
University of Alabama at Birmingham University of Alabama at Birmingham 

UAB Digital Commons UAB Digital Commons 

All ETDs from UAB UAB Theses & Dissertations 

1987 

Best Approximate Impulse Response Estimate In Pseudo-Random Best Approximate Impulse Response Estimate In Pseudo-Random 

Binary Sequence System Identification With Application To Binary Sequence System Identification With Application To 

Sodium Nitroprusside Pharmacodynamics. Sodium Nitroprusside Pharmacodynamics. 

James Ralph Jacobs 
University of Alabama at Birmingham 

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection 

Recommended Citation Recommended Citation 
Jacobs, James Ralph, "Best Approximate Impulse Response Estimate In Pseudo-Random Binary 
Sequence System Identification With Application To Sodium Nitroprusside Pharmacodynamics." (1987). 
All ETDs from UAB. 4312. 
https://digitalcommons.library.uab.edu/etd-collection/4312 

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is 
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be 
directed to the UAB Libraries Office of Scholarly Communication. 

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/4312?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc


INFORMATION TO USERS

While the most advanced technology has been used to 
photograph and reproduce this manuscript, the quality of 
the reproduction is heavily dependent upon the quality of 
the material submitted. For example:

• Manuscript pages may have indistinct print. In such 
cases, the best available copy has been filmed.

• Manuscripts may not always be complete. In such 
cases, a note will indicate that it is not possible to 
obtain missing pages.

• Copyrighted material may have been removed from 
the manuscript. In such cases, a note will indicate the 
deletion.

Oversize materials (e.g., maps, drawings, and charts) are 
photographed by sectioning the original, beginning at the 
upper left-hand corner and continuing from left to right in 
equal sections with small overlaps. Each oversize page is 
also filmed as one exposure and is available, for an 
additional charge, as a standard 35mm slide or as a 17”x 23” 
black and white photographic print.

Most photographs reproduce acceptably on positive 
microfilm or microfiche but lack the clarity on xerographic 
copies made from the microfilm. For an additional charge, 
35mm slides of 6”x 9” black and white photographic prints 
are available for any photographs or illustrations that 
cannot be reproduced satisfactorily by xerography.





Order Number 8718334

Best approximate impulse response estimate in pseudo-random 
binary sequence system identification with application to sodium 
nitroprusside pharmacodynamics

Jacobs, James Ralph, Ph.D.
The University of Alabama in Birmingham, 1987

Copyright @1987 by Jacoba, James Ralph. All rights reserved.

UMI
300N. ZeebRd.
Ann Aibor, MI 48106





PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. 
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages

2. Colored illustrations, paper or print

3. Photographs with dark background

4. Illustrations are poor copy

5. Pages with black marks, not original copy

6. Print shows through as there is text on both sides of page

7. Indistinct, broken or small print on several pages i/

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct print

11. Page(s)lacking when material received, and not available from school or 
author.

12. Page(s)seem to be missing in numbering only as text follows.

13. Two pages numbered. Text follows.

14. Curling and wrinkled pages

15. Dissertation contains pages with print at a slant, filmed as received

16. Other______________________________________________________________________

University
Microfilms 

International





BEST APPROXIMATE IMPULSE RESPONSE ESTIMATE IN PSEUDO-RANDOM 
BINARY SEQUENCE SYSTEM IDENTIFICATION WITH APPLICATION TO 

SODIUM NITROPRUSSIDE PHARMACODYNAMICS 

by

JAMES RALPH JACOBS

A DISSERTATION

Submitted in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy in the Department of 

Biomedical Engineering in the Graduate School, 
The University of Alabama at Birmingham

BIRMINGHAM, ALABAMA

1987



Copyright by

James Ralph Jacobs

1987



ABSTRACT OF DISSERTATION 
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Ti t le BEST APPROXIMATE IMPULSE RESPONSE ESTIMATE IN PSEUDO-RANDOM
BINARY SEQUENCE SYSTEM IDENTIFICATION WITH APPLICATION TO 
SODIUM NITROPRUSSIDE PHARMACODYNAMICS

Crosscorrelating a pseudo-random binary input and the 

resulting output of a linear system provides an estimate of 

the impulse response function of the system. This is the 

well-known system identification technique of pseudo-random 

binary sequence testing. Most mathematical formulations of 

pseudo-random binary sequence system identification treat 

the system input and output as continuous signals, but 

generally in practice these signals are sampled and 

digitized so that the crosscorrelation and subsequent 

analyses can be performed using a digital computer. 

Modification of the impulse response estimate for the 

effects of sampling when it is to be used in numerical 

convolution was investigated in the present research. The 

vector containing the elements of the crosscorrelation 

sequence is shown to be equal to the product of a square 

(NxN) circulant matrix composed of the elements of the 

autocorrelation of the sampled input pseudo-random binary 

sequence. Multiplication of the crosscorrelation vector by 



the generalized inverse of the circulant matrix, computed by

two N-point discrete Fourier transforms and N 

reciprocations, yields the best approximate (in the least­

squares sense) impulse response estimate. Computation of 

the best approximate solution adjusts the crosscorrelation 

for the effects of sampling (normalization can be 

substantially accomplished by dividing the crosscorrelation 

by the number of samples taken per state of the binary 

input) and, moreover, forms the best approximate numerical 

deconvolution of the system response to the pseudo-random 

binary input. Best approximate impulse response estimates 

were calculated for data obtained from measuring the 

hemodynamic effects of pseudo-random binary infusions of 

sodium nitroprusside in six dogs. Convolution of the input 

sequence for each dog with the best approximate impulse 

response estimate for eleven variables resulted in sequences 

with mean-square errors (compared with the actual 

hemodynamic data) one or two orders of magnitude smaller 

than did convolution with a normalized crosscorrelation 

estimate. The best approximate impulse response estimate is 

a powerful enhancement to pseudo-random binary sequence 

testing; its greatest utility may be in black-box simulation 

studies, but the prospect also exists to separate the 

dynamic and background components of the system response.
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CHAPTER 1

INTRODUCTION
The impulse response function constitutes a complete 

functional description of the input-output relation of a 
linear system. Because of the vital role that the impulse 

response function plays in system simulation and in control 

system design, identification of the impulse response 
function has been intensively investigated. Methods for 

obtaining the impulse response range from direct observation 

of the system output resulting from an impulsive input to 

sophisticated Kalman filtering algorithms.

One popular system identification technique [DA-70] is 
known as pseudo-random binary sequence testing (PRB 

testing), wherein an estimate of the linear or linearized 

system s impulse response function is obtained by computing 
the crosscorrelation function between a PRB input and the 

resulting system output. The subject of this report is 

enhancement of PRB testing by considering the effects of 

periodic sampling of the input and output signals on the 

cross correlation computation. Clearly, in most contemporary 
applications of PRB testing the crosscorrelation and 

subsequent analyses will be performed using a digital
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computer, necessitating digitized sample estimates of the 
input/output signals, but it is not apparent that the effect 

of sampling on the impulse response estimate obtained by 

crosscorrelation has been considered previously.

The ideal test signal, such as white noise or a Dirac 

pulse, for use in identifying the impulse response function 

would have flat power spectra from minus to plus infinity to 

excite equally all possible modes of the system under 

investigation [EY-74]. However, these ideal probe signals 

can be realized and utilized only with great difficulty, if 

at all. PRE sequences have properties that are in 
themselves desirable, as well as approximating those of the 

ideal test signals, and as such PRE sequences have found 

utility in system identification.

The name pseudo-random intimates a test signal with 
properties similar to white noise, but that is deterministic 
[DA-70, RU-73] . A PRE sequence is periodic and over a 

single period has a triangular autocorrelation function; 

that this autocorrelation function approximates an impulse 
is indicative of the white noise characteristics of the pre 

sequence. A further advantage of this test signal is that 
the amplitude of the pseudo-random stimulus need be only 

large enough to induce a measurable response from the system 

under study. As summarized by Slate [SL-80], PRE testing 

permits the injection of a relatively large amount of energy 

over a specified period of time using a relatively small 
amplitude input signal, and hence the signal—to—noise ratio 
is improved while nonlinearities associated with large- 
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signal input perturbations are avoided.

Examples of the application of PRB testing include 
identification of a binary distillation column [UR-86], 

measurement of the dynamic thermal response in rooms [LE- 
82], and identification of a gas-turbine engine [GO-74]. 

Gufstavsson [GU-75] gives a survey of applications of PRB 
testing in the identification of chemical and physical 

processes. Several authors have extolled the benefits of 

PRB testing [BU-77, DA-70, GO-80, GU-75, LI-81, PO-74a], 
while others [BU-81] have noted antipathy toward PRB 

testing, at least with regard toward PRB excitation as a 

multifrequency test signal.

Biological systems are notoriously susceptible to 

large-signal input nonlinearities [MA-78], and therefore 

many investigators have been attracted to PRB testing 

because of the relatively small magnitude input perturbation 

that this method exploits. Furthermore, PRB testing usually 

requires a much shorter measurement period than does direct 

sinusoidal testing, a critical consideration in the analysis 

of biological systems that do not remain stationary for 

extended lengths of time. Finally, biological systems are 
characteristically noisy, and the signal averaging inherent 
in the crosscorrelation computation helps PRB testing to 

achieve impulse response measurements with desirable signal- 

to-noise properties.

Toll [TO-73] measured the crosscorrelation between 

pseudo-random variations of extracellular calcium 

concentration and the response of peak isometric tension of 
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an isolated heart muscle in a study of myocardial 

inotropism. Rubenstein, Kenner, and Ono [RU-73] used PRE 

testing to investigate the low frequency properties of renal 

and femoral hemodynamic variables. Ponte and Purves [P0- 

74a, 74b] proposed PRE testing to measure the frequency 

response of sensory receptors. Poussart and Ganguly [PO-77] 

used PRE testing in kinetic studies of ionic processes in 

nerve membrane. Giard et al. [GI-85] used PRE testing to 
identify the oxygen and carbon dioxide responses in an 

artificial ventilation system. Sheppard et al. [SH-76, 77, 

80, 82] and Linkens et al. [LI-81, 82] used PRE drug
infusions to characterize dynamic pharmacodynamics.

Although in a number of the papers mentioned above [GI- 
85, GO-74, 80, LE-82, LI-82, PO-74, 77, RU-73, SH-76, 77] 

specific reference is made to digital computation of the 

crosscorrelation impulse response estimate, in none is 
discussed the effect, if any, on the crosscorrelation of 

sampling of the PRE input and the system output. This is 

surprising considering the attention given to sampling in 

most digital signal processing texts [EY-74, OP-75], but is 

probably founded in the fact that these authors used the pre 

testing-derived impulse response estimates as an 

approximation to the continuous system function and did not 

perform digital simulations, where the effects of sampling 
become critical.

In casual computer simulations of linear (and 
nonlinear) system identification by PRE testing, sampling 

rate-dependent scaling of sequences obtained by convolving 
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the derived discrete system function estimate with the PRE 

sequence used to generate it was observed; the shape of 
these convolution sequences was as expected, but gross 

amplitude distortion occurred. Therefore, it became the 

objective of this research to develop a systematic approach 

to compensate for the effects of input/output sampling when 
the impulse response estimate obtained by PRE testing is to 

be used in numerical convolutions. A technique to compute 

the best approximate impulse response estimate was developed 

and applied to pharmacodynamic identification of the canine 
hemodynamic response to sodium nitroprusside .



CHAPTER 2

PRB TESTING AND THE BEST APPROXIMATE SOLUTION

The quintessential reference on pseudo—random binary 

sequence testing is a text by Davies [DA-70]. Among other 

general treatments of PRB testing are excellent papers by 

Godfrey [GO-80] and Isermann [IS-80] and texts by Marmarelis 

and Marmarelis [MA-78] and Eykhoff [EY-74]. Barker and Davy 

[BA-75] describe system identification using PRB signals and 
the discrete Fourier transform. Golomb [GO-82] gives a 

thorough exposition on the mathematics of PRB sequences. 
Clarke and Briggs [CL-70a, 70b] consider the effects of 
contaminating noise in PRB testing.

In this Chapter, the mathematics of discrete PRB system 
identification are developed and some of the properties of 

sampled PRB signals are listed. The best approximate 
discrete impulse response estimate is derived and an attempt 

is made to generalize this result to multidimensional PRB 
testing.

2.1 PRB Testing - Implementation

A linear or linearized system (figure 2-1) with impulse 
response hc(t) is stimulated by a periodic pseudo-random 
binary signal [DA-70, SH-76] xc(t) (figure 2-2) with m 

states of amplitude ±a of duration X, producing an output

6
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xc(t) hc(t)> ♦ yc(t)

Figure 2-1. Schematized linear system. The 
linear system hc(t) produces an output signal 
perturbed by an input signal xc(t).

continuous 
yc(t) when
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Figure 2-2. PRB test signal. Schematic representation of 
an m-state PRB signal of amplitude ±a with a switching 
interval of X seconds.
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signal yc(t). The subscript c denotes a continuous waveform 

and t is time.

Generation of m-state PRE sequences [DA-70] is easily 
realized in hardware or software and effectively results in 

a sequence of m ones and zeros. A PRE sequence is obviously 
defined as a sequence, but conversion to a continuous 

waveform, conceptualized as convolution of each Dirac pulse 
in the PRE sequence with a rectangular window, preserves its 

essential characteristics and allows it to be treated as a 
signal [SH-76], which is a pragmatic and theoretical 

necessity if a continuous system is to be identified. The 
usual convention is to relate the ones to a level of +a and 
the zeros to a level of -a.

Parameters m and X are chosen [SH-76] to give xG (t) the 

bandwidth required to identify hc (t), where the -3dB 

bandwidth of a PRE sequence is 1/mX to 1/3X [DA-70] . The 
impulse response hc(t) is assumed to decay to zero within 

the period mX, and the system is assumed to be stationary 

for a period of at least 2mX, the minimum duration of the 

identification process. Further, it may be necessary to add 
an offset to xc (t) to bias the system into its linear 

operating range.
The system is excited by xc(t) at least twice 

consecutively; the first stimulation period is used to bring 

the system into dynamic steady-state before data collection 
begins, at the start of the second stimulation period [SH- 

76, BU-77]. If the system remains stationary, additional 
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contiguous excitation periods may be administered when 

serial impulse response estimates are desired.
Sequences x(n) with values xc(nS) and y(n) with values 

yc(nS) are derived from xc(t) and yc(t) (n=0,1,2,...,N-1), 

respectively, by periodic sampling with sampling period 8. 

The sampling period 8 is chosen such that there are an 

integral number s (s>l) of samples (guaranteed to be well 

above the Nyquist rate) taken per state of the input PRB 
signal. The objective, then, is to derive from the 
sequences x(n) and y(n) of length N, where NÔ=mX, a discrete 
estimate h(n) of hc(t).

2.2 Properties of Sampled PRB Signals

Davies [DA-70] provides an extensive treatise on the 

properties of PRB sequences. However, sampling of the 

signal as described in Section 2.1 will result in what is 

effectively a sampled PRB sequence or, more appropriately, a 

sampled PRB signal. Discussed in this section are some of 

the relevant properties of a sequence obtained from sampling 

(under the constraints imposed in Sec. 2.1) a PRB signal.

1) A PRB sequence is of length m=2n-l, where n>3 

is an integer. Therefore, the length of the 

sequence obtained from sampling one period of 
a PRB signal will be N=s(2n—1 ) .

2) The sequence of length N obtained from 

sampling one period of a PRB signal will 
contain (N+s)/2 +a elements and (N-s)/2 -a 

elements. Thus, in one period, the number of
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+a elements will exceed the number of -a 

elements by s. As a consequence, the average 
value of the sequence will be sa/N.

3) The autocorrelation sequence 0XX(n) for the 

elements of the sequence obtained from 

sampling one period of a PRB signal is shown 
graphically in figure 2-3. Explicitly, 0xx(n) 

can be expressed

0 £ n £ s

0xx(n)= 3+1 ana (m-l)s-l

(m-l)s s n s ms-1

(2-2-1)

where a and m are as defined in figure 2-2, s 

is the number of samples per state of the PRB 
signal, and ms=N.

Since sampled PRB sequences are periodic 

in N, their autocorrelation sequences are 

periodic in N. The sequence in figure 2-3 -

could equally well have been plotted from n=-s 

to (m-l)s-l in which case the triangular 

portion of the sequence would be centered over 

n=0. However, n is generally related in some 

way to time, so manipulation of sequence index 

numbers (n) less than zero is usually avoided,
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0xx(n)

oc

0 1

m
(m-1)s (ms-1)

n— PC 
m

Figure 2-3 . Autocorrelation of sampled PRB signal. 
Parameters are as defined in figure 2-2, with s being the 
number of samples taken per state of the PRB signal.
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and hence half of the triangular portion of 

the autocorrelation is revealed at the end of 
the sequence 0xx(n) since it has been 

calculated and displayed from n=0 to N-1.
The autocorrelation sequence 0xx(n) is a 

measure of the dependence betwen values of the 

sampled pseudo-random sequence at different 
times nS and in this sense describes the time 

variation of the sequence [OP-75]. Since in 

PRB testing the objective is to identify the 
impulse response, or system response to an 
impulsive input, the sequence 0xx(n) should be 

time-shifted by s elements and wrapped around 

(see figure 2-4) to better approximate an 

impulsive autocorrelation over the period n=0 

to N-1. Sheppard [SH-76] was probably the 
first to recognize this, but the procedure was 
not discussed.

The practical consequence of this 
observation is that just as with the 

autocorrelation, sequences obtained from other 
operations such as crosscorrelation or 

convolution with the sampled PRB sequence must 

be time-shifted by s and wrapped around for 

proper representation as a temporal sequence; 

subsequent reference in this report to a time-
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0xx(n)

0 s (ms-1)

n

(2s-1)

-a? 

m

a,2

Figure 2-4. Time-shifted autocorrelation of sampled PRB 
signal. Compare with figure 2-3.
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shifted sequence will mean a sequence so 
treated.

4) Crosscorrelating a sampled periodic PRB signal 
with amplitude ±(X with a delayed, the delay 

being an integral number p of binary states of 

the continuous signal, version of itself but 
with amplitude ±0 results in a sequence of the 

form shown in figure 2-3 for the 

autocorrelation sequence, except that the 

triangular portion of the sequence will be 

shifted by ps and the peak amplitude will be 
«P. Thus the two sequences are relatively 

uncorrelated for lags up to (p-1)s. This 

point becomes significant in multidimensional 
PRB testing.

5) The power spectrum 0(m) of a periodic PRB 

signal has been stated incorrectly by 

Easterling [EA-64] and Davies [DA-70]. Lamb 

[LA-70] has correctly given the following 

equation as the power spectrum of a PRB signal 

with m states of amplitude ±1 and clock period 
X, disregarding the dc term:

♦(a)- Sik [ f
“ L aA/2 j À

n*0
(2-2-2)
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where 8(x) is the unit impulse function. This 

power spectrum has an envelope proportional to 
[sin(toX/2)/(toX/2)]2, with spectral lines 

occurring at 27T/mX, 4%/mX, etc., for to>0. The 

first node is at to=2n/X. As mentioned 

previously, the effective bandwidth of the 
test signal is from 2%/mX to 2%/3X rad/sec.

" The sequence of the power spectrum 
estimates <I>N (co), as computed using the 

discrete Fourier transform, of the sequence 

derived by sampling one period of a PRB signal 
of amplitude ±a can be stated as

n— 1

(2-2-3)

where, as before, s (s>l) =X/8 is the number

(integer) of samples taken per state of the 
PRB signal, 8 is the sampling interval, and 

N8=mX. The point to be made here is that this 

spectrum is amplified by s, and therefore the 

impulse response estimate derived by 

crosscorrelation must be normalized by 

dividing each element in the sequence by s 

when a discrete input sequence is to be 

convolved with the model impulse response 
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estimate to obtain a discrete simulation of 

the system response to the perturbation.
2.3 PRE Testing with Sampled Signals

Define the sequence yo(n) as y (n) minus the average of 

y(n) for n=0,1,2,...,N-l. The periodic sequences yo(n) and 

x(n) are related by the convolution sequence

oo
Vn) = Z h(k)x(n-k) (2-3-1)

k=-oo

The crosscorrelation sequence 0xy(n) between the sampled 

system input and output is defined as

N-1
Gxy(n) = N 2 (2-3-2)

p=0

Substituting into equation (2-3-2) the definition for yo(n) 

given by equation (2-3-1) yields

N-l »
0xy<n) = n 2 2 ̂ (k)x(P+n-k)

p=0 k=-oo

which upon exchanging the order of summation becomes

oo . N-l
0xy(n) = x(p+n-k)^|

p=o

(2-3-3)

(2-3-4)
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The expression within brackets in equation (2-3-4) is the
autocorrelation sequence 0xx(n-k), and thus

CO
0xy(n) = h(k) 0xx^-k) (2-3-5)

k=- oo

Since h (k) —0 for k<0 and since h (k) decays to zero within 
the period NS (see Section 2.1), equation (2-3-5) may be 

rewritten as

N-1
0xy(n) = ^h(k)0n(n-k) 

k= 0
(2-3-6)

The derivation to this point is analogous to that given by

Davies [DA-70] for continuous signals.

In matrix notation, equation (2-3-6) can be expressed
as

0Xy(O) ^xx(O) ^xx(l) - *xx(N-l)" h(0) '

0Xy(l) 0XX(N-1) 0XX(O) ... 0xx(N-2) h(l)
- ■ (2-3-7)

0Xy(N-l) 0XX(1) 0XX(2) ... 0XX(O) h(N-l)

or more compactly as

0xxh (2-3-8)

Classically, the approximation is made that 0XX (k) =0 for
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k-1,2, 3,...,N-1 (i.e., that the autocorrelation sequence of 

the sampled input PRB signal is equal to zero except for an 
impulse at k=0 where 0xx(O)=a2), in which case 0^ is equal 

to the scaled NxN identity matrix a2I. Then,

0Xy = = a2Ih = a2h (2-3-9)

This result states that the scaled crosscorrelation sequence 

between a sampled input PRB signal and the resulting sampled 

system output sequence is approximately equal to the scaled 
impulse response sequence. Equation (2-3-9) forms the basis 
for PRB testing as it is usually performed, with 0xy(n) 

computed by equation (2-3-2). Clearly, by property 3 in 
Section 2.2, the assumption that all of the off-diagonal 
elements of 0%% are zero can be a very coarse approximation, 

potentially resulting in significant distortion of the 
impulse response sequence derived from the input/output 

crosscorrelation. In the following section the best 
approximate solution in PRB testing is derived by utilizing 

the autocorrelation sequence to its full accuracy.

2.4 Sampled PRB Testing - Best Approximate Solution
Examining equation (2-3-8), if the inverse 0XX-1 of 0XX 

can be formed, then the exact solution h is determined by 
simply multiplying both sides of equation (2-3-8) by 0^-1;

= Ih = h = 0xx-10xy.
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The inverse of a general matrix is not necessarily defined, 
though, and in practical application, 0^^ can contain many 

tens of thousands of elements, making inversion 

computationally difficult, if not impossible, even if it 
does exist. It will be shown that does not exist but

that the best approximate solution h* = 0xx+0xy, where 0XX+ 
is the generalized inverse of 0^, can be easily computed.

By inspection of the NxN matrix 0XX it is observed that 

the elements of each row are identical to those of the 

previous row moved one position to the right and wrapped 

around. A matrix of this form is known as a circulant [DA- 
79], and it is apparent that the whole circulant is 
determined by the first row so that 0XX can be expressed 

0xx=circ[0xx(O),0xx(l),...,0xx(N-l)], where circ[x] denotes 

an NxN matrix of the form just described. Obviously, the 
elements of the first row of 0XX are simply the elements of 

the autocorrelation sequence (equation 2—2—1) of the sampled 
input PRE signal.

The eigenvalues Xj of a circulant matrix are defined 

[DA-79] as the scaled inverse discrete Fourier transform of 

the first row elements of the circulant. Since the sequence 
is triangular, the inverse Fourier transform will 

take the form of a sine function and every m-th element will 
equal zero. Therefore, 0XX is not full rank and cannot be 

explicitly inverted, and the exact solution of equation (2­

3-8) cannot necessarily be computed. However, the 
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generalized inverse of 0^ can be formed, and from this the 

best approximate solution [GR-83] computed.

A circulant matrix C is diagonalized [DA-79] by the 
Fourier matrix F so that C = F* Ac F, where * denotes the 

conjugate transpose and Ac = diag [Xc0, Xcl, Xc2, . . .,XC(N_1)] . 

The Fourier matrix is defined [GR-83] as a kxk matrix with 
every pq-th element equal to k-i/2m(P-i) (q-1) with to = cos 
2%/k - j sin 2%/k and j="V-l. The Moore-Penrose generalized 

inverse C+ of C is the NxN circulant [DA-79]

C+ = F* Ac+ F, (2-4-1)

where Ac diag [%cQ^", • • •r^c(N-l)+l with

0

for scalar Xj* 0

for scalar 0
(2-4-2)

Finally, let C = cire y and C+ = circ 'f; it can be shown

[DA-79] that 

(y*-)T = F(F*yT)+, (2-4-3)

where yT is the transpose of y. From equations (2-4-3) and 

(2-4-2) it appears that the generalized inverse of a 

circulant can be computed in 2 N—point discrete Fourier 

transforms plus N reciprocations.
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In the context of PRE testing

[0XX(O)+ 0XX(1)+ 0XX(2)+ ... 0XX(N-1)+]T =

F{F [0XX(0) 0XX(1) 0XX(2) ... 0XX(n—1)]T}+

(2-4-4)

Algorithmically, the elements 0xx(n)+ for n=0,1,2,...,N-1 of 

the first row of the circulant 0^ (and thence the entire 

NxN matrix 0XX+) are computed by finding the inverse 

discrete Fourier transform of the elements of the first row 
^xx' performing on this sequence the transformation of 

equation (2-4-2), and then computing the forward discrete 

Fourier transform of the result. Note that since the 

autocorrelation sequence is always even, the elements of the 
inverse discrete Fourier transform of 0xx(n) are all real.

Given the system AX = B, the vector A+B always exists 
and is either the unique least squares solution or it is the 

solution of minimum norm [PE-55, GR-83], and this is by 

definition the best approximate solution to the system AX = 

B. Therefore, the best approximate impulse response 
estimate in PRE testing is

h ^xx^xy (2-4-5)
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2.5 Multidimensional Sampled PRB Testing

It may be possible to generalize the preceding 
discussion to the identification of the multidimensional 
system with p inputs and q outputs, where each output yg(n) 

is related to each input (n) by an impulse response 

sequence hig(n) [DA-70]. Each output yg(n) is the linear sum 

of the effects caused on yg(n) by each of the inputs, and 

more specifically, all inputs and outputs are mathematically 

related through the operation of convolution.
Considering a particular output yg(n) and all inputs 

xi(n), l<i<p,

yg(n) =
P OO
2 2 hig(k)Xi(n-k)

ï=1 k= — oo
(2-5-1)

The crosscorrelation sequence between a particular input
xk(n) and a particular output yg(n) is

N-l

f = 0
(2-5-2)

Inserting the definition for yg(n) given in equation (2-5-1)

yields

N-l P oo
%y <n> 'k<')[S 2 hi,(k)xi(:fn-k)] (2-6-3)

f = 0 1=1 k=- oo

which upon exchanging the order of summation becomes
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P OO N—1
%yg<^) = 2 S hig(k)[^ Z xk<f)Xi(f+n-k)] (2-5-4) 

1=1 k=- oo f = 0

The term within brackets is by definition the 
crosscorrelation sequence:

P N-l
- 2 hi,(k)0. (n-k) (2-6-5)

1=1 k=0

noting again that the impulse response sequence need only be 

referenced from 0 to N-l. Finally, equation (2—5—5) can be 
written in matrix notation as

*%kyg = 0xkx1hlg+0xkx2h2g+ - ’ -

• • • +0xkxphpg ( 2 - 5 - 6 )

0 for k^i, i. e ., Xk (n) and x^(n) are uncorrelated, 

then the best approximate impulse response estimate h'kg 

could be identified analogously to equation (2-4-5). Though 
for lags prior to the length of the delay between x^(n) and 
xk(n) the crosscorrelation ^xkxi(n) does have finite value 

(=-a0/N) , the best result obtainable from equation (2-5-6) 
is to assume 0xkxi=O for k*i, to compute h*kg, and to use 

only those elements of h’kg representing the interval of the 

shortest delay between xk(n) and x^(n). It is obvious by 

inspection that matrix inversion techniques, and 
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consequently a generalization of the derivation in Section 
2.4, cannot solve equation (2-5-6) for hkg or hkg' .



CHAPTER 3

EXPERIMENTAL VERIFICATION
To verify the best approximate impulse response 

estimation technique developed theoretically in the previous 

chapter, PRE identification experiments were performed to 

characterize the canine hemodynamic response to sodium 

nitroprusside. The hypothesis was that the best approximate 
impulse response sequence would be a better characterization 

of the system in numerical convolutions than the normalized 
(multiplied by s-1) crosscorrelation estimate, and that 

convolution with either of these estimates would be 

satisfactory, whereas convolution with the non—normalized 

crosscorrelation estimate is inappropriate. The basis for 
judging the quality of the impulse response estimate was the 

mean-square error between the original data sequence and the 

sequence generated by convolving the sampled test PRB signal 
with the impulse response estimates.

3.1 Methods - Animal Experiments

Six adult mongrel dogs of either sex were surgically 

instrumented for chronic study. The dogs were anesthetized 

with intravenous thiamylal sodium and succinylcholine, 

26
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intubated, and mechanically ventilated. Under sterile 

conditions a thoracotomy was performed through the left 

fifth intercostal space. Silicone rubber pneumatic 

occluders were positioned around both venae cavae. A 

pericardiotomy was made from the apex of the heart to the 

great vessels and a silicone rubber tube (2.6 mm i.d., 4.9 

mm o.d.) was placed into the left atrium through a purse­
string suture in the base of the left atrial appendage for 

subsequent passage of a micromanometer across the mitral 

valve into the left ventricle (LV) . A similar tube with 

multiple side holes was sutured to the epicardial surface of 

the base of the heart to allow measurement of pleural 

pressure. One pair of pulse transit ultrasonic dimension 

transducers [OL-84] oriented across the LV minor axis 
diameter was sutured to the epicardial surface of the LV. 

The catheters, transducer leads, and caval occluder tubes 

exited through the chest wall into a subcutaneous pouch 

dorsal to the thoracotomy incision. The pericardium was 

left widely open, and the thoracotomy was repaired in 

layers. Each dog was allowed to recover for seven to ten 

days before the hardware was exteriorized through a small 

skin incision. Though implanted, the vena caval occluders 

were not utilized in the present experiment.

One to three days after exteriorization of hardware, 
each dog was returned to the laboratory and a sedated state 

was induced and maintained by the titrated continuous 

infusion of thiamylal. A femoral vein and artery were
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surgically isolated and cannulated with, respectively, a 

multilumen catheter for administration of the study drugs 

and a small plastic tube to facilitate measurement of 

arterial blood pressure. The tip of the multilumen catheter 

was advanced to a position just proximal to the right 
atrium.

The animals were studied while lying on their right 
side in the sedated state. They were allowed to ventilate 

spontaneously and responded to being petted or spoken to. 

The ultrasonic dimension trasducers were coupled to a 
sonomicrometer. With this device, the time required for 

transmission of a burst of ultrasound from one of the 

piezoelectric transducers to the opposite transducer was 

measured and converted into an analog voltage output, which 
was linearly proportional to the distance between the 

transducers and therefore measured the length of the LV 
minor axis diameter. The miniumum resolution of this system 

was approximately 0.08 mm and the maximum electronic drift 

was 0.05 mm/hr. High fidelity micromanometer-tipped 

catheters were passed through the implanted tubes into the 

LV and pleural space, and advanced through the femoral 

artery cannula into the ascending aorta. The 
micromanometers were prewarmed in a water bath at 38°C and 

were balanced and calibrated against a water column 
immediately before each study. Resultant manometer drift 

was less than 0.05 mm Hg per hour.
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The experimental protocol nominally lasted for six 

hours and involved as many as four separate identification 

studies using PRB infusion of sodium nitroprusside and/or 
the 0-adrenergic receptor antagonist esmolol [GO-85]. The 

results of these extensive experiments will be reported 

elsewhere, and only those details pertaining to 
identification of the hemodynamic réponse to nitroprusside 

will be discussed in this report.

The six dogs included in this discussion received PRB 
infusion of nitroprusside at rates switching between 1.0 and 
0.0 gg-kg-1 -min-1. This was added to a continuous infusion 

of nitroprusside at 0.5 [ig-kg-1 -min-1. Therefore, the PRB 

infusion of nitroprusside was effectively administered at 

amplitudes of ±0.5 gg-kg"1-min"1 added to a continuous 

infusion of 1.0 |lg - kg"l - min "1 . The purpose for the 

continuous infusion was to bias the system (canine 

hemodynamic response to nitroprusside) into its relatively 

linear operating range (in terms of the mean arterial blood 

pressure réponse) by infusing the nitroprusside at rates 

above a hypothetical initial shallow segment of its dose­
response curve.

A 63-state maximum-length pseudo-random binary sequence 

of ones and zeros was generated to direct the nitroprusside 
infusion. A different sequence was generated for each dog 

by using various delayed versions of the original sequence 

[DA-70]. Each state was maintained for 29 seconds, giving a 

total PRB signal period length of 1827 seconds, well beyond 
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the system settling time. During 1-states nitroprusside was 

infused at the 1.0 rate and during 0-states at
0.0 |lk -kg-1 -min"l. With 63 states of 29 seconds duration 

this PRE signal had an effective bandwidth of 0.000574 Hz 
(1/mX)to 0.011494 Hz (1/3%). Sheppard [SH-76] found that a 

15-state PRB sequence length and a switching interval of 20 

seconds (bandwidth of 0.003 Hz to 0.016 Hz) produced 

relatively reproducible nitroprusside impulse réponse curves 
in dogs and humans. The complete investigation was designed 

to acquire impulse response estimates by PRE testing with 
nitroprusside alone, esmolol alone, and from 2-input PRB 

testing with nitroprusside and esmolol. The sequence length 

and switching interval selected for the study were a 

compromise between the desire to identify a fast-acting 

system (nitroprusside; requiring a brief switching 
interval), a relatively slow-acting system (esmolol, with an 

elimination half-life of 9 minutes [QU-86]; requiring a long 

sequence length and switching interval), and the constraints 
of multidimensional PRB testing [DA-70].

A software program operating on a microcomputer was 

used to implement the PRB infusion of nitroprusside by 

controlling a peristaltic drug infusion pump. Distortion of 

the PRB pharmacological input perturbation due to the 

mechanics of the infusion system was considered to be 
negligible.

Hemodynamic data included in this report were collected 
during the second period of two consecutive contiguous 
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repetitions of the PRB nitroprusside infusion. During this 

second period, analog voltages representing LV pressure, 

pleural pressure, arterial pressure, LV minor axis segment 

length, and the activity of the infusion pump were digitized 

at 200 samples per second by a computerized data acquisition 

system and stored on digital magnetic tape for subsequent 
analysis. The excessive duration of the PRB infusion period 

in the context of the other PRB interventions that were 

performed during these experiments and concern for stability 

of the animal preparation precluded data collection from 
additional repetitions of the infusion sequence.

3.2 Methods - Data Analysis

Data analysis was performed in two stages. The result 
of the first stage was creation of files containing beat-to- 

beat measured and derived hemodynamic data. During the 

second stage of data reduction the crosscorrelation and 

subsequent analyses pertaining to PRB testing were 
performed.

The first stage of data analysis was performed on a 
minicomputer using previously developed [GL-85] software. 

LV transmural pressure was calculated as LV pressure minus 
pleural pressure; for the remainder of this report, all 

references to ventricular pressures are transmural 

pressures. The time derivative of LV pressure, dP/dt, was 

computed from the digital pressure waveform as a running 
five-point polyorthogonal transformation. Beginning- and 

end-ejection and beginning- and end-diastole of each cardiac
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cycle were defined by the computer [GL-85] . Beatpoint 

definitions were checked visually by the investigator on all 

data with an interactive videographics display system and 

were manually redefined when necessary. For the purposes of 

the data included in this report, approximately 26,000 
cardiac cycles were thus analyzed.

Cardiac cycles were defined as the interval from 
beginning-diastole to beginning-diastole. On a beat-to-beat 

basis, numerical files containing the following data were 

created: beatpoint number at beginning—diastole, heart rate 
(HR), end-diastolic LV pressure (EDP) and minor axis 
diameter (EDL), mean LV ejection pressure (MEP), LV minor 

axis ejection shortening (EJS), peak positive (DPP) and peak 

negative (DPN) dP/dt, mean arterial blood pressure (MAP), 

diastolic arterial pressure (DAP), systolic arterial 

pressure (SAP), stroke work (SW), and a voltage level 
(high/low) indicating the status of the drug infusion pump 

(on/off, respectively).

The beatpoint number referenced the data sample number 
(in 5 millisecond intervals) at the time of beginning 

diastole, thereby allowing each cardiac cycle to be 

referenced in absolute time. Heart rate was defined as the 

reciprocal of the duration (minutes) of the cardiac cycle. 

Mean LV ejection pressure was defined as the average LV 

pressure during the ejection phase of the cardiac cycle. 
Similarly, ejection shortening was defined as the difference 

between the minor axis diameter at end- and beginning­
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ejection. Systolic and diastolic pressures were defined as 

the maximum and minimum values, respectively, of the 

arterial pressure waveform over the cardiac cycle, and mean 

arterial pressure was the arithmetic average of the 

digitized arterial pressure waveform over the cardiac cycle. 

Stroke work was defined as the area within each LV pressure­

diameter loop. Insomuch as LV volume was not measured or 

computed, this was not true stroke work, but it has been 
demonstrated that LV minor axis diameter is linearly related 

to ventricular volume under most conditions [SU-74]. 
Therefore, the calculation of stroke work used in this study 

should be directly proportional to stroke work defined as 

the integral of LV pressure with respect to volume. The 

drug infusion pump status was transformed to +0.5 (|ig-kg-1- 
min-1) for pump on and -0.5 ([lg-kg-1-min-1) for pump off for 

each cardiac cycle, with the +0.5 level being used whenever 
the pump changed states during the cardiac cycle.

These numerical data files were "sampled" at evenly 

spaced 1 second intervals by collecting into new files the 

data from the cardiac cycle occurring at the time of each of 

the 1827 seconds during the data collection period. All 

subsequent analyses were performed using these sampled-data 
files.

In the second stage of data analysis, these derived 
data files were analyzed for the purpose of comparing the 

utility of the impulse response estimates obtained by 

crosscorrelation versus the best approximate impulse 
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response estimate and for using these impulse response 

estimates to learn more about the pharmacodynamics of 

nitroprusside. These analyses were performed using a 

microcomputer with software programs written in Fortran. 

Unless otherwise stated, these programs were written by the 
investigator. All floating point and transcendental 

calculations were performed in double precision arithmetic 
supported by an 8087 math coprocessor.

Linear regression analysis was used to determine the 
y-intercept and slope of each data sequence. The arithmetic 

average of each hemodynamic data file was calculated and 
then subtracted from each element in the data sequence. The 

crosscorrelation sequence for each zero—mean hemodynamic 
data file and its respective sampled PRE sequence was 

computed according to equation (2-3-2). These 

crosscorrelations were scaled (see equation 2-3-9) by 
dividing each element by 0.25 (=0(2) and normalized according 

to property 5 in Section 2.2 by dividing each element by 29 

(=s). All subsequent references to the crosscorrelation 

sequnce will be understood to mean a sequence that has been 

scaled and, unless stated otherwise, normalized.

The autocorrelation sequence for one of the sampled PRE 

sequences was computed according to equation (2-2-1). Since 

all of the PRE sequences used to infuse nitroprusside were 

merely circularly shifted versions of e. other, their 

autocorrelation sequences were identical. The generalized 
inverse of the 1827x1827 autocorrelation matrix (0XX) was 
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obtained by computing the inverse discrete Fourier transform 

of the autocorrelation sequence, invoking the transformation 

of equation (2-4-2), and then computing the forward discrete 

Fourier transform. Double precision implementations of the 

algorithms of Monro [MO-73] were used to compute the Fourier 

transformations (see Appendix A). According to equation (2­

4-5) , the unsealed and non-normalized crosscorrelation 

sequences were multiplied by the generalized inverse of the 

autocorrelation matrix to obtain the best approximate 

impulse response sequence estimate.

For each of the eleven hemodynamic variables studied, 
the arithmetic average at each point of the first 512 points 

(8.53 minutes) of the six (six dogs) time-shifted 

crosscorrelations was determined. These average values then 

defined the mean crosscorrelation impulse response curve. 

It was known from previous studies [SH-76, 82] that the 
effects of nitroprusside last for only three to five 
minutes. Therefore, eight minutes were more than adequate 

to capture the interesting portion of the impulse response 

curves and 512 data points (512 seconds of data) were 
utilized for the sake of convenience in performing the 

subsequent discrete Fourier transforms.

For each variable the following equation [BE-79, SH-76] 

was used to compute the correlation between the mean 

crosscorrelation curve and each of the six individual 

crosscorrelation impulse response curves :
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I Z <«Cp»Ckp + *Sp»8kp> 

P=1 
rk = --------- ------------------------------------------- -- ------------------------ (3-2-1)

P P{ 2 + «Sp»2) ■ 2 É<ckp2 + Skp2)) 1/2

P=1 p=l

where :

rk = correlation of the k-th impulse response with 
the average

k = impulse response number

p = harmonic number

ckp = cosine coefficient for k-th impulse response 
and p-th harmonic

skp = sine coefficient for k—th impulse response and 
p-th harmonic

«cp» = cosine coefficient for p-th harmonic of the 
average impulse response

«sp» = sine coefficient for p-th harmonic of the 
average impulse response

P = total number of harmonics.

In the present application, k ranged from 1 to 6 and P was 

256. The Fourier coefficients were computed using a double 

precision implementation of the fast Fourier transform 

algorithm FASTF [MO-73]. These procedures were also 

performed using the time-shifted best approximate impulse 
responses.

Each of the crosscorrelation impulse response estimates 

were convolved twice contiguously with the sampled PRES 
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sequence from which it was derived. The '«;ean-square error 

between the sequence resulting from the second period of 
this convolution and the zero-mean sequence of hemodynamic 

data used to derive the particular impulse response estimate 

was calculated. To compute the mean-square error [MA-78], 
the sum of the squares of the zero-mean hemodynamic data 

sequence was calculated and normalized to a value of 100. 
Then, the sum of the squares of the difference between the 

convolution sequence and the data sequence was multiplied by 
the normalization factor just determined and this value was 
defined as the mean-square error between the two sequences. 

These convolution and subsequent procedures were repeated 
with the best approximate impulse response estimates, and 

with low-pass filtered versions of the two types of impulse 

response estimates. Low-pass filtering with a cutoff 
frequency of 0.011494252 Hz (=1/3%) was performed using a 

double-precision implementation of the phaseless 3-rd order 
digital Butterworth filtering algorithm of Pynsent and Hanka 
[PY-82].

Impulse response estimates reflecting the baroreceptor 
reflex control of heart rate were analyzed as an example of 

the utility of these discrete waveforms to provide 

conventional physiological information. Visual inspection 

of the time—shifted crosscorrelation impulse response 

estimates for heart rate and mean arterial blood pressure 

suggested that the dynamic portion of these curves were 
relatively linear in the intervals from 28 to 51 seconds
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(activation period) and 75 to 102 seconds (deactivation 

period). Linear regression analysis was used to obtain the 

x-axis (time) intercept for the heart rate and mean arterial 

pressure impulse response sequences during these intervals; 

this was done using the time-shifted, crosscorrelation 
impulse response estimates, filtered as before and 

unfiltered, and the filtered best approximate impulse 

response estimate. The difference between the pressure x- 
intercept and the heart rate x-intercept for both intervals 

was calculated as an estimate of the time lag between the 

pressure response and the heart rate response. For the same 
time intervals and same impulse response sequences, linear 

regression with the pressure response as the independent 

variable and the heart rate response as the dependent 

variable yielded a slope that was used as an estimate of the 

closed-loop gain of the baroreflex heart rate control 
system.

As the final step in data analysis, a simulation of 
closed-loop infusion of nitroprusside was devised. A 

software program (see Appendix B) implementing Sheppard's 

[SH-76, 80, RE-78] closed-loop infusion algorithm for nitro­

prusside was written which incorporated a routine to perform 

numerical convolution of the infusion rates output by the 

algorithm with the time-shifted best approximate impulse 

response estimate for mean arterial blood pressure from one 
dog (dog 1) to provide the simulated feedback signal when 

summed with the previously determined mean value of the 
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original hemodynamic data sequence. The nitroprusside 
infusion rates (|lg-kg-1-min-1) specified by the control 

algorithm during the simulation were collected into a data 

file, which was subsequently convolved with the ten other 

best approximate impulse response estimates from the same 

dog to simulate (when summed with the mean value of each 

respective original data sequence) a complete hemodynamic 

profile during the closed-loop nitroprusside infusion.

Comparative statistics were deemed inappropriate in 

consideration of the small sample size (n=6) . Data are 
expressed as mean±S.D.



CHAPTER 4

RESULTS

The means of the average value of each hemodynamic data 

sequence, as well as the slope and y-intercept of the data 

sequence, are given in table 4-1. There was excellent 

agreement between the arithmetic means of the sequences and 
the y-intercepts determined by linear regression analysis, 

and the slopes of the regression lines were generally 

negligible; these data demonstrate the relative stability of 

the animal preparation. The heart rate and arterial and 

mean LV ejection pressures profile of one dog (dog 5) during 

PRE infusion of nitroprusside is shown in figure 4-1. The 

PRB infusion sequence used to generate these data is also 

included in this figure. Demonstrated is the hypotensive 

effect of nitroprusside and an inverse relationship between 

blood pressure and heart rate.

The non-normalized crosscorrelation between the zero­

mean mean arterial blood pressure response of one dog (dog 

1) and its respective sampled PRB infusion signal is shown 
in figure 4-2 . The scaled and normalized time-shifted 

version of this crosscorrelation sequence is shown in figure 

4-3 and demonstrates the intuitively pleasing effect of

40
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Table 4-1. Means and linear regression parameters for 
sampled hemodynamic data sequences. Units are given for 
the mean and y-intercept. Slope is in units of 
Aunit-Aminute-1.

SEQUENCE MEAN Y-INTERCEPT SLOPE

SW (N/mm)

DAP (mm Hg) 71.4+12.1 73.0+12.9 -0.02±0.08
DPN (mm Hg/sec) -1344±210 -1370±227 1.68+2.66
DPP (mm Hg/sec) 1307±248 1312+239 -0.358+2.61
EDL (mm) 56.2±4.4 56.3+4.4 -5.0E-3+0.012
EDP (mm Hg) 10.35+1.74 10.44+2.11 -6.0E-3+0.040
EJS (mm) 2.30±0.54 2.29+0.57 4.0E-4+3E-3
HR (bpm) 136±19 135±22 0.07+0.35

MAP (mm Hg) 79.9±10.9 81.8+11.9 -0.12±0.25
MEP (mm Hg) 73.3±6.7 74.6+6.6 -0.08±0.15
SAP (mm Hg) 93.0+9.9 94.4±10.8 -0.09±0.20

0.0187+0.0042 0.0189±0.0045 -1.4E-5+5.E-4
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Figure 4-1. Blood pressure and heart rate data from one dog 
during PRB nitroprusside infusion. Legend : 1-schematic 
representation of nitroprusside infusion signal; 2-heart 
rate; 3-systolic, 4-mean, 5-diastolic arterial pressure; 6- 
mean LV ejection pressure. Units : l-high=pump on, low=pump 
off; 2-bpm; 3 through 6-mm Hg.
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Figure 4-2 . Non-normalized crosscorrelation estimate.
Example from one dog for mean arterial pressure.
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time-shifting the impulse response estimate. All units 
labels of |lg'kg~l-min~l are nitroprusside infusion rates.

Shown in figures 4-4 through 4-7 are the first 512 
points in the mean time-shifted crosscorrelation impulse 

response estimate sequences for each of the eleven 

hemodynamic parameters studied. Figure 4-4 again 

demonstrates the inverse relationship between heart rate and 

systemic blood pressure. The impulse response estimates for 

mean and diastolic pressures were virtually identical and 

were of greater magnitude than the systolic arterial 

pressure response, and all three systemic pressure variables 
showed a greater change than mean LV ejection pressure. All 

of these curves are characterized by a pure time delay of 

about 0.37 minutes and a time to apex (heart rate) or nadir 

(pressures) of about 1.1 minutes. These impulse responses 

decayed to baseline by about 2.6 minutes. The mean impulse 

response estimates for end-diastolic LV pressure and minor 
axis diameter (figure 4-5) were similar in shape to those of 

the arterial pressures, but were somewhat more prolonged. 

Peak positive LV dP/dt (figure 4-6) showed little if any 

response to nitroprusside, but peak negative dP/dt 
demonstrated a distinct increase, with a time—course similar 

to, though slightly more prolonged than, the heart rate 

response. Ejection shortening (figure 4-7) also responded 
in a manner similar to heart rate, whereas LV stroke work 

declined slightly and demonstrated a prolonged recovery to 

baseline. Correlation analysis of these mean
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crosscorrelation impulse response curves with each of the 
individual response sequences is summarized in table 4-2. 

With few exceptions (e.g., peak positive LV dP/dt for dog 

3), the individual crosscorrelation estimates were well 

represented by the average curves, most of the regression 
coefficients (equation 3-2-1) being greater than 0.85. The 

impulse response estimates for ejection shortening were less 

well characterized by their average than were most of the 

other variables. In general, sequences from dogs 3 and 4 

had lower regression coefficients than did those of the 

other dogs. There was no correlation between the average 

best approximate impulse responses and each of the 

individual best approximate estimates (table 4-3).

As an example of the amplitude distortion manifested in 
convolution with the sampled PRB testing-derived impulse 

response estimates, figure 4—8 shows the sequence Resulting 
from convolution of a non—normalized crosscorrelation 
impulse response estimate (figure 4 — 2) for mean arterial 

blood pressure with its respective PRB sequence. The 

dynamic range of the waveform in this figure is 

approximately ±200 mm Hg, an order of magnitude greater 

( exactly 2 9 times greater) than the response to 
nitroprusside observed in the animal experiment. 

Convolution using the normalized crosscorrelation model 
yielded the waveform in figure 4-9, which is different than 

the raw data sequence by a mean-square error equivalent to
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CORRELATION COEFFICIENT

Table 4-2. Correlation between the average cross­
correlation impulse response estimate and each 
individual estimate for each variable

DOG: 1 2 3 4 5 6 Mean±S.D.

DAP . 9843 .9773 .8432 .9198 . 9812 .9855 .9485±.0574
DPN .9390 . 9656 .3864 .8434 . 9599 .8134 .81801.2207
DPP .9058 .8281 .0228 .3912 .9702 .9531 .67851.3865
EDL . 9424 . 9566 .8500 .0144 .9644 .9398 .77791.3763
EDP . 9309 .8973 .8619 .6712 . 9666 . 9380 .87771.1074
EJS .7186 .8283 .6772 .8635 .7830 .4249 .71591.1582
HR .9738 .7658 . 9694 .8379 . 9729 . 9753 .91581.0912

MAP . 9877 . 9805 .8332 .9160 . 9829 . 9872 .94791.0626
MEP . 9881 . 9784 .7799 . 9097 . 9820 .9900 .93801.0832
SAP . 9918 . 9806 .8194 . 9111 . 9802 . 9883 . 94521.0686
SW .8670 .9289 .0051 .7091 . 9311 . 9187 .72661.3634

Mean
IS. D.

.9299

.0805
.9170
.0765

. 6408

.3438
.7261
.2844

. 9522

.0580
. 9013
.1661
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CORRELATION COEFFICIENT

Table 4-3. Correlation between the average best 
approximate impulse response estimate and each 
individual best approximate estimate for each variable

DOG: 1 2 3 4 5 6 Mean±S.D.

DAP .3872 .3396 .5152 .4750 .1549 .5330 .4008±.1418
DPN .3966 .4745 .4088 .2682 .3963 .4170 .3936±.0679
DPP .4277 .5241 .3872 .3768 .4054 .2923 .40221.0755
EDL .0536 .3766 .2969 .6251 .2755 .5628 .36511.2081
EDP .3414 .3006 .6498 .3590 .4313 .4551 .42291.1251
EJS .2517 .2718 .4775 .5736 .1853 .3741 .35571.1480
HR .1997 . 6516 .4802 .5060 .3050 .1860 .38811.1871

MAP .3477 .1500 .3420 .5962 .3417 .5189 .38271.1567
MEP .0239 .4017 .5759 .5131 .3346 .1747 .33731.2082
SAP .4160 . 1551 .3895 . 6483 .3524 .4504 .40191.1592
SW .3592 .3680 .4151 .4328 .2800 .4742 .38821.0679

Mean
IS. D.

.2913

.1424
.3649
.1499

.4489

.1039
.4886
.1204

.3148

.0873
.4035
.1336



53

m
m

 H
g

300

-200

-300

-400

-100

200

100

12 20 24 28 32

TIME (minutes)

Figure 4-8. Convolution with non-normalized crosscorre­
lation . Line represents convolution estimate for mean 
arteral pressure from one dog.
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Figure 4-9. Convolution with normalized crosscorrelation. 
Example from one dog for mean arterial pressure. Crosses 
represent actual data during PRE nitroprusside infusion. 
Solid line represents convolution of the PRE sequence with 
the normalized crosscorrelation impulse response estimate 
(cf. figure 4-8).



55

2.21 mm Hg2. The model sequences in figures 4-8 and 4-9 are 

different only by a multiplicative scale factor (= s = 29).

The sequence of the first row (or column) elements of 

the circulant generalized inverse of the 1827x1827 

autocorrelation matrix for the sampled PRE signal used in 
this study is shown as a line spectrum in figure 4-10. The 

time-shifted best approximate impulse response estimate for 

mean arterial blood pressure for one dog (dog 1) is shown in 
figure 4-11 (cf. figure 4-3) . Convolution of this best 

approximate model (non-time-shifted) with its respective PRE 

sequence resulted in the sequence in figure 4-12, which is 
different than the raw data sequence (also shown for 

comparison) by an equivalent mean-square error of 0.04 mm 
Hg2. The relationship between the best approximate and 

crosscorrelation models is exemplified in figure 4-13 where 

the sequence from figure 4—3 and a filtered version of the 

sequence in figure 4-11 are plotted on the same set of axes.

Average mean-square errors for the sequences resulting 
from convolution with the various impulse response estimates 

are given in table 4-4. For each of the eleven hemodynamic 

variables studied, the mean-square errors resulting from 

best approximate impulse response models were generally less 

than 1.0 except for ejection shortening and stroke work. 
Filtered versions of the best approximate and 

crosscorrelation estimates produced sequences with mean­

square errors that were relatively high, very similar, and
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Figure 4-12. Convolution with best approximate impulse 
response. The model tracing is an example from one dog of 
convolution of the PRB sequence with the best approximate 
impulse response estimate for mean arterial pressure. Shown 
below it for reference (amplitude-shifted for clarity) is 
the actual data sequence.
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Table 4-4. Mean-square errors between data sequences 
and model sequences. Averages are mean±S.D., n=6. Model 
sequences for each dog for each variable were computed 
by convolving each of the impulse response types with 
its corresponding sampled PRE signal.

MEAN-SQUARE ERRORS
NORMALIZED 

CROSSCORRELATION BEST APPROXIMATE SOLUTION

FILTERED FILTERED

DAP 15.54± 7.38 21.37+ 8.15 0.20±0.12 19.64± 8.19
DPN 49.13±15.19 53.38+15.59 0.64+0.28 51.11+15.97
DPP 63.40+16.59 66.66+16.27 0.92+0.28 66.65±15.99
EDL 46.71+19.72 49.93+19.64 0.62+0.38 49.73±20.09
EDP 59.79+20.81 62.50+21.05 0.74+0.35 62.4 6±21.33
EJS 82.62+ 8.44 85.70+ 8.10 1.22+0.30 87.73+10.45
HR 38.38±15.24 42.67±14.98 0.63+0.19 42.37±14.66

MAP 13.37+ 6.53 18.94± 7.61 0.17+0.09 17.22+ 7.46
MEP 2l.75±l2.33 26.44+13.14 0.31+0.24 24.82+12.96
SAP 20.51±11.84 25.51±12.64 0.24+0.17 24.20±12.40
SW 79.76± 8.51 82.30+ 8.70 1.16+0.40 83.23± 8.43
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in every case higher than that achieved by convolution with 

the unfiltered crosscorrelation estimate.

Examples demonstrating use of the heart rate and mean 
arterial pressure impulse response sequences to calculate 

the response time and gain of the baroreceptor reflex system 

for heart rate contol are shown in figures 4-14 and 4-15, 

respectively. Tabulated in table 4-5 for each dog are the 

activation and deactivation response times and gains 

determined from the crosscorrelation, filtered 

crosscorrelation, and filtered best approximate impulse 

response estimates. The activation response times were 

generally negative (heart rate response lagged behind blood 

pressure response) and the deactivation response times were 
generally positive (blood pressure response lagged behind 
heart rate response). Likewise, the activation gains were 

generally smaller than the deactivation gains. Although the 

correlation coefficients from the linear regression analyses 

used to obtain the results in table 4—5 averaged 

0 . 9 8 8 1±0.0341 (n=108) , there was a great deal of

variability, even to the point of differences in sign, in 

the results computed among the six dogs and between the 

impulse response types.

Results of the simulation of closed-loop infusion of 
nitroprusside are given in figures 4-16 through 4-20. 

Systolic, diastolic, and mean arterial blood pressures and 

mean LV ejection (not shown) pressures all fell in parallel. 

The nitroprusside infusion rates generated by the control
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Table 4-5. Baroreceptor reflex control of heart rate 
analyzed using impulse response estimates. Data were 
derived from three types of impulse response estimates : 
A-crosscorrelation estimate, B-filtered crosscorrelation 
estimate, C-filtered best approximate estimate.

Dog: 1 2 3 4 5 6

Activation Response Time (minutes)
A -.0282 -.1313 -.0969 .0575 -.0082 -.0502B -.1175 -.2898 -.2312 -.0120 -.0175 -.0636C .1350 -.3518 -.1941 .0154 -.0284 -.0597

Deactivation Response Time (minutes)
A .5329 1.8454 .2351 -.2509 .4757 .3769B .3487 1.8511 .2384 -.5606 .8403 .2780C .2407 1.3824 .1434 -.4507 . 6287 .2398

Activation Gain (bpm-mm Hg"1)
A -.8529 -.1831 -.7208 -.3066 -.5176 -.6285B -1.1198 -.0691 -1.1751 -.4186 -.5540 -.6995C -.6872 -.3691 -1.0771 -.3604 -.5795 -.6779

Deactivation Gain (bpm-mm Hg-1)

A -1.9757 -.0878 -1.9400 -.3676 -.9247 -1.0364B -1.4357 -.5246 -1.4665 -.2996 -1.0852 -.8765C -1.3301 -.4705 -1.4373 -.3082 -1.0230 -.8837



65

150

140

130

120

110

100

90

80

70
DAP (mm Hg)

60
10 12 16 18 20

TIME (minutes)

Figure 4-16. Simulation of closed-loop nitroprusside 
infusion: arterial pressure and heart rate response. 
Setpoint for mean arterial pressure (controlled variable) 
was 75 mm Hg.
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Figure 4-17. Simulation of closed-loop nitroprusside 
infusion: nitroprusside dose and LV end-diastolic pressure 
response. Lower tracing: nitroprusside (SNP) infusion 
rates specified by the control algorithm to achieve the 
setpoint mean arterial pressure.
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Figure 4-20. Simulation of closed-loop nitroprusside 
infusion : ejection shortening response
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algorithm to maintain the mean arterial pressure setpoint of 

75 mm Hg ranged from about 1.0 to 3.5 p.g-kg-1-min-1 and 

showed a marked upward trend as the simulation progressed. 

Heart rate during the simulated hypotension settled at a 

level about 8 bpm above its baseline value following a 

transiently higher value. End-diastolic LV pressure fell by 

about ; 2 mm Hg during the nitroprusside infusion. Peak 

positive dP/dt showed little if any change, but peak 

negative dP/dt rose to a level substantially above baseline. 

Stroke work fell initially, then progressed back toward its 

baseline value as the simulation continued. The ejection 

shortening data suggested a small initial depression 

followed by a transient rise above baseline.



CHAPTER 5

DISCUSSION

The sequence resulting from crosscorrelating the 

sampled input and output of a continuous system in PRB 

testing is a discrete approximation to the continuous 

impulse response function of the system. This is readily 

appreciated by rewriting equation (2-3-7) as the following 

set of simultaneous linear equations :

0xy(O) = 0xx(O)h(O) + 0XX ( 1 ) h ( 1 ) +•••+ 0XX (N-l)h(N—1) 

0xy(l) = 0xx(N-l)h(O)+ 0XX (O)h(l) +-••+ 0XX (N-2 ) h (N—1)

0xy(N-l)= 0XX(1)h ( 0) + 0XX(2)h(1) +•••+ 0XX(0)h (N-l)

(5-1)

Invoking the approximation that 0xx(i)=O for i*0, as is done 

in conventional PRB testing, reduces equations (5-1) to

0xy(O) = 0xx(O)h(O)

0xy(D = 0xx(O)h(l)
• • (5-2)

0xy(N-l) = 0xx(O)h(N-l)

71
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This is a recapitulation of equation (2—3—9), demonstrating 

that sampling-dependent parameters (e.g., s ) do not 

explicitly distort the crosscorrelation as an estimate of 
the sampled impulse response function h(t), since 0XX(0) is 

not influenced by sampling. Indeed, the greater the number 

of samples taken per state of the PRB input, the greater 
will be N, and 0XX (n) will become ever more impulsive in 

nature. Of course, the practical consequence of increased 
sampling is increased temporal resolution of the impulse 

response estimate. The reality remains, however, that the 
off-diagonal elements of 0XX, particularly those elements 

representing the triangular portion^ of 0XX (n) , are not equal 

to zero, and therefore equations (5-2) are only an 
approximation regardless of the size of N.

Computation of the best approximate impulse response 

estimate is equivalent to finding the least—squares solution 
to the set of N simultaneous linear equations (5-1), 
independent of any assumptions about the form of 0xx(n), in 

so doing, the best approximate, again in the least squares 
sense, discrete deconvolution of h (n) and 0XX(n) (see 

equation 2-3-6) is determined, and this, it turns out, is 

the best approximate impulse response estimate. Techniques 

for discrete deconvolution have been described [VA-75, NI- 

76], but are often discounted because of their 

susceptibility to noise in the data [IN-84]. Hunt [HU-71] 

*As the number of samples taken per state of the PRB signal 
increases, so will the width (or number of elements in) the 
triangular portion of 0XX(n).



73

developed a technique for solving convolution-type integral 

equations using a matrix approach, and though he did give an 

extensive analysis of the statistical properties of the 

solution, he considered only a limited partition of the 

circulant matrix; this resulted in a coefficient matrix with 

distinct non-zero eigenvalues but also in a solution much 

less powerful than the best approximate solution derived in 
this report.

The relevance of the capability to compute the best 
approximate impulse response estimate depends upon the 

purppse for which an estimate of the continuous system’s 
impulse response function is desired. If the intention is 

to use curve-fitting or other procedures to develop from the 
discrete impulse response estimate a low—order continuous­

time mathematical model (e.g., transfer function) of the 

system [DA-70, SL-80, GI-85], then the non-normalized

crosscorrelation sequence is in general an adequate 

approximation to the impulse response function. The 

amplitude of this sequence is inherently correct and is 

appropriately labeled in units of (system output units)•(PRB 
input units)'1. It is curious to note that in papers 

presenting crosscorrelation estimates derived from PRB 

testing it has been common to use a dimensionless [GO-74, 

SH-77, 80] or ambiguous [GI-85, LI-82, UR-86] scale for the 

ordinate. In this regard it must be acknowledged that of 

the impulse response estimates shown in Chapter 4, only the 

amplitude of the sequence in figure 4-2 (typical non-
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normalized crosscorrelation estimate) is labeled correctly 

as an approximation to the continuous—time impulse response. 
The amplitudes of all other impulse response estimates given 

in figures in Chapter 4 are correct in that they give the 

proper result when used in numerical convolution, but to 
have the appropriate gain must be multiplied by 29 (=s) if 

they are to be viewed as discrete approximations to the 

continuous-time impulse response functions.

If one is interested in using numerical convolution 
with the discrete impulse response estimate derived from 

sampled PRB testing to simulate the behavior of the system, 
then the effects of sampling in the discrete mathematics 

must be taken into consideration. The simplest way to do 
this is to divide the cross correlation estimate of the 

impulse response sequence by the number of samples taken per 

state of the PRB input signal (see Section 2.2.5) . As 
demonstrated in Chapter 4 (e.g., figure 4-9), this 

normalized crosscorrelation impulse response estimate is a 

filtered but accurate model of the system. Alternatively, 

the best approximate impulse response can be computed, which 

gives an estimate of the system with the fullest possible 
spectral resolution.

The conclusive validation of an impulse response model 
is its response to white-noise [MA-7 8] . Using the PRB 

sequence as an approximation to white-noise, the best 
approximate impulse response estimate was shown in Chapter 4 

to model the system (hemodynamic responses to nitroprusside) 
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with amazing fidelity for all of the eleven variables 

studied. The best approximate impulse response estimate 

seems to be a very powerful enhancement to PRB testing, 
primarily because it models both the mean dynamic response 

and any linearly additive noise. It can be spectrally 
filtered to provide an impulse response model of any order 

appropriate for a particular application.

Sheppard [SH-76] pioneered pharmacodynamic identi­
fication by PRB testing in intact animals and patients. 

Sheppard has described mean arterial and left atrial 

pressure and aortic flow impulse responses to sodium 
nitroprusside [SH-76, 77] and the aortic flow, femoral flow, 

coronary flow, mean arterial and left atrial pressures, and 
heart rate impulse responses to dopamine and epinephrine. 

Based on Sheppard’s successful application of PRB testing 

with nitroprusside in dogs, this was the model chosen for 

experimental verification of the theory presented in this 
paper.

The lack of significant drift (y-intercept and slope in 

table 4-1) in the hemodynamic parameters measured during the 

course of the studies and the high degree of correlation 
between individual and mean impulse response curves (table 

4-2) document the stability and quality of the canine 

Preparation used in the present PRB testing experiments. 

The extremely small mean-square errors (table 4-4) for the 

best approximate impulse response estimate models attests to 

the power of this identification technique and to the highly
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linear behavior of the system (hemodynamic response to 

nitroprusside) investigated.

Briefly, the mean impulse response curves (figures 4-4 

through 4-7 ) can be interpreted as follows: Sodium

nitroprusside causes relaxation of both arteriolar 

resistance beds and venous capacitance beds [BL-80]. As a 

result, not only is there a decrease in systemic vascular 
resistance but also an increase in peripheral venous 

capacitance. The former of these effects explains the 

decrease in arterial pressure and corresponding drop in mean 
LV ejection pressure, and the later effect explains the fall 

in preload (end-diastolic LV diameter and pressure). The 

magnitude of the systolic arterial pressure change was less 

than that of the diastolic and mean pressures, corroborating 

the common clinical observation that nitroprusside is less 

effective in the treatment of systolic hypertension than in 

diastolic hypertension. The inverse relationship between 

arterial pressure and heart rate is presumed to be due to 

the baroreceptor reflex. The rise in peak negative LV dP/dt 
is consistent with the known inverse relationship [WI-74] 

between this parameter and mean arterial blood pressure. 

The rise in ejection shortening concurrent with falling 

preload and afterload probably reflects a real, but 

physiologically insignificant, increase in myocardial 

contractility due to the liberation of norepinephrine and 

vagal withdrawal resulting from dysinhibition of the 

vasomotor center by the baroreflex. Although the striking 
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similarity between the time course of the ejection 

shortening and heart rate impulse response curves strongly 

suggests an autonomic basis for this increase in ejection 

shortening, it might have been the result of ventricular 

unloading due to vasodilation by nitroprusside. The lack of 

distinctive characteristics in the impulse response curves 

for stroke work and peak positive dP/dt probably reflects 

the complex interdependence of these parameters on preload, 

afterload, and reflex effects, all of which were being 

dynamically altered during the response to vasodilation. 

That the response of some of these complex indices of 

ventricular performance might be somewhat nonlinear is 

suggested by the higher mean-square errors (table 4-4 ) for 

these parameters than for mean arterial pressure, for 
example.

As an example of direct use of the derived impulse 

response estimates to provide physiological information, the 

response time and closed-loop gain of the baroreceptor heart 

rate control system were determined from the heart rate and 

mean arterial pressure impulse response estimates. The 

known hysteresis in the baroreceptor reflex was apparent in 

this study and is probably indicative of a cime-rate-of- 

pressure-change component in the integrated baroreceptor 

response. Though the small sample sizes and the lack of 

control data verified by another measurement technique 

preclude statistical confirmation, appropriately filtered 

best approximate impulse response estimates would presumably 



78

provide the most accurate data in this type of application. 

Chen et al. [CH-82] used bolus injections of nitroprusside 

to perform a similar analysis, but their technique raises 
the issue of large amplitude nonlinearities; the advantage 

of PRE testing is clear in this regard. If the system can 

be considered to be linear over the operating range tested, 
it is completely described by its impulse response, and this 

type of analysis deserves further investigation.

Implicitly or explicitly, the motivation behind PRE 
testing is to develop a model of the system under 

investigation. Willems [WI-86] has recently defined the 

most powerful unfalsified model as that model which explains 
a given set of observations and as little else as possible. 

To the extent that it is the best approximate deconvolution 

of the observations (discrete input/output samples of the 

system response to the PRE signal), the best approximate 
impulse response estimate is the most powerful, to use 

Willems' terminology, model obtainable from PRE testing in 

that it "explains" the response of the system to the PRE 
input. This was attested to in the present study by the 

trivial difference (mean-square error) between the original 

data sequences and the sequences generated by convolution of 

the best approximate impulse response estimate with its 

respective PRE sequence. However, a model that explains 

only the system response to the perturbations used to derive 

it is of little practical relevance. Indeed, the purpose of 

PRB testing is to identify a model (impulse response
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estimate) capable of predicting the system output for any 

appropriate input. The best approximate impulse response 

estimate facilitates realistic and accurate numerical 

simulations of practical relevance, as was demonstrated in 

this report for the closed—loop infusion of nitroprusside; 

such simulations might be useful in control system design, 

for example. It is proposed that the greatest utility for 

the best approximate impulse response sequence is in 

numerical simulations where realistic modeling of the 
dynamic and background components is desired but where 

separate consideration of these elements is not required. 
The best approximate impulse response estimation algorithm 

should eventually be of interest in many identification, 

adaptive signal processing, and adaptive control 
applications.

Willems [WI-86] goes on to state:

...in most applications the lack of fit 
between data and model is not in the 
first place due to randomness or 
measurement noise but to the fact that 
one consciously uses a model whose 
structure is unable to capture the 
complexity of the phenomenon which one is 
observing. . . . [BJefore setting up
algorithms for obtaining . . . approx­
imate models it seems reasonable that one 
should be able to produce algorithms for 
obtaining exact models.

In PRE testing, the best approximate impulse response 
estimate derived in this report is as close to an exact 

model as it is possible to obtain. Through selective 

filtering of the best approximate solution it should be 

possible to acquire an approximate model of any desired 
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resolution or to separate the dynamic and background 

components of the system response. This raises the prospect 
of reversing the traditional approach to system modeling 

where estimates of background activity are added piecemeal 

to an approximate model of the dynamic respnse; using the 
best approximate impulse response estimate it may be 

possible to derive from the single "exact" solution each of 

its individual components and in so doing to systematically 

formulate a complete and rich model.

Finally, it is remarkable to note that calculation of 

the best approximate solution (equation 2-4-5) is an 

algorithm of general applicability, not restricted to PRB 

testing. Other than to assume that the input sequence was 

periodic and that its autocorrelation matrix was singular, 

at no point in the derivation of the best approximate 
solution was any assumption made regarding the form of the 

sampled input sequence. Thus, equation 2—4—5 can always be 

used to find the unique least squares solution or the 

solution of minimum norm of the system of equations (5-1). 

When x(t) is well-behaved and of bandwidth greater than that 

of the system, e.g., a PRB test signal, the solution h(n) 

will be the best approximate impulse response estimate.

It has been suggested [WA-86] that the principal 
contribution of an article is either new observations 

("results") or development of a new way of looking at the 

world. Although novel data describing the pharmacodynamics 

of sodium nitroprusside have been obligatorily obtained to 
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provide experimental verification of theory, possibly the 

greater contribution of this work would be to stimulate the 

development of innovative and powerful approaches to system 

modeling and simulation as the simple algorithm derived here 

to find the best approximate impulse response estimate is 
refined and exploited.
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APPENDIX A

CIRCULANT INVERSION

The following Fortran listing provides the salient features 
of the software program written to compute the generalized 
inverse of the circulant autocorrelation matrix (see Section 
2-4). SETWT and CHRFT were double precision implementations 
of the subroutines of the same name by Monro [MO-73].

C 
C 
C 
C

PROGRAM CIRCINV.FOR

REAL*8 WR (4096) ,WI (4096) ,RL (4096) , IM(4096) , SMALL

C
C READ FILE CONTAINING FIRST ROW OF CIRCULANT MATRIX FOR
C WHICH THE INVERSE IS TO BE COMPUTED; MAY CONTAIN UP TO
C 2048 ELEMENTS. THE SEQUENCE OF LENGTH N IS STORED IN 
C ARRAY RL.
C

C
C SET UP FOURIER TRANSFORMED CHIRP FUNCTION FOR USE BY 
C SUBROUTINE CHRFT
C

CALL SETWT(WR,WI,N,4096) 
C
C CALCULATE THE EIGENVALUES OF THE CIRCULANT MATRIX BY
C FINDING THE INVERSE DFT OF THE FIRST ROW OF THE
C CIRCULANT MATRIX. CHRFT COMPUTES THE DISCRETE FOURIER
C TRANSFORM OF A DATA SEQUENCE WITH REAL PART RL AND
C IMAGINARY PART IM BY THE CHIRP-Z TRANSFORM. 
C

CALL CHRFT(RL,IM,WR,WI,-N,4096)
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C
C PERFORM RECIPROCATION OF THE EIGENVALUES. IM SHOULD BE 
C ZERO, SINCE THE AUTOCORRELATION IS AN EVEN FUNCTION, AS 
C WILL BE THE SEQUENCE OF EIGENVALUES.
C

SMALL=DBLE(1.E-11)
DO 100 1=1,N

IF(DABS(RL(I)).GT.SMALL) THEN
RL(I)=DBLE(1.)/RL(I) 

ELSE
RL(I)=DBLE(0.) 

END IF
IM(I)=DBLE(0. ) 

100 CONTINUE 
C 
C COMPLETE CALCULATION OF THE GENERALIZED CIRCULANT
C INVERSE BY COMPUTING FORWARD DFT OF THE RECIPROCAL
C EIGENVALUES 
C

CALL CHRFT(RL,IM,WR,WI,N,4096) 
C
C STORE RL WHICH, BECAUSE THE GENERALIZED INVERSE IS ALSO 
C A CIRCULANT, DEFINES THE ENTIRE INVERSE MATRIX.
C

END



APPENDIX B

SIMULATION OF CLOSED-LOOP NITROPRUSSIDE

The following Fortran listing provides the salient features 
of the software program written to simulate closed-loop 
infusion of sodium nitroprusside. See Section 3.2.

C
C Program SNPBPSIM.FOR 
C

REAL * 8 GNEW(0:2000),CON(0:2000),A(0:2000),SUM
REAL*8 TERM,DELTAI,K,BP,E,E1,INFRATE
INTEGER PAVG,SETPT,CNT,MAP0,P,Pl,P2,P3,P4,P5 

C 
C
C SET THE VARIABLE MAPO EQUAL TO THE BASELINE (dc)
C BLOOD PRESSURE 
C
C SET THE VARIABLE SETPT EQUAL TO THE DESIRED SETPOINT
C MEAN ARTERIAL BLOOD PRESSURE 
C
C READ THE FILE CONTAINING THE TIME-SHIFTED BEST
C APPROXIMATE IMPULSE RESPONSE SEQUENCE FOR MEAN ARTERIAL 
C PRESSURE AND STORE IN ARRAY GNEW(1827) 
C
C INFUSION RATES ARE STORED IN ARRAY A 
C
C SET INITIAL INFUSION RATE TO 0

INFRATE=DBLE(O.)
C
C INITIALIZE TIMER TO 0

CNT=O
C
C INITIALIZE ARRAYS

DO 510 1=0,1826
A(i)=DBLE(0.)

510 CON(I)=DBLE(0. )
C ...
C SIMULATE 1827 SECONDS OF DATA

89



90

DO 600 1=0,1826 
C DO NUMERICAL CONVOLUTION TO DETERMINE CURRENT
C CHANGE IN BLOOD PRESSURE DUE TO DRUG

DO 520 11=0,1
LAG=I-II 
CON(I)=CON(I)+GNEW(II)*A(LAG) 

520 CONTINUE
C 
C CURRENT BLOOD PRESSURE IS EQUAL TO THE BASELINE 
C PRESSURE PLUS THE CHANGE IN PRESSURE DUE TO THE DRUG 

P=MAP0+INT(CON(I)) 
C DETERMINE MEAN ARTERIAL PRESSURE AS THE AVERAGE OF 
C LAST 6 MEASUREMENTS 

PAVG=(P1+P2+P3+P4+P5+P)/6 
C IF 60 SECONDS HAVE PASSED RESET INTERVAL
C COUNTER AND CONTINUE OTHERWISE GOTO 548

IF(CNT.EQ.6O) THEN 
CNT=0 

ELSE 
GOTO 548 

ENDIF 
C IMPLEMENT SHEPPARD'S CONTROL ALGORITHM 

E=DBLE(SETPT-PAVG) 
IF(PAVG.GE.SETPT+5) K=-l. 
IF((PAVG.GE.SETPT).AND.(PAVG.LT.SETPT+5)) K=-.5 
IF((PAVG.LT.SETPT).AND.(PAVG.GE.SETPT-5)) K=-l. 
IF(PAVG.LT.SETPT-5) K=-2 
TERM=DBLE((.4512*E)+(.4512)*(E-El)) 
DELTAI=K*TERM 
IF(DELTAI.GT.7.) DELTAI=7. 
IF(PAVG.GT.SETPT+5) DELTAI=DELTAI-2. 
IF((PAVG.LT.SETPT-5).AND.(DELTAI.GT.0.)) DELTAI=0. 
INFRATE=INFRATE+DELTAI 
IF(INFRATE.LT.DBLE(0.0)) INFRATE=DBLE (0.) 

C 
C CONVERT THE ML/HR INFUSION RATE TO MCG/KG/MIN (200
C MCG/ML, 20 KG, 60 MIN/HR)
548 A(I+1)=INFRATE*DBLE(.16666)

E1=E 
C INCREMENT THE COUNTER AND UPDATE THE PRESSURE STORAGE
C VARIABLES

CNT=CNT+1 
P1=P2 
P2=P3 
P3=P4 
P4=P5 
P5=P 

600 CONTINUE
C 
C ADD THE BASELINE PRESSURE TO EACH ELEMENT IN THE ARRAY
C (CON) OF DYNAMIC PRESSURE RECORDINGS AND WRITE THE
C DATA TO A FILE 
C 
C



91

C
C SAVE FILE OF INFUSION RATES FOR SUBSEQUENT CONVOLUTION
C WITH IMPULSE RESPONSES FOR OTHER VARIABLES.

END
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