
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

1991

A Computerized Formal Methodology For Simulation Software A Computerized Formal Methodology For Simulation Software

Development. Development.

John H. Barrett
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Barrett, John H., "A Computerized Formal Methodology For Simulation Software Development." (1991). All
ETDs from UAB. 4491.
https://digitalcommons.library.uab.edu/etd-collection/4491

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/4491?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfilms International

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. MI 48106-1346 USA

313/761-4700 800 521-0600

Order Number 9208068

A computerized formal methodology for simulation software
development

Barrett, John H., Ph.D.

University of Alabama at Birmingham, 1991

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

A COMPUTERIZED FORMAL METHODOLOGY FOR
SIMULATION SOFTWARE DEVELOPMENT

by

JOHN H. BARRETT

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in the Department of Computer and

Information Sciences in the Graduate School, The
University of Alabama at Birmingham

BIRMINGHAM, ALABAMA

1991

ABSTRACT OF DISSERTATION
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree PhD.Major Subject Computer & Information Sciences

Name of Candidate John H. Barrett_____________________________________

Title A Computerized Formal Methodology For Simulation Software

Development

It is widely accepted that the software development process should include

formal methodology as well as development tools. This dissertation, concerned

with simulation software development, endorses this general view and adds the

stipulations that simulation use requires a computerized formal methodology and

development tools that are extensible, portable, and easy to use. It is argued,

particularly, that:

[1] A sufficient basis for a formal methodology for simulation modeling

(continuous, discrete and symbolic) is the methodology developed in this thesis.

Rooted in logic programming, the methodology uses both formal semantics and

runnable specifications. Demonstrations show how the methodology addresses a

proposed core non-numeric simulation language and how systems defined in it are

capable of growth.

[2] An implementation tool that satisfies the needs for developing required

simulation software is the system presented here. It includes a base processor, an

extensible core symbolic simulation language, and associated utilities. Called ASP,

for “Augmented Stage2 Processor,” it is a major reorganization and updating of

William Waite’s Stage2 processor, which we subsume along with the latter’s

potential for Lisp and Snobol features.

ii

The proposed kernel language, called Barrel-F, is provided with a complete

formal semantics. Several rule-based processing systems we developed are

formalized through runnable specifications. Formal specifications lead us to a

discussion of input-output indifference and automatic code generation.

Additional code and systems provide informal software development products

and guidelines: [1] utility functions, [2] graphics access, [3] practice and experience

for exploiting ASP, [4] linking our new non-numeric capabilities to numeric ones in

a GPSS-GASP combined processor, and [5] a new concept of portability, based on

the base processor, codes mimicking popular language features, and higher level

rule and table processing. Proofs provided in the formal theoretical system put this

portability scheme on a completely sound base.

Date

Abstract Approved by: Committee Chairman

Program Directe:

Dean of Graduate School
in

ACKNOWLEDGEMENTS

I gratefully acknowledge the guidance and assistance of my advisor, Dr. Kevin

Reilly. He has stuck with me and supported me for a long time and I would not have

accomplished this without his help. I also appreciate the advice and helpful

comments of all my other committee members.

I wish to thank the UAB Graduate School for their financial assistance in the

form of fellowships. I also thank my employer, BellSouth Services, for tuition aid.

Most of all I would like to thank my wife and children for their love and support

without which I could not have done this. They have endured countless hours of my

absence when they have never really understood why.

iv

TABLE OF CONTENTS

Page

ABSTRACT .. ü

ACKNOWLEDGEMENTS... iv

LIST OF FIGURES... »i

CHAPTER

1. INTRODUCTION .. 1

1.1 THESIS.. 3
1.2 NON-NUMERIC SIMULATION AND

SIMULATION ENVIRONMENTS......... 5
1.2.1 Rule Based and Table Processing............. 6
1.2.2 Lisp, Snobol, and Prolog Like

Features.. 8
1.2.3 Other Conventional Programming

Language Features............................ 8
1.2.4 Extensibility, Flexibility and

Portability... 9
1.2.5 Formality... 10

1.3 FORMALISM AND LOGIC.............................. 10
1.3.1 Choice of Formal Tools.............................. 10
1.3.2 Programming Language Definitions 12
1.3.3 Programming Systems Definitions.......... 13

1.4 SYMBOLIC SOFTWARE DEVELOPMENT
TOOLS.. 14

2. COMPATIBLE EXTENSIBILITY IN
DEFINITIONS AND SYSTEMS 17

2.1 DESIGN OF BARREL-F.................................. 23
2.2 FORMAL DEFINITION OF BARREL-F ... 24

2.2.1 Making Extensions to the Definition.... 34
2.3 IMPLEMENTATION OF BARREL-F.......... 36
2.4 TESTING OF BARREL-F................................ 37

V

TABLE OF CONTENTS (Continued)

CHAPTER Ease

2.5 FORMAL DEFINITION OF
BARREL/ASP ... 38

3. RUNNABLE SPECIFICATIONS BASED ON
LOGIC.. 44

3.1 SPECIFICATION... 45
3.2 DESIGN.. 50
3.3 IMPLEMENTATION... 54

4. PORTABILITY CUBED: AN EXTENDED
NOTION... 62

4.1 PORTABILITY OF THE PROCESSOR......... 62
4.2 PORTABILITY OF LANGUAGES................. 65
4.3 PORTABILITY OF SYSTEMS.......................... 66

5. INTRODUCTION TO ASP.. 69

5.1 WHAT IT IS.. 69
5.2 HOW IT IS USED ... 69
5.3 HOW IT WORKS... 71

6. DESIGN CONSIDERATIONS OF ASP................. 77

6.1 CHOICE OF STAGE2 AS A BASE................. 77
6.2 EXTENSIONS AND MODIFICATIONS 79
6.3 ANALYSIS OF ASP USING DATA FLOW

DIAGRAMS ... 85

7. IMPLEMENTATIONS OF ASP................................. 88

7.1 DATA GENERAL ECLIPSE 89
7.2 VAX 11/750 .. 90
7.3 SEQUENT 21000 ... 90

8. LANGUAGE FEATURE ANALYSIS BY ASP
IMPLEMENTATIONS.. 91

9. KITS.. 94

vi

TABLE OF CONTENTS (Continued)

CHAPTER Eage

9.1 INTERPRETED KITS: BARREL............. .. 94
9.2 KITS AND COMPILERS 97

9.2.1 Janus.. 98
9.2.2 Lispkit Lisp... 99

10. TAILORED LANGUAGES AND SYSTEMS ... 101

11. A TABLE ENTRY, REFORMATTING,
TRANSLATION, AND PRESENTATION
SYSTEM.. 107

11.1 INTRODUCTION TO PAR TABLES 107
11.2 BATERTAPS... 110

11.2.1 Phase I: Codebook Entry................... 112
11.2.2 Phase H: Rules Entry......................... 113
11.2.3 Phase HI: Table Reformatting

Processors.................................. 118
11.2.3.1 Reformatting for

Presentation......... 119
11.2.3.2 Reformatting for

Translation........... 119
11.2.4 Phase IV: Table Translation

Processors.................................. 122
11.2.5 Phase V: Presentation Processors ... 125

12. GRAPHICS CREATION AND EDITING OF
TABLES .. 128

13. SUMMARY... 131

13.1 PARTI .. 132
13.2 PART 2.. 135
13.3 PART 3.. 136

14. THE FUTURE... 138

14.1 AN INTEGRATED IMPLEMENTATION
OF LOGIC METHODOLOGIES 138

14.2 OBJECT-ORIENTED ANALYSIS AND
IMPLEMENTATION............................. 140

vii

TABLE OF CONTENTS (Continued)

CHAPTER Ease

14.3 LINK TO THREADED LIST THEORY
AND PRACTICE................................... 140

14.4 PARALLEL AND DISTRIBUTED
PROCESSING.. 141

14.5 ADJOINING CURRENT WORK WITH
PREVIOUS LOGIC THEORY............ 142

14.6 SIMULATION ENVIRONMENTS AS
THE “BEAK” .. 144

14.6.1 E-Unit.. 147
14.6.2 A-Unit.. 149
14.6.3 K-Unit.. 150
14.6.4 B-Unit.. 151
14.6.5 BEAK Unit Interactions.................... 152

14.7 DEPARTING WORDS 154

REFERENCES ... 155

APPENDICES

2.1 BARREL/ASP BARREL-F LANGUAGE 164

2.2 FEATURES AND FOLLIES OF THE
BARREL-F FORMAL DEFINITION............ 171

2.3 FORMAL DEFINITION OF THE BARREL-F
PROGRAMMING LANGUAGE 173

2.4 BARREL-F IMPLEMENTATION......................... 197

2.5 PROGRAMS USED TO TEST THE
BARREL-F DEFINITION 213

2.6 INFORMAL DESCRIPTION OF ASP
CODE BODIES.. 233

2.7 FORMAL DEFINITION OF ASP CODE
BODIES... 241

2.8 FEATURES AND FOLLIES OF THE
CODE BODY FORMAL DEFINITION..... 269

viii

TABLE OF CONTENTS (Continued)

APPENDICES Ease

2.9 PROGRAMS USED TO TEST THE CODE
BODY DEFINITION.. 272

31 ASP IMPLEMENTATION OF RUNNABLE
SPECIFICATIONS ... 289

3 2 ASP IMPLEMENTATION OF RUNNABLE
SPECIFICATIONS WITH MULTIPLE
VALUES.. 292

3.3 ASP IMPLEMENTATION OF I/O
INDIFFERENCE ... 295

6.1 NEW PROCESSOR FUNCTIONS OF ASP 297

7.1 EXTENSIONS TO FLUB FOR THE ASP
IMPLEMENTATION.. 302

7.2 FLUB VERSION OF THE ASP
PROCESSOR.. 304

7.3 FLUB TO C MACROS FOR ASP......................... 330

7.4 C SUPPORT ROUTINES FOR ASP 339

9.1 BARREL/ASP BSYS KIT... 348

9.2 BARREL/ASP BBAS KIT 351

9.3 BARREL/ASP BLISP KIT...................................... 356

9.4 BARREL/ASP BICON KIT.................................... 357

9.5 BARREL/ASP BGIGI KIT...................................... 358

9.6 BARREL/ASP BCNTRL KIT 359

9.7 BARREL/ASP BCASE KIT.................................... 362

10.1 BARREL/ASP BLOGO TAILORED
SYSTEM ... 364

ix

TABLE OF CONTENTS (Continued)

APPENDICES Page

10.2 BARREL/ASP BED TAILORED SYSTEM ... 367

10.3 BARREL/ASP BQBE TAILORED SYSTEM .. 370

10.4 BARREL/ASP BDT TAILORED SYSTEM ... 371

10.5 BARREL/ASP BTINT TAILORED SYSTEM .. 373

X

LIST OF FIGURES

Figure EigÊ

2.1. The Software Lifecycle.. 20

2.2. Summary of some of the Barrel-F Features............................. 25

2.3. The top level relation of the M-grammar definition of
Barrel-F shown here in Prolog notation.......................... 28

2.4. The top level sememe relation and the continuation
relation... 30

2.5. The top-level relation for the lexical syntax. 30

2.6. An example of a program to be used as input to the
Barrel-F M-grammar definition....................................... 31

2.7. The output produced by executing the M-grammar
definition using the program in Figure 2.6 as input....... 32

2.8. The parameter transformations and processor functions
included in the formal definition of Barrel/ASP............. 40

3.1. Representation in table form of a decision procedure
relating input values for “car make” and “car condition”
to output values entitled “commission”, “shop-work”, and
“manager-ok”... 46

3.2. A Prolog specification of the desired presentation
processor.. 48

3.3. A sample dialogue from the execution of the Prolog
specification of our presentation processor. The lines
beginning with “ > ” show where the user was required to
enter information.. 49

3.4. A sample dialogue from the execution of the Prolog
specification of our presentation processor where the dec
predicate is called directly. The lines beginning with “ > ”
show where the user was required to enter information. 53

3.5. A Barrel/ASP implementation of the desired presentation
processor.. 55

xi

LIST OF FIGURES (Continued)

Figure Page

3.6. A sample dialogue from the execution of the Barrel/ASP
implementation of our presentation processor. The lines
beginning with “>” show where the user was required to
enter information.. 58

3.7. The Barrel/ASP implementation of the dec definitions
which allow the user to input variables (beginning with an
asterisk) for the conditions of the table........................... 60

3.8. A sample dialogue from the execution of the Barrel/ASP
implementation of our presentation processor where
the dec predicate is called directly. The lines beginning
with “> ” show where the user was required to enter
information.. 61

5.1. An example of ASP definitions and calls.................................. 73

6.1. Data flow diagram of Stage2.. 86

6.2. Data flow diagram of ASP... 87

9.1. An example of a program which can be interpreted by the
BBAS kit... • 97

9.2. Data flow diagram of the translation process for Janus
programs.. 99

10.1. The familiar Logo procedure POLYSPI implemented as a
definition for ASP... 103

10.2. A typical dialogue of BDT with a user, annotated to
indicate user input (by addition of >).................................. 105

11.1. Representation in table form of a decision procedure
relating input values for “car make” and “car condition”
to output values entitled “commission”, “shop-work”,
and “manager-ok”.. 108

11.2. Portion of the codebook entry processor dialogue,
annotated to indicate user input (by addition of >)....... 114

11.3. Result of the codebook entry portion of the system: a
set of conditions (top half) and actions (bottom half) for
a simple “procedures and regulations” table with
appropriate system generated codes (e.g., 1 for cord, 2 for
reo, etc.)... 115

xii

LIST OF FIGURES (Continued)

Figure EagÊ

11.4. Portion of the rules entry processor dialogue, annotated to
indicate user input (by addition of >).............................. 116

11.5. The rules table created by the rules entry portion of the
system with the numbers representing the codes from the
codebook.. 117

11.6. Result of the rules entry portion of the system (a consistent
coded extended entry decision table) with the numbers
representing the codes from the codebook...................... 117

11.7. The formal “runnable specifications” for the presentation
processor which operates on the example decision table. ... 118

11.8. Results of Phase m, the reformatting phase. The example
“procedures and regulations” table is now ready for
processing by a presentation processor...................................... 120

11.9. A sample codebook with conditions and actions derived
from statements from the C programming language. The
table is being prepared for processing by the DELTRANS
table processing system.. 121

11.10. A sample decision table with conditions and actions
oriented towards the C programming language. It is ready
to be reformatted for use in the DELTRANS table
processing system.. 122

11.11. Portion of the reformatting processor dialogue for tables
to be entered in the DELTRANS table processing system,
annotated to indicate user input (by addition of >)..... 123

11.12. Partial dialogue from execution of a typical presentation
processor, annotated to indicate user input (by addition
of >). The last three lines are the actions displayed by
the system.. 126

11.13. Partial dialogue from execution of a typical presentation
processor, annotated to indicate user input (by addition
of >). The last three lines are the actions displayed by
the system.. 127

12.1. Entry of rules via graphics editor.. 129

14.1. The combination of programming language definitions
with programming system definitions................................ 139

xiii

CHAPTER 1

INTRODUCTION

This dissertation is concerned with formal and informal software development

with an intended principal application domain of simulation executors and their

associated context, i.e., a simulation environment. A formal methodology has been

designed and applied to prototype implementations which include a base processor

called ASP and an extensible kernel or core language called Barrel-F. The

potential of this software to address issues in the application domain as well as the

adequacy of the formal methodology to play its assigned role are thereby tested.

The formal methodology is a dual-level logic-based methodology composed

of a merged formal semantics system [Moss, 1982] and a runnable specification

conceptualization [Davis, 1982; Kowalski, 1979]. Both involve Prolog. The formal

methodology has been used to define software tools, to guide in selection of

language constructs, and to contribute to automating code development for some

software development tasks.

Barrel-F is an extension to a non-numeric software development scheme due

to Waite [Waite, 1973] effected through basic extensions of the processor, added

embedded code and enhanced utilities. The new base system ASP (or AS2P)

stands for Augmented Stage2 Processor. In its modernized and extended form,

with added utilities (about a 40% extension in the size of the system), this

software is being positioned to serve as a symbolic simulation component

integrated with a (numeric) simulation package which entails combined

continuous and discrete simulation [Hooper & Reilly, 1983]. This integration

1

2

aspect of the research is an extension of earlier work and hence establishes a base

for a new paradigm for future simulation software.

The extensibility and flexibility of this new software development scheme

includes strong influence from formal theory and methodology. That is, we can

exert rigorous control over what software constructs we wish to have and exclude

those which have some inappropriate features. The basic processor functions

themselves we have already formally defined.

The software is written in the C language and for Unix systems (though we

have other operable versions in other languages and under other operating

systems). This means we have a degree of portability which provides the capability

to move the software to several machine types such as those available in our

university and other organizations, e.g., Sun, Sequent, Cray.

We do not adopt the view that all software within and generated by this system

must be developed from a formal point of view. The extensibility and flexibility of

the development facility provides many aids for experimental software

development and prototyping. We have experimented in this mode on many

occasions and results of this mode appear in later chapters and the appendices.

We call these experimental products, Barrel-E, (an extension beyond the formal

system, Barrel-F). Barrel-E and Barrel-F, sometimes referred to collectively as

Barrel, can be viewed as a family of related language features. Organization

within this family will be discussed later.

The importance of (the formally defined) Barrel-F as a core upon which to

build is reflected in our providing a formal definition for it, along with a complete

implementation. The major objective is to provide individual modelers or groups

of modelers with a core which can be systematically extended. Since extensions

should be accompanied by an associated formal reasoning system, development

3

tools are needed. A framework for the establishment of such support tools is

developed as well as examples and demonstration prototypes. Similarly, an

approach is also presented for dealing with the issue of automating the relations

between the reasoning system and the products developed within it. We consider

this capability a sine qua non for applications in complex simulation environments.

We address this topic by providing examples of how we have “hand-crafted” some

of our own extensions to the original Barrel-F definition and how we can automate

portions of this process.

Both the developed software and the theoretical methods are assessed in

relation to a new paradigm for simulation software development within an

automated simulation environment. The proposed new paradigm includes formal

methods as an aid to the specification, design and implementation of model

components, as well as components of the simulation environment itself.

This research has also led to an enhanced notion of portability. A three-level

portability scheme is proposed, developed and demonstrated. The scheme entails

these elements: 1) an abstract machine implementation scheme; 2) language

construct mimicking capability within a pattern directed capability offered by the

system to users; 3) prototypical table processing methods which, in

demonstrations, connect as many as nine different processors on five different

machines.

We are now ready to state our main point, our thesis.

1.1 THESIS

Software for simulation systems should be developed within a framework

which has both a strong theoretical foundation and a useful and practical

application package. Furthermore, to be truly relevant to the needs of the users, a

4

computerized formal methodology is preferred over a manual methodology, and

the implementation tool must be extensible, portable, and easy to use.

A sufficient basis for a formal methodology for simulation modeling in a

broadened sense of combined continuous, discrete and symbolic simulation is a

methodology we have developed in logic programming; an implementation tool

that satisfies the stated needs for developing software for simulation models and

environments, with primary emphasis on the symbolic and non-numeric areas, is

the system we have developed, which includes a base processor, a core facility

forming an incipient symbolic simulation language, and much associated utility

code.

Note that this thesis entails more than adapting formal methods. It includes

concepts of practical methodology as well as implementation tools. The attributes

of the implementation tool, therefore, are regarded as fundamental to the thesis.

Broken down to simplest units, we see in the thesis needs for discussions

centering on these principal themes:

• non-numeric simulation and simulation environments

• computerized formal methodologies

• software development tools

These discussions, which constitute sections 2-4 of this chapter, will reveal a

comprehensive methodology for developing simulation (and other systems)

software. Formalization is a cornerstone and a substantial amount of experience

dealing with the pragmatic issues will be on display and play an effective

complementary role.

Within each of these thematic pursuits, we need to identify and develop tools

suitable for the scheme of software development. We also need to back up our

theoretical ideas by pragmatic decisions and prototypes to provide a complete

5

overview of how, in our purview, symbolic simulation software should be

developed.

1.2 NON-NUMERIC SIMULATION AND SIMULATION
ENVIRONMENTS

Simulation provides a major motivating factor in our research. The current

state of the art in general purpose simulation systems incorporates combined

continuous and discrete simulation, represented by commercial products and

prototype processor packages such as GGC (GPSS-Gasp Combined) [Hooper,

1983]. A growing importance of symbolic (AI, non-numeric) elements in

simulation and of symbolic simulation itself is seen in use of production systems in

simulation environments and models. We have concluded that exploiting the full

range of non-numeric processing, in conjunction with full numeric capabilities, is

moving the art to a higher plane [Reilly, Barrett & Lilly, 1987]. We wish to provide

systems which offer, on behalf of this potentially emerging state of the art,

“combined continuous-discrete-symbolic simulation” capabilities.

A prototype for this purpose has been designed, with main elements being

UAB’s own GGC and ASP systems, the latter of which is discussed at length in this

dissertation. ASP provides primary support for non-numeric processing and GGC

provides primary support for numeric processing. The two can be made to work

well together, and some of our remarks mention the prototype where we linked

these two systems [Barrett & Reilly, 1987].

The principal areas of non-numeric processing we focus on in this dissertation

are:

• rule based and table processing

• Lisp, Snobol and Prolog like features

• other conventional programming language features

6

• extensibility, flexibility and portability

• formality

Let us briefly comment on each of these.

1.2.1 Rule Based and Table Processing

Rule processing “within the Barrel” is provided through a combination of tools

and features centering on decision table processing, a derivative expert system

capability, and openings to other forms of table processing such as relational

databases. We adopt the point of view of Weiss and Kulikowski, also adopted in the

work of our UAB predecessor, A. Salah, that table processing, specifically decision

tables, provides a means of representing “extended production rules” [Weiss &

Kulikowski, 1984]. Salah’s work on decision tables in logic programming showed

important relationships to relational databases [Salah, 1986; Reilly, Salah & Yang,

1987]. While it is clearly outside the scope of this thesis to develop the potential of

combining all of Salah’s ideas with those presented here, we would be remiss if we

did not mention the existence of this potential.

Formalism can be based on adopting Marvin Minsky’s statement that

production systems are “just” another way to program a system or others’ claims

that, in so-called table-dominant systems, decision tables can be used to replace

programming altogether (see [Metzner & Barnes, 1977] for this and related

points). In this purview we are engaged in viewing tables in programming language

terms. This legitimate view means using the Moss-based formalism (see below).

Alternatively, we can raise the level of view to the programming systems (or

sub-systems) level, a purview which reflects the role production systems may play in

a simulation environment context. Then, logic programming specifications is the

called-for formal approach (see below). This aids in, e.g., following Salah, Reilly

and Yang into setting up connections between decision table processors, relational

7

databases and other systems. The nine-processors and five-machines portability

scheme is consonant with this view, of course.

We have incorporated some rule based processing features in Barrel-F, as

described in the first section of Chapter 2. Several additional ones appear in the

collection of experimental codes in “extended Barrel”, Barrel-E (Chapter 10).

Barrel-F, of course, is that formally defined portion in the Barrel family which we

designate as a “core” or “kernel” facility, a minimal recommended non-numeric

simulation processing capability, a base upon which to build. Thus, some

processing of tables is formally defined in Barrel-F’s formal semantics, while other

features of it are handled formally through the runnable specifications portion of

our merged formal system. Closely related to this portion of the formal system are

some efforts in producing specifications automatically from informal dialog

programs. A method of automatically providing formal specifications for table

processing systems is covered in the first section of Chapter 3.

In Chapter 4 (section 3), a discussion on portability is directed toward facilities

provided through several table processors available to us. Some of these processors

are self-contained systems. We established contact with such systems by taking

output from our table-creating system (see below) and producing input files for

these systems, e.g., through table reformatting programs and code augmentation

schemes.

In Chapter 10, we introduce another component of an overall table processing

system, the “presentation processor.” We discuss and demonstrate some of the

main capabilities in table presentation developed through use of ASP mechanisms.

Finally, Chapters 11 and 12 describe a system, again developed within ASP, for

creating decision tables from scratch and (re-)formatting them for further

processing by several table processors, some of which were developed earlier by us.

8

It is this (creation) system that starts up the chain of activities in the decision table

system processing enterprise. It produces output files which are then reformatted

and augmented in various ways, on their way to other table processors. The

portability afforded by this scheme is reflected in the numbers of processors

reached as a result of these maneuvers: an impressive number of nine different

systems in five different programming languages is entailed.

1.2.2 Lisp, Snobol, and Prolog Like Features

Lisp-, Snobol- and Prolog-like mechanisms are deemed as virtual necessities

for manipulating lists, strings and relations. The ability to do recursive

programming and the use of pattern matching capabilities in the ASP base are

important ingredients in connection with these features.

Much of our work reflects our interest in Lisp, Snobol and Prolog in the form

of the language constructs we have chosen to implement, the syntax we prefer, and

our reliance on pattern matching and recursion. More specifically, in the third

section of Chapter 3, we discuss a table processor implemented in a style very

similar to its Prolog specifications. In Chapter 9 we focus on components of

Barrel-E called kits - groups of related programming language constructs. One of

these kits is modelled after features of Lisp. Another is modelled after features of

Icon, a derivative of Snobol. Chapter 9 (second section) also discusses

communications between ASP and a purely functional version of Lisp, Lispkit Lisp.

1.2.3 Other Conventional Programming Language Features

In addition to these mechanisms, other more conventional types of

programming language features are deemed to be needed, for example, to facilitate

porting of code from popular languages like C, Ada and Pascal, and to interface

smoothly with GGC, which is written in C and/or Fortran. Then, too, simulation

9

applications dictate that we be able to handle the kinds of code which show up in

typical “event” routines (in GGC and other processors, also); such code is often

elaborated as procedural code. Barrel-F contains some of these types of features,

but Chapters 8,9 and 10 focus on many other features which more fully reflect our

effort to deal with these types of programming language features.

Those portions of Barrel which constitute explorations of language features are

in Barrel-E, defined earlier. We do not provide formal definition for these

features, since to do so is outside the scheme: the primary purpose is that we

provide definitions only for a core or kernel; users, then, are free to add more code,

backing it up with experiments as suits their needs. The philosophy is that we

purposefully avoid a large facility at this time, seeking rather a core from which

informal exploration and development can ensue, and then ultimately made

formal.

1.2.4 Extensibility, Flexibility and Portability

We need extensibility because we believe it is best to treat symbolic simulation

as a growing and changing area of computer science. We seek room for individual

options. It seems prudent, therefore, not to make hard guesses about the future,

which might turn up later to be restrictive in some way.

We need flexibility to do things, e.g., like make an eclectic choice based on use

of (usually a few) Lisp-, Snobol- and Prolog-like features and the more common

code capabilities working in collusion. Flexibility is needed also to port software to

new architectures as the need arises. Extensibility and flexibility, therefore,

permeate this research work.

In the second section of Chapter 2 we show how our formal methodologies can

be extended as our languages are extended. In Chapter 4 we showflexibility through

three instances of portability which can be used together or separately. Our

10

descriptions of the ASP itself show its extensibility and flexibility. Our table

processing system, described in Chapters 11 and 12, provides the flexibility of

creating tables to be processed by several different processors.

1.2.5 Formality

Finally, we need formality to confer on our work a good, firm computer science

basis. We have already introduced our formal methodologies and they are

described fully in Chapters 2 and 3.

1.3 FORMALISM AND LOGIC

From some of our earlier statements we may perceive that there is another

group of ideas that are only now beginning to have a significant bearing on software

development in relation to simulation modeling. This collection of ideas is that of

using formalized methodologies which allow us to reason about the models as we

build (and use) them. We view some of this dissertation’s arguments and

demonstrations on introducing formal methodology as a major contribution, in

principle and in practice, to the development of sophisticated B-Units (Builder

Units), in conjunction primarily with the K-Unit (Knowledge Unit), in a

conceptualization of a simulation environment known as the BEAK [Reilly & Dey,

1987; Reilly, Jones, Barrett, Salah, Strand, Autty & Rowe, 1984; Reilly, Jones &

Dey, 1985; Reilly, Jones, Lyons, Payer, Ramer & Dey, 1985; Reilly, Ramer, Dey,

Suter, Lyons & Byoun, 1986]. (BEAK is a representation of simulation

environments as four primary units - Builder, Executor, Analysis and Knowledge;

we discuss our relationship to the BEAK in detail in section 6 of Chapter 14.)

1.3.1 Choice of Formal Tools

One of our major objectives from the outset, has been to identify appropriate

formal tools and associated programming language and system theory that would

11

support our simulation environment conceptualizations. The methods had to be

sufficiently adaptable to change. In particular, we expect that non-numeric

computing, both in the E-Unit (Execute Unit) and in the other simulation

environment units, is only partially understood at this point in time. If we are

correct, a tool that is unable to respond to change would be nearly useless.

Additionally, the appropriate tool must have an implementation that is

flexible and not burdensome when moved to new machines. It should be robust

even in the presence of extensions to machine contexts that entail radical changes in

methodologies or in other cases where the issue is one of harnessing an incredible

amount of computing power. (We are thinking of distributed systems and networks

of supercomputers.)

Based on the foregoing reasoning we chose to base our formalizations on

(formal) logic. Our point of view, accordingly, is one of primacy of logic over other

formal systems. Historically, this links us with the ideas evolved over the period of

the great works by Boole, Frege and Whitehead and Russell. Translated into

contemporary terms, this is viewed tantamount to some form of logic

programming.

Moreover, our intent is that we stay as close to Hom Clause forms as possible,

so that we can make Prolog our workhorse. What Kowalski [1979] calls

metalanguage processing is an acceptable enhancement of Prolog, when the

metalanguage is programmed in Prolog and some of our detailed level work might

be cast in this context. We don’t, however, make this a major point in our work at

this time. Recall that our primary stipulation is that we require our formal tool to be

programmable and executable. Very interesting is the fact that some software we

developed in ASP has already been used to emulate certain core features of Prolog;

12

it could probably be used as a vehicle to implement Prolog itself, though clearly this

would be outside the scope of this dissertation.

A primaty thrust of this dissertation is that we explore methodologies for

developing and utilizing tools that promote combining non-numeric with numeric

activities in simulation environments. We show how formal tools (we develop) are

utilized in a framework which combines a formal semantics approach and a

runnable specification notion, and in which the nature of the code is immaterial

(i.e., any combination of numeric and non-numeric).

1.3.2 Programming Language Definitions

In the case of formal semantics there are a multitude of options available to the

computer scientist, and references are provided for several of these within the

dissertation. We adopt a particular stance in relation to the underlying definitional

framework, the most important two features being: first, the constraint of logic, that

is, that the base methodology be a well-understood formal (mathematical) logic

system in which we present our definitions; and, second, that it be programmable on

a computer.

We found that some necessary key features exist in a form of relational

semantics whose recent history is connected principally with the development of

metamorphosis grammars [Colmerauer, 1978] and the logic programming (and

Prolog) movement [Kowalski, 1979]. We demonstrate the value of techniques

emerging from these activities to software operating at different levels in the

programming hierarchy, i.e., low-, intermediate- and high-level constructions.

More specifically, we aim to exploit to the maximum extent possible the

opportunity provided by having a formal logic tool implemented within a

programming language. We use Prolog to help us formally develop another tool -

a symbolic software development tool (ASP) together with a system of

13

programming language features and programming systems (Barrel - specifically,

the Barrel-F portion). We use the formal tool to help us accomplish the following

tasks which will be discussed later in this document:

e design and implement a programming language,

e perform formal analysis before implementation,

e formally analyze implementation tools,

* aid in extending formal definitions,

e develop programmable formal definitions,

e provide one formalism for all aspects of the definition,

* provide a formal basis for the core of an extensible language

1.3.3 Programming Systems Definitions

“Programming systems” is a phrase we use to denote entities consisting of the

highest level code groups we deal with in this dissertation. It might be easiest to

characterize them negatively, i.e., they are not assembly level; they are not high

level in the sense of languages such as C, Fortran, Ada and Pascal. On the positive

side of the ledger these entities are often very high level commands in some cases, in

analogy to 4th generation systems. A second case consists of utility processes and

routines called up specifically through some code word, as e.g., in some features

utilizing graphics included in our system.

For these systems we adopt the same theme as with programming languages:

primacy of formal logic methodology. The larger context of (programming)

systems, as is the case with programming language constructs, can be nicely

described in a lifecycle diagram such as that depicted in Figure 2.1. In fact, some of

the very high level instructions can be handled as if they were just another

high-level construction. In other cases, we give our systems’ specifications (directly)

in formal logic. Consistent with our earlier position, they must be developed in a

14

form of logic which has a programming basis. So, again, we call on Prolog, a

programming language based on first order logic, this time in the role of

specification language.

Prolog, as a specification language, has several advantages over many other

formalisms. Since Prolog is executable on a computer, it allows a more detailed

analysis of the specifications at the earliest possible stage in the software lifecycle.

The specification can be analyzed and executed before the implementation takes

place. This helps pinpoint problems with the specifications without the expense of

an incorrect implementation. Such specifications can serve as a prototype, or, in

many cases, may serve as an adequate implementation, eliminating the design and

implementation phases from the lifecycle, and (trivially) solving the correctness

problem in the wake.

Prolog has a firm theoretical foundation with well-defined fixpoint or

denotational semantics as well as its proof theoretic semantics [Moss, 1981]. For us

the advantage extends to the fact that we use Prolog in other complementary

studies, i.e., it has in effect been the method of choice for us. The decision to use

Prolog connects our work to prior work, e.g., that of Ruth Davis in her paper on

“runnable specifications” [Davis, 1982]. Kowalski also makes a strong case for the

use of Prolog as “runnable specifications” [Kowalski, 1979,1984a, 1984b]. For

illustrative purposes, we use logic programming to create a runnable specification

for an implementation of a decision table presentation processor to be

implemented within ASP as part of the Barrel family.

1.4 SYMBOLIC SOFTWARE DEVELOPMENT TOOLS

Assuming methodologies are in place, encompassing the formal aspects of

developing symbolic simulation software as we have depicted them above, we are

15

ready to turn our attention to the tools which will promote implementations that

are faithful to the formal specifications.

We have developed such a tool, which we submit as a candidate for providing

the capabilities conducive to faithful implementations. The tool is called ASP (or

AS2P, more recently). It is described thoroughly in Chapters 6, 7 and 8 of this

dissertation.

ASP is an extended version of a widely acclaimed general purpose macro

processor (Stage2). Significant changes have been made to Stage2 to produce the

current version of ASP. Newfeatures have been added and its method of processing

has been altered slightly. Relatively small changes in some cases have brought

about a substantial difference in the characteristics of the processor.

Stage2 is described as a processor which accepts character strings as input and

transforms them according to a set of definitions provided by the programmer

[White, 1973]. A typical example might be transformation from one programming

language to another. ASP retains the string transformation capabilities of its

predecessor, but it performs a different function as well. ASP can interpret the

strings as programming language statements and execute them. This change in

orientation induces a powerful and flexible tool for experimenting with and

developing programming language features and software systems.

We show ASP’s usefulness in developing each of the capabilities we earlier

deemed most useful to us for symbolic simulation, that is: 1) rule based (table)

processing ; 2) Lisp, Snobol and Prolog like features; 3) other more conventional

programming language features; 4) extensibility and flexibility; 5) formality.

These capabilities are demonstrated in the context of practical applications and

in the form of table processing systems and programming language features. The

latter are or can be incorporated in a series of “kits” of programming language

16

features, languages and systems tailored toward specific needs and programming

systems, often table processors, all implemented through the use of ASP. We

discuss these in detail in Chapters 8 through 12 of this dissertation.

We have used the same technique for defining Barrel-F to provide a formal

definition of a portion of the processing that takes place within ASP. It allows us to

have a programming language developed inside of a formally defined

implementation tool, the latter itself being viewed in its programming language

frame (it being in effect the assembly language of an abstract machine). The formal

definitions produce a formal description of one abstract machine, viewed through

its machine language, in terms of another abstract machine’s native language. We

take a closer look at this later in this document.

CHAPTER 2

COMPATIBLE EXTENSIBILITY IN DEFINITIONS
AND SYSTEMS

The major “theme” of this dissertation is to develop and/or utilize certain tools

in a variety of areas of computer science, e.g., tools that help to combine numeric

and non-numeric activities in simulation environments. We also show that the

tools can be developed in a theoretical framework which combines a formal

semantics approach and a runnable specification notion. In this chapter, we focus

on the formal semantics approach, or, more precisely, formal definitions of

programming languages.

In this case there are a multitude of options available to the computer scientist,

and references are provided for several of these. We present a particular point of

view in relation to the underlying definitional framework, the most important two

features being that it be a well-understood formal (mathematical) logic system in

which we present our definitions; and that it should be programmable on a

computer, not only because this makes it easier to check the definitions but more

importantly because the programming of interest to us involves extensible systems.

Our point of view is one of primacy of logic over other formal systems.

Historically, this links us with the point of view evolved over the period of the great

works by Boole, Frege and Whitehead and Russell. We found that the main

features we need exist in a form of relational semantics, which has a more recent

history connected principally with the development of metamorphosis grammars

(Colmerauer, 1978] and the logic programming and Prolog movement [Kowalski,

17

18

1979]. We will demonstrate the value of techniques emerging from these activities

to rather complex software operating at different levels in the programming

hierarchy.

Specifically, we want to exploit the opportunity provided by having a formal

logic tool implemented as a programming language, Prolog. We use Prolog to help

us formally develop another tool - a programming and systems development tool -

called ASP. We use the formal tool to help us accomplish the following tasks:

• design and implement a programming language,

• do formal analysis before implementation,

• formally analyze the implementation tools,

• easily extend formal definitions,

• develop programmable formal definitions,

• provide one formalism for all aspects of the definition,

• provide a formal basis for the core of an extensible language.

We now discuss each of these tasks in more detail before outlining the

methodology used to accomplish them.

e design and implement a programming language

The advantages of formally defining a programming language are well

documented in the literature (Burstall, 1969; Cleaveland & Uzgalis, 1977; Dijkstra,

1976; Hoare & Lauer, 1974; Marcotty, Ledgard, & Bachman, 1976; Neuhold, 1978;

Pagan, 1981; Rustin, 1972]. Typical of these advantages [Pagan, 1981] are:

• standardization of the programming language,

• reference for users,

• reference for implementors,

• proofs about programs,

• proofs of implementations,

19

• automatic implementations,

• improved language design.

Virtually all these advantages appear in our work and appropriate reference is

made as needed. In addition, as we shall see below, other advantages are realized in

our particular realm of operation.

We have designed a programming language called Barrel-F. Part of the design

process included a formal definition for the language. We have also implemented

the language through the facilities of the ASP system. The particular details will be

discussed later.

The formal definition had a definite impact on the design of the language.

Several improvements were made to the design because of issues brought out by the

definition. For example, the assignment statement was modified to allow the

evaluation of arithmetic expressions because, in developing the formal definition,

we realized that it had been omitted from the design. The if/then statement

dramatically changed in style and function. The type of looping control structure to

be incorporated in the language was decided upon.

The formal definition also had a definite impact on the implementation of the

language. The formal definition was used to guide the implementation in several

ways. We list some of the more influential features of the definition in this regard

and then discuss them more fully below.

e formal analysis before implementation

e formal analysis of the implementation tools

e easily extended formal definition

e programmable formal definition

It should be noted that these features are also included among the tasks listed

above.

20

• do formal analysis before implementation

Most of the advantages of formal definitions experience a boost in

effectiveness if formal analysis is strategically placed within the lifecycle. (We

provide Figure 2.1 to define the lifecycle notions we need; this description, of

course, is quite standard.)

" Specification j
Maintenance/Modification Design

Installation Implementation

.. " Test "■

Figure 2.1. The Software Lifecycle.

For example, for the usual case of a one-time definition of a language, the

formal definition should precede language implementation, consistent in time

sequence with the lifecycle diagram of Figure 2.1. In practice, formal analysis of a

programming language is most often done after the language has been widely used

for some time. Thus, improvements in the language design brought out by the

formal analysis are not likely to be incorporated in the language (or at least in the

early versions).

Jean Ichbiah, the principle designer of Ada, states:

Ada represents the first instance in the history of programming
languages of things being done in the right order....... For Ada,
we first created the design,.... [then] we made sure the description
of the language was precise, then a validation facility was
produced,.... finally, the compilers appeared. [Ada, 1984]

21

Barrel-F was developed along similar lines in that formal analysis was done

before the implementation. Also, a validation facility (in the form of test programs,

see Section 2.4) was developed before the implementation. This facility was used to

validate both the definition and the implementation.

e formally analyze the implementation tools

Not only have we defined the language but we have also defined the tool used

to implement it. We feel this enhances the probability that the implementation will

be correct. In our case, the implementation tool is ASP. We used the same

methodology to define ASP as we used to define the language implemented

through ASP. In many instances, the definitions overlap because most of the

language being implemented can be used to implement the language. A full

description of the definition can be found in Section 2.2 while the full description of

ASP is found later, in Chapters 5, 6 and 7.

e easily extend formal definitions

Barrel-F is a highly extensible language. Many extensions have already been

developed and can be used in any combination with Barrel-F (or even without it;

e.g., see Chapter 9). When a language that has been formally defined is extended

then the formal definition may become obsolete (though not always if the change is

an “extension” rather than a “modification”). We believe that, when possible, the

definition should be extended along with the language. Whether the extensions are

formally defined or not depends a great deal on whether the definition can be easily

extended. We intend to show that the definition of Barrel-F is easily extended (see

Section 2.2.1).

e develop programmable formal definitions

The definition should be programmable on a computer. This may place an

extra burden for some theoretical purposes, but when practical goals exist it is

22

extremely important. For example, in our case, our defined language is extensible

and the computerized definition helps in containing bookkeeping overhead.

The methodology we have chosen for the formal definition can also serve as a

computer program. Thus, the definition also serves as an implementation of the

language. However, we have chosen other avenues of implementation as well since

an executable definition does not always yield a user friendly or efficient

implementation. We have also tried to make the implementation available on as

many machines as possible by using several portability techniques (see Chapters 4

and 7).

Formal definitions can be used to answer questions that programmers or

compiler writers may have about the implementation, syntax, or semantics of a

programming language. Questions such as “does this statement work with this data

type” or “how does this statement work inside a loop” frequently arise. Trying to

answer the questions by looking at the definition alone can be very tedious and

complicated and even misleading, depending on the complexity of the definition.

When a definition is put on a computer and executed it allows questionable

statements to be used as input to the definition. Examination of the results along

with, perhaps, examination of the definition should answer most of the questions.

Execution of the definition also allows testing for completeness and accuracy.

Programs which thoroughly test the definition should be developed. These same

programs can be used to test the implementation of the language (i.e., the compiler

or interpreter).

• provide one formalism for all aspects of the definition

Most of the time, the methodology used to define the syntax of a language is not

used to define the semantics. Indeed, most formal methodologies are suitable for

defining only one aspect of the language, either the syntax (e.g., Backus-Naur

23

Form) or the semantics (e.g., axiomatic semantics). Thus, most of the time, two or

more separate methodologies are used to provide a complete definition. We desire

a methodology that can be used for both the syntax and the semantics.

e provide a formal basis for the core of an extensible language

C.A.R. Hoare, in his 1980 Hiring Award Lecture, recommends starting with a

small language and for certain applications, making specialized extensions of the

language toward these applications [Hoare, 1981]. Not only is Barrel-F a small

language but it is extensible as well.

We believe the small language should be formally defined to provide a stable

environment from which to build. Many times in an extensible environment

programmers must contend with descriptions of features that range from

non-existent to very detailed. It becomes very difficult to keep up with what others

have done. One way to help alleviate the problem is to provide a core set of

language features that can be used by all programmers. The core should remain

fairly constant. It should contain those types of statements which are used most

often by the programmers. That way the most popular statements are well defined

and used by everyone. We view Barrel-F as that core for the Barrel/ASP

programming environment. Formally defining the core stabilizes the environment

even further.

2.1 DESIGN OF BARREL-F

During the development of software (i.e. programming languages and systems)

for the Barrel/ASP system, the need for a core set of language features emerged.

Barrel-F is that core and is directly portable to all implementations of Barrel/ASP.

It provides a stable base from which to begin software development in Barrel/ASP

so that programmers do not have to reimplement these language features. Thus, all

24

programmers can have a common set of language features which they can extend to

their particular application.

Experience with the Barrel/ASP system was the most influential factor in

designing the Barrel-F language. Those features that were considered necessary

and useful no matter what the application were included.

Most of the features of Barrel-F have counterparts in high-level languages

such as C, Ada, Pascal, and Basic. Also included is a very high-level feature which

relates to a particular application (table processing) around which most of the

software development projects of Barrel/ASP have centered (see Chapter 11).

Some of the features are briefly and informally described in Figure 2.2 (more

detail on all of the statementsis given in Appendix 2.1). The language consists of 5

assignment statements (4 arithmetic in nature), 4 input/output statements, 1 very

high-level statement which operates on tables, 4 stack manipulation statements, 6

queue manipulation statements, 4 control statements, an execute statement which

can execute data, 9 functions including 3 which operate on stacks and 4 which

operate on queues, and a data structuring tool which operates on sparse arrays with

integer and character string indices similar to the MUMPS programming language

[Walters, Bowie & Wilcox, 1982].

2.2 FORMAL DEFINITION OF BARREL-F

For reasons discussed above we feel the design of our programming language

would not be complete without providing a formal definition. We seek a formal

methodology which most closely relates to those goals and tasks outlined in the

introduction above. One such methodology fits very closely: Metamorphosis

grammars (M-grammars).

M-grammars were chosen instead of other formalisms for the following

reasons, most of which have a direct bearing on what we set out to accomplish:

25

setq
execute

assigns a value to a variable
execute the value of the variable as if it were a
statement

readch input a value into a variable

ty
cbk

output a value
determine if the value of the variable is a valid
condition or action (i.e., suitable for inclusion in a
codebook as defined for the Barrel/ASP Decision
Thble Entry, Reformatting,Translation, and
Presentation System)

sen
push
pop
inqfront
remqfront
loop/leave/again
if/then/else

output the contents of an array
push a value onto a stack
remove a value from a stack
insert a value onto the front of a queue
remove a value from the front of a queue
looping control structure
traditional if/then/else statement

goto
stop
size

traditional goto statement
stop execution of the program
function; returns the precision if the argument is a
number, returns the length if the argument is a
character string

concat function; returns the concatenation of the character
string arguments

top
front

function; returns the value currently on top of the stack
function; returns the value currently on the front of the
queue

j plink operator; allows indexing of arrays

Figure 2.2 Summary of some of the Barrel-F Features.

• logic orientation;

• programmable definition;

• ease of understanding;

26

• complete description of the language;

e easily extended.

M-grammar notation is based on first order predicate logic. M-grammars

provide the facilities of other formalisms such as W-grammars and Attribute

Grammars but are easier to use and understand. The relational semantics

presented here use Prolog as a metalanguage instead of the more traditional

lambda calculus. Prolog has a well-defined fixpoint or denotational semantics as

well as its proof theoretic semantics, which gives the definitions an adequate

mathematical basis [Moss, 1981].

The fact that M-grammars are based on first order predicate logic emphasizes

the consistency found throughout this research. Logic is also used in this research

project as specifications for a table processing system (see Chapter 3).

Most Prolog systems allow the use of a particular notation of M-grammars (the

notation may vary from one Prolog system to another and are sometimes referred

to as Definite Clause Grammars [Pereira & V&rren, 1980]). M-grammars are

parsed by the Prolog interpreter (or compiler) and converted to regular Prolog

predicates. Because of this, M-grammars can be executed as if they were Prolog

programs. Also, the grammar can be augmented with regular Prolog clauses which

can perform extra checking or data manipulation.

Some formalisms provide quite a challenge to the uninitiated in order to

understand them (e.g., denotational semantics). M-grammars are somewhat easier

to read and understand because first order predicate logic is easy to understand.

People familiar with Prolog, a widely known logic programming language, will have

little trouble with the definition.

M-grammars can be used to describe both the syntactic and semantic

components of a programming language. Thus, a single formalism provides a

complete description of the language.

27

We consider M-grammars to be easily extended. We intend to show the

complexities involved in making an extension to the the definition, using as an

example the stack and queue statements in Barrel-F which were added after the

definition had been completed (see Section 2.2.1).

Appendix 2.2 relates several interesting features of the Barrel-F definition.

The most interesting point is the use of continuations to define the goto statement,

a technique first introduced by Strachey and Wadsworth [Strachey & Wadsworth,

1974] and commonly used in denotational semantics [Gordon, 1979]. Also

mentioned are several shortcomings of the definition. None of these are significant

and most pertain to the syntax and not the semantics of the language.

We now give an informal description of some of the details of the M-grammar

definition of Barrel-F. The scope of this dissertation does not allow much of a

tutorial on how M-grammars and Prolog work. Therefore, some familiarity with

them may be necessary to understand the following text. There is excellent

documentation available on how the grammar feature of Prolog works [Clocksin &

Mellish, 1981; Moss, 1980; Moss, 1982; Pereira, 1983]. Provided below is an

example of how the definition can be read and an explanation of the output

produced by the execution of the definition. All Prolog and M-grammar examples

assume a working knowledge of version 1.4 of C-Prolog [Pereira, 1983].

The definition presented here is modeled after [Moss, 1981]. Appendix 2.3

contains a complete listing of the definition which is conveniently divided into 3

major sections: lexemes (corresponding to the lexical syntax), morpheme

(corresponding to the syntax), and sememe (the semantics). The top level relation

is shown in Figure 2.3 in Prolog notation rather than M-grammar notation so that

we can see the relationship between the 3 parts and their parameters. The top level

relation is a predicate with four parameters:

28

• Tbxt - the text of the program,

e Input - the input file,

e Output - the output file,

• Result - the result of the program.

Normally, Tbxt and Input are provided as input (i.e., they are instantiated when the

predicate is invoked) and Output and Result are output (i.e., given values by the

program).

barrelf(Text, Input, Output, Result)
lexemes(Tokens, Tbxt, []),
morphemeQUree | Memory], Tokens, []),
sememeCRee, state(Memory, [], T-ee, Input, Output, ok),

state(Memoryl, Continuation, Tree, Inputl,
Outputl, Result)).

Figure 2.3. The top level relation of the M-grammar definition of Barrel-F
shown here in Prolog notation.

The lexemes predicate takes the text of the program and breaks it up into

individual tokens, discarding comments and irrelevant characters. The third

argument to lexemes (the empty list) provides the difference list of M-grammars. It

effectively says that lexemes should consume all of the text during processing.

The morpheme predicate operates on the tokens produced by lexemes and

builds a list composed of two entities: Ttee and Memory. Tree is an abstract syntax

tree of morphemes (indivisible grammatical elements). Memory is the storage

locations named by the program.

The sememe relation involves the abstract syntax tree, the initial state of the

abstract machine executing the program, and the final state of the abstract machine.

The use of states allows the definition to model the contents of the abstract machine

at all times during the execution of the program. The state involves 6 entities:

• Memory - the storage locations produced by morpheme,

29

• Continuation - the “rest” of the program,

e Tree - the abstract syntax tree produced by morpheme,

e Input - the input file,

e Output - the output file,

e Result - the result of the execution.

All parameters of the state except the Itee change over the course of

processing (e.g. Memory vs. Memory 1). The contents of the memory will be

different as variables are assigned different values. When execution stops the input

file will contain only those values not “read” by the program. The output file will

reflect any output performed by the program. The Result parameter will reflect any

errors encountered during execution. If no errors occur then the Result should be

“ok” (the value that we start with in the initial state).

The Continuation parameter is a list of the rest of the statements to be executed

by the program. Figure 2.4, which shows the top level sememe relation along with

the continuation relation in Prolog format, illustrates the use of continuations.

Initially, the continuation list (Cont) is empty (see Figure 2.3 above). We take the

first statement to be executed (SI) from the abstract syntax tree and put the rest of

the statements (S2) on the front of the continuation list. Then, after the statement is

executed, the continuation relation is called which in turn calls the sememe relation

with next statement, or list of statements, from the front of the continuation list.

The execution of the goto statement simply entails replacement of the continuation

list with the statements following the specified label.

We now demonstrate a little bit of the M-grammar notation using the lexemes

relation as an example. The top-level relation for lexemes is shown in Figure 2.5.

The argument to lexemes is a list which will be instantiated with the tokens of

the program when the definition is executed. The other two arguments that we saw

30

/*** process list of abstract syntax statements ***/
sememe([Sl | S2], state(M, Cont, T, I, O, R), St2)

sememe(Sl, state(M, [S2 | Cont], T, I, O, R), Stl),
continuation(Stl, St2).

sememe([J)—> [].
/*** continue with next statement on continuation list ***/
continuation(state(M, [S2 | Cont], T, I, O, R), St2)

sememe(S2, state(M, Cont, T, I, O, R), St2).
continuation(state(M, [], T, I, O, R), state(M, [], Tl, I, O, R)).

Figure 2.4. The top level sememe relation and the continuation relation.

/* produce a list of tokens from the list of characters *7
lexemes(Tokens) —> [CH], {isnewline(CH)}, lexemes(Tokens).
lexemes(Tokens)—> comment, lexemes(Tokens).
lexemes([Head|Thil]) —> token(Head), lexemes(Tail).
lexemes([])—> [].

Figure 2.5. The top-level relation for the lexical syntax.

in the Prolog notation in Figure 2.3 (the text of the program and the empty list)

make up the difference list and are hidden in the M-grammar notation.

One can “read” or interpret the lexemes relation as follows. The first line of

Figure 2.5 is a comment. The second line states that if we get a character from the

program (the variable CB) and it is a newline character (i.e., the end of a line of

text) then we simply call lexemes again with the same argument. Thus, we

effectively ignore newline characters in the program by not making them part of the

tokens. The third line says that we also ignore comments. The fourth line says that

if we find a token in our program then it becomes the head of the list of tokens that

we are building. And the rest of the list is built by calling lexemes again. The fifth

line says that if there are no more characters in our program then we return the

31

empty list as our list of tokens. One would have to look further in the definition to

see how a comment or a token is defined.

When executed, the definition accepts as input a program written in the

Barrel-F language. To facilitate the explanation, we will use the example in Figure

2.6, a Barrel-F program which finds the factorial of a non-negative integer. The

comments should make the program self-explanatory.

(readch ’4’ number))

(setq i ’1)|

(setq fact ’1)|

get a number to compute

initialize a counter

initialize our answer

(if (number > ’0) then do)| work on positive numbers

(loopl)| begin our loop

(if (i = number) then leavel)) have we looped enough?

(incr i)

(setq fact fact*i)
(againl)|

(endif))

go to beginning of loop

end of 1st if statement

(ty ’the factorial of .number,’ is .fact)

(stop)

Figure 2.6. An example of a program to be used as input to the Barrel-F
M-grammar definition.

Figure 2.7 shows the output produced when the program in Figure 2.6 is used as

input to the definition. The line beginning with “Tokens = ” is the list of tokens

produced by the lexical syntax portion of the definition. Tokens are derived from

groupings of characters. Possible identifiers (i.e., sequential strings of

alphanumeric characters) are flagged as arguments to the “id” functor (e.g.,

id(readch)). Non-alphanumeric characters are left as is. Of course, comments and

end-of-line characters are stripped out.

32

Tokens = [,(,id(readch), ,’,id(4)/, ,id(number),),, (,id(setq), ,id(i), ,’,id(l),),
,(,id(setq), ,id(fact), ,’,id(l),), ,(,id(if), ,(,id(number), , >,
,',id(0),), ,id(then), ,id(do),), ,(,id(loopl),), ,(,id(if), ,(,id(i), ,=,
,id(number),), ,id(then), ,id(leavel),), ,(,id(incr), ,id(i),),
,(,id(setq), ,id(fact), ,id(fact),*,id(i),), ,(»id(againl),),,

(,id(endif),), ,(,id(ty), ,’,id(the), ,id(factorial), ,id(oQ,
id(number),„’, ,id(is), ,„id(fact),), ,(,id(stop),)]

Tree = [input(id(number)),setq(id(i),val(l)),setq(id(fact),val(l)),
if(gt(deref(id(number)),val(0)),[loop([],equ(deref(id(i)),
deref(id(number))),[setq(id(i),plus(deref(id(i)),
val(l))),setq(id(fact),times(deref(id(fact)),deref(id(i))))])],[]),
output([val(the factorial of),deref(id(number)),val(is),

deref(id(fact))])]
Mem before sememe = [loc(number,undef),loc(i,undef),loc(fact,undef)]
Enter your input in list form and end it with a period: [val(4)].
Mem after sememe = [loc(number,val(4)),loc(i,val(4)),loc(fact,val(24))]

Input = []
Output = [val(the factorial of 4 is 24)]
Result — ok

Figure 2.7. The output produced by executing the M-grammar definition using
the program in Figure 2.6 as input.

The abstract syntax tree, produced by the syntax portion of the definition, is the

list following “Ti-ee =” in Figure 2.7. Each line of the program in Figure 2.6 is

converted to an abstract syntax statement. Comparison of the source program with

the abstract syntax version should make the abstract syntax version readable.

TWo of the more interesting abstract statements are the if/then/else and

loop/leave/again statements. The abstract syntax for the if/then/else statement is:

if (boolean expression,
[list of statements to execute if true],
[list of statements to execute if false])

33

In the example, there are no statements to execute when the expression is false (i.e.,

there is an empty list). That agrees with the logic of the program, i.e., there is no

“else” portion of the if/then/else statement.

The abstract syntax for the loop/leave/again statement, where the condition for

leaving the loop can be placed anywhere within the loop, is:

loop([statements], boolean expression, [statements])

Again, we note that, in the example, the list of statements before the boolean

expression is empty.

The syntax portion of the definition also produces the output beginning with

“Mem before sememe = ”. This is the storage locations of the program, i.e., the list

of identifiers and their values (all initially undefined).

Before the semantics portion of the definition is executed the user is asked to

enter all input values for the program. This represents the input file, corresponding

to the Input argument in Figure 2.3. The values are entered in list format as

arguments to the “val” functor. In the example, only one value is entered, 4.

The rest of the output is produced by the semantic portion of the definition. It

consists of the values which make up the final state of the abstract machine. The

output beginning with “Mem after sememe = ” is the storage locations and the

values they had when execution of the program ended. The input values which have

not been read by the program are displayed after “Input = ”. The empty list

signifies that all values in the input file were read. The output values are shown

after “Output =”. The line beginning with “Result =” shows the status of the

abstract machine when execution stopped. Possible values are: “ok” if execution

ended normally, “stopped” if a stop statement was encountered before the end of

the program, and “I/O error” if an input/output error occurred.

34

2.2.1 Making Extensions to the Definition

To demonstrate the extensibility of both the Barrel/ASP system and the

M-grammar methodology, both the Barrel-F language and its formal definition

were extended by adding functionality in the form of new statements. In keeping

with the previously stated “ideal” practice of specification before implementation

the definition was extended first.

Rather than add a random set of statements to the language, just for the sake of

example, we decided to make the extension meaningful. Statements which

manipulate stacks and queues have been touted as useful additions to many

programming languages and, yet, are scarcely found. We followed the

recommendation of Hull, Thkaoka, Jones & Bryant [1985] and Mills [1983] and

added four stack manipulation statements, six queue manipulation statements,

three stack functions, and four queue functions to Barrel-F.

Modification of the lexical syntax portion of the definition, the lexemes

relation, was not required. For every statement and function added to the

language, we had to add a relation to the syntax portion, the morpheme relation, of

the definition. Additionally, two extra relations were required to register the stack

and queue identifiers as variables. The extra relations were very easy to generate

and could be added by someone familiar with the definition and M-grammars in

less than a days time. For example, the relation for the statement which copies one

stack to another, the stcopy statement, is simply:

stackstm(Env, stcopy(Stackl, Stack2)) — > [id(stcopy)], [’ ’],
stidentifier(Env, Stack 1, ’ ’),
[• 1,[id(to)J, [’ '],
stidentifier(Env, Stack2,

The relation indicates that the keyword stcopy is followed by a blank, followed by

an identifier, followed by “ to ”, and followed by another identifier.

35

For the semantics portion of the definition, the sememe relation, we basically

needed to add one relation for each of the statements and functions added to the

language (several other relations were added but only for readability purposes).

Some of these relations were more difficult to develop than the morpheme

relations because you have to define the changes made to the state of the abstract

machine when the statements or functions are executed. Also, more error checking

must occur at the sememe level. Again, we use the sememe relation for the stcopy

statement as an example.

sememe(stcopy(id(Stackl), id(Stack2))) —>
lookup(Stackl, val(Maxl, Stvalsl)),
({equal(Maxl, undef)},
stackerror(Stackl, ’not initialized, stcopy ignored’);
{notequal(Maxl, undef)},
lookup(Stack2, val(Max2, Stvals2)),

({equal(Max2, undef)},
stackerror(Stack2, not initialized, stcopy ignored’);
{notequal(Max2, undef), length(Stvalsl, 0, Lenl)},
(gt(val(Lenl), Max2, val(true)),
stackerror(Stack2, ’overflow occurred, stcopy ignored’);
le(val(Lenl), Max2, val(true)),

update(Stack2, val(Max2, Stvalsl))))).

First we look up the value of the first stack, make sure it has been initialized,

look up the value of the second stack, make sure it has been initialized, make sure

the second stack is big enough to hold the first stack, and then update the second

stack with the value of the first

The implementation of the new statements in Barrel-F was very

straightforward. There was nothing unusual or problematic about the

programming effort.

36

2.3 IMPLEMENTATION OF BARREL-F

Once Barrel-F had been formally defined we implemented it through the

facilities of ASP using the definition as a guide. Before we describe the

implementation, we will briefly describe the Barrel/ASP system.

The Augmented Stage2 Processor (ASP) is an extended version of a widely

acclaimed general purpose macro processor (Stage2) [Waite, 1973]. The

augmentations have allowed us to use ASP as an interpreter. It provides a powerful

and flexible tool used for experimenting with and developing programming

languages and software systems. ASP is described in detail in Chapters 5,6 and 7.

Barrel/ASP is a system of applications and pieces of programming languages

that have been implemented through the facilities of ASP. The applications focus

primarily on table processing. The pieces of programming languages consist of

various features or statements from particular programming languages such as C,

Lisp, and Basic. They were developed to show the potential of ASP, to provide tools

for implementing applications, and to experiment with programming languages.

Barrel/ASP is described in detail in Chapters 8 through 12.

The implementation of Barrel-F involved writing macros for each of the

Barrel-F statements. These macros are listed in Appendix 2.4. There were also

macros written for several other statements which are not part of the Barrel-F

language but were used solely to aid in writing the Barrel-F macros. Another set of

general purpose programming language statements (called BSYS, see Chapter 9),

also implemented through ASP, were used in writing the Barrel-F macros.

The problem of formally proving the correctness of the implementation was

not undertaken. It should be possible to use axiomatic semantics to address the

problem. Moss discusses using M-grammars to implement axiomatic semantics

37

[Moss, 1981; Moss, 1982]. It should be relatively easy to implement an axiomatic

semantics approach in Barrel/ASP.

2.4 TESTING OF BARREL-F

Testing began before implementation. Fifty-seven programs, listed in

Appendix 2.5, were created to test the formal definition. These same programs

were used to test the implementation.

While most of the test programs are short and were not designed to be very

meaningful, except as a way of exercising all of the features of Barrel-F, an effort

was made to include some programs which would be meaningful to a user. For

example, one of the test programs computes factorials (see Section 2.2). Also

included is a module from the Barrel/ASP Decision Thble Entry, Translation, and

Presentation System (see Chapter 11). It consists of approximately 80 lines of code.

It allows the user to enter the conditions and actions of a decision table and checks

for consistency and redundancy.

Many of the programs were designed to test the restrictions of the language.

For instance, there are several programs which test the use of the goto statement

with the looping control structure. Branches are made into, out of, and within a

loop to determine what will happen in those circumstances.

The short length of the programs allows the tester to anticipate the outcome of

executing the definition against one of the programs. Thus, the tester is able to

visually determine if the test were successful. The same program can be executed

against the implementation and the results compared. This helps to assure

correctness of the implementation. All of the programs used to test the formal

definition were also used to test the implementation.

38

2.5 FORMAL DEFINITION OF BARREUASP

The reasons for providing a formal definition of the tool used to implement

Barrel-F have already been given earlier in this chapter. We will now discuss the

details of that definition.

The technique of writing macros for ASP is covered in Chapter 5. The

following is a brief summary to facilitate the discussion of the formal definition of

Barrel/ASP.

ASP macros consist of templates followed by code bodies. A template and

code body has to be written for every programming language statement that is to be

processed by ASP. A statement submitted to ASP for processing takes the form of a

call to one of the macros. The call goes through a pattern-matching process,

matching the statement against the set of templates which are currently in ASP’s

memory. A call is associated with a particular macro if it matches all of the constant

part of the template.

Parameters can be passed to macros by specifying place holders within the

constant portion of the macro template. The parameters become the portions of

the call which do not match the constant portion of the template, i.e., which fit into

the parameter place holders.

The number of characters in a parameter can vary. For example, suppose the

place holder signifying a parameter is the # symbol and we have a template “hello

there, The call “hello there, John” would match that template and the

parameter would be John, “hello there, Kevin” would also match the template and

the parameter would be Kevin.

Each template has a code body associated with it. Code bodies tell ASP what to

do when a particular template is matched. Code bodies consist of zero or more

lines which are output as text, call other macros, or request that the ASP processor

39

perform some function. Before any of these activities take place each code body

line is scanned for parameter transformations and processor functions.

Parameter transformations, specified by particular sequence of characters

placed within the code body line, cause the ASP processor to transform one of the

parameters and place the result in the line of text being built. An example is

treating the parameter as an arithmetic expression and evaluating it. There are 9

parameter transformations, 6 of which are included in the Barrel/ASP definition

(see Figure 2.8).

The other 3 parameter transformations would be easy to define but were

omitted because they are not heavily used in practice. For example, parameter

transformation number 2 is simply an extension to parameter transformation

number 1. The value of the parameter is treated as a symbol to address the memory

of ASP. Instead of placing nothing in the constructed line if the symbol is undefined,

as is done with parameter transformation number 1, the symbol is given the current

value of the symbol generator (a number) and the symbol generator is incremented.

It would be a trivial matter to formally define a symbol generator. The parameter

transformations and processor functions are described in more detail in Chapter 5.

Processor functions, specified by another particular sequence of characters,

cause the processor to perform a function. Processor functions include activities

such as looping, input/output, symbol manipulation, etc. There are 18 processor

functions, 10 of which are included in the definition (see Figure 2.8). Only one of

the undefined processor functions would be difficult to define. The function which

adds macro definitions to the ASP memory deals with a portion of the ASP

processor which is not described by the formal definition.

When we say we have provided a formal definition of Barrel/ASP what we

mean is that we have formally defined the code body lines in Barrel/ASP. Each line

40

parameter transformations
0 - copy a parameter to the constructed line
1 - copy a string from memory to the constructed line
4 - copy the value of a parameter, treated as an arithmetic

expression, to the constructed line
5 - copy a parameter length to the constructed line
6 - reset the value of a parameter
7 - context controlled iteration

processor functions
0 - terminate processing
1 - output a line without rescanning
3 - store information into memory
4 - set skip counter unconditionally
5 - set skip counter conditionally on string equality
6 - set skip counter conditionally on the relative value of two

expressions
7 - count-controlled iteration
8 - advance an iteration
9 - escape from processing the current code body
i - input a value

Figure 2.8. The parameter transformations and processor functions included in
the formal definition of Barrel/ASP.

in a code body can be thought of as a programming language statement. It will

either cause the processor to perform some function, call another macro, or

produce a line of text to be output. Thus, in many ways, the definition is similar to

definitions of traditional programming languages (like Barrel-F). Where it differs

is that all parameter transformations and processor functions in the code body line

must be taken care of. Then the definition must decide if the line of text that has

been built matches another template or if it should be output.

41

The only templates known to the definition are those of Barrel-F statements.

So, if the line of text that has been built is a Barrel-F statement it is executed.

Otherwise, it is output. It is possible to include the Barrel-F statements within the

Barrel/ASP definition because most of the Barrel-F statements can be used within

the code bodies.

An informal description of the processor functions, parameter

transformations, and Barrel-F statements included in the definition is provided in

Appendix 2.6. All of Barrel-F except the loop/leave/again, goto, and if/then/else

statements is included in the definition. These control structures are not included

because the way in which they are implemented precludes their use in code bodies.

The lines of the code body are kept in ASP’s memory and ASP expects the control

structures to be in a file because the control structures actually manipulate the file

that the control structure is in. This is not a limitation since they can be functionally

replaced by processor functions (and in practice, they have not been missed).

Extending the formal definition to include all of the capabilities of Barrel/ASP

would be an intriguing study in the use of formal definitions for something other

than traditional programming languages. One would have to model the input of the

macro definitions, their subsequent storage in the ASP “memory”, and the pattern

matching performed when matching a macro call against the templates. We do

believe such an extension to be possible, although some major changes to the

structure of the current definition would be necessary.

Appendix 2.7 lists the formal definition of Barrel/ASP. It is similar to the

formal definition of Barrel-F. Lexemes had to be expanded to recognize parameter

transformations and processor functions as tokens. Morpheme had to be modified

to handle the lines of text being built, called constructed lines. When a line does not

match one of the Barrel-F statements it is treated as a constructed line and passed

42

on to sememe as such. Sememe evaluates any processor functions and parameter

transformations in the line. Then sememe again has to decide, just like morpheme,

if the constructed line is a Barrel-F statement. If not it is output. But if it is, then

sememe has to give the statement back to lexemes and morpheme to be evaluated

as a Barrel-F statement.

The state of the abstract machine changed somewhat from the Barrel-F

definition. The Tkee entity is no longer needed because in Barrel/ASP there is no

goto statement directing you to a specific label so you no longer need to search

through the abstract syntax tree for that label. Instead you tell the processor to skip

over a specific number of lines (processor functions 4,5, and 6). An entity to keep

up with the skipping had to be added. It determines whether skipping is taking

place inside a loop or outside, the depth of nesting of loops, and how many lines are

being skipped. Also, an extra file, Chan3, for modeling the output of the

constructed lines which do not match another template (in this case, a Barrel-F

statement) was added.

Appendix 2.8 details some of the more interesting points about the definition.

Mentioned, among other things, are the use of continuations in the definition, the

additional output channel added to the definition, and the constructed line concept.

Also mentioned are several shortcomings of the definition. None of these are

significant and most pertain to the syntax and not the semantics of the language.

As with the Barrel-F definition, a complete suite of 69 programs (actually, in

this case, code bodies) which test the Barrel/ASP definition was created. They

include programs to test the parameter transformations, processor functions,

constructed lines, Barrel-F statements, and Barrel-F statements containing

parameter transformations. Some of the programs consist entirely of the high level

Barrel-F statements. Some are the same ones used to test the Barrel-F definition.

43

Some of those were re-written to exclusively use the low level parameter

transformations and processor functions. All of the test programs can be found in

Appendix 2.9.

Most formal analysis in computer science research has been done on features

of high-level languages such as Pascal, Ada, Algol, and PL/1. Little, if any, has been

done on features of lower level languages and those of languages such as Forth and

the Barrel family where a mixture of low level and high level statements can be

exploited as needed. The ability to intermix statements from several levels of the

programming language hierarchy is an integral opportunity when writing code

bodies within the Barrel family. Code bodies may consist entirely of high level

statements such as those employed in the definition of Barrel-F. Or they may

consist of low level statements recognized directly by the ASP processor, such as the

ASP processor functions. Or, finally, they may contain a mixture of the two. The

programmer has flexibility over such aspects as efficiency and readability as

opposed to, for example, programming exclusively at a single level in a high-level

language.

Furthermore, in also defining Barrel/ASP code bodies, formal methodologies

are being applied in an extended mode, especially when the full package of tools,

formal methodologies, and applications (such as table processing, neural nets and

simulation presented here and in the chapters to come) are considered. We have

provided some insight into how to use these formal methodologies for something

beyond the usual case of conventional programming constructions. That is, the

scope of our formal analysis goes beyond the level of “programming language” by

providing a formal basis for an integral part of the overall scheme of ASP

processing through definitions obtained from code bodies, along with, of course,

the other means of exploiting this style of programming.

CHAPTERS

RUNNABLE SPECIFICATIONS BASED ON LOGIC

In this chapter we develop the same theme of primacy of formal logic

methodology as in the previous chapter. This time, however, we apply it to the

potentially much larger domain of applications, i.e., programming systems and

environments.

The larger context returns us again to the lifecycle depicted in Figure 2.1. Our

point of view in this lifecycle frame is that systems specifications are best given in

formal logic. Consistent with this position is that they be developed in a form of

logic which has a programming basis. In our case, we use Prolog, a programming

language based on first order logic, as the specification language.

Prolog, as a specification language, has several advantages over many other

formalisms. Since Prolog is executable on a computer, it allows a more detailed

analysis of the specifications at the earliest possible stage in the software lifecycle.

The specification can be analyzed and executed before the implementation takes

place. That should help pinpoint problems with the specifications without the

expense of an incorrect implementation. The specifications can serve as a

prototype, or, in many cases, it may serve as an adequate implementation,

eliminating the design and implementation phases from the lifecycle.

Prolog also has a firm theoretical foundation with well-defined fixpoint or

denotational semantics as well as its proof theoretic semantics [Moss, 1981). For

us, the advantage extends to the fact that we use Prolog in other complimentary

studies, i.e., it has in effect been the method of choice for us.

44

45

This decision connects our work to prior work, e.g., that of Ruth Davis in her

paper on “runnable specifications” [Davis, 1982]. Kowalski also makes a strong

case for the use of Prolog as “runnable specifications” [Kowalski, 1984a; Kowalski,

1984b]. We use logic programming to create a runnable specification for an

implementation of a decision table presentation processor in Barrel/ASP,

considered here as an environment element in a programming system. We note

that the developers of the UNIX system seriously considered adding a decision

table processor to the overall UNIX system to join other processors such as lex,

yacc, m4, graph, and so forth [Johnson, 1982].

The application also connects us with another stream of work [Reilly, Salah &

Yang, 1987; Salah, 1986] relating logic programming and Prolog to a range of

decision table processing. Weiss and Kulikowski [1984] discuss the sense in which

decision table rules may be viewed as an extension to production system rules. If we

adopt Minsky’s statement that production systems are “just” another way to

program a system or the more extravagant claims that, in so-called table-dominant

systems, decision tables can be used to replace programming altogether (see

[Metzner & Barnes, 1977] for discussion of this and related points), we would be

viewing them in programming language terms. Here we view them in the systems or

environment context, in part to follow Salah, Reilly and Yang into aiding in the

set-up of connections of decision table processors to relational databases and other

systems.

3.1 SPECIFICATION

In order for the reader to understand the problem we are trying to solve, i.e.,

the implementation of a presentation processor, we must informally define a

presentation processor. A computerized presentation processor is generally an

interpreter which prompts the user to provide input. Upon receiving it, the

46

processor checks a table, matching the input with table contents, and reports the

appropriate output to the user. Typically, the table’s conditions (questions) are

displayed (presented) to the user; the user selects an appropriate option; and the

actions (answers) are presented to the user. We describe presentation processors in

more detail in Chapter 10.

car make
condition

cord
good

cord
poor

reo
good

reo
poor

duesenberg
good

duesenberg
poor

commission
shop-work
manager-ok

5%
no-need
no-req

1%
3-weeks

no-req

10%
no-need

no-req

5%
3-weeks

no-re<

variable
6-weeks

req

variable
6-weeks

req

Figure 3.1. Representation in table form of a decision procedure relating input
values for “car make” and “car condition” to output values entitled

“commission”, “shop-work”, and “manager-ok.”

Most of the initial work of developing the specification was done in conjunction

with Salah and Reilly [Salah, 1983; Salah, Reilly, & Barrett, 1982). Informally, the

specification states that if we have the decision table shown in Figure 3.1 then we

want our presentation processor to prompt us for the “car make” as in:

car make ?

We would respond with an appropriate answer such as “cord.” The system would

then prompt for the condition as in:

condition ?

We would respond with an appropriate answer such as “good.” Finally, the results

are returned to us:

commission is 5%

shop work needed is no-need

manager ok is no-req

The prompting should repeat without further intervention by the user. We “escape”

47

by entering the word, no, in response to the first prompt, i.e., the prompt for car

make. Any input of values not in the table produces an error message.

We present in Figure 3.2 a Prolog specification for our presentation processor.

The last six clauses are the basic facts for the system, corresponding to the rules of

the decision table.

Execution of the specification starts by entering “dt.” to call the dt predicate.

The Prolog monitor responds with a prompt for the appropriate type of input, i.e.,

for car make. The user must know the allowable makes of cars. After reading the

car make, the system prompts for condition. Again, the user must know the

allowable conditions. Obviously, a change could be asked for here, e.g., additional

detail in prompting so the user does not have to know all possible values of each

predicate place.

After receiving the user’s input, the dt predicate calls the intermed predicate,

which in turn decides whether to suspend processing or to call the dec predicate.

This decision is based on the first of the two intermed predicates (i.e., whether the

user enters “no” for car make). If this predicate fails, the second intermed predicate

is invoked; it calls upon the dec predicate to process the table.

The dec predicate is the workhorse of the processor. It checks the table (i.e.,

the table predicates) for a match and outputs the results. If there are no matches it

outputs an appropriate message.

An example of the execution, in Figure 3.3, shows that the specification is

in-line with our earlier informal description of what we wanted the processor to do.

The user starts the action by calling the dt predicate which initiates the prompting

for the car make and condition. The correct results are output (as comparison with

the table in Figure 3.1 will prove) and prompting is initiated automatically again.

48

dt writeCcar make ? ’), read(Cl), write(’condition ? ’), read(C2),

intermed(Cl, C2).
intermed(no, C2) write(’so long now’), nl.
intermed(Cl, C2) dec(Cl, C2), nl, write(’we continue’), nl, dt

dec(Cl, C2) table(Cl, C2, Al, A2, A3),
write(’commission is ’), write(Al), nl,
write(’shop work needed is ’), write(A2), nl,

write(’manager ok is ’), write(A3), nl.

table(cord, good, Al, A2, A3) Al = ’5%’,
A2 = ’no-need’,

A3 = ’no-req’.

table(cord, poor, Al, A2, A3) :- Al = ’1%’,
A2 = 3-weeks’,

A3 = ’no-req’.

table(reo, good, Al, A2, A3) :- Al = ’10%’,
A2 = ’no-need’,
A3 = ’no-req*.

table(reo, poor, Al, A2, A3) :- Al = ’5%’,
A2 = 3-weeks’,

A3 = ’no-req’.

table(duesenberg, good, Al, A2, A3) :- Al = ’variable’,
A2 = ’6-weeks’,
A3 = ’req’.

table(duesenberg, poor, Al, A2, A3) :- Al = ’variable’,
A2 = ’6-weeks’,
A3 = ’req’.

Figure 3.2. A Prolog specification of the desired presentation processor.

Two more sets of values are entered before the user enters “no” to end the

prompting.

49

The decision table processor we are implementing in this chapter has a major

limitation. The decision table to be processed is hard coded into the processor. To

process a different table some simple modifications to the processor must be made.

The specification for such a processor would either have to represent decision

tables abstractly or it would have to change for each table (the approach we have

taken). Abstract representation of a decision table might be adequate for a “pen

and paper only” specification but might not be possible in specifications which are

designed to be executed on a computer (one of our requirements).

> | ?- dt.
> car make ? cord.
> condition ? good.

commission is 5%
shop work needed is no-need

manager ok is no-req
we continue

> car make ? duesenberg.
> condition ? poor.

commission is variable
shop work needed is 6-weeks
manager ok is req
we continue

> car make ? no.
> condition ? no.

so long now
yes

> l ?-

Figure 3.3. A sample dialogue from the execution of the Prolog specification
of our presentation processor. The lines beginning with “ > ” show
where the user was required to enter information.

50

To properly address this problem, we extend the methodology to automatically

generate a runnable specification for each decision table to be processed. In

Chapter 11 we describe a system which guides the user in developing decision

tables. These tables are to be used as input to various decision table processors. We

have modified the application so that a runnable specification is automatically

generated for each decision table. Chapter 11 covers the details of the system.

A key point of runnable specifications is that the logic program can serve as a

presentation processor on a system which has a Prolog processor. In this sense, it

could be used directly in the schemes of Salah et al. Our goals are to extend the

applicability to a broader context, for example, to contexts in which the C

programming language is an integral part of the computational world. The prime

applications planned at the time of this writing are in roles relating to simulation

environments [Barrett & Reilly, 1987; Reilly & Barrett, 1989; Reilly, Barrett &

Lilly, 1987; Reilly, Jones, Barrett, Salah, Strand, Autty & Rowe, 1984] and neural

computing [Reilly, McAnulty, Amthor, Vainer, Thurston & Villa, 1987]. Thus, our

use of formal specification is to suggest methods for implementing decision tables

through the pattern matching facilities of ASP.

Both ASP and Prolog are pattern-directed so it is possible to mimic Prolog

constructions in the implementations in the Barrel/ASP system. The closeness of

the Prolog specification to possible ASP implementation is supportive of the

mimicking activity. As such, the presentation processor is made available to

systems for which no logic programming is available, and in a manner that is based

on logic expressed in a formal fashion.

3.2 DESIGN

Having decided that the specification was in good order, we moved to the

design phase. Ultimately, it should be up to the user to decide whether we are ready

51

to enter this phase. That is, the user should decide whether the specification meets

his or her requirements. If the user is not sophisticated enough to understand

formal specifications then the user has a working prototype to experiment with.

Execution of the specification is a big bonus at this stage of the lifecycle and may

save much effort in the design and implementation phases.

At this point we face the opportunities and constraints that are associated with

the solution being with ASP as the implementation tool. One decision is whether to

use existing language features developed in Barrel to do the coding. Our goal, that

the ASP solution be as compatible with the Prolog specification as possible, is a

potential constraint. By not using existing features of Barrel we can write macros to

more closely resemble the Prolog specification. The macros, of course, can be

written using existing features of Barrel. In fact, we have implemented both

solutions and found we much prefer the stronger Prolog resemblance for reasons

which will become obvious in the next section.

Recall that the Prolog specification requires that we produce a set of clauses

(see [Kowalski, 1979] and [Clocksin & Mellish, 1981] for an introduction to the

world of Prolog). The notion of “compatibility” that we accept in the Barrel

solution is essentially that we have, in Barrel terminology, a set of “templates”

corresponding to the set of predicates in the Prolog specification. ASP utilizes a

pattern-directed form of computation that resembles in some ways that in the

Prolog processor and yet which is quite different in others (see Chapter 5 for a

detailed explanation of how ASP works).

We could demand a higher (second level) compatibility, i.e., that we achieve

similar distribution of resources in the sense that the activities of the predicates of

the Prolog solution be performed within similarly named definitions in the

Barrel/ASP implementation. We try to meet this goal whenever possible but, as we

52

shall see, it is not always readily achievable. At this point, we might see difficulties

in the specification which would cause us to return to the specification phase.

During this phase we have discovered that the Prolog specification has some

interesting properties that we had not originally intended to be part of the

specification. They are primarily due to the nature of the Prolog processor and, in

general, to formal logic but may also be attributed, perhaps, to the way in which the

Prolog specification was written. Both instances arise from the ability to execute

only a part of the Prolog specification.

The user has the capability to call the dec predicate directly. In that case, no

prompting or cycling occurs. The user can also have more than one result at a time

displayed by entering a variable name as either the car make or the condition. The

user can even display the whole table by entering variables in place of both the car

make and the condition.

The sample dialogue in Figure 3.4 illustrates this. The user calls the dec

predicate with the second argument (the condition) being a variable. The processor

displays the results associated with a car make of cord and a condition of good. The

variable name and its value are displayed and the processor waits for input. If the

user enters a carriage return, processing stops. If the user enters a semi-colon (as

the dialogue indicates), then the processor looks for another match and displays the

results associated with a car make of cord and a condition of poor.

The user can also call the table predicates directly, passing any combination of

variable or constant arguments. The processor would return those parts of the table

that matched the constants or the whole table if all of the arguments were variables.

Because of the relational database style of representing the table within Prolog

the user can exercise a Prolog feature called input/output indifference. Normally,

the user provides values for the conditions of the decision table (i.e., “car make”

53

> | ?- dec(cord, Cond).
commission is 5%
shop work needed is no-need

manager ok is no-req
> Cond = good ;

commission is 1%
shop work needed is 3-weeks

manager ok is no-req
> Cond = poor ;

no
> | ?-

Figure 3.4. A sample dialogue from the execution of the Prolog specification
of our presentation processor where the dec predicate is called
directly. The lines beginning with “> ” show where the user was
required to enter information.

and “condition”). When the table predicate is called by the dt predicate (indirectly

through the intermed and dec predicates) the first two arguments (the conditions)

are already instantiated and the last three (the actions) are instantiated as a result of

the call. Thus, the first two arguments provide input to the table predicate and the

last three provide the output from the predicate. But calling the table predicate

directly allows the user to specify the actions of the table and have the processor

return the conditions that would bring about those actions. For example, the user

could type in:

table(Make, Cond, Comm, “6-weeks”, Manok).

to find out what cars in what condition required 6 weeks of shop work. The

processor would return all values for Make, Cond, Comm, and Manok that

corresponded to 6-weeks of shop work in the table. The user can specify any

combination of conditions and actions and those rules that are matched would be

returned. Thus, Prolog is “indifferent” as to which arguments are used for input and

which are used for output.

54

The question arises as to whether these “extra” capabilities should be part of

the design. If the user who reviewed the specifications is not told about them and is

not sophisticated enough to discover them on his own, then it can be argued that

they should not be part of the design. However, if the implementor knows about

them is he or she required to be true to the specifications and implement them?

This is a question which should be answered during the design phase. We feel

that they should be part of the implementation only if it is reasonable to do so. It

may be very difficult to implement “Prolog-like” features such as input/output

indifference. Indeed, the implementor may be forced to implement a Prolog

processor which would not be consistent with our goals, as we shall see below.

3.3 IMPLEMENTATION

Figure 3.5 shows our first attempt at a Barrel/ASP implementation. Appendix

3.1 provides a more detailed listing which includes the supporting macro

definitions. In spite of some minor differences which we list below, the

implementation is functionally equivalent to the specification. Although we do not

use formal techniques to prove this, the language mimicking capabilities of ASP

allowed us the make the implementation look almost identical to the specifications.

We realize that this may not always be the case, especially for more sophisticated

examples, but the ability to execute both the implementation and specification side

by side gives us a more rigid method of comparison.

We definitely meet our compatibility objectives since each macro definition is

nearly identical to its counterpart in Prolog. We have templates corresponding to

each of the Prolog predicates and the processing that occurs within each definition

corresponds to that in the Prolog clauses. There are, of course, minor syntactical

differences:

e the use of dollar signs instead of commas and periods,

55

dt
write(’car make ? ’) $
read(Cl) $
write(’condition ? ’) $
read(C2) $
intermedprime(Cl, C2) $

$
intermed(no, #)
write(’so long now’) $

$
intermed(#, #)
dec(#10, #20) $
write(’we continue’) $
dt $

$
dec(#, #)
table(#10, #20, Al, A2, A3) $
write(’commission is ’) $
write(Al) $
write(’shop work is ’) $
write(A2) $
write(’manager ok is ’) $
write(A3) $

$
table(cord, good, #, #, #)
#10 = ’5%’ $
#2O = ’no-need’ $
#30 = ’no-req’ $

$

Figure 3.5. ABarrel/ASP implementation of the desired presentation processor.

56

table(cord, poor, #, #, /)
10 = ’1%’ $
20 = ’3-weeks’ $
30 = ’no-req’ $

$
table(reo, good, #, #, #)
10 = ’10%’ $
20 = ’no-need’ $
30 = ’no-req’ $

$
table(reo, poor, #, #, #) :-
10 = ’5%’ $
2O = ’3-weeks’ $
30 = ’no-req’ $

$
table(duesenberg, good, #, #, #) :-
10 = ’variable’ $
20 = ’6-weeks’ $
30 = ’req’ $

$
table(duesenberg, poor, #, #, #)
10 = ’variable’ $
20 = ’6-weeks’ $
30 = ’req’ $

$

Figure 3.5. (continued)

e ASP’s use of # symbols instead of variable names,

e the lack of need of the “nl” (new line) predicate,

e the need for a separate line for each macro definition.

One difference lies with the use of the intermedprime definition. This is

required because of the difference in the way Prolog and ASP pass parameters.

57

Prolog passes by value whereas ASP passes the name of the variable. Thus,

intermedprime simply calls intermed with the proper values. The definition of

intermedprime is very simple and is contained in Appendix 3.1.

Figure 3.6 is an example of the execution of the Barrel/ASP implementation.

The same input values were used as with the execution of the Prolog specification

(Figure 3.3). It empirically shows that the implementation matches the

specification.

If we had decided in the design phase to allow the dec definition to be called

directly then one aspect of the specification is not met. Calling dec(cord,Cond) in

the Barrel/ASP implementation produces errors (not shown here), whereas the

Prolog specification (Figure 3.4) produces all values from the table associated with

a car make of cord. This results from two fundamental differences in the Prolog and

ASP processors.

The first was referred to above. That is, in Prolog, uninstantiated variables can

be passed as arguments in calls to Prolog predicates. If the matching predicate’s

formal parameter is a constant then the variable is implicitly assigned that value.

Barrel/ASP variables must assign values explicitly.

The second difference is the fact that Prolog tries to match all predicates. If

more than one predicate matches (as is the case with the dec(cord,Cond) call) then

the results from each match are displayed. Barrel/ASP finds the template that best

fits the call and does not attempt any more matches.

Since concluding this study, we have considered what might be needed to

extend ASP so that it can do what Prolog does in this regard. It is difficult to think of

a potentially more interesting and rewarding study. Such a study could be part of a

larger study into making ASP a full-fledged logic programming system.

58

send:
> dt

car make ?
> cord

condition ?
> good

commission is 5%
shop work needed is no-need

manager ok is no-req
we continue
car make ?

> duesenberg
condition ?

> poor
commission is variable
shop work needed is 6-weeks
manager ok is req
we continue
car make ?

> no
condition ?

> no
so long now
send:

Figure 3.6. A sample dialogue from the execution of the Barrel/ASP
implementation of our presentation processor. The lines beginning
with “ > ” show where the user was required to enter information.

In order to simulate the Prolog specification in this respect the dec definition

would have to be changed and more definitions (which have no corresponding

predicates in the specification) would have to be included. Figure 3.7 shows the

change to the dec definition and the four extra definitions. Appendix 3.2 gives the

59

complete implementation. The dec definition simply calls tableprime which uses

pattern matching to determine if dec was called with an uninstantiated variable

(which, in the implementation, we specify as anything with an asterisk in front of it).

Thbleprime makes the appropriate number of calls to the table definition and

displays the results (by calling writetable).

The ability of the specification to allow the user to indicate whether to continue

to look for more values from the table by entering a semicolon (which is provided by

the Prolog processor, not the specifications) is not implemented. It would be a

relatively trivial exercise to implement it.

Figure 3.8 shows the execution of the modified version of the Barrel/ASP

implementation. Comparison with the execution of the Prolog specification in

Figure 3.4 shows how similar the two are.

Another problem arises when you try to call the table predicate directly.

Input/output indifference and repeated matching of different table definitions is

not achieved. The user can make the call:

table(cord,poor,Comm,Shopwork,Manok)

to find out the commission, shop work needed, and manager’s ok relating to a cord

in poor condition. But it is not possible to make the call:

table(cord,Cond,Comm,Shopwork,Manok)

to find out all that is known about cords. Nor can you make the call:

table(Car,Cond,10%,Shopwork,Manok)

to find out which cars have a commission of 10%.

These issues have been explored in some detail. Changes to the Barrel/ASP

processor could be made to include more “Prolog-like” features, as discussed

earlier. Or the table predicates could be modified, much like the dec predicate was,

to make them more compliant with the specification. However, we would again

60

dec(#, #)
tableprime(/10, /20, Al, A2, A3) $

$
tableprime(#, /, Al, A2, A3)
table(/10, /20, Al, A2, A3) $
writetable(Al, A2, A3) $

$
tableprime(*#, Al, A2, A3)
table(cord, /20, Al, A2, A3) $
writetable(Al, A2, A3) $
table(reo, #20, Al, A2, A3) $
writetable(Al, A2, A3) $
table(duesenberg, #20, Al, A2, A3) $
writetable(Al, A2, A3) $

$
tableprime(#, *#, Al, A2, A3)
table(#10, good, Al, A2, A3) $
writetable(Al, A2, A3) $
table(#10, poor, Al, A2, A3) $
writetable(Al, A2, A3) $

$
tableprime(*#, *#, Al, A2, A3)
table(cord, good, Al, A2, A3) $
writetable(Al, A2, A3) $
table(cord, poor, Al, A2, A3) $
writetabIe(Al, A2, A3) $
table(reo, good, Al, A2, A3) $
writetable(Al, A2, A3) $
table(reo, poor, Al, A2, A3) $
writetable(Al, A2, A3) $
table(duesenberg, good, Al, A2, A3) $
writetable(Al, A2, A3) $
table(duesenberg, poor, Al, A2, A3) $
writetable(Al, A2, A3) $

$

Figure 3.7. The Barrel/ASP implementation of the dec definitions which allow
the user to input variables (beginning with an asterisk) for the
conditions of the table.

61

writetable(Al, A2, A3)
write(’commission is ’) $
write(Al) $
write(’shop work is ’) $
write(A2) $
write(’manager ok is ’) $
write(A3) $

$

Figure 3.7. (continued)

send:
> dec(cord,*Cond)

commission is 5%
shop work needed is no-need
manager ok is no-req
commission is 1%
shop work needed is 3-weeks
manager ok is no-req
send:

Figure 3.8. A sample dialogue from the execution of the Barrel/ASP
implementation of our presentation processor where the dec
predicate is called directly. The lines beginning with “ > ” show
where the user was required to enter information.

compromise our previously stated goals and constraints associated with the

implementation.

In order to show that the definitions could be expanded to include input/output

indifference, Appendix 3.3 provides the Barrel/ASP definitions for a presentation

processor which does provide for input/output indifference. This methodology

could be employed in the presentation processor implemented in this chapter.

CHAPTER 4

PORTABILITY CUBED: AN EXTENDED NOTION

The microprocessing world is upon us, and with it, the ever present desire to

develop on smaller machines, previously successful languages and systems.

Languages like C and Prolog are among languages with growing popularity; so are

operating systems and programming environments like UNIX.

Since there is such a variety of machines, portability considerations continue to

have their importance. With larger systems, particularly those that partition nicely

in some logical and functional way, portions of a complete processing activity can

be shared among machines. When the various machines can be programmed in a

compatible way, system development for network-based solutions is made easier.

Maintenance personnel, for example, need not learn several languages to maintain

and modify the applications.

We have coined the phrase “portability-cubed” (P3) to describe the unique

study of portability offered by ASP. We have combined three instances of

portability in one system that can be used in combination or by themselves.

4.1 PORTABILITY OF THE PROCESSOR

First, ASP employs an abstract machine approach to implementation, and thus,

is a portable system at the root. The idea of abstract machine modeling is simple

and has been discussed thoroughly in computer science literature (see [Brown,

1974,1977,1979; Griswold, 1980; Newey, Poole & Write, 1972; Waite, 1973] for

some excellent discussions). It involves designing a machine and a language for that

machine that is ideally suited to the application being implemented rather than
62

63

trying to fit the application to an existing machine and an existing programming

language. This abstract machine would have all the data types required for the

application. And the abstract machine language would have all the operations for

manipulating the data types that are necessary to implement the application.

Writing the application in the abstract machine language should shorten the

implementation time.

The ASP processor is written in an extended version of an abstract machine

language called FLUB, First Language Under Bootstrap. FLUB was originally

designed for the implementation of Stage2. We extended it to aid in the

implementation of ASP (see Chapter 6).

Running an application on an abstract machine is an abstract operation.

Therefore, a method of running the application on a real machine is necessary. If

each operation of the abstract machine language can be defined as a sequence of

instructions in an existing programming language on the real machine then the

application can be automatically translated to a program that will run on the real

machine.

The type of tool normally used to map the abstract machine language to the

targeted existing programming language is a general purpose macro processor such

as Stage2 or ASP. Macros can be written that will produce appropriate target

language code for each operation of the abstract machine language.

Since Stage2 and ASP are both written in an abstract machine language

implementing them requires a tool such as Stage2 or ASP. If there exists a running

version of Stage2 or ASP (presumably on a different machine than the target

machine) then it can be used to translate the FLUB code to the target language for

the target machine. This method is known as a half bootstrap.

64

Perhaps a better method, in which all implementation activity can take place on

one machine, is the full bootstrap approach. First, a simple macro processor is

implemented and used to translate the FLUB code to the target language. Waite

developed a macro processor consisting of about 70 lines of Fortran code that can

translate the FLUB version of Stage2 to a target language. ASP requires a more

sophisticated macro processor such as Stage2 (or ASP itself) to do the translation;

thus, Stage2 must be implemented on the target machine before ASP can be

implemented.

Thus, porting the application to a different machine primarily involves

re-mapping the abstract machine operations to an existing programming language

on the target machine. This is a trivial matter if the same programming language

exists on both machines. The application itself does not have to be modified at all.

To port ASP to another machine the simple Fortran macro processor is moved

to the target machine, possibly being re-written in another language if Fortran is

not available. Then the macros that will translate FLUB to the target language are

written (or copied from the other machine if the target languages are the same).

The FLUB version of Stage2 is translated to the target language producing an

executable version of Stage2 on the target machine. Then the macros that were

used to translate Stage2 are re-written for ASP. Two types of modifications to the

macros are required. The extensions to FLUB for the ASP processor must be

defined. And the extra power of Stage2 over the simple macro processor should be

used to provide a more efficient version of ASP.

Porting ASP in this manner is not a difficult procedure. It is certainly less

troublesome than converting ASP by hand to another programming language. It is

also easier to take care of machine dependencies when they can be confined to a set

of macro definitions rather than scattered throughout a large application. The

65

porting process becomes a matter of understanding the relationship of the abstract

machine to the real machine rather than having to understand the algorithm of the

application, which may be complex.

ASP has several support routines, written in the target language, which are

called by the macro generated code. These are mostly machine and operating

system dependent routines such as input, output, and file system manipulation.

Porting these routines is by far the most difficult part of the porting process,

especially if they must be translated to a different language. But, at the same time,

the porting process is made easier by having most of the machine dependencies

located in one set of routines.

We have successfully ported ASP to three different machines. It currently runs

in the assembly language, MASM, on a Data General Eclipse, in C on a VAX

11/750 running Berkeley UNIX, and in C and a combination of C and Fortran on a

32 processor Sequent machine. Chapter 7 discusses these implementations, as well

as the bootstrapping process, in detail.

The portability of ASP gives us the ability to easily move applications written

for ASP to other machines without modification. This is an important concept in

trying to establish the networking environment that we talk about below.

4.2 PORTABILITY OF LANGUAGES

The second instance of portability within the Barrel/ASP environment involves

the language development facility. The user can choose between various

programming styles in the implementation of systems. The user can choose a syntax

in developing a prototype system that can easily be converted to the form necessary

for implementing the real tystem. For example, the following Lisp statement comes

from a Lisp program written for Barrel/ASP.

(car (cdr (car (cdr ’(w (x y) z)))))

66

The programmer can write the prototype in a style that is close to Lisp. Thus,

the prototype can be ported to machines that support Lisp with little or no

modification. Features from several different programming languages have been

implemented and are available for use in the Barrel/ASP system. These are

described in detail in Chapter 9.

4.3 PORTABILITY OF SYSTEMS

Third, in the systems development area, we have the capability of generating

decision tables that can be processed on a network of several different machines.

We have decision table processors that have been implemented on more than one

machine in more than one language. Not only can the tables be ported from one

machine to another but several of the processors are portable because of their

Barrel/ASP implementation. Thbles can be created on one machine and processed

on several other machines in several different ways.

When we were exploring the potential of such a network of table processors the

machines available to us included a VAX 11/750 running the Berkeley UNIX

operating system, a Data General Eclipse, a Prime 400, an IBM 370, and a

PDP/11-34. Some of the machines were not physically connected and so the

moving of tables and processors from one machine to another was burdensome.

The table processors available to us included several complete systems from

various sources:

• a processor written in Fortran on the Prime and IBM that

translates tables to Fortran code [Reinwald & Dellert, 1968],

• a processor written in COBOL on the IBM that translates tables

to COBOL [Dellert, 1972],

• a processor written in C on the VAX that translates tables to C

code [Keller & Roesch, 1977; Barrett, 1983a],

67

• a processor written in Lisp on the VAX that translates tables to

Lisp code and vice-versa [Schwartz, 1971];

as well as several locally written prototypical processors:

e a limited entry presentation processor written in assembler and

Janus on the Data General and in Barrel/ASP on the Data

General and VAX [Barrett & Reilly, 1982],

e an extended entry presentation processor in Barrel/ASP on the

Data General and VAX [Minderhout & Reilly, 1982; Reilly,

Barrett & Salah, 1982],

e a processor written in Spitbol on the PDP/11 and the IBM that

translates tables to Spitbol code [Elrod, 1981],

e several evolving processors written for versions of Prolog

available on the VAX [Reilly, Barrett & Salah, 1982; Salah, Reilly

& Barrett, 1982],

e an entry, reformatting, translation and presentation system written

in Barrel/ASP on the Data General and VAX that translates

tables to a form usable by processors in 1, 2, and 5 above and

uses graphics in the entry phase [Barrett, 1983a; Barrett, 1983b;

Minderhout & Reilly, 1982].

One processor (the sixth on the list) not only translates decision tables to code,

but performs the inverse operation of translating code into decision tables. That is,

program code written without any thought of tables in mind can be translated into

tables. Such inverse translators are considered useful aids to documentation of

code, but they can play a larger role than this, when several of them exist within the

same system. For example, code developed in Lisp might be translated to tables,

which would then be edited for input to a table-to-code system written in Fortran.

68

This suggests how tables can serve as a focal point for translating algorithms written

in one language into algorithms in another. Portability and networking seem well

served by such capabilities.

CHAPTER 5 .

INTRODUCTION TO ASP

5.1 WHAT IT IS

The Augmented Stage2 Processor (ASP) is an extended version of a widely

acclaimed general purpose macro processor (Stage2) [Waite, 1973]. Macro

processors ordinarily convert strings from one form to another according to a set of

definitions. Special purpose macro processors, such as those built into assemblers,

transform strings into a particular programming language code. General purpose

macro processors like ASP and Stage2 can be used to produce most any kind of text.

Significant changes have been made to Stage2 to produce the current version of

ASP. New features have been added and its method of processing has been altered

slightly. These relatively small changes have brought about a substantial difference

in the characteristics of the processor.

5.2 HOW IT IS USED

Stage2 is described as a processor which accepts character strings as input and

transforms them according to a set of definitions provided by the programmer

[Waite, 1973]. Typically, the transformation is from one programming language to

another.

ASP can still do string transformations, but it performs a slightly different

function as well. ASP can interpret the strings as programming language

statements and execute them. This provides a powerful and flexible tool for

experimenting with and developing programming languages and software systems.
69

70

The studies in which ASP has been applied are primarily non-numerical.

Stage2 was originally a study in non-numerical processing [Waite, 1973] so ASP is

geared toward such problems. The need for such a processor was present in the lab

in which the studies took place.

ASP has proven to be a very useful tool for the analysis of programming

language features. A control structure, for example, can be implemented and

studied in a variety of contexts. Different types of features from different languages

can be used in the same environment. Features of a language can be modified in

various ways to discover the effect on various environments. New features can be

invented, implemented, and tested (see Chapter 8).

The ASP system allows various modes of processing. A particular collection of

resources might, for example, operate in a functional style similar to Lisp, for

symbolic manipulation and list processing. One study uses ASP to mimic a logic

processing style. Features from several different procedural type languages such as

Basic, C, and Pascal have been implemented (see Chapter 9).

New languages or variations on existing languages can be developed for use in

implementing software systems. One such system implemented in this fashion is a

decision table entry, reformatting, translation, and presentation system (see

Chapter 11).

Formal studies, with ASP as the central focus, have involved the use of logic

programming. Metamorphosis grammars, based on first order predicate logic, are

used to formally define a set of language features which are subsequently

implemented through ASP. In another study, the logic programming language,

Prolog, is used to provide formal specifications for a decision table system which

again is implemented through ASP. Decision tables also play an important role in a

new concept in portability centering around ASP.

71

More recently ASP has played a role in the study of simulation environments.

The idea is to use ASP for the non-numeric, symbolic component of the simulation

environment [Barrett & Reilly, 1987; Reilly & Barrett, 1989; Reilly, Barrett & Lilly,

1987; Reilly, Jones, Barrett et. al., 1984]. In this study, ASP is merged with a

combined discrete and continuous simulation language to effect a “combined

continuous, discrete, and symbolic simulation” system. The combined system can

also be viewed as an expert system with exceedingly powerful numerical facilities.

The main use of this facility has been part of a team project on Sixth Generation

Computing [Barrett & Reilly, 1988].

5.3 HOW IT WORKS

Tvo types of input are required by the ASP processor: definitions and calls.

Definitions, stored in the processors internal memory, tell the processor what

action to take when the calls are received.

The definitions are divided into templates and code bodies. The templates are

made up of fixed and variable portions. The variable portions are represented by a

special symbol and can be placed anywhere throughout the fixed portions. The

variable portions are called parameters and there can be up to nine of them in each

template.

The processor does a pattern match between calls that it receives and the set of

templates that it has, choosing the closest match based on the fixed portion of the

template. The parameters of the template may match any string of characters which

are balanced with respect to a pre-defined set of brackets (e.g., parenthesis).

For example, if we had template such as:

GO # LITTLE BOY.

where the # character represents the variable portion (a parameter), and the call to

the processor were:

72

GO HOME LITTLE BOY.

then the match would be made (the fixed portion of the template exactly matches

the call) and the first parameter of the definition would be equated to “HOME”.

The other eight parameters would be undefined. This template would also match a

call such as:

GO TO BED LITTLE BOY.

The parameter would be equated to “TO BED”.

A code body tells the processor what actions are to be taken when a match is

made with its associated template. Within a code body, many activities can take

place. Text can be built for output with parameters being inserted into it.

Parameters can be manipulated and transformed in several ways. Special functions

can be performed by the processor such as looping, assignment of values to

variables, input and output, and arithmetic.

It is beyond the scope of this dissertation to give a detailed explanation of the

intricacies of the ASP processor. Understanding Stage2 will go a long way towards

understanding ASP. A good explanation is provided by William Waite in his

writings about Stage2 [Waite, 1967,1970a, 1970b, 1973] as well as several papers by

John Barrett on his early work with Stage2 [Barrett, 1981a, 1981b, 1981c, 198 Id;

Barrett & Reilly, 1981]. ASP has been described in several papers as well [Barrett,

1982; Barrett & Reilly, 1983]. For the purposes of this dissertation, it will suffice for

the reader to have a general knowledge based on the example in Figure 5.1.

The first line of Figure 5.1 defines a set of characters which have special

meaning to the processor when used in the definitions and calls. Since the line is

included with the definitions the user can specify which symbols the processor

should recognize. A period marks the end of templates and calls. The first pound

symbol marks the parameters in the templates. Whenever the processor sees a

73

(trim #).
tr(#10)$
$
tr(/).
tr(#10)$
$
tr(#).
/10#fl4$
$
stop.
/f0$
$$
(trimabc).
stop.

Figure 5.1. An example of ASP definitions and calls.

pound symbol in a template it looks for a matching balanced string in the call. The

dollar sign is used to delimit the end of the code body lines. A dollar sign on a line

by itself marks the end of a definition (with a new template to follow). Two dollar

signs on a line by themselves mark the end of all definitions and signals the start of

calls. The second pound symbol is used within the code bodies to indicate special

tasks for the processor to perform (known as parameter transformations and

processor functions). The last seven symbols - space, right parenthesis, plus, minus,

asterisk, slash, and left parenthesis - tell the processor what symbols are being used

for space, parenthesis, and the four arithmetic symbols.

The second line of Figure 5.1 is the first template of the definitions. Based on

the information in the previous paragraph the reader can see that there are four

definitions and two calls in the example. The four templates are (trim #), tr(#),

tr(#), and stop. The two calls are (trim abc) and stop. Code bodies can consist of

any number of lines although for this example each of the four code bodies has only

one line.

74

Figure 5.1 demonstrates two of the most powerful features of ASP: recursion

and pattern matching. To demonstrate this, an explanation of the processing that

takes place is in order.

The first call matches the first template - (trim 2). The parameter is equated to

“abc " (including the two spaces). The code body is processed by scanning each

line from left to right, looking for the special character (2) which signifies a

parameter transformation or processor function. A line of text is built from the

non-special characters. When the processor gets to the pound symbol it looks at

the next character. If it is a digit then a parameter transformation is being

requested. The digit specifies which of the nine parameters to transform. The

second digit after the pound symbol specifies which transformation to perform. In

most cases, the value of the transformed parameter is placed in the line of text that

is being built.

The 210 in the example tells the processor to perform transformation zero on

parameter number one. Transformation zero specifies that nothing is to be done to

the parameter so it is placed in the line of text as is. Thus the line of text that is built

is “tr(abc)”. This line is automatically submitted as a call to the processor and a

match is made with the second template - tr(2). It does not match the third

template because more characters can be exactly matched with the second template

(because of the space character). This time the parameter is equated to “abc ”. The

line of text that is built from the code body is “tr(abc)”. This is submitted as a call to

the processor and matches the second template (recursion). The parameter is

equated to “abc” and the line of text that is built is “tr(abc)”. When this is submitted

as a call it matches the third template (since there are no spaces in it). The 210 in the

code body places the parameter - abc - in the line of text. The next pound symbol is

not followed by a digit so it is treated as a processor function. The digit following

75

the f means to perform processor function number one which causes ASP to write

the text that has been built to the input/output channel specified by the character

after the 1. So in the example, the parameter is written to channel four which is the

users terminal. Thus, what is written on the users terminal is “abc”.

Since there are no more lines in the code body the recursion unwinds and

processing for the “trim” call is finished. The next call to be processed is “stop”.

The code body for that template says to perform processor function number zero

which halts the processor.

ASP has several different channels through which it can perform input and

output. By definition, when ASP is executed, it looks for definitions on channel

number one. When all the definitions have been read ASP expects to receive calls.

One of the processor functions tells ASP to get the next call from a different

channel. The channels can be tied to various input/output devices. Thus calls can

be issued from the users terminal (an interactive environment) as well as disk files (a

batch environment).

Calls, as we have seen, can also be issued from within code bodies. Hierarchies

of definitions can be built which allow calls to model very high level programming

language statements. These high level calls can be used within the code bodies,

making the task of programming the code bodies much easier. Programmers can

also choose a relatively low level of coding style, such as that of using parameter

transformations and processor functions directly in the code bodies. Normally, the

programmer will use a mixture of high level calls and low level constructs in

programming the code bodies.

Both top-down and bottom-up modular approaches to the development of

definitions are facilitated by the very nature of ASP. In our research we first

76

developed a basic set of general purpose definitions. These definitions (described

in Chapter 9) are used in almost all of our applications.

CHAPTER 6

DESIGN CONSIDERATIONS OF ASP

6.1 CHOICE OF STAGE2 AS A BASE

Several factors led to accepting Stage2 as the focal point of this research. Many

of them had to do with the environment in which the work was taking place as much

as with Stage2 itself. These included:

• a concern for small machines;

• a lack of non-numerical software;

• a need for portability among several machines;

• a desire to study programming language issues.

At the time of inception of this project we had access to a Data General Eclipse

S/130 as well as limited access to other similar machines, e.g., a PDP-11/34 and a

Prime 400. A larger-scale IBM 370 was also available. Although we wished to

ultimately work with all of these machines in a networking environment we knew

that most of the work, at least initially, would be done on the Data General.

The Data General was surprisingly deficient in software, especially

non-numerical software in which we were most interested. It was useless, for

example, in courses which utilized Snobol and Lisp. In addition, we were interested

in prominent new languages and systems, such as Prolog and Icon, and perhaps less

well known languages such as Pop-2 and Logo.

We implemented Stage2 on the Data General as a first step in remedying the

non-numerical software deficiency. Several attributes of Stage2 were instrumental

in our decision to use it:

77

78

• orientation toward non-numerical software,

e ease of implementation,

• history of use,

e portability.

An initial Stage2 processor is easily implemented on a variety of machines. We

have implemented it on two different machines in five different languages [Gibson,

1982]. It also has a lengthy history of usage elsewhere, both in the U.S. and abroad.

Twenty-five implementations are mentioned in a 1972 paper by M. C. Newey

[Newey, Poole & Waite, 1972]. It has continued to be used from time to time for

various purposes (e.g., [Papakonstantinou, 1980]). Even today a slight modification

of Stage2 called TILT (Texas Instruments Language Translator) is being used

internally by Texas Instruments as a software development tool [Wixson, 1986].

A number of non-numerical software systems have already been developed

with Stage2 including a version of Lisp, a string processing language called Wisp

[Waite, 1973], and the “universal assembler” Janus [Coleman, Poole & Waite,

1974; Haddon & White, 1978a]. Stage2 has a firm basis in operational semantics

through its abstract machine implementation which also provides a strong

portability emphasis. Stage2 is a curious computer science item in its own right. It is

a very powerful and capable tool.

ASP was derived from Stage2 because of a portability problem. There was a

decision table manipulation program written in Snobol running on the PDP-11.

We wished to port the program to the Data General because of difficulty in

accessing the PDP-11. Stage2 seemed a likely candidate for translating the Snobol

code to a language available on the Data General. However, it soon became clear

that Stage2 almost had the capability to act as a Snobol interpreter on a very limited

scale. We quickly had several Snobol-like statements being executed by Stage2.

79

However, the methodology proved to be awkward in several instances and it again

became clear that if we were going to continue to use Stage2 as an interactive

interpreter that some features of Stage2 would have to be changed and other

features would have to be added. Thus, ASP evolved.

6.2 EXTENSIONS AND MODIFICATIONS

The extensions and modifications that have been made to Stage2, to arrive at

ASP, include eight new processor functions and four changes in processing style.

The new processor functions are described below. Appendix 6.1 gives a more

technical description of the new processor functions in the same format that Waite

uses to describe the original processor functions [Waite, 1973] (also, see [Barrett,

1982] for a discussion).

1. add-definitions function

Stage2 has a static definition loading scheme. Stage2 expects definitions and

then calls. Once calls are begun no new definitions are allowed. ASP has a dynamic

definition loading scheme. The add-definitions function allows the user to intermix

the presentation of definitions and patterns to the ASP processor. Thus, ASP allows

definitions, then calls, then any order of definitions and calls.

There are three factors which make this an important addition:

• interactive modification of definitions,

• interactive modification of the environment,

e efficiency.

In Stage2, if a definition contains an error the user must exit Stage2, modify the

definition, and start over again. In ASP, the definition can be modified on-line,

without leaving ASP. An editing facility has been designed and prototyped that will

allow a user to edit an existing definition or create a new definition and add it to the

set of definitions that are known to the ASP processor. Thus, the user can correct

80

mistakes and/or create and test new definitions without ever leaving the current

ASP session.

Most creation of ASP definitions has taken place in a modularized fashion.

That is, non-similar definitions are placed in different files. For example, there is a

file of definitions which mimic Lisp functions and a file of definitions which mimic

Logo functions (see Chapter 10). Upon start up of an ASP session, the user can

choose which definitions should be loaded into the processor. If, in the middle of

the session, the user discovers that he or she would like to use a definition that has

not been loaded then the file that contains that definition can be loaded and the

session continued. Otherwise, the user would have to exit the session and start a

new session, loading the proper files of definitions.

Many times the calls to the ASP processor are in the form of a program that

runs as a batch job and the definitions that are needed are dependent on the input

data. Rather than load all the definitions, the program can include code which will

examine the input and load the proper set of definitions. This can improve the

execution speed of the program since there would be fewer definitions to match

with the calls. On machines which have a limited address space such as the Data

General there may not be room in memory for all of the definitions required by a

large ASP program. In that case the programmer can programmatically configure

an ASP session so that only those definitions that are going to be used have to be

loaded.

2. close function

It allows the user to disassociate a file from an I/O channel. An I/O channel is

defined as an association between a “logical device” available to the program and a

physical I/O device [Barrett & Reilly, 1981; Orgass & Waite, 1969; Waite, 1970a,

1973]. The version of Stage2 that we began this project with had four channels over

81

which I/O could be performed with a fifth channel recommended and easily

obtainable [White, 1973]. These channels have to be used for specific purposes

most of the time such as input of definitions and input of calls. They are tied to a

particular device or disk file at the beginning of a Stage2 session and remain so until

the session ends. The need for a close function did not exist with only four dedicated

channels.

We felt that more channels were needed with ASP as well as a more flexible I/O

scheme so an additional 30 channels were added. These channels are more flexible

because they are not associated with a particular device or disk file until a call is

made to the proper processor function. Without the close function, such

associations, once made, would have to remain in effect throughout the session.

The close function becomes especially useful with operating systems such as

Berkeley UNIX 4.1 which allows a maximum of 20 open files per process.

3. graphics function

It provides an interface to a graphics terminal. Graphics is an important

component of many of the types of studies in which ASP has been involved,

especially table processing and simulation environments (see Chapter 12). The

interface allows the user to enter DEC Regis commands on a GIGI terminal (other

types of graphics terminals could be easily incorporated into ASP). The user has the

option of saving the graphics commands in a disk file so that pictures that are built

interactively can be saved. Sophisticated graphics macros such as box, grid, and

circle can be built through ASP’s hierarchical definition facility.

4. input function

It allows input of values for ASP variables. Stage2 only provides for input of

definitions and calls. In studying programming languages, a method was needed to

provide input of data so that traditional languages could be modeled. Before the

82

input function was developed, data input was achieved by fooling ASP into thinking

it was inputting a macro call. Then the call was intercepted and assigned as a

variable value. This method worked well unless the call happened to match a

definition template in which case the definition was executed instead of the data

being assigned to the variable.

5. escape function

It provides a method of temporarily escaping from ASP to communicate

directly with the operating system. A subprocess is generated which executes the

command language interface of the operating system. We view ASP as a tool to be

used in conjunction with other software products. This function provides a method

of integrating those products with ASP.

6. system function

Like the escape function above, it provides a method of executing an operating

system command from within the ASP process. However, only one command is

executed and then control is immediately returned to ASP. This function is useful in

non-interactive ASP programs where an automatic return to ASP is needed.

7. bedit function

It provides a method of using a text editor without terminating the ASP session.

It causes a separate ASP session to be started with the definitions of a text editor

called bedit loaded (see Chapter 10). Thus, one can do some editing in the middle

of an ASP session and pick back up with the ASP session right where he or she left

off.

8. trace function

It allows the tracing of all calls made to the ASP processor. We have

incorporated a trace facility into ASP which the trace function turns on and off.

83

When turned on, all ASP calls are displayed on the users’ output device. This

function is critical to being able to easily debug complicated definitions.

The four changes in processing style involve several different types of

modifications to the Stage2 processor. First, additions to the abstract machine

language in which ASP is written were made. Eight new statements were added to

the language. Second, the abstract machine language program which implements

ASP was modified. Some of the abstract machine language statements are

implemented by calling subroutines which carry out the function of the statement.

These subroutines are written in a language known to the host machine (e.g.,

assembly language). The third type of modification is in the form of changes to the

subroutines necessary for implementing Stage2 and the addition of new

subroutines required for the implementation ASP. The four changes in processing

style are described below.

1. ability to reference over 30 files simultaneously

Stage2 is very limited in its ability to simultaneously reference several different

files for input or output of data, macro calls, or definitions (see the description of

the “close” processor function above). ASP needs a more flexible I/O scheme than

Stage2; for example, to allow input of definitions from several different files (see

the description of the “add definitions” processor function above). So 30 additional

I/O channels were added with the ability to associate each channel with a file.

2. ability to replace definitions with new ones

In Stage2, if several macro definitions have identical templates then the

definition that is used when a call matches that template is the definition that was

input first. In ASP the opposite is true - the definition that is input last is used. This

strategy is essential to interactively modifying or replacing definitions (see the

definition of the “add definitions” processor function above).

84

3. ability to use file names rather than channel numbers

The processor functions which perform input/output operations require the

designation of the number of the channel over which the operation is to be done.

ASP allows a file name to be used instead of the channel number. A channel is

assigned to that file automatically if one is available. Using a name instead of a

number makes it much easier to keep up with what the channel is being used for.

When two or more channels are associated with the same file, use of the file

name will result in the lowest numbered channel being chosen for the input/output

operation. For example, if a file is associated with channel 6 and then the same file

is associated with channel 7, any input/output operations requested by file name

will result in the input/output being performed on channel 6. The channel number

of the file is made available to the user so that when an input/output operation

needs to performed over channel 7 (presumably the file pointers will be pointing to

different records in the file) the channel number can be used rather than the file

name.

4. ability to use parameter transformations in previously forbidden contexts

With some processor functions ASP will evaluate parameter transformations to

get its arguments where Stage2 will only allow constants. This is critical to the

situation described in the previous paragraph. When a file name is used with

input/output processor functions the number of the channel which ASP assigns to

the file is placed in one of the nine parameters. In order to use that channel number

with subsequent input/output processor functions a parameter transformation has

to be used.

Most of the extensions and modifications play a major role in changing the

processor from batch-oriented to interactive and batch mode. The interface to

graphics processing allows ASP to be used for various new applications, which are

85

expedited by graphics, e.g., table processing. Operating system facilities that can be

used include creating multiple processes, e.g., allowing shared processing of

applications and use of system tools such as editors and command line interpreters

(CLIs)---- as was done with the DG’s CU.

In summary, these extensions and modifications have produced:

e a new, highly interactive framework for ASP users,

e the ability to dynamically change the environment of an ASP

session,

e on-line creation of new patterns and definitions,

e on-line modification of existing definitions,

e code bodies with more transformation abilities,

e operating system facilities made available,

• graphics usage,

e extended file handling,

• debugging capabilities,

e convenience of using symbols instead of numbers.

Overall, this modernizing of an “old” product and allowing use of it in new ways

is a goal often advocated in computer science but rarely achieved.

6.3 ANALYSIS OF ASP USING DATA FLOW DIAGRAMS

To analyze and highlight the differences between Stage2 and ASP, we have used

data flow diagrams [Gane & Sarson, 1979]. Two such data flow diagrams, one for

Stage2 in Figure 6.1, based on the version found in [Write, 1973], and one of ASP in

Figure 6.2, provide a demonstration of some aspects of the changed world of ASP

relative to that of Stage2.

86

error messages +

output file

work/scratch file

definitions
& calls

Stage2

and

I/O Package

Figure 6.1. Data flow diagram of Stage2.

Three differences stand out in a comparison of the the two diagrams. The first

is the addition of the user to ASP processing. This reflects the orientation of ASP to

interactive rather than batch processing.

The second is the addition of 30 files providing more flexibility in I/O

operations. These files provide the necessary means for the interpretation and

compilation of the kinds of languages we have been studying through ASP (see

Chapter 8). These are also necessary for table-processing applications as well as

numerous other possible applications.

The third difference is the separation of the files providing the definitions and

the calls. Again more flexibility is obtained in ASP especially with the capability of

mixing the input of definitions with calls (see Section 6.2).

87

calls

user

work/scratch file

output file

File 35

File 6

definitions
& initializing

ASP

and

I/O Package

Figure 6.2. Data flow diagram of ASP.

CHAPTER?

IMPLEMENTATIONS OF ASP

Stage2 can be implemented by a full bootstrap; i.e., a simple processor is

implemented by “hand” and then used to obtain a more complex processor [Barrett

& Reilly, 1981; Waite, 1973]. With this method of implementation the complex

processor can exist in the form of a program for an abstract machine written in an

abstract language designed especially for that machine. Thus, the machine and the

corresponding machine language can be designed in a manner which will ease the

implementation of the processor. The implementation can avoid dependencies on

any particular real machine and need not be tied to the availability of a particular

programming language compiler. Only one version of the processor written in the

abstract machine language need exist; there need not be a version for eveiy

machine and every programming language in which it is to be implemented.

There does exist, however, machine dependent portions of the processor in the

form of subroutines written in a real programming language (e.g,. FORTRAN).

Therefore, the only effort in porting the processor to a machine which does not

support a compiler for programming languages in which the processor has already

been implemented in is re-writing the machine dependent subroutines and the

simple processor. The complex processor does not have to be modified before

moving it to a new machine.

The simple processor used to implement Stage2 is called SIMCMP. It is

basically a program for pattern matching and replacement. Pattern matching is

used to recognize the statements in the abstract machine language called FLUB

88

89

(First Language Under Bootstrap) and replacement is used to construct the

programming language code for the target computer. Both processes are stripped

to the bare essentials since SIMCMP is to be implemented by hand [White, 1973].

The implementation of ASP carries this two stage bootstrapping process one

step further. The SIMCMP program is not sophisticated enough to handle the

needs of ASP translation. Stage2 is the processor used to translate ASP to the target

machine programming language. ASP is written in an extended version of FLUB

(see Appendix 7.1 for details). Appendices 7.2 through 7.4 contain all of the

programs necessary for a C language implementation of ASP including a listing of

the FLUB version of ASP, the macros needed to translate it to C, and the C version

of the support routines.

This puts a further strain on the portability of ASP because Stage2 must be

implemented on the target machine first. But the constraint is not considered

serious since Stage2 is relatively easy to implement. In our lab Stage2 has been

implemented on two different machines in five different programming languages.

Several files of macro definitions which test the implementation are provided

with Stage2. These files can be used to test the implementation of ASP as well. In

addition, I have written 42 sets of macro definitions to test the features of ASP

which are different from Stage2.

7.1 DATA GENERAL ECLIPSE

The target programming language for ASP implementation on the Data

General Eclipse S/130 is the macro assembly language (MASM). The processor

consists of approximately 7800 lines of MASM code. A small portion of the code is

in the form of hand coded subroutines (which implement the machine dependent

portions of the processor) but the majority is generated by macro translation of the

abstract machine language version of ASP.

90

7.2 VAX 11/750
The current version of ASP on the VAX consists of approximately2500 lines of

C code. As with the Data General most of this C code is not hand-wntten; but is

generated by macro translation from the extended version of the abstract machine

language called FLUB. The (extended) FLUB code for the current version of ASP

is approximately 1200 lines long and approximately 50 macro definitions are used

to cany out the translation from FLUB to C (see Appendix 7.2 for the FLUB code,

Appendix 7.3 for the macros, and Appendix 7.4 for the C hand coded subroutines).

7.3 SEQUENT 21000

There are two versions of ASP available on the Sequent. The first is a verbatim

copy of the C version which runs on the VAX. No changes were necessary to either

the macro definitions or the support subroutines.

The other version is a combination of FORTRAN and C. The macro

definitions were re—written to produce FORTRAN code instead of C. The resulting

FORTRAN program has about the same number of lines as the C version. The

support subroutines remained in C so we could avoid the effort of re—coding them

in FORTRAN. Some minor modifications of the subroutines were made to allow

for the conventions required for passing arguments from FORTRAN to C on the

Sequent. By using FORTRAN we wished to position ASP for future enhancements

which could take advantage of the multiprocessing capabilities of FORTRAN on

the multiprocessor Sequent.

CHAPTERS

LANGUAGE FEATURE ANALYSIS BY ASP
IMPLEMENTATIONS

A number of experiments have been performed with ASP on isolated or small

groups of features of programming languages [Barrett & Reilly, 1984]. For

example, experiments have been done to:

• analyze various aspects of certain language features;

• analyze the effect of the programming environment on the use of

a particular feature;

• determine the capabilities of implementation within ASP;

• determine the needs of the underlying processor in carrying out

such implementations.

Some of the programming language constructs involved in these experiments

include:

• the INPUT statement from Basic;

• a couple of pattern matching statements from Snobol;

• various forms of control structures, e.g., WHILE, REPEAT and

CASE modeled after appropriate constructs in languages such as

C, Pascal and Ada;

• the “plink” (“!”) operator notation for arrays from BCPL;

• and the projection operation from the topic of relational

databases.

For example, while implementing the array operator from BCPL we noticed

that ASP would easily accommodate character string subscripts and sparse arrays

91

92

such as those found in MUMPS [Walters, Bowie & Wilcox, 1982]. This new

combination of language features forced us to develop a new syntax for the array

operator. A second example is the implementation of the INPUT statement from

Basic which led to the development of the input function of ASP (see the

description of the input function in Chapter 6).

An important aspect of language feature analysis is the ability to implement

language features which are proposed in various scientific publications. In many

cases implementation of these proposed features is not done. Elliot Soloway has

proposed the use of a new looping control structure which he claims has a closer

“cognitive fit” with an individual’s preferred cognitive strategy in programming

[Soloway, Bonar & Erlich, 1983]. The looping construct allows an exit from the

middle of the loop as opposed to the more traditional exit from the beginning or

end of the loop.

In this case the implementation was carried out by Soloway; the control

structure was included in a version of a Pascal compiler. The amount of work

required to do this implementation was not mentioned but modifications to a

compiler are not normally trivial. The implementation of this construct in ASP

took a matter of minutes. We were able to study its use in a much broader context

than just Pascal and we found it to be useful. It has been included in our “core” set

of language features as the major looping construct and a formal definition of it is

provided (see Chapter 2).

Experimenting with Soloway’s control structure in a real environment forces

one to deal with unforeseen issues. For example, how does such a structure interact

with branches; that is, does it make sense to branch into it and out of it? The

answers to such questions help bring into focus the reality of whether such

structures are in fact useful or practical.

93

In fact, many experiments can be performed on such language features in the

ASP environment. The syntax of statements can be changed with a few key strokes

in a text editor (by changing the template of its definition). Statements can be

placed in environments for which they were not intended; e.g., procedural

statements in a functional programming environment. Properties can be given to or

taken away from various statements. And all such experimentation can be

empirically carried out in an environment set up specifically for it.

In implementing experiments like these, and, in fact, for all implementations in

ASP, the user has a wide choice over the level and nature of the instructions to be

used, both in the code bodies and in the environment in which the experiment is to

take place. Low, intermediate, high and very high level instructions can be

employed. At the lowest level, code bodies in ASP are programmed at the abstract

machine language level (see Chapter 6). The fact that code bodies can include calls

to other definitions means that hierarchies of instructions can be built by building

successively higher-level layers. Since, in ASP code bodies, we can intermix levels

of coding, the process of developing (new) instructions is quite flexible, i.e., we can

make adjustments for readability and efficiency, as the situation warrants.

Likewise, since ASP allows access to support routines written in any language easily

accessible by ASP, e.g., C on the VAX, still other possibilities of adapting the level

and nature of instructions to the situation exist.

CHAPTER 9

KITS

Having developed such a system as ASP, a first use of it is to demonstrate

potential. We collect such demonstrations into a loose coalition of definitions for

ASP denoted as Barrel. We refer to these definitions as “kits” since they implement

collections of related programming language features which can be used by

themselves or assembled together to form interesting, dynamic and powerful

programming environments and testbeds for experimentation. Most kits are

modeled after existing languages or mixtures of existing languages, containing, for

example, all the control structures of a language, or a mixture of popular control

structures from several languages, with a purpose of studying them as a unit.

Barrel, like ASP, has certain constraints placed on it. Foremost are those

concepts and recommendations emerging from computer science. We interpret

this to include such items and ingredients as: a formally described subset of Barrel;

relationships with concepts such as logic programming; endorsement of capabilities

which help span the system lifecycle. All of these concepts are discussed thoroughly

in Chapter 2.

The kits can be divided conveniently into interpreted and compiled ones, and

they are described below.

9.1 INTERPRETED KITS: BARREL

Barrel consists of several kits programmed through the use of the facilities of

ASP [Barrett & Reilly, 1984; Minderhout, Reilly, Barrett & Gibson, 1982). A

distinguishing feature of most of these kits is that ASP facilities are used
94

95

interpretatively rather than providing compilation capabilities. The kits we now

describe are:

a) BSYS, features used in implementing most of the other kits,

b) BBAS, a Basic-like interactive kit,

c) BUSP, a subset of the list processor, Lisp,

d) BICON, the hub of the Icon string processor,

e) BGIGI, an interface to GIGI/Regis commands,

f) BCNTRL, while and repeat statements,

g) BCASE, a case statement.

A listing of the statements included in each of these kits can be found in Appendices

9.1 through 9.7.

BSYS includes features which are among those most frequently used in the

development of code for ASP. As other kits were developed there arose a set of

features which were being used over and over in almost all of the kits. These

features were placed in BSYS and most of the other kits are implemented by using

features from BSYS. Thus, features in BSYS share characteristics such as general

functionality, efficiency, and ease of use. In many cases the BSYS commands

provide a convenient alternative to directly using the machine language level

facilities of ASP (i.e., parameter transformations and processor functions; see

Chapter 5). The types of features found in BSYS include assignment statements,

flow control statements, input and output statements, and stack control statements.

BBAS, like BSYS, includes many features that are basic to the operation of

Barrel, that is, much of the software developed through ASP depends on BBAS for

its operation. BBAS is functionally at a higher level than BSYS and has a wider

variety of statements. BBAS resembles any of a number of interactive systems such

as, e.g., Basic. However, it has structured control statements, some modeled after

96

Ada, Pascal, and C, and is therefore more like a structured Basic such as COMAL

[Gratte, 1984]. Some of the types of commands found in BBAS include input and

output statements, file processing commands, flow control commands, array

processing commands, string processing commands, assignment statements, macro

defining commands, commands which interface to the operating system, and

commands which trace the flow of execution of Barrel code.

BUSP consists of a subset of Lisp, including the basic primitives of

mathematical Lisp (CAR, CDR, CONS, EQ, and ATOM). BUSP is capable of full

nested combination evaluation, e.g., expressions of the form (cons (car 1) (cdr m)).

The implementation of combination evaluation is similar to Burge’s method

[Burge, 1975; Eades, Reilly, Barrett & Minderhout, 1982] of decoding or compiling

and then interpreting or executing, using two stacks to hold intermediate results.

Other built-in functions and support routines in BUSP are implemented as

part of the environment in which the processor resides. For example, function

definitions rely on ASP’s definitional facility as opposed to a separate define

statement.

BICON provides string processing facilities modeled after those of the

programming language ICON [Griswold, 1982; Griswold & Griswold, 1983].

ICON is a product resembling Snobol but has a different set of primitive

constructions and a new approach to pattern matching. It also embeds the string

facilities within a Pascal-like higher-level language framework. Included are

commands such as upto, many, any, and move.

BGIGI includes commands which allow the use of a GIGI/Regis graphics

system. We primarily use graphics to generate and display tables from within the

table processing component of Barrel (see Chapter 12). We have implemented

some of the turtle graphics primitives of Logo as well (see Chapter 10). And we

97

have also devised a package with which the user can interactively build a picture on

the terminal while saving the commands on disk.

BCNTRL contains two different kinds of control structures: a “while do”

statement and a “repeat until” statement BCASE contains an implementation of a

case statement

A simple example of a program which can be interpreted by these kits might

give the reader an idea of the kinds of things that can be done with them. The

program in Figure 9.1 provides the user with a means for interactively executing

single statements from any of the kits that have been loaded into the ASP system for

the current session. A line is read from channel 4 (the user’s terminal) and then

executed. The program requires the definitions from the BSYS and BBAS kits.

(fty ’we permit 100 executions only)
(fty ’ all submitted code should start in column 1)
(for i : = 1 to 100 begin)
(fty ’send:)

(readch ’4’ code)

(fexecute code)

(end for)

stop

Figure 9.1. An example of a program which can be interpreted by the BBAS
kit

9.2 KITS AND COMPILERS

Two kits have firm connections with compilers. One of these is for Janus, and

the other for a compiler version of a purely function subset of Lisp with which ASP

communicates.

98

9.2.1 Janus

The Janus programming language is described by W. Mbite and his colleagues

as a universal intermediate language [Coleman, Poole & ^ite, 1974; Haddon &

White, 1978a; White, 1976,1978]. The level of Janus as a language lies between

high-level and assembly language. It was designed to serve as the target language

for the translation of high-level languages. It may be viewed as the assembler for

the Janus abstract machine. Because of the abstract machine approach, Janus has

the potential to be a highly portable language. Thus, programs written in a high

level language on one computer can be translated to Janus and subsequently

executed on a number of different computers.

We have used ASP to translate Janus to the assembly language of a Data

General computer [Barrett & Reilly, 1982]. Approximately 170 definitions

comprise the translator for Janus. The definitions are submitted to ASP along with

the Janus program to be translated to produce an assembly language program. This

process is illustrated by the data flow diagram in Figure 9.2.

We have dealt mostly with the basic aspects of the implementation of Janus,

especially as they relate to the Data General, e.g., such topics as procedures,

input-output, character strings, and numbers. We have concentrated on pragmatic

issues, e.g., practicalities of portability, direct versus indirect translation of Janus,

and potential usages of the system. We were also able to convert a decision table

processor, previously written in the assembly language of the Data General to

Janus. Rewriting it in Janus was done, in part to make it portable and, in part, to

gain insight into comparative programming in Janus and in a “real” assembler.

Theoretical issues, which may in the future be relevant to us, are discussed by

Haddon and Write [1978b]. These include Janus’ tree-based memoiy system and

abstract machine approach, similar to ones exploited in operational semantics of

99

definitions

ASP

algorithm coded
in Janus

algorithm coded
in assembly
language

Figure 9.2. Data flow diagram of the translation process for Janus programs,

programming languages, and its contribution to portability as a target language for

compilers [^ite, 1976,1978].

9.2.2 Lispkit Lisp

Lispkit Lisp is a Lisp-like-language described at great length in Henderson

[1980]. This work covers: the theoretical and practical issues in functional

programming; a wide range of algorithms which can be implemented in a basic

Lisp-like-language (Lispkit Lisp) and in an extended version of this language; a

host of issues comparing and contrasting functional and iterative styles of

programming; and last, but not least, a kit for implementing the purely functional

language using a hypothetical language reminiscent of Pascal. A version of this

latter piece of software has been implemented at the University of Alabama at

Birmingham, in the C programming language, and has been used in classes and

other studies [Dilworth, 1983].

100

A design for interaction between ASP and this compiler has been devised. In it,

ASP creates “data” (in the form of code for the compiler), calls up the compiler, and

receives results back from it. The design calls for a shared memory bank in main

memory, a unit which has not been implemented, though its structure seems

apparent. A prototype implementation has been effected using auxiliary files for

data sharing.

CHAPTER 10

TAILORED LANGUAGES AND SYSTEMS

A tailored system in the Barrel/ASP context can be defined as a utility which

provides a specific service for the user, such as text editing. In most cases, tailored

systems are not complete systems but are tailored to fit specific applications. In

other cases, tailored systems fall into the realm of an application program. We

intend to use the term in a broad and sweeping manner to provide a context with

which to describe many different kinds of implementations programmed through

the facilities of ASP.

The distinction between kits and tailored systems is a fine one. In many cases it

would be easy to classify a kit as a tailored system and vice versa. But a tailored

system tends to be more than a kit or an implementation of language features. It

tends to provide a narrower functional scope of service to the end user and in many

cases can be used by a less sophisticated computer user.

The tailored systems we now describe are:

a) BLOGO, turtle graphics primitives from Logo,

b) BED, a text editor,

c) BQBE, relational database primitives,

d) BDT, a presentation processor,

e) BTINT, two presentation processors.

A listing of the statements included in each of these tailored systems can be found in

Appendices 10.1 through 10.5.

BLOGO encompasses several of the turtle graphics primitives from the Logo

programming language. Logo, essentially a dialect of LISP, is a simple but powerful

101

102

language developed for research in artificial intelligence [Abelson, 1982]. It is

highly regarded as a means of introducing programming and problem solving skills

to many different types of people - from handicapped children to computer science

students.

Tbrtle graphics, a small part of Logo, is an implementation of turtle geometry

where lines are described, not in terms of absolute position in a coordinate system,

but relative to the position and direction of the turtle [Harvey, 1982]. A turtle is a

conceptual animal (usually a small triangular pointer) that draws lines while moving

around on the computer screen. It responds to a few simple commands. Some of

the commands implemented in BLOGO are:

right turn the turtle to the right

left turn the turtle left

forward move the turtle forward

back move the turtle backwards

home put the turtle in center of screen

es clear the screen

penup make the turtle’s pen inactive

pendown make the turtle’s pen ready to draw

hideturtle make the turtle invisible

showturtle make the turtle visible

repeat repeatedly execute a list of commands

setbg set the background color

setpc set the pen color

setx set the x coordinate

sety set the y coordinate

103

Logo procedures can be implemented as ASP definitions. An example of a

Logo procedure, the familiar POLYSPI program [Lawler, 1982], can be seen in

Figure 10.1. It is implemented as an ASP definition and can be called, for example,

by “polyspi 1 123 3”, either interactively or in a program. The program displays

different geometric designs based on the arguments provided.

polyspi # # #|
if #14 > 3*#24+#24/4 skip 3$
forward #14$
right #24$
polyspi #14+#34 #24 #34$
$

Figure 10.1. The familiar Logo procedure POLYSPI implemented as a
definition for ASP.

Several points of interest about Logo are listed in Harvey [1982]; it is

procedural, interactive, recursive, extensible, has list processing, and is not typed.

The ASP environment compares favorably with each of these points and, in some

ways enhances the Logo environment, for example, through the pattern matching

capabilities of ASP which are lacking in Logo.

BED is a simple text editing facility. It can be used with other “kits” or tailored

systems to provide editing without having to terminate the current Barrel/ASP

session. Many of the standard commands found in most text line editors are

implemented, including copy, delete, insert, substitute, find, undo, view, and list.

BQBE is an attempt to demonstrate the usefulness of pattern matching in

manipulating small databases. Although small in scope (essentially an

implementation of the project operation from relational databases), it is a

potentially useful tool for many different applications. While still in the planning

stages, one such application involves a decision table processor implemented in

104

terms of relational database operations. Since decision tables can be described in

terms of a relational database [Salah, 1986] and other research work involving

decision tables has already taken place (see Chapter 3) the implementation is easily

conceptualized and complements the work already done.

BDT is an outgrowth of work which combines logic programming and decision

tables. Logic programming was used to create “runnable specifications” [Davis,

1982; Kowalski, 1984a] for the implementation of a new decision table processor in

Barrel/ASP. Specifications are runnable if they can be executed directly on a

computer or a program can be generated automatically which is guaranteed to

preserve the semantics of the specifications.

Prolog, a programming language based on first order logic (specifically Hom

Clauses), has been shown to be adequate for use as a formal design language

[Davis, 1982; Kowalski, 1984a; Moss, 1981; Warren, Pereira & Pereira, 1977]. In

this case study, Bruynooghe’s [1980] version of Prolog was used to devise runnable

specifications for what we call a “presentation processor” for “procedures and

regulations” decision tables [McDaniel, 1978]. This type of table is analogous to a

menu in that it is user-oriented and deals with decisions, e.g., like those a manager

might make concerning polity issues in an organization. Its contents thus can be

presented to its users; they, in turn, respond and the system provides the

appropriate course(s) of action to be taken. As an example, suppose we have a

decision table consisting of actions to be taken based on the condition of certain

types of cars. Figure 10.2 shows the dialogue BDT might use to correspond with the

user. The responses of the user have been annotated with an asterisk at the

beginning of the line. Chapter 11 gives a more complete description of

presentation processors.

105

> % ccprolog input

we are about to launch prolog-like action

use -dt; for prompts

use -det(cord,good); e.g. for direct entries

send:

> -dt;

car make is ?

> cord

condition is ?

> good

make is cord and condition is good

commission is 1%

shop work is 3 weeks

manager ok is not required

car make is ?

Figure 10.2. A typical dialogue of BDT with a user, annotated to indicate user
input (by addition of >).

These tables are logically more complex than a menu, as one distinguishing

feature. Another distinguishing feature, along a different axis, is that the table

contents are complete in and of themselves and need not be translated by a

preprocessor for subsequent compilation (usually) in a higher-level programming

language.

Once the design was completed and tested a solution was effected with ASP as

the implementation tool using existing Barrel/ASP kits. One of our goals was to

make the Barrel/ASP solution as compatible with the Prolog specifications as

possible. The rational for such a goal is the fact that both Prolog and ASP are based

on pattern-directed computing. The closeness of the Prolog specifications to the

106

ASP implementation gives rise to the idea that ASP could be modified slightly to

essentially become a Prolog-like processor.

A key point is that, though the logic program can serve as a presentation

processor on a system which has a Prolog processor, our use of it as a specification

suggests a method for implementing it through the pattern matching facilities of

ASP. In this form, the presentation processor is made available to systems for which

no logic programming is available, and in a manner that is based on logic expressed

in a formal fashion.

BUNT is an implementation of two presentation processors similar to BDT.

Rather than acting on a table which is built into the code (implemented in the

Prolog version of BDT as clauses and as definitions in the Barrel/ASP version),

BTINT acts on tables which are separate from the code and passed as data to the

processors. The processors are part of a larger Barrel/ASP system which generates

the tables to be interpreted by the presentation processors. Chapter 11 describes

these processors fully.

CHAPTER 11

A TABLE ENTRY, REFORMATTING, TRANSLATION, AND
PRESENTATION SYSTEM

11.1 INTRODUCTION TO PAR TABLES

Tàble processing software, written to be processed by ASP, centers on a view of

table processing as a set of five related steps or phases which center around a

combination of practical applications, formal definitions, and portability. The five

steps are:

• creation, phase 1: code book creation

• creation, phase 2: rules entry

• reformatting

• translating

• presentation

It will be the task of the next several sections to clarify each of these phases. As

part of the effort to do so, we shall use an example of a “procedures and

regulations” (PAR) table [McDaniel, 1978]. Because such tables are meant for

direct human use, with or without computer aid, they are easy to read and the

processing they involve is almost apparent upon inspection. The table we use as an

example, Figure 11.1, is also used as an example in Chapter 3 (Figure 3.1).

PAR tables are convenient for purposes of explication, but the reader should be

aware that table processing involves a wider variety both of table forms and

contents. There is one common thread, however, in that all tables represent an

input-output correspondence. The correspondence is often described in terms of
107

108

conditions and actions though other correspondents are useful in some contexts,

e.g., questions and answers or stimuli and response.

car make
condition

cord
good

cord
poor

reo
good

reo
poor

duesenberg
good

duesenberg
poor

commission
shop-work
manager-ok

5%
no-need
no-req

1%
3-weeks

no-req

10%
no-need

no-req

5%
3-weeks

no-req

variable
6-weeks

req

variable
6-weeks
req

Figure 11.1. Representation in table form of a decision procedure relating
input values for “car make” and “car condition” to output values

entitled “commission”, “shop-work”, and “manager-ok”.
In the figure, each component of a six-part decision is represented in a column

(to the right of “ 11 ”). For example, in the table, a combination of input values such

as reo and good (for car make and condition) maps into output values of 5%,

no-need, and no-req, respectively (for commission, shop-work, and manager-ok).

This table can also be read in an “IF... THEN... ELSE” fashion, e.g.,: IF (car make

is reo AND condition is good) THEN (commission is 5% AND shop-work is ‘not

needed’ AND manager-ok is ‘not required’).

Some writers call tables such as Figure 11.1 a “vertical, extended entry decision

table.” That such a table is called a decision table at first glance may seem strange

since, put simply, it’s just “a plain old table,” but in fact, any input-output

correspondence can be put into decision table format! Figure 11.1’s vertical nature

is apparent. The notion of “extended entry” is less easy to understand since the term

describes the table’s contents relative to a simpler form of table, a limited entry

table, in which the contents of the cells to the right of the “ 11 ” are restricted to yes or

no (top half), and x (bottom half). The entries here, being words or simple phrases,

are “extended” because they are not restricted to such simple forms.

109

Though this form of the table is quite easy to read (and use) by humans, it can

be reformatted to make it easier and more efficient to process by computer. The

present form also masks certain “good” properties that tables often possess.

Among the latter are:

• completeness — all possible combinations of input are

accounted for

• consistency — the table does not say, in one part, “Do A”

for a set of conditions, and, in another part,

“Do B” for the same set of conditions

• non-redundant ---- the same set of input and output do not

appear in more than one place in the table

Some form of coding, therefore, is frequently imposed on tables, achieving a

twin goal of making them easier to process by computer and also dramatizing the

good properties. The rationale for having a “codebook” may be apparent in these

remarks. Codebook entiy is often a natural first phase of a table processing system.

The codes (of the codebook) can be used to facilitate the correspondences

between the input and output items. Each such correspondence is called a rule; the

second phase of a table processing system deals with rule entry.

PAR tables are a nice vehicle for discussing table processing because

reformatting alone usually renders them ready for presentation. It is easy to

envision the reformatting need by viewing Figure 11.1 and realizing that such

information, particularly if the relevant contents are codified, can be put into a form

which is much easier and efficient for a computer to process. As we shall see later,

other kinds of tables require intervention of a distinct post-reformatting phase, a

translation phase, almost always done by a “regular” compiler for some

programming language such as Fortran or C.

110

A computerized presentation processor for a PAR table is generally an

interpreter which prompts the user to provide input Upon receiving it the

processor checks the table, matching the input with table contents, and reports the

appropriate output to the user. We describe presentation processors in more detail

in Section 11.2.5 below.

It is desirable to follow good systems analysis techniques when developing

these tables and the processors which present them. Thus, we have integrated work

previously done in the area of formal specifications for decision table systems (see

Chapter 3) into this system of table creation and presentation. More specifically, it

is possible to create “runnable specifications” for the decision tables and a

particular presentation processor. The benefits of such specifications are well

documented [Davis, 1982; Kowalski, 1984a] but if it were left up to the individual to

generate them they would, more often than not, be left unattended. That is why, in

the system described below, formal specifications are generated automatically each

time a decision table is created.

11.2 BATERTAPS
One of the major applications written for Barrel/ASP is a decision table entry,

reformatting, translation, and presentation system (the Barrel/ASP Table Entry,

Reformatting, Translation, And Presentation System or BATERTAPS). The work

was originally done as a masters thesis project at the University of Alabama at

Birmingham by Charles Minderhout (Minderhout & Reilly, 1982]. I was involved

in many of the technical decisions and made several significant enhancements after

the initial work was completed. These enhancements include:

e the option of using graphics to enter the rules

e the expansion of phase 3 and the addition of phase 4 to allow for

processing of tables expressed in a programming language

in

• the automatic generation of formal specifications

The system consists of five phases corresponding to each of the five phases

mentioned above. The first two phases guide the user in creating a decision table.

The result is a consistent coded extended entry decision table. Also, “runnable

specifications” for the presentation processor described in Chapter 3 are

automatically generated. The specifications are “runnable” because they are in the

form of a Prolog program and can be executed on a computer which has a Prolog

compiler. Prolog is a popular programming language based on first order predicate

logic. The specifications are formal because Prolog has a well-defined fixpoint or

denotational semantics as well as its proof theoretic semantics, which gives the

specifications an adequate mathematical basis [Moss, 1981]. Thus, the user has a

stable base to carry him or her through the next three phases. Or the last phases

could be skipped entirely since the user already has an executable presentation

processor.

The third phase of the system has three different components. Two of these

components translate or reformat the information content of the table into a

format which can be utilized by one of two presentation processors. The other

component reformats the table so that it can be processed by a table processing

system based on the C programming language. Phase four consists of the C table

processing system while phase five consists of the two presentation processors.

Tables are normally processed either by phase four or phase five but not both

(however, different ideas are presented below).

One of the presentation processors was developed prior to the system, and one

as part of the system, illustrating the adaptability of the approach. In addition, the

fourth phase (translation) was added after the original work on the system was

completed, further confirming the adaptability of the approach. Also, the second

112

phase has been enhanced by graphics; the user can elect to enter rules with the aid

of an interactive display system (to be described in Chapter 12).

Although most of our work is with decision tables we do not limit ourselves to

them. The presentation processors could be used for many types of tables. In this

way we can generalize the concept of the tables and view them as a set of questions

and answers. So any decision system in the form of a table can be processed by a

presentation processor.

We also do not limit our presentation processors to tables for “procedures and

regulations”. Presentation processors can be used with the more traditional type of

table coded in a high-level language. In particular, we envisage the design of a

system which would facilitate the debugging of high-level language programs by

allowing the user to provide the results of the conditional statements of the

program and then displaying the actions taken by the program under those

conditions. The availability of processors which translate programs to decision

tables enhances the design of such a system. We could then use the

reformatting/translation phase of the system to integrate communication between

the various processors.

We also do not restrict ourselves to processing a single table at a time. The

ability to process systems of tables linked together through constructs within the

tables could easily be incorporated into the system. For example, one of the actions

in a table could specify a new table to be processed. Instead of displaying the action

the presentation processor could process the new table. We have, in fact,

incorporated this capability in one of our presentation processors.

11.2.1 Phase I: Codebook Entry

Several authors stress that table processing needs to be user-oriented in all its

phases [Metzner & Barnes, 1977; Montalbano, 1974]. The first phases, those of

113

creation of a table, may be most in need. That is, it is not expected that a user

develop from scratch, in one step, a table such as that of Figure 11.1. Rather, parts

of it are developed, e.g., within an interactive dialogue, perhaps using graphics aids.

Breaking the creation process up into phases allows the user to focus on smaller

parts of the process, but also helps eliminate much clerical work on the part of the

user. For example, conditions may be entered in near to natural language and the

system can perform several editing chores for the user, supplying the codings for

coded tables, displaying the table in different forms, and the like.

Figure 11.2 describes a portion of dialogue employed to create a table with the

same logical contents as that in Figure 11.1. Note that when the dialogue is finished

the user is permitted to continue whatever processing he or she is already engaged

in. This includes possible editing through use of editors (such as the BED editor,

see Chapter 10). The dialogue should be self-explanatory.

After suitable interaction, sufficient data may be obtained so that it is possible

to display it conveniently as in Figure 11.3. Such a table is called a codebook. Each

set of conditions and actions are put into an appropriate grouping, and a numerical

code is supplied by the system to the options within these groupings. The codes are

later used in entering rules for the table (see the rules entry processor described

immediately below).

11.2.2 Phase II: Rules Entry

We also create rules for a table through interactive dialogue (see Figure

11.4). Rules connect the conditions to actions in the sense that the information

content of Figure 11.3 is increased to contain the full table information exemplified

by Figure 11.6 (and, content-wise, Figure 11.1). Note that this dialogue makes use

of the codes generated in producing the code book; this facilitates the dialogue by

abbreviating the information transfer from the user to the system.

114

please
a “e” for entering conditions
an "a” for entering actions
an “e” to end input

▻c
please: a condition or “sample”, “liste”, "quit”

> sample
make is [cord,reo,duesenberg] ... is a sample to follow

>car make [cord,reo,duesenberg]
please: a condition or “sample”, “liste”, “quit”

> condition [good,poor]
please: a condition or “sample”, “liste”, “quit”

> liste
car make [cord,reo,duesenberg]
condition [good,poor]
please: a condition or “sample”, “liste”, “quit”

▻quit
please

a “e” for entering conditions
an “a” for entering actions
an “e” to end input

▻a
please: an action or “sample”, “lista”, “quit”

> sample
comm is [1%,5%,10%,variable] ... is a sample to follow

> commission [1%,5%,10%,variable]

please: an action or “sample”, “lista”, “quit”
▻quit

please
a “c” for entering conditions
an “a” for entering actions
an “e” to end input

▻ e
processing....
to screen the table ... enter, sc

▻sc

(A display like that of Figure 11.3 appears here.)

to diskout the table ... enter do
▻do

table about to go to disk
the external name of your table is : classic
the internal name for the table is tab
we are now in interactive mode... please have fun

> stop

Figure 11.2. Portion of the codebook entry processor dialogue, annotated to
indicate user input (by addition of >).

115

car make l:cord
2:reo
3:duesenberg

condition l:good
2:poor

commission 1:1%
2:5%
3:10%
4:variable

shop-work l:no-need
2:3-weeks
3:6-weeks

manager-ok l:req
2:no-req

Figure 11.3. Result of the codebook entry portion of the system: a set of
conditions (top half) and actions (bottom half) for a simple
“procedures and regulations” table with appropriate system
generated codes (e.g., 1 for cord, 2 for reo, etc.).

The table created from the dialogue in Figure 11.4 is available in the form of

Figure 11.6. During entry, the user can consult information in the format of Figure

11.5, which together with the codebook provides guidance in entering rules (as is

seen in Figure 11.4).

The system does not allow the user to duplicate the conditions, so that it is

impossible in the dialogue to enter either inconsistent or redundant rules. Thus,

once the rules have been entered the rules entry processor can create a consistent

coded extended entry decision table such as that of Figure 11.6.

The user is given an opportunity to choose to enter rules either in a text

oriented format or to enter them aided by graphics. In the figure, the user elected to

enter data in textual format. Had he chosen the graphics option, a different form of

dialogue ensues (see Chapter 12).

116

to diskin the table... enter: di
>di

enter name of codebook for rules to be generated
> classic

do you wish to use gigi graphics to enter the rules?
>n

please enter rules in this form: 32:432
to exit please enter “quit”
please a rule like “3 2:4 3 2 ” or “ebook” or “rules” or “quit”

>11:112
please a rule like “3 2:4 3 2 ” or “ebook” or “rules" or “quit”

> ebook

(A display of Figure 11.3 appears here, for user consultation.)

please a rule like “3 2: 4 3 2 ” or “ebook” or “rules” or “quit”
> rules

(A display like that of Figure 11.5 appears here.)

please a rule like “3 2:4 3 2 ” or “ebook” or “rules” or “quit”
▻ quit

processing....
to screen the extended-entry table... enter: sc

>sc

(A display like that of Figure 11.6 appears here.)

to diskout the extended-entry table... enter: do
▻ do

table about to go to disk
the external name of your codebook is : classic
file name for table ?

▻ elassiedt
to diskout the rules ... enter: do

▻ do
file name for rules ?

> classical
do you want to generate formal specifications for your table?

.processing...
to screen the formal specifications ... enter: sc

▻ sc

Figure 11.4. Portion of the rules entry processor dialogue, annotated to
indicate user input (by addition of >).

117

(A display like that of Figure 11.7 appears here.)

to diskout the formal specifications ... enter: do
>do

file name for specifications ?
> classicspecs

Figure 11.4. (continued)

11:112
12:222
2 1:212
2 2:3 2 2
3 1:431
3 2:4 3 1

Figure 11.5. The rules table created by the rules entry portion of the system
with the numbers representing the codes nom the codebook.

car make * 1 1 2 2 3 3
condition *12 12 12

commission * 1 2 2 3 4 4
shop-work * 1 2 1 2 3 3
manager-ok * 2 2 2 2 1 1

Figure 11.6. Result of the rules entry portion of the system (a consistent coded
extended entry decision table) with the numbers representing the
codes from the codebook.

Once the complete table has been created the user has the option of generating

formal specifications for the decision table. Actually, the specifications are for a

particular presentation processor but the table is hard coded into the processor.

Thus, we generate different specifications for each table. The specifications

produced for this example are seen in Figure 11.7.

118

dt write(’car make ? ’), read(Cl),
write(’condition ? ’), read(C2),
intermed(Cl,C2).

intermed(no,C2) write(’so long now’), nl.
intermed(Cl,C2) dec(Cl,C2), nl,

write(’we continue’), nl,
dt.

dec(Cl,C2) table(Cl,C2,Al,A2,A3),
write(’commission ’), write(Al), nl,
write(’shop-work ’), write(A2), nl,
write(’manager-ok ’), write(A3), nl, nl.

dec(Cl,C2) not(table(Cl,C2,Al,A2,A3)),
write(’input values not found in table’), nl.

table(’cord’,’good’,’1%’,’no-need’,’no-req’).
table(’cord’,’poor’,’5%’,’3-weeks’,’no-req’).
table(’reo’,’good’,’5%’,’no-need’,’no-req’).
table(’reo’,’poor’,’10%’,’3-weeks’,’no-req’).
table(’duesenberg’,’good’,’variable’,’6-weeks’,’req’).
table(’duesenberg’,’poor’,’variable’,’6-weeks’,’req’).

Figure 11.7. The formal “runnable specifications” for the presentation
processor which operates on the example decision table.

11.2.3 Phase III: Table Reformatting Processors

Once the rules have been added, i.e., a complete table is obtained, there are

many other forms of processing that can be done. For example, tables can be

reformatted into a variety of forms, such as condition policy maps, action policy

maps, and even described in narrative form [Montalbano, 1974].

We have developed several reformatting processors to prepare tables for direct

display of table contents on an interactive basis or to prepare tables for translation

to procedural code. Our first reformatting work was for two interactive

presentation processors discussed in Section 11.2.5. In a later example,

119

reformatting is done to provide input to a decision table processor based on the C

programming language.

11.2.3.1 Reformatting for Presentation

Figure 11.8 shows the example PAR table after it has been reformatted for

input into one of the presentation processors. The format at the beginning of the

table is very similar to the codebook format. Then comes the number 6 which is the

number of rules. This is followed by 6 pairs of condition entries (utilizing codes

from the codebook) and action entries (on the next line). Each pair makes up a rule

from the table. The condition entries specify an option from each condition group,

for example, “1,1,” means “car make: cord; condition: good”. The action entries

specify all the actions to be taken for the conditions. The actions are numbered

sequentially, so, for example, “1,5,9” means “commission: 1%, shop-work:

no-need, manager-ok: no-req”.

11.2.3.2 Reformatting for Translation

In order to show the versatility of this approach to table processing we decided

not to restrict ourselves to tables of the PAR variety but to allow processing of

tables which are expressed in terms of a programming language [Humby, 1973].

There is a lot of software available to the public for translating such tables to code

that a compiler can handle.

We have several such translators available to us to choose from for inclusion in

our system (see Chapter 4). The one we chose is based on the C programming

language. It accepts a combination of C programming language code and decision

tables in a particular format with “C-like” conditions and actions and it produces C

programming language code. The system is called DELTRANS and was developed

by Keller and Roesch [1977].

120

do
car make l:cord

2:reo
3:duesenberg

condition l:good
2:poor

commission 1:1%
commission 2:5%
commission 3:10%
commission 4:variable
shop-work l:no-need
shop-work 2:3-weeks
shop-work 3:6-weeks
manager-ok l:req
manager-ok 2:no-req
6
1,1,
1,5,9
1,2,
2,6,9
2,1,
2,5,9
2,2,
3,6,9
3,1,
4,7,8
3,2,
4,7,8

Figure 11.8. Results of Phase m, the reformatting phase. The example
“procedures and regulations” table is now ready for processing
by a presentation processor.

121

The first two phases for developing such a table are the same as for PAR tables.

The user simply follows several different conventions for entering the conditions,

actions, and rules.

Figure 11.9 shows the output of the codebook phase for a sample table. Note

that the conditions are binary; i.e., they are either true or false. Thus, the groupings

so prevalent in the PAR tables are not necessary. The conditions are entered with

empty groupings, e.g., “r < 0 []”. The actions are also entered with empty

groupings since they, likewise, do not lend themselves to be easily grouped. Of

course, we could have chosen to enter y and n in the brackets (e.g. “r < 0 [y,n]”).

While being perhaps more readable, that convention was deemed too burdensome

for the user.

r < 0 1:
s < 0 1:
t < 0 1:

printf(“T < 0 : ”) 1:
printf(“S < 0 : ”) 1:
printf(“R < 0 : ") 1:
rposQ 1:

Figure 11.9. A sample codebook with conditions and actions derived from
statements from the C programming language. The table is
being prepared for processing by the DELTRANS table
processing system.

When the rules are created the user enters a 1 or 0 instead of codes from the

codebook. A1 in the condition portion of a rule means yes or true; a 0 means no or

false. Dashes are also allowed in the condition portion of the rules and are

used to signify “don’t care”; i.e., it does not matter whether this condition is true or

false. A l in the action portion of a rule means take this action while a 0 means do

not take this action. After all the rules are entered a limited entty decision table

122

r < 0

s < 0

t < 0

*11110

*110 0-

*10 0 1-

printf(“T < 0 : ”)
printf(“S < 0 : ”)

printf(“R < 0 : ”)

rposQ

♦10 0 10
*110 0 0

*11110

* 0 0 0 0 1

Figure 11.10. A sample decision table with conditions and actions oriented
towards the C programming language. It is ready to be
reformatted for use in the DELTRANS table processing system.

(Figure 11.10) is produced. That table is then ready to go through the reformatting

phase.

Figure 11.11 shows the dialogue from a typical session with the reformatting

processor. The user can enter a “label” for the table which is typically used to

provide information which would allow the resulting C code to be used as a function

or subroutine. The user can also enter declarations for any variables that are used

in the table. The resulting table is ready for processing by the DELTRANS

processor.

11.2.4 Phase IV: Table Translation Processors

In most cases, this phase involves translating tables to procedural code in a

specific programming language and then compiling the code to produce an

executable program. These two steps may or may not be separate. Unfortunately,

most compilers are not well integrated with table processing, so that little error

detection and correction is possible once a table is translated to procedural code.

Thus, the creation and debugging phases are distinct - a situation which produces

neither the shortest system lifecycle nor the most dependable code. We have

123

Phase 3 - Reformat Decision làble for C Translation Processor
to diskin the table ... enter: di

>di
enter name of table
You have asked to use a new file (file number 7).
Tÿpe in its name please.

>tdt
processing....
what label do you wish to give this table?
e.g. “tab(c) int c; { ” if it is to be a subroutine
hit return if you do not wish to label it

>tab(r,s,t) int r,s,t; {
any declarations?

>n
to screen the table ... enter: sc

>sc
<
n tab(r,s,t) int r,s,t; {
r5c3a4e@

r < 0 @y(l)y(2)y(3)y(4)n(5);
s < 0 @y(l)y(2)n(3)n(4)-(5);
t < 0 @y(l)n(2)n(3)y(4)-(5);

printf(“T < 0 : ”) @1,4;
printf(“S < 0 : ”) @1,2;
printf(“R < 0 : ”) @1,2,3,4;
rposO @5;

to diskout the table ... enter: do
>do

table about to go to disk
file name for table?

>ctable

Figure 11.11. Portion of the reformatting processor dialogue for tables to be
entered in the DELTRANS table processing system, annotated to
indicate user input (by addition of >).

124

already mentioned (in the introduction to this chapter) the possibility of using a

presentation processor to provide a debugging facility for these tables.

Tables which contain programming language code or even employ a particular

syntax as a concession to facilitate computer translations are generally less readable

than PAR tables, since knowledge of the programming language for which they are

coded is a virtual necessity. Also, the consequences of executing them are

frequently less apparent, e.g., if they require a value to be read in from an external

device or computed, say, using a random number generator.

Display of table input and output, perhaps with simulation of computations, is

possible in such cases, and is, in fact, considered by us briefly (specifically, in the

introduction to this chapter). Sometimes, however, such tables are meant to be

processed in batch mode, a reason for compiling instead of interpreting being to

attain maximum efficiency. We may still refer to a presentation processor under

these circumstances, though the input that is presented to the compiled code

generated from the tables may come from sources other than on-line users, e.g.,

from external files or from other procedures, and the presentation phase usually

consists of the execution of the program of which the table is a part. For most table

processing systems, the calling procedures may or may not have been derived from

tables.

It is important to recognize that by having independent reformatting and

translation components, we can interface our table construction methods to a

variety of table processing systems. This includes ones which we obtain from other

workers, the presence of which contributes greatly to the portability and

networking potential for our table systems. We have illustrated this point in a

previous chapter (Chapter 4), wherein we list several “imported” processing

systems along with some we have developed.

125

As a matter of fact, we have not written any code for this phase but rely on “off

the shelf’ software. Specifically, we use the DELTRANS table processing system

which we have already described in the section on reformatting (Section 11.2.3.2).

11.2.5 Phase V: Presentation Processors

In the previous sections we have shown how a user can formulate a table. We

now describe one way this information can be used. The table’s conditions

(questions) are displayed (presented) to the user; the user selects an appropriate

option; and the actions (answers) are presented to the user. Again, procedures and

regulations (PAR) tables are most appropriate for our purposes, so we continue

with the example discussed above.

We include two presentation processors in our system. Our first one, which

processes only limited entry decision tables, was implemented on the Data General

in the macro assembly language MASM, prior to any of the work on table entry.

The same processor was later implemented in the Janus language (see Section

9.2.1, Chapter 9). Still later, this processor was implemented in Barrel/ASP code.

For tables to be processed by this presentation processor, the reformatting

phase must reformat the table from a coded, extended entry table to a limited entry

table. Thus, the input by the user is limited to Is and Os to answer yes or no to the

conditions. A small display of the interaction suffices; see Figure 11.12.

Our second presentation processor, which processes coded, extended entry

tables, takes more advantage of the codebook format of the table. Each condition

group is displayed along with the the codes and the user enters the appropriate

code. A sample of the dialogue is seen in Figure 11.13.

Some of our presentation processors (but not the ones included in this system)

have the capability to process systems of tables. In them, the action portion of the

table transfers control to another table for further processing. In principle, the

126

to continue: y or yes

>y
1 for yes ... and 0 for no
car make cord

>0
car make reo

>1
car make duesenberg

>0
condition good

>1
condition poor

>0
commission 5%
shop-work no-need

manager-ok no-req

Figure 11.12. Partial dialogue from execution of a typical presentation
processor, annotated to indicate user input (by addition of >).
The last three lines are the actions displayed by the system.

condition portion of tables also can invoke other tables, just as they might invoke

arbitrary functions. Minderhout and Reilly [1982] and Salah, Reilly and Yang

[1984] discuss such systems.

127

type the appropriate number

car make l:cord
2:reo
3:duesenberg

type the appropriate number

>2
condition l:good

2:poor

>1
the actions for this case are:
commission
shop-work

manager-ok

2:5%
l:no-need
2:no-req

Figure 11.13. Partial dialogue from execution of a typical presentation
processor, annotated to indicate user input (by addition of >).
The last three lines are the actions displayed by the system.

CHAPTER 12

GRAPHICS CREATION AND EDITING OF TABLES

Graphics are a necessary component in a modem decision table system.

Decision tables are graphically oriented because they are inherently

two-dimensional. The focus of this chapter is on using graphics to display tables,

especially during the creation phase of table processing as described within the

Barrel/ASP context (see Chapter 11).

Graphics are used in conjunction with the Barrel/ASP Ihble Entry,

Reformatting, Translation, and Presentation System (described in Chapter 11) in

several ways:

e entering the rules of the table (during Phase II),

• limited editing of the rules after they have been created,

• and to display the graphical representation of the table any time

after it has been created.

The codebook created in phase I is used to create an empty limited entry

decision table (i.e., one with no rules). This table is displayed on the screen along

with one as yet empty rule. The cursor is positioned over each condition one at a

time and a response is elicited. The condition being processed is highlighted. The

user types a ‘Y’ if the condition is true or anything else if it is not. A ‘Y’ or blank is

displayed for that condition. The actions are treated similarly, using an ‘X’ instead

of a ‘Y’. If an inconsistent or redundant rule is entered an error message is

displayed and the rule is not accepted. Figure 12.1 shows the example table used for

illustration in Chapter 11 (Figure 11.1) in the process of being created via the

128

129

graphics editor. The 5th rule is being entered and the “shop-work is 6-weeks”

action is highlighted, awaiting a response by the user.

car make is cord? y y
car make is reo? y y
car make is duesenberg? y
condition is good? y y y
condition is poor? y y

commission is 1% X
commission is 5% X X
commission is 10% X
commission is variable X
shop-work is no-need X X
shop-work is 3-weeks X X
shop-work is 6-weeks
manager-ok is no-req X X X X
manager-ok is req

Figure 12.1. Entry of rules via graphics editor.

When a rule has been completed the system asks if there are any more rules to

be entered. If the answer is yes then another empty rule is generated and the

process begins again. Otherwise the user is asked if there are any corrections to be

made. If the answer is yes the system asks which rule number needs correcting. The

cursor is then placed at the beginning of that rule and the user fills it in again.

When all corrections have been made a coded, extended entry decision table is

produced (just as if the user had chosen to use the non-graphic method of entering

the rules).

Two of the extensions made to Stage2 which gave rise to the Barrel/ASP

processor (see Chapter 6) are utilized in the graphics approach to rules entry.

130

Most definitions necessary for the Barrel/ASP processor to run are entered at the

time the Barrel/ASP processor is started. But the definitions required for the

graphics processing are not entered until the user decides which mode of rules

entry is desired (graphics or non-graphics). The processor function for adding new

definitions at any time during processing is used to add the graphics definitions.

The second new extension used is the processor function which provides the

interface to the graphics terminal and allows graphics commands to be used.

The user has the option of saving all of the graphics commands used in

generating the table. The commands are saved in a file chosen by the user. At any

time later, the user merely has to execute that file of Barrel/ASP statements to get a

graphics display of the table on the terminal.

CHAPTER 13

SUMMARY

This thesis has dealt with a proposed methodology for software development,

using computerized, formal techniques, in a context where the software is to be

developed with specific development tools. These tools are ones which we have

devised and shown to be flexible, portable, extensible, and easy to use. They were

designed with a targeted goal of providing a formal specifications methodology and

implementation tools for persons engaged in simulation, particularly as it relates to

newest forms of simulation involving non-numeric computation.

Each of these three elements, the formal techniques, the software

development tools, and the applications area, have received considerable attention

in this document. Extensive illustrations and theoretical contributions have

positioned us to make recommendations about formal definition techniques at the

detailed, practical level required to make this methodology acceptable to

simulators. The work enables us to provide convincing evidence that developing

(simulation) applications with a high degree of formal methods is not just desirable

from a computer science perspective but is practical as well.

The formal techniques are based specifically on logic programming and

Prolog. A dual level, complementaiy approach, i.e., both at the programming

statement level and at a “higher” systems (components) level has been presented,

justified, and demonstrated.

The software tools we developed for implementation, the Barrel and ASP

processors, complement the theoretical work so that a variety of functioning
131

132

software has been shown to be under control of both theory and new and powerful

software development tools.

The applications area is served through practical demonstrations of both the

formal techniques and the software development tools, with examples that are

picked for potential interest to simulators. These provide an adequate test of the

effectiveness of the proposed methodology in the applications area. With these

summary remarks in mind we now review each chapter of the dissertation and

summarize its relationship to the thesis.

13.1 PARTI

After an introductory chapter we described, in Chapters 2 through 4, a

computerized formal methodology, which we feel can have a significant impact on

software development in simulation modeling. This methodology allows us to

reason about the components of models as they are being built, and, thus,

contributes to the development of simulation elements, such as sophisticated

E-units and other portions of the BEAK environment (explained further in section

6 of Chapter 14).

One of our major objectives has been to identify appropriate tools and

associated programming language and system theory to support our view. The

criteria we used in locating potential candidates included:

• executable on a computer

• extensible

• flexible

• logic based

We required that the formal techniques be capable of being executed on a

computer. Otherwise, they would be essentially useless to supporting the ultimate

goal of automating the entire BEAK.

133

The methods also had to be sufficiently adaptable to change, with respect to

both extensibility and flexibility. We expect that non-numerical computing, in all of

the BEAK units, is now only partially understood. Accordingly, we feel that a tool

that is unable to respond to change would be next to useless. Additionally, its

implementation must be flexible and not burdensome when it is moved to new

machines and machine environments.

We chose to base our formalizations on (formal) logic. Translated into today’s

terms, this means some form of logic programming. We chose, in addition, to try to

stay as close to Hom Clause forms as possible so that we could make extensive use

of Prolog. This is important not only because of the strategic relationship of Prolog

to symbolic computing, but because the software we have been developing can

itself emulate Prolog.

Chapter 2 described our formal techniques at the programming statement

level. We demonstrated how non-numeric simulation language constructs can be

developed through the use of formal techniques based on Metamorphosis

Grammars. A language we defined, Barrel-F, was designed to include several

essential features for symbolic simulation; among them are table processing and

string manipulation.

We demonstrated the extensibility of the method by showing how the

definition can be extended as the language is extended. We provided an example by

adding stack and queue manipulation statements to the language and discussing the

steps required for extending the definition.

We then used the formal definitions to implement the language through the

use of our non-numeric software development tool, ASP. We provided a suite of

test programs for testing both the definition and the implementation.

134

We also provided a formal definition of the development tool, ASP. We

defined much of the process of writing code bodies in ASP, including most of the

parameter transformations and processor functions. We believe this to be a unique

case for this kind of software, though it has obvious traces to proving operating

systems and compilers correct.

In Chapter 3 we moved our formal techniques to a higher level of processing,

that of programming systems. These are larger units of code, often standing alone,

and in some particulars bear resemblance to the “object” of object-oriented

programming. We did not require this object oriented discipline in the current

implementations, but it appears sufficiently related that a follow-up study could be

launched to develop it (see Chapter 14, section 2).

We used Prolog to provide “runnable specifications” for a decision table

“presentation processor,” a table processing system component We then

implemented the processor using ASP. The flexibility of ASP was demonstrated by

making the implementation correspond as closely as possible to the (Prolog)

specification. We discussed some of the differences between Prolog and ASP and

how some features which are natural in a simplest formulation of a table processor

in Prolog (for example, input/output indifference) might be addressed in ASP. We

also introduced the idea of automatically producing the specifications through

interactive user input of the requirements for the table.

In Chapter 4 we showed how our desire for portable systems led to the

introduction of a portability concept we call “portability-cubed.” We described

three instances of portability that can be used separately or together in software

development work.

The first instance involved the portability of the ASP processor itself. ASP

uses an abstract machine approach to implementation and can be easily ported to

135

other systems. We described the full bootstrap method of implementation as well as

the three ports we have done.

The second instance revolves around the ability to use ASP to process

languages which mimic “real” programming languages. In this way, applications

written with ASP can be ported to systems which support the language.

The third instance involves a network of table processing systems. Tibies

generated by ASP table processors can be manipulated by several different table

processors located on various machines. The scorecard: about nine

implementations on about five machines.

13.2 PART 2

Chapter 5 began our introduction to the Augmented Stage2 Processor, ASP.

Here we described what ASP is, what it is used for and how it works. We discussed

its origins in William Write's Stage2, its identity as a general purpose macro

processor, and its ability to do string transformation as well as programming

language interpretation. We talked about using it to analyze programming

language features through synthesis of these features, to study different modes of

processing (functional, logical, procedural), and to prototype and implement

systems. We talked about its place in the formal studies and its place in the

simulation environment. We provided a tutorial on how ASP works - macro

definitions, templates, code bodies, calls, parameter transformations, processor

functions and associative memory.

Chapter 6 described the background of ASP (i.e., Stage2, the tool it is based

on). We described the extensions and modifications made to Stage2 to arrive at

ASP as well as the methods employed in making the modifications, principal ones

being extending the abstract machine and adding to embedded code.

136

The abstract machine approach to the implementation of ASP, as well as the

various machines and programming languages used in actual implementations,

were described in Chapter 7.

13.3 PART 3

Chapters 8 through 12 described various applications developed to

demonstrate the usefulness of ASP in developing symbolic software. We have

adopted a name for these applications and demonstrations; we called them the

Barrel system.

Chapter 8 showed how we were able to use ASP to analyze various

programming language features which we deem useful for symbolic processing.

The focus at this point was on individual statements, some of which were proposed

in journals for inclusion in modem programming languages; others being derived

from existing languages which appear to have a place in symbolic simulation.

Several such implemented statement types were used in various contexts and

environments.

Chapter 9 described the various “kits” or collections of related programming

language features developed through the use of ASP. These kits contain many of

the types of features which we described as necessary for symbolic processing;

inspiration from Lisp, Snobol, and other more “conventional” features are

apparent. We discussed how these kits can be used separately or in conjunction with

other kits.

Chapter 10 focused on the portions of Barrel which are tailored toward a

specific service or application. These “tailored systems” are similar to kits but

usually are more limited in scope. Examples include a text editor, turtle graphics

and table “presentation processors.”

137

Chapter 11 described a particular table processing system which is capable of

asking for requirements for a decision table and, in a series of five phases,

producing decision tables in various forms for processing by various (other)

decision table processors. The system is also capable of automatically producing

runnable specifications for a table processor of the procedure and regulations type,

as discussed in Chapter 5.

Finally, Chapter 12 talked about the capability of using graphics to provide

the input to the table processing system of Chapter 11.

Thus, the three parts of the dissertation delineate the thesis statement in

microcosm: Software for simulation systems should be developed within a

framework which has both a strong theoretical foundation (Part 1) and a useful and

practical application package (Part 2). Furthermore, to be truly relevant to the

needs of the users, a computerized methodology is preferred over a manual

methodology, and the implementation tool must be extensible, portable, and easy

to use. A sufficient basis for a formal methodology for simulation modeling in a

broadened sense of combined continuous, discrete and symbolic simulation is a

methodology we have developed in logic programming (Part 1); an

implementation tool that satisfies the stated needs for developing software for

simulation models and environments, with primary emphasis on the symbolic and

non-numeric areas, is the system we have developed, which includes a base

processor (Part 2), a core facility forming a first-cut symbolic simulation language

(Part 1), and much associated utility code (Part 3).

CHAPTER 14

THE FUTURE

The present work has positioned us for a number of interesting issues and

opportunities. After brief remarks on several of them, we conclude with a larger

tract on the BEAK simulation environment opportunities.

14.1 AN INTEGRATED IMPLEMENTATION OF LOGIC
METHODOLOGIES

The two principal components of the current methodology, the language level

and the programming systems level, have been integrated only in a conceptual way,

each of these component levels is separately employed in demonstrations. What is

needed for future work is a seamless garment wherein shifts from one subsystem to

the other can be made automatically, even without user intervention. The two

components could then be merged into a single comprehensive one, the processor

depicted in Figure 14.1 describing at top-level a design whereby this can be

effected.

In this design, the processor receives program descriptions (usually code in

sequential language style, C or Fortran being typical cases) and analyzes them

syntactically and semantically. Besides this, however, the processor also accepts

runnable specifications, in Prolog, and processes them, just as it would C or

Fortran. The part that processes Prolog statements is immediately implementable

by adopting some code from Christopher Moss’ thesis. It can join with the code we

have developed, in providing full coverage of all we have designed for ASP and

Barrel.
138

139

Prolog
Code

Input
Data

Barrel-E
Definition

Prolog
Definition

Barrel-F
Definition

The Processor

Output
Data

Runnable
Specifications

Figure 14.1. The combination of programming language definitions with
programming system definitions.

Not to be forgotten is that it may be possible to build from the foundation

established in this thesis, wherein the processor automatically translates logic

specifications into Barrel code. So far we have dealt with examples which we feel

provide feasibility information. The next step is to proceed to a more systematic

frame. In so far as this is possible, only the statement level system, which we have

covered comprehensively, would be needed.

If both a (Barrel) statement and a (Prolog runnable specifications) module

level component are involved in the (future) system, some mode switching

mechanism needs to be designed to allow switching between the alternatives. In

crudest form this mechanism would require the user to proffer a signal, e.g., some

character or pair of characters.

More interestingly, the system may be able to figure out on its own what is the

nature of the code it is receiving. This is, it seems apparent, a non-trivial problem if

140

Prolog-mimicking Barrel code is envisioned along with Prolog specifications.

Accordingly, we leave the problem to follow-up work.

Another set of complications would occur if a higher form of logic

programming, or a specialized logic is introduced in new components. These, too,

create a potential for detailed and comprehensive additional work suitable for

doctoral level research.

14.2 OBJECT-ORIENTED ANALYSIS AND
IMPLEMENTATION

There is room for improvements in another area we mentioned earlier -

taking a more formalized view of objects and notions that go with the

object-oriented paradigm. We have informally analyzed some of the basic

concepts and believe they would not, in general, be difficult to impose.

Object-oriented thinking is making a large impact in simulation, our primary

domain of interest, and any effort in increased emphasis on object-oriented

philosophy would be welcomed on two counts: the underlying methodology and the

applications domain.

14.3 LINK TO THREADED LIST THEORY AND PRACTICE

Another opportunity relates to “threaded list” languages such as Forth. That

Barrel/ASP can mimic Forth, in principle, i.e., at a capabilities level, has really been

amply proved in the present dissertation. That is, we actually use the core idea of

statements made to the processor (ASP machine language statements) causing

execution of pre-compiled function- or routine-level codes. This is done

extensively in the graphics drivers and the Logo graphics mimicking actions. The

basic call mechanisms in Forth are essentially a special case of the mechanisms

employed in ASP.

141

A problem worth consideration relative to Forth comparisons is efficiency.

Forth is tuned to efficiency, in part, by the very same restriction we mentioned in the

previous paragraph. An obvious but not elegant mechanism, within ASP, would be

to use flags which identify modes: a “Forth mode” and a “non-Forth mode.” This

could be done on an individual statement basis or at the level of blocks of code.

Possibly, in some implementations (see comments below on parallel

implementation), the system could employ a “Forth mode first” or a “Forth mode in

parallel” scheme.

We note once again that research and development into these matters would

carry a pay-off for simulation, probably most so in areas where models are

integrated with instrument and measurement devices. An example might be

monitoring of computer-communications networks using a programmable set-up

like that surrounding a UAB CIS system which has an embedded data-collecting

computer.

14.4 PARALLEL AND DISTRIBUTED PROCESSING

In the bulk of our previous work there has been a bias toward mini- and

micro-computers. But, more recently, the advent of parallel machines, such as the

Sequent here at the UAB, and access to the Alabama state supercomputer, has

forced us to address a wider variety of computers in a minority of our studies. We

have already mentioned parallelisms in our putative Forth mode, but there are

many additional possibilities; we explore a couple of them here.

A future is now envisioned for some UAB research on distributed simulation,

coordinating with other members of the CIS staff, e.g., on networks distributed over

ethemet and networks of supercomputers connected by hyper-channels. These

newer systems are often exclusively or predominantly Unix systems. Our past work

has often been in Unix-based systems (often Vaxen, and in one our most recent

142

studies, the Sequent Balance), though we are in no way limited to such, having

developed systems under the Data General AOS operating system. Specifically,

then, choice of programming languages and approaches to Unix based

environments are influenced by needs for portability and flexibility.

Parallel and distributed connections seem to present a number of

opportunities. The basic tree searches used in ASP can be parallelized. In applying

the pattern-directed computation style to very large problems, we can isolate

“vocabularies” to different processors and let competition reign among them to

decide winners. One of our earliest efforts involved a processing style of this type,

in a study designed to gain efficiencies in memory management. We distributed

ASP’s tree searches over separate processes [Barrett, 1981b] and achieved some

success in the goal, but found other issues we would need to solve to achieve full

success. As a result of reflecting on these matters, we could see readily that

research and development into tasking and parallel processing is a deep study with

matters such as conflict resolution and ultimate efficiency for very large problems

being among focuses.

14.5 ADJOINING CURRENT WORK WITH PREVIOUS LOGIC
THEORY

Reilly, Salah, and Yang [1987] explored several term-predicate relationships

for decision tables (DIS), assessing properties and then showing that, mostly

because of input-output indifference, a form used often is very useful: table (cord,

good, 10%, 2_wks, no-req.). In this case, all terms are constants. Cases with more

complexity include ones where functions are allowed in generating output values;

these put some restrictions on the extent of input-output indifference.

The first of the two just mentioned forms has charm with respect to storing it

in relational databases, since it is just that, a relation. We get some help from a

143

processor which implements the restrictions of relational database, e.g., in the form

of eliminating duplicate or conflicting entries, since relational databases do not

allow duplicate keys. However, in practice, there are some limitations: we may not

always want to eliminate duplicates. For example, we may wish to keep an old rule

around until we break in a new rule. Both Prolog, sans the database option, and

Barrel allow us this broader mode of operation. Reconciling these modes of

operation suggests at least some practical matters to investigate.

Other forms of representation discussed by Reilly et al. [1987] include what

Salah calls “an implicational form.” The epitome is: input(cord,good) <—

output(10% ...etc). Such a form provides a facile way to produce a better match

between a rule-based system statement specification in Prolog and the

implementation we presented earlier in Barrel. This improvement is balanced by

the loss of input-output indifference, unless we explicitly invoke metaprogramming

in the Prolog case.

A “functional form” (e.g., input([cord, good])) was also presented by Reilly et

al. [1987]. An important point was made that any form which places a function in

the path of automatic Prolog access (automatic to predicates) puts a restriction on

the generality of DT that can be processed. Barrel seems able to step around these

limits, albeit, again, through what amounts to metaprogramming (when viewed

through Prolog colored eyeglasses). More exploration is called for at this point,

especially, in any serious attempt to bring the Reilly and Salah schemes into the

service of the simulation environment.

There are two specific areas for which Barrel and ASP seem particularly well

suited for integration with the work of Salah, Reilly and Yang. One is to provide for

automatic conversion from one DT representation to another. The second involves

a particular type of DT rule problem where the input to the table matches if “any k

144

of n” parts of the rule matches. Salah and Reilly [1987] covered this kind of rule;

their algorithm seems to present no difficulties for programming in Barrel and

could be a nice addition for use in certain studies of simulation.

14.6 SIMULATION ENVIRONMENTS AS THE “BEAK”

The top-level activities in a simulation environment can be expressed by the

acronym BEAK, an expression coined by Reilly and used by him and his colleagues,

including us, in several recent papers [Reilly et al., 1984; Reilly et al., 1985; Reilly et

al., 1986; Reilly & Dey, 1987; Reilly, Jones & Dey, 1985]. BEAK stands for:

• B : Build

• E : Execute

• A : Analyze

• K: Knowledge

In simplest terms, a simulationist: 1) builds models, 2) executes them, 3)

analyzes their results and 4) contributes appropriate results to a knowledge base.

In more complex form, subcycles may appear within the BEAK. A very

familiar one is that operating between the analysis routines of the A-unit and the

knowledge base of the K-unit. The user, in this subcycle, is in the act of exploiting

results of a model whose run (E-unit run) has already been completed, typically by

employing analyses at differing levels and of various types, on the generated data.

Another example subcycle exists in the frequently exercised loop between building

a model and executing it, as the user seeks to tune a model to specifications.

The research work that led to this dissertation, described in terms of BEAK,

began with a desire to extend the executor (E-unit). Hooper and Reilly had

developed a combined continuous and discrete (CCD) simulation system

145

(UAB-CIS’s GGC processor) and an immediate goal was set to provide GGC with

non-numeric (symbolic) simulation capabilities. An ultimate goal, designated for

future research beyond this dissertation, was seen as providing a complete

“combined continuous, discrete and symbolic” simulator (or more briefly, a

“combined numeric-non-numeric simulator). The intention for the work reported

in this dissertation was that it would provide many tools and a formal approach that

would be important in aiding development of such a new combined simulator.

However, the emphasis on non-numeric computation, rule-based

processing, and related processing meant that our work would be applicable to

more than just the E-unit. An example, which we meet again shortly, concerns

rule-based processing in providing guidance for users in selecting appropriate

analysis routines. Another example we meet ahead is use of rule processing in a

natural language input system; our group had already started work on this before

this dissertation started.

These examples impact the A-unit and the B-unit, respectively. Others can

be cited. The key point is that these considerations led to a conjecture about the

BEAK which urges consideration of the entire BEAK in developing fundamental

software. We amplify this conjecture, to include a role for our new formal

methodology. This conjecture is meant to set a basis for the future work we

propose; it is stated thus: In designing new software for simulation, the entire

simulation environment should be taken into consideration. Formal development

tools should apply to software development in all the individual elements of the

environment.

That this conjecture is fruitful, we believe, is already and amply demonstrated

in this dissertation. A major example is seen in the fact that software we designed

with primary concern for the E-Unit very often has turned out useful for other units

146

as well. The table processing software can be cited in this regard. Our interest in

this section is primarily on how future work can be based on work we and other

workers at the UAB have done, of course, with the systems and software work

described in this dissertation playing a key role. The BEAK categories provide a

high level index for this purpose and also help bring a focus on work that spans

categories.

The conjecture has a further impact in terms of forcing consideration of the

advantages of a dual level formal approach (allowing modelers to reason at

different levels in the programming hierarchy). This kind of contribution has

already been made and it is demonstrated in this dissertation. Moreover, the

conjecture will continue to propel us and our successors to coordinate practical

software development with formal description of the software. This is a parallel

development scheme: as the software tools increase so also does the formal

description knowledge base. We have illustrated this kind of work in this thesis in

order to make dear that such a parallelism is indeed possible. It seems reasonable

now to recommend continuation of the methodology in future studies.

The conjecture additionally has promoted our taking a step toward defining

and automating a part of the reasoning facility. Considerations of code automation

and parallel development of tools and theory (as expressed in the last paragraph)

are related items, as we have presented the matter in this dissertation.

As a result of the extra effort to investigate these issues we believe that the

formal elements of our methodology are very close to being candidates for housing

within an advanced simulation environment The attack we have already mounted

has resulted in ideas and feasibility demonstrations on components of simulation

environments at the cutting edge in simulation. Let us now discuss at a more

147

detailed level some specific recommendations and suggestions for each of the units

of the BEAK A natural place to start is E-Unit activity.

14.6.1 E-Unit

We find that models under the labels symbolic, non-numeric, or AI, not

infrequently turn out exclusively to be rule-based systems. The entire model may

be consumed in a single rule-based system, with few other elements of modeling

and simulation present. Occasionally, we see the embedding of expert system

components into conventional numeric simulations, but less frequently do we see

expert systems embedded within the more or less standard general purpose

simulators. This circumstance may be due in part to the potential complexity of

such systems, but, perhaps it is due more to the often unaccommodating posture

these standard systems take to “foreign” elements.

We may quote A. Martin Wildberger at this point (though his comment covers

more than just the case of complex model execution code):

Current combinations [of Al and Simulation] seem awkward, and
there is a real need for standardized ways to interface AI and Simula
tion techniques. [Wildberger, 1990].

Our hope for success in our foray into this territory where hitherto others have been

moderately successful at best is predicated on several of our assumptions, e.g., that

1) having both numerical and non-numeric (AI) systems features coded in the same

and consistent framework simplifies the combination; 2) having code publicly

available for examination fosters adaptations for all users and systems developers;

and 3) producing an extensible programming system is the appropriate approach to

diversity of application and predicted future growth. Consistent with the allowance

for growth is that the theory component of our systems is designed to apply to ex

tensible systems.

148

E-Unit features should be developed from simulation experience as a guiding

factor. An example is seen in our work where models adjoining numeric and

non-numeric processing in psychobiology modeling [Reilly, Freese & Rowe, 1984;

Reilly & Gfeller, 1976]) were a stimulus to adopting some features we have

developed, and, in other cases, have legislated against selection. Among selected

items are some tools facilitating string and list processing. Generalizing from these

specifics to the excellent “models” for string and list processing facilities, workers

may be able to draw on deep roots in computer theory, e.g., in Post Production

Systems, in Markov Algorithms, in lambda calculus and in standard two-value logic

theory. These banks of knowledge may provide help in further development of the

theoretical side of our methodology. Some of the capabilities represented by

theories have appeared in programming language realizations bearing familiar

names of OPS5, Snobol, Lisp and Prolog. Additional guidance should derive from

programming practice with these, as we have already done with various elements

reported in this dissertation.

Our suggested approach follows our past modus operandi: to proceed

eclectically, seeking out “good” features, prototyping, testing them, and employing

the formal methodology as soon as ideas begin to suggest a modicum of persistence.

We have not nor do we recommend merging all or even a substantial number of

features from various sources, since incompatibilities and redundancies would then

exist. In software development excursions in behalf of this dissertation, some of

which are still in the “informal” (or “preformal”) stage, we incorporated collections

of related features into what we call “kits.” The key software engineering concept

we explored, then, was that, by having a single base language to which we can add

(and subtract) features under ultimate guidance of formal theory, we solve some of

149

the potential problems of integrating programming and processing styles. We

believe this approach should work well in others’ (future) work.

14.6.2 A-Unit

Wildberger’s comment about awkwardness of current combinations of

numeric and non-numeric processing is not restricted to E-units. A case involving

A-units can be understood from the perspective of rule-based operations in the

work of Mellichamp and Park (Mellichamp, 1989]. These researchers developed

rule-based systems with conventional expert system shells; the resulting expert

systems offer guidance in analyzing results obtained from simulations. Their work

is of great interest within our group at the time of this writing, and accordingly is

under scrutiny.

One principal concern is how analysis routines used in A-unit - K-unit

subcycles might be constructed so that they are equally useful for analysis

operations occurring in E-unit model runs. An example might be a statistic such as

Chi-Square, known to be useful in post-run operations on frequency distributions,

but also useful in stopping rules within model runs. Our software approach

promotes migration of code, here from A-unit to E-unit, since all of the

non-numeric and rule-processing code, as well as that of the numeric code in

GGC, is written within a single language. Since we have already developed code

and schematics for creating rule-based systems as well as processing them, we have

set the stage for this kind of migration issue to be handled without major

awkwardness. Again, we recommend attention to this issue for future study

potential.

Another element of Mellichamp and Park’s work is that, when the system is

being employed by a user, rules previously acquired are center stage. This is not

inappropriate in their case, since much guidance can be done before the fact, i.e.

150

before model runs even begin. However, it is not always the case that rules can be

ascertained beforehand. Hence, it is instructive to contrast their work with some

discussed a little later, where rules are acquired during BEAK action. Accordingly,

we recommend issues relating to graceful augmentation of rule systems in

relationship to roles that these systems play in simulation.

Another different kind of A-unit activity can be mentioned in connection

with our work on graphics within the ASP system. The area is that of visualization.

The impact of visualization is expected to be enormous in simulation. Our work

within ASP is only a beginning and much more will be needed. Nevertheless, we

can recommend studying our software system in a context of a powerful

visualization sub- or co-system. The primary unit of concern is the A-unit, but

once again, migration to the E-unit, for much the same reasons as in the

Mellichamp and Park case, must be considered in future study.

14.6.3 K-Unit

Other contributions based on experience involving persons who have used our

system are found in knowledge acquisition work of Dey and Reilly [Dey & Reilly,

1986; Reilly & Dey, 1987]. These documents report on a framework and data

structures for obtaining expert information from a variety of sources, including

simulation models. Among models considered was one designed to simulate

decision processes that the simulation environment itself might use, and another

one in which neural nets are used to analyze the internal working of a complex CCD

model [Reilly & Oliver, 1988].

These studies implicated the GGC system and related software, including

some of our own. Accordingly, they appear as good starting points for launching

future work. Some very sophisticated conceptualizations can be tackled from a

framework which assumes that understanding the systematics and code that make a

151

model faithfully mimic a modeled system is really only part of the need in a

simulation environment.

Accordingly, we posit a framework which, for a successful BEAK, envisions

inquiry into such matters as: how existing results can be used for extrapolation and

interpolation, how one model leads to pursuit of another, and last but hardly least,

how results from several individual modeling efforts can be accumulated.

Computer scientists will be called upon increasingly to do the “systems” work for

environments in which these considerations are addressed. We offer our

suggestions in the belief that they are of value to such individuals.

14.6.4 B-Unit

Several other studies performed on simulation and closely related systems

have a potential bearing on the UAB efforts on simulation environments. Charles

Autrey [1984], for example, dealt with fuzzy systems concepts and “linguistic

variables” for E-unit alternatives to the numerical solution of a complex queueing

system. These models were based on results emerging from E- and A-Units (i.e.,

direct results from simulation model runs and results that are uncovered upon

massaging statistically the direct results). The kinds of models Autrey was

interested in may be viewed as alternatives to the precise modeling, say, of GGC.

As such, the main focus of the study is E-unit, but for the longer term the process of

building models (B-unit) based on complex associations within the K-unit will

emerge as a focus.

Preston B. Rowe approached a problem which constitutes a possible first step

in extracting information from K-units for use in a B-unit. The focus was on

directly extracting fragments of models from existing stored models. The

long-term potential included use of established results of those models; this

research involves possible merging with simulation approaches such as that

152

espoused in the book by Sauer and MacNair [1983] where the specific (detailed)

nature of the systems being modeled is incorporated into the simulator itself. The

interface between general queueing (and queueing analogs) and specific queueing

systems for a limited range of problems seems a worthy future study target for our

software and the software methodology.

Kevin Ramer [1986] worked on natural language input for simulation

systems. In this system, with appropriate help from a dictionary, we can introduce a

service system model in the terminology of the system being studied, e.g., a

“gasoline station"; the code generated is for a general systems model in GPSS.

Ramer’s problem and the problem mentioned at the end of the preceding

paragraph bear some similarity. The natural language input problem, however,

does not include any reference to results or their nature (i.e., statistical detail). The

central issue is translation from the terminology of an applications area into a fixed

vocabulary general systems simulator. The similarity is in the target, since the

specific systems being studied lend themselves to a controlled vocabulary rendition.

We can summarize this section by noting that the mimicking capabilities of

Barrel accommodates mechanisms used by these writers: the Pascal higher-level

language features used by Rowe, the special purpose language constructions from

Lisp used by Autrey, and the Prolog capabilities used in part of Ramer’s efforts.

Some of the facilities they used have already been incorporated into Barrel code. It

thus seems possible to foresee work refining and further developing these features,

in behalf of the simulation environment of the future.

14.6.5 BEAK Unit Interactions

Though most of the action being described in the last paragraphs is directed

toward specific BEAK units, sophisticated BEAK unit interactions are often

implied. Since existing knowledge guides the builder in what he seeks, what he

153

specifies and designs must be expressed to the E-unit, and the final post-mortem

statistical and other analyses are handled in the A-unit as it massages the data and

delivers reduced data over to the K-unit, the appeal of the conjecture on the BEAK

appears again. It is hoped that our work, which has impact at various points in the

BEAK, together with our conjecture about the entire process of software

development, can provide guidance in tackling what should be clearly seen now as a

difficult and long-enduring problem area.

These studies, as well as earlier ones, represent an adequate launching pad for

further research, and much can be achieved using our, or augmentations of our,

current software schemes and software development methodology. The software

we have treated in this dissertation can help remedy many of the difficulties we

perceive in sophisticated interactive BEAK unit systems, because it is developed to

be completely compatible with the GGC system, which incorporates a GPSS- and

GASP-like facility in flexible and portable languages such as Fortran and C (C ++

being a new focus).

Our rule-based systems capabilities are embedded in the C language, which

gives us some benefits in flexibility. Some additional flexibilities also emerge from

our stance that rule processing be cast in a table processing general style, such as

that laid out by authors such as Montalbano [1974], McDaniel [1978], and Metzner

and Barnes [1977]. We can also include small gestures toward flexibility in file

processing because of our connection to relational databases as a form of table

processing, due to our work’s having been coordinated at least to some degree with

that of A Salah, who sought links between decision tables and relational databases.

Indeed, his work and ours together can be viewed as a joint effort in development of

software relevant to a modem view of the BEAK (see the fifth section of this

chapter).

154

14.7 DEPARTING WORDS

In these last two chapters, we have provided some of the obligatory fare for

dissertation last chapters. We have summarized the entire work, first in general and

then point-by-point. Recitation of detailed results and their associated prognoses

allows us to plot some futures, how existing systems might benefit from our

methods, but most importantly, how we have enabled parallel research to chart

untried territory. These deliberations have marked the last pages of this

dissertation and have provided a fitting end to our text.

REFERENCES

1 Abelson, H. “A Beginner’s Guide to Logo ’ Jgyte, 7(8), August, 1982, pp. 88-112.

2. ‘Ada: Past, Present, Future: An Interview with Jean Ichbiah, the Principal Designer
of Ada.” Communications of the ACM. 27(10), October, 1984, pp. 990-997.

3. Autrey, J. C. “Application of Fuzzy Set Theory to Simulation and Control.” Master of
Science Degree Project Report, Department of Computer and Information
Sciences, University of Alabama at Birmingham, Birmingham, AL., 1984.

4. Barrett, J. H. “Studies in Non-Numerical Software Development.” Master of
Science Degree Project Report, Department of Computer and Information
Sciences, University of Alabama at Birmingham, Birmingham, AL., 1981a.

5. Barrett, J. H. “Use of Multiple Processes with STAGE2.” Working Paper,
Department of Computer and Information Sciences, University of Alabama at
Birmingham, Birmingham, AL, 1981b.

6. Barrett, J. H. “Use of Overlays with STAGE2.” Working Paper, Department of
Computer and Information Sciences, University of Alabama at Birmingham,
Birmingham, AL., 1981c.

7. Barrett, J. H. “Use of Paging Techniques with STAGE2.” Working Paper,
Department of Computer and Information Sciences, University of Alabama at
Birmingham, Birmingham, AL, 1981d.

8. Barrett, J. H. “Stage2 Extensions and Modifications.” Working Paper, Department
of Computer and Information Sciences, University of Alabama at Birmingham,
Birmingham, AL, 1982.

9. Barrett, J. H. “Using Barrel/ASP’s Decision Table Entry, Translation and
Presentation System to Construct Tables for a C Decision Table Processor.”
Working Paper, Department of Computer and Information Sciences, University of
Alabama at Birmingham, Birmingham, AL., 1983a.

10. Barrett, J. H. “Using GIGI Graphics With Barrel/ASP’s Decision Table Entry,
Translation, and Presentation System.” Working Paper, Department of Computer
and Information Sciences, University of Alabama at Birmingham, Birmingham,
AL, 1983b.

155

156

11. Barrett, J. H. and K D. Reilly. “Non-Numerical Software Development Studies.”
Presented at the 19th Annual Southeast Regional ACM Conference, Atlanta, GA.,
April, 1981.

12. Barrett, J. H. and K D. Reilly. "Realization of a Translator for Janus.” Proceedings
of the 20th Annual Southeast Regional ACM Conference. Knoxville, TN., April,
1982, pp. 223-225.

13. Barrett, J. H. and K D. Reilly. “The Making of ASP: A Language Development
Facility.” Journal of the Alabama Academy of Science. 54(3), July, 1983, p. 192.
(Abstract). Also presented at the 60th Annual Meeting of the Alabama Academy
of Science, Ihscaloosa, AL, April, 1983.

14. Barrett, J. H. and K. D. Reilly. “Language Feature Analysis by ASP
Implementations.” Journal of the Alabama Academy of Science. 55(3), July, 1984,
p. 229. (Abstract). Also presented at the 61st Annual Meeting of the Alabama
Academy of Science, Mobile, AL., March, 1984.

15. Barrett, J. H. and K. D. Reilly. “Tbward a Merger of Two UAB-Developed
Programming Systems: GGC and Barrel-ELSDF.” 25th Annual Conference of the
Southeast Region of the Association for Computing Machinery, Birmingham, AL,
April 1-3,1987.

16. Barrett, J. H. and K. D. Reilly. “The Sixth Generation Neural Network Computing
Meets the Fifth Generation Logic Programming.” The Seventh Annual
Southeastern Neuroscience Symposium, May 21,1988 (poster session).

17. Brown, P. J. Macro Processors and Techniques for Portable Software. London:
John Wiley and Sons, 1974.

18. Brown, P. J. ed. Software Portability. Cambridge: Cambridge University Press,
1977.

19. Brown, P. J. Writing Interactive Compilers and Interpreters. London: John Wiley
and Sons, 1979.

20. Bruynooghe, M. Prolog in C for Unix Version 7. Louven, Belgium: Katholieke
Universiteit, 1980.

21. Burge, W. Recursive Programming Techniques. Reading, Mass: Addison-Willey,
1975.

22. Burstall, R. M. “Formal Description of Program Structures and Semantics in First
Order Logic.” In Machine Intelligence. 5, E.U.P, 1969, pp. 79-98.

23. Cleaveland, J. C. and R. C. Uzgalis. Grammars for Programming Languages. New
York: Elsevier North-Holland, 1977.

157

24. Clocksin, W F. and C. S. Mellish. Programming in Prolog. New York-
Springer-Verlag, 1981.

25. Coleman, S. S., P. C. Poole and W. M. Waite. “The Mobile Programming System,
Janus.” Software - Practice and Experience. 4(1), January - March, 1974, pp. 5-23.

26. Colmerauer, A. "Metamorphosis Grammars.” In Natural Language
Communication With Computers. New York Springer-Verlag, 1978.

27. Davis, R. E. “Runnable Specification as a Design Tool.” In Logic Programming.
New York Academic Press, 1982.

28. Dellert, G. T “Improvements to TAB40 Decision Tàble Processor.” MI IKE
Technical Report, MTR-6264, October, 1972.

29. Dey, P. and K. D. Reilly. “Integrating Knowledge Acquisition Methods.”
Proceedings of the 1986 IEEE International Conference on Systems. Man, and
Cybernetics. Atlanta, GA., October, 1986.

30. Dijkstra, E. W. A Discipline of Programming. Englewood Cliffs, NJ.:
Prentice-Hall, 1976.

31. Dilworth, R. “Programming with Higher-Order Functions in Lispkit Lisp." Master
of Science Degree Project Report, Department of Computer and Information
Sciences, University of Alabama at Birmingham, Birmingham, AL, 1983.

32. Eades, C., K. Reilly, J. Barrett, and C. Minderhout. “The Barrel Concept: A Study
in Language System Development.” Proceedings of the 20th Southeast Regional
ACM Conference. April, 1982, pp. 168-171.

33. Elrod, M. Master of Science Degree Project Report, Department of Computer and
Information Sciences, University of Alabama at Birmingham, Birmingham, AL,
1981.

34. Gane, C. and T Sarson. Structured Systems Analysis: Tools and Techniques.
Englewood Cliffs, NJ.: Prentice-Hall, 1979.

35. Gibson, J. “A Study in Software Portability: Implementation of the Stage2 Macro
Processor on the VAX 11/750 in Pascal.” Master of Science Degree Project Report,
Department of Computer and Information Sciences, University of Alabama at
Birmingham, Birmingham, AL, 1982.

36. Gordon, M J. C. The Denotational Description of Programming Languages: An
Introduction. New York Springer-Verlag, 1979.

37. Gratte, I. Starting With COMAL Englewood Cliffs, NJ.: Prentice-Hall, 1984.

158

38. Griswold, R. E. “Linguistic Extension of Abstract Machine Modelling to Aid
Software Development.” Software - Practice and Experience. 10(1), January, 1980,
pp. 1-9.

39. Griswold, R. E. “The Evaluation of Expressions in Icon.” ACM Transactions on
Programming Languages and Systems. 4(4), October, 1982, pp. 563-584.

40. Griswold, R. E. and M. T Griswold. The Icon Programming Language. Englewood
Clifts, NJ.: Prentice-Hall, 1983.

4L Haddon, B. K. and W. M Write. “Experience with the Universal Intermediate
Language Janus.” Software - Practice and Experience. 8(5), September - October,
1978, pp. 601-616.

42. Haddon, B. K. and W. M Write. “The Universal Intermediate Language Janus
(Draft Definition).” Technical Report, SEG-78-3, Software Engineering Group,
Department of Electrical Engineering, University of Colorado, Boulder, CO., 1978.

43. Harvey, B. “Why Logo?” Byte, 7(8), August, 1982, pp. 163-193.

44. Henderson, P. Functional Programming: Application and Implementation.
Englewood Clifts, NJ.: Prentice-Hall, 1980.

45. Hoare, C. A. R. “The Emperor’s Old Clothes.” Communications of the ACM.
24(2), February, 1981, pp. 75-83.

46. Hoare, CAR and P. E. Lauer. “Consistent and Complimentory Formal Theories
of Programming Languages.” Acta Informatica, 3,1974, pp. 135-153.

47. Hooper, J. W. and K. D. Reilly. “The ’GPSS-GASP Combined’ (GGC) System.”
International Journal of Computer and Information Sciences. 12(2), 1983, pp.
111-136.

48. Hull, L. S., T Takaoka, W. T Jones, and B. R. Bryant “Stack and Queue
Programming Using SQ-Pascal.” Technical Report, Department of Computer and
Information Sciences, University of Alabama at Birmingham, Birmingham, AL,
1985.

49. Humby, E. Programs From Decision Tables. London: Mac Donald, 1973.

50. Johnson, S. C. Bell Laboratories, personal conversation, 1982.

51. Keller, J. F. and R W. Roesch. “A Decision Logic Table Preprocessor.” Masters
Thesis, Naval Postgraduate School, U.S. Department of Commerce, Technical
Information Service, AD A041154, Washington, D.C., 1977.

52. Kowalski, R. A Logic for Problem Solving. New York: North Holland, 1979.

159

53. Kowalski, R. A. “AI and Software Engineering.” Datamation. November, 1984a,
pp. 92-102.

54. Kowalski, R. A. “Logic Programming in the Fifth Generation.” Knowledge
Engineering. Rev. 1,1984b, pp. 26-38.

55. Lawler, R. W. “Designing Computer-Based Microworlds.” Byte. 7(8), August, 1982,
pp. 138-160.

56. Marcotty, M., H. F. Ledgard and G. V. Bachman. “A Sampler of Formal
Definitions.” Computing Surveys. 8(2), June, 1976, pp. 191-276.

57. McDaniel, H. An Introduction to Decision Logic Tables. New York: Petrocelli,
1978.

58. Metzner, J. R. and B. H. Barnes. Decision Table Languages and Systems. New
York: Academic Press, 1977.

59. Mellichamp, J. M. and Y. H. Park, “A Statistical Expert System for Simulation
Analysis.” Simulation. 52(4), 1989, pp. 134-139.

60. Mills, H. D. “Program Design Without Arrays and Pointers.” Technical Report,
IBM Corporation, 1983.

61. Minderhout, C. and K. D. Reilly. “A Decision Table Entry, Translation, and
Presentation System: An Applications Study in Barrel.” Master of Science Degree
Project Report, Department of Computer and Information Sciences, University of
Alabama at Birmingham, Birmingham, AL, 1982.

62. Minderhout, C., K. D. Reilly, J. H. Barrett, and J. Gibson. “Use of Barrel in
Applications Studies.” Proceedings of the 20th Annual Southeast Regional ACM
Conference. April, 1982, pp. 172-175.

63. Montalbano, M. Decision Tables. Chicago: Science Research Associates, 1974.

64. Moss, C. D. S. “A Formal Definition of ASPLE Using Predicate Logic.” Research
Report DOC 80/18, Department of Computing, Imperial College, London,
October, 1980.

65. Moss, C. D. S. “The Formal Description of Programming Languages using
Predicate Logic.” PhD Thesis, Department of Computing, Imperial College,
London, 1981.

66. Moss, C. D. S. “How to define a language using PROLOG.” Conference Record of
the 1982 ACM Symposium on Lisp and Functional Programming. August, 1982,
pp. 67-73.

160

67. Neuhold, E. J. ed. Formal Description of Programming Concepts. Amsterdam:
North-Holland Publishing Company, 1978.

68. Newey, M. C., P. C. Poole and W. M. Waite. “Abstract Machine Modelling to
Produce Portable Software - A Review and Evaluation.” Software - Practice and
Experience. 2(2), April - June, 1972, pp. 107-136.

69. Orgass, R. J. and W. M. Waite. “A Base for a Mobile Programming System.”
Communications of the ACM. 12(9), September, 1969, p. 507.

70. Pagan, F. G. Formal Specification of Programming Languages: A Panoramic
Primer. Englewood Cliffs, NJ.: Prentice-Hall, Inc., 1981.

71. Papakonstantinou, G. “A Recursive Algorithm for the Optimal Conversion of
Decision Tables.” Angewandte Informatik. 22(9), September, 1980, pp. 350-354.

72. Pereira, F. ed. C-Prolog User's Manual - Version 1.4. SRI International, Menlo
Park, CA., October, 1983.

73. Pereira, F. C. N. and D. H. Warren. “Definite Clause Grammars for Language
Analysis - A Survey of the Formalism and a Comparison with Augmented
Transition Networks.” Artificial Intelligence. 13,1980, pp. 231-278.

74. Ramer, K. “Natual Language and Internal Representations in a Model
Specification System.” Master of Science Degree Project Report, Department of
Computer and Information Sciences, University of Alabama at Birmingham,
Birmingham, AL, 1986.

75. Reilly, K. D. and E. Gfeller. “Development and Use of Simulation Models in the
Study of Abnormal Behavior.” In: L E. Gess, V. M. Heier and G. L Berosik, Eds.
Record of Proceedings: The Ninth Annual Simulation Symposium. 1976, pp. 61-82.

76. Reilly, K. D. and J. H. Barrett. “A Computerized Formal Methodology for
Development and Modification of Numeric and Symbolic Components for
Simulation Models and Environments.” In: Jack Clema, Ed. Proceedings of the
1989 Summer Computer Simulation Conference. Austin, TX., July 24-26,1989, pp.
550-555.

77. Reilly, K. D., J. H. Barrett, and H. Lilly. “Combined Continuous, Discrete, and
Symbolic Simulation in a Parallel Processing Machine Context." In: Jordan Q. B.
Chou, Ed. Proceedings of the 1987 Summer Computer Simulation Conference.
Montreal, Quebec, Canada, July 27-30,1987, pp. 73-78.

78. Reilly, K. D., J. H. Barrett, and A. Salah. “A First Study on a Prolog-Mimicking
Barrel Extended Entry Decision Table Presentation System.” Working Paper,

161

Department of Computer and Information Sciences, University of Alabama at
Birmingham, Birmingham, AL, 1982.

79. Reilly, K. D. and P. Dey. "Simulation Environments and Automated Knowledge
Acquisition.” In: Jordan Q. B. Chou, Ed. Proceedings of the 1987 Summer
Computer Simulation Conference. Montreal, Quebec, Canada, July 27-30,1987,
pp. 668-673.

80. Reilly K. D., M. Freese, and P. B. Rowe. “Simulation Models of Abnormal
Behavior: A Program Approach.” Behavioral Science - Journal of the Society .for
General Systems Research. 29(3), 1984, pp. 186-211.

81. Reilly, K. D., W. Jones, and P. Dey. “The Simulation Environment Concept:
Artificial Intelligence Perspectives.” In: W. M. Holmes, Ed. Artificial Intelligence
and Simulation. San Diego: Society for Computer Simulation, 1985, pp. 29-34.

82. Reilly, K. D., W. Jones, H. E. Lyons, P. Payer, K. W. Ramer, and P. Dey. “The
AISEME Project: Artificial Intelligence and Software Engineering in Modeling
Environments” TSETT1985 Conference. University of Michigan, Ann Arbor, ML,
PRISE Ref. No. M0705, August, 1985. 19pp.

83. Reilly, K. D., W. Jones, J. H. Barrett, A. Salah, E. Strand, J. Autry, and P. B. Rowe.
“Software Development Studies: A Simulation Environment Perspective.” ISETT
1984 Conference. University of Michigan, Ann Arbor, ML, Ref. No. M0657,16pp.

84. Reilly, K. D., M. McAnulty, F. Amthor, M. Wainer, P. Thurston, and M. Villa.
“Neural Network Modeling and the Neuronal Robot.” In: Jordan Q. B. Chou, Ed.
Proceedings of the 1987 Summer Computer Simulation Conference, Montreal,
Quebec, Canada, July 27-30,1987, pp. 448-453.

85. Reilly, K. D. and J. Oliver. “A Neural Control Element in a Control Systems
Application.” Proceedings of the First International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, Tullahoma,
TN., June 2-3,1988, pp. 507-513.

86. Reilly, K. D., K. W. Ramer, P. Dey, B. W. Suter, H. E. Lyons, and J. Byoun. ‘A
Natural Language Component for a Modeling and Simulation Environment.” In: J.
Young, V W. Ingalls and R. Hawkins, Simulation at the Frontiers of Science. San
Diego: Society for Computer Simulation, 1986, pp. 83-88.

87. Reilly, K. D., A. Salah, and C. C. Yang. A Logic Programming Perspective on
Decision Table Theory and Practice.” Data and Knowledge Engineering, 2,1987,
pp. 191-212.

88. Reinwald, L. T. and G. T Dellert. “TAB40 for FORTRAN IV on the CDC
64/65/6600.” Research Analysis Corp., McLean, VA., October, 1968.

162

89. Rustin, R. ed. Formal Semantics of Programming Languages. Englewood Cliffs,
NJ.: Prentice-Hall, 1972.

90. Salah, A “On Decision Thble Representation in Logic.” Technical Report,
Department of Computer and Information Sciences, University of Alabama at
Birmingham, Birmingham, AL, 1983.

91. Salah, A. ‘An Integration of Decision Thbles and a Relational Database System
into a Prolog Environment.” PhD Thesis, Department of Computer and
Information Sciences, University of Alabama at Birmingham, Birmingham, AL,
1986.

92. Salah, A. and K. D. Reilly. ‘A Reduction Methodology for A Differential Diagnosis
Expert System.” International Journal of Approximate Reasoning, 1,1987, pp.
131-139.

93. Salah, A. K. D. Reilly, and C. C. Yang. ‘A Logic Programming Approach to
Decision Table Definition and Implementation.” Presented at the ACM
Midsoutheast Conference, Gatlinburg, TN., Nov., 1984.

94. Salah, A, K. D. Reilly, and J. H. Barrett. “A First Study in the Use of Prolog for
Presentation of Extended Entry Decision Thbles.” Working Paper, Department of
Computer and Information Sciences, University of Alabama at Birmingham,
Birmingham, AL, 1982.

95. Sauer, Charles H. and Edward A MacNair. Simulation of Computer
Communication Systems. Englewood Cliffs, NJ.: Prentice-Hall, 1983.

96. Schwartz, B. M. “LISP 1.5 Decision Tables Implemented for a Serial Computer
and Proposed for Parallel Computers.” SIGPLAN Notices. 6(8), September, 1971,
pp. 93-103.

97. Soloway, E., J. Bonar, and K. Erlich. “Cognitive Strategies and Looping Constructs:
An Empirical Study.” Communications of the ACM. 20(11), November, 1983, pp.
853-860.

98. Strachey, C. and C. P. Wadsworth. “Continuations - A Mathematical Semantics for
Handling Full Jumps.” PRG-11, Programming Research Group, University of
Oxford, 1974.

99. Waite, W M. ‘A Language Independent Macro Processor.” Communications of the
ACM. 10(7), July, 1967, pp. 433-440.

100. Waite, W. M. “Building a Mobile Programming System.” Computer Journal. 13(2),
February, 1970a, p. 28.

163

101. Waite, W. M. “The Mobile Programming System: STAGE2.” CommunicationsJ2f
the ACM. 13(7), July, 1970b, pp. 415-421.

102. Waite, W. M. Implementing Software for Non-Numeric Applications. Englewood
Clifts, NJ.: Prentice-Hall, 1973.

103. Waite, W M. “Janus Memory Mapping: The JI Abstraction.” Technical Report,
SEG-76-1, Software Engineering Group, Department of Electrical Engineering,
University of Colorado, Boulder, CO., 1976.

104. Waite, W. M. "Janus Stack Mapping: the J2 Abstraction.” Technical Report,
SEG-78-1, Software Engineering Group, Department of Electrical Engineering,
University of Colorado, Boulder, CO., 1978.

105. Walters, R. E. J. Bowie, and J. C. Wilcox. MUMPS Primer: An Introduction to
the Interactive Programming System of the Future. College Park, MD.: MUMPS
Users’ Group, 1982.

106. Warren, D. H. D., L. M. Pereira, and F. Pereira. “Prolog - The Language and Its
Implementation Compared With Usp.” Sigplan Notices, 12(18), 1977.

107. Weiss, S. and C. Kulikowski. A Practical Guide to Designing Expert Systems
Totowa, NJ.: Rowman & Allanheld, 1984.

108. Wildberger, A. M ‘Artificial Intelligence and Simulation.” Simulation, 55(1),
1990.

109. Wixson, S. University of Alabama at Birmingham, personal conversation, 1986.

APPENDIX 2.1

B ARREU ASP BARREL-F LANGUAGE

Informal description of the statements available in the Barrel-F programming

language. Keywords are lower case; non-terminals are upper case. A “general

case” example is followed by a specific example.

1. setq - assigns a value to a variable
example: (setq VARIABLE EXP)

(setq var ‘some text)
(setq var a+3*b)
(setq var anothervar)

2. zero - sets the value of the variable to zero
example: (zero VARIABLE)

(zero var)

3. bump - adds the value of the expression to the value of the variable and makes
that the new value of the variable
example: (bump VARIABLE EXP)

(bump var 2*c)

4. incr - increment the value of the variable by one
example: (incr VARIABLE)

(incr var)

5. deer - decrement the value of the variable by one
example: (deer VARIABLE)

(deer var)

6. execute - execute the value of the variable as if it were a statement
example: (execute VARIABLE)

(execute var)

7. readch - get an input value from channel 4 (as defined by ASP) and make it the
new value of the variable
example: (readch ‘4’ VARIABLE)

(readch ‘4’ var)
164

165

g.ty-output the value of the variable or the quoted value; if there is more than one
argument (separated by commas) concatenate them before output;
arithmetic expressions are not supported
example: (ty EXP[,EXR..])

(ty ‘the value of a is, a)

9. cbk - determine if the value of the variable is a valid condition or action (i.e.,
suitable for inclusion in a codebook as defined for the Barrel/ASP
Decision Thble Entry, Translation, and Presentation System); if not valid,
print an error message and set the value of the variable “err” to 1; if valid,
set the value of the variable “fh” to the length of the stub and set the value
of the variable “bh” to the length of the longest entry (fh and bh are only set
if their values are less than the values just found, i.e., if the values are
bigger than any other found so far in the program)
example: (cbk VARIABLE)

(cbk var)

10. sen - output the contents of an array; the array name is given by the first
variable, the starting point (either the zero or first element) is given by
the integer, and the ending point is given by the value of the second
variable
example: (sen VARIABLE VARIABLE UT)

(sen array length 1)

11. stinit - initialize or clear a stack giving it the specified number of elements
example: (stinit STACK EXP)

(stinit ast ‘20)

12. push - push a value onto a stack
example: (push STACK EXP)

(push ast ‘a value)

13. pop - remove a value from a stack and make it the new value of a variable
example: (pop STACK VARIABLE)

(pop ast var)

14. stcopy - copy the values of one stack to another stack destroying the previous
contents of the target stack
example: (stcopy STACK1 to STACK2)

(stcopy thisstack to thatstack)

166

15. qinit - initialize or clear a queue giving it the specified number of elements
example: (qinit QUEUE EXP)

(qinit aqu ‘20)

16. inqfront - insert a value onto the front of a queue
example: (inqfront QUEUE EXP)

(inqfront aqu a*b)

17. inqback - insert a value onto the back of a queue
example: (inqback QUEUE EXP)

(inqback aqu a*b)

18. remqfront - remove a value from the front of a queue and make it the new value
of a variable
example: (remqfront QUEUE VARIABLE)

(remqfront aqu var)

19. remqback - remove a value from the back of a queue and make it the new value
of a variable
example: (remqback QUEUE VARIABLE)

(remqback aqu var)

20. qty - output the contents of a queue from front to back
example: (qty QUEUE)

(qty aqu)

21. qcopy - copy the values of one queue to another queue destroying the previous
contents of the target queue
example: (qcopy QUEUE 1 to QUEUE2)

(qcopy thisq to thatq)

22. loop/leave/again - looping control structure; execute the statements until the
relation is true (the statements are optional); the literal
value specified in the loop statement must match that in the
leave and again statements; loops can be nested
example: (loopin')

STATEMENTS
(if (EXP BOOLOP EXP) then leaveLIT)
STATEMENTS
(againLIT)

(loopi)

167

(readch ‘4* var)
(if var eq ‘end’ then leavel)
(setq a a+var)
(againl)

23. if/then/else - if the relation is true then execute the first statement or
statements, otherwise execute the second statement or
statements (the else portion is optional); either form of else can
be used with either form of then
example: (if (EXP BOOLOP EXP) then STATEMENT)

(else STATEMENT)

example: (if (EXP BOOLOP EXP) then do)
STATEMENTS

(else do)
STATEMENTS
(endif)

(if (a eq b) then (setq c ‘2))
(else do)
(setq c *2)
(setq flag *1)
(endif)

24. goto - the next statement to be executed is the one following the label statement
example: (goto LIT) where the label statement is: (LIT:)

(goto there)
(setq a "his is not done)
(there:)

25. stop - stop execution of the program
example: (stop)

26. size - function; returns the precision if the value of the argument is a number or
returns the length if the value of the argument is a character string
example: (size EXP)

(setq a (size ‘this string))
(setq b (size a*b+c))

27. concat - function; returns the concatenation of the character string values of the
two arguments

168

example: (concat EXP EXP)
(setq a (concat a ‘this string))

28. top - function; returns the value currently on top of the stack without popping it
example: (top STACK)

(setq var (top stl))

29. stsize - function; returns the number of values currently on the stack
example: (stsize STACK)

(ty (stsize stl),‘ elements)

30. stempty - function; returns true if the stack has no values on it and returns false
otherwise
example: (stempty STACK)

(if ((stempty stl) eq ‘true) then (goto empty))

31. front - function; returns the value currently on the front of the queue without
removing it
example: (front QUEUE)

(ty (front aqu))

32. back - function; returns the value currently on the back of the queue without
removing it
example: (back QUEUE)

(ty (back aqu))

33. qsize - function; returns the number of values currently on the queue
example: (qsize QUEUE)

(setq a (qsize aqu) + 3)

34. qempty - function; returns true if the queue has no values on it and returns false
otherwise
example: (qempty QUEUE)

(if ((qempty aqu) eq ‘true) then (goto empty))

35. ! - plink operator; allows specification of the index of an array variable (the
index can evaluate to an integer or a character string)
example: (setq VARIABLE1EXP EXP)

(setq arr!‘3’ ‘a value)
(ty ‘the name is: ,arr!‘name’)

169

Definition of non-keywords used in examples above:

VARIABLE a variable name which can consist of any sequence of
characters which are balanced with respect to parentheses

EXP can be an arithmetic expression
example: 2*(a+l)
or a function call
example: (size box)
or a variable name
example: netpay
or a quoted value (a literal)
example: ‘the rain in Spain
NOTE: a quoted value is delimited by the closing parenthesis
when used in a setq statement and by a comma or the closing
parenthesis when used in a ty statement
NOTE: an arithmetic expression can involve the four
arithmetic operations (addition, subtraction,
multiplication, and division) with numbers and/or variables
and/or functions as operands using balanced parenthesis as
needed or desired to effect precedence (although numbers can
serve as variable names such variable names cannot appear in
an expression as they will be interpreted as numbers)

BOOLOP a boolean operator; can be any of:
eq (string equality)
ne (string inequality)
= (equal)
< > (not equal)
< (less than)
> (greater than)
< = (less than or equal)
= < (less than or equal)
> = (greater than or equal)
= > (greater than or equal)

NOTE: eq and ne assume their arguments are strings and the
other relational operators assume their arguments are integers

STATEMENT can be any single statement

STATEMENTS can be any sequence of zero or more statements
NOTE: each statement must fit on one line (usually 80

170

characters but implementation dependent) so all
non-keywords have an implied limit to their size

STACK the name of a stack; see VARIABLE

QUEUE the name of a queue; see VARIABLE

LIT a literal constant value

APPENDIX 2.2

FEATURES AND FOLLIES OF THE BARREL-F FORMAL
DEFINITION

Listed here are several strongpoints about the definition along with explanations of

why they are worth mentioning. Then several weak points about the definition,

brought out by thorough examination and testing, are expounded upon.

Strong points about the Barrel-F definition:

1. use of continuations for goto statement

The development of continuations by Strachey and Atedsworth was an important

advance in the descriptive techniques of semantics. It led to simpler and smoother

descriptions of various constructs, some of which would be impossible to describe

without continuations [Gordon, 1979; Strachey & Wadsworth, 1974]. We have

adapted the method of “impure continuations” to relational semantics in order to

describe the goto statement, modeled after the work of Moss [1981]. The work was

made somewhat easier by the fact that goto’s cannot branch into or out of loops.

2. error messages match those of ASP

Errors are handled by a separate “status” parameter in the state of the machine.

When an error occurs in the execution of a program the error message that is

generated is the same as that received in the ASP implementation of Barrel-F.

3. execute statement sends the value of the variable through the 3 phases of the

definition (lexical, syntactic, and semantic)

Barrel-F provides an execute statement which allows the value of a variable to be

executed as if it were a Barrel-F statement. The semantic definition of the execute

171

172

statement actually sends the value of the variable through the 3 phases of the

definition as if it were a one statement program.

4. implementation details can be included

Syntactic constraints which are machine dependent can be specified in the

definition such as a limit on the size of integers. Checks can also be performed in

the semantics to assure such constraints are followed at run time.

Problems with the Barrel-F definition:

1. statements are not limited to one line (80 characters)

The definition does not complain about statements that extend beyond the current

line. The ASP implementation, however, does not allow statements to span more

than one line. Nor does it allow more than 80 characters in a single line.

2. very large strings of digits are converted to floating point numbers upon input

In ASP, numbers are treated as character strings until an arithmetic operation is

performed on them. Thus, very big numbers are allowed. But the definition

(because of the way Prolog treats numbers) converts very long strings of digits to

floating point numbers upon input. A similar problem occurs with leading zeros in

numbers. The Prolog processor strips leading zeros upon input whereas the ASP

processor allows them to be part of the number until an arithmetic operation is

performed.

APPENDIX 2.3

FORMAL DEFINITION OF THE BARREL-F PROGRAMMING
LANGUAGE

We first present a Prolog interface to the formal definition which makes its

execution very simple. The user simply enters “go(file).” where file is the name of a

file which contains a Barrel-F program. Each of the three parts of the definition

(listed below) are called in turn: lexeme - the lexical syntax, morpheme - the syntax,

and sememe - the semantics.
/$********$********$***«*****/

/••••• main program •••*•/
/*******$**********«*******$*/

/•** define the top level of the Barrel-F definition **•/
/*** the major predicates are lexemes, morpheme, and sememe ***/
go(File) see(File), read_in(Text), seen,

lexemes(Tokens, Text, []), !,
write('Tokens - '), pp(Tokens, 50, 9), nl, nl,
morpheme([Tree | Mem], Tokens, []), !,
write('Tree - '), pp(Tree, 50, 7), nl, nl,
prettylist(Mem),
write('Mem before sememe - '), pp(Mem, 50, 20), nl, nl,
write('Enter your input in list form and end it

with a period: '),
read(Input), nl,
uglylist(Mem, Meml), !,
sememe(Tree, state(Meml, [], Tree, Input, Output, ok),

state(Ml, Cont, Tree, II, 01, Result)),
prettylist(Ml),
write('Mem after sememe = '), pp(Ml, 50, 19), nl, nl,
write('Input = '), pp(Input, 50, 8), nl, nl,
prettylist(Output),
write('Output = '), pp(Output, 50, 9), nl, nl,
write('Result = '), write(Result), nl.

/*"* read each character from a file into a list of ***/
/**• characters •*•/
read_in([W | Ws]) getO(W), not checkeof(W), read_in(Ws), !.

173

174

read_in([]).
checkeof(26). /* check for end of file •/

/*** get rid of uninstantiated variable at the tail ***/
/*** of a list •••/
prettylist([]).
prettylist([Head | Tail]) var(Tail). Tail - [].
prettylist([Head | Tail]) prettylist(Tail).

/*** put uninstantiated variable at tail of a list **♦/
/*•♦ (opposite of prettylist) ***/
uglylist(List, []) isnull(List).
uglylist(List, Newlist) not isnull(List), putvar(List, Newlist).
putvar([X], [X | _]).
putvar([X | Y], [X | Z]) putvar(Y, Z).

/» Useful for printing long lists (more than 80 */
/* characters). It inserts newlines after every CPL •/
/• characters and indents each line Sc characters. It */
/• uses file @@@ •/
pp(List, CPL, Sc) not exists('e@@'), tell('««©'),

write(List), told, see('e@@'),
ppl(l, CPL, Sc), seen, system("rm @@@").

pp(List, CPL, Sc) existsCe@@'), write(List).
ppi(Count, CPL, Sc) pp2(Count, CPL, Fl), (Fl = e;

nl, tab(Sc), ppi(Count, CPL, Sc)).
pp2(Count, CPL, Fl) CPL < 2, pp2(Count, 3, Fl).
pp2(Count, CPL, Fl) Count < CPL, getO(CH), (CH = 26, Fl = e;

put(CH), NewC is Count+1,
pp2(NewC, CPL, Fl)).

pp2(Count, CPL, Fl) Count = CPL, Fl = n.

/*** consult the other files needed for the Barre1-F ***/
/•** definition ***/

[lexemes, morpheme, syncon, sememe].

y»******»***«******t***********/
/*«*•* lexical syntax *****/

y»*»*»****»»***»»********»»***»/

/••» produce a list of tokens from the list of characters ***/
lexemes(X) > [CH], {isnewline(CH)}, lexemes(X).
lexemes(X) —> comment, lexemes(X).
lexemes([X|Y]) —> token(X), lexemes(Y).
lexemes([]) —> [] .

/*** get rid of comments ***/
comment —> [CH], (iseol(CH)}, restofcomment.
restofcomment —> [CH], {not isnewline(CH)}, restofcomment.
restofcomment —> [CH], {isnewline(CH)}.

175

/*** a token is a possible identifier ***/
token (id (Word)) —>word(W), {list (Word, W)}.
/• or any other character */
token(Other) > [CH], {list(Other, [CH])}.

/*** build a word from alphanumeric characters ***/
word([First|Rest]) —> char(First), word(Rest).
/• quit when we get to a non-alphanumeric character */
word([Last]), [Next] —> char(Last), notchar(Next).

char(CH) —> [CH], {ischar(CH)} .
notchar(CH) > [CH], {not ischar(CH)}.

y*************************#****/
/••••* syntax portion *•***/

y**********»*****«*************/

/*•• build a Tree of abstract syntax statements and an ***/
/*** Environment of variables and their values ***/
morpheme([Tree | Env]) —> stmtrain(Env, Tree),

[' '], ['(']. stopstm(_), [')'].

/••* process the statements of the program ***/
stmtrain(Env, [Sem | Semi]) —> [' '], ['('],

statement(Env, Sem), [')'],
(stmtrain(Env, Semi);
{Semi - []}).

/*** process an individual statement •••/
statement(Env, Sem) —> setqstm(Env, Sem);

zerostm(Env, Sem);
bumpstm(Env, Sem);
incrstm(Env, Sem);
decrstm(Env, Sem);
executestm(Env, Sem);
transputstm(Env, Sem);
cbkstm(Env, Sem);
scnstm(Env, Sem);
stackstm(Env, Sem);
queuestm(Env, Sem);
loopstm(Env, Sem);
ifstm(Env, Sem);
gotostm(Sem);
labelstm(Sem);
stopstm(Sem).

/*•• assignment statement “*/
setqstm(Env, setq(Tag, Exp)) —> [id(setq)], [' '],

identifier(Env, Tag, " '),
[' '], exp(Env, Exp, ')').

176

/••* set variable to zero statement ***/
zerostm(Env, setq(Tag, val(O))) —> [id(zero)], [']•

identifier(Env, Tag,

/•** bump a variable by the value of an arithmetic expression ***/
bumpstm(Env, setq(Tag, plus(deref(Tag), Exp))) —> [id(bump)],

[' '], identifier(Env, Tag, ' '), [' '],
exp(Env, Exp, ')').

/*** increment the value of a variable ***/
incrstm(Env, setq(Tag, plus(deref(Tag), val(l)))) —> [id(incr)],

[' '], identifier(Env, Tag, ')').

/*** decrement the value of a variable ***/
deerstm(Env, setq(Tag, minus(deref(Tag), val(l)))) —> [id(decr)],

[' '], identifier(Env, Tag, ')').

/••» execute the value of a variable as a statement ***/
executestm(Env, execute(Exp)) —> [id(execute)], [],

identifier(Env, Exp, ')').

/*** input and output statements ***/
transputstm(Env, output(Exp)) —> [id(ty)], [' '],

outexp(Env, Exp), {!}.
transputstm(Env, input(Exp)) —> [id(readch)], [' '],

{genquote(Quote)}, [Quote],
[id(4)], [Quote], [' '],
identifier(Env, Exp, ')').

/*•• check for valid condition or action in the ***/
/*** codebook of a decision table ***/
cbkstm(Env, cbk(Tag)) —> [id(cbk)], [' z],

identifier(Env, Tag, ")'),
{declare(err, undef, Env)}.

/*** output the contents of an array ***/
scnstm(Env, sen(id(Tag), id(End), val(Beg))) —> [id(scn)], [' '],

vn(Tag, ' '), [' '], vn(End, ' z), [' '], vn(Beg, ')').

/»»* stack manipulation statements *••/
/* stinit statement (initialize stack) */
stackstm(Env, stinit(Stack, Exp)) > [id(stinit)], [' '],

stidentifier(Env, Stack, ' '),
[' '], exp(Env, Exp, ')').

/♦ push statement »/
stackstm(Env, push(Stack, Exp)) —> [id(push)], [' '],

stidentifier(Env, Stack, ' '),
[' '], exp(Env, Exp, ')').

/• pop statement */
stackstm(Env, pop(Stack, Tag)) —> [id(pop)], [' '],

177

stidentifier(Env, Stack, ' '),
V 'J, identifier(Env, Tag,

/* stack copy statement */
stackstm(Env, stcopy(Stackl, Stack2)) > [id(stcopy)], [' '],

stidentifier(Env, Stackl, ' '),
[' '], [id(to)], [' '],
stidentifier(Env, Stack2,

/**• queue manipulation statements •••/
/• qinit statement (initialize queue) */
queuestm(Env, qinit(Queue, Exp)) —> [id(qinit)], [' '],

qidentifier(Env, Queue, " '),
[' exp(Env, Exp, ')').

/• insert value in front of queue •/
queuestm(Env, inqfront(Queue, Exp)) —> [id(inqfront)], [' '],

qidentifier(Env, Queue, ' '),
[' '], exp(Env, Exp, ')').

/• insert value in back of queue */
queuestm(Env, inqback(Queue, Exp)) —> [id(inqback)], V '],

qidentifier(Env, Queue, ' '),
[' '], exp(Env, Exp, ')').

/* remove value from front of queue */
queuestm(Env, remqfront(Queue, Tag)) —> [id(remqfront)], [' '],

qidentifier(Env, Queue, " '),
[' '1.
identifier(Env, Tag,

/♦ remove value from back of queue */
queuestm(Env, remqback(Queue, Tag)) —> [id(remqback)], [' '],

qidentifier(Env, Queue, ' '),
[' '].
identifier(Env, Tag, ')').

/» output the contents of a queue •/
queuestm(Env, qty(Queue)) —> [id(qty)], [' '],

qidentifier(Env, Queue, ')').
/• copy from one queue to another */
queuestm(Env, qcopy(Queuel, Queue2)) —> [id(qcopy)], [" '],

qidentifier(Env, Queuel, ' '),
r '], [id(to)], [' '1 .
qidentifier(Env, Queue2, ')').

/•*« looping statement (loop/if/then/leave/again) ***/
loopstm(Env, loop(SI, Exp, S2)) —> [id(Loop)],

/* check for proper nesting */
{checknest(Env, Loop, LoopEnv, Symb)},
[')'], (stmtrain(LoopEnv, SI); {SI = []}),
[' '], ['(']. [id(if)], [' '], relatexp(LoopEnv, Exp),
[' '], [id(then)], [' [id(Leave)], [')'],
/* check for proper nesting */
{index(Leave, e, 1, 1, Ave),

178

index(Ave, e, av, 2, Symb)},
(stmtrain(LoopEnv, S2); {S2 = []}),
[' 'I. ['(']. [id(Again)],
/* check for proper nesting */
{index(Again, n, agai, 4, Symb)},
/* leave a level of nesting •/
{leavenest(LoopEnv, Env)}.

/*** if/then/else statements ***/
ifstm(Env, if(Exp, SI, S2)) —> [id(if)], [' '],

relatexp(Env, Exp),
[id(then)], [' '],

thenpart(Env, SI),
elsepart(Env, S2).

/*•• goto a different part of the program ***/
gotostm(goto(Label)) —> (id(goto)], [' "], [id(Label)].

/**• label (object of goto statement) ***/
labelstm(lab(Label)) —> [id(Label)], [:].

/*** stop execution of the program »•♦/
stopstm(stop) —> [id(stop)].

/*** get a variable name »*•/
/* get an array name */
identifier(Env, id(array(Tag, Exp)), Endch) —> vn(Tag, '!'),

['!'], {not isnull(Tag)}, exp(Env, Exp, Endch),
{declare(array(Tag), val([]), Env)}.

/* get a non-array name */
identifier(Env, id(Tag), Endch) —> vn(Tag, Endch),

{declare(Tag, undef, Env)}.
/* get a stack name */
stidentifier(Env, id(stack(Tag)), Endch) —> vn(Tag, Endch),

{declare(stack(Tag), val(undef, []), Env)}.
/* get a queue name */
qidentifier(Env, id(queue(Tag)), Endch) —> vn(Tag, Endch),

{declare(queue(Tag), val(undef, []), Env)}.

/*** general expression handler (quoted strings and ***/
/**♦ arithmetic expressions) ***/
exp(Env, Exp, Endch) —> (quote(Exp, noout);

arithexp(Env, Exp, Endch)),
({notequal(Exp, expr(error))};
{equal(Exp, expr(error))},
vn(_, Endch)).

/*** process quoted values found in assignment *•»/
/*** statement expressions, array indices, and output *♦*/
/*** statement expressions ‘“/

179

quote(val(Val), Type) —> {genquote(Quote)}, [Quote],
qv(QL, 0, Type),
{list(Val, QL), !}.

/*** get quoted strings (generate list of ascii codes) •••/
qv([40 I R], PC, Type) > ['('], {NPC is PC + 1},

qv(R, NPC, Type).
qv([], 0, Type), [Delim] —> delimit(Type, Delim).
qv([41 | R], PC, Type) > [')'], {PC > 0, NPC is PC - 1},

qv(R, NPC, Type).
qv([], 0, Type) —> {genquote(Quote)}, [Quote].
qv(List, PC, Type) —> [id(Word)], {list(Word, LI)},

qv(L2, PC, Type),
{append(LI, L2, List)}.

qv(List, PC, Type) —> [Any], {list(Any, LI)},
qv(L2, PC, Type),
{append(LI, L2, List)}.

/•»» have we reached the delimiter for the quoted string? ***/
/* output statements are delimited by closing parens and commas •/
delimit(out, ')') —> [')'].
delimit(out, ',') —> [','].
/• non-output statement values are delimited by closing parens */
delimit(noout, ')') —> [')']•

/*»♦ expression handler for arithmetic expressions »**/
arithexp(Env, Exp, Endch) —> factor(Env, Lh, Endch),

restexp(Env, Lh, Expl, Endch),
/* unquoted numbers are treated */
/* identifiers •/
({equal(Expl, val(Vai)),
number(Val),
Exp = deref(id(Val))};
{Exp = Expl});

{Exp = expr(error)}.
restexp(Env, Lh, Exp, Endch) —> [CH], {isaddsub(CH)},

factor(Env, Rh, Endch),
{op(CH, Lh, Rh, Subexp)},
restexp(Env, Subexp, Exp, Endch).

restexp(Env, Lh, Lh, Endch) —> [].
factor(Env, Exp, Endch) —> primary(Env, Lh, Endch),

restfactor(Env, Lh, Exp, Endch).
restfactor(Env, Lh, Exp, Endch) > [CH], {ismuldiv(CH)},

primary(Env, Rh, Endch),
{op(CH, Lh, Rh, Subexp)},
restfactor(Env, Subexp, Exp, Endch).

restfactor(Env, Lh, Lh, Endch) —> [].
primary(Env, Exp, Endch) —> fune(Env, Exp);

number(Exp);

180

expid(Env, Exp, Endch);
['('], arithexp(Env, Exp, ')'), [')'].

/*** process functions •**/
/* handles the size function call ♦/
func(Env, size(Exp)) —> ['('], [id(size)], [' '],

exp(Env, Exp, ')'), I')'] .
/• handles the concat function call */
func(Env, concat(Expl, Exp2)) —> ['('], [id(concat)], [],

exp(Env, Expl, ' '), [' '],
exp(Env, Exp2, ')'), [')'] .

/• handles the top of stack function call */
func(Env, top(Tag)) —> ['('], [id(top)], [' '1•

stidentifier(Env, Tag, ')'), [')'].
/• handles the stack size function call */
func(Env, stsize(Tag)) —> ['('], [id(stsize)], ['],

stidentifier(Env, Tag, ')'), [')']•
/» handles the stack empty function call */
func(Env, stempty(Tag)) —> ['Cl, [id(stempty)], V '].

stidentifier(Env, Tag, ')'), [')'].
/* handles the front of queue function call •/
func(Env, front(Tag)) —> ['('], [id(front)], [' '],

qidentifier(Env, Tag, ')'), [')'].
/* handles the back of queue function call */
func(Env, back(Tag)) —> ['('], [id(back)], [' '],

qidentifier(Env, Tag, [')'].
/* handles the size of queue function call */
func(Env, qsize(Tag)) —> ['('], [id(qsize)], ['

qidentifier(Env, Tag, [')'].
/» handles the queue empty function call •/
func(Env, qempty(Tag)) —> ['('], [id(qempty)], [' '],

qidentifier(Env, Tag, ')'), [')'].

/*•* do we have a number *♦*/
number(val(Vai)) —> [id(Val)], {number(Vai)}.
/* check for number preceded by unary minus ♦/
number(val(Vai)) > [id(Vail)], {number(Vail), Vai is -Vail}.

/*** determine variable name for variables in arithmetic *••/
/•*• expressions (they cannot contain arithmetic operators) **»/
/* process variables preceded by unary minus ♦/
expid(Env, times(val(-l), deref(id(Tag))), Endch) —> ['-'],

expvn(Tag, Endch), {not isnull(Tag), firstch(Tag, CH),
not number(CH), notequal(CH, '(')}.

expid(Env, deref(id(array(Tag, Exp))), Endch) —> vn(Tag, '!'), ['!'].
{not isnull(Tag)},
exp(Env, Exp, Endch).

expid(Env, deref(id(Tag)), Endch) —> expvn(Tag, Endch),
{not isnull(Tag),

181

firstch(Tag, CH),
not number(CH),
notequal(CH, '(')}.

expvn(", Endch), [CH] > [CH], {isaddsub(CH); ismuldiv(CH);
equal(CH, ') ') ; equal(CH, Endch)}.

expvn(Tag, Endch) —> [id(ID)], expvn(Tagl, Endch),
{concat(ID, Tagl, Tag)}.

expvn(Tag, Endch) —> [CH], {not isaddsub(CH), not ismuldiv(CH),
notequal(CH, ')'), notequal(CH, id(_)),
notequal(CH, Endch)},
expvn(Tagl, Endch), {concat(CH, Tagl, Tag)}.

/*♦* determine variable name for an identifier ***/
vn(Tag, Endch) > ['('], vn(Tagl, ')'),

{concat('(', Tagl, Tag2),
concat(Tag2, ')', Tag3)}, [')'],
vn(Tag4, Endch),
{concat(Tag3, Tag4, Tag)}.

vn(" , Endch), [Endch] —> [Endch] .
vn(Tag, Endch) > [id(ID)], vn(Tagl, Endch),

{concat(ID, Tagl, Tag)}.
vn(Tag, Endch) —> [CH], {notequal(CH, Endch),

notequal(CH, ')'), notequal(CH, '('),
notequal(CH, id(_)), notequal(CH, " ')},
vn(Tagl, Endch), {concat(CH, Tagl, Tag)}.

/*** expression handler for ty (output) statement ***/
/•** creates a list of values or dereferenced ***/
/*** identifiers for output ***/
outexp(Env, []), [O'] > [')']•
outexp(Env, List) —> [','], outexp(Env, List).
/* output quoted values */
outexp(Env, [F | R]) —> quote(F, out), outexp(Env, R).
/* output function values */
outexp(Env, [F | R]) —> func(Env, F), outexp(Env, R).
/• output variable values •/
outexp(Env, [F | R]) —> (identifier(Env, Tag, ',');

identifier(Env, Tag, ')')),
{F = deref(Tag)}, outexp(Env, R).

/♦♦♦ process relational expressions ••*/
relatexp(Env, Exp) —> ['('], exp(Env, Expl, ' '),

[' '], relop(Exp, Expl, Exp2), [' '],
exp(Env, Exp2, ')'), [')'].

/• relational operators for string and numeric comparison ♦/
relop(eq(Expl, Exp2), Expl, Exp2) —> [id(eq)].
relop(ne(Expl, Exp2), Expl, Exp2) —> [id(ne)].
relop(neq(Expl, Exp2), Expl, Exp2) —> ['<'], ['>'].
relop(le(Expl, Exp2), Expl, Exp2) —> ['<'], ['='].

182

relop(le(Expl, Exp2), Expl, Exp2) —> ['='], •
relop(ge(Expl, Exp2), Expl, Exp2) > ['>'],
relop(ge(Expl, Exp2), Expl, Exp2) —> ['>']•
relop(equ(Expl, Exp2), Expl, Exp2) —> ['='].
relop(It(Expl, Exp2), Expl, Exp2) > ['<'].
relop(gt(Expl, Exp2), Expl, Exp2) —> ['>'].

/*** process the then part of the if/then/else statement *♦•/
/* thenpart can be either one statement or a series of statements */
thenpart(Env, SI) —> ['('], statement(Env, SI), [')'].
thenpart(Env, SI) > [id(do)J, [')'], stmtrain(Env, SI).

/»»» process the else part of the if/then/else statement ***/
/* elsepart can be present or omitted •/
elsepart(Env, S2) > [')'], [' '], ['('], [id(else)],

[' '], whichelse(Env, S2).
elsepart(Env, S2) —> [' '], ['('], [id(else)],

[' '], whichelse(Env, S2).
elsepart(Env, []) > [' '], ['('], [id(endif)].
elsepart(Env, []) —> [].
/* else can be one statement or a series of statements •/
whichelse(Env, S2) > ['('], statement(Env, S2), [')'].
whichelse(Env, S2) —> [id(do)J, [')'], stmtrain(Env, S2),

[' ']. ['(']. [id(endif)].

/»«*«•»«»•**♦«»***••»****»**•»**•/
/$**** semantic portion *♦***/

y********************************/

/**• process list of abstract syntax statements ***/
sememe([SI | S2], state(M, Cont, T, I, 0, R), St2) :-

sememe(SI, state(M, [S2 | Cont], T, I, 0, R), Stl),
continuation(Stl, St2).

sememe([]) —> [].

/««* process the individual abstract syntax statements ***/
sememe(setq(id(Tag), Exp)) —> sememe(Exp, Vai),

({equal(Vai, error)},
update(Tag, val(0));
update(Tag, Vai)).

sememe(execute(Exp)) —> sememe(Exp, id(Tag)),
lookup(Tag, Vai), execute(Vai).

sememe(input(Exp)) —> sememe(Exp, id(Tag)),
(transput(in, Vai), update(Tag, Vai);
iocherror).

sememe(output(List)) —> outval(List, ", Vai),
transput(out, Vai).

sememe(cbk(id(Tag))) —> lookup(Tag, Vai), cbk(Val).
sememe(sen(id(Array), id(Tag), Num)) —>

(lookup(Tag, Vai); {Vai = val(0)}),

183

(It(Val, val(2), val(true)),
{End - val(l)}; {End = Val}),
(eq(Num, val(O), val(true)), {Index = val(l)};
{Index = val(O)}),
sen(Array, Index, End).

sememe(stinit(id(Stack), Exp)) —> sememe(Exp, Max),
update(Stack, val(Max, [])).

sememe(push(id(Stack), Exp)) —> sememe(Exp, Vai),
push(Stack, Vai).

sememe(pop(id(Stack), id(Tag))) —> pop(Stack, Tag).
sememe(stcopy(id(Stackl), id(Stack2))) —>

lookup(Stackl, val(Maxi, Stvalsl)),
({equal(Maxi, undef)},
stackerror(Stackl, 'not initialized, stcopy ignored');
{notequal(Maxi, undef)},
lookup(Stack2, val(Max2, Stvals2)),
({equal(Max2, undef)},
stackerror(Stack2, 'not initialized, stcopy ignored');
{notequal(Max2, undef), length(Stvalsl, 0, Lenl)},
(gt(val(Lenl), Max2, val(true)),
stackerror(Stack2, 'overflow occurred, stcopy ignored');
le(val(Lenl), Max2, val(true)),
update(Stack2, val(Max2, Stvalsl))))).

sememe(qinit(id(Queue), Exp)) —> sememe(Exp, Max),
update(Queue, val(Max, [])).

sememe(inqfront(id(Queue), Exp)) —> sememe(Exp, Val),
inq(Queue, Val, front).

sememe(inqback(id(Queue), Exp)) —> sememe(Exp, Val),
inq(Queue, Val, back).

sememe(remqfront(id(Queue), id(Tag))) —> remq(Queue, Tag, front).
sememe(remqback(id(Queue), id(Tag))) —> remq(Queue, Tag, back).
sememe(qty(id(Queue))) —> lookup(Queue, val(Max, Qvals)),

({equal(Max, undef)},
qerror(Queue, 'not initialized, qty ignored');
qty(Qvals)).

sememe(qcopy(id(Queuel), id(Queue2))) —>
lookup(Queuel, val(Maxi, Qvalsl)),
({equal(Maxi, undef)},
qerror(Queuel, 'not initialized, qcopy ignored');
{notequal(Maxi, undef)},
lookup(Queue2, val(Max2, Qvals2)),
({equal(Max2, undef)},
qerror(Queue2, 'not initialized, qcopy ignored');
{notequal(Max2, undef), length(Qvalsl, 0, Lenl)},
(gt(val(Lenl), Max2, val(true)),
qerror(Queue2, 'overflow occurred, qcopy ignored');
le(val(Lenl), Max2, val(true)),
update(Queue2, val(Max2, Qvalsl))))).

184

sememe(loop(SI, Exp, S2)) —>
getstate(tree, SaveT), getstate(result, SaveR),
({equal(SaveR, looping)};
newstate(result, looping),
newstate(tree, [SI, Exp, S2])),
sememe(SI),
(checkstop; /* check for a stop statement ♦/
checkio; /• check for ioch error •/
(getstate(result, jumpover), newstate(result, looping),
{Flag = f};

sememe(Exp, yal(true)), {Flag - t};
sememe(Exp, val(false)), {Flag - f},
sememe(S2)),
({equal(Flag, t)}, newstate(result, SaveR),
newstate(tree, SaveT);

checkstop;
checkio;
(sememe(loop(SI, Exp, S2)),

(checkstop;
checkio;
newstate(result, SaveR),
newstate(tree, SaveT))))).

sememe(if(Exp, SI, S2)) —> sememe(Exp, val(true)),
sememe(SI);
sememe(Exp, val(false)),
sememe(S2).

sememe(goto(Label)) —> getstate(tree, Tree), getstate(result, R),
({notequal(R, looping),
findcont(lab(Label), Tree, Newcont, Cond, _)},
({equal(Cond, ok)},
newstate(continuation, [Newcont]),
newstate(result, ok);
{equal(Cond, ioch)},
newstate(continuation, []),
newstate(result, 'I/O error'),
sememe(Newcont),
(getstate(result, ok); iocherror);

{equal(Cond, null)}, iocherror);
{equal(R, looping),
findlevel(goto(Label), Tree, Level),
loopgoto(Label, Tree, Newcont, Cond, Level)},
({equal(Cond, ok)},
getstate(continuation, [S | Rest]),
newstate(continuation, [Newcont | Rest]);
{equal(Cond, jump)},
getstate(continuation, [S | Rest]),
newstate(continuation, [Newcont | Rest]),
newstate(result, jumpover);

185

{equal(Gond, ioch)},
newstate(continuation, []),
sememe(Newcont), (checkio; iocherror))).

sememe(lab(Label)) —> [].
sememe(stop) —> newstate(continuation,[]), newstate(result, stopped).

/•** process the arithmetic expressions ***/
sememe(plus(Expl, Exp2), Vai) —> sememe(Expl, Vail),

sememe(Exp2, Val2),
{add(Vail, Val2, Vai)};
exprerror,
{Vai = error}.

sememe(minus(Expl, Exp2), Vai) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
{subtract(Vail, Val2, Vai)};
exprerror,
{Vai = error}.

sememe(times(Expl, Exp2), Vai) —> sememe(Expl, Vali),
sememe(Exp2, Val2),
{mult(Vail, Val2, Vai)};
exprerror,
{Vai = error}.

sememe(division(Expl, Exp2), Vai) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
{divide(Vail, Val2, Vai)};
exprerror,
{Vai - error}.

/♦♦* process the relational expressions ***/
sememe(eq(Expl, Exp2), Vai) —> sememe(Expl, Vail),

sememe(Exp2, Val2),
eq(Vail, Val2, Vai).

sememe(ne(Expl, Exp2), Vai) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
ne(Vail, Val2, Vai).

sememe(equ(Expl, Exp2), Vai) —> sememe(Expl, Vali),
sememe(Exp2, Val2),
equ(Vail, Val2, Vai).

sememe(neq(Expl, Exp2), Vai) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
neq(Vail, Val2, Vai).

sememe(It(Expl, Exp2), Vai) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
It(Vail, Val2, Vai).

sememe(gt(Expl, Exp2), Vai) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
gt(Vail, Val2, Vai).

sememe(le(Expl, Exp2), Vai) —> sememe(Expl, Vail),
sememe(Exp2, Val2),

186

le(Vall, Val2, Val).
sememe(ge(Expl, Exp2), Val) > sememe(Expl, Vall),

sememe(Exp2, Val2),
ge(Vall, Val2, Val).

/*** process functions •••/
sememe(size(Exp), val(Val)) —> sememe(Exp, Vall),

{size(Vall, Vai)}.
sememe(concat(Expl, Exp2), val(Val)) —>

sememe(Expl, val(Vall)), sememe(Exp2, val(Val2)),
{concat(Vall, Val2, Vai)}.

/* process stack functions */
sememe(top(id(Stack)), val(Val)) —>

lookup(Stack, val(Max, Stvals)),
({equal(Max, undef), Vai = "},
stackerror(Stack, 'not initialized, returning null for top');
{notequal(Max, undef), firstelem(Stvals, val(Val))}).

sememe(stsize(id(Stack)), val(Val)) —>
lookup(Stack, val(Max, Stvals)),
({equal(Max, undef), Vai - 0},
stackerror(Stack, 'not initialized, returning zero for stsize');
{notequal(Max, undef), length(Stvals, 0, Vai)}).

sememe(stempty(id(Stack)), val(Val)) —>
lookup(Stack, val(Max, Stvals)),
({equal(Max, undef), Vai = true},

stackerror(Stack, 'not initialized, returning true for stempty');
{notequal(Max, undef)},
({isnull(Stvals), Vai = true};
{not isnull(Stvals), Vai = false})).

/• process queue functions */
sememe(front(id(Queue)), val(Val)) —>

lookup(Queue, val(Max, Ovals)),
({equal(Max, undef), Val = "},
qerror(Queue, 'not initialized, returning null for front');
{notequal(Max, undef), firstelem(Qvals, val(Val))}).

sememe(back(id(Queue)), val(Val)) —>
lookup(Queue, val(Max, Ovals)),
({equal(Max, undef), Val = "},
qerror(Queue, 'not initialized, returning null for back');
{notequal(Max, undef), lastelem(Ovals, val(Val))}).

sememe(qsize(id(Queue)), val(Val)) —>
lookup(Queue, val(Max, Qvals)),
({equal(Max, undef), Val = 0},
qerror(Queue, 'not initialized, returning zero for qsize');
{notequal(Max, undef), length(Qvals, 0, Val)}).

sememe(qempty(id(Queue)), val(Val)) —>
lookup(Queue, val(Max, Qvals)),
({equal(Max, undef), Val = true},

187

qerror(Queue, 'not initialized, returning true for qempty');
{notequal(Max, undef)},
({isnull(Qvals), Vai - true};
{not isnull(Qvals), Vai = false})).

/••• process all other expressions •**/
sememe(deref(Exp), Vai) —> sememe(Exp, id(Tag)),

(lookup(Tag. Vai), {!}; {Vai = val(")}).
sememe(id(Tag), id(Tag)) —> [].
sememe(val(Vai), val(Val)) —> [].
sememe(expr(error), val(O)) —> exprerror.

/*** continue with next statement on continuation list ***/
continuâtion(state(M, [S2 | Cont], T, I, 0, R), St2)

sememe(S2, state(M, Cont, T, I, 0, R), St2).
continuation(state(M, [], T, I, 0, R), state(M, [], Tl, I, 0, R)).

/*** look up the value of a variable ***/
/• look up the value of an array variable */
lookup(array(Tag, Exp), Val) —>

sememe(Exp, Index),
getstate(memory, Mem),
{lookup(array(Tag), Mem, val(List)),
lookupa(Index, List, Val),
notequal(Val, undef)}.

/* look up the value of an ordinary variable •/
lookup(Tag, Val) —> getstate(memory, Mem),

{lookup(Tag, Mem, Val)}.
lookup(Tag, [loc(Tag, Val) | R], Val)

notequal(Val, undef), not var(Val),
(equal(Val, val(V)); equal(Val, val(V, _))),
not var(V).

lookup(Tag, [loc(Tagl, V) | Rest], Val)
notequal(Tag, Tagl),
lookup(Tag, Rest, Val).

/* look up specific value of array variable for */
/* particular index */
lookupa(Index, [], undef).
lookupa(val(Index), [Index, Val | Rest], Val).
lookupa(Index, [Indexl, Vali | Rest], Val) :-

lookupa(Index, Rest, Val).

/*♦* set a new value for a variable ***/
/* set a new value for an array variable */
update(array(Tag, Exp), Val) —>

sememe(Exp, Index),
getstate(memory, Meml),
{lookup(array(Tag), Meml, val(List)),
updatea(Index, Val, List, Newlist),

188

update(array(Tag), val(Newlist), Memi, Mem2)},
newstate(memory, Mem2).

/* set a new value for an ordinary variable */
update(Tag, Vai) —> getstate(memory, Memi),

{update(Tag, Vai, Memi, Mem2)},
newstate(memory, Mem2).

update(Tag, Val, [J, [loc(Tag, Vai) | _]).
update(Tag, Val, [loc(Tag, V) | Env], [loc(Tag, Vai) | Env]).
update(Tag, Val, [L | Envi], [L | Env2J)

equal(L, loc(Tagl, V)),
notequal(Tag, Tagl),
(var(Envl),
Env2 = [loc(Tag, Vai) | ;

update(Tag, Val, Envl, Env2)).
/* set specific value of array variable for a •/
/* particular index */
updatea(val(Index), Newval, [], [Index, Newval]).
updatea(val(Index), Newval, [Index, Oldval | Rest],

[Index, Newval | Rest]).
updates(Index, Newval, [Indexl, Vail | Rest],

[Indexl, Vail | Newrest])
notequal(Index, val(Indexl)),
updates(Index, Newval, Rest, Newrest).

/*** execute a statement by sending it through all *♦♦/
/*** three phases (lexical, syntax, and semantic) ***/
execute(Val, state(Mem, C, T, I, 0, R),

state(Memi, Cl, T, II, 01, RI)) :-
Val = val(Code), list(Code, Text),
/* handle stop specially */
(equal(Code, ' (stop)), Cl = [], Rl = stopped,
Memi = Mem, Il = I, 01 = 0;

Cl = C, lexemes(Toks, Text, []),
stmtrain(Mem, Tree, Toks, []), !,
sememe(Tree, state(Mem, [], T, I, O, R),

state(Memi, [], T, II, 01, Rl))).

/*** construct an output line for the ty statement ***/
outval([], Val, val(Val)) —> [].
outval([Exp | Rest], Val, NewVal) —>

sememe(Exp, val(Vail)),
{concat(Val, Vali, Val2)},
outval(Rest, Val2, NewVal).

/*** produce a new input/output list ***/
transput(in, Val, state(Mem, C, T, In, 0, R),

state(Mem, C, T, Ini, 0, R)) :-
io(Val, In, Ini).

transput(out, Val, state(Mem, C, T, I, Out, R),

189

state(Mem, C, T, I, Outl, R))
io(Vai, Out, Outl).

/*•* get an input value or add a new output value *♦*/
io(val(Val)) —> [val(Val)].

/»»« process the cbk statement ***/
cbk(val(Val)) > {index(Val, '[', Front, Len, Back)},

checkstub(Vai, Front, Len, Errl),
({equal(Err1, error)},
update(err, val(l));
{index(Back, ']', Entries, _, _)},
checkentries(Back, Entries, Err2),
({equal(Err2, error)},
update(err, val(1));
lookup(fh, val(Vfh)),
({Vfh >= Len};
update(fh, val(Len))))).

/**• check the stub of the codebook condition or action ***/
checkstub(Whole, Whole, Len, error) —>

cbkerr('** error unbalanced or missing brackets').
checkstub(Whole, Stub, 0, error) —>

cbkerr('** error no stub for condition or action').
checkstub(Whole, Stub, Len, error) —> {Len > 38},

cbkerr('** error stub length > 38 chars.').
checkstub(Whole, Stub, Len, ok) —> {notequal(Whole, Stub),

Len > 0, Len -< 38}.

/»»» check the entries of codebook condition or action ***/
checkentries(Whole, Whole, error) —>

cbkerr('** error unbalanced or missing brackets').
checkentries(Whole, Entries, Error) —>

{index(Entries, Entry, Len, Rest)},
checklen(Len, Errl),
({equal(Errl, error), Error = error};
lookup(bh, val(Val)),
({Val >= Len};
update(bh, val(Len))),
({isnull(Rest), Error = ok};
checkentries(Whole, Rest, Error))).

/*** check the length of an entry ***/
checklen(Len, error) —> {Len > 38},

cbkerr('** error entry length > 38 chars.').
checklen(Len, ok) —> {Len =< 38}.

/»•* process the sen statement ***/
sen(Tag, val(Index), val(End)) —> {Index > End}.
sen(Tag, val(Index), val(End)) —> {Index =< End},

190

sememe(output([deref(id(array(Tag, val(Index))))])),
{Newl is Index + 1}, scn(Tag, val(NewI), val(End)).

/*♦* push a value onto a stack ***/
push(Stack, Vai) —> lookup(Stack, val(Max, Stvals)),

({equal(Max, undef)},
stackerror(Stack, 'not initialized, push ignored');
{notequal(Max, undef), length(Stvals, 0, Depth)},
(equ(Max, val(Depth), val(true)),
stackerror(Stack, 'stack overflow, push ignored');
It(val(Depth), Max, val(true)),
update(Stack, val(Max, [Val | Stvals])))).

/**• pop a value onto a stack ***/
pop(Stack, Tag) —> lookup(Stack, val(Max, Stvals)),

({equal(Max, undef)},
stackerror(Stack, 'not initialized, pop ignored');
{notequal(Max, undef)},
({isnull(Stvals)},
stackerror(Stack, 'pop on empty stack ignored');
{not isnull(Stvals), Stvals = [Val | Rest]},
update(Tag, Val), update(Stack, val(Max, Rest)))).

/♦»« insert a value onto the front or back of a queue ***/
inq(Queue, Val, ForB) —> lookup(Queue, val(Max, Qvals)),

({equal(Max, undef)},
qerror(Queue, 'not initialized, queue insertion ignored');
{notequal(Max, undef), length(Qvals, 0, Depth)},
(equ(Max, val(Depth), val(true)),
qerror(Queue, 'queue overflow, insertion ignored');
It(val(Depth), Max, val(true)),
({equal(ForB, front)},
update(Queue, val(Max, [Val | Qvals]));
{equal(ForB, back), append(Qvals, [Val], NewQvals)},
update(Queue, val(Max, NewQvals))))).

/**♦ remove a value from the front or back of a queue »**/
remq(Queue, Tag, ForB) —> lookup(Queue, val(Max, Qvals)),

({equal(Max, undef)},
qerror(Queue, 'not initialized, queue removal ignored');
{notequal(Max, undef)},
({isnull(Qvals)},
qerror(Queue, 'removal from empty queue ignored');
{not isnull(Qvals)},
({equal(ForB, front), Qvals = [Val | Rest]},
update(Queue, val(Max, Rest)), update(Tag, Val);
{equal(ForB, back), lastelem(Qvals, Val)},
update(Tag, Val), {rmlastelem(Qvals, NewQvals)},
update(Queue, val(Max, NewQvals))))).

191

/*** output the contents of a queue ***/
qty([]) —> [J •
qty([Val | Rest]) —> transput(out, Vai), qty(Rest).

/*** a stop statement or a ioch error within a loop ***/
/**• statement must be handled specially *♦*/
checkstop —> getstate(result, stopped).
checkio —> getstate(result, 'I/O error').

/*** find a new continuation list for a goto statement ***/
/**« i.e. a new list of statements to do ***/
findcont(Stm, [], [], null, 1).
findcont(Stm, [Stm | Rest], Rest, ok, 1).
findcont(Stm, [loop(SI, Exp, S2) | Rest], Newcont, Cond, Level)

findcont(Stm, SI, Nl, Cl, LI), equal(Cl, ok),
Newcont = Nl, Cond = ioch, Level is LI + 1;
findcont(Stm, S2, N2, C2, L2), equal(C2, ok),
Newcont = N2, Cond = ioch, Level is L2 + 1;
findcont(Stm, Rest, Newcont, Cond, Level).

findcont(Stm, [if(Exp, SI, S2) | Rest], Newcont, Cond, Level)
ifgoto(Stm, SI, C),
(notequal(C, null), findcont(Stm, SI, Nl, Cl, LI),
notequal(Cl, null), append(Nl, Rest, Newcont),
Cond = Cl, Level - LI);
(findcont(Stm, SI, N2, C2, L2), notequal(C2, null),
append(N2, S2, T), append(T, Rest, Newcont),
Cond = C2, Level = L2);
(findcont(Stm, S2, N3, C3, L3), notequal(C3, null),
append(N3, Rest, Newcont), Cond = C3, Level = L3);
findcont(Stm, Rest, Newcont, Cond, Level).

findcont(Stm, [X | Y], Z, Cond, Level)
findcont(Stm, Y, Z, Cond, Level).

/••* find a new continuation list for a goto statement ***/
/*•* in a loop (i.e. a new list of statements to do “*/
loopgoto(Label, [SI, Exp, S2], Newcont, Cond, Level)

findcont(lab(Label), Si, Nl, Cl, Ll),
(notequal(Cl, null), Newcont = Nl,

(equal(Ll, Level), Cond = ok;
notequal(Ll, Level), Cond = ioch);

findcont(lab(Label), S2, N2, C2, L2),
(equal(02, ok), Newcont = N2,

(equal(L2, Level), Cond = jump;
notequal(L2, Level), Cond = ioch);

equal(C2, ioch), Newcont = N2,
(equal(L2, Level), Cond = ok;
notequal(L2, Level), Cond = ioch);

Newcont = [], Cond = ioch)).

192

/*•• determine if the goto is in the same if/then do group •*•/
/*** as the label ***/
ifgoto(lab(Label), SI, Cond)

findcont(goto(Label), SI, Cond, _).
ifgoto(Stm, SI, null).

/*** find the level of nested loop of a statement •*•/
findlevel(Stm, [SI, Exp, S2], Level)

findcont(Stm, SI, _, Cond, L),
notequal(Cond, null), Level = L;
findcont(Stm, S2, _, _, Level).

/•*• get the current state of the machine •••/
getstate(memory, M, state(M, C, T, I, 0, R),

state(M, C, T, I, 0, R)).
getstate(continuation, C, state(M, C, T, I, 0, R),

state(M, C, T, I, 0, R)).
getstate(tree, T, state(M, C, T, I, O, R),

state(M, C, T, I, O, R)).
getstate(input, I, state(M, C, T, I, 0, R),

state(M, C, T, I, O, R)).
getstate(output, 0, state(M, C, T, I, 0, R),

state(M, C, T, I, 0, R)).
getstate(result, R, state(M, C, T, I, 0, R),

state(M, C, T, I, 0, R)).

/•*• set a new state for the machine ***/
newstate(memory, Vai, state(M, C, T, I, 0, R),

state(Val, C, T, I, 0, R)).
newstate(continuation, Vai, state(M, C, T, I, 0, R),

state(M, Val, T, I, 0, R)).
newstate(tree, Vai, state(M, C, T, I, 0, R),

state(M, C, Val, I, 0, R)).
newstate(input, Vai, state(M, C, T, I, 0, R),

state(M, C, T, Val, 0, R)).
newstate(output, Vai, state(M, C, T, I, O, R),

state(M, C, T, I, Val, R)).
newstate(result, Vai, state(M, C, T, I, 0, R),

state(M, C, T, I, 0, Vai)).

/*** generate an error message ***/
/* expression error */
exprerror —> transput(out, expr error')).
/* conversion error */
convertor —> transput(out, val('********* conv error')).
/* input/output channel error (fatal) */
iocherror > transput(out, Val('»»»*»»»*• ioch error')),

newstate(continuation, []),
newstate(result, 'I/O error').

193

/* output an error message for the codebook statement */
cbkerr(Errmess) —> transput(out, val(Errmess)).
/* output a stack error message */
stackerror(stack(Stack), Mess) —>

sememe(output([val('** error on stack '),val(Stack),
val(': ').val(Mess)])).

/* output a queue error message •/
qerror(queue(Queue), Mess) —>

sememe(output([val('•* error on queue "),val(Queue),
val(': '),val(Mess)])).

/•** perform the actual arithmetic operations ***/
add(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Z1 is XI + Yl, inrange(Zl, Z).
subtract(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Zl is XI - Yl, inrange(Zl, Z).
mult(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Zl is XI * Yl, inrange(Zl, Z).
divide(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Zl is XI H Yl, inrange(Zl, Z).
/* make sure a number is in proper range (truncate if not) */
inrange(Int, Int) value(nl, Max), Int =< Max, Int >= -Max, !.
inrange(Num, Int) value(n2, Bitsl), value(n3, Bits2),

Int is (Num«(Bits2-Bitsl))»(Bits2-Bitsl).

/*** perform the actual relational operations ••*/
eq(X, Y, val(true)) —> {X — Y}.
eq(X, Y, val(false)) —> {not X == Y}
ne(X, Y, val(true)) —> {not X == Y}.
ne(X, Y, val(false)) —> {X == Y}.
equ(X, Y, val(true)) —> checkrevals(X, Y, XI, Yl),

{XI =:= Yl}.
equ(X, Y, val(false)) —> checkrevals(X, Y, XI, Yl),

{not XI =:= Yl}.
neq(X, Y, val(true)) —> equ(X, Y, val(false)).
neq(X, Y, val(false)) —> equ(X, Y, val(true)).
lt(X, Y, val(true)) —> checkrevals(X, Y, XI, Yl), {XI < Yl}.
lt(X, Y, val(false)) —> checkrevals(X, Y, XI, Yl), {XI >= Yl}.
gt(X, Y, val(true)) —> checkrevals(X, Y, XI, Yl), {XI > Yl}.
gt(X, Y, val(false)) —> checkrevals(X, Y, XI, Yl), {XI =< Yl}.
le(X, Y, val(true)) —> gt(X, Y, val(false)).
le(X, Y, val(false)) —> gt(X, Y, val(true)).
ge(X, Y, val(true)) > lt(X, Y, val(false)).
ge(X, Y, val(false)) —> lt(X, Y, val(true)).
/• check for valid arithmetic values for relational operators */
checkrevals(X, Y, XI, Yl) —> ({checkval(X, XI)};

{not checkval(X, XI), XI = 0},
exprerror),
({checkval(Y, Yl)};

194

{not checkval(Y, Yl), Y1 = 0},
exprerror).

/**• make sure a value is really a number ***/
checkval(val("), 0).
checkval(val(Val), Vai) number(Vai).

/•*• perform the size function ••*/
size(val(Vali), Vai) list(Vali, L), length(L, 0, Vai).

/*********$***************************/
/«»«** syntactic constraints **•**/

Z*************************************/

/*** declare adds a declaration to the environment if •**/
/•** the variable is not already a member •*•/
declare(Tag, Val, Env) member(loc(Tag, _), Env).
declare(Tag, Val, Env) not member(loc(Tag, _), Env),

addword(loc(Tag, Val), Env).

/*** check for proper nesting of loop statements »“/
checknest([loop(SL) | Rest], Loop,

[loop([Symb | SL]) | Rest], Symb)
not var(SL),
index(Loop, p, loo, 3, Symb), /* get loop symbol */
not isnull(Symb), not member(Symb, SL).

checknest(Env, Loop, [loop([Symb]) | Env], Symb) :-
var(Env), index(Loop, p, loo, 3, Symb),
not isnull(Symb).

checknest(Env, Loop, [loop([Symb]) | Env], Symb) :-
not var(Env), notequal(Env, [loop(SL) | Rest]),
index(Loop, p, loo, 3, Symb), not isnull(Symb).

/*** remove level of nesting symbol from environment list ***/
/*** after a loop statement has been processed ***/
leavenest([loop([Symb]) | Env], Env).
leavenest([loop([Symb | Rest]) | Env], [loop(Rest) | Env]).

/*** member handles lists with uninstantiated tail ••*/
member(X, [Y]) :- var(Y), !, fail.
member(X, [X | Y]).
member(X, [Y | Z]) notequal(X, Y), member(X, Z).

/*** add a word to the end of a list ***/
addword(Label, [X | Y]) var(X), var(Y), X = Label.
addword(Label, [X | Rest]) not var(X), addword(Label, Rest).

/*** append the 2nd list to the end of the 1st list ***/
/*** giving the 3rd list ***/
append([U | V], W, [U | X]) append(V, W, X).
append([], X, X).

195

/*** find the length of a list ***/
length([], N, N).
length([Head | Rest], Sofar, Total) More is Sofar + 1,

length(Rest, More, Total).

/••* return the first element of a list *•*/
firstelem([Head | Tail], Head).
firstelem([], ").

/**• find the last element of a list ••*/
lastelem([Last], Last).
lastelem([X | Y], Last) lastelem(Y, Last).

/••* remove the last element of a list ***/
rmlastelem([Elem], []).
rmlastelem([F | R], [F | RI]) rmlastelem(R, RI).

/*** generate a single quote (apostrophe) character ***/
genquote(Quote) list(Quote, [39]).

/*** concatenate two atoms (Vali and Val2) to form a ***/
/*** new atom (NewVal) *•*/
concat(" , Val2, Val2) .
concat(Vali, ", Vali) .
/» plus signs require special handling so we don't lose them */
concat('+', Val2, NewVal) integer(Val2),

NewVal =.. ['+', Val2], !.
concat(Vail, Val2, NewVal) isplus(Vall, Arg),

not isplus(Val2, _),
concat(Arg, Val2, Val3),
NewVal =.. ['+', Val3], !.

concat(Vail, Val2, NewVal) not isplus(Vall, _),
isplus(Val2, Arg),
concat(Vail, '+', Val3),
concat(Val3, Arg, NewVal), !.

concat(Vail, Val2, NewVal) isplus(Vall, Argl),
isplus(Val2, Arg2),
concat(Argl, '+', Val3),
concat(Val3, Arg2, Val4),
NewVal =.. ['+', Val4], !.

concat(Vail, Val2, NewVal) list(Vail, LI), list(Val2, L2),
append(LI, L2, L3),
list(NewVal, L3), !.

/*** extract the first character of an atom ***/
firstch(Atom, Ch) : - not isnull(Atom),

list(Atom, [First | Rest]),
list(Ch, [First]).

/*** find the single character (Char) in the string ***/
/*** (Str) and return the front of the string (Front), ***/

196

/•»» the length of the front (Len), and the back of *♦*/
/*•• the string (Back) (minus the character) ***/
index(Str, Char, Front, Len, Back) :- list(Str, StrL),

list(Char, ChL), indexl(StrL, ChL, FrL, BkL, Len, 0),
list(Front, FrL), list(Back, BkL).

indexl([CH | Rest], [CH], [], Rest, Count, Count).
indexl([], [CH], [], [], Count, Count).
indexl([First | Rest], [CH], [First | Front], Back, Total, Sofar)

notequal(CH, First), NewC is Sofar + 1,
indexl(Rest, [CH], Front, Back, Total, NewC).

/*** convert an atom to a list of ascii codes and vice ***/
/*•• versa (same as built-in functor "name" but works »»*/
/»»» with null arguments) ***/
list(", []) .
list(Atom, List) name(Atom, List).

isnull([]). /* is arg. the null list */
isnulK"). /* is arg. the null string */
/• does Term contain an addition operation ♦/
isplus(Term, Arg) Term =.. ['+', Arg].
/* is arg. the ascii code for a newline char. */
isnewline(lO).
/• is arg. the ascii code for a end-of-line char. */
iseol(124).
/* is arg. one of the ascii codes for an alphanumeric char. •/
ischar(CH) CH >= 65, CH =< 90.
ischar(CH) CH >= 97, CH =< 122.
ischar(CH) CH >= 48, CH -< 57.
isaddsub('+'). /• is arg. an addition sign •/
isaddsubC-'). /* is arg. an subtraction sign */
ismuldiv('*'). /♦ is arg. an multiplication sign •/
ismuldivC/') • /» is arg. an division sign •/

/»»• convert an arithmetic operation to abstract notation ***/
op('+', Lh, Rh, plus(Lh, Rh)).
op('-', Lh, Rh, minus(Lh, Rh)).
opr*-, Lh, Rh, times(Lh, Rh)).
opr/', Lh, Rh, division(Lh, Rh))

/••• instantiate the args, to be the same thing (fail •**/
/«»» if they are already instantiated to different things) ***/
notequal(X, Y) not(equal(X, Y)).
equal(X, Y) X = Y.

/*** various machine dependent values •“/
value(nl, 32767). /» value of largest integer in ASP */
value(n2, 16). /• bits per integer for ASP •/
value(n3, 32). /♦ bits per integer for this prolog */

APPENDIX 2.4

BARREL-F IMPLEMENTATION

Listed below are the macro definitions for the ASP implementation of the Barrel-F

language.

(setq #!'#' #)|
evalarg #30$
#10!#20#16 %arg#26 #21#26 #f3$
$
(setq #!# #)|

evalarg #20$
%arg#26 #10!#21#16$
evalarg #30$
#21#26 #f3$
$
(setq # #)|

evalarg #20$
%arg#26 #21#26 #f3$
$
(zero #!#)|

evalarg #20$
%arg#96$
set #10!#91 to 0$
$
(zero #)|

set #10 to 0$
$
(bump #!'#' #)|

evalarg #30$
#10!#20#26 %arg#96$
number #91$
#21+#91#36$
set #20 to #34$
$
(bump #!# #)|

evalarg #20$
%arg#96 #10!#91#26$
evalarg #30$
number #91$
#21+#91#36$
set #2O to #34$

197

198

$
(bump # #)|

evalarg #20$
%arg#96$
number #91$
#11+#91#26$
set #10 to #24$
$
(inor #!#)|

evalarg #20$
%arg#96$
#10!#91*96$
#91+1*86$
set #90 to #84$
$
(incr #) |

#11+1#26$
set #10 to #24$
$
(deer #!#)|

evalarg #20$
%arg#96$
#10!#91#96$
#91-1*86$
set #90 to #84$
$
(deer #)|

#11-1#26$
set #10 to #24$
$
(execute #!#)|

evalarg #20$
%arg*96 #10!#91*96$
#91$
$
(execute #)|

#11$
$
(readch '4' #!#)|

evalarg #20$
%arg#96 #10!#91#16$
2#fi4$
#f 3$
$
(readch 4^ #)|

2#fi4$
#13$
$

199

(ty #)|
set %t to $
%arg#96$
%t#86$
(#10)#17,$
set %f to 0$
quotarg #10$
if %f eq '1' skip 5$
funarg #10$
if %f eq '1' skip 3$
arrayarg #10$
if %f eq '1' skip 1$
set %arg to #11$
set %t to #81#91$
#f 8$
ty #81$
$
| checks action & conditions of codebook input data
$
(cbk #!#)|

evalarg #20$
%arg#26 #10!#21#16$
xl#ll$
$
(cbk #)|

xl#ll$
$
| screen routine: array name; no. elements; list 0 element
$
(sen # # #)|

set %i to 0$
if #30 = 0 skip 2$
#10!0#96$
ty #91$
%i#96$
#21#f7$
setx %i to %i+l$
#10 !#91#86$
ty #81$
#f 8$
$
| stack statements - stack system variables prefixed by @
$
(stinit # #)| initialize/clear user stack

evalarg #20$
setv e#10 to %arg$ store maximum size of stack
set e#10sp to 0$ set stack pointer to zero
$

200

(push # #)| push the value #20 onto stack #10
if e#10 ne " skip 2$
sterr #10<not initialized, push ignored>$
#f9$
evalarg #20$
if e#10sp < e#10 skip 2$
sterr #10<stack overflow, push ignored>$
#f9$
setx ®#10sp to e#10sp+l$ increment stack pointer
e#10sp#86$
setv e#10#81 to %arg$ push value
$
(pop # #!#)| pop from stack (#10) and put in

evalarg #30$ array variable (#20!#30)
%arg#96$
upop #10 #20!#91$
$
(pop # #)| pop onto simple variable (#20)

upop #10 #20$
$
(stcopy # to #)| copy stack (#10) to stack (#20)

if e#10 ne " skip 2$
sterr #10<not initialized, stcopy ignored>$
#f9$
if e#20 ne " skip 2$
sterr #2O<not initialized, stcopy ignored>$
#f9$
if e#10sp <= 6#20 skip 2$
sterr #20<overflow occurred, stcopy ignored>$
#f9$
if e#10sp > 0 skip 2$
set e#20sp to 0$
#f9$
set %t to 0$ set temporary stack pointer
%t#96$
®#10sp#f7$
setx %t to %t+l$ increment stack pointer
setv e#20#91 to @#10#91$ copy a stack element
#f8$
setv e#20sp to e#10sp$ set new stack pointer
$
1 queue statements - system queue variables preceded by &
$
(qinit # #)| initialize/clear queue

evalarg #20$ max size of queue
setv
 to %arg$ store max size of queue
setv
fr to %arg$ front of queue pointer
setx
ba to %arg+l$ back of queue pointer

201

$
(inqfront # #)| insert element (#20) in front of queue (#10)

inqfr #10 #20$
$
(inqback # #)| insert element (#20) in back of queue (#10)

inqba #10 #20$
$
(remqfront # #!#)| remove element from front of queue (#10) and

evalarg #30$ put in array (#20!#30)
%arg#36$
remqfr #10 #20!#31$
$
(remqfront # #)| remqfront for simple variable (#20)

remqfr #10 #20$
$
(remqback # #!#)| remove element from back of queue (#10) and

evalarg #30$ put in array (#20!#30)
%arg#36$
remqba #10 #20!#31$
$
(remqback # #)| remqback for simple variable (#20)

remqba #10 #20$
$
(qty #)| output the contents of a queue (#10)

if
 ne " skip 2$
qerr #10<not initialized, qty ignored>$
#f9$
if
ba-
fr-l > 0 skip 1$ is queue empty?
#f9$
setx %t to
fr+l$ use %t as index into queue
%t#96$

ba-
fr-l#f7$ loop "size of queue" times

#91#86$
ty #81$
setx %t to %t+l$ increment index
#f8$ end of loop
$
(qcopy # to #)| copy queue (#10) to queue (#20)

if
 ne " skip 2$
qerr #10<not initialized, qcopy ignored>$
#f9$
if ne " skip 2$
qerr #20<not initialized, qcopy ignored>$
#f9$
if
ba-
fr-l <= skip 2$ will queue 1 fit in queue 2?
qerr #20<overflow occurred, qcopy ignored>$
#f9$
setv %tl to
$ use %tl as index into queue 1

202

setv %t2 to $
%tl#96 %t2#86$

-
fr#f7$
setv #81 to
#91$
setx %tl to %tl-l$
setx %t2 to %t2-l$
#f 8S
setx %tl to
+l$
setx %t2 to +l$

ba-
#f7$
setv #81 to
#91$
setx %tl to %tl+l$
setx %t2 to %t2+l$
#f8$

use %t2 as index into queue 2

loop through front of queue
copy an element
decrement index
decrement index
end of loop
point to back of queue 1
point to back of queue 2
loop through back of queue
copy an element
increment index
increment index
end of loop

setx fr to -(
-
fr)$ set new front of queue pointer
setx ba to +(
ba-
)$ set new back of queue pointer
$
1 control statements
$
(loop#)|

push %ic '#10$
if %ic ne '2' skip 1$
#f9$
(loop#10)#f12$

#10#96 %ic#86$
(again#10)#16$

#81#f22$
#10#fl2$
set %ic to 2$
repos (loop#90)$ rewind chan 2 and pass over label
$
(if (#) then leave#)|

$

if %ic eq 2^ skip 1$
repos $
pop %t$
if %t eq '#20' skip 1$
repos $
if relexp(#10) skip 2$
push %t$
#f9$
(again#20)#16 %ic#86$

#81#f20$
pop %ic$
if %ic eq '2' skip 3$
#16$
#f22r$
text#81$

cause an ioch error

move past end of loop

are we in a nested loop?

no, rewind channel 2

203

(again#)|
if %ic eq '2' skip
repos $
pop %t$
if %t eq '#10' skip
repos $
push %t$
repos (loop#10)$
$
(goto #)I

repos (#10:)$
$
(#:) I

$
(if (#) then do)|

if relexp(#10) skip
set %c to 0$
feoe$
#f9$
eueoeS
$
(if (#) then (#))|

%ic#96 #91#96$
3#fi#90$
if relexp(#10) skip
celd #30$
if %tf eq 't' skip
#30$
#f9$
(#20)$

cgoto (#20)$
if %tf ne 't' skip
#f 9$
celd #30$

1$

1$

3$

4$

1$

1$

cause an ioch error

find else or endif

execute until else or endif

condition is false, do else statement

condition is true, execute statement
is statement a goto?

yes, quit
no, move past else portion

if %tf ne 't'
push %c$
set %c to 0$
feoe$
pop %c$
#f 9$
cel #30$

skip 5$ is it an else do?

yes, find the end

is else portion present?
if %tf eq 't'
#30$

skip 1$ yes, ignore it
no, execute next statement

(else (#))|
(#10)$

(else do)|

204

$
(endif)|

$
(stop)|

#f0$
$

$ barreIf sub-definitions: definitions used by main
। barrelf definitions
$
evalarg #| evaluate an argument for its type
set %f to 0$ argument type flag
quotarg #10$ is it a quoted value?
if %f eq 'O' skip 1$
#f9$
aritharg #10$ no, is it an arithmetic argument?
if %f eq 'O' skip 1$
#f9$
funarg #10$ no, is it a function?
if »f eq 'O' skip 1$
#f9$
arrayarg #10$ no, is it an array variable?
if %f eq 'O' skip 1$
#f9$
set %arg to #11$ no, it must be a variable
$
quotarg '#'| evaluate a quoted value argument
set %arg to #10$
set %f to 1$
$
quotarg '#| evaluate a quoted value argument
set %arg to #10$
set %f to 1$
$
quotarg #| not a quoted value
$.
aritharg #| evaluate an arithmetic expression argument
set %tt to #10$
(#10)#17+-*/$ seperate operators and operands
if %tt ne '#10' skip 2$ is it really an arithmetic expression?
#f9$ no, quit
#f8$
arithfun #10$ yes, see if it contains functions
%arg#16 #11#26 #24#26 #f3$
set %f to 1$
$
| evaluate functions in arithmetic expressions
$

205

arithfun #(size #)#| size function
evalfun(#10)(size)(#20)(#30)$
$
arithfun #(concat # #)#| concat function
evalfun(#10)(concat)(#20 #30)(#40)$
$
arithfun #(top #)#| top of stack function
evalfun(#10)(top)(#20)(#30)$
$
arithfun #(stsize #)#| stack size function
evalfun(#10)(stsize)(#20)(#30)$
$
arithfun #(steopty #)#| stack empty function
evalfun(#10)(stempty)(#2O)(#30)$
$
arithfun #(front #)#| front of queue function
evalfun(#10)(front)(#2O)(#30)$
$
arithfun #(hack #)#| back of queue function
evalfun(#10)(back)(#2O)(#30)$
$
arithfun #(qsize #)#| size of queue function
evalfun(#10)(qsize)(#2O)(#30)$
$
arithfun #(qempty #)#| queue emtpy function
evalfun(#10)(qempty)(#20)(#30)$
$
arithfun #| no function in arithmetic expression
set %arg to #10$
$
evalfun(#)(#)(#)(#)| evaluate function in arithmetic expression
arithfun #10$ 1st and 4th parameters is rest of expression
%arg#16 #11#96$ 2nd parameter is function name
arithfun #40$
#11#46$
funarg (#20 #30)$
number #11$
#90#ll#40#26 #f3$
$

3rd parameter is function argument(s)

funarg (size #)| evaluate a function argument
evalarg #10$
%arg#16 #11#16$
set %arg to #15$
set %f to 1$
$
funarg (concat '#' #)|
evalarg #20$
%arg#26$

206

set %arg to #10#21$
set %f to 1$
$
funarg (concat # #)|
evalarg #10$
%arg#16 #11#96$
evalarg #20$
set %arg to #90#ll$
set %f to 1$
$
funarg (top #)|
if e#10 ne " skip 4$
sterr #10<not initialized, returning null for top>$
set %arg to $
set %f to 1$
#f9$
e#10sp#96$
setv %arg to e#10#91$
set %f to 1$
$
funarg (stsize #)|
if e#10 ne " skip 4$
sterr #10<not initialized, returning 0 for stsize>$
set %arg to 0$
set %f to 1$
#f 9$
setv %arg to e#10sp$
set %f to 1$
$
funarg (stempty #)|
if e#10 ne " skip 2$
sterr #10<not initialized, returning true for stempty>$
skip 1$
if @#10sp > 0 skip 2$
set %arg to true$
skip 1$
set %arg to false$
set %f to 1$
$
funarg (front #)|
if
 ne " skip 4$
qerr #10<not initialized, returning null for front>$
set %arg to $
set %f to 1$
#f 9$

fr+l#96$
setv %arg to
#94$
set %f to 1$

207

$
funarg (back #) |
if W10 ne " skip 4$
qerr #10<not initialized, returning null for back>$
set %arg to $
set %f to 1$
#f9$

ba-l#96$
setv %arg to
#94$
set %f to 1$
$
funarg (qsize #)|
if
 ne " skip 4$
qerr #10<not initialized, returning 0 for qsize>$
set %arg to 0$
set %f to 1$
#f9$
setx %arg to
ba-
fr-l$
set %f to 1$
$
funarg (qempty #)|
if
 ne " skip 2$
qerr #10<not initialized, returning true for qempty>$
skip IS
if
ba-
fr-l > 0 skip 2$
set %arg to trueS
skip IS
set %arg to falseS
set %f to IS
$
funarg #| argument is not a function
$
arrayarg #!#| evaluate an array variable argument
evalarg #20$
%arg#26$
setv %arg to #10!#21$
set %f to 1$
$
arrayarg #| not an array variable
$
number #| make sure argument is a number
#10#27+-$ is there a + or -?
if '#10' eq #20' skip 3$ no
if #25 = #15-1 skip 2$ yes, is it embedded or preceding?
set %arg to »*#10»*$ embedded, force expression error
#f9$
set %tn to #20$ preceding, remove it
skip 1$

208

#f 8$
%tn#96$
#91*270123456789$
if '#20' ne " skip 3$
#f8$
set %arg to #10$ ok, return good number
#f9$
set %arg to 1*101$ not a number, force an expression error
$
upop * #| pop from a user stack (*10) onto variable (*2O)
if e*10 ne " skip 2$
sterr #10<not initialized, pop ignored>$
*f9$
if e#10sp > 0 skip 2$
sterr #10<pop on empty stack ignored>$
#f9$
e#10sp#96$
setv *20 to e*10*91$ set variable to stack element
set «*10*91 to $ clear stack element
setx e#10sp to e#10sp-l$ decrement stack pointer
$
sterr #<#>| user stack error
•• error on stack *10: #20#fl4$
$
inq* * *| insert element (*30) onto front or back (#10)
if ne " skip 2$ of a queue (#20)
qerr #20<not initialized, queue insertion ignored>$
#f9$
if ba-fr-l < skip 2$
qerr #2O<queue overflow, insertion ignored>$
#f9$
evalarg #30$
#10#96$
setv #91 to %arg$ insert the element
if '#10' eq 'fr' skip 2$ did we insert in front or back?
setx *10 to ba+l$ update back pointer
skip 1$
setx #10 to fr-l$ update front pointer
$
remq* # #| remove element from front or back (#10) of queue (#20)
if ne " skip 2$ and put it in variable (#30)
qerr #2O<not initialized, queue removal ignored>$
#f9$
if ba-fr-l > 0 skip 2$
qerr #20<removal from empty queue ignored>$
#f9$
if '#10' eq 'fr' skip 2$ did we remove in front or back?
setx #10 to ba-l$ update back pointer

209

skip 1$
setx #10 to fr+l$ update front pointer
#10#96$
setv #30 to #91$ put element in variable
set #91 to $ remove element from queue
$
qerr #<#>| queue error
** error on queue #10: #20#fl4$
$
if relexp('#' # #) skip #| evaluate a relational expression and
evalarg #30$ skip if true
%arg#96$
if relop (#10) #20 (#91) skip #40$
$
if relexp(# # #) skip #|
evalarg #10$
%arg#96 #91#16$
evalarg #30$
if relop (#10) #20 (#91) skip #40$
$
if relop (#) eq (#) skip #| determine the relational operator
#f 50$
$
if relop (#) ne (#) skip #|
#f51$
$
if relop (#) = (#) skip #|
#f60$
$
if relop (#) o (#) skip #|
#f61$
$
if relop (#) < (#) skip #|
#f6-$
$
if relop (#) > (#) skip #|
#f6+$
$
if relop (#) <= (#) skip #|
if relop (#10) < (#20) skip #30+1$
#f60$
$
if relop (#) =< (#) skip #|
if relop (#10) <= (#20) skip #30$
$
if relop (#) => (#) skip #|
if relop (#10) > (#20) skip #30+1$
#f 60$

210

$
if relop (#) >= (#) skip #|
if relop (#10) => (#20) skip #30$
$
| if/then/else definitions
$
feoe| find corresponding else or endif statement
30000#f7$
%ic#96 #91#96$
7#fi#90$
cif #70$
if %tf ne 'V skip 3$
setx %c to %c+l$
feoe$
skip 16$
cel #70$
if %tf ne 'V skip 5$
if %c = 0 skip 2$
setx %c to %c-l$
#f 9$
#70$
#f9$
celd #70$
if %tf ne 'V skip 2$
if %c o 0 skip 6$
#f9$
cen #70$
if %tf ne 'V skip 3$
if fc « 0 skip 1$
setx %c to %c-l$
#f9$
#f 8$
$
eueoe| execute until else or endif
30000#f7$
%ic#96 #91#96$
7#fi#9O$
cel #70$
if %tf ne 'V skip 1$
#f9$
celd #70$
if %tf ne 'V skip 5$
push %c$
set %c to 0$
feoe$
pop %c$
#f 9$
cen #70$

211

if %tf ne 'V skip 1$
#f9$
#70$
#f8$
$
| check for the various types of if/then/else statements,
$ set %tf if found
cif (if (#) then do)#|
set %tf to t$
$
cif (if (#) then (#))#|
set %tf to t$
$
cif #|
set %tf to $
$
cel (else (#))#|
set %tf to t$
$
cel #|
set %tf to $
$
celd (else do)#|
set %tf to t$
$
celd #|
set %tf to $
$
cen (endif)#|
set %tf to t$
$
cen #|
set %tf to $.
$
cgoto (goto #)#[
set %tf to t$
$
cgoto #|
set %tf to $
$
| cbk definitions
$
xl#[#]| route for good action and condition
if #15 > 0 skip 3$
•♦error no stub for condition or action#fl4$
set err to 1$ set error flag
#f 9$
if #15 < 38 skip 3$

212

set err to 1$
••error stub length > 38 chars.#f14$
f9$
if fh > #15 skip 1$
set fh to #15$
20#27.$
if #25 < 38 skip 3$
set err to 1$
• •error entry length > 38 chars.#f14$
skip 3$
if bh => #25 skip 1$
set bh to #25$
f 8$
$
xl#|
xe$

bad condition or action

$
xl#[#| bad condition or action
xe$
$
xl#] | bad condition or action
xe$
$
xel error message
set err to 1$
• •error unbalanced or missing brackets#f!4$
$

APPENDIX 2.5

PROGRAMS USED TO TEST THE BARREL-F DEFINITION

The programs used to test the formal definition of Barrel-F are listed below.

Test 1 - A program taken from phase I of the Barrel/ASP Decision Thble Entry,

Translation, and Presentation system. It allows the user to enter the conditions and

actions in the building of a decision table.

(zero c)
(zero a)
(zero fh)
(zero bh)
(setq ss '38)
(setq pn ')
(setq pk ')
(setq v ')
(setq sc 'make is [cord,reo,duesenberg] ... is a sample to follow)
(setq sa 'comm is [1%,5%,10%.variable] ... is a sample to follow)
(setq pfc 'please: a condition or "sample", "liste", "scut")
(setq pfa 'please: an action or "sample", "lista", "scut")
(ty ')
(ty ')
(loopi)
(if (pn ne ') then leavel)
(ty ')
(ty 'please supply an external name for this table)
(readch '4' pn)
(if ((size pn) > '10) then do)
(ty '**error table name > 10 chars)
(setq pn ')
(endif)
(againl)
(loop2)
(if (pk eq 'e) then leave2)
(ty ')
(ty 'please)
(ty ' a "c" for entering conditions)
(ty ' an "a" for entering actions)
(ty ' an "e" to end input)
(ty ')

213

214

(readch '4
(ty ')
(if (pk ne
(if (pk ne
(if (pk ne
(ty 'impro
(setq pk '
(endif)
(endif)
(if (pk ne
(loop3)
(zero err)

' pk)

'e) then do)
'c) then do)
'a) then do)

per input information --- try again)
)

') then do)

(ty ')
(if (pk eq
(else (ty
(ty ')
(readch '4
(if (v eq
(if (v eq
(if (pk eq
(else (ty
(else do)
(if (v eq
(else do)
(if (v eq
(else do)
(cbk v)
(if (err ei
(if (pk eq
(incr c)
(setq cond
(else do)
(incr a)
(setq act h
(endif)
(endif)
(endif)
(endif)
(endif)
(again3)
(endif)
(endif)
(again2)
(setq xc (<
(setq xa (<
(setq cond
(setq act!
(stop)

'c) then (ty pfc))
pfa))

' v)
'scut) then leaves)
'sample) then do)
'c) then (ty sc))

sa))

'liste) then (sen cond c 0))

'lista) then (sen act a 0))

q '0) then do)
'c) then do)

!c v)

a v)

3oncat 'rem' c))
Doncat 'rem' a))
1'0' xc)
0' xa)

215

Test 2 - Tbst of the goto statement branching out of a loop.

(setq a 'a)| testing goto - this should fail
(loopi)
(ty 'okl)
(goto labl)
(ty 'badl)
(if (a eq 'a) then leavel)
(ty 'bad2)
(againl)
(ty 'bad3)
(labl:)
(ty 'ok2)
(stop)

Test 3 - Test of the goto statement branching into a loop.

(setq a 'a)| testing goto - this should fail
(loopi)
(ty 'okl)
(goto labl)
(loop2)
(ty 'badl)
(labl:)
(ty 'ok2)
(loop3)
(ty 'ok3)
(if (a eq 'a) then leaves)
(ty 'bad2)
(againS)
(ty 'ok4)
(if (a eq 'a) then leave2)
(ty 'badS)
(again2)
(ty 'bad4)
(if (a eq 'a) then leavel)
(againl)
(ty 'bad5)
(stop)

Test 4 - Test of the goto statement branching into and then out of a loop.

(setq a 'a)| testing goto - this should work
(goto labl)
(loopi)
(ty 'badl)
(labl:)
(ty 'okl)
(goto lab2)

216

(if (a eq 'a) then leavel)
(ty 'bad2)
(againl)
(ty 'bad3)
(lab2:)
(ty 'ok2)
(stop)

Tëst 5 - Test of the goto statement branching into a loop.

(setq a 'a)| testing goto - this should fail
(loopi)
(ty 'okl)
(goto labl)
(loop2)
(ty 'badl)
(labl:)
(ty 'ok2)
(if (a eq 'a) then leave2)
(ty 'bad2)
(again2)
(if (a eq 'a) then leavel)
(ty 'bad3)
(againl)
(ty 'ok3)
(stop)

Tbst 6 - Test of the goto statement branching within a loop.

(setq a 'a)| testing goto - this should work
(loopi)
(ty 'okl)
(loop2)
(ty 'ok2)
(goto labl)
(ty 'badl)
(labl:)
(ty 'ok3)
(if (a eq 'a) then leave2)
(ty 'bad2)
(again2)
(ty 'ok4)
(if (a eq 'a) then leavel)
(ty 'bad3)
(againl)
(ty 'ok5)
(stop)

Test 7 - Test of the goto statement branching out of a loop.

217

(setq a 'a)| testing goto - this should fail
(loopl)
(ty 'okl)
(loop2)
(ty "ok2)
(goto labl)
(ty 'badl)
(if (a eq 'a) then leave2)
(ty 'bad2)
(again2)
(ty 'ok3)
(labl:)
(ty 'ok4)
(if (a eq 'a) then leavel)
(ty 'bad4)
(againl)
(ty 'okS)
(stop)

Test 8 - Test of the goto statement branching into a loop.

(setq a 'a)| testing goto - this should fail
(ty 'okl)
(goto labl)
(loopl)
(ty 'badl)
(labl:)
(ty 'ok2)
(if (a eq 'a) then leavel)
(ty 'bad2)
(againl)
(ty 'ok3)
(stop)

Test 9 - Test of the goto statement branching within a loop.

(setq a 'a)| testing goto - this should work
(loopl)
(ty 'okl)
(goto labl)
(ty 'badl)
(labl:)
(ty 'ok2)
(loop2)
(ty 'ok3)
(if (a eq 'a) then leave2)
(ty 'bad2)
(again2)
(ty 'ok4)

218

(if (a eq 'a) then leavel)
(ty 'bad3)
(againl)
(ty "ok5)
(stop)

Test 10 - Test of the goto statement branching into a loop.

(setq a 'a)| testing goto - this should fail
(loopi)
(ty 'okl)
(goto labl)
(ty 'badl)
(loop2)
(ty 'ok2)
(if (a eq 'a) then leave2)
(ty 'bad2)
(labl:)
(ty 'ok3)
(again2)
(ty 'ok4)
(if (a eq 'a) then leavel)
(ty 'bad3)
(againl)
(ty 'ok5)
(stop)

Test 11 - Test of the goto statement branching within a loop.

(setq a 'a)| testing goto - this should work
(loopi)
(ty 'okl)
(if (a eq 'a) then (goto labl))
(ty 'ok2)
(if (a eq 'b) then leavel)
(ty 'bad2)
(labl:)
(ty 'ok3)
(setq a 'b)
(againl)
(ty 'ok4)
(stop)

Test 12 - Test of the goto statement branching into a loop.

(setq a 'a)| testing goto - this should fail
(loopi)
(ty 'okl)
(goto labl)

219

(loop2)
(ty 'badl)
(labl:)
(ty "ok2)
(loops)
(ty 'okS)
(goto lab2)
(if (a eq 'a) then leaveS)
(againS)
(ty 'bad2)
(if (a eq xa) then leave2)
(lab2:)
(ty 'ok4)
(again2)
(ty 'badS)
(if (a eq 'a) then leavel)
(againl)
(ty 'bad4)
(stop)

Test 13 - Test of the goto statement branching out of an if/then statement.

(ty 'okl)| testing goto - this should work
(if ('a' eq 'a) then do)
(ty 'ok2)
(goto labl)
(ty 'badl)
(else do)
(ty 'bad2)
(endif)
(ty 'badS)
(labl:)
(ty 'okS)
(stop)

Test 14 - Test of the goto statement branching within an if/then statement.

(ty 'okl)| testing goto - this should work
(if ('a' eq 'a) then do)
(ty 'ok2)
(goto labl)
(ty 'badl)
(else do)
(ty 'bad2)
(labl:)
(ty 'ok3)
(endif)
(ty 'ok4)
(stop)

220

Test 15 - Test of the goto statement branching within an if/then statement.

(ty 'okl)I testing goto - this should work
(if ('a' eq 'a) then do)
(ty 'ok2)
(goto labl)
(ty 'badl)
(labl:)
(ty 'ok3)
(else do)
(ty 'bad2)
(endif)
(ty 'ok4)
(stop)

Test 16 - Test of the goto statement branching into an if/then statement.

(ty 'okl)| testing goto - this should work
(goto labl)
(ty 'badl)
(if ('a' eq 'a) then do)
(ty 'bad2)
(labl:)
(ty 'ok2)
(else do)
(ty 'ok3)
(endif)
(ty 'ok4)
(stop)

Test 17 - Test of the goto statement with the if/then statement.

(if ('a' eq 'a) then do)| testing goto - this should work
(goto labl)
(endif)
(ty 'badl)
(labl:)
(ty 'okl)
(if ('a' eq 'a) then (goto lab2))
(ty 'bad2)
(lab2:)
(ty 'ok2)
(if ('a' ne 'a) then (ty 'bad3a))
(else (goto lab3))
(ty 'bad3b)
(lab3:)
(ty 'ok3)
(stop)

221

Test 18 - Test of the setq, incr, deer, bump, and zero statements.

(setq a '1)
(incr a)
(ty a)
(deer a)
(ty a)
(bump a 2*a+3)
(ty a)
(setq b a)
(ty b)
(zero a)
(ty a)
(stop)

Test 19 - A program to find the factorial of n.

(readch '4' n)
(setq i '1)
(setq fact '1)
(if (n o '0) then do)
(loopl)
(if (i - n) then leavel)
(incr i)
(setq fact fact'i)
(againl)
(endif)
(ty 'the factorial of ,n,' is .fact)
(stop)

Test 20 - A program to test the size function.

(setq n 'abc)
(setq a (size n))
(ty a)
(setq a (size 'abed))
(ty a)
(setq b '1)
(setq c '12)
(setq a (size b+c))
(ty a)
(setq a (size b))
(ty a)
(ty 'hello,(size c*c),a)
(setq a 2*(size 'abc)+1)
(ty a)
(ty (size (size 'abcdefghij)))
(stop)

222

Tbst 21 - A program to test the plink operator.

(setq arr!'O' 'hello)
(setq c '1)
(setq arric c+1)
(readch '4' arr!c+l)
(if (arr!'0' eq arrl'l') then (ty 'bad news))
(else (ty 'good news))
(zero b!'10')
(loopi)
(ty arr!b!'10')
(if (b!'10' = '2) then leavel)
(incr b!'10')
(againl)
(setq arr!'# one' 'any value)
(ty arr!'# one)
(setq b '# one)
(ty arr!b)
(stop)

Test 22 -A program to test the concat function.

(setq a (concat '1st half' '2nd half))
(ty a)
(setq a (concat '1st half' '2nd half'))
(ty a)
(setq b '2nd half)
(setq a (concat '1st half' b))
(ty a)
(setq b '1st half)
(setq a (concat b '2nd half))
(ty a)
(ty (concat 1+3*2 (concat '7' (size '1234567))))
(stop)

Test 23 - A program to test the cbk statement.

(zero c)
(zero fh)
(zero bh)
(setq tab!'O' 't < 0 [])
(setq tab!'1' 'make is [cord,reo,dues])
(setq tab!'2' 'condition is good,bad])
(setq tab !'3' 'comm is [1%,5%)
(setq tab !'4' '[needed,not needed])
(setq tab !'5' 'this stub is going to be much much too long [1,2])
(setq tab !'6' 'stub [this entry is going to be much too long,2])
(setq tab!'7' 'managers ok is [needed, not needed])
(loopi)

223

(cbk tabic)
(ty fh,bh)
(if (c = '7) then leavel)
(incr c)
(againl)
(stop)

Tëst 24 - A program to test the sen statement.

(setq condi'O' 'rem3)
(setq cond!'1' 'make is [cord,reo,dues])
(setq cond!'2' 'cond is [good,bad])
(setq cond!'3' 'comm is [1%,5%])
(setq cond!'4' 'shopwork is [needed,not needed])
(setq c '4)
(sen cond c 0)
(sen cond c 1)
(stop)

Test 25 - A program to test setq and bump with quoted literal values.

(setq a '1)
(bump a 'abc)| this doesn't make sense
(ty a)
(setq a '1)
(bump a '12-10)| expressions cannot be quoted
(ty a)
(bump a 12-10)
(ty a)
(setq 1 '2)
(setq a 1)| numbers must be quoted or they are identifiers
(ty a)
(stop)

Test 26 - A program to test the loop statement.

(ty 'hello)
(zero zz)
(zero yyy)
(loopl)
(incr zz)
(if (zz = '4) then leavel)
(incr yyy)
(againl)
(ty zz)
(ty yyy)
(stop)

Test 27 - A program to test the execute statement.

224

(setq a '1)
(ty a)
(readch '4' code)| input should be (setq a '2)
(ty code)
(execute code)
(ty a)
(stop)

Test 28 - A program to test the execute statement.

(setq a '1)
(ty a)
(readch 4^ code)| input should be (setq b '2)
(ty code)
(execute code)
(readch 4^ code)| input should be (ty b)
(ty code)
(execute code)
(stop)

Test 29 - A program to test the ty statement.

(setq s 'yucky)
(setq t 'pooh)
(ty 's is ,s,' t is ,t)
(ty s,'is s)
(ty '(a.b))
(ty 'hello there)
(ty '(a b))
(ty s = ,s)
(setq a '1,&%2)
(ty a is ,a)
(stop)

Tbst 30 - A program to test the if/then/else statement.

(readch '4' i)
(ty 'test 1)
(if (i = '0) then (ty '1 =))
(ty 'test 2)
(if (i = '0) then (ty '2 =))
(else (ty '2 o))
(ty 'test 3)
(if (i = '0)
(else do)

then (ty '3 =))

(ty '3 o)
(endif)
(ty 'test 4)
(if (i = '0) then do)

225

(ty '4 -)
(endif)
(ty 'test 5)
(if (i = '0) then do)
(ty '5 -)
(else (ty '5 o))
(ty 'test 6)
(if (i = '0) then do)
(ty '6 =)
(else do)
(ty '6 o)
(endif)
(ty 'through now)
(stop)

Ifest 31 - A program to test the relational operators.

(readch '4' a)
(readch '4' b)
(if (a eq b) then (ty a eq b))
(if (a ne b) then (ty a ne b))
(readch '4' a)
(readch '4' b)

(stop)

(if (a = b) then (ty 'a = b))
(if (a o b) then (ty 'a o b))
(if (a < b) then (ty 'a < b))
(if (a > b) then (ty 'a > b))
(if (a <- b) then (ty 'a <- b))
(if (a -< b) then (ty 'a =< b))
(if (a >= b) then (ty a >= b))
(if (a => b) then (ty 'a => b))

Test 32 - A program to test the relational expressions.

(setq a 'abc)
(if (a eq 'abc) then (ty '1 ok))
(setq a 1+1)
(if (a = 1+1) then (ty '2 ok))
(if (a < '3) then (ty '3 ok))
(if (a > '1) then (ty '4 ok))
(if (a >= '2) then (ty '5 ok))
(if (a =< a+1) then (ty '6 ok))
(ty 'through now)
(stop)

Test 33 - A program to find the factorial of n.

(more:)
(readch '4' n)

226

(if (n = '100) then (goto fin))
(setq i '1)
(setq fact '!)
(if (n - '0) then (goto out))
(over:)
(if (i = n) then (goto out))
(incr i)
(setq fact fact*i)
(goto over)
(out :)
(ty n)
(ty fact)
(goto more)
(fin:)
(stop)

Test 34 - The infamous exec program used to interactively execute commands (a

command line interpreter).

(ty 'we permit 10 executions only)
(ty ' all submitted code should start in column 2)
(setq i '1)
(loopi)
(ty 'send:)
(readch '4' code)
(execute code)
(incr i)
(if (i > '10) then leavel)
(againl)
(stop)

Test 35 - A program to test the qinit, inqfront, and remqfront statements.

(qinit q '2)
(inqfront q 'frog)
(remqfront q var)
(ty var)
(stop)

Tbst 36 - A program to test the qcopy statement.

(qinit ql '3)
(qinit q2 '2)
(inqfront ql 'lilly)
(inqback ql 'pad)
(qcopy ql to q2)
(remqfront q2 var)
(ty var)

227

(reœqfront q2 var)
(ty var)
(stop)

Tbst 37 - A program to test the front of queue function.

(qinit q '2)
(inqfront q 'lilly)
(ty (front q))
(inqback q 'pad)
(setq frog (front q))
(ty frog)
(remqfront q frog)
(ty frog,(front q))
(stop)

Test 38 - A program to test the back of queue function.

(qinit q '2)
(inqfront q 'lilly)
(ty (back q))
(inqback q 'pad)
(setq frog (back q))
(ty frog)
(remqfront q frog)
(ty frog,(back q))
(stop)

lëst 39 - A program to test the queue size function.

(qinit q '2)
(ty (qsize q))
(inqfront q 'lilly)
(ty (qsize q))
(inqback q pad)
(setq frog (qsize q))
(ty frog)
(remqfront q frog)
(if ((qsize q)+l = '2) then (ty 'okl))
(else (ty 'whoops))
(stop)

Test 40 - A program to test the queue empty function.

(qinit q '2)
(if ((qempty q) eq 'true) then (ty 'okl))
(else (ty 'whoopsi))
(inqfront q 'lilly)
(if ((qempty q) eq 'false) then (ty 'ok2))

228

(else (ty 'whoops2))
(inqback q 'pad)
(if ((qempty q) eq 'true) then (ty 'whoopsS))
(else (ty 'ok3))
(qinit q '3)
(if ((qempty q) eq 'true) then (ty 'ok4))
(else (ty 'whoops4))
(stop)

Test 41 - A program to test the queue empty function.

(qinit q '2)
(ty (qempty q))
(inqfront q 'lilly)
(setq frog l+(qempty q))
(ty frog)
(inqback q (qempty q))
(remqback q frog)
(ty frog)
(stop)

Test 42 - A program to test the qinit, inqback, and remqback statements.

(qinit q '2)
(inqback q 'frog)
(remqback q var)
(ty var)
(stop)

Test 43 - A program to test the inqfront and remqfront statements.

(inqfront q 'frog)| this fails
(remqfront q wart)
(stop)

Test 44 - A program to test the inqback and remqback statements.

(inqback q 'frog)| this fails
(remqback q wart)
(stop)

Test 45 - A program to test the overflowing and unerflowing of inqfront and

remqfront.

(qinit q '2)| this overflows
(setq var 'frog)
(inqfront q var)
(inqfront q (concat 'lilly' 'pad))
(inqfront q 5*5)

229

(remqfront Q varl)
(ty varl)
(remqfront Q varl)
(ty varl)
(remqfront
(ty varl)
(stop)

q varl)

this underflows

Test 46 - A program to test the overflowing and unerflowing of inqback and

remqback.

(qinit q '2)| this overflows
(setq var 'frog)
(inqback q var)
(inqback q (concat 'lilly' 'pad))
(inqback q 5*5)
(remqback q varl)| this underflows
(ty varl)
(remqback q varl)
(ty varl)
(remqback q varl)
(ty varl)
(stop)

Test 47 - A program to test the overflowing and unerflowing of inqfront and

remqback.

(qinit q '2)| this overflows
(setq var 'frog)
(inqfront q var)
(inqfront q (concat 'lilly' 'pad))
(inqfront q 5*5)
(remqback q varl)| this underflows
(ty varl)
(remqback q varl)
(ty varl)
(remqback q varl)
(ty varl)
(stop)

Test 48 - A program to test the overflowing and unerflowing of inqback and

remqfront.

(qinit q '2)| this overflows
(setq var 'frog)
(inqback q var)
(inqback q (concat 'lilly' 'pad))

230

(inqback q 5*5)
(remqfront q varl)| this underflows
(ty varl)
(remqfront q varl)
(ty varl)
(remqfront q varl)
(ty varl)
(stop)

Ifest 49 - A program to test the qty statement.

(qinit q '3)
(setq var 'frog)
(inqback q var)
(inqback q (concat 'lilly' 'pad))
(inqback q 5*5)
(qty q)
(remqback q varl)
(Qty q)
(remqback q varl)
(Qty q)
(remqback q varl)
(qty q)
(stop)

Tbst 50 - A program to test the stinit, push, and pop statements.

(stinit st '2)
(push st 'frog)
(pop st var)
(ty var)
(stop)

Test 51 - A program to test the push and pop statements.

(push st 'frog)| this fails
(pop st wart)
(stop)

Test 52 - A program to test the overflowing and underflowing of the push and pop

statements.

(stinit st '2)| this overflows
(setq var 'frog)
(push st var)
(push st (concat 'lilly' 'pad))
(push st 5*5)
(pop st varl)| this underflows
(ty varl)

231

(pop st varl)
(ty varl)
(pop st varl)
(ty varl)
(stop)

Tbst 53 - A program to test the stcopy statement.

(stinit stl '3)
(stinit st2 '2)
(push stl 'lilly)
(push stl 'pad)
(stcopy stl to st2)
(pop st2 var)
(ty var)
(pop st2 var)
(ty var)
(stop)

Test 54 - A program to test the top of stack function.

(stinit st '2)
(push st 'lilly)
(ty (top st))
(push st 'pad)
(setq frog (top st))
(ty frog)
(pop st frog)
(ty frog,(top st))
(stop)

Test 55 - A program to test the stack size function.

(stinit st '2)
(ty (stsize st))
(push st 'lilly)
(ty (stsize st))
(push st 'pad)
(setq frog (stsize st))
(ty frog)
(pop st frog)
(if ((stsize st)+1 = '2) then (ty 'okl))
(else (ty 'whoops))
(stop)

Test 56 - A program to test the stack empty function.

(stinit st '2)
(if ((stempty st) eq 'true) then (ty 'okl))

232

(else (ty 'whoopsi))
(push st 'lilly)
(if ((stempty st) eq 'false) then (ty 'ok2))
(else (ty 'whoops2))
(push st 'pad)
(if ((stempty st) eq 'true) then (ty 'whoops3))
(else (ty 'ok3))
(stinit st '3)
(if ((stempty st) eq 'true) then (ty 'ok4))
(else (ty 'whoops4))
(stop)

Test 57 - A program to test the stack empty function.

(stinit st '2)
(ty (stempty st))
(push st 'lilly)
(setq frog 1+(stempty st))
(ty frog)
(push st (stempty st))
(pop st frog)
(ty frog)
(stop)

APPENDIX 2.6

INFORMAL DESCRIPTION OF ASP CODE BODIES

Informal description of the ASP code bodies, a mixture of low-level constructs and

high-level Barrel-F statements. The goto, loop, and if statements of Barrel-F are

not included since they cannot be used in code bodies; however, their function is

duplicated by processor functions. Keywords are lower case; non-terminals are

upper case. A “general case” example is followed by a specific example.

1. setq - assigns a value to a variable
example: (setq VARIABLE EXP)

(setq var ‘some text)
(setq var a+3*b)
(setq var anothervar)

2. zero - sets the value of the variable to zero
example: (zero VARIABLE)

(zero var)

3. bump - adds the value of the expression to the value of the variable and makes
that the new value of the variable
example: (bump VARIABLE EXP)

(bump var 2*c)

4. incr - increment the value of the variable by one
example: (incr VARIABLE)

(incr var)

5. deer - decrement the value of the variable by one
example: (deer VARIABLE)

(deer var)

6. execute - execute the value of the variable as if it were a statement
example: (execute VARIABLE)

(execute var)
233

234

7. readch - get an input value from channel 4 (as defined by ASP) and make it the
new value of the variable
example: (readch ‘4’ VARIABLE)

(readch ‘4’ var)

8. ty - output the value of the variable or the quoted value; if there is more than one
argument (separated by commas) concatenate them before output;
arithmetic expressions are not supported
example: (ty EXP[fXP..])

(ty ‘the value of a is,a)

9. cbk - determine if the value of the variable is a valid condition or action (i.e.
suitable for inclusion in a codebook as defined for the Barrel/ASP
Decision Table Entry, Translation, and Presentation System); if not valid,
print an error message and set the value of the variable “err” to 1; if valid,
set the value of the variable “fh” to the length of the stub and set the value
of the variable “bh” to the length of the longest entry (fh and bh are only
set if their values are less than the values just found, i.e. if the values are
bigger than any other found so far in the program
example: (cbk VARIABLE)

(cbk var)

10. sen - output the contents of an array; the array name is given by the first variable,
the starting point (either the zero or first element) is given by the integer,
and the ending point is given by the value of the second variable
example: (sen VARIABLE VARIABLE LIT)

(sen array length 1)

11. stinit - initialize or clear a stack giving it the specified number of elements
example: (stinit STACK EXP)

(stinit ast *20)

12. push - push a value onto a stack
example: (push STACK EXP)

(push ast a value)

13. pop - remove a value from a stack and make it the new value of a variable
example: (pop STACK VARIABLE)

(pop ast var)

14. stcopy - copy the values of one stack to another stack destroying the previous
contents of the target stack

235

example: (stcopy STACK1 to STACK2)
(stcopy thisstack to thatstack)

15. qinit - initialize or clear a queue giving it the specified number of elements
example: (qinit QUEUE EXP)

(qinit aqu ‘20)

16. inqfront - insert a value onto the front of a queue
example: (inqfront QUEUE EXP)

(inqfront aqu a*b)

17. inqback - insert a value onto the back of a queue
example: (inqback QUEUE EXP)

(inqback aqu a*b)

18. remqfront - remove a value from the front of a queue and make it the new value
of a variable
example: (remqfront QUEUE VARIABLE)

(remqfront aqu var)

19. remqback - remove a value from the back of a queue and make it the new value
of a variable
example: (remqback QUEUE VARIABLE)

(remqback aqu var)

20. qty - output the contents of a queue from front to back
example: (qty QUEUE)

(qty aqu)

21. qcopy - copy the values of one queue to another queue destroying the previous
contents of the target queue
example: (qcopy QUEUE1 to QUEUE2)

(qcopy thisq to thatq)

22. stop - stop execution of the program
example: (stop)

23. size - function; returns the precision if the value of the argument is a number or
returns the length if the value of the argument is a character string
example: (size EXP)

(setq a (size ‘this string))
(setq b (size a*b+c))

236

24. concat - function; returns the concatenation of the character string values of the
two arguments
example: (concat EXP EXP)

(setq a (concat a ‘this string))

25. top - function; returns the value currently on top of the stack without popping it
example: (top STACK)

(setq var (top stl))

26. stsize - function; returns the number of values currently on the stack
example: (stsize STACK)

(ty (stsize stl),‘ elements)

27. stempty - function; returns true if the stack has no values on it and returns false
otherwise
example: (stempty STACK)

(if ((stempty stl) eq ‘true) then (goto empty))

28. front - function; returns the value currently on the front of the queue without
removing it
example: (front QUEUE)

(ty (front aqu))

29. back - function; returns the value currently on the back of the queue without
removing it
example: (back QUEUE)

(ty (back aqu))

30. qsize - function; returns the number of values currently on the queue
example: (qsize QUEUE)

(setq a (qsize aqu)+3)

31. qempty - function; returns true if the queue has no values on it and returns false
otherwise ,
example: (qempty QUEUE)

(if ((qempty aqu) eq ‘true) then (goto empty))

32. ! - plink operator; allows specification of the index of an array variable (the
index can evaluate to an integer or a character string)
example: (setq VARIABLE ! EXP EXP)

(setq arr!‘3’ ‘a value)
(ty ‘the name is: ,arr!‘name’)

237

NOTE: in the following descriptions “constructed line” is the line that is being built
from the characters, parameter transformations, and processor functions contained
in it; the constructed line, when built, is submitted for execution if it is a previously
defined statement or output to channel 3 if not.

NOTE: in the following description of the parameter transformations P stands for
the parameter number (1-9)

33. #P0 - parameter transformation 0; copy the value of the parameter to the
constructed line
example: parameter 1 is #10

34. #P1 - treat the value of the parameter as a variable name and copy its value to
the constructed line
example: memory value of parameter 1 is #11

35. #P4 - treat the value of the parameter as an arithmetic expression and evaluate
it and copy the value to the constructed line
example: 1+2 is #14

36. #P5 - copy the length of the value of the parameter to the constructed line
example: length of parameter 1 is #15

37. #P6 - treat the value of the parameter as a variable name and make its value the
value of the constructed line
example: new value for parameter 1#16

38. #P7 - looping construct; the value of the parameter is saved for later
restoration, the characters) which follow #P7 are defined as break
characters, if the constructed line (the characters before #P7) is
enclosed in parentheses the outermost pair is removed, the longest
balanced string (balanced with respect to parentheses) which begins at
the beginning of the constructed line and contains no break characters
not enclosed in parentheses is made the value of the parameter, the
string and the break character which follows it are removed from the
constructed line, processing of the code body continues until processor
function #F8 is encountered at which time control returns to the line
containing the #P7 and the process repeats itself, if the constructed line
of the #P7 is null when a corresponding #F8 is encountered the looping
terminates and the original value of the parameter is restored and
execution of the code body continues with the element following the
#F8, if there are no break characters then the first character of the

238

constructed line is made the value of the parameter and that character
is deleted from the constructed line and execution continues as above
example: a,bc,d#17,

(ty #10)
#f8

NOTE: the following are descriptions of processor functions; the F is any non-digit
except # or $

39. #F0 - terminate processing
example: #f0

40. #F14 - output the constructed line on channel 4 (as defined by the ASP
implementation)
example: hello#f!4

41. #F3 - the value of parameter 1 is treated as a variable name which is given as its
new value the value of parameter 2
example: var#16 val#26 #f3

42. #F4 - the value of parameter 1 is treated as arithmetic expression and is
evaluated and a number of lines equal to this value are skipped
example: n +1#16 #f4

43. #F5k - if k is 0 and the values of parameters 1 and 2 are equal then the value of
parameter 3 is treated as an arithmetic expression and is evaluated and a
number of lines equal to this value are skipped, if k is 1 and the values of
parameters 1 and 2 are not equal then the value of parameter 3 is treated
as an arithmetic expression and is evaluated and a number of lines equal
to this value are skipped
example: a#16 b#26 n+1#36 #f51

44. #F6k - the values of parameters 1 and 2 are treated as arithmetic expressions
and are evaluated, if k is 0 the values are tested for equality, if k is 1 the
values are tested for non-equality, if k is + the values are tested to see if
the value obtained from the evaluation of parameter l is greater than
the value obtained from the evaluation of parameter 2, if k is - the
values are tested to see if the value obtained from the evaluation of
parameter 1 is less than the value obtained from the evaluation of
parameter 2, if the test is true then parameter 3 is treated as an
arithmetic expression and is evaluated and a number of lines equal to
this value are skipped
example: 2#16 1 +1#26 n +1#36 #f60

239

45. #F7 - looping construct; the constructed line is treated as an arithmetic
expression and is evaluated, execution is continued with the next
element following #F7, when a corresponding #F8 is encountered
control of execution is returned to the element following the #F7, this is
repeated a number of times equal to the value obtained from the
evaluation of the constructed line
example: n+l#f7

46. #F8 - signifies the end of a looping construct (see #P7 and #F7 above)
example: #f8

47. #F9 - escape from processing the code body
example: #f9

48. #Fi4 - treat the element immediately preceding #Fi4 as a parameter number,
get an input value from channel 4 (as defined by the ASP
implementation) and make it the new value of the parameter
example: 5#fi4

Definition of non-keywords used in examples above:

VARIABLE a variable name which can consist of any sequence of
characters which are balanced with respect to parentheses

EXP can be an arithmetic expression
example: 2*(a+l)
or a function call
example: (size box)
or a variable name
example: netpay
or a quoted value (a literal)
example: ‘the rain in Spain
NOTE: a quoted value is delimited by the closing parenthesis
when used in a setq statement and by a comma or the closing
parenthesis when used in a ty statement
NOTE: an arithmetic expression can involve the four
arithmetic operations +,-,*,/ (addition, subtraction,
multiplication, and division) with numbers and/or variables
and/or functions as operands using balanced parenthesis as
needed or desired to effect precedence (although numbers can

240

serve as variable names such variable names cannot appear in
an expression as they will be interpreted as numbers)

BOOLOP a boolean operator; can be any of:
eq (string equality)
ne (string inequality)
= (equal)
< > (not equal)
< (less than)
> (greater than)
< = (less than or equal)
= < (less than or equal)
> = (greater than or equal)
= > (greater than or equal)
NOTE: eq and ne assume their arguments are strings and the
other relational operators assume their arguments are integers

STATEMENT can be any single statement

STATEMENTS can be any sequence of zero or more statements
NOTE: each statement must fit on one line (usually 80
characters but implementation dependent) so all
non-keywords have an implied limit to their size

STACK the name of a stack; see VARIABLE

QUEUE the name of a queue; see VARIABLE

LIT a literal constant value

APPENDIX 2.7

FORMAL DEFINITION OF ASP CODE BODIES

Below is the formal definition of the code bodies of ASP, i.e., the lines that can be

included in a code body. Defined are the ASP processor functions, parameter

transformations, and most of the Barrel-F statements which can be called from a

code body.

We first present a Prolog interface to the formal definition which makes its

execution very simple. The user simply enters “go(file).” where file is the name of a

file which contains an ASP code body (without the template). Each of the three

parts of the definition (listed below) are called in turn: lexeme - the lexical syntax,

morpheme - the syntax, and sememe - the semantics.
/*******************$/
/»»* main program ***/
/♦*«•«•••*»••••♦»*•••/

/*** define the top level of the Barrel-F definition ***/
/*** the major predicates are lexemes, morpheme, and sememe ***/
go(File) see(File), read_in(Text), seen,

lexemes(Tokens, Text, []), !,
write('Tokens = '), pp(Tokens, 50, 9), nl, nl,
morpheme([Tree | Mem], Tokens, []), !,
write('Tree = '), pp(Tree, 50, 7), nl, nl,
prettylist(Mem),
write('Mem before sememe = '), pp(Mem, 50, 20), nl, nl,

write('Enter your input in list form and end it with a period: '),
read(Input), nl,
uglylist(Mem, Meml), !,
sememe(Tree, state(Meml, [], Input, Output, Chan3, noloop,

ok),
state(Ml, Cont, II, 01, C3a, LI, Result)),

prettylist(Ml),
write('Mem after sememe = '), pp(Ml, 50, 19), nl, nl,
write('Input = '), pp(Input, 50, 8), nl, nl,
prettylist(Output),

241

242

write('Output - '), pp(Output, 50, 9), nl, nl,
prettylist(Chan3),
write('Channel 3 - '), pp(Chan3, 50, 12), nl, nl,
write('Result - '), write(Result), nl.

/*** read each character from a file into a list of characters ***/
read_in([W | Ws]) getO(W), not checkeof (W), read_in(Ws), !.
read_in([]).
checkeof(26). /* check for end of file •/

/*** get rid of uninstantiated variable at the tail of a list ***/
prettylist([]).
prettylist([Head | Tail]) var(Tail), Tail = [].
prettylist([Head | Tail]) prettylist(Tail).

/*** put uninstantiated variable at tail of a list •**/
/•** (opposite of prettylist) ***/
uglylist(List, []) isnull(List).
uglylist(List, Newlist) not isnull(List), putvar(List, Newlist).
putvar([X], [X | _]).
putvar([X | Y], [X | Z]) putvar(Y, Z).

/* useful for printing long lists (more than 80 characters). */
/* it inserts newlines after every CPL characters and indents */
/• each line Sc characters. It uses file @@@ •/
pp(List, CPL, Sc) not exists('666'), tell('666'),

write(List), told, see('666'),
ppl(l, CPL, Sc), seen, system("rm 666").

pp(List, CPL, Sc) exists('666'), write(List).
ppi(Count, CPL, Sc) pp2(Count, CPL, Fl), (Fl = e;

nl, tab(Sc), ppi(Count, CPL, Sc)).
pp2(Count, CPL, Fl) CPL < 2, pp2(Count, 3, Fl).
pp2(Count, CPL, Fl) Count < CPL, getO(CH), (CH = 26, Fl = e;

put(CH), NewC is Count+1, pp2(NewC, CPL, Fl)).
pp2(Count, CPL, Fl) Count = CPL, Fl = n.

/*** consult the other files needed for the Barrel-F definition ***/
[lexemes, morpheme, syncon, sememe].

y******************************»/
/*»*** lexemes portion ****»/
y*************$****$*#******$***/

/•*♦ produce a list of tokens from the list of characters ***/
lexemes([X|Y]) —> lexeme(X), lexemes(Y).
lexemes([]) —> [].

/*** a lexeme is a list of tokens for one line of the program ***/
lexeme([]) —> [CH], {isnewline(CH)}.
lexeme([]) —> comment.
lexeme([X|Y]) —> token(X), lexeme(Y).

243

/*** get rid of comments ***/
comment —> [CH], {iseol(CH)}, restofcomment.
restofcomment —> [CH], {not isnewline(CH)}, restofcomment.
restofcomment —> [CH], {isnewline(CH)}.

/•*• a token is a possible identifier *••/
token(id(Word)) —> word(W), {list(Word, W)}.
/* or a processor function (pf) */
/* or a parameter transformation (pt) */
token(PFPT) —> pfpt(PFPT).
/* or any other character •/
token(Other) —> [CH], {list(Other, [CH])}.

/*•• build a word from alphanumeric characters ***/
word([First|Rest]) —> char(First), word(Rest).
/* quit when we get to a non-alphanumeric character */
word([Last]), [Next] —> char(Last), notchar(Next).

char(CH) > [CH], {ischar(CH)} .
notchar(CH) —> [CH], {not ischar(CH)}.

/*** delimits a pt or pf and $ signals end-of-line •**/
/*** we can use them as normal characters by using a '#' *♦♦/
/••• before it •••/
pfpt('#') —> [35], [35].
pfpt('S') —> [35], [36].
/* otherwise a '#' means we have a pt or pf */
pfpt(['#', Any, CH]) —> [35], [Anyl], [CHI], {notequal(Anyl, 35),

notequal(Anyl, 36), list(Any, [Anyl])},
sppfpt(Any, CHI, L), {list(CH, L)}.

/••• many pt/pf's require special handling of the ***/
/*** characters following them ***/
sppfpt(Any, 54, [54]) —> {integer(Any)}, pfpt(_).
sppfpt(Any, 54, [54]) —> {integer(Any)}, nextch(_).
sppfpt(Any, 49, [49, Chan]) —> {not integer(Any)}, nextch(Chan),

nextch(Rewind), nextch(_).
sppfpt(Any, 49, [49, Chan]) —> {not integer(Any)}, nextch(Chan).
sppfpt(Any, 51, [51]) —> {not integer(Any)}, nextch(_).
sppfpt(Any, 52, [52]) —> {not integer(Any)}, nextch(_).
sppfpt(Any, 53, [53, K]) —> {not integer(Any)}, nextch(K), nextch(_).
sppfpt(Any, 53, [53, K]), [CH] —> {not integer(Any)}, nextch(K), [CH],

{(isnewline(CH); iseol(CH))}.
sppfpt(Any, 54, [54, K]) —> {not integer(Any)}, nextch(K), nextch(_).
sppfpt(Any, 54, [54, K]), [CH] —> {not integer(Any)}, nextch(K), [CH],

{(isnewline(CH); iseol(CH))}.
sppfpt(Any, 55, [55]) —> {not integer(Any)}, nextch(_).
sppfpt(Any, 56, [56]) —> {not integer(Any)}, nextch(_).
sppfpt(Any, 105, [105, Chan]) —> {not integer(Any)}, nextch(Chan),

nextch(_).

244

sppfpt(Any, 105, [105, Chan]), [CH] —> {not integer(Any)},
nextch(Chan), [CH],
{(isnewline(CH); iseol(CH))}.

/••* handle all other pt/pf's ***/
sppfpt(Any, X, [X]) —> [].

/••• get the next character as long as it's not a ***/
/*•* newline or end-of-line »♦•/
nextch(CH) —> [CH], {not isnewline(CH), not iseol(CH)}.

/*$#************$**************/
/***** syntax portion •**•*/

y*»*»*»*»**»*****»**»«****••**•/

/*♦* build a Tree of abstract syntax statements and an •••/
/•** Environment of variables and their values *•*/
morpheme([Tree | Env]) —> stmtrain(Env, Tree), [[]].

/*♦* process the statements of the program ••*/
stmtrain(Env, [Sem | Semi]) —> statement(Env, Sem),

(stmtrain(Env, Semi);
{Semi = []}).

/••* process an individual statement ***/
statement(Env, Sem) —> [Line], /• one line per statement •/

({setqstm(Env, Sem, Line, []);
zerostm(Env, Sem, Line, []);
bumpstm(Env, Sem, Line, []);
incrstm(Env, Sem, Line, []);
deerstm(Env, Sem, Line, []);
executestm(Env, Sem, Line, []);
transputstm(Env, Sem, Line, []);
cbkstm(Env, Sem, Line, []);
scnstm(Env, Sem, Line, []);
stackstm(Env, Sem, Line, []);
queuestm(Env, Sem, Line, []);
stopstm(Sem, Line, [])});

constline(Env, Sem).

/♦** assignment statement •**/
setqstm(Env, setq(Tag, Exp)) —> begofstm(setq),

identifier(Env, Tag, ' '), [' '],
exp(Env, Exp, ')'), [')'].

/«*• set variable to zero statement •**/
zerostm(Env, setq(Tag, val(0))) —> begofstm(zero),

identifier(Env, Tag, ')'), [')'].

/*** bump a variable by the value of an arithmetic expression ***/
bumpstm(Env, setq(Tag, plus(deref(Tag), Exp))) —> begofstm(bump),

245

identifier(Env, Tag, ' '), [' '], exp(Env, Exp, ')'),
D'J.

/•«• increment the value of a variable ***/
incrstm(Env, setq(Tag, plus(deref(Tag), val(l)))) --> begofstm(incr),

identifier(Env, Tag, ')'), [')'].

/*** decrement the value of a variable ***/
decrstm(Env, setq(Tag, minus(deref(Tag), val(l)))) —> begofstm(decr),

identifier(Env, Tag, ')'), [')'].

/•*• execute the value of a variable ***/
executestm(Env, execute(Tag)) —> begofstm(execute),

identifier(Env, Tag, ')'), [')'].

/**• input and output statements •*•/
transputstm(Env, output(Exp)) —> begofstm(ty),

outexp (Env, Exp), { ! }, D'J .
transputstm(Env, input(Tag)) —> begofstm(readch), {genquote(Quote)},

[Quote], [id(4)], [Quote], [' '],
identifier(Env, Tag, ')'), [')'].

/*•• check for valid condition or action in the •**/
/•♦♦ codebook of a decision table ***/
cbkstm(Env, cbk(Tag)) —> begofstm(cbk), identifier(Env, Tag, ')'),

[')'], {declare(err, undef, Env)}.

/•*• output the contents of an array •*•/
scnstm(Env, sen(id(Tag), id(End), val(Beg))) —> begofstm(scn),

vn(Tag, ' '), [' '], vn(End, ' '), [' '], vn(Beg, ')'), UV1.

/*•* stack manipulation statements **•/
/♦ stinit statement (initialize stack) */
stackstm(Env, stinit(Stack, Exp)) —> begofstm(stinit),

stidentifier(Env, Stack, ' '),
[' '], exp(Env, Exp, ')'), [')'].

/• push statement •/
stackstm(Env, push(Stack, Exp)) —> begofstm(push),

stidentifier(Env, Stack, ' '),
[' ']. exp(Env, Exp, ')'), [')'].

/• pop statement •/
stackstm(Env, pop(Stack, Tag)) —> begofstm(pop),

stidentifier(Env, Stack, ' '),
[' '], identifier(Env, Tag, ')'), [')'].

/* stack copy statement */
stackstm(Env, stcopy(Stackl, Stack2)) —> begofstm(stcopy),

stidentifier(Env, Stackl, ' '),
[' '], [id(to)], [' '],
stidentifier(Env, Stack2, [)].

246

/*•• queue manipulation statements ••*/
/• qinit statement (initialize queue) */
queuestm(Env, qinit(Queue, Exp)) —> begofstm(qinit),

qidentifier(Env, Queue, " '),
[' '], exp(Env, Exp, ')'), [')'].

/• insert value in front of queue */
queuestm(Env, inqfront(Queue, Exp)) —> begofstm(inqfront),

qidentifier(Env, Queue, ' '),
[' '], exp(Env, Exp, ')'), [')'].

/• insert value in back of queue •/
queuestm(Env, inqback(Queue, Exp)) —> begofstm(inqback),

qidentifier(Env, Queue, " '),
[' 'J, exp(Env, Exp,)'), [')'].

/• remove value from front of queue */
queuestm(Env, remqfront(Queue, Tag)) —> begofstm(remqfront),

qidentifier(Env, Queue, " '),
[' '], identifier(Env, Tag, ')'), [')'].

/• remove value from back of queue »/
queuestm(Env, remqback(Queue, Tag)) —> begofstm(remqback),

qidentifier(Env, Queue, ' '),
[' identifier(Env, Tag, ')'), D'].

/• output the contents of a queue */
queuestm(Env, qty(Queue)) —> begofstm(qty),

qidentifier(Env, Queue, ')'), [')'].
/• copy from one queue to another •/
queuestm(Env, qcopy(Queuel, Queue2)) —> begofstm(qcopy),

qidentifier(Env, Queuel, " '),
[' '], [id(to)], [' '],
qidentifier(Env, Queue2, ')'), [')'].

/•*• stop statement ***/
stopstm(stop) —> [' '], ['('], [id(stop)], [')'].

/••* if its not one of the pre-defined statements above *••/
/*•* it must be a constructed line possibly containing ***/
/*•• processor functions and parameter transformations ***/
constline(Env, cl(Line)) —> [Toks], {build(Line, Toks, Rest),

not isnull(Line), isnull(Rest)}.

/••♦ determine if we have the beginning of a statement *“/
begofstm(Type) —> [' '], ['('], [id(Type)], [' '].

/••* get a variable name ***/
/* get an array name */
identifier(Env, id(array(Tag, Exp)), Endch) —> vn(Tag, '!'), ['!'],

exp(Env, Exp, Endch), {declare(array(Tag), val([]), Env)}.
/* get a non-array name */
identifier(Env, id(Tag), Endch) —> vn(Tag, Endch),

{declare(Tag, undef, Env)}.

247

/* get a stack name */
stidentifier(Env, id(stack(Tag)), Endch) —> vn(Tag, Endch),

{declare(stack(Tag), val(undef, []), Env)}.
/» get a queue name */
qidentifier(Env, id(queue(Tag)), Endch) —> vn(Tag, Endch),

{declare(queue(Tag), val(undef, []), Env)}.

/*** general expression handler (quoted strings, functions, **•/
/«»* and arithmetic expressions) **•/
exp(Env, Exp, Endch) —> (quote(Exp, noout);

arithexp(Env, Exp, Endch)),
({notequal(Exp, expr(error))};
{equal(Exp, expr(error))}, vn(_, Endch)).

/*»» process quoted values found in assignment statement »»»/
/•*• expressions, array indices, and output statement *•*/
/*** expressions •**/
quote(val(Val), Type) —> {genquote(Quote)}, [Quote],

qv(QL, 0, Type), {list(Val, QL)}.

/**• get quoted strings (generate list of ascii codes) ***/
qv([40 | R], PC, Type) —> ['('], {NPC is PC + 1},

qv(R, NPC, Type).
qv([], 0, Type), [Delim] —> delimit(Type, Delim).
qv([41 | R], PC, Type) —> [')'], {PC > 0, NPC is PC - 1},

qv(R, NPC, Type).
qv([], 0, Type) —> {genquote(Quote)}, [Quote].
qv(List, PC, Type) —> [id(Word)], {list(Word, LI)},

qv(L2, PC, Type),
{append(LI, L2, List)}.

qv(List, PC, Type) —> [Any], {not isptpf(Any), list(Any, LI)},
qv(L2, PC, Type), {append(LI, L2, List)}.

/*•• have we reached the delimiter for the quoted string? ***/
/* output statements are delimited by closing parens and commas */
delimit(out, ')') > [')'].
delimit(out, ',') —> [','].
/* non-output statement values are delimited by closing parens */
delimit(noout, ')') —> [')'].

/*** expression handler for arithmetic expressions ***/
arithexp(Env, Exp, Endch) —> factor(Env, Lh, Endch),

restexp(Env, Lh, Expl, Endch),
/• unquoted numbers are treated as */
/* identifiers •/
({equal(Expl, val(Val)), number(Val),
Exp = deref(id(Val)); Exp = Expl});
{Exp = expr(error)}.

restexp(Env, Lh, Exp, Endch) —> [CH], {isaddsub(CH)},
factor(Env, Rh, Endch),

248

{op(CH, Lh, Rh, Subexp)},
restexp(Env, Subexp, Exp, Endch).

restexp(Env, Lh, Lh, Endch) —> [].
factor(Env, Exp, Endch) —> primary(Env, Lh, Endch),

restfactor(Env, Lh, Exp, Endch).
restfactor(Env, Lh, Exp, Endch) —> [CH], {ismuldiv(CH)},

primary(Env, Rh, Endch),
{op(CH, Lh, Rh, Subexp)},
restfactor(Env, Subexp, Exp, Endch).

restfactor(Env, Lh, Lh, Endch) —> [].
primary(Env, Exp, Endch) —> fune(Env, Exp);

number(Exp);
expid(Env, Exp, Endch);
['('], arithexp(Env, Exp, ')'), [')'].

/*** process functions ***/
/• handles the size function call •/
func(Env, size(Exp)) —> ['('], [id(size)], [' '],

exp(Env, Exp, ')'), [')'].
/* handles the concat function call */
fune(Env, concat(Expl, Exp2)) —> ['('], [id(concat)], [' '],

exp(Env, Expl, ' '), V '1.
exp (Env, Exp2, ')'), O'] .

/• handles the top of stack function call */
fune(Env, top(Tag)) —> ['('], [id(top)], [' '],

stidentifier(Env, Tag, ')'), O'].
/* handles the stack size function call */
fune(Env, stsize(Tag)) —> ['('], [id(stsize)], [' '],

stidentifier(Env, Tag, ')'), O'].
/* handles the stack empty function call */
fune(Env, stempty(Tag)) > ['('], [id(stempty)], [' '],

stidentifier(Env, Tag, ')'), [')'].
/* handles the front of queue function call */
fune(Env, front(Tag)) —> ['('], [id(front)], [' '],

qidentifier(Env, Tag, ')'), [')'].
/* handles the back of queue function call */
fune(Env, back(Tag)) —> ['('], [id(back)], [' '],

qidentifier(Env, Tag, ')'), [')'].
/* handles the size of queue function call •/
fune(Env, qsize(Tag)) —> ['('], [id(qsize)], [' '],

qidentifier(Env, Tag, ')'), [')'].
/* handles the queue empty function call •/
func(Env, qempty(Tag)) —> ['('], [id(qempty)], [' '],

qidentifier(Env, Tag, ')'), [')'].

/*•• do we have a number ***/
number(val(Vai)) —> [id(Val)], {number(Vai)}.

249

/* check for number preceded by unary minus •/
number(val(Vai)) —> [id(Vail)], {number(Vail), Vai is -Vail}.

/*** determine variable name for variables in arithmetic ***/
/••♦ expressions (they cannot contain arithmetic operators) ***/
/* process variables preceded by unary minus */
expid(Env, times(val(-l), deref(id(Tag))), Endch) —>

expvn(Tag, Endch), {not isnull(Tag), firstch(Tag, CH),
not number(CH), notequal(CH, '(')}.

expid(Env, deref(id(Tag)), Endch) —> expvn(Tag, Endch),
{not isnull(Tag),
firstch(Tag, CH),
not number(CH),
notequal(CH, '(')}.

expvn(" , Endch), [CH] —> [CH], {isaddsub(CH); ismuldiv(CH);
equal(CH, ')'); equal(CH, Endch)}.

expvn(Tag, Endch) > [id(ID)], expvn(Tagl, Endch),
{concat(ID, Tagl, Tag)}.

expvn(Tag, Endch) —> [CH], {not isaddsub(CH), not ismuldiv(CH),
notequal(CH, ')'), notequal(CH, id(_)),
not isptpf(CH), notequal(CH, Endch)},
expvn(Tagl, Endch), {concat(CH, Tagl, Tag)}.

/*** determine variable name for an identifier ***/
vn(Tag, Endch) > ['('], vn(Tagl, ')'), {concat^(', Tagl, Tag2),

concat(Tag2, ')', Tag3)}, [')'], vn(Tag4, Endch),
{concat(Tag3, Tag4, Tag)}.

vn(" , Endch), [Endch] —> [Endch].
vn(Tag, Endch) —> [id(ID)], vn(Tagl, Endch),

{concat(ID, Tagl, Tag)}.
vn(Tag, Endch) —> [CH], {notequal(CH, Endch), notequal(CH,

notequal(CH, '('), notequal(CH, id(_)),
not isptpf(CH), notequal(CH, ' ')},
vn(Tagl, Endch), {concat(CH, Tagl, Tag)}.

/••* expression handler for ty (output) statement ***/
/*** creates a list of values or dereferenced identifiers **»/
/•** for output ***/
outexp(Env, []), [')'] —> [')'].
outexp(Env, List) —> [','], outexp(Env, List).
/• output quoted values */
outexp(Env, [F | R]) —> quote(F, out), outexp(Env, R).
/* output function values */
outexp(Env, [F | R]) —> fune(Env, F), outexp(Env, R).
/* output variable values */
outexp(Env, [F | R]) —> (identifier(Env, Tag, ',');

identifier(Env, Tag, ')')),
{F = deref(Tag)}, outexp(Env, R).

250

/*** build a constructed line ***/
build([], [], []).
/• process parameter transformations */
build([pt(Param, Num) | Rest]) —> [[#, Param, Num]],

{integer(Param)},
build(Rest).

/* process processor function 1 */
build([pf(1) | Rest]) —> [[#, F, 14]], {not integer(F)},

build(Rest).
/* process other processor functions */
build([pf(Type) | Rest]) —> [[#, F, Type]], {not integer(F)},

build(Rest).
/• process non-pt/pf's (regular values) */
build([val(CL) | Rest]) —> civ(CL), {not isnull(CL)}, build(Rest).

/••* build a constructed line until we get to a pt or pf ***/
clv(", [], []).
clv(", [[#, Y, Z] | Rest], [[#, Y, Z] | Rest]).
clv(Val, [id(Word) | RI], R2) civ(Vail, RI, R2),

concat(Word, Vail, Vai).
clv(Val, [CH | RI], R2) atom(CH), civ(Vali, RI, R2),

concat(CH, Vail, Vai).

/****$***************************/
/»«««* semantic portion «****/

/*******************$************/

/•** process the list of statements in abstract syntax form »••/
sememe([SI | S2], state(M, Cont, I, O, C3, L, R), St2) :-

sememe(SI, state(M, [S2 | Cont], I, O, C3, L, R), Stl),
continuation(Stl, St2).

sememe([]) —> [] .

/«»» process the individual abstract syntax statements »**/
sememe(setq(id(Tag), Exp)) —> sememe(Exp, Vai),

({equal(Val, val(error))},
update(Tag, val(0));
update(Tag, Val)).

sememe(execute(Exp)) —> sememe(Exp, id(Tag)), lookup(Tag, Val),
execute(Val).

sememe(input(Exp)) —> sememe(Exp, id(Tag)),
(transput(in, Val), update(Tag, Val);
iocherror).

sememe(output(List)) > outval(List, ", Val), transput(out, Val).
sememe(cbk(id(Tag))) —> lookup(Tag, Val), cbk(Val).
sememe(sen(id(Array), id(Tag), Num)) —> (lookup(Tag, Val);

{Val = val(O)}),
(It(Val, val(2), val(true)),
{End = val(l)};

251

{End = Val}),
(eq(Num, val(O), val(true)),
{Index - val(l)};

{Index - val(O)}),
sen(Array, Index, End),

sememe(stinit(id(Stack), Exp)) > sememe(Exp, Max),
update(Stack, val(Max, [])).

sememe(push(id(Stack), Exp)) > sememe(Exp, Val), push(Stack, Val).
sememe(pop(id(Stack), id(Tag))) —> pop(Stack, Tag),
sememe(stcopy(id(Stackl), id(Stack2))) —>

lookup(Stackl, val(Maxi, Stvalsl)),
({equal(Maxi, undef)},
stackerror(Stackl, 'not initialized, stcopy ignored');
{notequal(Maxi, undef)},
lookup(Stack2, val(Max2, Stvals2)),
({equal(Max2, undef)},
stackerror(Stack2, 'not initialized, stcopy ignored');
{notequal(Max2, undef), length(Stvalsl, 0, Lenl)},
({gt(val(Lenl), Max2, val(true))},
stackerror(Stack2, 'overflow occurred, stcopy ignored');
{le(val(Lenl), Max2, val(true))},
update(Stack2, val(Max2, Stvalsl))))).

sememe(qinit(id(Queue), Exp)) —> sememe(Exp, Max),
update(Queue, val(Max, [])).

sememe(inqfront(id(Queue), Exp)) —> sememe(Exp, Val),
inq(Queue, Val, front).

sememe(inqback(id(Queue), Exp)) —> sememe(Exp, Val),
inq(Queue, Val, back).

sememe(remqfront(id(Queue), id(Tag))) —> remq(Queue, Tag, front).
sememe(remqback(id(Queue), id(Tag))) —> remq(Queue, Tag, back).
sememe(qty(id(Queue))) —> lookup(Queue, val(Max, Qvals)),

({equal(Max, undef)},
qerror(Queue, 'not initialized, qty ignored');
qty(Qvals)).

sememe(qcopy(id(Queuel), id(Queue2))) —>
lookup(Queuel, val(Maxi, Qvalsl)),
({equal(Maxi, undef)},
qerror(Queuel, 'not initialized, qcopy ignored');
{notequal(Maxi, undef)},
lookup(Queue2, val(Max2, Qvals2)),
({equal(Max2, undef)},
qerror(Queue2, 'not initialized, qcopy ignored');
{notequal(Max2, undef), length(Qvalsl, 0, Lenl)},
({gt(val(Lenl), Max2, val(true))},
qerror(Queue2, 'overflow occurred, qcopy ignored');
{le(val(Lenl), Max2, val(true))},
update(Queue2, val(Max2, Qvalsl))))).

sememe(stop) —> newstate(continuation, []),

252

newstate(result, stopped).
sememe (cl (List)) —> cl (List, ", CL), ({isnull(CL) };

execute(val(CL))).

/*** process the arithmetic expressions ***/
sememe(plus(Expl, Exp2), Val) —> sememe(Expl, Vail),

sememe(Exp2, Val2),
{add(Vail, Val2, Val)};
exprerror, {Val = val(error)}.

sememe(minus(Expl, Exp2), Val) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
{subtract(Vali, Val2, Val)};
exprerror, {Val = val(error)}.

sememe(times(Expl, Exp2), Val) —> sememe(Expl, Vail),
sememe(Exp2, Val2),
{mult(Vail, Val2, Val)};
exprerror, {Val = val(error)}.

sememe(division(Expl, Exp2), Val) —> sememe(Expl, Vali),
sememe(Exp2, Val2),
{divide(Vail, Val2, Val)};
exprerror, {Val = val(error)}.

/*** process functions ***/
sememe(size(Exp), val(Val)) —> sememe(Exp, Vail),

{size(Vall, Val)}.
sememe(concat(Expl, Exp2), val(Val)) —> sememe(Expl, val(Vali)),

sememe(Exp2, val(Val2)),
{concat(Vail, Val2, Val)}.

/* process stack functions */
sememe(top(id(Stack)), val(Val)) —>

lookup(Stack, val(Max, Stvals)),
({equal(Max, undef), Val = "},
stackerror(Stack, 'not initialized, returning null for top');
{notequal(Max, undef), firstelem(Stvals, val(Val))}).

sememe(stsize(id(Stack)), val(Val)) —>
lookup(Stack, val(Max, Stvals)),
({equal(Max, undef), Val = 0},
stackerror(Stack, 'not initialized, returning zero for stsize');
{notequal(Max, undef), length(Stvals, 0, Val)}).

sememe(stempty(id(Stack)), val(Val)) —>
lookup(Stack, val(Max, Stvals)),
({equal(Max, undef), Val = true},

stackerror(Stack, 'not initialized, returning true for stempty');
{notequal(Max, undef)},
({isnull(Stvals), Val = true};
{not isnull(Stvals), Val = false})).

/• process queue functions */
sememe(front(id(Queue)), val(Val)) —>

lookup(Queue, val(Max, Qvals)),

253

({equal(Max, undef), Vai =
qerror(Queue, 'not initialized, returning null for front');
{notequal(Max, undef), firstelem(Qvals, val(Val))}).

sememe(back(id(Queue)), val(Val)) —>
lookup(Queue, val(Max, Qvals)),
({equal(Max, undef), Vai -
qerror(Queue, 'not initialized, returning null for back');
{notequal(Max, undef), lastelem(Qvals, val(Val))}).

sememe(qsize(id(Queue)), val(Vai)) —>
lookup(Queue, val(Max, Qvals)),
({equal(Max, undef), Vai = 0},
qerror(Queue, 'not initialized, returning zero for qsize');
{notequal(Max, undef), length(Qvals, 0, Vai)}),

sememe(qempty(id(Queue)), val(Val)) —>
lookup(Queue, val(Max, Qvals)),
({equal(Max, undef), Val = true},
qerror(Queue, 'not initialized, returning true for qempty');
{notequal(Max, undef)},
({isnull(Qvals), Val = true};
{not isnull(Qvals), Val = false})).

/•*♦ process all other expressions •*•/
sememe(deref(Exp), Val) —> sememe(Exp, id(Tag)),

(lookup (Tag, Val) ; {Val = val (")}).
sememe(id(Tag), id(Tag)) —> [].
sememe(val(Val), val(Val)) —> [].
sememe(expr(error), val(0)) —> exprerror.

/*** continue with the next statement on the continuation list ***/
/* normal continuation */
continuation(state(M, [S2 | Cont], I, 0, C3, L, R), St2) :-

(equal(R, ok); equal(R, skipping(0, _))),
sememe(S2, state(M, Cont, I, 0, C3, L, ok), St2).

/* continuation list is empty ♦/
continuation(state(M, [], I, 0, C3, L, R),

state(M, [], I, 0, C3, L, R)).
/* skip SkC statements (we are not in a loop) */
continuation(state(M, Cont, I, 0, C3, noloop, skipping(SkC, IOC)),

St2) :-
SkC > 0, skip(SkC, NewSkC, Cont, NewCont),
(equal(NewSkC, 0),
sememe(NewCont, state(M, [], 1, 0, C3, noloop, ok),

St2) ;
NewSkC > 0, isnull(NewCont),
St2 = state(M, [], I, 0, C3, noloop,

skipping(NewSkC, IOC))).
/• skip SkC statements (we are in a loop, IOC is iteration */
/♦ open count) */
continuation(state(M, Cont, I, 0, C3, loop, skipping(SkC, IOC)),

254

St2)
SkC > 0, skip(SkC, NewSkC, IOC, NewIOC, Cont, NewCont),
(NewIOC < 1, /* we have skipped out of the loop •/
St2 - state(M, [NewCont], I, O, C3, noloop,

skipping(NewSkC, NewIOC));
NewIOC > 0,
equal(NewSkC, 0), /* we are still in the loop */
sememe(NewCont, state(M, [], I, O, C3, loop, ok),

St2)).

/•** skip lines (no loops involved) ***/
skip(SkC, SkC, [[]], []).
skip(l, 0, [[St | Rest]], Rest).
skip(SkC, NewSkC, [[St | Rest]], NewCont)

SkC > 1, SkCl is SkC - 1,
skip(SkCl, NewSkC, [Rest], NewCont).

skip(SkC, 0, [Cont], Cont) SkC < 1.

/»« skip lines from within a loop ***/
skip(SkC, SkC, IOC, IOC, [[]], []).
skip(l, 0, IOC, NewIOC, [[St | Rest]], Rest)

newioc(St, IOC, NewIOC).
skip(SkC, NewSkC, IOC, NewIOC, [[St | Rest]], NewCont)

SkC > 0,
SkCl is SkC - 1, newioo(St, IOC, I0C1),
(equal(I0C1, 0), NewIOC is 0, NewSkC is SkCl, NewCont = Rest;
I0C1 > 0, skip(SkCl, NewSkC, I0C1, NewIOC, [Rest], NewCont)).

skip(SkC, 0, IOC, IOC, [Cont], Cont) SkC > 1.

/“» update iteration open count if necessary ***/
newioc(cl([pf(8) | Rest]), IOC, NewIOC) NewIOC is IOC - 1.
newioc(cl([pf(7) | Rest]), IOC, NewIOC) NewIOC is IOC + 1.
newioc(St, IOC, IOC) notequal(St, cl([pf(8) | Rest])),

notequal(St, cl([pf(7) | Rest])).

/••* look up the value of a variable **»/
/* look up the value of an array variable */
lookup(array(Tag, Exp), Vai) —> sememe(Exp, Index),

getstate(memory, Mem),
{lookup(array(Tag), Mem, val(List)),
lookupa(Index, List, Vai),
notequal(Vai, undef)}.

/* look up the value of an ordinary variable */
lookup(Tag, Vai) —> getstate(memory, Mem), {lookup(Tag, Mem, Vai)}.
lookup(Tag, [loc(Tag, Val) | R], Vai)

notequal(Vai, undef), not var(Val),
(equal(Vai, val(V)); equal(Vai, val(V, _))),
not var(V).

lookup(Tag, [loc(Tagl, V) | Rest], Vai) notequal(Tag, Tagl),

255

lookup(Tag, Rest, Vai).
/* look up the specific value of array variable for the */
/* particular index */
lookupa(Index, [], undef).
lookups(val(Index), [Index, Vai | Rest], Vai).
lookupa(Index, [Indexl, Vali | Rest], Vai) :-

lookupa(Index, Rest, Vai).

/*** set a new value for a variable ***/
/* set a new value for an array variable •/
update(array(Tag, Exp), Vai) —> sememe(Exp, Index),

getstate(memory, Meml),
{lookup(array(Tag), Meml, val(List)),
updatea(Index, Vai, List, Newlist),
update(array(Tag), val(Newlist), Meml, Mem2)},
newstate(memory, Mem2).

/• set a new value for an ordinary variable */
update(Tag, Val) —> getstate(memory, Meml),

{update(Tag, Val, Meml, Mem2)},
newstate(memory, Mem2).

update(Tag, Val, [], [loc(Tag, Val) | _]).
update(Tag, Val, [loc(Tag, V) | Env], [loc(Tag, Val) | Env]).
update(Tag, Val, [L | Envl], [L | Env2])

equal(L, loc(Tagl, V)), notequal(Tag, Tagl), (var(Envl),
Env2 = [loc(Tag, Val) | _]; update(Tag, Val, Envl, Env2)).

/* set the specific value of array variable for the */
/* particular index •/
updatea(val(Index), Newval, [], [Index, Newval]).
updatea(val(Index), Newval, [Index, Oldval | Rest],

[Index, Newval | Rest]).
updatea(Index, Newval, [Indexl, Vali | Rest],

[Indexl, Vail | Newrest])
notequal(Index, val(Indexl)),
updatea(Index, Newval, Rest, Newrest).

/*** execute a statement by sending it through all three **»/
/*** phases (lexical, syntax, and semantic) ***/
execute(Val, state(Mem, C, I, 0, C3, L, R),

state(Meml, Cl, II, 01, C3a, LI, RI))
Val = val(Code), list(Code, Textl),
/* handle stop specially */
(equal(Code, ' (stop)'), Cl = [], RI = stopped,
Meml = Mem, Il = I, 01 = 0;

Cl = C, append(Textl, [36,10], Text),
lexemes(Toks, Text, []),
stmtrain(Mem, Tree, Toks, []), !,
(iselfune(Tree),

/* unrecognized statements output on channel 3 */
transput(chan3, Val, state(Mem, C, I, 0, C3, L, R),

256

state(Meml, Cl, II, 01, C3a, Ll, RD);
not isclfunc(Tree),
sememe(Tree, state(Mem, [], I, O, C3, L, R),

state(Meml, [], II, 01, C3a, Ll, RI)))).

/**♦ construct an output line for the ty statement ***/
outval([], Vai, val(Val)) —> [].
outval([Exp | Rest], Vai, NewVal) —> sememe(Exp, val(Vall)),

{concat(Vai, Vail, Val2)},
outval(Rest, Val2, NewVal).

/*** produce a new input/output list ***/
transput(in, Vai, state(Mem, C, In, 0, C3, L, ok),

state(Mem, C, Ini, 0, C3, L, ok))
io(Vai, In, Ini).

transput(out, Vai, state(Mem, C, I, Out, C3, L, ok),
state(Mem, C, I, Outl, C3, L, ok))
io(Vai, Out, Outl).

transput(chan3, Vai, state(Mem, C, I, 0, Chan3, L, ok),
state(Mem, C, I, 0, Chan3a, L, ok))
io(Vai, Chan3, Chan3a).

/•*♦ get an input value or add a new output value •*•/
io(val(Vai)) —> [val(Val)]•

/*** process the cbk statement •**/
cbk(val(Val)) —> {index(Vai, '[', Front, Len, Back)},

checkstub(Vai, Front, Len, Errl),
({equal(Errl, error)},
update(err, val(1));
{index(Back, ']', Entries, _, _)},
checkentries(Back, Entries, Err2),
({equal(Err2, error)},
update(err, val(l));
lookup(fh, val(Vfh)),
({vfh >= Len);
update(fh, val(Len))))).

/»*» check the stub of the codebook condition or action ***/
checkstub(Whole, Whole, Len, error) >

cbkerror('** error unbalanced or missing brackets').
checkstub(Whole, Stub, 0, error) —>

cbkerror('»* error no stub for condition or action').
checkstub(Whole, Stub, Len, error) > {Len > 38},

cbkerror('** error stub length > 38 chars.').
checkstub(Whole, Stub, Len, ok) —> {notequal(Whole, Stub),

Len > 0, Len =< 38}.

/••* check the entries of the codebook condition or action ♦**/
checkentries(Whole, Whole, error) —>

257

cbkerror('** error unbalanced or missing brackets').
checkentries(Whole, Entries, Error) —>

{index(Entries, Entry, Len, Rest)},
checklen(Len, Errl),
({equal(Errl, error), Error - error};
lookup(bh, val(Val)),
({Vai >= Len};
update(bh, val(Len))),
({isnull(Rest), Error - ok};
checkentries(Whole, Rest, Error))).

/*** check the length of an entry •**/
checklen(Len, error) —> {Len > 38},

cbkerror('*» error entry length > 38 chars.').
checklen(Len, ok) —> {Len =< 38}.

/*** process the sen statement ••*/
sen(Tag, val(Index), val(End)) —> {index > End}.
sen(Tag, val(Index), val(End)) —> {Index =< End},

sememe(output([deref(id(array(Tag, val(Index))))])),
{Newl is Index + 1}, scn(Tag, val(NewI), val(End)).

/*** push a value onto a stack ***/
push(Stack, Val) —> lookup(Stack, val(Max, Stvals)),

({equal(Max, undef)},
stackerror(Stack, 'not initialized, push ignored');
{notequal(Max, undef), length(Stvals, 0, Depth)},
({equ(Max, val(Depth), val(true))},
stackerror(Stack, 'stack overflow, push ignored');
{It(val(Depth), Max, val(true))},
update(Stack, val(Max, [Val | Stvals])))).

/*** pop a value onto a stack ***/
pop(Stack, Tag) —> lookup(Stack, val(Max, Stvals)),

({equal(Max, undef)},
stackerror(Stack, 'not initialized, pop ignored');
{notequal(Max, undef)},
({isnull(Stvals)},
stackerror(Stack, 'pop on empty stack ignored');
{not isnull(Stvals), Stvals = [Val | Rest]},
update(Tag, Val), update(Stack, val(Max, Rest)))).

/*** insert a value onto the front or back of a queue ***/
inq(Queue, Val, ForB) —> lookup(Queue, val(Max, Qvals)),

({equal(Max, undef)},
qerror(Queue, 'not initialized, queue insertion ignored');
{notequal(Max, undef), length(Qvals, 0, Depth)},
({equ(Max, val(Depth), val(true))},
qerror(Queue, 'queue overflow, insertion ignored');
{It(val(Depth), Max, val(true))},

258

({equal(ForB, front)},
update(Queue, val(Max, [Vai | Qvals]));
{equal(ForB, back), append(Qvals, [Vai], NewQvals)},
update(Queue, val(Max, NewQvals))))).

/*** remove a value from the front or back of a queue ***/
remq(Queue, Tag, ForB) —> lookup(Queue, val(Max, Qvals)),

({equal(Max, undef)},
qerror(Queue, 'not initialized, queue removal ignored');
{notequal(Max, undef)},
({isnull(Qvals)},
qerror(Queue, 'removal from empty queue ignored');
{not isnull(Qvals)},
({equal(ForB, front), Qvals - [Val | Rest]},
update(Queue, val(Max, Rest)), update(Tag, Val);
{equal(ForB, back), lastelem(Qvals, Val)},
update(Tag, val), {rmlastelem(Qvals, NewQvals)},
update(Queue, val(Max, NewQvals))))).

/»»» output the contents of a queue ***/
qty([]) —> [].
qty([Val | Rest]) —> transput(out, Val), qty(Rest).

/*** evaluate a constructed line with parameter ***/
/*** transformations (pt) and processor functions (pf) •*•/
cl([], CL, CL) —> [].
/• normal values in the constructed line (not a pt or pf) */
cl([val(Val) | Rest], CL, FinalCL) —> {concat(CL, Val, NewCL)},

cl(Rest, NewCL, FinalCL).
/♦ pt 0 - copy parameter to constructed line */
cl([pt(P,O) | Rest], CL, FinalCL) —> getpval(P, Val, Err),

{concat(CL, Val, NewCL)},
cl(Rest, NewCL, FinalCL).

/» pt 1 - copy variable value to constructed line */
cl([pt(P,l) | Rest], CL, FinalCL) —> getpval(P, Tag, Err),

(lookup(Tag, val(Val));
{Val = "}),
{concat(CL, Val, NewCL)},
cl(Rest, NewCL, FinalCL).

/• pt 4 - copy parameter treated as arithmetic expression •/
/* to constructed line */
cl([pt(P,4) | Rest], CL, FinalCL) —> getpval(P, Exp, Err),

({equal(Err, error),
concat (CL, ", NewCL) } ;
{equal(Err, ok)},
expression(Exp, Vail),
({(equal(Vail, 32768);

equal(Vail, -32768)),
Val = '-/////':

259

inrange(Vail, Val)}),
{concat(CL, Vai, NewCL)}),
cl(Rest, NewCL, FinalCL).

/• pt 0 - copy parameter length to constructed line */
cl([pt(P,5) | Rest], CL, FinalCL) —> getpval(P, Vai, Err),

({equal(Err, error),
concat(CL, ", NewCL)};
{size(val(Val), Len),
concat(CL, Len, NewCL)}),
cl(Rest, NewCL, FinalCL).

/• pt 6 - reset value of parameter •/
cl([pt(P,6) I Rest], CL, FinalCL) —> update(param(P), val(CL)),

cl (Rest, ", FinalCL).
/» pt 7 - context-controlled interation */
cl([pt(P,7) | Rest], ", ") > [] -
cl([pt(P,7) I Rest], CL, ") > (lookup(param(P), Save);

{Save = undef}),
{breakch(Rest, Break)},
({equal(Break, error)},
update(param(P), val("));

getstate(continuation, [Body]),
newstate(continuation, []),
getstate(loopstate, SaveL),
newstate(loopstate, loop),
{listofcl(Break, CL, CLlist)},
dopt7(P, CLlist, Body),
getstate(result, Result),
newstate(result, ok),
update(param(P), Save),
newstate(result, Result),
newstate(loopstate, SaveL)).

/• pf 0 - terminate processing •/
cl([pf (0) | Rest], CL, ") —> sememe (stop).
/» pf 1 - output constructed line without rescanning •/
cl([pf (1) | Rest], ", FinalCL) —> converror,

cl (Rest, ", FinalCL).
cl([pf(1) | Rest], CL, FinalCL) —> {notequal(CL, ")},

transput(out, val(CL)),
cl (Rest, ", FinalCL).

/» pf 3 - set the value of a variable •/
cl([pf(3) | Rest], CL, FinalCL) —> getpval(l, Tag, Errl),

({equal(Errl, error)};
{equal(Errl, ok)},
getpval(2, Val, Err2),
update(Tag, val(Val))),
cl (Rest, ", FinalCL).

/• pf 4 - set skip counter unconditionally */
cl([pf(4) | Rest], CL, FinalCL) —> getpval(1, Exp, Err),

260

expression(Exp, Val),
({Val -< 0},
cl (Rest, ", FinalCL) ;

newstate(result, skipping(Val, 1)),
({isnull(Rest)};
newstate(continuation, []))).

/» pf 5 - set skip counter conditionally on string equality */
cl([pf(50) | Rest], CL, FinalCL) > dopf5(50, Rest, FinalCL).
cl([pf(51) I Rest], CL, FinalCL) —> dopf5(51, Rest, FinalCL).
/• pf 6 - set skip counter conditionally on relative values */
/* of two arithmetic expressions */
cl([pf('6-') | Rest], CL, FinalCL) —> dopf6('6-', Rest, FinalCL).
cl([pf(60) | Rest], CL, FinalCL) > dopf6(6O, Rest, FinalCL).
cl([pf(61) I Rest], CL, FinalCL) —> dopf6(61, Rest, FinalCL).
cl([pf('6+') | Rest], CL, FinalCL) —> dopf6('6+', Rest, FinalCL).
/* pf 7 - count-controlled iteration */
cl([pf(7) | Rest], CL, FinalCL) —> {isnull(CL)},

cl (Rest, ", FinalCL);
{FinalCL = "},
getstate(continuation, [Cont]),
({isnull(Rest), Body = Cont;
append([cl(Rest)], Cont, Body)}),

newstate(continuation, []),
getstate(loopstate, SaveL),
newstate(loopstate, loop),
expression(CL, Vai),
({Vai =< 0}, dopf7(Body, 1);
dopf7(Body, Vai)),

newstate(loopstate, SaveL).
/* pf 8 - advance an iteration */
cl([pf(8) | Rest], CL, FinalCL) —> getstate(loopstate, noloop),

cl (Rest, ", FinalCL).
cl([pf(8) | Rest], CL, ") —> getstate(loopstate, loop),

getstate(continuation, [Conti]),
({isnull(Rest), Cont2 = Conti;
append([cl(Rest)], Conti, Cont2)}),
{append([cl([pf(8)])], Cont2, Cont3)},
{append([[]], Cont3, Cont)},
newstate(continuation, Cont).

/♦ pf 9 - escape from the current macro */
cl([pf(9) | Rest], CL, ") —> newstate(result, escaped),

newstate(continuation, []).
/« pf i - set the value of a parameter to the next input value */
cl([pf(I) | Rest], CL, FinalCL) —> ({firstch(I, i)},

({not lastch(I, 4)},
transput(out, val('error — unexpected call on unknown file')),
iocherror; ({lastch(CL, Param), integer(Param)},
(transput(in, Vai), update(param(Param), Vai); iocherror);

261

converror))),
cl (Rest, ", FinalCL).

/*** execute
dopt7(Param,
dopt7(Param,

the body of context-controlled iteration ***/
[], Body) —> rmpf8.
[NewP | Rest], Body) —> update(param(Param), NewP),

sememe(Body),
(checkskip;
getstate(continuation, []);
({isnull(Rest)};
newstate(continuâtion, [])),

dopt7(Param, Rest, Body)).

/*** perform processor function 5 **•/
dopf5(Type, Rest, FinalCL) —> (getpval(l, Vail, Errl),

({equal(Errl, error)},
cl (Rest, ", FinalCL);

getpval(2, Val2, Err2),
({equal(Err2, error)},
cl (Rest, ", FinalCL);
({dopfrel(Type, Vail, Val2)},
cl (Rest, ", FinalCL);

getpval(3, Exp, Err3),
expression(Exp, Vai),
({Vai -< 0},

newstate(continuation, []))))))).

cl (Rest, ", FinalCL) ;
newstate(result, skipping(Vai, 1)),
({isnull(Rest), FinalCL = Rest};

/•** perform processor function 6 •**/
dopf6(Type, Rest, FinalCL) —> (getpval(1, Expl, Errl),

({equal(Errl, error)},

newstate(continuation, []))))))).

cl (Rest, ", FinalCL) ;
expression(Expl, Vali),
getpval(2, Exp2, Err2),
({equal(Err2, error)},
cl (Rest, ", FinalCL) ;
expression(Exp2, Val2),
({dopfrel(Type, Vail, Val2)},
cl (Rest, ", FinalCL) ;
getpval(3, Exp3, Err3),
expression(Exp3, Vai),
({Vai -< 0},
cl (Rest, ", FinalCL) ;

newstate(result, skipping(Vai, 1)),
({isnull(Rest), FinalCL = Rest};

262

/**• perform the relationships for pf 5 and pf6 ***/
dopfrel(5O, Vali, Val2) eq(val(Vall), val(Val2), val(false)).
dopfrel(51, Vail, Val2) eq(val(Vail), val(Val2), val(true)).
dopfreK'6-', Vail, Val2) lt(val(Vall), val(Val2), val(false)).
dopfrel('6+', Vali, Val2) gt(val(Vail), val(Val2), val(false)).
dopfrel(60, Vail, Val2) equ(val(Vail), val(Val2), val(false)).
dopfrel(61, Vail, Val2) equ(val(Vail), val(Val2), val(true)).

/*** execute the body of a count-controlled iteration **♦/
dopf7(Body, 0) —> rmpf8.
dopf7(Body, Count) —> sememe(Body),

(checkskip; getstate(continuation, []);
{NewC is Count - 1},
({equal(NewC, 0)};
newstate(continuation, [])),
dopf7(Body, NewC)).

/•*• remove parameter trans. 8 from the continuation list ***/
rmpf8 —> getstate(continuation, Conti),

{Conti = [cl([pf(8)]) | Cont]},
newstate(continuation, [Cont]).

/*** lookup the value of a parameter ***/
getpval(Param, Val, Err) —> lookup(param(Param), val(Val)),

{Err = ok, !};
converror, {Val = ", Err = error}.

/*** get the current state of the machine ***/
getstate(memory, M, state(M, C, I, O, C3, L, R),

state(M, C, I, 0, C3, L, R)).
getstate(continuation, C, state(M, C, I, 0, 03, L, R),

state(M, C, I, 0, C3, L, R)).
getstate(input, I, state(M, C, I, 0, 03, L, R),

state(M, C, I, 0, C3, L, R)).
getstate(output, 0, state(M, C, I, 0, C3, L, R),

state(M, C, I, 0, C3, L, R)).
getstate(chan3, 03, state(M, 0, I, 0, 03, L, R),

state(M, 0, I, 0, 03, L, R)).
getstate(loopstate, L, state(M, 0, I, 0, 03, L, R),

state(M, 0, I, 0, 03, L, R)).
getstate(result, R, state(M, 0, I, 0, 03, L, R),

state(M, 0, I, O, 03, L, R)).

/*** set a new state for the machine ***/
newstate(memory, Val, state(M, 0, I, 0, 03, L, R),

state(Val, C, I, 0, 03, L, R)).
newstate(continuation, Val, state(M, 0, I, O, 03, L, R),

state(M, Val, I, 0, 03, L, R)).
newstate(input, Val, state(M, 0, I, 0, 03, L, R),

state(M, 0, Val, 0, 03, L, R)).

263

newstate(output, Val, state(M, C, I, 0, C3, L, R),
state(M, C, I, val, C3, L, R)).

newstate(chan3, Vai, state(M, C, I, O, C3, L, R),
state(M, C, I, 0, Val, L, R)).

newstate(loopstate, Vai, state(M, C, I, 0, C3, L, R),
state(M, C, I, 0, C3, Val, R)).

newstate(result, Vai, state(M, C, I, O, C3, L, R),
state(M, C, I, O, C3, L, Vai)).

/*** determine valid break characters for pt 7 ***/
breakch([val(Vai)], val(Vai)).
breakch([], val(")).
breakch(Any, error) not isnull(Any), notequal(Any, [val(Val)]).

/••• divide the constructed line into parts based on the break ***/
/*** characters for pt 7 ***/
listofcl(val("), CL, List) breakup(CL, List).
listofcl(val(Break), CL, List) rmpar(CL, CL1),

list(Break, BL), list(CLl, CLL),
(bal(CLL, CLL, [], 0),
breakup(BL, CLL, List);
List = [undef, val (")]).

/*** remove the outer parenthesis from the constructed line ***/
rmpar(CL, CL) firstch(CL, CH), notequal(CH, '('),

lastch(CL, CHI), notequal(CHI, ')').
rmpar(CL, CL2) rmlpar(CL, CL1), rmrpar(CLl, CL2).
/• remove the left parenthesis */
rmlpar(CL, CL1) list(CL, [40 | R]), bal(R, R, [], 0),

list(CLl, R); CL1 = CL.
/* remove the right parenthesis */
rmrpar(CL, CL1) list(CL, List), lastelem(List, 41),

bal(List, List, [], 1), rmlastelem(List, CLL),
list(CL1, CLL); CL1 = CL.

/*** break up the constructed line for pt 7 *••/
/* no break characters - break up constructed line into single */
/• characters */
breakup(CL, List) atomic(CL), list(CL, LI), brkup(Ll, List).
brkup([], []).
brkup([F | R], [val(Fl) | RI]) list(Fl, [F]), brkup(R, RI).
/* break up constructed line by searching for a break character */
breakup(BL, [], []).
breakup(BL, CLL, [val(F) | R]) not isnull(CLL),

search(BL, CLL, Left, Fl),
list(F, Fl), breakup(BL, Left, R).

/*** search for a break character in the constructed line */
search(BL, [], [], []).
/* do not search inside balanced parenthesis */

264

search(BL, [40 | R], NewCL, [40 | NewP]) bal(R, NewPL, CL, 0),
search(BL, CL, NewCL, RI),
append(NewPL, RI, NewP).

search(BL, [F | R], R, []) match(BL, F).
search(BL, [F j R], NewCL, [F | RI]) not match(BL, F),

search(BL, R, NewCL, RI).
/*** try to match a single character from the constructed line ***/
/••• with the break characters »»*/
match([F | R] , F).
match([F | R], CH) match(R, CH).
/•*• find the end of balanced parenthesis ***/
bal([40 | R], [40 | Rl], CL, PC) NPC is PC + 1, bal(R, RI, CL, NPC).
bal([], [], [1, 0).
bal([41 | R], [41], R, 0).
bal([41 j R], [41 | Rl], CL, PC) PC > 0, NPC is PC - 1,

bal(R, Rl, CL, NPC).
bal([Any | R], [Any | Rl], CL, PC) notequal(Any, 40),

notequal(Any, 41),
bal(R, Rl, CL, PC).

/*** evaluate an unformed (not in abstract syntax form) ••*/
/*** arithmetic expression by sending it through lexemes, ***/
/*** arithexp of morpheme, and sememe ***/
expression" , 0) —> [].
expression(Exp, Vai) —> {list(Exp, Elistl),

append(Elistl, [41, 36, 10], Elist),
lexemes([Toks], Elist, [])},
exphand(Toks, Expl),
sememe(Expl, val(Vail)),
((({isnull(Vall)); {equal(Vail, error)};

{not number(Vail)}, exprerror),
{Val = 0});

{Val = vail}).
/* convert the expression to abstract syntax */
exphand(Tokens, Exp, state(Mem, C, I, 0, C3, L, R),

state(Mem, C, I, 0, C3, L, R))
arithexp(Mem, Expl, ')', Tokens, Rest),
((equal(Rest, [')']); equal(Rest, [')',')'])),
getehv(Expl, Exp);
Exp = expr(error)).

/“» get a proper expression for the expression handler ***/
/* arithexp treats unquoted numbers as identifiers but exphand */
/* doesn't like that */
getehv(deref(id(Val)), val(Val)) number(Val), !.
getehv(Exp, Exp). /* all other expressions are ok */
/*** see if a stop statement has been executed ***/
/*•• (#f0, #f9, or (stop)) ***/

265

checkstop —> getstate(result, stopped).
checkstop —> getstate(result, escaped).
/*** see if skipping is taking place ***/
checkskip —> getstate(result, skipping(Num, IOC)).

/••• generate an error message •••/
/* expression error ♦/
exprerror —> transput(out, Val('•»*•»***• expr error')).
/* conversion error */
convertor > transput(out, Val('•*»»»**»• conv error')).
/* input/output channel error (fatal) */
iocherror > transput(out, val('»»**•***• ioch error')),

newstate(continuation, []),
newstate(result, 'I/O error').

/* output an error message for the codebook statement •/
cbkerror(Errmess) —> transput(out, val(Errmess)).
/* output a stack error message */
stackerror(stack(Stack), Mess) —>

sememe(output([val('•* error on stack '),val(Stack),
val(': '),val(Mess)])).

/* output a queue error message */
qerror(queue(Queue), Mess) —>

sememe(output([val('»» error on queue '),val(Queue),
val(': '),val(Mess)])).

/*•• perform the actual arithmetic operations *•*/
add(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Z1 is XI + Yl, inrange(Zl, Z).
subtract(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Zl is XI - Yl, inrange(Zl, Z).
mult(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Zl is XI * Yl, inrange(Zl, Z).
divide(X, Y, val(Z)) checkval(X, XI), checkval(Y, Yl),

Zl is XI // Yl, inrange(Zl, Z).
/* make sure a number is in the proper range */
/* (if not then truncate) */
inrange(Int, Int) value(nl, Max), Int =< Max, Int >= -Max, !.
inrange(Num, Int) :- value(n2, Bitsl), value(n3, Bits2),

Int is (Num«(Bits2-Bitsl))»(Bits2-Bitsl) .

/*** perform the actual relational operations ***/
eq(X, Y, val(true)) X == Y.
eq(X, Y, val(false)) :- not X == Y.
equ(X, Y, val(true)) checkval(X, XI), checkval(Y, Yl), XI =:= Yl.
equ(X, Y, val(false)) : - checkval(X, XI), checkval(Y, Yl),

not XI =:= Yl.
lt(X, Y, val(true)) checkval(X, XI), checkval(Y, Yl),

XI < Yl.
lt(X, Y, val(false)) checkval(X, XI), checkval(Y, Yl),

266

XI >= ¥1.
gt(X, Y, val(true)) checkval(X, XI), checkval(Y, Yl),

XI > Yl.
gt(X, Y, val(false)) checkval(X, XI), checkval(Y, Yl),

XI =< Yl.
le(X, Y, val(true)) gt(X, Y, val(false)).
le(X, Y, val(false)) gt(X, Y, val(true)).
ge(X, Y, val(true)) lt(X, Y, val(false)).
ge(X, Y, val(false)) lt(X, Y, val(true)).
/*** make sure a value is really a number •**/
checkval(val("), 0).
checkval(val(Val), Val) number(Val).

/•** perform the size function ***/
size(val(Vall), Val) list(Vali, L), length(L, 0, Val).

y**$**********************************/
/»«*•» syntactic constraints ***’*/

/******$***«**********$***************/
/*** declare adds a declaration to the environment if ***/
/*** the variable is not already a member ***/
declare(Tag, Val, Env) member(loc(Tag, _), Env).
declare(Tag, Val, Env) not member(loc(Tag, _), Env),

addword(loc(Tag, Val), Env).

/*** member handles lists with uninstantiated tail ***/
member(X, [Y]) var(Y), !, fail.
member(X, [X | Y]).
member(X, [Y | Z]) notequal(X, Y), member(X, Z).

/*** add a word to the end of a list ***/
addword(Label, [X | Y]) var(X), var(Y), X = Label,
addword(Label, [X | Rest]) not var(X),

addword(Label, Rest).

/**♦ append the 2nd list to the end of the 1st list ***/
/*** giving the 3rd list *♦»/
append([U | V], W, [U | X]) append(V, W, X).
append([], X, X).
/•** return the first element of a list ***/
firstelem([Head | Tail], Head).
firstelem([], ").
/*** find the last element of a list •*•/
lastelem([Last], Last).
lastelem([X | Y], Last) lastelem(Y, Last).

/*** remove the last element of a list ***/
rmlastelem([Elem], []).
rmlastelem([F | R], [F | RI]) rmlastelem(R, RI).

267

/**• find the length of a list ***/
length([], N, N).
length([Head | Rest], Sofar, Total) More is Sofar + 1,

length(Rest, More, Total).

/*»• generate a single quote (apostrophe) character ***/
genquote(Quote) list(Quote, [39]).

/*** concatenate two atoms (Vail and Val2) to form a new •**/
/*** atom (NewVal) ••*/
concat(", Val2, Val2) .
concat(Vall, ", Vali) .
/* plus signs require special handling so we don't lose them */
concat('+', Val2, NewVal) integer(Val2),

NewVal =.. ['+', Val2], !.
concat(Vail, Val2, NewVal) isplus(Vall, Arg),

not isplus(Val2, _),
concat(Arg, Val2, Val3),
NewVal . ['+', Val3], !.

concat(Vali, Val2, NewVal) not isplus(Vall, _),
isplus(Val2, Arg),
concat(Vall, '+', Val3),
concat(Val3, Arg, NewVal), !.

concat(Vali, Val2, NewVal) isplus(Vall, Argl),
isplus(Val2, Arg2),
concat(Argl, '+', Val3),
concat(Val3, Arg2, Val4),
NewVal . ['+', Val4], !.

concat(Vail, Val2, NewVal) list(Vali, LI), list(Val2, L2),
append(LI, L2, L3),
list(NewVal, L3), !.

/*** extract the first character of an atom ***/
firstch(Atom, Ch) not isnull(Atom), list(Atom, [First | Rest]),

list(Ch, [First]).

/**♦ extract the last character of an atom ••*/
lastch(Atom, Ch) not isnull(Atom), list(Atom, List),

lastelem(List, L), list(Ch, [L]).

/••• find the single character (Char) in the string (Str) ’“/
/*** and return the front of the string (Front), the length ***/
/••* of the front (Len), and the back of the string (Back) •••/
/••• (minus the character) ***/
index(Str, Char, Front, Len, Back) list(Str, StrL),

list(Char, ChL), indexl(StrL, ChL, FrL, BkL, Len, 0),
list(Front, FrL), list(Back, BkL).

indexl([CH | Rest], [CH], [], Rest, Count, Count).
indexl([], [CH], [], [], Count, Count).
indexl([First | Rest], [CH], [First | Front], Back, Total, Sofar)

268

notequal(CH, First), NewC is Sofar + 1,
indexl(Rest, [CH], Front, Back, Total, NewC).

/•*• convert an atom to a list of ascii codes and ***/
/*** vice versa (same as built-in functor name but •**/
/♦** works with null arguments) ***/
list(", []) .
list(Atom, List) name(Atom, List).

isnull([]). /* is arg. the null list •/
isnull("). /* is arg. the null string •/

/* is arg. a parameter trans, or proc, function */
isptpf(['#', P, NJ).

/* is arg. the cl functor (constructed line) ♦/
isclfunc([cl(_)]).

/* does Term contain an addition operation */
isplus(Term, Arg) Term =.. ['+', Arg].

/• is arg. the ascii code for a newline char. ♦/
isnewline(lO).

/* is arg. the ascii code for a end-of-line char. */
iseol(36).

/* is arg. one of the ascii codes for an alphanumeric char. */
ischar(CH) CH >= 65, CH -< 90; CH >= 97, CH =< 122;

CH >= 48, CH =< 57.
isaddsub('+'). /* is arg.
isaddsub('-'). /* is arg.
ismuldivC •'). /* is arg.
ismuldiv('/'). /* is arg.

an addition sign */
an subtraction sign */
an multiplication sign •/
an division sign */

/•** convert an arithmetic operation to abstract notation ***/
op('+', Lh, Rh, plus(Lh, Rh)).
op('-', Lh, Rh, minus(Lh, Rh)).
op('*', Lh, Rh, times(Lh, Rh)).
op('/', Lh, Rh, division(Lh, Rh)).

/*** instantiate the args, to be the same thing ***/
/“» (fail if they are already instantiated ***/
/*** to different things) ***/
notequal(X, Y) not(equal(X, Y)).
equal(X, Y) X = Y.

/••• various machine dependent values “*/
value(nl, 32767). /* value of largest integer in ASP */
value(n2, 16). /* bits per integer for ASP »/
value(n3, 32). /• bits per integer for this prolog */

APPENDIX 2.8

FEATURES AND FOLLIES OF THE CODE BODY FORMAL
DEFINITION

Listed here are several strong points about the definition along with explanations of

why they are worth special attention. Then several weak points about the definition,

brought out by thorough examination and testing, are expounded upon.

Strong points about the Code Body definition:

o use of continuations for goto statement

The development of continuations by Strachey and Wadsworth was an important

advance in the descriptive techniques of semantics. It led to simpler and smoother

descriptions of various constructs, some of which would be impossible to describe

without continuations [Gordon, 1979; Strachey & Wadsworth, 1974]. We have

adapted the method of “impure continuations” to relational semantics in order to

describe the goto statement, modeled after the work of Moss [1981]. The work was

made somewhat more difficult than the Barrel-F definition by the fact that goto’s

can branch into or out of loops.

o additional output channel (channel 3 as well as 4)

Two output files are include in the definition in contrast to the one in the Barrel-F

definition. This demonstrates the feasibility of defining the many input and output

files available in the actual ASP implementation.

o promotes concept of a constructed line and its submission for possible execution

ASP provides the concept of the constructed line in code bodies where lines are

built up by evaluating any parameter transformations and processor functions in

the line. The resulting text is treated as a call to another definition. If none of the
269

270

definition’s templates are matched the line is output to channel 3. The definition

supports the constructed line concept.

o error messages match those of ASP

Errors are handled by a separate “status” parameter in the state of the machine.

When an error occurs in the execution of a program the error message that is

generated is the same as that generated by the ASP processor.

o execute statement sends the value of the variable through the 3 phases of the

definition (lexical, syntactic, and semantic)

Many Barrel-F statements can be executed from within code bodies. The execute

statement is one of those. It causes the value of a variable to be executed as if it were

a Barrel-F statement. The semantic definition of the execute statement actually

sends the value of the variable through the 3 phases of the definition as if it were a

one statement program.

o implementation details can be included

Syntactic constraints which are machine dependent can be specified in the

definition such as a limit on the size of integers. Checks can also be performed in

the semantics to assure such constraints are followed at run time.

Problems with the Code Body definition:

o statements are not limited to one line (80 characters)

The definition does not complain about statements that extend beyond the current

line. The ASP implementation, however, does not allow statements to span more

than one line. Nor does it allow more than 80 characters in a single line.

o very large strings of digits are converted to floating point numbers upon input

In ASP numbers are treated as character strings until an arithmetic operation is

performed on them. Thus, very big numbers are allowed. But the definition

(because of the way Prolog treats numbers) converts very long strings of digits to

271

floating point numbers upon input. A similar problem occurs with leading zeros in

numbers. The Prolog processor strips leading zeros upon input whereas the ASP

processor allows them to be part of the number until an arithmetic operation is

performed.

o the “target escape character”, zero, space, bracket, and arithmetic operation

symbols cannot be specified

The ASP processor allows the user to change the symbol used to mark parameter

transformations, and processor functions. In addition, the user can change the

symbol used to indicate a zero, space, brackets, and the four arithmetic operations.

The definition assumes a specific character will be used all the time for each of these

symbols.

APPENDIX 2.9

PROGRAMS USED TO TEST THE CODE BODY DEFINITION

The programs used to test the formal definition of ASP code bodies are listed

below.

Tbst 1 - Test of processor function 3.

#f3$
$

Test 2 - Test of processor function 3.

val#26 #f3$
$

Tbst 3 - Test of processor function 3.

var#16 #f3$
.. .#11...#fl4$
$

Tbst 4 - Test of processor function 3.

var#16 #f3$
$

Tbst 5 - Test of processor function 3.

var#16 val#26 #f3$
...#11...#f!4$
$

Test 6 - Test of processor function 4.

#f4 hm#f!4$
bad#f!4$
good#f!4$
$

Test 7 - Test of processor function 4.

2n#16 #f4 hm#f!4$
bad#f!4$

272

273

good#fl4$
$

Ibst 8 - Test of processor function 4.

2#16 #f4$
badl$
bad2$
goodl$
good2$
$

Ifest 9 - Test of processor function 4.

4#f7$
3*16 #f4$
4#f7$
badl$
#f8$
okl$
#f 8$
$

Tbst 10 - Test of processor function 4.

4#f7$
4#16 #f4$
#f7$
4#f7$
badl$
#f8$
okl$
#f8$
$

Test 11 - Test of processor function 4.

4#f7$
2#16 #f4$
4#f7$
badlS
okl$
#f 8$
ok2$
#f8$
$

Test 12 - Test of processor function 4.

4#f7$
okl$

274

1#16 #f4$
badl#f8$
Ok2$
#f8$
bye$
$

Tfest 13 - Test of processor function 4.

4#f7$
2*16 #f4$
#f7$
#f8$
loop2$
#f8$
$

Test 14 - Test of processor function 5.

a#16 b#26 n*2#36 #f51 hm#f!4$
bad#fl4$
good#fl4$
$

Test 15 - Test of processor function 5.

#16 b#26 1#36 #f51$
bad#fl4$
good#fl4$
$

Tfest 16 - Test of processor function 5.

#16 1#36 #f50$
bad#fl4$
good#f!4$
$

Test 17 - Tfest of processor function 5.

a#16 a#26 2n#36 #f50 hm#f!4$
bad#f!4$
good#f!4$
$

Test 18 - Test of processor function 5.

a#16 a#26 2n#36 #f51 hm#f!4$
bad#f!4$
good#f!4$
$

275

Tbst 19 - Test of processor function 5.

a#16 a#26 #f50 hm#f!4$
bad#fl4$
good#fl4$
$

Tbst 20 - Tbst of processor function 6.

#16 1#36 #f6+ hm#fl4$
bad#fl4$
good#f!4$
$

Tbst 21 - Test of processor function 6.

1#16 2n#26 1#36 #f6+$
bad#fl4$
good#fl4$
$

Test 22 - Tbst of processor function 6.

1#16 2n#26 1#36 #f6-$
bad#fl4$
good#fl4$
$

Test 23 - Tbst of processor function 6.

a#16 a#26 #f3$
a#26 2#36 #f60$
false#fl4$
#f9$
true#fl4$
$

Test 24 - Test of processor function 6.

2#16 1#26 #f6+ hm#fl4$
bad#fl4$
good#f!4$
$

Test 25 - Test of processor function 6.

1#16 2#26 #f6+ hm#fl4$
bad#fl4$
good#f!4$
$

276

Tbst 26 - Test of processor function 6.

2#16 1#26 2n#36 #f6- hm#fl4$
bad#fl4$
good#fl4$
$

Tbst 27 - Tbst of processor function 6.

2#16 1#26 2n#36 #f6+ hm#fl4$
bad#fl4$
good#f!4$
$

Tbst 28 - Tbst of processor function 6.

1#16 2#26 n*2#36 #f6- hm#fl4$
bad#fl4$
good#fl4$
$

Test 29 - Test of processor function 6.

#16 1#26 1#36 #f6-$
bad#fl4$
good#fl4$
$

Tbst 30 - Test of processor function 6.

1#16 1#36 #f6+$
bad#fl4$
good#fl4$
$

Test 31 - Test of processor function 6.

2n#16 1#26 1#36 #f6-$
bad#fl4$
good#f!4$
$

Test 32 - Test of the setq, incr, deer, bump, and zero statements.

(setq a '1)$ <— this symbol ($) is necessary for a comment
(incr a)
(ty a)
(deer a)
(ty a)
(bump a 2*a+3)

277

(ty a)
(setq b a)
(ty b)
(zero a)
(ty a)
(stop)

$

Tëst 33 - A program to find the factorial of n.

(ty 'enter a positive integer)$ this program computes factorial
(readch '4' n)$ using a mixture of pre-defined
(setq i '1)$ high-level instructions and
(setq fact '1)$ machine instructions

n#16 #11#16 0#26 5#36 #f60$
1000#f7$
i#16 #11*16 n#26 #21#26 3#36 #f60$
(incr i)$
(setq fact fact*i)$

#f 8$
(ty 'the factorial of ,n,' is ,fact)$

$

Test 34 - A program to find the factorial of n.

enter a positive integer#fl4$ this program computes factorial
2#fi4$ using machine instructions (no
n#16 #f3$ pre-defined high-level instructions)
i#16 1#26 #f3$
fact#16 #f3$
n#16 #11#16 0#26 5#36 #f60$
1000#f7$
i#16 #11#16 n#26 #21#26 3#36 #f60$
i#16 i+l#26 #24#26 #f3$
fact#16 fact*i#26 #24#26 #f3$
#f 8$
n#16 fact#26$
the factorial of #11 is #21#fl4$
$

Test 35 - A general test of many different processor functions and parameter

transformations.

there#16$
hello#10$
(setq a 'be)$

a#26 you #2l thereS
(2+2*3)/4#96$

278

#94$
1,(2;3),4#27;,$
...#20...$
#20#47$
..#40..$
first#f8 second#f8 goodbyes
hello#fl4$
var#16 val#26$
hello #f3$
#ll#fl4$
5#fi4$
...#50...#fl4$
(3-1)*2#f7$
•#f14$
#f 8$
2n#f7$
•#f!4$
#f8$
2-l#16 #f4$
bad news#f!4$
a#16 a#26 1#36 #f50$
bad news#f!4$
2-l#16 0+l#26 1#36 #f60$
bad news#f!4$
#10 is #15 chars. Iong#fl4$
#f9$ #f0 works the same way
bad news#fl4$
$

Test 36 - Test of combination of parameter transformations and Barrel-F

statements.

hello#16$
(setq a '#10)$
(ty a)$

a#16$
(setq b #10)
(ty b)
(ty #10)

x#16 'hello#26$
(setq #10 #20)
(ty #10)
(zero #10)
(ty x)

1#26$
(bump #10 '#20)
(ty x)

279

(inor #10)
(ty x)
(decr #10)
(ty x)
(readch '4' #10)
(ty x)
(execute #10)

stop#16$
(#10)

lèst 37 - Test of the execute statement.

(setq a '1)$
(ty a)
(readch '4' code)$ input should be (setq a '2)
(ty code)
(execute code)
(ty a)

Tbst 38 - Test of the execute statement.

(setq a '!)$
(ty a)
(readch '4' code)$ input should be (setq b '2)
(ty code)
(execute code)
(readch '4' code)$ input should be (ty b)
(ty code)
(execute code)

$

Tbst 39 - Test of the ty statement.

(setq s 'yucky)$
(setq t 'pooh)
(ty s is ,s.' t is ,t)
(ty s,'is s)
(ty '(a,b))
(ty 'hello there)
(ty '(a b))
(ty 's = ,s)
(setq a '1,&%2)
(ty 'a is ,a)

Test 40 - Tbst of the size function.

280

(setq n 'abc)$
(setq a (size n))
(ty a)
(setq a (size 'abed))
(ty a)
(setq b '1)
(setq c '12)
(setq a (size b+c))
(ty a)
(setq a (size b))
(ty a)
(ty 'hello,(size c*c),a)
(setq a 2*(size 'abc)+l)
(ty a)
(ty (size (size 'abedefghij)))

$

Tëst 41 - Test of the plink operator.

(setq arr!'O' 'hello)$
(setq c '1)
(setq arr!c c+1)
(readch '4' arr!c+l)
(setq tO arr!'O')
(setq tl arr!'l')

t0#16 #11*16 tl#26 #21*26 2#36 #f50
(ty 'good news)

1*16 #f4
(ty 'bad news)
(zero b!'10')

100#f7
(ty arr!b!'10')
(setq t b!'10)

t#16 *11*16 2*26 2*36 #f60
(incr b!'10')

#f8
(setq arr!'## one' 'any value)
(ty arr!'## one)
(setq b '## one)
(ty arr!b)

$

Tbst 42 - Test of the concat function.

(setq a (concat '1st half' '2nd half))$
(ty a)
(setq a (concat '1st half' '2nd half'))
(ty a)
(setq b '2nd half)

281

(setq a (concat '1st half' b))
(ty a)
(setq b '1st half)
(setq a (concat b '2nd half))
(ty a)
(ty (concat 1+3*2 (concat '7' (size '1234567))))

Tbst 43 - Test of the cbk statement.

(setq tab!'O' 't < 0 [])$
(setq tab!'l' 'make is [cord,reo,dues])
(setq tab!'2' 'condition is good,bad])
(setq tab!'3' 'comm is [1%,5%)
(setq tab!'4' '[needed,not needed])
(setq tab!'5' 'this stub is going to be much much too long [1,2])
(setq tab!'6' 'stub [this entry is going to be much too long,2])
(setq tab!'7' 'managers ok is [needed, not needed])
(zero fh)
(zero bh)
(cbk tab!'0')
(ty fh,bh)
(cbk tab!'1')
(ty fh.bh)
(cbk tab!'2')
(ty fh,bh)
(cbk tab!'3')
(ty fh,bh)
(cbk tab!'4')
(ty fh,bh)
(cbk tab!'5')
(ty fh.bh)
(cbk tab!'6')
(ty fh,bh)
(cbk tab!'7')
(ty fh,bh)

Test 44 - Test of the sen statement.

(setq condl'O' 'rem3)$
(setq condi'l' 'make is [cord,reo,dues])
(setq cond!'2' 'cond is [good,bad])
(setq cond!'3' 'comm is [1%,5%])
(setq cond!'4' 'shopwork is [needed,not needed])
(setq c '4)
(sen cond c 0)
(sen cond c 1)

282

Tbst 45 - Test of parameter transformation 4.

n#16 3#26 #f3$
2+-n#16$
...#14...#fl4$
$

Tbst 46 - Tbst of parameter transformation 4.

2n#16$
...#14.. $
$

Tbst 47 - Tbst of qinit, inqfront, and remqfront statements.

(qinit q '2)$
(inqfront q 'frog)
(remqfront q var)
(ty var)

$

Test 48 - Test of qcopy statement.

(qinit ql '3)$
(qinit q2 '2)
(inqfront ql 'lilly)
(inqback ql 'pad)
(qcopy ql to q2)
(remqfront q2 var)
(ty var)
(remqfront q2 var)
(ty var)

$

Test 49 - Test of the front of queue function.

(qinit q '2)$
(inqfront q 'lilly)
(ty (front q))
(inqback q 'pad)
(setq frog (front q))
(ty frog)
(remqfront q frog)
(ty frog,(front q))

$

Test 50 - Test of the back of queue function.

(qinit q '2)$
(inqfront q 'lilly)

283

(ty (back q))
(inqback q pad)
(setq frog (back q))
(ty frog)
(renqfront q frog)
(ty frog,(back q))

$

Test 51 - Test of the queue size function.

(qinit q '2)$
(ty (qsize q))
(inqfront q 'lilly)
(ty (qsize q))
(inqback q 'pad)
(setq frog (qsize q))
(ty frog)
(remqfront q frog)
(setq frog (qsize q)+l)

frog#16 #11*16 2#26 2#36 #f60$
(ty 'whoops)

1#16 #f4$
(ty 'okl)

$

Test 52 - Test of the queue empty function.

(qinit q '2)$
(setq eop (qempty q))

emp#96 true#26 2#36$
#91#16 #f50$
(ty 'whoopsl)

1#16 #f4$
(ty 'okl)
(inqfront q 'lilly)
(setq eop (qempty q))

#91#16 false#26 #f50$
(ty 'whoops2)

1#16 #f4$
(ty 'ok2)
(inqback q 'pad)
(setq emp (qempty q))

#91#16 true#26 #f50$
(ty 'ok3)

1#16 #f4$
(ty 'whoops3)
(qinit q '3)
(setq emp (qempty q))

#91#16 #f50$

284

(ty 'whoops4)
1#16 #f4$
(ty 'ok4)

$

Tbst 53 - Test of the queue empty function.

(qinit q '2)$
(ty (qempty q))
(inqfront q 'lilly)
(setq frog l+(qempty q))
(ty frog)
(inqback q (qempty q))
(remqback q frog)
(ty frog)

$

Test 54 - Test of the qinit, inqback, remqback statements.

(qinit q '2)$
(inqback q 'frog)
(remqback q var)
(ty var)

$

Test 55 - Test of the inqfront and remqfront statements.

(inqfront q 'frog)$ this fails
(remqfront q wart)

$

Test 56 - Test of the inqback and remqback statements.

(inqback q 'frog)$ this fails
(remqback q wart)

$

Test 57 - Test of the overflow and underflow of the inqfront and remqfront

statements.

(qinit q '2)$
(setq var 'frog)
(inqfront q var)
(inqfront q (concat 'lilly' 'pad))
(inqfront q 5*5)
(remqfront q varl)$
(ty varl)
(remqfront q varl)
(ty varl)

285

(remqfront q varl)
(ty varl)

$

Tbst 58 - Test of the overflow and underflow of the inqback and remqback

statements.

(qinit q '2)$
(setq var 'frog)
(inqback q var)
(inqback q (concat 'lilly' 'pad))
(inqback q 5*5)
(remqback q varl)$
(ty varl)
(remqback q varl)
(ty varl)
(remqback q varl)
(ty varl)

$

Test 59 - Test of the overflow and underflow of the inqfront and remqback

statements.

(qinit q '2)$
(setq var 'frog)
(inqfront q var)
(inqfront q (concat 'lilly' 'pad))
(inqfront q 5*5)
(remqback q varl)
(ty varl)
(remqback q varl)
(ty varl)
(remqback q varl)
(ty varl)

$

Test 60 - Test of the overflow and underflow of the inqback and remqfront

statements.

(qinit q '2)$
(setq var frog)
(inqback q var)
(inqback q (concat 'lilly' 'pad))
(inqback q 5*5)
(remqfront q varl)
(ty varl)
(remqfront q varl)

286

(ty varl)
(remqfront q varl)
(ty varl)

$

Tbst 61 - Tbst of the qty statement.

(qinit q '3)$
(setq var 'frog)
(inqback q var)
(inqback q (concat 'lilly' 'pad))
(inqback q 5*5)
(Qty q)
(remqback q varl)
(Qty q)
(remqback q varl)
(qty q)
(remqback q varl)
(qty q)

$

Tbst 62 - Test of the stinit, push, and pop statements.

(stinit st '2)$
(push st 'frog)
(pop st var)
(ty var)

$

Test 63 - Tbst of the push and pop statements.

(push st 'frog)$ this fails
(pop st wart)

$

Test 64 - Test of the overflow and underflow of the push and pop statements.

(stinit st '2)$
(setq var 'frog)
(push st var)
(push st (concat 'lilly' 'pad))
(push st 5*5)
(pop st varl)$
(ty varl)
(pop st varl)
(ty varl)
(pop st varl)
(ty varl)

287

Test 65 - Test of the stcopy statement.

(stinit stl '3)
(stinit st2 '2)
(push stl 'lilly)
(push stl 'pad)
(stcopy stl to st2)
(pop st2 var)
(ty var)
(pop st2 var)
(ty var)

$

Test 66 - Test of the top of stack function.

(stinit st '2)
(push st 'lilly)
(ty (top st))
(push st 'pad)
(setq frog (top st))
(ty frog)
(pop st frog)
(ty frog,(top st))

$

Test 67 - Test of the stack size function.

(stinit st '2)
(ty (stsize st))
(push st 'lilly)
(ty (stsize st))
(push st 'pad)
(setq frog (stsize st))
(ty frog)
(pop st frog)
(setq frog (stsize st)+l)

frog#16 #11#16 2#26 2*36 #f60$
(ty 'whoops)

#f 9$
(ty 'okl)

$

Test 68 - Test of the stack empty function.

(stinit st '2)
(setq emp (stempty st))

emp#96 true#26 2#36$
#91#16 #f50$
(ty 'whoopsi)

288

1*16 #f4$
(ty 'okl)
(push st 'lilly)
(setq emp (stempty st))

#91#16 false#26 #f50$
(ty 'whoops2)

1#16 #f4$
(ty 'ok2)
(push st 'pad)
(setq emp (stempty st))

#91#16 true#26 #f50$
(ty 'ok3)

1*16 #f4$
(ty 'whoops3)
(stinit st '3)
(setq emp (stempty st))

#91#16 #f50$
(ty 'whoops4)

1*16 #f4$
(ty 'ok4)

$

Ibst 69 - Test of the stack empty function.

(stinit st '2)
(ty (stempty st))
(push st 'lilly)
(setq frog l+(stempty st))
(ty frog)
(push st (stempty st))
(pop st frog)
(ty frog)

APPENDIX 3.1

ASP IMPLEMENTATION OF RUNNABLE SPECIFICATIONS

The following Prolog code serves as the specifications of a decision table

presentation processor. The specifications are runnable because Prolog can be

executed on a computer. Following the Prolog specifications is the ASP

implementation.

/* Prolog Specification */

dt write('car make ? '), read(Cl).
write('condition ? '), read(C2),
intermed(Cl, C2).

intermed(no, C2) write('so long now'), nl.
intermed(Cl, C2) dec(Cl, C2), nl,

write('we continue'), nl,
dt.

dec(Cl, C2) table(Cl, C2, Al, A2, A3),
write('commission is '), write(Al), nl,
write('shop work needed is '), write(A2), nl,
write('manager ok is '), write(A3), nl.

table(cord, good, Al, A2, A3) Al = '5%',
A2 = 'no-need',
A3 = 'no-req'.

table(cord, poor, Al, A2, A3) :- Al = '1%',
A2 - '3-weeks',
A3 = 'no-req'.

table(reo, good, Al, A2, A3) Al = '10%',
A2 = 'no-need',
A3 = 'no-req'.

table(reo, poor, Al, A2, A3) :- Al = '5%',
A2 = '3-weeks',
A3 = 'no-req'.

table(duesenberg, good, Al, A2, A3) :- Al = 'variable',
A2 = '6-weeks',
A3 = 'req'.

table(duesenberg, poor, Al, A2, A3) :- Al = 'variable',
A2 = '6-weeks',
A3 = 'req'.

289

290

/* ASP Implementation */

dt : -
write('car make ? ') $
read(Cl) $
write('condition ? ') $
read(C2) $
intermedprime(Cl, C2) $

$
intermed(no, #)
write('so long now') $
$
intermed(#, #)
dec(#10, #20) $
write('we continue') $
dt $

$
dec(#, #) :-
table(#10, #20, Al, A2, A3) $
write('commission is ') $
write(Al) $
write('shop work is '
write(A2) $

) $

write('manager ok is
write(A3) $

') $

$
table(cord, good, #,
#10 = '5%' $
#20 = 'hone' $
#30 = 'not needed' $

#)

$
table(cord, poor, #, #. #)
#10 = '1%' $
#20 = '3 weeks' $
#30 = 'not needed' $

>
table(reo, good, #, #, #) : -
#10 = '10%' $
20 = 'none' $
30 = 'not needed' $

table(reo, poor, #, #, #) : -
10 = '5%' $
20 = '3 weeks' $
30 = 'not needed' $

table(duesenberg, good, #, #, #)
#10 = 'variable' $

291

20 - '6 weeks' $
30 - 'needed' $

$
table(duesenberg, poor, #, #, #) :-
#10 - 'variable' $
20 - '6 weeks' $
30 - 'needed' $

$
: Support macros written using Barrel's BBAS kit.
$
intermedprime(#, #)
intermed(#11, #21) $

$
= '#' :-
(fsetq #10 '#20)$

$
write('#')
(fty '#10)$

$
write(#)
(fty #10)$

$
read(#)
(readch '4' #10)$

APPENDIX 3.2

ASP IMPLEMENTATION OF RUNNABLE SPECIFICATIONS
WITH MULTIPLE VALUES

The following Prolog code serves as the specifications of a decision table

presentation processor. The specifications are runnable because Prolog can be

executed on a computer. Following the Prolog specifications is the ASP

implementation. The implementation allows for using variable names (prefaced

with an asterisk) to get multiple values from the table as can be done with the

specifications.

/* Prolog Specification */

dt write('car make ? '), read(Cl),
write('condition ? '), read(C2),
intermed(Cl, C2).

intermed(no, C2) write('so long now'), nl.
intermed(Cl, C2) dec(Cl, C2), nl,

write('we continue'), nl,
dt.

dec(Cl, C2) table(Cl, C2, Al, A2, A3),
write('commission is '), write(Al), nl,
write('shop work needed is '), write(A2), nl,
write('manager ok is '), write(A3), nl.

table(cord, good, Al, A2, A3) Al = '5%',
A2 = 'no-need',
A3 = 'no-req'.

table(cord, poor, Al, A2, A3) :- Al - '1%',
A2 = '3-weeks',
A3 = 'no-req'.

table(reo, good, Al, A2, A3) :- Al = '10%',
A2 = 'no-need',
A3 = 'no-req'.

table(reo, poor, Al, A2, A3) Al = '5%',
A2 = '3-weeks',

292

293

A3 - 'no-req'.
table(duesenberg, good, Al, A2, A3) Al = 'variable',

A2 = '6-weeks',
A3 = 'req'.

table(duesenberg, poor, Al, A2, A3) Al = 'variable',
A2 = '6-weeks',
A3 = 'req'.

/• ASP Implementation */

dt : -
write('car make ? ') $
read(Cl) $
write('condition 7 ') $
read(C2) $
intermedprime(Cl, C2) $

$
intermed(no, #) :-
write('so long now') $

$
intermed(#, #) :-
dec(#10, #20) $
write('we continue') $
dt $

$
dec(#, #) :-
tableprime(#10, #20, Al, A2, A3) $

$
tableprime(#, #, Al, A2, A3) :-
table(#10, #20, Al, A2, A3) $
writetable(Al, A2, A3) $

$
tableprime(*#, #, Al, A2, A3) :-
table(cord, #2O, Al, A2, A3) $
writetable(Al, A2, A3) $
table(reo, #20, Al, A2, A3) $
writetable(Al, A2, A3) $
table(duesenberg, #20, Al, A2, A3) $
writetable(Al, A2, A3) $

$
tableprime(#, *#, Al, A2, A3) :-
table(#10, good, Al, A2, A3) $
writetable(Al, A2, A3) $
table(#10, poor, Al, A2, A3) $
writetable(Al, A2, A3) $

S
tableprime(*#, *#, Al, A2, A3) :-
table(cord, good, Al, A2, A3) $
writetable(Al, A2, A3) $

294

table(cord, poor, Al, A2, A3) $
writetable(Al, A2, A3) $
table(reo, good, Al, A2, A3) $
writetable(Al, A2, A3) $
table(reo, poor, Al, A2, A3) $
writetable(Al, A2, A3) $
table(duesenberg, good, Al, A2, A3) $
writetable(Al, A2, A3) $
table(duesenberg, poor, Al, A2, A3) $
writetable(Al, A2, A3) $

$
writetable(Al, A2, A3) :-
write('commission is ') $
write(Al) $
write('shop work is ') $
write(A2) $
write('manager ok is ') $
write(A3) $

$
table(cord, good, #, #, #)
#10 = '5%' $
#20 = 'none' $
#30 = 'not needed' $

$
table(cord, poor, #, #, #)
#10 = '1%' $
#20 - '3 weeks' $
#30 = 'not needed' $

$
table(reo, good, #, #, #)
#10 - '10%' $
#20 - 'none' $
#30 = 'not needed' $

$
table(reo, poor, #, #, #)
#10 = '5%' $
#20 - '3 weeks' $
#30 = 'not needed' $

$
table(duesenberg, good, #, #, #)
#10 = 'variable' $
#20 = '6 weeks' $
#30 = 'needed' $

$
table(duesenberg, poor, #, #, #)
#10 = 'variable' $
#2O = '6 weeks' $
#30 = 'needed' $

APPENDIX 3.3

ASP IMPLEMENTATION OF I/O INDIFFERENCE

Following is the ASP implementation of a decision table interpreter which provides

I/O indifference (i.e., you can enter values for the actions as well as the conditions).

DT| invoke the pattern builder (can only be called once)
ty Welcome to DT Lands
rem set up the beginnings of the macro to test against
set pat!0 to tab$ beginning of template
set patil to car make: $ beginning of line 1 of code body
set pat! 2 to condition: $ line 2
set pat! 3 to commission: $
set pat! 4 to shop work needed: $
set pat! 5 to managers ok: $ line 5
rem set up prompts for each line
set prompt !1 to car make: cord, reo, duesenburg, or ? S
set prompt!2 to condition: good, poor, or ? $
set prompt!3 to commission: 1%, 5%, 10%, variable, or ? $
set prompt !4 to shop work: not needed, 3 weeks, 6 weeks, or ? $
set prompt!5 to managers ok: required, not required, or ? $
rem generate the rest of the template and code body
DI 1 1$
rem put end of line marker on template
pat!0#16$
set patio to #11|$
rem set up end of macro marker
set pat!6 to #$#$$
rem write out the macro
patout 6$
$
pat_out #| write out variables pat!0 thru pat!#10 to file pat
(write 'pat' pat!'0')$

set counter to 1$
counter#26$
#10#f7$
(write 'pat' pat!'#21')$

setx counter to counter+l$
#f 8$
$
DI # #| generate the template and code body
pat!0#96$

295

296

ans#56$
(fty prompt!'#10')$
(readch '4' ans)$

if ans eq '?' skip 4$
set pat!0 to #91,#51$
pat !#10#66$
set pat I#10 to #61 #51##fl4#$$
skip 4$
set patIO to #91,##$
pat I#10#66$
set pat I#10 to #61 ###200##fl4#$$
#20+1*26$
if #10 = 5 skip 2$
#10+1*16$
DI #14 *24$
$
go| how we execute the table

pat_in$ read in the pattern that we have created
T$ compare it with our table
$
pat_in| read in the pattern
(rewind 'pat)$ rewind the file
(addmacs pat)$ read in the pattern (as a macro)

$
T| the rules of the decision table
tab,cord,good,5%,not needed,not required$
tab,cord,poor,1%,3 weeks,not required$
tab,reo,good,10%,not needed,not required$
tab,reo,poor,5%,3 weeks,not required$
tab,duesenberg,good,variable,6 weeks,required$
tab,duesenberg,poor,variable,6 weeks,required$
$
tab,#| to catch the ones that don't match
$

APPENDIX 6.1

NEW PROCESSOR FUNCTIONS OF ASP

The processor functions which were added to Stage2 in the development of the ASP

processor are described here. The descriptions are modeled after those provided

for the original processor functions of Stage2 [Write, 1973]. Each specification

gives the format of a call and the action of that call. In the format specification,

digits and upper-case letters denote themselves. Lower-case letters denote classes

of characters, as follows:

d Any digit between 0 and 9, inclusive.

e Target escape character (fourth character of the flag line).

m Any digit between 0 and 9, inclusive, or any character between a and z,

inclusive.

Each description is accompanied by at least one example which uses the function.

Add Definitions

Format: meFA

Action: Processing of the code body is temporarily halted and macro definitions are
read from channel m. They are placed into ASP’s internal memory along with the
macros read in when ASP was started up. Macros are read until a macro terminated
by two target end-of-line flags is encountered. At that point, the element
immediately following meFA is ignored, and scanning of the code body resumes
with the next element. The macros that were read in can subsequently be called.

Example

Macro: add a macro.
ZEAS
$

297

298

Input: add a macro.
new macro.
this is the new macro/Fl$
$$
new macro.

Output: this is the new macro

Close A Channel

Format: meFC

Action: Channel m and the file associated with it is closed. The channel can
subsequently be used with another file. This function is only valid with channel 0
and channels 6 through 35. The element immediately following meFC is ignored,
and scanning of the code body resumes with the next element.

Example

Macro: close channel ‘.
‘10#FC$
channel ‘10 is closed#Fl$
$

Input: close channel z.

Output: channel z is closed

Utilize a Graphics Terminal

Format: deFG

Action: The digit d, which must be 0,1,2, or 3, determines the action to be taken. If
d is 0 then the Gigi graphics terminal, which is assumed to be channel 4, is put into
graphics mode. If d is 1, then parameter l, which is assumed to be a Regis graphics
command, is written to channel 4. If d is 2, then the Gigi graphics terminal is taken
out of graphics mode. If d is 3, then the graphics attributes of the Gigi graphics
terminal are reset to default values. The element immediately following deFG is
ignored, and scanning of the code body resumes with the next element.

Example

Macro: (write gigi ‘).
1#FG$
$

299

Input: (write gigi p[32,32])

Output: (a point is drawn on the graphics
terminal at row 32, column 32)

Input a Line

Format: deFIm

Action: A line is read from channel m and stored as the value of parameter d. If mis
omitted, then channel 4 is used. The element immediately following deFIm is
ignored, and scanning of the code body resumes with the next element.

Example

Macro: read *
#10#F14$
2#H$
#20#F14$
$

Input: read type in something please
(from channel 1)

this is my input
(from channel 4)

Output: type in something please
this is my input

Execute a CLI Command

Format: eFK

Action: Temporarily suspend processing of ASP and execute a single command of
the operating system’s command line interpreter. The command is the value of
parameter 1. When the command is finished, the element immediately following
eFK is ignored, and scanning of the code body resumes with the next element.

Example

Macro: cli ‘.
#FK$
here we are back again#F14$
$

300

Input: cli date.

Output: Sat Nov 5 13:20:52 CST 1988
here we are back again

Escape to the Operating System

Format: eFL

Action: Temporarily suspend processing of ASP and execute the operating system’s
command line interpreter. When the command line interpreter is terminated, the
element immediately following eFL is ignored, and scanning of the code body
resumes with the next element.

Example

Macro: escape.
#FL$
here we are back again#F14$
$

Input: escape.
(CLI commands)

Output: (output from CLI commands)
here we are back again

Execute the Barrel/ASP Editor

Format: eFM

Action: Temporarily suspend processing of ASP and execute another ASP process
with the macros for the Barrel/ASP editor, BEDIT, loaded. When the editor is
terminated, the element immediately following eFM is ignored, and scanning of the
code body resumes with the next element.

Example

Macro: call bedit.
#FM$
here we are back again#F14$
$

Input: call bedit.
(editor commands)

301

Output: (output from editor commands)
here we are back again

Trace Macro Calls

Format: meFT

Action: Ibm tracing of all macros calls on or off. When m is a 1, tracing is turned
on. When m is a 0, tracing is turned off. The element immediately following meFT
is ignored, and scanning of the code body resumes with the next element.

Example

Macros: trace on.
1#FT$
tracing is on#F14$
$
trace off.
0#FT$
tracing is off#F14$
$

Input: trace on.
trace off.

Output: tracing is on
*** trace *** trace off.
tracing is off

APPENDIX 7.1

EXTENSIONS TO FLUB FOR THE ASP IMPLEMENTATION

Following is a listing of the statements added to the FLUB abstract machine

language as defined by William Waite [1973]. These extensions were necessary to

implement the ASP processor.

1. message trace to ’

Output a tracing message to the specified channel.

2. call clil

Execute a single operating system command.

3. call cli

Execute the operating systems command line interpreter in order to
execute multiple operating system commands.

4. call barreled

Execute the Barrel text editor.

5. getch ’ in w

Associates a channel number with a file name.

6. stochanpô

Stores the channel number returned by “getch ’ in w” in parameter
number 6.

7. stochanp8

Stores the channel number returned by “getch ’ in w” in parameter
number 8.

8. close next ’

302

303

Closes the specified channel.

9. gigi

Provides an interface to a GIGI/Regis graphics terminal by calling the gigi
subroutine.

APPENDIX 7.2

FLUB VERSION OF THE ASP PROCESSOR

Following is a listing of the FLUB version of the ASP processor. Lines which have

been added or modified from the FLUB version of STAGE2 have comments. The

commented FLUB version of STAGE2 may be found in [Waite, 1973].

fig i = 0.
val i = 1 + 0.
ptr i = 0 + 0.
read next i.
to 98 if fig i ne 0.
val a e char.
ptr a * 8 + 0.
sto a = i.
fig b = 2.
val b = char.
val c = char.
ptr c e 9 + 0.
val d = char.
val e ■ char.
ptr e * val e.
val f char.
ptr f = a + 7.
sto f = 0.
val g = 0 + 0.
ptr h 5*7.
fig j 1.
ptr j 0 + 0.
fig 1 = 1.
val 1 = 0-1.
ptr 1 0 + 0.
val m = char.
ptr m = 0 + 0.
fig n 0.
val n char.
fig o 0.
val o char.
val P = char.
val q = char.
val r — char.

304

305

ptr r = 0 + 0.
ptr 4=7+7.
ptr 8 = f + 7.
loc preOl. entry point for adding definitions
to 01 by d.
loc 01.
get i = a.
read next i.
to 98 if fig i ne 0.
ptr i = c + 0.
val y - 0 + 0.
ptr y = c + 0.
to 02 if ptr o=0.
ptr m=m-l.
to 01.
loc 02.
ptr 9 = i + 0.
val i = char.
ptr i = 9 — 7.
to 97 if ptr 8 ge i.
sto 9 = i.
to 04 if val i = 1.
to 03 if val i = a.
val y = y + 1.
to 02 if val i ne b.
ptr b = i + 0.
sto 9 = b.
to 02.
loc 03.
ptr 9 = i + 0.
val i = char,
ptr i « 9 - 7.
sto 9 = i.
to 97 if ptr 8 ge i.
to 03 if val i ne 1.
loc 04.
ptr u = 9 - 7
sto u = 3.
ptr u = u - 7
sto u = 3.
ptr u = u - 7
sto u = 3.
ptr u = u - 7
sto u = 3.
ptr u = u - 7
sto u = 3.
ptr u = u - 7.
sto u = 3.

306

ptr u - u - 7.
sto u - 3.
ptr u - u - 7.
sto u = 3.
ptr v = u - 7.
sto v - 3.
ptr u - v - 7.
ptr 9 - u + 0.
to 97 if ptr 8 ge 9.
get w = a.
get x - y.
fig y = 0.
ptr z — a + 0.
to 58 by b.
to 50 if fig b = 2.
to 56 if fig y = 0.
to ovlO if fig p = 0
to tr by g.
loc ovlO.
ptr g = u + 7.
get w = g.
fig 4 = val 4.
to noalt if fig w ne
ptr u = w + 0.
loc noalt.
sto 9-1.
ptr 9 - 9 - h.
sto 9 - j.
ptr j - 9 + h.
ptr 9-9-7.
sto 9 - c.
ptr 9=9-7.
sto 9 = d.
ptr 9=9-7.
sto 9 = k.
ptr k = u + 0.
ptr 9=9-7.
sto 9 = r.
ptr r = 0 + 0.
ptr c = 9 - 7.
to 97 if ptr 8 ge c.
to 05 by d.
loc 05.
ptr 9 = c + 0.
ptr y = 0 + 0.
loc 06.
to 07 if ptr m = 0.
ptr z = k + 7.

is tracing turned on?
yes, call tracing routine

307

get k - k.
get i = k.
to 08 if val i = 1.
ptr m = m - 1.
get z — z.
to 06 if fig z ne 3.
ptr y - y + 1.
to 06 if val z = 7.
ptr y = y - 1.
to 06 if val z ne 8.
ptr y = y - 1.
to 06 if ptr y ge 0.
to 06 if ptr r = 0.
ptr u ■ r — 7.
get y = u.
to 49 if fig y ne 1.
ptr c = r + 0.
get r = r.
to 05.
loc O'L
ptr k - k + 7.
get i = k.
to 09 if fig i = 2.
to 22 if fig i = 3.
ptr i = 9 — 7.
sto 9 - i.
ptr 9 - i + 0.
to 97 if ptr 8 ge 9.
to 07 if fig i = 0.
ptr y = c - 9.
ptr y = y / 7.
ptr y = y - 1.
val y = ptr y.
ptr y = c + 0.
to 04 if val i ne 1.
loc 08.
ptr 9 = j - h.
get j = 9.
ptr 9 = 9-7.
get c = 9.
ptr 9 = 9-7.
get d = 9.
ptr 9 = 9-7.
get k = 9.
ptr 9 = 9-7.
get r = 9.
return by d.
loc 09

308

ptr v = j + i.
to 21 if val i = 6.
get y = v.
to 45 if val i = 7.
to 23 if fig y = 3.
get x - y.
to 11 if val i = 0.
to 10 if val i = 1.
to 12 if val i = 2.
to 15 if val i = 4.
ptr x = y + 0.
to 20 if val i = 3.
ptr n - val y.
to 18 if val i = 5.
to 23 if val y ne 1.
ptr n - val x.
to 18 if val i = 8.
message conv to 4.
to 94 by b.
to 07.
loc 10.
ptr v = 9 + 7.
get w - f.
ptr z = f + 0.
to 58 by b.
to 07 if fig y ne 1.
fig i = 0.
get x - y.
loc 11.
to 07 if val y = 0.
get i - x.
ptr x - 9 - 7.
sto 9 = x.
ptr 9 = x + 0.
val y - y - 1.
to 07 if val y = 0.
get x = i.
ptr i = 9 - 7.
sto 9 = i.
ptr 9 = i + 0.
to 97 if ptr 8 ge 9.
val y = y - 1.
to 11.
loc 12.
fig f = 2.
fig b = 2.
get w = f.
ptr z = f + 0.

set flag for not adding macro definition

309

to 58 by b.
fig f - 0. reset flag
fig b = 0.
get x - y.
to 11 if fig y
ptr y = 8 + 0.
fig y = 1.
ptr 1-1+1.
ptr x = 1 + 0.
ptr w » 9 + 7.
val y = 0 + 0.
loc 13.
ptr v = x / 5.
ptr z - v • 5.
ptr x = x - z.
val x = ptr x.
ptr x = v + 0.
ptr w = w - 7.
sto w - x.
val y = y + 1.
to 97 if ptr 8
to 13 if ptr x
loc 14.
get X = w.
ptr w * w + 7.
val X = X + e.
ptr x e 8 + 7.
sto 8 e X.
ptr 8 » X + 0.
to 14 if ptr 9 ge w.
sto 8=0.
ptr 8=8+7.
to 97 if ptr 8 ge 9.
sto u = y.
get x = y.
fig i = 0.
to 11.
loc 15.
to 74 by p.
to 18 if ptr n ge 0.
ptr o=9-7.
to 97 if ptr 8 ge o.
sto 9=o.
ptr 9=o+0.
ptr n = 0 - n.
to 18.
loc 16.
get y = v.

310

to 17 if fig y = 1.
ptr v - v - 7.
to 16 if val y ne i.
ptr n - y + 0.
to 18.
loc 17.
ptr y - v + h.
to 23 if ptr y = j.
ptr l = 1 + 1.
ptr i = 1 + 0.
sto v = i.
ptr v = v - 7.
get y - v.
fig y - 1.
sto V = y.
ptr n = 1 + 0.
loc 18.
ptr y - n / 5.
ptr z = y * 5.
ptr x = n - z.
fig x = 0.
val x = ptr x.
ptr n = y + 0.
val g - g + 1.
ptr 8 - 8 + 7.
sto 8 - x.
to 18 if ptr n ne 0.
loc 19.
get x = 8.
ptr 8=8-7.
val g = g - 1.
val x = x + e.
ptr x = 9 - 7.
sto 9 = x.
ptr 9 = x + 0.
to 19 if val g ne 0.
to 07.
loc 20.
get x = x.
val y = y - 1.
to 20 if val y ne 1.
to 07 if fig x = 1.
ptr x = 9 - 7.
to 97 if ptr 8 ge x.
sto 9 = x.
ptr 9 = x + 0.
to 07.
loc 21.

311

sto 9=1.
ptr k - k + 7.
ptr y - c - 9.
ptr y - y / 7.
fig y - 0.
val y - ptr y.
ptr y = c + 0.
sto v - y.
ptr c - 9 - 7.
to 05.
loc 22.
ptr v - j + 0.
to 16 if ptr i = 0.
to 08 if val i = 9.
ptr v = v + 7.
ptr k = k + 7.
to 32 if val i = 1.
to 32 if val i = 2.
to 33 if val i = 3.
to 42 if val i = 4.
to 36 if val i = 5.
to 39 if val i = 6.
to 43 if val i = 7.
to 47 if val i - 8.
val w - 5 * 9.
val w - w + 4.
to adfun if val i = w.
val w = w + 2.
to close if val i = w.
val w = w + 4.
to gigi if val i = w.
val w = w + 2.
to inf un if val i = w.
val w = w + 2.
to clil if val i = w.
val w = w + 1.
to cli if val i = w.
val w = w + 1.
to bed if val i = w.
val w = w + 7.
to trace if val i = w.
to 23 if val i ne 0.
stop,
loc 23.
message conv to 4.
to 94 by b.
to 07.
loc trace. trace function added by John barrett

312

prt x - c - 9.
to 23 if prt x ne 7.
get w - c.
val w = w - e.
to unt if val w = 0.
fig p = 1.
to 05.
loc unt.
fig p - 0.
to 05.

get length of constructed line
can only be one character
get that character
convert to an integer
turning trace on or off?
turn trace on

turn trace off

loc gigi. gigi graphics function added by john barrett
prt x = c - 9. length of constructed line
to 23 if prt x ne 7.
get w = c.
val w = w - e.
to ov9 if val w ne 1.
get y - v.
to 23 if fig y = 3.
get x = y.
val z = y + 0.
loc lp2.
char * val x.
get x - x.
val z = z - 1.
to lp2 if val z ne 0.
char - val 1.
loc ov9.
gigi.
to 98 if fig w ne 0.
to 05.
loc close.
ptr x = c - 9.
to 23 if ptr x ne 7.
get w = c.

can only be one character
get the character (the operation code)
convert to an integer
if I put gigi command in line buffer
get pointer to parameter 1 (the gigi command)
error if parameter is undefined
get first character of parameter
save length of parameter

put parameter in line buffer
get next character of parameter

any more characters?
close out the line buffer

send gigi command to terminal
get out unless all is ok

close function by john barrett
length of constructed line
can only be one character
get the character

val y = 6 * 7.
to ov5 if val w ne y.
val x = 9.
to gtch by g.
ptr x = val 8.
to setp by g.
loc ov5.
val w - w - e.
close next w.
to 98 if fig w ne 0.
to 05.
loc setp.
val x = ptr x.
to ov3 if val x = 8.

are we using the asterisk extension?
yes, get the channel number
from parameter 9
put the file name in
parameter 8

convert it to an integer
close the channel
get out if not ok

subroutine to set a parameter to a channel #
are we storing in para. 6 or 8?

313

stochanp6. returns address of channel # in ptr z
to ov4.
loc OV3.
stochanp8. returns address of channel # in ptr z
loc ov4.
ptr x = x * 7.
ptr y = j + x. set parameter list pointer
sto y » z. set parameter
return by g.
loc bed. barrel editor function by John barrett
call barreled. call up the barrel line editor
to 05.
loc clil. clil function by john barrett
get x - v. get parameter l pointer
to 23 if fig x = 3. error if parameter is undefined
to 23 if val x = 0. error if parameter is null
val y = x.
loc lp3. put parameter l in line buffer
get x - x.
char = val x.
val y - y - 1.
to lp3 if val y ne 0.
char - val 1. close out line buffer
call clil. call operating system
to 05.
loc cli. cli function by john barrett
call cli. call up the command line interpreter
to 05.
loc infun. input function by john barrett
get x - k. check for alternate input unit
val w = 4 + 0. default is channel 4
to defau if fig x = 1. if no channel # take the default
to nodef if fig x ne 2. check for parameter trans.
to 23 if val x ne 0. allow only 0 transformation
ptr v = j + 0. set parameter pointer
ptr v •= v + x.
get x = v. get pointer to parameter
get x = x. get parameter
loc nodef.
ptr k = k + 7. advance code body pointer
val w = x + 0.
val y = 6 * 7. check for special case asterisk
to ov8 if val w ne y. signalling a file name in a para.
val x = 9. parameter 9 holds the file name
to gtch by g. subroutine to get the channel #
ptr x - val 8. parameter 8 will hold channel #
to setp by g. subroutine to set para, to channel #
loc ov8.

314

val w = w - e. convert to an integer
loc defau.
read next w. get the input
to 98 if fig w ne 0. get out unless all is ok
ptr 9 - 9 + 7. point to parameter # to hold input
get z - 9. get parameter # to hold input
val z = z - e. convert to an integer
ptr z - val z.
to 23 if ptr z ge 5. only accept parameters 1-9
to 23 if ptr 0 ge z.
ptr v = j + 0.
ptr z = z * 7.
ptr v = v + z. set parameter pointer
ptr w = c + 0. point to pseudo-input space
flg x = 0.
loc Ipl.
ptr x = w - 7.
to 97 if ptr 8 ge x. get out if memory is full
val x = char.
sto w = x.
ptr w = w - 7.
to Ipl if val x ne 1.
ptr w = w + 7.
sto w = 1. close the input line
ptr w = c - w. calculate length of input
ptr w = w / 7.
val w - ptr w.
flg w - 0.
ptr w - c + 0. set pointer to start of input line
sto v = w. set parameter store
ptr c = ptr x. next empty space for new line
to 05.
loc gtch. subroutine to get a channel # from a
ptr x = val x. file name in a parameter specified
ptr x = x * 7. by val x
ptr z = j + x.
get x - z. get parameter pointer
to 23 if flg x = 3. error if parameter is undefined.
to 23 if val x = 0. error if parameter is null.
ptr z = x.
val y = x.
loc ilpl. put file name in the line buffer
get z = z.
char = val z.
val y = y - 1.
to ilpl if val y ne 0.
char = val 1. close out the line buffer
getch x in w. get channel number

315

to 05 if fig x ne 0. ignore it if not ok?
return by g.
loc adfun. add a macro definition from a macro call
fig b - 2. set definition flag
fig e ■ 2. set add flag
get i - a. get current input unit
val h - i + 0. save it
to ovll if ptr 9 = c. default is current input unit
ptr g - c - 9.
ptr g - g / 7.

find length of constructed line

to 23 if ptr g ge 2. error if more than one character
get w = c. else get new input unit
val y - 6 * 7.
to ov6 if val w ne y.

test for asterisk extension

val x « 9.
to gtch by g.

get channel number

ptr x = val 8.
to setp by g.
loc ov6.

set parameter 8 to channel number

val w = w - e.
val i = w + 0.

make it an integer

sto a = i.
loc ovll.

put it away for definition phase

ptr o - d. save return address in d
to preOl.
loc 32.
get x = k.
val w = 3 + 0.
to 24 if fig x - 1.

go get the definitions

to ov7 if fig x ne 2. check for parameter transformation
to 23 if val x ne 0. allow only zero transformation
ptr z = j + x. point to parameter pointer
get x = z. get parameter pointer
get x = x.
loc ov7.
ptr k = k + 7.
val w = x + 0.

get parameter value

val y = 6 * 7.
to ovl if val y ne w.

check for asterisk

val x = 9. parameter 9 holds the file name
to gtch by g. get channel # from file name
ptr x = val 8. parameter 8 will hold the channel #
to setp by g.
loc ovl.

set para. 8 to channel #

val w = w - e.
get x = k.
to 24 if fig x = 1.
rewind w.

convert to an integer

316

ptr k - k + 7.
loc 24.
to 31 if val i - 2.
sto 8-1.
ptr x - c +0.
to 57 if ptr c ne 9.
ptr k - k + 7.
get i - k.
to 25 if fig i ne 1.
ptr k = k - 7.
to 23.
loc 25.
ptr z - val i.
ptr z = z - e.
to 28 if ptr z ge 5.
to 28 if ptr 0 ge z.
val x - i + 0.
ptr z - z * 7.
ptr y - j + z.
get y = y.
to 27 if fig y = 3.
get z - y.
loc 26.
to 27 if val y - 0.
char - val z.
get z - z.
val y = y - 1.
ptr k - k + 7.
get i - k.
to 26 if val i = x.
to 25.
loc 27.
char = val f.
ptr k = k + 7.
get i = k.
to 27 if val i = x.
to 25.
loc 28.
to 57 if fig i - 1.
char = val i.
ptr k = k + 7.
get i = k.
to 25.
loc 31.
get i = a.
to 29 if ptr c = 9.
get x = c.
val y = 6 * 7. check for asterisk

317

to ov2 :If val y ne x.
ptr w - X. save ptr x
val v - w. save val w
val x - 7. parameter 7 holds the file name
to gtch by g. get channel # from file name
ptr x - val 6. parameter 6 will hold channel #
to setp by g. set para. 6 to channel #
val x - w. put channel # in val x
val w = V. restore val w
val v - 0. clear val v
ptr x - w. restore ptr X
loc ov2,
val i - x - e.
sto a = i.
to 29 idf ptr x = 9.
rewind i.
to 98 if fig i ne 0.
loc 29.
get x - v.
to 05 if val x = 0.
to 05 if fig x = 3.
ptr y = x + 0.
read next i.
to 98 if fig i ne 0.
loc 30.
to 05 if val x = 0.
val x = x - 1.
get y = y.
val z = char.
to 30 if val y = z.
write next w.
to 29 if fig w = 0.
stop.
loc 33.
get y - v.
to 23 if fig y = 3.
to 05 if val y = 0.
get x = y.
fig f = 2. set flag for not adding macro definition
fig b = 2.
get w = f.
ptr z = f + 0.
to 58 by b.
fig f = 0. reset flag
fig b = 0.
fig w = y.
ptr w = u + 0.
ptr z = y + 0.

318

ptr v - v + 7.
get y = v.
to 23 if fig y = 3.
ptr x - y + 0.
fig z - 1.
val z - y + 0.
to 35 if fig w ne 1.
sto w = z.
to 05 if val y = 0.
loc 34.
get
ptr

X = X.
w = z + 0.

get
val

z = w.
z = x + 0.

sto
val

w = z.
y - y - 1.

to 35 if ptr z = 0.
to 34 if val y ne 0.
to 05.
loc 35.
ptr z = 8 + 0.
sto w = z.
ptr 8=8+7.
to 97 if ptr 8 ge 9.
ptr w - z + 0.
get z - x.
ptr x = z + 0.
val y - y - 1.
to 35 if val y ne 1.
sto w = 0.
to 05.
loc 36.
get i = k.
ptr k = k + 7.
get y = v.
ptr v = v + 7.
get z = v.
to 23 if fig y = 3.
to 23 if fig z = 3.
ptr v = v + 7.
to 41 if val y ne z.
to 38 if val y = 0.
ptr x = z + 0.
loc 37.
get x = x.
get y = y.
to 41 if val x ne y.
val z = z - 1.

319

to 37 if val z ne 0.
loc 38.
to 05 if val i ne e.
to 42.
loc 39.
get i - k.
ptr k ■ k + 7.
get y - v.
to 23 if flg y 3.
to 74 by p.
ptr i = n + 0.
ptr v = j +4.
get y = v.
to 23 if flg y 3.
to 74 by p.
ptr v = j + 4.
ptr v = v + 7.
ptr n = n - i.
to 38 if ptr n 0.
to 40 if ptr n ge 0.
to 05 if val i = 0.
to 41.
loc 40.
to 05 if val i n.
loc 41.
to 05 if val i e.
loc 42.
get y = v.
to 23 if flg y 3.
to 05 if val y 0.
to 74 by p.
ptr m = n + 0.
to 05.
loc 43.
ptr y = c - 9.
ptr y = y / 7.
val y = ptr y.
to 07 if val y 0.
ptr y = c + 0.
to 74 by p.
flg y = 1.
val y = 0 + 0.
ptr y - n + 1.
sto c = r.
ptr z = r + 0.
ptr r = c + 0.
ptr c = c - 4.
sto c = k.

320

to 05 if ptr 0 ge y.

loc 44.
ptr c = r + 0.
ptr r - z + 0.
ptr y = y - 1.

ptr r = c + 0.
ptr c = c - 7.
sto c - y.
ptr c = c - 7.
get k = c.
ptr c = c - 7.
to 05.
loc 45.
sto 9 - l.
ptr w = c - 9.
ptr w = w / 7.
fig w - 0.
val w = ptr w.
ptr w - c + 0.
ptr 9=9-7.
fig b = 2.
ptr b = 0 + 0.
fig u = 0.
val u = r + 0.
ptr u = 7 + 0.
fig z = 1.
val z = 0 + 0.
ptr z = 0 + 0.
ptr x = 9 - 7.
loc 46.
val z = z + 1.
sto 9 = z.
ptr 9=9-7.
sto 9 = u.
ptr 9=9-7.
sto 9 = b.
ptr 9=9-7.
ptr k = k + 7.
get i = k.
ptr i = x - 9.
sto 9 = i.
ptr x = 9 + 0.
ptr 9=9-7.
to 97 if ptr 8 ge 9.
to 46 if fig i ne 1.
sto 9 = b.
fig b = 0.
ptr z = 9 + 0.

321

ptr u - r - 7.

ptr 9=9- 7.
val u = m +
sto 9 = u.

0.

ptr 9 - 9 -
sto 9 - r.

7.

ptr 9=9-
sto 9 = c.

7.

ptr 9=9-
sto 9 ■ v.

7.

ptr 9=9-
sto 9 - y.

7.

ptr r - 9 -
sto r - z.

7.

ptr 9 = r -
sto 9 = w.

7.

ptr 9=9-
sto 9 = k.

4.

ptr z = z -
to 48.
loc 47.

7.

to 05 if ptr r
get z = r.
loc 48.

get y - u.
to 44 if fig y - 1.
to 49 if val y - 0.
Sto u = 0.
ptr u = u - 4.
get k = u.
ptr v = u + 0.
ptr 9 = u - 7.
ptr c = 9 + 0.
get x = y.
to 99 by b.
ptr y = r + 4.
get w - y.
ptr y = r - 4.
to 97 if ptr 8 ge y.
get y = y.
sto w = y.
to 05.
loc 99.
to 60 if val z ne 1.
fig x = 0.
val x = y - 1.
val y = 1 + 0.
ptr u = u + 7.

322

sto u - y.
ptr u - u + 7.
sto u * x.
return by b.
loc 49.
to 44 if flg y = 1.
ptr r = r + 7.
get y - r.
ptr r - r + 7.
get w = r.
sto w - y.
ptr r = r + 7.
get c - r.
ptr r = r + 7.
get r = r.
to 05.
loc 50.
flg y = 1.
val y = 1 + 0.
ptr 8=8-7.
to 54.
loc 51.
val i = char,
sto 8 « i.
to 52 if val i = c.
to 52 if val i = d.
val i = i - e.
flg z = 3.
val z « char,
val z = z - e.
ptr z = val i.
sto 8 = z.
to 52 if ptr 0 ge z.
to 52 if ptr z ge 5.
flg z = 2.
ptr z = z * 7.
sto 8 = z.
loc 52.
ptr 8=8+7.
to 97 if ptr 8 ge 9.
val i = char.
sto 8 = i.
to 51 if val i = d.
to 53 if val i = 1.
to 52 if val i ne c.
loc 53.
ptr y = 8 + O.
sto u = y.

323

ptr u = 8 + 0.
loc 54.
get i - a.
read next i.
to 98 if fig i ne 0.
val i - char.
ptr i - 0 + 0.
ptr 8-8+7.
sto 8 = i.
to 51 if val i = d.
to 52 if val i ne c.
ptr y - 8 + 0.
sto u - y.
sto 8-1.
ptr 8-8+7.
to 97 if ptr 8 ge 9.
val i - char.
to 55 if val i ne c.
fig b - 0.
to addef if fig e - 2. test add flag
loc 55.
return by d.
loc addef.
fig e = 0.

return from adding a definition
reset add flag

get i - a. restore input unit
val i - h + 0.
sto a - i.
ptr d = o. restore d's previous return address
to 55.
loc 56.
val w = 3 + 0.
ptr x = c + 0.
loc 57. -
get x - x.
char = val x.
to 57 if fig x ne 1.
write next w.
to 98 if fig w ne 0.
to 55 if val x - 1.
char - val x.
to 57.
loc 58.
ptr z = w + z.

get z = v.

to 60 if ptr w ne 0
to 71 if fig b = 2.
loc 59.
to 70 if ptr v ge 9

324

get y - q.
get x - y.
to 63 if fig z = 2.
to 64 if fig z = 3.
ptr v - q + 7.
ptr q - v + 7.
loc 60.
get w - z.
to 68 if fig w = 1.
to 62 if fig w ■ 2.
to 58 if val y = 0.
to 58 if val x ne w.
to 61 if ptr w = 0.
to 61 if fig x = 3.
to 61 if fig b = 2.
ptr q = v - 7.
ptr v ■ q - 7.
to 97 if ptr 8 ge v.
sto q = y.
ptr w = w + z.
sto v - w.
loc 61.
val y = y - 1.
ptr y - x + 0.
get x = x.
ptr z = z + 7.
to 60.
loc 62.
to 61 if fig x = 2.
to 58 if fig b = 2.
ptr q = v - 7.
ptr v = q - 7.
to 97 if ptr 8 ge v.
sto q = y.
fig z = 2.
sto v = z.
fig x = 3.
to 58.

to 60.

loc 63.
fig z — 3.
ptr z = z + 7.
sto v = z.
ptr u = u + 7.
fig w = 0.
val w = 0 + 0.
ptr
sto

w = y + 0.
u = w.

325

loc 64.
to 68 if val y = 0.
to 68 if val x = r.

to 67 if val x ne m.

get w TC u.
val w e w + 1.
val y ■ y - 1.
ptr y ■ X + 0.

to 65 if val x = m.
to 66 if val x ne r.

val z - 0 + 0.
loc 65.
val z = z + 1.
loc 66.
to 68 if val y
get x = X.
val y = y - 1.
ptr y = x + 0.
val w = w + 1.

val z - z - 1.
to 66 if val z ne 0
loc 67.
get x = X.
sto q - y.
sto u = w.
to 60.
loc 68.
sto u - 3.
ptr u = u - 7.
ptr v = q + 7.
ptr q = v + 7.
to 59.
loc 69.
to 58 if val y ne 0.
ptr u = z + 7.
get y = u.
to 70 if fig b ne 2.
to 70 if fig f = 2.
ptr g = u + 7.
ptr w = 8 - 7.
fig w = val 4.
sto g = w.
loc 70.
return by b.
loc 71.
ptr w = 8 - z.
sto z = w.
to 73 if val y = 0.

326

loc 72.
val y - y - 1.
ptr y - x + 0.
ptr x - 0 + 0.
sto 8 - x.
ptr 8-8+7.
to 97 if ptr 8 ge 9.
get x - y.
to 72 if val y ne 0.
loc 73.
flg
ptr

x = 1.
x = 0 + 0.

sto
ptr

8 — x.
U = 8 + 7.

flg
ptr

y = 0.
y = u + 0.

sto
ptr

u - y.
8 = u + 7.

to 97 if ptr 8 ge 9.
return by b.
loc 74.
ptr o=9+0.
val s - y + 0.
ptr s = y + 0.
ptr t = 0 + 0.
to 75 if val y ne 0.
ptr n - 0 + 0.
return by p.
loc 75.
val t = m + 0.
loc 76.
to 93 if val s = 0.
get x = s.
ptr y = s + 0.
val y = 0 + 0.
to 77 if val x ne m.
sto 9 = t.
ptr 9=9-7.
to 97 if ptr 8 ge 9.
val s = s - 1.
ptr s = x + 0.
to 75.
loc 77.
to 78 if val x = n
to 78 if val x = o
to 78 if val x = P
to 78 if val x = q
to 78 if val x - r

327

val y = y + 1.
get x = x.
to 77 if val s
val x = r + 0.
val s - s + 1.
loc 78.
val j » x + 0.
ptr n = 0 + 0.
val s - s - y.
val s - s - 1.
ptr s = x + 0.
to 83 if val y
get x - y.
ptr u ■ val x.
ptr u - u - e.
to 79 if ptr u
to 81 if ptr u
loc 79.
ptr v - 9 + 7.
get w = f.
flg y - 0.
ptr z = f + 0.
to 58 by b.
to 83 if flg y ne 1.
to 83 if val y = 0.
get x - y.
flg n - 1.
to 82 if val x - o.
flg n - 0.
ptr x = y + 0.
loc 80.
get x = x.
ptr u = val x.
ptr u - u - e.
to 81 if ptr u = 0.
to 93 if ptr u ge 5.
to 93 if ptr 0 ge u.
loc 81.
ptr n = n • 5.
ptr n = n + u.
loc 82.
val y = y - 1.
to 80 if val y ne 0.
to 83 if flg n = 0.
flg n = 0.
ptr n = 0 - n.
loc 83.
to 92 if val j = r.

328

to 90 if val t = m.
to 89 if val j = P.
to 89 if val
loc 84.

j = q.

to 87 if val t = q.
to 86 if val t = p.
to 85 if val t = o.
ptr t = t + n.
to 88.
loo 85.
ptr t = t - n.
to 88.
loc 86.
ptr t - t * n.
to 88.
loc 87.
ptr t - t / n.
loc 88.
val t = j + 0.
to 76 if val j ne r.
ptr n = t + 0.
ptr 8=9+7.
get t = 9.
to 92.
loc 89.
to 86 if val t = p.
to 87 if val t = q.
loc 90.
Sto 9 = t.
ptr 9=9-7.
to 97 if ptr 8 ge 9.
val t = j + 0.
ptr t = n + 0.
to 76.
loc 91.
to 93 if val s ne 0.
return by p.
loc 92.
to 84 if val t ne m.
to 91 if ptr 9=o.

to 92 if val j = r.

ptr 9=9+7
get t = 9.
to 92 if val ।
get x = s.
val s = s - 1
ptr s = x + 0
val j - x + 0

329

to 83 if val j = n
to 83 if val j = o
to 83 if val j = P
to 83 if val j = q
loc 93.
message expr to 4.
ptr n = 0 + 0.
ptr 9=o+0.
to 94 by b.
return by p.
loc 94.
ptr x = c + 0.
ptr y = j + 0.
to 96 if ptr 9 ge c.
sto 9=1.
loc 95.
get x = x.
char = val x.
to 95 if fig x = 0.
write next 4.
to 98 if fig 4 ne 0.
to 96 if val x = 1.
char = val x.
to 95.
loc 96.
to 70 if fig p = 1. if tracing only trace back one call
to 70 if ptr y = 0.
ptr y = y - h.
ptr x = y - 7.
get y = y.
get x = x.
to 95.
loc 97.
message full to 4.
to 94 by b.
stop.
loc 98.
message ioch to 4.
to 94 by b.
stop.
loc tr. tracing routine
message trace to 4. print tracing message on terminal
to 94 by b. call error traceback
return by g.
end program.

APPENDIX 7.3

FLUB TO C MACROS FOR ASP

Following are the macros used to translate the FLUB version of ASP to the C

programming language. Either STAGE2 or ASP can use the macros to do the

translation.

.'$'0 (+-»/)

,get letter 1 of '10 in 11$
11'86$
,on '10 = val set hv to 57 else 51$
,if '38 gt hv skip 2$

j'81'20 = '30;'fl$
'f9$

j'81'20 = j'81'30;'fl$
$

,get letter 1 of '10 in 11$
11'86$
,on '10 - val set hv to 57 else 51$
,if '38 gt hv skip 4$
,if '48 gt hv skip 6$
'30+'40'96$

j'81'20 = '94;'fl$
'f9$
,if '48 neq 48 skip 5$

j'81'20 = j'81'30;'fl$
'f9$
,if '38 neq 48 skip 2$

j'81'20 = j'81'40;'fl$
' f9$

j'81'20 = j'81'30 + j'81'40;'fl$
$

,get letter 1 of '10 in 11$
11'86$
,on '10 = val set hv to 57 else 51$
,if '38 gt hv skip 4$
,if '48 gt hv skip 6$
'30-'40'96$

330

331

j'81'20 = '94 ;'f1$
'f9$
,if '48 neq 48 skip 2$

j'81'20 = j'81'30;'fl$
'f9$

j'81'20 - j'81'30 - j'81'40;'fl$
$

,get letter 1 of '10 in 11$
11'86$
,on '10 = val set hv to 57 else 51$
,if '38 gt hv skip 4$
,if '58 gt hv skip 3$
'30'40'50'96$

j'81'20 = '94;'fl$
'f9$

j'81'20 = j'81'30 '40 j'81'50;'fl$
$

,get letter 1 of '10 in 11$
11'86$
,on '30 = val set hv to 57 else 51$ implementation dependent
,if '48 gt hv skip 2$

j'81'20 = '40;'fl$
'f9$
,get letter 1 of '30 in 12$
12'76$

j'81'20 = j'71'40;'fl$
$
get ' = '.

jf'10 = (l[jp'20+l] » 24) & -(-0 « 8);'fl$
jv'10 = l[jp'20+l] & 077777777;'fl$
if (((jv'10 » 23) & ‘("O « 1)) — 1) jv'10 = -l;'fl$
jp'10 = 1[jp'20];'fl$

$
sto ' = '.

l[jp'10+l] = jf'2O « 24;'fl$
l[jp'10+l] |= (jv'20 & 077777777);'fl$
l[jp'10] = jp'20;'fl$

$
to ' if ' ' = '.
,if '30 ne '40 skip 2$

goto k'10;'fl$
'f9$
,get letter 1 of '20 in 11$
11'86$
,on '20 = val set hv to 57 else 51$
,if '38 gt hv skip 2$

332

if ('30 — j'81'40) goto k'10;'fl$
'£9$
,if '48 gt hv skip 2$

if (j'81'30 — '40) goto k'10;'fl$
'f9$

if (j'81'30 — j'81'40) goto k'10;'fl$
$
to ' if ' ' ne
,if '30 - '40 Skip 10$
,get letter 1 of '20 in 11$
11'86$
,on '20 = val set hv to 57 else 51$
,if '38 gt hv skip 2$

if ('30 != j'81'40) goto k'10;'fl$
'f9$
,if '48 gt hv skip 2$

if (j'81'30 != '40) goto k'10;'fl$
'f9$

if (j'81'30 != j'81'40) goto k'10;'fl$
$
to ' if ptr ' ge '.
,if '20 ne '30 skip 2$

goto k'10;'fl$
'f9$
,if '28 gt 51 skip 2$

if ('20 >= jp'30) goto k'10;'fl$
'f9$
,if '38 gt 51 skip 2$

if (jp'2O >= '30) goto k'10;'fl$
'f9$

if (jp'2O >= jp'30) goto k'10;'fl$
$
to ' by '.

jp'2O = '00;'fl$
goto k'10;'fl$

99+'00'96$
k'94:'fl$

$
return by '.

switch (jp'10) { 'fl$
case 1: goto klOO;'fl$
case 2: goto klOl;'f1$
case 3: goto k!02;'f1$
case 4: goto klO3;'fl$
case 5: goto kl04;'fl$
case 6: goto klO5;'fl$
case 7: goto kl06;'fl$
case 8: goto klO7;'fl$

333

case 9: goto k!08;'fl$
case 10: goto klO9;'fl$
case 11: goto kllO;'fl$
case 12: goto kill;'fl$
case 13: goto k!12;'fl$
case 14: goto kll3;'fl$
case 15: goto k!14;'fl$
case 16: goto kll5;'flS
case 17: goto kll6;'flS
case 18: goto kll7;'flS
case 19: goto kll8;'flS
case 20: goto k!19;'fl$
case 21: goto kl20;'fl$
case 22: goto kl21;'fl$
case 23: goto k!22;'fl$
case 24: goto kl23;'flS
case 25: goto kl24;'flS
case 26: goto k!25;'fl$
case 27: goto kl26;'flS
case 28: goto k!27;'fl$
case 29: goto kl28;'flS
case 30: goto k!29;'fl$

} 'flS
$
to '.

goto k'10;'fl$
$
stop.

goto k992;'fl$
$
val ' = char.

jv'10 = lb[lbr];'fl$
Ibr = lbr+1;'f1$

$
char = val '.

iwrch (jv'10,lb,&lbw,&jf'10,&lbl);'fl$
$
read next '.

jf'10 = ioop (-1,jv'10,lb,l,&lbl);'fl$
lb[lbl] = -1;'f1$
Ibr =

$
write next ".

jf'10 = ioop (1,jv'10,1b,l,&lbl);'fl$
lbw = l/flS

$
rewind ".

jf'10 = ioop (0,jv'10,1b,1,tone);'fl$

334

jf'10 = O;'fl$
$
loc '.
k'10:'fl$

S
message full to '.

mb[11] - 102;'flS
mb[12] = 117;'fl$
mb[13] = 108;'fl$
mb[14] - 108;'flS
jf'10 = ioop (1,jv'lO.mb.l.&twentyl);'fl$

S
message loch to '.

mb[11] = 105;'fl$
mb[12] - 111;'flS
mb[13] = 99;'fl$
mb [14] = 104;'fl$
jf'10 = ioop (1,jv'10,mb,l,&twentyl);'flS

S
message conv to '.

mb[11] = 99;'flS
mb[12] = 111;'flS
mb [13] = 110;'flS
mb[14] = 118;'flS
jf'10 - ioop (1,jv'10,mb,l,&twentyl);'fl$

S
message expr to '.

mb[11] = 101;'flS
mb[12] - 120;'fl$
mb[13] = 112;'flS
mb[14] = 114;'flS
jf'10 = ioop (1,jv'10,mb,l,&twentyl);'fl$

S
message trace to '.

printf("*** trace ••• ");'flS
fflush(stdout);'fis

S
end program.
k992: ; }'fl$
'fOS
S
message • error.

for (j = 1; j <= 9; j++)'fl$
mb[j] = 42;'flS

mb[10] = 32;'flS
mb[15] = 32;'fl$
mb[16] = 101;'flS
mb[17] = 114;'flS

335

mb[18] - 114;'fl$
mb[19] - 111;'fl$
mb[20] - 114;-fl$

S
call clil. subroutine to execute one operating system command

os(lb,l,lbl);-flS
S
call cli.

printf("Escaping to the shell.\n");'fl$
printf("To re-enter ASP hit control-d.\n");'f1$
system("sh");-fl$
printf("Goodbye to the shell. Re-entering ASP.\n");'fis

S
call barreled.

printf("call barreled not implemented\n");'fl$
S
getch ' in w. returns channel # for file name

jf'10 = ioop(2,0,lb,jv'10,&jvw);'fl$
$
stochanp6.

jpz = memla;-flS
l[memla+l] = jvw; 'fl$
jvz - 1;'flS

S
stochanpB.

jpz - memla+2;'fIS
l[memla+3] = jvw;'fIS
jvz = 1;'flS

S
close next -.

jf'10 = ioop(3,jv'10,lb,l,&lbl);'fl$
S
gigi.

jfw - gigi(jvw,lb,l,lbl);'fl$
lbw - 1;'flS

$
. null macro to allow comments in flub program
S
. the remaining macro definitions are "system macros"
S in that they just provide convenient access to stage2
. functions i.e. these are not flub operations.
S
text '. switch the input channel
'10'26 16S
'2O'f2$
S
,sto '='. store a value into memory
'f3S

336

$
,set ' = '. store an integer into memory
'24'26 'f3$
$
.skip '. skip lines unconditionally
'f4$
$
.if ' = ' skip '.
'f50$
$
,ifc ' = ' skip '.
'11'16 'f50$
$
,if ' ne ' skip '.
'f51$
$
,if ' It ' skip '.
'f6-$
$
,if ' eq ' skip '.
'f60$
$
,if ' gt ' skip '.
'f6+$
$
,if ' neq ' skip '.
' f61$
$
,if ' le ' skip '.
,if '10 eq '20 skip '34+1$
'f6-$
$
,if ' ge ' skip '.
,if '10 eq '20 skip '34+1$
'f6+$
$

$ get 1st letter of arg. 1 and store in arg. 2
.get letter 1 of ' in '.
'10'17$
,sto '20='10$
.skip 1$
'f8$
$
,on ' = ' set ' to ' else '.
,if '10 = '20 skip 2$
,sto '30='50$
'f9$

337

,sto '30='40$
$
. init is necessary so that the initialization stuff won't
$ match other macros
init'.
'10'flS
$$
. ^include isn't part of an init macro since it contains
. source-eol symbol (".")
#include <stdio.h>
init#define memla 39996
init /* memla points to 4 spaces added to the end
init of array 1 where we put the channel numbers
init gotten from the file names when using *
init with certain stage2 functions ; the first 2
init spaces are for parameter 6 and the last 2
init spaces are for parameter 8 •/
init
init int a,b,c,e;
init
init main(argc.argv)
init int argc;
init char »argv[];
init {
init
init long j,lb[82],lbl,lbr,lbw,mb[21],one,twentyl;
init long jfO,jfl,jf2,jf3,jf4,jf5,jf6,jf7,jf8,jf9,jfa,jfb,jfc,jfd;
init long jfe,jff,jfg,jfh,jfi,jfj,jfk,jfl,jfm,jfn,jfo,jfp,jfq,jfr;
init long jfs,jft,jfu,jfv,jfw,jfx,jfy,jfz;
init long jvO,jvl,jv2,jv3,jv4,jv5,jv6,jv7,jv8,jv9,jva,jvb,jvc.jvd;
init long jve,jvf,jvg,jvh,jvi,jvj,jvk,jvl,jvm,jvn,jvo,jvp,jvq,jvr;
init long jvs,jvt,jvu,jvv,jvw,jvx,jvy,jvz;
init long jpO,jpl,jp2,jp3,jp4,jp5,jp6,jp7,jp8,jp9,jpa,jpb,jpc,jpd;
init long jpe,jpf,jpg,jph,jpi,jpj,jpk,jpl,jpm,jpn,jpo,jpp,jpq,jpr;
init long jps.jpt,jpu,jpv,jpw,jpx,jpy,jpz;
init long 1[40000];
init
init if (argc != 5) { printf("Wrong number of arguments : adios\n")
init exit(l); }
init a = open(argv[l],0);
init b = creat(argv[2],0755);
init close(b); /• saves file descriptors */
init b = open(argv[2],2);
init c = creat(argv[3],0755);
init close(c); /* saves file descriptors */
init c = open(argv[3],1);
init e = open(argv[4],0);
init one = 1;

338

init twentyl = 21;
init jp9 = 39995 ;
init jfO = 0;
init jfl = 1;
init jf2 = 2;
init jf3 = 3 ;
init jvO = 0;
init jvl = 1;
init jv2 = 2;
init jv3 = 3;
init jv4 = 4;
init jv5 = 5 ;
init jv6 = 6;
init jv7 = 7 ;
init jv8 = 8;
init jv9 = 9;
init jpO = 0;
init jpl = 1;
init jp2 = 2;
init jp3 = 3;
init jp5 = 10;
init jp7 = 2;
init jp8 = 1;
init Ibl = 1;
init Ibr = 1;
init lbw = 1;
init jp9 = jp8 + (jp9 / jp7 - 1) * jp7;
message * error.
text 5.

APPENDIX 7.4

C SUPPORT ROUTINES FOR ASP

Following are listings of the four hand coded support routines used in the C

implementation of the ASP processor. These routines implement the machine

dependent portions of the ASP processor. The routines are:

gigi.c - provides the interface to the GIGI/Regis graphics terminal

ioop.c - provides the I/O operations

iwrch.c - puts a character in the line buffer

os.c - provides an interface to the operating systems command language

interpreter

#include <stdio.h>
y************************************$**********$**********/
/* GIGI */
/* Subroutine to interface with the Gigi/Regis graphics */
/* terminal. Four operations can be performed depending */
/* on the value of ifunc. Regis commands are passed •/
/» through the ilist parameter. */
/*********************$***********$************************/

gigi(ifunc, ilist, jpl, jp2)
long ifunc;
long ilist [];
long jpl,Jp2;

{
int i, j;
char cbuff[80];

switch (ifunc)
{

case 0: /* open gigi terminal for graphics */
printf("%cPp\n",'\O33');
break;

case 1: /* send graphics command to gigi terminal */
for (i = jpl, j = 0; i < jp2; i++, j++)

339

340

chuff[j] - ilist[i];
chuff[—i] = '
printf("%s\n",chuff);
break;

case 2: /• close gigi terminal for graphics */
printf ("%c%c\n", '\033' ,'V) ;
break;

case 3: /• reset graphic attributes •/
/* set terminal to ANSI mode */
printf("\O33PrTMl\O33");
/* clear all graphics attributes •/
/* (only works in ANSI mode) */
printf("\033c");
fflush(stdout) ;
/* return to VT52 mode •/
system("asp.TMO");
break;

default : return(1); /* bad gigi function */

return(0); /* good return •/

#include <stdio.h>

/********************$**#*****************$****************/
/» IOOP
/* Subroutine to provide I/O operations for the ASP

*/
•/

/* processor. Five operations can be performed depending */
/* on the value of ifune (read, write, rewind, close, and */
/* associate a file name with a channel number). The
/* channel number is passed through the ifile parameter. */
/* ilist is the I/O buffer. Return values are:
/» 0 - successful, 1 - end of file, 2 - error

•/
*/y**/

ioop(ifune, ifile, ilist, jpl, jp2)
long ifune, ifile;
long ilist[];
long jpl,*jp2;

char wbuf[81];
short i,j,index ;
static char rbufl[256], rbuf2[256], rbufS[256];
static short bufinl = 0, bufin2 = 0, bufin5 = 0;
static short buf11 = 0, buf12 = 0, buf15 = 0;

341

/* buffer index and buffer length for channels 6 - 35 */
static short bufinex[30], buflex[30];
/* extrachannelbufferpointer points to buffers for */
/* channels 6 - 35 */
static char *exchbufp[30];
static int fd[3O]; /• file descriptors for channels 6 - 35 */
static short numfop - 0; /* number of files open */
/* extrachannelfilenamepointer points to file name */
/* for channels 6 - 35 */
static char *exchfnp[30];
char fname[80];
short tfile;
char *bufpt, *malloc();
char rbuf4;
short bufind, buflen;
int fdnum;
extern a,b,c,e;
switch (ifile)
{
case 0:

if (ifunc == -1) return(1);
if (ifunc == 2) break;
else return(0);

case 1:
fdnum - a;
bufpt - rbufl;
bufind - bufinl;
buflen - bufll;
break;

case 2:
fdnum = b;
bufpt = rbuf2 ;
bufind = bufin2;
buflen = buf12;
break;

case 3:
fdnum = c;
break;

case 4:
fdnum = 1; /* terminal output

(terminal input handled specially) */
break;

case 5 :
fdnum = e;
bufpt = rbuf5 ;
bufind = bufin5;
buflen = buf15;
break;

342

default:
/* channels a-z are passed as ♦/
/• 49-74, we make them 10-35 •/
if (ifile >= 49 && ifile <= 74)

ifile — 39;
else if (ifile < 6 || ifile > 9)

{
printf("error — unexpected call on unknown file\n");

return(2);
}

tfile = ifile - 6;
if (exchbufp[tfile] -= NULL)

{ if (++numfop >- 14)
{

printf ("Only 13 extra files can be open at one\n");
printf ("time under the UNIX operating system.\n");
printf ("Request ignored.\n");

return(0);
}

exchbufp[tfile] = malloc(256);
bufinex[tfile] = 0;
buflex[tfile] - 0;
/• convert to a-z or 6-9 •/
if (ifile > 9) wbuf[0] = ifile + 87;
else wbuf[0] - ifile + 48;
printf("You have asked to use a new file");
printf(" (file number %c).\n",wbuf[0]);
printf("Type in its name please.\n");
for (i=0; i < 80; i++)

{ j = read(O,&fname[i],l);
if (fname[i] == '0') break;

}
fname[i] = ' ';
if ((fdnum = open(fname,2)) == -1)

if ((fdnum = créât(fname,0755)) == -1)
{

printf("error opening file %s\n",fname);
exit(l);

}
/* saves file descriptors ’/

else { close(fdnum);
fdnum = open(fname,2);

}
exchfnp[tfile] = malloc(i+l);
strcpy(exchfnp[tfile],fname);
fd[tfile] = fdnum;

}
else fdnum = fd[tfile];

343

bufpt - exchbufp[tfile];
bufind - bufinex[tfile];
buflen = buflex[tfile];
break;

}
switch (ifune)
{

case -1: /* read operation */

/• read invalid on channel 3 */
if (ifile == 3) return(2);
index = jpl;
if (ifile — 4) /* read from the terminal */

{ for (i-0; i<80; i++, index++)
{ if ((j = read(O.terbuf4,1)) == -1)

return(2); /• bad read */
if (j “ 0) return(l); /* eof return •/
if (rbuf4 == '0') break; /• end of line */
ilist[index] = rbuf4 ;

}
}

else
{ while (index-jpl < 80)

{ if (bufind >= buflen)
{ buflen - read(fdnum,bufpt,256);
bufind - 0;
if (buflen == 0)

/• eof •/
if (index == jpl) return(1);
else break; /* next read is eof */

}
/* end of line •/
if (•(bufpt + bufind) = '0') break;
ilist[index++] = *(bufpt + bufind++);

}
switch (ifile)
{
case 1:

bufini = bufind + 1;
buf11 = buflen;
break;

case 2:
bufin2 = bufind + 1;
buf12 = buflen;
break;

case 5:
bufin5 = bufind + 1;
buf15 = buflen;

344

break;
default:

bufinex[tfile] - bufind + 1;
buflex[tfile] = buflen;
break;

}
}

jp2 - index; / point to next free space */
return(0); /• "good return" */

case 0: /* rewind operation */

Iseek (fdnum, (long) 0, 0) ;
switch (ifile)
{
case 1:

bufinl = 0;
bufll = 0;
break;

case 2:
bufin2 - 0;
bufl2 = 0;
break;

case 3:
/* rewind invalid on channel 3
return(2);

•/

case 4:
break;

case 5:
bufin5 = 0;
buf!5 = 0;
break;

default :
bufinex[tfile] = 0;
buflex[tfile] = 0;
break;

}
return(0); /• "good return" •/

case 1: /* write operation */

for (index = jpl, i = 0; index < *jp2 && i < 80;
index++, i++)

wbuf[i] = ilist[index];
if (i == 80) —i;

else wbuf[i] = '0';
/* because of buffering file pointer */
if (ifile != 4 && ifile != 3)

/* is not in proper position for write */

345

{ if (buflen != bufind)
{ Iseek (fdnum, (long) bufind-buflen, 1);

/• move buffer index past what was •/
/• written over */
switch (ifile)
{ case 1: bufinl - bufind+i+1;

break;
case 2: bufin2 = bufind+i+1;

break;
case 5: bufin5 = bufind+i+1;

break;
default: bufinex[tfile] = bufind+i+1;

break;
}

}
}

j = write(fdnum.wbuf,i+1);
if (j <= 0) return(2); /• bad write */
/• move file pointer back past buffer */
if (ifile != 4 && ifile !- 3)

if (buflen != bufind)
Iseek (fdnum, (long) buflen-bufind-i-1, 1);

return(0); /* "good return" */

case 2: /• return a channel for a file name */

if (ifile !- 0) return(2);
for (i=l; i<=jpl; i++)

fname[i-l] = ilist[i];
fname[i-l] = ' ';
for (i=0; i<30; i++)

{ if (strcmp(fname,exchfnp[i]) == 0)
if (exchbufp[i] != NULL)

/* convert from 0-29 to 6-35 •/
{ *jp2 = i+6;

/♦ convert to a-z or 6-9 */
if (*jp2 > 9) *jp2 += 87;
else *jp2 += 48;
return(0);

}
}

for (i=0; i<30; i++)
{ if (exchbufp[i] == NULL)

{ exchbufp[i] = malloc(256);
bufinex[i] = 0;
buflex[i] = 0;
if ((fdnum = open(fname,2)) == -1)

346

if ((fdnum = créât(fname,0755)) — -1)
{

printf ("error opening file %s\n",fname) ; --
exit(l) ; -

} ...
else { close(fdnum);

fdnum = open(fname,2);
' }

exchfnp[i] = malloc(strlen(fname)+l);
strcpy(exchfnp[i],fname);
fd[i] - fdnum;
jp2 = i+6; / convert from 0-29 to 6-35 */
/• convert to a-z or 6-9 •/
if (*jp2 > 9) *jp2 +- 87;
else *jp2 += 48;
return(0);

}
}

printf("all available channels in use; request ignored\n");
return(0);

case 3: /* close operation •/

if (ifile < 6 || ifile > 35) return(2);
if (exchbufp[tfile] — NULL)

{ printf("channel %d not open; close request ignored\n",
ifile);

return(0);
}

free(exchbufp[tfile]);
free(exchfnp[tfile]);
exchbufp[tfile] « NULL;
close(fdnum);
return(0);

default :

printf("error —> invalid ioop function requested");
exit(l);

} /• end of switch on ifunc */
} /* end of ioop */

y***********************$**********************************/
/* IWRCH */
/♦ Subroutine to insert a character (jchar) into the ASP */
/* line buffer preparing for output. If the character */
/* is less than zero or the buffer is full (max 80 chars) */
/* then the buffer is closed with a -1. jbuff is the */
/* buffer, jindx is the position to insert the character.*/

347

/* jflag = 0 means the character was inserted, jflag = 1 */
/* means the buffer was closed, jleng is the number of */
/* characters in the buffer when it is closed. */
y******$*************************$*********************»***y

iwrch(jchar,jbuff,jindx,jflag,jleng)
long jchar,jbuff[],*jindx,*jflag,*jleng;
{

if (jchar < 0) goto 11;
if (80 < *jindx) goto 11;
jbuff[*jindx] = jchar;
♦jindx = ♦j indx + 1;
•jflag = 0;
goto Idone;

11: jbuff[*jindx] = -1;
• jleng = •j indx;
* j indx = 1;
• jflag = 1;

Idone:
;}

#include <stdio.h>

y«**»»*t<*«*«*«**«********«*»»**««t****«*********t*******««y
/• OS •/
/• Subroutine to interface with the operating system. •/
/• One operating system command (passed through the ilist •/
/• parameter) is executed. •/
y*»»y

os(ilist, jpl, jp2)
long ilist[];
long jpl,jp2;

{
int i,j;
char cbuff[80];

for (i = jpl, j = 0; i < jp2; i++, j++)
cbuff[j] = ilist [i];

cbuff[—i] = ' ';
system(cbuff);
return;

}

APPENDIX 9.1

BARREL/ASP BSYS KIT

Informal description of the general purpose system commands available in the bsys

kit. Keywords are lower case; non-terminals are upper case. A “general case”

example is followed by a specific example.

1. lorv(#) - determine if argument is a literal or variable; return literal or value of
variable as value of variable %da
example: lorv(VAL) or lorv(ARRAY)

lorv(‘some literal text)
lorv(array!‘3’)
lorv(array!index)
lorv(avar)

2. if # skip # - if the boolean expression is true the skip the next n lines; equal and not
equal only are supported for alphanumeric comparisons
example: if VAL BOOLOP VAL skip EXP

if EXP BOOLOP EXP skip EXP
if var eq ‘text’ skip 3
if var ne ‘text’ skip 3
if a < > 2 skip 10
if a = 2 skip 10
if a < 2 skip 10
if a > 2 skip 10
if a < = 2 skip 10
if a = > 2 skip 10

3. skip # - skip lines unconditionally
example: skip EXP

skip 5

4. set # to # - set the value of a variable to a constant
example: set VARIABLE to LIT

set var to some text

348

349

5. setv # to#- set the value of a variable to the value of a variable
example: setv VARIABLE to VARIABLE

setv varl to var2

6. setx # to # - set the value of a variable to the value of an arithmetic expression
example: setx VARIABLE to EXP

setx var to 4*a+3/b-(pi/180)

7. rem# - allow for comments in programs
example: remLIT

rem this is a comment

8. pop # - pop from the system stack onto a list of variables
example: pop VARIABLE [VARIABLE ...]

pop varl var2 var3

9. push # - push a list of variables or literals onto the system stack
example: push VAL (VAL...]

push varl literalvalue' var2

10. repos # - reposition file pointer past a line beginning with the argument
example: repos ITT

repos labell:

11. ty # - output some text to the terminal
example: ty LIT

ty hello world

12. text# - start taking input from the specified channel
example: textCHANNEL

text5

Definition of non-keywords used in examples above:

CHANNEL a variable or quoted literal value which evaluates to a channel
number (0-9 or a-z)
NOTE: channels 0-5 are reserved by the system for specific
purposes and may not work with some commands

VAL either a variable or a quoted literal value

VARIABLE a variable name which can consist of any sequence of
characters which are balanced with respect to parentheses

350

BOOLOP a boolean operator; can be any of:
eq (string equality)
ne (string inequality)
= (equal)
< > (not equal)
< (less than)
> (greater than)
< = (less than or equal)
= < (less than or equal)
> = (greater than or equal)
= > (greater than or equal)
NOTE: eq and ne assume their arguments are strings and the
other relational operators assume their arguments are integers

EXP an arithmetic expression which evaluates to an integer
NOTE: an arithmetic expression can involve the four
arithmetic operations (addition, subtraction,
multiplication, and division) with numbers and/or variables
and/or functions as operands using balanced parenthesis as
needed or desired to effect precedence (although numbers can
serve as variable names such variable names cannot appear in
an expression as they will be interpreted as numbers)

ARRAY an array reference which consists of a variable name followed
by the “plink” operator (!) followed by a value (i.e.
VARIABLE ! VAL)

LIT a literal constant value

APPENDIX 9.2

BARREL/ASP DBAS KIT

Informal description of the commands available in the bbas kit. Keywords are

lower case; non-terminals are upper case. A “general case” example is followed by

a specific example.

1. fty- output to the terminal the value of the variable or the quoted value; if there is
more than one argument (separated by commas) concatenate them before
output
example: (ty VAL[,VAL...])

(fty ‘the value of var = ,var)

2. readch - get an input value from a channel and make it the new value of the
variable
example: (readch CHANNEL VARIABLE)

(readch ‘a’ var)

3. read - get an input value from a file and make it the new value of the variable
example: (read FILE VARIABLE)

(read ‘infile’ var)

4. writech - write a value onto a channel
example: (writech CHANNEL VAL)

(writech ‘7’ ‘a string)

5. write - write a value onto a file
example: (write FILE VAL)

(write ‘outfile’ ‘another string)

6. rewindch - rewind a channel
example: (rewindch CHANNEL)

(rewindch ‘z)

7. rewind - rewind a file
example: (rewind FILE)

(rewind ‘afile)

351 ■

352

8. closech - close a channel (disassociate the file with the channel)
example: (closech CHANNEL)

(closech ‘6)

9. close - close a file
example: (close FILE)

(close ‘filel)

10. exefilech - transfer execution to a point within a channel (start executing
commands from that channel) depending on EXOP
example: (exefilech CHANNEL EXOP)

(exefilech ‘a’ *+)

11. exefile - transfer execution to a point within a file (start executing commands
from that file) depending on EXOP
example: (exefile FILE EXOP)

(exefile ‘cmdfile’ ' +)

12. return - return execution to the channel which last issued an exefile command
example: (return)

13. for/endfor - looping control structure; loop zero or more times depending on
incrementing a variable and a terminal value
example: (for VARIABLE : = EXP to EXP begin)

STATEMENTS
(end for)

example: (for VARIABLE : = EXP downto EXP begin)
STATEMENTS

(end for)
example: (for i := 1 to 100 begin)

(ty arrayh)
(end for)

14. stop - stop execution of the program
example: stop

15. xarray - execute the elements of an array as if they were commands; the zero
element must contain the number of elements to execute
example: (xarray ARRAY)

(xarray arr)

16. tya - output the contents of an array on the users terminal; the zero element
must contain the number of elements to output

353

example: (tya ARRAY)
(tya an)

17. wrach - write the contents of an array on a channel; the zero element must
contain the number of elements to output
example: (wrach CHANNEL ARRAY)

(wrach y arr)

18. wra - write the contents of an array to a file; the zero element must contain the
number of elements to output
example: (wra FILE ARRAY)

(wra ‘outfile’ arr)

19. getach - read values from a channel and put them in an array; the first line read
must be the number of values to read
example: (getach CHANNEL ARRAY)

(getach y arr)

20. geta - read values from a file and put them in an array; the first line read must be
the number of elements to read
example: (geta FILE ARRAY)

(geta ‘infile’ arr)

21. subs - find a substring containing the characters between the positions defined
by two arithmetic expressions and make it the new value of a variable
example: VARIABLE : = subs(VAL,EXP,EXP)

var : = subs(‘a string’,3,6)

22. trim - trim the blanks from the end of a variable value
example: (trim VARIABLE)

(trim var)

23. squeeze - replace all successive blanks within a variable value with one blank
and leave a blank at the end
example: (squeeze VARIABLE)

(squeeze var)

24. fsetq - assigns a value (either a literal or the value of a variable) to a variable
example: (fsetq VARIABLE VAL)

(fsetq var ‘a string)

25. fsetqa - assigns the value of an arithmetic expression to a variable
example: (fsetqa VARIABLE EXP)

(fsetqa var 3*y/2)

354

26. addmacsch - read definitions from a channel; stop reading when two target
end-of-line flags are encountered (usually $$)
example: (addmacsch CHANNEL)

(addmacsch ‘4)

27. addmacs - read definitions from a file; stop reading when two target
end-of-line flags are encountered (usually $$)
example: (addmacs FILE)

(addmacs ‘defsfile)

28. addmacs - read definitions which immediately follow the addmacs commands;
stop reading when two target end-of-line flags are encountered
(usually $$)
NOTE: this command cannot be used on channel 4 (the users
terminal); instead use: (addmacsch ‘4)
example: (addmacs)

29. system - perform an operating system command
example: (system VAL)

(system ‘vi defsfile)

30. escape - temporarily escape to the operating system
example: (escape)

31. trace - turn tracing of commands on or off
example: (trace VAL)
where VAL evaluates to on or off

32. fexecute - execute the value of a variable
example: (fexecute VAR)

(fexecute codevar)

Definition of non-keywords used in examples above:

CHANNEL a variable or quoted literal value which evaluates to a channel
number (0-9 or a-z)
NOTE: channels 0-5 are reserved by the system for specific
purposes and may not work with some commands

FILE a variable or quoted literal value which evaluates to a file name

VARIABLE a variable name which can consist of any sequence of
characters which are balanced with respect to parentheses

355

VAL either a variable or a quoted literal value

EXOP can be one of four possible values:
0 rewind the file
4- do not rewind the file
0 label rewind the file and move past a line which

begins with label
+ label do not rewind the file but move forward

past a line which begins with label

EXP an arithmetic expression which evaluates to an integer
NOTE: an arithmetic expression can involve the four
arithmetic operations + ,-,*,/ (addition, subtraction,
multiplication, and division) with numbers and/or variables
and/or functions as operands using balanced parenthesis as
needed or desired to effect precedence (although numbers can
serve as variable names such variable names cannot appear in
an expression as they will be interpreted as numbers)

ARRAY an array name which can consist of any sequence of characters
which are balanced with respect to parentheses

STATEMENTS can be any sequence of zero or more statements
NOTE: each statement must fit on one line (usually 80
characters but implementation dependent) so all
non-keywords have an implied limit to their size

APPENDIX 9.3

BARREL/ASP BUSP KIT

Informal description of the lisp functions available in the blisp kit. Keywords are

lower case; non-terminals are upper case. A “general case” example is followed by

a specific example.

1. (car #) - find the first s-expression of the non-null list
example: (car S-EXP)

(car ‘((a b c)xyz))

2. (cdr #) - find the list that is left when you remove the car of the non-null list
example: (cdr S-EXP)

(cdr ‘((a b c) x y z))

3. (cons # #) - insert the s-expression onto the front of the list
example: (cons S-EXP S-EXP)

(cons ‘a’ ‘(b c))

4. (eq ##)- return TRUE if the atom specified by the first argument is the same as
the atom specified by the second argument; return FALSE otherwise
example: (eq S-EXP S-EXP)

(eq ‘harry’ ‘harry)

5. (atom #) - return TRUE if the argument is an atom, return FALSE otherwise
example: (atom S-EXP)

(atom ‘harry)

Definition of non-keywords used in examples above:

S-EXP a variable or quoted literal which evaluates to an atom (literal)
or a function or a list of S-EXPs

356

APPENDIX 9.4

BARREL/ASP BICON KIT

List of the Icon functions available in the bicon kit.

1. find

2. upto

3. any

4. many

5. move

357

APPENDIX 9.5

BARREUASP BGIGI KIT

Informal description of the commands available in the in the bgigi kit which allow

access to the GIGI/Regis graphics terminal. Keywords are lower case;

non-terminals are upper case. A “general case” example is followed by a specific

example.

1. (open gigi) - open gigi terminal for writing graphics commands (change it from
normal mode to graphics mode)
example: (open gigi)

2. (write gigi f) - send gigi graphics command to the terminal
example: (write gigi GRAPH)

(write gigi p[180,50J)

3. (writef gigi /) - send gigi graphics command to the terminal and write it to a file
specified by the variable %gfh
example: (writef gigi GRAPH)

(writef gigi p[180,50])

4. (close gigi) - close gigi terminal (change it from graphics mode to normal mode)
example: (close gigi)

5. (reset gigi) - reset all graphics attributes of the gigi terminal
example: (reset gigi)

Definition of non-keywords used in examples above:

GRAPH a string of GIGI/Regis graphics commands

358

APPENDIX 9.6

B ARREU ASP BCNTRL KIT

Informal description of the while and repeat control commands available in the

bcntrl kit. Keywords are lower case; non-terminals are upper case. A “general

case” example is followed by a specific example.

1. while (#) do - beginning of while loop; loop while numeric expression is true;
cannot be nested

begin - marks the beginning of the statements in the loop

end while - marks the end of the statements in the loop

example: while (BOOLOP EXP EXP) do
begin
STATEMENTS
end while

while (le a b) do
begin
(ty ‘a is less than b)
(fsetqa aa+1)
end while

2. repeat - beginning of repeat until loop; cannot be nested

until - marks the end of the statements in the loop

(/) - loop until the numeric expression is true

example: repeat
STATEMENTS

until
(BOOLOP EXP EXP)

repeat
(ty ‘a is less than b)

359

360

(fsetqa a a+1)
until
(ge a b)

3. {# - beginning of while loop; loop to corresponding label at end of loop; can be
nested

while (#) do - marks the beginning of the statements in the loop; loop while the
alphanumeric expression is true; only equal and not equal are
supported

#} - marks the end of the statements in the loop; the label corresponds with the
label at the beginning of the loop

example: {LIT
while (BOOLOP VAL VAL) do
STATEMENTS
LIT}

{loopl
while (ne a b) do
(ty ‘a is not equal to b)
(fsetqa a a+1)
loopl}

Definition of non-keywords used in examples above:

BOOLOP a boolean operator; can be any of eq, ne, gt, it, ge, le

VAL either a variable or a quoted literal value

EXP an arithmetic expression which evaluates to an integer
NOTE: an arithmetic expression can involve the four
arithmetic operations +, -, *, / (addition, subtraction,
multiplication, and division) with numbers and/or variables
and/or functions as operands using balanced parenthesis as
needed or desired to effect precedence (although numbers can
serve as variable names such variable names cannot appear in
an expression as they will be interpreted as numbers)

STATEMENTS can be any sequence of zero or more statements
NOTE: each statement must fit on one line (usually 80

361

characters but implementation dependent) so all
non-keywords have an implied limit to their size

LIT a literal constant value

APPENDIX 9.7

BARREL/ASP BCASE KIT

Informal description of the case statement available in the bcase kit. Keywords are

lower case; non-terminals are upper case. A “general case” example is followed by

a specific example.

1. (casen # of) - beginning of numeric case statement

(whenn # = >#)- individual tests of case statement; if the expression is equal to
the number in the casen statement then the statement is
executed

(whenn others = > #) - default statement to execute if no matches have been
found in previous whenn statements

example: (casen EXP of)
(whenn EXP = > STATEMENT)
(whenn others = > STATEMENT)

(casen var*3 of)
(whenn 3 = > (ty ‘var is 1))
(whenn 6 = > (ty ‘var is 2))
(whenn others = > (ty ‘others))

2. (case # of) - beginning of alphanumeric case statement

(when #=>#)- individual tests of case statement; if the string is equal to the
string in the case statement then the statement is executed

(when others = > #) - default statement to execute if no matches have been
found in previous when statements

example: (case VAL of)
(when VAL = > STATEMENT)
(when others = > STATEMENT)

362

363

(case var of)
(when ‘xyz’ = > (ty ‘its xyz))
(when ‘abc’ = > (ty ‘its abc))
(when others = > (ty ‘others))

Definition of non-keywords used in examples above:

VAL either a variable or a quoted literal value

EXP an arithmetic expression which evaluates to an integer
NOTE: an arithmetic expression can involve the four
arithmetic operations (addition, subtraction,
multiplication, and division) with numbers and/or variables
and/or functions as operands using balanced parenthesis as
needed or desired to effect precedence (although numbers can
serve as variable names such variable names cannot appear in
an expression as they will be interpreted as numbers)

STATEMENT can be any one statement
NOTE: each statement must fit on one line (usually 80
characters but implementation dependent) so all
non-keywords have an implied limit to their size

APPENDIX 10.1

BARREUASP BLOGO TAILORED SYSTEM

Informal description of the logo commands available in the blogo tailored system.

They are modelled after Apple Logo and are implemented in terms of the

GIGI/Regis graphics terminal and commands. Required are the BGIGI definitions

and the forward.r program (a C program which does the math required by Logo

that ASP cannot handle). Keywords are lower case; non-terminals are upper case.

A “general case” example is followed by a specific example.

1. right # - turn the turtle right n degrees
example: right EXP

right 90

2. left # - turn turtle left n degrees
example: left EXP

left 90

3. forward # - move turtle forward n pixels
example: forward EXP

forward 10

4. back # - move turtle backwards n pixels
example: back EXP

back 10

5. home - put turtle in center of screen and point up
example: home

6. cs - clear the screen and go home
example: cs

7. clean - clear the screen but don’t move the turtle
example: clean

8. penup - make the turtle pen inactive
example: penup

364

365

9. pendown - make the turtle pen ready to draw
example: pendown

10. hideturtle - make the turtle invisible
example: hideturtle

11. showturtle - make the turtle visible
example: showturtle

12. repeat # [#] - execute a list of commands specified by the second argument
(separated by underscores); repeat a number of times specified
by the first argument
example: repeat EXP [STATEMENT

repeat 5 [forward 5_right 50]

13. setbg # - set the background color
example: setbg EXP

setbg 1

14. setpc # - set the pen color
example: setpc EXP

setpc 2

15. setx # - set x coordinate
example: setx EXP

setx 90

16. sety # - set y coordinate
example: sety EXP

sety 90

A sample BLOGO program - the familiar POLYSPI Logo program (note the use of

the BBAS, BGIGI, and BCNTRL statements):

(fsetq distance ‘1)
(fsetq angle ‘123)
(fsetq increment ‘3)
(open gigi)
(reset gigi)
home
while (le distance 3*angle+angle/4) do
begin
forward distance

366

right angle
(fsetqa distance distance+increment)
end while
(close gigi)

Normally, the definitional facilities of ASP are used to implement Logo

procedures. So the POLYSPI program above might be defined as:

polyspi # # #|
if #14 > 3*#24+#24/4 skip 3$ defined in BSYS
forward #14$
right #24$
polyspi #14+#34 #24 #34$

$

and then called by:

polyspi 1 123 3

Definition of non-keywords used in examples above:

EXP an arithmetic expression which evaluates to an integer
NOTE: an arithmetic expression can involve the four
arithmetic operations +, -, *, / (addition, subtraction,
multiplication, and division) with numbers and/or variables
and/or functions as operands using balanced parenthesis as
needed or desired to effect precedence (although numbers can
serve as variable names such variable names cannot appear in
an expression as they will be interpreted as numbers)

STATEMENT can be any one statement
NOTE: each statement must fit on one line (usually 80
characters but implementation dependent) so all
non-keywords have an implied limit to their size

APPENDIX 10.2

BARREL/ASP BED TAILORED SYSTEM

Informal description of the commands available in the barrel editor. Keywords are

lower case; non-terminals are upper case. A “general case” example is followed by

a specific example.

1. (cd # #) - delete the first specified line and move it after the second specified line
example: (cd LINE LINE)

(cd 5 20)

2. (f #) - find the next line beginning with the argument
example: (f UT)

(f this line)

3. (dup ###)-duplicate the range of lines specified by the first two arguments after
the line specified by the third argument
example: (dup LINE LINE LINE)

(dup 5 8 20)

4. (u) - undo the last deletion
example: (u)

5. (renum) - renumber the file and write it out
example: (renum)

6. (d) - delete the current line
example: (d)

7. (d #) - delete the specified line
example: (d LINE)

(diO)

8. (d # #) - delete the range of specified lines
example: (d LINE UNE)

(d 10 20)

9. (i #) - insert lines after the specified line until a null line is entered
example: (i UNE)

(ilO)

367

368

10. (s (#) (#)) - substitute the text specified by the second argument for the text
specified by the first argument in the current line; the text can
contain spaces
example: (s (LIT) (ITT))

(s (stuff) (with this))

11. (s # #) - same as above except the text cannot contain spaces
example: (s LIT LIT)

(s bad good)

12. (bye) - write the file out and exit the editor
example: (bye)

13. (a #) - append the text to the end of the current line
example: (a LIT)

(a this stuff)

14. (v) - view the lines surrounding the current line
example: (v)

15. (m) - modify the current line
example: (m)

16. (m #) - modify the specified line
example: (m LINE)

(m 10)

17. (1) - list the current line
example: (1)

18. (1 #) - list the specified line
example: (1 LINE)

(110)

19. (1 # #) - list the range of specified lines (limited to 22)
example: (1 LINE LINE)

(1 10 20)

20. (1 a) - list lines 1 through 22
example: (1 a)

21. (p) - print current line plus the next 21
example: (p)

369

22. (ed #) - edit the specified file
example: (ed FILE)

(ed ’afile)

Definition of non-keywords used in examples above:

FILE a variable or quoted literal value which evaluates to a file name

LIT a literal constant value

LINE a literal constant line number

APPENDIX 10.3

BARREUASP BQBE TAILORED SYSTEM

Informal description of the relational database commands available in the bqbe

tailored system. Keywords are lower case; non-terminals are upper case. A

“general case” example is followed by a specific example.

1. (getr /) - get a relation from database in a file
example: (getr FILE)

(getr tables)

2. (project / #) - project the domains specified by the the second argument
(separated by commas) over relation named in the first
argument
example: (project LIT UT[,...])

(project test make,cond)

Definition of non-keywords used in examples above:

FILE a literal constant file name

UT a literal constant value

370

APPENDIX 10.4

BARREL/ASP BDT TAILORED SYSTEM

Informal description of the commands available in the decision table presentation

processor. Keywords are lower case; non-terminals are upper case. A “general

case” example is followed by a specific example.

1. dt - prompts for conditions in the table and displays actions; prompts are
repeated until “no” is entered; if an prompt is answered with a value that
begins with an * then actions for all of those conditions are displayed as
long as the user enters a “;”
example: dt

car make ?
cord
condition ?
good
commission is 5%
shop work needed is no-need
manager ok is no-req
we continue
car make ?

2. dec(/,#) - displays actions from the table based on the conditions provided as
arguments; if an argument begins with an * then actions for all of
those conditions are displayed as long as the user enters a “;”
example: dec(LIT,LIT)

dec(*LJr,*LIT)

dec(cord,*Cond)
commission is 5%
shop work needed is no-need
manager ok is no-req

371

372

*Cond = good
»
commission is 1%
shop work needed is 3-weeks
manager ok is no-req
*Cond = poor

Definition of non-keywords used in examples above:

UT a literal constant value

APPENDIX 10.5

BARREL/ASP BUNT TAILORED SYSTEM

Informal description of the decision table interpreter commands available in the

btint kit. Keywords are lower case; non-terminals are upper case. A “general case”

example is followed by a specific example.

1. (getb #) - get b-type decision table from the file
example: (getb FILE)

(getb ‘adt)

the table is of the form:

header
conditions

actions
number of rules
condition part of rule
action part of rule

example:

reml6h25c2a3p3;2;:4;4;2;nclassic r6
is make l:cord

2:reo
3:duesenberg

is condition l:bad
2:good

commission is 1:1%
commission is 2:5%

373

374

commission is
commission is
shop work is
shop work is
shop work is
shop work is
managers ok is
managers ok is

3:10%
4:variable
1:1 week
2:2 weeks
3:6 weeks
4:none
l:not required
2:required

6
1,1,
1,6,9
1,2,
2,8,10
2,1,
2,6,10
2,2,
1,5,10
3,1,
3,7,10
3,2,
2,6,10

2. (askb #) - interpret a b-type decision table from the file
example: (askb FILE)

(askb ‘adt)

3. (getm #) - get an m-type decision table from the file
example: (getm FILE)

(getm ‘adt)

table is of the form:

number of conditions
conditions
number of rules
condition part of rule
action part of rule

375

number of actions
actions

example:

5
is make cord
is make reo
is make duesenberg
is condition bad
is condition good
6
10010
1,6,9
10001
2,8,10
01010
2,6,10
01001
1,5,10
00110
3,7,10
00101
2,6,10
10
commission is 1%
commission is 5%
commission is 10%
commission is variable
shop work is 1 week
shop work is 2 weeks
shop work is 6 weeks
shop work is none
managers ok is not required
managers ok is required

4. (askm #) - interpret an m-type decision table from the file
example: (askm FILE)

(askm ‘adt)

376

Definition of non-keywords used in examples above:

FILE a variable or quoted literal value which evaluates to a file name

GRADUATE SCHOOL
UNIVERSITY OF ALABAMA AT BIRMINGHAM

DISSERTATION APPROVAL FORM

Name of Candidate____ John Barrett
Major Subject Computer and Information Sciences
Title of Dissertation A Computerized Formal Methodology For

Development of Simulation Software

Chairman

Director of Graduate Program
Dean, DAB Graduate School

Date

PS-1428

	A Computerized Formal Methodology For Simulation Software Development.
	Recommended Citation

	tmp.1715972404.pdf.sNc3d

