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ABSTRACT OF DISSERTATION
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Title AN ANALYTICAL METHOD TO OPTIMIZE THE THERMAL_________  
________ FATIGUE LIFE OF MULTILAYERED CYLINDRICAL SHELLS--------

An analytical technique to determine and optimize the 

thermal fatigue life of multilayered cylindrical shells is 

presented. Finite difference heat flow and strain equations 

are developed and implemented, using Mendelson’s and Manson's 

technique, into a thermo-elastic-plastic numerical model of a 

three layered cylindrical shell. The model calculates the 

temperature; the radial, tangential, and axial stresses; and 

the radial, tangential, and axial strains as a function of 

radius and time based on cylinder geometry, layer 

thicknesses, heat input, and thermomechanical and 

thermophysical properties of selected materials or alloys. 

Strain ranges are calculated for each of the layers of a 

design and are used to determine a tube's thermal fatigue 

life. Optimization is achieved by determining the fatigue 

life of different designs with varying layer thicknesses.

Details for the optimization of a steel-copper-steel 

composite cylindrical shell for one set of thermal and 

physical constraints is presented. The technique is
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recommended as a design-analysis tool for cases involving 

axisymmetric thermal loading of cylindrical shells.
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I. INTRODUCTION AND REVIEW OF LITERATURE

There are many applications in industry where transient 

thermal loading occurs on the inside diameter of cylindrical 

metal shells. These include heat exchanger tubing, piping in 

steam boilers, heavy duty truck brake drums, and permanent 

molds for casting metals, glasses, and ceramics. In all 

cases the tubular shapes are subject to a radial temperature 

gradient that induces thermal stresses. For small 

temperature gradients the stresses are elastic in nature, but 

if the temperature gradient is steep the thermal stresses 

exceed the yield strength of the material and plastic flow 

occurs. Repeated application of such thermal loads can lead 

to low cycle fatigue.

Elastic stress calculations for a long circular cylinder 

with a symmetrical temperature distribution about the axis 
were first performed by J.M.C. Duhamel1 in 1838. Elastic 

solutions to several cases of thermal loading of cylindrical 
2 shapes have been presented by Timoshenko and Goodier. The 

values of the displacement, U, stress, O, and elastic strain, 

eel, from these solutions are valid as long as the stress 

does not exceed the yield strength of the material. In many 

cases the yield strength is exceeded, plastic flow occurs, 

and the values of stress calculated from elasticity theory 

are in error.

1
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To better approximate the stresses and strains when 

yielding occurs, A. Mendelson and S.S. Manson developed a 

technique which accounts for plastic deformation due to 

thermal loading. Their technique consisted of deriving 

strain equations in terms of temperature and plastic yielding 

from the equilibrium, compatibility, and stress-strain 

relationships for the geometric shape and material under 

investigation. The strains were then calculated by an 

iterative technique taking into account the plastic flow of 

the material being analyzed. Stresses were then calculated 

from the general stress-strain equations.
Hanson4 used the Mendelson and Manson technique3 to 

compare the deformation and incremental theories of 

plasticity in the solution of two boundary value problems. 

The deformation theory assumed that the state of stress and 

strain existing in a body depended only on the current load. 

The deformation theory did not account for prior plastic 

strain due to prior loading and was therefore load path 

independent. Using the incremental theory, the loading and 

unloading cycle was divided into several small load 

increments. Stresses and strains were then calculated based 

on the small load increment, and any plastic strains that 

occurred during a load increment or prior load increments had 

an accumulative effect on the stress-strain state. The 

incremental theory's ability to account for plasticity due to 

small changes in load made stress and strain calculations 

load path dependent.
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The first problem Hanson4 solved concerned the stress 

analysis of a solid cylindrical rod of 18-8 stainless steel 

quenched from 1000 F (538 C) . A stress analysis was 

performed by both deformation and incremental theories of 

plasticity, and the results of each analysis were compared. 

The second problem was the stress analysis, by both 

deformation and incremental theories of plasticity, of a thin 

circular disc when heated on the outside diameter.
Hanson4 found that the results of the analysis from both 

deformation and incremental theories were in agreement until 

unloading occurred. Upon unloading, values of stress 

calculated from each theory deviated from each other. 

Hanson's experimental evidence indicated that the incremental 

theory was more predictive of the stress-strain state than 

was the deformation theory.
Manson5 used the Mendelson and Manson technique3 to 

determine the thermal fatigue life of a rotating solid disc 

when subjected to thermal loading. The load conditions were 

similar to those for discs in jet engines. Strain range 

values were calculated based on the mechanical and thermal 

loading cycles and a thermal fatigue life was predicted.

The objectives of this dissertation are to analyze and 

optimize a multilayer tube's thermal fatigue life when 

subjected to cyclic thermal loading on the inside surface. 

Figure 1 shows a log Total Strain Range (Ae) vs. log Cycles 

to Failure (Nf) diagram. This graph is often used to 
determine cyclic life at various strain ranges.6 It is 

evident from this graph that lower mechanical strain ranges
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Figure 1. Total strain range versus cycles to failure for a 
typical steel.
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result in high thermal fatigue lives. To improve the thermal 

fatigue life of a cylindrical shell, the strain range must be 

reduced. This may be accomplished by either reduction of the 

thermal load or reduction of the temperature gradient. The 

thermal load in many applications is difficult to reduce due 

to fixed process parameters. In this dissertation the 

thermal load is taken as a constraint and is held constant. 

The thermal gradient, on the other hand, can be reduced 

either by the selection of a high thermal conductivity 

material or by a thinner shell design. Copper has high 

thermal conductivity and could be used to decrease the 

temperature gradient, but it lacks strength and abrasion 

resistance and in some applications is susceptible to 

corrosion. A thinner shell design would also reduce the 

temperature gradient, but if too thin, the shell is subject 

to buckling and distortion which may be undesirable. To 

achieve a lower thermal gradient, dimensional stability, and 

abrasion resistance a three layered sandwich design is 

proposed. The multilayered cylinder will have inner and 

outer layers of high strength steel and a central layer of 

high conductivity copper. This design might be thought of as 

the thermal equivalent of the mechanical "I-beam." The 
inside and outside layers of steel are used to give strength, 

stiffness, stability, and abrasion resistance to the tube. 

The copper provides a high conductivity path for the heat 
flow. To the author's knowledge, no analytical technique to 

determine and optimize the thermal fatigue life of a 

multilayered cylindrical shell has been developed. Such a 

technique will represent a significant contribution to the 

literature.
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To determine the thermal fatigue life of a multilayered 

cylindrical shell, a numerical method using Mendelson's and 
Manson's technique3 and incorporating principles of 

incremental theory will be developed. It should be noted 

that total strain equations expressed in terms of temperature 
and plastic strain for a cylindrical tube, which are required 

for the Mendelson and Manson technique, have not appeared in 

the literature and will be derived in this dissertation. As 

part of the analysis, the radial temperature profile must be 

determined as a function of time, heat input, interface heat 

transfer coefficients, alloy thermal properties, and 

thicknesses of the layers. Equations for calculating the 

temperature profile in terms of these variables will be 

derived in this dissertation. The temperature profile will 

be used to perform an elastic-plastic stress analysis of the 

multilayered tube. Values from the stress analysis are used 
to determine the strain range and cyclic life of a design.

The optimization scheme allows the selection of a 

material or alloy for each layer, the layer thickness, inside 

and outside diameters, thermal load, and cycle times. The 

optimum design will be chosen by comparing the thermal 

fatigue life of several different designs that meet required 

constraints.

As a "demonstration" of the analysis and optimization 

method developed in this dissertation, a three layered tube 

will be optimized for a maximum thermal fatigue life for one 

set of constraints. The constraints imposed on the 

demonstration analysis are presented later in this 

dissertation and do not necessarily represent a real 

application.



II. THEORY AND DERIVATION OF HEAT FLOW AND STRAIN EQUATIONS

A numerical model that takes into account temperature 

dependent thermal and mechanical properties, strain 

hardening, and other material parameters that change due to 

thermomechanical cycling is desirable. However, this level 

of complexity is not necessary for optimizing composite 

tubing for thermal fatigue. A model that calculates the 

stresses and strains occurring in a design for any given 

thermal cycle could be used as a design tool. Once the 

strains are determined, a strain range could be calculated 

for each layer and used to determine the layer's life. 

Optimization occurs when the strain range in each layer is 

consistent with the maximum life of the tube as a whole. Tq 

establish a repeating strain range, a numerical model that 

couples a tube's thermal response to a stress analysis 

routine is required. The thermal part of such a model 

includes the following parameters : ■

a. heat source temperature, 

b. heat transfer coefficients of the inside and 

outside diameter surfaces,

c. thermophysical properties of the selected 

materials, such as thermal conductivity, density, 

and specific heat,

d. layer thicknesses, and

7
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e. the duration of the heating and cooling phases of a 

thermal cycle.
The stress analysis takes into account both the elastic 

and plastic nature of the composite's response as a function 

of temperature during cyclic heating and cooling.

Development of equations for radial temperature and 

stress distribution in each layer requires that certain 

boundary conditions must be met at surfaces and interfaces. 

Once developed, the equations are implemented into a thermo­

elastic-plastic model of a three layered steel-copper-steel 

composite tube, and the model is used to optimize the thermal 

fatigue life of the tube with certain thermal and physical 

constraints. This analysis assumes a specified inner radius, 

with a heat input, three layers of total thickness, and a 

water cooled outer surface.
Derivation of Finite Difference Heat Flow Equations

To determine the temperature profile in a three layered 

composite tube, a finite difference solution to transient 

heat flow is required. There are many texts on the finite 

difference solution to heat flow; the following equations 

have been derived based on the physical formulation 
7 

techniques described by Myers.

The finite difference technique requires that the tube 

be divided into many small layers (nodes) such that heat 

balance equations may be written for each layer (node). The 

nodes are subscripted with i and j, where r^ j indicates the 

radial node at position i and time j. Figure 2 shows a 

general composite tube which consists of three layers of
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Figure 2. Drawing of a three layered cylindrical shell 
showing layer thicknesses, layer material, nodal system, 
and node types.
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thickness TK1, TK2, and TK3. Each layer is subdivided into 

radial nodes which have different thermophysical properties 

based on its composition and temperature. Also notice that 

there are several different types of nodes, each of which 

require a different mathematical treatment. The node types 

are :

(1) an inside diameter, ID, surface node which has 

associated with it a heat transfer coefficient, h%, 

which controls the rate of heat flow from the heat 

source into the tube,

(2) an interface node between the steel and the copper 

alloy,

(3) an interface node between the copper alloy and the 

steel,

(4) an outside diameter, OD, surface node, which has 

associated with it a heat transfer coefficient, hg, 

which controls the rate of heat extraction from the 

tube, and

(5) nodes that lie completely in the steel or 

completely in the copper alloy, but not at the 

interfaces.

Finite difference equations have been derived for each of 

these type nodes.

In the derivation of the finite difference equations, a 

one dimensional analysis has been used with geometric 

correction factors to account for the differences in area 

between nodal faces.



Shown in Figure 3 is the ID surface node; the heat 

balance equation for this node (node Type 1) may be written 

as:

Qin Qout - Qstored [1]
where q^n is heat flow into the node, qout is heat flow out 

of the node, and ^stored is heat energy stored in the node 

due to a temperature change. Note that the heat balance 

equation is written about a control surface that is Ar/2 in 

the tube and Ar/2 in the heat source. Mathematically, q^n, 

qOut, and qstored may be written as:
Qin = hi Ai (Tif j - Ti+lf j) [2]

Ar [3]

Qstored - P Cp
Ai + A2 Ar ( Tj+i, j + 1 - T j+i, j )

St [4]

where hi is the heat transfer coefficient between the heat 

source and the inside surface of the tube, Ai and Ag are the 

areas of the node faces, subscripted T values are the 

temperatures at specific nodes and time steps, k is the 

thermal conductivity, Ar is the node thickness, p is the 

density, Cp is the specific heat, and St is the time 

increment. Substituting equations [2], [3], and [4] into the 

heat balance equation [1] gives :

Ar

P cp
Ai + A2 Ar ( Tj+I,j+1 ~ Ti+l,j )

St [5]

Solving for the temperature of the surface node, Tf+i,j+i, at 

time t+St yields :

2 2
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Figure 3. Interface between ID surface and heat source.
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2hi 2Ai

2hj 2Aj 8t _ 2k 2A2 8t
pCp A1 + A2 Ar pCp A1 + A2 a,.2

2k 2a2 St
PCp A1 + A2 6,2 1+2'3

[6]

The terms containing areas A% and A2 form geometric 

correction factors which can be simplified with respect to 

the radius, r. It is evident from Figure 4 that :

[7]

and similarly:

A2 =
rf+i 6 z + (r+Ar) 6 z

[8]

Letting GD^+1 be a geometric correction factor and

substituting in the area equations 
2Ai

produces :

2 2

Ar
T" [9]

Similarly, another geometric correction factor is : 

GFi+i = 2A2

[10]

and can be shown to be:

GFi+i =

[11]

Substituting these geometric factors into the node equation 

gives :
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Z

Figure 4. Nodal face of unit length in the z-direction.
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2hi
PCp

St
GD i+1  Tj

Ar

- 2hi
1 — --------
PCp

St
GDi+i --- Ti+1, j

2k
PCP

St
GFi+l ----

Ar [12]

Due to the uniqueness of the copper-steel interface (node

Type 3) as shown in Figure 5 solution is also

presented. The heat balance equation may again be written

as :

Qin Qout Qstored [13]
where q£n is the heat flow into the node, qOut is the heat

flow out of the node, and qstored is the heat energy stored

in the half copper-half steel node due to a temperature

change. Note that the heat balance equation is written about 

a control surface that is Ar/2 in the copper and Ar/2 in the

steel. Mathematically, q£n, qout, and qstored ma¥ be written

as :

Qin
( Tj-l,j ~ Tj,j )

Ar [14]

Qstored

Qout kst A3
Ar [15]
Ar

( PstcP St + PCuCP Cu ) A2 — St [16]

where subscripted values of k, p, and Cp are used to

distinguish between steel and copper properties.

Substituting these equations into the heat balance equation

gives :
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Figure 5. Plane view of copper-steel interface node.
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kcu A1 ( - Tj,j )
Ar

kst A3 ( Ti,j - Ti+l,j ) 
Ar

(PStCP St + PcuCp Cu) A2 Ar----
5t [17]

Defining and «2 as :

PstCP St+ Pcucp Cu

Pst^P St + Pcu^P Cu

[18]

[19]

and solving for j+1 yields :

2 «2
2 (Aj-i+Aj) 

_Ai+Ai-i+Ai+i Ti-l,i +

1 - 2a 2 (Ai-i+Ai) St
“ Ar2

2aT 2 (Aj+Aj+i) 
2Ai+Ai-i+Ai+i

St

[20]

which reduces to :
St

Ti, j+1 — 2GB±a2 j +
Ar

1 - 2GBia9 ----2 2
Ar 

- 2GA£a1 Ti,j +

2GAiax % Ti+if j 
Ar [21]

where a^ and ag are diffusivity factors and GA^ and GB^ are 

additional geometric correction factors.

The other node equations for node Types 2, 4, and 5 and 

their associated geometric correction factors are solved by 
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the same method. All equations and geometric correction 

factors are presented below for completeness.

Node Type 1 (the ID surface node):
2hi St

Ti+lzj+1------GDi+i ——Ti,j + 
pCp-------- Ar

1 - GFi+i +

2k 8t
PCp G?i+l Ar2 71+2,3

[22]

Node Type 2 (the steel-copper interface node):
St

Ti, j+1 = 2GBia1 ---- Ti-lz j +
Ar

- 2GB iOl^ 2GAia2
St

2GAi «2 Ti+lfj 
Ar [23]

Node Type 3 (the copper-steel interface node):
St

Ti, j+1 = 2GB±a2 ---- Ti_lzj +
Ar

1 - 2GB£a2 2GAia1

St 
2GAi T Ti+1, j 

Ar [24]

Node Type 4 (the OD surface node):
St

Tl, j+1 = 2GE1 a ---- Ti-izj +
Ar
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8t
2GE% a 2h2

Pcp
GCi

8t 
Ar

2h2
PCp

St
GCi --- T1+lf j

Ar [25]

Node Type 5 (internal nodes of all steel or all copper ):
St

Ti, j+1 = GB±a ---- Ti-lf j +
Ar

1 - GB^a

St
G^i a ~ Ti+1, j 

Ar [26]

Geometric correction factors are :

[27]
Ar

ri ~ T
GBi = ------ —

ri [28]

GCi =

[29]

GDi =

[30]
Ar
2GEi = -------—
Ar

[31]
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GF £ =

Ar 
r i+1 + -y

Ar 
ri+1 + ~ [32]

These equations have been implemented into the thermal 

section of the numerical model in latter sections of this 

dissertation.

Derivation of Strain Equations for a Cylindrical Tube

Before deriving equations for the stress analysis 

routine, it would be helpful to have definitions and a clear 

understanding of the different strain terms that appear in 

this dissertation.

Strain, of course, is a representation of the change in 

geometry of a solid from some initial to a final state. 

Linearized, infinitesimal strain is defined by the symmetric 

part of the' displacement gradient. The change of geometry of 

a body can be accomplished by several means. Temperature 

change, mechanical load, and time dependent deformations are 

some of the causes of strain. A change in temperature of a 

body results in thermal strain. The amount of thermal strain 

is given by :

^thermal a ^T [33]

where « is the thermal expansion coefficient and At is 

defined by the differences between the initial and final

temperatures. If a body is heated nonun iformly or

constrained by external forces, the strain consists of 

mechanical and thermal components. Mechanical strain 

components are related to stress. The mechanical strain can 
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have elastic and plastic parts. The sum of the mechanical 

and thermal strains is referred to, in this dissertation, as 

the total strain and is given by:

Etotal — ^elastic + Eplastic + ^thermal [34]

Since strain is a tensorial quantity it has principal 

components in the three orthogonal directions, usually 

designated by a subscript x, y, and z or r, 0, and z. For a 

cylindrical tube, as shown in Figure 6, the strain components 

(using a cylindrical coordinate system) are tangential, Eg, 

radial, er, and axial, ez. These strains may be defined in 

terms of the displacements that occur when a tube is heated. 

Figure 7 shows a node of thickness dr that has undergone a 

displacement. The definition of tangential and radial 

strains are :
_ Change in length _ 2%(r+U) - 2%r _ (j

9 Original length 2Kr r [35]

= Change in length _ (U + dU) - U _ dU
r Original length dr dr [36]

The axial strain is defined as :
_ Change in length = dw

2 Original length dr [37]

where dw/dr is the gradient of the axial displacement field.
The Mendelson and Manson technique^ for the solution of 

the nonlinear differential equation that describes the 

thermomechanical response of a tube requires that total 

strain equations be derived from the equilibrium and 

compatibility equations that govern the geometry of the body 

in question. Their technique, with additions, has been used 

in the development of the numerical model in this dissertation.
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Z

Figure 6. Section of a cylindrical tube showing cylindrical 
coordinate system.
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U

Figure 7 . A single radial node of radius, "r, " and 
thickness, "dr," showing the radial displacements, U, U+dU, 
and the resulting strains.
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Also required for their technique are equations that relate 

stress, strain, and plastic flow to a flow rule such as the 

von Mises criteria. Once these two steps are complete the 

equations are applied according to incremental theory, in an 

iterative process, to calculate total and plastic strains 

which are used to calculate stresses. An incremental 

plasticity technique has been used because of its ability to 

treat unloading and reloading of stressed elements.

Figure 8 shows a free body diagram and force balance in 

terms of principal stresses : Or, Gg, and az, for the unit 

volume differential element, r•dO•dr•dz, where Gr is the 

radial stress, Gg is the tangential or hoop stress, and az is 

the stress in the axial direction. Due to symmetry, shearing 

stresses are zero and the tangential stress, Gg, is 

independent of the angle, theta. The sum of forces in the 

radial direction must be equal to zero to satisfy 

equilibrium, which results in :

do de
G H-- -— dr (r + dr) d9 dz - G r d0 dz - 2Go dr dz sin —— = 0dr J r ° 2 [38]

Sin d6/2 is small and may be approximated by d9/2, which 

results in equation [38] simplifying to:
dG dG 2

r G_ + r ---  dr + G^ dr + ---  (dr) - r G_ - Go dr = 0r dr r dr r o [39]

Neglecting higher order differential terms and rearranging 

results in :

dGr Gr - Gg
---  + -------- = 0
dr r [40]

which is the equilibrium equation for the radial direction.
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dz

Figure 8. Free body diagram showing forces acting on 
differential element of tube.
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Equilibrium also requires that the sum of the forces 

from any internal or external pressure acting on the tube 

must balance. Figure 9 shows a free body diagram of a half 

section of a tube with internal and external pressures acting 

on it. The length of the tube under consideration is unity. 
The y-component of force, per unit length, due to a pressure 

on a small surface area of the ID may be written as :
Fyi = AFpi sin 0 = pi ( ri A6 ) sin 0

where Fy^ is the component of force in the y-direction, AFp^ 

is the force on a small element of the ID surface due to an 

inside pressure, pi, at inside radius, rf. Similarly, for 

the external pressure :

Fyo = Afpo sin 0 = po ( ro A0 ) sin 0 [42]

where FyQ is the component of force in the y-direction and 

AFpo is the force on a small element of the OD surface due to 

the external pressure, po, at outside radius ro. The ^force, 

per unit length, connecting the two half sections may be 

written as :

Fe - 2Xa0 Ar [43]

Taking the limit as A0 and Ar approach zero and summing the 

forces in the y-direction yields : 
rit fit fb
I Pi ri sin 0 d0 - I po ro sin 0 d0 = 2 I Ggdr
0 ° 4 [44]

Integrating results in :
fb

Pi ri - po ro = I <5 g dr

4 [45]

Now equating the pressures Pi and po to zero, for the case 

under consideration, one obtains :
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en -h &

ae
^Fpo

Figure 9. Free body diagram of a half section of a tube 
wing forces acting in the y-direction. The inside radius 
"a" and the outside radius is "b. " The inside pressure is 
and the outside pressure is po.
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ç bI Og dr = 0A [46]

Two special cases arise when considering forces in the 

z-direction. The first case is that of plane strain where 

the net strain is equal to zero. This requires that a 

restraining force be applied to the end faces of the tube 

such that the strain in the z-direction is constant and equal 

to zero. The other case of plane strain occurs when the sum 

of forces in the z-direction are equal to zero. This 

condition states that a oz distribution exists across the 

tube wall such that a plane section taken through the tube, 

normal to the axial direction, will remain plane during 

thermal cycling; that is, no telescoping occurs between 
layers in the composite and ez is constant and independent of 
r and 9. Other conditions that must be satisfied for the 

analysis are those of compatibility and boundary conditions 

on the ID and OD surfaces. Compatibility is a condition of 

continuity of strain in the theta direction between two 

adjacent elements in the tube. This condition may be 

expressed as :
d£0 

r dr 6 [47]

where Er and Eg are the radial and tangential components of 

total strain. A free surface cannot support a radial stress, 

so this leads to an ID and OD boundary condition given as :

Op = 0 

at radius = a 

and Or = 0 

at radius = b 

where a and b are the inside and outside radii of the tube.
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From the above equations and conditions, it is desirable 

to solve for the radial displacement, U. Once U is obtained, 

Eq and er are defined by equations [35] and [36], 

respectively. Using total strain equations [48], [49], and 

[50], which include elastic, thermal, and plastic components:
tn
 

n II M 
|H (?r - + oz ) + a T +

[48]

o0 - pi(ar + Oz ) + a T + G Op [49]

tn N II M 
|H Oz - ^(*r + ) + a T — (erp+eOp)

[50]

where E is elastic modulus, pi is Poisson's ratio, OC is the 

thermal expansion coefficient (not to be confused with the 

thermal diffusivities and «2), and Erp and EqP are the 

radial and tangential components of plastic strain, 

shown that :

or= X ( Er+ Ee+ Ez- 30CT ) + 2g (Er- OCT - E^)

OQ= X ( Er+ Eq+ Ez- 30CT ) + 2G (Eq- OCT - EQp) 

az=X(Er+E0+Ez-3aT) + 2G(Ez-aT +Erp+E0p)

where X and G are known as Lame's constants and are 

x--------- Lf________  
(1 + pt ) (1 - 2H ) 

G = ____ ------
2 (1 + pi)

Substituting Or and Og into the radial equilibrium 

letting E, pi, and a be constant, using the compatibility 

relation to express Er in terms of Eg, and rearranging gives:

it can be

[51]

[52]

[53] 

given by :

[54]

[55] 

equation,
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d Fl d 
dr r dr

1 - 2p
1 - p

1 - 2p.
1 - p [56]

which is a second order differential equation. Substituting 

which can be solved for the displacement, U, in terms of 

temperature and plastic strain. The left-hand side of the 

above equation is an exact differential and may be solved by 
integration. Integration of both sides gives :

1 - 2p
1 - p

dr + 2Ci

[58]
where Ci is a constant of integration. Multiplying both 

sides by r and integrating again results in :
, , 1 + p / r 1 - 2p f(rU) = ------ I a T r dr + ------- I erp r dr +

i - p ya i - n A

where Cg is a constant of integration. Now dividing both 

sides by r gives :
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U= 11» 1 f g T r dr + : - 1 f
1 - H rJ* 1 - F* r A erp r dr

<«rp-«ep )
----------- dr dr + Ci r + 

r
1-2^1
1 - g r

[60]

The double integral may be simplified by applying the 

integration by parts theorem. Recall that :
Ju dv = uv - Jv du

By letting:

du becomes :

du - ~ dr
r

and letting : 

dv = r dr

v becomes :
2

[61]

[62]

[63]

[64]

[65]

Substituting these into the integration by parts equation 

(equation [61]) results in the simplification of the double 

integral as shown below :
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1 - 2^
2(1 - H)

^perp-eep)^

Substituting this simplification into equation [ 60] and 

rearranging gives :
1 + Ll 1 /*r 1 — 211 1 f

U = ------  — I a T r dr + -------— — I (Ern + EnJ r dr +1 - U r4 2(1 - n) r / rp "P

1 - % 1 dr + C1 r + £2
2(1 - |1) r / r r

a [67]

Now that one has an expression for U, Eq is obtained by 

dividing U by r and Er is obtained by differentiating U with 

respect to r, which results in the following equations.
1 + P- 1 Cr 1-211 i f \£0 = ------  — I a T r dr + -------£----- I (e f e6 ) r dr +
1 - g r < 2d - K) r Ja

1 ~ i I ~ dr + Ci + 
2(1 - H) r2 J r r2

* a [68]

1 - 2|1
(1 - H)

dr + 2Ci

[69]

Now applying the plane strain condition where the axial

force on the end faces is zero states that :
2 n 

/•b
I Gz r dr d@ = 0

[70]
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which reduces to :
rb
I Oz r dr = 0 
a [71]

Substituting Er and Eg into OZf equation [53], integrating as

shown in equation [71], and solving for Ez gives:

ez = "
2 2 2

(1 -^) (b - a )

(2 - pj(l - 2p.) b
^rp r dr +

2(1 + W'l - Pa T r dr 
(1 -n)2 <b2- a2) ■'*

( Erp ~ eep dr 2K c

„ _„,2 / r
[72]

Using the ID and OD boundary conditions, the radial

stress equation, Er, and Eg enables one to solve for the 

constants of integration and C2. Substituting Eg and Er 

(equations [ 68 ] and [69], respectively) into the radial 

stress equation [51] and evaluating the integrals at r equals 

to "a" for the ID boundary condition yields :

3 a T +

[73]

Solving for Ci in terms of C2 and Ez gives :
1 - 2U

Ci------C2 - P Ez
a [74]

Substituting Eg and Er (equations [68] and [69],

respectively) into the radial stress equation [51] and
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evaluating the integrals at r equals to "b" for the OD

boundary condition yields :

G 0 = X U-E g T + 1 -

X

^rp

rb
1 - 2p I (£rp ~ G@p)

1 - p I r
a

dr Ci + ez - 3 a t

1 - g 1

+ 2

2G

2G

rb
- 2p I ( erp

2(1 - p) J 
J a

dr 1 - 2p.
2(1 -|1)

dr +

1 I 
b2 J,

1 + p.---- — a
1 - p

b
( erp

1 + 2p.

r dr

Grp

1

1

1

— 4fb“ T
- n b 4 r +

- ^Bp)
T

1

2G _ C2C1 + --  — CL
b2

[75]

T "

By multiplying equation [73] by -1 and adding it to equation

[75] Ci and ez are eliminated and a solution for Cg is 

obtained. Upon substituting C} and Cg into the strain 

equations and simplifying er, Eq, and £z become :

e6 = 1 + - \ ( a T r dr + —---— ( (e + e0 ) r dr +

1 - X dr + Ci +
2(1 - p) r2 I r r2

* a [76]

1 - H r^a 2d - P) r 4
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1 - 2^ 
(1 - H)

dr + 2Ci

[77]

[78]

[79]

C2 = 1 + ---- ------ J a T r dr -

2 /-b
zp

2 2 J '
2 (1 - |1) (b - a Va

Once the strains are calculated, stresses may be 

obtained from the general stress equations [51], [52], and 

[53] .

Next, it is necessary 

behavior and a flow rule 

function to states of strain other than the referred test.

The tension test is the reference test, the von Mises 

criteria are the criteria for the change of stress state. 

The von Mises criteria are implemented by developing 

equations that relate the total strains, Er, Eg, and Ez, to

1 - (b2 - a2) a

/• b
_______ a2 b2________ | ^rp ~ e6p )

2 2 I r
2 (1 - H) (b - a ) Ja 

r dr
[80]

to have a reference stress-strain 

which applies the stress-strain
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the elastic and plastic strains as measured in a uniaxial 

tensile test. This relationship is established through the 

concept of equivalent stress and equivalent plastic strain as 
developed by von Mises8 and the equivalent total strain as 

given by Manson.9 These stresses and strains are obtained 

from the following equations :
- 2 2

o = ™ W (o - OQ) + (Or - GJ + (G0 - G )
6 f2 r 0 r z « z [81]

VT / 2 2 7
eet " V V <e= " e»> + <£r " Ez> + <E0 " Ez>

° LoZ J

/ 2 2 T
eep = "y ’ ^rp - e0p) + ^rp ” 6zp^ + ^@p “ 6zp^ r831 

J Loo j

where Ge is the equivalent stress, Eet is the equivalent 

total strain, and eep is the equivalent plastic strain. The 

thermal strains are included in the total strains, Er, Eg, 

and Ez. Because of assumed isotropy of thermal expansion, 

the components of thermal strain are equal to each other and 

when substituted into the equivalent total strain equation 

(equation [82] ) their contribution to the equivalent total 

strain is zero. The equivalent stress is synonymous with the 

axial normal stress from a uniaxial tensile test. The 

equivalent total strain can be divided into equivalent 
elastic and equivalent plastic strains by equation [84] .10

e . e + 1
et «P 3 E [84]

A uniaxial stress strain curve may now be used to determine 

the relationship between equivalent elastic plus plastic 

strain and equivalent plastic strain for a material at 

various temperatures. Note that the definitions in equations
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[81] through [84] define positive definite scalar quantities. 

They cannot be negative nor do they have directionality or 

coordinate components.

Figure 10 shows a typical stress-strain curve from which 

Eet and eep data may be taken. By taking several points of 

data a plot of Eet vs, Eep may be made as shown in Figure 

11. The relationship between the two strains is nearly 

linear and may be represented by a linear equation. Curve 

fitting gives an equation of the form:

Eep = a + b Eet [85]

where the intercept, a, is negative and relates to the 

elasticity of a material and the slope, b, represents a 

strain hardening factor. It should be evident that if the 

calculated value of Eep is negative, the strain of the node 

under evaluation is in the elastic domain and if Eep is 

positive, plastic flow occurs.

Once a positive equivalent plastic strain is calculated 

the components of plastic strain, Erp, Egp, and eZp, may be 
determined by equations [86], [87], and [88].11 

n p
Grp = y 2£r " £0 “ £z

6et [86]

e0p = [ZSQ “ er “ ez]

6et [87]

ezp = J [zGz - er - Eq

Get [88]

With equation [82] and equations [84] through [88], one can 

now describe a material's thermomechanical behavior, provided 

that tensile test data as a function of temperature are
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Figure 10. Stress-strain curve of a typical steel showing 
the relationship between equivalent plastic and equivalent 
total strain.
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relationship for a typical steel obtained from stress­
strain data at room temperature.
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available. An iterative process may be followed whereby 

total strains and plastic strains, in the coordinate 

components, are calculated that satisfy conditions of 

equilibrium, compatibility, and the thermomechanical behavior 

of a material.



III. IMPLEMENTATION OF HEAT FLOW AND STRAIN EQUATIONS INTO 
A THERMO-ELASTIC-PLASTIC NUMERICAL MODEL

For numerical values of stress and strain to be 

calculated for a particular composite tube design under a 

thermal load, the heat flow and total strain equations 

developed in the previous section must be incorporated into a 

numerical model.

The implementation of the finite difference equations to 

calculate the temperature profile in the tube is accomplished 

via a computer program. The logic explaining the 

implementation of these equations is best understood by the 

step-by-step description given in Table 1.

Due to the transient heat flow and the unloading that 

occurs for the design under investigation, the total strain 

equations developed in the previous section have been 

implemented in the numerical model using the incremental 

theory of plasticity. This theory suggests that the loading 

cycle be divided into small load increments so that the 

plastic strain for each node may be followed to detect when 

unloading occurs. When unloading, the peak value of plastic 

strain is held constant until additional loading results in a 

plastic strain above the peak value or a plastic strain 

occurs in the opposite direction.

This technique requires that the plastic strains as seen 

in the strain equations be divided into two parts. The first

41
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Table 1
Temperature Profile Calculations

Step Number Description of Procedure
1. Select a node thickness, Ar, and time increment, St, 

such that temperature calculations result in stable 
values. It has been shown by Rohsenow, Hartnett, and 

12 Ganic that this condition occurs if the nodal 
thickness and time increment satisfy the following 
criteria:

2 
st aM. 

2 a
where a is the diffusivity of the copper alloy. A 0.5 
mm node thickness and a 0.002 second time increment was 
used in this dissertation.

2. Set up nodal spacing across the wall of the tube so 
that nodes fall on the two steel-copper interfaces and 
the ID and OD surfaces.

3. Calculate geometric correction factors for each node, 
using equations [27], [28], [29], [30], [31], and [32].

4. Initialize all node temperatures to initial temperature 
of 25 C.

5. Initialize time to zero.
6. Set heat source temperature to 900 C (i.e., T i=o,j in 

ID node equation [22]).
7. Increment time by one time step: 

time = time + 8t.
8. Calculate the temperature, Ti, j+1, for each node using 

finite difference equations [22], [23], [24], [25], and 
[26] .

9. Set Tj equal to T i,j+i for all nodes. This sets the 
temperature of each node to the calculated temperature 
for the next time increment.

10. Check time to determine if stress analysis is to be 
performed. If so, call stress analysis routine; if 
not, continue.

11. Check temperature of CD node to determine if heat 
transfer coefficient needs to be changed.

12. Check time to determine if heat source temperature is 
to be reset to room temperature. If "no" go to step 6. 
If "yes" set temperature of zeroth node to room 
temperature and go to step 7.

13. Check time to determine if cycle is complete; if 
complete reset time to zero and go to step 6. If not 
complete, continue.

14. Repeat procedure until desired number of cycles have 
been completed.
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are the plastic strains that occur before the current load 

increment, which are denoted as erp and/or Egp , while the 

second are those for the current load increment, which are 

denoted as Aerp and/or Aegp. Introducing these changes into 

the total strain equation allows equations [76] through [80] 

to be rewritten as shown below.
i + ji i rrEa = -----— -=- I a T r dr +9 1 - U r24

------- X "2 (^rp +% + Ae +Ae6 ) r dr + 2(1 - g) r2 Ja F F H H

1 ~ e9p + ^rp Ae0p> dr + c Ç2
2d - r2 J r r2

Va [89]

1 + U. 1 — 211 .Er = - e0 + ---------- a t + ----------— (E + Ae ) +
1 - |i (1 - H)

dr + 2Ci(1 -11) / r
Va [90]

b - a

fbI (Erp + E^ + AErp + AE0p) 

a
r dr +

__________pV__________ I ( - e,p + Aerp - Ae%p
2 2 2 I r

( 1 - |1 ) ( b - a ) J a

[91]
1 — 2|1Ci = ----C2 - g Ez 

a------------------------------------------------- [92]

C2 - U-E ----L---- T r dr -
1 " H (b2 - a2) 4
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a2 b2 f (Grp - Epp + Aerp - Aggp) +

2 2 I r
2 (1 - n) (b - a ) J

2 ,b---- - --- ---------p I . (Grp + e0p + ^rp + Ae0p ) r dr
2 (1 - K)(& - a ) "^a [93]

To calculate the increment of plastic strain occurring 

for the current load increment, the origin of the stress­

strain curve must be shifted by the result of the prior 

plastic deformation. Remember that the equivalent stresses 

and strains are positive scalar quantities. This is 

accomplished by applying the following transformation 

equations to the strain values used in calculating the 

equivalent strains.
* 

er = er - SAerp
*

Ep = E@ - EAEQp

*
ez = e2 - EAezp

[94]

[95]

[96]

The summations in the above equations represent the sum of 

plastic strains increments occurring prior to the current 

load increment. Applying these transformations to the 

equivalent total strain and plastic strain component

equations results in :
2 2 2

" "T (Er “ Eq) (Er " Ez) + (Eq - 6Z) [97]

£rp ep 2e - Ep -
1
3

Eet [98]
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2e0

[99]

1 eep
3 * er

[100]

These transformations allow the equivalent total strain 

and plastic strain component equations to reflect only the 

strain occurring during the current load increment ; the 

previous load increments having been accounted for by the 

summation of the plastic strains.

When going from the heating to the cooling phase of the 

thermal cycle, each node in turn reaches a peak equivalent 

total strain and begins to unload elastically. Nodes that 

have not deformed plastically unload along the same stress­

strain line that they loaded on. Nodes that strained 

plastically unload along a line parallel to the original 

stress-strain line as shown in Figure 12. Nodes that yielded 

in the heating phase of the cycle are subject to high 

stresses of the opposite sign during the cooling phase and 

may yield in the opposite direction upon cooling. To 

determine if these nodes yield plastically during cooling, a 

new equivalent total strain reference is required. This 

reference is located at the point where the stress reversal 

(elastic unloading), for the node under consideration, 

occurs, and it has a unique value of er, Eg, and £z from which 

the peak equivalent total strain is calculated. Using this 

shifted reference point, a new value of Eet may be calculated 

to determine if plastic straining occurs during cooling. The
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Figure 12. A hysteresis loop showing loading and unloading 
paths of nodes that undergo elastic and elastic-plastic 
deformation.
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equivalent total strain, now calculated from the new 

reference point, is called the equivalent total strain star­

star, eet**. It may be determined by applying the following 

transformations to Er, Eg, and Ez : 
** pk

er " ^erp [101]

** pk
e0 = Eg - Eg - SAEqp [102]

** pk
ez - ez - ez - £Aezp [103]

pk pk pk
where Er , Eg , and Ez are the unique values of Er, Eg, and Ez 

that result in a peak value for Eet as calculated by equation 

[82]. These transformations result in the Eet equation 

becoming :
2 2 2*** ** ** ** ** **

„ (Er - e6 ) + (er - ez ) + (e9 - ez ) [1Q4]

The relationship of the peak equivalent total strain, 

the equivalent total strain star-star, the equivalent plastic 

strain, and equivalent elastic strain may best be understood 

by examination of Figure 13. This figure shows the 

equivalent strains imposed on a hysteresis loop of a node 

that has undergone compressive yielding followed by tensile 

yielding. It should be noted that all equivalent strains are 

positive scalar values and are referenced from either the 

initial or a transformed origin. Point "A" is a location on 

the hysteresis loop where the Eet reaches a peak value and 

unloading begins. This point becomes the new strain 

reference point from which Eet** needs to be calculated. 

Before this node can load in tension it must elastically
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unload to point "B". This requires an adjustment in the 

equivalent total strain as calculated from point "A." The 

value of equivalent total strain as calculated from point "A" 

must be decreased by an equivalent elastic strain, eei. The 

equivalent elastic strain is obtained from the rearrangement 

of equation [84] and is given as :
pk 
Set -
2 ( 1 + 11)

3 [105]

Mathematically, the adjusted equivalent total strain is 

expressed as : 
rev **

Get = eet “ Gei [106]
rev 

g ,and is called equivalent total reversal strain, et , which 

is used to determine if yielding occurs for a node that has 

undergone a stress reversal. Applying this criteria to the 

plastic component equations and rewriting, one has :
** - £ ** ** **

2er “ G0 - Ez
Get [107]

** ** **
2g0 " er - ez

Get [108]

e" - 1
=P 3 rev

** ** ** 
2gz - er - e0

Get [109]
where erp**, egp**, and ezp** are the components of plastic 

strain for nodes that deformed during the heating phase of 

the cycle and may deform during the cooling phase of the 

cycle, and er**, Eq**, and £z** are the transformed strains 

given by equation [101], [102], and [103], respectively.
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Recall from the derivation of the strain equations that 

the modulus of elasticity, E, and the thermal expansion 

coefficient, a, were assumed to be constant for the alloy and 

temperature range under investigation. For a steel-copper- 

steel composite the values of E and OC may vary as much as 80% 

between the two materials and cannot be used as constants. 

Introducing E and a into the differential equation as a 

function of the radius results in a second order nonlinear 

differential equation with variable coefficients. The 

solution of the differential equation with variable 

coefficients would require much greater mathematical rigor 

than for the case where E and a are constants. A simpler 

approximate method of treating E and CC as a function of the 

radius would be to substitute the appropriate value of a into 

the integrals appearing in the strain equations during their 

evaluation. This requires integrals containing a evaluated 
from "a to b" to be evaluated as shown in equation [110]:

yb rTkl r Tk2
1 OCT r dr = I “steelT r dr + aCu T r dr +
J a •'a 'Tkl

rb 
J “steel T r dr 

^Tk2 [110]

Integrals containing plastic strains are evaluated using the 

appropriate values of erp or 6gp of steel or copper. 

Integrals evaluated from "a to r" require a treatment similar 

to that given by equation [110] but the upper limit of 

evaluation becomes the r^ node. Similarly, it is required 

that the appropriate values of E and a be substituted into 

the stress equations [51], [52], and [ 53] during

calculations.
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Incorporation of these equations and techniques into the 

numerical model is best illustrated by a step-by-step 

description of the stress analysis logic flow and method of 

calculation as given in Table 2. The accuracy of this 

approximation technique is addressed in the Discussion of 

Results section of this dissertation.



52

Table 2
Stress Analysis Logic Flow

Step Number Description of Procedure

This routine is entered after calculating the 
temperature profile for the current time step from 
the thermal section of the numeric model.

1. initialize the accumulated plastic strains erp, Egp, 

and ezp to zero for the first cycle.
2. Initialize incremental plastic strains Aerp, Ae$p, 

and AeZp to zero at the beginning of each load 
increment.

3a. Calculate the value of ez, C1, and C2 from equations 
[91 ] , [92 ] , and [93] , respectively, making
appropriate substitutions for Ct as shown in equation 
[110] and using the temperature profile calculated by 
the thermal part of the model. All integrals are 
evaluated using the trapezoid rule.

3b. Compare the values of C1 and C2 with those for the 
previous iteration. If the values agree to six 
places the solution has converged; go to step 10.

4. Calculate values for Eg and er for each node using 
equations [89] and [90], respectively. Note : On the 
zeroth iteration all plastic components are equal to 
zero and elastic stresses may be calculated from 
equations [51], [52], and [53] and used for
comparison with elastic-plastic stress calculations 
after convergence occurs.

5. Using equation [ 97 ] calculate an equivalent total 
strain for each node, from the values of Er, Eg, and

Ez obtained in step 4.
6. Calculate an equivalent plastic strain for each node, 

using the equation that represents the node's thermo­
mechanical properties as shown in Figures 16 and 17. 
If the calculated value for Eep is negative set it 
equal to zero.

7. Calculate the plastic components of strain from 
equations [98], [99], and [100] for the values 
obtained in steps 4, 5, and 6.

8. Substitute the plastic components values Erp and Egp 

into AErp and AEgp, respectively.
9. Go to step 3a where the solution will be altered due 

to the introduction of plastic strain values into the 
integrals.



53

Table 2 (Continued)

10. Convergence has occurred. Compare equivalent total 
strain value with that of the previous time increment 
to determine if the peak value of Eet has been 
reached for any node. If so, save values of Eg, Er, 
and Ez for new reference point.

11. Sum plastic strains of this load increment with prior
load increments using equations (a, b, c, and d) :

(a) SA8rp - ZAe'q, +

(b) SAE0p = SAC ep +

(c) *Aezp - SAC zp + Ae=p

(d) SAEep - SAC ep + ^ep
where the prime indicates prior load increments.

12. Calculate Or, Og, and Oz from equations [51], [52], 
and [53], respectively.

13. Check for completion of thermal cycle. If complete go 
to step 14; if not return to thermal model (Table 1, 
step 5) . ,

14. Compare strain values of previous cycle with strain 
values of the current cycle to determine if cyclic 
equilibrium has been obtained. If values agree 
within desired criteria the solution is complete; go 
to step 15. If values do not agree, calculate 
additional cycles by going to thermal model (Table 1, 
step 5) .

15. Print results.



IV. OPTIMIZATION OF A MULTILAYERED CYLINDRICAL SHELL WITH 
THE THERMO-ELASTIC-PLASTIC NUMERICAL MODEL

The thermo-elastic-plastic numerical model developed in 

the previous sections of this dissertation was used in this 

section to analyze and optimize the thermal fatigue life of a 

multilayered cylindrical shell. To restrict the number of 

cases to be analyzed several constraints were placed on the 

cylinder’s design. Depending on the manufacturing process, 

it is conceivable that many unique residual stress patterns 

could exist in composite tubing. Although the numerical 

model could be used to determine the effect of residual 

stresses on the thermal fatigue life of a composite design, 

for demonstration purposes the residual stresses are assumed 

to be zero. This assumption provides a consistent starting 

point from which tube designs may be evaluated. Other 

constraints include a high strength 2 1/4% Chromium-1.0% 

Molybdenum steel for the ID and OD layers and Oxygen Free, 

High Conductivity (OFHC) copper for the middle layer. A heat 

source temperature of 900 C and heat transfer coefficients of 

4700 Watts/m2 and 1575 Watts/m2 were used for the ID and OD, 

respectively. A cycle time of 35 seconds (10 seconds heating 

and 25 seconds cooling) was selected to give a thermal 

gradient sufficient to cause plastic strains in the tube. 

The ID was fixed at 50 cm and the ID and OD layer thicknesses 

54



55

were constrained to a minimum value of 3 mm. The layer 

thicknesses were varied in 3 mm increments in each of the 

test designs. The total thickness was required to be 3 cm. 

These constraints are summarized in Tables 3 and 4, which 

give thermophysical properties for the steel and copper 

(Table 3) and physical dimensions, mechanical properties, and 

thermal constraints imposed on the design (Table 4). Figures 

14 and 15 show the stress-strain curves, obtained from a 

commercial testing laboratory, for the steel and copper, 

respectively, and Figures 16 and 17 are the equivalent 

plastic strain and equivalent total strain relationships 

regressed from these stress-strain curves.

After incorporation of these data into the numerical 

model, the numerical program written in Fortran 77 was run on 

a desk top computer (Apple Macintosh II) . The results 

available from the model include the temperature; the radial, 

tangential, and axial stresses; the radial, tangential, and 

axial strains; the radial displacement; and the plastic 

strains, all as a function of radius and time.

Typical results from the model for a tube with a 25 cm 

radius, 6 mm ID layer of steel, 18 mm middle layer of copper, 

and 6 mm OD layer of steel are presented in graphic form in 

Figures 18 through 32 for the first thermal cycle. Figure 18 

shows the temperature profile in the tube one second after 

heat was applied to the ID. The low thermal diffusivity of 

the steel results in a steep thermal gradient. Figures 19, 

20, and 21 show the radial, tangential, and axial stress
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Table 3 
Thermophysical Properties

The thermophysical properties of the steel were:

1. Thermal conductivity: 
—4 —6 2 calksteel = 9.575 - 6.591 x 10 T - 1.205 x 10 T —===--

sec m C
2. Density : a

PSteel = 7-86 - 0.168 x 10*4 T 
cm

4 Thermal expansion coefficient: 
-6 —10 —1“steel = 3.711 x 10 + 3.81 x 10 T C

The thermophysical properties of the copper were :

1. Thermal conductivity : 
—3 —6 2 calCopper = 90.01 - 5.726 x 10 T - 7.843 x 10 T -- ■sec m C

2. Density:
PCopper - 8.94 - 3.23 x 10"5 T 

cm
3. Specific heat :

Cpcopper " 0-0924 + 12.6 x ÎO^ T 221

4 Thermal expansion coefficient: 
— 6 -9 —1

“copper = 4.780 x 10 + 1.0 x 10 T C

3. Specific heat :
Osteel” °"11 + 5‘62 x 10"5 T 

g c
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Table 4
Physical Dimensions, Mechanical Properties, and Thermal 

Loading Constraints

The physical dimensions and mechanical properties were:

1. Inside diameter of the tube was 50.00 cm.
2. The total wall thickness was 3.00 cm.
3. Modulus of Elasticity of steel: 

5 —2 2
Esteel = 2.152 x 10 - 18.29 T - 2.364 x 10 T MPa

4 Modulus of Elasticity of copper: 
5 —2 2

Ecopper = 1.277 x 10 - 14.07 T - 1.458 x 10 T MPa
5. Stress-strain data for the steel and copper are shown 

in Figures 14 and 15. Equivalent total and 
equivalent plastic strain data taken from these 
stress strain curves are given in Figures 16 and 17.

The thermal constraints were:
6. Initial composite temperature was 25 C.
7. Flame temperature was 900 C.
8. Cooling water temperature was 25 C.
9. ID heat transfer coefficient was 4700 Watts/m^•

10. OD heat transfer coefficient was 1575 Watts/m2 if the 
OD temperature was less than 100 C and was 3150 
Watts/m2 if greater than or equal to 100 C.

11. Heating phase of cycle was 10.00 seconds.
12. Cooling phase of cycle was 25.00 seconds.
13. Total cycle time of 35.00 seconds.
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profiles induced by the thermal gradient at the end of one 

second of heating. These stress profiles developed as a 

result of the cooler outer layers constraining the thermal 

expansion of the higher temperature inner layer. Figures 22 

and 23 show the equivalent stress and equivalent plastic 

strain profiles, respectively, for one second of heating. It 

is apparent that the first four nodes in the ID layer yielded 

as a result of the high equivalent stress and reduced yield 

strength.

At ten seconds into the thermal cycle, the ID node 

reached a peak temperature of about 720 C. Again, as shown 

in Figure 24, both ID and OD steel layers exhibited steep 

thermal gradients. The copper, with its high thermal 

diffusivity, effectively transferred heat from the ID to the 

OD, which raised the mean temperature of the OD steel layer 

to a value higher than that in a comparable all steel tube. 

The higher mean temperature of the OD layer resulted in 

increased thermal expansion and reduced stresses in the OD 

layer. Figures 25 through 27 show the radial, tangential, 

and axial stress profiles at ten seconds into the thermal 

cycle. It is apparent from the equivalent stress and 

equivalent plastic strain profiles shown in Figures 28 and 

29, respectively, that yielding has occurred for several 

nodes in the ID and OD layers of this design. Due to the 

yielding in both ID and OD layers, it is likely that this 

design would be geometrically unstable and go "out of round" 

during thermal cycling.
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At the 35th second of a thermal cycle (25 seconds into 

the cooling phase) the thermal gradient, as shown in Figure 

30, was low and fairly close to the initial temperature of 25 

C. The radial, tangential, axial, and equivalent stresses, 
at this point in the thermal cycle, are shown in Figures 31 

through 34, respectively. These stresses were present at the 

end of the first thermal cycle and may be thought of as the 

residual stresses at the beginning of the second thermal 

cycle. It should be noted from the equivalent plastic strain 

profile as shown in Figure 35 that some nodes which yielded 

during the heating phase also yielded in an opposite sense 
during the cooling phase. Nodes that yielded and strain 

hardened during the first thermal cycle may or may not yield 

during subsequent cycles.
Figure 36 shows the temperature response of the ID 

surface node for six thermal cycles. Notice that a 

repetitive thermal cycle is established after five cycles. 

The total radial and tangential strains, shown in Figure 37, 

also establish a repetitive pattern after the fifth thermal 

cycle. Figure 38 shows a detailed graph of the total 

strains, er, Eg, and Ez, for the first thermal cycle.

It should be evident from the above figures that the 

numerical model's ability to calculate temperatures, 
stresses, and strains occurring in cylindrical shells during 

the heating and cooling phases of a thermal cycle gives the 

designer great insight into the dynamic nature of thermal 

stress problems.
To determine the best tube design, within the given 

constraints, a strain range for each node was calculated from 

data taken from the fifth thermal cycle. The fifth cycle was
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chosen because there was no significant difference between 

the fifth and subsequent cycles. Strain differences, which 

were used to calculate a strain range, were scanned from the 

beginning to the end of the thermal cycle to find the nodes 

which had the smallest and largest values in each of the 

three layers. Typical values of the strain differences for 

the ID node are shown graphically in Figure 39. Once the 

maximum and minimum values of the strain differences were 

found, the ranges of these strain differences were calculated 

by subtracting the minimum from the maximum value. The 

ranges of the strain differences were substituted into 

equation [111] and the strain range was calculated.
iTT 

Ae = ----  3 [111]

Delta in equation [111] indicates the range of strain 

differences. These strain range values, along with the 

strain range vs. cycles to failure graphs shown in Figures 
40^3 and 41,14 were used to determine the cyclic life of each 

node. The node with the minimum life within a layer 

represents the life of the layer and the layer with the 

minimum life, the life of the design.

To determine the optimum tube design, layer thicknesses 

were varied in 3 mm increments while holding total thickness, 

heat input, cycle time, and other variables constant. This 

resulted in the analysis of 21 different tube designs.

The tube design, range of strain differences, strain 

range, layer life, and design life values are tabulated in 

Table 5. The tube design is given in the form of TK1-TK2-TK3,



86

0.05

0.04
co
g 0.03
G
g 0.02 
0)
•H 0.01-H Q
a 0.00
g -0.01

Ez-Gr

(0
-0.03 

EH
-0.04

-0.05
0 5 10 15 20 25 30 35

Time, seconds

Ae =
F) 2 2 2y V A (er - £0) + A (e0 - ez) + A (ez - ep

Ae= 0.0146

Figure 39. Total strain differences (for the ID surface 
node) for a thermal cycle.



87

10

10000 100000 10000001000

o H

I

c-H (0
-P en

Cycles to Failure

1 -t—
100

Figure 40. Total strain range vs. cycles to failure for a 
2 1/4% Cr-1% Mo steel at 427 C.



88

I

10 "I

-H 
(d

dP

i: WW W ** NA

10000

<ü 
o

1000
Cycles to Failure

.1 -t—
100

Figure 41. Total strain range vs. cycles to failure for OFHC 
copper at 538 C.



89

Results of Analysis of Composite Tube Designs
Table 5

Design A(er-e0) A(e0-ez) A (EJ- ez ) Aeet Nf Nf Design

3 0.02352 0.00026 0.02326 0.01559 1800
3 0.01644 0.00004 0.01642 0.01090 450 450

24 0.00368 0.00003 0.00365 0.00244 >105

3 0.02031 0.00029 0.02002 0.01344 2400
6 0.01435 0.00028 0.01423 0.00952 750 750

21 0.00390 0.00006 0.00384 0.00309 >105

3 0.01934 0.00031 0.01902 0.01278 2500
9 0.01316 0.00016 0.01299 0.00872 950 950

18 0.00445 0.00005 0.00436 0.00294 >105

3 0.01795 0.00029 0.01765 0.01187 3500
12 0.01169 0.00016 0.01153 0.00774 1600 1600
15 0.00512 0.00008 0.00500 0.00337 >105

3 0.01581 0.00019 0.01561 0.01047 3600
15 0.00955 0.00008 0.00946 0.00633 2200 2200
12 0.00608 0.00014 0.00594 0.00401 >105

3 0.01331 0.00018 0.01325 0.00885 5200
18 0.00706 0.00002 0.00708 0.00471 5200 5200
9 0.00726 0.00015 0.00712 0.00479 35000

3 0.01064 0.00001 0.01063 0.00708 9000 9000
21 0.00392 0.00007 0.00400 0.00264 >105
6 0.00842 0.00000 0.00843 0.00560 21000

3 0.00958 0.00001 0.00959 0.00639 12000 12000
24 0.00267 0.00005 0.00274 0.00180 >105
3 0.00769 0.00003 0.00773 0.00514 28000

6 0.02136 0.00012 0.02125 0.01420 2100 2100
3 0.00844 0.00008 0.00852 0.00565 3200

21 0.00362 0.00003 0.00358 0.00240 >105

6 0.02017 0.00011 0.02006 0.01340 2200 2200
6 0.00751 0.00006 0.00756 0.00502 3800

18 0.00412 0.00006 0.00405 0.00270 >105

6 0.01909 0.00006 0.01903 0.01270 2600 2600
9 0.00618 0.00006 0.00624 0.00414 10000

15 0.00479 0.00008 0.00471 0.00316 >105
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Copper

Table 5 (Continued)

6 0.01746 0.00001 0.01747 0.01160 3500 3500
12 0.00451 0.00008 0.00459 0.00303 >105
12 0.00560 0.00008 0.00553 0.00371 >105

6 0.01578 0.00001 0.01579 0.01050 3800 3800
15
9

0.00081
0.00648

0.00012
0.00001

0.00094
0.00614

0.00058
0.00421

>105
60000

6 0.01515 0.00004 0.01520 0.01010 3800 3800
18
6

0.00168
0.00688

0.00004
0.00024

0.00173
0.00691

0.00113
0.00459

>105
50000

6 0.01517 0.00000 0.01517 0.01011 3800 3800
21 0.00041 0.00006 0.00051 0.00031 >105
3 0.00625 0.00002 0.00628 0.00418 >105

9 0.02137 0.00007 0.02124 0.01420 2100 2100
3 0.00406 0.00010 0.00417 0.00274 >105

18 0.00378 0.00003 0.00376 0.00250 >105

9 0.01995 0.00002 0.01993 0.01329 2300 2300
6 0.00378 0.00020 0.00376 0.00251 >105

15 0.00428 0.00003 0.00425 0.00284 >105

9 0.01893 0.00001 0.01894 0.01262 2600 2600
9 0.00174 0.00006 0.00180 0.00118 >105

12 0.00494 0.00001 0.00495 0.00329 >105

9 0.01919 0.00002 0.01916 0.01278 2600 2600
12 0.00160 0.00014 0.00152 0.00104 >105
9 0.00521 0.00002 0.00522 0.00347 >105

9 0.01917 0.00023 0.01914 0.01277 2600 2600
15 0.00083 0.00009 0.00085 0.00056 >105
6 0.00533 0.00001 0.00535 0.00356 >105

9 0.01906 0.00003 0.01903 0.01269 2600 2600
18 0.00065 0.00008 0.00068 0.00144 >105
3 0.00487 0.00000 0.00487 0.00324 >105

All
Steel

0.02167 0.00008 0.02161 0.01443 2000 2000

All 0.00813 0.00015 0.00798 0.00537 3400 3400
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which represent the ID, middle, and OD layer thicknesses, 

respectively (listed vertically, in groups of three). These 

data are presented graphically in Figures 42-45. Figure 42 

shows the thermal fatigue life of multilayered tube designs 

for three different ID layer thicknesses as a function of the 

copper layer thickness. The thermal fatigue life data points 

at 0 mm and 30 mm on the "copper layer thickness axis" of 

this graph are the thermal fatigue lives of an all steel and 

an all copper tube design of the same total thickness as the 

multilayered designs. The all steel and all copper designs 

were run on the model and are presented for comparison with 

multilayered designs. The OD layer thickness is not shown 

explicitly on this graph because it was not the life 

controlling constraint. Figures 43, 44, and 45 graphically 

illustrate the thermal fatigue life of each layer for ID 

layer thicknesses of 3, 6, and 9 mm, respectively. From 

these graphs it is apparent that the layer with the lowest 

thermal fatigue life determines the life of the tube.

These results indicate that the maximum thermal fatigue 

life of a multilayered cylindrical shell, with the system of 

constraints imposed on it in this demonstration analysis, 

occurs when the ID and OD steel layers are relatively thin 

and the central layer of copper is relatively thick. An 

optimal life of 12,000 thermal cycles was achieved for the 

"demonstration design" by selecting a 3 mm ID, 24 mm middle, 

and 3 mm OD layer thicknesses. This design had a life of
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about six times greater than an all steel design of the same 

total thickness.

It is evident from the above results that no case was 

presented in which the thermal fatigue life of the tube was 

determined by failure of the OD layer. This situation 

occurred because the ID steel and copper layers incurred 

higher strain ranges and shorter lives due to their higher 

mean temperature than did the water cooled OD layer.



V. DISCUSSION OF RESULTS

The results from the numerical model were analyzed to 

determine how well they conform to the criteria that must be 

satisfied for the model to have credibility. The conditions 

that must be satisfied were :

(a) Radial stresses at the ID and OD surfaces must be 

equal to zero.

(b) Radial stresses must be continuous.

(c) The displacement function, U(r), must be continuous 

and differentiable.

(d) The tangential strain, Eg, must be continuous.

(e) The axial strain, Ez, must be constant.

(f) The tube must be in equilibrium as described by 

equation 46 and Figure 9.

The radial stresses at 1, 10, and 35 seconds were 

calculated by the model as shown in Figures 19, 25, and 31. 

These graphs show a continuous radial stress profile with CTr 

equal to zero at the ID and OD boundary surfaces as required 

by conditions (a) and (b). Condition (c) was satisfied as 

shown in Figure 46, and it followed that Eg, defined as U 

divided by r, was also continuous, which satisfied condition 

(d). Condition (e), a requirement for plane strain, was met 

as shown in Figure 47. Condition (f ) was met with some 

qualification. Recall that during the derivation of the

97
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strain equations, the modulus of elasticity and the thermal 

expansion coefficient were assumed constant because of the 

complexity introduced if they entered the solution as 

functions of radius. An approximate method was developed to 

treat E and a as functions of radius even though they did not 

enter the differential equation representing equilibrium as 

such. To evaluate the correctness of the analysis resulting 

from this technique, the form of the solution for the 

displacement, U, for three different types of analysis was 

considered. The three types of analysis were (1) elastic, 

(2), an elastic-plastic analysis where E and a are constant, 

and (3) an elastic-plastic analysis where E and « were 

functions of the radius. For an elastic analysis U was 

represented by:

1 + l C?U = -----— —I a T r dr + 0% r + —
1 - u r J r1 a [112]

where the integral represents displacements resulting from 

thermally induced elastic stresses. In the second type of 

analysis, in which both the elastic and plastic natures of a 

material were taken into account, U was represented by : 
U = 1 + — ( a T r dr + 1 ~ k f (e + eto) r dr +

1 - 1 dr + Ci r +
2(1 - H) r J r r

a [113]

In the third type of analysis, where elasticity, plasticity, 

and changes of E and a as a function of the radius were taken 
into account, U had the form of :

1 - K r 4 2(1 - u) * 4 rp
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U = 1 + — f a T r dr + —--- — I (e + e^) r dr +
1 - H 2(1 - n) r J. P *

1 - 2n i
2(1 - H) r

(Integrals representing the changes in E 
and changes in a as a function of radius) [114] 

In the third type of analysis "all" values of E and a were 

taken as functions of the radius. It was apparent that the 

third type of analysis would prove more accurate than the 

second type, and the second type, more accurate than the 

first.
In this dissertation, a modification of the third type 

of analysis was used, in that E and a were used as functions 
of radius but integrals representing the change of E and a as 
function of r were not included. This implies that the 

accuracy of the modified analysis is much greater than that 
of method 1 and much better than method 2 but not as accurate 

as method 3.
Upon calculating a numerical value for condition (f) the 

sum of the tangential forces across the wall was found to 

vary from +3.51 to -3.51 Newtons depending on which part of 

the thermal cycle was considered. Similar values calculated 

for a monolithic tube varied from +0.87 to -0.87 Newtons. 

Though these values were not zero, they were less than 8% of 

the peak forces that occurred in the tube and were felt to be 
within acceptable limits for optimization of one tube design 

with respect to another. The error is a result of not 

completely accounting for changes of E and a as a function of 

radius.



VI. CONCLUSIONS AND RECOMMENDATIONS

The goal of this dissertation was to develop a technique 

to determine and optimize the thermal fatigue life of a 

multilayered cylindrical shell. This goal was achieved 

through the implementation of a numerical model of sufficient 

flexibility to deal with the major variables affecting 

thermal fatigue life in a thermally cycled multilayered tube. 

The technique was demonstrated by optimizing the thermal 

fatigue life of a three layered composite tube for a specific 

set of constraints.

Several important conclusions were drawn as a result of 

this work:

1. The solutions presented for the total strain 

equations, er, Cg, ez, and constants of integration 

C1 and C2, for a cylindrical tube in terms of 

temperature and plastic strain were derived in this 

dissertation and represent a significant 

contribution to the literature.

2. An approximation technique to account for different 

E, a, and plastic flow characteristics as a 

function of temperature for the materials used in a 

multilayered composite tube design is presented in 

this dissertation and represents a significant 

contribution to the literature.

102
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3. The combination of the heat flow and strain

equations, developed in this dissertation, into a 

thermo-elastic-plastic numerical model of a 

multilayered cylindrical tube using an incremental 

plasticity technique is a significant contribution 

to the literature.

4. Using the computer model, it was found that with 

proper selection of layer thicknesses, the thermal 

fatigue life of a three layered composite design 

could be improved substantially compared to an all 

steel or all copper design of the same thickness.

5. The maximum thermal fatigue life of the designs 

investigated resulted when the ID and OD layers 

were at their minimum constrained thicknesses.

6. The strain range of the ID steel layer was always 

greater than the OD steel layer if the same alloys 

and thicknesses were used for both layers. This 

situation led to failure of the ID layer before 

failure of the OD layer could occur.

The technique developed in this dissertation was used to 

determine and optimize the thermal fatigue life of a tube 

with certain constraints. The technique is flexible and may 

be used for the analysis and optimization of other 

axisymmetric, thermally loaded multilayered tubes.

The technique may be expanded to include additional 

layers or may be reduced to analyze single or double layered 

shells. The technique is highly recommended because of the 

insight it gives a designer with respect to the major 



104

variables affecting the thermal fatigue life of ID or OD 

heated tubing. The effects of heat transfer coefficients, 

heat source temperatures, cycle times, and cooling water 

temperatures may be varied to determine the effect on the 

thermal fatigue life of a design. From plastic strain 

calculations and with experimental verification the model 

could also be used to determine the geometric stability of a 

design under certain thermal loading conditions.
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