCMO IS THEN *1
/* CALLED TO CONSTRUCT THE INITIAL MATRIX M. IN STEPS 1-7, */
/* ALGORITHM 6 IS IMPLEMENTED. THE INTERNAL PROCEDURE REFINE IMPLE-*/
/* MENTS THE REFINEMENT CONDITIONS OF ULLMANN. THIS PROCEDURE IS */
/* CALLED TO REFINE M AFTER EACH VERTEX ASSIGNMENT. STEP 4 OF */
/* ALORITHM 6 IS MODIFIED SO THAT IF M IS LEFT UNCHANGED BY THE */
/* REFINEMENT PROCEDURE AND M IS SUCH THAT EACH ROW AND EACH COLUMN */
/* CONTAINS EXACTLY ONE 1, THEN THE THE ALGORITHM HAS SUCCEEDED IN */
/* DETERMINING GRAPH A IS ISOMORPHIC TO GRAPH B. THE ISOMORPHISM IS*/
/* DEFINED BY THE MATRIX M. THE REMAINDER OF THE PROCEDURE */
/* GATHERS PERFORMANCE INFORMATION. THE ASSEMBLY LANGUAGE ROUTINE */
/* ASMTME IS USED TO OBTAIN EXECUTION TIMES FOR SECTIONS OF A */
/* PROCEDURE. */
/* THE PROCEDURE CAN HANDLE TWO GRAPHS HAVING UP TO 64 VERTICES. */
/* IF MORE VERTICES ARE NEEDED, THEN THE DIMENSIONS OF A AND B MUST */
/* BE INCREASED. THE VARIABLE AND ARRAY NAMES CORRESPOND TO THOSE */
/* USED BY ALGORITHM 6. */
/* */
DECLARE (A(64,64),B(64,64),M(64,64)) BIT(l) EXT,

(NA,NB,NPA,NPB) FIXED BIN(15) EXT,
BCOL(64,64) BIT(l) EXT,MD(64,64,64) BIT(l);

DECLARE (TMCALCM(25),NO_GRAPH_PRS) FIXED BIN(31) EXT;
DECLARE (TMULLM(25),NOREF(25),NOBACK(25),M?RJLLM,MNCALCM,MNREF,

MNBACK,NOGR,TOTAL) FIXED BIN(31),(MEULLM,MECALCM,MEREF,
MEBACK.METOT) FLOAT DEC(16);

DECLARE ITME FIXED BIN(31),ASMTME ENTRY (FIXED BIN(31));
/* */
/* READ IN TWO GRAPHS AND CREATE CORRESPONDING ADJACENCY MATRICES */
/* */

GET FILE(GRAPH) LIST(NGPRS,NA,NB,NPA,NPB);
GET LIST(NO_GRAPH_PRS);
MNCALCM=0; MNULLM=0; MNREF=0; MNBACK=0;
TMCALCM=0; TMULLM=0; NOREF=O; NOBACK=O; NOGR=NO_GRAPH_PRS;

STEPO: C^L UGENGR;
IF NA NB | NPA ~= NPB THEN GO TO NO_ISOMORPHISM;
BEGIN;
DECLARE F(MB) BIT(l),
(SUCCEED,FAIL) BIT(l),(H(NA),D,NOWDS) FIXED BIN(15);

168

/*/* CALL CALCMO TO CONSTRUCT INITIAL MATRIX M
CALL CALCMO; NOWDS=CEIL(NA/32);

/*
/* CALL ASMIME TO SET THE SYSTEM TIMER TO 0

/*
/*
/*

ITME= -1; CALL ASMIME(ITME); .

THE FOLLOWING CODE REPRESENTS ALGORITHM 6

*/
*/
*/

*/
*/
*/

STEP1: D=l; H(l)=0; F-’O’B;
CALL REFINE(B,BCOL,M);
IF FAIL THEN GO TO NO_ISOMORPHISM;

STEP2: DO 1=1 TO NB;
IF M(D,I) & ~F(I) THEN GO TO STEP2_1 ;

END;
GO TO STEP7 ;

STEP2_1 :
MD(D,*,*)=M$
IF D=1 THEN K=H(1); ELSE K=O;

STEP3: K=K + 1;
IF(aM(D,K) F(K))THEN GO TO STEP3;
DO J=1 TO NB; IF J ~= K THEN M(D,J)='O*B; END;
CALL REFINE(B,BCOL,M);
IF FAIL THEN GO TO STEPS ;

STEPA: IF SUCCEED
THEN DO;

PUT SKIP(4) EDIT ____(* THE FOLLOWING DEFINES AN ISOMORPHISM FROM A TO B)
(A); PUT SKIP LIST(* ');
PUT EDIT((I DO 1=1 TO NA)) (F(3));
PUT SKIP LISTC *);
DO 1=1 TO NA; DO J=1 TO NA;
IF M(I,J) THEN DO; PUT EDIT(J) (F(3)); GO TO IEND;
END; END; IEND: END;

GO TO CHECK_NO_GRAPHS;
END;

ELSE GO TO STEP6;
STEPS: M=MD(D,*,*);

I=K+1;
DO J=I TO NB;
IF (M(D,J) & ~F(J)) THEN GO TO STEP5_1;
END;
GO TO STEP?;

STEPS 1: GO TO STEP3;
STEP6: H(D)=K; F(K)=*1*B; D=D + 1;

GO TO STEP2;
STEP?: IF D=1 THEN GO TO NO_ISOMORPHISM;

' D=D - 1; K-H(D); F(K)=’O*B;
NOBACK(NO_GRAP11J1RS)=MOBACK(NO_GRAPH_PRS) + 1;
GO TO STEPS;

169

/* , */
REFINE; PROCEDURE(B,BOOL,M);
/* */
/* THE PROCEDURE REFINE IMPLEMENTS THE REFINEMENT CONDITIONS */
/* USED BY ALGORITHM 6. EACH RON OF M, EACH ROW OF B, AND EACH */
/* COLUMN OF B IS STORED IN CEIL(N/32) WORDS. IN ORDER TO EXPLOIT */
/* THE LIMITED PARALLELISM OF THE IBM 370/158, THE REFINEMENT */
/* CONDITIONS ARE IMPLEMENTED BY ORING THE APPROPRIATE ROW OF M */
/* WITH THE APPROPRIATE ROW OR COLUMN OF B. THE PROCEDURE RETURNS */
/* TO THE MAIN PROCEDURE ULLMANN WHEN ONE OF THE FOLLOWING OCCURS: */
/* NO MORE ELEMENTS OF M ARE CHANGED; OR A ROW OF M BECOMES ALL */
/* ZEROS, FAIL; OR EACH ROW AND EACH COLUMN OF M CONTAINS EXACTLY */
/* ONE I, SUCCEED. */
/* */
DECLARE B(64,64) BIT(l),ROWB(64,2) BIT(32) DEF B,

M(64,64) BIT(1),ROWM(64,2) BIT(32) DEF M,
BC0L(64,64) BIT(l),C0LB(64,2) BIT(32) DEF BCOL,
CHANGE BIT(l),COL(NA) BIT(l),STRCOL BIT(NA) DEF COL,
ZEROS FIXED BIN(15),BINZERO BIT(32) INIT((32)*0*B) STATIC;
NOREF(NO GRAPH PRS)-NOREF(NO GRAPH PRS) + 1;/* - - - - */
FAIL”’0 * B; CHANGE”* 1*B;
DO WHILE(CHANGE); ■
CHANGE”*O'B; COL='O'B; SUCCEED”'1'B;
DO 1=1 TO NA;
ZEROS=0;
DO J=1 TO MA;
IF ~M(I,J) THEN GO TO NEXTJI;
DO IX”1 TO NA;
IF A(I,IX) THEN DO;

DO IY=1 TO NOWDS;
IF (ROWM(IX,IY) & ROWB(J,IY)) BINZERO
THEN GO TO COND1_OK;

END;
M(I,J)='0'B; CHANGE”'1*B; GO TO NEXT_M;
END;

COND1_OK: IF A(IX,I) THEN DO; '
DO IY=1 TO NOWDS;
IF (ROWM(IX,IY) & COLB(J,IY)) BINZERO
THEN GO TO COND2_OK;

END;
M(I,J)”'0*B; CHANGE”'1'B; GO TO NEXT_M;
END;

COND2_OK: END;
NEXTJ-I; IF ~M(I,J)

THEN ZEROS=ZEROS + 1;
ELSE COL(J)='1*B;

END;
IF ZEROS=NB THEN DO; FAIL”'1'B; RETURN; END;
IF ZEROS NB - 1 THEN SUCCEED”'O'B;

END;
END;
IF SUCCEED THEN IF ~STRCOL”'0'B

170
THEN ;
ELSE SUCCEED»*0’B;

END REFINE;

END;
NO ISOMORPHISM:
™ PUT SKIP(2) EDIT(*NO ISOMORPHISM EXISTS FOR GIVEN GRAPHS')

(A);
IF ITME» -1 THEN; ELSE GO TO TOTALING;

END OF ALGORITHM 6

/* THE
/*

REMAINDER OF THE PROCEDURE GATHERS PERFORMANCE INFORMATION

CHECK NO GRAPHS :

/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE
/*

ITME-1; CALL ASMTME(ITME); ,
TMULLM (NO_GRAPH_PRS) - ITME ;

TOTALING:
MNCALCM=MNCALCM + TMCALCM(MO_GRAPH_PRS);
MNULLM=MNULLM + TMULLM(NO_GRAPII_PRS) ;
MNBACK=MNBACK + NOBACK(MO_GRAPH_JRS) ;
MNREF=MNREF + NOREF(NO_GRAPH_PRS) ;
NO_GRAPH_PRS=NO_GRAPH_PRS - 1;
IF NO_GRAP1I_PRS ~= 0
THEN GO TO STEPO;
ELSE DO; PUT PAGE EDIT('ANALYSIS OF RUN USING ’,N0GR,

' GRAPH PAIRS OF ',NA,’ VERTICES EACH') (A,F(2),A,F(2),
A); PUT SKIP(2) EDIT('NUMBER','BACKTRACK','REFINE*,
'CALCMO','ULLMANN','TOTAL') (COL(l),A,COL(15),A,COL(34)
A,COL(56),A,COL(75),A,COL(95),A) ; J-l;
DO I=N0GR TO 1 BY -1;
TOTAL=TMCALCM(I) + TMULLM(I) ;
PUT SKIP EDIT(J,NOBACK(I),NOREF(I),TMCALCM(I),TMULLM(I)
TOTAL) (F(2),COL(10),F(11),C0L(30),F(11),C0L(50),F(11),
COL(70),F(11),COL(90),F(11));

END;
TOTAL=MNCALCM + MNULLM;
PUT SKIP(2) EDIT
('TOTAL* ,MNBACK,MNREF,îINCALCM,MNULLM,TOTAL)
(A,COL(10),F(11),COL(30),F(11),C0L(50),F(11),
COL(70) ,F(11) ,C0L(90) ,F(U));

MEBACK=FLOAT(MNBACK)/NOGR; MEREF=FLOAT(MNREF)/NOGR;
MECALCM=FLOAT(MNCALCM)/NOGR; MEULLM=FLOAT(MNULLM)/NOGR;
METOT=FLOAT(TOTAL)/NOGR;
PUT SKIP(2) EDIT
('MEAN',MEBACK,MERER,MECALCM,MEULLM,METOT)
(A,C0L(10),F(15,3),COL(30),F(15,3),COL(50),
F(15,3),COL(70),F(15,3),C0L(90),F(15,3));

171
PUT SKIP(2) EDIT('***EACU ABOVE UNIT=26.04166 X 10 -6*,

* SEC J) (A,A) ;
EHD;

END ULLMANN;

UGENGR: PROCEDURE;
/* {

/* THE PROCEDURE UGENGR BUITDS ADJACENCY MATRICES FOR GRAPHS A */
/* AND B. ADJACENCY LISTS FOR BOTH GRAPHS ARE PRINTED. */
/*

DECLARE (A(64,64),B(64,64),BCOL(64,64)) BIT(l) EXT,
(NA,NB,NPA,NPB) FIXED BIN(15) EXT;

i* *'
A=*0*B; B=’O’B; BCOL=*O*B;

/* i/* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST FOR GRAPH A */
/* *'

PUT PAGE EDIT(’ADJACENCY LIST FOR GRAPH A’) (A);
LAST=O;
DO 1=1 TO NPA;
GET FILE(GRAPH) LIST (II,J); A(II,J)=*I’B;
IF II ~= LAST •
THEN DO; PUT SKIP EDIT(II) (F(2)); LAST=II; END;
PUT EDIT(J) (F(3));
END;
IP TT NA THEN PUT SKIP EDIT(NA) (F(2));

/*/* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST FOR GRAPH B */
/* */

PUT PAGE EDIT(’ADJACENCY LIST FOR GRAPH B’) (A);
LAST=O ;
DO 1=1 TO NPB;
GET FILE(GRAPH) LIST (II,J); B(II,J)=’1’B;
BCOL(J,II)=’1’B;
IF II ~= LAST
THEN DO; PUT SKIP EDIT(II) (F(2)); LAST=II; END;
PUT EDIT(J) (F(3));
END;
IF II ~= NB THEN PUT SKIP EDIT(NB) (F(2));

END UGENGR;

CALCMO: PROCEDURE;
/*

/* THE PROCEDURE CALCMO CONSTRUCTS THE INITIAL MATRIX M */
/* ACCORDING TO: M(I,J)=1, IF THE INDEGREE AND OUTDEGREE OF VERTEX */
/* I IS EQUAL TO THE INDEGREE AND OUTDEGREE OF VERTEX J, OTHERWISE, */
/* M(I,J)=O. */

DECLARE (A(64,64),B(64,64),M(64,64)) BIT(l) EXT,
(NA,NB) FIXED BIN(15) EXT;

DECLARE (TMCALCM(25),NO GRAPH_PRS) FIXED BIN(31) EXT;

172

DECLARE ITME FIXED BIN(31),ASMTHE ENTRY(FIXED BIN(31));
/* */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 */
/* *1

ITME» -1; CALL ASMTHE(ITME);
/* */
/* THE FOLLOWING CODE CONSTRUCTS INITIAL MATRIX M */
/* . */

BEGIN;
DECLARE (DAI(NA),DAO(MA),DBI(NA),DBO(NA)) FIXED BIN(15);
M='0'B;
DAI=0; DA0=0; DBI=0; DBO=O;
DO 1=1 TO NA;
DO J=1 TO NA;
IF A(I,J)
THEN DO; DAO(I)=DAO(I) + 1; DAI(J)=DAI(J) + 1; END;
IF B(I,J)
THEN DO; DBO(I)=DBO(I) + 1; DBI(J)=DBI(J) + 1; END;

END;
END;
DO 1=1 TO NA;
DO J=1 TO NA;
IF DAI(I)=DBI(J) & DAO(I)=DBO(J)
THEN M(I,J)-’1’B;

END;
END:
END*

/* */
/* END OF INITIAL M CONSTRUCTION */
/* */
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE */
/* */

ITME=1; CALL ASMTME(ITME);
TMCALCM(NO_GRAPH_PRS)=ITME;

END CALCMO;

APPENDIX G

SCHMIDT AND DRUFFEL’S BACKTRACKING ALGORITHM AND
PL/I IMPLEMENTATION

G.I Algorithms

G.I. 2 Algorithm 7

Algorithm 7 is Floyd’s shortest path algorithm. Initially

m[i,j] is the length of a direct path from vertex i to vertex j

i.e., m[i,j] = 1 if there is an arc from vertex i to vertex j. If no

arc exists, then m[i, j] is initially 10^^. At the completion of the

algorithm, m[i,j] is the length of the shortest path from vertex i to

vertex j. If none exists m[i,j] is 1010. Matrix M contains the

shortest path in formation,

procedure shortest path (m,n); value n; integer n; array m

begin
integer i,j,k; real inf, s; inf := 1010

for i := 1 step 1 until n do

for j := 1 step 1 until n do

if m[j,i] < inf then

for k := 1 step 1 until n do

if m[i,k] < inf then

begin s := m[j,k] + m[i,k];

if s < m[j,k] then m[j,k] := s

end

end shortest path
173

174

G.1.2 Algorithm 8

Algorithm 8 generates the initial partition for the sets of

vertices of graphs G1 and G2. First, the row and column character­

istic matrices XR^ and XC^ for G^, and XR2 and XC2 for G2, are

constructed from the distance matrices D1 = [d.y] and D2 = [d^j].

Next, the characteristic matrices X1 for G1 and X2 for G2 are res­

pectively formed by composing XR1 with XC1 and XR2 with XC2. The

initial partition which is represented by the class vectors

Cq = [cl] and C2 = [c?| is then generated by assigning the same

class to all vertices having identical X1 and X2 rows.

Step 1. Set c^ = 0 (1 <_ i <_ N).

Step 2, Compute the row and column characteristic matrices,

XR1 and XC1 for G1, and XR2 and XC2 for G2.

XR1 = {xrlm | (1 <_ i N) A (1 S m £. N - 1) A

xr| = [{dL | (1 < j < N) A (d±1 = m)}] }.

XR2 = {xr2m | (1 £ s £ N) A (1 S m S N “ 1) A

xrsm = E^st । <dlt = I-

XC1 = {xclm | (1 <_ j £ N) A (1 £ m £ N - 1) A

xcjm = [{dlj | (1 <_ i <_ N) A (d^j = m)}] }.

XC2 = {xc2 I (1 < t < N) A (1 < m < N - 1) Atm 1 — — — —
xc2m = [{d2t I (1 <_ s <_ N) A (d2t = m)}] }.

Step 3. Compose XR1 with XC1 to form X1 and XR2 with XC2 to form X2.

Step 4. CLASS = 0.

Step 5. CLASS = CLASS + 1.

Step 6. Select some integer k & {1,2,...,N} such that c^ = 0.

If none, stop.

175

Step 7. Determine two sets of integers :

= {i I x} — x^ (l<_m<_N—l)}.
im km

W2 = {1 I x?m = X^ (1 < N - 1)).

Step 8. Make class assignments:
ci = CLASS, i €■ W1. c? = CLASS, 1 G W2.

Step 9. Go to Step 5.

G.1.3 Algorithm 9
Algorithm 9, the backtracking algorithm, tests graphs G1 and G2

for isomorphism. The algorithm selects possible vertex assignments

between the two graphs and checks these assignments for consistency.

If the assignment is not consistent then the algorithm backtracks to

try another vertex assignment. Since a new class vectors, C^ and C2,

and class count vectors, K1 and K2, are generated at each level of the

vertex assignment tree, an index t is added to these vectors. Thus,

c£ refers to the class vector for graph G1 generated at level t. The

class count vector K is defined such that the element k^ is the number

of vertices in class i. and D2 are the distance matrices for

graphs G^ and G2.

Step 1. Set t = 0. Set p± = 0 (0 £ i £ N). (pt is the vertex in

Graph G1 chosen at level t.)

Step 2. Let and C2 be the class vectors from Algorithm 8, and let

K* and K2 be the class count vectors.

Step 3. The t = N, conclude that the graphs are isomorphic, present

the mapping, and STOP.

Step 4. Set i = pt­

Step 5. If i / 0, go to Step 7.

176
Step 6. Choose some integer i for which v| has not been mapped at

a lower level. If a c| exists with a unique unmapped vertex,

choose i. Set pt = i.
Step 7. Choose some r such that c|t = c^ and for which there has

been no mapping yet chosen for v^.

Step 8. If such an r exists, go to Step 10.

Step 9. Decrement t. If t < 0, conclude that the graph have no

isomorphism; otherwise, go to Step 7.
Step 10. Compose c£ with row i of D1 to yield C^. Compose C2 with

row r of D2 to yield C2. Generate C1 and C2 by sub­

stituting a unique integer for each unique term of C1 and C .

Compose C1 with column i of D1 to yield C1. Compose C2

with column r of D2 to yield C2. Generate C^^ and C2^ by

substituting a unique integer for each unique term of C1 and

C2.

Step 11. Compute the class count vectors K^^,K2^.

Step 12. If Kj+1 + K2+1, go to Step 7.

Step 13. Increment t.

Step 14. Go to Step 3.

G.2 PL/I Source Listing

DRUFFEL: PROCEDURE OPTIONS(MAIN);
lie
lie THE MAIN PROCEDURE DRUFFEL IMPLEMENTS ALGORITHM 9. THE */
/* STATEMENT NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF *f
/* ALGORITHM 9. IN STEP 0, THE PROCEDURE CALLS DGENGR TO CONSTRUCT /
/* THE ADJACENCY MATRICES FOR GRAPHS G1 AND G2. DIST IS THEN */
/* CALLED TO GENERATE THE CORRESPONDING DISTANCE MATRICES USING «/
I* FLOYD'S ALGORITHM 7. IN STEPS 1-14, ALGORITHM 9 IS IMPLEMENTED. */
/* in STEP 1, THE PROCEDURE DALG1 (ALGORITHM 8) IS CALLED TO */
/* CONSTRUCT THE INITIO PARTITION FOR THE SETS OF VERTICES. THE V
/* INTERNAL PROCEDURE CHOOSE IS CALLED IN STEP 6 TO CHOOSE A VERTE^ /
/* IN THE SMALLEST CLASS SUCH THAT THE VERTEX HAS NOT BEEN PREVIOUS--/

177
/* LY assigned, the remainder of the procedure gathers performance */
/* INFORMATION. THE ASSEMBLY LANGUAGE ROUTINE ASMTME IS USED TO */
/* OBTAIN THE EXECUTION TIME FOR SECTIONS OF A PROCEDURE. */
/* THE PROCEDURE CAN HANDLE TWO GRAPHS OF UP TO 64 VERTICES. */
/* IF MORE VERTICES ARE NEEDED, THEN THE DIMENSIONS OF ALL ARRAY */
/* NAMES DIMENSIONED 64 MUST BE CHANGED. VARIABLE AND ARRAY NAMES */
/* ROUGHLY CORRESPOND TO THOSE USED BY ALGORITHM 9. */
/* */
DECLARE (G1(64,64),G2(64,64), NG1,NG2,NPG1,NPG2) FIXED BIN(15) EXT,

(Kl,INDEXl(0:64,64),LISTl(0:64,64)) FIXED BIN(15) EXT,
(K2,INDEX2(O:64,64),LIST2(O:64,64)) FIXED BIN(15) EXT,
(Cl(0:64,64),C2(0:64,64)) FIXED BIN(15) EXT,
NO-ISO BIT(l) EXT;

DECLARE (T,VI,LAST,CUT,CLASS,R) FIXED BIN(15) ;
DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));
DECLARE (TMDIST(25),TMDALG1(25),TMDRUF(25),NO_GRAPH_PRS)

FIXED BIN(31) E:{T;
DECLARE (BACKTR(25),MNBACK,lEmiST,MNDALGl,MNDRUF,NOGR,TOTAL)

FIXED BIN(31), (MEBACK,MEDIST,MEDALG1,MEDRUF,METOT) FLOAT;
/* */
/* read IN TWO GRAPHS AND CREATE ADJACENCY MATRICES G1 AND G2 */
/* */

GET FILE(GRAPH) LIST(NGPRS,NG1,NG2,NPG1,NPG2);
GET LIST(NO_GRAPH_PRS);
BACKTR=0; TMDIST=O; TMDALG1=O; TMDRUF=O;
NOGR=NO_GRAPH_PRS ; MNBACK=0 ; 1DIDIST=O; MNDALG1=O; 1E1DRUF=O ;

STEPO; CALL DGENGR;
IF NG1 %= NG2 | NPG1 ~= NPG2
THEN GO TO NO ISOMORPHISM;

/* " */
/* CALL DIST (FLOYD’S ALGORITHM 7) TO CONSTRUCT DISTANCE MATRICES */
/* *1

PUT PAGE EDIT(’DISTANCE MATRIX FOR Gl’) (A);
CALL DIST(G1,MG1);
PUT PAGE EDIT(’DISTANCE MATRIX FOR G2’) (A);
CALL DIST(G2,NG2);

/* */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 9 *1
/* */
/* CALL DALG1 (ALGORITHM 8) TO CREATE INITIAL PARTITION FOR SETS */
/* OF VERTICES OF Gl AND G2 */

STEP1: CALL DALG1;
IF NO ISO THEN GO TO NO_I SO? (ORPHISM ;

/* *//* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 '
ITME= -1; CALL ASMTME(ITME);

STEP2: BEGIN;
DECLARE (P(O:NG1),MAP1(NG1)) FIXED BIN(15), MAP2(NG2) BIT(l);
T=0; P=0; MAP1=0; MAP2=’0’B;

STEP3: IF T=NG1
THEN DO; PUT SKIP(4) EDIT

(’THE FOLLOWING DEFINES AND ISOMORPHISM FROM Gl TO G2’)
(A); PUT SKIP EDIT((I DO 1=1 TO NG1)) ((64)F(3));

178
PUT SKIP EDIT((MAPI(I) DO 1=1 TO NG1)) ((64)F(3));
GO TO CHECK_NO_GRAP11S ;
END;

STEP4; I=P(T);
STEP5: IF I ~= 0

THEN DO; VI=I; GO TO STEP?; END;
STEP6: CALL CHOOSE; P(T)=VI;
STEP7: C1IT=C1(T,VI); R-INDEX2(T,C1IT); .

IF MAP2(R)
THEN DO;

STEP7_1 : DO WHILE(LIST2(T,R) ~= 0);
R=LIST2(T,R);

STEPS; IF ^MAP2(R) THEN GO TO STEP10;
END;
END;

ELSE GO TO STEP10;
STEP9; T=T - 1;

BACKTR (NO_GRAPH_P RS) =BACKTR (NO_GRAPH_P RS) + 1;
IF T < 0 THEN GO TO NO_ISOMORPHISM;

ELSE DO; VI-P(T); R=MAP1(VI); MAP2(R)=*0*B;
GO TO STEP7_1;

END;
STEP10: CLASS=O; 11=0;

DO 1=1 TO NG1;
C1(T+1,I)=O; INDEX1(T+l,I)=0; LIST1(T+1,I)=O;
C2(T+l,I)=0; INDEX2(T+l,I)=0; LIST2(T+l,I)=0;

END;
STEP1O_1 : CLASS=CLASS + 1; II=II + 1;

DO K-II TO NG1;
' IF Cl(T+l,K)=0 THEN GO TO STEP10_2;

END;
GO TO STEP13;

STEP10 2; C1(T+1,K)=CLASS; Kl=l;
IND EX1(T+l,CLAS S)=K; LAST=K;
DO I=K+1 TO NG1;
IF C1(T+1,I)=O
THEN IF Cl(T,K)=C1(T,I) & G1(VI,K)=G1(VI,I)

& G1(K,VI)=G1(I,VI)
THEN DO; C1(T+1,I)=CLASS; K1=K1+1;

LIST1(T+l,LAST)=I; LAST=I;
END;

END;
K2=0;
DO 1=1 TO NG2;
IF C2(T+l,I)=0
THEN IF C1(T,K)=C2(T,I) & G1(VI,K)=G2(R,I)

& G1(K,VI)=G2(I,R)
THEN DO; C2(T+l,I)=CLASS; K2=K2+1;

IF K2=l
THEN INDEX2(T+l,CLASS)=I;
ELSE LIST2(T+l,LAST)=I;
LAST=I;

Eito;

179

END;
STEP11 JL 2: IF Kl K2

THEN GO TO STEP7J.;
ELSE GO TO STEP10_l ;

STEP13: MAPI(VI)=R; MAP2(R)=*1*B; T=T + 1;
STEP14: GO TO STEP3;/* */

/* . */
CHOOSE: PROCEDURE;/* */
/* THE PROCEDURE CHOOSE IMPLEMENTS THE STRATEGY USED IN CHOOSING */
/* A VERTEX OF G1 TO ASSIGN TO A VERTEX OF G2. THE STRATEGY */
/* CONSISTS OF CHOOSING A VERTEX IN THE SMALLEST CLASS SUCH THAT */
/'* THE VERTEX HAS NOT BEEN PREVIOUSLY ASSIGNED. THE STRATEGY HAS */
/* THE EFFECT OF REDUCING THE BREADTH OF SEARCH, BUT POSSIBLY */
/* PERMITS A GREATER DEPTH. *//* */
DECLARE (SIZE,LINK) FIXED BIN(15),CLASS_STATUS (NGI) BIT(l);/* */

END CHOOSE;/*/*
END;

SIZE=1; J=l; CLASS_STATUS=’0’B;
IF INDEX1(T,2)=0
THEN DO; LINK=1; GO TO LINK_V; END;

FIND_SIZE:
DO I=J TO NG1;
IF CLASS_STATUS(C1(T,I)) THEN GO TO NXT_V;
LINK=C1(T,I);
DO 11=1 TO SIZE:
IF LINK=0
THEN DO; CLASS_STATUS(Cl(T,I))=*I’B;

GO TO NXT_V;
END;

LINK=LIST1(T,LINK);
END;
IF LINK=O THEN GO TO FIND_V;

NXT_V: END;
SIZE=SIZE + 1; J=l; GO TO FIND_SIZE;

FIND_V : LINK=I;
LINKV: IF MAPI(LINK)=0

THEN DO; VI=LINK; RETURN; END;
ELSE DO; Lim;=LISTl(T,LINK) ;

IF LINK=0
THEN DO; J=I+1 ; CLASS_STATUS(C1(T,I))=*1’B;

GO TO FIND_SIZE;
END;

ELSE GO TO LINK_V;
END; */*/

NO ISOMORPHISM: ■
— PUT SKIP(2) EDIT(*NO ISOMORPHISM EXISTS FOR GIVEN GRAPHS1)

(A);

180
IF ITME= -1 THEN; ELSE GO TO TOTALING;/* */

/* END OF ALGORITHM 9 *//* */
/* THE REMAINDER OF THE PROCEDURE GATHERS PERFORMANCE INFORMATION *//* */
CHECK NO GRAPHS:/*- . *//* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE *//* */

ITME=1; CALL ASMTME(ITME);
TMDRUF (NO_GRAP1I_PRS) =ITME ;

TOTALING:
" MNDIST=MNDIST + TÎODIST(NO_GRAPH_PRS) ;

MNDALG1=MNDALG1 + TMDALG1(NO_GRAPH_PRS);
' MNBACK=MNBACK + BACKTR(NO_GRAPII_PRS) ;

MNDRUF=MNDRUF + TMDRUF(NO_GRAPH_PRS);
NO GRAP1I_PRS=NO_GRAPII_PRS - 1;
if"no_graph_prs >= 0
THEN GO TO STEP0;
ELSE DO; PUT PAGE EDIT (’ANALYSIS OF RUN USING \NOGR,

1 GRAPH PAIRS OF ’,NG1,* VERTICES EACH’) (A,F(2),A,F(2),
A); PUT SKIP(2) EDIT(’NUMBER’,'BACKTRACK*,’DIST’,’DALG1’
,’DRUFFEL*,’TOTAL’) (COL(l),A,C0L(15),A,C0L(34),A,
COL(56),A,COL(75),A,COL(95),A); J=l;
DO I=NOGR TO 1 BY -1;
TOTAL=TMDIST(I) + TMDALGI(I) + TMDRUF(I);
PUT SKIP EDIT(J,BACKTR(I),TMDIST(I),TMDALG1(I),TMDRUF(I)
.TOTAL) (F(2),C0L(10),F(11),C0L(30),F(11),C0L(50),F(11)
,C0L(70),F(11),COL(90),F(11));
J=J + 1;

END;
TOTAL=MNDI ST + MNDALG1 + MNDRUF;
PUT SKIP(2) EDIT

(’TOTAL*,MNBACK,MNDIST,MNDALG1,MNDRUF,1OTAL)
(A,COL(10),F(ll),COL(30),F(ll),COL(5O),F(ll),
COL(70),F(11),COL(90),F(11));
MEBACK=FLOAT(MNBACK)/NOGR; MEDIST=FLOAT(MNDIST)/NOGR;
MEDALG1=FLOAT(MNDALG1)/NOGR; MEDRUF=FLOAT(MNDRUF)/NOGR;
METOT=FLOAT(TOTAL)/NOGR;
PUT SKIP(2) EDIT

('MEAN*,MEBACK,MEDIST,MEDALG1,MEDRUF,
METOT) (A,COL(10),F(15,3),C0L(30),F(15,3),C0L(50),
F(15,3),COL(70),F(15,3),COL(90),F(15,3));
PUT SKIP(2) EDIT(*-^^EACH ABOVE UNIT=26.04166 X 10 -6*,
* SEC.*) (A,A);
END;

END DRUFFEL;

DGENGR: PROCEDURE;
/*

181

/* the procedure dgengr builds the adjacency matrices for graphs */
/* G1 AND G2. ADJACENCY LISTS FOR BOTH GRAPHS ARE PRINTED. */
/* */
DECLARE (Gl(64,64),G2(64,64),NG1,NG2,NPG1,NPG2) FIXED BIN(15) EXT;/* */

Gl-0; G2=0;/* */
/* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST. FOR GRAPH G1 *1/* */

PUT PAGE EDIT('ADJACENCY LIST FOR GRAPH Gl*) (A);
LAST=0;
DO 1=1 TO NPG1;
GET FILE(GRAPH) LIST(II,J); G1(II,J)-1;
IF II ~= LAST
THEN DO; PUT SKIP EDIT(II) (F(2)); LAST=II; END;
PUT EDIT(J) (F(3));

END;
IF II ~= NG1 THEM PUT SKIP EDIT(NGl) (F(2));/* */

/* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST FOR GRAPH G2 *//* */
PUT PAGE EDIT('ADJACENCY LIST FOR GRAPH G2') (A);
LAST=O;
DO 1=1 TO NPG2;
GET FILE(GRAPH) LIST(II,J); G2(II,J)=1;
IF II ~= LAST
THEN DO; PUT SKIP EDIT(II) (F(2)); LAST=II; END;

PUT EDIT(J) (F(3));
END;
IF II ~= NG2 THEN PUT SKIP EDIT(NG2) (F(2));

END DGENGR;

DIST: PROCEDURE(M,N);/* */
/* THE PROCEDURE DIST IMPLEMENTS FLOYD'S ALGORITHM 7 FOR CON- */
/* STRUCTING A DISTANCE MATRIX. INITIALLY M IS THE SAME AS THE AD- */
/* JACENCY MATRIX OF A GRAPH, I.E., M(I,J)=1, IF THERE IS AN ARC A/
/* (I,J), OTHERWISE M(I,J)=N, EXCEPT M(I,I)=0. AT THE COMPLETION OF */
/* THE ALGORITHM, M(I,J) IS THE LENGTH OF THE SHORTEST PATH FROM I */
/* TO J. IF NONE EXISTS, THEN M(I,J)= MAXIMUM PATH LENGTH + 1. */
/* */
DECLARE S FIXED BIN(15),M(64,64) FIXED BIN(15), N FIXED BIN(15);
DECLARE L FIXED BIN(15) EXT;
DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));
DECLARE (TMDIST(25),TMDALG1(25),TMDRUF(25),NO_GRAPH_PRS)

FIXED BIN(31) EXT;

/* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 //* /
ITME- -1; CALL ASMTME(ITME);

/* *'
INF=N;

182

DO 1-1 TO N;
DO J»1 TO N;
IF I v J THEN IF M(I,J)=0 THEN M(I,J)=INF;
END;/* */

/* THE FOLLOWING CODE REPRESENTS FLOYD’S ALGORITHM 7 */
/* . */

L=0;
DO 1=1 TO N;
DO J=1 TO N;
IF M(J,I) < INF
THEN DO K=1 TO N;

IF M(I,K) < INF
THEN DO; S=M(J,I) + M(I,K);

IF S < M(J,K)
THEN DO; M(J,K)=S;

IF S > L THEN L=S;
END;

END;
END;

END;
END; •
L=L + 1;
DO 1=1 TO N;
M(I,I)=0;
DO J=1 TO N;
IF M(I,J)= INF THEN M(I,J)=L;
END;

END; ,/* */
/* END OF FLOYD’S ALGORITHM 7 *7/* *7

DO 1=1 TO N;
PUT SKIP EDIT((M(I,J) DO J=1 TO N)) ((64)F(2));
END;

/* *7
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE *7/* *7

ITME=1; CALL ASMTME(ITME);
TMDIST(NO_GRAPH_PRS)=Tî ID1ST(NO_GRAPH_PRS) + ITME;

END DIST;

DALG1: PROCEDURE;7* (/* THE PROCEDURE DALG1 IMPLEMENTS ALGORITHM 8. THE STATEMENT *7
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITHM 8. *7
/* THE PROCEDURE USES THE DISTANCE MATRICES CONSTRUCTED BY DIST *7
/* TO GENERATE THE ROW AND COLUMN CHARACTERISTIC MATRICES WHICH IN *f
/* TURN ARE USED TO GENERATE THE CHARACTERISTIC MATRICES. FROM */
/* THE CHARACTERISTIC MATRICES, THE INITIAL PARTITION IS CONSTRUCTED^/
/* AND STORED AT LEVEL 0 IN THE CLASS VECTORS Cl AND C2. THE */

183
/* VARIABLE AND ARRAY NAMES CORRESPOND TO THOSE USED BY ALGORITHM 8.*/
/* */
DECLARE(G1(G4,64),G2(64,64),L,NG1,NG2) FIXED BIN(15) EXT,

CLASS FIXED BIN(15),NO_ISO BIT(l) EXT,
(Kl,INDEX1(O:64,64),LIST1(0:64,64)) FIXED BIN(15) EXT,
(K2,INDEX2(0:64,64),LIST2(0:64,64)) FIXED BIN(15) EXT,
(Cl(0:64,64),C2(0:64,64)) FIXED BIN(15) EXT;

DECLARE (TÎDIST(25),TMDALG1(25),TMDRUF(25),NO_GRAPH_PRS)
FIXED BIN(31) EXT;

DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));/* */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO 0 *//* */

ITME= -1; CALL ASMTME(ITME) ;/* */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 8 *//* */
STEP1: DO J=1 TO NG1;

C1(O,J)=O; C2(0,J)=0; INDEX1(O,J)=O; LIST1(0,J)=0;
INDEX2(0,J)=0; LIST2(0,J)=0;
END;

NO_ISO=*O*B;
STEP2 3: BEGIN; ■
DECLARE (XRl(NGl,0:NGl),XR2(NG2,0:NG2),XCl(NGl,0:NGl),XC2(NG2,0:NG2

)) FIXED BIN(15);
XR1=O; XR2=0; XC1=O; XC2=0;
DO 1=1 TO NG1:
DO J=1 TO NG1;
XR1(I,G1(I,J))=XR1(I,G1(I,J)) + 1;
XR2(I,G2(I,J))=XR2(I,G2(I,J)) + 1;
XC1(I,G1(J,I))=XC1(I,G1(J,I)) + 1;
XC2(I,G2(J,I))=XC2(I,G2(J,I)) + 1; *

END;
END;

STEP4: CLASS=O; 11=0;
STEPS: CLASS=CLASS + 1;
STEP6: II =11 + 1;

DO K=II TO NG1;
IF Cl(0,K)=0
THEN GO TO STEP7_8;

END;
STEP6 1: ,/* - */

/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE */
/* */

ITME=1; CALL ASMTME(ITME);
TMDALGKNO GRAPH PRS)=ITME;/* - - */
RETURN;

STEP7_8: C1(O,K)=CLASS; Kl=l;
INDEXKO,CLASS)=K; LAST=K;
DO I=K + 1 TO NG1;
IF Cl(0,1) ~= 0 THEN GO TO NXT_1 ;

184
DO J=1 TO L;
IF XR1(I,J)=XR1(K,J) & XC1(I,J)=XC1(K,J)
THEN;
ELSE GO TO NXT_1;

END;
C1(O,I)=CLASS; Kl-Kl + 1;
LIST1(0,LAST)=1; LAST=I; .

NXT_1 : END;
K2=0;
DO 1=1 TO NG2;
IF C2(0,I) ^= 0 THEN GO TO NXT_2;
DO J=1 TO L;
IF XR2(I,J)=XR2(K,J) & XC2(I,J)=XC2(K,J)
THEN;
ELSE GO TO NXT_2 ;

END;
C2(0,I)=CLASS; K2=K2 + 1;
IF K2 ~= 1
THEN LIST2(0,LAST)=I;
ELSE INDEX2(0,CLASS)=1;
LAST=I;

NXT_2: END;
IF Kl ~= K2 THEN DO; NO_ISO=’1’B; GO TO STEP6_1; END;

STEP9: GO TO STEP5;
END;/*

/* END OF ALGORITHM 8/*
END DALG1;

//*/

GRADUATE SCHOOL
UNIVERSITY OF ALABAMA IN BIRMINGHAM

DISSERTATION APPROVAL FORM

Name of Candidate Virginia Charmane May ______________________

Major Subject Information Sciences_______ ___ ________________ _

Title of DissertationA New Algorithm, and the Evaluation of Current

Algorithms, Concerning Graph Isomorphism.___________________________

Dissertation Committee :

Chairman

Director of Graduate Program

Dean, UAB Graduate School

Date

	A New Algorithm, And The Evaluation Of Current Algorithms, Concerning Graph Isomorphism.
	Recommended Citation

	tmp.1715972404.pdf.Ql5He

