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A Variational Method for Numerical Differentiation

A mathematical problem is said to be well posed if it has general properties of existence, 

uniqueness, and stability of solutions with respect to given metrics. Problems which are 

not well posed are said to be ill-posed. This notion of a mathematical problem being well 

posed was first introduced by J. Hadamard [27] and was believed for years to characterize 

mathematical problems having physical relevence. In addition, algorithms for solving ill- 

posed problems tend to be unstable, making numerical solution of such problems extremely 

difficult. For these reasons, ill-posed problems received little attention until A. N. Tikhonov 

gave a precise definition to the idea of approximate solutions of ill-posed problems. He 

together with co-workers developed a general theory of ill-posed problems that included 

techniques for constructing approximate solutions [41,42,43].

Among the large number of ill-posed problems that are currently studied is the broad 

class of inverse problems. One important subclass of inverse problems is the following vari­

ety. Given “sufficient” information about the solution of the following differential equation

Lu = 0, (1)

where L is a differential operator, one seeks to recover one or more of the coefficient func­

tions.

Many ill-posed problems can be reformulated as inverse problems of the type (1) that 

we just described. One such problem is that of numerical differentiation. Given a function 

u to be differentiated, it is clear that finding u" is equivalent to recovering the coefficient



function Q in the differential equation

— u" + Qu — 0. (2)

As variational methods are typically numerically stable, we seek to develop a variational 

method for solving the inverse problem associated with (2) and hence for numerical differ­

entiation.

In this thesis, we begin by discussing some of the most common methods for numerical 

differentiation. Then we introduce our variational approach to numerical differentiation. 

Numerical results together with some details of our implementation are given in Chapter 4. 

We conclude with a discussion of generalizations of this method that may be applied to 

other inverse problems, including the computation of higher order derivatives.
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Chapter 1

Preliminaries

We begin with a description of notation that we use throughout the thesis. All functions 

are real-valued and defined on the closed interval [a, 6], unless we indicate otherwise. The 

set of functions that are continuous on [a, 6] is written C. Any function g, for which is 

in C is said to be in Cn. Absolutely continuous functions on [a, 6] are said to be in AC. The 

Banach space of functions g, such that |^|p is integrable, is written Lp (for l < p < oo), 

and || • ||p denotes the usual norm on £p. The space, £°°, of essentially bounded measurable 

functions, has the standard norm which we denote by || • ||^. The Sobolev space of functions 

g in £2 for which g, g', • • • , g^ are in £2 is denoted by Hq (for l < q < oo) and the 

corresponding standard norm by ||-||m«. The spaces £2 and %* have induced inner products 

which we express as (•, ) and (-, ),, respectively.

1.1 General Theory of Sturm-Liouville Equations

Consider the second order Sturm-Liouville equation

- (py')' + ÇV = / (1.1.1)

where p > 0 and 1/p, q, and f are in £1[a, 6]. Then a function u, continuous on [a, b] is said 

to be a solution of (1.1.1) if u is in AC (so that u* exists), pu* is in AC, and u satisfies (1.1.1) 

almost everywhere in [a, 6). Existence of a unique solution of (1.1.1) satisfying prescribed 

initial conditions is guaranteed by the following theorem.

1
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Theorem 1.1.1 ([28, p. 323]) Let A and A* be any two real numbers and let c be in [a, 6]. 

Then there exists a unique solution u for (1.1.1) such that u(c) = A and p^u'^c) = A'.

At this point it is useful to examine the homogeneous case of (1.1.1),

— (pvj + qv = 0. (1.1.2)

Equation (1.1.2) has exactly two linearly independent solutions that we call ux and u2. 

As the solution space is two dimensional, any solution of (1.1.2) can be expressed as a 

linear combination of «i and u2- It can be easily shown that W(ui,u2) - PM"2 - «iu2) 

is identically equal to a constant for any pair of solutions ui and w2 of (1.1.2). Further, 

W(ui,«2) = 0 if and only if ui and u2 are linearly dependent. In addition, for any solution 

«1 of (1.1.2) that is nonzero on [a, 6], the function given by u2(æ) = ui(æ) ds

is also a solution of (1.1.2) that is linearly independent from up Given independent solutions 

ui and u2 of (1.1.2) together with any solution ü of (1.1.1), any other solution u of (1.1.1) 

can be written in the form u = û + CjU] + c2u2 for some constants Cj and c2.

Given any two linearly independent solutions u\ and u2, define

A(z,^) = K-1[ui(æ)u2(^) - ui(^)u2(x)] (1.1.3)

where k = IV(ui,u2). This function R, sometimes called the influence function or the 

one-sided Green’s function has a number of interesting properties. First R is independent 

of the choice of the independent pair up u2. This may be shown directly but also follows 

from the fact that for £ fixed

= oax ax

subject to the condition R(x,0\x=^ — 0 and |«=e = p(€) 1 for X in (£,&]. Finally,

R allows one to construct a particular solution for equation (1.1.1) as an integral operator 

applied to the function /, as stated in the following theorem.

Theorem 1.1.2 ([49, pp. 118-120]) The unique solution of (1.1.1) subject to v(a) = 

p(a)v'(a) = 0 is given by
u(x)= F R(x, £)/(£) dÇ.
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Clearly any solution of (1.1.1) can be written in the form

u(r) = ciu^z) + c2u2(a:) + f 
J a

Now let and u2 be linearly independent solutions of (1.1.2) and assume that

D = «i(a)u2(6) — ui(b)ui(a) 0. (1.1.4)

Then the Green’s function G defined on [a, 6] X [a, 6] is defined by

[ - u1(^)u2(a)][u1(2:)u2(6) - ui(z)u2(b)], a<£<x<b
= i

[ K-1 D 1[u1(a:)u2(a) - ui(x)u2(a)][ui(^)u2(6) - ui(^)u2(6)], a<x<£<b.

The function G is independent of u\ and u2. As in the case of R, the fact that G is 

independent of ui and u2 can be verified directly or can be observed as a consequence of 

the fact that G is the unique solution of the initial boundary value problem

+ ^)G(x,^) = 0

G(a,f) = G(b,f) = 0 (1.L5)

lim^ç- G(z,() = lint^i G(x,f)

limx—Gx(x,^) = limx_»(+ Gx(x,£) =

for x in [a, 6] and £ a fixed number in [a, 6]. The main purpose for constructing this Green’s 

function is to allow us to construct the solution of certain boundary value problems as an 

integral operator applied to the given data as is done in the following theorem.

Theorem 1.1.3 ([28, pp. 341-343]) Assume that for some pair of linearly independent 

solutions of (1.1.2) that D / 0. Then the solution of (1.1.1) subject to the boundary 

conditions v(a) = v(b) = 0 is

rh
u(x)= / G(x,^)f^)dx. (1.1.6)
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1.2 Spectral Theory for Sturm-Liouville Operators

Define the operator L by

Lv — — (pu')' + qv (1.2.7)

for all v in P(L), the set of all functions v in £2 such that v and pv' are absolutely continuous, 

Ld is in £2, and v(a) = v(b) = 0. This operator L is self-adjoint, see [16, p. 1291]. Most of 

the remaining discussion in this section can be found in any standard reference, for example 

see [6, §7.1]. As L must also be symmetric, all eigenvalues of L are real.

One way to further characterize the eigenvalues of L is to note that they are exactly 

those values A for which the Green’s function associated with L — A fails to exist. Further, 

if A — O is not an eigenvalue of L then the boundary value problem

Lv = f (1.2.8)

u(a) = u(6) = 0 (1.2.9)

has a unique solution given by (1.1.6)

The collection of eigenvalues of L forms a countably infinite set {An} such that An < An+i 

for any integer n > 1. The set {An} has no cluster point and is bounded below, hence the 

limit of {An} as a sequence is infinity.

Let A be the set of all functions v in AC such that pv' is in AC, and v(a) = v(b) = 0. 

Set Ao to be the set of functions v in AC for which pv' is in AC, Lv is in £2, and v has 

compact support strictly contained in [a, 6]. Then define Ai to be the completion of Ao 

with respect to the energy norm _

fb
IMIe = / (pv*2 + qv2) dx.

Ja

Note that A is a subset of A\. Also note that the Rayleigh quotient R(v) = (Lv, v)/||v||2 is 

defined for all v in Ai. Consequently, we may state the following theorem.

Theorem 1.2.1 ([8, pp. 399]) There exists a function Ui, that minimizes the Rayleigh 

quotient R, over all v in Ai- Further, Ui is in A, R(ui) = Ai where Ai is the smallest 

eigenvalue of L, and Ui is an eigenfunction associated with Ap
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The eigenspace associated with each eigenvalue An is one dimensional. As a result, one 

can associate with each eigenvalue a normalized eigenfunction un. This set {un} forms a 

complete orthonormal set in £2. A discussion of these ideas can be found in [49, §§36, 38].

1.3 Disconjugate Equations

The second order ordinary differential equation (1.1.2) is said to be disconjugate on the 

interval [a, 6] if every nontrivial solution has at most one zero im [a, 6]. The property of 

disconjugacy characterizes those equations that may be solved uniquely given arbitrarily 

prescribed boundary conditions. This is precisely stated in the following theorem.

Theorem 1.3.1 ([28, p. 351]) Equation (1.1.2) is disconjugate if and only if for every 

pair of distinct points 24 and æ2 in [a, 6] and arbitrary numbers A and B, there exists a 

unique solution u of (1.1.2) satisfying u(x 1) = A and u(æ2) = B; or equivalently, if and only 

if every pair of linearly independent solutions Vi and v2 °f (1.1.2) satisfy ^i(zi)u2(z2) — 

vi(z2W*i) 0 0 for distinct points zi and z2 tn [a, 6].

A corollary of Theorem 1.3.1 is that equation (1.1.2) is disconjugate on [a, b] if every 

nontrivial solution has at most one zero in [a, 6]. As a consequence, the following fact serves 

as a useful test for disconjugacy of equation (1.1.2).

Proposition 1.3.2 Assume that p = 1. Then, equation (1.1.2) is disconjugate on [a, 6] if 

£ q~ dx < 4(6 — a)-1 where q~ is the negative part of q.

This proposition is a corollary of a theorem given in [28, Theorem 5.1, p. 345]. An 

additional property of disconjugate equations is that they have an associated variational 

principal that is often useful in numerical as well as theoretical applications of disconjugate 

boundary value problems.

Theorem 1.3.3 ([7, p. 10]) Equation (1.1.2) is disconjugate on [a,6] if and only if the 

functional 
rb

F(y) = I (pt/2 + qv^dx 
Ja

defined on Ai is positive.
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Next we state Dirichlet’s principle for the second order ODE case. It it worth noting 

that Dirichlet’s principle has a PDE analogue that is used in Chapter 5.

Theorem 1.3.4 If the hypotheses of Theorem 1.3.1 hold then the unique solution u of 

equation (1.1.1) subject to the boundary condition u(a) = A and u(b} = B satifies

,b rb
/ (pv'2 + qv2 — 2fv) dx > / (pu12 + qu2 - 2 fu) dx

Ja Ja

for any piecewise continuously differentiable function v satisfying the same boundary con­

ditions as u, with equality if and only if v = u.

A proof of this theorem can be found in any standand text on PDEs, for example see 

[49, pp. 392-393].

1.4 Calculus of Variations

Let X and y be Banach spaces and let U be a connected subset of X containing the zero 

element. Let r be a map from X into y. Then r(z) is said to be o(||$||a') as x tends to zero if 

r(æ)/||æ||^ tends to zero as x tends to the zero element in X and we write r(x) = o(||z||;r)- 

The function r is o(l) as x tends to zero if the limit of r(z) as x goes to zero is zero. 

If r(:r)/|H|x is bounded as x tends to zero then we say that r(x) = Odlzll^). A more 

thorough discussion of the material that follows may be found in [51, §§4.1-4.3].

A function f from a neighborhood U of x in X is said to be Fréchet differentiable if 

there exists a bounded linear map T, from X into y such that

f{x + h) = f(x) + Th + o(||h||^)

as h tends to zero. The map T is called the Fréchet derivative of / at x and we write 

m = t.

The function f is said to be Gâteaux differentiable at x if there is a bounded linear map 

T, from X into y such that
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f(x + th) = /(z) + ZT/i + o(Z)

as Z goes to zero. T is called the Gâteaux derivative of / at x which we denote 6/(z).

If the Fréchet derivative exists for all z in a set (7 then the mapping that takes x to 

f(x) is called the Fréchet derivative of / on U. A similar definition exists for the Gâteaux 

derivative of / on U. Higher derivatives are defined by considering f as a function from 

the set U into the space of bounded functions from X into y. We then apply this definition 

of a derivative to f to obtain et cetera.

The following proposition describes the relationship between the Gâteaux and Fréchet 

derivatives.

Proposition 1.4.1 ([51, p. 137]) Every Fréchet derivative at x is also a Gâteaux deriva­

tive at x.

The Gâteaux derivative can be equivalently defined by the equation

v t

Geometrically, the Gâteaux derivative is the directional derivative of / at z in the “direc­

tion” h. If this limit exists uniformly for all h with norm one, then this is also a Fréchet 

derivative.

Both the Fréchet and Gâteaux derivatives satisfy most of the usual properties of the 

derivatives of functions defined on Euclidian space such as validity of the chain rule and 

linearity. In addition, we have the following analogue of Taylor’s theorem. See [51, §4.3],

Theorem 1.4.2 ([51, pp. 148—149]) Let U(x) be an open convex neighborhood of x in 

the Banach space X and assume that f is a mapping that takes U(x) into the Banach space 

y. If f, f" iexist as Fréchet derivatives on U(x), then we have that

f(x + h) = /(z) + £ ^fW(xXh, h,h) + Rn(x, h) (1.4.10)
6=1 K"

where f^k\x) is the kth Fréchet of f at x, RnÇx^h) = OQIhllJ), and (h,h,...,h) is an 

element of Xk. Further, if f^ exists on U(x) then Rn(x,h) = o(||A||^ ).
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In addition, it is shown in [52, p. 249] that if is continuous on U(x) then Rn has 

the explicit form

Rn(x,h) = f (* ~ + th)(h,h,...,h)dt
J 0 vn —

where (h,h,...,h) is an element of Xn.

These ideas have a number of useful applications in optimization theory that are exactly 

analogous to those in elementary calculus.

Proposition 1.4.3 ([52, p. 249]) A convex Gâteaux differentiable function f, has a min­

imum at x if and only if f(x) = 0. Moreover, if f is strictly convex and f'(x) = 0, then x 

is the unique global minimizer for x.

The second derivatives often yield valuable information about the concavity of the func­

tion.

Proposition 1.4.4 ([52, pp. 247-248]) A function f defined as in proposition 1.4-3 is 

convex on a convex set U if and only if f"(x) is a positive quadratic form for all x in U. 

Further, if f"(x) is positive definite for all x in U, then f is strictly convex on U.

As one might expect, existence of derivatives implies certain continuity properties.

Theorem 1.4.5 ([52, p. 150]) If f is Gâteaux differentiable at x and f(x) is strongly 

continuous then f is weakly sequentially continuous at x.

That is, given any sequence {in} such that (xn,y)x tends to (x^,y)x for some x* in X, 

we have that f(xn) converges to /(r,) in the space y.



Chapter 2

Numerical Differentiation

The problem of numerical differentiation is known to be ill-posed in the sense that small 

pertubations in the function to be differentiated may lead to large errors in the computed 

derivative. As a result, the traditional methods for numerical differentiation tend to be 

unstable.

Much has been written on this topic [1,2,4,9,12,13,14,15,18,23,24,26,29,31,32,33,38,40,  

45,46,47,48], and a number of techniques have been developed. Most fall into one of three 

categories: difference methods, interpolation methods, and regularization methods. The 

first two techniques mentioned are the most commonly used and yield satisfactory results 

when the function to be differentiated is given very precisely. However, they do not address 

the inherent instability of numerical differentiation and may fail badly if the function is 

imparted with only a small amount of error. Regularization methods, on the other hand, 

do address this instability problem and usually give satisfactory results even when the 

function to be differentiated is not precisely given. Most of these regularization methods 

make use of Tikhonov’s approach to solving ill-posed problems [41,43]; some examples 

include [1,2,9,12,13,14,31,38,40,46]. These methods typically involve reducing the numerical 

differentiation problem to a family of well-posed problems that depend on a regularization 

parameter. Once an optimal value for this parameter is found, the corresponding well-posed 

problem is solved to obtain an estimate for the derivative. Unfortunately, the determination 

of the optimal value for this parameter is generally a nontrivial task.

9
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2.1 Difference and Interpolation Methods

Difference methods and interpolation methods are the techniques most commonly used 

methods to implement numerical differentiation. They usually yield satisfactory results 

when the function to be differentiated is given very precisely, but tend to be very sensitive 

to roundoff error. Further, because these methods do not address the inherent instability of 

numerical differentiation they may fail badly if the function is imparted with only a small 

amount of error.

We begin this section by studying the effects of roundoff error on some specific numerical 

differentiation techniques and how one might remedy these effects without resorting to 

regularization.

One way to approximate f is to use the formula

(2.1.1)

which holds for h sufficiently small. However, it is well known that in cases where the 

precision with which f is given is limited, taking h small will lead to subtractive cancellation 

and potentially large roundoff error. (For example, see [44, p. 140].) The truncation error 

for a numerical differentiation formula is the “exact” error in the formula. In the case of 

formula (2.1.1), for example, the truncation error is defined to be

^(^.^ (2.1.2)

Expanding f(x+h) in a first order Taylor series about x one can easily show that e(h) = o(l). 

Moreover, if f" exists and is bounded on some neighborhood of x, then c(h) = 0(h) for h 

sufficiently small.

The basic problem with using (2.1.1) is that in order to make the truncation error small 

we must take h small which could lead to large roundoff error. One typical approach to 

solving this dilemma is to use a formula that yields a small trucation error without taking h 

so small that roundoff error becomes significant. Many such formulae may be derived using 

polynomial interpolation as discussed in [44, pp. 140-143]. For example, given that f(x) is 
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three times differentiable we have the result

f(x + h)~ f(x - h)
2 h ’ (2.1.3)

where the truncation error is for some £ between x — h and x + h. Formula (2.1.3)

is commonly known as the central difference approximation for J'(x\ Additional formulae

where x — h < Ç < x + h and

include
M = -«A»)+ + (2.1.4)

/(') =
f(x — 2h) — 8f(x — h) + 8f(x 4- h) — f^x 4- 2h)

12 h
(2.1.5)

where x — 2h<^<x + 2 h.

Any formula derived by Taylor series or polynomial interpolation (such as (2.1.2), (2.1.3), 

(2.1.4), and (2.1.5)) must have the form (see [44, p. 143])

= (2.1.6)
n k=1

where the numbers at are fixed numbers that define the formula and the points x^ satisfy 

x1+i — X{ = h for i = 1,2, ...,n. In the special case /(x) = 1, (2.1.6) reduces to

t£o* = °- (2.1.7)
n t=i

As h becomes small some of the individual terms ak/h must become large in absolute value. 

As a result, subtractive cancellation and large rounding error will become significant even 

in formulae having small truncation error. Note that by this same reasoning, (2.1.6) shows 

that whenever |/'(zj)| is small compared to |/(zj)| the effects of subtractive cancellation 

are likely to be significant. (See Table 4.0.1, later.)
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2.2 Regularization Methods

We begin this section with a simple illustrative example of the Tikhonov regularization 

method and then discuss briefly the use of regularization for numerical differentiation.

The term regularizaton method refers to one of a broad class of functional analytical 

approaches to solving ill-posed problems. The idea, simply stated, is to reformulate the 

ill-posed problem as a parameterized family of well-posed problems. Once an optimal value 

for the regularization parameter is found, the corresponding well-posed problem is solved.

Suppose that A is a continuous linear operator from a real Hilbert space X, into a real 

Hilbert space y. Then the problem of finding u such that Au = b is said to be well-posed 

if b is in the range of A and if there exists a constant c > 0 such that

\\Au\\y > c|H|;r (2.2.8)

for all u in X. Otherwise the problem is ill-posed. Now in Tikhonov regularization we 

consider the perturbed problem Aug — bg where || 6 — 6g|| < 8 over v in X where 7 > 0. 

One should think of bg an experimentally determined approximation of the exact value b. 

The corresponding regularized problem is to minimize

G^v) = |||Av - My + plK- (2.2-9)

If there exists a solution, say v(bg, 7), of the optimization problem just stated then this 

solution must be a stationary value of (2.2.9). In other words, the Gâteaux differential, 

G^(v)h of Gy at v(bg, 7) is zero for all h in X. Computing the Gâteaux differential explicitly 

and setting it to zero yields

G'y(v)h = (A*Av - A*bg + 7Iv, h)y = 0 (2.2.10)

for h in X. Here A* denotes the Hilbert adjoint of A. Hence,

(A* A + 7-T)v(M7) = A*bg. (2.2.11)
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As A* A + 71 is strongly positive and self-adjoint, for 7 > 0, it must have an inverse. Hence 

the only remaining difficulty as we have mentioned earlier is in choosing 7 appropriately.

We now examine Cullum’s procedure [9] for applying Tikhonov’s regularization ideas to 

the problem of numerical differentiation.

Let g(x) be the function to be differentiated. Then we can assume without loss of 

generality that the interval of definition is [0,1] and that g(0) = 5(1) = 0. Then the 

problem of “given g find f such that g1 = /” can be reformulated in terms of the following 

integral equation
(A/)(z) = [ h(y- x)f(y)dx = g(x) (2.2.12)

J 0

where h is the Heaviside unit step function.

Cullum then procedes to show that problem (2.2.12) can be reduced to the following 

family of optimization problems which she proves is well-posed. For a given a minimize

/ ri \2
Ga(f) = ||Af - g\\2 + (2 fdxJ + o||/||i (2.2.13)

where ||u||^ = /J u2 dx and ||u||2 = ^(u'2 f u2) dx . Here a is the regularization parameter. 

A calculus of variations argument then shows that for a given a is the interval (0,1]. The 

minimizer for Ga must satisfy the Fredholm integral equation of the second kind given by

af(x)+ / K0(x,y)f(y)dy = m(y). (2.2.14)
J 0

Where m(x) = Jq G(x,y) /J g(s)dsdy, G is the Green’s function associated with the oper­

ator Bu = —u" + u with Neumann endpoint boundary conditions, and

Ko(x,y) = 2 - max(z,y) - G(x,y) f cosh(z)/ sinh(l).

The solution (2.2.14) for a given a can thus be obtained using standard finite difference 

methods. Cullum does not offer a method for obtaining an optimal value for a.

In [1,2] two independent statistical methods are suggested for numerical differentiation. 

One method is based on standard regression analysis. The other method makes use of 

a spectral analysis of the data to define its “optimal” numerical differentiation operator. 

In this case it is assumed that the correct function and the error can be regarded as a 
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stationary time series and that the spectrum of the data shows a clear division between the 

signal and the noise. Anderssen and Bloomfield then show that Cullum’s procedure has a 

spectral analysis interpretation that can be used to obtain an optimal value for a.

In the next chapter we present a new regularization procedure that makes use of the 

assumption that the curvature of the original function is bounded.



Chapter 3

A Variational Method for 
Numerical Differentiation

In this chapter, we suggest a method for numerical differentiation that we believe avoids 

some of the problems mentioned in Chapter 1. Given a real valued, smooth function u 

defined on the closed interval [a, 6], we construct an associated functional,

fb rb
= / (i/2 + qu^dx - / (u^ + qu^)dx (3.0.1)

Ja J a

where uq solves the boundary value problem

—v" + qv = 0 (3.0.2)

v(a) = A, v(b) = B\ (3.0.3)

here (and later) A = u(a) and B = u(b). The functional H is strictly convex and has a 

unique global minimum, Q = u"ju. Hence this minimizer for H may obtained approxi­

mately using standard optimization theory. Once Q is found, we obtain an approximation 

for «' by numerically solving —u" + Qu = 0 as a first order system under appropriate bound­

ary conditions. Use of an "H1 gradient for H (rather than an C? gradient) is a crucial step 

in our development. -

In §3.1 we discuss some properties of this functional and give some preliminary results. 

The stability of the method is examined in §3.3. A steepest descent approach to the op­

timization is discussed in §3.2, and convergence of this algorithm is proven under a set of 

conditions that can be monitored numerically in §3.4.

15
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3.1 Preliminaries

Let f be a function that is twice differentiable with an essentially bounded second derivative. 

Our task is to compute f numerically.

Set u(æ) = /(%) f Æ for n < x < b, where k is a constant. Clearly, u and f have the 

same derivative. We shall see later that, in the present context, this constant k is somewhat 

analogous to the Tikhonov regularization parameter mentioned in §2.2; however, for now 

we need only choose k sufficiently large (given enough machine precision) to guarantee that 

u satisfies the following technical conditions that are needed for the theory we are about to 

discuss. The first condition is that

u(x) > c > 0 (3.1.4)

for a < x < b\ this is needed to ensure that u has no zeros. We define the function Q by 

Q(x) = u"{x)/u{x) for a < x < b, and assume the second technical condition that

HQIloo < M, (3.1.5)

where
3-2

°<M<

Condition (3.1.5) serves to control the curvature of the function u in that more curvature 

is permitted with b — a small.

Observe that as u is a positive solution of —v" + Qv = 0, this equation must be dis- 

conjugate [28, p. 351] on the interval [a, 6]. With this in mind, we define D to be the set 

of all functions q in I1 such that the equation (3.0.2) is disconjugate on [a, 6], It follows 

that Q is in D. Moreover, by condition (3.1.6), the constant function —M is in D hence, 

any function q in L1 for which —M < q almost everywhere in [a, 6], must be in D. (See [7, 

pp. 20].) In addition, we have

Proposition 3.1.1 The set D is convex and open in and in £?.

A proof for the T1 case may be found in [7, pp. 10,95]. The proof of the £? case is 

similar.
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For each function q in P, by [28, p. 351] there exists a unique solution, uq, for (3.0.2) 

satisfying the boundary conditions (3.0.3). Further, each function uq must be positive, as 

(3.0.2) is disconjugate and A and B are positive, by (3.1.4).

We show that problem of computing u' can be reformulated as the problem of minimizing 

the functional H defined for each q in P by (3.0.1). In §3.3 we discuss the computation of 

the minimizer for H, and how finding this minimizer allows us to compute u1. But first we 

examine some useful properties of the functional.

For each q in P, let the operator Aq be defined by Agv = —v" + qv, on functions v in 

satisfying homogeneous Dirichlet boundary conditions at the end points of the interval 

[a, 6]. In addition, let Gq be the Green’s function associated with the operator Aq. Recall 

that Gq is continuous, hence bounded, on [a, 6] X [a, 6].

Lemma 3.1.2 For fixed q in P and h in such that

IM1 < (317)

we have the following estimates:

Ilwg+zJloo 2||ug||oo; (3.1.8)

ll^gfh — Mglloo < 2||Gg||oo||Ug||oo||^||l- (3.1.9)

Proof. Subtracting the equations f (#+&)%,+& = 0 and —uq + quq = 0, and observing 

that uq+h - uq lies in P(Ag), we obtain Aq(uq+h - ug) = —hug+h- As q is in P, the operator 

Ag is positive [28, p. 352], and hence Ag may be inverted; thus

rb
Uq+h(x) = Uq(x) - Gq(x, ^)Uq+h^)k^) d£. (3.1.10)

Ja

Applying the Holder inequality yields |%g+h(z)| < ||ug||oo + ||Gg||oo||«gfA||oo||A||i for 

a < x < b. Hence

||^qf k||oo < llugl|oo + II^Uoo||Ug+/t||oo||^||l ||^q||oo + % IIuç+a||oo? (3.1.11)

on using (3.1.7); (3.1.8) follows.
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To see that (3.1.9) holds observe that from (3.1.10) one readily obtains

/i(^) ^(^îl < ||<?ç||oo||%g+A||oo||&||l (3.1.12)

for a < x < b. By taking the maximum of the left side of (3.1.12) over a < x < b and 

applying (3.1.8) to the right side of (3.1.12) we have (3.1.9), whenever (3.1.7) holds.

Proposition 3.1.3 For each q in D, the Fréchet differential of H is given by

rb
H'(q)h= / (u2 -Ug)hdx (3.1.13)

Ja

for all h in and the gradient of H in L2 is given by

VÆ(ç) = u2 - u2. (3.1.14)

Proof. For h in L1 let 1(h) be given by

rb
1(h) — H(q + h) — H(q) — / (u2 - u2)hdx.

Ja

Using the definition of H, integration by parts, the equations for uq and ug+h, and the fact 

that uq and uq+h agree on the boundary of [a, b], we have that

Zb
[-(“" + u"+h) + q(Uq + Ug+A)]^ - Uq+h)dx

rb
+ Ja - «g+h)hdx

rb
= / (uq-uq+h)uqhdx. (3.1.15)

Ja

Applying Holder’s inequality to (3.1.15) and then using (3.1.9) yields

kWI < IK - tWIoolKlkHl < ^|^|K|^g||^||h||2,

whenever (3.1.7) holds. The desired result follows.
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Proposition 3.1.4 For each q in D, the second Fréchet differential of H is given by

H”(q)[h, h] = 2 uqh] (3.1.16)

for each h in C?. Further, for each q in D, H"(q) is a positive definite quadratic form.

Proof. Let h and k be in Lx and define J(h) by 

nb 
Gg(x, ÇMxMÇWW) d^dx.

Then, by using the expression for H' given in Proposition 3.1.3, we see that

= / (w, - Uq+h)kdx - 2 / / Gq(x,£)ug(x)ug(£)k(x)h(C)d£dx (3.1.17) 
J a Ja J a

fb rb
= [uq(x) + uq+h(x)]k(x) Gg(.X,Ç)Ug+h.(CKCdÇdx

J a va
-2 [ [ Gq(x,^Ug(x')Uq(^k(x>)h(Ç') d^dx, (3.1.18)

Ja va

upon factoring the first integrand in (3.1.17) and using (3.1.10) to eliminate uq — u^.

Applying Holders inequality to (3.1.18) then gives

< Halloo / / |{[u,(z) f Uq+h(a:)]wgfA(^) - 2ug(z)u,(()} &(z)h(^)| 
Ja Ja
fb fb

= Halloo / / + u^(:r)^)(u^.^)
Ja Ja

-uq(£)W£) + "g(f)A(f)h?+A(3) - Mq(z)]6(a:)| d^dx 
rb rb

— Il^glloo I |ug&| dx / \Uq^./l — Ug||/l| d£
Ja Ja

rb fb
+ 11^9ll<x> I lyg+Zi^l dx I |Ug^.^ Ug||h|dC 

Ja Ja
fb fb

+ \\Gq\\co |tigh|dæ / \uq+h - Ug||fc|dx 
Ja Ja

— Il^gl|oo|l^g||oo||^||l||^g+Æ — ^g||oo||h||l + UGgHooUUg+A ||oo 1(^5+^ — Ug||oo||A||l

+ ||Gg||oo||"g||oo||N|l||%g+^ " «g||ooP||l-

Then, applying Lemma 3.1.2 yields |J(h)| < 8||Gg||^||ug||^||A||^||k||i, given that (3.1.7) 

holds.
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Hence

H"(q)[h,h] = 2 I / Gq(x,£)ug(£)h(£)d£\ug(x)h(x)dx = 2(Ag\uqh),uqh), 
Ja \Ja /

which is (3.1.16). Finally, notice that H"(q)[h,h] = 2(y,Aqy), where Aqy = uqh. As Aq is 

positive, y is the trivial solution if and only if uqh (and hence h) is the zero function, and 

thus we have that, for each q in D, H"(q) is a positive definite form. I

The next proposition summarizes some of the more useful properties of H.

Proposition 3.1.5 The functional H has the following properties.

(1) H(q) > 0 for q in D, and H(q) = 0 if and only if q = Q.

(2) H is strictly convex on D.

(3) For any q in D,
fb

H(q) = J [(u' - u'^2 + q(u - uq)2] dx. (3.1.19)

(4) For any qi, q2 in D,

rb
H(qi) ~H(q2)= / (qi - q2)<u2 - uqiuq^dx. (3.1.20)

Proof. To see that the first property holds, note that by Dirichlet’s principle applied to the 

boundary value problem (3.O.2)-(3.O.3),

6 rb
(u'2 + qu2) dx > / (u12 + qu2) dx

Ja

with equality if and only if u = uq. Hence H(q) > 0 for all q in V — {Q} and H(Q) = 0.

The strict convexity follows from the fact that H"(q) is positive definite for each q in D.

To see that property (3) holds, note that, on rearranging (3.0.1),

fb rb
H(q) = / (u'2 - 2u'u' + u'2) dx + / q(u2 - 2uuq + dx

Ja Ja
rb 

+2 / [(«' - Ug^Ug + q(u - uq)uq\ dx.
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Further, integration by parts shows that

fb , fb
/ [(u' - u'^Uq + Ç(U - tiq)ug] di = (U - Ug)u'|a + / (-«" + ?«,)(«- W,) dz, 

Ja

which is clearly zero, as u and uq agree at the endpoints of [a, 6] and uq is a solution of 

(3.0.2); property (3) follows.
To verify property (4), we observe that after applying the definition of H and rearranging 

terms

Jrb rb rb
' (^ + ^^)dz- / (ug + 5i ) dz + / (u2 - - %)dz
a «/a •'a

ja Jq
rb

= / [-« - <2) + 91(«91 -“«)](“« -w92)^ 
Ja

;6
+ / (%T -«,,)(# -q2)dx, 

Ja

by a computation similar to that used to prove property (3) above, as and agree on 

the boundary of [a, 6]. Replacing u" and u" by çiand q2uq2, respectively, and combining 

like terms, completes the proof.

3.2 The Variational Algorithm

Here we discuss one approach to the problem of minimizing the functional H, and how 

one estimates u' once a suitable approximation for this minimizer is found. As mentioned 

previously, our optimization strategy makes use of a steepest descent procedure.

First choose some initial function go in D satisfying ||ço||oo < M, where M is described 

by (3.1.6). Then the £2 direction of steepest descent for H at % is -VF(%) = —(u2 — u20). 

However, there are numerical problems associated with using the £2 gradient in the descent 

procedure stemming from the fact that the £2 gradient is always zero on the boundary of 

[u, 6]. So instead we use the H1 gradient, go = V^iF(%), of H at % given by

H'(qo}h — (go, h)i (3.2.21)
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for all h, in H1. It is not difficult to show that go is the solution of the Neumann boundary 

value problem

-v" + v = VÆ(ço) (3.2.22)

v'(o) = v'(b) = 0;

in particular, one can see from equation (3.2.22) that the Tf1 gradient is just a precon­

ditioned (or, smoothed) £2 gradient. The use of the Tf1 gradient for this purpose was 

originally suggested by Neuberger [35]. Note that the function fo(ot) = H(q0 - ag0) is 

strictly decreasing in some neighborhood of a = 0 as /q(0) = — ||yo||^i < 0. This function 

is “minimized” by using the quadratic approximation

fo(a) « H(qo) - aH’(qo)go + -o^^(ço)[^o^o].

Here the minimizing value for a is given by a0 = #'(go)go/#"(%)ko,go], where

ri>
H’(qo)go = I (u~ «% )go dx 

Ja

and
rb

H"(qo)[go,go] = 2(A~1(ugogo),ugogo) = 2J wuqogQdx,

with w being the solution of the Dirichlet problem

-w" + qow = uqogQ

w(a) = w(6) = 0.

Then we set qi = qo — «ogo- Invariant embedding [20, p. 117] allows us to convert the 

boundary value problem

-v" + giv = 0 (3.2.23)

v(o) = A, v(b) = B (3.2.24)

to a pair of first order initial value problems. We proceed as follows.
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Taking z = v', the boundary value problem (3.2.23)-(3.2.24) can be rewritten as the 

system

v' = z (3.2.25)

z' = qiv (3.2.26)

v(a) = A, v(b) = B. (3.2.27)

We then introduce new functions t(x) and w(x) that satisfy

v + tz = w. (3.2.28)

Eliminating v and z from equations (3.2.25), (3.2.26), and (3.2.28) yields

(w' - qitw) - z(t' + 1 - qit2) = 0. (3.2.29)

Now (3.2.29) will be satisfied if t and w solve the initial value problem

t* = qTt2 - 1 (3.2.30)

w' = tw (3.2.31)

t(a) = 0, w(a) = A. (3.2.32)

Once t and w are found as solutions for the system (3.2.30)-(3.2.31)-(3.2.32) we see that 

v(b) + t(b)z(b) = w(b). Hence if we set 6 = (w(6) — B)/t(b), then v and z must satisfy the

system (3.2.25)-(3.2.26) together with the initial conditions v(b) = B and z(b) = 6. This

gives our first approximation:

u91 « «, « u'. (3.2.33)

This procedure is repeated with qn replaced by qn+1 = qn - angn, for n = 1,2,..., where 

9n = V^iH(qn) and an is chosen to “minimize” /n(a) = H(qn - agn) in the manner 

described above, until H fails to descend. We use (3.1.20) to check the descent.
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3.3 Stability

Typically, a function that one might wish to differentiate numerically is given with a certain 

amount of error. For this reason, it is necessary to examine how small perturbations in u, 

the function to be differentiated, affect the computed value of the derivative.

Let û = « + A where A is small in I1 and where A(a) = A(6) = 0. It is known that, 

with no further restrictions on A, ||u' - û'||2 can be arbitrarily large. We will show that 

given certain conditions on ü", having A small in £1 will imply that ü' is close to u' in £?.

Lemma 3.3.1 Suppose that q is a function in Cx such that

Moo< M, (3.3.34)

where M satisfies (3.1.6). Then

IKIloo < max(4,B) 1 +
M(b — a)1/2 1

(3.3.35)

Proof. Clearly, as —M < q(x) almost everywhere in [a, 5], from [7, p. 20] ç is in P and, if 

the smallest eigenvalues of Aq and A-m are denoted by A, and respectively, then we 

have that X-m < A, where
2 1

A-m = (3.3.36)

In consequence,

IlVlh < 11^112 = (6 -a^ M ’ (3.3.37)

where is the operator norm of A”1 defined by 111112 = sup^u^! \\A~lh\\2.

Now let l(x) = A + (B — A^x — a)/(b — a) and v = uq — I. It follows that v is in the 

domain of Aq and — v" + qv = —ql. Hence v = — Aÿ^ql), i.e., uq = I — A~\ql). If we now 

apply the Holder inequality and make use of (3.3.34) and (3.3.37), we have that

kWI < Mœ + IK’lhlHa
< + -a)'/:)
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Lemma 3.3.2 Suppose that q is an C1 function that satisfies (3.3.34). Then

1 M)

' H(q) > r||u - ug

where
t = M > 0, (3.3.38)

1 +

whenever M satisfies (3.1.6).

Proof. Let h be in Tt1 with h(a) — h(b) = 0 and observe that by (3.3.34) we have

Observe also that

rb rb
/ (ha + qh2)dx > / (h^-Mh^dx. (3.3.39)
J a Ja

rb fb
/ (h12 — Mh2)dx > X-m / h2dx,

Ja Ja

where A_# > 0 is the smallest eigenvalue of A_w By (3.1.6), it follows that 0 < t < 1. 

As (1 — t^X-m — Mt = r, from (3.3.36) and (3.3.38),

fb fb rb
I (h*2 — Mh^dx = (1 — t) I (h12 — Mh?) dx + r / (h!2 — Mh2)dx
Ja Ja Ja

rb fb fb n
> (1 — t^X_m I h2dx + T 1 h^dx — rM I h2 dx 

Ja Ja Ja
fb fb

= t h^dx + [(1 — t)X_m — Mt] / h2 dx 
Ja Ja

fb
= t I (ha Ah2)dx. (3.3.40)

Ja

Combining (3.3.39) and (3.3.40) and replacing h by u - uq yields, via (3.1.19), the desired 

result.

Theorem 3.3.3 Let ü be a positive twice differentiable function and let Q be given by 

Q = û"/ü. Suppose that Q satisfies (3.3.34) and assume that ü(a) = A and ü(6) = B. Then

\\u-u\\^ < A2||tt-«||1
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where 2
k2 = 2M|H|oo^BL

-b

Proof. As in the previous lemma Q is in P. So, making use of (3.1.20) we have that

H(Q)= [\Q-Q)u(u-u)dx (3.3.41)
va

as H(Q) = 0. Applying Holder’s inequality to (3.3.41) gives

H(Q) < HQ - QIUHulloolk - «Hi < - ti||i. (3.3.42)

Combining this with the result of Lemma 3.3.2 proves the theorem. |

This theorem says that if we restrict our attention to the class of functions q that satisfy 

(3.3.34), then the problem of numerical differentiation becomes well-posed. The condition 

(3.3.34) serves to control the curvature of any perturbation that may be introduced into 

the function. This result is similar in spirit to the (optimal) stability result in [46].

3.4 Convergence

In this section we prove that any sequence {gn} in D such that (3.3.34) holds and such 

that {ff(çn)} tends to zero must converge weakly to Q in £?. Further, the sequence {u?nJ 

produced by {qn} must converge strongly to u in W1. We then show that under certain 

conditions that can be monitored numerically, the sequence {çn} produced by the steepest 

descent algorithm described in §3.2 has the property that {H(qn)} tends to zero.

Theorem 3.4.1 Suppose that {çn} is any sequence of functions in D satisfying (3.3.34). If 

{H(qn')} tends to zero, then {çn} converges weakly to Q in £? and {%,} converges strongly 

to u in If1. .

Proof. That {«,„} tends to u in %1 follows trivially from Lemma 3.3.2. To see that {qn} 

converges weakly to Q in C?, let h be in the domain of the self-adjoint operator Aq. In 

other words, h' is absolutely continuous, —h" f Qh is in C?, and h(a) = h(6) = 0. It can 

be easily shown that k = h/u is also in the domain of Aq. So, following the same line of 
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reasoning used to get (3.1.10), we have that

Aq(u — Uq„ ) — (Çn Q)^qn — (9n 4" (?n Q)(^5n ^)" (3.4.43)

Multiplying through (3.4.43) by k and integrating by parts yields

rb fb rb
/ [(«' - u'q^W + Q{u - ugn)A:] dx = (qn - Q)h dx+ (qn - Q)(uqn - u)k dx.
Ja Ja Ji

Using (3.1.5) and setting C = max(l,M) we have,

(qn-Q)hdx u' - Uqn )&' + Q(u - Uqn )Æ] dx f [ (qn-Q)(uqn-u)kdx

C\\u-Uqn\\w\\k\\w+2M\\uqn-u\\2\\k\\2 (3.4.44)

that tends to zero as n tends to infinity.

Now let h be any function in £2 and let e > 0 be given. By the density of the domain 

of Aq in £2 there exists a sequence {hj} in the domain of Aq that converges strongly to h 

in £2. So, choose jo sufficiently large that \\hj0 - h\\2 < |e M~l(b — u)"^2. Then, fixing 

h = hj0 in (3.4.44), one may choose N large enough to insure that

- Q)hjo dx
E
2

for n > N. Consequently, for n > N

- Q)hdx - Q)(h - hjQ - Q)hj0 dx

< ^<ln - — hj0\\2 +e/2 

< 2M(6-a)V2||h-h^||2f g/2

< e/2 + e/2 = £.

Lemma 3.4.2 7/ the sequence {çn} /rom the algorithm in §3.2 tends to a function q* in 

£2, then the sequence ofH1 gradients of H at qn must converge to zero in W1.

Proof Proceeding as in Lemma 3.1.2 we have that {ug„} tends uniformly to uq, as {çn} tends 

to q, in £2. Hence {u2e - u2n} converges uniformly to zero. Now, setting gn = Vwi^(9n) 
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and wn — gn — g* we have that wn satisfies the boundary value problem

-v" + v = (3.4.45)

v'(a) = v'(6) = 0;

i.e.,
Wn(®)= / 

va

where is the Green’s function associated with (3.4.45). So

IHloo < IWIoolK - <111 < (6-«)|kq|oo||< - <||oo. (3.4.46)

It follows from (3.4.45) and (3.4.46) that (w"J tends uniformly to zero. We then have that

Klloo = / IKIIoo^ = (6-«)||<||oo, (3.4.47)
Ja oo Ju

and, from (3.4.46) and (3.4.47) it easily follows that {yn} tends strongly to g. in W1. Finally, 

note that in the case of steepest descent with exact line search,

(yn,5n+l)l — H (Çn+l)5n — — 3 ~ a9n) — 0 (3.4.48)
a=an

for all n > 0, as an is a minimum for /n(a) = H(qn - agn)•

Suppose now that 5, / 0. We can assume without loss of generality that gn 0 for all 

n. Arguing as in [11], set zn = gn/||^n||w for each n, set z„ = 5*/||ÿ,||^i and note that 

ll^nllw1 = ||^*||7^i = 1- By the earlier argument {^} tends strongly to g* in W1, hence 

{||5n||«i} converges to ||g*||#i. It is then a simple matter to show that {zn} converges 

strongly to z* in It1. So choose N such that for n > m > N

||zn 2m||Wl < F (3.4.49)

However, by (3.4.48) ||zn - zn+iH^ = ||zn||?p + H^+i||^ = 2. for any n. This contradicts 

(3.4.49), and in consequence g* = 0. |
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For the case of inexact line search the requirement (3.4.48) on an can be weakened to

KSn^n+l)! < glknllMllkn+lIk*

by a trivial modification of this proof.

Theorem 3.4.3 Let {qn} be the sequence generated by the algorithm discussed in §5.2. 

Assume that each function qn satisfies (3.3.34) and that there exists a constant p > 0 such 

that

H(qn) - H(Qn+1) > anP||5n||wi||<7n||r2 (3.4.50)

for n > 0 where {gn} and {an} are as described in §5.2. Then the sequence {H(qn}} 

converges to zero as n tends to infinity.

Proof. First we claim that there is a subsequence {g^n)} tending strongly to zero in W1. 

To see this, assume by way of contradiction that there is a number 6 > 0 such that

WlTP > 6 (3.4.51)

for all n. Then from (3.4.50) and (3.4.51)

#(9n) - #(?n+l) > /’||5n||w»||?n+l - > P^||Çn+l ~ Çn||r2,

for all n. Hence for n > r

H(qn)~H(qn+1) > P^llîn+1 - Çn||£2, 

^(Çn-1)- H(qn) > p%n-Çn-l|ka,

H(îr+l ) - H(îr+z) > P^lkr+2 - Çr+11|^2 .

The triangle inequality then implies

n
#(Çr+l) - H(qn+1) >p6 Ik'fl - 9«lk2 P^lkrfl ~ Çnfl||r2-

i=r+l
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Now {H(qn)} is convergent as it is monotonically decreasing and bounded below; hence 

{9n} is Cauchy in £2 and must converge strongly to some function q, in £2. So by 

Lemma 3.4.2, the sequence {gn} converges to zero strongly in W1, and this contradicts 

(3.4.51). It follows that we can find a subsequence {gv(n)} converging to zero strongly in 

H1. In addition, as the sequence is bounded in C? we can assume that a subse­

quence, of {^(n)} converges weakly to some function q in C? [16, p. 68, Theorem

II.3.28]. Note that, as q^(n) is in V and satisfies (3.3.34) for each n, we have that for all 

functions v in Tf1 
fb fb
/ (y'2 + > X-M / V2 dx, (3.4.52)

Ja Ja

where X-m denotes the smallest eigenvalue of the operator A-m- As q^n) converges weakly 

to q in £2, it follows that (3.4.52) holds with q replacing qv^ for all v in W1. Consequently, 

g e P. Let g = V^iH(g) and note that {g^)} tends strongly to zero in W1.

We now claim that {g^)} converges strongly to g in K1. To see this, first note that by 

an argument similar to the one used to obtain (3.1.10) it can be shown that {u^)} tends 

to Ug in W1, hence in £? as well. So setting wn = 9n — q and proceeding along the line 

of Lemma 3.4.2, we have that ||w^(n)||oo < ||^||oo • ^i\\uq^n) ~ u|l|i, where kt is the right 

hand side of (3.3.35) and K is the Green’s function associated with the Neumann problem

-v" + v = - u2n

v'(a) = v'(6) = 0.

Again appealing to the proof of Lemma 3.4.2 it can easily be shown that {w^(n)} tends 

strongly to zero in K1. In other words, (g^(n)} is strongly convergent to g in W1.

Now {g^nj} tends to g and to zero in W1, hence g = 0. As H is strictly convex, there 

can be at most one stationary point; it follows that q = Q. Also as H is twice Fréchet 

differentiable in £2 it must be weakly sequentially continuous in £2 [52, p. 236, Corollary 

41.9]; hence {H(q^nj)} must converge to H(Q), which is zero. Finally, as {H(qn)} is strictly 

decreasing, it must tend to zero. |
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For numerical purposes ||gn||^i can be easily computed via an integration by parts, on 

noting that -g” + gn = VH(qn):

fl flMwl = / (9n+gl)dx= / 9n(u2-U2qn)dx.
Va Va

Also, (3.4.50) is a condition similar in spirit to one originally suggested by Goldstein [25] 

ensuring convergence of gradients to zero.



Chapter 4

Implementation and Numerical 
Results

A program to test the numerical viability of the method was written in FORTRAN 77 

and run on a SUN 4 work station. The function /(x) = cos(z) was differentiated under 

two sets of circumstances. The first experiment was designed to study the effect of roundoff 

error when a small stepsize, h, is used in the discretization. The other experiment was 

designed to examine the stability of the method when the given function contains a random 

error. All computations were done in single precision. The results were then compared with 

derivative values obtained using central differences.

All boundary value problems were solved by the method of invariant embedding (see, 

for example, [20, p. 117]). This allowed us to use initial value solvers, which tend to be 

more accurate than standard boundary value solvers in this.situation. This was especially 

important in the first experiment as standard boundary solvers for these equations make use 

of formulae that involve factors of h2 which would be quite disastrous in this context. Also, 

invariant embedding seems to handle nicely the stiffness that typically occurs in disconjugate 

Sturm-Liouville boundary value problems. The initial value problems that resulted were 

solved using a fourth order Runge-Kutta routine (presumably, one might do better with 

more accurate predictor-corrector routines, but we have not tried this as yet). Our initial 

estimate for Q was always taken to be go = 0.

The effect of taking a small stepsize is known to severely amplify the effects of roundoff 

error especially when the function to be differentiated is large compared to the value of 

the derivative [44, p. 145]. In addition, the computed value of the derivative, in the case 

32
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of sufficiently small stepsize, will be zero even when the correct value of the derivative is 

relatively large; for example, see [44, Table 5.1]. Therefore, it is instructive to examine 

the computed derivative of / at a value of x close, but not equal, to the stationary point 

x = 0. The results of such an experiment are given in Table 4.0.1. The function f is

Table 4.0.1: Relative error in computation of /'(0.001), /(x) = cosz

h central difference variational derivative # subintervals iterations
10-3 0.0133 0.0004 100 3
10-4 0.106 0.0013 100 6
IO"5 1.98 0.0729 500 1
10-6 1.00 0.2847 500 2
10-7 1.00 0.404 1000 1

discretized on an interval with left endpoint x = 0.001, with the grid points evenly spaced 

at a distance h apart, and using the number of subintervals shown in the table. The 

derivative was calculated using the variational method discussed here and compared with 

values obtained using the standard central difference formula. The large relative errors for 

the central difference method with h < 10-5 indicate a complete breakdown of this method. 

At present, the optimization routine being used (steepest descent with exact line search) is 

not overly sophisticated. Nonetheless it can be seen from the table that the performance is 

close to optimal (in some sense), as the machine on which the computations were performed 

makes use of a 23 digit binary mantissa in single precision mode. As 2"^ « 1.2 x 10~7 

the poor (but not disastrous) results for h < 10~6 are probably as good as one could 

expect. The method failed completely when h = 0.9 x 10-7, giving f = 0. In general the 

results were marginally better when x = 0.001 was the left hand end-point of the interval 

compared to being the right hand end-point, and as h decreased, it was necessary to use 

more subintervals to retain optimal accuracy. Finally, it should be noted that for h < 10~6 it 

was sometimes necessary to replace the factor an obtained via the exact linesearch formula 

of §3.2 by an/2, or even an/10 in some cases, to guarantee that H(qn) — #(çn+i) > 0 at 

that step. Presumably, one might expect some improvements from a more detailed study of 

the optimization involving, say, the use of conjugate gradient, or DFP, or BFGS techniques, 

possibly with an appropriate approximate line search algorithm, but this has not been done 

as yet.
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Next we examined the effect that a small random perturbation has on the variationally 

computed derivative. Letting g(x) = cos(#) f e(x) for x in [—0.5,0.5], where the values 

of e(z) were randomly chosen such that |e(#)| < 0.05, we used the variational algorithm 

to numerically differentiate g. As before, the grid points are evenly spaced. In this case, 

we took 100 subintervals, hence h = IO-2. The results are summarized in Figure 4.0.1. 

Here, the solid curves represent the function cos# and its derivative, and the dashed curves

Figure 4.0.1: Numerical differentiation of cos# + c(#), |c(#)| < 0.05

0.6

0.9

represent the variational approximations to the function g and its derivative. It can be 

seen from this figure that the error in the variationally computed derivative is of the same 

order of magnitude as the error in the given function. Work done in [46] suggests that is 

somewhat optimal.

In practice, the computed value of uq seems to be a good C? approximation for g, which 

has bounded curvature. This suggests that uq should be a reasonable estimate for the 

unperturbed function f. The data summarized in Figure 4.0.1 supports this idea.

An observation we have made through the course of many such experiments is that this 

variational method seems to work best on a small interval. This is in agreement with the 

theory in that an examination of (3.1.6) shows that the estimated function qn is more likely 

to be in the set D (and to satisfy (3.1.5)) when 6 — a is small. This is a potentially useful 

fact, as the variational method is highly parallelizable in that the problem of computing u' 
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on the interval [a, 6] may usually be replaced by that of numerically differentiating u on a 

number of small subintervals.

It is worth noting also that the addition of a larger constant to the function seems to 

have an effect similar to that of making the interval small. Taking the constant too large, 

however, causes information about the function to be lost if computer precision is limited.

Finally, as one should perhaps expect, if the random error is made larger, problems 

with convergence and/or instability tend to occur. This happened only occasionally with a 

10% relative error and more so at higher relative error levels. In some of the more delicate 

cases, we resorted to using “continuous” steepest descent in which, if the an obtained from 

“exact” line-search did not cause a decrease in H, then an was replaced with can for some c, 

0 < c < 1 (usually, c = 0.5, or 0.1). In general, the convergence was poor for functions with 

more than one or two “bends” in the curve, or for functions defined at too few points. The 

latter deficiency might possibly be improved with a more careful study of which quadrature 

formula is appropriate for use in computing the factors an (we used Simpson’s formula), or 

by using an inexact linesearch, but this remains to be seen. The former deficiency is probably 

not a problem in practice, as one can usually divide the problem into sub-problems over 

smaller intervals, as observed above. It may also be less of an issue if one uses a higher 

order version of the method as described below. In any event, in these extreme cases, the 

methods used in [9], appear to be more accurate, at least when the exact form of the “base” 

function and the perturbation function (cosz and c(z), respectively, in our case) are known.



Chapter 5

Generalizat ions

5.1 The Fourth Order Version of the Variational Method

In this section we outline how the method we have discussed might be adjusted to improve 

convergence. As most of the proofs are exactly the same as their corresponding second order 

counterparts, we restrict this discussion to the most important differences and similarities 

between the second order and the fourth order methods. In addition, we borrow most of 

the notation used earlier to help emphasize the similarities.

As before, u is the function that we wish to differentiate numerically. We assume that u 

is four times differentiable on [c,6] with in £°°. We assume the existence of a constant 

c > 0 such that u(x) > c > 0 for a < x < 6, and set Q = —u^/u. As discussed in §§1.3 

and 3.1, we have that the equation f Qv = 0 is disconjugate on [a, b] and we define D 

to be the set of all functions q in T1 such that

+ qv = 0 (5.1.1)

is disconjugate on [a, 6). As in the earlier case, D is convex and open in and in £2. Set

A — u(a), B = u(6), A' = u'(a), B* = u'(b). (5.1.2)

Then, for q in V, there exists a unique solution to (5.1.1) subject to (5.1.2). We denote this 
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solution by uq. The functional is now given by

rb rb
H(q) = / (u"2 + qu^dx - / (u"2 f qu^dx 

Ja va

for q in D. As before, we have that H(q) > 0 for all q in P with equality if and only if 

q = Q.
Now let Aq be the operator given by Aqv = f qv for functions v in H4 satisfying

v(a) = v(6) — v'(a) = v'(6) = 0.

Noting that q = 0 is in P, let Ao be the smallest eigenvalue of Ao, and take 0 < M < Ao- 

Observe that all functions q satisfying

hlloo < M (5.1.3)

must be in D. Further we can assume without loss of generality that Q satisfies (5.1.3) by 

adding an appropriate constant to u, if necessary.

It turns out that the derivative results are similar to those obtained for the second order 

case. The Fréchet differential of H is given by equation (3.1.13) and the second Fréchet 

differential of H is given by equation (3.1.16) for each q in 7? and h in where ug is the 

solution to (5.1.1) subject to (5.1.2). Also the C? gradient of H is given by (3.1.14). The 

main difference is that the function uq is now the solution of a fourth order equation.

Nearly the same technique for steepest descent outlined in §3.2 can be applied to the 

fourth order case. The only real difference is that a fourth order equation must be solved at 

each step, and this requires that one have at hand the derivatives u'(a) and «'(6). These can 

be obtained by running the second order method first, in exact analogy with the procedure 

for using a lower order method to start a typical ODE multistep method. The expected 

benefit from this approach is indicated by the following theorem, which predicts that con­

vergence for this method should be superior to convergence obtained by the second order 

method.

Theorem 5.1.1 Under the assumptions (3.3.34) and (3-4-50), we have that {^} tends 

weakly to Q in £2 and {?%} tends strongly to u in 7Y2.
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Thus, if one is interested in applications to something like missile tracking, in which one 

is given (noisy) radar data on the position (and possibly the velocity) and one wishes to 

find the acceleration, then the computation of the second derivative becomes important. In 

theory, one can obtain the second derivative from the second order method by noting that, 

if ugn % u, then u" « = qn However, as the sequence {qn} converges only weakly

in £2 (Theorem 3.4.1), this is not expected to be a good approximation, and our numerical 

experiments confirmed this to be so. On the implementation side, it is worth noting that in 

[3, p. 119] one can obtain a fourth order version of the invariant embedding equations that 

proved so effective in the second order case.

5.2 Data Smoothing

A large number of books and articles have been written on the subject of data smoothing 

(or curve/surface fitting). In contrast with the problem of interpolation in which one seeks a 

curve or surface passing through given data points, the problem of data smoothing dictates 

that one construct a curve or surface having certain properties (e.g. smoothness or bounded 

curvature) that in some way preserve the information contained in a cloud of data points.

An extensive range of methods have been suggested for solving such a problem. As data 

smoothing is clearly related to solving an overdetermined system of equations. One might 

use something like a non-linear least squares fit to a parametric model giving up much 

objectively in the process. At the other extreme, one could invoke “Draftsman license” and 

try to draw a smooth curve through the cloud of data points.

Alternately, one could also proceed as follows. Run the variational algorithm discussed 

in §3.2. Referring to Figure 4.0.1 again, the dashed curve represents the solution uqn 

of the Sturm-Li ou ville equation from which the numerical derivative is obtained. This 

function may be considered as a suitable candidate for a smoothed version of the original 

function. In effect, one is choosing one function (the one that minimizes 3.0.1) from a large 

class of smooth functions (i.e., the class of all solutions of Sturm-Liouville boundary value 

problems (1.2.7) subject to the boundary conditions v(a) = A and v(b) = B for which q is 

in D).
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In some sense this is comparable to the method mentioned above of fitting to a para­

metric model, but is probably more objective in that the effective number of parameters is 

equal to the number of data points, which is in general quite large.

The value of such an approach might lie in providing a reasonably objective comparison 

mechanism in a situation in which one wishes to use certain experimental data to support a 

particular theoretical viewpoint. In particular, one might fit to a model with a small number 

of parameters in line with the theory, and then compare this with the result obtained with 

the above variational approach. As a minimizing variational method will in general try to 

“settle down” to the minimum in an unbiased way, and only as far as the roughness in 

the data permits, reasonable agreement could then be interpreted as confirmation of the 

validity of the model. It is likely that this type of smoothing could also be carried out by 

means of higher order techniques discussed in §5.1.

Data smoothing can most likely be accomplished in higher dimensions using a multi­

dimensional version of the variational algorithm discussed in §3.2. To illustrate how this 

might work we proceed along lines parallel to the one dimensional case.

Let Q be a bounded open region in Rn, n > 2, with a smooth boundary, and let u be 

in C2 (11) be a given positive function. Set Q = △ u/u and g = u|gg. As before, one can 

think of u as the solution of the following Schrôdinger-type boundary value problem

—A v+ qv = 0, z E Q (5.2.4)

v|an = g, (5.2.5)

when q — Q. The inverse problem “given u, find Q ” is, as before, equivalent to effecting 

differentiation on u. This, however, is not our main focus here, although it will arise 

naturally later.

We consider first the general framework needed for the later development. The analogue 

for the space D defined earlier may be obtained by observing that in the ODE case the 

function q is in the disconjugacy if and only if the associated Dirichlet operator Aq is 

positive in £2. So, in the present environment it is natural to define D to be the set of all 
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q in £*(Q) for which the Dirichlet operator Aq = —△ f q defined on the domain

P(A,) = {u € : «|an = 0} = K2^,

is a positive operator in C2(ÎÎ). The set D is convex and open. The question arises then as 

to whether or not Q lies in D. From [39, §C8] it is at least close to being true. However 

the question is effectively moot in that one can always add a suitably large constant to the 

function u to guarantee that Q is in D. Finally notice that, under these conditions, the 

boundary value problem (5.2.4)-(5.2.5) has a unique solution, which we denote by uq. It 

follows from the Maximum Principle for equation (5.2.4) that, for ||ç||oo small enough, uq 

is a positive function.

Define the functional H on D by

H(q) = J (|Vu|2 + q(x)u2) dx - ^(| Vu,|2 f q(z)u2) dx. (5.2.6)

There is an exact analogue of Theorem 3.1.5 that holds for this new functional, with 

essentially identical proofs. Thus H is a convex functional on D with a unique global 

minimizer Q and C2 gradient V H(q) = u2 — u2, and V H(q) = 0 if and only if q — Q.

The theory indicates that the computation of this global minimizer should be a reason­

able task. The boundary value problems of the type (5.2.4)-(5.2.5) that arise could, for 

example, be solved by an appropriate finite element procedure. In situations where it is 

inadvisable to allow the presence of squares of the stepsizes, or where one needs the first 

order derivatives explicitly, one would be forced to convert the second order equation into a 

first order system. Invariant embedding techniques of the type employed in the ODE case, 

which involve [20, p. 124] the factorizing of the second order equation into a product of two 

first order equations, appear not to be available in the PDE environment.

5.3 The Inverse Problem for Aquifer Transmissivity

Before we look at the aquifer transmissivity problem it is useful to discuss some of the 

technical details of the mathematical problem that is used to model it.
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5.3.1 A Related Inverse Problem

With $2 as above, let u in be given and consider the problem of finding a function 

P > 0 in C1,1^) such that,

div(P(z)Vu) = 0, x G ft. (5.3.7)

With no further information on P, this is clearly a losing battle as all multiples of a given 

P also satisfy (5.3.7). In fact, equation (5.3.7) may be rewritten in the form 

and it is clear from this equation that one must specify P at least on an initial hypersurface 

cut by all the flow lines defined in Q by the vector field Vu. With this addition, the inverse 

problem “given u, find P” has a unique solution, albeit an ill-posed one.

Corresponding to the function u given above, an appropriate functional for this case 

may be constructed as follows. For functions p > 0 in C1,1^) let up denote the solution of 

the boundary problem

div(p(x)Vu) = 0, x 6 ft 

v|an = g,

(5.3.8)

(5.3.9)

where g = u|^. Observe that, by the Friedrichs inequality [21, p. 211], the Dirichlet 

operator Ap defined by Ap v = div(p(x)V v) on functions v in the set T>(AP) — ^(D), is 

positive in £2(ft). Consequently, for functions p in the (convex) set

D = {p:p> 0 and p 6 C1’1^)}

we set

H(p) = p(x)(|Vu|2 - |Vup|2)dæ. (5.3.10)
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One can show that this functional has gradient in £2(fî) given by VH(p) = |Vu|2 — |Vup|2. 

It is clear that P is a critical point for this functional. One can also see from the definition 

of the solution up that the function up is “shared” by any function P that satisfies equa­

tion (5.3.7) which may be thought of as a first order equation in the function P. It follows 

that any function P satisfying (5.3.7) is also a critical point for H.

One possible way to circumvent this difficulty is to make use of the following well-known 

transformation between (5.3.7) and the Schrodinger equation

— A w + Qw = 0. (5.3.11)

The substitution

u = p-^w (5.3.12)

into (5.3.7) gives a function w that satisfies (5.3.11) with

Q = p-V2A P^2. (5.3.13)

5.3.2 The Aquifer Problem

We now consider how one might apply these ideas to the the aquifer transmissivity problem. 

Mathematical models of groundwater flow have long been used for studying groundwater 

as an essential resource, and for determining the effect of human activity on this resource. 

A confined aquifer is usually assumed to be described by the diffusion equation

du
V • (P(z)Vu) = S(x)— + q(x,t),

for x in some bounded region $2 in R2 and t > 0, where u(x,t) represents the piezometric 

head (easy to observe - look at the water levels in various wells at various times), P(x) is 

the “transmissivity” (roughly, the reciprocal of the resistance to movement of the water), 

S(x) is the storage coefficient (usually assumed known) and q(x,t) is the discharge-recharge 

term representing gain or loss of water from the aquifer.
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The inverse aquifer identification problem consists in estimating the values of the trans­

missivity P(x) on the basis of noisy data on u(x,t), given that the functions 5 and q are 

known (or ignored). While much work has been done on this problem [5,10,17,22,30,34,36, 

37], the ill-posedness of the problem combined with the considerable noise present in the 

data seem to have led to a lack of reliability in field applications with a consequence that 

the techniques are not much used in practical water management tasks [50]. In the typical 

texts (see e.g. [19]), P is usually assumed to be constant; in other situations, an expensive 

trial and error process called ‘model calibration’ is employed.

Given the encouraging behaviour that the algorithms discussed above exhibited in the 

ODE case, it is reasonable to hope that similar effects can be observed in the present 

situation, especially in light of the fact that a similar sensitivity analysis to that represented 

by Theorem 3.3.3 is probably possible. This would appear mandatory in the light of the 

observations in [50].

For simplicity assume that there is no loss or gain to the aquifer from the outside (i.e., 

q=0) and that the aquifer flow has reached a steady state (i.e., d u/d t = 0). One thus 

arrives at equation (5.3.7) considered in inverse problem 2 above. An algorithm to compute 

P could proceed as follows. Let u be given and choose a starting approximation, %, for 

P. From the transformation (5.3.12) the function Wo = solves equation (5.2.4); i.e., 

—A wo 4- qw0 = 0. By minimizing the functional H defined in (5.2.6) (with u replaced by 

wo) one obtains a function qo. Notice that this stage of the algorithm is precisely where 

noise in the data could be a problem, as it is involves the operation of differentiation. In our 

case, if the noise is not too excessive we suspect from the one variable case that the method 

should be effective. Next, one uses the equation (5.3.13) to compute a new approximation, 

Pi, for P. This step requires solving the Schrodinger equation

-Ap1/2 + qo(x)p1^2 = 0, x e $1,

for p1/2. In order to accomplish this, one must know some boundary data for the unknown 

function P. In theory this can be obtained from well experiments.

In any event, it is clear from the discussion in §5.3.1 that some readings of this nature 

are mandatory, so we are proposing for the sake of stability that they be done all around 
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the boundary of the region 0. With this information, a new approximation, pi, can be 

obtained from the equation above. The cycle can now be repeated until an iterate pn, when 

substituted into the model equation (5.3.7), gives hydraulic head values that are sufficiently 

close to the measured ones.

To test the numerical viability of this algorithm (in the one dimensional case), we 

attempted to recover the function p(z) = x2 defined for x in [0,1], given u(x) = u(z)f E(z), 

where u(æ) = 1/æ and the values of e(x) were chosen randomly from the interval [-.05, .05]. 

Here we used 101 grid points evenly spaced, hence there were 100 subintervals of equal 

length. The results are summarized in Figure 5.3.1. The solid curves on the left and right
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Figure 5.3.1: Recovery of p(x) = x2

represent the correct values of u and p, respectively. The dotted curve on the left represents 

u + £($), and the dashed curve on the right represents the variational approximation to p. 

As in the variational computation of the derivative (see Figure 4.0.1), the magnitude of the 

error in the computed function p, is on the same order of magnitude as the error in the 

given function u + e(x).

It is worth mentioning that this proposed method, if it proves practicable in general, 

will have one significant advantage over most, if not all, previous methods; namely, that 

the method avoids explicit computation of the derivatives of u. This is a significant source 

of instability in essentially all of these other approaches.
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Appendix

FORTRAN Code for the 
Implementation of the Variational 
Algorithm

c This program computes the derivative of the function u(x)
c by locating the function Q that minimizes H(q) and then
c computing u and u’ as the solution of the system
c u’=v
c v’=Qv.

real q,ql,q2,qmin,gL2,gHl,h,maxgL2.maxgHl 
integer skip,us,it
dimension q(1001),ql(1001),q2(1001),u(1001),du(1001),it(3),

8 uql(lOOl),duql(1001),uq2(1001),duq2(1001),f(1001),el(1001),
8 gL2(1001).gHl(lOOl),dgHl(1001),x(1001),fdu(1001),temp(1001), 
8 e2(1001)

ws=2
print*,’Enter xa,xb,n,eps’ 
read*,xa,xb,n,eps 
h=(xb-xa)/(n-l)

print* 
qmin=-(2/(xb-xa))**2 
d2ua=d2uu(xa) 
d2ub=d2uu(xb)
s=(d2ub-d2ua)/(xb-xa) 
do 10 i=l,n 
xl=xa+(i-l)*h
ql(i)=ua+s*(xl-xa) 
ql(i)=0.0

10 continue 
do 15 i=l,n 
xl=xa+(i-l)*h
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x(i)=xl
u(i)=uu(xl)+eps*(2*ran3(int(10000*ran3(int(1OOOO*

8 ran3(i*1000)))))-l) 
du(i)=duu(xl)

15 continue 
fdu(l)=(u(2)-u(l))/h 
fdu(n)=(u(n)-u(n-l))/h 
do 17 i=2,n-l
fdu(i)=(u(i+l)-u(i-l))/(2*h)

17 continue 
do 20 i=l,n 
f(i)=0

20 continue 
do 30 i=l,n 
q(i)=l

30 continue
1492 call dsolve(xa,xb,n,ql,f,0,u(l),u(n),uql,duql,ws)

do 40 i=l,n
gL2(i)=u(i)*u(i)-uql(i)*uql(i)+eps2*ql(i)

40 continue 
print*
call nsolve(xa,xb,n,q,gL2,0,0,0,gHl,dgHl)
print*
print*,’Choices :’
print*,’Compute alpha---------------------- (1) ’
print*,’Enter new alpha--------------------- (2) ’
print*, ’View data-------------------------------(3) ’
print*, ’Send data to a file-----------------(4) ’
print*,’New q-----------------------------------  (5)’
print*,’Stop------------------------------------ (6) ’
print* 
read*,1 
if (l.eq.l) then
alph=alpha(xa ,xb,n,ql,uql, gL2, gH 1 ) 
endif
if (l.eq.2) then
print*,’Enter new alpha’
print* 
read*, alph 
print* 
endif
do 60 i=l,n
q2(i)=ql(i)-alph*gHl(i)

60 continue
if ((1.eq.1).or.(l.eq.2)) then 
do 61 1=1,n



51

temp(i)=abs(gL2(i))
61 continue

maxgL2=vmax(temp,n) 
do 62 i=l,n
temp(i)=abs(gHl(i))

62 continue
maxgHl=vmax(temp,n) 
print*
print*,’H(old)-H(new) = ’,diffh(xa,xb,n,ql,q2,u,uql,uq2) 
print*,'infnorm(gradL2) = ',maxgL2 
print*,’infnorm (gradHl) = ’.maxgHl 
print*,’Need ’,qmin,’ <= q’ 
print*,’q2min = ’,vmin(q2,n) 
print*,’h = ’,h 
print* 
endif 
call dsolve(xa,xb,n,q2,f,0,u(l),u(n),uq2,duq2,ws) 
if (l.eq.3) then 
skip=int((n+l)/10) 
print*,’ x du duq fdu’ 
do 70 i=l,n,skip 
xl=xa+(i-l)*h 
write(*,71) x(i),du(i),duq2(i) ,fdu(i) 

70 continue
71 format(f10.7,2x,f10.7,2x,f10.7,2x,f10.7,2x,f10.7)

endif 
if (l.eq.4) then 
do 1963 i=l,n
el(i)=abs(du(i)-duq2(i)) 
e2(i)=abs(du(i)-fdu(i)) 

1963 continue
if (abs(eps).gt.0.000000001) then 
open(unit=7,file-’funct’) 
do 954 1=1,n
uuu=uu(x(i))+.01*(2*rand(i)-l)
write(7,955) x(i),uu(x(i)),uq2(i) ,u(i)

954 continue
955 format(f10.7,f10.7,f10.7,f10.7)

open(unit=3,file=’rerror’ ) 
do 9641 i=l,n 
write(3,9651) x(i),el(i),e2(i)

9641 continue
9651 format(fl0.7,fl0.7,fl0.7)

open(unit=4,file=’rderiv’ ) 
do 751 i=l,n
write(4,721) x(i),du(i),duq2(i),fdu(i)
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751
721

continue
format(fl0.7,fl0.7,fl0.7,fl0.7)
endif
if (abs(eps).It.0.000000001) then
open(unit=2,file=’serror')
do 1964 i=l,n
write(2,1965) x(i),el(i)/abs(du(i)),e2(i)/abs(du(i))

1964
1965

continue
format(f10.7,f10.7,f10.7)
open(unit=l,file=’sderiv’)
do 75 i=l,n
write(l,72) x(i),du(i),duq2(i),fdu(i)

75
72

continue
format(f10.7,f10.7,f10.7,f10.7)
endif
endif
if (l.eq.5) then
do 80 i=l,n
ql(i)=q2(i)

80 continue
endif
if (l.eq.6) then
stop
endif
goto 1492 
end
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c This subroutine solves the following Dirichlet BVP:
c -y”+qy=f
c y(a)+alpha*y’(a)=beta
c y(b)=gamma.
c This is accomplished by converting the BVP to the following
c pair of initial value problems:
c t’=qtt-l
c w’=qtw-ft
c t(a)=alpha
c w(a)=beta
c and
c r’=q-r*r-f/y
c y,=r*y
c r(b)=(w(b)-gamma)/(t(b)*gamma)
c y(b)=gamma
c using the transformation y+ty'=w.
c The IVP’s are solved using 4th order Runge’-Kutta.
c y and y’ are returned as n-dimens ional vectors.

subroutine dsolve(xa,xb,n,q,f,alpha,beta,gamma,uq,uql,j) 
real h,q,f,uq,uql,yl,y2,kl,k2,k3,k4,k5,k6,hl,h2,h3,h4,h5,h6,r 
dimension q(1001),f(1001),yl(1001),y2(1001),uq(1001),

8 uql(lOOl),r(1001) 
h=(xb-xa)/(n-l)

c Note: Here yl=t and y2=w.
c This the forward sweep which solves the first IVP.

yl(l)=alpha 
y2(l)=beta 
do 110 i=l,n-l 
x=xa+(i-l)*h 
kl=h*fl(x,yl(i),y2(i),xa,h,n,q) 
hl=h*f2(x,yl(i),y2(i),xa,h,n,q,f) 
zl=x+h/4.
z2=yl(i)+kl/4.
z3=y2(i)+hl/4.
k2=h*fI(zl,z2,z3,xa,h,n,q)
h2=h*f2(zl,z2,z3,xa,h,n,q,f)
zl=x+3*h/8. '
z2=yl(i)+3*kl/32+9*k2/32 
z3=y2(i)+3*hl/32+9*h2/32 
k3=h*fI(zl,z2,z3,xa,h,n,q) 
h3=h*f2(zl,z2,z3,xa,h,n,q,f) 
zl=x+12*h/13
z2=yl(i)+1932*kl/2197-7200*k2/2197+7296*k3/2197 
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z3=y2(i)+1932*hl/2197-7200*h2/2197+7296*h3/2197 
k4=h*fl(zl,z2,z3,xa,h,n,q) 
h4=h*f2(zl,z2,z3,xa,h,n,q,f) 
zl=x+h
z2=yl(i)+439*kl/216-8*k2+3680*k3/513-845*k4/4104 
z3=y2(i)+439*hl/216-8*h2+3680*h3/513-845*h4/4104 
k5=h*fI(zl,z2,z3,xa,h,n,q) 
h5=h*f2(zl,z2,z3,xa,h,n,q,f) 
zl=x+h/2.
z2=yl(i)-8*kl/27+2*k2-3544*k3/2565+1859*k4/4104-ll*k5/40 
z3=y2(i)-8*hl/27+2*h2-3544*h3/2565+1859*h4/4104-1l*h5/40 
k6=h*fl(zl,z2,z3,xa,h,n,q) 
h6=h*f2(zl,z2,z3,xa,h,n,q,f)
yl(i+l)=yl(i)+16*kl/135+6656*k3/12825

8 +28561*k4/56430-9*k5/50+2*k6/55
y2(i+l)=y2(i)+16*hl/135+6656*h3/12825

8 +28561*h4/56430-9*h5/50+2*h6/55
110 continue

c Here we solve the second IVP.
c This section does Riccotti

if (j.eq.l) then 
uq(n)=gamma
r(n)=(y2(n)-gamma)/(yl(n)*gamma)  
do 210 i=n,2,-l 
x=xa+(i-l)*h
kl=-h*f3(x,uq(i),r(i)) 
hl=-h*f4(x,uq(i),r(i),xa,h,n,q,f,y2,yl) 
zl=x-h/4.
z2=uq(i)+kl/4 
z3=r(i)+hl/4 
k2=-h*f3(zl,z2,z3) 
h2=-h*f4(zl,z2,z3,xa,h,n,q,f,y2,yl) 
zl=x-3*h/8 
z2=uq(i)+3*kl/32+9*k2/32 
z3=r(i)+3*hl/32+9*h2/32 
k3=-h*f3(zl,z2,z3)
h3=-h*f4(zl,z2,z3,xa,h,n,q,f,y2,yl) 
zl=x-12*h/13
z2=uq(i)+1932*kl/2197-7200*k2/2197+7296*k3/2197 
z3=r(i)+1932*hl/2197-7200*h2/2197+7296*h3/2197  
k4=-h*f3(zl,z2,z3)
h4=-h*f4(zl,z2,z3,xa,h,n,q,f,y2,yl) 
zl=x-h
z2=uq(i)+439*kl/216-8*k2+3680*k3/513-845*k4/4104  
z3=r(i)+439*hl/216-8*h2+3680*h3/513-845*h4/4104
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k5=-h*f3(zl,z2,z3)
h5=-h*f4(zl,z2,z3,xa,h,n,q,f,y2,yl) 
zl=x-h/2
z2=uq(i)-8*kl/27+2*k2-3544*k3/2565+1859*k4/4104-1l*k5/40 
z3=r(i)-8*hl/27+2*h2-3544*h3/2565+18S9*h4/4104-11*h5/40 
k6=-h*f3(zl,z2,z3)
h6=-h*f4(zl,z2,z3,xa,h,n,q,f,y2,yl) 
uq(i-l)=uq(i)+16*kl/135+6656*k3/12825 

8 +28561*k4/56430-9*k5/50+2*k6/55
r(i-l)=r(i)+16*hl/135+6656*h3/12825 

8 +28561*h4/56430-9*h5/50+2*h6/55 
210 continue

do 30 i=l,n 
uql(i)=r(i)*uq(i) 

30 continue
endif 

c This section does not do Riccotti
if (j.eq.2) then
if (abs(yl(n)).It.1.OE-28) then 
print*,’t(b) too small in dsolve’ 
print*,’t(b) = ’,yl(n) 
print*,’t(b) set to .000000001’ 
y1(n)=.000000001 
endif 
r(n)=(y2(n)-gamma)/y1(n) 
do 2102 i=n,2,-l 
x=xa+(i-l)*h
hl=-h*f5(x,r(i),xa,h,n,q,f,y2,yl) 
zl=x-h/4.
z3=r(i)+hl/4
h2=-h*f5(zl,z3,xa,h,n,q,f,y2,yl) 
zl=x-3*h/8
z3=r(i)+3*hl/32+9*h2/32
h3=-h*f5(zl,z3,xa,h,n,q,f,y2,yl) 
zl=x-12*h/13
z3=r(i)+1932*hl/2197-7200*h2/2197+7296*h3/2197 
h4=-h*f5(zl,z3,xa,h,n,q,f,y2,yl) 
zl=x-h
z3=r(i)+439*hl/216-8*h2+3680*h3/513-845*h4/4104 
h5=-h*f5(zl,z3,xa,h,n,q,f,y2,yl) 
zl=x-h/2
z3=r(i)-8*hl/27+2*h2-3544*h3/2565+1859*h4/4104-ll*h5/40  
h6=-h*f5(zl,z3,xa,h,n,q,f,y2,yl) 
r(i-l)=r(i)+16*hl/135+6656*h3/12825

8 +28561*h4/56430-9*h5/50+2*h6/55 
2102 continue
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do 47 1=1,n 
uql(i)=r(i) 
uq(i)=y2(i)-yl(i)*r(i)

47 continue 
endif 
return 
end
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c This subroutine solves the following Neumann BVP: 
c -y”+qy=f
c y*(a)+alpha*y(a)=beta
c y’(b)=gamma.
c This is accomplished by converting the BVP to the following 
c pair of initial value problems :
c t’=tt-q
c w’=tw-f
c t(a)=alpha
c w(a)=beta
c and
c y’=w-ty
c y(b)=(w(b)-gamma)/t(b)
c using the transformation y’+ty=w.
c The IVP’s are solved using 4th order Runge’-Kutta,
c y and y’ are returned as n dimensional vectors.

subroutine nsolve(xa,xb,n,q,f.alpha,beta,gamma,uq,uql) 
real h,q,f,uq,uql,yl,y2,kl,k2,k3,k4,k5,k6,hl,h2,h3,h4,h5,h6 
dimension q(1001),f(1001),yl(1001),y2(1001),uq(1001), 

8 uql(lOOl) 
h=(xb-xa)/(n-l)

c Here we solve the first IVP. 
c Note: yl=t and y2=w

yl(l)=alpha 
y2(l)=beta 
do 110 i=l,n-l 
x=xa+(i-l)*h 
kl=h*gl(x,yl(i),y2(i),xa,h,n,q) 
hl=h*g2(x,yl(i),y2(i),xa,h,n,f) 
zl=x+h/4.
z2=yl(i)+kl/4. 
z3=y2(i)+hl/4. 
k2=h*gl(zl,z2,z3,xa,h,n,q) 
h2=h*g2(zl,z2,z3,xa,h,n,f) 
zl=x+3*h/8.
z2=yl(i)+3*kl/32+9*k2/32 
z3=y2(i)+3*hl/32+9*h2/32 
k3=h*gl(zl,z2,z3,xa,h,n,q) 
h3=h*g2(zl,z2,z3,xa,h,n,f) 
zl=x+12*h/13 
z2=yl(i)+1932*kl/2197-7200*k2/2197+7296*k3/2197 
z3=y2(i)+1932*hl/2197-7200*h2/2197+7296*h3/2197 
k4=h*gl(zl,z2,z3,xa,h,n,q)
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h4=h*g2(zl,z2,z3,xa,h,n,f) 
zl=x+h
z2=yl(i)+439*kl/216-8*k2+3680*k3/513-845*k4/4104 
z3=y2(i)+439*hl/216-8*h2+3680*h3/513-845*h4/4104 
k5=h*gl(zl,z2,z3,xa,h,n,q)
h5=h*g2(zl,z2,z3,xa,h,n,f) 
zl=x+h/2.
z2=yl(i)-8*kl/27+2*k2-3544*k3/2565 +1859*k4/4104-1l*k5/40 
z3=y2(i)-8*hl/27+2*h2-3544*h3/2565 +1859*h4/4104-ll*h5/40 
k6=h*gl(zl,z2,z3,xa,h,n,q)
h6=h*g2(zl,z2,z3,xa,h,n,f) 
yl(i+l)=yl(i)+16*kl/135+6656*k3/12825 

8 +28561*k4/56430-9*k5/50+2*k6/55
y2(i+1)=y2(i)+16*hl/135+6656*h3/12825

8 +28561*h4/56430-9*h5/50+2*h6/55 
110 continue

c Here we solve the second IVP.

if (abs(yl(n)).It.1.0E-28) then 
print*,’yl(b) too small in nsolve’ 
print*,’yl(b) = ',yl(n) 
print*,’yl(b) set to .00001* 
yl(n)=.00001 
endif 
uq(n)=(y2(n)-gamma)/yl(n) 
do 210 i=n,2,-l 
x=xa+(i-l)*h
hl=-h*g4(x,uq(i),xa,h,n,y2,yl) 
zl=x-h/4.
z3=uq(i)+hl/4
h2=-h*g4(zl,z3,xa,h,n,y2,yl) 
zl=x-3*h/8
z3=uq(i)+3*hl/32+9*h2/32 
h3=-h*g4(zl,z3,xa,h,n,y2,yl) 
zl=x-12*h/13
z3=uq(i)+1932*hl/2197-7200*h2/2197+7296*h3/2197 
h4=-h*g4(zl,z3,xa,h,n,y2,yl)
zl=x-h
z3=uq(i)+439*hl/216-8*h2+3680*h3/513-845*h4/4104  
h5=-h*g4(z1,z3,xa,h,n,y2, y 1) 
zl=x-h/2
z3=uq(i)-8*hl/27+2*h2-3544*h3/2565 +1859*h4/4104-ll*h5/40 
h6=-h*g4(zl,z3,xa,h,n,y2,yl)
uq(i-1)=uq(i)+16*hl/135+6656*h3/12825 

8 +28561*h4/56430-9*h5/50+2*h6/55
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210 continue 
do 215 i=l,n
uql(i)=y2(i)-yl(i)*uq(i)

215 continue 
return 
end
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function alpha(xa,xb,n,ql,uql,gL2,gH1) 
real h,ql
dimension ql(1001),gL2(1001),gHl(1001).templ(lOOl),

8 w(lOOl),dw(1001).uql(lOOl) 
h=(xb-xa)/(n-l)

c Compute the denominator of alpha, 
do 40 i=l,n
tempi(i)=uql(i)*gHl(i)

40 continue
call dsolve(xa,xb,n,ql,templ,0,0,0,w,dw,2) 
do 50 i=l,n
tempi(i)=uql(i)*gHl(i)*w(i)

50 continue
s2=2*ss(templ,xa,h,n)
print*,* denominator = ’,s2 
if (abs(s2).It.1.0E-50) then 
print*
print*,’Zero or negative denominator’
print*,’alpha set to zero’
alpha=0 
print* 
goto 70 
endif

c Compute the numerator of alpha. 
do 60 i=l,n 
tempi(i)=gL2(i)*gHl(i)

60 continue
sl=ss(templ,xa,h,n) 
print*,’numerator = ’,sl 
alpha=sl/s2
print*,’alpha = ’,alpha

70 print* 
return 
end
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function diffh(xa,xb,n,ql,q2,u,uql,uq2) 
real h
dimension ql(1001),q2(1001),u(1001),uql(1001),uq2(1001),v(1001) 
h=(xb-xa)/(n-l) •
do 20 i=l,n
v(i)=(ql(i)-q2(i))*(u(i)*u(i)-uql(i)*uq2(i)) 

20 continue 
diffh=ss(v,xa,h,n) 
return 
end 

function ran3(idum) 
implicit real*4(m)
parameter (mbig=4000000.,mseed=1618033.,mz=0.,fac=2.5E-7) 

c parameter (mbig=1000000000,mseed=161803398,mz=0,fac=l.E-9)
dimension ma(55) 
data iff /0/ 
if(idum.lt.0.or.iff.eq.0) then 
iff=l 
mj =mseed-iabs(idum) 
mj=mod(mj ,mbig) 
ma(55)=mj 
mk=l 
do 11 i=l,54 
ii=mod(21*i,55) 
ma(ii)=mk 
mk=mj-mk 
if(mk.lt.mz)mk=mk+mbig 
mj=ma(ii) 

11 continue 
do 13 k=l,4 
do 12 i=l,55 
ma(i)=ma(i)-ma(1+mod(i+30,55)) 
if (ma(i) .lt.mz)ma(i)=ma(i)+mbig 

12 continue
13 continue

inext=0 
inextp=31 
idum=l 
endif "
inext=inext+l 
if(inert.eq.56)inext=l 
inextp=inextp+1 
if(inextp.eq.56)inextp=l 
mj=ma(inext)-ma(inextp) 
if(mj.It.mz)mj=mj+mbig
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ma ( inert )=mj 
ran3=mj*fac 
return 
end

function c(r,x,xa,h,n) 
real h,r,m 
dimension r(1001) 
do 310 i=2,n-2 
xl=xa+(i-l)*h 
x2=xa+i*h 
if ((xl.le.x).and.(x.le.x2)) then 
m=(r(i+l)-r(i))/h 
c=m*(x-xl)+r(i) 
endif 

310 continue 
if (x.le.xa+h) then 
m=(r(2)-r(l))/h 
c=m*(x-xa)+r(l) 
endif 
if (xa*(n-2)*h.le.x) then 
m=(r(n)-r(n-l))/h 
c=m*(x-xa-(n-2)*h)+r(n-1) 
endif 
return 
end

function fl(x,yl,y2,xa,h,n,q) 
real q,h
dimension q(1001) 
fl=c(q,x,xa,h,n)*yl**2-l 
return 
end

function f2(x,yl,y2,xa,h,n,q,f) 
real q,h,f
dimension q(1001),f(1001) 
f2=c(q,x,xa,h,n)*yl*y2-c(f,x,xa,h,n)*yl 
return 
end

function f3(x,yl,y2) 
f3=y2*yl 
return 
end
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function f4(x,yl,y2,xa,h,n,q,f,w,t)
real q,h
dimension q(1001),w(1001),t(1001)
f4=c(q,x,xa,h,n)-y2*y2-c(f,x,xa,h,n)/yl 
return 
end

function f5(x,y2,xa,h,n,q,f,w,t)
real q,h
dimension q(1001),w(1001),t(1001),f(1001) 
f5=-c(q,x,xa,h,n)*c(t,x,xa,h,n)*y2

8 +c(q,x,xa,h,n)*c(w,x,xa,h,n)-c(f,x,xa,h,n) 
return 
end

function gl(x,yl,y2,xa,h,n,q)
real q,h
dimension q(1001)
gl=yl**2-c(q,x,xa,h,n) 
return 
end

function g2(x,yl,y2,xa,h,n,f)
real h,f
dimension f(1001)
g2=yl*y2-c(f,x,xa,h,n) 
return 
end

function g4(x,r,xa,h,n,w,t)
real h,r,t,w
dimension w(1001),t(1001)
g4=c(w,x,xa,h,n)-c(t,x,xa,h,n)*r 
return 
end

function ss(t,xa,h,n) 
real t,h 
dimension t(1001) 
suml=0 
sum2=0
do 111 i=2,n-l,2 
suml=suml+t(i) 

111 continue
do 222 i=3,n-2,2 
sum2=sum2+t(i)



64

222 continue
ss=(n-1)*h*(4*suml+2*sum2+t(1)+t(n))/(3.0*(n-1)) 
return
end

function vmax(v,n)
real v
dimension v(1001)
vmax=v(l)
do 10 i=2,n
if (v(i).gt.vmax) then
vmax=v(i)
endif

10 continue 
return 
end

function vmin(v,n)
real v
dimension v(1001) 
vmin=v(l)
do 10 i=2,n
if (v(i).lt.vmin) then 
vmin=v(i) 
endif

10 continue 
return 
end

function uu(x) 
uu=cos(x) 
return 
end
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