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Tirtle A Local Borg-Marchenko Theorem for Complex Potenrials

We investigare rhe Sturm-Liouville problemn generared by the equarion

-y gy =\y

on {0.h). where 0 < b < x. the potential q is a complex-valued element of L} 0. 1),
and a boundary condition is placed at 0 and. when necessarv. at . For such problems
we define an m-function. which is defined in the same spirit as the Titchmarsh-Wevl
m-function. The main result of the dissertation study is an extension of a result of
Simon [12]. which states that two real potentials coincide on a compact interval if
and only if the m-functions for the corresponding problems are exponentiallv close
on certain rays in C. We use our main result to provide a proof that. for problems
of the type generated by —y” + ¢y = Ay on a compact inrerval. two spectra uniquely

derermine the porential.
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CHAPTER 1

Introduction

This thesis 1s concerned principally with the role of the Tirchmarsh-\Wevl m-
funcrion in the analvsis of the direct and inverse Sturm-Liouville problem generated

by
(1.1) -y = qy =Ny

on ‘0.h). where 0 < b < x. q is complex-valued. and ¢ £ L;,.(/0.h)). A boundary
condition is given at 0. and one is prescribed at b if necessary.  Much work has
been done in this direction in the case that the potential ¢ is real-vaiued since 111
sives rise to a selfadjoint problem. The case that ¢ is complex-valued leads to non-
selfadjoint problems. which are currently the subject of active research. We now aive
some history, motivation. and background on direct and inverse spectral problems.
Motivared by integral equations. Wevl published a sertes of three papers - 190X,
1909. 19101 1, which laid some foundation for the m-function bur then lefr this
subject to return to it around 1950. Titchmarsh is given chief credic 17 for the
introduction of the m-function (c¢. 1946). Titchmarsh and others were morivared
principally by eigenfunction expansions for Sturm-Liouville problems with a real po-
tential. These and other topics related to Sturm-Liouville problems with a real po-
tential have been well studied and are completely understood. In the past fiftv vears.
mathematicians have turned to investigating Srurm-Liouville problems with a com-
plex potential. These investigations have produced results in both the direct problem
(including eigenfunction expansions) and the inverse problem (recovering tiie poten-

tial when certain spectral data are given). Sturm-Liouville problems with a complex

potential arise in physical situations involving energv dissiparion and in scartering
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theorv. which has plaved a central role in mathematical physics over the past century.
Inverse scattering theorv is a basic tool in areas such as radar. sonar. geophysical
exploration. medical imaging. and nondestructive testing {4]. Inverse problems have
hecome of interest recently in part because of their relation to some impurrant non-
linear differential equations in mathematical physics. Specifically. some connections
between the inverse Sturm-Liouville problem and the K-d\" equarion have heen made
101

[ the 1940s the technique of transformation operators was introduced by Delsarre
and Levitau. Marchenko has done extensive work in applving this rechnique to spec-
tral theory and to its applications. including the Sturm-Liouville problem on a finire
interval. the singular Sturin-Liouville problem on 0. x 1 (where spectral funcrions
arise). and inverse scatrering theory 11 Marchenko's first biz applicarion of trans-
formation operators was for a uniqueness result in a 1952 paper. in which he proved
that the spectral function of a Sturm-Liouville operator ion a compact interval or on
the half-line) determines the operator uniquely {10

Borg 2| carried out the first svstematic investigation of the classical inverse Sturm-
Liouville problem. where the potential ¢ in (1.1) is real and ¢ £ L*(70. = 1. In a 1946
paper. he showed that one spectrum does not. in general. determine the potential. In

the same paper. he proved the following result.

THEOREM 1.1. If \; are the ergenvalues of the problem generated by L8 anid

i

thie boundary ronditions
Y0~ hy0i = 0.yt = Hyi=) = 0.

and p, are the eigenvalues of the problem generated hy - 1.1+ end the houndary con-

ditions
y'0) = hy0)=0.y iz = Hiy(zy = 0.

and H # H; and h. H. H; € R. then the two sets of numbers \, and p, determine

q.h. H. and H, uniquely.
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In 1949. Levinson {9] gave a simpler proof of this result. In ‘8!. Levin gives a proof
of Theorem 1.1 when ¢.h. H. and H; are all complex. The main feature of these
Borg-Levinson theorems is that two spectra determine the Sturm-Liouville operaror.
Since then. some uniqueness theorems for Sturm-Liouville problems have given other
specrral information {such as a spectrum and norming constants) that deterines
the Sturm-Liouville operator. [nvestigating these uniqueness theorems for the case of
complex potentials is the main topic of Chaprer 6.

[n an important piece of work in 1957 13}, Sims obtained an extension of rhe
classical. selfadjoint two-fold classification (limit-point. limit-circle) of (1.1). His cen-
eralization allows a complex potential ¢ and results in a three-fold classification of
(1.1). In this work. Sims made a thorough study of boundary conditions and spec-
tral properties of the corresponding operators for complex ¢. In [3:. Brown et al.

construct an analogue of the Sims result for the equarion
(1.2 —tpy = qy = \uwy.

with certain restrictions on p.q. and w. In particular. a three-fold classificarion of
11.2y is obtained in 3i. That analvsis is not merely a straightforward ceneralizarion
of Sims” work. as problems and properties of {1.2) do not show in Sims™ work. where
p = =1. In 3. the m-function is defined for each of the three cases iclassesi and
its properties are related to the spectral properties of appropriate operators.

In Chapter 2. we obtain a two-fold classification of (1.11: we call the rwo classes
Class [ and Class II. A major difference between our work and that in ‘3. is the wav
of defining an m-function. First. our definition is based on properties of solutions of
i1.1). whereas the definition in {3’ is based on the nesting circle analysis. Second. the
m-function in [3! for two cases is defined the same way that we define the m-function
in Class L. but one of these two cases overlaps our Class II. where we have the freedom
to define many more m-functions than in Class I. Thus. in this overlapping case. we

define many m-functions. whereas only one is defined in 3.
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In [1;. Bennewitz gives a simplified proof of a local Borg-Marchenko Theorem.
which we state presently. Let g and ¢ be real. locally integrable potentials on [0. b and
0. h). respectively. Let m and m denote the m-functions for problems corresponding

to'q and q. respectively. Then we have the following.

THEOREM 1.2. Leta = R and a € (0. min(b.h)'. Then ¢ =G on V.a’ of ami oniy

z

if for any € > 0 we have

: < =2u—e Ry <N
mi,\a—m(,\):()(e sam ey ‘)
ws N\ — x alony some non-real ray emanating from the orgm.

[n Chaprer 3. we state and prove a generalization of Theorem 1.2. A result similar
to Theorem 1.2 is proved by Gesztesy and Simon in 7', although their resulr holds
for real-valued potentials.

In a 1998 paper [15.. Yurko established a uniqueness result involving onlv the
m-function. Yurko shows thar the eigenvalues of a Srurm-Liouville problem on a
compact interval (0. 7! (with certain conditions on the porentialt and the residues of
the m-function at each eigenvalue detrermine the m-funcrion uniquely. He assumes
for rhis rhat the eigenvalues are algebraically simple. Yurko's uniqueness result is

Theorem 1 of that paper. which stares that the m-funcrion uniquely determines the

valued potentials.

In brief. this dissertation proves a generalization of Theorem 1.2 for complex po-
tentials and applies this result to obtain a generalization of Theorem 1.1 for complex
potentials. A prominent problem left open in this dissertation is a determinarion of
whether our generalization of Theorem 1.2 holds for all Class II problems i in partic-
ular. non-regular Class II problems). We now give a chapter-byv-chapter surnmary of

the dissertation.
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In Chapter 2. we give an account of the nesting circle analvsis {limit-point. limit-
circle theory) which is based on that given in {3]. This analysis leads to the classi-
ficatrion of (1.1) into a problem of Class [ or a problem of Class [[. Our main use of
the nesting circle analvsis is ro define the domain of the m-function for a problem of
Class L

In Chapter 3. we define the maximal and minimal operators associated with 1.1
and obtain a characterization of the domain of the closure of the minimal operator
in terms of fundamental svstems of solutions of (1.1}, The purpose of this character-
ization is to provide the background needed to define the m-function for a problem
of Class II.

Chapter | is the most important chapter. We define the Titchmarsh-Wevt :n-
function for problems. generated by (1.1). of Class I and Class [I. After some com-
mentary and further notes on these definitions. we prove a standard asvinproric rela-
rion for the solutions of (1.1} with A-independent initial conditions. The focus of the
remainder of the dissertation 1s on problems falling into one of three rvpes: Class |
and rwo subcases of Class I[I. We then prove an asvmptotic relation for the Dirichler
m-function and finish Chapter 4 with an important preliminary result i Theorem 4.3,
to he used in Chapter 3. and a result stating a behavior of Green’s function for the
tvpes of problems we consider.

Chapter 5 is the climax of the dissertation. We prove rwo theorems. which. raken
together. constitute a generalization of Theorem 1 of 1! and srare roughlv that the
m-functions for two problems are exponentially close on certain rays in C if and ouly
if the potentials coincide on some compact interval 0. ..

Chaprter 6 considers an application of the results in Chaprer 5 to Newmann prob-
lems onlv. The highlight of the chaprer is Theorems 6.3 and 6.4. which state equiv-

alences of cerrain pieces of spectral information. To achieve these theorems. we use
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ideas in {15] to obtain an estimate of the m-function and then to characterize the m-
function in terms of two pieces of spectral information. The Borg-Levinson Theorem

for complex potentials is then contained in Theorems 6.3 and 6.4.
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CHAPTER 2

Nesting Circle Analysis

We give here an account of the limit-point. limit-circle inesting circler analvsis
which is based on that given in [3]. Let 0 < b < x and ¢ be a complex-valued element

of L;,.t'0.h). We associate to the differential expression
Liy)=—y"—uy

the closed convex hull. Q. of the set {¢(r) +r:x

h

0.hr it xif:

(1
e
<
m

Q=co{glr)=r: re (0. xi}.

Let A = JQ. The convexity of Q guarantees that there is a line. sayv L. which passes
throngh A" and which has the property that @ is contained in one of the two closed
half-planes determined by Lg. We note here thar if Q has a rangent at A, then the
tangent line at A is the only such line Lg. Given such a line L. let m denote irs
slope. We now define a rotation parameter n < —x,/2.7,2i for L.

i

Cuase I: m

M

(0. x]. Then there is a number 6 € (0. 772} such that rané) = m.
Let n=5/2-6< 0.3/2).
Cuse 2: m = {—=>c.0). Then there is a number 4 = [ —5,2.0; such thar ranit =
m. Let n= -6 -=7/2€ (=720
Cuse 4:m = 0. Then let n = 7.2 if Q lies in the lower half-plane determined by
Li. Let n = —=:2if Q lies in the upper half-plane determined by Ly .
Note that there may be more than one number 1 associated with A because there

mav be more than one line such as Lg. Let S denote the set of pairs in. A’} generated

by the above construction. That is.

S={(n.K): K €9Q and n is defined from a line Ly as above}.
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£

For (n.A’) € S. define
AL r={z€C:Ri(z - )" <0}

From the above three cases and from the definition of Q. we see that ) is con-

i

strueted so thar \, 2 C — Q1 te. for cach = < Q.

2L R = K20
Thus.
U -\r).!\' Z C - Q
nKi=s

That the reverse inclusion holds follows from geometric considerations. In brief. letr
Ay € C =@ and let A" denote the nearest point in @ to \y. Then the open disk about
Ao with radius \g — A} is contained in C — Q. Let Ly denote the line through A
perpendicular to the segment joining \g and A It follows that the open half-plane
determined by Ly which contains A, does not intersect () totherwise, the open disk
about Ay with radius \g — A" would inrersect Q). Clearlv. A’ = ) aud we have.
from rhe above construction. a number 7 associated with L. This gives o K- 2 N
and Ay =\, n. Thus.
cC-0= |J \n
nh ==

Before presenting rhe nesting circle analvsis. we introduce the following norartion.

For fixed hy.hy. Hi. H, = C and for \ € C. let #(-.\} and of-. A} be rhe unique

solutions of
{2.2) Liy)=\y
satisfving

o(0.\) = h Bi0.\; = hg

O,(O. 1\‘) = H‘. 9’(’0- /\) = H-).
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When confusion is unlikely. one or both arguments of 0 and # will be suppressed. For

normalization purposes. we require that hy. ho. H,, H, satisfv
hH, - hoHy =1

and

hihy — H-Hy = 0.

[n particular. o, \) and #(-. \) are linearly independent. Furthermore. since i = -
H = > 0. these two constraint equations set up a linear svstew for ho 0 Hy b i HL
are given.

Let H denote the quadruple (hy. H;. hy. Hy) and define
S(HY={(n).K) £ S:Rje"h H, >0}
The condirion

(2.3 R'.C'WF;HZE _>_ 0

appears naturally in the nesting circle analvsis we present. Anv pair 1n. Ny £ S H

as well as rhe corresponding half-plane .\, x is called admissihle. Letting

QHi=C- |J \x

K ESE
we have () Z QtH). Furthermore. Qi1 H) is closed and convex since it is the intersec-
tion of a family of closed half-planes. We shall assume henceforth that Qi = C.
The purpose of this framework is thar the nesting circle analvsis is performed in
C - QUH). It is shown in ‘3] that Q(H) contains the spectrum of several narural
differential operators that are derived from the expression L(y). The classical use of
the nesting circle analysis is to determine. for a given A £ C. how many solutions of
{2.2) lie in L*{[0.5)). This information is used. in turn. to define the Titchmarsh-Wevl

m-function.
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We shall make use below of the fact that. for (. K') € S(H). a Mébius transtor-
mation
Az =B
Miz)= ——=
C:—-D
maps the line Rize™ = 0 to a circle precisely when RICDe" = 0. and the radius of
rhis eirele 1s
AD - BC
2RICDe

po—

Let A\ = C = QtH). Then there is a pair (1. ') £ St A such that A 2\, . Ler

X = i0.h). We now show that the Mobius rransformartion

X \z=61X. N
A X. Nz=ot X\

.‘[_\'(2) = -

maps the half-plane R{ze'?] > 0 onto a closed disk Dyt\). We do this by showing
first that the line Rlze™ = 0 is mapped by My to a circle and rhen rhat the singular
puint 3, of My has the property that Riz.e" < 0. Using the above fact abour
Mabins rransformations. My maps the line Rze™ = 0 1o a cirele preciselv when
Reno i N Vot NN = 00 We show that. in fact, R 70 N Nor XU 00 Ui
mteeration by parts and the facr thar e\ sarisfies 12,200 we have
X SN

/ Nolfdr = -0 Nl X) = b Hy + / co = o s
Ju

]

Taking real parts and rearranging gives

(8]
—

AN
Rieo' (Xl X), = Rle"R, H)| ~ / Rie™ig— \o?= o Vs,
)

The first term on the right side of (2.4) is nonnegative since 7 satisfies 12.3;. We
rewrite the integrand in (2.4} as

P
3 )

ReMig— K -1\ Ao — o7V =0 -ReMAN =R =Re"g- KN - —=1}.
O

The first rerm in braces is positive since A\ € \;x. The second term in braces is

nounegative by {2.1). Thus. the integrand in {2.4) is nonnegative. and since = 1= 1ot
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identically zero on [0, X'}. we see that the integral appearing in (2.4) is positive. Thus.
(2.4) shows that

Rleo'((X. No(X.N) > 0.
We have now shown that the line R'ze" = 0 is mapped by My to a circle in C.
Furthermore. the singular point =, = —0'(X. A}/0o(X. \) has the propertyv thar

r o —_—
N~ = L va‘.\./\)O(.\./\l.l
etts, = - [r EASYER

< U

since Ric7o't X \jo( XL \Y > 0. Therefore. the half-plane R z¢* > () is mapped onto
a closed disk Dyi\) in C. Using again the above fact about Mdbius transtormarions.

the diamerer v (\) of this disk is

N N (N N) = o X)X\ . L —
dyt\)y =1 (A \),O (A } '2(_\__\_’ (X )5 = (R0 TN Mot X A
Riemo' (X Mol X, \)) :

|

Here. we have made use of the fact that 1 (o 0)(X) = H (0. N0 = 1.

We now establish that the disks Dy (\) are nested as \" — . That is. if 0 « X -2
Y < b then DyiM C Dy(A). Given w € C. let ¢y (-..\) = #-. N1 = woi- N1 and let
s\ = o(-.\). From the previous paragraph. we have thar « = Do\ and
onlv if Rfe )] > 0. Since

LN A XL A
el XN 2

.\[;U W=
= Dy Ay if and only if
ReC AN e LY N <0
An integration by parts shows that

Ri(:‘ml.';.(.\-. /\)t.,'w(.\—. /\)1 = R{Eln(Hg - lL'H[ ){_h-_j — why ),

X
—/ Rie™ {12 — (q = il 2hide.
Q
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Byv {2.1). the integrand appearing here is nonnegative. Now we have that «w = Dyi\)

if and only if
X _ _ L
(2.5) / Rle{!v) = (g = \pupPHdr < =R Hy = wHhy = wii]l.
0

[t follows from this and the fact that the integrand appearing here is nonneeative
that if 0 < X <Y < b. then Dy(N) Z Dy(A).

Therefore. (.. ., Dx(A) is either a single point or another disk. Note that the
integral in (2.5) may be written as
WX

(2.6) —Rje"(\ - mj/

-X
2 N 0 . 200
Uy tdr —+-/ RieM vl " —ig= RNy, “idr.
0 0

Let m € (.- v, Dx(A). Substituting (2.6) into (2.5) and noting that. by (2.1). the

integrand on the right in (2.6) is nonnegative. we have that for all X' = 0.5,

- N R Rie"(Hy — mHithy = mh. v
(2.7 U dr < = - RARAE -
2.0 " — .
N m - Rie N = K,
Since the right side of (2.7) is independent of N. we have v, = L0 b If

Mo. 1., DytNris adisk. then all solutions of (2.2} are in L*t0.h. This analvsis
shows that if A = C — QUH). then there is an L7( 0.5 solution of 122, We now

make the following definition.

DEFINITION 2.1. The expression L s in Class 1 at b of at most one solution of
i2.2) tup to constant multiplesi lies in L2{[0.5)). L 15 n Class IT at b of all solutions

of 12.2) lie in L7(0.h)).

The nesting circle analysis in (3] provides L with a three-fold classificarion which
is a refinement of the classical. selfadjoint two-fold classification of L into limiet-point
or lunit-cirele. In 3. the limit-point case is that the intersection of disks is a point
w. giving that only v, and its multiples have the property that the integral in 2.5
has a finite limit as X\ — b. This implies that ¢, € L7170.h}} by 12.61. but there mav
be another solution of (2.2). independent of v,.. Iving in L*{{0.5)). This describes the

limit-point subcases: either v, is the only (up to multiples) solution of {2.2} lving in
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L*(0.5)). or all solutions of (2.2) lie in L2({0.5)}. The limit-circle case in (3: is rhat

the intersection of disks is a disk. giving that all solutions of (2.2} have the properry

that the integral in (2.3) (with any solution replacing v} tends to a finite limit as
X — b. Again. this implies that all solutions of (2.2) are in L7{0.h,.

The classification of L at b into Class [ or Class IT is independent of \ in rhe

sense of the following theorem. which is a standard result. We include its proof tor

completeness.

THEORENM 2.2, If \.. = C has the property that oll solutions of Ly = \oyowr oo

L= 0.hvi. then all N = C have this property.

PROOF. Assume that u;. ua are linearly independent. square-integrable solutions
of Lty) = \gy such that Wy us) = 1.

Let A # \yand M = %L\ — Ag:7' 2 Then oy £ (0.h) may be chosen such rhat
]:‘ ug 2dr < M? for k= 1.2. Now introduce the notation

-y

= (/ fi"’df>

i}
for o < r < h. Then for all such r we have ‘uy ', < M for b = 1.2
Let y be anv <olurion of Liyi = \y. The rest of the proof consists in showing rhar

iy s square-integrable on ry. 5. By rhe variation of consrants formula

. B R , . \ . . . 7
2N T O R R N S B I B AV / Pagisimaiby — b s st g bt

for all = = 0.hi. The integral in (2.8) may now be estimared. using Schwarz's w-
equality. by

/ Cupesuptt)y — wltiuais)j ythdt) < Mu (=), — waisi oty

J :
whenever 1o < s < r < b. Applving the L3-triangle inequalitv to (2.31 gives. for

.I'l)SJ'<b.

. L . A . l
yhe S e =rea) M =200 = Ag Myl = ey = o0 M = S

1

.
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This implies that |jyl|; is bounded by 2(ic;' = |caj) M. which is independent of r. Hence

. : . - —
we have that y is square-integrable on ‘ry.h). Thus. y € L=0:0.hj}).
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CHAPTER 3

Maximal and Minimal Operators and Necessary Lemmas

In this chapter we define maximal and minimal operators and obrain a preliminary
cliuracterization of the domain of the closure of the minimal operaror in rerms of rhe
maximal operator. We then use this to characterize the domain of the closure of the
minimal operator in rerms of a fundamental svstem of solutions of =" —qy = Ay. The
purpose of this characterization is to provide necessary background in our analysis of
the case that L is in Class I1. The marterial in the first part of this chaprer is standard.
and a similar treatment can be found in ‘6!.

Let L be the differential expression defined by
Lty) = —y" +qy.

where ¢ £ L} {(0.hy)and 0 < b < ~x. Lis reqularat hif b < ~<and g = L 0.hn.

Otherwise. L is called singular at b If g 2 L}, 170.50) and = = C. then all solurions

loct .

of Liuv = 2y + g are given hy

Tugiriug(t) = ity
Cou ATy = ot — — gitidt,
g {f v uei

where u, and u, are a fundamental svstem of solutions of Ly = zy. ¢ and o, are
arbitrary complex constants. and ¢ is some point in 0. h).

The formal adjoint of L is the differential expression given by
L7iy) = ~y" ~qy.

For brevity. define

foglr)=Wif.g)ry = flr)g'ir) — flirigir.
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0]
An integration by parts shows that if f. g. f'. ¢’ are absolutely continuous on a compact

interval ‘a. 3] C [0.b). then

-3 3
(3.1) /L(f')-gdr—/ f-Ligidr= f.g13)1= f.gta).

We now wish to define the maximal and minimal operators associated with L.

Let T be the operator whose domain is

DIT) = {f € L*10.b11 : f. f' € ACioe 0. 511 and Lif1 = L*([0.51 ),

o

and define T(f) = L(f) for all f € D(T). Then T is called the maximal operator

associated with L. Let T be the operator whose domain is
DiTy) ={f = D(T): ft0)r = f'(0) =0 and supp f 1 is compact in 0,91},

and define Tyt fy = L(f) for all f € D(Ty). Then T, is called the minimal operator
associared with L. From Theorem 10.7 of ‘6 . we have thar T, thence. 'V is densely
defined (that is. D(T,) is a dense subspace of L2 0.h11:. The operators T7 and T,
the maximal and minimal operators associated with L=, are defined similariv. Nore

that if f 2 DiT).then f = D(T™). and if g = DIT). then g = DiT .

LEMMA 3.1. If f.g € D(T) then {f.gjtht = limy_y f. g (1) egusts and
b b
(3.2) / T(f)gdr — / fTlgide = f.g(h) = f.q.(0).
0 Jo

PROOF. Let r = (0.h). Since f. f'.g.¢" are absolutelv continuous on 0. we

have. by (3.1).

/ (T';f‘ng—fT(g;ldtz/ Ll/f)gdt—/ fLigwdt = fogir) = fog:t0h
[ i} 0

< 1)

Since Tifig— fTigris in L*110.h)).

Iim/ {(T(fyg— fT(gndt
0

r—b
exists. Together with the previous equation. this implies that lim,_, f. g (.} exists

b
and / (Tifig— fT(g))dz = [f.g(b) — [f.g](0). -
]
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We remark here that (3.1) and (3.2) will be used frequently in what follows. We

now show that Ty = T~. The proof is carried out in several steps.
LEMMA 32, Ty =T~ and (I5 )" =T.

ProoF. 1. Let u;.u; be a fundamenral svstem of solutions of Liyy = 0. For

5 = 1.2 define the following linear functionals on DT, 1
Fifr= / fu,dr.
J )
Then
b
ker(Fy) ~ ker(Fy) = {f € DiTy): / fudr = 0 for all u satisfving L(u) = 0}
0

since w,. uy are a fundamental system of solutions of Liy) = (.
2. Im(Ty) = ker(Fy) ™ ker(F.).
Let f € D(Ty) so that Ty(f) € Im(Ty). Let supp(f) < 10..38 Z O.h)and let u be a

solution of Ltu) = 0. Then
.3 -3 -f
/ L fiudr = / Tyl fiudr — / fLiwydr =" foult 3y = Fou(0r = 0.
Sty JA Sy
and sinee £t = f10) = fi.hv = f11a) =0

.3 N3
/ Toifiudr = / Tot fiudr = 0.
V] J0

Since f has compact support. Ty( f) does. so Ty( f)
ker( Fl)'

D(Ty). Thus. Tyt f) = kert F i~

h

Let f € ker{ F;) " ker(Fa). Let supp(f) € 0..31 C 0.h). Define h o be the unique
solution of L{h) = f for which A(0) = A'(0) = 0. Then A.A" are locally absolutely
continuous. Let r € [3.b). Now. let u be the solution of Liy) =) with ur.ry = v and

u{ri =1. Then

b b T
/ fudt = / L(h)udt—/ hL(u)dt = [h.uj(r) = h.u (0) = hiri.
0 0 0
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T b
Since / fudt = / fudt = 0. we have h(x) = 0. Thus. h =0 on "3.bi. so we have
0 0

h € D(Ty). Thus. f = L(R) = To(h) € Im(T).
3. T; T

Let f € D(T;). Note that Tj(f) € L2([0.)). so Tg{f) & LL(0.bih. Ler /i be a

solution of Lth) = T;( f). Then h.h’ are locally absolutely continuous. Let k= DiT,,

and let supp(k) € 0. 31 € i0.h). Using that k(.J) = £'(.3) = 0. we calculate

h .3
/ Tkt f = hdr = (Tolk). f) = / Likihdr
] {

)

= (/i.TO'(f))—/u kLihdr
0

i

e Tg0f)) =tk T if o

= 0.
Let £ : D(T,j — C be the linear functional defined by

h
Fig) = / gl f = h)dr.
0

Then we have just shown that Im(Ty) C ker{ F). Using Theorem 4.1 from 14

are complex constants ¢; and ¢, such that F = ¢, F; + 2 F.

Let 0..30 < 0.h) be a compact interval. and let r = 0.5 Then \ .

characteristic function of ‘0. 7. is in L3570, b3 50

oz o
/ "./‘T - hidt = / \ 0 (f — hjdt
t J )

)

F ozl

oh

-
= L‘z/ \su.zﬁux-’lt’f-t'z/ \iu.z 1t
S0 JO

oL I
= ¢'-_/ uldt-.—-c‘g/ uadlt.
G Jo

Thus.

I
/ (f = h = cru; — caua)dt = 0.
0
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so the mapping
: -
I — / (f—h—ciu; — cauyidt
0

is identically zero on [0.J3]. and its derivative equals f — h — cju; — coun almost
evervwhere. Thus. f = h — ¢y — eous almost evervwhere on 0. 3. Since 5 wis

arbirrarv. we have f = h = ¢yuy — coue almost evervwhere on 0.0, Note rhar f. 7' <

1

ih

ACLc by sinee hougoug & AC0 0.b) 1. Sinee f = [_"‘(ft).hs: and [.ifv =T if:
L0 b we have f = D(Ty. so £ = DTy, Finallv. note that Tjifr = L £
L ify=T"1f).

LT T3

Let f < DIT™) and g € D(Ty). Since f = D(T). we have

b ol
(Tolg). )= (g.T7(f)) = / Tolg)fdr — / gT = fulr
1] J )

b i
/ Tig)fdr - / gTi fudr
JQ oy
= . f_llhi - :[].j::‘()\

= {)

nsing <323 and the fact that ¢ 2 DIT,y. Thus, f 2 DTy and T7of =T, fe

Bv replacing ¢ with §. our argument just given shows that (77" = T. —
Thus. T and T are closed operators. Also. T is closable since T is densely
defined in L*([0.h)). Note that (T~} =T, C T.
We now state a few lemmas and a theorem. the last two of which will be of

principal use in defining the Titchmarsh-Weyxl m-function for Class [I. Lemma 3.3

and its proof come from [6]. We include it for completeness.

LEMMA 3.3, If L us regular on a compact interval "A. B and a;.ay.h;.h = C.

ih

then there is a 0 € D{T) such thet

old)=a. 04} =asr.0(B) =b..0'(Bi = h.
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PROOF. Let v;;. 1 be the fundamental system of solutions of L~ (y) = 0 with

We claim that the determinant

. (L'[. l;'l) (‘-'1- L'g)
(3.3} |

i
C(eaoer) teaes)

is nonzero. Suppose that this is not true. Then there is a pair ¢ 0 = C7 =such thas

(o) = i0.0) and
colr ) el o) = 0
Crita ) = eateacn) = U

Thus. &Ly + @ is orthogonal to both o) and ¢, which implies thar the solurion
space of L7(y) =0 is at least three-dimensional (a contradiction).

Thus. there is a pair (. gy) € C* such that

prloyoe) = lep ey = =h
pilva. ) = patvacty) = b
Letring f = fmu = fate. we have tf.oop) = —by and «f way = by Ler o be the

solution of Lin) = f with u(d) = #'t4) = 0. Then « = D(T) and. using 315, we

caleulare for j = 1.2

.8 _
tfoe = frodn
J
B —
= / Liuju,dr
A
B

= / u[.(:)dl' - :u.L_‘]I(B) - ju.:;{.-li
A

= w.uiiB).

Thus. (f.¢) = Lul.—l(B) = —u{B)and (f.1un) = [u.E}(B’) =ulB).so u'1B) =i

and u(B) = b;. We apply a similar procedure (starting with the choice of (ze;. p12!! 10
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obtain a v € D(T) such that
(A =ap ' tA) = a.v(B) = {B) =10,

The function ¢ = 1 — r satisfies the conclusion of the lemma. _

{

LEyMA 3.4 DITy) = {f € D(T):7¢ = DTy froi = fituy = fog b =0}

ProOF. Let f € D(T) with f(0) = f(0) = f.h(b) =0 forall h € D!T). Let
g € D(T™). Then § € D(T) and

(f.T (g —(T(fl.g) = /T’(g‘rf(l.r—/_I}T(]'}(IJ'
JO J0

(/] fy
= / Tig)fdr - / gTt fulr
0 0

= 4. fhi = g. fit0)

—Lf gith)

= 0.

Thus. (T™tg). fi = 1g.T(f)) for all g € DIT™ 1. 50 f € DiiT™)") = D(T,: and
T(fy=(T7)(f} = Totf).

Let f £ D(Tg) = DU{T™*)"). Since (T7)" Z T. we have f = D(T)and Tif: =
(T~1"1 f). Let g £ D{T). We now show that if.gi(hy = 0. Note that § = DiT™ . Ler
X £ (0.h1 and Ty denote the maximal operator for —y" + gy over 0..X. Applving

Lemma 3.3. there is a g; € D{T{) such that

9:40) = —g(0). g;(0) = —¢'(0). g1 (X} = g1 (X} = 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

Let §; = gy on [0. X} and g, =0 on (X.b). Then g, € D(T™). Finally. let g = g1 ~ 3.
Then § € D(T™) and
fglthy = [f.glib) = "f.gi10)

= / Tlf)_jd.l—/ fT(g\dr

= / Tfl_jdl—/ fT-(jde

= (Tifigr = f. T7ign

= 0T v ifrng —if. T gh

= U

[n the next paragraph. we show that f.¢ 10) = 0.

By Lemma 3.3. there is a ¢y € D(T{) such that

(0} = gl0). g} (0) = ¢'10). g1 X) = g;{.\) = 0.

h

Let g=¢, on 0.Xjand g =0o0n (X.h). Then g £ DiT ") and

Sfogit0) = g = )
= /Tif;;jdf—/ [Ttqidr
0 0
= (Tifi.gy = f.T71g))

= Tl ifrngi—if. T ogn

Thus. we have that f.¢1(0) =0 for all ¢ £ D(T). Using Lemma 3.3 in the same
wav as in the previous paragraph. there is an h € DiT} such thar 710y = 0 and
h'i0) = 1. Thus. 0 = f.hi(0) = f(0). Similarly. there is a & £ DiT} such thar
k(0) =1 and A't0) = 0. Then 0 = (f.k{(0) = —f"(0). Thus. f(0) = f"10) = 0. We
now conclude that f is in the set defined by the right-hand side of the statement of

the lemma.
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For the rest of this chapter. we assume that o(-.\}) and 8(-. \1 are a tundamenral
svstem of solutions of Liy) = \y with {©.6}(0) = 1. We further assume that L is in
Class II at b (i.e.. all solutions of L(y) = Ay are in L*{/0.b)) for all \ £ Ci. For the
purpose of the lemmas. \ does not need to be specified. so we shall abbreviare o for
oi-. N and # for #i-.\). Note that 0.# = D(Ti. Lemmas 3.5 through 3.8 helow are

based on a series of lemmas given in '16;.

LeMmaia 3.3, If f.g € DIT) then f.giiry = [fooir)g.0hri = fir goor
for all r = 0.5L

PROOF. For r < b. this is a mere calculation. Now. Lemma 3.1 and the facr that
rhe equation
fogitey = foopaig. Bl = f8ir gooltn)
holds for & < b imply that “f.gith) = foo (hilg.6(h = f.8:thrg.o b —
LEMMA 3.6, Ify 2 D(T). then there are numbers .3 < C such that foqithi =
fooo~ gty foroall f= DIT).
PROOF. Fix g € D(T). Leta = g.0iiband 3= —g.oth If f = DiT) we have

fogth =

f.(.’)j(l)!{g.giﬁf)) - {f.Hj(b){g.ofl.’n
= f.aoithy = f. 38ith)

= f.ao— 30'(h).

LEMMA 3.7. DiTov = {f = D(T): f10) = f'10) = f.oliby = f.t.ih =0}

PROOF. DiT,; is a subser of the right-hand set by taking ¢ = #.o. Now. ler |
lie in the right-hand set. Let ¢ € DiTi. By Lemma 3.6. there are a. 7 = C such
that f.g(b) = 'f.ao — JA(b) = alf.ojth) — 3{f.0(b) = 0. Thus. f.g1b) = U. 50
f = DTy =
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LEMMA 3.8. Given a;.as.by.bs € C, there is an element f € D(T | such that

f0)y=a, [f.0](b) =b

fl0)=ar [f.01(h) = bu.

Proor. Fix a;.d. b[. bf_) £ C. Let fl = bgo—bl(). Then fl = DiTyand if'_. H:‘.l')) =
hy and _f-.o'(h) = by. Let X € (0.h). Let Ty denote the maximal operator for ¢ un

0. X . By Lemma 3.3, there is an element f, £ D(Ty) such thar
f_t',()) = day fg(.\-3 =~")v_v(.')l.\-,| —})1_9(,\'.'
fi0)y =aa  fUN) =o' (X) = b8 (N

Let f = foon 0.X, and f = f; on (X.h). Then f € D(T). flO) = failhr = a;.
F10) = f3(0) = ay. (f.60)(b) = f1.0,(h) = bo. and If.0l(h) = fi.othy = b Thus. f

is a function sarisfving the conditions of the lemma.

Finally. we have the following.

THEOREM 3.9. Let u € DIT). If for some Ny & C it 1s true that A Ny ou ithi =

‘ol Nl ujth) = 0. then for all \ € C it s true that Q- \). uthy = ot \iou th =),

ProoF. Fix A € C. Then bv Lemma 3.5 we have
BNt = B N ol Ag bl B NGt = T NLB NG o Vihy =10

nsing the hvpothesis. Similarly, we get (o(-. ). u (h = 0. —
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CHAPTER 4

The Titchmarsh-Weyl m-Function

The classical (¢ real-valued) use of the nesting circle analysis is ro demonstrare
rhat the differential expression L{y) = —y” — qy is in the limir-point rar most one
linearly independent L7(70.h)) solution of (2.2) for all A1 or limit-circle tall solutions
of (2.2} are in L*1{0.5)) for all \) case at the endpoint b. Recall from Chapter 2
that L is in Class [ if there is at most one linearly independent L2070, b solution of
12.2) for all A and that L is in Class [T if all solutions of 221 are in L5 0.5 for
all A, In Chapter 2. it is shown that if Q(H) is a proper subset of C. rhen for anv
A = C = QuH ) we have at least one solution of (2.2) Iving in L=10. b1 For borh
Class and Class L we may define an m-function.

To define the m-function for Class [ and Class [1. we will make use of the following
notarion. which was introduced in Chapter 2. For fixed hy. ha Mo Hy = C and for

A 2 C.ler of-.\) and A(-. A} be the solutions of
(L1 -y —qy =Ny
satisfving
o(0.\i=h;  6(0.\)y =1,
o'(0.\i = H. 61(0.\V = H..
We also require that
h-Hy —hoHy =1 and hihy — H Hs = 0.

When confusion is unlikely. one or both arguments of o and 4 will be suppressed.
We are now ready to define the m-function for Class . From the nesting circle

analysis. we associate to each A\ £ C—Q(H) the intersection [J,_ ., Dxi\i of nesting
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disks. Since we are in Class . ﬂ0<'\-<b Dy ()) is a single point for all A € C — Q(H)

(otherwise. all solutions are in L?{]0.b)) for all A € C). Fix \¢ £ C — QtH). Since

I

there is onlv one solution of L{y) = Mgy in L*({0.5)). there is exactly one number
[ = C such that vy = wyf-. \g) isin L7('0.h)). From the nesting circle analysis. 12,75

the number / = Mo v<p Dx{\g) has the property that o7 is in L-(0.b)i. Thus. I = I.

DEFINITION 4.1, Fir a quadruple b  H; ho. Hy as above. The Class T-futiction

< the funetion
m:C-QtH) — C

whuse calue at \g is the number m(\yi = C with the property that Cy s, = L7 001,

Note that the domain of the Class [ m-function. denoted by dom(m ). is C = (QuH .

Bv the remarks preceding Definition -1.1. we have that for \y £ C - Q(H).

m(N\g) = ﬂ Dxi\g).

02X b

We now define the Class [I m-funerion. Nore thar for Class [L #6-. N and o0\
are in L71[0.h)y thence. in DT for all A\ 2 C. We claim that there is an element
w2 DT such that if N € C then #-.\oethy = 0 or o Nu by =00 To see this.

et \, = C. Bv Lemima 3.8. there 15 an element v £ DTy such thar
':0(-. AYOR Iljll)) =1t or iO(-. Ayl u}sb) =0

The contrapositive of Theorem 3.9 implies now that for any A £ C we have
O A u (b) #0oriof-. \). u, by £0.

We call such an element « a boundarv condition function for . Recall that - -\ =

ol-. A).

THEOREM 4.2. Let u be a boundary condition function for h. For euch N = C.

there is exactly one number [{\) € Cy such that vy N = B0 = [0\
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satisfies the boundary condition [y, ujib) = 0. Furthermore.

0. \). ul(b)
Ny = —>0n—"— -
= N ()

for all \.

PROOF. Note that if A € C. then. by the remark in the previous paragraph. the

number
G- N (h)
ol Aicu thy

is an element of Cy. Using Lemma 3.1. this equation gives that [eo(-. Niow by = 0,
This establishes existence. To establish uniqueness. assume that there are munbers
l..1

= Cy such that iy # 1/, and

:1,'(l.11j(/;; = tr,',_,. 11}(/}) = ).

Then oy and oy, are linearly independent solutions of t4.1). Thus. B N ihy =

ot- Njouith) = 00 which gives a contradiction.

Theoremn 4.2 stares that for each \ € C. there is only one sohttion. np ro consrane

multiples. of (4.1} which satisfies the boundary condition " f. uith)y = 0 (for a given wr.

DeFINITION 1.3, Fir a quadruple hy. H; Iy Hy and a houndary condition fune-

tion u. The Class II m-function i the function
m:C— C,

whose ralue at X s the number. say miN). with the property that Copy -0\ satusfies

the boundary condition Cpy.ou th) = 0.

We remark here that. by Theorem 4.2. the Class [I m-funcrion has the value

Bl Nyuith)
o~ A ujib

at each number A. Also. note that the domain of the Class IT m-funcrion. denored

bv domim). is C.
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For a regular problem on [0. bj (which is necessarily a Class II problem}. specifving
a boundary condition function u at b is equivalent to specifving two complex numbers
a and J. not both of which are zero. Specifically. suppose that u is a boundary
condition funcrion for h. Then ¢ = —u(b and 3 = u"th) are rwo complex numbers.

not both of which are zero. with the property that forall \ = C
1. N =o' (h. \) 20 or Joth, \i - aclih. N =0,

Conversely. suppose that o and 3 are two complex numbers. nor both of which are
zero. Assume bv wayv of contradiction thar there is a \; = C such that J#h N\ -
af'th. \gt = 0 and Joth. \g) + ad'(h. \y) = 0. Then. if 3 =0.1 = oth. \p#'1h \)i -
A'(h. Ng)Oth. \g) = =(a,/ 10" (. \g)&' (b. Ny} — i/ 1" (h. \p#'(h. \y) = . which gives a
contradiction. Clearly. if e« # 0 then we reach a similar contradiction. Thus. it is the

case that forall A £ C
30(h. \y — ' (h. \Y £ 0 or Joth. Ny = ao'th. N\l = (.

By Lenuna 3.3 there is an element « = D(T) such that wiby = =0 and o'ihy = 3

Thus. for all \ = C.
Bl Augihy = 0 or ot N ihi =0,

The previous paragraph shows that for a regular problem on (0. bi. we may choose
to define the Class II m-function in terms of a pair a. .J of complex numbers. not borh

of which are zeto:

30(b. \) -~ af'(b. \)

/\‘ = - .
m{A] Jotb. \) = ao'(h. N}

We now discuss the dependence of the Class [ and Class [I m-functions on the
quadruple hy. hs. Hy. Hy. Consider two quadruples hy.ho. Hy. H, and hy. hs. Hy. Ha.
Let # and o be the solutions of (1.1} satisfving the initial conditions as given wirh
(4.1). and let # and o be the solutions of (4.1) satisfving the initial conditions with

h, replacing h,. etc. Finally. let m denote the m-function for the quadruple h,. etc..
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and let m denote the m-function for the quadruple h.. etc. In the present analysis.

we assume only that
hyHy — haH, # 0 and h\Ha ~ hoH, # 0.

which merely is a starement that 6.0 and #. o are two fundamental systems of solu-

tions of {4.1). Thus. we have that there are constants ¢y.cy.d;. 5 such thar
A =ct—coand o=dd~do.
From these equations it follows that

ha = ecrhy = el

H'z = . Hy~ o f

hl = ll:_h'_l '“‘]'_‘h".

Hl = 111_f[_v"ll-_’F[;.
Solving the above system for e, ey d;. )y gives

e, = (hyHs = haHyj/(h Hy = haf)
ey = (hoHs = hoHy/ (hiHy = hoH))
dy = ihH —h-Hy)/ thiHy = hoHy)
ds = (W Hs=hoH) Jth Hy = hoH ).

Note that

- r
-~ - . , . . Ca = i
0 —mo=cy—=md)8~{co = mdsio = 1y = mdy) |0 ~ ———
1 ) 2 2 1 !
oo =il

so bv uniqueness of m we have

(653 B fh(l_; _ E_)Hl - }1:['?'_! - (/Z.:H-_v - ,")-_)['?7_ im
Cl'—rhdl }ZIHQ—'h._ng*(hIHI—hTZHI)T;I.

nm =

Thus. m and m are related by a Mobius transformation since its “determinant” is

(hiHa — haHy) (R Hy = haHy) 2 0.
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We now use the result of the previous paragraph to justify the two conditions
h1H3 - th; =1and E-l-h._g "T‘EH_) =0

thar we wish ro place on the quadruple hy. ha. Hy. Ha. Fix by b  H. Hy = C such
that hy H. — hoHy = 0. Since ‘hy * = H.® > 0. there is a pair oo Hy = C such that

h;H-r—h'_vH! = 1

hihy— HH, = 0.

Letting /i denote the m-function for the quadruple hy. Hy. ho. Hay and i denote the
m-function for the quadruple h;. H\.h,. Hs. we have from the previons paragraph
that M and m are related by a Mobius transformation. That is. there is a Mobius

transformation T such that

m=Tom.

Thus. no generaliry is lost by placing the conditions
thg - h-_)Hl = | and IM_FE - H.—_) =)

on the quadruple /. by Hoo Hs chosen as the inital values for ¢ and .

Define the Class [ and Class [ Dirichlet m-function. denoted by myy. to he the
m-function in the case that Ay = 0. We shall prove that mp has a cerrain asymptote
behavior. Our proof requires two lemmas. The first allows asvmprtoric estimartes of
the solutions o and #. and the second gives an asvmptotic estimare of o, \: rthe
diameter of the Wevl disks. when a € (0.6 is fixed. The square roots that appear
are from the principal branch: that is. A\ € C = RvA > 0. The proof of Lemma 4.4

is based on that given in {1].

LEMMA 4.4, Suppose that u(-. \) solves (f.1) and that u(0. Ny, u'i0. Ny are inde-

pendent of \. Denote k = V=X (Riky >0 Let

sinh{kr)

ugiz. \) = u(0) cosh(kz) + u'(0) T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and cl\) = jul0) + 1W'(0)|/iki. Then

(+.2) ulz) = uglr)] < c(N) - €7 (edo ¥4t _ 1)
and
4.3 W'(r) = uglr) < (N} k] jeRT]ied o,

Thesc estimates hold for all v = 0.5) and all A = C.

PRrROOF. The variation of constants formula gives

" sinh{k(r — t)!

wlr) = uylr) - / ':[!\z‘)auf)(lf.

J )
Let

kx| I/I sinhihir — £ ks

glri = ¢” | p Squtyu(Bydt, = €75 e = i
0 .

Estimating g vields

T sinh{k(r — 1l '
glry < '(v”k"'i-/ i ! i) g(t) e dt —
o

ki
T isinh k(e - H)l . . o o
‘t'”‘~/ bmh‘k;j Il gt ul(0)f coshikbty — . 1 sinhihsy dt.
(') 1 +

Noting that all rhree inequalities

€77 sinhikir = fi]

IN

¢~  sinhikir — riicosh(ktr < 1
e sinhikir — fijsinhiks) < 1
hold for + < r and using that
cosh(kt), < :sinh(kt) or sinh{kt)} < coshikti.

we may write
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P
[

\We now multiply both sides of this inequality by ig(r)ie” Jo %1% and bring the second

term of the right-hand side to the left-hand side. The left-hand side then becomes

fr + !
[e"“ ol / Iqﬁg(lt]
Jo

and rhe richr-hand side is

e ]. o r !
AR [,,‘);, : (—T/ grdt — I)J :
“Jo

Integrating both sides from 0 ro r gives

T ol ro ]_ r |
e~ ho bt / lqlgdt < c(\) ke~ Jo &t (—T / g,dt — l> — i\
0 - Jo

Multiplving both sides by (i/ k[)eﬁ) < ¥ and rearranging terms gives
1 o c(N [T oy
— iqrgdt — — gidt < (N} - (e o l) .
ki S ko Jy
Sinee the lefr-hand side of this inequality dominates giri. we obrain
o G L )
glry <ot \y- {edo ©F — l)‘

Using the definition of g. we now have (4.2).
Differentiating the formula for n we get

u'ir) = uf](.rl --/ ('osh{k(r - :‘llqlﬁu({ulf.
0

We now estimate

') = nglr) < / Ccoshikiz —t):igit)jiutt) dt
0

IN

z
k T T 3 [T oduis Lokt =k ;
e“f/ cosh{kix — t)iiigit) ct\jieds <% — 1) €' e 75 e
0

I
. KT

~le “coshiktr — t1}iqut) '€ wi0): coshikt dt

T ) ‘ e 0y
coshikiz —t) gitiybe™" — ! sinhi At} dt.

P

f"EkIE

)
J
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Noting that all three inequalities

.coshik(r — t)je %=1

IA
—_

icoshik(r — t); cosh(htie ™™ < 1
coshik(r — )} sinh(ktie ™ < 1
hold for + < r and using that
coshtkty < sinhihtyi or sinhokty < coshoiti,

we ay wrire
54 . o r
u(ri —uliry, < € / ANVt el S = Ldt - c*'*"‘/ CtAY gt
1} 1}

L -t
= ‘(‘k'r;{/ ('(z\)[l](f):f""”
[}

= c(\) - ki leR (Ff“:

s it

4!!_1).

Parss

s

s0 we now have (1.3).

In the following. we continue to use the notation & = y =\, where R0k =
as well as the notation in Chapter 2. Henceforth. unless otherwise indicared. all
ravs referred to emanate from rthe origin in C. The next lemma gives an asvmptoric

estimnate of the diameters of the Wevl disks Dy (\} on certain ravs in C.

LEainia 4.5, Let a = (0.5 be fired. If R is a non-real ray which eventually stays

nosame adnissible \p e plane. then

1
I3(h): o(0) =

doi \) = Ol ~ 2Rk,

210y

2
as N\ — xc on R. It follows from this that for any € > 0 and for any non-real ray R

which eventually stays in some admissible \, j plane we have
da()‘) = O"E—Q{a—e‘:ﬁfklx)

as A = x along R.
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ProOOF. Fix a non-real rav R which eventually stays in some admissible .\, x
plane. Then the set § = {k = V=X : A € R} is a ray which lies in the riglt
half-plane and which coincides with neither the positive real axis nor rthe positive
imaginary axis: thus. R(k) (k). where & € S. is a nonzero real constant. say . e
now demonstrate that tan(n) = r. Represent R as the set of numbers 72 where
- is fixed in (==.7) — {0} and f varies in [U.x). Recall that p £ -7 2.7 2. Bv

hvpothesis. if 1 is large enough. then ¢7t £ .\, x. That is. if # is large enough then
Rl(e'"t = Kje' < 0.
S0
teos(m —n) — RN < 0.

Thus. cost—=1) < 0. Note that 7 —n & (=37 2.3x/2). The condition cose= =502 0

itnplies that

[E%])
|
L
RE-3
L}
<
At
|

el /IS o Pl
~0)

T2 -~ = < 3702 We elaim that = = =2y, Suppose that this 1> nor true.

Then substituring = = =27 into the inequaliry

and nsing that . < /2 gives 'y = =/2. s0 ;7 = =. which gives a contradiction.

Note that if £ £ S then

(k}y  cos[im==1/2]

Since —7/2 £ nand —=2.ps /.72
r=tani—r/2) = tantn)j.

From Chaprer 2. we have d (A} = (Rle"0'ta. Nioia. \)])71 We now calenlare
d,i\i. First. we abbreviate o = ola.\) and o = o'(a. \). Here and unril the

conclusion of our proof of the lemma. A £ R 7™\, .
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Note that Rle?o’o] = cos(n) - Rlo'o] — sin(n) - F[o'ol. Letting o, be detined

. : - N PN I IR
analogously to ug in Lemma 4.4. we write 0 = 09 = (0 — 0g) and o' = o — 10" — 0.

Thus. 3[6'0] = J[ohou — I[0)(0 — @o)] = Jopl0’ — ap)] + I —ofito — o). Now
we wish to show that

\

(3'(0),-_,)

(4.4) Jlohlo ~ o)l =0<3(k\!f."“”2'o(0>-‘-

v
’

Using Lemma 4.4 and the fact that o < e{\) ki e® . we have

. . !
3 (.‘),’,(C) - (.')() } (D(J 10— (Dl;

A

Loy 0oy \ & Vo ‘ e N~ C e Y. N S Y
LS ek o)) — "—;)-;". SRR S oty - — ¢

ke ‘et \)]?

(i da
< (N H ! N 1 M
T 3k el0) - %;2 ( )

Since the first two factors in the last expression are bounded as N\ — xc and the last
expression goes to zero as A — x. we have shown (4.4). Using Lemma 4.4 and the

fact that ‘o5 < e(\) €5 . we show similarly thar

. [ Iy ~ ka;l ’.'),‘ﬂj '
(4.5} Jioglo' —oy)i = o | Ik o) - f‘ -
and
Nc, - N ka9 (J,“):' 2
£4.0) 300 = oglio=og) =0 Ik 00) - T .

Clearly. i4.4) - 74.6) hold with 3 on the left-hand side replaced by R. For convenience

in the next calenlation. let

ot — u—i

=

o) - Jk

By writing oy in terms of exponentials and using the fact that Rk > 0 and 3k = 0.

we have
- k a I(O) 9, - p— __1-;;-]
Jlogon; = 3 Izek“f'?o(O)—g-k—f‘l-Cf HL - H
ka2 O’TO oy~
- 64' lo(O)—;L—_)";s[k——o!I;.
' ka2 (0 ,
- =] lo(O)-.-OA—;){“E(k)(l—o(l))
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Arguing in the same way. we show that

. ie"“?j 0 . Rk '!
’ ; - — k)| —— ~ ol 1)
Rioyoq, = 1 0(0) k P30k \M} 0 J
Thus.
.- (7’(0),., ]. '
\\S.(:),O“] - 3\,‘\" (_Lb‘ O(O' - A’ f- (1 - ()!1])
and
- U A {0
Rio'or = 3tk e 0(0) - i 7 ): (1 — of l))
Thus.

do(\) = (R Mo'ol)
1

~. NI L Y8 B 0 v
JikjesaRik o(Q) — 22

E-'_’aR.’k) 4

Eeostyy = Lsintgpy = ol

3tk)o(0) - _";"" : costn) - —sintgp ~otl

Sinee tantny: = r. the last equality shows rhat

1 Rk
i\ = = ~(O(e itk

3tk o = 5

Now. if ¢ > 0 and R is a non-real rav which eventually stavs in some admissible
\,.x plane. then for \ € R large enough. we have

C .(—.’ c—e Rk
(lthk\\stl;,.l}(O) - ':\'k“ :.,

do(\) <

where C is a constant. [f \ € R is large enough. then

41‘0‘

2Rk 3k, ol0) — - ->

ito get this inequality. we use the fact that R(k)/ 3tk is constant on the rav R .

Thus. we have that if A £ R is large enough. then
dy(\) < C e Fam RE

which shows that d i \) = O(e=>e— Rk, -
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Henceforth. we will consider m-functions only for those problems which fall into
one of the three following types:

Tyvpe 1: Class I

Tvpe 2: Class II. b not regular. the boundary condition function u satisfving rhe

property that —u'/u lies in some half-plane Rie7z > (:

Tvpe 3: Class I b regular.
Thus. we rrear all problems of Class [ but only two rvpes of problems of Class 11
We emphasize that we have defined Tvpe 2 and Type 3 so that they are distiner
categories. \We shall remark about Tvpe 2 here. Suppose that (1. N} is admissible.
N2\, n. and —u';u lies in the half-plane R{ze*! > 0. In this case. the m-function
m is given by

B-. ). wilh)
(- N uj(h)
= (X X HON A = X
= lim — — - -
X=b (=" (X)/ut X))ol X\ =o't XL\
= lim M¢(=u'(X) e X)),
X =

mi\) =

We have from Chaprer 2 that for cach X' £ (0. h).
Myi—uwt Xy, e X € Dy )\

soome N2 (), o, Dyth). Thus, the hvpotheses of Tvpe 2 are <ot ~o that sr lies
the intersection of the Wevl disks.

The next rwo lemmas give an asvmptotic behavior of mp along certain ravs in C.

LEmMA 4.6, Let mp denote the Dirichlet m-function for a Type 1 or Type ?
problem. If R is a non-real ray which eventually stays in some admussible \, i plane
and if. un Type 2. we have that —u'/u lies in the half-plane R{ze'" > 0. then mpi A =

—thy Hi )WV =\ = ot \/:() as A — x along R.

PROOF. Denote k = v/—)\. We are considering the Dirichlet case. so h, = H, = 0.

Fix @ € (0.h). For any A € R 7.\, x we have mp(\} € Dgi\} since mpi\;
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as

No- vop DyiAl. Recall that D,iA) is the image of the half-plane R{ze*”: > 0 under
the Mibius transformation

Ala. \)z +=8'a. \
ol Mz —o'la. N

Mz =

Elementary properties of Mdbius transformations show that x is mapped by 1/, o a
point on @D, (\: i.e.. —f(a. \)/ota. \) is a point on the circle bounding D,: .\, Thus.

Ala. \)
ola. \)

mpiA) - < dul .

Letting oy and 4, be defined analogously to ug in Lemma 4.4, we use Lemma 44 1o
caleulate

H((l. 4\) ()()((l. /\) - [()(a. /\’ - f)()i”,. ,\ \IE

ola. \) ogia. \j = [ola. X} — ogla. \)]

~ hycoshlka) ~ o(ekay
) HI Slnh(k(_l,) -— ()((rku)

2ka

/l-_) I l —¢~ "'U([’

A —
H: l_'—-krl__”(l'

as A — ¢ along ‘R. Since
V—Zkl; — of ll

Rud—x | — ¢ ~2ke — (1)

we have
Ala., ha
-~ (. AJ = ——L-k —olk)
ola. ) H1

as \ — x along R. Now. note that

. \ fa\; _ g\
mD(\) Mmpt. ) 2. I

T, Hok  —ha/Hik  —ihs Hok

i

We have just shown that the second term tends to [ as \ — ~x along R. The first

term tends to 0. using o(0) = 0. 0't0} = H,. and Lemma 4.5. since

L A ML .
rnD:"\, - i ; da('\} < C. 6--:““ k- C ‘1‘.: e R~
TS Hok | S Ty Hok S Stk kol0) = 322 Sk

and the last expression tends to 0 as A — ~x along R. Thus.

mpl\) 1
—{ho/Hy )k
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as A\ — x along R. _
We now state a result which gives identical asymptotic behavior of the Dirichilet

rm-function for Tvpe 3 problems.

LeEMMA 4.7, Let myp denote the Dirichlet m-function for a problem of Type

If R is « non-real ray whick eventually stays in some admussible N, plase. e

mpi\; = =ithy "Hijv=X=o0tyv=\) as X\ — x along R.
PROOF. Again. since we are considering the Dirichiler case. we have i = H, = .

-

Denote & = =\ Using Lemma 4.4 then gives. for any o £ 0.4 and for any \ = C.
sinh(k.r ) H. SE g ‘
oir ) = RO (B ke gt 1;)
k k
o'(r.\) = Hycoshlkr) 0 (H:r""'l(ﬁ fde _ 1))

8(r.\) = hacosh(kr) =0 (hgekm!&"‘f a_ ’)

9(r.\) kh, sinh(kr) = O (h._,A-f ke ly bar .) .

Sinee we are considering the regular case. we have

“"11"(»)(/). N = ¢ih.\)

b

mp{A) = ~— .
):LAIJ').L aith. Ny = o't \j

Substituting the above expressions for o(h. \). o th. N b, N A N and tactoring

Fiae ¥k from the mnnerator and ¢ H, from the denominator. we get

T - i
u'hr Lo, mawe ime o

1 -
. —— | T l -
y h_.(;‘“'k i 04 l), 3 ol
{ = - : g
mpl) RO H,  wh [ioe-ikb -‘-o(l)l‘ S Eab LA
uih) ‘_ 2k -i 2 ‘ ’

Since the right-hand fraction here converges to 1 as \ — . this equation shows that

mpi\y = —{ha/ H)k = o(k) as A — ~ along R. Note that if uth) =0 then
" f(b. \)
mp{\) = —————.
ol olb. \)

and. as in the proof of Lemma 4.6. we may conclude that

h ,
mpitA) = —l—q—'—k + o(k)
1
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0
as \ — o along R. —

The following results will be used in the next chapter.

THEOREM 4.8. Let m denote the m-function for a problem of Type 1. Type 2. or
Type 3 generated by (4.1). Let a £ (0.b). and let m, denote the m-function jor a
reyular problem on 0.a generated by (4.1). Then for any e >0 and for any non-real

ray R which eventually stays m some admissible \, i plane.
miA) = my(\) = Ore 2oy

s N — x along R.

Proor. For a Type 2 or Type 3 problem. let n Jenote the boundary condition
function for m. \We prove the theorem in several steps. Fix a non-real rav R which
eventuallv stavs in some admissible .\, x plane.

For the first step. let m denote the m-funcrion for a regular problem on U

generated by 14.1) and with boundarv condition function & satisfving @) = 6. Then

Ala. \)
n(\) = = ———.

miA) ola. \)
We now prove that m(\) — m(\) = Ofe= 2 Rikiy

[f the problem for m is Tvpe L. then from the nesting circle analysis. we have
mt Ay = m(\) < d(\) for A\ € R large enough. If the problem for m is Type 2 that
is. —u'/u lies in the half-plane R z¢'" > 0). then for A large enough. we have

miA) < ﬂ DNy

0 XN<h

Thus.

- ) ! H\’([.,\}
mi\) —miM = mi\j -

—— i < d, i\
x' ’3((1.1\) '

: <
We now have that if the problem for m is Tyvpe 1 or Type 2. then

m(A) — m()\) = Ore e~ Rik

bv Lemma 4.5.
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Assume now that the problem for m is Type 3. Only to handle this case. we
introduce a regular problem on [0. b] generated by (4.1) and with boundary condition

function ug satisfving ug(b) = 0. Let mg denote the m-function for this problem.

Then myi N} = =Ah. \i/o(b. \) and

= (B uthBth. My =8 th. Ny Bih. .\

i = mglNy == -
' (= {DY b ioth. Ny = o'th. Ny oth\
1
oth. \jo'th. Ny = (a'ihy wthyjorb. N
Using Lemma 4.4. it follows that this last fraction is less than or equal to (e 727 7

for A large ecnough on R. Since a < b. this gives that
imy(\) = m(\) < CemHem Rk

From the nesting circle analysis. we have mg(\) € ID,(\) and mui Ny 2 dD,,: \i. Sinee
N 0 3
Dyt Ny Z D\ we have ‘mg(N) — m(N) < dy (N < Cre 0 Rk sing also Lemma
[p— 1 -_ 1
1.5, The triangle inequality now gives

miN) — < Cye 20 E

P A

- , NP
SO N, — i\ = O el

Now. for the second step. let m be the m-function for a regular problem on ta

wirth ¢ and wirth boundary condition function & satisfving a(a) = . Then

(u'(a)/ala))fla. \) — @ ia. Ny Ala. Ny,
(i'{a)/ula))ola. \) — o'la. N} ofa.\
1

o(a. A\)jo'(a. ) — (d(a)/ @laljota. N3y

!
miN) —m(A) = :—

Using Lemma 4.4. it follows that this last fraction is bounded by Ce =%~ ®% for A

large enough on R. so

mi\) — mi\) = O(e“")““f“mk:‘)'
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Let m, be as in the hvpothesis of the theorem. and let u, be its boundary condirion

m{A\) — ma(,\) = O‘E—'.".u—c‘;R(kt ).

If. on the other hand. w,ia) # 0. then introduce a regular problem on .o wirh
houndary condition function & satisfving a(a) = 0. Let m denore the m-function for

this introduced probleni. Then the previous rhree paragraphs give that

- .y o

~ HE S

A = mgt AN < miA ) = ), = i\ = m iy L Ce TR
SO MIN) = mul\) = Ore2e-nRiky =

We finish rhis chapter with a result that states a manner in which rhe Green's

function for a given problem converges to zero.

LEMMA 1.9, Let m denote the m-function for « problem of Type 1. Type 2. or
Type 3 generated by i4.1). Let v (. Ny = e ) = miNolr. Ny and a = 0.1 D
fired. If R s a non-real ray which eventually stays i some adimssihle \,) x plane.

then ola. Mgy ia.\) — 0 as \ — x along R.
PrOOF. Consider a Dirichlet problem on [a.b:

O (. A =10 A la. Aj=1

oja.\i=-1 6 a. N\ =0

3

where f,.0, solve 1.1) on a.b). Note that the two problems ithe one involving
and the Dirichlet problem) are both Class [ or both Class 1. Since for anv \ each of
# and o may be written as a linear combination of #, and 0, on «¢.h'. we may use
the boundary condition function associated with m to define an m-tunction m, tor

the Dirichlet problem if they are both Class II. Let

l.'a_m_ui,\)('. 1\) = 6,1(‘. /\) - ma(/\)Oa(‘-. /\l
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Note that vym,aia.A) =1and v, (@A) = —=mg(N). Thus.

Jg
Lu'”‘(‘{l\l(a. A)

meiA) = — .
" L'a.mdi,\}(a. r\)

We now show via two cases that for \ = R large enough.

AT

MmN\ = - ———.
U o A

Case 1: Both probiems are Class I. Then from the nesting cirele analvsis we e
domim Z domim,). If N € R is large enough. then A = domtnm 7 donn i

Since both Cmnyires) and Cgm, . are square-integrable on ‘. b). thev are mui-

tiples of each other on {a.b). Thus.

M g :

- (/\) _ l‘a.m,‘i,\)(a"\) _ l‘m;.\v"(l‘ ’\‘
a = - _—- .
Camg Ay (@A) Ly xi (e A

Case 2: Both problems are Class [I. Then dom(m,) = domim) = C. Sinee both
Vo iws and Cgny satisfyv the boundary condition ar b they are muliples

of one another. Thus. as in Case Lom () = =] vac Vv )t A

Thus. for A\ = R large enough. we have thar

Uenox LA

'-'m (\_(’fl. /\)
is a Dirichlet m-function (it coincides wirth m, for \ = R large enoughr. By Lemmas
1.0 and 1.7.
J
Lt A

MY VoA =alv =)\
L'"Ll)‘;((l. /\)

as A — x along R.

Bv Lemma 4.4.

ole. N\ —_— —
——— ==V =A=ol\v -\
ala. \i

as A\ — x¢ along R. To complete our proof. note rhat

1 O(_a. /\)L';n«,,\){.a. .\) -o,(“. /\‘)L'm(,\’q!/l.f } l,';n.’\,'(a. /\,‘ 4'_')’(,1“\;

OHL N Upa L@ A) - ofa. \)Um ala. ) U@ Ni 0tas N )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since both terms in the last expression are asvmptotic to —v —A as A — x along

we have that the reciprocal of the Green's function tends to infinity like =2y —\. s

the Green's function o(a. A)t'mn, (2. \) tends to 0 as A — x along R.
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CHAPTER 5

A Local Borg-Marchenko Theorem for Complex Potentials

This chapter considers the Sturm-Liouville spectral problem defined by rhe eqpui-

ton
{2.1) Ly=—-y"+=qy=2\y

over the interval [0.h). where 0 < b < x and ¢ is complex-valued and locallv in-
tegrable. Recall the functions 6(-. A) and o(-. \) defined in Chaprers 2 and L The
endpoint 0 is assumed regular. and at b the equation may be either regular or siu-
sular. A boundary condition Hyy(0) = hyy't0) = 0 is imposed and. in rthe case of a
Class I problent. a boundary condition {y. ui(h) = 0 in terms of a boundary condition
function «w < DT is imposed at b. Here, by and H- are as in the previous chapters.

The purpose of this chapter is ro prove a generalization of the theorem in 1.
The generalization consists in allowing the potential ¢ and the boundarv paramerers
Iio. Hy.u to be C-valued. thereby making 13.1) non-selfadjoint. Our proof follows in
the spirit of Bennewitz and incorporates the language of the Sturm-Liouville <pectral
problem found in {3 (in particular. the nesting circle analvsisi. The resulrs we present
in this chapter involve directly the Titchmarsh-Weyl m-function. which has come
to play an important role in the spectral analvsis of Sturm-Livuville probiems in
the selfadjoint case. Thev state. roughly. that two potentials coincide on a compact
interval if and onlyv if the corresponding m-functions are exponentially close on cerrain
ravs in C.

To state our first theorem. we introduce another similar Sturm-Liouville problem
detined by a potential ¢ over the interval xOf;) We introduce the quantities Q(H ..

m. and. if the problem is Class II. a boundary condition y. &115) = (0 where @ is a
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boundary condition function in the domain of the maximal operator for g. We denote
bv 8 and o solutions of (3.1) with ¢ replacing ¢ and the same initial conditious as for

8. 0.

THEOREM 3.1. Suppose that the problems associated with ¢ und g are Type |

)

Type 2. or Type 1 (the two problems need not be of the same types. Lot o = Rowith
a = s’(i.min(b.f.)):. If ¢ =G on 0.al. then for any ¢ > O and for any non-real cay 'R

which rventually stays 'n the intersection \y n =\ i of adrmssible fulf-pieies.
~ - — Y= R,
MmNy = Ny = Ore 20 1y

as N\ — x on R.

PROOF. Assume that ¢ = on 0.q]. Let € > 0 and R be a ray as stared in the
hypotheses of the theorem. Let m be the m-funcrion for a regular problem on 0.0

generated by (3.1) and boundary condition function @. By Theorem 1.3, we have
miN) = m(\j = Ofe™ 2ok

as A — x along R. Since ¢ = ¢ on 0.aj. m is the m-function for the <ame requ-
lar problem on 0.a! generated by (5.1). with ¢ replacing ¢ (same funcrion «.. By

Theorem 4.8 again. we have
AN = i\ = Qre ~30T R
as \ — x along R. The triangle inequalitv now gives that
mi\) = m(A) = Ofe 2o Rk

as \ — x along R. —

We now present a sort of converse of Theorem 3.1. Recall the notation ¢, , (. A1 =
B(-.\} = m(\o{-.\). where m is the m-function for the problem generated by 5.1

Taking into account the comments immediately preceding Theorem 5.1. we write
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cm = 8 + mo and we use the analogue of Lemma 4.9 with o. . Q(H) replaced by

0.1 O(H). respectively.

THEOREM 5.2, Suppose that the problems associated with q and ¢ are Type 1.
Tynie 2o or Type 3 ithe two problems need not he of the samne type . If there ar
two distinet non-real rays. say Ry and R.. which «ventually stay in the inte rsections

Nocws TNy g and Ny kTN g, respectiely. of admussible falf-planes. and for

. = —dg—. Bk,
wheeh it is true that green any e > 0. miA) — MmNy = Ove 7207 %5 g0 v — ~C wlony

cach ray. then ¢ = ¢ on 0. ai.

PRroOOF. Fix r £ {0.ua). For the next calculation. we abbreviate o = ovr. N and

simmilarly for o. Using Lemma 4.4 and the fact that Rk > 0. we have

(&) g — 1O = 0q)
O Oy = O — Oy

",)”_(i)((."\)cp:r”);: "T.lt — 1 L

. - . e, 1 i—}'—:lr | ¢
Do = Oter \ge®on o = -1

r , , , b -

- . - s, M ! i - I8 P

er:)tlls—f '——,\_—(L—-(O{())— kl ¢ JL. — e TRl e e ds T L A
- 1 -i-»’]l 20 ) o' -_’k;‘Ti «ic,x:() . \ kT N . ot . o ,\!

ot = 22 = (0(0) = 52 ) =) — =801 \jekz (e 17 51 = 1y

=L d

o= k|

——O‘D':’;'U‘ kool

where ¢(A) = o(0); = ©'10)/ k. The last expression converges ro 1 as \ — ~x on R,
or Ri.s0 olr.N);o{r. A\ — 1Las \ — x on Ry or R,. Using this fact and Lenima

1.9 vields

oI A\

Ol N (r. N (olr. A, b  \Y) — 0

T ooir. A
and
- olr. \) /- -
nr. \Mivpa(roA) = —— (oir. Nt s ,\;) — 0
otr.\y

as A\ — x on R; or R,. Thus. their difference

olr. MOz \) — olr. A)8(r. \j = (m(\) — mi\N)olr. \iolr. \}
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converges to 0 along R; and R,. Using Lemma 4.4 and the fact that Rk > 0 gives
that o(z. \o(z.A) = O(1)e** as A — x on Ry or Ry. Let 0 < ¢ <a—r. Now we

make use of the hvpothesis that m{\) — m(\) = Ole~%*"") to see rhat
(mi\) — m(\))o(r. Mo(r. \) < Ce ¥~ —y)
as A — > on R, or R, since Rk > 0 and a —¢ — o > 0. Thus. rhe enrire funcrion
gi\) = ol . NG, A = orr. Niftr. \i

converees to 0 as \ — X on Ry or Ry so it is bounded on rthese two ravs. By a
corollary of the Phragmén-Lindeldf theorem as stated in 5'. we may conclude rhat
¢ s bounded in C. so it is constant by Liouville’s theorem. Since g converges to 4

along R,. it is identically 0. That is.
olr. \)B(z. \) = o(r. \8(r. \).

Since r € (0.a) was arbitrary. this equation holds for all » £ (0.« and for all AV = C.
By continuiry in r. the equation holds for all r = 0.« and for all A = C. Ler V2 C
be fixed for the rest of this proof. We now suppress both arguments and write the
previous equation as

b = of.

where this equation holds for all r < 0.«.. The fact that ¢ = ¢ on 0.a now follows
from a short sequence of calculations. We rewrite the previous equation as # 0 =60

and differentiare both sides (relative to ) to get

o —o'f o —o'f

o= o~

Since the numerators on both sides are 1 (that is. the Wronskians are 1. we have
o® = o*. Differentiating both sides of this equation gives 200" = 200'. Dividing this

equation by the equation 0* = o° gives

o
O

&) n' 0,'
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Differentiating again finally gives

Since o and o solve (3.1} with ¢ and §. respectively. the previous equation implies

thatg = A =g~ \.sog=¢on 0.n. —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

An Application

In this chapter we will use Theorem 5.2 to provide a proof of the Borg-Levinson
theorem for complex potentials. The strategy is ro characrerize the m-function 1ie..
demonstrate what information comprises the m-functiony using ideas from 15 and
then ro call upon Theorem 5.2. In this chaprer we consider only a recular problem

on 0.b] with the following Neumann conditions at 0:
h{ = ]-I-[. = ()h_; = 0. H-_) = 1.

. . . Ve -
We contimie to use the noration & = v~\. where R(k) > 0. Let u; = Cy. The
associated m-function is then

Bth. Ny — #'(h. \)

A)=— .
miA) oth. Njuy = o'th. \)

(If . = x then m(A) = =8(h. \y‘oth. N

LeEaxiya 6.1 When gy = x we huee

mi\) <

<
N3

fork an the semcircles ki = (n=1,2)=/b for all positive integers n large cnough. and
when wy, = x we have the same wnequality for m for k on the semucireles I =nz b

for all n large enough.

PROOF. By Lemma 4.4 we may express m as

1 1—e 2k (1)
(6.1) M =—=.
’ m 1= e —o(l)

when u#; = x and as

1 1 -e2b o1y
62 3 /\ = ——— -
16.2) MmN = = e = o1
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when i, = x. as A — . In the case u; = ~. a calculation shows that {1 —¢ = >
1/2 for all & on the semicircles [kj = (n = 1/2)x/b. Thus. if n is large enough (so
that \ is large enough). the denominator in (6.1) is bounded away from zero on rhe
semicircles k' = (n — 1/2)x/b. Clearly. the numerator in i6.1) is bounded on these
semicircles for large enough n. Thus. for n large enough. we have k- mi\) bounded
on the semicircles ki = (n + 1;2)7/b. In the case that 1y = ~. a similar arcunment
shows that & - m(\) is bounded on the semicircles & = n=,b for sufficientlv lurae

n.

Lot m be an m-function for the tvpe of problem described before Lemma 6.1, Lot
A p

{An 1 n £ N} denote the set of distiner poles of m ithar is. the zeroes of
g\ = oth. Ny, = o'th. \j.

the denominator of mi and let 5, be the multpliciey of A, as a zero of gy it o, = X
then g\) = o(h. \j). A standard result is that ¢ is an entire funcrion whose growth
order is 1/2. It follows immediately that ¢ has infinitely many zeroes. Furthermore.
Hadamard's Facrorization Theorem as stated in 5! gives that the A, and the .
determine g up to a constant factor. This factor. however. is determined by rhe
known asvmprtotic behavior of ¢ (via Lemma 4.4). Since ¢ is not idenrically zevo. the
A.’s do not have a finite cluster point. We assume that the \,'s are enumerared so
rhat for each n. \,_;, > '\,. For each n let

Ma{A)

(\) = ————.
mA =R

where m, is analvtic at \, and m,(\;) = 0. From Lemma 6.1. we mav choose a
sequtence of fcounterelockwise-oriented) circles [y, with radius r, and cenrer ' iu the

A-plane so rhat lim r, = x and the estimarte
n—2x

¢

m(A) < —
m( }'—iki

holds for A on any [',,. For each n. let .V, denote the number of \,’s interior to [',,.
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THEOREM 6.2. If A € {\, : n € N}, then
AY \ {15 =1)
. n 1 rnp(p-))du ! ‘
7 = — ;\) .
m(A) ,}L“izpzl((jp—l)!(ﬂ—,\ )

Proor. Fix A\ € {\,: n < N}. Ler N be chosen so that if n > .\ then -, ©

If n > N then by the residue theorem

v,
. L[ e - mi) S mips
A 27 / = .\'lll - Z fos (;1 N ’\p) — e (\/1 —hT '\) '

2w /-
J; .

The second rerm easily evaluates 1o m{\). Note that for each p.

mip) 1 Myt )"”"-i \
s L=, = (AL
R_(b( \ I P) (JP—I)! (#_‘\ ,)
We remark here that since

=110 =1 . =l
my, () t . Jo= U\ .. 1 I
<_F___) (,\p)zz pr’ mp"(,\,,) ;—_—\ 5,\;,)] .

ll - /\ r=0 (.

. . . or .
cach residue depends principally on the numbers my (A1 for r=00 0y — 10 W

now show that

lim/ ””m\rl./t:().

n—x fr jt—.

To do this. we make use of the estimate mip) < C/ . =p for ;o2 T We have

mip  CHy=R ClyT
g/l - ,\; ~ _‘L — \ - ,'n _ '\, .
SO
| 1
m{p) C RSN

i
—dp| & —- ~
/rq (= A ! VTn Tn— A

as n — . By taking limits on both sides of (6.3} we obtain ovur resulr.

Note that Theorem 6.2 characterizes m in the sense thar if the \, and rhe numbers
m (A\g) 1p=0.--- . j, — 1) are specified. then m is uniquely determined.

Let uy.us 2 C«. For j = 1.2 we define the operator T, whose domain is

< D(T) : y'(0) =0 and ythiu, = y'thy =0}

-
R
i
_—
L4
(
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[9)
[

ifu, = x.or

D(T,) = {y € D(T) : y'(0) = 0 and y(b) =0}
if u, = x and which is defined by T,(y) = L(y) for y € D(T,). For the problems
considered here. the spectrum of T, consists only of eigenvalues. which are precisely
the poles of m. Furthermore. the functions of-. \,) are eigenfunctions of T, ti.e.
o(-.\,) = D(T,) and T,(o(-. \p)) = Apol-. Ap)). For the function o. a prime denotes
differentiarion relative to r and superscripts denote differentiarion relarive ro A An

inducrion shows that
(T, = Ao (- A i = po' P\

for each positive integer p. [t follows that the functions o? - .\ p =002 —

T
L. are generalized eigenfunctions of 7,. In particular. we have that for each p =
.-y~ L.

(T, = \)P 0P \,)) = 0.
From Appendix IV of ‘81, we have that j, is the dimension of rhe generalized eigenspace
talgebraic eigenspace) corresponding to \,. Define

S, = {t\u.jn) s An is a zero of olh. \yu, = o'th. \) of multiplicity 4, }

if n, = > and

S, = {t\ a2 Ay is a zero of oth. \}) of multiplicity 4, }

if n, = x.
We now come to our main rheorems in this chapter: they state equivalences of
certain pieces of spectral informarion. For rheir purpose we make a few notes. We

define “generalized norming constants™ to be the numbers
b ‘
Nop :/ (PO (2. A\p)0 PV (x. Ap) = juoPiz. ApJo V. \jidr.
0

where p = 0.--- .j, — 1. A hypothesis of the next theorem is the restriction u; = x.

but Theorem 6.4 handles the case u; = . Finally. we point out that the porential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

¢ in the next theorem is restricted to a smaller class than L},

({0.b]) so that we mav

make a straightforward use of Theorem 5.2.

THEOREM 6.3. Let u;.us = Co with u; # us and ny = x. Let 3 denote ¢ ~ectar
m C amd fur q = LYCO.b 1. iet Qg denote the closed coneer bull for g ws e fined at

the beginnang of Chapter 2. Then the following preces of information are equiralent:

L. The sets 5. S5

2. The sets

()

cand {0 th Ay neNp=0.--- ., - L}:
3. The sets Sy and {mP'(\y) :n €N.p=0.--+.j, = 1}:
4. The sets Sy and { N, :n & N.p=0.--- . j, — L}:

5. The potential g € {q € L'([0.5)): S ZC -0Q,}.

PRrooF. We remark hiere rhat the purpose of the sector 5 is to ensure the exisrence
of two distinet rayvs as in the hvpotheses of Theorem 5.2, We shall assmme for rhis
proof that v, = > ithe case that v, = x is rreared almost identicallv).

We first show that (21 and 37 are equivalent. Let f1\r = 0(h. Ny = #'0h.voand
ai N = oth. Ny ~ o'th. N Then mi\y = = fiNgid Let {\, : 0 = N} denote
the poles of m. which are rthe eigenvalues of T;. As explained before Theorem 6.2, 4
ix determined uniquely from S.. and for each n and each p = 0.--- . j, = 1 we have
g” (A, ) = 0. Fix n. Let g(\) = gt \{A =\, = where g1\, 1 = 0. Then ~f = gm0
We now show rhat knowing the set of numbers {mJ (\,) : p = 0.-+- .y, — L} is

knowing the set {o*'(h. \y) :p=0.--- ., — 1}. Note that
6.4 olb. M (b. Xy — 0'(b. \if(h. N =1
for all A € C. Evaluating at \, and using that gt\,j = 0. we get

16.51 oflb. \p)flAy) = 1.
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Let p = 1.---.j, — 1. Differentiating both sides of (6.4) p times relative 10 A
evaluating at \,. and using that g'P'(\,) = 0. we get

p

\ o]
(6.6) Z [(’r’) o'"{b. A fPT (A =0

r=0

Since f(\,i = 0 and o(b. \,) # 0. the svstem of j, equations defined bv 6.5 and
(6.6) is nonsingular. In fact. on inspection we see that for each p = 0.--- ., — L
FiPiN,) is expressed in rerms of ofh. \yb. -+ Lo tho N\ and o P b N,y i exprossed
i rerms of fi\g)o--o L fP LA

Using that ¢,{\,) = 0. we have that the numbers f'7 (\,) are relared ro the
numbers 0,7\, ) by a nonsingular svstem (the svstem is generated by differentiaring
p times relative to A both sides of —f = g,m,. p = 0.---.j, — ). Thus. rhe
set {myf (N\p) :p = 0.---.ju — 1} is related by a nonsingular system ro the set
{o®(h.\y) : p=0.--- .o — 1}. This svstem depends only on g. so knowing one is
knowing the other.

We now show that (2) and (4) are equivalent. Let \, denore the eigenvalues of T
Again. S, determines ¢ (as defined two paragraphs above) and. hence. the nmumbers

g7t \,) uniquely. Differentiating p times relative to \ both sides of —0" —qo = Ao

aives
(5.7) (N = qgo? = \o P = po? B
Fixoset N =\, and let p=0.--- ., = 1. With the aid of 6.7}, a direcr caleularion

aives that

(0P (2. Ay ()9 (. A) — 09 (. A )10V P A 1Y
is equal to

POt (1. Mg )0 PTH (2. An) = Jn0P (£ Ag )0 T I As )

Using the fundamental theorem of calculus and the fact that

gP(A) = (0)7(0. A) = 0¥7/(0. Aq) = 0.
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we get

Np = O P b AV b Ay — YR (B N 1) P AL

= oPih AqjghiiA .

Now. the equation

Nop =0 Pb A gt (N

gives that knowing the set
{Nap:neNp=0.--- . ju, -1}

is equivalent ro knowing the set {o'"'(h.\,):n € N.p=0.--- ., — 1}.

We now show that the information in (1) gives the information in {21, Let 4.0\ =
O'th. NV = weoth. N (if us = x. then ga(\) = o(b.A)). Again. the set S, uniquely
determines .. whose zeroes give the eigenvalues of T,.. Let \, denote rhe distinet
zeroes of gy with g, the multiplicity of A, tso that (\,.,: are the elemenrs of S

Note that ¢ 7 i\, = 10V P(b. Nyl ~ mpoPih.A\y) =0 forp =0+, — L Lot

p=4t.-- ., = L Since (o")VPUb.\,) = —u 0P (b \,). we have

Go PN, = (ON)VPUB N ) = 20 b N\y) = tua — n0 P b\,

Since ga and hence the numbers g ?'(\, 1 are determined uniquely from S,. rhe equa-

tion
_(].Q‘m(/\n} ={uy — Il])O‘p;(b. «\”)

then derermines the numbers 0'?(b. \,j. p=0.--- .y — L.

We now show that the information in (3 gives the information in :5). By Theo-
rem 6.2. the information in (3) determines uniquelyv the m-function for the problem
associated with u;. Bv Theorem 5.2. the portential ¢ is derermined uniquely-.

Clearly. the information in (5) gives anv of the other pieces of information in

particular. {3) gives the information in (1}). Thus. we have that (1) gives :2.. ' 2;
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gives (3). (3) gives (4). (4) gives (5). and (5) gives (1). The Borg-Levinson Theorem

for complex potentials is that (1) gives (3).

We conclude with a theorem analogous to Theorem 6.3. Our procf is nearly
identical to the one for Theorem 6.3. so we omit it. We use the same notation as in

the statement of Theorem 6.3.

THEOREM 6.4. Suppose that uy = ~ and uy = C. Let § denote a seetor i €
and Iet (Q, e defined cxactly as i the statement of Theorsin 6.5, Then the Forlowiy
preces of information are equivalent:

1. T}LC sets .'1.52.'

2. The sets Sy and {(o")P(h. Ay} :n s Nop=0.--- . jn = 1}:
3. The scts Sy and {mF' (\p) :n € N.p=0.--- . ), — 1}
4. The sets Sy and {N,p :n € Nop=0.--- . jp = 1}:

5. The potential ¢ € {g € LY[0.b") : S C C = Qy}.
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