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CHAPTER I

Introduction

Longitudinal data arise from repeated observation of a sample over 

time. Frequently the evolution of a process is of interest, and this 

necessitates the acquisition of serial responses. Because time alone 

may not be a factor deterministic of outcome, other covarying factors 

collectively known as concomitant information are similarly recorded. 

Ensuing inquiries are addressed by modeling response behavior through 

functional relationships of the covariates. In regression terminology 

responses form dependent variables and concomitant information 

constitute explanatory, or predictor, variables. The procedure of 

investigation as characterized above is designated longitudinal data 

analysis. A synonymous term also present in the literature is event 

history analysis (Allison, 1984).

Data of this type are commonly found in many disciplines, with 

examples available pointing well into the past. This has been 

especially true in the social sciences. More recently, researchers in 

the biological sciences have shown considerable interest in this 

methodology. For illustrative purposes, we next support this contention 

by examining three reports from the field of epidemology. In each case 

blood pressure (BP) measurements are the responses of interest. The 

applicability and flexibility of longitudinal techniques for addressing 

different issues using similar data motivates this demonstration.

1
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Zinner, Martin, Sacks, Rosner, and Kass (1975) reported results 

pertaining to observed changes in BP levels between initial and follow

up visits. In a prior report (Zinner, Levy, and Kass, 1971), 721 

children between the ages of two and fourteen from 190 families in the 

Boston area were evaluated to determine hypertensive status, and it was 

confirmed that BP levels in children tend toward familial aggregation. 

Because hypertension is a potentially devastative disease, treatment is 

indicated once symptoms appear. However, this point of onset cannot be 

isolated given data from an initial visit only. The purpose of this 

study was to contrast BP readings across the periods to determine when 
hypertensive status changed and if the observed familial aggregation 

persisted. The sample consisted of 549 subjects (from 163 families) 

recruited from the earlier study, together with an additional 60 

participants (from 44 families). Similar data was collected at each of 

two visits separated by a period of four years. Both systolic and 

diastolic readings were adjusted for age and sex, and then normalized 

into dimensionless standard deviation units (SDU).

Analysis of variance (ANOVA) techniques were used to confirm 

familial aggregation among children. ANOVA essentially compares sources 

of variation; here, these are within- and between-family. To determine 

if familial aggregation persisted, the ANOVA model was applied to the 

follow-up data:

(SDU2)ij = H + FAMILY^ + Ejj 

where i indexes through families, j indexes through subjects within 

family, SDU2 identifies response at follow-up, p is the mean population 

response, FAMILY^ is the effect due to membership in the ith family, and
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Ei j is the random deviation of the (ij)th subject due to other 

unexplained sources of variation.

The comparison of responses across periods was useful for 

determining whether or not subjects varied individually to a significant 

degree. One approach useful for gaining insight was through the 

examination of scatter plots. Structural (deterministic) relationships 

were postulated based on this empirical evidence. Given initial and 

follow-up responses, the simple linear regression model was used to 

assess this relationship formally:

SDU2 = Po + Pl'SDUi + e

where P^ represents the magnitude of change expected for the follow-up 

score SDU2, given an initial score SDUj. The significance of px is a 

measure of the degree of association between the sets of scores.

Another way of exploring this relationship was through categorical 

data analysis. Natural groupings were created using the rank-orders: 

(a) SDU < -1; (b) -1 < SDU < 0; (c) 0 < SDU < 1; and (d) SDU > 1. It 

was then possible to produce four different graphs, each based on the 

initial score category. These charts consisted of histograms 

representing the frequencies of follow-up score categories, thus 

allowing visual inspection of the empirical distributions. Arrangement 

of these values into a contingency table format permitted a test for 

significant change in BP status based on the chi square statistic.

Rosner, Hennekens, Kass, and Miall (1977) investigated the 

determination of age-specific tracking correlations for BP. These are 

defined for an individual as the correlation between two readings taken 

at different times. In order to produce a spectrum of these, it was 
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necessary to include as many subjects of varying age as feasible. The 

sample, consisting of subjects aged between five and seventy-four years 

at the time of study initiation, was selected from two separate areas of 

Wales. From the Vale of Glamoran, 863 subjects were reviewed during 

1956, 1960, 1964, and 1971, and from Rhondda Fach, 734 were evaluated in 

1954, 1958, 1964, and 1971. Due to the large size of the sample it was 

impractical to provide separate analyses for each age. For this reason, 

and to eliminate the possibility of sparse cell counts, individuals were 

categorized by age at study initiation to be assigned into a stratum 

based on five-year age increments. Once this was accomplished, sample 

tracking correlations were generated for each gender-within-stratum 

combination.

Before formal analyses began, the correlations were converted into 

approximately standard normal deviates via the inverse hyperbolic 

tangent transformation. The reason for doing so was to allow the use of 

available ANOVA techniques for examining both age and gender effects. 

Even though age was of primary interest, other effects (e.g. gender) 

were investigated if the possibility of their influence existed. 

Furthermore, age stratification was easily adjustable and this allowed 

other partitionings of the data to be analyzed if warranted.

Cook, Scherr, Evans, Laughlin, Chalman, Rosner, Kass, Taylor, and 

Hennekens (1985) examined the effect of oral contraceptives (OC) on BP. 

They cited several references which connect OC use with severe health 

problems. Their study attempted to quantify this association. In 1973 

(Survey 1), 5,802 women were recruited for participation. Each was 

visited at home, interviewed for health and related information, and 

provided three BP readings (the average of which is used in the 
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analyses). A second visit (Survey 2) was performed in 1976-77, in which 

3,729 subjects agreed to continue. The last visit occurred in 1978 

(Survey 3). Instead of polling the remaining cohort, a two-to-one 

sample stratified by OC-use status (non-use versus use), matched on age, 

was identified. Of the 1,503 so chosen, 1,111 consented to participate. 

Having collected the data, eligibility requirements were established 

before starting the analyses. To alleviate possible confounding 

problems, subjects classified as postmenopausal, pregnant, or under 

medication for hypertension at any survey point were exempted from 

consideration. After adjusting for this and assuring that consecutive 

data were available, 2,673 subjects were identified for analyses 

involving Surveys 1 and 2, while 927 were available for Surveys 2 and 3 

comparison.

Two specific questions were posed. The first examined whether or 

not BP changes significantly between visits in light of OC status 

reversal. To begin, let (t-1) and t represent the prior and current 

visits, respectively. Also, allow the sample to be partitioned into two 

sets according to OC status at (t-1). To analyze the consequences of 

reversal, two separate regressions were proposed (one for each of the 

sets) using the model :

(BPt - BPt-1) = Po + Pl*BPt-l + 02'OCt + e

where OC% is an indicator denoting the use (= 1) or non-use (= 0) at the 

current visit, and Xj represents one of n potential supplementary 

response modifiers.

Inference on 02 formed the emphasis of these regressions. For 

previous non-users 02 represented the adjusted change in BP due to 
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initiation of OC. Similarly, 02 was the adjusted change in BP due to 

cessation of OC for previous users.

Their second inquiry explored the direct relationship between OC 

and BP level. Combining Surveys 2 and 3 data, a regression was proposed 

using the model

BPt = Bo + Bi-OCt ^Vi-Xit + Et

where t indexes the particular survey data source. The coefficient pj 

represents the adjusted effect on the level of BP due to the use or 
abstinence of OC.

The above studies have demonstrated that it is not the data that 

drives the analysis, but rather the questions posed and the models used 

to implement the structural relationships under investigation. While 

the thrust of this work is oriented towards the development of 

longitudinal methodologies, it may be worthwhile to step back and 

compare these with cross-sectional techniques. Cross-sectional data is 

also collected at varying times, the difference being that for each 

observation time the population is resampled. One obvious relevance is 

that no long term commitment on behalf of the subject is required. This 

is in direct contrast to the longitudinal practice in which attrition is 

always a concern. Because it will always be more difficult to recruit 

and maintain the sample, a longitudinal study must possess benefits 

which are not available through the cross-sectional avenue. Excellent 

reviews which detail many of the advantages and/or deficiencies are 

found in Cook and Ware (1983) and Ware (1985). Having contrasted 

longitudinal and cross-sectional data acquisition methods, a critical 

comparison will serve to accentuate proper usages of such data.
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Glindmeyer, Diem, Jones, and Weill (1982) contrasted estimates of 

annual change in lung function. The sample consisted of 52 white males 

which had never been exposed to noxious chemicals. At the time of 

recruitment, ages of subjects ranged between 30.7 and 58.0 years and 

height varied between 62.8 and 73.5 inches. Five examinations were 

scheduled at one-year intervals to monitor pulmonary function. 

Spirometry data (responses) recorded included forced vital capacity 

(FVC, ml), forced expiratory volume in one second (FEV1( ml), forced 

expiratory flow rate between 25% and 75% of the FVC <FEF25-75%« ml/s), 

forced expiratory flow rate at 50% of the FVC (FEF50, ml/s), and forced 

expiratory flow rate at 75% of the FVC (FEF75, ml/s).

Each response category was analyzed using both cross-sectional and 

longitudinal techniques. Cross-sectional methods centered on data 

obtained at each examination period. This required five sets of 

regression analyses to be performed using age and height as predictors. 

Conversely, the longitudinal approach concentrated on the individual. 

For this reason 52 separate regressions were needed using age as the 

lone covariate (height was assumed constant for each subject across the 

study period). The slope coefficients from these were then averaged to 

yield the longitudinal estimate of yearly change. An additional 

analysis was also performed excluding the initial visit data. This was 

done to avoid bias possibly induced due to learning effects.

To contrast the results between these two methodologies, the 

coefficient of mean annual change in FEV^ was chosen for illustrative 

purposes. The cross-sectional values were -42.6, -49-2, -44.9, -50.5, 

and -44.6 ml for successive observation periods, whereas the 

longitudinal estimates were -12.4 ml (based on five visits) and -17.4 ml



8

(excluding the first). The cross sectional coefficients impart 

estimates of decrease in FEV^ level between consecutive years of age 

within the population. Notice that these values remained relatively 

stable across observation periods. These were in obvious contrast to 

the longitudinal coefficients which reflect the expected declination in 

FEVi level for an individual per year of aging. This example affirms 

that direct comparison of cross sectional versus longitudinal estimates 

is inappropriate.

Thus far, basic concepts have been presented along with several 

examples for illustrative purposes. A theme common in each of these 

reports is that proper modeling and analysis is required to answer 

hypothesized questions. A problem inherent in the analysis of 

longitudinal data, regardless of the model, concerns the incorporation 

of the correlation structure presumed to exist between serial 

observations on the same subject. There are two primary issues 

involved, and these are addressed next.

The purpose of modeling is to relate responses to possible 

explanatory information. It is from this practice that insight is 

gained for the system under investigation. If a model is defined to be 

purely deterministic, no room for erroneous response is allowed. 

Because the idea of perfect prediction is absurd, a model should also 

incorporate a random, or stochastic, component. Another way to envision 

this concept is from the response side. A model can propose a set of 

outcomes from some defined set of possibilities, so one may conceive of 

a probability function governing this process. The problem faced in 

either scenario is the dearth of probability distributions which allow 

the inclusion of correlation structure presumed to exist in serial 
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observations. One notable exception is the multivariate normal (MVN) 

distribution for which a substantial body of literature in theory and 

application exists. However, the MVN is not appropriate in many 

circumstances (e.g. multivariate discrete responses). This precipitates 

the need for creating techniques that circumvent usual distributional 

assumptions.

Even if distributional problems did not exist, estimation of the 

unknown correlation matrix presents yet another barrier. Typically, the 

coefficients comprising this matrix are not of direct interest. But 

their inclusion necessarily affects the modeling process and, hence, 

cannot be ignored. When the number of observations per subject is 

sufficiently large (roughly > 20), it may be possible to use time series 

techniques to create an autocorrelation function, and through it 

estimates of the correlation coefficients are available. Unfortunately, 

longitudinal studies typically do not allow for the collection of data 

with this frequency.

These issues present formidable challenges, but continued research 

has led to the development of an encouraging technique of analysis. 

Liang and Zeger (1986) proposed the generalized estimating equations 

(GEEs) which allow for wide varieties of response modeling while 

providing consistent estimates of structural parameters even with 

misspecification of the correlation matrix. As a result of its 

flexibility, a unifying framework for the analysis of longitudinal data 

is being established.

By virtue of its relatively short existence many properties of the 

GEEs have yet to be considered. For this reason an area of rich 

research potential exists. We propose to extend this body of knowledge 
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by deriving a modification of the original ŒEs from a different 

perspective.

Chapter 2 begins with definitions, notations, and terminology. 

This is followed by a retrospection of statistical techniques used to 

model continuous and discrete serial responses. The conclusion provides 

a detailed description of the steps leading to the original CEEs 

formulation.

Chapter 3 provides the development and theory of the original 

research. Throughout the chapter it is assumed that the correlation 

structure is arbitrary but constant across subjects. Some statistical 

properties of the derived estimator are examined.

Chapter 4 extends the research by postulating specific forms for 

the correlation structure. Coupled with the previous derivations, a 

generalized estimation framework is established.

Chapter 5 applies the aforementioned framework to several possible 

response distributions from the exponential family. This is the final 

step needed for construction of a flexible programmed implementation of 

the methodology.

Chapter 6 examines further properties of the derived estimator 

using simulation techniques. Jackknife, bootstrap, and Monte Carlo 

procedures are used to direct comparison between estimates based on 

Chapter 3 results versus those obtained from the original grr 

formulation. Motivating the discussion is reexamination of several case 

studies from the literature.

Chapter 7 summarizes this work and suggests areas for continued 

research effort.



CHAPTER II

Literature Review
It has been mentioned that the history of longitudinal data 

analysis extends well into the past. Nonetheless, detailed examination 

of the statistical implications of modeling is only of recent origin. 

Before making assessments of these contributions we first establish 

definitions, notations, and terminology used throughout this work. In 

depth reviews of the general linear model, maximum and quasi

likelihoods, and GEE formulation are presented afterwards. 

Definitions, Notations, and Terminology

A study is the scientific examination of a question posed or 

phenomenon observed. A population is the set of subjects towards whom 

the study is directed. A sample is a set of subjects participating in 

the study. The sample size is the number of participants, and is 

denoted by the lowercase k. Each subject will be assigned an integer 

between 1 and k, with an arbitrary subject from the sample being 

identified by the lowercase i.

A response is the objective measure within the study. The 

response for the ith subject observed on the jth occasion is represented 

as yjj. The total number of responses for the subject is denoted np 

The chronologically ordered set of responses is depicted in vector 
notation by: Xf = (yn, y-^, .... yjn^)T . If each subject is observed 

on the same occasions the design is said to be "balanced on time"

11
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(Ware, 1985), and this allows the above representation to simplify to: 
Xi ■ (Xii- Xi2. •••» yin)T-

Concomitant information is additional data that is associated with 

the subject at the time a response is recorded. Typically one or more 

factors are available (either through design or happenstance), and these 

are represented in vector notation for the ith subject on the jth 
occasion by: x^j = (xfji, Xjj2..... Xfjp)?. The set of concomitant 

information for the subject recorded over all observation periods is 

represented in matrix notation through augmentation of the individual 

vectors: Xj - Xj.2’ • • • > ïinp •

It is often the case that we speculate the existence of a 

functional relation between the response and its concomitant 

information. More specifically, we postulate this relation to exist 

through a linear combination of the latter. We define the linear 

predictor for the ith subject on the jth occasion as the scalar product 
of the concomitant data and the parameter vector: = xjjg, where g 

is a pxl vector of unknown population parameters. Inference on 6 is the 

objective of the present research effort.

Responses are the primary elements of interest within the study. 
The characteristic inherent in these is that it is not possible to 

predict with certainty the value each will attain, and this implies our 

models cannot be purely deterministic. For this reason we consider a 

response to be a random variable. It is clear that this definition is 

expandable to encompass more complex aggregations such as random vectors 

and matrices.

We next consider terminology associated with random entities. Let 

Zi and Z2 represent two arbitrary random entities. Every random entity
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is presumed to be associated with a given distribution function F. For 

example, it may be that Z1 follows the distribution function F%. This 

relation is expressed by the notation ~ f1f where is pronounced 

"is distributed as." If Z1 and Z2 exist such that for every possibility 

it is true that f3(Z1(Z2) = fi(Zx) • f2(Z2) (where flf f2, and f3 are 

probability functions associated with distributions Flf F2, and F3, 

respectively), Zj and Z2 are defined as being independent. Moreover, if 

and Z2 are independent in addition to having the same distribution 

function, they are said to be independent and identically distributed 

(IID). In many cases a specific distribution will be postulated for the 

random entity under discussion and will be identifiable from the 
context.

Statistical functions of random entities are of special 

importance. The most common of these (when they exist) are the 

expectation, covariance (i.e. variance or dispersion), and correlation. 

The definitions of these are available in standard statistical texts. 

Due to their special status, the following functional representations 

are assigned: E[ • ), V{• ), and R(•), respectively. More often, we refer 

to individual elements of these contructs. Let 5% be a random vector, 

and yjm and y^n be any two of its elements. We denote E{y^m] = 
V{yim,yin) = ®imn> and R(yjnp yini = Pimn- When m equals n, we write 
Vfy-iml = a^mm to distinguish the variance from its square root 0^^, the 

standard deviation.

Lastly, we consider two special matrix-vector functions. Let v be 

a nxl vector. We define diag(v) as the nxn diagonal matrix formed by 

placing each jth (j = 1 to n) element of Vj onto the corresponding 

(j,j)th diagonal position of the matrix. Next, let M be a nxn square
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(not necessarily diagonal) matrix. We define vec(M) as the Ixn 

transposed vector formed by placing each (j, j)th (j = 1 to n) diagonal 

element onto the corresponding jth position of the vector.

Models for Serial Observations

Due to the preponderance of "nearly normal " data found in 

experimental environments, the bulk of the literature has dealt with 

means to provide adequate analyses under the MVN assumption. while it 

may be possible to transform various measured quantities into 

approximately normal deviates, qualitative (including count) data do not 

fair quite as favorably. This does not imply, however, that techniques 

to analyze the latter forms of data have not been forthcoming. 

Considerable effort has been expended to produce data-analytic methods 

in both categories of response.

Correlated quantitative responses.

One generally accepted starting point is in the area known as 

growth curve analysis. As is implied by the name, measurements 

(responses) are recorded over time during the maturation process for 

subjects within the study. It is then conceivable that growth could be 

hypothesized to be a function time. More specifically, if n responses 

are recorded for each subject, it is possible to construct a polynomial 

of degree (n-1) for each subject.

While there is nothing inherently wrong in the above scenario, the 

only thing that can be inferred are properties of the individual 

subject. In order to study processes relevant to the population under 

investigation, there must exist some method by which information for all 

subjects are pooled. Several such strategies will be explored next, in 

each case, we assume k subjects are observed on each of n occasions.
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Potthoff and Roy (1964) provided an early attempt at describing 

the nature of the problem. In this seminal work, the multivariate 

analysis of variance (MANOVA) model was used as a basis for analysis:

E(X) = AÇ

where X is a kxn matrix with mutually independent rows, A is a known kxp 

design matrix, and § is a pxn matrix of unknown parameters. They 
assumed row xj was distributed Nn(a^,S). Solution of this system was 

accomplished via ordinary least squares. The MANOVA model was augmented 

via post-multiplication by a constant matrix P to produce the growth 

curve model:

E{X0} = AgP

where P is a nxt (t<n) known matrix of orthogonal polynomials of desired 

degree. Using the estimated parameter matrix obtained previously, tests 

of hypotheses for the degree of polynomial growth and equality of growth 

between subjects were possible.

Rao (1965) considered the model for an individual vector of 

responses to be of the form:

Xi = Ati + Ei

where Xj is a nxl vector of responses for the ith subject, A is a known 

nxp matrix, t^ is a pxl vector of parameters unique to the subject such 

that tj ~ Np(r, A), and ~ Nn(O,S). Assuming t| and e^ were 
uncorrelated, followed Nn(At,AAAT + 2). Further inspection noted 

that the subject-specific parameter distribution was centerable: 

2 = ti - t. This reparameterization expressed the model as:
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Xi = a[t + a] + Ei = at + ax + £i

where t is a pxl vector of fixed effects associated with the process 

under study, and % is a pxl vector of random effects that encompasses 

inter subject variability. This was a form of the mixed effects model, 

and its application to growth curves was illustrated through the use of 

orthogonal polynomials premultiplying the response vector. This process 

generates independent (under normality) random variables known as 

orthogonal polynomial regression coefficients (OPRCs). By combining 

these across subjects, significance testing of the degree of polynomial 

growth was possible.

Grizzle and Allen (1969) proposed a model that permitted subjects 

to be either followed over time or observed under differing experimental 

conditions. Subjects were assigned to one of r treatment groups, and p 

responses were recorded on each. For a sample of size n, this model was 
expressed by:

X = BgA + E

where X is a pxn response matrix, B is the pxq within-subject design 

matrix, § is a qxr matrix of unknown parameter coefficients, A is the 

rxn design matrix across individuals, and E is a pxn random matrix whose 

rows are I ID for some arbitrary multivariate distribution. As seen 

previously, A was usually a matrix of orthogonal polynomials. This 

construction was more flexible in that it allowed each group of subjects 

to follow its own unique growth curve as determined by the vector of 

coefficients £j • Nonetheless, growth curves for all treatment 

categories were necessarily of the same degree by design.
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Geisser (1970) extended the above approach by applying Bayesian 

techniques to the pseudo-augmented model:

E(Y} = (X,Z)(t,o/A = XtA

where Y is a pxn response matrix such that its columns are independent 

MVN vectors which share a common dispersion matrix Z, x is the pxm 
within-subject design matrix, Z is a px(p-m) matrix such that ZTX = 0, t 

is a mxr matrix of unknown parameters, and A is the rxn design matrix 

across subjects. Given MVN and independence for the response vectors, 

specification of the likelihood function l(t,Z) was possible. Using 
this and specification of non-informative prior distributions for S'1 

and t, a joint posterior density was formed . Upon integrating out S'1, 

the posterior density remaining was a function of t only. It was shown 

that this function is independent of Z and thus provided the estimate:

t = (xts'1x)'1xts'1y. [at(aat)’1]

where S = Y(I - AT(AAT) 1A)YT. It was noted that the result bore 

similarity to the least squares derived covariance-adjusted estimate of 

Rao (1965).

Lindley and Smith (1972) also proposed a Bayesian approach, but 

for the linear model in general. They cited the validity of the method 

based on earlier findings that had shown "least squares estimates are 

typically unsatisfactory" when viewed from the loss function standpoint. 

The usual linear model assumes the form: E(y] = A6, where y is a nxl 

response vector, A is the nxp design matrix, and 0 is a pxl vector of 

unknown parameters. For the actual formulation of the general Bayesian 

linear model, they assumed:
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1) given @i, y ~ ^(A^.C!)

2) given 02» Hi ~ Np(A202>c2)

3) given 63, 62 ~ Nq(A303,C3) .

This cascading design led to development of a three-stage model. The 

posterior distribution of Oj, given the above conditions, was shown to 

equal Np(Dd, D), where:

d = A1TC1 *y + (C2 + A2C3AT)1A2A303 

and
D1 = A^Ci^j + (C2 + A2C3A2T )1 .

Next, they assumed vague prior knowledge surrounding the final stage by 

allowing C3 to be unbounded. To view the implication of this premise, 

it was necessary only to examine the subsequent distribution of Op The 
inverse of its dispersion, D1, diminished to A1TC11A1, while the 

expression for d reduced to A^C^y. Together these imply the 

expectation of attained the familiar form (A1TC1"1A1 j^AiC^y.

Fearn (1975) furthered the work of Lindley and Smith by applying 

Bayesian techniques to the growth curve model. He hypothesized separate 

curves for each subject, but posited observations within subject were 

IID normal. This allowed the vector of responses for the ith individual 
to be written: yjjfij,cr| ~ Nn(Xj£i,a?I), where y^ is a nxl vector of 

responses, is the nxp design matrix, is a pxl vector of unknown 
parameters unique to the subject, and o| is the variance common to all 

responses for the subject. This first stage marked a departure from 

earlier works by postulating independence. Next, a second stage was 

introduced by considering the actual vectors of parameters to be 

exchangeable across individuals, implying &il%,C ~ Np(g,C), where & is
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the pxl vector of the mean population parameters, and C is the pxp 

covariance matrix. Upon combining these stages, the distribution of the 

response compounded to:

ZilH.ai.C ~ Nn(Xjg,XiCxT + o?l) .

Following Lindley and Smith (1972) a vague prior distribution for y, was 

specified, with the inverse of its dispersion matrix vanishing in the 

analysis. Fearn continued with the additional work of estimating the 
components of dispersion for C and a2. He assumed C1 and o2 follow 

Wishart and non-central chi square distributions, respectively, 

conditional on the parameters needed for complete specification of these 
forms: C1! p, R ~ Wp(p,R) and o2|X,w ~ x2(X,io). Assumption of vague 

prior knowledge here was not helpful because [p(p+l)/2 + 2] parameters 

were involved. Instead of tackling this problem directly, an approach 

based on the following identity was attempted:

V(üJ = E[ V[%lo2,c] } + V( E[ulo2,C] } .

By MVN the expectation is independent of its dispersion, implying the 

second term of the expression above was zero if the conditioning 

parameters were known. In practice they were not and neglecting this 

term underestimated the actual variance. However, a simpler estimation 
procedure resulted. The choices for a2 and C given were based on an 

approximation to marginal posterior distribution, and further 

investigation was continuing.

Rao (1975) employed empirical Bayes techniques for simultaneous 

estimation of parameter vectors across k sets of linear models of the 

form:
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Xi = X&i + Çi , i = 1..... k

where yf is a nxl vector of responses for the ith subject, X is the 

constant nxm design matrix, ^i is the mxl vector of parameters, and 

is a nxl vector of random deviations such that E[eil&i) = 0, V(eil&i) = 
a2V, E{&i) = &, V[&i] = F, and V[&i,&j} = O. He described several 

scenarios, but each involved estimation of the parameter vector for a 

current or future individual. One criterion on which to base the 

simultaneous estimation was through minimizing the mean square error. 

For this, let p be some known mxl vector. The estimates were solutions 
that minimize the quadratic form E{(pT^ - a0 - a^yj)2}. He proved 

that the estimator formed from a weighted linear combination of

least squares and ridge estimates, was optimum.

Laird and Ware (1982) combined empirical Bayes and maximum 

likelihood methods for analysis using the mixed model. Subjects were 

presumed independent, and the model for the ith subject was expressed:

Xi = + Zibi+ £j

where is a n^xl vector of responses, Xj is the n^xp design matrix 

associated with the pxl population parameter vector a, z^ is the n^xk 

design matrix associated with the kxl subject-specific effects vector 

bj, and ej is a n^xl vector of error terms with distribution Nn.(0, R^). 

At the first stage both a and b^ were considered fixed. The second 

stage introduced variation between subjects through allowing bj to be 

distributed N^(0,D). Together these implied the distribution of y^ was 
Nn^(Xi«, Ri + ZjDzT), and the problem expanded to estimate these 

components. Let 9 be a qxl vector defined through augmentation of the 

elements of D and every Rp Maximum likelihood techniques could be used 
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to estimate both a and 6; however, a Bayesian formulation was 

constructed by placing a noninformative prior on q. Upon removal of a 

through integration, the ensuing likelihood function was maximized with 

respect to 0 only. This union of maximum likelihood and Bayesian 

methods produced restricted maximum likelihood (REML) estimates. This 

technique has been extensively studied by Cook (1982), among others.

A common factor in each of the above techniques is that responses 

are assumed to follow the MVN distribution. As it may be plausible to 

propose models with these characteristics for quantitative (i.e. 

measured) outcomes, one may not infer that proper analyses would result 
if the outcomes are discrete. Because studies are often undertaken in 

which qualitative responses are of interest, methods for modeling this 

category of outcome are explored next.

Correlated qualitative responses.

The lack of distribution functions which incorporate structure for 

correlation presumed to exist between serial observations has impeded 

methodology development for discrete modeling. The work that has been 

accomplished deals primarily with multiple serial binary outcomes, and 

it is on this subject that the discussion centers.

Korn and Whittemore (1979) described a procedure for the analysis 

of repeated binary outcomes. This technique prescribes outcomes for an 

individual to follow a unique logistic response curve. Each response 

is postulated to be function of both current covariates and prior 

outcomes. The probability of observing the response vector z for a 

given subject takes the form:

exp(aoszj + aiSZjZj.i + &^EZjXj) / np + exp(a0 + a^j.! + ^Xj)]
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where zj and xj are the response and concomitant data vector on the jth 

occasion, and & is the pxl subject-specific parameter vector. The 

intercept terms «g and were regarded as nuisance parameters, but must 

be present for modeling purposes. They concluded the discussion by 

examining methods of combining the & parameters derived from each 

subject.

Stiratelli, Laird, and Ware (1984) extended this concept by 

proposing a two-stage approach. In the first stage, modeling of the 

individual response likelihood proceeded as above. Use of the logit 

transformation produces the linearization: Xf = z^Vj, where Z^ is a nxm 

matrix of concomitant information and Vj is a mxl vector of subject

specific parameters. The matrix Z^ was quite general in that it may 

contain elements from y^, further generalizing the technique of Korn and 

Whittemore (1979). In the second stage, variability between subjects is 

introduced by assuming ~ Nm(Wi«,D), where Wj is a time-independent 

mxp constant matrix unique to the subject, and a is a pxl vector of 
population parameters. By observation, the difference (vj - W^q), call 

it b^, was distributed Nm(O,D). Upon rearrangement of terms followed by 

substitution, the logit of response probabilities vector is expressed by 

the random effects model:

—i = %i« + Ziki 

where Xi equals ZiW^ The remainder of their discussion centered on 

methods for estimating a and D. Approaches discussed include maximum 

likelihood, REML, and Bayesian techniques.

Bonney (1987) suggested a mathematical approach for the modeling 

process suitable to any multivariate distribution. Conditional
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probability is defined by the expression: Pr(A|B) = Pr(A,B)/Pr(B), 

where Pr(B) is nonzero. Upon rearrangement the joint probability is 

written: Pr(A,B) = Pr(A|B)»Pr(B). Now consider the generalized joint 

probability Pr(ylX) where y is a nxl vector of responses and X is a nxp 

matrix of known constants. Because X is constant, it was simply carried 

along throughout the following inductive process:

Pr(y|X) = Pr(y%..... ynIX) 

= Pr(y1|X)»Pr(y2.......ynlyi.x)

= Pr(yilX)- ... •Pr(ynly1, .... yn_!,X)

= j^PrCyjIly^m^l.x) .

The final decomposition consisted of n separate factors. In the case of 

binary outcomes, it may be suitable to hypothesize logistic functions 

for each of those. The canonical parameter of the logit link for the 

jth response of the subject was expressed by:

Gj = a + z1Y1 + ... + Zj-iYj-i + 0Yj + ... + 0Yn + x/a

where z is a linear transformation of y that ensures zero values for 

entries j through n, and % is the vector of coefficients juxtaposing z. 
The vector of ordered logits G = [Glt ..., Gn]T is model throu^i the 

equation G = AX, where X = [a,Y1, .... Yn-1, 3^ .... 3p]T is a vector 

of unknown parameters, and A is the design matrix imposed on X.

Qu, Williams, Beck, and Goormastic (1987) proposed a logistic 

regression model based on the properties of an alternative distribution.
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Suppose that was a nxl response vector for an individual, or unit. 

They postulated that the probability of a positive response on the jth 

subunit (y^j = 1) was influenced by positive responses within the 

remaining subunits through the sum c (= g y^, m = j to n). One choice 

available was the Polya-Eggenberger distribution (PED):

, „ c-1 n-c-1 n-1Pr(zi;a,b,c,s) = H (n + m6) • n (1 - n + m0) / n (1 + m0) m=o m=0 m=0

where a,b > 0, n = a/(a + b), 0 = s/(a + b), and s e (-1,0,1). It was 

noted that the PED reduced to the hypergeometric, binomial, or beta

binomial distribution when the value of s attains -1, 0, or +1, 

respectively. They showed the correlation coefficient R(yij,yik) equals 
s/(a + b + s). This supported the validity of using the beta-binomial 

in cases of presumed positive intraclass correlation.

Connolly and Liang (1988) reexamined the work of Qu et al. (1987) 

with respect to properties of the model and estimation efficiency. They 

considered a class of conditional logistic models written:

logit [Pr(yjlï(_j),Xj)] = Fn(wj;0) + fiTxj

where yj is the response, y(_j) is the vector of responses excluding yj, 
wj is the sum across y(_j), 0 = (Oj,02)T 1= (x,0)T in the notation of Qu 

et al, 1987], Fn is an arbitrary scalar function, £ is the pxl parameter 

vector, and xj is a pxl vector of concomitant data from the jth 

observation.

General Linear Models

Introduction of the general linear model (GLM) by Nelder and 

Wedderburn (1972) provided a integrated framework for the inclusion of 

wide varieties of univariate response and their relation to linear 
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predictors. Before this, much of the literature was devoted to the 

ordinary linear model, although specialized models for logistic and 

probit analyses, and other nonlinear relationships, were also being 

developed. With the advent of a unifying methodology, strengths were 

borrowed from many of the prior investigations.

The GLM is represented by h(p) = = q, where p is the expected 

response of y, x is the vector of concomitant information, g is the 

vector of unknown structural coefficients, t) is the linear predictor, 
and h(p) is some monotonic differentiable transformation known as the 

link function. Choosing h(p) to be the identity function obviously 
reduces the GLM to the ordinary linear model p = E{y) = xT£. This may 

or may not be appropriate, however, for a particular application. In 

the ordinary linear model the range of the response is the entire real 

line, whereas responses may in actuality be restricted by design. 

Because no inherent limitations exist, per se, on the predictor, the 

mapping performed by h(p) is of considerable interest. The existence of 

a particular class of link functions, known as canonical links, and 

their association with distributions from the exponential family will be 

discussed and illustrated next.

Let Fy(y) be a member of the exponential family, its probability 

function is expressed by:

fy(y;6,*) = exp[*(y8 - a(9)) + b(y,*)]

where 9 is the canonical parameter and is the scale parameter, it is 
well known that pY = a'(9) and o2 = a"(9)/<t (Bickel and Doksum, 1977). 

The ability to express the expectation in terms of the canonical 

parameter is of practical interest. One consequence is that a link 
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function may be chosen on this basis. An example presented in detail 

may clarify this idea. Let y be a binomial random variable. Its 
probability function in usual notation is: fY(y;x) = ^Cy (1-%)""^. 

This may be rewritten in exponential family form as follows:

fy(y;”) = exp[ln(nCy
= exp[ln(nCy) + ln(ny) + ln[(l-n)n~y}]

= exp[ln(nCy) + yln(n) + (n - y) In(l-x)]

= exp[y[ln(«)-ln(l-x)] + n«ln(l-x) + ln(nCy)] 

= exp[yln[x/(l-x)] + n In(l-x) + ln(nCy)] .

Inspection of the first term implies that ln[x/(l-x)] equals 6, the 

canonical parameter. To express the second term as a(6), n must first 
be solved in terms of 0. Use of algebra shows n to equal e®/(l + e®). 

This is the logistic response function. Substituting these expressions 

into the above derivation yields

fy(y? 6><i>) = exp[y0 + n«ln[l - e6/(l+e6)] + ln(nCy)] 

= exp[y9 + n«ln[l/(l+e6)] + ln(nCy)] 

= exp[yO - n«ln(l+e®) + ln(nCy)] 

= exp[1«{ye - n ln(lfe®)} + 1•ln(nCy)] 

= exp[*(y0 - a(0)} + b(y,*)] ,

which is in the exponential family form. Successive differentiations of 
a(0) yield the expectation and variance of y: p = a'(0) = ne®/(l + e®) 
and a2 = a"(0)/<|> = ne®/(l + e®)^. We recall that n was earlier shown to

Q Aequal e /(I + e ). Upon substitution and simple algebra we see that p = 
nn and a2 = nx(l-x), which are the usual forms of these statistical 

functions.
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Next, determination of the canonical link function is performed. 

We start by expressing the mean in terms of the canonical parameter: 
H = nn = f (9) = nev(l + e’). Solving for the canonical parameter shows 

9 equals ln[p,/(n - p) ]. The canonical link function is derived upon 

equating the linear predictor t) to 9:

h(n) = ln[p/(n - n)] = n =

The desirability of choosing the link function in terms of the canonical 

parameter is because the mean is modeled directly as a function of the 

concomitant information.

Maximum Likelihood Estimation

Although the general model is attractive in form, solving for the 

estimates of & is not at all straightforward. The ones that will be 

considered here are called maximum likelihood (ML) estimates. To begin, 

a likelihood function is defined in the same manner as the probability 

function except that the emphasis switches to the unknown parameters 

rather than the response. Using their realizations, the responses may 

be envisioned as fixed. Because the covariates are also fixed, the only 

unknown or unestimated entities remaining are the parameters. The idea 

in maximum likelihood is to determine values for these parameters such 

that the probability of having realized this specific set of responses 

is maximized.

Notation denoting the likelihood for a given subject is 

l(&;yi»xi). Because of independence across subjects, the likelihood for 

the sample is the product of the individual likelihoods:

kIGLX.X) = ^l(&;yi,Zi) .
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Instead of maximizing the sample likelihood it is usually much easier to 

work with the log-likelihood, denoted L(&;y,X). Because the logarithmic 

transformation is monotonic, maximization will be attained with the same 

solution. Once again an illustration will be helpful.

Suppose the response can attain either 0 or 1. One possible 

distribution is the Bernoulli, which has the probability function:

fy(y) = = exp [yln[ («/(!-«)] + In(l-n)] .

We recall that n may be expressed in terms of the canonical parameter 

information via the logistic response function. The likelihood for the 

sample then becomes expressible as:

kl(£;y,X) = ^exp[yj.ln[nj/(l-ni)] + In(l-ni)]

k= exp^^ly-jOi - ln(l + exp(9i)} ]

k - t= vvl&fri-WM ~ ln(l + exp(xT&)} ] .

Given this form the log-likelihood is easily attainable. Upon 

performing the logarithmic transformation, the log-likelihood for the 

sample becomes:

k _ tL(&;x,X) = - ln[l + exp(xTg)]} .

The maximization step is performed by differentiating with respect to g 

and setting the result equal to 0:

9
a &

■ k T T^(yi'(*i&) - ln[l + exp(xTg)]}
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- ^Silyi - exp(xT^)/[i +

k t T= iS1si(yi - «i) = x (x - s) = 0 .

If the order of & equals p, then the above constitutes a homogenous 

system of p nonlinear equations in p unknowns. One notes that these 

bear a resemblance to Fisher's score equations. Due to their 

nonlinearity, a solution is generally obtained using iterative 

techniques. Methods are discussed by McCullagh and Nelder (1983) and 

Seber and Wild (1989), and a specific technique is thoroughly explored 
in Chapter 3.

It has been shown that univariate responses distributed as members 

of the exponential family have properties that are highly desirable 

within the context of linear modeling. However it should be apparent 

that not all responses may have distributions from within this family. 

Moreover, it is conceivable that analytic forms for the probability 

functions do not exist. In the event this last statement is true, it 

will be impossible to construct the likelihood function. A method 

proposed to address this situation is considered next.

Quasi-Likelihood Estimation

Quasi-likelihood functions (Wedderburn, 1974) require only the 

specification of the relation between the mean and variance of the 

responses. Suppose y is a vector of independent responses. Let yj be 
an element of y and assume its variance o? can be expressed as some 

known function, V(pjJ, of the mean. The quasi-likelihood q(yi,^j) is 

defined by the partial differential relation:
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9 q(yi:Pi(&)) yi - ni

9 Pi v(ni)

Recalling that the linear predictor is also a function of the mean, the 

system above can be reparameterized in terms of the unknown coefficients 

fi. Under hypothesis, the variance is modeled through the mean only. 

Solution of the quasi-likelihood of the sample proceeds in the manner 

prescribed for maximizing the log-likelihood:

9 q(ï,n) k 
= .r

9 Pi 9 q(yi,Pi) k
= .2

9 Pi (yi - Pi)
= 0 .

9 6 1=1 9 6 9 Pi 1=1 . 9 & V(ni)

The solution of these p simultaneous nonlinear equations yields the 

quasi-likelihood estimates. In fact, the quasi-likelihood function is 

identical to the log-likelihood when distributions are from the one- 

parameter exponential family. Extensions of this technique were 

investigated by McCullagh (1983) and Nelder and Pregibon (1987).

Thus far results have been shown whenever the response vector is 

considered to be composed of independent univariate outcomes. As 

mentioned earlier, the dearth of multivariate distributions allowing 

correlation structure presents a major obstacle. Maximum likelihood 

methods are usually not possible due to the lack of explicit 

representations. Neither are those utilizing quasi-1ikelihoods because 

it is not possible to postulate a mean-variance relation without 

explicitly incorporating correlation. However, if a correlational form 

can be assumed beforehand, an estimation method similar to quasi

likelihood should be applicable. This line of reasoning led to the 

development of a current technology in the modeling of longitudinal 
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responses — generalized estimating equations (GEEs). CEEs can be 

envisioned as being the multivariate analogue of the quasi-likelihood 

functions, as will be seen in the following development.

Generalized Estimating Equations

It has been noted several times that incorporation of the 

correlation structure between dependent responses is a primary 

requirement for the proper analysis of longitudinal data. Consider the 

n^xl response vector and its associated mean vector and covariance 

matrix We begin by mentioning that any covariance matrix can be 
factored into S^'Ri'S^ (Seber, 1984), where Rj is the correlation 

matrix, and Sj is a diagonal matrix consisting of the variances of 

individual responses for the ith subject. This decomposition permits 

individual examination of these two components.

First, we adopt the quasi-likelihood concept whereby the variance 

of each response is modeled through some known function of the mean. 

For members of the exponential family, the jth diagonal element of Sj is 

expressible by Ofjj = a"(O^j )/<|>. Thus is readily constructed. This 

is not to be the case for the correlation matrix, however, as R^ is 

postulated to be completely arbitrary. Due to its symmetry, it can 

contain no more than n^- (n^-l) distinct elements. In view of this, let 

a be a vector of correlation coefficients that completely specifies R^ 

across all subjects. We formalize this by specifying the correlation 

matrix for the ith subject to be represented in functional notation as 

Ri(a). Through utilization of these notations , the covariance matrix 

is expressed by: Sf = Vj/* =

We recall that maximization of the quasi-likelihood equations 

produced a score-like system of simultaneous equations. If the scalars
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Yi are replaced by dependent response vectors the vectors of 

concomitant information Xj replaced by the matrix Xj^, and the variance 
V(|*i) replaced by Sj (with matrix inversion substituting for division), 

the resulting system of simultaneous nonlinear equations, analogous to 

the quasi-likelihood functions, are the CEEs (Liang and Zeger, 1986):

, k 8 yJ .
%(&»«) = 2^ --- •2i*[Zi - Ei]

1-1 8 &

k 8
= * VE --- • [Xi - Hi]1-1 8 &

k 9 Ei -i _ ,= --- 'Vi• [Xi - Ei] = 0 .
1-1 8 6

The first, second, and last factors comprising the GEEs are of dimension 

pxn|, nixni, and nixl, respectively.

The CEEs are functions not only of & but also a, the unknown 

correlation coefficients constituting each Ri. Upon fixing the choice 

of Ri it is seen that the expected value of the CEEs equals the zero 

vector. This suggests any estimate of & is consistent regardless of the 

postulated structure of Ri, a point proved by Liang and Zeger (1986). 

However, the computed estimate and its variance are dependent on the 

choice actually used.

The CEE approach is gaining acceptance among practitioners in 

several areas. Zeger, Liang, and Albert (1988) highlighted modeling 

approaches with respect to differences between population-averaged and 

subject-specific parameter estimates. Qaqish (1990) examined its role 

in serial binary response regression models with special attention 
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extended to support extra-binomial variation (EBV). Lipsitz (1991) 

applied the methodology to categorical data analysis. Carr and Chi 

(1992) demonstrated its application to repeated measures ANOVA by 

producing closed-form solutions for balanced models with complete data 

and identity link.

Because this process has already established itself as a useful 

tool in the statistical realm, the CEE methodology is continuing to be 

the subject of extensive research. Crowder and Hand (1990) noted it was 

possible to fabricate the derivation through partial differentiation of 

quadratic forms even though the original formulation is based on analogy 

to quasi-likelihood equations. It is from this perspective that we 

begin the research phase.



CHAPTER III

Maximum Quasi-Likelihood Generalized Estimating Equations

Let ^2» — » % be independent random response vectors and 

X1, Xg, ...» be concomitant data matrices. For every yj we postulate 
the existence of expectation vector and covariance matrix Sp We 
define the Mahalanobis distance D2 by the quadratic form:

O ^2 k y lD = i^l^ = * üi) 2i(Xi " Hi) •

Also, each y^j is postulated to be distributed from a member of the 

exponential family: fY(yij; ©ij,4») = exp^ly^©^ - 3(9^)} + bCy^.^)], 

where and 4» are the canonical and scale parameters, respectively.

In the regression context yjj is related to concomitant data xjj 

through a pxl structural parameter vector The GLM concept formalizes 
this association by equating the linear predictor x?j£ to a known link 

function h(p,jj ). Typically h(Pjj) is selected to equal the canonical 
link which implies Ojj = h(mj ) = xJjÊ- Under hypothesis the mean and 

variance of y^j are functions of the canonical parameter: = a' (9jj)
and o?jj = a"(Gij)/^. By virtue of the linking process both are also 

observed to be explicit functions of 

Derivation of the MOL ŒEs

Inference on & is the goal of our investigation, but we must first 

establish an optimality property on which to base an estimator. Barnett

34
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(1976) promoted ML-based rather than the usual minimum-distance (MD), or 

generalized least squares, estimators. Furthermore, Crowder and Hand 
(1990) commented that the original GEE methodology does not minimize D2 

because that technique does not directly use information contained 

within the covariance matrices. In view of these remarks we choose to 

seek an estimator which is obtainable through actual minimization of the 

quadratic form. This estimator & of & is defined as a solution to the 

system of equations:

do d r k t i -]---D - ---- L " Hi) ïi<ïi - Hi) J = 0 .
8 6 8

It was observed in Chapter 2 that a covariance matrix factors 
into the product S^Rj/S^, where = diag([oil;l, oi22, . .., 0^]) and 

Ri is the correlation matrix. By hypothesis S$ is also equal to 
diag([[a"(eii)/4)%, <a"(6i2)/^...... {a"(0in)/<|>]%]) = where

= diag([[a"(eii))%, {a"(0i2)}^, ..., (a"(0in)}^]). Additionally, we 

also postulate a common correlation matrix R to exist across subjects. 
Together these hypotheses permit Si to decompose into (^A^)R(^A^) = 
^(A^RA^) = <1»^. Upon substitution, the Mahalanobis distance becomes:

ok T -1
D = i^i(%i ” %i) Si(%i * Hi)

2gi|1(Xi - Hi/C^i)’1^ - Hi)

k , .^^(Xi ~ Hi) Vi(yi - Hi)
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The factorization illustrates that minimization of the Mahalanobis 

distance is based solely on Q because $ is a constant scale parameter. 

Cognizant of this, we begin by expanding Q and then differentiating:

8 8 r k T . 1  Q “   L tM^i - Hi) vi(2i - Hi) 
8 &-------8 & i-l J

= ~ " ^%i - ^i^i + H%i) ]
8 fi

= ~ " ^i^i + ^i^i) ]
8 £ 

k r 3 = i:i [ —(ZiVÆ - + üMki) ]
9 £

k r 9 t -i 9 t -1 9 t i "i= I L--- (ZiviXi) - 2--- (Xi^iHi) + --- (HiViHi) ] . (3.1)
a & a ê a &

The three indicated partial derivatives require evaluation. The 

original CEE formulation considers Vj known and functionally constant so 

differentiation is straightforward (Graybill, 1976). However, the 

current methodology relaxes this premise. Appendix A contains lemmas 

that assist differentiations of various matrix-vector product 

combinations. Starting with the first term in Equation 3.1,

g g [ïivÏXi] =  [XiCA^A^yi ] 
8 fc------------- 8 fi

= —[ (ïM) • ) ]
8 fi
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[---[zM] ] ] • [ïJa^]T (by Lemma 3)
8 fi 8 fi

[ &M] ] + [ — [zM»1] ] «A^i
8 fi 8 fi

[ [ïiAj] ] ’B^^i + [ [ïiAi] ] • R^À^y^ (by Lemma 4) 
8 fi 9 fi

2 [---[ZiA^] ] -R^A^ . (3.2)

Next, 

g g---[ZiViUi] = --- [^(A^A^i ]
8 fi 8 fi

g--- [ (ïM) • (R^A^ ) ] 
8 fi

g g[---[xM] J •B1À^,i + [---[R^f ] • [xJa^]T (by Lemma 3)
8 fi 8 fi

[---[xM] ] -rV^ + [ — [eJa'^R-1] ] -A^ 
8 fi-------------------8 fi

[ ~[zWl ] -R^i + [ —] -R^A^ . (3.3)
8 fi 8 fi

Lastly, 

g g [Hiviüi ] =  [Hi (A^R^)üi ] 
8 fi------------- 8 fi
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—[ (uM) • (R^A^ ) ] 
9 &

[ [^iAil ] + [---[R]T ] • [4a^]t (by Lemma 3)
9 6 9 &

[ [&M] ] -R^A^ + [ —[üiA^R'^] ] -A^
9 g 9 g

[ [üiAi ] ] •R1A%;i + F---[âiA^] "I • R^A'Xu (by Lemma 4)

9 k r 9 1* -i 9 t -i 9 t 1 1---  9 = i?i L---(%!%) - 2--- (XiV^i) + --- (HiVilli) ]
9 g 1-1 9 g 9 g 9 g

9 g 9g

2 [---[14^] ] -R^A^ . (3.4)

Upon substitution of Equations 3.2, 3.3, and 3.4 into Equation 3.1, we 

obtain:

k 
ill 2 [ —[y^] ] -R^A^

9 g

- 2 [ —[%M1 ] -R'^i
9 g

- 2 [ — [hM1 ] -R^A^i 
9 g

+ 2 [--- [hM] ] ’R^A^ 
9 g
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| 2 [ —[ïMl ] -R^Zi - Mi)
[ 9 &

- 2 [ —[mM] ] 'R^(%i - Mi)

k 8-2 i!i [ —] -R^tei - Ui) 

- [ —-[%M] ] -R’^CZi - Mi) 
9 &

Division by (-2) transforms the minimization problem to one of 

maximization. As a consequence of this act, we designate the following 
system of equations evaluated at & = & as the maximum quasi-likelihood 

(MQL) CEEs:

J, [ —[uM] - —[xM] ] -R^lZi - Mi) = 0 . (3.5)
8& 8 6

As Equation 3.5 stands the MQL CEEs are not in a directly useful 

format. We continue the expansion by performing the two indicated 

partial differentiations:
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[ IttiAil ] = [--- nJ ] + [---  vec(À^) ] diag(%i) (by Lemma 2)
8 6 8 fi 8 fi

and [--- [ïiAil ] = [---  vec(À^) ] «diag(y^) . (by Lemma 1)
8 fi 9 fi

Substitution of these into Equation 3.5 followed by appropriate 

rearrangement and collection of terms yields:

.E [ [ — nJ ] -àJ - [ — vec(Àj) ] -diag(Zi - .
L a fi a fi

(3.6)

There exists a close similarity between Equation 3.6 and the 

original GEE formulation. In fact, if the covariance matrices are not 

functions of fi (as is the case for normally distributed responses), it 

reduces identically to that shown in Zeger and Liang (1986):

k 
i?l [ — Mi ] - [ — vec(Aÿ ] -diag(Xi “ Hi) ” Hf)

k r r a T -i « lit& I L--- Hi J -Af - O-diag(Xi - Mi) «R ^(ïi - Mi)
L a fi -*

it Hi ] .Aÿ\^(xi - Mi)

k r 8 T 1 -1i=l * Hi) *

This was anticipated, for it establishes an equivalence between the 

original and MQL GEEs methods for normally distributed response data.
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The culminating step requires evaluation of the two terms 

containing partial derivatives in Equation 3. 6. The first term involves

Hi = [ Hil» Hi2» • • •» Pin 1

= [ a'(6ii). a (@i2), ..., a'(6in) ] .

We recall equals through the canonical link. Hence, by Lemma 5,

9 T T T---Hi = xT.diag([a"(6n), a"(0i2), .... a"(9in)]) = X^ .
8 &

The first term of Equation 3.6 is thus reduced to: 
gF---  Hi I'A^ = (xTa^-A^ = xTa^ . (3.7)

L 9 & J

The second term involves

vec(A^) = [ {^(6^)^ {a"(ei2)}^....... [a"(ein)^ ] .

Through use of Lemma 5 (and the chain rule for scalars) we obtain:

8 r _---vec (À?) = -Xi-diagUcü, ci2, .... cin]), 
9 &

where Cij = g[a"(@ij)]^a"(8ij) . The second term of Equation 3.6 

refines to:

r 8 V 1--- vec[A?] «diag(xi - Hi)L a & J

= -xT.diag([cii, ci2, .... cin])»diag(Yi - Hi) = ~xi*i (3.8)

where Wijj = A[[a'(6ij)}\"(8ij)](yij - Pij) .
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All indicated differentiations are now completed. Substitution of 

Equations 3. 7 and 3.8 into Equation 3.6 establishes the MQL GEEs in the 

final representation we denote g(&):

2(B) = JyxM - (“XiWiHB^tei - Hi)

= i|1 xT(A^ + (3.9)

Estimation of B

We next develop a method which generates the estimate & of & 

through solution of the MQL ŒEs. Following current convention (Seber 

and Wild, 1989) we refer to g(£) (Equation 3.9) as the gradient vector 

of Q. Because g is a vector function of we assume it can be 

expressed by a multivariable Taylor series (Olmstead, 1961) expanded 
about some approximation £*. This expansion is written:

* * 3 * * 9 *e(B) = g(B ) + ( (Po - Po )• 2(B ) + ... + (Pq - Pq )•---g(6 ) }
3 Po 3 Pq

+ [ (higher order terms) } = 0 .

Obviously the closer approaches &, the remaining higher order terms 

become negligible. This motivates the consideration of an iterative 

approach for estimation.

The technique we adopt is the Newton-Raphson method (Scarborough, 
1966). For a given estimate an adjustment 0^ is generated. The 

next estimate becomes + 0*. The iterative process continues

until becomes vanishingly small (stopping rules are discussed by 

Seber and Wild, 1989). We now formalize this procedure for the MQL
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GEEs. Using a variant of the Taylor series expansion shown above, we 

define the Newton-Raphson formula for the (t+1) iteration by:

+ [ (Pot+1 - Po1)*—+ (Oqt+1 - Pa*)-—g^) } « 0 .

8 8 8 -i F 8 3
---g ---g ... ---g = --- g -Ô = Hô = -g . (3.11)8 PO 8 Pl 8 Pq J L 8 fi J

The matrix H is termed the Hessian. Because g is the partial of Q 

with respect to &, H is the matrix of its second partial derivatives. 

Assuming that the order of differentiation is irrelevant, we confirm the 

fact H is symmetric.

8 Po 8 Pq

Recalling the relation between and shown above, this formula may 

be rewritten as:

+ { ôo^'—+ ô/’—ÊŒ1) + - .. + ôqt-—g(&t) } « 0 .
8 PO 8 Pl 8 Pq

Without loss of generality, replacement of the approximate equality 

poses no difficulty. The formula, upon rearrangement, becomes:

$0*--- + 0^---------- g(pt) + ... + ôq^——g^) = -gC&t) . (3.10)
8 Po 8 Pl 8 Pq

If there exists no confusion we drop both the superscript denoting 

iteration and the explicit functional notation of g. This simplifies 

the appearance of Equation 3.10 to:

, 9 . 8 8
Oq--- g + Oi--- g + ... + ôq--- g

8 PO  Pl  Pq8 8
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8
9 0o

8
9 0o 
8

9 0o

8
9 0o

8
9 0o 
8

9 0i

8
9 0q

H

a

8

9 01

9 0i 
8

9 0o 
8

9 0o 
8

8 
---g
9 0o

8 
---g
9 0i

8 
---g
9 0q

9 0q 
8

8 
---  Q 
9 0o
8 

--- Q
9 0o

8 
--- Q
9 fi

8 
---  Q
9 0o

a 
---  Q 
9 0o
8 

--- Q
9 01

8 
--- Q
9 0q
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Hence

9
9 fi

9
9 fi

9 
---Q
9 Po

9 r 9 — [ — I 
9 fi 8 Pi

9 
---  Q 
a Pi

r 9 T -| Hô = ---  g* «ô = -g .
L 9 fi -I

9 -
— g
9 fi

(3.12)

The next task faced is that of evaluating the Hessian explicitly.

From Equation 3.9 we obtain the completed expression for g. Application

of a second partial differentiation reveals the Hessian to equal:

9 t 9 r k T t .1 _l «H = --- gT = --- S [xJ(Af + Wi)R1Aj(yi -
9 fi 9 fi L 1-1

9
a fi

(ïi - gi)TA^R'1(A^ + Wj)Xi

k g--- (Xi - Hi )TA^R'1(A^ + Wi)Xi
9 fi

k r 8i?l [— Itoi - + wi)]-xi

.S r--- [(%i - y.i)TÀ^R1(A^ + Wj)] 1 Xj^ (by Lemma 4)
1=1 L 8 fi -I

X [ — [(Zi - + *i) 1 %i
L 8 fi J
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+ ' $ i--- vec(A£
L 3 &

+ F--- vec(A^ + WA) 1 -diag[(zj - ^)^A^R"^]
L 8 fi J

k 
.1.

k
i2i

X2 (by Lemma 2)

-Xj (by Lemma 4)

R^A^ + Wi)

+ P--- vec(A^ + Wi) "I •diag[(yi - ^^A^r’1]
L 3 fi J X

3 3-  [XiA^J - --- ImiAJ] 1 R^(A^ + Wi) 
L a & a ê J

g+ I ---vec(A^ + Wj) 1 -diag[(%i -
L a fi J •xi
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d 9--- [ïMl - --- 1 -R^A^ + WjJ-Xi
9 6 9 & J

+ F--- vec(A& + W±) 1 -diag[(%i - ^/a'^r’1] 
' 9------------- J (3.13)

Continued evaluation of the Hessian is performed on each of its two 

terms separately.

The first term of Equation 3.13 contains (within the intermediate 

brackets) the negative of an identical factor found in Equation 3.5. The 

evaluation of that partial derivative (via Equations 3.7 and 3.8) was 
shown to equal (from Equation 3.9) xJ(A^ + W^. Use of this result 

inplies the term reduces to:

f--- teWl - — 1 -R1^ + Wi)-Xi
9 & 9 & J

= -xT(A& + Wi)R1(A^ + Wi)Xi . (3.14)

The second term of Equation 3.13 must be evaluated directly. Let 
djj represent the jth element of vec(A$ + Wj). The jth diagonal 

elements of A* and were shown earlier to equal [a"(0jj)}^ and 
|[{a"(0ij)}^a"'(Oij)](yij - p.jj), respectively. Hence djj is their sum 

and subsequently is a function of 0jj. Through use of Lemma 5 (and the 

chain rule for scalars) we obtain:

9 l T T---  vec(A^ + Wi) = Xi»diag([uii, ui2..... uin]) = X^ (3.15) 
9 &
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where:

guijj = --- [(a"(0ij)P + i[{a"(eij)}V(0ij)](yij -
96ij

= l[(a"(eij)}V'(6ij) - .

Substitution of Equations 3.14 and 3.15 into Equation 3.13 culminates 

the evaluation of the Hessian into a completed form:

H(&) = + Wi)R"\A^ + Wi)Xi + xTu^diagU^ - Hi]TA>R"1)Xi]

If= iS1Xi[Vi’diag([zi - - (A^ + Wi)R1(A^ + . (3.16)

Equations 3.9 and 3.16 provide the basis of the framework 
necessary to generate the estimate £. The process begins with the 

choice of an initial estimate (e. g. 0). We recall from Equation 3.11 

that HÔ equals -g. Under usual conditions H is nonsingular and 

consequently invertible. This implies the existence of Ô, the update 

increment. Iteration continues some t number of times until becomes 

sufficiently small (~ 0), at which point we declare the current value 
of to equal 8, the MQL estimate of £. The gradient and Hessian 

evaluated at A are designated accordingly:

g(S) = xJ(Â^ + - Èi) = 0 (3.17)

and

H(û) = iSixT[Ûi-diag([yi - - (Â^ + Wi)R1(Â^ + Wi)]Xi . (3.18)
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Estimation of è

The scale parameter 4* is necessary for proper variance estimation. 
Recall that D2 = ^«Q, from which it follows that (p = D2/Q. Q is readily 

approximated via its evaluation at 8- We thus solicit a procedure for 

estimating Mahalanobis distance.

One method, advocated by McCullagh and Nelder (1983), follows from 
the asymptotic distribution of D2. We recall D2 is a quadratic form, 

which is itself the sum of independent quadratic forms. Let D2 

represent this quantity for the ith subject. It is well known (Johnson 
and Wichern, 1982) that the distribution of D2 is asymptotically X2(nj), 

where nj is the order of the response vector y^. As a consequence, 
E[D2) is approximately equal to n^. By independence D2 also approaches 

the chi square in law, implying E(D2} ~ (n^ + n2 + ... + n%). This 

leads us to define: D2 = [E(D2} - p] = [(5 n^) - p], where the 

adjustment p is recommended due to the estimation of £.
Now that estimates of both Q and D2 are available, the estimate $ 

of 4» is defined as:

k4 = D2/Q = [(.E q) - p]/Q . (3.19)

Consistency Generalizations of the MQL Estimate

A desirable property of estimates is that known as consistency.

An estimate ip is said to be consistent if the asymptotic expectation 

E{f (ip - ip)} equals zero for some function f. We next query into the MQL 
estimate for the property of k^-consistency: f = k^(& - &).

Recall that g(£) is the gradient vector of Q evaluated at £. we 

now consider its multivariable Taylor series expansion about
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2(1) = 2(&) + ---[g(£)]*(l - fi) + (higher order terms)
0 1

g
= 2(8) + —[2(8) Hl - 8) + Op(i)

0 8

= 2(8) + ^(l - 8) + Op(i) .

But g(l) equals 0 by Equation 3.17. Thus:

0 = 2(8) + H-(l - fi) + Op(l) .

Upon rearrangement of this expression, and using the results of 

Wedderburn (1976) (as noted by McCullagh and Nelder, 1983), we have:

k\l - 8) = -k^.g^8) + Op(k^) (3.20)

We now investigate the expectation of - g). Before starting, 

observe that as k increases the remainder term becomes dimini shingly 

small. This implies the remainder term has expectation zero 
asymptotically. Therefore our attention rests with -kW1 •£(£). in 

practice the Hessian is replaced by its expectation, denoted H. 

Replacing H with H and dropping the remainder term in Equation 3.20 

yields:

E[k*(l - £)) = E[-k^.g(&)) = -k^.E[g(&)}

= -kV-EfJ^A^ + Wi)R'1A^(yi - }

= + ^i)^i(^i * Hi)}
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- HJ) + xTwiR1A^(ïi - %i)}

-^H^IlfEtxTA^Aj^ - n^} + E[x7wiR1A^(2ri - ^j}] 

^x7A^R^^^. - Ei) + xTE(WiR1A^(yi - Ej)) ]

-k^H1 • Si[0 + xTEtW^A^^ - Ei)U

-k%H1.|ixTE(WiR"1A^(2:i - Ei)} • (3.21)

The expectation does not proceed through Equation 3.21 directly because

Wi involves yp in order to achieve its evaluation it is necessary to 
first perform the matrix multiplication across WjR^(y^ - e^- Recall

Wi =

wm
0

0

0 ...

wi22 •••

0 ...

0

0

winn _

r'1 =

Vil

V21

. Vnl

V21 •••

922 •••

Vn2 •• •

9nl

9n2

Vnn .

" Ain o ... 0 (yn - Pil)
0 ♦^°i22 ••• 0 (yi2 - Pi2)

4 = . * * • (Xi - Hi) =

0 0 ... Ainn . _ (?in " Pin) _
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by definition. Because no specific structure for R has been assumed, R.’1 

is expressed in a generic form only.

The matrix multiplication is performed starting from the right,

then progressing leftward. The first product formed is

Ain 0

0 4» W22
At(Xi - hi) = • •

• •
• •
0 0

... 0 (yii - Pil)

... 0

•

(yi2 - M2)

. .. 4> ^inn _ , (yin - Pin) _

^illCyil - Pil)

*^i22(Xi2 - Pi2)

^^inn^in “ Pin)

The next product is R^* - ki)] = - y^):

<P11 V12 • • • 9nl 4^iii(yii - bii)

V21 V22 • • • Vn2 *W22(yï2 - Pi2)
^i(^i - hi) “ • • ' • • •

_ ?n2 • • • •Pnn _ _ ^^innCyin “ Pin) _
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” Kim)

“ Kim)

^imm(yim ~ Kim)

The final product is Wp [R"^^ - y.^)] =

wiii 0 ••• 0
■ n . A

“ Pim)

0 wi22 ••• 0 ^^^m^^immCyim " Pim)
WiR^Zi - Hi) = • • • • • • • •

• • ♦ • • • •
• • • • • • •
0 0 ... *inn ^immtyim “ Pim)

«ill -J^lm*^imm(yim “ Kim) 

wi22 mlxVam^immCyim - Kim)

Winn ^imm(yim “ Kim)
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gZ/ill?lm*Wnim(yim - Kim)

^^i^^^m^^imm(^im “ Kim)

^2*inn%im4*^imm(yim “ Kim)

mS1{i[(a"(eil)}V(eil)](yii - mi))<PimAimm(yim - Kim) 

^211 [ [a" ( ei2 ) }V( ei2 ) ] (yi2 - Ki2) )^2m^imm(yim - Kim)

tzE{a (^in)l^a (Gin)J(yin " Kin)l^nm^^a^nmCyim “ Kim)

mS22Ea"(0il)} la"'(0il)Ea"(0il) - Kim)(yil - Kii)

^2^^^0i^))^EGi2)(^(B^2^^2^^2mm(yim - Kim)(yi2 “ Ki2)

mzi^^a (^in)) a"(6^n){a"(6in)1 ^Pnm^^aimmCyim " Kim)(yin “ Kin)
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_ nim)(yil - pii)

fflZ12(a"(6i2)I'V'C6i2)4>^i22<P2in*- |iim)(yi2 - ^2)

m=i^* (Gin)) (^in)4»^inn%m4^^imm(yim " Pim)(Xin “ Pin)

mSi2*l{a"(8ii)rVxeii).<Piin-(yim - Pim)(yil - Pil)/(CTill°imm) 

nSlA*4{a"(ei2))^a"(ei2).v2m.(yim - Pim)(yi2 - Pi2)/(Oi22*imm)

mS1i*1(a"(6in)r1a"'(ein),<Pnm-(yim - Pim) (yin “ Pin)/(oinnoimm)

The expectation of - hi) indicated in Equation 3.21 is

now evaluable. Using the expansion derived above we find:

EtW^A^ - hi)}

- Pim)(yil ~ Pil)}/(oill»imm)

mS12*1(a"(ei2)}'1a"'(0i2)-<p2m-E{(yim - Pim)(yi2 - Pi2) l/(°i22aimm)

"(@in) 1 ^"(Gin) "q>nm'E((yim - Pim)(yin - Pin) }/(°inn"imm)
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[a (@i2)) * (Gi2)'92m'Oi2m/(*i22°inm)

m=l^ ^®in)l a (@in) '9nm'Cimn/(°inn°innn)

Jj*i{a''(8ii)}^

J1i*1[a"(9i2)r1am(6i2)-<P2m-P2m

{a (6jn) 1 a (Gin)'9nm"Pnm

i^ta^enjrVcOi!) -J^imPlm

•J1<p2mP2m

^{«•(e^rVceiH) -J^Pnm
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=

’à*\a"(On))V'(0ii)-l ‘

=

^-a"(0ii)/a"(0ii) ‘ 

i*1.am(0i2)/a"(0i2)

. (3.22)

i*1{a"(0in)}1a'"(Oin)-l i^'a"(0in)/a"(0in) .

This last result concludes that the expectation of - Hj) is

not, in general, identically the zero vector. Hence

lim E[k\& - £)} = lim -k^H1 :| xTe(wiR"1A^(xi - y^)) * 0 . (3.23)
k-x» k-*a> 1-1

The question of whether or not the MQL estimator possesses k^- 

consistency depends on the evaluation of a"'(0) for specifically 

postulated response distributions.

In the case that individual responses are distributed from members 

of the one-parameter exponential family, a"'(0) is nonzero. This implies 
that the MQL estimator in this instance cannot be k^-consistent. An 

analogous conclusion was reached by Fedorov (1972) in the more 

restrictive case of diagonal covariance structures.
On the other hand, k^-consistency of the estimator is attained for 

normal response models because a'"(0ij) is zero (see Appendix B). 

Because the MQL GEEs were earlier shown to reduce to that of the 

original CEE formulation under normality, this result affirms the 

consistency property originally proven by Liang and Zeger (1986). 
Estimation of -VIH

The negative of the inverse Hessian, divided by the scale, is 

shown to equal the asymptotic variance-covariance matrix of g in many 
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instances where & consistently estimates & (Bishop, Fienburg, and 

Holland, 1975). Unfortunately this is not the case in the current 

situation. Furthermore it may not even be possible to extend a suitable 

theory. Yet, the Hessian does provide an intuitive measure of precision 

because its inverse is used for creation of Ô-increments during the 
iterative computation of &. Upon this rationale, but without a direct 

theoretical basis, we adopt the aforementioned quantity as the MQL 

variance-covariance matrix estimator:

V[â) = -nV $ , (3.24)

where Ô and $ are defined by Equations 3.18 and 3.19, respectively. In 

Chapter 6 we endeavor to justify this stance through examinations of 

empirical evidence.



CHAPTER IV

Correlation Matrix Considerations

Throughout the derivations in Chapter 3 the correlation matrix R 

is postulated to be constant, but arbitrary. This is because primary 

inference is directed towards the regression coefficients Even so, 

the correlation matrix directly affects the estimation process due to 

the presence of its inverse in both g and H (Equations 3.17 and 3.18).

We now investigate the role correlation plays within this 

framework. Specifically, we will posit conceivable forms of its 

structure. There are two benefits of doing so. The first is that 

explicit definition of the correlation matrix may allow for its inverse 

to be expressed in a simple analytic form, thus foregoing the need of 

performing extraneous numerical inversions during estimation. The 

second is that it provides an avenue for estimation of the correlation 

coefficients. These positions are exercised throughout the remainder of 

the chapter.

Attributes of Special Correlation Matrices

An arbitrary correlation matrix of dimension nxn is composed of up 

to Cn-(n-1)1 individual correlation coefficients. Due to the difficulty 

of providing an analytic form of the inverse in this general case, the 

literature advances three structure alternatives: i) independence, 

ii) exchangable, and iii) auto-regressive. These choices are convenient 

because the correlation coefficients are functions of the single 

parameter p.
59
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It was noted above that possession of an analytic expression for 
R1 is appealing for computative purposes. But this is also a fortuitous 

situation. It is shown in Section 4.2 that first and second derivatives 
of R1 must also be available for the simultaneous estimation of both & 

and p. To facilitate this need we next derive these matrices for each 

proposed structure.

Independence structure.

The simplest assumption of form for correlation is that of 

independence. Its simplicity allows for ease of implementation into the 

MQL GEEs — notably, no parameter estimation is actually required 

because p equals zero. This implies R is an identity matrix:

1 0 ... 0

0 1 ... 0

0 0 ... 1

The inverse of this matrix also yields an identity, while consecutive 
derivatives of R1 generate zero matrices. For these reasons alteration 

of the model as given in Chapter 3 is unnecessary.

On the other hand, independence exhibits a draw back. Because we 

intuitively believe this not to be the case with serial observations on 

the same subject, this structure is not a desirable preference.

Exchangable structure.

Another simple, but more realistic, assumption is that of 

exchangability. This structure prescribes that any differing pair of
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responses for a subject are identically correlated: R{yij>yiml = P-

The representation in matrix form is:

1 p • • • p
p 1 • • • p

R = • • • • • ■ ■ (1-P) ln + P'lnl/ •
• • • • • •
• • * * •

_ p p • • • 1

This matrix pattern is seen in Seber (1984) as possessing an inverse:

<P1 ?2 S>2
% Vl • • • ?2

-1R =
• • * •
• • • • • •

_ ?2 92 • • • Y1

(4.1)

-p(n—2) - 1 p
where: (p% = -------------------- and <p2 = --------------------- .p2(n-l) - p(n-2) - 1 p2(n-l) - p(n-2) - 1

Derivatives of R1 with respect to p retain the same form as that of

Equation 4.1, with elements:

a) (R1) ' :

p(n-l)[p(n-2) + 2]
{(p-l)[p(n-l) + l]}2

-[p2(n-l) + 1] 

((p l)[p(n-l) + I]}2
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b) (R1)":

-2[p3(n-1)2(n-2) + 3p2(n-l)2 + (n-1)] 

((p-l)[p(n-l) + l]}3 

2[p3(n-l)2 + 3p(n-l) - (n-2)] 

{(P-I)[p(n-1) + l]}3

Auto-regressive structure.

Another conceivable assumption is that of auto-regressivity. This 

structure prescribes the correlation between pairs of responses on a 
subject, R(yij,yim}, to equal pH~mL Because it is credible that 

dependence tendency between outcomes may decrease as a function of 

increased time separation, this structure may be the most realistic 

proffered. Naturally it also presents the most elaborate configuration. 

Its representation in matrix form is:

1 P P2 • • • pn 3 pn-2 r*-l
„n-4 n-3 n-2P 1 P • • • P P P

rt2 n-5 n-4 n-3P P 1 • • • P P P
R = • • • * • • •

• • • • • •
• • • • • •
n-3 n-4 n-5 2P P P 1 P P
^n-2 n-3 n-4P P P • • • P 1 P
n-1 ,n-2 n-3 2_ P P P • • • P P 1

It can be shown through row operations (proof not provided) that this 

matrix pattern possesses an inverse that likewise has the most complex 

configuration:
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Derivatives of R1 contain elements:

R1 =

91

93 
0

93

92

93

0

93

92

...

0

0

0

0

0

0

0

0

0

, (4.2)

0 0 0 92 93 0
0 0 0 93 92 93
0 0 0 • • • 0 93 91 .

where: V1
-1 -(1 + p2) P

" P2- 1 92 - P2 - 1 » and <pg p2 - 1

a) (R1) ' :

2P 4p -(p2 + 1)
V1 (P2 - l)2 " (P2 - I)2 " (p2 - I)2

b) (R-1)":

-2(3p2 + 1) -4(3p2 + 1) 2p(p2 + 3)

Incorporation of Correlation Information

The attractiveness of either exchangable or auto-regressive 

structures is that only one additional parameter is necessary to include 
into the MQL GEEs framework. Because analytic forms for R*1 and its 

derivatives are available, extension of the iterative system (Equation 

3.11) to include estimation of p follows.
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Derivation of the gradient gfB.ok

The opening discussion in Section 3.1 establishes the goal of the 

MQL estimator. Now, in addition to we desire an estimate of p such 

that when both are simultaneously considered Q is minimized. To begin, 

we consider the partial differentiation of Q with respect to p:

8 8 r k T -1 1---  Q ■ --- LiZ/Zi - Ki) Vi(yi - Bi) J 
8 p 8 p I'*

8 k" --- [ i^^i - - Bi) ]
8 p

= — [ - Bi)^]- [R^yi - Bi)]} ]
8 p

= X [ — ([(Zi - üi^A^l-lR^ïi - Bi)]} ]
8 p

k r 8= [ [(ïi - Bi)TA^] •---[R^Cyj - Bi)] ] (by Lemma 6)
8 p

k _ g= [ [(Xi - Ëi)^]--- [R^-A^Cxi - Bi)] ]
" 9 P

k g= i^Cxi - Hi)TA-^--- (R’1)’^^^ - Bi) (by Lemma 6)
- 8 p

k= .^(li - Bi/A^R^'A^Cxi - Bi) -

One note of caution before continuing. Recall that the expansion 

of Equation 3.1 leading to the MQL GEEs (Equation 3.5) used a division 
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by (-2) which effectively changed that problem from one of minimization 

to maximization. Because the current derivation has required no change 

of sign, one must be instituted in order to insure conformity with prior 

results. Upon performing this operation, the gradient scalar g(p) of Q 

is defined as:

kg(p) = "i^CXi - Hi)T^(B‘1)'A^(Xi - m) . (4.3)

We now have explicit forms for the gradients of Q with respect to 

both 6 and p. Concatenation of Equations 3.9 and 4.3 results in the 

augmented gradient vector g(&,p):

g(&,p)
g(G)

g(p)
(4.4)

Derivation of the Hessian H(B.o).

The Taylor series expansion technique of Section 3.2 now utilizes 

the additional parameter p. Recall that H(£) is the matrix of partial 
derivatives of gT with respect to &. Adaptation of Equation 3.11 for p 

infers that the augmented Hessian equals:

r 3 3H(&,p) = L---g(6»p) ---g(G,p)
9 So 9 0!

3 ---g(6,p)
9 0q

3 ---g(0,p)
9 P

r 3 —g(G)
9 00

3 ---g(&) •••
9 0i

3 ---g(&)
9 0q

3 -]---g(&) 1
3 p

r 3 . 3 3 3 ->---g(p) ---g(p) ••• ---g(p) ---g(p) J
9 00 9 0i 9 0q 9 P J
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9 —_g(B) 9 £?
9 ---g(B)

9 p

9 9---_g(p) --- g(p)9 fiT 9 p

(4.5)

Because the Hessian is symmetric, the partitions in the lower left and 

upper right corners of Equation 4.5 are transpositions. Also, the upper

left corner is H(g) while the lower right corner is H(p). This allows

us to reexpress the augmented Hessian by:

H(B,p) =

1
H(K) 1

1
9 ---g(&)

9 p

9 T ।
--- [g(&)] 1 H(p)
9 p 1

(4. 6)

An explicit expression for H(g) already exists. Applying implicit 

partial differentiation to g(p) (Equation 4.3) shows the Hessian H(p) of 

Q equals:

kH(P) = -^(Xi - Hi/A’^R1)'^^ - Hi) - <4.7)

Similarly, partial differentiation of g(&) (Equation 3.9) with respect 

to p yields:

— g(&) = — [ .IxT(A^ + W^R^yi - Hi) ] 
d p 9 p

k g" jXCA? + Wi)----- Hi)
9 p
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J/M + ViXR'b'A^Zi - m) .
(4.8)

Substitution of Equations 3.16 , 4. 7, and 4.8 into Equation 4.6 results 

in the completed expression for H(g,p).

Constrained Joint Estimation of (8.0)

The iterative system represented by Equation 3.11 has been 

extended naturally through derivation of the augmented gradient and 

Hessian (Equations 4.4 and 4.6). However, the range of p is restricted: 
[-1 < p < 1], and the literature remains vague about implementation of 

constraints in general.

One remedy is programmatic. We assume that an initial estimate of 

p is available. During the iterative process its Ô-increment is 

inspected before updating. The value is adjusted (by half-sizing, for 

instance) if necessary to meet the requirements of the constraint. This 

technique has been implemented and seems to work well in practice.

The solution of the MQL GEEs, cognizant of the above constraint, 

parallels the procedure described at the end of Section 3.2. At 
convergence we declare (£,p) to be the MQL estimate of (g,p). The 

gradient and Hessian evaluated at (&,p) are designated:

g(U)
g(8)

(4.9)
g(p)

H(&,p)

H(B) ---  g(&) 
a p

(4.10)
— [g(fi)lT I H(P)
a p i
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where:

2(G) - X xT(â£ + - Êi)

g(p) = - Êi/Â^Rb'^Cxi - Êi)

H(B) = J/itÛi-diagC[xi - Êil^1) - (Â* + + #i)]Xi

H(P) - -.^(Zi - Êi)TÂ?(ff1)"Âj(ïi - Êi)

— 2(G) = J/M + «^(R1)'^^ - Êi) .
9 p “



CHAPTER V

Canonical Link Details

The estimation framework of Equations 3.17 and 3.18, further 

augmented with correlation structure in Equations 4.9 and 4.10, is 

established as a generalization for responses from the exponential 

family: fy(y;6,0) = exp^yô - a(6)} + b(y,$)]. We now examine several 

members of this family and derive the associated canonical link 

functions. The purpose is to obtain link-specific expressions for 

elements of the vector m and diagonal matrices A^, Wj, and appearing 

in these equations.

We recall from Equation 3.8 that the general form for the jth 
diagonal element of W^ is: w^jj = |[{a"(0ij)}%"'(Oij)](yij - p^j). Use 

of simple algebra allows this to be expressed by:

/yij - Kij) f a'"(0ij)

la-'CeiPP [ a"(6ij) (5.1)

Similarly, Equation 3.15 shows the general form for an element of Uj 
equals: uijd = |[{a"(6ij)^(6^) - - pij).

This may be rewritten as:

/xy - MJ) f (a"(6ij)l2
i [ * 2---------  3---------- ?

ta"(®ij)L a"(0ij) [a"(9ij)}2 (5. 2)

69



70

These representations will prove useful in the subsequent derivations. 

Additionally, all subscripts are suppressed to reduce notational 

complexity. This should not pose any difficulty.

Identity Link

The normal distribution is a choice for continuous response models 

when the assumption of homoscedasticity is tenable. It is expressed in 

exponential family form by:

fy(y;8,*) exp
yn - h2/2

- |[y2/a2 + ln(2xa2)]

from which we observe: 6 = p and $ = (a2)"1. Also, a(0) = p2/2 = 62/2, 

implying that consecutive derivatives are:

a (6) 0 (= i*) a"(0)
a"'(0) a""(0) 0 .

Using these, expressions for w and u are found to be:

(y - n) 
w = 5

(a"(0))

and

(a"(0)}4 2•-----  - 3------ 0 .

The identity link is established by virtue of equality between 0 and p.

The range of this link is the entire real line.
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Log Link

The Poisson distribution is a choice for count response models.

It is expressed in exponential family form by:

fy(y; 6,4») = exp [ (yln(l) - 1) - ln(y! ) ]

from which we observe: 6 = ln(X) and # = 1. Also, a(6) = X = e®,

implying that consecutive derivatives are:

a (8) = e0 (= p) a"(0) = e0

a"(8) = e0 a""(0) = e0 .

Using these, expressions for w and u are found to be:

e0

e0
x(y - K) 
2 , [a"(8)}%

and

(y - p)
{a"(8))%

I(y - e0)
5 e^ 5 [ye’^0 - e^0]

e0
2->

e20
3« e20

(y - m)
[a"(8)}^

i(y - K) 
“4 ,(a"(6)}^

(y - p) 
w = à------- .

{a"(8)]%
(y - r)

1------- Hi] 
[a"(0)}%

u

(e0 - y)
- 7-*] •

The link function derivation is: Ûp = e implies 8 = ln(p) = h(p).

The range of the log link is the entire real line.
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Logit Link

The binomial distribution is a choice for dichotomous response 

models. It is expressed in exponential family form by:

fy(y; 6»4>) = exp [ (yln[n/(l-jt)] + n In(l-x)} + ln(nCy) ]

from which we observe: 0 = ln[x/(l-x)] and * = 1. Also, a(0) = 
-(n) In(l-x) = n*ln(l + e®). For single trials (n = 1) per subject this 

distribution is known as the Bernoulli, and it is in this case interest 
more often exists. Thus a(0) = ln(l + e®), implying that consecutive 

derivatives are:

a' (0) = e®/(l + e®) (= p) 

a"(0) = e®/(l + e®)2 

a"'(0) = e®(l - e®)/(l + e®)3 

aw(6) = e®(l - 4e® + e20)/(l + e®)4 .

Using these, expressions for w and u are found to be:

(y - H) e®(l - e®)/(l + e®)3 (y - p) (1 - e®)

[a"(0))% [ e®/(l + e®)2 J {a"(0)}% (1 + e®)

X (y - K) (1 - e®) (y - p)(l - e®) 
%^®/(l + e®) * (1 + e®) = 1 J® = i(y - H)(e^® - e^®)

l(y - [e®/(l + e®)])(e%® - e%®)

and
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(y - n) e®(l-4e®+e2®)/(l+e®)4 [e®(l-e®)/(l+e®)3]2
-------  . 2«---------------------- - 3.--------------------{a"(0)]% [ e0/(l+e6)2 [eG/(l+e6)2]2

(y - n) (1 - 4e9 + e20) (1 - e0)2
I-------  • 2----------------  - 3----------

{a"(6)}% (1 + e0)2 (1 + e0)2

(y - n) 2(1 - 4e0 + e20) - 3(1 - e6)2
\a"(e))% [ (1 + e0)2

(y - 1*) 2 - 8e0 + 2e20 - 3 + 6e0 - e20
*{a"(e)}% (1 + e0)2

(y - P) -1 - 2e0 e02 (y - p)
I----------  • ------------------ = I[a"(8)}% [ (1 + e6)2 J [a"(0)}%

-(1 + e0)2

(1 + e0)2

/y - [e0/(l + e0)]) y(l + e0) - e0
= ’’ e«/(! f e6) ' 4

= |[e%0(l - y) - ye^0] .

The link function derivation is: p = e0/(l+e0) implies 0 = ln[p/(l-p)] 

= h(p). The range of the logit link is the entire real line.

Inverse Link

The gamma distribution is a choice for continuous response models 

when variance cannot be assumed constant. It is often observed in 

experiments that variance increases with the response. Because the 
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homoscedasticity requirement for usual linear modeling is violated, it 

may be plausible to postulate constant coefficient of variation (CV) 

instead. This is a feature of the gamma distribution, which is 

expressed in exponential family form by:

fy(y;6»4) = exp [ v(y(-X/n) + ln(X)) + (v-l)ln(y) - ln[F(v)] ] 

from which we observe: 6 = -X/v and * = v. Also, a(0) = -ln(X) =
-[ln(-0) + ln(v)], implying that consecutive derivatives are:

a (8) = -1/8 (= K) a"(0) = 1/02
a"(8) = -2/03 a""(6) = 6/04 .

Using these, expressions for w and u are found to be:

(y - n) -2/03 
W = 5-------  • ------ =[a"(0)}% [ I/O2

-(y - [-1/8] 
(i/e2)%e

and

(y - K) -(y - K)
i------- : [-2/8] = ------- —
(a"(8)]% [a"(6)]%8

= -(y + 1/8)

(y - n) 6/e4 [-2/e3]2
u = |------- • 2------  3---------

{a"(8)P [ 1/82 [I/O2]2

(y - n)
[a"(8)}%

12 12
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The link function derivation is: g = -1/6 implies 6 = -1/p = h(p). 

Unlike those derived earlier, the inverse link has a constrained range 

because X is positive but 0 equals (-X). Therefore the range is the 

negative segment of the real line.

Implementation of Methodology

The previous sections supply link-specific forms for elements of 

the vectors and matrices comprising the gradient and Hessian (Equations 

4.9 and 4.10). These are summarized in Table 1.

TABLE 1

Link-Specific Elements of Vectors and Matrices
Link 

(Distribution) 1È A W U

Identity 
(normal)

0 1 0 0

Log 
(Poisson)

e0 e0 i(y«w - e^6) - ye-»)

Logit 
(binomial)

e0 e0
i(y-lO(e^0-e^0) j[e^0(l-y) - ye’^0]

1 + e0 (1 + e0)2

Inverse 
(gamma)

-1/0 I/O2 -(y + 1/0) 0

This completes the details necessary for implemention of a 

flexible algorithm to solve the MQL GEEs. Appendix B contains a 

programmed implementation of this methodology. Modeling support is 

currently provided for identity, log, and logit links only; however, all 

three postulated correlation structures are automatically invoked.



CHAPTER VI

Simulation Studies

The derivations in Chapters 3, 4, and 5 provide means of computing 

the MQL GEE estimator, but its only statistical property studied thus 

far is undesirable. The original GEE estimator is well established, 

plus it possesses several desirable properties (Liang and Zeger, 1986). 

Except in the case of normal response data practitioners are faced with 

a choice in methodology.

Criteria on which to base a decision are clearly needed. The one 

we presently emphasize is assessment of estimator performance. To 

assist in this evaluation we first compute both MQL and original CEE 

information-based estimates. These in turn are matched and compared 

with sampling-based counterparts. Several examples are taken from the 

literature to motivate this theme. Discussion of Monte Carlo simulation 

results conclude the chapter.

Jackknife and Bootstrap Procedures

In many situations it may be difficult, if not impossible, to 

obtain moment-derived representations for the expectation and variance 

of estimators. Two nonparametric resampling procedures available for 

approximating these are the jackknife and bootstrap. The jackknife was 

introduced by Tukey (1958) and subsequently examined by Miller (1974). 

The bootstrap was conceived by Efron (1979). Both were illustrated by 

Efron and Gong (1983). These procedures are depicted next.
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Consider a resampling scheme in which replicates are generated 

from the original sample by excluding data for one subject at a time. 

This technique will produce k distinct replicates of size (k - 1). Let 

â(-i) represent the estimate based on the ith replicate. The jackknife 

estimator gj is defined as the arithmetic average of these k combined 

estimates, and its variance is approximated by:

k—l
= -2 (&(-i) - fij)d(-i) ~ Bj)^-

1, 1-1k

A different resampling scheme allows creation of replicates of 

size k formed by drawing from the original sample with replacement. In 
this scenario (2k - 1) distinct replicates are possible. Realizing this 

provides a sizable number of combinations for even modest k we opt to 

perform resampling at random some large number B of times. Let g(b) 

represent the estimate based on the bth replicate. The bootstrap 

estimator is defined as the arithmetic average of these B combined 

estimates, and its variance is approximated by:

I BV(Bb) = - &B)(Â(b) ~ Êb)T-
B-l

Comparison of Estimation Methodologies

We next consider four separate applications of the MQL and 

original GEE methodologies to independent univariate data:

1) Case 1 — Binary response (small sample)

2) Case 2 — Binary response (large sample)

3) Case 3 — Poisson response (small sample)

4) Case 4 — Poisson response (large sample).
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Each case data is initially fit using both methodologies. By 

virtue of independence, the latter method degenerates to the usual 

iteratively reweighted least squares (IRLS). The estimates and standard 

deviations generated are denoted as being information-based. The alert 

reader may notice discrepancies between the IRLS information-based 

standard errors presented here and those reported in the referenced 

works. This is because the scale parameter <|> must be incorporated into 

variance computations and we use Equation 3.19 to produce its estimate. 

Most commercially available software assume a value of unity for <|> in 

both logistic and Poisson regression algorithms.

Analyses continue with the computation of jackknife and (unless 

noted) bootstrap estimators, the latter of which is based on B = 10,000 

replicates. Tabulation of modeling results is provided for visual aid. 

Standard errors are displayed within parentheses juxtaposed to their 

parameter estimates. Discussion of comparisons concludes each case.

Binary response — small sample.

Finney (1947) investigated factors related with vaso-constriction 

of the fingers (response). Using results obtained from a sample of 39 

subjects, he proposed a model relating response to the rate and volume 

of inspired air. This model is equivalent to the logistic regression 

reformulation:

logit(m) = p0 + Pl’log(RATEi) + pg• log(VOLUME^) + Ej .

This data is well known, having been referenced in many articles related 

to logistic regression. Of particular interest is the fact that 

observations 4 and 18 are known outliers. For this reason, Pregibon 

(1981) used the data to illustrate regression diagnostic techniques.
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More recently, Moulton (1986) applied it to demonstrate variations 

on the bootstrap estimator for GLM-based models. He noted (p. 26) that 

certain bootstrap replicates would not lead to finite parameter 

estimates, and this situation was indeed observed in our investigation. 

Because exclusion of these replicates would induce selection bias, we 

elect to bypass bootstrap procedures for this data.

Application of the data to model fitting produces quadratics at 

convergence of 23.81059 and 34.23381 for MQL and IRLS methods, 

respectively. As noted earlier, observations 4 and 18 are definite 

outliers as determined by IRLS (P < , 005) but are less pronounced when 

fit via MQL (P = .029 and .048, respectively). Table 2 displays results 

for information- and jackknife-based estimators only.

TABLE 2

Modeling of Binary Response Data Using Small Samples

Coef
M Q 

Information
L ------------
Jackknife

IRLS -----------
Information Jackknife

9o -1.3428(0.488) -1.3508(0.752) -2.8754(1.288) -2.9210(3. 043)
91 2.3866(0.819) 2.3979(0.959) 4.5617(1.792) 4.6217(3. 753)
92 2.6741(0.756) 2.6869(1.070) 5.1793(1.818) 5.2474(4.124)

Inspection of Table 2 indicates that MQL parameter estimates are 

roughly on the order of one-half the size of their IRLS counterparts. 

We return to this matter in Chapter 7. Of special note is the close 

agreement between the MQL-derived estimators. This contrasts with 

standard errors for IRLS jackknife parameter estimates being more than 

twice the size of those obtained from information. It turns out that 

jackknife replicates 4 and 18 (those excluding each outlier) yield IRLS 
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parameter estimates considerably different from the other 37, whereas 

MQL parameter estimates are not apparently affected to the same degree. 
This may lend the MQL technique to offer some measure of resistance 

against influence from outlying observations.

Binary response — large sample.

Hosmer and Lamashow (1989) provided 200 cases of birth information 
collected at the Baystate Medical Center (Springfield, MA) during 1986. 

Low birth weight, defined as body mass less than 2500 g, is a known 

infant mortality risk factor. On this basis infant weights were 

dichotomized into one of two categories: low versus normal birth weight 

(response). Additional maternal data was also included:

1. Age (years)

2. Weight pre-conception (lb)

3. Race (recoded: white or nonwhite)

4. Smoker (yes or no)

5 Prior premature deliveries (count)

6. Hypertensive (yes or no)

7. Uterine irritability (yes or no)

8. Visits to physician during first trimester (count)

The purpose of the study was to determine if factors associated with low 

birth weight could be identified. Because the response was binary, 

logistic regression modeling was indicated.

The data was applied to MQL and IRLS fitting techniques. For 

purposes of illustration let us assume that the full main effects model 

is appropriate, where the coefficient subscripts are equated to the 

covariate reference enumeration above. These methods produce quadratics 
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of 156.03941 and 182.32798, respectively, at convergence. Only one 

observation is detected as an outlier using MQL whereas seven are 

implicated by the IRLS counterpart. Table 3 displays results of the 

modeling.

TABLE 3

Modeling of Binary Response Data Using Large Samples

Coef Information
MQL

Jackknife Bootstrap
Po 0.2310(0.7009) 0.2314(0. 6578) 0.2833(0.6855)
Pl -0.0207(0.0232) -0.0207(0. 0198) -0.0218(0.0203)
P2 -0.0070(0. 0038) -0.0070(0. 0038) -0.0077(0. 0039)
P3 0.5327(0.2382) 0.5329(0.2261) 0.5628(0.2329)
P4 0.5489(0. 2424) 0.5491(0.2217) 0.5813(0.2330)
P5 0.2558(0.1976) 0.2561(0.2241) 0.3081(0.2341)
Pg 0.9251(0.4473) 0.9257(0.4153) 1.1074(1.5755)
P7 0.3998(0.2801) 0.4000(0.2675) 0.4195(0.2744)
Ps 0.0189(0.1067) 0.0189(0.0950) 0.0137(0.0988)

Coef Information
IRLS 

Jackknife Bootstrap
Po 0.3028(1.1698) 0.3034(1.2849) 0.3913(1.3766)

P1 -0.0314(0.0371) -0.0314(0.0374) -0.0333(0. 0392)
P2 -0.0140(0.0066) -0.0140(0. 0076) -0.0151(0.0081)

P3 1.0186(0.4000) 1.0188(0.4231) 1.0541(0.4463)
P4 0.9934(0.3985) 0.9936(0.4092) 1.0452(0.4425)

P5 0.5381(0.3480) 0.5386(0. 4618) 0.6409(0.4944)

Pg 1.8460(0.7006) 1.8468(0.7573) 2.0898(1.7438)
P7 0.7514(0.4648) 0.7516(0.5364) 0.7952(0.5626)

Ps 0.0699(0.1717) 0.0698(0.1795) 0.0560(0.1959)
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As was the case with the smaller sample, inspection of Table 3 

indicates the MQL parameter estimate values to be roughly one-half the 

size of those produced by IRLS. In contrast to that case, however, is 

closer agreement between information- and jackknife-based estimates for 

both techniques. Bootstrap parameter estimates tend to be somewhat 

larger and more uncertain (especially 06) across the board.

Poisson response — small sample.

McCullagh and Nelder (1983) analyzed shipping-induced cargo damage 

incidences (response) from 34 vessels. The data was supplied by Lloyd's 

Register of Shipping. Concomitant data included ship type, year of 

construction, service period, and length of aggregate service (years).

In an attempt to provide some measure of design balance, the data 

was selected based on categories defined by the first three factors:

Ship type (code) — A, B, C, D, and E

Year constructed — 1960-64, 1965-69, 1970-74, and 1975-79

Period of operation — 1960-74 and 1975-79 .

At first glance it would appear that these would allow for 40 possible 

combinations; however, some combinations are clearly impossible and it 

was for this reason only 34 observations were included.

Coding of indicator variables within factor was based on 

contrasting the first level to the rest. As a result eight design 

variables were incorporated into the linear predictor. The natural 

logarithm of aggregate service duration entered into the linear 

predictor as an offset — a factor with known parameter coefficient of 

unity. This was done to encompass cumulative time-dependent hazard 

effects.
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Application of the data to MQL and IRLS methods yield quadratics 

of 36.39346 and 42.27525, respectively. The same single outlier is 

identified by both techniques. A summary of results is displayed in 

Table 4.

TABLE 4

Modeling of Poisson Response Data Using Small Samples

Coef Information
MQL 

Jackknife Bootstrap

00 -6.3722(0.2636) -6.3708(0.2894) -6.6831(1. 8344)

01 -0.5658(0.2145) -0.5660(0.1575) -0.4819(0.8997)

02 -0.2473(0.3384) -0.2582(0.8433) -0.3496(1. 0536)

03 0.1066(0.3232) 0.0996(0.6435) -0.5854(3. 0511)

04 0.4540(0. 2763) 0.4552(0.3792) 0.4901(1.0491)

05 0.7127(0.1783) 0.7121(0.2605) 0.9611(1. 6982)

06 0.8073(0.1992) 0.8051(0.2892) 1.0546(1.6827)

07 0.4602(0.2684) 0.4577(0.3665) 0.6819(1. 7701)

08 0.3666(0.1385) 0.3661(0.1897) 0.3463(0.2515)

Coef Information
IRLS 

Jackknife Bootstrap

00 -6.4059(0.2828) -6.4051(0.2727) -6.7514(1.9232)

01 -0.5433(0.2309) -0.5430(0.1440) -0.4457(0.9539)
02 -0.6874(0.4279) -0.6881(0.7291) -0.6358(1. 0943)

03 -0.0760(0.3779) -0.0808(0.7430) -0.7708(3.1742)

04 0.3256(0.3067) 0.3292(0.3649) 0.4153(1.1113)

05 0.6971(0.1946) 0.6959(0.2545) 0.9528(1.7746)

06 0.8184(0.2208) 0.8164(0.2682) 1.0967(1. 7610)

07 0.4534(0.3032) 0.4502(0.3724) 0.7026(1. 8503)

08 0.3845(0.1538) 0.3848(0.1822) 0.3726(0. 2566)
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Inspection of Table 4 seems to indicate closer overall agreement 

between parameter estimates obtained via MQL and IRLS for Poisson 

response data than is observed in the binary case. In line with earlier 

results, information- and jacknife-based parameter estimates obtained 

within technique remain comparable, with slightly more variability 

accorded to the jackknife. Bootstrap-based values are typically higher 

and have standard errors generally several times greater than the other 

two. This could be attributed to the small sample size.

Poisson response — large sample.

Zeger (1988) examined 168 monthly poliomyelitis incidence 

frequencies (response) for the years 1970 through 1983 inclusive. This 

data was obtained from the U.S. Centers for Disease Control (CDC). The 

purpose of the analysis was to determine the significance of an observed 

overall decreasing trend in incidence. Three models were contrasted, 

one of which was the log-linear model that corresponds to the usual 

Poisson regression.

No exogenous concomitant information was used, and for this reason 

models were presumed to be functions of time only. Time units were in 

months, with centering (t = 0) occurring on January, 1977 (the article 

stated 1976 but this was an apparent misprint). Factors included were:

Linear component
1. trend (txio"^)

Cyclical components

2. cos(2xt/12)

3. sin(2nt/12)

4. cos(2nt/6)

5. sin(2nt/6) .
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The data was applied to MQL and IRLS fitting methods. Quadratics 

produced at convergence are 245.59862 and 318.72163, respectively. Five 

outliers are identified by the MQL technique, whereas six are observed 

using the model determined by IRLS. Results are listed in Table 5.

TABLE 5

Modeling of Poisson Response Data Using Large Samples

Coef Information
MQL 

Jackknife Bootstrap
Go 0.6019(0.0743) 0.6016(0.1032) 0.8876(0.1858)
01 -4.1119(1.3574) -4.1101(2.3523) -3.9145(1.9796)
02 -0.1743(0.0963) -0.1742(0.1386) -0.1644(0.1232)
03 -0.4197(0.1045) -0.4197(0.1795) -0.4203(0.1499)
04 0.1273(0.1000) 0.1273(0.1541) 0.1357(0.1299)
05 -0.4994(0.0974) -0.4991(0.1620) -0.4623(0.1392)

Coef Information
IRLS 

Jackknife Bootstrap

00 0.1494(0.1078) 0.1492(0.1051) 0.1198(0.1021)
01 -4.7987(1.9678) -4.7983(2.3077) -4.7107(2.2239)

02 -0.1487(0.1364) -0.1487(0.1402) -0.1463(0.1351)
03 -0.5319(0.1530) -0.5319(0.1651) -0.5338(0.1574)
04 0.1691(0.1386) 0.1691(0.1433) 0.1728(0.1374)
05 -0.4321(0.1414) -0.4321(0.1525) -0.4259(0.1468)

Examination of Table 5 discloses patterns of parameter estimates 

similar to those seen in the previous Poisson case. On the other hand, 

standard error estimates deserve closer attention. The information

based MQL values are somewhat smaller than those derived from jackknife 

and bootstrap procedures, whereas IRLS yields values in closer agreement 
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across all three. It is not known whether or not this is an artifact of 

the data or a property of the MQL for Poisson data.

Discussion of estimator comparisons.

Several issues need to be explored in regards to the cases 

presented. First, the MQL and IRLS fitting methodologies produce 

disparate parameter estimates. Direct comparison of method performance 

cannot be made solely on the basis of these values. On the other hand, 

similar patterns emerge in the estimates generated by both methods — 

information- and jackknife-based values tend to be in closer proximity 

whereas bootstrap-based values are somewhat larger.

The MQL method fits the data "closer" under conditions postulated 

in Chapter 3, and this is confirmed by the reported quadratics. A 

possible attribute of this technique, noted only in binary cases, is the 

perceived regression resistance offered against outliers. This 

characteristic is highly desirable, especially when models are produced 

for predictive purposes. Also observed is the implication of fewer 

responses being tagged as outliers. Because the overall fit is optimal 

with respect to the quadratic, it seems reasonable that individual fits 

should benefit accordingly. On the basis of these accounts the MQL 

method embeds a favorable impression.

Both MQL and IRLS methods signify that sample size is a factor in 

measurement of precision for parameters. For small samples (Table 4) it 

is observed that values of bootstrap standard errors are generally 

several times greater than their information- and jackknife-based 

counterparts. This discrepancy is ameliorated for larger samples, but 

more important is the observation that MQL information-based standard 
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errors are reasonably comparable to those generated by the jackknife and 

bootstrap in these cases (see Tables 3 and 5).

We recall that the negative inverse of the Hessian, divided by the 

scale parameter, is used as the asymptotic variance-covariance (Equation 

3.24) without theoretical basis. More work is clearly indicated to 

attain an adequate resolution of the conjecture. Until then, one could 

argue that general agreement with sampling-based estimates provides 

evidence to justify its continued use. 
Monte Carlo Simulation

The parameter estimates generated in Section 6.2 are based on 

known samples. Next, we consider procedures in which parameter values 

are fixed, but responses are generated at random. The collective term 

for this family of techniques is known as Monte Carlo simulation. 

Rubinstein (1981) provided a rigorous development of its many aspects.

The particular implementation we use is called the hit-or-miss 

method. Hosmer and Lemeshow (1989) describe its application in relation 

to logistic regression. We next adapt their development of a modeling 

procedure for use in contrasting MQL and IRLS methodologies.

The vital status (response) of 200 intensive care unit (ICU) 

patients were recorded along with age (years) and chronic renal failure 

history (CRN) indicator. The logistic model is fit using both MQL and 

IRLS methods. Parameter estimates obtained are:

MQL: = (-1.5238, 0.0126, 0.5094)?

IRLS: & = (-3.0299, 0.0250, 1.0199)?

with respect to the intercept, age, and CRN indicator, respectively. 

These values are considered fixed during subsequent simulations.
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TABLE 6

Monte Carlo Simulations

I. MQL-Derived Parameters II. IRLS-Derived Parameters

i ii i ii

A. 40 obs/rep
Coef MQL______ IRLS MOL______ IRLS

Po -0.8156(0. 720) -1.6006(1.374) -1.8131(1.376) -3.3927(2.152)
Pl 0.0068(0.012) 0.0131(0.023) 0.0159(0.020) 0.0286(0.032)

P2 -0.4380(8.462) -0.1697(8. 875) -1.0009(8.443) -0.4379(8. 833)

B. 160 obs/rep
Coef MOL IRLS MQL______ IRLS
Po -0.7857(0.291) -1.5679(0.578) -1.5877(0.404) -3.1449(0. 767)

Pl 0.0066(0. 005) 0.0131(0.009) 0.0134(0.006) 0.0264(0.012)
P2 0.2180(0.893) 0.4724(1.075) 0.4613(0.894) 0.9626(1.080)

C. 640 obs/rep
Coef MOL______ IRLS MQL IRLS

Po -0.7763(0.141) -1.5320(0.281) -1.5304(0.201) -3.0541(0. 391)

Pl 0.0064(0.002) 0.0127(0.005) 0.0128(0.003) 0.0254(0.006)
P2 0.2546(0.146) 0.5096(0.291) 0.5035(0.152) 1.0084(0.302)

Before discussing simulation results, a note on the covariates is 

in order. The original data set showed that 40/200 (20.0%) patients 

incurred the terminal event. Of these, 8 (20.0%) had a history of CRN. 

On the other hand, only 11/160 (6.9%) survivors had a similar history. 

This indicates the obvious reason for inclusion of CRN into the 
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predictor. Similarly, there existed a trend for higher mortality in 

older patients. Thus, age was deemed important.

Overall, 19/200 (9.5%) patients were coded as CRN-positive. 

Citing this, we generated values based on comparison with the pseudo

random deviate u ~ U(O,1): CRN = l if u < 0.095; CRN = 0 otherwise. 

The average age of CRN-negative patients was 56.53 years, whereas 67.33 

years was noted for the CRN-positive group. It was decided to generate 
ages from N(56.53,182), with 10.68 years added to those indicated as 

CRN-positive.

2) assign y

The simulation study performed is based on 1000 replicates. These 

vary in sizes of: A) 40, B) 160, and C) 640 observations. Each 

replicate is formed by combining identical pseudo-randomly generated 

covariate data with the assumed known parameters obtained from mql and 

IRLS methodologies. The resulting linear predictors are in turn used to 

calculate expectations of response x^QL and ”irls- Responses are formed 

randomly based on hit-or-miss:

1) generate u ~ U(0,l)

1, if n > u

0, otherwise

In other words, a terminal event is predicted only if its expected value 

is greater than a uniform pseudo-random deviate. Because MQL and IRLS 

methods yield different expectations, only the generated responses vary 

between otherwise identical sets of replicates.

The results of the simulation study are reported in Table 6. Each 

replicate is fitted using both MQL and IRLS. Consequently, two sets of 

parameter estimates (i and ii) are listed under each replicate basis (I 
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and 11). The first notable remark is that larger replicate sizes yield 

smaller standard errors in every category. Significance is not even 

attained for replicates of size 40, and this is remindful of the 

bootstrap estimates noted in Table 4. This indicates that sample sizes 

may need to be larger in practice, as demonstrated in the results for 

sizes of 160 and 640. Next, values in columns lii) and Ilii) evince a 

reproductive ability of IRLS. It is known that this method produces 

consistent and unbiased estimates, and this is clearly evident from the 

close agreement between the values produced and their progenitor 

parameters. This is in obvious contrast to columns li) and Hi) which 

contain values highly different from those on which the replicates are 

based. We had already suspected the existence of estimation bias by the 

MQL method given its general inconsistency property. The values 

displayed here, and in Tables 2 and 3, highlight its level for the 

binary response case. The general trend is for MQL parameter estimates 

to be on the order of 50% smaller than expected. We suspect the bias is 

less pronounce, or even inconsequential, when modeling responses from 

distributions permitting greater range of outcome (e.g. Poisson). This 

last remark is only a conjecture and is therefore a subject worthy of 

further investigation.



CHAPTER VII

Summary and Conclusion

We confirmed that the original CEE formulation is possible through 
differentiation of the Mahalanobis distance D2. At that juncture we 

relaxed the constraint of modeling variances solely through known 

functions of expectations. Instead, minimization of the quadratic form 

was chosen as the optimality property of the derived estimator £, which 

we denoted the MQL CEE estimator of &. It was found that this estimator 

is generally inconsistent, and its variance estimator was derived on an 

intuitive, rather than theoretical, basis.

Correlation structure incorporation based on three possibilities 

advanced in the literature was augmented onto the estimation framework. 

This induced the estimation of a solitary additional parameter. 

Finally, several distributions from the exponential family were examined 

in respect to the elements of vectors and matrices comprising the 

gradient and Hessian.

In spite of the statistical problems encountered, case 

examinations of performance supported the MQL CEE method as a contender 

to the original CEE formulation. Especially notable was the perceived 

regression resistance capability in binary response models and the 

implication of fewer outliers. Also important was the general agreement 

observed between the information-based standard errors and sampling

based measures for large sample cases.

91
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Before we continue, the reader may wonder why case studies were 

performed using univariate response data only. The primary reason is 

because the data sets used are readily available. For example, the 

Finney (1947) data is well known and has been the object of considerable 

attention in logistic regression literature. Because its outliers are 

highly influential under IRLS (Pregibon, 1981), it was of interest to 

see the effect they would inflict on the MQL method. The remaining 

cases were chosen on the basis of sample size and response category.

This research has identified several areas that suggest further 

attention. First, the observed general agreement of estimator standard 

errors does not infer confirmation of Equation 3. 24 as being legitimate. 

Next, the regression resistance perception needs clarification due to 

the importance of this concept for predictive models. Also, the 

empirical relation between MQL and IRLS estimators in binary response 

cases needs resolution. It seems more than coincidental that values 

from MQL are roughly one half those generated by IRLS; however, no 

connection has been found thus far analytically. Finally, the related 

topic of bias assessment for the methodology in general requires 

investigation.



REFERENCES
Allison, P. D. (1984). Event history analysis: Regression for

longitudinal event data. Beverly Hills, CA: Sage.

Barnett, W. A. (1976). Maximum likelihood and iterated Aitken
estimation of nonlinear systems of equations. Journal of the 
American Statistical Association. 71, 354-360.

Bickel, P. J. & Doksum, K. A. (1977). Mathematical statistics: Basic 
ideas and selected topics. Oakland, CA: Holden-Day.

Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete 
multivariate analysis: Theory and practice. Cambridge, MA: MIT 
Press.

Bonney, G. E. (1987). Logistic regression for dependent binary 
observations. Biometrics. 43, 951-973.

Carr, G. J. & Chi, E. M (1992). Analysis of variance for repeated 
measures data: A generalized estimating equations approach. 
Statistics in Medicine. 11. 1033-1040.

Connolly, M. A. & Liang, K. Y. (1988). Conditional logistic regression 
models for correlated binary data. Biometrika. 75. 501-506.

Cook, N. R. (1982). A general linear model approach to longitudinal data 
analysis. Unpublished doctoral dissertation, Harvard University, 
Boston.

Cook, N. R. & Ware, J. H. (1983). Design and analysis methods for 
longitudinal research. Annual Review of Public Health. 4, 1-23.

Cook, N. R., Scherr, P. A., Evans, D. A., Laughlin, L. w.,
Chapman, W. G., Rosner, B., Kass, E. H., Taylor, J. 0., &
Hennekens, C. H. (1985). Regression analysis of changes in blood 
pressure with oral contraceptive use. American Journal of 
Epidemiology. 121. 530-540.

Crowder, M. J. & Hand, D. J. (1990). Analysis of repeated measures. 
New York: Chapman and Hall.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. 
Annals of Statistics. 7, 1-26.

93



94

Efron, B. & Gong, G. (1983). A leisurely look at the bootstrap, the 
jackknife, and cross-validation. The American Statistician. 37. 
36-48.

Fearn, T. (1975). A Bayesian approach to growth curves. Biometrika. 62. 
89-100.

Fedorov, V. V. (1972). Theory of optimal experiments. New York: Academic 
Press.

Finney, D. J. (1947). The estimation from individual records of the 
relationship between dose and quantal response. Biometrika. 34, 
320-334.

Forsythe, G. E., Malcolm, M. A., & Moler, C. B. (1977). Computer Methods 
for Mathematical Computations. Englewood Cliffs, NJ: Prentice
Hall, Inc.

Geisser, S. (1970). Bayesian analysis of growth curves. Sanhkyâ 
Series A. 32, 53-64.

Glindmeyer, H. W., Diem, J. E. , Jones, R. N. , & Weill, H. (1982). 
Noncomparability of longitudinally and cross-sectionally 
determined annual change in spirometry. American Review of
Respiratory Disease. 125. 544-548.

Graybill, F. A. (1976). Theory and application of the linear model. 
Pacific Grove, CA: Wadsworth & Brooks/Cole.

Grizzle, J. E. & Allen, D. M (1969). Analysis of growth and dose 
response curves. Biometrics. 25. 357-381.

Hosmer, D.W. & Lemeshow, S. (1989). Applied logistic regression. 
New York: John Wiley & Sons.

Johnson, R. A. & wichern, D. W. (1982). Applied multivariate statistical 
analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Korn, E. L. & Whittemore, A. S. (1979). Methods for analyzing panel 
studies of acute health effects of air pollution. Biometrics. 35. 
795-802.

Laird, N. M. & Ware, J. H. (1982). Random-effects models for 
longitudinal data. Biometrics. 38. 963-974.

Lee, E. T. (1980). Statistical methods for survival data analysis. 
Belmont, CA: Lifetime Learning Publications.

Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using 
generalized linear models. Biometrika. 73. 13-22.

Lindley, D. V. & Smith, A. F. M. (1972). Bayes estimates for the linear 
model (with discussion). Journal of the Royal Statistical Society 
Series B. 34. 1-41.



95

Lipsitz, S. R. (1991). Practical uses of GEEs for repeated categorical 
responses. Boston: Harvard University Department of Biostatistics 
and Dana Farber Cancer Institute.

McCullagh, P. (1983). Quasi-likelihood functions. The Annals of 
Statistics. 11. 59-67.

McCullagh, P. & Nelder, J. A. (1983). Generalized linear models. London: 
Chapman and Hall.

Miller, R. G. (1974). The jackknife — a review. Biometrika. 61. 1-15.

Moulton, L. H. (1986). Bootstrapping generalized linear models with 
application to longitudinal data. Dissertation Abstracts 
International. 47, 4745B. (University Microfilms No. 87-07,284)

Nelder, J. A. & Wedderburn, R. w. M. (1972). Generalized linear models. 
Journal of the Royal Statistical Society Series A. 135. 370-384.

Nelder, J. A. & Pregibon, D. (1987). An extended quasi-likelihood 
function. Biometrika. 74. 221-232.

Olmsted, J. M. H. (1961). Advanced calculus. New York: Appleton-Century- 
Crofts, Inc.

Potthoff, R. F. & Roy, S. N. (1964). A generalized multivariate analysis 
of variance model useful especially for growth curve problems. 
Biometrika. 51. 313-326.

Pregibon, D. (1981). Logistic regression diagnostics. The Annals of 
Statistics. 9, 705-724.

Qaqish, B. F. (1990). Multivariate regression models using generalized 
estimating equations. Dissertation Abstracts International.

Qu, Y., Williams, G. W., Beck, G. J., & Goormastic, M. (1987). A 
generalized model of logistic regression for clustered data. 
Communications in Statistics. Theory and Methods. 16. 3447-3476.

Rao, C. R. (1965). The theory of least squares when the parameters are 
stochastic and its application to the analysis of growth curves. 
Biometrika. 52. 447-458.

Rao, C. R. (1975). Simultaneous estimation of parameters in different 
linear models and applications to biometric problems. Biometrics. 
31, 545-554.

Rosner, B., Hennekens, C. H., Kass, E. H., & Miall, W. E. (1977). Age
specific correlation analysis of longitudinal blood pressure data. 
American Jounal of Epidemiology. 106. 306-313.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. 
New York: John Wiley & Sons.



96

Scarborough, J. B. (1966). Numerical mathematical analysis (6th ed. ). 
Baltimore: The Johns Hopkins Press.

Seber, G. A. F. (1984). Multivariate observations. New York: John Wiley 
& Sons.

Seber, G. A. F. & Wild, C. J. (1989). Nonlinear regression. New York: 
John Wiley & Sons.

Stiratelli, R., Laird, N. , & Ware, J. H. (1984). Random-effects models 
for serial observations with binary response. Biometrics. 40. 
961-971.

Tukey, J. W. (1958). Bias and confidence in not quite large samples. 
Annals of Mathematical Statistics. 29, 614. (Abstract)

Ware, J. H. (1985). Linear models for the analysis of longitudinal 
studies. The American Statistician. 39. 95-101.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized 
linear models, and the Gauss-Newton method. Biometrika. 61, 439-447.

Wedderburn, R. W. M. (1976). On the existence and uniqueness of the 
maximum likelihood estimates for certain generalized linear models. 
Biometrika. 63, 27-32.

Zeger, S. L. & Liang, K Y. (1986). Longitudinal data analysis for 
discrete and continuous outcomes. Biometrics. 42, 121-130.

Zeger, S. L. (1988). A regression model for time series of counts. 
Biometrika. 75. 621-629.

Zeger, S. L. , Liang, K. Y. , & Albert, P. S. (1988). Models for 
longitudinal data: a generalized estimating equation approach. 
Biometrics. 44. 1049-1060.

Zinner, S. H., Levy, P. S., & Kass, E. H. (1971). Familial aggregation 
of blood pressure in childhood. The New England Journal of Medicine. 
284. 401-404.

Zinner, S. H., Martin, L. F., Sacks, F., Rosner, B., & Kass, E. H. 
(1975). A longitudinal study of blood pressure in children. 
American Journal of Epidemiology. 100, 437-442.



APPENDIX A

Lemmas
Lemma l

Let w be a constant vector and D be a diagonal matrix such that 
both are conformable to multiplication. Let the elements of D, djj, 

each be functions of the vector g. Then:

3 T 3 --- [w *D] = --- [vec(D) ] • diag(w) .
3 & 3 &

Proof:

r -
W1 dll 0 • • • 0
W2 0 d22 0

Let w = • and D = • • • • • • •
• • • • • • •
• • • • • • •

7n. 0 0 • • • dnn _

Thus

Hence

wT«D = w1d11, w2d22, .... wndnn

3 T 3 r--- [w -D] = --- w1d11, w2d22..... Wndnn3 & 3 & L
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wl^ll» w2^22» • • • • wn^nn9 PO L
9 F *1^11» w2^22’ » wn*^nn3 Pl L

9 r \ wïdii, w2d22.Wndnn9 Pq L

9 9 9---(widn) 
9 Po

--- (»2d22) • • • 
9 Po

--- (wndnn) 
9 Po

9 9 9---(widn) ---(w2d22) ... --- (wndnn)
9 Pi 9 Pi 9 Pi

9 ---(widn)
9 Pq

9 ---(w2d22)
9 Pq

9 --- (wndnn)
9 Pq

9 9 9 'wi«---(du) w2*--- (d22) ... wn*--- (dnn)
9 Po 9 Po 9 Po
9 9 9wp---(du) w2*--- (d22) ... wn*---(dnn)

9 Pi 9 Pi 9 Pi

9 wi»---(du)
9 Pq

9 w2‘---(d22)
9 Pq

9 *n'---(dnn)
9 Pq
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8 8 a i r
--- (dll) --- (d22) ••• ---(dnn) W1 0 ... 0
9 Po 9 Po 9 Po
8 8 a--- (dll) ---(d22> ••• --- (dnn) 0 w2 ... 0

8 Pi 9 Pi 9 Pi

• • • • • • ♦ • • • • •
•

• ♦ • ♦ • • • ♦ " * •
• • • • • • • • • • • •

a a a—(dii) ---(d22) ••• --- (dnn) 0 0 . . . wn
9 Pq 9 Pq 9 Pq

8 So 
8

d22» dnn

dnn

dnn *1 0 ... 0

0 w2 0

• • ... •

• • •

• • ... •

0 0 • • A wn

8 r -|--- dll> d22..... dnn ' diag(ï)8 & L J

8--- [vec(D)] • diag(w) . 
8 £
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Lemma 2

Let v be a vector and D be a diagonal matrix such that both are 
conformable to multiplication. Let the elements of each, v£ and djj, 

respectively, be functions of the vector &. Then:

8 ,--- [v-D]
8 &

8 , 8--- [v ] • D + --- [vec(D)] • diag(v) .
8 6 8 ft

Proof:

V =

V1
V2

/n.

and D =

du 0 ... 0

0 d22 ... 0

0 0 dm _

•

Thus

vldll> v2d22« •• • r vndnn

Hence 8 T 8 r--- [v -D] = --- v1d11, v2d22..... Vndnn8 6 8 & L
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’ 8 r vi^n, v2d22» - -, Vndnn9 So L
8 r vldll» v2d22> - » vndnn9 Pi L

9
a Pq

vldll, V2d22, ..., Vndnn j

9 ---(vidu) 9 ---(v2d22) 9• • • (vndnn)
a Po 
9---(vidii)

a Po 
9---(v2d22)

8 Po 
9 . . . --- (tndnn)

a Pi a Pi 8 Pi

• • • • ’ •

9 9 9--- (vidn) ---(v2d22) • • • --- (vndnn)
8 Pq 8 Pq 8 Pq

9 9(VJ.*—du+du»—Vi) 
apo aPo
9 9(vi*—dn+dn*—vi)

9 9(v2«—d22+d22 •—v2) 
aPo aPo

9 9(v2«—d22+d22*—v2) 
aPi api

9 9• • • (vn* dnn+dnn* yn) 
aPo apo

9 9• • • (vne dnn+dnn* vn) 
aPi a Pi

9 9 9 9 9 9(vi-—dn+dii* vi) ( v2 • d22+d22 • v2 ) ... (vn« dnn+dnn»—vn)
apq 3Pq apq 9Pq 9pq 9pq
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d a a - r a a adir V1 d22 
apo
3

• v2 • • • dim* vn 
aPo apo
a a

5rr—du v2*—d22 
apo apo
a a

••• vn’ dnn 
apo 
adll"—V1 d22 

api

a

* v2 ••• dnn* vn 
api aPi

a a

+

Xrl * du v2' d22 
api aPi

a a

• • • vn-- dnn 
a Pi

adu» V1 d22 
9Pq

• y2 • • • 4m' vn 
apq apq Tr

ap
dll v2 *—d22 
q 8Pq

••• vn' d 
8Pq

nn

+

■ a
a Po1 
a

vi 
a Pi

a
a Pq1

r a dll
8 Po 
a—dn 

a Pi

a—dn 
a Pq

a a
v2 • • • vn

8 Po 8 p0
a a

v2 • •• vn
8 Pi a Pi

a a
v2 • • • vn

8 Pq 8 Pq

a ad22 ••• dnn
8 Po 8 Pq
a ad22 . ■. ---dnn

8 pi a Pi

a a---d22 . - • ---dnn
8 Pq 8 Pq

-

■

du °

° d22

0 0

Vi 0

0 v2

0 0

... 0

... 0

••• dnn

... 0

... 0

... vn
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0 ... 0

d22 • • • 0

0 dim

0 ... 0

v2 ... 0

' —

8 Po 
a

8 Pl

£ vl» v2» • • • » vn J 

^1» v2» • • • » J

dll

0

8

•

•

•

9 Pq
vl» v2, . . . , Vq J 0

+
' JL r

8 Po 
8

dll> d22» • • • > dnn J Vl

8 Pi ।

8 r

dll> d22' • • • » dnn J

•

0

9 Pq I dll« d22> • • • • dnn J 0

8 r -i
--- Vi, v2..... vn • D8 £ L J

8 r -i--- dll> d22..... dnn * diag(v)8 & L J

8 , 8--- [v ] • D + --- [vec(D) ] • diag(v) .
8 8 8 8
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Lemma 3

Let v and w be vectors such that both are conformable to 

multiplication. Let the elements of each, and Wj, respectively, be 

functions of the vector £. Then:

9 T  t  T9 9

9 Pq

--- [v -w] = --- [v ] • w + --- [w ] • v .
8 £ 8 £ 8 £

Proof:

wi

w2

Let

Thus

Hence

vT.w = ( vi*i + v2w2 + ... + vnwn ) .

v t o  [v *w] =   ( v^i + v2w2 + ... + vnwn ) 
8 £------------ 8 £

8--- ( v1W1 + v2w2 + ... + vnwn )
9 Po
8--- ( v1W1 + v2w2 f ... f vnwn ) 

d Pi

8--- ( vi»i + v2w2 + ... + vnwn )
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" 8 8 8 "---(VjWj) + ---(v2w2) + ... + ---(vnwn)
9 PO 8 Po 8 Po
8 8 8---(VjWi) + ---(v2w2) + ... + --- (vnwn)

8 Pi 8 Pi 8 Pi

• • • • • •
• • • • • •
• • • • • •

d 8 d—(viwj + --- (v2w2) + ... + --- (vnwn)
9 Pq 8 Pq 8 Pq

r 9 8 8wi«--- ?i
9 Po 
8

+ w2«--- v2 + ... +
9 Po 
8

Wn*--- vn
8 Po 
8

wi*--- ^1
9 Pi

8

+ w2*--- v2 + ... +
9 Pi

8

wn'--- vn
8 Pi

8Wi*--- Vi
9 Pq

8

+ w2*--- v2 + ... +
9 Pq

8

Wn' vn
9 Pq

8Vi»---Wi
9 Po 
8

+ v2«---w2 + ... +
9 Po 
8

vn' wn
9 Po 
8Vi*--- «1

9 Pi
+ v2*--- w2 + ... +

9 Pi
Vn' Wn 

9 Pi

8 8 8•---»i + v2«---w2 + ... + vn' wn
9 Pq 9 Pq 9 Pq
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8
3 Po1 
8

V1 
a Pi

8 
--- v2
8 Po
8 

v2
9 Pi

• • •
8 

vn
9 Po
8 

vn9 Pi

W1

w2

• • • • • •
•

•
• • * * • •

8 8

• • •

8

•

V1
9 Pq

8

v2
9 Pq

8

vn
9 Pq

8 "I

wn

9 Po 
8

---w2
9 Po 
8

wn
9 Po 
a

V1

W1
9 Pi

w2
9 Pi

• • • wn
9 Pi v2

• • • • • •
•

•
• • • • • • •

8 8

• • •

8

•

9 Pq1 9 Pq
* * wn

9 Pq
vn
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8
9 Co
8

9 Pi

8
9 Pq

+

’ JL
8 Po 
8

9 Pi

w2> •*’» wn

w2» •••> *n

3 rI Wi, Wg, - «, 
9 Pq L

8 r ,
--- V1, v2..... Vn • w9 £ L J

+ 
8 r -]

--- wlf w2, .... wn • V9 £ L J

9 t 9 T--- [v ] • w + --- [w ] • v .
8 £ 8 £



108

Lemma 4

Let v be a vector and C be a constant matrix such that both are 

conformable to multiplication. Let the elements of v, vj, each be 

functions of the vector Then:

9 T--- [v *C] =
8 A

9 T — [y ] • c .
8 &

Proof:

Let v =

V1
v2

and

cnl cn2 • • • cnm

C11

C21

c12

c22 • • •

clm

c2m
C =

• • * •
•

Lvn

Thus vl« v2>

C11

C21

c12

c22 • • •
<=lm

c2m
vn] e • • • • • •

• • • • • •
• • ... •

. cnl cn2 • • • cnm

C

n n n(j=l ' (j=i ..... vjcjm)

Hence 8 % 8 r n n n n
l ' s-i ......]
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8 r n n n— L (j-l (J-1   <j-l VjCj»)

8 r n n n9 p L S=1 ' <j=l vjCJ2^’ ' (j^i

8
9 Pq । । ej

r*
 

UM
S nVjCjl) , (j^ VjCj2), ... ' (j^i vjcjm) ]

r a n 8 n 8 n "
8 Po 
8 n

8 n

8 n »> — -

8 ni1’ •••

8 n

8 n Uq'A^"'

n r 9 Cjl) i n r 8 -I
1 A - n r 9 i ’

n
Æ

r 9 —<vj L9 Pi cjl) 1 n r 9 i1 A L^c^>] - n r 8 t

n
JÏ1

n 
j:i n

1.
8
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n p 9 -1 n p 9U? ] A

n p 9 -i n p 9
A 1L [^;

n p 9 -, n p 9
W J A t\’

- 9 p -I
--- vl« v2, ..., vn
3 00 L J

9 p q
--- vl» v2, ...» vn9 01 L J

9 p -,--- \ vl> v2, .... vn9 0q L J

9 p 
--- vi, v2, 9 & L

n
151

n 
A

9 1] •°1-

9 1
J ""

C11 c12 • • • clm

C21 c22 ••• c2m

cnl cn2 • • • cnm

•-, vn] • C

9 Û
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Lemma 5

Let v be a vector such that its elements vp v2, .... vn are 

functions of 0^, 0g, ..., 0n, respectively. Also, let X be a constant 

matrix and fl be a vector such that both are conformable to 

multiplication. Furthermore, let 0 = Xfl. Then:

9 T T---v = X^.diag([vi'(0i), v2'(02), .... vn'(0n)] ) . 
0 fl

Proof:

and fl =

V1 ®1‘ 1 xn . . . xiq

v2 e2 1 X21 ••• x2q
Let v = • , 6 = • , x = • • • • • •

• • • • • • • •
• • • • • • • •

J»». _ 1 xnl • • • xnq_

Po

Pi

where 0 = Xfl.

Hence 9 T 8 9 r 
— y = — vi, v2, 8 fl 8 fl L

8
9 3q
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8 --- 61»
9 Po
8 --- 61»

8 Pi

r 9 8 8 '
— vi
9 Po
8 

--- V1
9 Pi

8 
---V1
9 Pq

8

--- v2 ...
9 Po
8 

---  v2 ...
9 Pi

8 ---v2 ...
9 Pq

a a

---vn
9 Po
8 

--- vn
9 Pi

8 
--- vn
9 Pq

8 8
---V1 ---  @2*--- v2 ... ---  6n*---  vn
8 @i 8 Pq 9 02 9 Po 9 0n
8 

---V1
8 8---  02*--- v2 ... 8 8---  ®n*--- vn

8 @i 9 Pi 9 02 9 Pi 9 0n

1 •

X11 *

--- 61* 
9 Pq

8
— V11 0i

8 a 8 8--- 9ne---  vn 
9 Pq 9 9n

---  02 e---  v2
9 Pq 3 02

• • •

8 a a
— V1 1 • --- v2 • • • 1 • ---  vn
91 9 02 9 6n

8 a a
— vi X21 • --- v2 • • • xnl ‘ ---vn91 9 02 9 6n

xlq *
8 8 8
— V1 x2q * ---v2 • • • xnq ’ ---  vn61 9 02 9 0„
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1 • vi (0i) 1 . v2'(02) ... 1 • vn'(0n)

X11 • v1'(01) X21 e v2'(02) .. . xnl * vn' (0n)

• • • • • •

• • • • •
• •

xlq • v1'(61) x2q • V2'(02) • • • ^nq * vn' (®n)

1 1 ... 1 Vi (01) 0 ... 0

X11 X21 •• • xnl 0 V2'(02) ... 0

« ♦ • • • . ... 0
•

• • • • • • • . ... 0

• • ... • • . ... 0

xlq x2q ••• xnq 0 0 ... vn'(0n)

XT-diag([v1'(e1), v2'(e2), .... vn'(6n)]) •
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Lemma 6

Let w be a constant vector and P be a matrix such that both are 

conformable to multiplication. Let the elements of P, p^j, each be 

functions of the scalar p. Then:

9 T--- [w *P] 
8 P

T 9 w • ----- [P] .
9 P

Proof:

Let

Thus

W1
w2

and

Lwn J

wi, w2» •••> wn

Pll P12 ••• Pim

P21 P22 • • • P2m
• • ...
• • ... •
• • ... •

Pnl Pn2 • • • Pnm

Pll P12 ••• Pim

P21 P22 ••• P2m
• • ... •
• • " •
• • •

Pnl Pn2 ••• Pnm

w

w P

P

r n n n= [ (j:i %1)' (j:i wjPj2)..... WjPjm)

Hence 8 T 3 r n n n— [IT]. — I ( Ï CJ »jPj2).....  C^’JPJ»)
op o p u J J-*-
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9 n 8 n 8 n

n 
jii

8W4 •---
ap

6
 wii

n
1Ï1

8
wje--- Pj2 

3 p
n

1Ï1
8

wje--- Pjm
3 p

3 8 8
---  Pll ---  P12 • • • --- Pim
3 p 3 p 3 p
3 3 3

P21 --- P22 • • • ---  P2m
3 p 3 p 8 p

[ *1» w2»

3 8 3
--- Pnl ---  Pn2 • • • ---  Pnm
3 p 3 p 8 p

wT* 8 
----- [P] •
8 p



APPENDIX B

Program Implementation

The MQL CEE framework defined by Equations 4.9 and 4.10 is 
implemented as a Fortran-77 computer program compilable using the 

Microsoft Fortran Version 5.1 software. The program follows the 

American National Standards Institute (ANSI) standard very closely, and 

as such should be downward compatible (with minor modification) to most 

commercially available Fortran-IV compilers.

In addition to the usual implicit function calls, three external 

subroutines are required during the object linking process. The first 

two, DECOMP and SOLVE, are used for matrix inversion. The description 

and source code for these are available in Forsythe, Malcolm, and Moler 

(1977). The last, PROBCHI2, computes approximate probability points for 

the chi square distribution. This subroutine is based on source code 

available in Lee (1980).

User-required modification is necessary for: (1) choosing a link 

function, (2) defining the number of beta parameters, (3) equating 

physical files to logical units, and (4) describing the input data 

format. These (and related) issues are detailed within the program 

listing under the heading "Special Programming Modification."

The program source code, which follows, is available on diskette. 

It is offered without charge for academic and noncommercial purposes. 

As such, no warranty is expressed nor implied.

116
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C pgm: GEE_MQLE.FOR — Maximum Quasi-Likelihood Estimation 
C of BETA and RHO (exchangable & AR-1)
C MQL Generalized Estimating Equations for correlated responses 
C
C ================================================================== 
C General Program Information 
C 
C Implementation : Microsoft Fortran-77 Version 5.1 for IBM-PCs 
C Double-Precision Floating-Point
C Capability: 
C GLM link choices: l=Logit, 2= Identity, 3-Log 
C Correlation structures: Independence, AR-1, and Exchangable — 
C each automatically invoked
C External Subroutines: 
C 1. DECOMP — decomposes a square matrix by Gaussian 
C elimination, and reports its condition
C SOURCE: Forsythe, Malcolm, & Moler (1977)
C 2. SOLVE — solves a linear system using a DECOMPed matrix 
C (used for matrix inversion in this program)
C SOURCE: Forsythe, Malcolm, & Moler (1977)
C 3. PROBCHI2 — probability points of the chi-square distribution 
C SOURCE: modified from Lee (1980)
C
C Comments :
C This program processes data on a subject basis, and as such is
C quite compact. This allows very large data sets to be analyzed,
C but sacrifices speed. If your computer allows software disk-
C caching, physical I/O operations should decrease and thus
C improve overall throughput. Use of a math-coprocessor (on PCs) 
C is HIGHLY recommended for similar reasons, 
c 
C Caveats: 
C 1. Needs rough estimate of RHO (wild guesses seem to work OK) 
C 2. Requires complete data per observation, but "should" 
C accommodate entire missing observations (although this has
C not been thoroughly wrung-out).
C 
c ================================================================= 
C Global Environment Settings 
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IMPLICIT INTEGER (I-N) 

C 
PARAMETER (KMAX = 10) 
PARAMETER (LMAX = 10) 
PARAMETER (MMAX = 11) 

C

C 
C ======

KMAX is the max number of observations per subject
LMAX is the max 

predictor
order of the beta parameter vector in the 

( i.e. # of betas )
linear

MMAX is the max 
typically:

size of 
atleast

the SCORE (gradient), HESSIAN, and DELTA;
1 bigger than LMAX to accommodate RHO param
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C Input-Output Specifications by Logical Unit 
C
C INPUT
C 04: control records defining the number of observation records
C in unit-05 for each subject (see stmt #0110 for details)
C 05: observation records (see next section on required mods) 
C
C OUTPUT
C 06: report file — summary stats and parameter info
C 07 : detail file — lengthy details during iterative process 
C
C INPUT/OUTPUT
C *: keyboard — used to enter RHO initial estimate 
C 
c ================================================================== 
C Special Programming Modification 
C
C Within the program, the user MUST:
C 1. modify LINKTYPE (stmt #0001) for the link desired
C 2. modify LDIM (stmt #0002) to equal the exact order of beta
C 3. modify OPEN stmts (#0011 - #0014) to equate logical units
C with physical file locations( or devices)
C 4. modify READ and FORMAT stmts (#0120 - #0121) to match the 
C incoming data from logical unit-05
C
C Optionally, the following may be changed:
C 5. modify MAXITER (stmt #0003) for the maximum iteration count
C 6. modify SIGNIF (stmt #0004) which is the score (gradient)
C equations' "zero" level
C 
----------------------------------------------------------------------  
C 
c ****************************************************************** 
C BEGIN: DATA DEFINITIONS 
C ****************************************************************** 
C 
----------------------------------------------------------------------  
C — Work-space for the subroutines DECOMP & SOLVE 
C

DIMENSION IPVT(50) 
DIMENSION WORK(50) 

C 
-----------------------------------------------------------------------  
C — Matrix and Vector Definitions 
C

DIMENSION X(KMAX,LMAX),Y(KMAX),R(KMAX,KMAX),RINV(KMAX,KMAX), 
+ RINVDER1(KMAX,KMAX),RINVDER2(KMAX,KMAX), 
+ E(KMAX),S(KMAX),V(KMAX),AHALF(KMAX),T(KMAX),U(KMAX), 
+ SCORE(MMAX),HESSIAN(MMAX,MMAX),HESSCOPY(MMAX,MMAX),DELTA(MMAX), 
+ COVAR(MMAX,MMAX),CORREL(MMAX,MMAX), 
+ HESSCROS(LMAX),SUBJSCOR(LMAX),IBETASUB(LMAX), 
+ SCORBETA(LMAX),HESSBETA(LMAX,LMAX),BETA(LMAX), 
+ TMP1(LMAX,KMAX),TMP2(LMAX,KMAX),TMP3(LMAX,KMAX), 
+ TMP 5(KMAX),TMP6(KMAX,KMAX),TMP7(LMAX,KMAX),TMP8(LMAX)
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C 
-----------------------------------------------------------------------  
c 
C — Boolean Variable Definitions 
C 
C SUCCESS — convergence indicator

LOGICAL SUCCESS 
C LNKLOGIT, LNKIDENT, or LNKLOGAR — chosen link function 

LOGICAL LNKLOGIT,LNKIDENT,LNKLOGAR 
C INDEPEND, EXCHANGE, or AUTOREGI — current correlation structure 

LOGICAL INDEPEND,EXCHANGE,AUTOREG1 
C 
-----------------------------------------------------------------------  
C — Labels used for printed reports 
C

CHARACTER*20 LBLLINK(3) 
CHARACTER*16 LBLCORR(3) 

C 
DATA LBLLINK(l)/'LOGIT (binary) '/
DATA LBLLINK(2)/'IDENTITY (normal) '/ 
DATA LBLLINK(3)/'LOGARITHM (Poisson) •/ 

C 
DATA LBLCORR(1)/'Independent '/
DATA LBLCORR(2)/'Autoregressive '/ 
DATA LBLCORR(3)/'Exchangable '/

C 
c ********************************************************************* 
C BEGIN: PROCEDURAL SECTION
C *********************************************************************

C — choose the LINK for the desired type of responses 
0001 LINKTYPE = 1
C — define the order of the beta parameter vector (1 + # covariates) 
0002 LDIM = 7 
C — declare the maximum number of iterations to attempt 
0003 MAXITER = 39 
C — declare the convergence criteria "zero" size 
0004 SIGNIF = 1.OD-4 
C

LNKLOGIT = .FALSE. 
LNKIDENT = .FALSE. 
LNKLOGAR = .FALSE. 
IF ( LINKTYPE .EQ. 1 ) LNKLOGIT = .TRUE.
IF ( LINKTYPE .EQ. 2 ) LNKIDENT = .TRUE.
IF ( LINKTYPE .EQ. 3 ) LNKLOGAR = .TRUE.

C 
ZERO = 0.0D0 
ONE = 1.0D0 
TWO = 2.0D0 
THREE= 3.0D0 
FOUR = 4.0D0 

C 
C — equate data files to their logical units 
C
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0011 OPEN(4,FILE='GEE04.DTA',STATUS='OLD')
0012 OPEN(5,FILE='GEE05.OTA',STATUS»•OLD')
0013 OPEN(6,FILE»'REPORT06.PRT',STATUS»'NEW')
0014 OPEN(7,FILE»’DETAIL07.PRT',STATUS»'NEW')
------------------------------------------------------------------------  
C 

WRITE(6,6000) LBLLINK(LINKTYPE) 
WRITE(7,6000) LBLLINK(LINKTYPE)

6000 FORMAT(1H1,/,'* * MQL GEEs for ',A20,' — pgm GEE_MQLE * *•)
C

WRITE(*,6001) 
6001 FORMAT(IX,'Enter the RHO to be used initially for AR-1 & EXCH:')

READ(*,*) RHOINPUT 
WRITE(6,6002) RHOINPUT 
WRITE(7,6002) RHOINPUT 

6002 FORMAT(IX,/,’* * * Initial est of RHO =',F6.3,' * * *')
C 
C — Init loop counter for various correlation structures to use 
C 

LOOPCORR = 0 
C
C? 3S S = ■ S S Z = Z Z Z S£ — g» ■ ■ w g g» „ —

c 
C — Start of current correlation structure to be used 
C 
^zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 
0050 LOOPCORR = LOOPCORR + 1 

IF ( LOOPCORR .GT. 3 ) GO TO 9999 
C — get start time of this regression 

CALL GETTIM(IHOURBEG,IMINBEG,ISECBEG,I100BEG) 
C — reset Boolean switches for this correlation structure 

INDEPEND = .FALSE. 
AUTOREG1 = .FALSE. 
EXCHANGE = .FALSE. 
IF (LOOPCORR .EQ. 1) INDEPEND = .TRUE.
IF (LOOPCORR .EQ. 2) AUTOREG1 = .TRUE.
IF (LOOPCORR .EQ. 3) EXCHANGE = .TRUE.

C — set the total number of parameters to estimate — MDIM 
MDIM = LDIM 
IF( AUTOREG1 .OR. EXCHANGE ) MDIM = LDIM + 1 
KOIM = KMAX 

C 
WRITE(*,6051) LOOPCORR,LBLCORR(LOOPCORR) 
WRITE(6,6051) LOOPCORR,LBLCORR(LOOPCORR) 
WRITE(7,6051) LOOPCORR,LBLCORR(LOOPCORR) 

6051 FORMAT(IX,//,' LOOP-',12,' — Correlation structure = ',A16)
IF ( .NOT. INDEPEND ) GO TO 0060 

C 
C — Init the 'working• correlation & inverse for INDEPEND 
C 

DO 0059 I=1,KDIM 
DO 0055 J=1,KDIM 

R(I,J) = ZERO 
RINV(I,J) = ZERO
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0055 CONTINUE 
R(I,I) = ONE 
RINV(I,I) = ONE 

0059 CONTINUE 
C
C — Init estimates of BETA, its subscript labels, RHO, & » 
C 
0060 CONTINUE 

DO 0069 I=1,LDIM 
BETA(I) = ZERO 
IBETASUB(I) =1-1 

0069 CONTINUE 
RHO = ZERO 
IF ( EXCHANGE .OR. AUTOREG1 ) RHO = RHOINPUT 
SCALE = ONE 

C 
C — reset iteration counter to zero 
C 

ITER = 0 
SUCCESS = .FALSE.

------------------------------------------------------------------------ 
C ******* Begin iteration for current correlation structure ******** 
------------------------------------------------------------------------ 
0100 CONTINUE 

ITER = ITER + 1 
IF ( ITER .GT. MAXITER ) GO TO 9998 
WRITE(7,6101) ITER,RHO,(BETA(J),J=1,LDIM)

6101 FORMAT(IX,/,* ITERATION #',I3,* - RHO estimate is:',D12.6,/, 
+ ' BETA estimates are:*,/,10(D12.6,lX)) 

C
C — re-set the subject-info (04), subject-data (05) files, & EVERYTHING 

REWIND 04 
REWIND 05 
N = 0

C — init Quadratic distance (Q2 = D2/#) measure and outlier count 
DISTSQRD = ZERO 
IOUTLIER = 0

C
C — init score and hessian accumulators for BETA, cross-terms, & RHO 

DO 0104 I=1,LDIM 
SCORBETA(I) = ZERO 
HESSCROS(I) = ZERO 
DO 0103 J=1,LDIM 
HESSBETA(I,J) = ZERO 

0103 CONTINUE 
0104 CONTINUE 

SCORERHO = ZERO 
HESSRHO = ZERO

C---------------------------------------------------------------------  
C - Begin subject processing 
------------------------------------------------------------------------ 
0110 CONTINUE

READ(4,4001,END=0200) ISUBJECT,IOBSCNT 
4001 FORMAT(16,2X,12)



122

KDIM = IOBSCNT 
ISUBJN = 0 

C 
IF( INDEPEND ) GO TO 0120 

C 
C — Set up R, inv(R), [inv(R)]•, and [inv(R)]" for AR-1 and EXCH 
C because INDEPEND has already been done 
C 
C — special code is required to do either AUTOREG1 or EXCHANGE 

IF ( EXCHANGE ) GO TO 0116 
-------------------------------------------------------------------  
C — AUTOREG1 correlation 

P = RHO 
DENOM = (P**2 - ONE) 
A = -ONE/DENOM
B = -(ONE + P**2)/DENOM 
C = P/DENOM 
ADER1 = TWO*P/(DENOM**2) 
BDER1 = TWO*ADER1 
CDER1 = -(ONE + P**2)/(DENOM**2) 
ADER2 = -TWO*(THREE*(P**2) + ONE)/(DENOM**3) 
BDER2 = TWO*ADER2 
CDER2 = TWO*P*(P**2 + THREE)/(DENOM**3) 
DO 0114 1=1,KDIM 
DO 0113 J=1,KDIM 

IF ( lABS(I-J) .EQ. 1 ) GO TO 0111 
RINV(I,J) = ZERO 
RINVDER1(I,J) = ZERO 
RINVDER2(I,J) = ZERO 
GO TO 0113 

0111 RINV(I,J) = C
RINVDER1(I,J) = CDER1 
RINVDER2(I,J) = CDER2 

0113 CONTINUE 
RINV(1,1) = B 
RINVDER1(1,1) = BDER1 
RINVDER2(I,I) = BDER2 

0114 RINV(1,1) = A
RINV(KDIM,KDIM) = A 
RINVDER1(1,1) = ADER1 
RINVDER1(KDIM,KDIM) = ADER1 
RINVDER2(1,1) = ADER2 
RINVDER2(KDIM,KDIM) = ADER2 
GO TO 0120

C------------------------------------------------------------  
C — EXCHANGE correlation 
0116 Q = DFLOAT(KDIM)

P = RHO
DENOM = (P-ONE)*(P*(Q-ONE)+ONE) 
TOPION = —(P*(Q—TWO)+ONE) 
TOP1OFF= P
TOP2ON = P*(Q-ONE)*(P*(Q-TWO)+TW0)
TOP2OFF= -((P**2)*(Q-ONE)+ONE) 
TOP3ON = -TWO*(Q-ONE)*
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+ ( (P**3)*(Q-ONE)*(Q-TWO) + THREE*(P**2)*(Q-ONE)+ONE )
TOP3OFF= TWO*

+ ( (P**3)*((Q-ONE)**2) + THREE*P*(Q-ONE) - (Q-TWO) )
C = TOPION/DENOM
D = TOP1OFF/DENOM
CDER1 = TOP2ON/(DENOM* *2) 
DDER1 = TOP2OFF/(DENOM**2) 
CDER2 = TOP3ON/(DENOM**3) 
DDER2 = TOP3OFF/(DENOM**3) 
DO 0119 1=1,KDIM 
DO 0118 J=1,KDIM 

R(I,J) = RHO 
RINV(I,J) = D 
RINVDER1(I,J) = DDER1 
RINVDER2(I,J) = DDER2 

0118 CONTINUE 
R(I,I) = ONE 
RINV(I,I) = C 
RINVDER1(1,1) = CDER1 
RINVDER2(1,1) = CDER2 

0119 CONTINUE 
CCCCCC GO TO 0120 
   
0120 CONTINUE 
C 
C — Read in all observations for this subject (specified in Unit-04) 
C 

DO 0121 1=1,KDIM 
C--------The following code MUST be user-modified111
C <*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*> 
c

READ(5,5001) RESPONSE,(X(I,J),J=2,LDIM) 
5001 FORMAT(F1.0,F5.2,F4.2,F4.2,F4.2,F6.3,F6.3,5X) 

Y(I) = RESPONSE 
X(I,1) = ONE 

C 
C ( Additions and modifications to covariates)
C ( should go in here)
C 
C <*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*> 
c 

ISUBJN = ISUBJN + 1 
0121 CONTINUE 

N = N + ISUBJN 
C 
C — Compute the linear predictor ETA for this subject 
C — Then equate it to the chosen canonical link 
C 

DO 0126 1=1,KDIM 
ETA = ZERO 
DO 0122 J=1,LDIM 
ETA = ETA + X(I,J)*BETA(J) 

0122 CONTINUE 
C <*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>
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C ( Add any fixed "OFFSET" to ETA here )
C <*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*>*<*> 
c

IF (LNKLOGIT) GO TO 0123 
IF (LNKIDENT) GO TO 0124 

C ---- LOGARITHMIC LINK CODE (Poisson data) IS HERE ----
REXP = DEXP(ETA) 
E(I) = REXP 
V(I) = REXP 
AHALF(I) = DSQRT( V(I) ) 
S(I) = Y(I) - E(I) 
T(I) = ( AHALF(I) + ï(I)/AHALF(I) )/TWO 
U(I) = —(S(I)/AHALF(I))/FOUR 
GO TO 0125 

C ---- LOGIT LINK CODE (binary data) IS HERE ----
0123 REXP = DEXP(ETA) 

RLOGIST = REXP/(ONE + REXP) 
E(I) = RLOGIST 
V(I) = RLOGIST*(ONE - RLOGIST) 
AHALF(I) = DSQRT( V(I) ) 
S(I) = Y(I) - E(I) 
T(I) = ( (ONE-Y(I))*DSQRT(REXP) + Y(I)/DSQRT(REXP) )/TWO 
U(I) = -(S(I)/AHALF(I))/FOUR 
GO TO 0125 

C ---- IDENTITY LINK CODE (Gaussian data) IS HERE ----
0124 E(I) = ETA 

V(I) = ONE 
AHALF(I) = ONE 
S(I) = Y(I) - E(I) 
T(I) = ONE 
U(I) = ZERO 
GO TO 0125 

C ---- (next link to go here)
0125 CONTINUE 
0126 CONTINUE 
C 
C — Compute SCORE and HESSIAN for current subject 
C 
C — Compute SCORBETA: [X' * (A"%+W) * inv(R) * inv(A'(%))] * S 
C 
C — 1. compute TMP1 = X'*T (where T = A~% + W) 

DO 0139 I=1,LDIM 
DO 0135 J=1,KDIM 

TMP1(I,J) = X(J,I)*T(J) 
0135 CONTINUE 
0139 CONTINUE 
C 
C — 2. compute TMP2 = TMPl*inv(R) 

DO 0149 I=1,LDIM 
DO 0147 J=1,KDIM 

SUM = ZERO 
DO 0145 K=1,KDIM 

SUM = SUM + TMP1(I,K)*RINV(K,J) 
0145 CONTINUE
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TMP2(I,J) = SUM 
0147 CONTINUE 
0149 CONTINUE 
C 
C — 3. compute TMP3 = TMP2 * inv(A~(3j)) 

DO 0159 I=1,LDIM 
DO 0155 J=1,KDIM

TMP3(I,J) = TMP2(I,J)/AHALF(J) 
0155 CONTINUE 
0159 CONTINUE 
C 
C — 4. compute SCONBETA = TMP3 * S 

DO 0169 I=1,LDIM 
SUM = ZERO 
DO 0165 J=1,KDIM

SUM = SUM + TMP3(I,J)*S(J) 
0165 CONTINUE 

SUBJSCOR(I) = SUM 
SCORBETA(I) = SCORBETA(I) + SUM 

0169 CONTINUE 
C 
C — Compute HESSBETA = -[ X' * ( BIG expression=TMP6 ) * X] 
C 
C — 5. compute TMP5 (vector) = U * matdiag[S*A~(-î$)*inv(R) ] 

DO 0173 1=1,KDIM 
SUM = ZERO 
DO 0172 J=1,KDIM

SUM = SUM + S(J)/AHALF(J)*RINV(J,I) 
0172 CONTINUE 

TMP5(I) = SUM*U(I) 
0173 CONTINUE 
C — & compute TMP6 = TMP5(matrix) - T*inv(R)*T 

DO 0175 1=1,KDIM 
DO 0174 J=1,KDIM 
UTERM = ZERO 
IF ( I .EQ. J ) UTERM = TMP5(I) 
TMP6(I,J) = UTERM - T(I)*RINV(I,J)*T(J) 

0174 CONTINUE 
0175 CONTINUE 
C — 6. compute HESSBETA = X’*TMP6*X 

DO 0184 I=1,LDIM 
DO 0183 J=1,KDIM 

SUM = ZERO 
DO 0182 K=1,KDIM

SUM = SUM + X(K,I)*TMP6(K,J) 
0182 CONTINUE

TMP7(I,J) = SUM 
0183 CONTINUE 
0184 CONTINUE 
C 

DO 0189 I=1,LDIM 
DO 0188 J=1,I 

SUM = ZERO 
DO 0187 K=1,KDIM
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SUM = SUM + TMP7(I,K)*X(K,J)
0187 CONTINUE 

HESSBETA(I,J) = HESSBETA(I,J) + SUM
HESSBETA(J,I) = HESSBETA(I, J)

0188 CONTINUE
0189 CONTINUE 

IF ( INDEPEND ) GO TO 0194
C — compute HESSIAN and SCORE for cross-terms and RHO

DO 0191 1=1,KDIM
SUMI = ZERO 
SUM2 = ZERO 
DO 0190 J=1,KDIM 

SUMI = SUMI + S(J)/AHALF(J)*RINVDER1(J,I) 
SUM2 = SUM2 + S(J)/AHALF(J)*RINVDER2(J,I) 

0190 CONTINUE 
TMP8(I) = SUM1*T(I) 
SCORERHO = SCORERHO + SUM1*S(I)/AHALF(I) 
HESSRHO = HESSRHO + SUM2*S(I)/AHALF(I) 

0191 CONTINUE 
DO 0193 I=1,LDIM 
SUM = ZERO 
DO 0192 J=1,KDIM 

SUM = SUM + TMP8(J)*X(J,I) 
0192 CONTINUE 

HESSCROS(I) = HESSCROS(I) + SUM 
0193 CONTINUE 
C 
C — 8. compute this subject's Q3 and D3 distance 
C Q3 = [S'«inv(V)*S] = (S'.inv(A-%).inv(R).inv(A"%).S)
0194 CONTINUE 

DISTSUBJ = ZERO 
DO 0198 I=1,KDIM 
SUM = ZERO 
DO 0197 J=1,KDIM 

SUM = SUM + (S(J)/AHALF(J))*RINV(I,J) 
0197 CONTINUE 

DISTSUBJ = DISTSUBJ + ( SUM*(S(I)/AHALF(I)) ) 
0198 CONTINUE 

DISTSQRD = DISTSQRD + DISTSUBJ 
IF ( .NOT. SUCCESS ) GO TO 0199 

C 
C — convergence assured, now print some diagnostics (if outlier) 
C 

EXPTSUBJ = DISTSUBJ*SCALE 
PVALUE = ONE - PROBCHI2(EXPTSUBJ,KDIM) 
IF ( PVALUE .GT. 0.05D0 ) GO TO 199 
IOUTLIER = IOUTLIER + 1 

C — 
CCCCC GO TO 0199 (make this a true GO TO to bypass printing) 
C — 

WRITE(7,6197) ISUBJECT,EXPTSUBJ,PVALUE,KDIM 
6197 FORMAT(1X,'Subjf',14,' Mahalanobis D3=',D15.8,', P=',F5.3, 

+ ' on ',12,• DF') 
WRITE(7,6198) (Y(I),1=1,KDIM)
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6198 FORMAT(IX,' Observed ',7(F13.6,IX)) 
WRITE(7,6199) (E(I),I=1,KDIM)

6199 
c 
C — 
c 
0199
c__

FORMAT(IX,' Expected ',7(F13.6,1X))

go back to process next subject

CONTINUE 
GO TO 0110

c — finished processing of all subjects for current iteration

0200 CONTINUE
RN = DFLOAT(N) 
RMDIM = DFLOAT(MDIM) 

C — compute the expected Mahalanobis distance D3 
EXPTSQRD = (RN - RMDIM) 

C — compute the scale parameter * = D3/Q3 
SCALE = EXPTSQRD/DISTSQRD

C 
IDFDIST = N - MDIM 
EVALUE = ONE - PROBCHI2(DISTSQRD,IDFDIST) 
IF (SUCCESS) WRITE(6,6200) EXPTSQRD,DISTSQRD,IDFDIST,PVALUE, 

+ SCALE
WRITE(7,6200) EXPTSQRD,DISTSQRD,IDFDIST,PVALUE, 

+ SCALE
6200 FORMAT(IX,' Mahalanobis D3:',D18.11,/,

+ IX,' Quadratic Q3;',D18.ll,' on ',15,' OF, P=',F6.4,
+ /,' Computed Scale = ',D14.8,2X)
WRITE(7,6201) SCORERHO 

6201 FORMAT(IX,' * Score (RHO):',D12.6) 
WRITE(7,6202) (SCORBETA(I),I=1,LDIM) 

6202 FORMAT(IX,' Score (BETAS):',1O(D12.6,1X)) 
C 
C Augment scores and hessian for BETA, RHO, and cross-terms 
C — move BETA first 

DO 0207 I=1,LDIM 
SCORE(I) = SCORBETA(I) 
DO 0205 J=1,LDIM 

HESSIAN(I,J) = HESSBETA(I,J) 
0205 CONTINUE
0207 CONTINUE

IF ( INDEPEND ) GO TO 0210 
C — move RHO next

DO 0209 J=1,LDIM
HESSIAN(J,MDIM) = HESSCROS(J) 
HESSIAN(MDIM,J) = HESSCROS(J) 

0209 CONTINUE
C — because we are maximizing the -(Least Squares), CHANGE the sign 

HESSIAN(MDIM,MDIM) = -HESSRHO 
SCORE(MDIM) = -SCORERHO

C--------------------------------------------------------------------  
0210 CONTINUE 
C--------------------------------------------------------------------  
c
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C — move -SCORE TO DELTA, this to solve HESSIAN*DELTA = -SCORE 
DO 0219 I=1,MDIM 
DELTA(I) = —SCORE(I) 
DO 0215 J=1,MDIM 
HESSCOPY(I,J) = HESSIAN(I,J) 

0215 CONTINUE 
0219 CONTINUE 
C 
C — Solve for DELTA and prepare to update BETA, etc 
C

CALL DECOMP(MMAX,MDIM,HESSIAN,CONO,IPVT,WORK) 
IF( COND .NE. COND+ONE ) GO TO 0230 

0225 WRITE(7,6225) 
6225 FORMAT(1H0,1 * * * m cond -HESSIAN matrix @ 0225 ***',/)

GO TO 9998 
0230 CALL SOLVE(MMAX,MDIM,MMAX,1,HESSIAN,DELTA,IPVT) 

WRITE(7,6230) (DELTA(I),1=1,MDIM)
6230 FORMAT(IX,' Correction to BETA (&RHO); DELTA',/,

+ 2X,10(D12.6,lX)) 
C 
C — If already converged in previous pass, let's wrap it up 
C 

IF ( SUCCESS ) GO TO 0301 
C 
C — Otherwise, check for convergence (via diminishing SCORE) 
C 

ICONVERG = ZERO 
DO 0249 1=1,MDIM 
ABSSCORE = DABS(SCORE(I)) 
IF ( ABSSCORE .GT. SIGNIF ) ICONVERG = ICONVERG + 1 

0249 CONTINUE 
C 

IF ( ICONVERG .EQ. 0 ) GO TO 0300 
C 
C — Update BETA (and possibly RHO) and go another iteration 
0260 CONTINUE 

DO 0269 I=1,LDIM 
BETA(I) = BETA(I) + DELTA(I) 

0269 CONTINUE 
IF ( INDEPEND ) GO TO 0279

C — special code to constraint RHO, but help accelerate it also 
DELTARHO = DELTA(MDIM) 
RHOINCRE = DELTARHO 
RHOWORK = RHOINCRE+RHO 
IF ( DABS(RHOWORK) .LT. ONE ) GO TO 0275 
RHOINCRE = DELTARHO/TWO 
RHOWORK = RHOINCRE+RHO 
IF ( DABS(RHOWORK) .LT. ONE ) GO TO 0275 
RHOINCRE = DELTARHO/FOUR 
RHOWORK = RHOINCRE+RHO 
IF ( DABS(RHOWORK) .LT. ONE ) GO TO 0275 
GO TO 0279

C — but try to accelerate it if too small of update 
0275 IF( RHOINCRE .LE. 1.0D-4 ) RHOWORK = RHOINCRE*!.5D0 + RHO
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RHO = RHOWORK 
C-------------------------------------------------------------------
C ******** Finish current iteration ********
C-------------------------------------------------------------------  
0279 GO TO 0100 
C
C ****************************************************************** 
C ♦ ♦ ♦ Convergence on Score Equations met ♦ ♦ ♦
C ****************************************************************** 
0300 CONTINUE
C
C — Set the switch, & go back one more time to really get good results 
C

SUCCESS = .TRUE. 
GO TO 0260 

C 
C — Now, report the final results for this correlation structure 
C 
0301 CONTINUE

CALL GETTIM(IHOUREND,IMINEND,ISECEND,I100END)
WRITE(6,6302) IHOURBEG,IMINBEG,ISECBEG,IHOUREND,IMINEND,ISECEND 

6302 FORMAT(IX,'Start ' ,12,':',12,':',12,' - End •,12,'s’,12,•:',12)
WRITE(7,6310) SIGNIF,ITER 
WRITE(6,6310) SIGNIF,ITER

6310 FORMAT(IX,/,'Convergence at',F10.7,' Ivl in ',13,' iterations')
WRITE(7,6311) IOUTLIER 
WRITE(6,6311) IOUTLIER

6311 FORMAT(IX,' Number of OUTLIERS = ',16) 
C
C — retrieve HESSIAN (via HESSCOPY), and compute COVAR = inv(-HESSIAN) 
C

DO 0319 1=1,MDIM
DO 0315 J=1,MDIM 
COVAR(I,J) = ZERO 
HESSIAN(I,J) = -HESSCOPY(I,J) 

0315 CONTINUE 
COVAR(1,1) = ONE 

0319 CONTINUE 
CALL DECOMP(MMAX,MDIM,HESSIAN,COND,IPVT,WORK) 
IF ( COND .NE. COND+ONE ) GO TO 0330 

0325 WRITE(7,6325)
6325 FORMAT(1H0,'* * * ill cond -HESSIAN matrix @ 0325 ***',/)

GO TO 9999
0330 CALL SOLVE(MMAX,MDIM,MMAX,MDIM,HESSIAN,COVAR,IPVT) 

WRITE(7,6331)
6331 FORMAT(IX,/,'Asymptotic VAR/COVARIANCE matrix of BETA (&RHO)') 

DO 0339 1=1,MDIM
C — Divide inv(-H) by » to yield COV(B)

DO 0335 J=1,MDIM
COVAR(I,J) = COVAR(I,J)/SCALE 

0335 CONTINUE
WRITE(7,6333) (COVAR(I,J),J=1,MDIM) 

6333 FORMAT(IX,10(D12.6,IX))
0339 CONTINUE
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WRITE(7,6341)
6341 FORMAT(IX,/,• and CORRELATION structure')

DO 0349 1=1,MDIM
STDERI = DSQRT(COVAR(1,1)) 
DO 0345 J=1,MDIM

STDERJ = DSQRT(COVAR(J,J))
CORREL(I,J) = COVAR(I,J)/(STDERI*STDERJ)

0345 CONTINUE
WRITE(7,6333) (CORREL(I,J),J=1,MDIM)

0349 CONTINUE
C — report the scale parasiter » 

WRITE(7,6370) SCALE
6370 FORMAT(IX,/,'Scale parameter • =',D14.6,/) 
C —
C — print parameter estimate information 
C
0400 CONTINUE 

IF ( AUTOREG1 .OR. EXCHANGE ) WRITE(6,6402) RHO
6402 FORMAT(IX,' ****** RHO (est) = ',F12.8,' ******')

WRITE(6,6404)
6404 FORMAT(1X,/,16X,'Analysis of M.Q.L. Estimates',//, 

+ 5X,'Parameter Estimate Std Err Chi-sqr p',/)
DO 0415 J=1,LDIM

ISUB = IBETASUB(J)
FARM = BETA(J)
STDERR = DSQRT(COVAR(J,J))
CHISQ = (PARM/STDERR)**2
PVALUE = ONE - PROBCHI2(CHISQ,1)
WRITE(6,6410) ISUB,FARM,STDERR,CHISQ,PVALUE

6410 FORMAT(IX,7X,'B',Il,4X,F10.4,2X,F9.4,IX,F13.4,2X,F7.4)
0415 CONTINUE
C = = = = = = = = = = = = = = = = = = = = = : 
C — Finish of current correlation structure 
C = = = = = = = = = = = = = = = = = = = = = :

GO TO 0050
C 
C
c ******************************************************************* 
c
C — Convergence not attained, so abort the program 
C
9998 CONTINUE

WRITE(7,6998) ITER
6998 FORMAT(1H0,'! NO CONVERGENCE AFTER ',13,' ITERATIONS — ABORT!') 
C 
-----------------------------------------------------------------------  
c
C — EXIT PROGRAM 
C 
9999 CONTINUE 

ENDFILE 06 
ENDFILE 07 
REWIND 06 
REWIND 07
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CLOSE 
CLOSE 
CLOSE 
CLOSE 
STOP 
END

(4)
(5)
(6)
(7)
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