“ LI BRARI ES University of Alabama at Birmingham

UAB Digital Commons

The University of Alabama at Birmingham

All ETDs from UAB UAB Theses & Dissertations

1977

A New Algorithm, And The Evaluation Of Current Algorithms,
Concerning Graph Isomorphism.

Virginia Charmane Perry May
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation

May, Virginia Charmane Perry, "A New Algorithm, And The Evaluation Of Current Algorithms, Concerning
Graph Isomorphism." (1977). All ETDs from UAB. 4034.
https://digitalcommons.library.uab.edu/etd-collection/4034

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/4034?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

INFORMATION TO USERS

This material was produced from a microfilm copy-of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted. i

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “target’’ for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the acjjacent frame.

.When a map, drawing or chart, etc., was part of the material being

photographed the photographer followed a definite method in
“sectioning” the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until

complete.

. The majority of users indicate that the textual content is of greatest value,

however, a somewhat higher quality reproduction could be made from
“bhotographs” if essential to the understanding of the dissertation. Silver
prints of “photographs” may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

_PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

78-627

MAY, Virginia Charmane Perry, 1950-
A NEW ALGORITHM, AND THE EVALUATION
OF CURRENT ALGORITHMS, CONCERNING GRAPH
ISOMORPHISM,

The University of Alabama,
Ph.D,, 1977
Computer Science

University Microfilms International, Ann Arbor, Michigan 48106

A NEW ALGORITHM,
AND THE EVALUATION OF CURRENT ALGORITHMS,
CONCERNING GRAPH ISOMORPHISM

by

VIRGINIA CHARMANE PERRY MAY

A DISSERTATION

Submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in the Department

of Computer and Information Sciences in the Graduate School,
University of Alabama in Birmingham

BIRMINGHAM, ALABAMA
1977

ACKNOWLEDGEMENTS

I thank my research advisor Dr. C. C. Yang for his inspiration
and guidance in my research efforts. I acknowledge Dr. A.C.L. Barnard,
Chairman of the Department of Computer and Information Sciences, for
providing moral support and scientific advice during my graduate
studies. Also, I acknowledge help from the following people:

Ms. Susan Dean of the Computer and Information Sciences Department,

Mr. Wayne Satterwhite of the Biostatistics Department, and Mr. James E.
Allen of the Multiple Laboratory Computer Center. Finally, I thank
Ms. Joyce Perry for her perseverance in the typing of the rough draft
of this dissertation.

Financial assistance was provided by a half-time instructionship
in the Department of Computer and Information Sciences and by a

Graduate School Fellowship.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . « « o o « o o« o s o « s s s o o o & s o

LIST OF FIGURES . ¢ o « o o o o o o o o o o s = =« o o =

LIST OF TABLES . & « o o o o a s s o o o o o s o o o o s o =

LIST OF DEFINITIONS . ¢ ¢ o « o« o o o o o o « o o & s s o

CHAPTER

I.

IT1.

INTRODUCTION . &« & o o o o o o o s o = = = @

1.1
1.2
1.3
1.4

1.5

The Graph Isomorphism Problem « . .
Previous Mathematical Research

Previous Computer Science Research
Applications of Graph Isomorphism Algorithms

Summary of Original Research Reported in this
Dissertation . « « ¢ ¢ ¢ ¢ o o o o s e . e o

A NEW GRAPH ISOMORPHISM ALGORITHM BASED ON FINITE
AUTOMATA . . & v ¢ ¢ o o o o o o o o s s s o o o

2.1
2.2

2.3

2.4

2.5

2.6

Introduction . « « ¢ o o o ¢ ¢« + o s e e o -
Graph Representations from Finite Automata .

An Algorithm for Transforming a Graph into a
Moore Sequential Machine « ¢« « . « &

A Necessary and Sufficient Condition for Graph
Isomorphism . . . « « = & o o &+ ¢ ¢ = o o o .

Partitioning on the State Set of a Moore
Sequential Machine . . « ¢ ¢ « o ¢ ¢ o o o

The Graph Isomorphism Algorithm

iii

Page
ii
vi

viii

19

22

25
25

27

30

38

44
46

III.

Iv.

A REVIEW OF THE CURRENT BACKTRACKING GRAPH

ISOMORPHISM ALGORITHMS
3.1 Introduction . « « « o ¢ ¢ «
3.2 Berztiss' Backtracking Algorithm

3.3 Ullmann's Refinement/Backtrackin

g Algorithm .

3.4 Schmidt and Druffel’'s Backtracking Algorithm

EVALUATION PROCEDURE FOR DETERMINING
THE GRAPH ISOMORPHISM ALGORITHMS . .

4.1 Introduction . . « o « « o o
4.2 PL/I Implementations
4.3 Input Data .« « + « o + + « o =
4.4 Analysis Procedure
EXPERIMENTAL RESULTS AND CONCLUSIONS
5.1 New Algorithms « « « .
5.2 Berztiss' Algorithms . . . « .
5.3 Ullmann's Algorithms
5.4 Schmidt and Druffel's Algorithms
5.5 Comparison of the Algorithms .

5.6 Conclusions . « « « « ¢ « « « &

LIST OF REFERENCES « ¢ « « o o o o &« o ¢ o <« =

APP ENDICES » - L] - L] . - . . * L] L - L4 . . - L]

A.

RELEVANT DEFINITIONS AND NOTATIONS .
A.1 Graph Related Terms -
A.2 Special Types of Graphs

A.3 Algorithms + « « « « &

EFFICIENCY OF

Page

56
56
56
60

63

76
76
77
79
81
85
85
92
99
106
116
124
126
130
131

131

iv

A PL/I SOURCE LISTING OF THE RANDOM GRAPH GENERATING
PROCEDURE GRAPHS . o « =« « o o « o o o s o o o o o ¢

AN ASSEMBLY LANGUAGE LISTING OF THE TIMING PROCEDURE
ASMTME - L] . L) . - L] - - L L . L4 L] L4 . - - - . - - -

THE PL/I IMPLEMENTATION OF THE NEW GRAPH ISOMORPHISM
AI—'GORI TI-M L] . . . - . . L . L . * L - L] - - - . - -

BERZTISS' BACKTRACKING ALGORITHM AND PL/I
IMPLEMENTATION . & ¢ o o o o o o s s & o o o = s o =

E.1 Algorithms . . « « « « o o « « o o o o o o o o
E.2 PL/I Source Listing . . « « « ¢ « ¢ ¢ ¢ o « o &

ULLMANN'S REFINEMENT/BACKTRACKING ALGORITHM AND
PL/I IMPLEMENTATION . . . « « &« « o o o« o o o « « =

F.1 Algorithm 6 . . . « &+ & o o o o o o o ¢ ¢ o o =
F.2 PL/I Source Listing . . - « « « o « o« o « o o

SCHMIDT AND DRUFFEL'S BACKTRACKING ALGORITHM AND
PL/T IMPLEMENTATION« o o o o o o o o ¢ o o

G.1 Algorithms . « « o « = « o o ¢ o o o o = o =

G.2 PL/I Source Listing . . . + « + o o o o o o« o =

Page

138

143

145

155
155

158

165
165

167

173
173

176

Figure
1.2.2.1
1.3.1.1
2.1.1
2.3.1.1
2.6.1.1
2.6.1.2

5.1.1.1

5.1.1.2

5.1.1.3

5.2.1.1

5.2.1.2

5.2.1.3

5‘3.1‘1

5‘3.1.2

5.3.1.3

5.4.1.1

LIST OF FIGURES

Collatz and Sinogowitz Graphs « « « « « ¢ =«
Isomorphic Graphs . « « « « o « ¢« o o & v o o o o -
A Counter Example for Yang's Conditions -
Graph 7 ¢ o + o o o o o o o o o o o o 0w e e e
Graph 8 + o« « « o o v o o o o o s e s e e e e .o
Generation of all Closure Classes for {5,si'} . . .

Plot of New Graph Isomorphism Algorithm U31ng
Nonisomorphic Regular Graphs . . . « « » . . s e

Plot of New Graph Isomorphism Algorithm Using
Isomorphic Regular Graphs . . . « « « o o &« ¢ o o «

Plot of Graph Representation Algorithm (New) Using
Isomorphic Regular Graphs« « ¢ « « o ¢ ¢ « o

Plot of Berztiss' Isomorphism Algorithm Using
Nonisomorphic Regular Graphs . . . « « « « = « @

Plot of Berztiss' Isomorphism Algorithm Using
Isomorphic Regular Graphs . . . « . « « « ¢ o « &«

Plot of Graph Representation Algorithm (Berztiss)
Using Isomorphic Regular Graphs . . « « « « « o o &

Plot of Ullmann's Isomorphism Algorithm Using
Nonisomorphic Regular Graphs « « ¢ ¢ ¢ o «

Plot of Ullmann's Isomorphism Algorithm Using
Isomorphic Regular Graphs . . « « « ¢ ¢ « ¢ ¢« o o o

®

Plot of Graph Representation Algorithm (Ullmann)
Using Isomorphic Regular Graphs « « . . «

Plot of Schmidt and Druffel's Isomorphism
Algorithm Using Nonisomorphic Regular Graphs . . .

vi

Page

26
35
50

53

89

90

91

96

97

98

102

104

105

112

vii

Figure Page

5.4.1.2 Plot of Schmidt and Druffel's Isomorphism
Algorithm Using Isomorphic Regular Graphs - 114

5.4.1.3 Plot of Graph Representation Algorithm (Schmidt
and Druffel) Using Isomorphic Regular Graphs 115

5.5.1.1 Plot of Total Time for New Algorithms Using
Isomorphic Regular Graphs « « « « « o o = o o =« = 120

5.5.1.2 Plot of Total Time for Berztiss' Algorithms Using
Isomorphic Regular Graphs . . . « « « ¢ « o o & = = = 121

5.5.1.3 Plot of Total Time for Ullmann's Algorithms Using
Isomorphic Regular Graphs . « « « « « « o « « = « = = 122

5.5.1.4 Plot of Total Time for Schmidt and Druffel's
Algorithms Using Isomorphic Regular Graphs =« + « « 123

Table

1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.2.1
1.3.2.2
2.2.1

2.2.2

2.3.1.1
2.6.1.1

2.6.1.2

3.3.1
3.3.2
3.3.3
3.3.4
3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

LIST OF TABLES

Initial Partition Using Unger's Algorithm
Application of Unger's Adjacency Heuristic
Iteration of Unger's Adjacency Heuristic
Necessary Conditions Used for Heuristics
Adjacency Matrix for Graph 1 . + . . . «
Canonical Reordered Matrix for Graph 1 .
NDSM N and DSM D Corresponding to Graph 5
A MSM M Corresponding to D of Table 2.2.1
MSM M Corresponding to Graph 7

MSM M' Corresponding to Graph 8

.

Output-consistent Closure Classes for (s,s') €&
Sr x S; L] » L] . . L] L] L] L] . * L] L] L) - L] . . - .

Initial Matrix M for Graphs 7 and 8

Matrix M after Vertex Assignment 1-1'

Inconsistent Vertex Assignment for Graphs 7 and
Matrix M after Refinement of Vertex Assignment 1-6
Distance Matrices D and D' for Graphs 7 and 8

Row Characteristic and Column Characteristic

Matrices for Graph 7 . . « « « « « ¢ « &

Row Characteristic and Column Characteristic

Matrices for Graph 8 <« - - . &

.

Characteristic Matrices for Graph 7 and 8 . .

Class Vectors Generated by Vertex Assignment 1-1'

viii

-

Page

10
12
13
16
17
28
31
36

51

54
61
64
65
66

69

70

71
72

74

Table

4.4.1

5.1.1

5.1.2

5.2.1

5.2.2

5.3.1

5.3.2

5.4.1

5.4.2

5.4.3

5.4'4

5.4.5

5.5.1.1

5.5.1.2

Classification of the Algorithms Used by the Graph

Isomorphism Methods . « + « « ¢ ¢ ¢ « o « »

Performance of Implementation for New Algorithms
Using Regular Graphs « « « « ¢+ = =

Performance of New Graph Isomorphism Algorithm
Using Regular Graphs « « « « ¢ o & +

Performance of Implementation for Berztiss'
Algorithms Using Regular Graphs -

Performance of Berztiss' Graph Isomorphism
Algorithms Using Regular Graphs -

Performance of Implementation for Ullmann's
Algorithms Using Regular Graphs « . « .

Performance of Ullmann's Graph Isomorphism
Algorithm Using Regular Graphs

Performance of Implementation for Schmidt and
Druffel's Algorithms Using Regular Graphs . . .

Performance of Schmidt and Druffel's Graph
Isomorphism Algorithm Using Regular Graphs . .

Performance Results for Schmidt and Druffel's
Algorithms Using Strongly Regular Nonisomorphic
Graphs of Order 25 . . . « « + « o ¢ o ¢« = -

Performance Results for Schmidt and Druffel's
Algorithms Using Nonisomorphic Steiner Graphs
of Order 35 . ¢ ¢ & o ¢ o o o o o 2 s = .

Performance Results for Schmidt and Druffel's
Algorithms Using Nonisomorphic Latin Square
Graphs of Order 36 « « « « « « o = =«

Performance of Implementation of Four Methods
Based on Total Execution Times Using Isomorphic
Regular Graphs .« « « ¢ « + ¢ v o o o ¢ o = =+

Equations of Fit for Total Raw Execution Times
Summarized in Table 5.5.1.1 . . « . « &« &« « « =«

s

Page

82

86

87

93

94

100

101

107

108

109

110

111

118

119

ix

Term

Adjacency matrix . . . -
Adjacency vertices . . .
Algorithm =«
AYes o o o o o o o e . .
Automorphism . .
Backtracking algorithms
Bag .« ¢« = o o o o o 2 .
Chain . . « « « « =«
Characteristic matrix .

Circuit . « o« o o o «

Closed and output-consistent

Closure Class . « « « =«

LIST OF

Coefficient of determination . .

Column characteristic matrix . .

Complete graph
Component of a graph . .
Connected gravh

Degree o« « « « o o« o o o

Deterministic state machine . .

Directed graph -
Distance matrix

Edges . . « « « « » -

DEFINITIONS

. . . - - .

partition . . .

Page
132
131
135
131
133
136

29
133
67
32
44
45
137
67
132
132
133
133
27
131
67

133

Term

Effective algorithm ." R
Exponential algorithm + o « « c ¢ o o o o
Factorial algorithm . . . « « « o ¢ « o o o o o ¢

Genus of a graph

v
.
,
.
.
-
.
L]

Heuristic algorithm . « o + « « ¢« o ¢ o o o o = =
Incidence mMatriXx .+ « « o ¢ o o o o o o o o o o .
Indegree . « o o o o o o o+ s s e s e e s e s e e
Isomorphism between two graphs - . . -
Isomorphism between two Moore sequential machines
K—formula .« « + o « o o o s & o s o o s o s o =
k-regular graph . . « « o o « ¢ ¢ o o o = e o o -

Latin Square graph

Length of a path
LOOP + o o = o o & o o o o o o o o o & o o o
Moore Sequéntial machine . . « « « &« o o = & o »
Nondeterministic state machine . . « « « « « « &
Nontrivial partition .+ « « ¢ ¢ o ¢ o o = & o -
NP-complete . « « o o o = o« = o & o o o o o o -
Order of a graph . « « « « « o o o o o ¢ o o =
Order of an algorithm . . . « « « « o ¢ o o ¢ <« =
Origin .« o ¢ o ¢ ¢ o 4 e o e e e s e e e s e e
Outdegree . e e e e e e e e e e e e e e e e
Partition over the state set § . . . « + « « - =
Path o « o o o o o a o ¢ o o o o o s o s o & o o

Planar graph .« « « « « ¢ o o« « o o 0 s o o e oo

Page
135
136

136

136
133
131
133

43

58
133
134
132
132

27

27

45
137
131
135
132
132

44
132

133

xi

Term

Point symmetric graph . .
Polygom . « o« o « o o
Polynomial algorithm . .
Reachable « + « &
Row characteristic matrix
Simple graph
Steiner graph
Strongly connected graph
Strongly regular graph .
Subgraph . . . - -« + o =
Terminus .« . « « » « » =«
Trivial partition
Undirected graph

Vertices . « ¢ o o o o

Page
134
134
135
132

67
133
135
132
134
132
132

45
133

131

xidi

CHAPTER 1
INTRODUCTION

1.1 The Graph Isomorphism Problem

The graph isomorphism problem is to determine whether two
directed graphs are isomorphic, by finding an isomorphism if one
exists. More formally, it is the problem of determining whether an
isomorphism Y exists between two directed .graphs G = (V,A) and
G' = (V',A') where V and V' are the sets of vertices and £ CvxV
and A' © V' x V' are the incidence relations or sets of arcs. An
invertible (one-to-one and onto) mapping y: V » V' is an isomorphism
from G to G' (or between G and G') if and only if (iff) it preserves
graph incidences, i.e., for every arc (vi,vj)-e A, there is a
corresponding arc (Y(Vi),Y(Vj)) €& A' and vice versa.

The graph isomorphism problem can be solved theoretically by an

enumeration algorithm which lists all possible invertible mappings

and checks each mapping for incidence presérvation. However, for a
pair of isomorphic directed graphs, each having n vertices, there are
up to n! possibilities to be considered, and for a pair of non-
isomorphic directed graphs, each having n vertices, there are exactly
n! possibilities to be considered. As n becomes large, this type of
algorithm becomes totally impractical. Berztiss (1973) states that
even with today's fastest computers, the resolution of all iso-
morphisms between two directed graphs, each having 20 vertices, would
take 75,000 years. Thus, the development of more practical algorithms,

1

for solving the graph isomorphism problem, is important.

1.2 Previous Mathematical Research
Mathematicians have used two primary approaches for solving the
graph isomorphism problem based respectively on graph enumeration
theory and adjacency matrix properties. Because an undirected graph
is a special case of a directed graph, the term "graph'" is used to
refer to a directed graph unless otherwise stated. Note also that
each element in the incidence relation on the vertex set of an

undirected graph is called an edge rather than an arc.

1.2.1 Graph Enumeration

Some graph theorists tried to 1ink the graph isomorphism problem
with problems in graph enumeration. Using graph enumeration, the
graph isomorphism problem became part of the unsolved enumeration
problem with a given group, and was restated as the problem of
counting the number of mutually nonisomorphic graphs. All of these
problems from graph enumeration theory could be solved by deternining
the number of equivalence classes under the isomorphism relation.
Much of the graph enumeration research was based on the Combinational
Theorem due to Pélya (1937). Essentially, this theorem related the
equivalence relation to a group of permutations of finite objects. A
proof of Polya's Theorem, in a more general form than that presented
by Polya himself, was given by de Bruijn (1964). Harary (1960, 1964)
summarized his effort, and the contributions of others, in extending
and applying this theorem to various types of graphs.

What is often referred to as non-Pélya enumeration turned out to

be more applicable to the graph isomorphism problem, but only for the

special class of planar graphs. Specifically, Tutte (1962, 1963,
1964) and Brown (1963, 1966) developed an enumeration theory for
planar graphs by using the properties of these graphs to simplify

the theory of Pélya. This simplified theory was successfully used by
Weinberg (1966), Hopcroft and Tarjan (1972), and Hopcroft and Wong
(1974) in developing isomorphism algorithms for plamar graphs. of
these algorithms, the recent one developed by Hopcroit and Wong was
more efficient and guaranteed a solution in linear time. However, no

efficient algorithm was developed for non-planar graphs.

1.2.2 Adjacency Matrix Properties

Several theorists tried to find a necessary and sufficient con-
dition for graph isomorphism based on the properties of the adjacency
matrix of a graph. Harary (1962) conjectured that two graphs were
isomorphic if their adjacency matrices had the same eigenvalue spec-
trum. However, Hoffman (1963) and Fisher (1966) provided numerous
counter examples. Specifically, Fisher cited, as a counter example,
the two 8-vertex undirected graphs which were published by Collatz and
Sinogowitz (1957). Each of the Collatz and Sinogowitz graphs as shown
in Figure 1.2.2.1 had the same eigenvalues, (+ 2.3027756, + 1.3027756,
0,0,0,0), but the two graphs were not isomorphic. Turner (1967)
showed that the eigenvalue spectrum for the special case of an
adjacency matrix of a point symmetric graph with a prime number of
vertices characterized the graphs up to an isomorphism. Using this
result as a basis, Turner (1968) reported failure in finding a more
powerful matrix function for characterizing graphs up to an iso-

morphism. Since generalized matrix functions were difficult to com-

Undirected Graph 1

1' 6'
4? 5'

2'0- 07

3' 8"

Undirected Graph 2

Figure 1.2.2.1 Collatz and Sinogowitz Graphs

pute, and since they did not characterize a graph, Turner concluded
that it was impractical to use such functions in devising a graph

isomorphism algorithm.

1.2.3 Other Mathematical Approaches

Other researchers tried to determine mathematically whether an
efficient .gorithm existed for the graph isomorphism problem.
A. B. Lehman communicated a conjecture to Corneil (1968) that if a
graph was embedded on a surface whose genus did not exceed a fixed
integer, k, then there existed an efficient solution. The genus of a
surfaée is the largest number of simple closed curves which do not
disconnect the surface. Since no non-exponential algorithm was known
for calculating the genus of a graph, this conjecture was not useful as
a basis for an isomorphism algorithm. However, the importance of the
conjecture was its implication that no efficient solution to the
general graph isomorphism problem could exist. Karp (1972) showed
that a number of graph related problems for which there was no known
polynomial algorithm belonged to a class called nondeterministic
polynomial complete (NP-complete). If a polynomial algorithm existed
for any one of these problems, then a polynomial algorithm existed for
all problems in that class. However, Karp concluded that, while it
was known that the graph isomorphism problem was in the class NP
(computable in polynomial time by a one-tape nondeterministic Turing
machine), it was still not known whether the problem belonged to the

class of NP-complete.

1.3 Previous Computer Science Research

Because of the failure by mathematicians to find a necessary and

sufficient condition which could serve as a basis for an efficient
graph isomorphism algorithm, computer scientists tried to develop
effective, and perhaps efficient, graph isomorphism algoritﬁms needed
for applications (see Section 1.4). Most of the algorithms developed
were based 6n conditions necessary for graph isomorphism. These graph
isomorphism algorithms belonged to one of three general classes:

heuristic, coding, and backtracking.

1.3.1 Heuristic Algorithms

The most popular approach for solving the graph isomorphism used
heuristics as a basis. These heuristic algorithms exploited a number
of conditions necessary for graph isomorphism, in an effort to reduce
the number of possible invertible functions tested for isomorphism..
For example, the necessary condition that two isomorphic graphs must
have the same number of vertices and the same number of arcs or edges,
could be used in an algorithm to decide initially if an isomorphism
existed.

The graph isomorphism problem was so well suited for the use of
heuristics that Unger (1964) used the problem to illustrate heuristic
programming. Since his algorithm very clearly illustrated the

heuristic approach, it is described in detail below.

Unger first used the necessary condition for graph isomorphism that

if (Vi’Vﬁ) £V x V' is an element of an isomorphism, then the
indegrees (id) and outdegrees (od) of the vertices were equal, i.e.,
id(vi) = id(vg) and od(vi) = od(v&). This necessary condition was
used initially to partition the set of vertices of each graph. Both

of these partitions, in some cases, reduced the possible number of

invertible functions to be checked. As an example, let graphs G and

G' be graphs 3 and 4 of Figure 1.3.1.1 respectively. After applying
this necessary condition to G and G' and after assigning a unique

class to each subset of vertices each having the same indegree and
outdegree, the initial partitioning shown in Table 1.3.1.1 was obtained.

If for each unique class of G there was a corresponding unique
class of G', then an isomorphism y was defined. However, for the
current example, the initial partition while reducing the number of
possible vertex assignments to be checked did not completely determine
an isomorphism ¥y.

If the mapping y was an isomorphism from G to G', then as seen
from Table 1.3.1.1, v(3) = 5' and y(4) = 1'. The remaining images for
vertices 1, 2, and 5 could be determined either by checking the 3!
possibilities or by applying another heuristic in an effort to further
reduce the possibilities.

At this point, Unger used another heuristic based on the adjacency
relation. Let A; and Aé denote the sets of vertices adjacent to vy and
V3 respectively. If v; and v& had the same class assignment, then
y(vy) = vg belonged to an isomorphism only if the number of vertices
in each class in A; was equal to the number of vertices in the
corresponding class in A&. Unger used a weaker form of this condition,
in that he required only that the sum of the classes of vertices in Ay
must equal the sum of the classes of the vertices in A&. The results
of the application of this weaker condition to the initial partition
of Table 1.3.1.1 is shown in Table 1.3.1.2. For this example, the
heuristic reduced the number of possibilities to be checked from 3! to

2!, Thus, the remaining 2! possible images for vertices 1 and 5 could

5 2
4 3
Graph 3
1!
5' 2!
4! 3!
Graph 4

Figure 1.3.1.1 Isomorphic Graphs

TABLE 1.3.1.1

INITIAL PARTITION USING UNGER'S ALGORITHM

Graph 3 Graph 4
Vertex | id od Class Vertex id od Class
1 2 2 1 1’ 1 2 3
2 2 2 1 2! 2 2 1
3 3 2 2 3! 2 2 1
4 1 2 3 4! 2 2 1
5 2 2 1 5' 3 2 2

10

r O=T+T+T+E| (¥ €525 T) z 4 'S
¥ #=Z+T+T (,6°,€%.:2) 1 z L
1 L=T+T+THE| (S, %, 25 T) 1 z W€ v ydean
T L=Z+THT+E| (6, % (€, T) 1 z Wz
€ Y=7+T+1 (,S°.€%400) € z W1
1 L=€+T+T+T CA AR T z S
€ y=T+Z+T (c°¢°1) € z]
z 9=T+E+T+1 (S°%°2°1) C 4 € ¢ ydean
Y y=T+Z+1 (¢e‘1) T A [A
1 L=T+E+THT (§%°€°T) T z T
sseTn) MeN ung Lousoelpy | sseld PTO po X919 ydeis

OIISTYNAH AONHOVI AV S ,¥dONA 40 NOILVOITddV

¢'T°E°T €18Vl

11

either be checked or further reduced.

Since the heuristic succeeded, it was repeated and the results
are shown in Table 1.3.1.3. Since no further refinement was achieved,
the algorithm checked the remaining 2! possibilities by enumeration
and determined the isomorphism y = (1-3',2-4',3-5",4-1"',5-2").

In this example, two heuristics were used to reduce the 5! (120)
possibilities to 2! (2) possibilities. However, in some cases the
number of possibilities required further reduction through the use of
other heuristics. Unger called these extended heuristics and listed
in his paper several heuristics which could be used.

Other existing graph isomorphism heuristic algorithms, some of
which were applicable only to undirected graphs, were developed by
Salton and Sussenguth (1964), Sussenguth (1965), Steen (1969), Corneil
(1968), Knodel (1971), Morpurgo (1971), Saucier (1971), Sirovich (1971),
Levi (1974), and Yang (1975). Nearly all the algorithms obtained their
initial partitions based on the vertex degree heuristic. After ob-
taining the initial partition, each algorithm then used various
heuristics based on one or more necessary conditions for the iso-
morphism. A list of necessary conditions which was proposed by
Corneil (1968) and Druffel (1975) is shown in Table 1.3.1.4. in which
K(V) means the cardinality of the set V.

As illustrated by Unger, heuristic algorithms generated successive
partitions by applying necessary conditions which reflected the
relation of a vertex with its neighbors. For most pairs of graphs the
heuristics worked well. However, for many highly symmetric graphs all
the known heuristics failed to reduce the number of possibilities

because the heuristics could not distinguish between vertices with

12

[4 6=t+T+T+E| (4 ¥°,€°.2° 1) A z 'S
v y=C+T+1 (.6°.€5D) ¥ Z W
1 0T=z+7+T+€| (,G°* % 4T\ T) T z W€ ¥ ydein
1 0T=z+v+T+€| (, S % €5, T) T 4 WC
€ Y=g+T+1 (655D € A T
1 0T=E+7+h+T1 (e T 4 S
€ y=T+Z+1 (S°€°T) € A Y
z 6=T+E+v+1 (%M z r € ¢ ydeap
Y y=T++T (e Y I/ z
T OT=THE+T+Y (§v°€‘2) 1 z 1
SSBT) MaN ung fousoefpy | sseld PIO po X93XoA ydean

DIIST¥NIH AONAOVLAV S, YIONN J0 NOILVIALI

€°T'€'T 9T9VL

NECESSARY

TABLE 1.3.1.4

CONDITIONS USED FOR HEURISTICS

Property of the Graph

The Corresponding Necessary Condition

Vertices
Arcs

Degree

Components

Strongly Connected

Component Size

Complete Subgraph

Circuit Structure

Reachability

Relationships

Automorphism

F Relationships

R(V').

vy is an isomorphism only if K(V)

y is an isomorphism only if K(A) K(A'Y).
vy is an isomorphism only if indegree and out-
degree of a vertex v; € V is equal to those of

1
y(vy) £ V' for all i.

vy is an isomorphism only if the number of
components of two graphs are equal.

v is an isomorphism only if v; € V and
yY(v;) € V' belong to strongly connected
components of the same size.

vy is an isomorphism only if the number of com-
plete subgraphs of order k to which v; and
y(v;) belong is the same for all k.

y is an isomorphism only if the number of
circuits of length k to which vy and Y(vi)
belong is the same for all k.

Assume there are n paths of length k from

v! € V' to a vertex with properties
(Al,Az,...,Ai). Vertex vi € V and v} may be
mapped by y only if there exists a vertex
v € V with properties (A1,...,A) such that
there are exactly n paths of length k from
vij to v for all k.

vy is an isomorphism only if v; and y(vy)
belong to similar cells of the automorphism
partition.

v is an isomorphism only if the graphs induced
by the removal of v; and y(v;) have the same
number of arcs.

13

14
similar characteristics. If a heuristie partitioned the vertices into
h classes, and k(i) was the number of vertices in the ith class, then
the remaining possibilities were given by k() !-k(2)!-...-k(h)!. TIf
there was some class of graphs of n vertices for which the heuristic
was unable to generate refined partitions and h = 1, then k(h) = n,
and the number of possibilities was still n!. A strongly regular
graph was an example of a class of graphs for which existing heuristics
were not very effective. In this case some other type of procedure

which systematically assigned remaining vertices was required to make

the algorithm more practical.

1.3.2 Coding Algorithms

Although based on heuristics, coding algorithms represented a dif-
ferent approach, in that the backtracking technique was used to
construct a canonical code for the two graphs. Shah, Davida and
McCarthy (1974) developed a coding algorithm for undirected graphs.
This algorithm used the adjacency matrix of a graph to derive a canoni-
cal code for the graph. A code for a graph was defined as the binary
number formed by concatenation of successive rows of the upper
triangle of the adjacency matrix. A code was called "canonical" if the
rows and the corresponding columns of the adjacency matrix were
permuted such that the resulting binary number was maximal. Of course
in order to determine if a code was maximal, all permutations which
possibly could result in a larger binary number were checked. This
checking was performed by a backtracking algorithm.

For an example, the two nonisomorphic undirected graphs 1 and 2

of Figure 1.2.2.1 were used. From the adjacency matrix of graph 1 as

shown in Table 1.3.2.1, the canonical code was generated by first
interchanging labels of vertex 5 and vertex 1. This permutation
caused row one to contain ones in columns two through six. Since
vertex 6 had a degree greater than that of any other vertices adjacent
to vertex 5, it was renumbered as vertex 2. This reordering given by
(5-1,6-2,3-3,4~4,1-5,2-6,7-7,8-8) produced the canonical code F810001
(hexadecimal number) shown in the upper triangle of Table 1.3.2.2.

If the canonical codes for two graphs were equal then the mapping
specified by the reordering was an isomorphism. Using the reordering
given by (4'—1',5'—2',3'-3',1'-4',2'—5',6'—6',7'—7',8'—8') the
canonical code F038000 for graph 2 was produced. Thus, it was con-
cluded that graphs 1 and 2 were not isomorphic, a fact obvious from
visual inspection of Figure 1.2.2.1.

Proskurowski (1974), using the incidence matrix of a graph,
developed a similar coding scheme for undirected simple graphs ca;led
the maximal incidence matrix. Both of these coding algorithms were
based on a necessary and sufficient condition, i.e., two graphs were
isomorphic iff their canomical codes were equal. However, neither
algorithm was efficient for graphs with large numbers of vertices
(probably greater than 10), since the amount of backtracking necessary
to check possible maximal codes increased rapidly as the numbers of

vertices of the graphs increased.

1.3.3 Backtracking Algorithms
A third approach to solving the graph isomorphism problem was to
use some necessary conditions and a backtracking technique to select

possible vertex assignments to test for isomorphism. The backtracking

15

TABLE 1.3.2.1

ADJACENCY MATRIX FOR GRAPH 1

16

TABLE 1.3.2.2

CANONICAL REORDERED MATRIX FOR GRAPH 1

The canonical code is given by the binary
number

11111000000100000000000060001
or the hexadecimal number

F810001

18
approach represented an improvement over the heuristic approach be-
cause, if the heuristic part of the backtracking algorithm failed to
reduce the number of possible vertex assignments, then the back-
tracking technique insured a stepwise elimination of all inconsistent
vertex assignments. Backtracking algorithms for finding graphs iso-
morphisms were recently developed by Berztiss (1973), Ullmann (1976),

and Schmidt and Druffel (1976) (see Chapter III for detail reviews).

1.3.4 Performance of the Algorithms

Except in the case of Corneil, performance of each algorithm if
given, was based on experimental results using various classes of
graphs. Corneil, using a conjecture, stated that the upper bound of
his algorithm was of the order O(n5+k), 2 < k < n. However, it was
shown by a counter example of R. Mathon that the conjecture was not
true (Corneil, 1974).

All heuristic algorithms which completely solved the graph iso-
morphism problem had some type of permutation procedure to check the
remaining vertex assignments. Thus, reported estimates on the
efficiency of these algorithms were usually based on random graphs.
Furthermore, not all the authors reported the complexities of their
algorithms. Corneil, using only undirected graphs, claimed the orders:
O(ns) if the graph did not contain a k-strongly regular subgraph,
0(n4) for polygons, and O(nz) for random graphs. Sirovich stated that
his algorithm, which also was based on a conjecture, was of the order
O(ns) for most graphs. Levi claimed that his algorithm performed on
the order O(n6) for most undirected graphs tested. However, neither

Sirovich nor Levi described the classes of graphs used.

19

The orders of efficiency for the coding algorithms were not
reported. However, Proskurowski stated that his algorithm was
efficient only for undirected graphs with a small number of vertices
and edges.

For random nonisomorphic simple n/2 regular graphs, Berztiss
claimed a statistical order 0((2.15 x 10—5) exp(1.07n)). Ullmann gave
no order, but stated that his algorithm performed as well as, or
better than, that of Berztiss. Schmidt and Druffel claimed an order
O(nz) for non-regular random graphs, simple polygons and other special
graphs. Using strongly regular graphs of order 25 (Paulus, 1973)
Druffel gave an order 0(n3). He also conjectured that is was reason-
able to expect performance better than 0(n4) for most graphs since the
predicted dynamic bound never exceeded O(n5) for all graphs tested.

Other authors provided running times and storage estimates.
However, since all algorithms were executed on different computers and

using different languages, any direct comparison would be meaningless.

1.4 Applications of Graph Isomorphism Algorithms
Graph isomorphism algorithms were applied in such fields as
information retrieval, chemistry, circuit and network theory, and pat-
tern recognition. Most of the initial algorithms were by-products of
a particular application. As the graph isomorphism problem became
better known, the emphasis switched to the development of more

efficient algorithms for existing applicationms.

1.4.1 Information Retrieval
in automatic information retrieval, comparison between a descrip-

tion of the stored information and the requested information was one of

20
the principal tasks performed. Salton and Sussenguth (1964) suggested
that graph matching techniques could compare graphs representing
requests for information. They developed a topological structure-
matching procedure. This procedure matched the information graph and
query graph in parallel by identifying certain simple properties of
the vertices of the two graphs, and by equating those subsets of
vertices in the two graphs that exhibited similar properties. A
standard process was then used to break down matching subsets of
vertices into smaller and smaller sets, until a complete correspon-
dence was determined for all vertices of the two graphs. Salton
(1968) discussed topological and other types of structure-matching
procedures which could be used in an automatic document retrieval
system to identify matching phrases included in documents and search

requests.

1.4.2 Chemistry

There was probably no science in greater need of an automatic
information retrieval than chemistry. Many compounds were known, and
many new ones were produced daily. The chemist had two main problems:
first, he wanted to find out whether the substance in his test tube
was already known; second, given a substance, he wanted to know the
properties of similar substances. Both problems reduced to a
matching process between the given substance and the millions of
substances already known and cataloged.

Sussenguth (1964, 1965) described a method of cataloging chemical
compounds as undirected graphs. In his model, the atoms of a compound

corresponded to the vertices and the interatomic bonds corresponded to

21
the edges. Given a compound, a search was made to determine if its
graph was isomorphic to any graph or any subgraph in the library.
Further applications in this area were described by Tate (1967), and

Lynch et al. (1971). "

1.4.3 Network and Circuit Theory
In developing an algorithm for an efficient layout of micro—
electronic circuits, Weinberg (1966) devised an algorithm to find the
isomorphisms between two triply connected graphs. Cornog and Bryan
(1966) described a search method for tramnsistor patents which used the

Seshu and Reed model (1961) of an electrical network.

1.4.4 Pattern Recognition

In the automatic recognition of printed characters, techniques
had to be devised specifically for the recognition of characters
printed by hand. Handprinted characters were difficult to recognize,
because of the major differences that existed between a character
printed by one person and the same character printed by a different
person. Sherman (1960) suggested a technique for recognizing characters
based on a graph representation of the character. Sherman regarded the
limbs of the character as edges and the junctions and ends of the limbs
as vertices of a graph. He then explored the idea that if two graphs
of two characters were isomorphic, then the characters belonged to the
same recognition class. Barrow and Popplestone (1971) extended the
idea of using a graph to represent a character, by adding further rules
to assign attributes to each vertex or edge. They suggested that if
the graphs of the two characters were isomorphic, then the two

characters belonged to the same recognition class. Grimsdale et al.

22

(1959) provided another example of this type of technique, using dif-
ferent rules for comstructing a graph from a pattern. Ullmann (1973,
1976) further explored the idea of using a graph isomorphism algorithm
as the basis for a character-recognition technique. He noted that
determining whether two graphs were related by an isomorphism was very
similar to determining whether two patterns were related by a dis-
tortion which conserved spatial relationships within known limits.
Another pattern recognition problem was the detection of a re-
lationally described object embedded in a pattern. Barrow et al. (1972)
and Sakai et al. (1972) suggested subgraph isomorphism be used to solve
this problem. Sakai et al. developed a system to detect areas of over-
lap in aerial photographs taken sequentially, in order to combine the

many small pictures into one large picture of the area.

1.5 Summary of Origimal Research Reported in this Dissertation

A new graph isomorphism algorithmJis described. The algorithm is
based on a necessary and sufficient condition for the existence of an
isomorphism between two graphs. The condition is based on the
isomorphisms between the Moore sequential machines (MSM) corresponding
to the two graphs. Thus, in addition to the isomorphism algorithm, an
algorithm is given which transforms any graph to a MSM. Using a method
which partitions the union of the state sets of two MSM's into closed
output-consistent partitions, the isomorphism algorithm finds any iso-
morphism between two graphs by examining any isomorphism between their
MSM's. An analysis of theoretical and experimental bounds of both
algorithms is made. The result is that, while the algorithms are not

guaranteed to run in polynomial time, they do perform efficiently for

23

a large class of regular graphs.

In order to gain some insight into actual computing performance
of the current graph isomorphism algorithms, an experimental evaluation
and comparison of the new isomorphism algorithm and three other recent
algorithms is presented. First, the three recent algorithms by
Berztiss, Ullmann, and Schmidt and Druffel are reviewed. The computer
implementation of the four algorithms and experiments which consist of
several classes of graphs are described. Using the experimental
results, the four methods are compared using performance criteria based
on the execution time performance of their PL/I implementations and the
performance of their algorithms measured by thé number of vertex
assignments required to process a pair of graphs. The evaluation and
comparison leads to the conclusion that in the general case Schmidt
and Druffel's algorithm is superior to the other three algorithms.
However, when regular graphs are used, the proposed new graph iso-
morphism algorithm is superior to the isomorphism algorithm by Schmidt
and Druffel.

Chapter II presents the new graph isomorphism algorithm. Chapter
III reviews the other current graph isomorphism algorithms, i.e., the
three backtracking algorithms by Berztiss, Ullmann, and Schmidt and
Druffel. Chapter IV deals with the evaluation procedure used in com-
paring the graph isomorphism algorithms of Chapters II and III. Chapter
V presents the experimental results and conclusions obtained from the
evaluation of these four algorithms. Appendix A lists all relevant
definitions and notations which are used but not defined in this
dissertation. Appendices B-G contain the listings of the programs and

-
algorithms which are used in the experimental evaluation of the four

graph isomorphism algorithms.

24

CHAPTER II

A NEW GRAPH ISOMORPHISM ALGORITHM BASED ON
FINITE AUTOMATA
2.1 Introduction
In a recently published article, Yang (1975) introduced a new

method for determining the isomorphisms between two graphs based on
the isomorphisms between their corresponding Moore sequential machines
(MSM). Isomorphisms between two MSM's were determined by partitioning
all states of both MSM's to satisfy the conditions of Corollary 1 which
is restated below as Theorem 2.1.1 in which I and I' are the input
alphabets of the MSM's, S and S' are the state sets of the MSM's, and
¢ is the empty set.

Theorem 2.1.1. Let K(I) =K(I') =1 and S S' = ¢. There is an

isomorphism between M and M' iff there is a nontrivial closed and
output-consistent partition over S U s' such that each element of the
partition contains exactly two states: one belonging to S and the
other belonging to S'.

However, a partition which induced an isomorphism between two
MSM's could fail to induce an isomorphism between the represented
graphs as evidenced by P21 and Yoy ©OF P22 and Yoo in Illustration 6
of Yang's paper. This counter example is shown in Figure 2.1.1.

Thus, as is proved in Section 2.5, an isomorphism between two MSM's
provided only a necessary condition for graph isomorphism. This proof
corrected Yang's initial results and led to a new method based on

25

5 1 2!
4 2 5! 3’
3 4
Graph 5 Graph 6

Two nontrivial closed and output-consistent partitions of MSM's
representing Graphs 5 and 6

P,y = {1-4',2-3",3-1",4-5",5-2",6-7",7-8",8-6',9-9",10-10",11-11",
12-12'}

P {1-2',2-5',3-1",4-3",5-4",6-7',7-9',8-6',9-8',10-10",11-11",

22 12-12'}

The corresponding induced isomorphisms between Graphs 5 and 6

Yoy = {1-4',2-3",3-1",4-5",5-2"}

Y22 = {1—2' ,2-5' ,3"1' ,4—3' ,5—4'}

Figure 2.1.1 A Counter Example for Yang's Conditions

26

27
finite automata for solving the graph isomorphism problem. The new

method is developed in this Chapter.

2.2 Graph Representations from Finite Automata

A finite automaton without outputs known as a nondeterministic

state machine (NDSM) is a triplet N = (V,I,F), where the state set \Y

and the input alphabet I are finite nonempty sets, and the next state
function F is mapping from V x I into 2V, the power set of V. A

deterministic state machine (DSM) is a triplet D = (S,I,H), where the

state sets S & 2V and the input alphabet I are finite nonempty sets,
and the next state function H is mapping from S x I into S. It is
noted that H(¢,i) = ¢, where i & L.

A finite automaton known as a Moore sequential machine (MSM) is a

quintuple M = (¢,1,0,H,J), where S, I and H were previously defined,
the output alphabet 0 is a finite nonempty set, and the output function
J is mapping from S onto O.
Any graph G can be represented by a NDSM N = (V,I,F) with V, its
set of states, being the same as the set V of vertices of G = (V,A);
I={i} (2.2.1)
being its input alphabet containing the single input i and
F: V x I » 2Y such that
F(a,i) = {b | (a,b) € A} (2.2.2)
being its next state function. It is noted that if for some a & V
there is no arc (a,b) & A for all b & V, then F(a,i) = ¢. Using (2.2.1)
and (2.2.2), the NDSM N of graph 5 of Figure 2.1.1 is constructed and is

shown in Table 2.2.1.

TABLE 2.2.1

NDSM N AND DSM D CORRESPONDING TO GRAPH 5

NDSM N
State a Next State F(a,i)
1 {2,4}
2 {1,3}
3 {1,5}
4 {3,5}
5 {2,4}
DSM D
State s Next State H(s,i)
{1} {2,4}
{2} {1,3}
{3} {1,5}
{4} {3,5}
{51} {2,4}
{2,4} {1,3,5}
{1,3} {1,2,4,5}
{1,5} {2,4}
{3,5!} {1,2,4,5}
{1,3,5} {1,2,4,5}
{1,2,4,5} {1,2,3,4,5}
{1,2,3,4,5} {1,2,3,4,5}

29
In order to describe the DSM corresponding to N, F is extended as

F: V x T* > 2V such that

F(a,\) = {a} for all a €V (2.2.3)
and
F(a,wi) = U F(v,i) for every (a,w) €V x I* (2.2.4)
v & F(a,w)

where I* is the free monoid generated by i and has the identity A.
The DSM corresponding to N (or G) is D = (S,I,H) with

S=1{s | s = F(a,w) for each (a,w) &£V x I*} (2.2.5)
being its set of states; and H: S x I > S such that

H(s,i) = U F(a,i) for each s €S8 (2.2.6)

ats

being its next state function. Using (2.2.5) and (2.2.6) the DSM D of
Table 2.2.1 corresponding to N of Table 2.2.1 (or graph 5) is con~-
structed. The first five rows of D represent, as sets, the states of
N (or vertices of graph 5).

A MSM corresponding to D (or N, or G) is M = (s,1,0,H,J) with O
being its output alphabet, whose elements are bags called outputs, and
J: S > 0 being its output function. It is noted that a bag is an
ordered set whose elements are not necessarily distinct. A bag is
enclosed by a pair of square brackets. Before defining 0 and J, it is
noted that a graph G has, within an isomorphism, a unique DSM. However,
a graph G has more than one MSM because both 0 and J can be defined
differently for a given DSM.

In general, the output function should define outputs which can
reflect information about the graph structure. There are a number of

output functions which reflect different properties of the graph

30
structure. The outdegree of each vertex of the graph G is reflected
by
J(s) = [R(H(s,1i))] for each s € S. (2.2.7)
The indegree of each vertex of the graph G is reflected when the
output of each state s & S of the DSM is defined by
J(s) = [R([H(t,i) | s € H(t,1)])] for each t €8 (2.2.8)
This definition is defined to consider only distinct next states by
J(s) = [R{H(t,w) | s & H(t,w),(t,w) €8 x (I* - {(AHhhl (2.2.9
The output of each state also may reflect the output of each element of
that state. For instance, the indegree of each state could be defined
as the union of the indegrees of each of its elements by
3(s) = U [R([H(E,w) | {a} € H(t,w), (t,w) €8 x (I* - {AHD]
a€ts (2.2.10)
Finally J is defined to reflect all circuits of length two which
originate from each vertex of G by
Js) = U [kt | t €n({al,i) A a & H({t},D}]. (2.2.11)
a€s
The MSM of Table 2.2.2 corresponding to D (or N) of Table 2.2.1
is constructed by using equations (2.2.7) through (2.2.11) to define
the output for each state of D. 1In practice, only the outputs which
reflect the most graph structure are used. 1In this example, output
definition (2.2.9) can be chosen.
2.3 An Algorifhm for Transforming a Graph into
a Moore Sequential Machine
The process defined by (2.2.5) through (2.2.11), of transforming a
graph into a unique DSM or MSM, is described by Algorithm 1. Algorithm

1, which is presented below, first transforms a graph G into a unique

31

[tt11%] | [8°8°8°8°¢] (1] [z] [<] {séve‘e T} | {sv €T T}

[1et1°1] [8¢8°8°8] [z] [5] [s] {S9°g T T} (G921}

[1¢1°0] [8¢8‘c] L[] L] [+] (A AA N {s“e°1}

[1¢0] N [€] [v] (%] {s‘v e 1} {s°¢}

[1¢1] [8°s] [v] [] [Z] {7*¢} {$°1}

[1¢] [8¢c] [€] [v] [¥v] {s*v‘e 1} {e“1}

[1°1] [gg] [€] [8] [€] {set} {7z}

[1] Le] [<] [s] [2] {2} {s}

[1] [s] [€] [s] [] {s¢} {%}

[o] [<] [+] [<] (2] {s°1} {€}

[1] [e] [€] [s] [z] {e°1} {2}

[1] [s] [<] (8] [z] {vcl {1}
(1I1°2°2) (01°2°2) - vaWMMMVAme u%mwmmuv (L'2°2) muM%wmmez ouMum

T°¢°¢ 419VL 40 d OL ONIANO4SIYY0D W WSKH V

[AEANARCY LA

32

DSM by (2.2.5) and (2.2.6). Next, the MSM is constructed by defining
0 and J for each state of the DSM. For each s £ 8, J(s) is defined to
be the bag of the outputs which are defined by (2.2.9) and (2.2.11).
It is noted that any combination of the equations defining J(s) can be
used. First, Algorithm 1 is presented and illustrated by an example.

Then, the computational complexity of the algorithm is discussed.

2.3.1 Algorithm 1
Algorithm 1 transforms a graph G into a MSM M. The graph G is

represented by the adjacency matrix GA, and the MSM M is represented
by the arrays H and J. The variables ns and h represent respectively
the current number of states and the current number of next states
implied by or contained in the constructed array H. K(V) is the
cardinality of the set of vertices V of graph G. The variable si is
the index for the states of the MSM. The variable KG contains the
number of states which are elements of the next state of the state
indexed by si. The arrays J9 and J11 contain the outputs of each
state as defined by (2.2.9) and (2.2.11) respectively.
Step 1. (Initialize variables.)

ns < 0, h « K(V).
Step 2. (If all next states are states of the constructed DSM, then

proceed to construct the MSM by defining outputs.)

If ns = h then go to Step 12.
Step 3. (Otherwise, determine next states of all states in the con-

structed DSM by using array H to contain all next states.)

si <« ns +1, ns « h.

Step 4. If si > ns then go to Step 2.

Step

Step

Step

Step

Step

Step

Step

Step

10'

11.

12.

33

1f K6 « R({3 | GA; ;

then go to Step 10.

=1,1<3 <KWMD < 2

(Check if next state is a state of DSM.)

If there exists a j such that GA i = GA.j % for 1 < j < si-1
3

then Hsi « Hj, go to Step 1l.

(GA

s, * represents row si of matrix GA).

h+«h+ 1.

For 1 < k < K(V), if GAgy j = 1 then GAp & = Gy V GAy -
(V is the OR operation).

HSi < h, go to Step 1l.

(At this point, matrix GA has been expanded to include all
next states for each state in S indexed by si.)

IfKG=1

then Hsi < j such that GAg =1

i,3
else Hgy < -1 (where -1 represents the empty set ¢).

si ~ si + 1, go to Step 4.

(At this point, the DSM has been defined by H. By defining
the outputs of DSM, the MSM is constructed. The array J

contains the bag of outputs J9 as defined by (2.2.9) and J11

as defined by (2.2.11) for each state in the DSM indexed by

si.)
For 1 < si < K(V)

J9,; « [K({H; | 6o, .; = 1,1 <3 <nshl.

Js8
For K(V)+1 < si < ns

3955 « [R(Hy | GAp » = GAj & N GAg *

.
Sl

where H, = si for the least k and 1< j < nsH].

(A is the AND operatiom).

34
Step 13. For 1 < si < K(V)
g1 « [R5 | Chgy 5 =1 NGhs g9 =1, 123 < R(WMHI.
For K(V)+1 < si < ns
Jiig; < [y | Ghy 5 =1
where H; = si for the least k and 1 < j i.K(V)].

Step 14. For 1 < si < K(V)

J g * [J9

. Jllsi].

si?
Step 15. Stop.

For demonstrating Algorithm 1, graph 7 in Figure 2.3.1.1 is used.
The first six iterations of Steps 4-11 produce the NDSM equivalent to
graph 7. The next state of each state {v}, such that v € V, is the
union of all states {t}, such that (v,t) € A. For instance, the next
state of state {1} is {2,5,6}, since (1,2), (1,5), and (1,6) are all
arcs of graph 7. Since the next states which are generated in the
first six iterations are not states of DSM, i.e., the closure-cdhdi—
tion of Step 2 is not satisfied, five more iterations of Steps 4-11
are performed. For each of these states, the next state is obtained
by taking the union in Step 8 of the éet of next states of its elements.
For example, for state {2,5,6}, the next state {1,2,3,4,5} is obtained
by {1,3,4} U {3,4,5}. These five iterations produce four next states
which are not states of DSM, and thus, four more iterations of Steps
4-11 are performed. After these iterations, the closure condition of
Step 2 is satisfied, and the DSM equivalent to graph 7 is obtained.
Columns two and three of Table 2.3.1.1 represent the DSM.

The rightmost column of Table 2.3.1.1 represents, for each state,

the outputs J(s) which are defined by Steps 12-14. For example, in

Step 12, the first output [6] of state {1} is obtained by counting the

Figure 2.3.1.1 Graph 7

35

36

[[eeeeze tn]*[1]] {9 ve‘z 1) {9°c vez 1} T
[[zeczsret]“[2]] {96y g1} {9y g T} YT
[[zeze T]“[2]] ICH A AN S} {9°sp 2 1} €1
[[z¢ce 1 1] “[2]] {9°c v ez 1} {svez 1} Al

[[zéTet]*[*#]] {o‘g v gz 1} {sv°¢c} 11
[[zézc1]°[€]] {9¢c v ez 1} {ecze1} ot
[[z¢z e][€]] {9°c v e 2} {9°%°1} 6
[[zeec1][e]] {9°¢ % T 1} {v°e1} 8
[[zez 1]°[¥]] {¢%"c‘z°1} {9°¢°z} L
[[z]°[s]] {cv°e) {9} 9
[ft1°[e]] {€°7°T} {s} S
[[z1°[c]] {9°6°7} {7} 7
[lr]“[o1] {9¢9°1} {€} €
[fz1°[e]] {r¢e1} {z} (
REAM RN {9°¢°z} {1} T
(s)r andang (1°s)H °3®3g IXaN S 93®1§ TS Xapuj

L HaVid OL ONIANOdSTIE0D W WSKH

T°1°€°¢ 414Vl

37
number of distinct next states which contain the element 1. In Step
13, the output [2] of state {1} is obtained by counting the 1's in the
next state of each element contained in the next state of {1}. Since
the next state of {1} is {2,5,6}, the 1's of the next states of {2},
{5} and {6} are counted, and a value of 2 is obtained. By defining in
Steps 12-14 the outputs for each state of the DSM, the MSM is obtained.
Tor ease of implementation, an index is used for each state of the MSM

and is shown in column 1.

2.3.2 The Computational Complexity of Algorithm 1
The theoretical computational complexity of Algorithm 1 is dif-
ficult to analyze, since for the DSM or a MSM, the state set S - 2V.
However, based on the definitions of the state set S and the next
state function H given respectively by (2.2.5) and (2.2.6), it is
conjectured that Algorithm 1 requires less than 2" states to represent

a graph of n vertices as a MSM.

n
Conjecture 2.3.2.1. Algorithm 1 requires at most 1+ Z(min(n,nci))
i=1

states to represent a graph of n vertices as a MSM.

It is obvious that the minimum number of states, which is required
to represent a graph as a MSM, is n. The minimum number is achieved
when for all a €V, H{a},i) = {b}, where b & V or H({a},i) = ¢.

Using Conjecture 2.3.2.1, the upper bound of Algorithm 1 is
derived.

Theorem 2.3.2.1. Algorithm 1 transforms a graph of n vertices into a

DSM or MSM in less than time 0(n4).
Proof. The upper bound of Algorithm 1 is determined by its innermost

loop which is given by Step 8. 1In Step 8, for each distinct next

38

state, up to nZ "OR" operations can be required. By Conjecture 2.3.2.1,
n
there are at most 1 + Z (min(n,nci)) next states. Since
n i=1

1+2Z (min(n,nCi))<n2. Thus, the upper bound of Step 8 is

i=1 n
1+ 2% (min (n Y)) - n2 < n2 . n2 = n4.
i=1

This implies a bound less than 0(n%). Q.E.D.

-

’nCi

The lower bound of Algorithm 1 occurs when the number of states of
the MSM is the minimum n. In this case, Step 5 determines the
algorithm's bound. Since Step 5 takes n comparisons to determine the
number of elements in the next states of the n states, it is bound by

n2, Thus, the lower bound is O(nz).

2.4 A Necessary and Sufficient Condition
for Graph Isomorphism

As previously stated, the graph isomorphism problem is to deter-
mine any isomorphism which exists between two graphs G = (V,A) and
G' = (V',A"'). Using the equations of Section 2.2, a graph G can be
represented as the NDSM N, the DSM D, and a MSM M. Analogously, the
graph G' can be represented by the NDSM N', the DSM D', and a MSM M'
with primed symbols used in the definitions except for (2.2.1) and the
outputs in 0'.

Since any graph can be alternatively represented by a NDSM which
is unique within an isomorphism, it is concluded that an isomorphism
exists between two graphs iff an isomorphism exists between their
NDSM's. This result is stated as the following theorem.

Theorem 2.4.1. An isomorphism y between two given graphs G and G'

exists iff there is an isomorphism between their corresponding NDSM's

N and N'.

Proof. Since the NDSM representing a graph is unique within an iso-
morphism, it is not necessary to use two different symbols for
differentiating an isomorphism between two graphs and that between
their corresponding NDSM's.
Let y: V > V' be an invertible function. The theorem is proved
by showing that y preserves state transitions in N and N', i.e.,
{y() | b € F(a,1)} = F'(y(a),1), (2.4.1)
iff vy preserves graph incidences in G and G', i.e.,
(a,b) € A iff (y(a),y(b)) € A'. (2.4.2)
Suppose that Yy preserves state transitions as defined by (2.4.1).
Note that the left-hand side of (2.4.1) cannot be denoted by y(F(a,i))
since F(a,i) is a subset of V rather than an element of V. However,
for a later convenience, y can be extended so that
v(F(a,i)) = {y(®) | b & F(a,i)} (2.4.3)
Then by means of (2.2.2), y being invertible, (2.4.1), (2.4.3) and
(2.2.2) again, for any arc (a,b) € A
(a,b) € A iff b & F(a,i)
iff v(b) € v(F(a,1i))
iff y(b) € F'(y(a),1)
iff (y(a),y(b)) € A’
Thus, Yy satisfies (2.4.2).
On the other hand suppose that y satisfies (2.4.2). Then by
means of (2.2.2), (2.4.2), and (2.2.2) again,
{y(®) | (a,b) & A}
{y(®) | (v(@,y(®)) & A"}

F'(y(a),1)

{y(®) | b & Fa,i)}

Thus, Yy satisfies (2.4.1). Q.E.D.

Since a NDSM is generally not closed, the corresponding DSM,
which is closed and unique within an isomorphism, is constructed.
However, as will be stated in the following theorem, it cannot be
concluded that an isomorphism between two DSM's determines an iso-
morphism between the corresponding NDSM's.

Theorem 2.4.2. 1If there is an isomorphism y between the NDSM's N and

N' corresponding to the given graphs G and G', then there exists an
isomorphism B between the DSM's D and D'. The converse may not be
true.

Before proving Theorem 2.4.2, it is noted that if X is a finite

set, then X, denotes a subset of X. TFor proving Theorem 2.4.2., the

NDSM D.. (8¢>I,H,) is defined from D with

Sy = {{v} | v €V} (2.4.4)
and H.: S, x I > S such that

H.({v},i) = F(v,i) for all {vl & s.. (2.4.5)
By (2.2.5), (2.2.3) and 2.4.4), S, is a subset of S and by (2.2.1),
(2.2.2), (2.4.4) and (2.4.5), D, and N are isomorphic. Similarly,
D; = (S;,I,H;), from D', is defined to establish an isomorphism
between Dl and N'. Then, for every function y: V > V', the function
Bp: S, ~ S. is defined such that 8, ({v}) = {y(v)} for all v €v.
Thus, Y is an isomorphism from G to G' (or from N to N') iff B, is an
isomorphism from D, to D;. Consequently, Theorem 2.4.2 is easily
proved based on Br rather than y because it is easier to extend B,.
The proof is now given.

Proof. The function B,.: S, S; is extended in such a way that

B:S » S' satisfying

40

41

B(s) = U B.({v}) for all s €s (2.4.6)
v €s
Suppose that Br is an isomorphism from D, to D;. Then Br is
invertible and preserves state transitions in Dy and Dé, i.e.,
U 8, ({u}) = H;(Br({v}),i) for all {v} & S_ (2.4.7)
u € H, ({v},1)
where the union on the left-hand side is equal to B(H,({v},1)).
To show that B is one-to-one, let sy and s, be any states in §
satisfying B(sy) = B(sz). Then (2.4.6) implies that
Us, du,b) = U B (gD
vy €59 vy € sy
Since B, is ome-to-omne, it must be true that sy = sj,.
To show that B is onto, H_ is extended in such a way that

Hy: S, x I* > S such that H.({v},}) = {v}, and H.({v},wi) = F(v,wi).

r
Similarly, H% is extended. Then, let Hé({v'},w) for some ({v'},w) €

S; x (I* — {1}) be a state in §' - S;. Since B, is onto, there exists

-

at least one state {ul}l in Sy such that Br({u}) = {v'}. Thus,
H ({v'},w) = B(H ({u},).

To show that B preserves state transitions, for any s g s,
B(U F(a,i))
at€s

B(H(s,1))

U g (a,i))
a€&s

U g(H,({a},1))
a$s

a'e S

42

H'(U B.({aD),i)
at&s

H' (B(s),1)
The above equalities are established by applying (2.2.6), B being
invertible, (2.4.5), (2.4.7), B being invertible again, and (2.4.6).
Thus, B defines an isomorphism from D to D'.

On the other hand to show that the converse may not be true,
suppose B is an isomorphism from D to D' and B, is its restriction

from D_ onto D;. If B8(s) # U B({u}) for some next state

uts
s = H({v},i), then
U B({u}) # B'(BUAV]H,1) (2.4.8)
u € H({v},1)
although
B(H({v},1)) = H'(B({v}),1) (2.4.9)

Comparing (2.4.8) with (2.4.7), it is clear that the restriction B,
does not preserve all state transitions in D, and D;. Thus, the
converse of Theorem 2.4.2 may not be true. Q.E.D.

As a direct consequence of Theorems 2.4.1 and 2.4.2, the following
corollary is obtained.

Corollary 2.4.1. If there is an isomorphism y between two given

graphs G and G', then there exists an isomorphism y between their
corresponding DSM's D and D'.

This corollary provides only a necessary condition for two graphs
being isomorphic. By adding an additional requirement, a necessary and
sufficient condition for the existence of an isomorphism between two

graphs can be stated as the following corollary.

43

Corollary 2.4.2. An isomorphism y between two given graphs G and G'

exists iff there is an isomorphism B between their corresponding DSM's
D and D' and

H'(B({vh,1)) = U B{ub) (2.4.10)

u € H({v},1)

for all states {v}in S,.
Proof. TFor proving Corollary 2.4.2, it needs only to show that if B8 is
an isomorphism between the DSM's D and D', and (2.4.10) is satisfied,
then the restriction B, of B is an isomorphism between NDSM D, and Dé.
Suppose that B is an isomorphism between the DSM's D and D'. _Then the
restriction B, of B is obwiously invertible and B(Hr({v},i)) =
Hé(Br({v}),i) for all states in S, as easily seen from (2.4.9). 1If
(2.4.10) is also satisfied for all {v} in Sp, then (2.4.7) holds for
all {v} in S.. Then B, preserves all state transitions in NDSM's D,
and Dj. Q.E.D.

Definition 2.4.1. A function a: S - S' is called an isomorphism from

M to M' if o is invertible and preserves state transitioms and outputs,
i.e., for all {v} in S,

a(@{v},1)) = B' (¢({v}),1)
and

JH{Ev,1) = 3@ (c({v]),1)). (2.4.11)

Since every isomorphism between two MSM's must not only preserve

state transitions but also outputs as defined in (2.4.11), it is
obvious that this additional requirement implies that the set of all
isomorphisms between two MSM's M and M' constructed from DSM's D and D'
is a subset of that between D and D'. Thus, the following corollary

which is a consequence of Corollary 2.4.3 is stated without proof.

44

Corollary 2.4.3. An isomorphism y between two given graphs G and G'

exists iff there is an isomorphism o between their corresponding
MSM's M and M', and
H' (c{v}),i) = U a({ul}) (2.4.12)
u € H{v},1)
for all {v} in S..

Thus, either Corollary 2.4.2 or 2.4.3 can be used as a necessary
and sufficient condition for graph isomorphism. The advantage of using
Corollary 2.4.3 instead of Corollary 2.4.2 occurs when the number of
isomorphisms between M and M' is fewer thamn those between D and D'.
However, the disadvantage of using Corollary 2.4.3 is the additional
requirements of defining outputs and of checking condition (2.4.11).
These and other considerations are discussed in Sections 2.5 and 2.6.

In order to determine any isomorphism y between two graphs, all
isomorphisms o between the two corresponding MSM's must first be found.
Thus, before presenting the graph isomorphism algorithm, a discussion
of the partitioning method which is used to determine all isomorphisms
between two MSM's is presented.

2.5 Partitioning on the State Set of a
Moore Sequential Machine

Definition 2.5.1. A partition P over the state set S of a MSM M is a

set of pairwise, disjoint sets called blocks such that the union of all
blocks B is S.

Definition 2.5.2. A partition P is called closed and output-consistent

if H(B;,i) € By and K(J(B))) = 1,

for each (Bj,i) € P x I and some B & P, where

45
H(Bj,i) = U {H(s,1i)} and J(Bj) = U {J(s)}.
S'G'Bj SG‘Bj

Definition 2.5.3. A partition P is called trivial if K(P) = K(S) or

K(P) = 1; otherwise, it is called nontrivial.

Yang (1975) determined all isomorphisms between two MSM's by
using a modified version of his earlier method (Yang, 1974) in which
all closed partitions over the state set of a sequential machine were
generated. The modified method first constructed a MSM M¥* =
(s Us',1,8%,0 U 0',J*%) where

H(s*,i) if s* & S
H*(s*,1)

H' (s*,i) if s* € §'
and

J(s*) if s* € S
J* (S*)

J'(s*) if s* € S'.
Next, all nontrivial closed and output-consistent partitions were
generated by taking the union of the closure classes of the subsets
{s,s'} for each (s,s') €S x S".

Definition 2.5.4. The closure class of a subset {s,s'} is the set

containing 1) {s,s’}, 2) all sets {sk,si} = H({s,s'},1i) such that
{sk,sé} d;.{s,s'}, and 3) all distinct sets {sr,s;} = H({s,s'},w) such
that {sr,s;} Q; {s,s'} and {s,,s.} 4;{sk,s£} for all w.

TIf the union of the closure classes were closed, then the union
defined a partition and consequently, defined an isomorphism o between
the MSM's M and M'.

Since a modified version of the above partitioning method is used
by the graph isomorphism algorithm, an illustration of the method is

presented in Section 2.6.

46

2.6 The Graph Isomorphism Algorithm

The necessary and sufficient condition of Corollary 2,4,3 is
implemented by Algorithm 2 which is presented below. Algorithm 2
determines all isomorphisms between two MSM's and then, determines all
isomorphisms between the corresponding graphs by checking the state
transitions for all states s in S, using (2.4.12). The algorithm
finds all isomorphisms between two MSM's by using a modified version of
the partitioning method which was developed by Yang. In Algorithm 2,
only those closed and output—consistent partitions which are generated
by the union of the closure classes of the subsets {s,s'} for each
(s,s') & Sy x S] are considered in determining if an isomorphism
exists between two MSM's. ~

First, Algorithm 2 is presented and illustrated by an example.

Then, the computational complexity of Algorithm 2 is discussed

2.6.1 Algorithm 2

Algorithm 2 determines all isomorphisms between two graphs G and
G'. The MSM's M and M' are represented by the arrays H,J and H',J',
respectively. These arrays are created by two successive calls to
Algorithm 1. The two graphs G and G' are respectively represented by
an adjacency list GL and an adjacency matrix GA'. By using different
data structure for each graph, the algorithm can easily check (2.4.12).
Other data structures which are used by Algorithm 2 are: the matrix
Class to contain all output—consistent closure classes for all subsets
{s,s'} for each (s,s') in S, x S.; the matrix Candidate to hold all
possible closed and output—consistent partitions which require checking

for covering condition; the matrix Partition to define all isomorphisms

47

between M and M'; the array Gamma to define all isomorphisms between

G and G' (all isomorphisms of Partition which satisfy (2.4.12); and the

variables si and si' to index the states of S and S' respectively.

Step

Step

Step

Step

Step

Step

Step

1'

(If the numbers of states in M and M' represented respectively
by K(S) and K(S') are not equal, then no isomorphism exists.)
If K(S) # K(S') then no isomorphism exists, stop.

If every output in J does not have a corresponding output in
J' then no isomorphism exists, stop.

(Steps 3-11 generate the output-consistent closure classes for
all subsets {si,si'} for each (s,s') € S, x S;.)

si < 1, do Steps 4-11 until si > K(V), go to Step 12.

si' <« 1, do Steps 5-10 until si' > K(V'), go to Step 1ll.

(In order to know the subset {si,si'} whose closure class is
being generated, the indices iptr and jptr must be used.)

iptr « si, jptr < si'.

(If the outputs of the states represented by iptr and jptr

are not equal, the two states are not output-consistent.)

If J # J! then go to Step 9.

iptr jptr

(Otherwise, the states represented by iptr and jptr are
output-consistent and become an element of the output-
consistent closure class of {si,si'}. If (iptr,jptr) is
already an element of {si,si'} closure class, then all
elements of the closure class have been generated and the
closure class for {si,si'+1l} must be generated.)

If (iptr,jptr) is already an element of Classsi,si' then go

to Step 10.

Step 8.

Step 9.

Step 10.
Step 11.

Step 12.

Step 13.

(Otherwise, (iptr,jptr) becomes an element of the closure
class of {si,si'}. Since this is not the last element of the
closure class, the indices for the next states of iptr and
jptr are determined, and the process of checking for output-
consistency begins again.)

iptr <« H, , jptr «

. . . 1]
Place (iptr,jptr) in Class iptr ijtr’

si,si'?
go to Step 6.

(In order to indicate that the state of Sy represented by si
and the state of S; represented by si' do not have an output-
consistent closure class, Classsi,si' is set to zeros.)

Class « (0,0).

si,si
si' < si' + 1.

si « si + 1.

(Steps 12-13 define all possible closed and output—-consistent
candidate partitions by taking the union of all output-
consistent closure classes and by checking the covering
condition.)

t <« 0, n~< 0.

t<t+ 1.

If there does not exists a

Candidate, = U {u-v | (u,v) € Classgy gy for

t

Class v # (0,0) Au # uy Av # vy

si,si
for any uj-vy € Candidate.}
where Candidate, # Candidateg (1<m< t),

for 1 < si < K(V) and 1 < si' < R(V")

then go to Step 15.

48

Step 14.

Step 15.

Step 16.

(Check each candidate partition for covering condition. If
the covering condition is satisfied, then the candidate
partition becomes a partition which defines an isomorphism
between M and M'.)
If for all 1 < si < K(S), si-si' €& Candidate,
then n < n + 1, Partition, < Candidate,.
Go to Step 13.
(This step determines if each Partition generated in Step 14
satisfies (2.4.12) of Corollary 2.4.3. Each Partition which
satisfies (2.4.12) induces an isomorphism between G and G'.)
For each 1 <m< n
if for all 1 < si < K(V)
1, for all sk & GLg 4
GA'(si',sl') =
0, otherwise
where GLSi is the adjacency list for~vertex si and si-si'
and sk-sl' are elements of Partition
then Gamma < {si-si' | si-si' & Partitionp, 1 < si < K(V)}
defines and isomorphism between G and G'.

Stop.

49

For illustrating Algorithm 2, graph 7 of Figure 2.3.1.1 and graph

8 of Figure 2.6.1.1 are used. The corresponding MSM's M and M' which

are generated by Algorithm 1 are shown in Table 2.3.1.1 and Table

2.6.1.1.

After determining in Step 1 that the number of states of M

is equal to the number of states of M', Algorithm 2 proceeds to check

the outputs of the MSM's. Step 2 determines each output in M has a

corresponding output in M'. 1In Steps 3-11, the output-consistent

6'

11

SI

2!

F
i
gu
re
2
L] 6.1
.1
G
ra
ph
8

50

3!

51

[[zezztz 1 1] ‘[1]] TCMT M AN AT AN S {,9°,6°,%°.€5,2¢, 1} \ST
[[zezczt][] (499,65, %°,€°,2°. T} £.9°,6°,€°,2°.1} WY
[[zeeczet 1] “[2]] (199,65 v° €. T} {658,211} €1
[[zezfez1][2]] £,9°,6%,v°,€4,2°,1} £.9°,6¢,%°,€5, T} 2T

[feeec1l[eN] TUE A AN AT AN {,9°,2°.T} W TT
[Lzetet]‘[v]1] (099,695 85,2° T} {,sc.€%.C}) 01
[[zczeti“lv]] {,9°.6%:€%,2°,1} (6%, 1} 6
[[zz2]“[€]1] AL A AT AR 8| {19°%° €} 18
[lzect]°€]] {,9°,6°. 7 .€5, T} {,9°.€°.2} WL
[Lzl<[9]] TR ANS {9} 9
Lltl*[9]] {,9¢.2°.1} {.s} 'S
LLz“[91] {,6°.€°.:2} (.7} WY
[Lel“[£]] {165 % T) {.€} €
CLT]¢[9]] {,9°.9° .} {2} '
[[z1¢[9]] {,9%¢,¢} {,1} W T
A.mv L uﬂ&MﬂO A._”n—wv JH 23B31S IXeN .S °13e1ls , IS Xopul

8 HAVED 0L ONIANOdSHEI0D W WSH

T°T1°9°C 419Vl

closure classes for (s,s') ﬁ-Sr x Sé are generated. Indices si and
si' are used to represent each state of S and S'. As an example, the
generation of the closure classes for {5,si'} is illustrated in
Figure 2.6.1.2. The downward arrows represent the next state function
with the outputs of the states written in parentheses. For state 5,
the only output-consistent closure class is generated from {5,5'}.
Similarly, the closure classes for the other (s,s') € s, x S; are
generated and are shown in Table 2.6.1.2. The only candidate which
is also the only closed and output-consistent partition generated in
Steps 12-14 is Partitiony = {1-6",2-1',3-2",4-3"',5-5',6-4",7-9",8-7",
9-8',10-11",11-10",12-14",13-12",14-13",
15-15"}
This partition defines an isomorphism between M and M', and also, by
satisfying the condition of Step 15, defines an isomorphism between G
and G'. The isomorphism between G and G' is
Gamma = {1-6',2-1',3-2"',4-3",5-5",6-4"}.

As seen from this example, when using the MSM representation of
graphs 7 and 8, 6 equations of (2.4.12) are checked for the one
partition generated in Step 14. If the DSM representation is used,

2 + 4! or 48 equations of (2.4.12) require checking. Of course, the
time required to check the 48 equations must be weighed against the
time required to define and check the outputs for M and M'. However,
as the K(V) increases, it becomes impractical to store and check a
factorial number of equations. Thus, it is obvious that the MSM,
rather than the DSM, representation of a graph leads to a mere

practical and efficient graph isomorphism algorithm.

53

s([[6],[11]), 1" ([[6].[2D sL6],[111), 2" ([[6],[21D)
. S, | ¢ 3
#
s[[el,[11D), 3" ([[71,[21D s¢[[6],[111), &' ([[6]1,[2]1D)
N L_#__J
#

5([[61,[11D, 5'([[6],[11D

|

10¢[[31,[1,2,2,1D), 11'([[3],[1,2,2]D

|

15([[11,[1,1,2,2,2,2]1]), 15'([[11,[1,1,2,2,2,2]D)

|

15([[1],[1,1,2,2,2,21]) 15'([[1],[1,1,2,2,2,2]D)

5([[61,[11D), &' (L[61,[21D
L#_f

Figure 2.6.1.2 Generation of all Closure Classes for {5,si'}

TABLE 2.6.1.2

OUTPUT-CONSISTENT CLOSURE CLASSES FOR (s,s') G Sr X S]':

Index Pair (si,si')

OQutput—Consistent Closure Classes

(1,6")
(2,1")
(3,2")
(4,3")
(5,5")

(6,4")

{(@,6"),(7,9"),(12,14"),(15,15")}
{(,1'),(8,7"),(13,12"),(15,15")}
{(3,2'),(9,8"),(14,13"),(15,15")}
{(4,3'),(7,9"),(12,14"),(15,15")}
{(5,5"),(10,11'),(15,15")}

{(6,4"),(11,10"),(15,15")}

54

55
2.6.2 The Computational Complexity of Algorithm 2
The worst case for Algorithm 2 exists when the outputs of the
states of the MSM's are all the same. If the outputs are the same,
the number of output-consistent closure classes for the states of
the MSM's are equal to the number of closure classes for the states of
the corresponding DSM's.

Theorem 2.6.2.1. Algorithm 2 processes a pair of graphs in at most

O(nz-n!) time.
Proof. 1If the outputs of the states of the MSM's are the same, there
can be up to n2 output-consistent closure classes generated in Steps

2 closure classes can

4-11 of Algorithm 2. In Steps 12-14, these n
define up to n! isomorphisms between the MSM's. Each of these n! iso-
morphisms can have at most n equations of (2.4.12) to be checked. Each
equation can have up to n terms. Thus the upper bound of Algorithm 2
is 0(nZ-nl). Q.E.D.

The lower bound for Algorithm 2 can be determined from the special
case that exists when the graphs are not isomorphic, and the corre-
sponding MSM's reflect this fact by having a differing number of states.
The algorithm terminates in Step 1; and the lower bound is 1.

Since the upper bound and lower bound of any algorithm reflect
the worst and best cases, they are of theoretical interest only.

Because many practical problems contain neither the worst nor the
best cases, it is very important to obtain experimental bounds.

Experimental bounds for both Algorithms 1 and 2 are discussed in

Chapter V.

CHAPTER III
A REVIEW OF THE CURRENT BACKTRACKING GRAPH ISOMORPHISM ALGORITHMS

3.1 Introduction

In recent years, the most popular approach for solving the graph
isomorphism problem has been the use of the backtracking technique.
Backtracking algorithms used some necessary conditions to partition
the sets of vertices of the two graphs and the backtracking technique
to select possible vertex assignments to test for isomorphism. The
backtracking approach represented an improved method over the
heuristic approach, since if the heuristic part of the backtracking
algorithm failed to reduce the number of possible vertex assignments,
the backtracking tecﬁnique insured a stepwise elimination of all
inconsistent vertex assignments. Since backtracking algorithms could
process graphs of large orders, this approach also represented an
improvement over the coding algorithms.

In this Chapter, the graph isomorphism backtracking algorithms
which were developed by Berztiss (1973), Ullmann (1976), and Schmidt
and Druffel (1976) are reviewed. Each such algorithm is described
and illustrated by using graph 7 of Figure 2.3.1.1. and graph 8 of

Figure 2.6.1.1.

3.2 Berztiss' Backtracking Algorithm
This method specified the graph G by a linear notation called a
R-formula and then derived a similar K-formula for the graph G' by

56

57
using permissible K-formula transformations, a condition necessary for
graph isomorphism, and a bécktracking procedure. If the K-formulas
which represented G and G' had the same pattern, then the corresponding
vertices defined an isomorphism.

The K-formula notation was based on the representation of an arc
(a,b) by the K-formula *ab. The representation %ab was derived by an
application of K-operator * to the vertices named a and b. TFor
instance, the arc (1,2) of graph 7 can be represented by *12. 1In
general, a K-formula, which represented n arcs originating from a
given vertex in a graph, consisted of n K-operators, followed by the
name of the given vertex, followed in turn by the names of the n
vertices at which the arcs terminated. Using the K-operator * in this
way, the adjacency relation of a vertex could be completely specified.
For example, vertex 1 of graph 7 can be specified by the K-formula
#*%%]1256. Thus, graph 7 can be completely specified by the set of K-
formulas *%%1256, ***2134, **%3146, %*%%4256, **¥%5123, *%%6345. By
using the switch transformation, the terminal vertices could be
written in any order, i.e., ***1256 can be rewritten as *%%]1562.

The K-formulas could then be combined, using the substitution
transformation by which vertex in a K-formula could be substituted
by its respective K-formula. Thus, the vertex 2 in #*%*%1256 can be
substituted by %%*2134 to give #¥*1%%%213456. Continuing in this way,
the K-formulas of graph 7 are transformed to yield a single K-formula
Rk]hkkD] kkk3]kdh,2%%%5]123%%%63456456.

Formally, Berztiss defined a K-formula as (1) a single vertex
symbol or (2) *FF, where Fj and Fy are K-formulas. The algorithm

published by Berztiss (1973) which describes the above process of

58

generating the set of K-formulas which represent a graph is given in
Appendix E.l as Algorithm 3. From the definition, it is noted that a
K-formula of a graph usually consist of several K-formulas which are
called K-subformulas. In order to establish whether a given string of
a K-formula is a K-subformula, Berztiss used an equivalent iterative
definition of a K-formula.

Definition 3.2.1. The string s$ySg...Sj...Sp, consisting of K-operators

and vertex symbols and containing a substring sj...s; having k; K-
operators and n; vertex symbols, is a K-formula iff n; < k; for
i=1,2,...,m1 and n = ky + 1.

Processing the K-formula of graph G from left to right, the back-
tracking algorithm of Berztiss would attempt to construct a partial
K-subformula of graph G' that was isomorphic to the K-subformula of G,
which was defined by the processed vertices. If on processing the
next vertex in the K-formula of G, it was found that the K-subformula
of G' could not be extended on the basis of the current vertex cor-
respondence, then the procedure backtracked to the vertex in the
K-formula of G that last caused an additiom to the tentative vertex
correspondences, and a different vertex of G' would be chosen to
correspond to the vertex of G. The procedure would continue in this
manner, until a complete K-formula of G' was generated, in which case
an isomorphism existed; or, until no feasible vertex correspondence
existed. Berztiss' backtracking algorithm (1973) is given in Appendix
E.1 as Algorithm 5. Algorithm 4 (Berztiss, 1973) of Appendix E.l is
used to construct the data structures used in Algorithm 5.

As an illustration of this backtracking algorithm, the K-formula

of graph 8 is constructed to have the same pattern as the K-formula of

59
graph 7. First, graph 8 can be completely specified by the set of
K-formulas {#**%1'2'3'6", ®%%2'3"4'6', *%%3'1'4"5", *%%x47'2'3'5"',
*%%k5'1'2'6", **%6'1'4'5'}. Since all the K-formulas of graph 8 match
the first subformula *%*5123 of graph 7, each of the K-formulas of
graph 8 are extended, by using the switch and substitute transforma-
tions, in an effort to produce a K-formula that has the same pattern
as the next subformula ***42***5123***6345. After a number of vertex
correspondences and backtracks, in an attempt to extend the first two
K-formulas of graph 8, the procedure successfully extends the K~formula
#*%3V174"5" to ***3'1'A*k%5'2'1'6"4%%4'2"'3'5' based on the vertex
correspondence 2-1', 4-3', 5-5', and 6-4'. Using these correspondences,
the K-formula is further extended to *¥%2'5'%**x3']"%%%5'6'1'2'
*x%%4"2'3'5'4"' in order to match the next subformula *#%*31#%%,2%%x%5123
%*%%63456. From these K-formulas the vertex correspondences 3-2' and
1-6' are made. Using these correspondences the K-formula is extended
to

FAR] VG RRHDT QAKX T RARSTETL 2 RR%4"273"574"3"
to match the next subformula
kkkQ] hkk3]kkkf2k%%5]123%%%634564.
Finally, the K-formula of graph 8 is extended to
Kk T RAR] TG AKXV RRKFT] VAR5 ETL 2 RK%41273757473'5"4!
to match the K-formula of graph 7
dkk]kkk2] kkk3] *K*%,2%%%5]123%%%63456456.
Since the two patterns are the same, the corresponding isomorphism

v = (1-6',2-1",3-2",4-3",5-5',6-4") is defined.

3.3 Ullmann's Refinement/Backtracking Algorithm

The basic idea of this method was to construct a matrix M which
represented possible vertex assignments between the vertices of the
two graphs G and G', and then, after making possible vertex assign-—
ments, to refine M by using a necessary condition for graph isomor-
phism. The necessary condition was based on the adjacency relations
of the vertices. If the graphs were isomorphic, then M would, after
possible backtracking to reassign vertices, be refined to a matrix
which specified a one-to-one mapping from V onto v'.

The initial matrix M which represented possible vertex correspon-—
dences was constructed according to

1, if the indegree and outdegree of vertex

i of G is the same as the indegree and
m;: = outdegree of vertex j and G',

1]
0, otherwise,
where M = [mij]' For example, the matrix M for graphs 7 and 8 is
constructed. Since the indegree and outdegree of each vertex of
graphs 7 and 8 are both three, the construction of M results in a
matrix having 1's for all entries as is shown in Table 3.3.1.
The constructed matrix M would then be used in making the initial

vertex assignments. After a vertex of G was assigned to one of G',

the remaining entries in the corresponding row of M were set to 0's,

and M would be refined as follows: m; 5 = 1 was changed to miy = 0
unless
(Vx) ((g;, = 1) = @Ey) (myy * 81, = 1)) (3.3.1a)
1< x<RW 1<y<r@y o0
and
= = e o! =
(Vx) (8,3 = 1) = @y) (myy * 8yy = 1. (3.3.1b)

1< x< RV 1<y< KWV

60

TABLE 3.3.1

INITIAL MATRIX M FOR GRAPHS 7 AND 8

1!
1 1
2 1
3 1
4 1
5 1
6 1

2'

3!

4"

5'

6'

61

62

where [gij] and [gij] represented the adjacency matrices of graphs G
and G'. Conditions (3.3.1a) and (3.3.1b) represented the adjacency
relations of the vertices of G and G'. From the definition of graph
isomorphism, it is necessary that if v; of V corresponded to vg of V'
in an isomorphism, then for each vertex v, adjacent to vy, there must
exist a v&y that is adjacent to vj such that y(vix) = vsy, and for
each v 4 to which v; is adjacent, there must exist a v§j to which v&
is adjacent such that y(vxi) = v;j.

The refinement procedure would continue refining M until no more
mij's were changed or until a row of M became all 0's, in which case
the last vertex assignment was inconsistent. Ullmann's algorithm used
a depth first tree search method in making vertex assignments. In
general, a depth d corresponded to row d of the matrix M. The refine-
ment procedure, by eliminating some of the 1's of M, eliminated
successor nodes in the tree search. If at level d > 1, all vertex
assignments were found inconsistent, i.e., the refined M contained a
zero row, the algorithm would then backtrack to depth d-1. Using the
matrix M at level d-1, the procedure would try another vertex
assignment of vertex d-1 of G. If a level d, matrix M was left un-
changed by the refinement procedure, then G would be concluded iso-
morphic to G'. However, if upon backtracking to depth 1, no more
possible vertex assignments could be made, then G would be concluded
nonisormophic to G', and the algorithm would terminate. Ullmann's
refinement/backtracking algorithm (1976) is given as Algorithm 6 of
Appendix F.1.

As an illustration of Ullmann's isomorphism algorithm, the matrix

M of Table 3.3.1 is used in making a vertex assignment for vertex 1 of

63

graph 7. Since Myps = 1, the procedure first tries vertex assignment
1-1'. This assignment causes the other entries in row 1 of M to become
0's as is shown in Table 3.3.2. The initial matrix M of Table 3.3.2.
is refined until the refined M of Table 3.3.2 is obtained. This
refined M indicates that 1-1' is inconsistent, since it implies no
vertex correspondence exists for vertex 5 (row 5 being all 0's). The
algorithm then attempts based on the last valid M, in this case the
matrix of Table 3.3.1, to assign vertex 1 to another vertex of graph 8.
The assignments 1-2', 1-3', 1-4', and 1-5' all produce a refined M with
a zero row, and thus, these assignments are all inconsistent. These
verter assignments and the corresponding refined M is shown in Table
3.3.3. However, the last possible vertex assignment 1-6' results in
the refined M of Table 3.3.4. Based on this matrix, the vertex
assignments 2-1', 3-2', 4-3', 5-5', and 6-4' are made, and since at
each level M remains unchanged, the matrix M of Table 3.3.4 is the
desired matrix which specifies the isomorphism y = (1-6',2-1',3-2",

4-3',5-5',6-4"'). For this example, no backtracking was required.

3.4 Schmidt and Druffel's Backtracking Algorithm
This method used information contained in the distance matrix
representation of a graph initially to partition the sets of vertices
of graphs G and G' into like classes. Next, a backtracking procedure
selected vertices from like classes and then, based on the distance
matrix information, checked the vertex assignments for consistency.
The algorithm terminated when the two graphs were found either iso-

morphic or nonisomorphic.

64

9

1S 7 e o T

9 1§ i £ 4 T

g pue / sydead 103 | pPouTIoy

g pue ; sydead 103 | TeTITUL

W T-T INTWNOISSY XHAIMIA ¥3IAV W XTULVR

¢ et d19vl

65

TABLE 3.3.3

INCONSISTENT VERTEX ASSIGNMENTS FOR GRAPHS 7 AND 8

Corresponding Refined M

oo No ookl

COHOO

O~ O OO

COOOO

_OoOO~O

OCOO0OOO

COO~ QO

cCoCcCoCcOooOoH

O OO O~

HOOHO

CO-HOOT

C-OOO~

COHOOC

COO 40O

HOO OO

OO --HO0O0O0

COOO~HO

OCOO0OHOO

OO0 O~

OO ~HO

OO =~OO ™

COCOO

COOOO

OO0 O

Vertex Assignment

1-2'

1-3'

1-4'

1-5'

TABLE 3.3.4

MATRIX M AFTER REFINEMENT OF VERTEX ASSIGNMENT 1-6'

ll 2’ 3' 41 5' 6I

M defines the isomorphism

vy = (1-6',2-1',3-2",4-3",5-5",6-4")

67

For every pair of vertices v; and vj of a graph there is a

unique minimum distance which can be represented by a distance matrix.

Definition 3.4.1. The distance matrix D of graph G having n vertices

is an n x n matrix in which the element dij represents the shortest

path between vertices v; and vy If i = j, then dij = 0. 1If no path

i
exists between v4 and Vis then dij = o (infinity).

Since the distance matrices were unique representations of graphs
G and G' and since they contained information concerning the relation-
ship between the vertices of the graphs, they were used initially to
partition the sets of vertices into like classes. By comparing the
row characteristic matrices with the column characteristic matrices,
the initial partitioning procedure formed the characteristic matrices

of G and G'.

Definition 3.4.2. A row characteristic matrix XR is an n X (n-1)

matrix such that the element xri, is the number of vertices which are

at a distance m away from v;.

Definition 3.4.3. A column characteristic matrix XC is an n x (n-1)

matrix such that each element XCim is the number of vertices from
which vi is at a distance m.

Definition 3.4.4. A characteristic matrix X is formed by composing

the corresponding rows of XR and XC.

The initial partition was then generated from the characteristic
matrices by assigning the same class to all vertices having identical
rows. Class vectors C and C' were used to contain the classes for
each vertex of G and G'. The initial partitioning algorithm is given
as Algorithm 8 (Schmidt and Druffel, 1976) of Appendix G.1.

To illustrate the formation of the initial partition, graphs 7

and 8 are used. First, using Definitiomn 3.4.1, the distance matrices
D and D' are constructed. These matrices are shown in Table 3.4.1.
Using Definitions 3.4.2 and 3.4.3, the matrices XR, XC, XR', and XC'
are generated and are shown in Tables 3.4.2 and 3.4.3. Next, the
characteristic matrices X and X' are generated by composing the
corresponding rows of XR with XC and XR' with XC'. The resulting
matrices are shown in Table 3.4.4. Since all the rows of X and X' are
generated by composing the corresponding rows of XR with XC and XR'
with XC'. The resulting matrices are shown in Table 3.4.4. Since all
the rows of X and X' are identical, the initial partition defined by
¢ = (,1,1,1,1,1) and C' = (1,1,1,1,1,1), consist of just one class.
After the initial partition was generated, the graph isomorphism
algorithm selected two vertices belonging to the smallest class and
checked to determine if the assignment was consistent. The assignment
of vertex i of G to vertex j of G' was consistent if (1) every element

dg and d,.y = d;j, where vertex r had been assigned to vertex

r = 4s
s and (2) every element d;. (vertex k not previously assigned) had a
corresponding dﬁp (vertex p not previously assigned) such that
represent the class of vertices k and p.

cx = c,, where cg and c

P P

Thus, a consistent vertex assignment implied that row i and column i
of D had corresponding elements in row j and column j of D', at least
for all previously assigned vertices, and that the remaining elements
of those rows and columns did not preclude further consistent vertex
assignments, if any remained. This condition was checked by composing
the class vector for the appropriate graph with the respective rows
and columns of the distance matrix. This composition generated a new

class vector which could define a refined partition. If the vertex

68

69

o T T T T T/|.9 0o T T
1 0 T T T T[S ¢ 0
z T 0 T T Tl|.w T T O
z T T 0 T T|.f T ¢ T
T ¢ T 1T 0 2Tt ¢ T 1
I 7z T T T 0. T 1 ¢
W9 WS % W aT T 9 ¢ ¥
\a a

8 GNV [/ SHAVYD ¥0d ,d ANV d SHDIYLVR IONVISIA

I°%°¢ dT9VL

70

o 7z €| 9 0 0 o0 ¢
o 7 €| S 0 0 0 ¢
0o 7 €| v o 0 0 ¢
0o T €| ¢ o 0 o0 ¢
0o ¢ €| ¢ o 0 o0 ¢
o ¢ €| 1 0 0 o0 ¢
e ¢ 1 S v € T
0X X

L HAVYED ¥0d4 SHDIYIVA
OILSI¥IIOVIVHD NWNT0D ANV DILSTYALOVIVHD MOd

7%t 419VL

71

0 T €49 0 0 9
0 T €1].S 0 0 S
0 T €. 0 0 W
0 T €.t 0 0 £
0 7 €£].2 0 0 N/
0 T €. 0 0 I
€ 7 1 9 3

\OX Rve

8 HAVY2 ¥04d SHDTULIVR
OIISIYALOVIVHD NWATOD GNV JILSTYHLOVIVHO MOI

€'yt dTdVL

72

006 00 00 <CT £t | .9 00 00 00 7T ¢t€
00 00 00 7T €t | .S 00 00 O00 2 ¢t
00 00 00 2¢ €t | .% 00 00 00 2T ¢t
00 00 00 2 €€ | € 00 00 ©00 2z &t
00 00 00 ¢ €€ | .C 00 00 00 2T €t
00 00 00 <2z ¢ | .1 00 00 00 <zZT EE_
S Y € 4 T S Vi 1) [4 T
WX X

8 aNV [SHAVYD ¥0d SAOTYLVW DILSI¥ILOVIVHO

%'y e d149VL

73
assignment was inconsistent, another pair of vertices was chosen. If
a partition is reached such that there are no consistent vertex
assignments, then an assignment between two vertices which did not
belong to an isomorphism had been made, and it became necessary to
backtrack to try another vertex assignment. This process would be
continued either until each vertex of G was assigned to a vertex of
G' and all assignments were verified as consistent, in which case G
was concluded isomorphic to G', or until nonisomorphism was
established. Two graphs were concluded nonisomorphic, if a level 1
of the tree of vertex choices, there were no more untried vertex
pairs. The graph isomorphism algorithm is given as Algorithm 9
(Schmidt and Druffel, 1976) of Appendix G.l.

As an illustration of this backtracking method, the class
vectors C = (1,1,1,1,1,1) and C' = (1,1,1,1,1,1) are used to define

¢

the initial partition. Since there is just ome class in this
partition, the vertex assignment 1-1' is first selected. The assign-
ment is checked by composing C with row 1 and column 1 of D and c'
with row 1' and column 1' of D'. This composition yields the new
class vectors C = (1,2,3,4,2,5) and C' = (1,5,2,4,3,2). The process
is illustrated in Table 3.4.5. These class vectors indicate 1-1' is
consistent, since the number of vertices of each class of C equals the
number of vertices for the corresponding class of C'. At this point,
a choice of which vertex pair to use next is made based on choosing a
vertex pair from the smallest class. Then, the vertex pair 3-5' is
selected. The checking for consistency generates the new class
vectors C = (1,2,3,4,2,5) and C' = (1,6,2,7,3,8). Since these class

vectors indicate the 3-5' is inconsistent, the algorithm backtracks to

74

30
MIN

@ 30,1
uun{o)

W 30
,T moy

PTO NN

ajot
umnTo)

PTO

JI-T INAWNDISSY XAIMEA A9 QIIVEANTD SY0LOIA SSVID

G v JIEVL

75

the last consistent vertex assignment, 1-1', and attempts another

assignment for vertex 1. Vertex assignments 1-2', 1-3', 1-4', and

1-5' are either inconsistent or lead to other inconsistent vertex

assignments. Finally, the vertex assignment 1-6', after being checked

for consistency induces the class vectors C = (1,2,3,4,2,5) and

c' = (2,3,4,5,2,1). The next consistent assignment 3-2' induces the

class vectors C =
consistent vertex
c=(1,2,3,4,5,6)
arbitrary choices

assignments 2-1',

1,2,3,4,2,5) and c' = (2,3,4,5,2,1). Then, the
assignment 4-3' induces the class vectors

and C' = (2,3,4,6,5,1). Since there are no more

of vertex pairs, the algorithm checks the remaining

5-5', and 6-4' for consistency. Since these are all

consistent, the graphs are concluded to be isomorphic with the iso-

morphism y = (1-6',2-1",3-2",4-3"',5-5"',6-4").

CHAPTER IV

EVALUATION PROCEDURE FOR DETERMINING THE EFFICIENCY
OF THE GRAPH ISOMORPHISM ALGORITHMS
4.1 Introduction

A1l of the previously described graph isomorphism algorithms
which were reviewed in Chapters I and III either employed heuristics
or used a necessary and sufficient condition. The heuristics were
used to reduce the number of possible invertible functioms to be
checked for isomorphism either by an enumeration method or by a
backtracking technique. A necessary and sufficient condition was
used efficiently only for graphs with a small number of vertices.
For each of these algorithms, and also for the new graph isomorphism
algorithm of Chapter II, the upper computational bou;d was factorial
and the lower computational bound was dependent upon the types of
graphs., Since a theoretical evaluation of the graph isomorphism
algorithms would consider only the worst (upper bound) and the best
(lower bound) case analyses, it would give little insight into the
actual computing performances. However, since all the previous graph
isomorphism algorithms were implemented by different languages,
executed on different computers, and tested by using random graphs,
experimental evaluation based on the algorithm's reported execution
time performance would be inaccurate.

Thus, in order to make a comparison of the graph isomorphism

algorithms, the new graph isomorphism algorithm and the graph

76

77

isomorphism algorithms of Berztiss (1973), Ullmann (1976), and Schmidt
and Druffel (1976) were chosen for evaluation, since these algorithms
represented the four most current graph isomorphism algorithms.

In this Chapter, the procedure which was used to evaluate the
four algorithms is presented. The procedure involved using PL/I to
implement the graph isomorphism algorithms; using several classes of
graphs to test the PL/I implementations; and using the results of the

tests to analyze the performance of the algorithms.

4.2 PL/I Implementations

Each of the four algorithms was implemented by PL/I and compiled
under the IBM PL/I 0S Optimizing Compiler Version 1, Release 2.2.
Since the implemented algorithms were evaluated and compared based on
their execution time performance, efficiency of the implemented steps
using PL/I was more important than the structure of the implemented
steps. Thus, the programs were written with the concept of efficiency
rather than with the concept of structured programming. The programs
were executed on an IBM 370/158 with a 192 K partition size. The size
of the necessary partition could be reduced by using the features of
PL/I to allocate and free storage; however, execution times would be
increased.

The implementation of the new graph isomorphism algorithm involved
writing PL/I programs for Algorithm 1 of Section 2.3 which transformed
each graph into a MSM and for Algorithm 2 of Section 2.6 which deter-
mined all isomorphisms between the two graphs. The PL/I source list-
ings are given in Appendix D. For efficiency of implementation of

Equation (2.4.12), graph G was represented by an adjacency list, and

78
both graphs G and G' were represented by a bit adjacency matrix.
Using PL/I, the bit adjacency matrix was processed element by element
and row by row.

Berztiss' method was implemented by writing PL/I programs for
Algorithm 3 of Appendix E.l which produced a K-formula for graph G,
for Algorithm 4 of Appendix E.1l which created the data structures
representing the K-formula, and for Algorithm 5 of Appendix E.1 which
determined all isomorphisms between graphs G and G'. The PL/I
source listings are given in Appendix E.Z2. Algorithm 5, the backtrack-
ing algorithm, was programmed to terminate after one isomorphism was
found or nonisomorphism was established. Since the performance of
the backtracking algorithm was very dependent on the structure of the
K-formula, Algorithm 3 was programmed to produce a K-formula with the
adjacency structural information contained in the beginning of the
formula. Thus, for graph 7 of Figure 2.3.1.1, the K-formula

*kk]hk%D] *k,*3]1464%%%5]23%%*63%*%42565
would be produced instead of the K-formula

Kkk] kkk D] dAhk3]hkk,fDxk%5]23%*%63456456
which was used for illustration in Section 3.2.

The implementation of Ullmann's algorithm involved writing PL/I1
programs for the calculation of éhe initial matrix M, which is defined
in Appendix F.l and for Algorithm 6 of Appendix F.1l which determined if
the two graphs were isomorphic. The PL/I source listings are given
in Appendix F.2. Ullmann's isomorphism algorithm was modified and
programmed to terminate when the matrix M, after refinement, contained
exactly one 1 in each row and each column. The refinement conditions

(3.3.1a) and (3.3.1b), which were used by Algorithm 6, were programmed

79
as an internal procedure. In order to efficiently execute the
refinement conditions, each row of M, and each row and column of the
adjacency matrix of G' were stored in separate computer words. Thus,
(3.3.1a) and (3.3.1b) were implemented by "ORing" word by word the
appropriate row of M with the appropriate row or column of G'. This
proved to be much faster than the corresponding element by element
computation.

Schmidt and Druffel's algorithm was implemented by writing PL/I
programs for Algorithm 7 (Floyd, 1962) of Appendix G.1l, which con-
structed the distance matrices, for Algorithm 8 of Appendix G.1l, which
generated the initial partition, and for Algorithm 9 of Appendix G.1,
which determined if an isomorphism existed between two graphs. The
PL/I source listings are given in Appendix G.2. Step 6 of Algorithm 9
was programmed as an internal procedure which chose from the smallest
class a previously unassigned vertex G. This strategy of choosing
a vertex from the smallest class could refine the partition by reducing
the size of its larger class and hence, could reduce the searching
required at the next level of the vertex assignment tree. Thus, the
overall effect of using this strategy was that usually the breadth of

search was reduced while the depth of search was increased.

4.3 Input Data
The programs were then executed by using several classes of
regular graphs. Regular graphs were chosen since all previous graph
isomorphism algorithms encountered difficulty in processing regular
graphs. The difficulty was due to the fact that all previous graph

isomorphism algorithms employed heuristics which could not distinguish

between vertices having the same characteristics. In the case of
regular graphs, all vertices had the same degree characteristic, i.e.,
all vertices of a k-regular graph had the same indegree and outdegree
k. Thus, a graph isomorphism algorithm which used a heuristic based
on the degrees of the vertices could not effectively process k-regular
graphs.

The PL/I program "GRAPHS" of Appendix B was used in randomly gen-
erating both nonisomorphic and isomorphic regular graphs. Twenty-five
pairs of random n/2 regular nonisomorphic graphs having n vertices,
for n = 6, 8, 10, 12, 20, 30 were generated. Each pair of noniso-
morphic graphs was produced by first, randomly comstructing an n/2
regular graph, and then, by randomly permuting its rows, a second n/2
regular nonisomorphic graph was produced.

Twenty-five pairs of random n/2 simple regular graphs having n

80

vertices for n = 6, 8, 10, 12, 16, 20, 26, 30, 40 were generated. Each

pair of isomorphic graphs was constructed by first, randomly producing
an n/2 simple regular graph, and then, by randomly permuting its rows
and columns, a second n/2 simple regular isomorphic graph was
produced.

Several published sets of strongly regular nonisomorphic graphs
were also tested. The set of strongly regular graphs produced by
Paulus (1973) was used. This set contained fifteen nonisomorphic
graphs of order 25 with the indegree and the outdegree of each vertex
equal to 12 (d(vi) = 12, for all i). From these fifteen graphs,
fifteen random pairs were chosen. A similar collection of strongly
regular nonisomorphic graphs of orders 35 and 36 were developed by

Bussemaker and Seidel (1970). From this collection, fifteen random

81

pairs of the first 35 (numbered 1-35) of the 80 Steiner graphs of order
35 with d(vy) = 19, for all i, and five random pairs of the 12
(numbered 81-92) Latin Square graphs of order 36 with d(vy) = 16, for

all i, were used.

4,4 Analysis Procedure

Since each of the four methods required some initial preparation
of the graph representation used by the isomorphism algorithm, each
method was considered to contain two primary algorithms: the graph
representation algorithm and the graph isomorphism algorithm. The
classification for the algorithms of each method is shown in Table
4.4.1.

Each of the four methods was tested by using the collection of
graphs which were described in the previous section. The execution
time results of each procedure were obtained by using a Basic Assembly
Language routine "ASMTME". ASMIME, given in Appendix C, accumulated
in units of 26.04166 microseconds the CPU time which was used by a
specified section of a procedure. This unit of time was directly
dependent upon the power supply used by the IBM 370/158 and thus, may
be different for other computers.

In evaluating any algorithm, the performance of its implementation
should be distinguished from the performance of the algorithm itself.
The performance of the implementation is both language and computer
dependent, whereas the performance of the algorithm is data dependent.

The performance of the implementation of the algorithms of each
graph isomorphism method was obtained by measuring the execution time

required by the algorithm to process a pair of graphs. As an aid to

82

€°1'9 *ddy 6 Te3gnag
pue

21’9 "ddy 8 T°1'9 *ddy L IPTUYOS

(L-T sde1s) (0 de1s)
1°4 rddy 9 1°4 -ddy 9 uuenT()
z'1°g ddy Vi

"¢ 19 °ddy g T°7'q ddy € ssT3z19g
9°¢ *393§ [4 £°¢ 3998 T naN
30UDI2IY *oN WYITIO3TY 3ouaa33I9Y *ON Wy3lTIosTV SpoyIoR

ustydaomosy ydein

uoTlejuasaaday uydeis

SAOHLIW WSTHAYOWOSI HAVYD

dHL A9 QIS SWHLIIN0OTY HHL 40 NOIILVDILISSVTIO

1'%y 19Vl

evaluating this performance, the execution times, for the set of
nonisomorphic and isomorphic regular graphs were experimentally fitted
by using the Statistical Analysis System (SAS) developed at the North
Carolina State University.

The raw data, up to 25 observations for each value of the number
n of vertices tested, were input to the linear regression procedure of
SAS. Next, linear and quadratic polynomial curve fits of the raw data
were tried. If the coefficient of determination R? of either of these
curves was the calculated maximum, i.e., the maximum percentage of
variation of execution time which could be explained by a polynomial
curve fit, then no higher degree polynomial was tried. Otherwise, the
polynomial fitting would continue by increasing the degree of the
polynomial until the maximum R? was achieved. If the R? of any
polynomial curve was above 90%, then the data were assumed to be
polynomial in behavior, and the polynomial curve with the highest R2
was chosen. However, if gﬁe R2's of the polynomial curves were less
than 90%, then linear and quadratic exponential fits were tried. As
above, the expomential fitting was terminated at the degree which
achieved the maximum Rz. The curve, either polynomial or exponential,
with the highest R2 was then chosen to fit the raw data.

For the nonisomorphic regular graphs, the performance of the
implementation was measured only for the graph isomorphism algorithms.
However, for the isomorphic regular graphs, the performance of the
implementation was measured for both the graph representation
algorithms and graph isomorphism algorithms.

On the other hand, the performance of the algorithm was measured

only for the graph isomorphism algorithm using all classes of graphs

83

84
tested. The performance of the new graph isomorphism algorithm was
measured by the number of isomorphisms between the two MSM's, each of
which was checked by (2.4.12), and by the number of vertex assignments
required to establish either isomorphism or nonisomorphism. Both of
these measurements reflected the power of the output function J(s)
used in defining the MSM's. The performance of the three backtracking
algorithms was measured by the number of times the algorithm had to
backtrack in processing a pair of graphs and by the number of vertex
assignments required to established either isomorphism or nonisomor-
phism. These measurements reflected the power of both the heuristics

and the backtracking technique used by each algorithm.

CHAPTER V
EXPERIMENTAL RESULTS AND CONCLUSIONS

5.1 New Algorithms

The new graph isomorphism algorithm was tested using the set of
nonisomorphic regular graphs which were described in Section 4.3.
Then, the graph representation algorithm and the graph isomorphism
algorithm (see Table 4.4.1) were applied to the set of isomorphic
regular graphs (see Section 4.3). The performance of the implementa-
tion for each algorithm using these regular graphs is summarized in
Table 5.1.1. The performance of the graph isomorphism algorithm is
summarized in Table 5.1.2. Next, the sets of strongly regular graphs
(see Section 4.3) were used. However, since the isomorphism algorithm
failed to complete the determination of nonisomorphism for one pair of

each type in 4 minutes, the testing was terminated.

5.1.1 Performance of the Implementation

Using the procedure which was described in Section 4.4, the raw
execution times, t, summarized in Table 5.1.1 were fitted by linear and
quadratic polynomial functions of the number of vertices, n. It is
noted that all execution times are given in milliseconds. Since for
the nonisomorphic regular graphs the raw execution times generated by
the isomorphism algorithm were centered around a constant line, the
Vfit was the following equation independent of the number of vertices n

t = 1.89.

85

86

*soTajus JUTSSTW 103 pajeaausd jou a1em sydead OTYdIOWOSTUON xx

*599T319A 9 YiTm sydead OTYdiowosST I0F PIsSn 9I9M SUOTIBAIIS]O 9T ATup «

€T°0ST 06°%66ST ce°8 00°267 v Tt 114 oY
28°IHT 09°18.8 0L°S 06°SLT 0T°0 68°T 114 o€
VARRAY %9°£069 T6°¢ AR YA" T T A 9¢
%0° 10T #1°0L0Y 91" %¢ T8°66 90°0 98°'1 T4 0t
80°6L %6°LTLT 1679 TT°TL et """ 6¢C 9T
69" 601 £8°8691 99°¢T L8°0S L0°0 98°1 T4 Al
IXAR A4 €8°2671 €8°0T 80° 0% 90°0 %81 T4 ot
9¢ " €91 e 001 88°¢ 9%° LT 90°0 98°'1 14 8
9¢ " ¢¢ % %89 L%°0 8L°8T 70°T Lo°c *SC 9
*A9Q °3S uBal *a3q *3S uedl | °adQ °3S ueal s189], S92TII9A
*3Ty *dsy udeas *31vy cos1 uydexn *81y -osT ydein Jo °"ON Jo °*oN

sudean otydaowost

sydeas dTydiouwosSTuoy

(SPuUoO2ISTITIUW UT SWEL)
SHAVYD ¥VINOTY ONISN SWHITYOOTY MEN ¥04 NOIIVINAWATAWI 40 HONVIIOI¥Hd

T°T°S dT9VL

87

*saTajus SurssTu 103 PoIeIsus8 Jou oxdM sydeal OTYdIOWOSTUON xx

*s90T119A 9 Y3tm sydead orydaowosT 103J PosSn SUOTIBAIISQO 9T ATUQ

00°%9 09°T 6¢ 0oy
0%°9¢ 88°1 0 0 T4 o¢
6T6¢ [AR T4 97
0T°qET 9.°9 0 0 T4 0c
8C°18 80°¢ w0 ST 9T
96 %6 88°L 0 0 T4 (Al
8%°0L 8" L 0 0 T4 0T
9€°¢T 6°C 0 0 14 8

00°9 00°T 0 0 xG¢ 9

*u8Tssy X91a2A *0ST S,HSH ‘u8Tssy X93a19) *0ST S,HSKH $3183], S90T1a3a\
*ON uB9R *ON UuBOR *ON UB9dW *ON U®Bap Jo °oN jJo °oN

sydean orydiowosy

sydeas oTydIowosTuoN

C°T°¢ dT19VL

SHAVYD VINOTd ONISN WHIIMOOTY WSIHAYOWOSI HAVED MAN J0 HONVWHOIddd

88

This equation with raw execution times is plotted in Figure 5.1.1.1.
The constant 1.89 was calculated by averaging the averages of the
execution times for each n. Using the isomorphic regular graphs, the
raw execution times generated by the isomorphism algorithm were fitted
by the quadratic equation

£ = 0.12302 + 2.216n + 3.891, RZ = 97.40%
where the calculated maximum R2 for a polynomial fit was 97.50%. This
equation with the raw execution times is plotted in Figure 5.1.1.2.
Based on the same isomorphic graphs, the raw execution times generated
by the graph representation algorithm were fitted by the quadratic
equation

¢ = 9.705a2 - 8.523n + 403.195, R® = 99.90%
where the calculated maximum R% for a polynomial fit was 99.92%. This
equation with the raw execution times is plotted in Figure 5.1.1.3.

Based on these equations, the performance of the implementation

of the new algorithms was of an experimental order O(nz). Thus, based
on the implementation results, the algorithms performed efficiently

for the class of regular graphs tested.

5.1.2 Performance of the Graph Isomorphism Algorithm
The isomorphism algorithm determined nonisomorphism for the non-
isomorphic regular graphs based on their MSM representations. Either
their MSM's had a different number of states or a different set of
outputs. Thus, the number of MSM's isomorphism and the number of
vertex assignments of Table 5.1.2 are all zero. This indicated that
the output function J(s) was very effective in distinguishing non-

isomorphic graphs. In order to evaluate the performance of the

EXECUTION TIME T IN MILLISECONDS

89

T=1.89

2 .40
*
2 .20~
*
.
* * * *
2.0 * * *
*
* * * *
* *® * ¥ ¥ *
* * *
* * +* *
* * * * * *
* * * * * *
1.80- * * *
1.60- l | T T T |
(%) 8 10 12 20 20

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.1.1.1 Plot of New Graph Isomorphism Algorithm Using

Nonisomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

90

1o T=0.123=N==2+2.216+N+3.891

*
¥
240+
160+
*
* *
80 *
Y3
¥
*
*
e] ! 1] | 1

] i 1
6 8 10 12 16 20 26 30 40
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.1.1.2 Plot of New Graph Isomorphism Algorithm Using
Isomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

91

20000+ T=8.705=N=«2-8.523=N+403.195

15000+

10000+

5000+

o) 1 1 1 i ! i i |
6 § 10 12 16 20 26 30 40

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.1.1.3 Plot of Graph Representation Algorithni (New) Using
Isomorphic Regular Graphs.

isomorphism algorithm for the isomorphic regular graphs, only those
isomorphic graphs having one isomorphism were used. Thus, only 16
observations were used for graphs of 6 vertices since the other 9
contained more than one isomorphism. Based on the data of Table
5.1.2, the algorithm was effective in determining isomorphisms for
graphs of low and high orders, and reasonably effective for graphs

between the two extremes.

5.2 Berztiss' Algorithms
The performance of the implementation for each of Berztiss'

algorithms (see Table 4.4.1) using regular graphs is summarized in
Table 5.2.1.7 The performance of the graph isomorphism algorithm is
summarized in Table 5.2.2. Results for either nonisomorphic or iso-
morphic regular graphs having 20 or more vertices were not obtained,
since the isomorphism algorithm was unable to process one pair of
these graphs in 4 minutes execution time on the IBM 370/158. Also,
for the same reason, no results were obtained for any of the noniso-

morphic strongly regular graphs.

5.2.1 Performance of the Implementation

For the isomorphism algorithm, the raw execution times, t,
summarized in Table 5.2.1 were fitted b& linear and quadratic poly-
nomials and by linear and quadratic exponential functions of n. For
the nonisomorphic regular graphs, the calculated maximum R? for a
polynomial fit was 30.227%, and the calculated maximum R? for an
exponential fit was 83.20%. Thus, the following second order
exponential equation was chosen:

t = exp(0.025n2 + 0.236n + 3.946) x 26.04166 x 1073, R? = 83.19%.

92

93

*QT = u 103 vmumumcmm‘uoa axam sydea8 otydiowosTuoN

we't 8T 7% 86 TYTLIT 8%°67918| "°° ¥° 0 T4 91

08°1 6%°%¢ 66°90LT £9°%8TT | 0T°6091 €6°TOLT Y4 4

0S°T £€€° LT £0° 96T 29°80¢ 62°29¢ 89°697 Y4 0T

98°0 TL°02 06°8¢ 88°0S A 1A 08°LY G¢ 8

6G°0 6%° <1 g9y 6S°9T T0°€ G6°€CT G¢C 9

*adq °3S uedl *adQq °3S uesly |-asQ °1IS ueay $31S9] S30T3IA2A
*81v ‘deoy udeas *31v *osI ydean *3Tv ‘osI uydeis Jo ‘oN Jo °*oN

sydeas orydiowos] sydeds d1ydIowoSTUON

(SpuodasSTTTTW UT SWIL)
SHAVED ¥VINOTY ONISA SWHIINOOTY ,SSILZYdE ¥O4 NOIIVINEWATAWI IO HONVWIOAddd

1°2°S dT4Vl

94

‘g7 = U 107 palexausld jou oiam sydeald UHsmuoEomﬂwoz ¥

08°0TTO%E 08°%600%¢ T #°°° T4 91
9G6°LTE9 96°60€9 %%7°9%99 #%°9%99 T4 AN
9L°¢20T 9L £TOT 96 YIvT 96 “¥T%T S¢ 0t
%0° 92T %0°91¢ 96°8%C 96 °8%C T4 8
00°9¢ 00°0¢ 00° %S 00°vs T4 9
*u3rssy x93ao) syoeiINORY *u8TSSY X931a9) syorilyoRg §389], S99T3I9\
*ON ueay *ON UB3[*ON ueajl *ON UBaj Jo °oN jo ‘oN

sydeasn otydiomos]

sydeasn orydaowosTuoN

SHAVYD ¥VTINOTd HNISN WHIIYOODTV WSIHAYOWOSI HAVMD ,SSILZY¥Ed A0 HONVWIOA¥dd

2°C°6 419Vl

95

This equation with the raw execution times is plotted in Figure 5.2.1.1.
For the isomorphic regular graphs, the calculated maximum R for a
polynomial fit was 16.45%, and the calculated maximum R2 for an expo-
nential fit was 85.17%. Thus, the following second order exponential
equation was chosen:
t = exp(0.0291n2 + 0.0829n + 4.8736) x 26.04166 x 10'3, R2 = 85.13%.
This equation with the raw execution times is plotted in Figure 5.2,1.2.
Based on the same isomorphic graphs, the raw execution times generated
by the graph representation algorithm were fitted by the quadratic
equation
t = 0.165n% + 0.229n + 8.255, RZ = 98.83%

where the calculated maximum R? for a polynomial fit was 98.85%. This
equation with the raw execution times is plotted in Figure 5.2.1.3.

Based on these equations, the performance of the implementation of
Berztiss' graph isomorphism algorithm was of an experimental order
O(exp(nz)). Similarly, the performance of the implementation of the
graph representation algorithm was of the experimental order O(nz).
Thus, although the graph representation algorithm performed efficiently
for the regular graphs tested, the isomorphism algorithm displayed
exponential growth in processing time as the number of vertices

increased and thus, could not be considered efficient.

5.2.2 Performance of the Graph Isomorphism Algorithm
In evaluating the performance of the isomorphism algorithm, the
number of backtracks and the number of vertex assignments of Table
5.2.2 were considered. Based on these data, the isomorphism algorithm

was ineffective in establishing either nonisomorphism or isomorphism.

EXECUTION TIME T IN MILLISECONDS

96

2200~ =EXP (0.025aN==2+0.236sN+3.946) «0.02604166
*
*
¥*
1650-
*
11004 *
*

550+

T T T
6 8 10 12
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.2.1.1 Plot of Berztiss' Isomorphism Algorithm Using
Nonisomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

97

T=EXP (0.029]) «M=02+0.0823s N+4 ,8736) «0.026041€6

80000
#*

60000+
5+

40000~
*
¥*
X+

20000~
¥
¥
*
X x
o-—% - & == :
6 8 10 il 16

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.2.1.2 Plot of Berztiss' Isomorphism Algorithm Using

Isomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

70+

55+

40-

25—

98

T=0.165N==2+0,229.N+8.255

10

1 ! 1
6 8 10 12 16
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.2.1.3 Plot of Graph Representation Algorithm (Be:ztiss)

Using Isomorphic Regular Graphs.

99

The number of backtracks and vertex assignments grew exponentially as
the number of vertices increased. Thus, it could be concluded that

the K-formula representation of a graph was not a good heuristic for
the graph isomorphism problem, and that the backtracking technique of

Berztiss was ineffective.

5.3 Ullmann's Algorithms

The performance of the implementation for each of Ullmann's
algorithms (see Table 4.4.1) using regular graphs is summarized in
Table 5.3.1. The performance of the graph isomorphism algorithm is
summarized in Table 5.3.2. Only 10 observations of isomorphic
regular graphs were made, due to the amount of execution time required
by each pair of graphs. Results for nonisomorphic graphs having 20
or more vertices and for isomorphic graphs having 26 or more vertices
were not obtained, since the isomorphism algorithm was unable to process
one pair of these graphs in 4 minutes. Also, for the same reason, o

results were obtained for any of the nonisomorphic regular graphs.

5.3.1 Performance of the Implementation
For the isomorphism algorithm, the raw execution times, t,
summarized in Table 5.3.1 were fitted by linear and quadratic polynomials
and by linear and quadratic exponential functions of n. For the non-
isomorphic regular graphs, the calculated maximum R2 for a polynomial

fit was 69.94%, and the calculated maximum R2

for an exponential fit
was 81.37%. Thus, the following second order exponmential equation
was chosen:

t = exp(0.0096n2 + 0.241n + 10.880) x 26.04166 x 10—3, R2 = 81.36%.

This equation with the raw execution times is plotted in Figure 5.3.1.1.

100

*po1Inbal SWT] DATSSOIXS 03 NP (7 = U A0J SOTAIUD SUISSIH xy

‘9T = U 103 pajeisusd jou aiem sydead orydiowosTuoN

7E°8 66°STS 96°0TEYCT | 06°290¢61 T E N 0T 0c
9L°8 9L %8Y 68°T%95Y L6°T¥ST9 Tt ®*°° 1414 9T
9T1°6 8C°8SY 8L°8ELETT 6Z°£009¢ G0°'80%S% | 9%°GTE80T 14 ¢t
L6°0T 8L°GSY LL*9%99 00°£598 9T°0€€ET | 9%°T89GY 4 0T
£€¢°01 SLTESY ®€°618C €0 %1y AR YA N £€6° 96061 1414 8
8¢°¢ TR L9°206 08°86GT 8T CE6E 9T “¥t06 4 9
*A9Q °3S ueay *A9(Q °3S ueall | *aAdQ °1S ueay $3159], S99T3a3\
*3Tv *day ydean <81y ‘osI ydeip *3TV °o0sT ydean Jo °*oN jo *oN

sydeas orydaowosy

sydeasn o1ydiowoSTUON

(SpPuoOOYSTTITW UL 2WIl)
SHAVYD ¥VTINOdY ONISN SWHITYO0OTV S NNVWTIN ¥04 NOILVINIAWHTIWI

T°€°G dT9VL

J0 HONVIOIdHd

101

-poarnbel 2WE3 SATSSIIKS 03 aNp (07 = U 103 SITAIUS BUTSSTH xx

‘9T = u 103 peajeisusld jou o19m sydeald OTYdIOWOSTUON

09°97¢ 00°0¢ e LS 0t 0¢

o*LL 09°8 Tt ¥°°° S¢ 9T

96° LE %8°Y %° 8¢l 80°68 1A (4}

9,21 79°1 <1709 89°0Y% s¢ 0T

78°9 [AY) 7%°92C ¢€ 81 S¢ 8

96°¢ 80°0 88°CI <1701 14 9
*u8TSsy x93i9A syoraINORg *u8 1SSy X939\ gyoeilNoRg s3189], S90T3A9)
*ON uBdj *ON ueaj *ON UBaR *ON Ue9l Jo °*oN Jo ‘OoN

sydeas otydiowosiy suydeasn oTydaowosSTUuON

SHAVYD WVINOTY ONISA WHIINOITV WSIHJYOWOSI HAVED S,NNVWTIA 40 HONVWEOLdAd

¢ e°S dTAVL

EXECUTION TIME T IN MILLISECONDS

102

000000 T=EXP(0.0096=Ne=2+0.241sN+10.88) «0.02604166

*

sk

150000~

%k %k

100000+

)
hm

*

50000+

*x sk Kk k

0] T T T
() 8 10 12

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.3.1.1 Plot of Ullmann's Isomorphism Algorithm Using
Nonisomorphic Regular Graphs.

103
For the isomorphic regular graphs, the calculated R? for a polynomial
fit was 62.33%, and the calculated ®2 for an exponential fit was 73.59%.
Thus, the following second order exponential equation was chosen:
t = exp(-0.0084n2 + 0.5470n + 7.8639) x 26.04166 x 10'3, RZ = 72.91%.
This equation with the raw execution times is plotted in Figure 5.3.1.2.
Based on the same isomorphic graphs, the raw execution times generated
by the graph representation algorithm were fitted by the quadratic
equation
t = 0.066n2 + 3.868n + 407.988, R? = 82.13%

where the calculated maximum R? for a polynomial fit was 88.23%. This
equation with the raw execution times is plotted in Figure 5.3.1.3.

Based on these equations, the performance of the implementation
of Ullmann's graph isomorphism algorithm was of experimental order
O(exp(nz)). Similarly, the performance of the graph representation
algorithm was of the experimental order 0(n2). Thus, although‘the
graph representation algorithm performed efficiently for the regular
graphs tested, the isomorphism algorithm displayed exponential growth
in processing as the number of vertices increased and thus, could not

be considered efficient.

5.3.2 Performance of the Graph Isomorphism Algorithm
Based on the number of backtracks and on the number of vertex
assignments of Table 5.3.2, the isomorphism algorithm was more effective
in establishing isomorphism than it was in establishing nonisomorphism.
Because Ullmann's isomorphism algorithm was modified to terminate when
the matrix M, after refinement, contained exactly one 1 in each row and

each column, the number of mean vertex assignments was sometimes less

EXECUTION TIME T IN MILLISECONDS

104

200000 T=EXP(-0.0084=N=+2+0.547N+7 .8639) 0.02604166

240000

160000+ * ¥

80000+

b

A
6 8 10 12 20
NUMBER OF VERTICES N (NONLINEAR SCALE)

o — Aotk ol sk skike

Figure 5.3.1.2 Plot of Ullmann's Isomorphism Algorithm Using
Isomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

105

T=0.066=N==2+3.868+N+407,988

560+
*
¥
520+
E:
E
* *
480 i
4404
400 . 1 T ! T T
6 8 10 12 16 20

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.3.1.3 Plot of Graph Representation Algorithm (Ullmann)

Using Isomorphic Regular Graphs.

106
than the order of the graphs being tested. However, as the number of
vertices increased, both the number of backtracks and the number of
vertex assignments increased exponentially. Thus, it could be
concluded that the refinement conditions of (3.3.1a) and (3.3.1b) per-
formed as an effective heuristic for graphs of 16 or less vertices but
was not effective for the general graph isomorphism problem, and that
the backtracking technique of Ullmann also became ineffective as the

number of vertices increased.

5.4 Schmidt and Druffel's Algorithms

The performance of the implementation for each of Schmidt and
Druffel's algorithms (see Table 4.4.1) using regular graphs is
summarized in Table 5.4.1., The performance of the graph isomorphism
algorithm is summarized in Table 5.4.2. For the three sets of strongly
regular graphs, the overall performance for the algorithm is given in
Tables 5.4.3, 5.4.4, and 5.4.5. Because of the large amount of time
required to process each pair of Latin Square graphs, only five pairs

of these graphs were tested.

5.4.1 Performance of the Implementation
For the isomorphism algorithm, the raw execution times, t,
summarized in Table 5.4.1 were fitted by a linear and quadratic poly-
nomial. For the nonisomorphic regular graphs, the raw execution times
were fitted by the quadratic equation
t = 0.056n2 + 0.117n + 5.593, R% = 99.56%
where the calculated maximum RZ for a polynomial fit was 99.57%. This

equation with the raw execution times is plotted in Figure 5.4.1.1.

107

‘O ‘9z 9T = u 103 poleioudad jou aasm sydeas8 OfydiomoSTUoON

€9°0¢S | RANA% 4 (4R ALY ¢6°89%¢ Tt T T4 oY
69°te £6°69T1 86°68 ¢ 1STT 9L°C 00° 09 ST 0¢
02°91 £9°7¢8 VANRA: 78°918 v Tt T4 9¢
L8 24" 0%y ¢8°8¢ 00°L1Y 8’0 ¢e0t 414 0c
[S°CS £€2°797 6°82 06°06¢ Tt ¥ T4 9T
09°% 08 €Y1 8€°6T 09°8ET L%°0 6C°S1 4 AN
£v°e 8L°66 99Tl 08°L6 S¥°0 AR T4 0T
(XA %0°%9 1¢°8 09°19 GE'O S1°0T T4 8
11 6G 7y 9°¢ 06°¢cy ¢T°0 (1°8 T4 9
*A3Q "3S ueay *A3Q ‘38 ueall | *adq °3S uesjy s$189], S90TIaN\
*3Ty *doy ydeas *81v "osI ydeln *8TV -osI ydean Jo °oN Jo °oN
sydeay otydaowos] sydean oTydaomwOSTUON

(SpuodasSTTTTW UT SWL])
SHAVEO WVINOTY ONISN SKHIT™OOTY S,TAJAN¥d ANV ICIWHOS ¥0d NOILVINAWATIWI A0 ADNVWEOIddd

1°%°¢ TI9VL

108

‘0b ‘97 ‘9T = u 103 pajeiouad jou aiem sydead OTYdIOWOSTUON

9€° %6 96°¢ et Tt 14 oy
89°¢9 89°C 0 0 T4 0¢
%8°9¢ 6°¢ T ToT 4 9¢
08°8¢ 00°¢ 0 0 T4 0¢
8 1¢ A4 T ¥ Y4 9T
09°¢C 8C°C 0 0 T4 [AN
88°8T 80°¢ 0 0 Y4 0T
89°¢T 08°1 0 0 14 8
%9°8 88°0 0 0 S¢ 9
*u81ssy xX93a9) syoeIINORyg *u8TSSy X939\ syorIINORY 83S9] S30TII3\
*ON u®BaR *ON ueay *ON UB9K *ON ueajy Jo °*oN jJo °oN

sydeas dS1Tydaiowosiy

sydeasn o1ydIomosSTUON

SHAVYD ¥VINOTY HNISN WHII¥OOTY WSIHAYOWOSI HAVIO S,THAANYA ANV LAIWHOS A0 AONVIIOIdHd

¢*yts HTAVL

109

TABLE 5.4.3

PERFORMANCE RESULTS FOR SCHMIDT AND DRUFFEL'S ALGORITHMS
USING STRONGLY REGULAR NONISOMORPHIC GRAPHS OF ORDER 25
(Time in milliseconds)

Graph Pairs Vertex Total Run
G-G' Backtracks Assign. Time
4-12 1880 4788 29989.26

13-9 1541 4767 27589.75
1-2 894 3161 16219.87
13-15 1587 4837 28078. 14
7-10 1421 4291 23858.61
15-11 1635 5473 31549.71
13-9 1541 4767 27436.63
3~7 423 2113 8519.66
10-1 327 1825 7013.18
7-3 1446 4360 24197.42
5-4 2325 6259 44012.20
10-4 1155 3877 21029.08
10-7 423 2113 8501.87
11-9 1541 4768 28214.91
14-11 1713 4976 30602.02

TABLE 5.4.4

PERFORMANCE RESULTS FOR SCHMIDT AND DRUFFEL'S ALGORITHMS
USING NONISOMORPHIC STEINER GRAPHS OR ORDER 35

(Time in millise

conds)

Graph Pairs Vertex Total Run
G-G' Backtracks Assign. Time
9-26 2009 12243 64483.03

30-22 1737 10795 61987.48
1-5 5829 13651 149035.24
30-14 2289 14107 85157.19
19-24 1909 7751 50776.68
33-25 2441 5814 49426 .45
26-22 2733 - 12811 83181.97
9-15 2237 13343 70138.55
24-1 597 3955 19358.38
19-5 2997 10579 78309.25
14-9 2747 9153 77575.92
24-9 2749 12819 85849.68
24-15 2581 12171 82169.28
25-22 3129 12379 91342.29
33-25 2441 5814 50127.23

110

TABLE 5.4.5

PERFORMANCE RESULTS FOR SCHMIDT AND DRUFFEL'S ALGORITHMS
USING NONISOMORPHIC LATIN SQUARE GRAPHS OF ORDER 36
(Time in milliseconds)

Graph Pairs Vertex Total Run
G-G' Backtracks Assign. Time
83-90 3997 20196 115413.43
91-87 3493 21636 122977.57
81-82 10573 24252 362458.44
91-84 3989 22132 142182.88
86-88 8677 26388 261802.92

111

EXECUTION TIME T IN MILLISECONDS

112

75 T=0.056sNe=2+0.117N+5.593

*
¥
+*
56+ /3
4o
*
24
& T I T | I
) 8 10 12 20 30

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.4.1.1 Plot of Schmidt and Druffel's Isomorphism Algorithm
Using Nonisomorphic Regular Graphs.

113

For the isomorphic regular graphs, the raw execution times were fitted
by the quadratic equation

¢ = 2.294n% — 35.856n + 210.124, RZ = 97.72%
where the calculated maximum R? for a polynomial fit was 97.84%. This
equation with the raw execution times is plotted in Figure 5.4.1.2.
The execution times used by the graph representation algorithm in
processing isomorphic regular graphs were fitted by the quadratic
equation

t = 2.159n2 - 30.402 + 175.786, R® = 99.85%
where the calculated maximum R? for a polynomial fit was 99.85%Z. This
equation with the raw execution times is plotted in Figure 5.4.1.3.

Based on these equations, the performance of the implementation
of each of Schmidt and Druffel's algorithms is of experimental order
O(nz). Thus, for these classes of regular graphs, the algorithms of
Schmidt and Druffel performed efficiently.

Tor the strongly regular graphs, the total average processing
times, summarized in Tables 5.4.3, 5.4.4, and 5.4.5 were: 23.79
seconds for the graphs of order 25; 73.26 seconds for the Steiner
graphs; and 200.97 seconds for the Latin Square graphs. Total pro-
cessing time was calculated by taking the sum of the execution times
for the graph isomorphism algorithm and the graph representation
algorithm. While it could not be concluded that the algorithms pro-
cessed these graphs efficiently, it was concluded that since the graphs

were processed, the graph isomorphism algorithm was effective.

5.4.2 Performance of the Graph Isomorphism Algorithm

Based on the number of backtracks and the number of vertex

3200+

2400+
v
[]
=z
o
(58]
wi
W
3
-]
=
=

— 1600+
wl
=
—
5
—
s |
()
3%}
>
11}

800+

0

114

T=2.294=N»=2-35.8564N+210.124

—p—

ke

l I T T T T T T
6 8 10 12 16 20 26 30 40

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.4.1.2 Plot of Schmidt and Druffel's Isomorphism Algorithm

Using Isomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

115

2600+ T=2.159sN=s2-30.402=N+175.786

1950+

1300+

650+

0 l T T l T | y T]
6 8 10 12 16 20 26 20 4g

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.4.1.3 Plot of Graph Representation Algorithm (Schmidt and
Druffel) Using Isomorphic Regular Graphs.

116

assignments summarized in Table 5.4.2, the isomorphism algorithm was
effective in establishing for the class of regular graphs either
nonisomorphism or isomorphism. Since the number of backtracks and
vertex assignments of Table 5.4.2 for the class of nonisomorphic graphs
were all zero, the isomorphism algorithm determined the nonisomorphism
of the regular graphs from the initial partition.

For the sets of strongly regular graphs, the number of vertex
assignments of Tables 5.4.3, 5.4.4, and 5.4.5 always fell between n?
and n3. This performance measurement suggested that the isomorphism
algorithm was probably of experimental order O(n3) for the strongly
regular sets of graphs.

Hence, for all the graphs tested, the distance matrix proved to
be a very effective heuristic for solving the graph isomorphism
problem. Also, since the number of backtracks for any set of

observations or any pairs of graphs never exceeded n3, it was con-

cluded that the backtracking technique was quite stable and effective.

5.5 Comparison of the Algorithms
The four methods were compared based on the performance of their

implementations and the performance of their algorithms.

5.5.1 Comparison of Performance of the Implementations
For the set of nonisomorphic regular graphs, the performance of
the implementation of the new isomorphism algorithm was superior to
that of the other three isomorphism algorithm, since the algorithm
required the least amount of processing time, t = 1.89 milliseconds.
Schmidt and Druffel's isomorphism algorithm, while slower than the new

isomorphism algorithm, processed on the average all nonisomorphic

117

regular graphs in less than a minute and thus executed much faster than
either Berztiss' or Ullmann's. These last two algorithms were very
slow, Ullmann's being slower than Berztiss'.

For the isomorphic regular graphs, the new isomorphism algorithm
processed the graphs faster than Schmidt and Druffel's, however, the
execution time of the MSM representation algorithm was much slower
than the distance matrix representation algorithm. Thus, in order to
compare these methods based on execution time, the total execution
times for all methods were calculated and are summarized in Table
5.5.1.1. The total raw execution times, t, for all methods were fitted
by using polynomial and exponential functions of n. The equations
which best fit the raw execution times are given with the corresponding
R2's in Table 5.5.1.2. These equations with the total raw execution
times are plotted in Figures 5.5.1.1-5.5.1.4. Thus, based on total
execution time, Schmidt and Druffel's algorithms, of order 0(n2), were
faster than the new algorithms, also of order O(nz). However, the new
algorithms were much faster than those of Berztiss or Ullmann, both of
which were very slow.

For the set of strongly regular graphs, it is obvious that Schmidt
and Druffel's method was superior to the other three methods, since it
was the only method of the four tested which was able to process any
of the nonisomorphic strongly regular graphs.

5.5.2 Comparison of the Performance of the Graph
Isomorphism Algorithms

For the nonisomorphic regular graphs, the new isomorphism algorithm

and Schmidt and Druffel's isomorphism algorithm performed equally well.

For the new isomorphism algorithm, nonisomorphism was established based

118

‘wy3pI08[y B,UUBWTE I0F PIsn 104 83837 0T £TUQ ¥%

*gmyI7I08TY #SN 103 posn aiam 83893 9T £TU0 «

9T 1EE | ZT°TO6Y T tee o0 .t T TIST | ¥6°988S1 ST oY
0L°80T |YE° TZEL tet ot o °t 9L 99T | 60°LS68 Y4 o€
GE"98 Sy 6Y91 the *he B te 6% °SS 91°6%0L T4 97
6T° Yy L LS8 6% L0EYCT | 6%°8LST6L I e 66°60T | 96°69TY #%ST 0¢
£6° 62 60°t1S 08°T795Y €L°92029 TLTTYTL9T | 9L°€8918 oL el ST 66LC 1Y4 9T
191 6€°28¢ [4AL 1% %44 261999t T2°LOLT 91°61ET 89°TOT | %L °60LT 114 [A !
60°ET Ls°L61 L£°0599 8L°8016 L8°961 96°6€T 20°222 | 16°TEET 114 01
08°8 49°6¢1 0£°9182 LL° L9%Y L6°8C 09°'1L 05°29T | 8L7TL0T 114 8
98°¢ 8h° L8 mormcm Ge°sget L'y 80°¢ct €L°SS 61°€0L 39 9
sADQg *3S uealy *A9Q °3S uesl *AdQ *1IS ueal “A9Q °3S ueay g389], | 8°9DFII8A
3o °ON 3o *oN
T23302q pue IpTWYdS uuemyin 387312199 sUYITI03TY MoN

(SpuodesTIIIW UF 3UWIY)
SHAVED ¥VINOHd OIHAYOWOSI ONISN
SAWIL NOILADAXE TVIOL NO QASVE SUOHIAW ¥N04 A0 NOLIVINAWATIWL I0 FONVII0JYad

1°1°6°6 ATVl

119

123301Q

LT°66 0T6°G8E + UBST* 99 - UEGH'H = pue 3IpTWYoOS
6€°€L ¢-0T X 99T#0°9Z X (66298 + ULISH 0 + zU6600°0-)dxo = uueuyTq
€648 ¢-0T X 99T%0°9Z ¥ (08%9°9 + UOZYT'O - 7Uz9€0°0)dxa = ssT3239g
06°66 980°L07 + UWLOE"9 - ,UBZB"6 = maN
(%) 74 uoy3enby poyIsy

T°1°6°¢ FT9VI NI QIZI¥VIRAOS
STWIL NOILADAXE MVY TVIOL ¥0od LId A0 SNOIIVADA

¢°T°S6°S HTIEVL

EXECUTION TIME T IN MILLISECONDS

120

20000~ T=9.828+N==2-6.307«N+407 .086

15000~

10000+

5000+

G] T T J ! 1 T T T
6 8 10 12 16 20 26 30 40

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.5.1.1 Plot of Total Time for New Algorithms Using
Isomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

121

80000 T-EXP(0.0362:N=+2-0.142+N+6.648) =0.02604166

*
*
60000
*
40000
*
*
*
20000
*
*
* 3
o 4 * |
6 8 10 12 16

NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.5.1.2 Plot of Total Time for Berztiss' Algorithms Using
Isomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

122

320000~ T=EXP(~0.00552Ne =240 .4517=N+8.5293) «0.02604166

¥

*

*.

240000~ *

160000 * M
80000

3 .
6 8 10 12 16
NUMBER OF VERTICES N

D
o -

Figure 5.5.1.3 Plot of Total Time for Ullriann's Algorithms Using
Isomorphic Regular Graphs.

EXECUTION TIME T IN MILLISECONDS

123

6400+ T=4 453N «2-66.258+N+385.910

i
4800+ :
3200+
1509—

0 | | | | l | T

1 |
6 8 10 12 16 20 26 30 40
NUMBER OF VERTICES N (NONLINEAR SCALE)

Figure 5.5.1.4 Plot of Total Time for Schmidt and Druffel's
Algorithms Using Isomorphic Regular Graphs.

124
on the MSM's representation of the graphs, and for Schmidt and Druffel's
isomorphism algorithm, nonisomorphism was determined from the initial
partition. Of the two remaining isomorphism algorithms, Ullmann's was
more effective than Berztiss', since the number of backtracks and
vertex assignments were considerably less than those of Berztiss.

For the isomorphic regular graphs, based on the number of vertex
assignments, the new isomorphism algorithm performed better than
Schmidt and Druffel's for isomorphic regular graphs having 26 or more
vertices and compared favorably with theirs for the other graphs.
Again based on the number of backtracks and vertex assignments, Ullmann's
algorithm performed better than Berztiss'.

For the strongly regular graphs, no comparisons could be made,
since Schmidt and Druffel's algorithm was the only one of the four to
process these graphs in less than 4 minutes execution time of the

IBM 370/158.

5.6 Conclusions

The experimental data,contained in the Tables presented in the
previous sections, provided a basis for choosing a graph isomorphism
algorithm for particular types of graphs. The general case would
probably not include graphs any more difficult than the set of
nonisomorphic strongly regular graphs tested. Thus, Schmidt and
Druffel's isomorphism algorithm was superior to the other three iso-
morphism algorithms, since it was usually able to process all graphs.

However, for the regular graphs tested, the new isomorphism
algorithm, based on overall performance measurements, was superior to

the other three algorithms. Thus, if the graphs being considered were

125
regular, the new algorithm should be used.
Both Berztiss' and Ullmann's algorithms required large amounts of
execution time. Neitﬁer algorithm appeared to be practical for graph

isomorphism problems.

LIST OF REFERENCES

Barrow, H. G. and J. R. Popplestone. 1971. "Relational Descrip-
tions in Picture Processing". In Machine Intelligence. ed. by
B. Meltzer and D. Michie. Edinburgh University Press, 377-396.

Barrow, H. G., A. P. Ambler, and R. M. Burstall. 1972. ""Some
Techniques for Recognizing Structures in Pictures'". In Frontiers Of
Pattern Recognition. ed. by S. Watanabe. Academic Press, New York,
1-29.

Berztiss, A. T. 1973. A Backtrack Procedure for Isomorphism of
Directed Graphs. J. ACM, 20, 3, 365-377.

Brown, W. 1963. Enumeration of Non-separable Planar Maps.
Canad. J. Math., 15, 526-545.

Brown, W. 1966. On the Enumeration of Non-planar Maps. Mem.
Amer. Math. Soc., No. 65.

Bussemaker, F. C. and J. J. Seidel. 1970. Symmetric Hadamard
Matrices of Order 36. T.H.-Report 70-WSK-02, Dept. of Mathematics,
Technological University Eindhoven, Netherlands.

Collatz, L. and U. Sinogowitz. 1957. Spektrem endlicher Graphs.
Abh. Math. Sem. Univ. Hamburg., 21, 63-77.

Corneil, D. G. 1968. Graph Isomorphism. Ph.D. Diss., Dept. of
Comp. Sc., Univ. of Toronto, Toronto, Ontario, Canada.

Corneil, D. G. 1974. The Analysis of Graph Theoretical
Algorithms. Tech Rep. No. 65, Dept. of Comp. Sc., Univ. of Toronto,
Ontario, Canada.

Cornog, J. R., and H. L. Bryan. 1966. Search Methods Used with
Transistor Patent Applications. IEEE-Spectrum, 3, 2, 116-121.

de Bruijn, N. G. 1964. "Polya's Theory of Counting". In Applied
Combinatorial Mathematics. ed. by E. F. Beckenbach. Wiley, New York.

Druffel, L. E. 1975. Graph Related Algorithms Isomorphism,
Automorphism, and Containment. Ph.D. Diss., Dept. of Comp. Sc.,
Vanderbilt Univ.

Fisher, M. E. 1966. On Hearing the Shape of a Drum. J. Comb.
Th., 1, 105-125.
126

127

Floyd, R. W. 1962. Algorithm 97, Shortest Path, Comm. ACM, 5,
6, 345.

Grimsdale, R. L., F. H. Sumner, C. J. Tunis and T. Kilburn. 1959.
A System for Automatic Recognition of Patterns. Proc. IEEE, 106, 211~
221.

Harary, F. 1960. Unsolved Problems in the Enumeration of Graphs.
Magyar Tud. Akad. Mat. Kutato Int. Kozl., 5, 63-95.

Harary, F. 1962. The Determinant of the Adjacency Matrix of a
Graph. SIAM Rev., 4, 3, 202-210.

Harary, F. 1964. "Combinatorial Problems in Graphic Enumeration".
In Applied Combinatorial Mathematics. ed. E. F. Beckenbach. Wiley,
New York.

Hoffman, A. J. 1963. On the Polynomial of a Graph. Amer. Math.
Monthly, 70, 30-36.

Hopcroft, J. E. and R. E. Tarjan. 1972. "Isomorphism of Planar
Graphs". In Complexity of Computer Computations. ed. by R. E. Miller
and J. W. Thatcher. Plenum Press, New York, 143-150.

Hoperoft, J. E. and J. K. Wong. 1974. Linear Time Algorithm for
Isomorphism of Planar Graphs. Proc. 6th Annual ACM Symp. on Theory of
Computing, Seattle, Wash., 172-184.

Karp, R. M. 1972. '"Reducibility Among Combinatorial Problems".
In Complexity of Computer Computations. ed. by R. E. Miller and
J. W. Thatcher. Plenum Press, New York, 85-103.

Knodel, W. 1971. Ein Verfahren zur Feststellung der Isomorphic
von endlichen, zusammenhangenden Graphen. Computing, 8, 329-334
(Abstract).

Levi, G. 1974. Graph Isomorphism: A Heuristic Edge-partioning-
oriented Algorithm. Computing, 12, 291-313,

Lynch, M. F., J. M. Harrison, W. G. Town, and J. E. Ash. 1971.
Computer Handling of Chemical Structure Information. Macdonald, London.

Morpurgo, R. 1971. Un Metodo Eurisicu per la Verifica dell’
Isomorphismo di due Grafi Semplici non Orientati. Calcolo, 8, 1-31
(Abstract).

Paulus, A. J. L. 1973. Conference Matrices and Graphs of Order 26.
T.H.-Report 73-WSK-06, Dept. of Mathematics, Technological University
Eindhoven, Netherlands.

128

Pélya, G. 1937. Kombinatorische Anzahtlbestimmungen fur Gruppen,
Graphen und chemische Verbindungen. Acta. Math., 68, 145-254 (Abstract).

Proskurowski, A. 1974. Search for a Unique Incidence Matrix of
a Graph. BIT. 14, 209-226.

Sakai, T., M. Nagao, and H. Matsushima. 1972. Extraction of
Invariant Picture Substructures by Computer. Comput. Graphics and
Image Process., 1, 1, 81-96.

Salton, G. 1968. Automatic Information Organization and
Retrieval. McGraw-Hill, New York.

Salton, G. and E. H. Sussenguth, Jr. 1964. Some Flexible
Information Retrieval Systems Using Structure Matching Procedures.
Proc. AFIPS, 25, 587-597.

Saucier, G. 1971. Un Algorithme Efficace Recherchant
1'Isomorphisme de 2 Graphes. Rev. Francaise d'Informat. Recherche
Operationelle, 5, R-3, 39-51. (Abstradt).

Schmidt, D. C. and L. E. Druffel. 1976. A Fast Backtracking
Algorithm to Test Directed Graphs for Isomorphism Using Distance
Matrices. J. ACM, 23, 3, 433-445.

Seshu, S. and M. Reed. 1961. Linear Graphs and Electrical
Networks. Addison Wesley, Reading, Mass.

Shah, Y. J., G. I. Davida and M. K. McCarthy. 1974. Optimum
Features and Graph Isomorphism. IEEE-TSMC, 4, 313-319.

Sherman, H. 1960. A Quasi-topological Method for the Recogniticn
of Line Patterns. Information Processing-59. North Holland, Amsterdam,
232-238.

Sirovich, F. 1971. Isomofisco fra Grafi: wun Algoritma
Efficiente per Trovare tutti gli Isomorfismi. Calcolo, 8, 301-337.
(Abstract).

Steen, J. P. 1969. Principe d'un Algorithme de Recherche d'un
Iscmorphisme entre deux Graphes. Rev. Francaise d'Informat. Recherche
Operationelle, 3, R-3, 51-69. (Abstract).

Sussenguth, E. H., Jr. 1964. Structure matching in Information
Processing. Ph.D. Diss., Harvard Univ.

Sussenguth, E. H., Jr. 1965. A Graph-theoretic Algorithm for
Matching Chemical Structures. J. Chem. Doec., 5, 1, 36-43.

Tate, F. A. 1967. Handling Chemical Compounds in Information
Systems. Ann. Rev. Inf., Sci. Tech., 2, 285-309.

129

Turner, J. 1967. Point Symmetric Graphs with a Prime Number of
Points. J. Comb. Th., 3, 136-145.

Turner, J. 1968. Generalized Matrix Functions and the Graph
Isomorphism Problem. SIAM J. Appl. Math., 16, 3, 520-526.

Tutte, W. T. 1962. A Cenus of Planar Triangulationms, Cand. J.
Math., 14, 21-38.

Tutte, W. T. 1963. A Cenus of Planar Maps. Canad. J. Math., 15,
249-271.

Tutte, W. T. 1964. A Cenus of Hamiltonian Polygons. Canad. J.
Math., 14, 402-417.

Ullmann, J. R. 1973. Pattern Recognition Techniques. Crane,
Russak & Company, Inc., New York.

Ullmann, J. R. 1976. An Algorithm For Subgraph Isomorphism.
J. ACM, 23, 31-42.

Unger, S. H. 1964. GIT-A Heuristic Program for Testing Pairs of
Directed Line Graphs for Isomorphism. C. ACM, 7, 1, 26-34.

Weinberg, L. 1966. A Simple and Efficient Algorithm for Deter-—
mining Isomorphism of Planar Triply Connected Graphs. IEEE-TCT, 13,
142-148,

Yang, C. C. 1974. Generation of all Closed Partitions on a State
Set of a Sequential Machine. IEEE Trans. Comput. C-23, 530-533.

Yang, C. C. 1975. Structure Preserving Morphisms of Finite
Automata and an Application to Graph Isomorphism. IEEE Trans. Comput.
C-24, 1133-1139.

130

APPENDICES

APPENDIX A

DEFINITIONS AND NOTATIONS

Terms and notations which are used in this dissertation are defined
in this Appendix. The terms and notations are classified into three
areas. TFirst, the definitions and corresponding notations of graph
properties and graph representations are presented. Special types of
graphs are then defined. Next, since this dissertation is concerned
with the analyses of graph isomorphism algorithms, terms used in the

analyses of algorithms are defined and explained.

A.1 Graph Related Terms

Definition A.1.1. A directed graph G is a pair (V,A) where V is a

finite set called the set of vertices, and A& V x V is a binary
relation on V called the incidence relation or the set of arcs.

Definition A.1.2. The number of vertices of a graph is called the

order of the graph.

Definition A.l.3. Two vertices v; and vy of a graph are said to be

adjacent if (vi,vj) € A or (vi,vy) € A.

Definition A.1.4. The indegree of a vertex v; (id(vi)) is the number

of arcs that terminate on it, and the outdegree of a vertex vj (0d(vy))

is the number of arcs that originate from it.

131

132

Definition A.1l.5. Given an arc (vi,vj) in A, the vertices vj and V5 in

V are called the origin and terminus of the arc, respectively. A path

P of G is a sequence of arcs such that for each pair of consecutive arcs
in P, the terminus of the first arc, and the origin of the second arc -
coincide. The number of arcs along a path is called the length of the
path.

Definition A.1.6. A circuit is a path such that the origin of the first

arc coincides with the terminus of the last.

Definition A.1.7. A circuit of length 1 is called a loop.

Definition A.1.8. A vertex v; is said to be reachable from a vertex vs,

if v = vy or there is a path from vy to vj.

Definition A.1.9. A graph G is said to be strongly connected if for

every pair of vertices v; and vy in G, there is a path from v; to vy.

Definition A.1.10. A graph Gg = (VS,AS) is called a subgraph of a graph

G = (V,A) if VgV and if ASS; A and A,C Vg x Vg.

Definition A.1l.11. A component G, = (VC,AC) of a graph G = (V,A) is a

strongly connected subgraph of G.

Definition A.1.12. A graph G is said to be complete if every pair of

vertices in G is joined by omne arc.

Definition A.1.13. An adjacency matrix [gij] of a graph G having n

vertices in a n x n array in which
. 1,if (vi,vj) & A
ii
J 0, otherwise

Definition A.l1.14. An incidence matrix [bij] of a graph G having n

vertices vy through v, and m arcs a; through ay is an m x n array in

which

133

1, if a; is incident on £
b,. =
i
J 0, otherwise.

Definition A.1.15. An invertible (one-to-one and onto) mapping

y: V -+ V' is an isomorphism from G = (V,A) to G' = (V',A'") iff it

preserves graph incidences, i.e., for every arc (vi,vj) €& A there is
a corresponding arc (y(vi), Y(Vj)) & A' and vice versa.

Definition A.1.16. An automorphism is an isomorphism of G onto itself.

2.2 Special Types of Graphs

Definition A.2.1. If the incidence relation of a directed graph is

symmetric, i.e., for distinct vj and vy in V, every arc (Vi’vj) in A
implies the arc (Vj,vi) in A, then the graph is called undirected. An
undirected graph is denoted by a pair (V,E) where E A is called the
set of edges. In an undirected graph, the number of edges incident on
a vertex is called the degree of the vertex, and a path is called a

Definition A.2.2. A simple graph is a directed graph which has no

loops.

Definition A.2.3. A finite undirected graph is planar if it can be

drawn in a plane in such a way that no two of its edges intersect
except, possibly at vertices.

Definition A.2.4. A directed (undirected) graph is called k-regular if

for all vertices v;, the indegree and outdegree (the degree) are each
equal to k.

Definition A.2.5. An undirected graph G is connected if for each pair

of vertices v; and Vo in G, there is a chain between vj and Vo

134

Definition A.2.6. An undirected graph is a polygon if it is connected

and 2-regular.

Definition A.2.7. Two vertices of a graph are similar if there is an

automorphism which maps one into the other. A graph is point symmetric

if all vertices are pairwise similar.

Definition A.2.8. An undirected graph which is not complete and whose

set of edges is not empty is strongly regular if constants Pil’PiZ’
1 2 2 2 .
P22,P11,P12,P22 exist such that

(1) for every two adjacent vertices v; and Vis i.e., (vi,vj) EE,
there are

1
(i) Pjj vertices adjacent to both v and \£

(ii) Piz vertices adjacent to vy but not adjacent to vj
(iii)Pé2 vertices adjacent to neither v; nor vj,

and

(2) for every two nonadjacent vertices vj and Vi i.e., (vi,vj) ¢-E,

there are

(i) Pil vertices adjacent to v; and vj.

(ii) P%z vertices adjacent to vj but not adjacent to vj.

(iii)P%2 vertices adjacent to neither v; nor vy

Definition A.2.9. A Latin square of order 6 consists of 36 triples

selected from 6 symbols such that for each pair of coordinates, every

pair of symbols occurs exactly once. The Latin Square graph

(Bussemaker and Seidel, 1970) is a strongly regular graph which has as
its vertices the 36 triples of a Latin square, and any two vertices are
adjacent iff the corresponding triples have one symbol in common.

For example, the two vertices v; and vj which are represented

respectively by the two triples (a,b,c) and (c,d,e), from the six

135

symbols a,b,c,d,e,f, are adjacent since they have the symbol c¢ in

v
commort.

Definition A.2.10. A Steiner triple system of order 15 consists of

35 unordered triples selected from 15 symbols such that every unordered

pair of symbols occurs in exactly one triple. A Steiner graph

(Bussemaker and Seidel, 1970) is a strongly regular graph which has as
its vertices the 35 triples of a Steiner triple system, and any two
vertices are adjacent iff the corresponding triples have one symbol in

common.

A.3 Algorithms

Definition A.3.1. An algorithm is a finite set of rules which gives a

sequence of operations for transforming some input set into an output
set. In terms of a graph isomorphism algorithm, the input set is the
set of vertices and arcs defining the two graphs and, the output set is
the function which defines an isormorphism or a message which indicates
no isomorphism between these two graphs.

Definition A.3.2. An algorithm is said to be effective if its

operations are sufficiently basic, i.e., the operations can be
performed manually in a finite length of time.

Definition A.3.3. The order of an algorithm is a measure of the

efficiency of the algorithm and is determined by considering the
number of steps required for the algorithm to terminate as a function
of input set size. The order of an algorithm is given by the O
notation. In this dissertation the following conventions have been

used

136
£(n) = 0(£(n))
c » 0(£(n)) = 0(£(n))
where ¢ is a constant.

Definition A.3.4. A polynomial algorithm terminates in a number of

steps bounded by some polynomial function of input set size.
Algorithms which belong to the polynomial class of algorithms are said
to be efficient.

Definition A.3.5. An exponential algorithm terminates in a number of

steps bounded by some exponential function of input set size.
Algorithms which belong to the exponential class of algorithms are
impractical for very large problems but sometimes can be appliedAto
smaller real problems.

Definition A.3.6. A factorial algorithm terminates in a number of

steps bounded by some factorial function of input set size. The time
required to execute algorithms of the factorial class even for a small
problem is prohibitive.

Definition A.3.7. A heuristic algorithm is based on a strategy, some-

times called a “"rule of thumb", which may or may not improve the
efficiency of the algorithm in discovering the solution of a particular
problem. For the graph isomorphism problem, the strategy is the
application of some necessary conditions for isomorphism which may or
may not immediately show that no isomorphism exist or may greatly
reduce the number of functions to be checked for isomorphism.

Definition A.3.8. A backtracking algorithm is based on a depth-first

tree search through the space of all possible solutions. A backtracking
technique systematically attempts all possible solutions, eliminates

potential solutions as quickly as possible, and never retries a potential

137

solution that has already been tried.

Definition A.3.9. All NP-complete problems can be solved in polynomial

time on a nondeterministic Turing machine. If any one NP-complete
problem can be solved in polynomial time on a one-tape deterministic
Turing machine, then all NP-complete problems can be solved in
polynomial time on such a machine. The graph isomorphism problem is not
known to be NP-complete.

Definition A.3.10. The coefficient of determination R2 is defined by

RZ = 1 - SSE/SST
where SSE is the sum of squares of residuals I(tj - gi)z for £i the

observed value and t; the predicted value, and SST is the corrected

total sum of squares, Z(ti - Ei)z for Ei the mean value. In this

. s s . . . 2
dissertation, the coefficient of determination is given as 100 * R

which is the percent variation of t explained by the experimental

equation.

APPENDIX B

A PL/I SOURCE LISTING OF THE RANDOM GRAPH
GENERATING PROCEDURE GRAPHS

GRAPHS: PROCEDURE OPTIONS (MAIN);

[*
AL
[*
/%
J*
[*
I/*
/%
/%

*/

THE MAIN PROCEDURE GRAPHS GENERATES TWO ISOMORPHIC N/2 RANDOM */
SIMPLE REGULAR GRAPHS OR TUWO NOWISOMORPIIC N/2 REGULAR GRAPIS. ®/
FIRST, THE PROCEDURE MATRIX IS CALLED TO GENERATE THE GRAPH GK. */
NEXT, THE RANDOM NUMBER GENIRATOR PROCEDURE PRAND IS CALLED TO */
SPECIFY A VLRTEX ASSIGNMENT TO RE USED TO GENLERATE THE SECOND =/
GRAPH GK. IF GK IS TO BE ISOMORPUIC TO GJ, ISo="1'B, THEN THE */.
ROWS AND COLUMNS OF GJ ARE PERMUTED ACCORDING TO TUE VERTEX */
ASSIGNMENTS SPECIFIED BY TIHE ARRAY MAP ASD GRAPH GK IS PRODUCED. */

/% IF GK IS TO BE NONISOMORPHIC TO GJ, I1S0='n"'B, THEW THE ROVUS OF =/
/* GJ ARE PERMUTED ACCORDING TO THE VERTEX ASSIGNMENTS OF ARRAY MAP.*/
/* THE SET OF ARCS OF BOTH GRAPHS ARE WRITTEN TO TiE FILE GRAPH. */
/% */
DECLARE (GJ(64,64),GK(64,64),150) BIT(1), (NGJ ,NGK,I0UT)
FIXCD DIN{15);
DECLARE YFL FLOAT;
DECLARE (NPGJ,NPCK) FIXED BIN(15);
GET LIST(NUM GR,NGJ,HNCK,IOUT,ISO);
NPGJI=NGJ*IOUT; NPOK=NGK*IOUT;
PUT FILE(CRAPH) EDIT(EHII-I_GR,NGJ,NGK,NPGJ,NPGK) (F(4));
DO II =1 TO WIM GR;
GJ="0'B; GK='07B;
£ */
/* CALL MATRIX TO GENERATE GRAPH GJ %/
/* ‘ */
CALL MATRIX(AJ,NNJ,I0OUT); .
/* BY CALLI.G PRAID, DETERMINE VERTEX ASSIGNMENTS TO BE USED IN */
/* GENERATING CK. VERTEX ASSIGWMENTS ARE STORED IN ARRAY MAP. */

BEGI;
DECLARE MAP(NGK) FIXED BIN(15), VERTEX(NGK) BIT(1);
VERTEX="0"'D; HADP=0;
DO I=1 TO UGK;
CALL PRAND(YFL); IYFL=YFL=ICGK + 1;
IF AVERTEX(IYFL) THEWY DO; MAP(I)=IYFL; VERTEX(IYFL)='1'B;
END3;
END;
K=13
DO I=1 TO NrK;
IF MAP(I)=0
THEN DO
NXT_VERTEX: ITF VERTEX(K) THEN DO; K=K + 1; GO TO NXT VERTEX; END;

138

139

ELSE DO; VERTEX(K)='1'B; MAP(I)=K; K=K + 1; LND;

END;
END; :
/% */
/* GENERATE GRAPH CGK BY USING VERTEX ASSIGNMENT IN MAP */
/% */
IF IS0
THEN DO;

DO I=1 TO NGJ; DO J=1 TO NGK;
IF GJ(I,J) THEN GK(MAP(I),MAP(J))="1"'B;
EWD; ENDg;
PUT SKIP(2) EDIT((MAP(I) DO I=1 TO NGK)) ((64)F(3));
END;
ELSE DO I=1 TO NGJ;
GK(MAP (I),*)=GJ(I,*);

END}
/% */
/* WRITE OUT ADJACENCY LIST FOR EACH GRAPH TO FILE GRAPH */
/% */

DO I=1 TO NGJ; DO J=1 TO NGJ;
IF GJ(I,J) THEN PUT FILE(GRAPI) EDIT(I,J) (P(3)) END; END;
DO I=1 TO NGK; DO J=1 TO NGKj;
IF GK(I,J) THEN PUT FILE(GRAPH) EDIT(I,J) (F(3)); END; END;
END;
END;
END GRAPHS;

MATRIX: PROCEDURE(G,HNG,IOUT);

/% */
/% THE PROCEDURE MATRIX GENERATES A SIMPLE RANDOM GRAPH HAVING */
/* ADJACENCY MATRIX G, NG VERTICES, AND THE INDEGREE AND OUTDEGRLE */

/* OF EACH VERTEX EOUAL TO IOUT. %/
/% THE ARRAY IN CONTAINS THE INDEGREE FOR EACH VERTEX. */
/* THE ARRAY INDEX HOLDS THE LIST OF POSSIBLE VERTICES, I.E., ALL */
/* VERTICES WHOSE INDEGREE < IOUT. */
/* CON_TO ARRAY INSURES THAT A GIVEN VERTEX IS CONNECTED TO IOUT */
/* DIFFERENT VERTICES. %/
/% */

DECLARE G(*,*) BIT(1),(NC,IOUT) FIXED BIN(15),
(IN(64) ,INDEX(64)) FIXED BIN(15), CON _TO(64) BIT(1),YFL FLOAT;
/* */
MATRIX BEGIN:
TG='0'B; IN=0;

N=NG = 13

DO I=1 TO N; INDEX(I)=I + 1; END;
I */
/* RANDOMLY GENERATE THE FIRST NG-1 ROWS OF ADJACENCY MATRIX G SUCH */
/* THAT THERE ARE NO SELF LOOPS,I.E., G(1,I)=0. */
/% , ' : */

DO I=1 TO NG - 1;
CON_TO="0'B; COU I TO(I)="1"B;
DO J=1 TO IOUT;

USED: CALL PRAND(YTFL);

/%
1%
/*

l*
/*
l*
/*

/*
/%
/*
/*
/%
/*

IYFL=YFL*N + 1;
IF CON_TO(IIIDEX(IYFL)) THEN GO TO USED;
IN(INDEX(IYFL))=IN(INDEX(IYFL)) + 1;
CON_TO (INDEX(IYFL))="'1'B; G(I,INDEX(IYFL))=' 1'B;
IF IN(INDEX(IYFL))=IOUT
THEN DO; N=N - 13
DO K=IYFL TO N3 INDEX(K)=INDIX(K + _1); END;
END;

CHECK NUMBER OF POSSIBLE VERTEX CilOICES REMAINING.
NP0OSS=N;

FOR ANY REMAINING VERTEX CHOICES WHICH HAVE BEEN USED IN ROW I
SUBSTRACT 1 FROM NPOSS.

IF N < IOUT
THEN DO K=1 TO N; IF CON_TO(INDEX(K)) TLEN NPOSS=NPOSS -

ENDs

IF THE NUMBER OF CHOICES IS GREATER THAN THE RCMAINING POSSIBLE
VERTEX CHOICES, THEN FROM THE ROWS LESS THAN I, MAKE MORE POSSI-
BLE VERTEX CHOICES BY INCREASING THUE INDEGREE OF THE VERTICES
WHICH WERE LEFT BY FREEING A VERTEX FROM THE GIVEN ROW,

IF I0UT - J > NPOSS
THEN DO;
NEND=N;
DO KR=1 TO NEND;
IF CON_TO(INDEX(KK)) THEN
DO;
K=INDEX(KK) ;
DO L=1 TO NG;
IF IN(L) = IOUT & Lv=1
THEN DO II=1 TO I ~ 13
IF G(II,L) & VG(II,K) & K= II
THEN DOj;
EXCHANGE: G(II,L)='0'B; G(II,K)='1'B;
IN(L)=IN(L) - 1; IN(QO=IN(K) + 1;
IF IN(K)=IOUT

140

*/
*/
*/

*/
fe/
*/
%/

*/
*/
:':/
5/
*/
*/

THEN DO; INDEX(KK)=L; NPOSS=NPOSS+1;

GO TO KK _END; END;
ELSE DO; N=N+1; INDEX(N)=L;
NPOSS=NPOSS+1; GO TO L _END; END;
END;
END;
L_END: END;
END;

KK_END: END;

END;
IF IOUT - J > NPNSS THEN GO TO MATRIX BEGIN;
END;

141

/* */
/* PLACE VERTEX I ON AVAILABLE VERTEX ASSIGNMENT LIST. */
/* */
IF IN(I + 1)=I0UT
THEN IF IN(I) ~= IOUT
THEN DO; N= N + 13 INDEX(N)=I; GO TO FIXLD; END;
ELSE GO TO FIXED;
DO K=1 TO N;
IF INDEX(K)=I + 1
" THEN IF IN(I) ~= IOUT
THEN INDEX(K)=I;
ELSE DO; H=N - 1;
DO KK=K TO N; INDEX(KK)=INDEX(KK + 1); END;
GO TO FIXED; EuD;
END;
FIXED:
END3;
/* */
/* MAKE VERTEX ASSIGNMENTS FOR VERTEX NG. */
/* */
DO J=1 TO NG - 13
IF IN(J) ~= IOUT _
THEN DO; IN(J)= IN(J) + 1; G(NG,J)='1'B;
END;
END3
IN_DEG=0;
DO WitiLLi (LN _DEG "= IOUT);
IN_DEG=I0UT;
DO J=1 TO NG;
IF IN(J) ~v= IOUT
THEN DO K=1 TO NG - 1}
IF vG(K,J) & K = J THEN DO L=1 TO NG -~ 1;
IF G(X,L) & “G(NG,L)
THEN DO; G(NG,L)="'1"B;
G(K,L)="0'B; G(K,J)="1"B;
IN(I)=IN(J) + 1; IF IN(J) ~= IOUT
THEN IN DEG=IN(J);
GO TO NXT_IN;
END;
END3;
END;
NXT_IN: END;
END;
END MATRIX;
PRAND: PROCEDURE(R);
/% */
PRAND: PROCEDURE(R);
/% THE PROCEDURE PRAND GENERATES RANDOM NUMBERS BETWEEN O AND 1 #/
/* FROM A UNIFORM DISTRIBUTION. THE RANDOM NUMBER IS RETURMNED IN */
/% PARAMETER R. TO CALL TIIE PROCEDURE, DECLARE THE ENTRY POINT TOR */
/* IX AS FIXED BIN(31). */

142

/% */
DCL IX FIXED BIN (31) STATIC INITIAL (54321),R FLOAT;
IX=IX*3125; :
IF IX > 65536 TIEN IX=IX-(IX/65536)%65536;
R=IX;
R=R/65536.;
RETURN3
END PRAND;

APPENDIX C

AN ASSEMBLY LANGUAGE LISTING OF THE
TIMING PROCEDURE ASMTIME

ASMTME STARTASM

S % ¥ ¥

THE ROUTINE ASMTME ACCUMULATES EXECUTION TIME USED BY A TASK.
WHEN CALLING, IT IS NECESSARY TO PASS ONE PARAMETER TO ASMIME. IF
THIS PARAMETER CONTAINS A NEGATIVE NUMBER, THEN ASMIME SLTS THE
% SYSTEM TIMER TO TWO BILLION TIME UJITS. IF THE PARAMETER CONTAINS
% A POSITIVE NUMBER, TUEN THE REMAINING TIME IS SUSSTRACTED FROM TIE
% TWO BILLION TIME UNITS IN ORDER TO GET THE AMOUNT OF TIME USED BY
%# TASK. THIS TIME IS RETURNED TO THE CALLING PROCEDURE IN UNITS OF
% 26.04166 MICROSLCONDS THROUGH THE PARAMETER.
.
% ESTABLISH 0S LINKAGE
%
L R2,0(,R1) GET PARM ADDRESS
L R3,0(,R2) GET NUMBER
%*
LTR R3,R3 DIFFERENCE OR ACTUAL TIME?
BNP SETTIME NOT POS- GO SET TIME
*
TTIMER CANCEL,TU GET THE REMAINDER FOR TASK
. .
L R1,TIMEINTL GET THE TIME INTERVAL
SR R1,RO GET AMOUNT TIME USED
ST R1,0(,R2) SAVE RESULT IN PARM
B RETURN GO TO RETURN
%
SETTIME DS OH
MVC TIMEINTL(4),WKTME
STIMER TASK,TUINTVL=TIMEINTL SET TIMER FOR LONG TIME
%
RETURN DS OH
L R13,4(,R13) GET OS SAVE ARTA ADDRESS BACK
%*
RETURN (14,12),RC=0 RETURN CLEAN
%
®
SAVE DC 18A(0) 0S SAVE AREA
WKTME DC F'2000000000'
TIMEINTL DC F'2000000000' TWO BILLION TIME UNITS
CNOP 0,4

143

144

SAV DS 18F RLIG SAVE AREA
TIMP1 DS D
TEMP2 DS D

END

APPENDIX D
THE PL/I IMPLEMENTATION OF THE NEW GRAPH
ISOMORPHISM ALGORITHM

MAY: PROCEDURE OPTIONS(MAIN);
/%

/% THE MAIN PROCEDURE MAY IMPLEMENTS ALGORITHIM 2. THE STATEMENT

/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBLRS OF ALGORITIM 2.
/* STEP 0, THE PROCEDURE CALLS GEIGR TO CREATE TIIE ADJACENCY LIQT
/% FOR GRAPH GJ (G) AND TIIE ADJACLNCY MATRIX FOR GRAPH GK (G').

/% MOOREM IS THEN CALLED TO CREATE THE CORRESPONDING MOORE SEQUENT-

/* TAL MACHINES (SM'S) AJ (i1,J) AND AK (u',J'). 1IN STEPS l-15,
/* ALGORITHM 2 IS IMPLEMENTED. THE REMAINDER OF THE PROCEDURE

/* GATHERS PERFORMANCE INFORMATION. THE ASSEMBLY LANGUAGE ROUTINE
/* ASMTME IS USED TO OBTAIN THE EXECUTION TIME FOR SECTIONS OF A
/* PROCEDURE. :

/* THE PROCEDURE CAN HANDLE TWO GRAPHS OF UP TO 64 VERTICES AND
/* 800 ARCS EACH, AND TW0 MSM'S OF UP TO 100 STATLES. IF MORE

/* VERTICES, ARCS OR STATES ARE NEEDED, THEN THE DIMENSIONS OF TIHE

/* A.PDDnD‘DT‘ATE‘ ADDAYV TMTAMDC \ﬂl’C"r‘ BE T DT"AC‘ET\

- st wa st A4 Gasrviwii Y doat L\A-JLL\J

DECLARE (GJ(64,2) ,ADJYJ(800)) FIXED BIN(15) EXT,
GK(64,64) BIT(1) EXT, ADJCNT(64) FIXED BIL(15) EXT,
(NGJ ,NGK, NPRJ, NPCK, NOPRAJ ,NOPRAK) FIXED BIN(15) EX
DECLARE (AJ(100,2),AK(100,2)) FIXED BIN(15) EXT'
DECLARE (JS_AJ(200),JS_AK(200)) FIXED BIN(15)
DECLARE (SVIAX,SVCLASS,MAYOUT,CLASSCNT) FIXED BIW(IS) EXT
DECLARE (TMGR(25),TMTR(25),T>2{AY (25)) FIXED BIN(31) EXT,
(MNGR,MNTR ,MiG1AY ,NO_CRAPH_PRS) FIXED BIN(31) EXT,
(NOGR,TOTAL) FIXED BIN(31), (MEGR,METR,MEMAY, METOT) FLOAT
DEC(16);
DECLARE ITME FIXED BIN(31), ASMIME ENTRY(FIXED BIN(31));
/%
/* READ IN THE TWO GRAPIIS AND CREATE CORRESPONDING MSM'S
/*
GET FILE(GRAPN) LIST (NGPRS,NGJ,NGK,NPGJ,NPGK);
GET LIST(NO GRAPH PRS);
NOGR=NO_CRAPTL PRS; MIGR=0; MiTR=0; MIRMAY=0; TMTR=0;
TMGR=0; TMMAY=0;
STEPO: CALL GEMNGR;
IF(NGJ ~= HGK | NPGJ = NPCK)
THEN GO TO NO_ISOMORPHIS!M;
ELSE CALL MOORE:;
J*
/% CALL ASMTME TO SET THE SYSTEM TIMER TO 0

145

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

o~/
1

*/

al
b

*/
*/
*/

*/
*/

/%
/%
STEP1:

STEP2:

146

ITME= -1; CALL ASMTME(ITME);
THE FOLLOWING CODE REPRESENTS ALGORITHM 2 */
*/
IF NOPRAJ “= NOPRAK
THEN GO TO NO_ISOMORPHISM;
IF SVCLASS v= CLASSCNT | SVMAX v= MAXOUT
THEN GO TO NO_TSOMORPHISM;
IF MAXOUT < NOPPAJ TIEN MAXOUT=NOPRAJ;
BEGIN;
DECLARE HASH (0 :MAXOUT,D:MAXOUT,2) FIXED BIN(15),
(FIRST,LAST) FIXED BIN(15);
HASH=0; JS_NO=0; FIRST=1; NOUT=2; LAST=HOUT;
DO I=1 TO NOPRAJT;
JJ=JS_AJ(LAST) ;

STEP2 1: J=JS_AJ(FIRST);

/%

1F HASH(J,JJ,1)=0
THEN DO; JS_NO=JS_NO + 1; HASH(J,JJ,1)=JS_NO; END;
IF FIRST=LAST | FIRST= LAST - 1
THEN DO; HASI(J,JJ,2)=HASH(J,JT,2) + 1;
AJ(I,2)=HASH(J,JJ,1); FIRST=LAST + 1; LAST=LAST + NOUT;
EXND;
ELSE DO; JJ=HASH(J,JJ,1); FIRST=FIRST + 13
GO TO STEP2_1;
END;
END;
*/
FIRST=1; LAST=NOUT;
DO I=1 TO NOPRAK;
JJ=JS AK(LAST);

STEP2_2: J=JS_AK(FIRST);

J*

IF HASH(J,JJ,1)=0 THEN GO TO NO_ISOMORPHISM;
IF FIRST=LAST | FIRST=LAST - 1
THEN DO;
IF HASH(J,JJ,2)=0 THEN GO TO NO_ISOMORPHISM;
HASH(J,JJ,2)= HASH(J,JJ,2) - 13 AK(I,2)=HASH(J,JJ,1);
FIRST=LAST + 1; LAST=LAST + NOUT;
END;)
ELSE DO; JJ=HASH(J,JJ,1); FIRST=FIRST + 1; GO TO STEP2_2;
END;
END;
END;
*/
BEGIN;
DECLARE PART(NOPRAJ,NOPRAK,2) FIXED BIN(15);
DECLARE (ICOMB,JCOMB) FIXED BIN(15);
DECLARE (COLCNT (MCK),NOSAME) FIXED BIN(15);
ON SIZL BEGIN; PUT SKIP(4) EDIT('DUE TO AN EXCLSSIVE NUMBER',
' OF POSSIBLE COMBINATIONS TO BE CHECKED, TIIIS METHOD'
,' IS NOT APPLICABLE FOR THE ABOVE TWO GRAPHS.')
(A,A,A); GO TO CHECK_NO_GRAPHS;
END;
PART=0; ICOMB=1; COLCNT=0;

STEP3:
DO I=1 TO NGJ;

JCOMB=0; NOSAME=0;
STEP4:
DO J=1 TO NGK;
STEP5:
JPTR=13; KPTR=J}
STEP6: IF AJ(JPTR,2)=AK(KPTR,2)
THEN DO;
STEP7_8:
PART (JPTR,KPTR, 1)=AJ (JPTR, 1);
PART (JPTR,KPTR, 2)=AK (KPTR, 1) ;
JPTR=AJ (JPTR, 1) ; KPTR=AK(KPTR,1);
IF JPTR= -1 & KPTR= -1
THEN GO TO STEP7_8 END;
IF JPTR= -1 | KPTR= -1 THEN GO TO STLP9_1;
IF PART(JPTR,KPTR,1)=0 TilEN GO TO STLPG;
IF PART(JPTR,KPTR,1)=-1 & PART(JPTR,KPTR,2) V= -1
THEN GO TO STEP9_1;
STEP7_8 END: -
COLCNT (J)=COLCNT(J) + 1;
IF COLCNT(J) > 1 THEN NOSAME=NOSAME + 1;
JCOMB=JCOMB + 1;

ENDs
ELSE DO;
STEP9:
1% %/
/* PART (CLASS) IS SET EQUAL TO (~1,9) (0,0) IF STATES ARE NOT */
/* COMPATIBLE. */
/% */
PART (JPTR,KPTR, 1)=-1;
STEP9_1: JPTR=1; KPTR=J;
DO WHILE(KPIR > O & PAPT(JPTR KPTR,1) V= =1);
JSAV=JPTR; JPTR=PART (JPTR,KPTR, 1),
PART (JSAV,KPTR, 1)= =13 KPTR=PART(JSAV,KPTR,2);
END;
END;
STEP10:

END;
IF JCOMB=N THEN GO TO NO_ISOMORPHIS;
IF JCOMB > 1 & JCOMB=NOSAME THEN JCOMB=JCOMB - 1;
(SIZE): ICOMB=ICOMNB*JCO!B;
STEP11:
END;
STEP12: BEGIN;
/% */
/* ISOAJ_AK AND ISOAR AJ REPRESENT CANDIDATE, PARTITION , AND GAMMA */
/* OF ALCGORITHN 2
/% */
DECLARE (ISOAJ_AK(ICOHB,NGK),ISOAK_AJ(ICOMB,NGJ))
FIXED BIN(15);
ISOAJ_AK=0; ISOAK AJ=0; IALLOC=1;

147

148

STEP13 14:
DO I=1 TO NGJ;
IASAV=TALLOC;
DO J=1 TO NGK;
IF PART(I,J,1) ~= -1 | PART(I,J,2)= -1
THEN DO;
DO K=1 TO IASAV;
IF ISOAK AJ(X,J)=0
THEN IF ISOAJ AK(K,I)=0
THEN DO; ISOAJ AK(K,I)=J; ISOAK AJ(K,J)=I;
GO TO STEP13 14 END; END;
ELSE DO; IALLOC=IALLOC + 1;
ISOAJ AK(TALLOC,*)=TSOAJ_AK(K,%*);
ISOAK_AJ (TALLOC, *)=TSOAK_AJ(K,*);
ISOAK AJ(TALLOC,ISOAJ AK(IALLOC,I))=0;
ISOAJ AK(IALLOC,I)=J; ISOAK AJ(IALLOC,J)=I;

END3;
STEP13 14 END:
D3
END;
END3;
END;

TMGR(NO_GRAPH PRS)= IALLOC;
STEP15: DO K=1 TO IALLOC°
DO I=1 TO NGJ;
JEND=GJ(1,2) + GJ(I,1) - 1;
DO J=GJ(I,2) TO JLND;
IF GK(ISOAJ_AK(K,I),ISOAJ_AK(K,ADJYJ(J)))
THEN;
ELSE GO TO STEP15 END;
END;
END;
PUT SKIP(4) EDIT
("THE FOLLOWING DEFINES AN ISOMORPIHISM FROM GJ TO GK') (A);
PUT SKIP EDIT((I DO I=1 TO NGJ)) (F(3));
PUT SKIP EDIT((ISOAJ_AK(K,I) DO I=1 TO NGJ)) (F(3));
STEP15_END:
END;
END;
ENDg;
GO TO CHLECK_NO_GRAPHS;
NO_ISOMORPHISM: PUT SKIP(2) EDIT
('NO ISOMORPHISM EXISTS FOR GIVEN GRAPHS') (A);
IF ITME= -1 THEN; ELSE GO TO TOTALIWG;

/% */
/* END OF ALGORITHM 2 */
/* */
/* THE REMAINDER OF THE PROCEDURE GATHERS PERFORMANCE INFORMATION. */
/* */
CHECK_NO_GRAPIIS:
/% */
/* CALL ASMIME TO GET EXECUTION TIME FOR THIS SECTION OF CODL *x/

/% x/

END MAY;

149

ITHME= 1; CALL ASMIME(ITME);
TMMAY (NO_GRAPI_PRS)=ITME;
TOTALING:
MNGR=MNCR + TMGR(}0_GRAPIL_PRS);
MNTR=MNTR + TMTR(NO_GRAPH_PRS);
MNMAY=MiRIAY + TMMAY (JO_GRAPH_PRS);
NO_GRAPI_PRS=NO_GRAPH PRS - 1;
IF NO_GRAPIL PRS ~= 0
THEN GO TO STEDPO;
ELSE DO; PUT PAGE EDIT('ANALYSIS OF RUN USING ',NOGR,

' GRAPH PAIRS OF ',NGJ,' VERTICES EACH') (A,F(2),A,F(2),
A); PUT SKIP(2) EDRIT('NUMBER','MS! ISO','TRANSFO','MAY',
'"TOTAL') (COL(1),A,COL(15),A,C0L(34),A,COL(60),A,COL(75)
sA); J=1;

DO I=NOGR TO 1 BY -1;

TOTAL=TMTR(I) + TIMAY(I);

PUT SKIP EDIT(J,TIGR(I),TMTR(I),TITIAY(I),TOTAL) (F(2),
COL(10),F(11),COL(30),F(11),COL(50),F(11),
COL(70),F(11));

J=J + 1;

ElD;

TOTAL=MNGR+MNTR-HINMAY ;

PUT SKIP(2) EDIT('TOTAL',MNGR,MNTR,MIMAY,TOTAL)
(A,COL(10),F(11),COL(30),F(11),COL(50),F(11),
COL(70),F(11));

MEGR=FLOAT (}MCR) /NOGR; METR=FLOAT (MNTR) /NOGR;
MEMAY=FI0AT (A80HAY) /HOGR; METOT=FLOAT (TOTAL) /NOGR;

PUT SKIP(2) EDIT('MEAN',MLGR,METR,MEMAY,METOT)
(A,COL(19),F(15,3),C0L{(30),F(15,3),COL(50),F(15,3),
COL(70),F(15,3));

PUT SKIP(2) EDIT('#*:*EACIl ABOVE UNIT=26.04166 X 10 -6',
' SEC.") (A,A);

END;

GENGR: PROCEDURE;

/*

*/

/% THE PROCEDURE GENGR BUILDS AN ADJACENCY LIST FOR GRAPH GJ (G) */
/* AND AN ADJACENCY MATRIX FOR GRAPH GK (G'). ADJACENCY LISTS FOR */
/* BOTHS GRAPHS ARE PRINTED. */

/*

*/

DECLARE (CJ(64,2) ,ADJYJ(800)) FIYED BIN(15) EXT,

l*

GK(64,64) BIT(l) EXT, (ADJCNT(64),NGJ,NGK,NPGJ,NPGK) FIXED
BIN(15) EXT;

*/

/* BUILD ADJACENCY LISTS FOR GRAPH GJ %/

GJ(*,1)=03; LAST=1; IPTR=1;
DO I=1 TO NPGJ;
GET FILE(GRAPI) LIST(II,J);
IF 11 "= LAST
THEN DO;

IF GJ(LAST,1) v= 0 THEN GJ(LAST,2)=IPTR;

150

ELSE GJ(LAST,2)=0;
IPTR=1I; LAST=I11;
END;
GJ(1I,1)=CJ(II,1) + 1; ADJYJ(I)=J;
ENDg
DO I=II TO NGJ;
IF GJ(I,1)=0 THEN GJ(I,2)=0; ELSE GJ(I,2)=IPTR;

END; :
/% */
/* BUILD ADJACENCY MATRIX AND ADJACENCY COUNT FOR GRAPH GK x/
/% */

GK="0"'B; ADJCNT=0; LAST=1;

DO I=1 TO NPGK;

GET FILE(GRAPH) LIST(IX,J);
GK(II,J)="1"B; ADJCNT(II)=ADJCNT(II) + 1;

END3
/% */
/* PRINT ADJACENCY LIST FOR EACH VERTEX OF GRAPIS GJ AND GK */
/* */

PUT PAGE EDIT('ADJACENCY LIST FOR GRAPH GJ') (A);
DO I=1 TO NGJ;
PUT SKIP EDIT(I) (F(Z));
IF GJ(I,2) =
THEN DO; IEJD—PJ(I 2) + GJ(I,1) - 1
PUT EDIT((ADJYJ(J) DO J=GJ(1,2) TO IEND)) (COL(6),
(50)F(3));
FND:g
END;
PUT SKIP(4) EDIT('ADJACENCY LIST FOR GRAPH CK') (A);
DO I=1 TO NGK;
PUT SKIP EDIT(I,' ') (F(2),COL(5),4A);
DO J=1 TO NGKj
IF GK(I,J) THEN PUT EDIT(J) (F(3)),
END;
END;
END GENGR;

MOOREM: PROCEDURE; .
/* ' */
/* THE PROCEDURE MOOREM CALLS TRANSFO (ALGORITHM 1) TO TRANSFORM */
/* GRAPHS GJ (G) AID GX (G') INTO THE CORRESPONDING MSM'S AJ (H,J) */
/* AND AK (H',J").
/% */
DECLARE (GJ(64,2),ADJYJ(39N)) FINED BIN(15) EXT,
GK(64,64) BIT(1l) EXT, (ADJCHT (64) ,N0J, NG, NOPRAT, HOPRAK)
FIXED BIN(15) LXT, (AJ(IOO 2),AX(100,2)) FIXED BIN(15) EXT;
DECLARE A(100,64) BIT(1l), (NO_WORDS, CHT(100)) FITED BIN(15);
DECLARE (JS_AJ(200),JS AL(?OQ)) FIXED BIN(15) EXT
DECLARE (SVWAX SVCLASS, MATIOUT, CLASSCNT) FINED BII(IS) EXT
% */
/* BUILD MOORE MACHINE AJ FOR GRAPI GJ %/
/* %/

151

NO_WORDS=CEIL(NGJ/32);
A="0'B;
DO I=1 TO NGJ;
IF GJ(I,1)=0 THEN GO TO INIT CNT;
J=GJ(I,2); DO K=1 TO GJ(I, 1) A(L, ADJYJI(3))="1"'B; J=J + 1;
END3

INIT_CNT: CNT(I)=GJ(I,1);

END;

MAXOUT=0; CLASSCNT=0;

CALL LRANSFO(A CNT,NG.J,H0_VIORDS,AJ, NOPRAJ,JS AJ);
SVCILLASS=CLASSCNT; SVMAX=MATOUT}

/* */
/%* PRINT MOORE MACHINE AJ x/
/% */

PUT PAGE LDIT('MOORE SEOUENTIAL MACHINE CORRESPONDING TO GJ')

(A); PUT SKIP EDIT('STATE S ' YNEXT STATE H(S,I) ',

'OUTPUT J(S)') (A,A,COL(32),A);

11=0;

DO I=1 TO NOPRAJ;

PUT SKIP EDIT(I,'---> ',AJ(I,1),' ') (F(3),A,COL(15),F(3)

,COL(34),A);

DO K=1 TO 2; II=II + 1; PUT EDIT(JS_AJ(II)) (F(3)); END;

END;
/% */
/%* BUILD MOORE MACHINE AK FOR GRAPH GK */
% */

A="0'B; DO I=1 TO NGK; A(I.%)=GR(I,*): CNT(T)=ADICNT(T); END;

CALL TRANSFO(A,CHNT,NGK,NO_WORDS,AK,NOPRAK,JS_AK);
/* */
/* PRINT MOORE MACHINE AK */
/% */

PUT SKIP(4) EDIT

(*MOORE SEQUENTIAL MACHINE CORRESPONDING TO GK') (A);

PUT SKIP EDIT('STATE S ','NEXT STATE H(S,I) ',

"OUTPUT J(S)') (A,A,COL(32),A);

1I=0;

DO I=1 TO NOPRAK; .

PUT SKIP EDIT(I,'---> ',AK(I,1),' ") (F(3),A,COL(15),F(3)

,COL(34),A);

DO K=1 TO 2; II=II + 13 PUT EDIT(JS_AJ(II)) (F(3)); END;

END'
END MOOREM;
TRANSFO: PROCEDURE (A,CHT,NG,NO_WDS,ANR,NO PR ST,JS_ANR);
/% */
/* THE PROCEDURE TRANSFO TMPLEMENTS ALGORITI'{ 1. THE STATEMENT */
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITHM 1. */
/% GIVEN THE ADJACENCY MATRIX A (G) OF A GRAPH WITH NG (K(V)) */
/% VERTICES, THE PROCEDURE CREATES A MSM ANR (il,J) WITH NO PR ST (S)*/
/* STATES. NXT_AVAL ST REPRESENTS H OF ALGORITH: 1. */
/% */

DECLARE A(100,64) BIT(1) CONN,WORDA(10n,2) BIT(32) DEF A,

/%
/*
/*

/%
/*
/%

(NG, NO |

WnS,NO_PR_ST) FIXED BIN(15),

(CNT (170) , ANRC100,2)) FIXED BIN(15) CONN;

DECLARE JS_ANR(200) FIXED BIN(15) CONN;

DECLARE (MAXOUT,CLASSCNT) FIXED BIN(15) EXT, CLASS(100,36)
FIXED BIN(15);

DECLARE ITME FIXED BIN(31), ASMIME EWTRY(FIXED BIN(31));

DECLARE (TMGR(25),THTR(25),TI0IAY (25)) FIXEDL BIN(31) EXT,
(MNGR,MNTR ,MIMAY ,NO_GRAPIl PRS) FIXED BIN(31) EXT;

CALL ASMTME TO SET THE SYSTEM TIMER fO 0

ITME= =13 CALL ASMTME(ITME);

THE FOLLOWING CODLE REPRESENTS ALGORITIM 1

STEP1:

NO_PR ST=0; NXT_AVAL ST=NG;

STEP2:

DO WHILE(NXT_ AVAL ST ~v= NO_PR ST);

STEP3:

IBEGIN=NO PR ST + 1; NO_PR ST=NXT_AVAL ST;

STEP4:

DO I=IBEGIN TO NO_PR _.ST;

STEPS:

IF CNT(I) > 1

THEN
STEP6:

STEP6_END:
STEP7:

STEPS:

STEP9:

DO

DO J=1 TO I - 1}
IF CNT(I)=CNT(J) THEN DO; DO K=1 TO NO_'DS;
IF WORDA(I,K) ~= WORDA(J,K)
THEN GO TO STEP6_END;
END;
ANR(TI,1)=ANR(J,1);
GO TO STEPl1;
END;
END;

NXT AVAL ST=NXT AVAL ST + 13

DO K=1 TO NG;

IF A(I,K) THEN

A(NXT_AVAL_ST,*)=BOOL (A(NXT_AVAL_ST,*),A(K,*),"'0111"
END;

ANR(T, 1)=NXT_AVAL ST;
CNT(NXT_AVAL ST)=0;
DO K=1 TO NG;
IF A(NXT_AVAL ST,K)
THEN CNT(NXT AVAL ST)=CNT(¥XT_AVAL ST) + 1;
END;

END;

ELSE
STEP10:

*/
*/
*/

*/
*/

B);

152

153

IF CNT(I)=0
THEN ANR(I,1)= -1;
ELSE DO J=1 TO NG; 4
IF A(I,J) THEN DO; ANR(I,1)=J; GO TO STEP11;

END;
END3;
STEP11:
END;
END;
JS_INDEX=1; NO=2;
/* */

STEP12AND14: IBEGIN=JS_ INDEX;
DO JJ=1 TO NG;
NEXT=0; II=0; IDIFT=0;
DO WHILE(NEXT ~= NO_PR ST);
II=II + 1;
IF ANR(II,1) > NEXT | ANR(II,1)=JJ
THEN DO; IF A(II,JJ) THEN IDIFF=IDIFF + 1;
IF ANR(II,1) > NEXT THEN NEXT=ANR(II,1);
END;
END;
JS_ANR(IBEGIN)=IDIFF;
IF MAXOUT < JS_ANR(IBEGIN) THEN MAXOUT=JS_ANR(IBEGIN);
IBEGIN=IBEGIN + NO;
END;
LAST=NG; JJ=0;
DO WHILE(LAST < NO PR _ST):
JI=JJ + 1;
IF ANR(JJ,1) > LAST
THEN DO; LAST=ARR(JJ,1); NEXT=0; II=0; IDIFF=0;
DO WHILE(NEXT “= NO PR ST);
II=II + 1;
IF ANR(II,1) > NEXT
THEN DO; NEXT=ANR(II,1);
DO J=1 TO NO_WDS;
IF WORDA(JJ,J) = (WORDA(JJ,J) & WORDA(IIL,J))
THEN; ELSE GO TO ANOTH_ST; :
END;
IDIFF=IDIFF + 1;
ANOTH_ST: END;
END;
JS_ANR(IBEGIN)=IDIFF;
IF MAXOUT < JS_ANR(IBEGIXN)
THEN MAXOUT=JS_ANR(IBEGIN);
IBEGIN=IBEGIN + NO;
END;
END;
JS_INDEX=JS_INDEX + 1;
/* */
STEP13AiID14: IBLGIN=J5_INDEX; MAN=0;
DO JJ=1 TO NG;
NSNS=0;
DO J=1 TO NG;

]*
I£3
1%
I*
[*

IF A(JJ,J) THEN IF A(J,JJ) THEN NSNS=NSNS + 1;
END;
JS_ANR(IBEGIN)=NSUuS;
IF MAX < JS_ANR(IBEGIN) THEN MAX-JS__ANR(IBEGIN);
IBEGIN=IBEGIN + NO;
END3
LAST=HG; JJ=0;
DO WHILE(LAST < NO_PR ST);
JJI=JJ+1;
IF AUR(JJ, 1) = LAST
THEN DO; LAST=ANR(JJ,1); CLASS(CLASSCNT + 1,%)=0;
DO J=1 TO NG;
IF A(JJ,J)
THEN DO; IFROM=JS INDEX + (J-1)%NO3
CLASS (CLASSCNT+1,JS _ANR(IFROM))=
CLASS (CLASSCNT+1,JS ANR(IFRO‘{)) + 13
END;
D3
DO J=1 TO CLASSCNT;
DO K=1 TO MAX;
IF CLASS(CLASSCNT+1,K) ~= CLASS(J,K)
THEN GO TO NXT_(CLASS'
END;
NSNS=MAX + J; GO TO INIT JS;
NXT_CLASS: END;
CLASSCNT=CLASSCNT + 13 NSNS=MAX 4+ CLASSCNT;

INIT JS: IFROM=JS INDEX + (LAST = 1)#N0;
- JS_ANR(IFROM)=NSNS;
END;
END;

IF MAXOUT < MAX + CLASSCNT THEN MAXOUT=MAX + CLASSCNT;
END OF ALGORITHM 1
CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE

ITME= 1; CALL ASMTME(ITME);
TMTR(NO_GRAPH PRS)=TIMTR (NO_GRAPH _PRS) + ITME;

END TRANSFO;

*/
*/
*/
*/
*/

154

APPENDIX E

BERZTISS' BACKTRACKING ALGORITHM AND PL/I IMPLEMENTATION
E.l Algorithms
E.1.1 Algorithm 3
Algorithm 3 generates a set of K-formulas that represent a given
graph D = (A,P). A K-formula is a K-formula of the vertex whose name
is the left most vertex name in the K-formula, and this vertex is the
leading vertex of the K-formula.

Step 1. For every isolated vertex a € A write the K-formula.

Step 2. For every vertex b from which originate arcs (b,ty), (b,t9),
cees(b,ty) write the K-formula x%e+ bt to. .. ty, where k
K-operators precede the b.

Step 3. Combine the K-formulas according to the following substitution
rule: If there exists a K-formula of a vertex and there
exists another K-formula in which the name of the vertex
appears, substitute the K-formula of the vertex for this name.
Apply the substitution rule until it can no longer be applied.

Step 4. (Check step.) Denote the K-formulas produced in Step 3 by
fl,fz,...,fn, and the leading vertex of an fi by aj. If some
f; contains as a subformula a K-formula of vertex b in which
a; occurs, and the b occurs in one of f1,...,f5 1s++5f44]>
... f,, extract the K-formula of b from fj, inserting b in its
place, substitute what now remains of fj into this formula,

and return to Step 3. Otherwise stop.

155

E.1.2 Algorithm 4

Algorithm 4, given a K-formula, creates arrays N,S, and T.
Array N contains the vertex symbols in the order they have in the
K-formula. Array S contains the structural information which is
represented by the K-formula. Array T is used in backtracking.
Array P, which must be initialized to zeros, is used for temporary
storage. The algorithm makes use of a stack {last-in-first-out push-
down store). The K-formula which is created by Algorithm 3 is given
by s1S9...5p-
Step 1. Set J =0, K=0, LL =1, S(1) =0, i=1.

Step 2. 1If s,

i is a vertex symbol, then go to Step 5.

Step 3. Set K=K + 1, Switch = 0.

Step 4. Set i i+ 1. If i > m, then stop; else go to Step 2.

Step 5. Set J=J+ 1, N(J) = s5.

Step 6. If P(sj) = 0, then set T(LL) = J, P(sy) = LL, LL = LL + 1.

Step 7. If J # 1, then pop up the number LP from the stack and. go to
Step 9.

Step 8. Push P(s;) down K times; set K = 0, Switch = 1; go to Step 4.

Step 9. If Switch = 0, then set S(J) = LP and go to Step 8; else set

S(J) = -LP and go to Step 4.

E.1.3 Algorithm 5

Algorithm 5 tests pairs of graphs for isomorphism. Arrays N, S

156

and T which describe the first graph are created by Algorithm 4. Arrays

L and B describe the set of arcs of the second graph. The vertex
correspondences defining an isomorphism are generated in Array R.

Initially the elements of R are assumed to be all zero. Arrays P, Q,

and the

157

sign bits of T are used for temporary storage. Parameters n

and k define respectively, the number of vertices in the reference

graph and the number of entries in Array N. If the procedure stops

without
Step 1.
Step 2.
Step 3.
Step 4.
Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step l4.

having produced an output, then the graphs are not isomorphic.
Set V=1, X=0, M= 1.

1f L(M) # O, then set I =M, J = N(1), and go to Step 5.

Set M=M+ 1.

If M < n, then go to Step 2; else stop.

Set X = X + 1, P(X) = L(I), Q(X) =M, R(J) = I, T(I) = -T(I).
Advance in reference K-formula: Set V=V + 15 if V < k,
then set K = | S(V) |, M = P(K), J = N(V), and to to Step 8.
An isomorphism exists: Output J, R(J) for J = l1,ee.on. If
all isomorphisms are to be found, then to the Step 13; else
stop.

If R(J) # 0, then go to Step 1l.

Set I = B(M). If T(I) > O and, moreover, either or both
L(I) # 0 and S(V) < O hold, then go to Step 5.

Set M =M+ 1, If B(M) = 0, then go to Step 13, else go to
Step 9.

If B(M) = R(J), then go to Step 6.

Set M =M+ 1. If B(M) # 0, then go to Step 1l.

Backtrack step: Set V = |T(X)|, J = N(V), K = R(J),

RJ) = 0, T(K) = -T(K), M=QX) +1, X =X - 1. I£fX =0,
then go to Step 4.

If B(M) = 0, then go to Step 13; else go to Step 9,

158

E.2 PL/I Source Listing

BERZTIS: PROCEDURE OPTIONS (MAIN);

/% */
/* THE MAIN PROCEDURE BERZTIS IMPLEMENTS ALGORITHM 5. THE */
/* STATEMENT NAMES ROUGHLY CORESPOND TO THE STEP NUMBERS OF */

/* ALGORITHM 5. 1IN STEP 0, THE PROCFDURE CALLS BGENGR TO CREATE %/
/* ADJACENCY LISTS FOR REFERENCE GRAPI DR AND TEST GRAPI DT. BALG2 */
/* (ALGORITHM 4) IS THEN CALLED TO CREATE THE K FORIULA OF DR AND */
/* THE DATA STRUCTURES WIICH REPRESENT TIE K FORMULA. TIESE DATA */
/* STRUCTURES ARE USED BY TIE PROCEDURE RERZTIS. IN STEPS 1-14, */
/% ALGORITHM 5 IS IMPLEMENTED. THE REMAINDER OF TIE PROCEDURE %/
/* GATHERS PERFORMANCE INFORMATION, THE ASSEMBLY LAWGUAGE ROUTINE #/
/% ASMTME IS USED TO OBTAIN THE EXECUTION TIME FOR SECTIONS OF A */
/* PROCEDURE. x/
/% THE PROCEDURE CAX HANDLE TWO GRAPIIS OF UP TO 64 VERTICES AND */
/* 800 ARCS EACII. IF MORE VERTICES OR ARCS ARE NELDED, THEN THE */

/* DIMENSIONS OT THE APPROPRIATE ARRAY NAMES MUST BE INCREASED. */
/* THE VARIABLE AND ARRAY NA'[ES USED IN THIS PROCEDURE CORRESTOND */
/* TO THOSE USED IN ALCORITHM 5. */
/* */

DECLARE (DR(64) ,DRADJ (840),L(64),B(840)) FIXED BIN(15) EXT,
(KN, N(801),5(801),T(64)) FIXED BIN(15) EXT,
(V,X,M,I,J,K) FIXED BIN(15),
(NR,NT,IPR,NPT) FIXED BIN(15) LXT;

DECLARE (T{BALG(25),40 GRAPH PRS) FIXED BIN(31) EXT,
(TMBER (25) ,NORJ (25) ,HHOBACK (25) ,MIBER , MNBALG, MIRJ ,MBACK,
NOGR,TOTAL) FIXED BIN(31), (MEBER,MEBALG,MERJ }EBACi{,‘{ETOT)
FLOAT DEC(16);

DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));

/% */
/* READ IN GRAPHS AND CREATE THE K_FORMULA FOR GRAPH DR */
/% */

GETJ FILE(GRAPH) LIST(NGPRS,NR,NT,NPR,NPT);

GET LIST(NO GRAPH PRS);

MNBALG=0; MIBER=0; ifiiRI=0; MIBACK=0; ,

TMBALG=0; TMBER=0; MORJ=0; NOBACK=0; NOGR=NO_GRAPH PRS;
STEPO: CALL BGENGR;

IF NR = NT | NPR ~= NPT THEN GO TO MO_ISOMORPHISM;

CALL BALG2;

/% */
5* CALL ASMTME TO SET TIE SYSTEM TIIfTER TO O */
*

x/
/ ITME= -1; CALL ASMI‘I‘IE(ITME);
*

x/
5: THE FOLLOWING CODE REPRESENTS ALGORITHM 5 */

x/

STEPl: BEGIN;
DECLARE (P(XR),R(NR),0(NR)) FIXED BIN(15);
V=1; X=0; M=1; R=0;
STEP2: IF L(M) =0
THEN DO;

I=M; J=N(1);
GO TO STEPS;
END;
STEP3: M=M + 1;
STEP4: IF M <= NR
THEN GO TO STEP2;
ELSE GO TO NO_ISOMORPHISM;
STEP5: X=X + l; P(X)=L(I);
Q(X)=M; R(J)=I; T(I)= -T(I);
NORJ (NO_GRAPH_PRS)=NORJ(NO_GRAPH_PRS) + 13
STEP6: V=V + 1;
IF V <= KN
THEN DO;
K=ABS (S(V)); M=P(K);
J=N(V); GO TO STEP3;
END;
STEP7: PUT SKIP(4) EDIT

159

(*THE FOLLOWING DEFINES AN ISOMORPHISM FROM DR TO DT') (A);

PUT SKIP EDIT((JJ DO JJ=1 TO NR)) (F(3));
PUT SKIP EDIT((R(JJ) DO JJ=1 TO NR)) (F(3));
GO TO CHECK NO_GRAPHS;
STEP8: IF R(J) = 0 THFN GO TO STEP11;
STEP9: I=B(M);
IF(T(I) > 0 & (L(I) v=0 | S(V) < 0))
THEN GO TO STEP5;
STEP10: M=M + 1;
IF B(M) - 0 THEN CO TO STEP13; LLSE GC TO STEP?;
STEP11: IF B(M) = R(J) THEN GO TO STEP6;
STEP12: M=M + 1;
IF B(M) v= 0 THEN GO TO STEP1l;
STEP13:
NOBACK(NO GRAPH PRS)=NOBACK (NO_GRAPH PRS) + 1;
V=ABS (T(X)); J=N(V); K=R(J); R(I)=0; T(K)= -T(K);
M=Q(X) + 1; X=X - 13
IF X = 0 THEN GO TO STIP4;
STEP14: IF B(M) = O THEN GO TO STEP13; ELSE GO TO STEP9;
END; .
NO_ISOMORPHISM:
PUT SKIP(2) EDIT
("NO ISOMORPHISM EXISTS FOR GIVEN GRAPHS') (A);
IF ITME= -1 TIEN; ELSE GO TO TOTALING;

/*
/* END OF ALGORITHM 5
]*
/* THE REMAINDER OF THE PROCEDURE GATIIERS PERFORMANCE INFORMATION
J*
CHECK_NO_GRAPHS :
J*

/* CALL ASMIME TO GET EXECUTION TIME FOR TIIIS SECTION OF CODE
/*

ITIME=13 CALL ASMTME(ITME);

TMBER(310_GRAPIL_PRS)=ITHE;

*/
*/
*/
*/
*/

*/
*/
*/

TOTALIIIG:

MNBALG=IZIBALG + TIBALG(NO_GPRAPI_PRS);
MNBER=}GIBER + TMBER(NO_GRAPH_PRS);
MNBACK=MNBACK + NOBACK (:!0_GRAPIL_PRS);
MNRJ=MiRJ + NORT(1i0_GRAPI_PRS);
NO_GRAPIH_PRS=NO_CRAPIL PRS - 1;

IF NO

GRAPILPRS ~= 0

THEN GO TO STEPO;

ELSE

END BERZTIS;

DO; PUT PAGE EDIT('ANALYSIS OF RUN USING ',NOGR,

160

' GRAPH PAIRS OF ' NR,' VERTICES EFACH') (A,F(2),A,F(2),

A); PUT SKIP(2) EDIT('HUIBER','BACKTRACK',

'"NODE CORRESPONDENCES', 'BALG1-2','BERZTISS','"TOTAL')

(coL(1),A,COL(15),A,COL(34) ,A,COL(56) ,A,COL(75),A
,COL(95) ,A); J=1;

DO I=NOGR TO 1 BY -1;

TOTAL=THMBER(I) + TMBALG(I):

PUT SKIP EDIT(J,HOBACK(I),NORJ(I),TMBALG(I),TMBER(I),

TOTAL) (F(2),COL(10),F(11),COL(30),F(11),COL(50),F(11),

COL(70),F(11),COL(90),F(11));

J=J + 1;

END3;

TOTAL=MNBALG + MNBER;

PUT SKIP(2) EDIT _
(' TOTAL' ,MNBACK,!TVRJ ,MNBALG, MIIBER, TOTAL)
(A,COL(10),F(11),C0OL(30),F(11),COL(50),F(11),
COL(70) ,F(11),COL(90),F(11));

MEBACK=FLOAT (:8IBACK) /NOGR; MERJ=FLOAT (}1RJ) /NOGR:

MERALG=FLOAT (INBALG) /NOGR; MEBER=FLOAT (MNBER) /NOGR}

METOT=FLOAT (TOTAL) /IIOGR}

PUT SKIP(2) EDIT
("MEAN' ,MEBACK,MIERJ ,MEBALG,EBER,METOT)
(A,COL(10),F(15,3),COL(30),F(15,3),COL(50),
F(15,3),COL(70),F(15,3),COL(90),F(15,3));

PUT SKIP EDIT('***EACH ABOVE UNIT=26.04166 X 10 -6'
' SEC.') (A,A);

END;

BGENGR: PROCEDUREj;

1*

[* THE PROCEDURE BGENGR BUILDS THE ADJACENCY LISTS FOR GRAPH DR
AND GRAPH DT (L,B). ADJACEXCY LISTS FOR BOTH GRAPHS

/* (DR, DRADJ)
/* ARE PRINTED.
/*

DECLARE (DR(64),DRADJ (840),L(64),B(840)) FIXED BIN(15) EXT,
(NR,NT,NPR,NPT) FIXED BIN(15) EXT;

/*

/* BUILD AND PRINT ADJACENCY LIST FOR REFERENCE GRAPH DR

1%

PUT PAGE EDIT('ADJACENCY LIST FOR REFERENCE GRAPH DR') {A);

LAST=0; JPTR=03;

*/
*/
*/
*/
*/

*/
*/
*/

161

DO I=1 TO NPR;
GET FILE(GRAPH) LIST(I1I,J);
IF I1 ~v= LAST
THEN DOj
IF JPTR n= 0 TIEN DO; JPTR=JPTR + 1; DRADJ (JPTR)=03;
END;
PUT SKIP EDIT(II) (F(2)); LAST=II;
DR(II)= JPTR + 1;
END;
JPTR=JPIR + 1; DRADJ(JPTR) =J; PUT EDIT(J) (F(3));
END;
DRADJ (JPTIR + 1)=0;
IF II ~= NR THEN DO; DR(NR)=0; PUT SKIP EDIT(NR) (F(2)); END;
*/

/*
/* BUILD AND PRINT ADJACENCY LIST FOR TEST GRAPH DT */
/* */

PUT PAGE EDIT('ADJACENCY LIST FOR TEST GRAPH DT') (A);
LAST=0; JPTR=0;
DO I=1 TO YNPT;
GFT FILE(GRAPII) LIST(II,J);
IF II ~= LAST
THEN DO;
IF JPTR ~v= 0 THEN DO; JPTR=JPTR + 1; B(JPTR)=0; END;
L(II)=JPTR + 1;
PUT SKIP EDIT(II) (F(2)); LAST=1I1;
END;
JPTR=IPTR + 1: R(IPTR)=TI; PUT EDTT(TY (F(3));
END;
B(JPTR + 1)=0;
IF IT = NT THEN DO; L(NT)=0; PUT SKIP EDIT(NT) (F(2)); LND;
END BGENGR;

BALG2: PROCEDURE;
/* %/
/* THE PROCEDURE BALG2 IMPLEMENTS ALGORITH 4. THE STATEMENT */
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITHM 4, 1IN %/
/* STEP 0, THE PROCEDURE CALLS BALGl (ALGORITHM 3) TO CREATL THE */
/* K _FORMULA (K] FOR) FOR GPAPH DR. BALG2 USES THIS K FORMULA TO */
/* CREATE THE DATA STRUCTURES USED BY BERZTIS. TIESE DATA x/
/* STRUCTURES REPRESENT TIE STRUCTURAL INFORMATION CONTAINED IN THE */
/* K_FORMULA REPRESENTATION OF DR. THE VARIABLE AND ARRAY NAMES */
/* CORRESPOND TO THOSE USED IN ALGORITHM 4. BALG2 ASSUMES THAT TIIE */
/* GRAPH DR CAN BE DESCRIBED BY A SINGLE K_FORMULA. */
/% */
DECLARE (WR,NT,KN,N(801),5(801),T(64)) FIXED BIN(15) EXT,
(swiTCH,ST PTR,SI,LP,J,K,LL, I) FIXED BIN(15), CHARNODE CHAR(2)
,NUMNODE PIC' 99' DFF CHARNODE,K FOR CHAR(2402) VAR EXT;
DECLARE (TMBALG(25),30_GCRAPH_PRS) FIXED BIN(31) EXT;
DECLARE ITME FIXED BIN(31), ASUTME ENTRY (FIXED BIN(31));
% */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO O */

/*
/*
/*

/*
J*
/*

/1*

ITME= -1; CALL ASMTME(ITME);
CALL BALGl (ALGORITHM 3) TO GENERATE THE K_FORMULA OF GRAPH DR

STEPO: CALL BALGl;
M=LENGTII (K_FOR) ;

THE FOLLOWING CODE REPRESENTS ALGORITHM 4

STEPl: BEGIN;
DECLARE (STACK(NR,2),P(NR)) FIXED BIN(15);
STACK=0; P=0; ST_PTR=0;
J=0; K=0; LL=1; S(1)=0; I=1;
STEP2 4: DO WIIILE(I <=M);
IF SUBSTR(X FOR,I,1) n= Tt

162

*/
*/
*/

*/
*/
*/

THEN DO;
STEP5: J=J + 1; CIIARNODE=SUBSTR(K_FOR,I,2);
I=1 4 1; SI=NUNNODE;
N(J)=SI;
STEP6: IF P(SI) =
THEN DO;
T(LL)=J; P(SI)=LL; LL=LL + 13
END;
STEP7: IFJ =1
THEN DO;
LP=STACK (ST_PTR,1);
STACK{ST_PTIR, 4)-DLAC' {(8T_FTR,Z) - i3
IF STAC}\(QT PTR,2) = 0 THEN ST PTR=ST PTR - 1;
STEP8 9: IF SWITCH = O
THEN DO;
S(J)=LP;
ST_PTR=ST_PTR + 1; ,
STACK(ST PTR,1)=P(SI); STACK(ST PTR,2)=K;
K=0; SWITCH=1;
END;
ELSE S(J)= -LP;
END;
ELSE DO;
ST _PTR=ST_PTR + 1;
STACI{(ST_PTR,1)=P(SI); STACK(ST_PTR,2)=K;
K=0; SWITCH=1;
END;
END;
ELSE DO
K=K + 1; SWITCH=0;
END3
I=I + 1;
END3;
KN=J;
END;

/* END OF ALGORITHM 4

*/
*/

163

*/.

/*
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE */
/% ‘ */
ITME=1; CALL ASHMTME(ITME);
TMBALG (NO_GRAPH_PRS)=IT!E;
END BALG2;
BALGl: PROCEDURE;
/% */
/* THE PROCEDURE BALGl IIMPLEMENTS ALGORITHM 3. TIHE STATEMENT */
/* NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF ALGORITIM 3. */
/* SINCE ALL THE GRAPHS TESTED COULD BE SPECIFIED BY A SINGLE %/
[* K;FORHULA IT IS NOT NECESSARY TO IMPLEMENT STEP 4 OF ALGORITIRI */
/* 3. THE K_FORMULA IS STORED IN TIE CHARACTER STRING K_FOR. ALL */
/* VERTICES ARE REPRESENTED BY A TUWO CHARACTER NUZBER, IL.E., VERTEX */
/* 1 IS REPRESENTED BY THE CHARACTERS Ol. TUE PROCEDURE PROCESSES */
/* VERTEX BY VERTEX THE ADJACENCY LIST DRADJ, UNTTL ALL VERTICES %/
/* AND THEIR CORRESPONDING ARCS HAVE BEEM REPRESENTED. THE BEGIN- */
/* NING OF THE K_FORMULA CONTAINS AS MANY ADJACENT VERTICES WITI */
/* THEIR CORRESPONDING ARCS AS IS POSSIBLE. THIS TYPE OF K FORIMULA */
/* LEADS TO A MORE EFFICIENT EXECUTION OF BERZTIS (ALGORITIIM 5). */
/* */

DECLARE (DR(64),DRADJ (840) ,NR) FIXED BIN(15) EXT, K _FOR CHAR(2402)

VAR EXT, FOUND BIT(l),CHARNODE CHAR(2), NUMIODE PIC '99' DEF

CHARNODE,K NODE CHAR(102) VAR, (JSAV,ASTFR,LNKSTR,KIN) FIXED

BIN(lS),FiEST BIT(1);

/% */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 3 */
/% */

STEPO: BEGIN;

DECLARE ROW(NR) BIT(1),ROWSTR BIT(NR) DEF ROW,BINOWE BIT(NR);

ROW='0'B; K FOR=''; BINONE~v ROWSTR;
DO WHILE(ROWSTR V= BINONE);
LNKSTR=LENGTH (K_FOR) ;

STEP1 2: IF LNKSTR=0

THEN DO; NUMNODE=1; K_FCR=CHARNODE; RDW(I)-'I B; J=DR(1);

DO WHILE (DRADJ(T) ~= 0);
NUMNODE=DRADJ (J) 3 JSAV=DRADJ(J);
K FOR='*' | | K_FOR || CHARNODE;

J=J + 1
ENDg
KIN=J-DR(1)+3;
NEW K: NKSTR=LE:GTH (K_FOR);
NXT_K: IF KIN < LNKSTR & ROWSTR "= BINONE

THEN DO;
CHARNODE=SUBSTR(K_FOR,XIN,2); JSAV=NUMNODE;
IF ROW(JSAV) & (DRADJ(DR(JSAV))=1)
THEN DO; CALL KDERIVE;
IF KIN=LNKS™T - 1

THEN K_FOR~SUBSTR(X _FOR,1,XIN-1) || K _NODE;
ELSE K_FOR=3UBSTR(K_FOR,1,KIN-1) || K NODE ||

SUBSTR(i._FOR,KIN+2,LNKSTR-(KIN+1));

DO WHILE(SUBSTR(I_FOR,KIN,1) ='#');
KIN=KIN+1; IND; KIN=KIN+2;
GO TO NEW K;
END3
ELSE KIN=KIN+23;
GO TO NXT_K;
END3;
ELSE GO TO NEXT ROW;
END;
STEP3: KIN=LNKSTR - 13 FOUND='O'B;
DO WHILE(~FOUND);
CHARNODE=SUBSTR (K_FOR,KIN,2); JSAV=NUMIODL;
IF ROW(JSAV)
THEN DO; CALL KDRRIVE;
IF KIN = LNISTR - 1
THEN K_FOR=SUBSTR(K_FOR,1,KIN-1) I & K _NODE;
ELSE K_FOR=SUBSTR(I{_FOR,1,KIN-1) || K NODE |]
SUBSTR(K_FOR, hIJ+2 LNKSTR~ (KIN+1));
FOUND="1'B;
END;
ELSE DO3 KIN=KIN - 13 DO WHILE(SUBSTR(K FOR,KIN,1)="%*');
KIN=KIN - l; END;
KIN=KIN - 1;
END;
END;
NEXT_ROW:
EMDg
KDERIVE: PROCEDURE;
ROW(JSAV)='1'B; K NODE=''; JJ=DR(JSAV);
DO WHILE(DRADJ(JJ) ~= 0);
NUMNODE=DRADJ(JJ); K_NODE=K NODE || CHARNODE'
JI=JJ + 1;
ENDg
NUMNODE=JSAV; K_NODE<=CHARNODE || K_NODE;
DO ASTER = DR(JSAV) TO JJ-1;

K_RODE="#' || K NODE;
END;
END KDERIVE;
END; |
/% */
/* END OF ALGORITHM 3 */
/% x/

PUT SKIP(4) EDIT('K_FORMULA OF REFERENCE GRAPH DR') (A);
PUT SKIP LIST(K_FOR);
END BALGL;

164

APPENDIX F

ULLMANN'S REFINEMENT/BACKTRACKING ALGORITHM AND PL/I IMPLEMENTATION
F.1 Algorithm 6
Algorithm 6 finds an isomorphism, if one exists, between two

graphs G, and Gy. The algorithm first constructs a matrix M which
represents possible vertex assignment. After making a possible vertex
assignment, the algorithm then refines M by using a necessary and
sufficient condition for graph isomorphism. This compound condition
is based on the adjacency relations of the vertices. If the graphs
are isomorphic, then M, after possible backtracking to reassign
vertices, is refined to a matrix which specifies an isomorphism
between G, and Gg. The number of vertices and arcs of G, and Gp are
given by pa, qa and pb, gb. The algorithm uses a pb-bit binary vector
{Fl,...,Fi,...,pr} to record which columns have been used at an inter-
mediate state of computation: Fj = 1 if the ith column has been used.
The algorithm also uses a vector {Hl,...,Hd,...,Hpa} to record which
column has been used at which depth: Hy = k if the kth column has been
selected at depth d.

Step 0. Construct M° according to
-1, if the indegree of the ith point in G, is the same as
the indegree of the jtP point in Gy and the outdegree
= 4 of the ith point in G, is the same as the outdegree of

h

the jt point in Gg,

LO’ otherwise;

165

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Refine M.

166
M =M% d :=1; H :=0
for all i := 1,...,pb set F; := 0;

refine M; if exit FAIL then terminate algorithm;

If there is no value of j such that my4 1land f; =0

then go to Step 7;

if d = 1 then k := Hj else k := 03

k := k + 1;

if My = 0 or £y 1 then go to Step 3;

for all j # k set mgy = 0;

refine M; if exit FAIL then go to Step 5;

If d < pa then go to Step 6 else give output to indicate
that an isomorphism has been found;

M := Mﬂ;

if there is no j > k such that mgy = 1 and £; = 0 then go
to Step 7;

go to Step 3;

Hy := k; Fi := 13 4 :=d + 1;

go to Step 2;

If d = 1 then terminate algorithm;

d :=d - 1; k := Hgs Fp := 0;

go to Step 5;

mjy = 1 is changed to myy = 0 unless
(Vx) ((ajx = 1) = @y (mgy * bjy = 1))
1< x< pa 1 <y<opb

and

167

Wx) (Gagy = 1) = (@) (mg * byy = 1))
1<x<cpa 1ey<p @7

where [aij] and [bij] are the adjacency matrices for graphs

GA and Gg.

F.2 PL/I Source Listing

ULLMANN: PROCEDURE OPTIONS (MAIN);

/% */
/* THE MAIN PROCEDURE ULLMANN IMPLEMENTS ALGORITHI 6. THE */
/* STATEMENT NAMES ROUGHLY CORRESPOND TO THE STEP NUMBERS OF %/
/* ALGORITHM 6., 1IN STEP 0, THE PROCEDURE CALLS UGENGR TO CREATE */
/* THE ADJACENCY MATRICES FOR GRAPHS A AND B. CALCMO IS TIEN x/
/* CALLED TO CONSTRUCT TIF INITIAL MATRIX M. 1IN STEPS 1l-7, x/

/* ALGORITHM 6 IS IMPLEMENTED. THE INTERNAL PROCEDURE REFINE IMPLE-%/
/* MENTS THE REFINEMENT CONDITIONS OF ULLMANN. TilIS PROCEDURE IS %/
/* CALLED TO REFINE ! AFTER EACH VERTEX ASSIGNMENT. STEP 4 OF *x/
/* ALORITHM 6 IS MODIFIED SO THAT IF M IS LEFT UNCHANGED BY THE %/
/* REFINEMENT PROCEDURE AND M IS SUCH THAT EACH ROW AND EACH COLUMN */
/* CONTAINS EXACTLY ONE 1, THEN THE THE ALGORITIM HAS SUCCEEDED IN */
/* DETERMINING GRAPIl A IS ISOMORPHIC TO GRAPH B. THE ISOMORPHISM IS*/

/* DEFINED BY TIE MATRIX M. TIE REMAINDER OF THE PROCEDURE */
/* GATHERS PERFORMANCE INFORMATION. THE ASSEMBLY LANGUAGE ROUTIRE */
/* ASMTME IS USED TO OBTAIN EXECUTION TIMES FOR SECTIONS OF A */
/* PROCEDURE. */

/% THE PROCEDURE CAN HANDLE TWO GRAPHS HAVING UP TO 64 VERTICES. */
/* IF MORE VERTICES ARE NEEDED, THEN TIE DIMENSIONS OF A AND B MUST */
/* BE INCREASED. TIE VARIABLE AND ARRAY NAMES CORRESPOND TO THOSE */
/* USED BY ALGORITHM 6. */
/% ' */
DECLARE (A(64,64) ,B(64,64) ,M(64,64)) BIT(1) EXT,

(NA,NB,NPA,NPB) FIXED BIN(15) EXT,

BCOL(64 64) BIT(1) EXT,MD(64,04 64) BIT(1);

DECLARE (TMCALC1(25),110_GRAPIl_PRS) FIXED BIN(31) EXT;

DECLARE (TMULLM(25), '\IOPET(ZS) ’JOBACK\(ZJ) ULLM, MHCALC’I MUREF,
MNBACK,IIOGR, TOTAL) FIXED BIN(31), (’H"ULLU MECALC!,MEREF,
MEBACK,HMETOT) FLOAT DUC(16);

DECLARE ITME FIXED BIN(31),ASHMTME ENTRY(FIXED BIN(31));

/% */
/% READ IN TWO GRAPHS AND CRFATE CORRESPONDING ADJACENCY MATRICLS */
/* */

CET FILE(GRAPH) LIST(IGPRS,NA,NB,NPA,NP3);

GET LIST(HO_GRAPI _PRS);

MNCALCH=0; IGULL}=0; Mi{REF=0; MIBACK=0;

THCALCM=0; TMULLM=0; NOREF=0; NOBACK=0; NOGR=1I0_GRAPH PRS;
STEPO: CALL UGENGR;

IF NA ~= NB | NPA ~= NP3 THEN GO TO NO_ISOMORPHISHM;

BEGIN;

DECLARE F(HB) BIT(1),

(SUCCEED,FAIL) BIT(L), (11(11A) ,D,NOWDS) FIXED BIN(15);

J*
1*
1%

J*
J*
/*

/*
]*
/*

CALL CALCMO TO CONSTRUCT INITIAL MATRIX M
CALL CALCMO; NOWDS=CEIL(NA/32);
CALL ASMTME TO SET THE SYSTEM TIMER TO 0
ITME= -1; CALL ASMIME(ITME);
THE FOLLOWING CODE REPRESENTS ALGORITHHM 6

STEPl: D=1; H(1)=0; F='0"'B;
CALL REFINE(B,BCOL,M);
IF FAIL THEN GO TO NO_ISOMORP!IISM;
STEP2: DO I=1 TO NB;
IF M(D,I) & ~F(I) THEN GO TO STEP2_ 13
END3;
GO TO STEP7;
STEP2_1:
MD(D’*Q*)‘:M;
IF D=1 THEN K=H(1l); ELSE K=0;
STEP3: K=K + 1;
IF(M(D,K) | F(K))THEN GO TO STEP3;
DO J=1 TO NB; IF J = K THEN M(D,J)="0'B; END;
CALL REFINE(B,BCOL,M)3
IF FAIL THEN GO TO STEPS;

STEP/As TF SUCCEFD

/*

THEN DO;
PUT SKIP(4) EDIT
('THE FOLLOWING DEFINES AN ISOMORPHISM FROM A TO B')
(A); PUT SKIP LIST(' ');
PUT EDIT((I DO I=1 TO NA)) (F(3));
PUT SKIP LIST(' ');
DO I=1 TO NA; DO J=1 TO NAj;
IF M(I1,J) THEN DO; PUT EDIT(J) (F(3)); GO TO IEND;
END; END; IEND: END;
GO TO CHECK_NO_GRAPHS;
END3
ELSE GO TO STEP6;
STEP5: M=MD(D,*,*);
I=K+1;
DO J=1 TO NB;.
IF (M(D,J) & ~F(J)) THEN GO TO STEP5_1;
ENDg
GO TO STEP7;
STEP5 l: GO TO STEP3;
STEP6: 11(D)=K; F(X)="1"B; D=D + 13
GO TO STEP2;
STEP7: IF D=1 TIEN GO TO NO_ISOMORPHISM;
D=D - 1; K=H(D); F()='0"B;
NonAcx(no_pnApu_pRs)=nonAcx(nq_pRAPu_pR5) + 13
GO TO STEP5;

*/
*/
*/

*/
*/
*/

*/

*/
*/

*/

168

169

/* */
REFINE: PROCEDURE(D,RCOL M),

/* | */
/* THE PROCEDURE REFINE IMPLEMENTS THE REFINEMENT CONDITIONS */
/* USED BY ALGORITHM 6. EACH ROW OF M, EACH ROW OF B, AND EACH %/
/* COLUMN OF B IS STORED IN CEIL(N/32) WORDS. IN ORDER TO EXPLOIT */
/* THE LIMITED PARALLELISM OF THE IBM 370/158, THE REFINEMENT */
/* CONDITIONS ARE IMPLEMENTED BY ORING THE APPROPRIATE ROW OF M */

/* WITH THE APPROPRIATE ROU OR COLUM! OF B. THE PROCEDURE RETURNS %/
/* TO THE MAIN PROCEDURE ULLMAMNW WIIEN ONE OF THE FOLLOWING OCCURS: */

/* NO MORE ELEMENTS OF M ARE CHANGED; OR A ROW OF M BECOMES ALL */
/* ZEROS, FAIL; OR EACH ROV AND EACH COLUMN OF M CONTAINS EXACTLY */
/* ONE 1, SUCCEED. */
/* */

DECLARE B(64,64) BIT(1),ROUB(64,2) BIT(32) DFF B,
M(64,64) BIT(1),ROWI(64,2) BIT(32) DEF M,
BCOL(64,64) BIT(1),COLB(64,2) BIT(32) DEF BCOL,
CHANGE BIT(1),COL(A) BIT(1l),STRCOL BIT(WA) DEF COL,
ZFEROS FIXED BIN(15),BINZERO BIT(32) INIT((32)'0'B) STATIC;
NOREF(NO_GRAPH_PRS)=NOREF (.{0_GRAPH_PRS) + 13
/% */
FAIL='0'B; CIIANGE='1'B;
DO WHILE(CHANGE);
CHANGE='0'B; COL='0'D; SUCCEEN='1'B;
DO I=1 TO NA;
ZEROS=0;
DO J=1 TO NA;
IF «M(I,J) THEN GO TO NEXT_M;
DO IX=1 TO NAj;
IF A(I,IX) THEN DOj;
DO IY=1 TO NOWDS;
IF (ROWM(IX,IY) & ROWB(J,IY)) ~= BINZERO
THEN GO TO CONMD1_OK;
END;
M(I,J)="0'B; CHANGE='1'B; GO TO NEXT M;
END;
COND1 OK: IF A(IX,I) THEN DO;
DO IY=1 TO NOWDS;
IF (ROWM(IX,IY) & COLB(J,IY)) ~= BINZERO
THEN GO TO COND2_OKj;
END;
M(I,J)="0'B; CHANGE='1'B; GO TO NEXT_M;
END;
COND2 OK: ENDj
NEXT M: IF ~M(I,J)
THEN ZEROS=ZEROS + 1;
ELSE COL(J)="1"B;
END;
IF ZEROS=NB THEN DO; FAIL='1'B; RETURN; END;
IF ZEROS ~= NB - 1 THEN SUCCEED='0'B;
END;
END;
IF SUCCEED THEN IF ~STRCOL='0'B

170

THEN 3
ELSE SUCCEED='0'B;
END REFINE;
Iz ' */
/* */
END;

NO_ISOMORPUISM:
PUT SKIP(2) EDIT('NO ISOMORPHISIM EXISTS FOR GIVEN GRAPHS')

(A);
IF ITME= -1 THEN; ELSE GO TO TOTALING;
/* */
[* END OF ALGORITHM 6 L7
/* */
/* THE REMAINDER OF THE PROCEDURE GATHERS PERFORMANCE INFORMATION */
/% */
CHECK_NO_GRAPHIS:
/* x/
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE %/
[*/

ITME=1; CALL ASMTME(ITME);
TMULLM (NO_GRAPH_PRS)=ITME;
TOTALING:
MNCALCM=MNCALCM + TCALCI(JI0_GRAPH PRS);
MNULLM=MITULLY + T!ULLM(:IO_GRAPH_PRS);
MNBACK=ITiBACK + NOBACK(I0_GRAPH_PRS);
MNREF=MIREF + NOREF(NO_GRAPIL_PRS);
NO_GRAPI_PRS=NO_GRAPH PRS - 1;
IF NO GRAPIl PRS ~= 0
THEN GO TO STEPO;
ELSE DO; PUT PAGE EDIT('ANWALYSIS OF RUN USING ',MNOGR,
' GRAPH PAIRS OF ',IA,' VERTICES EACH') (A,F(2),A,F(2),
A); PUT SKIP(2) FDIT('*IUMBI‘R , "BACKTRACK', 'RI:FN"'
'CALCMO', 'ULLMANN', 'TOTAL') (COL(l),A COL(15),A COL(34),
A,COL(56),A,COL(75),A COL(95),A); J=1
DO I=NOGR TO 1 BY ~1;
TOTAL=TMCALCHM(I) + TMULLIM(I);
PUT SKIP EDIT(J,NOBACK(I),NOREF(I),TMCALCHM(I),THMULLM(I),
TOTAL) (rF(2),COL(10),F(11),COL(30),F(11),COL(50),F(11),
COL(70) ,F(11),COL(90),F(11));
J=J + 13
END;
TOTAL=IGICALC! + MNULLM;
PUT SKIP(2) EDIT
(" TOTAL' ,MIBACK , MNRET, !CALCM, MYULLY, TOTAL)
(A,COL(10) ,F(11),COL(30),F(11),COL(50),F(11),
COL(70),F(11),COL(90),F(11));
MEBACK=FLOAT (:NBACK) /1TOGR; MEREF=FLOAT (MNREF) /HOGR;
MECALCM=FLOAT (£{CALGC!) /NOGR; MEULLM=FLOAT (MNULLM) /NOGR;
METOT=FLOAT (TOTAL) /NOGR;
PUT SKIP(2) EDIT
("MEAN' ,MEDACK ,MEREF , MECALCH, MEULLM, METOT)
(A,COL(IO) F(15,3), COL(30) F(15,3),COL(50),
F(15,3),COL(70),F(15,3),CO0L(90),¥(15,3));

171

PUT SKIP(2) EDIT('#%*EACIl ABOVE UNIT=26.04166 X 10 -6',
' SEC.") (A,A);
ENDg
END ULLMANN;

UGENGR: PROCEDURE;

/* */
/* THE PROCEDURE UGENGR BUILDS ADJACENCY MATRICES FOR GRAPIIS A */
/* AND B. ADJACENCY LISTS FOR BOTH GRAPHS ARE PRINTLD. */
/% */

DECLARE (A(64,64),B(64,64) ,BCOL(64,64)) BIT(1) EXT,
(NA,NB,NPA,NPB) FIXED BIN(15) EXT;

/* */
A='0'B; B="0'B; BCOL="0'B;
% */
/* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST FOR GRAPH A */
/% */
PUT PAGE EDIT('ADJACENCY LIST FOR GRAPH A') (A);
LAST=0;

DO I=1 TO NPA;

GET FILE(GRAPH) LIST (II1,J); A(1I,J)="1'B;

IF II V= LAST :

THEN DO; PUT SKIP EDIT(II) (F(2)); LAST=II; ENDj
PUT EDIT(J) (F(3));

ENDj
IF TT = NA THEN PUT SKIP EDIT(MA) (F(2)):
/% */
;* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST FOR GRAPH B */
* 5 */
PUT PAGE EDIT('ADJACENCY LIST FOR GRAPH B') (A);
LAST=0;
DO I=1 TO NPB;
GET FILE(GRAPH) LIST (II,J); B(II,J)='1"'3;
BCOL(J,II)="'1'B;
IF II ~= LAST
THEN DO; PUT SKIP EDIT(II) (F(2)); LAST=II; END;
PUT EDIT(J) (F(3));
END;
IF II “v= NB THEN PUT SKIP EDIT(NB) (F(2));
END UGENGR;
CALCMO: PROCEDURE;
/* */
/* THE PROCEDURE CALCMO CO:STRUCTS THE INITIAL MATRIX M */

/* ACCORDING TO: M(I,J)=1, IF THE INDEGREE AND OUTDEGREE OF VERTEX */
/* I IS EQUAL TO THE INDEGREE AND OUTDEGRLE OF VERTEX J, OTHERWISE, */
/% M(T,J)=0. */
/* */
DECLARE (A(G4,64),B(64,64),1(64,64)) BIT(1) EXT,
(NA,NB) FINED BIN(15) EXT;
DECLARE (THCALCH(ZS),NQ_GRAPQ_PRS) FIXED BIN(31) EXT;

DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));

/*
]*
l*

]*
l*
/*

I1*
1*
/*

CALL ASMIME TO SET THE SYSTEM TIMER TO O

ITME= ~13 CALL ASMTME(ITME);
THE FOLLOWING CODE CONSTRUCTS INITIAL MATRIX M

BEGIN;
DECLARE (DATI(NA) ,DAO(MA) ,DBI (NA) ,DBO(}A)) FIXED BIN(15);
M='0"'B;
DAI=0; DAO=0; DBI=0; DBO=0;
DO I=1 TO NAj;
DO J=1 TO NAj;
IF A(I,J)
THEN DO; DAO(I)=DAO(I) + 1; DAI(J)=DAI(J) + 1; END;
IF B(I,J)
THEN DO; DBO(I)=DBO(I) + 1; DBI(J)=DBI(J) + 1l; END;
END3
END;
DO I=1 TO NAj;
DO J=1 TO NA;
IF DAI(I)=DBI(J) & DAO(I)=DR0O(J)
THEN M(IL,J)="'1"B;
END3;
END3
END:

END OF INITIAL M CONSTRUCTION

/* CALL ASMTME TO GLET EXECUTION TIME FOR THIS SECTION OF CODE

]*

ITME=1; CALL ASMTME(ITME);
TMCALCM(NO_GRAPH PRS)=ITHME;

END CALCMO;

172

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

APPENDIX G
SCHMIDT AND DRUFFEL'S BACKTRACKING ALGORITHM AND
PL/I IMPLEMENTATION
G.1l Algorithms
G.1.2 Algorithm 7
Algorithm 7 is Floyd's shortest path algorithm. Initially
m[i,j] is the length of a direct path from vertex i to vertex j
i.e., m[i,j] = 1 if there is an arc from vertex i to vertex j. If no

arc exists, then m[i,j] is initially 1010

. At the completion of the
algorithm, m[i,j] is the length of the shortest path from vertex i to
vertex j. If none exists m[i,j] is 1010. Matrix M contains the
shortest path in formation.

procedure shortest path (m,n); value n; integer n; array m

begin

integer i,j,k; real inf, s; inf := lO10
for 1 := 1 step 1 until n do

for j := 1 step 1 until n do

if m[j,i] < inf then

for k := 1 step 1 until n do

if m[i,k] < inf then

begin s := mlj,k] + m[i,k];

if s < m[j,k] then m[j,k] := s

end.

end shortest path
173

174

G.1.2 Algorithm 8
Algorithm 8 generates the initial partition for the sets of

vertices of graphs Gl and G2. First, the row and column character-
istic matrices XR! and XC! for G!, and XR? and XC2 for G2, are
constructed from the distance matrices D! = [dij] and D? = [d%j .
Next, the characteristic matrices X! for G! and X2 for G2 are res-
pectively formed by composing XR! with XCl and XR? with XC2. The
initial partition which is represented by the class vectors
Cé = [ci] and Cé = [c%l is then generated by assigning the same
class to all vertices having identical X! and X2 rows.
Step 1. Set c; =0 (1< i< N).
Step 2, Compute the row and column characteristic ma;rices,

XR! and XC! for G!, and XR? and XC? for G2.

R = {xr] | 1<i<®MA @2m<N-1)47

xrip = [{dij | <3N A @55 =m1] 3.

XR? = {xr2 | @< s <M A (@<m< N=-1)A
xe2p = [(a2 | Q< <M A @3 =]]

XC1={xc%m| (< 3ij<MA@Q<m<N=-1)A
ch!m= [{a}; | @< i< ™A @ =mi] L

X€2 = {xcZ | M<t<MA @Az N-1)A
xe2 = [{d? | W< s< M A @ =mH I

Step 3. Compose XR! with XC! to form X! and XR? with XC2 to form XZ.

Step 4. CLASS = O.

Step 5. CLASS CLASS + 1.
Step 6. Select some integer k € {1,2,...,N} such that cé = 0.

If none, stop.

Step 7. Determine two sets of integers:

W1={i|x§_m=x11<m(limf_N—l)}.
w2={i|x2 =x (Q<m<N-1D}

Step 8. Make class assignments:
c} = cLass, i € wl. e% = cLass, i €& w2,

Step 9. Go to Step 5.

G.1.3 Algorithm 9
Algorithm 9, the backtracking algorithm, tests graphs Gl and G2

for isomorphism. The algorithm selects possible vertex assignments
between the two graphs and checks these assignments for consistency.
If the assignment is not consistent then the algorithm backtracks to
try another vertex assignment. Since a new class vectors, cl and C2,
and class count vectors, K! and K2, are generated at each level of th
vertex assignment trxee, an index t is added to these vectors. Thus,
C% refers to the class vector for graph G! generated at level t. The
class count vector K is defined such that the element ki is the numbe
of vertices in class i. D! and D2 are the distance matrices for
graphs ¢l and G2.
Step 1. Set t = 0. Set p; = 0 (0< i< N). (pt is the vertex in

Graph G! chosen at level t.)
Step 2. Let Cé and CS be the class vectors from Algorithm 8, and let

Ké and K% be the class count vectors.
Step 3. The t = N, conclude that the graphs are isomorphic, present

the mapping, and STOP.
Step 4. Set i = p,..

Step 5. If i # 0, go to Step 7.

175

e

r

176
Step 6. Choose some integer i for which vi has not been mapped at
a lower level. If a cit exists with a unique unmapped vertex,
choose 1. Set p. = i,
Step 7. Choose some r such that cit = cit and for which there has
been no mapping yet chosen for v%.
Step 8. If such an r exists, go to Step 10.
Step 9. Decrement t. If t< 0, conclude that the graph have no
isomorphism; otherwise, go to Step 7.
Step 10. Compose C% with row i of D! to yield éi. Compose C% with
row r of D2 to yield 62. Generate El and 82 by sub-
stituting a unique integer for each unique term of é& and 62.

o ; 1 ; cl o2
Compose C' with column i of D* to yield C'. Compose C

2 2 1 2
with column r of D4 to yield C“. Generate ct+l and Ct+1 by

substituting 2 unique integer for cach unique tomm of €l and
62.
1 2
Step 1l1. Compute the class count vectors Kt+l’Kt+1'

Step 12. If Kl

2
e+l # Kt+1’ go to Step 7.

Step 13. Increment t.

Step 14. Go to Step 3.

G.2 PL/I Source Listing

DRUFFEL: PROCEDURE OPTIONS (MAIN);

/* */
/* THE MAIN PROCEDURE DRUFFEL IMPLEMENTS ALGORITH!! 9. THE */
/* STATEMENT NAMES ROUGHLY CORRESPOND TO TIE STEP NUMBERS OF */
/* ALGORITHM 9. 1IN STEP 0, TIHE PROCEDURE CALLS DGENGR TO CONSTRUCT */
/* THE ADJACENCY MATRICES FOR CRAPHS Gl AND G2. DIST IS THEN */
/* CALLED TO GENERATE THE CORRESPONDING DISTANCE MATRICES USIHG */
/* FLOYD'S ALGORITIRI 7. IXN STLPS 1-14, ALGORITIM 9 IS IMPLEMENTED. ®/
/% IN STEP 1, THE PROCEDURE DALGL (ALCORITIIM 8) IS CALLED TO */

/* CONSTRUCT THE INITIAL PARTITION FOR THE SETS OF VERTICES. TIE %/
/* INTERNAL PROCEDURE CHOOSE IS CALLED IN STEP 6 TO CHOOSE A VERTEX */
/* IN THE SHALLEST CLASS SUCH THAT TIR VERTEX HAS NOT BEEN PREVIOUS-*/

177

/* LY ASSIGNED, THE REMAIMNDER OF THE PROCEDURE GATIIERS PERFORMANCE */
/* INFORMATION. TIE ASSEMBLY LANGUAGE ROUTINE ASHIME IS USED TO */
/* OBTAIN THE EXECUTION TIME FOR SECTIONS OF A PROCEDURE. */
/* THE PROCEDURE CAHN IIANDLE TUO GRAPHS OF UP TO 64 VERTICES. */
/* IF MORE VERTICES ARE NEEDED, THEXN TIE DIMENSIONS OF ALL ARRAY */
/* NAMES DIMENSIONED 64 MUST BE CIANGED., VARIABLE AND ARRAY NAMES */
/* ROUGIILY CORRESPOND TO THOSE USED BY ALGORITHM 9. */
/* */
DECLARE (Gl(G4,64),G2(64,64), NG1,NG2,NPG1,NPG2) FIXED BIN(15) EXT,
(K1, INDEX1(0:64,64) ,LIST1(0:64,64)) FIXED BIU(15) EXT,
(K2, INDEX2 (0:64,64) ,LIST2(0:64,64)) FIXED BIN(15) EXT,
(C1(0:64,64),C2(0:64,64)) FIXKED BIN(15) EXT,
NO_ISO BIT(1) EXT;
DECLARE (T,VI,LAST,ClIT,CLASS,R) FIXED BIN(15);
DECLARE ITME FIXED BIil(31),ASMTIE ENTRY (FIXED BIN(31));
DECLARE (TMDIST(25),TDALG1(25),TIDRUF(25),N0_GRAPIL PRS)
FIXED BIN(31) LXT;
DECLARE (BACKTR(25) ,MIBACK,!IDIST,MIDALGL ,MDRUF,NOGR, TOTAL)
FIXED BIN(31), (IMEBACK,MEDIST,MEDALGL,MEDRUF,METOT) FLOAT;

/% */
/¥ READ IN TWO GRAPHS AND CREATE ADJACENCY MATRICES Gl AND G2 */
Iz */

GET FILE(GRAPH) LIST(NGPRS,NGl,NG2,NPG1,NPG2);
GET LIST(NO GRAPH PRS);
BACKTR=0; TIDIST=0; TMDALGl=0; TMDRUT=0;
NOGR=NO_GRAPH PRS; IMIBACK=0; MNDIST=0; MDALGl=0; MiDRUF=0;
STEPO: CALL DGENGR;
IF NGl n= NG2 | NPGL "= NPG2
THEN GO TO NO_ISOMORPHISHM;

/* ‘ */
/* CALL DIST (FLOYD'S ALGORITHM 7) TO CONSTRUCT DISTANCE MATRICES */
/% */

PUT PAGE EDIT('DISTANCE MATRIX FOR G1') (A);

CALL DIST(G1,NG1);

PUT PAGE EDIT('DISTANCE MATRIX FOR G2') (A);

CALL DIST(G2,NG2);
/* : */
/% THE FOLLOWING CODLE REPRESENTS ALGORITHM 9 %/
/% */
/* CALL DALGl (ALGORITIIM 8) TO CREATE INITIAL PARTITION FOR SETS %/
/* OF VERTICES OF Gl AND G2 */

STEP1: CALL DALGL;

IF NO_ISO THEN GO TO NO_ISOHORPHISM; y
[%
/* CALL ASMIME TO SET THE SYSTEM TIMER TO 0 */

ITME= -1; CALL ASMTME(ITIE);
STEP2: BEGIN;
DECLARE (P(0:NG1),MAP1(HG1)) FIXED BIN(15), MAP2(NG2) BIT(1);
T=03; P=0; MAPl=0; MAP2='0'B;
STEP3: IF T=NGl
THEN DO; PUT SXIP(4) EDIT
('THE FOLLOWING DEFINES AND ISOMORPHISM FROM Gl TO G2')
(A); PUT SKIP EDIT((I DO I=1 TO NG1)) ((64)F(3));

PUT SKIP EDIT((MAP1(I) DO I=1 TO NG1)) ((64)F(3));
GO TO CHECK NO_GRAPIS;
END3; '
STEP4s I=P(T);
STEPS5: IF I v= 0
THEN DO; VI=I; GO TO STEP7; END;
STEP6: CALL CLIOOSE; P(T)=VI;
STEP7: C1IT=C1(T,VI); R=INDEX2(T,ClIT);
IF MAP2(R)
THEN DO;
STEP7_1: DO WHILE(LIST2(T,R) v= 0);
_ R=LIST2(T,R);
~ STEPS8: IF “MAP2(R) THEN GO TO STEP1O0;
END;
ENDg
ELSE GO TO STEPlO;
STEP9: T=T - 1;
BACKTR(NQnGRAPH_PRS)=BACKTR(NQ_GRAPH_PRS) + 13
IF T < 0 THEN GO TO NO_ISOMORPHIS!;
ELSE DO; VI=P(T); R=MAP1(VI); MAP2(R)="0"'B;
GO TO STEP7_1;
END;
STEP10: CLASS=0; I1I=0;
DO I=1 TO NGI1;
C1(T+1,I)=0; IMDEX1(T+1,I)=0; LIST1(T+1,I
C2(T+1,I)=0; LIDEX2(T+1,I)=0; LIST2(T+1,I
END;
STEP10_1: CLASS=CLASS + 1; II=1I + 1;
DO K=II TO NGl;
IF C1(T+1,K)=0 THEN GO TO STEP10_2;
END3;
GO TO STEP13;
STEP10_2: C1(T+1,K)=CLASS; Kl=1;
INDEX1 (T+1,CLASS)=K; LAST=K;
DO I=K+1 TO NGI;
IF C1(T+1,I)=0
THEN IF C1(T,K)=Cl(T,I) & G1(VI,K)=G1(VI,I)
& G1(K,VI)=G1(I,VI)
THEN DO; C1(T+1,I)=CLASS; Kl=Kl+1;
LIST1(T+1,LAST)=1; LAST=I;
ENDj;

~
o

END;
K2=0;
DO I=1 TO NG2;
IF C2(T+1,I)=0
THEN IF C1(T,K)=C2(T,I) & Gl1(VI,K)=G2(R,I)
& G1(X,VvI)=G2(I,R)
THEN DO; C2(T+1,I)=CLASS; K2=K2+1;
IF K2=1
THEN INDEX2(T+1,CLASS)=I;
ELSE LIST2(T+1,LAST)=I;
LAST=13;
END3

178

179

END;
STEP11l 12: IF Kl n= K2

THEN GO TO STEP7_13

ELSE GO TO STEP10_1;
STEP13: MAP1(VI)=R; MAP2(R)='1'B; T=T + 1;
STEP14: GO TO STEP3;

/* */
/% , */
CHOOSE: PROCEDURE; :

/% */
/* THE PROCEDURE CHOOSE IMPLEMENTS THE STRATEGY USED IN CHOOSING #*/
/* A VERTEX OF Gl TO ASSIGN TO A VERTEX OF G2. THE STRATEGY */

/f CONSISTS OF CII0OSING A VIRTEX IN TIE SMALLEST CLASS SUCH TIIAT */
/% THE VERTEX HAS NOT BEEN PRIVIOUSLY ASSIGNED. TIIE STRATEGY HAS */

/* THE EFFECT OF REDUCING THE BREADTI OF SEARCH, BUT POSSIBLY */

/* PERMITS A GREATER DEPTH. */

/% */
DECLARE (SIZE,LINK) FIXED BIN(15),CLASS_STATUS(NGl) BIT(1);

/* */

SIZE=1; J=1; CLASS_STATUS='0'B;
IF INDEX1(T,2)=0
THEN DO; LIiIK=1; GO TO LINK V; END;
FIND SIZE: .
DO I=J TO NGI;
IF CLASS_STATUS(C1(T,I)) THEN GO TO NXT V;
LINK=C1(T,I);
DO IT=1 TO STZE;
IF LINK=0
THEN DO; CLASS_STAIUS(CI(T,I))='1'B;
GO TO NXT Vj;
END;
LINK=LIST1(T,LINK);
END;
IF LINK=0 THEN GO TO FIND_V;
NXT_V: END;
SIZE=SIZE + 13 J=13; GO TO FIND SIZE;
FIND V: LINK=1;
LINK V: IF MAP1(LINK)=0
THEN DO; VI=LINK; RETURN; END;
ELSE DO; LINK=LIST1(T,LINK);
IF LINK=0
THEN DO; J=I+l; CLASS_STATUS(C1(T,I))="1'B;
GO TO FIND_SIZE;

END;
ELSE GO TO LINK V3
END; "
END CHOOSL;
/* x/
J% */

END;
NO_I SOMORPUISM:
PUT SKIP(2) EDIT('NO ISOMORPNISM EXISTS FOR GIVEN GRAPHS')

(a);

180
IF ITMP= -1 TIHEN; ELSE GO TO TOTALING;

/* */
/* END OF ALGORITHM 9 _ */
/* */
/#* THE REMAINDER OF TUE PROCEDURE GATIERS PERFORMANCE INFORMATION %/
/* */
CIIECK NO_GRAPIIS: :
/* */
/* CALL ASMIME TO GET EXECUTION TIME FOR TIIIS SECTION OF CODE */
/% */

ITME=1; CALL ASHTME(ITME);
THDRUF (HO_GRAPI_PRS)=1ITHMI;
~ TOTALING:

MNDIST=MNDIST + TIMIST(NO_GRAPI! _PRS);

MNDALG1=MNDALGl + TMDALGL(NO_GRAPIL_PRS);

MNBACK=1NBACK + BACKTR(HNO_GRAPIL PRS);

MWDRUF=ILIDRUF + TiMRUF (O_GRAPIL PRS);

NO_GRAPIL PRS=NO_GRAPII PRS - 13

IF NO_GRAPI_PRS >= 0

THEN GO TO STEPO;

ELSE DO; PUT PAGE EDIT('ANALYSIS OF RUN USING ',NOGR,
' GRAPH PAIRS OF ',NG1,' VERTICES EACH') (A,F(2),A,F(2),
A); PUT SKIP(2) EDIT('NUIIBER','BACKTRACK','DIST', 'DALG1'
» "DRUFFEL', '"TOTAL') (COL(1),A,COL(15),4,COL(34), A
COL(56) A COL(75),A COL(95) A) J=13
DO I=NOGR TO 1 BY =-1;
TOTAL=TMDIST(I) + TAIDALGI(I) + TMNRUF(I);
PUT SKIP EDIT(J,BACKTR(I),TMDIST(I),TMDALGL(I),TMDRUF(I)
,TOTAL) (F(2),COL(10), F(ll) COL(30),F(11),COL(50),F(11)
,COL(70),F(11),COL(90),F(11));
J=J + 1;

END;
TOTAL=MNDIST + MIDALGl + MNDRUF;
PUT SKIP(2) EDIT
('TOTAL' ,}NBACK,MITDIST, MNDALG1 ,MNDRUF,10TAL)
(A,COL(10),F(11),COL(30),F(11),COL(50), F(l 1),
COL(70),F(ll),COL(90),F(11));
MEBACK=FLOAT CBACK) /NOGR; MEDIST=FLOAT (MNDIST) /NOGR;
MEDALG1=FLOAT (MNDALG1) /NOGR; !NMEDRUF=FLOAT (MNDRUF) /NOGR;
METOT=FLOAT (TOTAL) /NOGR;
PUT SKIP(2) EDIT
("MEAN' ,MEBACK ,MEDIST ,MEDALG1 ,MEDRUF,
METOT) (A,COL(10),F(15,3),COL(30),F(15,3),COL(50),
F(15,3),COL(70),F(15,3),COL(90),F(15,3));
PUT SKIP(2) EDIT('***EACIl ABOVE UNIT=26.04166 X 10 -6',
' SEC.') (A,A);
END3;
END DRUFFEL;

DGENGR: PROCEDURE;
It */

181

/* THE PROCEDURE DCINGR BUILDS TIHE ADJACENCY MATRICES FOR GRAPHS */

/* Gl AND G2. ADJACENCY LISTS FOR BOTH GRAPHS ARE PRINTED. */
/* : */
DECLARE (G1(64,64),G2(64,64),NGI,NGZ,NPGI,NPGZ) FIXED BIN(15) EXT;
r* */

Gl=0; G2=0;
/% */
/* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST. FOR GRAPH Gl */
/% */

PUT PAGE EDIT('ADJACENCY LIST FOR GRAPH Gl') (A);

LAST=0;

DO I=1 TO NPGl;
GET FILE(GRAPH) LIST(II,J); Gl(II,J)=1;
IF IL ~= LAST
THEN DO; PUT SKIP EDIT(II) (F(2)); LAST=II; END;
PUT EDIT(J) (F(3));

END;

IF II ~= NGl THEN PUT SKIP EDIT(NGl) (F(2));
/* x/
/* BUILD ADJACENCY MATRIX AND PRINT ADJACENCY LIST FOR GRAPH G2 */
/* */

PUT PAGE EDIT('ADJACENCY LIST FOR GRAPH G2') (A);

LAST=0; :

DO I=1 TO NPG2;
GET FILE(GRAPN) LIST(II,J); G2(II,J)=1;
IF II ~= LAST
THEN DO; PUT SKIP EDIT{IT) (F{2}); LAST=II; END;
PUT EDIT(J) (F(3));

END3

IF II ~= NG2 THEN PUT SKIP EDIT(NG2) (F(2));

END DGENGR;

DIST: PROCEDURE((,N);
/* x/
/* THE PROCEDURE DIST IMPLEIENTS FLOYD'S ALGORITIM 7 FOR CON- */
/* STRUCTING A DISTANCE MATRIX. INITIALLY M IS THE SAMT AS THE AD- */
/* JACENCY MATRIX OF A GRAP!H, I.E., M(I,J)=1, IF THERE IS AN ARC */
/* (1,J), OTHERWISE M(I,J)=N, EXCEPT M(1,I)=0. AT THE COMPLETIOI OF #*/
/* THE ALGORITIDM, M(I,J) IS TIIE LENGTH OF THE SHORTEST PATII FROM I */
/* TO J., I NONE EXISTS, TIEN M(I,J)= MAXIMUM PATH LENGTH + 1. %/
/% ' */

DECLARE S FIXED BIN(15),M(64,64) FIXED BIN(15), N TFIXED BIN(15);

DECLARE L FIXED BIN(15) EXT;

DECLARE ITME FIXED BIN(31),ASMTME ENTRY(FIXED BIN(31));

DECLARE (T!DIST(25),T:DALG1(25),TiDRUF (25) ,HO__GR.APH_PRS)

FIXED BL(31) EXT;

/% */

/* CALL ASMTME TO SET TIIE SYSTEM TIMER TO O */

/* */
ITME= ~1; CALL AS!THME(ITME);

[* */

INF=N;

182

DO I=1 TO Nj;
DO J=1 TO N;
IF I ~= J THEN IF M(I,J)=0 THEN M(I,J)=INF;

END3
END;
/* : */
/* THE FOLLOWING CODE REPRESENTS FLOYD'S ALGORITIM 7 */
/* */
1.=0; '
DO I=1 TO N;
DO J=1 TO Nj;
IF M(J,I) < INF
THEN DO K=1 TO N;
IF M(I,K) < INF
THEN DO; S=M(J,I) + M(I,K);
IF S < M(J,K)
THEN DO; M(J,K)=S;
IF § > L TIEN L=S;
END;
END;
END;
END3
ENDg
L=L + 1;
DO I=1 TO N;
M(1,I)=0;
Do J=1 TO N;
IF M(I,J)= INF THEN M(I,J)=L;
END;
END;
[* */
l* END OF FLOYD'S ALGORITHM 7 */
/% ' */
DO I=1 TC N;
PUT SKIP EDIT((M(I,J) DO J=1 TO N)) ((64)F(2));
END3
/% : */
/* CALL ASMTME TO GET EXECUTION TIME FOR THIS SECTION OF CODE */
[k */
ITME=1; CALL ASHTME(ITME);
TMDIST (NO_GRAPH__PRS)=TIDIST (HO__GRAPH_PRS) + ITMI;
END DIST;
DALGl: PROCEDURE;
/% ' */
I1* THE PROCEDURE DALGl IMPLEMENTS ALGORITIII 8. TIIE STATTMENT */
/* NAMES ROUGHLY CORRESPOND TO TIIE STEP NUIBERS OF ALGORITIDM! 8. */

/* THE PROCEDURE USES TIE DISTANCE MATRICES CONSTRUCTED BY DIST */
/* TO GENERATE THE ROW AND COLWIGI CIARACTERISTIC MATRICLS WHICH IN */
/* TURN ARE USED TO GENERATT TIHFE CHARACTERISTIC MATRICES. TROM ®/
/%* THL CHARACTERISTIC MATRICES, THE INITIAL PARTITION IS CONISTRUCTED?*/
/% AND STORED AT LEVEL 0 IN THE CLASS VICTORS Cl AND C2. TIE */

183

/* VARIABLE AND ARRAY NAMES CORRESPOND TO TIIOSE USED BY ALGORITHM 8.%/
/* */
DECLARE (G1(64,64) ,G2(64,64) ,L,NG1,NG2) FIYFD BIN(15) EXT,
CLASS FIXED BIN(15),NO_ISO BIT(1) E
(k1,INDEX1(0:64,64) ,LIST1(0:64, 64)) FIXD BIN(15) EXT,
(K2, IWDEX2(0:64,64) ,LIST2(0:64,64)) FIXED BIN(15) EXT,
(c1(0:64,64),02(0:64,64)) FIXED BIN(15) EXT;
DECLARE (T:DIST(25),T:MALG1(25),TDRUF(25),N0 GRAPH_PRS)
FIXED BIN(31) EXT; - -
DECLARE ITME FIXED BIN(31),ASMIME ENTRY(FIXED BIN(31));

% */
/* CALL ASMTME TO SET THE SYSTEM TIMER TO O */
/* %/
' ITME= -1; CALL ASMTMRE(ITME);

/[* */
/* THE FOLLOWING CODE REPRESENTS ALGORITHM 8 %/
/% */

STEPl: DO J=1 TO NGl;
€1(0,J)=0; C2(0,J)=0; INDEX1(0,J)=0; LIST1(0,J)=0;
INDEX2(0,J)=0; LIST2(0,J)=0;
END;
NO__ IS0="0"'B;
STEP2 3: BEGIN;
DECLARE (XR1 (NG, O.NGI),XRZ(NGZ 0:NG2),XC1(1G1,0:NGl),XC2(NG2,0:1G2
)) FIXED BIN(15);
XR1=03; XR2=0; XCl=03; XC2=0;
DO I=1 TO NGl
DO J=1 TO NGl;
XR1(1,G1(1,J))=XR1(I,G1(1,J))
XR2 (1,G2(I,J))=XR2(I,G2(I,J))
XC1(I,C1(J,I))=XCc1(I,61(3,I))
XC2(1,G2(J,I))=XC2(I,G2(J,I))
END;
END;
STEP4: CLASS=0; II=0;
STEP5: CLASS=CLASS + 13
STEP6: II =II + 1;
DO K=II TO NG1;
IF C1(0,K)=0
THEN GO TO STEP7 8;
END3
STEP6 1%
/* */
/* CALL ASHMTME TO GLET EXECUTION TIME FOR THIS SECTION OF CODL */
/* %/
ITME=1; CALL ASMTME(ITME);
TMDALG1 (NO_GRAPH_PRS)=ITIME;
/* */
RETURN; '
STEP7_8: C1(O, K)=CLASS; Kl=1;
INDEX1 (0, CLAS‘S)"K' LAST=K
DO I=K + 1 TO NGl
IF C1(0,I) v= 0 THEN GO TO NXT 1;

[y
Aﬁ.“.‘.“.

+
-+
-
+

DO J=1 TO L;
IF XR1(I,J)=XR1(K,J) & XCl(I,J)=XCl(K,J)
THEN;
ELSE GO TO NXT_1;
END;
C1(0,I)=CLASS; K1=Kl1 + 13
LIST1(0,LAST)=I; LAST=I1;
NXT_1: END;
K2=0;
DO I=1 TO NG2;
IF C2(0,I) ~= 0 THEN GO TO NXT 2;
DO J=1 TO L;
IF XR2(1,J)=XR2(&X,J) & XC2(1,J)=XC2(K,J)
THEN;
ELSE GO TO NXT_2;
END3
C2(0,I)=CLASS; K2=K2 + 13
IF K2 v= 1
THEN LIST2(0,LAST)=1;
ELSE INDEX2({0,CLASS)=I;
LAST=1;
NXT _2: END;
IF K1 v= K2 THEN DO; NO_ISO="1'B; GO TO STEP6_1;
STEP9: GO TO STEPS5;
ND3
]*

/* END OF ALGORITHM 8
J*
END DALGL;

184

LD

*/
*/
*/

GRADUATE SCHOOL
UNIVERSITY OF ATABAMA IN BIRMINGHAM
DISSERTATION APPROVAL FORM

Name of Candidate Virginia Charmane May

Major Subject Information Sciences

Title of Dissertation A New Algorithm, and the Evaluation of Current

Algorithms, Concerning Graph Isomorphism.

Dissertation Committee:

(:e\ (O "Ce\\le. \/,H""g/, Chairman

Director of Graduate Program %
Dean, UAB Graduate School ,Xﬁ

v DAl 1777

	A New Algorithm, And The Evaluation Of Current Algorithms, Concerning Graph Isomorphism.
	Recommended Citation

	tmp.1715972404.pdf.Ql5He

