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I. INTRODUCTION AND REVIEW OF LITERATURE

There are many applications in industry where transient
thermal loading occurs on the inside diameter of cylindrical
metal shells. These include heat exchanger tubing, piping in
steam boilers, heavy duty truck brake drums, and permanent
molds for casting metals, glasses, and ceramics. In all
cases the tubular shapes are subject to a radial temperature
gradient that induces thermal stresses. For small
temperature gradients the stresses are elastic in nature, but
if the temperature gradient is steep the thermal stresses
exceed the yield strength of the material and plastic flow
occurs. Repeated application of such thermal loads can lead
to low cycle fatigue. ’

Elastic stress calculations for a long circular cylinder
with a symmetrical temperature distribution about the axis
were first performed by J.M.C. Duhamel1 in 1838. Elastic
solutions to several cases of thermal loading of cylindrical
shapes have been presented by Timoshenko and Goodier.2 The
values of the displacement, U, stress, O, and elastic strain,
€c1r from these solutions are wvalid as long as the stress
does not exceed the yield strength of the material. In many
cases the yield strength is exceeded, plastic flow occurs,

and the values of stress calculated from elasticity theory

are in error.




To better approximate the stresses and strains when
yielding occurs, A. Mendelson and S.S. Manson3 developed a
technique which accounts for plastic deformation due to
thermal loading. Their technique consisted of deriving
strain equations in terms of temperature and plastic yielding
from the equilibrium, compatibility, and stress—-strain
relationships for the geometric shape and material under
investigation. The strains were then calculated by an
iterative technique taking into account the piastic flow of
the material being analyzed. Stresses were then calculated
from the general stress-strain equations.

Hanson4 used the Mendelson and Manson technique3 to
compare the deformation and incremental theories of
plasticity in the solution of two boundary value problems.
The deformation theory assumed that the state of stress and
strain existing in a body depended only on the current load.
The deformation theory did not account for prior plastic
strain due to prior loading and was therefore 1load path
independent. Using the incremental theory, the loading and
unloading cycle was divided into several small load
increments. Stresses and strains were then calculated based
on the small load increment, and any plastic strains that
occurred during a load increment or prior load increments had
an accumulative effect on the stress-strain state. The
incremental theory's ability to account for plasticity due to
small changes in load made stress and strain calculations

load path dependent.
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The first problem Hanson4 solved concerned the stress
analysis of a solid cylindrical rod of 18-8 stainless steel
gquenched from 1000 F (538 CQC). A stress analysis was
performed by both deformation and incremental theories of
plasticity, and the results of each analysis were compared.
The second problem was the stress analysis, by both
deformation and incremental theories of plasticity, of a thin
circular disc when heated on the outside diameter.

Hanson4 found that the results of the analysis from both
deformation and incremental theories were in agreement until
unloading occurred. Upon unloading, values of stress
calculated from each theory deviated from each other.
Hanson's experimental evidence indicated that the incremental
theory was more predictive of the stress-strain state than
was the deformation theory.

Manson® used the Mendelson and Manson technique3 to
determine the thermal fatigue life of a rotating solid disc
when subjected to thermal loading. The load conditions were
similar to those for discs in jet engines. Strain range
values were calculated based on the mechanical and thermal
loading cycles and a thermal fatigﬁe life was predicted.

The objectives of this dissertation are to analyze and
optimize a multilayer tube's thermal fatigue 1life when
subjected to cyclic thermal loading on the inside surface.
Figure 1 shows a log Total Strain Range (Ae) vs. log Cycles
to Failure (Ng) diagram. This graph is often used to
determine cyclic life at various strain ranges.6 It is

evident from this graph that lower mechanical strain ranges
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result in high thermal fatigue lives. To improve the thermal
fatigue life of a cylindrical shell, the strain range must be
reduced. This may be accomplished by either reduction of the
thermal load or reduction of the temperature gradient. The
thermal load in many applications is difficult to reduce due
to fixed process parameters. In this dissertation the
thermal load is taken as a constraint and is held constant.
The thermal gradient, on the other hand, can be reduced
either by the selection of a high thermal conductivity
material or by a thinner shell design. Copper has high
thermal conductivity and could be used to decrease the
temperature gradient, but it lacks strength and abrasion
resistance and in some applications 1is susceptible to
corrosion. A thinner shell design would also reduce the
temperature gradient, but if too thin, the shell is subject
to buckling and distortion which may be undesirable. To
achieve a lower thermal gradient, dimensional stability, and
abrasion resistance a three layered sandwich design is
proposed. The multilayered cylinder will have inner and
outer layers of high strength steel and a central layer of
high conductivity copper. This design might be thought of as
the thermal equivalent of the mechanical "I-beam."” The
inside and outside layers of steel are used to give strength,
stiffness, stability, and abrasion resistance to the tube.
The copper provides a high conductivity path for the heat
flow. To the author's knowledge, no analytical technique to
determine and optimize the thermal fatigue life of a
multilayered cylindrical shell has been developed. Such a
technique will represent a significant contribution to the

literature.
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To determine the thermal fatigue life of a multilayered
cylindrical shell, a numerical method using Mendelson's and
Manson's technique3 and incorporating principles of
incremental theory will be developed. It should be noted
that total strain equations expressed in terms of temperature
and plastic strain for a cylindrical tube, which are required
for the Mendelson and Manson technique, have not appeared in
the literature and will be derived in this dissertation. As
part of the analysis, the radial temperature profile must be
determined as a function of time, heat input, interface heat
transfer coefficients, alloy thermal properties, and
thicknesses of the layers. Equations for calculating the
temperature profile in terms of these variables will be
derived in this dissertation. The temperature profile will
be used to perform an elastic-plastic stress analysis of the
multilayered tube. Values from the stress analysis are used
to determine the strain range and cyclic life of a design.

The optimization scheme allows the selection of a
material or alloy for each layer, the layer thickness, inside
and outside diameters, thermal load, and cycle times. The
optimum design will be chosen by comparing the thermal
fatigue life of several different designs that meet required
constraints.

As a "demonstration” of the analysis and optimization
method developed in this dissertation, a three layered tube
will be optimized for a maximum thermal fatigue life for one
set of constraints. The constraints imposed on the
demonstration analysis are presented 1later in this
dissertation and do not necessarily represent a real

application.




II. THEORY AND DERIVATION OF HEAT FLOW AND STRAIN EQUATIONS
A numerical model that takes into account temperature
dependent thermal and mechanical properties, strain
hardening, and other material parameters that change due to
thermomechanical cycling is desirable. However, this level
of complexity is not necessary for optimizing composite
tubing for thermal fatigue. A model that calculates the
stresses and strains occurring in a design for any given
thermal cycle could be used as a design tool. Once the
strains are determined, a strain range could be calculated
for each layer and used to determine the layer's life.
Optimization occurs when the strain range in each layer is
consistent with the maximum life of the tube as a whole. To
establish a repeating strain range, a numerical model that
couples a tube's thermal response to a stress analysis
routine is required. The thermal part of such a model
includes the following parameters:
a. heat source temperature,
b. heat transfer coefficients of the inside and
outside diameter surfaces,
c. thermophysical properties of the selected
materials, such as thermal conductivity, density,

and specific heat,

d. layer thicknesses, and




e. the duration of the heating and cooling phases of a

thermal cycle.

The stress analysis takes into account both the elastic
and plastic nature of the composite's response as a function
of temperature during cyclic heating and cooling.

Development of equations for radial temperature and
stress distribution in each layer requires that certain
boundary conditions must be met at surfaces and interfaces.
Once developed, the equations are implemented into a thermo-
elastic-plastic model of a three layered steel-copper-steel
composite tube, and the model is used to optimize the thermal
fatigue life of the tube with certain thermal and physical
constraints. This analysis assumes a specified inner radius,
with a heat input, three layers of total thickness, and a
water cooled outer surface.

Derivation of Finite Difference Heat Flow Equations

To determine the temperature profile in a three layered
composite tube, a finite difference solution to transient
heat flow is required. There are many texts on the finite
difference solution to heat flow; the following equations
have been derived based on the physical formulation
techniques described by Myers.7

The finite difference technique requires that the tube
be divided into many small layers (nodes) such that heat
balance equations may be written for each layer (node). The
nodes are subscripted with i and j, where ri j indicates the
radial node at position i and time jJj. Figure 2 shows a

general composite tube which consists of three layers of




Steel

Copper

Steel

(6])

Type 2
pe 3

Type 4

Figure 2. Drawing of a three layered cylindrical shell
showing layer thicknesses, layer material, nodal system,
and node types.
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thickness TK1, TK2, and TK3. Each layer is subdivided into
radial nodes which have different thermophysical properties
based on its composition and temperature. Also notice that
there are several different types of nodes, each of which
require a different mathematical treatment. The node types
are:

(1) an inside diameter, ID, surface node which has
associated with it a heat transfer coefficient, hiq,
which controls the rate of heat flow from the heat
source into the tube,

(2) an interface node between the steel and the copper
alloy,

(3) an interface node between the copper alloy and the
steel,

(4) an outside diameter, OD, surface node, which has
associated with it a heat transfer coefficient, hjp,
which controls the rate of heat extraction from the
tube, and

(5) nodes that 1lie completely in the steel or
completely in the copper alloy, but not at the
interfaces.

Finite difference equations have been derived for each of
these type nodes.

In the derivation of the finite difference equations, a

one dimensional analysis has been used with geometric

correction factors to account for the differences in area

between nodal faces.
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Shown in Figure 3 is the ID surface node; the heat
balance equation for this node (node Type 1) may be written
as:

din ~ Y9out ¥ 9stored [1]
where gijp is heat flow into the node, ggut is heat flow out
of the node, and Qqgtored is heat energy stored in the node
due to a temperature change. Note that the heat balance
equation is written about a control surface that is Ar/2 in
the tube and Ar/2 in the heat source. Mathematically, qjin.

douts and ggtpored May be written as:
din = hi B3 (Ti,§ - Ti+1,4) [2]

(Ti+1,9 ~ Ti+2,5)

dout = k A2
Ar [3]

Ay + A2 Ar ( Ti+1,9+1 — Ti+1,5)
dstored = P Cp —>— = S =
t [4]

where hy is the heat transfer coefficient between the heat
source and the inside surface of the tube, A1 and Ay are the
areas of the node faces, subscripted T values are the
temperatﬁres at specific nodes and time steps, k is the
thermal conductivity, Ar is the node thickness, pis the
density, Cp is the specific heat, and 8t is the time
increment. Substituting equations [2], [3], and [4] into the

heat balance equation [1l] gives:
(Ti+1,4 - Ti+2,5)
Ar

hiAg (Ti,5 - Ti+1,4) - kAz

o C Ay + A2 Ar ((Ti+1,9+1 = Ti+1,5)
p 2 2 5t

[5]
Solving for the temperature of the surface node, Ti+1,5+1, at

time t+0t yields:




Figure 3.

-

Cnmmmm=

Interface between ID surface and heat source.

12



13

[6]

The terms containing areas A and Ay form geometric

correction factors which can be simplified with respect to

the radius, r. It is evident from Figure 4 that:

Ay = Dj41 = Tisp 02

and similarly:

_Bi41 tAj4p  Tiyl 0z + (rjqyq +Ar) 0 z

2 2

A2

Letting GD;j.73 be a geometric correction factor

substituting in the area equations produces:

2h1 Tit1
i+l = 377 A,
1 2 Ar

Ti+l +

Similarly, another geometric correction factor is:

Py = — 2
i+1 T A + Ay
and can be shown to be:
Ar
r1+1+—2—
GFj+1 = A
rieg + A8
i+1 2

[7]

(81

and

(9]

[10]

[11]

Substituting these geometric factors into the node equation

gives:




Figure 4.

Nodal face of unit length in the z-direction.
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2h1 t
Tit+l,9+1 = — GDi+1 —T4,5 +
pCp Ar
2h ot 2k
1 - =1 GDj41 — ——— GFi+1 Ti+1,5 t
2k t
—  GFiy1 —Ti+2,3

Due to the uniqueness of the copper-steel interface (node
Type 3), as shown in Figure 5, its solution is also
presented. The heat balance equation may again be written
as:

9in ~— 9out T Ystored [13]
where g3, is the heat flow into the node, qgut is the heat
flow out of the node, and Qgtored 1S the heat energy stored
in the half copper-half steel node due to a temperature
change. Note that the heat balance equation is written about
a control surface that is Ar/2 in the copper and Ar/2 in the

steel. Mathematically, qipn, Qoutr and dstored May be written

as:
( Ti-1,5 - Ti,5)
din = kcu A1 12rd 2 )
Ar [14]
( T.l. - T'+1,' )
dout = kst A3 1.3 1 J
Ar [15]
Ar ( Tji, 441 ~ Ti,3)
Jstored ~ (pSth St+pcucp Cu)Az_Z__ 1,3 1,3
ot [16]

where subscripted values of k, p, and Cp are used to
distinguish between steel and copper properties.

Substituting these equations into the heat balance equation

gives:




Figure 5.

Control
Surfaces

Plane view of copper-steel interface node.
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(Ti-1,5 = T4,5) Ti, 5 = Ti+1,3)
1 J i,3 - kst A3 J 1 J
Ar Ar

kcu Az

( Ti,3#1 - Ti,5)

(PstCp st +PcyCp cu) A2Ar

ot [17]
Defining 04 and o, as:
k
o, = St
pSth St+pCuCp Cu [18]
k
(12= Cu
pSth st+pCuCp Cu [19]

and solving for T; 449 yields:

2(Aj_1+A} ot
Ty, 541 = 2(12 (Aj-1+A4) Tioq,5 +
! Aj+Aji-3+Ai41 ’

Ar

2(Aji_1+Aj ot 2 (Ai+A, ot
1 - 2(12 ( i-1 l) _ 2(11 ( i :|.+1) Ti,j+
2Ai+A 1tA 41 2 2Ai+Aj-1tA 41 2
r
2(Aj+A441) ot
204 = 2 Ti+1,3
2A3+Aj-1+Ai41 2
[20]
which reduces to:
ot
Ti,j+1 = 2GBj O, _2Ti—1,j +
Ar
ot t
Ar Ar
t
2GAial 2 Ti+1rj
Ar [21]

where 04 and O, are diffusivity factors and GA; and GB; are
additional geometric correction factors.
The other node equations for node Types 2, 4, and 5 and

their associated geometric correction factors are solved by
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the same method. All equations and geometric correction
factors are presented below for completeness.

Node Type 1 (the ID surface node):

2h1q t
Ti+1l,9+41 = —— GDi+1 —T4,5 +
PCp Ar
2hq ot 2k
1l - —=GDj4] — ——— GFi Ti+1,3 *
PCp - Ar  pCp Ar
2k
o GFi+1 Ti+2, 3
p 1% Ar [22]
Node Type 2 (the steel-copper interface node):
ot
Ti,4+1 = 2GBjo4 ——E'Ti"lrj +
Ar
ot ot
1 - 2GBial —2 - 2GAi(X.2 —2 Ti,§ +
Ar Ar
ot
ZGAi 0!.2 '—E Ti+1,j
Node Type 3 (the copper-steel interface node):
_ t
Ti,4+1 = 2GBja, p Tij-1,5 +
Ar
ot
1 - 2GBja, > 2GA4 04 > i, 5t
Ar Ar
t
2GAj O > Ti+l,
Ar [24]

Node Type 4 (the OD surface node):

ot
T1,3+1 = 2GE1 & — T1-1,5 +
Ar
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ot 2ho ot
1 - 2GE; a —— GCy — T]_’j +
2ho ot
GC1 Ti1+1, 5 _

Node Type 5 (internal nodes of all steel or all copper ):

Ti, j+1 = GBi® —— Tj-1,5 +
Ar
ot ot
1 - GBjo - GAge — | Ty, 5+
Ar Ar
t
GAj o — Ti+l; 5
Ar [26]
Geometric correction factors are:
ri + Ar
1 =
GAj = 2
i [27]
Ar
ry - —
GBji = 2
i [28]
rl
GCy = =
e+ Ar
T4 [29]
rl
GDy = i+l
+ Ar
ris —_
T [30]
r Ar
i - —
GE4 = 2
Ar
ry - —

4 [31]
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4 [32]
These equations have been implemented into the thermal
section of the numerical model in latter sections of this

dissertation.
Derivation of Strain Equations for a Cylindrical Tube

Before deriving equations for the stress analysis
routine, it would be helpful to have definitions and a clear
understanding of the different strain terms that appear in

this dissertation.

Strain, of course, is a representation of the change in
geometry of a solid from some initial to a final state.
Linearized, infinitesimal strain is defined by the symmetric
part of the’displacement gradient. The change of geometry of
a body can be accomplished by several means. Temperature
change, mechanical load, and time dependent deformations are
some of the causes of strain. A change in temperature of a
body results in thermal strain. The amount of thermal strain
is given by:

€thermal = & AT [33]

where o is the thermal expansion coefficient and AT is
defined by the differences between the initial and final
temperatures. If a body 4is heated nonuniformly or
constrained by external forces, the strain consists of
mechanical and thermal components. Mechanical strain

components are related to stress. The mechanical strain can
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have elastic and plastic parts. The sum of the mechanical
and thermal strains is referred to, in this dissertation, as
the total strain and is given by:

Eiotal = felastic t Eplastic t Ethermal [34]
Since strain is a tensorial gquantity it has principal
components in the three orthogonal directions, usually
designated by a subscript x, y, and z or r, 0, and z. For a
cylindrical tube, as shown in Figqre 6, the strain components
(using a cylindrical coordinate system) are tangential, €gr
radial, €,, and axial, €,. These strains may be defined in
terms of the displacements that occur when a tube is heated.
Figure 7 shows a node of thickness dr that has undergone a
displacement. The definition of tangential and radial

strains are:

£g = Change in length _ 2% (r+U) - 27r _y
Original length r
g g 2Txr [35]
¢ = Change in length _ (U + dU) - U _ dU
r Original length dr dr [36]
The axial strain is defined as:
_ Change in length _ dw
z Original length dr " 1371

where dw/dr is the gradient of the axial displacement field.
The Mendelson and Manson technique3 for the solution of
the nonlinear differential equation that describes the
thermomechanical response of a tube requires that total
strain equations be derived from the equilibrium and
compatibility equations that govern the geometry of the body
in question. Their technique, with additions, has been used

in the development of the numerical model in this dissertation.
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Figure 6. Section of a cylindrical tube showing cylindrical
coordinate system.
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Figure 7. A single radial node of radius, "r," and
thickness, "dr," showing the radial displacements, U, U+dU,
and the resulting strains.
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Also required for their technique are equations that relate
stress, strain, and plastic flow to a flow rule such as the
von Mises criteria. Once these two steps are complete the
equations are applied according to incremental theory, in an
iterative process, to calculate total and plastic strains
which are used to calculate stresses. An incremental
plasticity technique has been used because of its ability to
treat unloading and reloading of stressed elements.

Figure 8 shows a free body diagram and force balance in
terms of principal stresses: ©0,, Og, and 6,, for the unit
volume differential element, r-d®-dr-dz, where 6, is the
radial stress, Og is the tangential or hoop stress, and G, is
the stress in the axial direction. Due to symmetry, shearing
stresses are zero and the tangential stress, O©g, 1is
independent of the angle, theta. The sum of forces in the
radial direction must be equal to zero to satisfy

equilibrium, which results in:

do. ., do
Gr+—d?dr (r+dr) d0 dz - 6, r dO dz - 20g dr dz s:Ln—2—- =0

[38]
Sin d0/2 is small and may be approximated by d0/2, which

results in equation [38] simplifying to:

c. + s dr + dr + it ary 2 - - dr = 0
r o, r 75? r G, dr 75? (dr) r G, Cg dr = (39]

Neglecting higher order differential terms and rearranging

results in:

dx r [40]

which is the equilibrium equation for the radial direction.




Figure 8. Free body diagram showing forces acting on
differential element of tube.
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Equilibrium also requires that the sum of the forces
from any internal or external pressure acting on the tube
must balance. Figure 9 shows a free body diagram of a half
section of a tube with internal and external pressures acting
on it. The length of the tube under consideration is unity.
The y-component of force, per unit length, due to a pressure
on a small surface area of the ID may be written as:

Fy, = AFp, sin ©® = pj ( r; A0 ) sin 0 (411
where Fy. is the component of force in the y-direction, AFp,
is the force on a small element of the ID surface due to an
inside pressure, pj, at dinside radius, rj. Similarly, for
the external pressure:

Fy, = AFp, sin 0 =po ( ro AO ) sin O [42]

o
where FyO is the component of force in the y-direction and
AFpo is the force on a small element of the OD surface due to
the external pressure, p,, at outside radius r,. The force,
per unit 1length, connecting the two half sections may be
written as:
Taking the limit as AO and Ar approach zero and summing the
forces in the y-direction yields:
T T b
Ipi riy sin 0 d6 —fpo ro sin 9d9=2f0‘edr
0 0 a [44]
Integrating results in:
b
Pi ri = Po Yo =f09dr
a [45]
Now equating the pressures pj and pg to zero, for the case

under consideration, one obtains:
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Figure 9. Free body diagram of a half
showing forces acting in the y-direction.

section of a tube
The inside radius
is "a" and the outside radius is "b." The inside pressure is
p; and the outside pressure is p,.
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b
f 00 dr = 0
a [46]

Two special cases arise when considering forces in the
z=direction. The first case 1s that of plane strain where
the net strain is equal to =zero. This requires that a
restraining force be applied to the end faces of the tube
such that the strain in the z-direction is constant and equal
to zero. The other case of plane strain occurs when the sum
of forces in the z~direction are equal to =zero. This
condition states that a Oz distribution exists across the
tube wall such that a plane section taken through the tube,
normal'to the axial direction, will remain plane during
thermal cycling; that is, no telescoping occurs between
layers in the composite and €; is constant and independent of
r and 0. Other conditions that must be satisfied for the
analysis are those of compatibility and boundary conditions
on the ID and OD surfaces. Compatibility is a condition of
continuity of strain in the theté direction between two
adjacent elements in the tube. This condition may be

expressed as:
deg
E.=r — + gy
dr [47]
where €y and €g are the radial and tangential components of
total strain. A free surface cannot support a radial stress,

so this leads to an ID and OD boundary condition given as:

I
V)]

at radius
and or =0
at radius = Db

where a and b are the inside and outside radii of the tube.
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From the above equations and conditions, it is desirable
to solve for the radial displacement, U. Once U is obtained,
€g and €&, are defined by -equations [35] and [36],
respectively. Using total strain equations [48], [49], and

[50], which include elastic, thermal, and plastic components:

gr=-}-31—l:0r—],l(0'9+0'z )_+aT+8rp 1481
1 -

89=E[Ge—u(6r+qz)J+aT+89p (491
J -

€, = T [cz - B(o,. + Oy )J + 0T - (. ,+E,) (501

where E is elastic modulus, U is Poisson's ratio, o is the
thermal‘expansion coefficient (not to be confused with the
thermal diffusivities @3 and a2), and Erp and Egp are the
radial and tangential components of plastic strain, it can be

shown that:

G, =A (e +€y+E,— 30T )+2G(€,— AT - €,;) [51]
Op=A (&.+8g+E,— 30T ) +2G (€g— OT - £g,) [521
O,=A (e +Eg+E,—30T)+2G(€,— AT + €, + €gy,) [53]

where A and G are known as Lame's constants and are given by:

A= RE
(1 + | )(1 - 2p) (541
G=— B
2 (1 + [55]

Substituting O, and Og into the radial equilibrium equation,
letting E, W, and & be constant, using the compatibility

relation to express €, in terms of ee,and rearranging gives:
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d[;g(rzee)]= 0 B R e R I

-d_.-r— r dr d_r 1 - u 1 - u P
1 - 2u I:erp— eep]
1-p i [56]
which is a second order differential equation. Substituting

U/r for €g yields:

1 + 1 -2
41l d =S |2t g+ He |+
dr |r dr dr |1 - m 1 -p P

1 -2 I:erp_ sep]
1 -y t [57]

which can be solved for the displacement, U, in terms of

temperature and plastic strain. The left-hand side of the

above equation is an exact differential and may be solved by

integration. Integration of both sides gives:
1+ 1 -2
%;d%(rU) = —u—aT+——-————p‘- €rp +
1 -p 1 -4
K )
1 -2 €p- €
1-pu r
a [58]
where C;1 is a constant of integration. Multiplying both

sides by r and integrating again results in:

: 1+p (F 1 - 2 T
(xt) = — = | aTradr + —& €p r dr +
1_p'a 1"” a

r
r

1-2p ) [ EpTB0p )
1 -p r
a
a [59]

2
dr dr+C3 r + C»

where Cs 1s a constant of integration. Now dividing both

sides by r gives:
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1+ r 1 - 2 £
U=—-——"ll aTrdr+-—u—J-'-f erprdr+
1-u*J 1-u * a

- )
! 2”—1 rp ep dr dr+C1 r + EE
1 -pft r

The double integral may be simplified by applying the

[60]

integration by parts theorem. Recall that:

fudv=uv—fvdu [61]
By letting:
£ - £
r
[62]
du becomes:
LA - £
du = e % dr
r [63]
and letting:
dv = r dr [64]
v becomes:
2
r
V=_
2 [65]

Substituting these into the integration by parts equation

(equation [61]) results in the simplification of the double

integral as shown below:

r
r

1 - 2”. r (erp—eep)
1 -pu r

dr dr =
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r
- (e..—¢€ T
1—2“'__. r2 __r_p_;.p).dr— f (erp—eep)rdr
21 - ) r \
[66]

Substituting this simplification into equation [60] and

rearranging gives:

1 + r 1 -2 *
————ulfaTrdr+————p’—lf(erp+eep) r dr +
a

U =
1-Mr a 2(1_”')]:
“(
- €. — &)
! 2K i ——EE———QE— dr + C1 r + EE
2(1 _u) r X r
[67]

Now that one has an expression for U, €g is obtained by

dividing U by r and €, is obtained by differentiating U with

which results in the following equations.

respect to r,
1+ x 1 -2 *
gg = i 2 ;%- o T r dr + ——————E—-JE (erp +€gy) T dr +
“(
1 - 2 € - €p,.)
.______._E'_.._];z_ ___EE_—ep__dr+cl+£2_
2(1 - W r r2
a [68]
1 + 1 -2
er=—ee+—————uaT+———————”erp+
1-p (1 -w
K
1 -2 €p ~ Egp)
i . s I < Y
(1 - W £
[69]

a

Now applying the plane strain condition where the axial

force on the end faces 1s zero states that:

2n
b
ffczrdrd9=0
a
0 [70]
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b
./.(n:r dr =0
[71]

a

which reduces to:

Substituting &, and &, into © equation [53], integrating as
r 0 z,

shown in equation [71], and solving for €, gives:

b
_ (2 - - 2p f(erp+€ep>rdr+
a

€2 2 2 2
(1 -p) (b -a)

b

2(1 + (1 - 2| o T r dr -

2 2 2 a
(1 -n) (b - a)
b

- € - €
R(L - 2p) S o 2
2 r 1_u
(1 - . 721

Using the ID and OD boundary conditions, the radial
stress equation, €&,, and €g enables one to solve for the
constants of integration C; and C. Substituting €g and &
(equations [68] and [69], respectively) into the radial
stress equation [51] and evaluating the integréls at r equals

to "a" for the ID boundary condition yields:

1+ 1 -2
o.=0=2X N o T + i €t 2C1L+E, -3 aT|+
1 -u 1-pn
1+ 1 -2 c
2 G —EaT+——”erp+cl——§-—aT—erp
1 -U 1 -uU a
, [73]
Solving for C; in terms of Co and €; gives:
1 - 2p
Ci = — Cz2 - U E,
a [74]

Substituting €g and €, (equations [68] and [69],

respectively) into the radial stress equation [51] and
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evaluating the integrals at r equals to "b" for the OD

boundary condition yields:

1 + 1 -2
c,.=0=2» uocT+-—l'iz-:rp +
1 -H 1-R
°
1 -2 €p ~ €gp)
A L —ip——e’i—dr+zcl+ez—3oc'1'+
1-pu =

b b
1 +pup 1 1-2p 1
—Z-I(X.Trdr-*-———-——2 (Srp+€ep) r dr] +
b “Ya a

2G |-
1 - 2(1 - ¥ p
b( )
1 -2 €., ~ €gp) 1+ 1 + 2
2G H P 9" 9r + ”ozT+——"ltarp +
2(1 - W r 1-p 1-u
a
C2
2GC1+—-2-—(XT—Erp
b [75]

By multiplying equation [73] by -1 and adding it to equation

C1 and €, are eliminated and a solution for Cy is

[75]
into the strain

obtained. Upon substituting C3; and C3

equations and simplifying &, Egr and &; become:

1 + r 1 -2 t
uifocTrdr+—-——”—l— (erp+eep)rdr+

€n =
0
1-p 2, 2(1 - w 2 J,
r
1 -2 (e, — €g)
u—l—z' P epdr-l-C]_+—E
2(1 - , r r
a [76]
1 + 1 -2
E.= - E Ear+ o o+
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a [77]

b~ a a a
2 b
(e - €5.)
K a rp o’ -
(1-1 (b ) -
" . a [78]
1 -2
Ci = 2”C2— L e,
a [79]
2 b
1 +
Co = s 2a Jr aTr dr -
1"” (b - a) a
2 2 o
(E., — €5, )
a b rp ep dr +

2 2
2 (1 -p(b -a) a

(1 - 2p)a’ o
P f (8rp + EBP ) r dr
a

2
2 (1 -WwW(b =-a)

[80]

Once the strains are calculated, stresses may be
obtained from the general stress equations [51], [52], and
[53].

Next, it is necessary to have a reference stress-strain
behavior and a flow rule which applies the stress-strain
function to states of strain other than the referred test.
The tension test 1is the reference test, the wvon Mises
criteria are the criteria for the change of stress state.
The von Mises criteria are implemented by developing

equations that relate the total strains, €., €gr and &,, to
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the elastic and plastic strains as measured in a uniaxial
tensile test. This relationship is established through the
concept of equivalent stress and equivalent plastic strain as
developed by wvon Mises® and the equivalent total strain as
given by Manson.? These stresses and strains are obtained

from the following equations:

1 ’\/( Ca ) x )"
o, = == 6, -0Cp + (0,-0C T (0g= O
e V2 r = % r” % o Tz [81]
z 2 : i
et = 3 Ve, -9+ te-e) + teg - e [82]
iz 2 i 2
ep = 3 v €rp = Eop) + (Brp = Epp) + (Bgp ~ Epp) oo

where O, is the equivalent stress, €gt is the equivalent
total strain, and €gp is the equivalent plastic strain. The
thermal strains are included in the total strains, &, €g/
and €. Because of assumed isotropy of thermal expansion,
the components of thermal strain are equal to each other and
when substituted into the equivalent total strain equation
(equation [82]) their contribution to the equivalent total
strain is zero. The equivalent stress is synonymous with the
axial normal stress from a uniaxial tensile test. The
equivalent total strain can be divided into equivalent
elastic and equivalent plastic strains by equation [84].10

2( 1 +pn ) O
= + —
eet eep 3 E [8 4 ]

A uniaxial stress strain curve may now be used to determine
the relationship between equivalent elastic plus plastic
strain and equivalent plastic strain for a material at

various temperatures. Note that the definitions in equations
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[81] through [84] define positive definite scalar quantities.
They cannot be negative nor do they have directionality or

coordinate components.

Figure 10 shows a typical stress-strain curve from which
Eet and €gp data may be taken. By taking several points of
data a plot of €gy VS. €gp may be made as shown in Figure
11. The relationship between the two strains is nearly
linear and may be represented by a linear equation. Curve
fitting gives an equation of the form:
€ep = @ + b Eet [85]
where the intercept, a, is negative and relates to the
elasticity of a material and the slope, b, represents a
strain hardening factor. It should be evident that if the
calculated value of €gp is negative, the strain of the node
under evaluation is in the elastic domain and if E€ep is
positive, plastic flow occurs.
Once a positive equivalent plastic strain is calculated
the components of plastic strain, €rpr Egpr and €zp, mMay be

determined by equations [86], [87], and [88].11

€
€, =l—9—‘3[2£r— €g - ez]
PT3
et : [86]
€
eep=—§——9-‘3[2ee— €, - ez]
eet [87]
€
€, =l—ﬂ[2£z - g, - ee]
P 3,
et [88]

With equation [82] and equations [84] through [88], one can
now describe a material's thermomechanical behavior, provided

that tensile test data as a function of temperature are
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(]
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2 1+ Y

€er = ( ) Ze ¢
3 E ep
Figure 10. Stress-~strain curve of a typical steel showing

the relationship between equivalent plastic and equivalent
total strain.
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available. An iterative process may be followed whereby
total strains and plastic strains, 1in the coordinate
components, are calculated that satisfy conditions of

equilibrium, compatibility, and the thermomechanical behavior

of a material.




IITI. IMPLEMENTATION OF HEAT FLOW AND STRAIN EQUATIONS INTO
A THERMO-ELASTIC-PLASTIC NUMERICAL MODEL

For numerical wvalues of stress and strain to be
calculated for a particular composite tube design under a
thermal load, the heat flow and total strain equations
developed in the previous section must be incorporated into a
numerical model.

The implementation of the finite difference equations to
calculate the temperature profile in the tube is accomplished
via a computer program. The 1logic ‘explaining the
implementation of these equations is best understood by the
step-by~step description given in Table 1.

Due to the transient heat flow and the unloading that
occurs for the design under investigation, the total strain
equations developed in the previous section have been
implemented in the numerical model using the incremental
theory of plasticity. This theory suggests that the loading
cycle be divided into small 1load increments so that the
plastic strain for each node may be followed to detect when
unloading occurs. When unloading, the peak wvalue of plastic
strain is held constant until additional loading results in a
plastic strain above the peak value or a plastic strain
occurs in the opposite direction.

This technique requires that the plastic strains as seen

in the strain equations be divided into two parts. The first

41
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Table 1
Temperature Profile Calculations
Step Number Description of Procedure
1. Select a node thickness, Ar, and time increment, &t,

10.

11.

12.

13.

14.

such that temperature calculations result in stable
values. It has been shown by Rohsenow, Hartnett, and

Ganic12 that this condition occurs if the nodal
thickness and time increment satisfy the following
criteria:

2
1 (Ar)

ot
2 o

N

where o is the diffusivity of the copper alloy. A 0.5
mm node thickness and a 0.002 second time increment was
used in this dissertation.

Set up nodal spacing across the wall of the tube so
that nodes fall on the two steel-copper interfaces and
the ID and OD surfaces.

Calculate geometric correction factors for each node,
using equations [27], (28], [29], [30], [31], and [32].
Initialize all node temperatures to initial temperature
of 25 C.

Initialize time to zero.

Set heat source temperature to 900 C (i.e., T i=0,1 in
ID node equation [22]).

Increment time by one time step:
time = time + ©Ot.

Calculate the temperature, Tj 543, for each node using
finite difference equations [22], [23], [24], [25], and
[26].

Set T; 5 equal to T;, 443 for all nodes. This sets the

temperature of each node to the calculated temperature
for the next time increment.

Check time to determine if stress analysis is to be
performed. If so, call stress analysis routine; if
not, continue.

Check temperature of OD node to determine if heat
transfer coefficient needs to be changed.

Check time to determine if heat source temperature is

to be reset to room temperature. If "no" go to step 6.
If "yes" set temperature of zeroth node to room

temperature and go to step 7.

Check time to determine if c¢cycle is complete; if
complete reset time to zero and go to step 6. If not
complete, continue.

Repeat procedure until desired number of cycles have
been completed.
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are the plastic strains that occur before the current load
increment, which are denoted as €rp and/or €gp , while the
second are those for the current load increment, which are

denoted as Aerp and/or Aeep. Introducing these changes into

the total strain equation allows equations [76] through [80]

to be rewritten as shown below.

1+ x
€g = H —%Ejr o0 T r dr +
1 -H r a

1-2p 1 *
_— (erp +egy + Aerp +Aeep) r dr +

2(1_p') r2 a

r
- (e.. — &g, + Ae__ - Agy)
1 - 2p .j? rp ~ “6p p % 4r + c; L L2
2(1 - W) r e
a [89]
gr=_89+“_uaT+_};2E_(gp+A8rp)+
1-pu (1 - W
*( A A
- €. - €y + Ae__ - Agp)
.j;__EEL rp Sp P %p dr + 2C3
(1 -Ww r
a [90]
2 b [
sz=—2——zfaTrdr- (E,p + g + AE, + Agg) r dr|+
b - a a Ja
5 b
L a r(erp—eep+Aerp—Aeep)d
2 2 J r £
(1-uw )b -a ) J
[91]
1 -2
C1=———2—uC2—uez
a [92]
2 b
Cp= L H za faTrdr—
1 -4 (b - a) a
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b
a? p? (E.p = €gp + AE,, - Agg) 4 +

2 2

2 @1-wo ~-a) J t
2 b
(1 - 2p)a

> > I.(erp+eep +A8rp+Aeep) r dr

2 (1 -wd -a) a [93]

To calculate the increment of plastic strain occurring
for the current load increment, the origin of the stress-
strain curve must be shifted by the result of the prior
plastic deformation. Remember that the equivalent stresses
and strains are positive scalar gquantities. This is
accomplished by applying the following transformation
equations to the strain values used in calculating the

equivalent strains.

E.=§€, - EAsrp [94]
*
Eg = €g ~ ZAeep [95]
*
€, = €, - ZAe,, [96]

The summations in the above equations represent the sum of

plastic strains increments occurring prior to the current

load increment. Applving these transformations to the
equivalent total strain and plastic strain component

equations results in:
V 2 2 2
* E * * * * * *
£ = — (er - 89) + (8r - 82) + (89 - 82)

* £ % * *
> =% ep[z:ar—ee—e-z]

*

[97]

m

et [98]
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* | * * *
_ 1 8ep - _
Sep = 3 " .289 er ez]
€eot [99]
* * * *
_ 1 Eep
szp = 5 " -282 - Er - 89]
Eet [100]

These transformations allow the equivalent total strain
and plastic strain component equations to reflect only the
strain occurring during the current load increment; the
previous load increments having been accounted for by the
summation of the plastic strains.

When going from the heating to the cooling phase of the
thermal cycle, each node in turn reaches a peak equivalent
total strain and begins to unload elastically. Nodes that
have not deformed plastically unload along the same stress-
strain line that they 1loaded on. Nodes that strained
plastically unload along a line parallel to the original
stress-strain line as shown in Figure 12. Nodes that yielded
in the heating phase of the cycle are subject to high
stresses of the opposite sign during the cooling phase and
may yield in the opposite direction upon cooling. To
determine if these nodes yield plastically during cooling, a
new equivalent total strain reference is required. This
reference is located at the point where the stress reversal
(elastic unloading), for the node under consideration,
occurs, and it has a unique value of €., €9/ and €, from which
the peak equivalent total strain is calculated. Using this
shifted reference point, a new value of €g+ may be calculated

to determine if plastic straining occurs during cooling. The
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Figure 12. A hysteresis loop showing loading and unloading
paths of nodes that undergo elastic and elastic-plastic
deformation.
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equivalent total strain, now calculated from the new

reference point, is called the equivalent total strain star-

star, eet**- It may be determined by applying the following

transformations to €, €y, and &z:

* % pk

€, =€, - €, - EAsrp [101]

*% pk

€g = €9 — Eg - EAeep 11021

* % pk

g, =€, - ¢, - ZAe, [1031
Pk pk pk

where €, ,€3, and €, are the unique values of €&, €y, and g;
that result in a peak value for €g+ as calculated by equation
[821. These transformations result in the €t equation

becoming:

2 2 2
* %k * % * % * % * % * *k * %
V2 AV[
=2 N e, -gg) + & -E) * (8 -E;)

€
et [104]

The relationship of the peak equivalent total strain,
the equivalent total strain star-star, the equivalent plastic
strain, and equivalent elastic strain may best be understood
by examination of Figure 13. This figure shows the
equivalent strains imposed on a hysteresis loop of a node
that has undergone compressive yielding followed by tensile
‘yielding. It should be noted that all equivalent strains are
positive scalar values and are referenced from either the
initial or a transformed origin. Point "A" is a location on
the hysteresis loop where the €gt reaches a peak value and
unloading begins. This point becomes the new strain

*

reference point from which €g¢” needs to be calculated.

Before this node can load in tension it must elastically
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Figure 13. Hysteresis loop of an engineering alloy that

has undergone compressive yielding followed by tensile
yielding.
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unload to point "B". This requires an adjustment in the

equivalent total strain as calculated from point "A." The
value of equivalent total strain as calculated from point "A"
must be decreased'by an equivalent elastic strain, &s31. The
equivalent elastic strain is obtained from the rearrangement

of equation [84] and is given as:

Pk
et ~ €op
2( 1 + W)

3 [105]

8el -

Mathematically, the adjusted equivalent total strain is

expressed as:

rev *%k
ot = €t ~ Ee1 [106]
rev
and is called equivalent total reversal strain, €et , which

is used to determine if yielding occurs for a node that has
undergone a stress reversal. Applying this criteria to the

plastic component equations and rewriting, one has:

where erp*

* %

erp

% %

€op

* %

zp

*

Wl

r Sep**, and ezp*

€

1 “ep
3

€et

€

€ot

Sep
rev
8et

W

rev 1L

—ep
rev |

*

* %

* %

* %

[107]

[108]

[109]

are the components of plastic

strain for nodes that deformed during the heating phase of

the cycle and may deform during the cooling phase of the

% %

cycle, and &:**, €”*, and €;"" are the transformed strains

given by equation [101], [102], and [103], respectively.
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Recall from the derivation of the strain equations that
the modulus of elasticity, E, and the thermal expansion
coefficient, o, were assumed to be constant for the alloy and
temperature range under investigation. For a steel-copper-
steel composite the values of E and O may vary as much as 80%
between the two materials and cannot be used as constants.
Introducing E and o into the differential equation as a
function of the radius results in a second order nonlinear
differential equation with wvariable coefficients. The
solution of the differential equation with variable
coefficients would require much greater mathematical rigor
than for the case where E and O are constants. A simpler
approximate method of treating E and o as a function of the
radius would be to substitute the appropriate value of O into
the integrals appearing in the strain equations during their
evaluation. This requires integrals containing o evaluated
from "a to b" to be evaluated as shown in equation [110]:

b Tkl Tk2
focTrdr=f aSteelTrdr+f OLCuTrdr+
T

a a kl

b
f aSteelT r dr
Tk2 [110]

Integrals containing plastic strains are evaluated using the
appropriate wvalues of €rp Or Egp of steel or copper.
Integrals evaluated from "a to r" require a treatment similar
to that given by equation [110] but the upper 1limit of
evaluation becomes the rj node. Similarly, it 1is required
that the appropriate values of E and O be substituted into
the stress equations [51], [521, and [53] during

calculations.
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Incorporation of these equations and techniques into the
numerical model is best illustrated by a step-by-step
description of the stress analysis logic flow and method of
calculation as given in Table 2. The accuracy of this
approximation technique is addressed in the Discussion of

Results section of this dissertation.
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Table 2
Stress Analysis Logic Flow

Step Number Description of Procedure

3a.

3b.

This routine is entered after calculating the
temperature profile for the current time step from
the thermal section of the numeric model.

Initialize the accumulated plastic strains Erpr Egpr

and €;p to zero for the first cycle.

Initialize incremental plastic strains Aerp, Aeﬁp’

and Ae to zero at the beginning of each load
zp

increment.

Calculate the value of &, Cj, and Cyz from equations
[91], [92], and [931, respectively, making
appropriate substitutions for O as shown in equation
[110] and using the temperature profile calculated by
the thermal part of the model. All integrals are
evaluated using the trapezoid rule.

Compare the values of Cy and Cz with those for the
previous iteration. If the values agree to six
places the solution has converged; go to step 10.

Calculate values for €g and €y for each node using

equations [89] and [90], respectively. Note: On the
zeroth iteration all plastic components are equal to
zero and elastic stresses may be calculated from
equations [51], [52}, and [53] and wused for
comparison with elastic-plastic stress calculations
after convergence occurs.

Using equation [97] calculate an equivalent total

strain for each node, from the values of €., gy, and

€, obtained in step 4.

Calculate an equivalent plastic strain for each node,
using the equation that represents the node's thermo-
mechanical properties as shown in Figures 16 and 17.
If the calculated value for €gp is negative set it

equal to zero.

Calculate the plastic components of strain from
equations [98], [99]1, and [100] for the wvalues
obtained in steps 4, 5, and 6.

Substitute the plastic components values Erp and ggp

into Aerp and Aggp, respectively.

Go to step 3a where the solution will be altered due
to the introduction of plastic strain values into the
integrals.




10.

11.

12.

13.

14.

15.

53
Table 2 (Continued)

Convergence has occurred. Compare equivalent total
strain value with that of the previous time increment

to determine if the peak value of €gr has been
reached for any node. If so, save values of &g, Er,

and €, for new reference point.
Sum plastic strains of this load increment with prior
load increments using equations (a, b, ¢, and d):

(a) ZAe,, = ZAe' , + Ae,

(b) ZAgg, = ZAe' g, + Agg,

(c) ZAe,, = ZAe' , + Ae,

(d) ZAsep = ):Ae'ep + Aeep

where the prime indicates prior load increments.
Calculate O, Oy, and 0, from equations [51], [52],

and [53], respectively.

Check for completion of thermal cycle. If complete go
to step 14; if not return to thermal model (Table 1,
step 5).

Compare strain values of previous cycle with strain
values of the current cycle to determine if cyclic
equilibrium has been obtained. If wvalues agree
within desired criteria the solution is complete; go
to step 15. If values do not agree, calculate
additional cycles by going to thermal model (Table 1,

step 5).

Print results.




IV. OPTIMIZATION OF A MULTILAYERED CYLINDRICAL SHELL WITH
THE THERMO-ELASTIC-PLASTIC NUMERICAL MODEL

The thermo-elastic-plastic numerical model developed in
the previous sections of this dissertation was used in this
section to analyze and optimize the thermal fatigue life of a
multilayered cylindrical shell. To restrict the number of
cases to be analyzed several constraints were placed on the
cylinder's design. Depending on the manufacturing process,
it is conceivable that many unique residual stress patterns
could exist in composite tubing. Although the numerical
model could be used to determine the effect of residual
stresses on the thermal fatigue life of a composite design,
for demonstration purposes the residual stresses are assumed
to be zero. This assumption provides a consistent starting
point from which tube designs may be evaluated. Other
constraints include a high strength 2 1/4% Chromium-1.0%
Molybdenum steel for the ID and OD layers and Oxygen Free,
High Conductivity (OFHC) copper for the middle layer. A heat
source temperature of 900 C and heat transfer coefficients of
4700 Watts/m2 and 1575 Watts/m2 were used for the ID and OD,
respectively. A cycle time of 35 seconds (10 seconds heating
and 25 seconds cooling) was selected to give a thermal
gradient sufficient to cause plastic strains in the tube.

The ID was fixed at 50 cm and the ID and OD layer thicknesses
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were constrained to a minimum value of 3 mm. The layer
thicknesses were varied in 3 mm increments in each of the
test designs. The total thickness was required to be 3 cm.
These constraints are summarized in Tables 3 and 4, which

give thermophysical properties for the steel and copper

(Table 3) and physical dimensions, mechanical properties, and

thermal constraints imposed on the design (Table 4). Figures
14 and 15 show the stress-strain curves, obtained from a
commercial testing laboratory, for the steel and copper,
respectively, and Figures 16 and 17 are the eguivalent
plastic strain and equivalent total strain relationships
regressed from these stress-strain curves.

After incorporation of these data into the numerical
model, the numerical program written in Fortran 77 was run on
a desk top computer (Apple Macintosh II). The results
available from the model include the temperature; the radial,
tangential, and axial stresses; the radial, tangential, and
axial strains; the radial displacement; and the plastic
strains, all as a function of radius and time.

Typical results from the model for a tube with a 25 cm
radius, 6 mm ID layer of steel, 18 mm middle layer of copper,
and 6 mm OD layer of steel are presented in graphic form in
Figures 18 through 32 for the first thermal cycle. Figure 18
shows the temperature profile in the tube one second after
heat was applied to the ID. The low thermal diffusivity of
the steel results in a steep thermal gradient. Figures 19,

20, and 21 show the radial, tangential, and axial stress




Table 3
Thermophysical Properties

The thermophysical properties of the steel were:

1. Thermal conductivity:

-4 -6 2
Ksteel = 9.575 - 6.591 x 10 T — 1.205 x 10 T

2. Density: -
-4

- _ g

Psteel = 7-86 0.168 x 10 T 3

cm

3. Specific heat:

_ =5 cal
CPSteel_ 0.11 + 5.62 x 10 T g—c

4 Thermal expansion coefficient:
-6 -10
Qgreer = 3-711 x 10 + 3.81 x 10 T

The thermophysical properties of the copper were:

1. Thermal conductivity:
2

-3 -6
kc°pper = 90.01 - 5.726 X 10 T - 7.843 X 10 T
2. Density:
_5 g
Pcopper = 8.94 - 3.23 x 10 T —3
cm
3. Specific heat:
_ -6 cal
CpCOpper = 0.0924 + 12.6 x 10 T 'g——a-

4 Thermal expansion coefficient:

-6 -9
Ocopper = 4-780 x 10 ° + 1.0 x 10 T

56

cal
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Table 4

Physical Dimensions, Mechanical Properties, and Thermal

Loading Constraints

The physical dimensions and mechanical properties were:

1.
2.
3

Inside diameter of the tube was 50.00 cm.
The total wall thickness was 3.00 cm.
Modulus of Elasticity of steel:
2

5 -2
Esteel = 2.152 x 10 - 18.29 T - 2.364 x 10 T MPa
Modulus of Elasticity of copper:

S -2 2
Ecopper = 1.277 x 10 =~ 14.07 T - 1.458 x 10 T MPa

Stress-strain data for the steel and copper are shown
in Figures 14 and 15. Equivalent total and
equivalent plastic strain data taken from these
stress strain curves are given in Figures 16 and 17.

The thermal constraints were:

6.
7.
8.

9.
10.

11.
12.
13.

Initial composite temperature was 25 C.
Flame temperature was 900 C.
Cooling water temperature was 25 C.

ID heat transfer coefficient was 4700 Watts/mz-

OD heat transfer coefficient was 1575 Watts/m2 if the
OD temperature was less than 100 C and was 3150

Watts/m2 if greater than or equal to 100 C.
Heating phase of cycle was 10.00 seconds.
Cooling phase of cycle was 25.00 seconds.
Total cycle time of 35.00 seconds.
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Figure 14. Stress-strain curves at selected temperatures

for 2 1/4% Cr-1% Mo steel.
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Figure 15. Stress-strain curves of OFHC copper at selected

temperatures.
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Figure 16. Equivalent total and equivalent plastic strain
relationship for 2 1/4% Cr-1% Mo steel at selected
temperatures.
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Figure 18. Radial temperature profile in a composite tube

with a 6 mm steel ID layer-18 mm copper middle layer-6 mm
steel OD layer 1 second into the heating phase of a thermal

cycle.
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Figure 19. Radial stress profile in a composite tube with a
6 mm steel ID layer-18 mm copper middle layer-6 mm steel OD

layer 1 second into the heating phase of a thermal cycle.
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Figure 20. Tangential stress profile in a composite tube
with a 6 mm steel ID layer-18 mm copper middle layer-6 mm
steel OD layer 1 second into the heating phase of a thermal

cycle.
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Figure 21. Axial stress profile in a composite tube with a 6
mm steel ID layer-18 mm copper middle layer-6 mm steel OD
layer 1 second into the heating phase of a thermal cycle.
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profiles induced by the thermal gradient at the end of one
second of heating. These stress profiles developed as a
result of the cooler outer layers constraining the thermal
expansion of the higher temperature inner layer. Figures 22
and 23 show the equivalent stress and equivalent plastic
strain profiles, respectively, for one second of heating. It
is apparent that the first four nodes in the ID layer yielded
as a result of the high equivalent stress and reduced yield
strength.

At ten seconds into the thermal cycle, the ID node
reached a peak temperature of about 720 C. Again, as shown
in Figure 24, both ID and OD steel layers exhibited steep
thermal gradients. The éopper, with its high thermal
diffusivity, effectively transferred heat from the ID to the
OD, which raised the mean temperature of the OD steel layer
to a va;ue higher than that in a comparable all steel tube.
The higher mean temperature of the OD layer resulted in
increased thermal expansion and reduced stresses in the OD
layer. Figures 25 through 27 show the radial, tangential,
and axial stress profiles at ten seconds into the thermal
cycle. It 1is apparent from the equivalent stress and
equivalent plastic strain profiles shown in Figures 28 and
29, respectively, that yielding has occurred for several
nodes in the ID and OD layers of this design. Due to the
yielding in both ID and OD layers, it is likely that this
design would be geometrically unstable and go "out of round"

during thermal cycling.
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Figure 22. Equivalent stress profile in a composite tube

with a 6 mm steel ID layer-18 mm copper middle layer-6 mm

steel OD layer 1 second into the heating phase of a thermal

cycle.
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Figure 23. Equivalent plastic strain profile in a composite
tube with a 6 mm steel ID layer-18 mm copper middle layer-6
mm steel OD layer 1 second into the heating phase of a

thermal cycle.
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Figure 24. Radial temperature profile in a composite tube
with a 6 mm steel ID layer-18 mm copper middle layer-6 mm
steel OD layer 10 seconds into the heating phase of a thermal
cycle.
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Figure 25. Radial stress profile in a composite tube with a
6 mm steel ID layer-18 mm copper middle layer-6 mm steel OD
layer 10 seconds into heating phase of a thermal cycle.
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Figure 26. Tangential stress profile in a composite tube
with a 6 mm steel ID layer-18 mm copper middle layer—-6 mm
steel OD layer 10 seconds into the heating phase of a thermal

cycle.
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Figure 27. Axial stress profile in a composite tube with a 6
mm steel ID layer-18 mm copper middle layer-6 mm steel OD

layer 10 seconds into the heating phase of a thermal cycle.
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Figure 28. Equivalent stress profile in a composite tube

with a 6 mm steel ID layer-18 mm copper middle layer-6 mm
steel OD layer 10 seconds into the heating phase of a thermal
cycle.
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Figure 29. Equivalent plastic strain profile in a composite
tube with a 6 mm steel ID layer-18 mm copper middle layer-6
mm steel OD layer 10 seconds into the heating phase of a
thermal cycle.
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At the 35th second of a thermal cycle (25 seconds into
the cooling phase) the thermal gradient, as shown in Figure
30, was low and fairly close to the initial tempefature of 25
C. The radial, tangential, axial, and equivalent stresses,
at this point in the thermal cycle, are shown in Figures 31
through 34, respectively. These stresses were present at the
end of the first thermal cycle and may be thought of as the
residual stresses at the beginning of the second thermal
cycle. It should be noted from the equivalent plastic strain
profile as shown in Figure 35 that some nodes which yielded
during the heating phase also yielded in an opposite sense
during the cooling phase. Nodes that yielded and strain
hardened during the first thermal cycle may or may not yield
during subsequent cycles.

Figure 36 shows the temperature resporise of the 1ID
surface node for six thermal cycles. Notice that a
repetitive thermal cycle is established after five cycles.
The total radial and tangential strains, shown in Figure 37,
also establish a repetitive pattern after the fifth thermal
cycle. Figure 38 shows a detailed graph of the total

strains, &y, Egs and €, for the first thermal cycle.

It should be evident from the above figures that the
numerical model's ability to calculate temperatures,
stresses, and strains occurring in cylindrical shells during
the heating and cooling phases of a thermal cycle gives the
designer great insight into the dynamic nature of thermal
stress problems.

To determine the best tube design, within the given
constraints, a strain range for each node was calculated from

data taken from the fifth thermal cycle. The fifth cycle was
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Figure 30. Radial temperature profile in a composite tube
with a 6 mm steel ID layer-18 mm copper middle layer-6 mm
steel OD layer 35 seconds into a thermal cycle.
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Figure 31. Radial stress profile in a composite tube with a

6 mm steel ID layer-18 mm copper middle layer-6 mm steel OD
layer 35 seconds into a thermal cycle.
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Figure 32. Tangential stress profile in a composite tube

with a 6 mm steel ID layer-18 mm copper middle layer-6 mm
steel OD layer 35 seconds into a thermal cycle.
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Figure 33. Axial stress profile in a composite tube with
a 6 mm steel ID layer-18 mm copper middle layer-6 mm steel
OD layer 35 seconds into a thermal cycle.
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Figure 34. Equivalent stress profile in a composite tube
with a 6 mm steel ID layer-18 mm copper middle layer-6 mm
steel OD layer 35 seconds into a thermal cycle.
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chosen because there was no significant difference between
the fifth and subsequent cycles. Strain differences, which
were used to calculate a strain range, were scanned from the
beginning to the end of the thermal cycle to find the nodes
which had the smallest and largest wvalues in each of the
three layers. Typical values of the strain differences for
the ID node are shown graphically in Figure 39. Once the
maximum’and minimum values of the strain differences were
found, the ranges of these strain differences were calculated
by subtracting the minimum from the maximum value. The
ranges of the strain differences were substituted into

equation [111] and the strain range was calculated.

2 2
Ae = !Ei 1/[A(er - e@] +-[A(er - ez)] + L&(ee - ez)]

2

[111]
Delta in equation [111] indicates the range of strain
differences. These strain range values, along with the
strain range vs. cycles to failure graphs shown in Figures
4013 and 41,14 were used to determine the cyclic life of each
node. The node with the minimum 1life within a layer
represents the life of the layer and the layer with the
minimum life, the life of the design.

To determine the optimum tube design, layer thicknesses
were varied in 3 mm increments while holding total thickness,
heat input, cycle time, and other variables constant. This
resulted in the analysis of 21 different tube designs.

The tube design, range of strain differences, strain
range,-layer life, and design life values are tabulated in

Table 5. The tube design is given in the form of TK1-TK2-TK3,
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Figure 39. Total strain differences (for the ID surface
node) for a thermal cycle.
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Results of Analysis of Composite Tube Designs

Design A (e,.-€g)

3
3

24

3
6

21

3
9

18

3
12

15

3
15

12

o))

15

O O

[oNe]

o O

[ N o]

[oNe]

[e N e)

.02352
.01644

.00368

.02031
.01435

.00390

.01934
.01316

.00445

.01795
.01169

.00512

.01581
.00955

.00608

.01331
.00706
.00726

.01064

.00392
.00842

.00958

.00267
.00769

.02136
.00844

.00362

.02017
.00751

.00412

.01909
.00618

.00479

A(eg-€y)

0
0

0.

[oNe) [o N e [N e

[oNeNe)

.00026
.00004

00003

.00029
.00028

.00006

.00031
.00016

.00005

.00029
.00016

.00008

.00019
.00008

.00014

.00018
.00002
.00015

.00001

.00007
.00000

.00001

.00005
.00003

.00012
.00008

.00003

.00011
.00006

.00006

.00006
.00006

.00008

0
0
0

[oNe]

[eNe)

.02326
.01642

.00365

.02002
.01423

.00384

.01902
.01299

.00436

.01765
.01153

.00500

.01561
.009%46

.00594

.01325
.00708
.00712

.01063

.00400
.00843

.00959

.00274
.00773

.02125
.00852

.00358

.02006
.00756

.00405

.01903
.00624

.00471

e o]

[N o)

[oNe]

.01559
.01090

.00244

.01344
.00952

.00309

.01278
.00872

.00294

.01187
.00774

.00337

.01047
.00633

.00401

.00885
.00471
.00479

.00708

.00264
.00560

.00639

.00180
.00514

.01420
.00565

.00240

.01340
.00502

.00270

.01270
.00414

.00316

Nf

1800
450

>10°

2400
750

>10°

2500
950

>105

3500
1600

>109

3600
2200

>109

5200
5200
35000

9000

>109
21000

12000

>10°
28000

2100
3200

>105

2200

3800
>105

2600
10000

>10°

Nf Design

450 -

750

950

1600

2200

5200

9000

12000

2100

2200

2600



All
Steel

All
Copper

0.01746
0.00451
0.00560

0.01578

0.00081
0.00648

0.01515

0.00168
0.00688

0.01517
0.00041
0.00625

0.02137
0.00406
0.00378

0.01995
0.00378
0.00428

0.01893
0.00174
0.00494

0.01919
0.00160
0.00521

0.01917
0.00083
0.00533

0.01906
0.00065
0.00487

0.02167

0.00813

Table 5 (Continued)

0.00001

0.00008

0.00008

0.00001

0.00012
0.00001

0.00004

0.00004
0.00024

0.00000
0.00006
0.00002

0.00007
0.00010
0.00003

0.00002
0.00020
0.00003

0.00001
0.00006
0.00001

0.00002
0.00014
0.00002

0.00023
0.00009
0.00001

0.00003
0.00008
0.00000

0.00008

0.00015

0.01747
0.00459
0.00553

0.01579

0.00094
0.00614

0.01520

0.00173
0.00691

0.01517
0.00051
0.00628

0.02124
0.00417
0.00376

0.01993
0.00376
0.00425

0.01894
0.00180
0.00495

0.01916
0.00152
0.00522

0.01914
0.00085
0.00535

0.01903
0.00068
0.00487

0.02161

0.00798

0.01160
0.00303
0.00371

0.01050
0.00058

- 0.00421

0.01010

0.00113
0.00459

0.01011

0.00031
0.00418

0.01420
0.00274
0.00250

0.01329
0.00251
0.00284

0.01262
0.00118
0.00329

0.01278
0.00104
0.00347

0.01277
0.00056
0.00356

0.01269
0.00144
0.00324

0.01443

0.00537

3500
>105
>10°

3800

>105
60000

3800

>105
50000

3800
>10°
>10°

2100
>105
>105

2300
>109
>105

2600
>105
>10°

2600
>109
>105

2600
>105
>109

2600
>105
>10°

2000

3400

90

3500

3800

3800

3800

2100

2300

2600

2600

2600

2600

2000

3400
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which represent the ID, middle, and OD layer thicknesses,
respectively (listed vertically, in groups of three). These
data are presented graphically in Figﬁres 42-45. Figure 42
shows the thermal fatigue life of multilayered tube designs
for three different ID layer thicknesses as a function of the
copper layer thickness. The thermal fatigue life data points
at 0 mm and 30 mm on the "copper layer thickness axis"™ of
this graph are the thermal fatigue lives of an all steel and
an all copper tube design of the same total thickness as the

multilayered designs. The all steel and all copper designs

were run on the model and are presented for comparison with

multilayered designs. The OD layer thickness is not shown
explicitly on this graph because it was not the 1life
controlling constraint. Figures 43, 44, and 45 graphically
illustrate. the thermal fatigue life of each layer for ID
layer thicknesses of 3, 6, and 9 mm, respectively. From
these graphs it is apparent that the layer with the lowest
thermal fatigue life determines the life of the tube.

These results indicate that the maximum thermal fatigue
life of a multilayered cylindrical shell, with the system of
constraints imposed on it in this demonstration analysis,
occurs when the ID and OD steel layers are relatively thin
and the central layer of copper is relatively thick. An
optimal life of 12,000 thermal cycles was achieved for the
"demonstration design" by selecting a 3 mm ID, 24 mm middle,

and 3 mm OD layer thicknesses. This design had a life of
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about six times greater than an all steel design of the same
total thickness.

It is evident from the above results that no case was
presented in which the thermal fatigue life of the tube was
determined by failure of the OD layer. This situation
occurred because the ID steel and copper layers incurred
higher strain ranges and shorter lives due to their higher

mean temperature than did the water cooled OD layer.




V. DISCUSSION OF RESULTS

The results from the numerical model were analyzed to
determine how well they conform to the criteria that must be
satisfied for the model to have credibility. The conditions
that must be satisfied were:

(a) Radial stresses at the ID and OD surfaces must be

equal to zero.

(b) Radial stresses must be continuous.

(c) The displacement function, U(r), must be continuous

and differentiable.

(d) The tangential strain, g, must be continuous.

(e) The axial strain, €z, must be constant.

(f) The tube must be in equilibrium as described by

equation 46 and Figure 9.

The radial stresses at 1, 10, and 35 seconds were
calculated by the model as shown in Figures 19, 25, and 31.
These graphs show a continuous radial stress profile with Op
equal to zero at the ID and OD boundary surfaces as required
by conditions (a) and (b). Condition (c) was satisfied as
shown in Figure 46, and it followed that gg, defined as U

divided by r, was also continuous, which satisfied condition

(d) . Condition (e), a requirement for plane strain, was met
as shown in Figure 47. Condition (f) was met with some
qualification. Recall that during the derivation of the

97
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model,

10 seconds into a thermal cycle.
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strain equations, the modulus of elasticity and the thermal
expansion coefficient were assumed constant because of the
complexity introduced if they entered the solution as
functions of radius. An approximate method was developed to

treat E and o as functions of radius even though they did not
enter the differential equation representing equilibrium as
such. To evaluate the correctness of the analysis resulting
from this technique, the form of the solution for the
displacement, U, for three different types of analysis was
considered. The three types of analysis were (1) elastic,
(2), an elastic-plastic analysis where E and O are constant,
and (3) an elastic-plastic analysis where E and 0O were
functions of the radius. For an elastic analysis U was

represented by:

Co

1+ .

-————E-lzf a0 Trdr + Cir + —
r

a

1-pnt

U=
[112]

where the integral represents displacements resulting from
thermally induced elastic stresses. In the second type of
analysis, in which both the elastic and plastic natures of a

material were taken into account, U was represented by:

r _ r
U=—“—ulfaTrdr+ilf(erp+eep)rdr+
1-p*J, 21 -t J,

r
1 -2 (e, — €gp) c
L Y STP 8 b cypr o+ 22
r

2(1 - p) * r
a [113]
In the third type of analysis, where elasticity, plasticity,

and changes of E and & as a function of the radius were taken

into account, U had the form of:
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r _ x
U=—1——-F——u1- aTrdr+—1—-&lf(8rp+£ep)rdr+
1-p=d, 20 - < J,
r
1 -2u 1 (erp_eep) C2

dr + C1 r + — +
21 - * r t

a

(Integrals representing the changes in E
and changes in o0 as a function of radius) [114]

In the third type of analysis "all" values of E and O were
taken as functions of the radius. It was apparent that the
third type of analysis would prove more accurate than the
second type, and the second type, more accurate than the
first.

In this dissertation, a modification of the third type
of analysis was used, in that E and O were used as functions
of radius but integrals representing the change of E and O as
function of r were not included. This implies that the
accuracy of the modified analysis is much greater than that
of method 1 and much better than method 2 but not as accurate
as method 3.

Upon calculating a numerical value for condition (£f) the
sum of the tangential forces across the wall was found to
vary from +3.51 to -3.51 Newtons depending on which part of
the thermal cycle was considered. Similar values calculated
bfor a monolithic tube varied from +0.87 to -0.87 Newtons.
Though these values were not zero, they were less than 8% of
the peak forces that occurred in the tube and were felt to be
within acceptable limits for optimization of one tube design
with respect to another. The error is a result of not
completely acéounting for changes of E and & as a function of

radius.




VI. CONCLUSIONS AND RECOMMENDATIONS

The goal of this dissertation was to develop a technique

to determine and optimize the thermal fatigue life of a

multilayered cylindrical shell. This goal was achieved

through the implementation of a numerical model of sufficient

flexibility to deal with the major variables affecting

thermal fatigue life in a thermally cycled multilayered tube.

The technique was demonstrated by optimizing the thermal

fatigue life of a three layered composite tube for a specific

set of constraints.

Several important conclusions were drawn as a result of

this work:

1.

The solutions presented for the total strain
equations, €&y, €gr €z and constants of integration
C1 and Cz, for a cylindrical tube in terms of
temperature and plastic strain were derived in this
dissertation and represent a significant
contribution to the literature.

An approximation technique to account for different
E, o, and plastic flow characteristics as a
function of temperature for the materials used in a
multilayered composite tube design is presented in
this dissertation and represents a significant
contribution to the literature.
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3. The combination of the heat flow and strain
equations, developed in this dissertation, into a
thermo-elastic-plastic numerical model of a
multilayered cylindrical tube using an incremental
plasticity technique is a significant contribution
to the literature.

4, Using the computer model, it was found that with
proper selection of layer thicknesses, the thermal
'fatigue life of a three layered composite design
could be improved substantially compared to an all
steel or all copper design of the same thickness.

5. The maximum thermal fatigue life of the designs
investigated resulted when the ID and OD layers
were at their minimum constrained thicknesses.

6. The strain range of the ID steel layer was always
greater than the OD steel layer if the same alloys
and thicknesses were used for both layers. This
situation led to failure of the ID layer before
failure of the OD layer could occur.

The technique developed in this dissertation was used to
determine and optimize the thermal fatigue life of a tube
with certain constraints. The technique is flexible and may
be used for the analysis and optimization of other
axisymmetric, thermally loaded multilayered tubes.

The technique may be expanded to include additional
layers or may be reduced to analyze single or double layered
shells. The technique is highly recommended because of the

insight it gives a designer with respect to the major
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variables affecting the thermal fatigue life of ID or OD
heated tubing. The effects of heat transfer coefficients,
heat source temperatures, cycle times, and cooling water
temperatures may be varied to determine the effect on the
thermal fatigue 1life of a design. From plastic strain
calculations and with experimental verification the model
could also be used to determine the geometric stability of a

design under certain thermal loading conditions.
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