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A groundwater system can be modeled by the following equations:

=  - V  ■ q + R{x ,t ) ,

^  =  - V  • icq) + V • {9DVc)  + B,

where q is the specific discharge, over a; in a bounded region Q c  i?", n =  2, or 3, 

and for t  > 0.

In this dissertation, we give a descent algorithm  to recover all the coefficients of 

the two equations above. This algorithm is stable and efficient. The m ethod is used 

in analyzing the W illunga Basin Aquifer in South Australia. A suggestion is given in 

analyzing the sustainability of the aquifer.
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CHAPTER 1 

G roundw ater H ydrology

Groundxuater is th a t portion of the water beneath the surface of the earth th a t 

can be collected with wells, tunnels, or drainage galleries. Groundwater can also flow 

to the earth ’s surface via seeps or springs. In many places, groundwater is the main 

source to supply water for people and irrigation.

Not all underground water is groundwater. The term  “groundwater” is generally 

referred to, by the hydrologist, as the water occupying all the voids, saturated, within 

a geologic stratum . A better understanding about groundwater movements, and the 

architecture of the aquifer the groundwater moves through, is essential to manage 

and protect groundwater resources against undue exploitation and pollution. Since 

the aquifer is generally hundreds of meters below the earth ’s surface, it is impractical 

or impossible to directly determine the properties of the aquifer. Our study here uses 

m athem atical modeling equations about a groundwater system and da ta  about the 

groundwater movements to get the coefficients, the properties of the aquifer, of the 

modeling equations.

1.1. A quifers and porous m edia

Here we introduce some commonly used concepts in groundwater hydrology. For a 

detailed discussion and examples please refer to textbooks on groundwater hydrology, 

such as [9, 13].

1 .1 .1 . A quifers. An aquifer is a geological formation th a t contains w ater and 

perm its significant amounts of water to move through it under ordinary field con

ditions. The most common aquifer materials are unconsolidated sands and gravels. 

In contrast, an aquidude is a formation th a t may contain water but is incapable
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of transm itting significant quantities under ordinary field conditions. Clay is such 

an example. Between the aquifer and aquidude, an aqmtard is a semipervious geo

logic formation tha t transm its water at a very slow rate as compared to the aquifer. 

However, over a large (horizontal) area it may permit the passage of large amounts 

of water between adjacent aquifers, which it separates. It is often referred to as a 

leaky formation. An aquifuge is an impervious formation th a t neither contains nor 

transm its water.

The portion in a rock th a t is not occupied by solid materials may be occupied 

by water or air. These spaces are called the void spaces. Because the void spaces 

can act as groundwater conduits, they are of fundamental importance to the study of 

groundwater. Typically, they are characterized by their size, shape irregularity, and 

distribution. Only connected interstices can act as elementary conduits within the 

formation.

Aquifers may be regarded as underground storage reservoirs th a t are replenished 

naturally by precipitation and influent streams, or through wells and other artificial 

recharge methods. W ater leaves the aquifer naturally through springs or effluent 

streams and artificially through pumping wells.

The thickness and other vertical dimensions of an aquifer are usually much smaller 

than  the horizontal lengths involved. Aquifers may be classified as confined and 

unconfined (or phreatic), depending upon the presence or absence of a water table.

A confined aquifer is one bounded above and below by impervious formations. 

In a well penetration of such an aquifer, the water level will rise above the base of 

the confining formation; it may or may not reach the ground surface. A properly 

constructed observation well (or a piezometer) has a relatively short screened sec

tion (not too short with respect to the size of the openings) such th a t it indicates the 

piezometric head at a specific point. The water levels in a number of observation wells 

tapping a certain aquifer define an imaginary surface called the piezometric surface. 

W hen the flow in the aquifer is essentially horizontal, such th a t equipotential surfaces
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are vertical, the depth of the piezometer opening is immaterial; otherwise, a differ

ent piezometric surface is obtained for piezometers th a t have openings at different 

elevations. W ater enters a confined aquifer through an area between confining stra ta  

th a t rise to the ground surface, or where an impervious stratum  ends underground, 

rendering the aquifer unconfined. The region supplying water to a confined aquifer 

is called a recharge area.

An unconfined aquifer (also called a phreatic aquifer) is one with a water table 

{phreatic surface) serving as its upper boundary. Actually, above the phreatic surface 

is a capillary fringe, often neglected in groundwater studies. A phreatic aquifer is 

recharged from the ground surface above it, except where impervious layers of limited 

horizontal area exist between the phreatic surface and the ground surface.

Leaky aquifers are aquifers th a t can lose or gain water through either or both of the 

formations bounding them  above and below. Although these bounding formations 

may have a relatively high resistance to the flow of water through them, over the 

large (horizontal) areas of contact involved significant quantities of water may leak 

through them  into or out of a particular aquifer. The am ount and direction of leakage 

is governed in each case by the difference in piezometric head th a t exists across the 

semipervious formation.

A phreatic aquifer (or part of it) th a t rests on a semipervious layer is a leaky 

phreatic aquifer. A confined aquifer (or p art of it) th a t has a t least one semipervious 

confining stra tum  is called a leaky confined aquifer. Figure 1.1 shows several aquifers 

and observation wells. The upper phreatic aquifer is underlain by two confined ones. 

In the recharge area, aquifer B becomes phreatic. Portions of aquifers A, B, and C 

are leaky, with the direction and rate of leakage determined by the elevation of the 

piezometric surfaces of each of these aquifers. The boundaries between the various 

confined and unconfined portions may vary with time as a result of changes in water 

table and piezometric head elevations. A special case of a phreatic aquifer is the 

perched aquifer th a t occurs wherever an impervious (or relatively impervious) layer
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F i g u r e  1.1. Type of aquifers [9]
Aquifer B

__^  ̂
^ ^ r e ^ - * 4 - < k ) n f i n e d * |* - L e a k y A r t e s i a n  -•|*-Confined —j— Leaky

Flowing
-W£il

Leakoge

V ^ ///A  Impervious stratum  

V///,i'A Semipervious stratum

Perctied
woter

^ ^ z o m e t r l c  surface B 

_ ,^ P je 2omefric surface C

-jL W ater T able

•—- L _ ^  Aquifer A 

B Leakoge ^

Aquifer C (confined)

of limited horizontal area is located between the w ater table of a phreatic aquifer and 

the ground surface. Another groundwater body is then built above this impervious 

layer. Clay or loam lenses in sedimentary deposits have shallow perched aquifers 

above them . Sometimes these aquifers exist only a relatively short tim e as they drain 

to the underlying phreatic aquifer.

1 .1 .2 . T h e  p o ro u s  m ed iu m . The materials forming an aquifer contain void 

space filled with water and /o r air. The connected interstices can act as elementary 

conduits within the formation, allowing water to flow. These materials can be viewed 

as a porous medium, and the flow in the aquifer can be considered as the flow of 

fluids through a porous medium. Soil, porous or fissured rocks, ceramics, and fibrous 

aggregates are just a few examples of porous materials. All of these m aterials have 

some characteristics in common th a t perm it them  to  be grouped and classified as 

porous media.
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Not all materials containing holes are porous media. For a media to be classified 

as a porous media, some of the holes adjacent should be connected to allow fluid 

moving through it. The following is a descriptive definition of a porous medium 

(Bear, Zaslavskj^, and Irmay [14]):

a) A portion of space occupied by heterogeneous or mutiphase m atter. At least 

one of the phases comprising this m atter is not solid. There may be gaseous 

and /or liquid phases. The solid phase is called the solid matrix. T ha t space 

within the porous medium domain tha t is not part of the solid m atrix  is 

referred to as void space (or pore space).

b) The solid phase should be distributed throughout the porous medium within 

the domain occupied by a porous medium; solid must be present inside each 

representative elementary volume. An essential characteristic of a porous 

medium is th a t the specific surface of the solid m atrix is relatively high. In 

many respects, this characteristic dictates the behavior of fluids in porous 

media. Another basic feature of a porous medium is th a t the various openings 

comprising the void space are relatively narrow.

c) At least some of the pores comprising the void space should be intercon

nected. The interconnected pore space is sometimes term ed the effective 

pore space. As far as flow through porous media is connected, unconnected 

pores may be considered as part of the solid matrix. Certain portions of 

the interconnected pore space may, in fact, also be ineffecive as far as flow 

through the medium is concerned.

1.1.3. C ontinuum  approach to  porous m edia. In an aquifer, water flows 

through the complex network of pores and channels comprising the void space. This 

flow is bounded by the (microscopic) solid-water interface. In principle, the flow of a 

fluid in a porous medium may be treated  a t the microscopic level, a t which we focus 

our attention on what happens a t a point within the fluid, regarded as a continuum 

(i.e., overlooking its molecular structure). However, complexity of the pore space will
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usually make this treatm ent impossible. Moreover, even if we can solve for the values 

of state variables, e.g., pressure, at the microscopic level, we could not verify these 

solutions by measurements at this level.

To circumvent these difficulties, another level of description is needed. This is the 

macroscopic levels at which quantities can be measured and boundary-value problems 

can be solved. To obtain the description of the flow at this level, we adopt the 

continuum approach. This is the same approach th a t is also used in order to pass 

from the molecular level of description to the microscopic one, at which each phase 

is regarded as a continuum. According to this approach, the real porous medium, 

in which each phase (solid or fluid) occupies only a portion of the AEV (Arbitrary 

Elementary Volume), is replaced by a fictitious model in which each phase is regarded 

as a continuum th a t fills up the entire AEV. We thus obtain within every AEV a set of 

overlapping and, possibly, interacting, continua. For each of these continua, average 

values, referred to as macroscopic values, can be taken over the AEV and assigned to 

its centroid, regardless of whether the la tter falls within the solid or within one of the 

fluids th a t occupy the void space. By traversing the entire porous medium domain 

with a moving AEV, we obtain fields of macroscopic variables, which are differentiable 

functions of the space coordinates.

The main drawback of the use of an AEV is th a t every averaged value must be 

accompanied by a label th a t specifies the volume over which this average was taken. 

To circumvent this difficulty, we need a universal procedure th a t a) is applicable to 

all porous media and b) will ensure th a t the averaged values will remain, more or less, 

constant, at least for a certain range of averaging volumes, th a t corresponds to the 

range of variations in instrum ent sizes. This universal averaging volum e is referred 

to as the representative elementary volume (REV).

The size of the REV is selected such tha t the averaged values of all geometrical 

characteristics of the m icrostructure of the void space be a single valued function of 

the location of th a t point only, independent of the size of the REV.
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F ig u re  1.2. Definition of porosity and representative elementary vol
ume. [13]

Domain of i Domain of Domain of (possible)
■•microscopical-̂ — porous - macroscopic inhomogeneity

Inhomogeneous 
medium

n

0

medium

Range I 
for U o  '

U m in  U m a x

Volume, U

Homogeneous 
^  medium

To illustrate the determ ination of the size of an REV for a given porous medium 

domain, D,  consider, as an example of a geometrical characteristic of the void space 

configuration, the ratio Uv{xo)/U{xq), where U{xo) is a volume of a sphere centered 

a t an arbitrary  point xq within D, and Uy{xo) is the volume of void space within 

U{xq). Figure 1.2 shows the variations of the ratio Uy{xo)/U{xo) as U increases. For 

very small values of U, this ratio is one or zero, depending on whether xq happens to 

fall in the void space or in the solid m atrix. As U increases, we note large fluctuations 

in this ratio due to the random distribution of void and solid within U. However, as 

U is further increased, these fluctuations gradually decay until above some volume 

U — Vmin they reduce to some small value. If U is further increased beyond some U = 

Vmax, we may observe a trend in the considered ratio, due to a systematic variation 

in the la tter, resulting from macroscopic heterogeneity of the porous medium. The 

size, [7o, of the REV th a t will make the considered ratio  independent of the selected 

volume, albeit possibly dependent on x, should be in the range Umin < Uo < Um&x- 

For such a volume, the ratio Uq̂ /Uo represents the medium porosity, n, at Xq.

Once Uo has been determined, it is used to derive the macroscopic (continuum) 

description of the flow by averaging the microscopic one over it. Obviously, the 

selected size of Uo must be uniform over the entire porous medium domain. The
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macroscopic model obtained in this way describes the flow in terms of macroscopic 

or averaged quantities defined by

(1-1) ^ J x , t )  = ~ f  a j x ' , f , x ) d U „ ( x ' )
Uoa JUocix)

where Ga is the state variable of the a-phase (such tha t its volumetric average is 

physically meaningful), Uoa is the volume of the a-phase within Uo, and x' is a 

point in the REV centered at x. From the discussion presented, we are assured th a t 

the macroscopic geometrical characteristics th a t appear in the macroscopic model 

represent properties of porous medium at x. The average of Ga, as defined by

(1.1), is called an intrinsic phase average.

Another type of average, called a phase average, defined by

(1.2) Ga{x,t)  = [  Ga{x' ,t;x)dUc{x')
^0 JUocix)

is also often used. The two types of averages are related to each other by

(1.3) Ga -  0aGa,

where 0a is the volumetric fraction of the a —phase.

If a volume Uq cannot be found for a given porous medium domain, the la tte r 

cannot be treated as a continuum. In an analogous way, a representative elementary 

area (REA) should also be selected for the porous medium domain, to be used for 

averaging quantities for which only areal averages are meaningful. Throughout this 

dissertation, it is assumed th a t the porous medium can be considered as a continuum.

1.1.4, Iso tro p ic  a n d  a n iso tro p ic  m e d iu m . A medium is said to be homoge

neous w ith respect to a certain property if th a t property is independent of position 

within the  medium. Otherwise the medium is said to be heterogeneous. For example, 

if the porosity of a certain material is constant, then it is a homogeneous property; 

otherwise it is heterogeneous. In the real world, most of the properties are heteroge

neous.
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A medium is said to be isotropic with respect to a certain property if th a t property 

is independent of direction within the medium. If a t a point within the medium 

a property of the medium, e.g., permeability or therm al conductivity, varies with 

direction, the medium is said to be anisotropic (or aleotropic) a t the considered point 

with respect to tha t property. In natural materials, anisotropy is encountered in soils 

and in geological formations th a t serve as reservoirs or aquifers. In most stratified 

materials the resistance to the flow is smaller (i.e., permeability is greater) along the 

planes of deposition than across them. Piersol et al. [80] mention ratios of horizontal 

to vertical permeabilities of sandstone of 1.5 : 3.. Muskat [71, page 111] lists 65 

pairs of sand samples, more than two-thirds of which had a larger permeability in the 

direction parallel to the bedding plane than normal to it. The quotient of the two 

values ranged from 1 to 42.

Stratified soils are usually anisotropic. The stratification may result from the 

shape of the particles. For example, plate-shaped particles (e.g., mica) will gener

ally be oriented with the flat side down. Both sedim entation and the pressure of 

overlaying material cause flat particles to be oriented with their longest dimensions 

parallel to the plane on which they settle. This later produces flow channels parallel 

to the bedding plane, difi'ering from those oriented normal to  this plane, and the 

medium becomes anisotropic. A lternating layers of different texture also give rise to 

anisotropy. However, in order for a stratified formation of this kind to be qualified 

as an anisotropic homogeneous medium, the thickness of the individual layers should 

be much smaller than  the lengths of interest. There is no use in attem pting to  deter

mine the permeability of such a formation from a core whose size is smaller than  the 

thickness of the single stratum . In many aquifers, fractures produce very high perm e

ability in the direction along the fracture, whereas the permeability of the rock in the 

direction normal to the fractures is much smaller. In carbonate rocks, dissolving of 

the rock takes place by means of the flowing water. This produces solution channels 

th a t develop mainly in the direction of the flow; the rock becomes anisotropic, with
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a very high permeability in the general direction of these channels. In many soils 

(e.g., loess), vertical joints, root holes, and animal burrows give rise to anisotropy in 

permeability, with vertical permeability being greater than horizontal. In some soils, 

structural fissures may develop more readily in some directions than in others, and 

the soil will exhibit anisotropy.

1.1.5. T h e  p ie z o m e tr ic  h ead . Flow occurs from a place of higher energy to one 

of lower energy. In groundwater flow, potential is a concept describing this energy. 

The total potential is an algebraic summation of various specific potentials acting on 

the groundwater flow.

There are many alternate ways of defining a potential function. The ultim ate 

choice depends upon convenience and suitability for the range of problems w ith which 

one is concerned. For subsurface water, potential may be defined in such a way th a t its 

gradient is proportional to the water-moving forces. Furthermore, because potential 

is defined relative to an arbitrary datum , one is concerned only w ith differences of 

potential between specified points.

Bolt and Miller [16] define total potential of soil moisture in a fashion th a t is 

extended readily to include groundwater. They define to tal potential as the minimum 

energy per gram of water which must expended in order to transport an infinitesimal 

test body of water from a specific reference state to any point within the liquid phase 

of a soil-water system th a t is in a state of rest. Following Bolt and Miller’s fashion, 

Remson [84] defines the potential in term s of energy per unit weight of water. W ith 

this definition, potential has the dimension of length and is referred to as “head.”

In saturated  subsurface systems, the to ta l potential is the algebraic summation of 

the component potentials of the gravitational potential and the hydrostatic pressure 

potential below the water table [84]:
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where

=  p / t ,

here 2 is the height of the water above the reference datum , p is the pressure, and 

j  — pg is the specific weight of water (p =  density, g = acceleration of gravity).

For a homogeneous compressible fluid (i.e., no dissolved components) under isother

mal conditions, Hubbert presented a particularly clear derivation of potential defined 

on a work-per-unit-mass basis for saturated  subsurface systems [45]. Under this fash

ion, we have th a t the potential, (p*, at point p (the velocity of which is usually small 

and is neglected) is

(1.4) r = 9 2  +  r ~
jpo pip)

where p  is the pressure. This expression is known as H ubbert’s “force potential.” If 

we set (j) =  (f)*/g, (1.4) gives the form

When p is constant and po is chosen to be 0, (1.5) reduces to

(1.6) ( p ^ z + p / j ,

where 7  =  pp is the  specific weight of water.

We call (j) the piezometric head. The gradient V p  is called the hydraulic gradient; 

it is proportional to the water-moving forces.

1.2. T he equation  o f  groundw ater m otion

In almost every field of science and engineering the techniques of analysis are 

based on an understanding of the physical processes, and in most cases it is possible 

to describe these processes mathematically. Groundwater flow is no exception.
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1.2.1. D a rc y ’s law  a n d  its  e x ten s io n s . Groundwater moves from levels of 

higher energy to levels of lower energy, whereby its energy is essentially the result 

of elevation and pressure. Kinetic energy, proportional to the square of the veloc

ity, is neglected because groundwater velocities are very small, at least in laminar 

flow. While flowing, groundwater experiences a loss in energy due to friction against 

the walls of the granular medium along its seepage path. This loss per unit length 

of distance traveled, or hydraulic gradient, is simply proportional to the velocity of 

groundwater for laminar flow in sandy aquifers or seepage through earth  embank

ments. When the proportionality of hydraulic gradient and groundwater velocity is 

expressed by a m athem atical equation, a linear law of flow, called D arcy’s law, arises.

F ig u r e  1.3. D arcy’s experiment. [9]

SCREEN

:§ANP

SCREEN

'̂ TTTTTTTTTTTTTTTTT?

In 1856, Henry Darcy investigated the flow of water in vertical homogeneous sand 

filters in connection w ith the fountains of the city of Dijon, France. Figure 1.3 shows 

the experimental set-up he employed (Darcy [28]). From his experiments, Darcy
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concluded th a t the flow rate Q equals;

Q = K A { h  -  h2)/L,

where hi -  Ii2  is the energy loss, and L  is the length of the flow path. A  is the cross- 

sectional area filled with sand, and K  is a coefficient, called the hydraulic conductivity.

One can easily extend Darcy’s law to flow through an inclined homogeneous porous 

medium column (Figure 1.4). W ith the nomenclature of this figure, Darcy’s law takes 

the form

Q = KA{<^i -  h ) ! L ,  

where <j) is the piezometric head defined by

(f) = z + p /7 ,

where z is the elevation of the point, p is the pressure, and 7  is the volumetric weight 

of the water. The piezometric head expresses the sum of the potential energy and 

pressure energy, per unit weight of water.

F ig u re  1.4. Flow through an inclined sand column. [13]

A rea^
Datum level
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The energy loss Acj) =  c/'i — ^2 is due to friction in the flow through the narrow 

tortuous paths of the porous medium. In Darcy’s law, the kinetic energy of the water 

has been neglected as, in general, changes in the piezometric head along the flow path 

are much larger than changes in the kinetic energy. Inertial effects have also been 

neglected.

W ith the above definition of piezometric head, the quotient ((̂ 1 — (t>2 ) / L  is the 

hydraulic gradient (dimensionless). Denoting this gradient by J  and defining the 

specific discharge, q, as the volume of water flowing per unit time through a unit 

cross-sectional area normal to the direction of flow, we obtain

q =  KJ.

Let us consider a point along the column’s axis and a segment of the column of length 

s along the column’s axis on both sides of the point. For this case

^  -  (p \ s+ (A s /2 )

A s  '

where the subscript in qs  indicates th a t the flow is in the s-direction. In the limit, as 

As —>• 0 , converging on the point, we obtain

^  <l>\s-{As/2)  -  <t>\s+{As/2) _  _ ^

As->o A s ds ’

and (1.7) reduces to

(1.8) =  - K ^ ^ .

The experimentally derived form of D arcy’s law (for a homogeneous incompressible 

fluid) was limited to one-dimensional flow. When the flow is three-dimensional, the 

obvious formal generalization of Darcy’s law, is

q =

where q is the specific discharge with components q ^ ,  q y ,  and q̂  in the directions of 

the Cartesian x, y, z  coordinates, respectively, and Vfi = ( | | ,  |^ ,  |^ ) .  When the flow 

takes place through a homogeneous isotropic medium, the coefficient K  — K I ,  i.e.,
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a scalar times the identity matrix; otherwise, it is a symmetric positive definite 3 x 3  

matrix for the three-dimensional case, or 2 x 2 m atrix for the two-dimensional case.

The coefficient K  is called the hydraulic conductivity. The hydraulic conductiv

ity indicates the ability of the aquifer material to conduct water through it under 

hydraulic gradients. It is a combined property of the porous medium and the fluid 

flowing through it. When the flow in the aquifer is essentially horizontal, the aquifer 

transmissivity indicates the ability of the aquifer to transm it water through its entire 

thickness. It is the product of the hydraulic conductivity and the thickness of the 

aquifer.

As the specific discharge increases, Darcy’s law, which specifies a linear relation

ship between the specific discharge, g, and the hydraulic gradient, V f ,  has been shown 

by many investigators to be invalid. A definition of a range of validity of Darcy’s law 

seems, therefore, appropriate.

In flow through conduits, the Reynolds number (Re), a dimensionless number 

expressing the ratio of inertial to viscous forces, is used as a criterion to distinguish 

between laminar flow occurring a t low velocities and turbulent flow. The critical Re 

between laminar and turbulent flow in pipes is around 2100. By analogy, a Reynolds 

number is defined also for flow through porous media:

V

where d is some length dimension of the porous matrix, and v is.the kinematic viscosity 

of the fluid. Although, by analogy to the Reynolds number for pipes, d should be a 

length dimension representing the elementary channels of the porous medium, it is 

customary (probably because of the relative ease of determining it) to  employ some 

representative dimension of the grains for d (in an unconsolidated porous medium). 

Often the mean grain diam eter is taken as the length dimension, d. Sometimes dio is 

used, i.e., the grain size th a t exceeds the size of 10% of the m aterial by weight. The 

term d^o is also mentioned in the literature as a representative grain diameter.
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In practically all cases, Darcy’s law is valid as long as the Reynolds number based 

on average grain diameter does not exceed some value between 1 and 10.

F ig u re  1.5. Approximations of phreatic surface and capillary fringe. [13]

I

Observation
well

i
-P =  ld 2

Relatively high 
ground surface

Assumed 
top of 

capillary 
fringe \ __

Moisture distributions 
in soil:

actual

approximate.

T :  ^P h re

 f--T

Phreatic surface

Water table

Capillary
fringe

0.5
Degree o f saturation, 5’„,

Pressure distribution

1 .2 .2 . D u p u it  a s su m p tio n . As defined in Section 1.1.1, a phreatic aquifer is 

one in which a water table (or a phreatic surface) serves as its upper boundary. Above 

the phreatic surface, which is an imaginary surface, a t all points of which the pressure 

is atmospheric, moisture does occupy a t least part of the pore space. The capillary 

fringe was introduced as an approximation of the actual distribution of moisture in 

the soil above a phreatic surface.

Figure 1.5 shows how the actual moisture distribution is approximated by a step 

distribution, assuming th a t no moisture is present in the soil above a certain level. 

This step defines the height, he, of the capillary fringe. Obviously, this approximation 

is justified only when the thickness of the capillary fringe thus defined is much smaller 

than the distance from the phreatic surface to the ground surface. In the capillary
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fringe (as in the entire aerated zone above the phreatic surface), pressures are negative; 

therefore, they cannot be monitored by observation wells which serve as piezometers. 

A special device, called a tensiometer, is needed in order to measure the negative 

pressures in the aerated zone (Figure 1.6b). W ater levels in observation wells th a t 

terminate below the phreatic surface give elevation of points on the phreatic surface. 

Using a sufficient number of such points, we can draw contours of this surface.

Thus, the capillary fringe approximation means th a t we assume a saturated zone 

up to an elevation he above the phreatic surface, and no moisture a t all above it. In 

this case, the upper surface of the capillary fringe may be taken as the groundwater 

table, as the soil is assumed saturated below it. However, when he is much smaller 

than the thickness of an aquifer below the phreatic surface, and this is indeed the 

situation encountered in most aquifers, the hydrologist often neglects the capillary 

fringe. He then assumes th a t the (phreatic) aquifer is bounded from above by a 

phreatic surface. This is also the assumption below.

An estim ate of he, can be obtained, for example, from [67]

(1.9) A ,=  ^ ( i l U i ) 3 / 2
dff n

where he is in inches, and dn  is the mean grain diameter, also in inches, and n  is 

porosity. Another expression is suggested by Polubarinova-Kochina [81]:

I, 0-451 -  n(1.10) ^c = -;------------,
dio n

where both he and the effective particle diameter are in centimeters. Silin-Bekchurin 

[94] suggested a capillary rise of 2 — 5 cm in coarse sand, 12 — 35 cm in sand, 35 — 70 

cm in fine sand, 70 — 150 cm in silt, and 2 — 4 m and more in clay. Equations (1.9) 

and (1.10) can be compared with the relationship h =  2ajr ,  which expresses the rise 

of water in a capillary tube of radius r; a is the surface tension of the water.

Both 4> and q vary from point to point within a phreatic aquifer. In order to  obtain 

the specific discharge q =  q{x, y, z, t) a t every point, we have to know the piezometric 

head 0 =  cj){x,y,z,t) by solving the flow model in a three-dimensional space. An
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additional difficulty stems from the fact th a t the location of the phreatic surface, 

which serves as a boundary to the three-dimensional flow domain in the aquifer, is a 

priori unknown. In fact its location is p art of the sought solution. Once we solve for 

(j) =  (j)[x, y, z, t) within the flow domain, we use the fact th a t on the phreatic surface, 

the pressure is zero to obtain (f){x,y,z,t) =  2: on the phreatic surface. Hence, the 

equation th a t describes the phreatic surface is

F{x, y, 2 , t) = (f){x, y , z , t ) -  z = 0.

F ig u re  1.6. The D upuit assumption. [13] 

Phreatic surface

Observation well

dz = dh
ds

h(x)
Equipotential

X T r777777^n^^7T ^,

(a) (b)

From the above considerations it follows th a t this procedure is not a practical one 

for solving common problems of flow in phreatic aquifers.

In view of this inherent difficulty, D upuit [33] observed th a t in most groundwater 

flows, the slope of the phreatic surface is very small. Slopes of 1/1000 and 10/1000 

are com m only encountered. In steady flow w ithout accretion in the vertical two- 

dimensional xz-plane (Figure 1.6a), the phreatic surface is a streamline. At every 

point, P , along this streamline, the specific discharge is in a direction tangent to the 

streamline and is given by Darcy’s law

(1 .12) qs =  - K ^  =  =  - K s m e ,
^  ds ds
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since along the phreatic surface p = 0 and (j) — z. As 9 is very small, Dupuit

suggested th a t s in 6> be replaced by the slope tan 0  =  The assumption of small 9 

is equivalent to assuming th a t equipotential surfaces are vertical (i.e., (f) = 4>{x) rather 

than (f) =  (p{x, z)) and the flow is essentially horizontal. Thus, the Dupuit assumption 

leads to the specific discharge expressed by

(1.13) = h ^ h { x ) .
ax

In general, h =  h{x, y) and we have

T^dh dh

Since q is thus independent of elevation, the corresponding to tal discharge through 

a vertical surface of width W  (normal to the direction of flow; Figure 1.6b) is

(1.15) Q, = - K W h ^ ,  Q y ^ - K W h ^ ,  h ^ h { x , y ) ,  

or, in the compact vector form

(1.16) Q  =  - K W h V h .

Per unit width, we obtain

(1.17) Q' = Q / W  =  - K h V h .

In (1.15) through (1.17), the aquifer’s bottom  is horizontal, it should be empha

sized th a t the Dupuit assumption may be considered as a good approximation in 

regions where 9 is indeed small and /o r the flow is essentially horizontal. We note 

th a t the assumption of horizontal flow is equivalent to the assumption of hydrostatic 

pressure distribution d p /d z  =  —pg.

The im portant advantage gained by employing the Dupuit assumption is th a t 

the state  variable cf) =  cj){x,y,z) has been replaced by h =  h{x,y) ,  i.e., z no longer 

appears as an independent variable. In addition, since at a point on the free surface, 

p =  0 and (j) = h, we assume th a t the vertical line through the point is also an 

equipotential line on which (j) h =const. In general, h varies also w ith time so th a t
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h =  h{x,y , t) .  In this way, the complexity of the problem has been greatly reduced. 

It is two-dimensional rather than three-dimensional, and the unknown location of the 

phreatic surface is no longer an extra complication.

The Dupuit assumption presented above is probably the most powerful tool for 

treating unconfined flows. In fact, it is the only simple tool available to most engineers 

and hydrologists for solving such problems.

F ig u r e  1.7. Regions where Dupuit assumption is not valid. [13]

Vertical flow; horizontal water table

r n  I

Not valid

Vertical
flow

Not valid

N t 1

Seepage face

Eqtiipotential

The D upuit assumption should not be applied in regions where the vertical flow 

component is not negligible. Such flow conditions occur as a seepage face is ap

proached (Figure 1.7c) or a t a crest {water divide) in a phreatic aquifer with accre

tion (Figure 1.7b). Another example is the region close to  the impervious vertical
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boundary of Figure 1.7a. It is obvious th a t the assumption of vertical equipotentials 

fails at, and in the vicinity of, such a boundary. Only a t a distance x  have we

equipotentials th a t may be approximated as vertical lines, or surfaces. It is im portant 

to note here th a t in cases with accretion, a horizontal (or almost so) water table is 

not sufficient to justify the application of the Dupuit assumption. One must verify 

th a t vertical flow components may indeed be neglected, before applying the Dupuit 

assumption.

1.2.3. E q u a tio n  of c o n tin u ity . The equation of continuity is a statem ent of 

the law of conservation of m atter. When applicable, it states th a t mass can be neither 

created nor destroyed. It can be derived from the fact th a t the change in mass stored 

in a small, elemental, rectangular parallel-piped equals the difference between the 

mass entering and the mass leaving.

Consider a control box having the shape of a rectangular parallel-piped of dimen

sions dx,dy,dz  centered at some point P{x, y, z) inside the flow domain in an aquifer. 

A control box may be any arbitrary shape, but once its shape and position in space 

have been fixed, they remain unchanged during the flow, although the amount and 

identity of the material in it may change with time. In the present analysis, water 

and solids enter and leave the box through its surfaces. Our objective here is to write 

a balance equation for the mass of water entering, leaving, and being stored in the 

box. Let the vector J  =  pq denote the mass flux (i.e., mass per unit area per unit 

time) of water of density p at point P { x ,y , z ) .  It is easy to see th a t q  is the specific 

discharge in the Darcy’s law. Referring to Figure 1.8, the excess of inflow over outflow 

of mass during a short time interval dt, through the surfaces which are perpendicular 

to the X ,  y and 2: direction, can be expressed by the differences

d t { ^ J x \ x —d x / 2 , y , z  J x \ x + d x l 2 , y , z \ d y d z ^  

d t { ^ J y \ x ^ y —d y j 2 , z  J y \ x , y - \ - d y j 2 , z } d z d x ,  

d t { J z \ x , y , z —d z ! 2  J z \ x , y , z + d z ! 2^ d x d y .
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F ig u r e  1 .8 . N o m e n c la tu re  fo r m ass  co n se rv a tio n  for a  c o n tro l v o lu m e . [13]

J.

J*

The sum of the three expressions, for all three directions, is the to ta l excess of mass 

inflow over outflow during dt. So the excess of inflow over outflow per unit volume of 

medium (around P)  and per unit time is

dJ^ , dJy , dJ ,

On the other hand,

lim
—̂0

{np)\t+At -  {np)\t d{np)
A t dt

is the rate of change of the mass of the fluid per unit volume of porous medium where 

n is the porosity. So we get the fundamental balance equation

(1 .18) -V  ■ p q
dt
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W ith some assumptions about the fluid flow [13], can be expressed as p 5 o ||  

where So is called the specific storativity and is defined by

(1.19) ■ So = pg{a + nfi),

where p is the density, g is the acceleration of gravity, n  is the porosity of the porous 

medium, and /?' and a  are derivatives of p and n  with respect to the pressure p 

respectively. The specific storativity indicates the ability for the medium to hold the 

fluid. Substituting it into the balance equation, we get

(1.20) -SJ  ■ pqV(j) = p S o ^ .

If p is constant we have

( 1 .2 1 ) =

1.2.4. T he flow equations. The balance equations, (1.18), (1.20), and (1.21) 

in section 1.2.3, do not include the recharge. If the distributed rates of artificial 

recharge, R{x ,t ) ,  and the pumping, P{x , t ) ,  are added, the balance equation can be 

modified to

(1.22) S o ^ ^ - V - q  + R - P .

Applying Darcy’s law q = —K V f i ,  we get the flow equation in a confined aquifer

(1.23) S o ^  = V ■ KV(j) + R -  P.
ot

We can also deduce the flow equation in an unconfined aquifer by applying the 

D upuit assumption q =  —K h V h :

(1.24) Sq^ ^ V  - K h V h p R - P .
at

The equations above are three-dimensional. We can also get the two-dimensional 

equations by integrating the above equations over the z direction (see [13]). For
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example, the two-dimensional flow equation for a confined aquifer is:

(1.25) ^  

where

(1.26) S { x , y ) =  [  So{x ,y ,z )dz
Jbi

is the aquifer storativity,

(1.27) T { x , y ) =  [  K { x , y , z ) d z
Jbi

is the aquifer transmissivity,

pb2
R*{x,y , t)  =  /  R { x ,y , z , t ) d z ,

Jbi
pb2

P*{x ,y , t )  =  / P { x ,y , z , t ) d z ,
Jbi

are the source/sink terms and q.u2 , qvi denote the leakage rates of the upper and lower 

aquifers. Here and bi denote the elevations of the aquifer’s top and bottom . For a 

confined aquifer w ithout leakage, q^i and g„2 will be zero. For an unconfined aquifer, 

the term  V h in the above equation will be replaced by hWh.

Note th a t the only term  of the param eters th a t is dependent on the time in the 

flow equations is the source term R  — P,  and we usually denote it by one symbol R.

1.3. H ydrodyn am ic d ispersion

One m ajor problem, of interest in the development and management of any water 

resources system, is water quality. W ith the increased demand for water, the quality 

problem becomes the limiting factor in  the use and development of water resources. 

Although it may seem th a t groundwater is more protected than surface water, it 

is still subject to pollution, and when this occurs, the restoration to the original, 

nonpolluted state  is usually more difficult and lengthy.
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We consider the mass of some substance contained in the groundwater as the 

transport mass tha t moves with the water in the interstices of a porous medium. 

The mechanisms affecting the transport of a pollutant in a porous medium are as 

follows: advective, dispersive, and diffusive fluxes; solid-solute interactions; and vari

ous chemical reactions and decay phenomena, which may be regarded as source-sink 

phenomena for the solute.

Consider saturated flow through a porous medium and let a portion of the flow 

domain contain a certain mass of solute. This solute will be referred to as a tracer. The 

tracer, which is a labeled portion of the same liquid, may be identified by its density, 

color, electrical conductivity, etc. Experience shows that, as flow takes place, the 

tracer gradually spreads and occupies an ever-increasing portion of the flow domain, 

beyond the region it is expected to occupy according to the average flow alone. This 

spreading phenomenon is called hydrodynamic 'dispersion in a porous medium. It is a 

nonsteady, irreversible process (in the sense th a t the initial tracer distribution cannot 

be obtained by reversing the flow), in which the tracer mass mixes with the unlabeled 

portion of the liquid. If initially the tracer-labeled liquid occupies a separate region, 

this interface does not remain an abrupt one. Instead, an ever-widening transition 

zone is created, across which the tracer concentration varies from th a t of the tracer 

liquid to  th a t of the unmarked liquid.

One of the earliest observations of this phenomenon is reported by Slichter [95], 

who used an electrolyte as a tracer in studying the movement of groundwater. Slichter 

observed th a t at an observation well downstream of a (continuous) injection point, 

the tracer’s concentration increases gradually, and th a t even in a uniform (average) 

flow field, the tracer advances in the direction of the flow in a pear-like shape th a t 

becomes longer and wider as it advances.

The dispersion phenomenon may also be dem onstrated by a simple laboratory 

experiment. Consider steady flow in a cylindrical column of homogeneous sand, sat

urated with water. At a certain instant, t  =  0, tracer-marked water (e.g., water
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with NaCl at a low concentration, so th a t the effect of density variations on the flow 

pattern is negligible) starts to displace the original unlabeled water in the column. 

Let the tracer concentration, C — C{t), he measured at the end of the column and 

presented in a graphic form, called a breakthrough curve, as a relationship between 

the relative tracer concentration and time, or volume of effluent, U.

F ig u r e  1.9. Breakthrough curve in one-dimensional flow in a sand 
column. 113]

actual (with dispersion)C 0.5 without dispersion

In the absence of dispersion, the breakthrough curve should have taken the form 

of the broken line shown in Figure 1.9, where Uq is the pore volume of the column 

and Q is the constant discharge. Actually, owing to hydrodynamic dispersion, it will 

take the form of the S-shaped curve shown in full line in Figure 1.9.

We cannot explain all of the above observations on the basis of the average wa

ter flow. We must refer to what happens at the microscopic level, i.e., inside the 

pore cross-section. We usually assume zero fluid velocity on the solid surface, with a 

maximum velocity a t some internal point (compare with the parabolic velocity dis

tribution in a straight capillary tube). The maximum velocity itself varies according 

to  the size of the pore. Because of the shape of the interconnected pore space, the 

(microscopic) streamlines fluctuate in space with respect to the mean direction of flow 

(Figure 1.10). This phenomenon causes the spreading of any initially close group of 

tracer particles; as flow continues, they occupy an ever increasing volume of the flow 

domain. The two basic factors th a t produce this kind of spreading are, therefore, flow 

and the presence of a pore system through which flow takes place.

Although this spreading is in both the longitudinal direction, namely th a t of the 

average flow, and in the direction transversal to the average flow, it is primarily in
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the former direction. Very little spreading can be caused in a direction perpendic

ular to the average flow by velocity variations alone. Such velocity variations alone 

also cannot explain the ever-growing width of the zone occupied by dispersed tracer 

particles normal to the direction of flow. In order to explain this spreading, we have 

to refer to molecular diffusion^ an additional phenomenon th a t take place in the void 

space.

F ig u r e  1.10. Spreading due to mechanical dispersion (a,b) and molec
ular diffusion(c). [13]

(a)

Direction of average 
flow

y///////.

Velocity
distribution

i
(b) (c)

Molecular diffusion, caused by the random movement of molecules in a fluid, 

produces an additional flux of tracer particles (at the microscopic level) from regions 

of higher tracer concentrations to those of lower ones. This means, for example, 

th a t as the marked particles spread along each microscopic stream tube, as a result 

of velocity variations, a concentration gradient of these particles is produced, which 

in tu rn  produces a flux of tracer by the mechanism of molecular diffusion. The la tter 

phenomenon tends to equalize the concentrations along the steamtube. Relatively, 

this is a minor effect. However, at the same time, a tracer concentration gradient will 

also be produced between adjacent streamlines, causing lateral molecular diffusion 

across streamtubes (Figure 1.10c), tending to equalize the concentration across pores. 

It is this phenomenon th a t explains the observed transversal dispersion.

In addition to  the role played at the microscopic level by molecular diffusion in en

hancing the transversal component of mechanical dispersion, it produces macroscopic
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flux of its own. This is easily dem onstrated by letting the velocity vanish. Then the 

tracer is transported by (macroscopic) molecular diffusion only.

We shall refer to the spreading caused by the velocity variations at the microscopic 

level, enhanced by molecular diffusion, as mechanical dispersion.

We use the term hydrodynamic dispersion to denote the spreading (at microscopic 

level) resulting from both mechanical dispersion and molecular diffusion. Actually, 

the separation between the two processes is rather artificial, as they are inseparable. 

However, molecular diffusion alone does also takes place in the absence of motion 

(both in a porous medium and in a fluid continuum). Because molecular diffusion 

depends on time, its effect on the overall dispersion is more significant at low velocities. 

It is molecular diffusion th a t makes the phenomenon of hydrodynamic dispersion in 

purely laminar flow irreversible.

In addition to inhomogeneity on a microscopic scale (i.e., presence of pores and 

grains), we may also have inhomogeneity on a macroscopic scale, due to variations in 

permeability from one portion of the flow domain to the next. This inhomogeneity 

also produces dispersion of marked particles, but on a much larger scale.

Dispersion may take place both in a laminar flow regime, where the liquid moves 

along definite paths th a t may be averaged to yield streamlines, and in a turbulent 

regime, where the turbulence may cause yet an additional mixing. In what follows, 

we shall focus our attention only on flow of the first type.

In addition to advection (at average velocity), mechanical dispersion, and molec

ular diffusion, several other phenomena may affect the concentration distribution of a 

tracer as it moves through a porous medium. The tracer (say, a solute) may interact 

w ith the solid surface of the porous m atrix in the form of absorption of tracer par

ticles on the solid surface, deposition, solution of the solid m atrix, or ion exchange. 

All these phenomena cause changes in the concentration of a tracer in a flowing liq

uid. Radioactive decay and chemical reactions within the liquid also cause tracer 

concentration changes.
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In general, variations in tracer concentration cause changes in the liquid’s density 

and viscosity. These, in turn, affect the flow regime (i.e., velocity distribution) th a t 

depends on these properties. We use the term  ideal tracer when the concentration 

of the latter does not affect the liquid’s density and viscosity. At relatively low 

concentrations, the ideal tracer approximation is sufficient for most practical purposes. 

However, in certain cases, for example in the problem of sea water intrusion, the 

density may vary appreciably, and the ideal tracer approximation should not be used.

1.3.1. A d v ec tiv e , d isp e rs iv e , a n d  diflfusive fluxes. As explained above, at 

every (microscopic) point within a porous medium domain, we have a velocity V  

and a concentration, c, of some considered substance; c expresses the mass of the 

substance per unit volume of the liquid. Figure 1.11 shows a point x'  belonging to an 

REV centered at point x :  The product c V  at x'  denotes the local flux (=  quantity 

of the considered substance per unit area of liquid) vector at th a t point. However, 

we already know th a t we cannot predict values of V  and c a t this microscopic level, 

and tha t, instead, we should aim at predicting the average concentration, c, and the 

average tracer flux, cV , a t the macroscopic level. To achieve this goal, w ithout going

F ig u r e  1 .1 1 .  N o m e n c la tu re  fo r th e  d isp e rs iv e  flux. [13]

Rev

SoUd

into the details of the continuum approach to transport in porous media, let the 

liquid’s velocity at an arbitrary  point, x', w ithin the liquid tha t completely occupies
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the pore space, be denoted by V{x ' , t ] x ) .  The symbol x  in this parenthesis indicates 

th a t point x' belongs to an REV centered at x (Figure 1.11). The velocity, V ,  can be 

decomposed into two parts: the average velocity, V , of the liquid within the REV, 

and a deviation, V°,  from th a t average. Thus

(1.28) V{x ' ,  t]x) — V {x ,  t) +  V ° { x ' , t] x),

(1.29) c{x', t, x) — c{x, t) -f c°(x', t\ x).

In both cases, the average has the meaning of an intrinsic phase average as defined 

by (1.1).

To obtain the average flux, we write

(1.30) cV  =  (c +  c°){V  -t- V °)  =  c F  +  c y °  +  c°V  + c°V°.

However, in view of (1.1), c°V  = 0 and c V  =  0. Hence

(1.31) c V  = c V  + c°V°,

i.e., the average flux of the considered substance is equal to the sum of two macroscopic 

fluxes:

a) An advective flux, c V ,  expressing the flux carried by the water a t the la tte r’s 

average velocity, V ,  as determined by D arcy’s law.

b) A flux c°V° = cV °  expressing an additional flux resulting from the fluctu

ating velocity in the vicinity (i.e., within the REV) of the considered point. 

Recalling the discussion in the previous section, this is the flux th a t pro

duces the spreading, or dispersion. We refer to it as the dispersive flux. It is 

a macroscopic flux th a t expresses the effect of the microscopic variations of 

the velocity in the vicinity of a considered point. We note th a t this flux is 

created by the averaging procedure. It does not exist at the microscopic level. 

In employing this flux, we are losing the information about the behavior at 

the microscopic level (which we do not have anyway).
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1.3.2. M ech an ica l d isp e rs io n . Our next objective is to express the dispersive 

flux in terms of averaged (and measurable) quantities, such as averaged velocity and 

averaged concentration. Investigations over a period of about two decades, starting 

from the mid-50s (see review, for example, in Bear, [9]), have led to the working 

assumption th a t the dispersive flux can be expressed as a Fickian type law; i.e., in 

the form

dc
(1.32) c°V “ =  - D - V c ;  = - D i j

where D  is a second rank symmetric tensor called the coefficient of (mechanical) 

dispersion. We recall tha t c denotes the mass of the dispersing substance per unit

volume of water, and c°V°  represents a flux per unit area of the water. Equation

(1.32) indicates th a t the dispersive flux is linearly proportional to the gradient of the 

average concentration and th a t this flux takes place from high concentrations to  lower 

ones.

Several authors (e.g., Nikolaevskii [76], Bear [8], Scheidegger [92], Bear and Bach- 

m at [10]) derived the following expression for the relationship between the coefficient 

D  and microscopic porous m atrix configuration, flow velocity, and molecular diffusion

(1-33) A j  =  Y ,  i) ,
k , m

where V  =  jV] is the average velocity, Pe  is the Peclet number defined as Pe  =  

L V/D d,  L  is some characteristic length of the pores, Dd is the coefficient of molecular 

diffusion of the solute in the liquid phase, (5 is the ratio  of the length characterizing 

the individual pores of a porous medium to  the length characterizing their cross- 

section, and / (P e ,  (i) is a function which introduces the eflFect of tracer transfer by 

molecular diffusion between adjacent streamlines a t the microscopic level. In this 

way, molecular diffusion affects mechanical dispersion. One should not identify this 

effect w ith the macroscopic flux due to molecular diffusion (see below), but with the
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transfer between streamtubes at the microscopic level, as explained in the definition 

of mechanical dispersion in the previous section. Bear and Bachmat [10 ] suggested 

the relationship f {Pe ,5 )  =  P e /{P e  +  2 +  45^). In most cases, it is assumed th a t 

f (P e ,5 )  ss 1. Henceforth, we shall also make this assumption.

The coefficient aijkm, (dims. L), called the dispersivity of the porous medium, is 

a fourth-rank tensor which expresses the microscopic configuration of the solid-liquid 

interface. Bear and Bachmat [10] and Bear [9, page 614] express aijkm by

(1,34)

where B  is the conductance of an elementary medium channel, BTIj is an oriented

conductance of a channel, is the medium’s tortuosity^ nBT^j =  kij is the m edium’s 

permeability, and L is a characteristic length of the medium. Thus, the m edium’s 

dispersivity is related to the variance of {BTk)°,  while its permeability is related to 

the average, BT k ,  of BTk.

A fourth rank tensor has 81 components in a three-dimensional space (and 16 in a 

two-dimensional one). Scheidegger [92] and Bear [9] showed th a t aijkm has a number 

of symmetries th a t reduce the number of nonzero components of the dispersivity 

tensor, in a  three-dimensional space, to only 36.

For an isotropic porous medium, the number of nonzero components is further 

reduced to 21. Furthermore, these 21 components are related to two parameters: 

(dim. L), called the longitudinal dispersivity oi  the isotropic porous medium, and 

(dim. L), called the transversal dispersivity. In the theoretical developments men

tioned above, it is shown th a t expresses the heterogeneity of the porous medium 

at the microscopic scale due to the presence of pores and solids. Hence, in laboratory 

experiments in homogeneous sand columns it was found th a t is of the order of 

magnitude of the average sand grain. The transversal dispersivity is estim ated as 

being 10 to 20 times smaller than th a t of a^.
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W ith o l and ax, the components of the dispersivity for an isotropic porous medium 

can be expressed in the form

(1.35) ^ijkrn ~  (^T^ij^km d ^ d" ^ivn^jk))

where
0 j ,

1 otherwise,

is the Kroenecker delta. For an isotropic porous medium, the components aijkm do 

not change under rotation of the coordinate system.

For an anisotropic porous medium with axial symmetry,  e.g., a medium made up 

of a large number of th in  layers normal to the axis of symmetry, the dispersivity can 

be expressed in the form

^ijkm ~  ^I^ijdkm "b CLll{dik^jm “h dimdjk)

~ho,jji(^5ijhkhm "F dkmhihj^

~ \~ a j y ( ^ S i k h j h m  “b d j k h i h m  “b d i m h j h k  d j m h i h k ' )

~\~ay hi hj hk h<m)

where ai ,au ,an i ,a jv  and ay  are five independent param eters and h is a unit vector 

directed along the axis of symmetry. Similar expressions can be w ritten for other 

types of anisotropy.

By combining (1.33) with (1.35) for / (P e ,  5) =  1, we obtain

(1.36) Dij = axVSij  +  {ai — 0'T)ViVj/V,

where here, and henceforth, we have om itted the overline symbol th a t indicates the 

velocity is an average one.

The permeability, k i j ,  of a porous medium is also a second-rank symmetric tensor. 

However, there is a basic difference between tensors k i j  and D i j .  In an isotropic porous 

medium, any three m utually orthogonal directions in space may serve as principal 

directions. However, due to the effect of the velocity pattern, one of the principal
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F ig u r e  1 .1 2 . Principal axes of the coefhcient of dispersion. [13]

Principal 
norm al (N)

Stream line

B inorm al (B)

X

axes of the dispersion coefficient, Dij, a t a point, is always in the direction of the 

tangent of the streamline passing through th a t point. The other two principal axes 

are in the directions of the two principal normals to this direction. Figure 1.12 shows 

these directions. The unit vectors N ,  T ,  and B  are called the principal normal, the 

tangent, and the binomial to the curve.

Thus, although the porous medium is isotropic, we have a distinct set of principal 

directions at every point of a flow domain. As the velocity varies from point to 

point, so do the principal axes of the dispersion. Furthermore, a t every point, these 

directions may vary continuously as the flow pattern  varies. This dependence of the 

dispersion coefficient on the velocity introduces a m ajor difficulty in the solution of 

pollution problems, especially under unsteady flow conditions and when the velocity 

is density (and hence, concentration) dependent.
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1.3.3. M o lecu la r d iffusion . At the microscopic level, the flux vector, due 

to molecular diffusion is expressed by Pick’s law

(1.37) =  -H dV c,

where is the coefficient of molecular diffusion, in a fluid continuum (equals about 

10“°cm^/sec in dilute systems). By averaging (1.37) over the REV, and introducing 

certain simplifying assumptions, Bear and Bachmat [11, 12] derived an expression 

for the macroscopic flux in the form

(1.38) =  -DdT*  • Vc =  - D *  • Vc,

where =  T*Dd is the coefficient of molecular diffusion in a porous medium and 

T* is a second-rank symmetric tensor th a t expresses the effect of the configuration of 

the water-occupied portion of the REV. We used the averaging symbol in (1.38) in 

order to emphasize the difference between this equation and (1.37).

The coefficient T*, often referred to as a tortuosity, is defined by (Bear and Bach

m at [1 1 , 12])

(1.39) ^  = 7 ^  f  x„j)uidS,
l-̂ Ow JSww

where denotes the water-water portion of the bounding surface of the REV, a:o 

is the centroid of the REV, v  is the outwardly directed normal to the surface Syjyj, 

and Uow denotes the volume occupied by water within the REV.

For an isotropic porous medium, T* reduces to

( l - « )  TJ. =  f S i i ,

where 0^ =  S w^ / S q, 0̂ , =  Uqw/U o, and Sij is the Kroenecker delta.

1.3.4. CoefRcient o f  hyd rod ynam ic d ispersion . By adding the dispersive 

flux, expressed by (1.32), and the diffusive flux, expressed by (1.38), we obtain

(1.41) c°V°  +  =  - { D  -h ■ Vc =  - D h  • Vc,
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where the coefficient Dh = D  + is called the coefficient of hydrodynamic disper

sion.

The to tal flux, total) of ^ pollutant, by advection, dispersion, and diffusion, can 

now be written in the form

(1.42) ĝ t̂otai =  0w{cV -  Dh ■ Vc).

This is the amount per unit time of the pollutant passing through a unit area of 

porous medium.

1.3.5. B a lan ce  e q u a tio n  for a  p o llu ta n t .  Five components should be taken 

into account in the construction of a balance equation for a constituent ([13]).

a) The quantity of the pollutant entering and leaving a control volume around 

a considered point by advection dispersion and diffusion, or the to tal flux, 

9c,total) expressed by (1.42).

We recall th a t in Section 1.3.1, using a parallelpiped control box, we 

have shown th a t the negative divergence of a flux (of any extensive quantity) 

represents the excess of inflow (of that quantity) over outflow, per unit volume 

of porous medium, per unit time. Hence, here —divgc ôtai) fotal represents 

the excess of inflow of a considered pollutant over outflow, per unit volume 

of porous medium, per unit time.

b) Pollutant leaving the fluid phase through the water-solid interface as a result 

of chemical or electrical interactions between the pollutant and the solid sur

face. Phenomena of ion exchange and absorption may serve as examples. Let 

/  denote the quantity of pollutant tha t leaves the water by such mechanisms, 

per unit volume of porous medium, per unit time.

c) Pollutant added to the water (or leaving it) as a result of chemical interactions 

among species inside the water, or by various decay phenomena. L etT  denote 

the rate a t which the mass of a pollutant is added to the water per unit mass
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of fiuid, and 9 be the moisture content (so th a t 9pV denotes the mass added 

by such phenomena, per unit volume of porous medium per unit time).

d) Pollutant may be added by injecting polluted water into a porous medium 

domain, e.g., as part of artificial recharge or waste disposal operations. Pol

lu tant may be removed from a porous medium domain by withdrawing (pol

luted) water, e.g., by pumping. W ith P[x, t) and R{x, t) denoting the rates of 

water withdrawn or added, respectively, per unit volume of porous medium 

per unit time, and c{x, t) and c r {x , t) denoting the po llu tan t’s concentration 

in the water present in the porous medium and in the water added by injec

tion, respectively, the to tal quantity of pollutant added per unit volume of 

porous medium per unit time is expressed by Rcr  — Pc.

e) As a result of the above components, the quantity of the pollutant is in

creased within a control box. W ith 9c denoting the mass of a pollutant per 

unit volume of porous medium, denotes the rate at which this quantity 

increases.

Combining all the components, we obtain 

riBr
(1.43) a 7  =  -  P c + flcH,

or, using (1.42) to express

(1.44) ^  =  _ v  . (eg -  BDh • Vc) -  /  +  9pV - P c  + R c r .

Equation (1.44) is the (macroscopic) mass balance equation of a pollutant, ex

pressed in terms of c =  c{x,t).  It is often called the equation of hydrodynamic disper

sion, or the advection - dispersion equation.

The previous equation is a general case of unsaturated flow. For saturated flow, 

9 is replaced by the porosity, n.
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CH APTER 2 

T he M athem atica l  M odel

2.1. In trod u ction

As stated in the previous chapter, the saturated flow and single-phase solute 

transport in groundwater systems can be modelled by the equations

(2 .1) S { x ) ~  - \ 7  ■ q + R { x , t ) ,

(2.2) =  - V  • (eg) +  V ■ {eDVc)  +  B,

over a; in a bounded region 12 C R” , n =  2, or 3, and for t > 0. Here, t) is 

the piezometric head, c{x,t)  is the solute concentration, S  is the specific storativity, 

d is the porosity, D  is the hydrodynamic dispersion tensor, and B  are the

source/sink terms for the flow and solute, respectively. The term  q is the specific 

discharge. W hen applying Darcy’s law q = —KV(j), we get the model equations in a 

confined aquifer:

(2.3) =  +

(2.4) =  V  . (c ifV 0 ) +  V ■ («D V c) +  B.

The model equations in an unconfined {phreatic) aquifer can be obtained by applying 

the Dupuit assumption q = —K(f)V(j),

(2.5) S ( i ) ^ = V . ( ^ J f V «  +  J J ( i ,t) ,

(2.6) =  V  ■ {al>KV<l>) + V . (9£>Vc) +  B.

Note: we changed some symbols here so th a t it is convenient for us in the later 

discussion.

38
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A fundamentally im portant part of the modelling process is the full reconstruc

tion problem, i.e., the problem of obtaining reliable estimates for all of the various 

coefhcient functions appearing in equations (2.1) and (2 .2) from held measurements 

of the quantities (j) and c (together with some ancillary data, such as boundary data 

on K  and D).

Many of the methods th a t have been employed on the inverse groundwater prob

lem typically focus only on the recovery of the scalar (isotropic) hydraulic conductiv

ity. These methods range from educated guesswork (referred to as “trial and error 

calibration” in the hydrology literature, the method still preferred by some practition

ers [5, page 226]) to various attem pts at “autom atic calibration” ([7, 62, 102, 103] 

for survey materials; see also [19, 20, 23, 69, 78]). Some people [89, 91] have tried 

the direct approach of viewing the steady state version of (2.3) as a hrst-order hy

perbolic equation in the conductivity; in addition to the fact th a t one must somehow 

integrate, in stable fashion, along the characteristic curves (which depend on V<^), this 

requires tha t one know the inflow part of the boundary, the determ ination of which is 

itself a non-trivial ill-posed problem. Another approach is to reformulate the problem 

as an optimization exercise, which can be done in several ways. One can work directly 

to minimize the “equation error,” as in [34, 35, 36, 47, 48, 62, 72, 91, 97], or min

imize over an “output error,” as in [21, 22, 37, 41, 65]. The ou tput error methods 

are applicable when the number of observations is limited, bu t suflFer badly from non

uniqueness problems, as well as numerical instabilities. Another optim ization route 

makes use of the general idea of Tikhonov regularization [70, 74]; examples include 

[1, 18, 63, 98]. All Tikhonov regularization methods make use of a regularization 

param eter whose critical value must be known quite accurately for the method to be 

effective. This general class of methods is less effective because of the lack of reliable 

methods for determining this critical value in practical situations; this problem can 

be even more pronounced in the aquifer case due to the uncertainties in the available 

data. A different regularization, asymptotic regularization, is employed in [4, 43]. In
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the last two decades much work has appeared with the aim of applying geostatistical 

techniques [46] to the aquifer problem; examples include [2, 27, 42, 48, 74, 89, 96].

A further point worthy of note is th a t in the current literature there are few 

universally applicable techniques for recovering the specific storage and even fewer 

viable methods available [5, page 153] for objectively assigning values to a time- 

dependent recharge term. Once again, rainfall is not readily measured as a local 

phenomenon, and the effect of supply and discharge from underground sources is 

even more difficult to measure directly. There are also essentially no viable methods 

for objectively obtaining the full hydraulic conductivity tensor.

It is evident th a t obtaining the dispersion tensor D  in equation (2.2) is even 

more difficult [48, page 2219]. Recall th a t the movement of the contam inant fluid 

in a groundwater system can be divided into three mechanisms (see Section 1.3): 

advection, convective dispersion, and molecular diffusion. Advection is represented 

by the first term  on the right-hand side of equation (2 .2); the sum of the convective 

dispersion and molecular diffusion is the coefficient D  of equation (2.2). Note th a t 

the convective dispersion itself is a combination of the longitudinal dispersivity, a^, 

and transversal dispersivity, ar, for an isotropic porous medium. It is a combination 

of five independent param eters for the anisotropic case (see Section 1.3). So the full 

reconstruction problem for the groundwater model is a computationally formidable 

inverse problem.

In this dissertation, we will extend the work of [64] to a full groundwater model 

th a t can recover all the param eter functions in the flow equation (2 .1) and the trans

port equation (2 .2) for both  confined and unconfined aquifers. Observe th a t a m ajor 

difficulty encountered in the process is th a t these param eters can be very poorly rep

resented by measurements taken at a fixed collection of points in an aquifer. This 

is because quantities such as hydraulic conductivity, for example, can vary by up to 

12 orders of m agnitude a t a given site [5], due in p art to the presence of significant 

geological inhomogeneities. In order to  reliably model the flow of m aterials through
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a porous medium, one has to somehow assign appropriate averaged values for these 

parameters determined in a suitable way from the flow itself [5, page 329].

2.2. T he flow  equations

Recall th a t the source term  R  in the flow equation is time dependent. This makes 

the problem more complicated. For simplicity, we assume th a t i? is a piecewise 

constant function with respect to the time variable t, i.e.,

N

(2-7) R(x,  t ) - = Y ^  Riix)x[t,_„ti]
i = l

where 0 = < ti < ■ ■ ■ < = 1. This assumption is justified since

a) the da ta  is available for only a limited time period, and it is difficult to 

monitor field data  changing continuously in time;

b) R  is generally a slowly varying function of time; and

c) from a m athem atical point of view, it will converge to  the real case when the 

time step is tends to  0 .

Laplace transforming equation (2.3) in t  over i =  1,2, • ■ • , n, we get N

equations

(2.8) - V  ■ {K {x)V u i)  +  {Auj +  o:j,i(a;, A)}5(x) =  Pi^i{x, X)Ri{x),

where

r k
(2.9) Ui{x ,X)— / e~^^(j){x,t)dt,

Jti-i

(2 .10) Q!i,i(a:,A) =  (j){x,ti)e~^^' -  4>{x,ti^i)e~^^^-\

(2 .11) =
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For the flow equation (2.5) of an unconflned aquifer, after the Laplace transfor

mation above, we have

(2.12) - V  ■ {K{x)'Vwi)  -b {Xwi -f Q!i,2(-2̂ , A)}S'(x) =  A,2(2:, X)R,{x),  

where

rU
(2.13) Wi{x,X)=  / e~^^(p'^{x,t)dt,

Jti-i

(2.14) Oiifi{x, A) =  \ {2ui  -  Wi) + 2{4>{x, -  (f){x, tj_ i)e -^ ^ '- '},

(2.15) =

i =  1, 2, ••• ,A .̂

It is simple to compute values U i ( x , X )  and W i ( x , X )  from the known d a ta  (j){x,t) 

with fixed A. Thus we arrive a t a new problem: given da ta  Ui(x, A) (as well as Wi{x, A) 

for an unconfined aquifer) for x  in Q, and all A >  0 (and the boundary value of K ) ,  

determine the functions K ,  S,  and i =  1,2, • • • ,N .

2.3 . T h e tran sp ort equations

Consider the transport equations (2.4) and (2.6). Assuming th a t the hydraulic 

conductivity K  is known, then the first term  of the right-hand side of equations (2.4) 

and (2.6) are known data. The coefficient hydrodynamic dispersion tensor, JD, is a 

very complicated combination of some components (see Section 1.3). Here we adopt a 

somewhat different approach. Consider D  as a function of q; i.e., D  — D{q),  where 

the specific discharge q is dependent on time (although the hydrodynamic dispersion 

tensor D  itself is time independent). So the term  D{q)  in the transport equations

(2.4) and (2.6) are actually tim e dependent. Adopting the technique as in the flow 

equations, we assume

Ni
(2-16) D { x , t )  =

iz=l
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The source/sink term  B  is very complicated (see Section 1.3.5). For simplicity,

we assume here th a t B  = B^{x ,t)c  +  B^{x,t) .  Similar to the discussion above, we

assume

N2
(2.17) B \ x , t )  = Y^Bl{x)x[u_ ,, t ih

i=l
Ns

(2.18) B^{x ,t )  =

W ithout loss of generality, we can assume Ni = N 2  = N^. Now, applying the finite 

Laplace transformation to equation (2.2) in t  over we have

(2.19) -  V ■ { 0 { x ) D i ( x ) \ / V i )  +  (A-Ui +  a i { x ,  A)}0(x) =  / 3 i { x ,  X)Bl{x)+

+ j i {x ,X )B i{x )  + 5i{x ,\) ,

where

-At,(2.20) V i { x , X ) =  / e c{x,t)dt,
Jti-1

(2 .21 ) o i i { x ,X ) -  c{x,ti)e~^^^ -  c{x, t i - i)e~^^' - \

(2.22) /?i(a:, A )=  ^^(rc.A),

(2.23) l i ( x , X } =  ([e-"**---

rU
(2.24) 5i(2;,A)= -  V  ■ {cq)e-^^dt,

Jti-i

i — 1,2, - ■ ■ ,N i .  W hen the specific discharge is replaced by the Darcy flow (Dupuit 

assumption) we get the transformed transport equation in the confined (unconfined) 

aquifer. W ith the assumption th a t c{x,t)  and K { x )  are known, we have Ui ,  cti, /?i, 

7i and Si are all known, i =  1, 2, • • • , N'l. So our problem becomes as follows: given 

data  Vi{x, A) for a; € and all A >  0 (together with some boundary values of jD, and 

0), determine the param eters Di, 6, B]  and i — 1,2,-■ ■ , Â i.
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2.4. T h e  inverse  p ro b le m

If we regard 9{x)Di{x) in equation (2.19) as one (matrix) function K{x),  then 

compare the equations (2.8), (2.12), and (2.19), we have tha t these three equations 

can be w ritten in the following form:

(2.25) - V  • {K{x)Vv)  +  (Au +  a)Q{x) = PR{x) + 'jS{x) +  5,

where a  =  a{x,  A), (5 =  /3{x, A), 7  =  ^{x,  A), and 5 =  5{x, A) are all known (7  =  5 =  0 

for flow equations). And our problem is to find the coefficient functions K ,  Q, R, 

and S  from the known solution data  v = u{x, A) and K\Qa.

According to [38, Chapter 8], the generalized Dirichlet problems associated with 

(2.26-2.29) below are uniquely solvable, and the solutions v lie in the Sobolev space

(2.26) Lv  =  —V • p{x )V v  -1- Xvq{x) =  —0 'q{x) -1- (5r{x) + j s {x )  + S, 

where x  E Q, 2̂ is a domain in i?"; A > 0; and

(2.27) a(x ,A) , /3 (x ,A ) , j ( x ,X ) ,S (x ,A )  E  £^(f2);

(2.28) p  — (pij) symmetric, strictly positive with pij E C°°;

(2.29) q{x),r{x),s{x) E  £^(fl).

Now let V  be the set of all c = {p, q, r, s), such th a t p, q, r, s satisfy (2.28) and (2.29). 

Denote u = u{x, A) the solution of equation (2.25) and Uc = Uc{x, A) the solution of 

equation (2.26) corresponding to c =  {p, q, r ,s)  e V  such tha t

(2.30) Uclaa = u\an-

The functional G is defined as follows

(2.31) G(c, A )=  /  p{x)'S/{u — Uc) ■'^{u — Uc) + X{u — Uc)‘̂q.
J u
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For a fixed number of A values, Ai, A2, • • • , \ mi we define functional H  as the sum of 

G at those fixed As, i.e.,

M
(2.32) i^(c) =  J ] G ( c ,A ,) ,

k=i

where c =  {p,q,r,s)  G V.  We will prove th a t the functional H  is convex and has a 

global minimum point at { K ,  Q, R, S).  Thus the recovery of {K ,  Q, R, S)  becomes a 

procedure of minimization of the functional H.

2.5. T h e  u n iq u en ess

Before we give the method of recovery, we first show that the coefficients in equa

tion (2.25) can indeed be uniquely determined under some assumptions, provided we 

already know the solutions. To this end we assume in this section th a t the m atrix 

function p  in (2.28) has entries in C^(f2).

We proved, in [59], th a t if p  is the only unknown param eter, then it can be 

uniquely determined by two solutions u{x,Xi)  and u { x ^ \ 2 ), Ai ^  A2, provided th a t 

one of the entries is known and

7^0
U2,(a:,y,Ai) Uy{x,y,Xi)  

u^{x,y,X2) Uy{x,y,X2)

throughout the region We also give a uniqueness assumption which states th a t, in 

a two-dimensional case, Pi  =  p j  if if '^(Pd -̂ ) =  '^{P2 j fo’̂ three distinct

values of A, if all the other param eters are known. These results also apply to equation

(2.26).

Now let c — (p, q, r, s) £X>, Ui = u{x, Aj), i =  1, • • • , 6, be solutions of (2.26) with

6 distinct values of A. If there is c =  {p ,q , f , s )  e  V,  which also gives solutions Ui,

then

-V  • p{x)Vui +  {Xui H- ai)q{x) =  I3ir{x) + jis{x) -b

- V  • p(x)'7ui +  (AjUi -f ai)q{x) =  Pif{x) -b ^is{x) + 6i,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



46

where a.i = a(x, Aj), /?,; =  /3(x, Aj), j i  =  7 (2:, Aj), =  5(x, Aj), z =  1, • • • , 6. Thus we 

have

- V  • (p(x) - p ( x ) ) V u i - h  (AiUi + a^)(g(x) -  g(x)) =  /3i(r(x) -  f(x))  + ji(s(x) -  s(x)),

2 =  1, • • • , 6 , or in m atrix form

(2.33)

where fx =  (a, b, cY' , u = [g — g,r — r , s  — s)^,

M  =

B  =

p{x) - p { x )  =

 ̂ -A iU i -  tti (5i 7 i ^

— X2 U2  — 0-2 /?2 72

—  A 3 W 3  —  0 : 3  / ? 3  7 3

— A4li4 — Q;4 /?4 74

—A5U5 — a5 /?5 7s

—AeUe ~  Q!6 /?6 76 y

0 

0

0  ^ 3 x

0 'll4.y '^4.x 

0 'ii'Sx

^  0  'ILQy '^Qx j

a b 

b c

Uix 0

^3x 0 ^3y

U4x ^ '^4y

Û x 0

y '^6x ^ "̂ Gy j

\^Ixx ^lyy 2'Uixy

"̂ 2xx ^2yy ^^^2xy

^3xx ^3yy ^^Zxy

'^4xx 4̂t/2/ 2li43;y

*̂ 5xx '^Syy ^"^5xy

y ^6xx ^6yy ‘̂ '^Gxy J

l i  p  =  from (2.33) we can see th a t if we want to recover m  == 1,2, or 3

coefficients of s, we need only m  solutions, provided the m atrix M  has rank m.

Now for the general case, suppose we want to recover m  entries of p  and n  coefficients 

of g, r, s. W ithout loss of generality we assume th a t n  = 3. If M  has rank 3 and M q 

is a 3 X 3 nonsingular submatrix, denote M i  the subm atrix of M  whose elements are
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those not in M q.  Let Aq, A i ,  Bq, B i ,  Cq, and C i  be the submatrices of A , B ,  and 

C  which take the same rows as M q and M i corresponding to the same subindices. 

Then we can get

(2.34) { M iM o 'A o  -  A i} ^ ,  +  { M . M ^ ^ B q -  B i } ^ ^ +

,+ { M iM o - 'C 'o -C i} m  =  0

from (2.33), where M q  ̂ is the inverse of M q. One can see th a t M \ M q^ A q — A i 

and M i M q^ B q — B \  ha,ve the form

(  ai 0 0-2 ^

(2.35) M iM o 'A o -  A i = bi 0 b2

\ 0 C2 /

 ̂ 0 02 Or ^

(2.36) M i M q^ B q - B , = 0 62 bi

U C2 Cl /

Similar to the proof in [59], we can show tha t

P r o po sitio n  2.1. In  two dimensions m  + n distinct solutions Ui are needed to 

recover m  < 3 entries of p  and n <  3 coefficients of q, r, s of equation (2.26), provided 

that M q  above and a submatrix of (2.35), namely

ai 02

bi 62

are non-singular throughout the region Cl.

We assume

U niqueness A ssum ption  2.2. In two dimensions, i f  p  has entries in C^{Cl), 

then c = {p, q, r ,s)  £ V  can be uniquely determined by N  different solutions Uxx of

(2.26), i = 1, - ■ ■ ,N ,  where N  >Q.
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Proposition 2.1 states tha t if the given data is “good enough,” then only six 

solutions would be enough to recover all the coefficients (see [59]). In the real world, 

six solutions is usually not enough. We test for different synthetic data, and find tha t 

20 solutions is a good choice. On the other hand, the choice is justified, since in the 

finite Laplace transformation of the flow equation, A acts as the time variable. If we 

choose more A values, th a t means we use more data during the time period, which 

should certainly gives us more information.

2 .6 . P r o p e r t ie s  o f fu n c tio n a ls  G a n d  H

In this section, we will give some properties, which are essential for the numerical 

algorithms, of the functionals we constructed.

Let u be a solution of the generalized Dirichlet problem (2.26, 2.30), for </> e  

IPo ’̂̂ (f2), we have

(2.37) {Lv,(j))= f  {pV v • Vcj) + Xq{x)v(l>)dx,
Jn

by (2.26),

(2.38) I (j)V ■ {pV v)dx  — — I pV u • V(j)dx.
J n  Jn

The latter formula is essentially Green’s formula for this situation ( “integration by 

parts”) and will be used a great deal in the proof of the properties of the functional 

G and H.

Lemma 2.3. (a). For any c = {p, q, r, s) 6 V,

(2.39) G(c, A )=  I {p{x)Wu ■ Wu — p{x)V uc  ■ Vuc+
Jn

+  [A(u^ — ul)  +  2a(u — Uc)]q{x)

— 2{u — Uc)[/3r{x) +  7s(x) +  6]}dx.
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(b). For Cl = (Pi, ?i, ?'i, si) and C2 =  (P2, Q2, i'2, S2) ^  have

(2.40) G(ci, A) — G(c2, A)

/  {(Pi -  P 2)V'u ■ Vn -  (pi -  P2)"^Uc, ■ Vmc2+
Jn

I
+  [A(w  ̂ -  -licittcs) +  2a(u  -  -(Uci +  Uc^) ) ] {qi  -  92)

-  2[u -  ^(wci +  Uc2)][^(ri -  ra) +  7(^1 -  S2)]}dx.

(c). For c =  {p ,q ,r ,s )  in V  and h =  i h i , h 2,h z ,h 4), h i  symmetric matrix with 

entries in C°°{Vl), hi\dci — 0, and /i2, /14 in C^{^), we have

(2.41) \imuc+eh = uc' e->0

in

(d). For c =  (p ,q ,r ,s )  in V  and h = { h i ,h 2,h z ,h 4), h i  symmetric matrix with 

entries in C°^{Q), hi\gn = 0, and h2,h z ,h 4 in and any symetric

matrix p  with entries in

(2.42) ||V  • (?7Vuc+eA)lk-i.2(n) <  K,

where K  is a constant that does not depend on e when e is not too big. 

P roof. To prove part (a) first note the identity

G(c, A) =  /  {p {x )V u  ■ V n — p{x)Vuc  ■ Vuc+
Jn

+  2p{x)'Vuc • V (u  — Uc) +  Xa{uc — u)^g(2:)}.
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Now, using integration by parts and equation (2.26), together with the fact tha t the 

solutions u and Uc share the same boundary data, we have

/ {2p{x)Vuc  ■ V(uc -  «) d- \ a { u  -  u^y‘q{x)]dx
J n

=  { - 2 { u c ~  u ) V  ■ { p { x ) ' 7 u c )  +  -  U c Y q { x ) } d x
J n

=  /  {2(uc -  u)[~{Xuc + a)q{x)  +  (]r{x) + j s { x )  +  5] +  Xa{u  -  Ucyq{x)}dx
Jn

{[A(u^ -  ul)  + 2a{u  -  Uc)]q{x) -  2(u -  Uc)[Pr{x) +  'ys{x) +  6]}dx
>n

and this gives the proof of (a).

To prove part (b), notice tha t by (a)

G { c i ,  X )  — G ( c2, X )  —

/  {(Pl -  -  (Pl -  P 2) • VUc2 +
Jn

+[X{u^ -  UciUcJ +  2a{u -  +  'Uc2))](9i -  g2) +

-2[u  -  -  ^2) +  7(^1 -  S2)]}(ix

+  /  { - P iV u c i  V(wci -  UcJ -  (lici -  UcJ[(Auci +  a)qi +  /3ri +  j s i  +  h] +
Jn

-p2VUc2V(Wci -  ^ 0 2 ) -  {'^ci -  Wc2)[(AUc2 +  «)92 +  (3^2 +  7^2 +  5] }dx

By integration by parts, equation (2.26), and the =  Uĉ  on the boundary dO,, we

have th a t the second part of the right hand side equals to 0. This gives the proof of

part (b).

In  o rd e r  to  p rove  p a r t  (c), w e s u b t r a c t  th e  e q u a tio n s

—V • (pVuc) +  {Xuc +  oi)q =  /?r +  7S + 5

—V • {{p +  e/ii)Vuc+e/i) +  (Artc+e/i +  a)(g +  th2) =

=  /5(r +  ehg) +  7(5 +  e/2.4) +  <5
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to get

-  V • (pV(lic+e/i -  Uc)) +  X{Uc+ch -  Uc)q  =

e[V • hiVUc+eh — i^Uc+eh +  Cx)h2 +  /?/l3 +  7^4]

Now we multiply Uc+ek “  u,g on both sides of the above equation and integrate over Q.

we get (after integration by parts)

/  {p" ^  (uc+e/i Urg) ■ V(tic-i-f/j, — tic) +  A('Uc_)_£/;, tic) q ' \ d x  
Jn

— j  { ^  ■ PV(ttc+e/i He)(tic-|-c/i tic) "b A(tic+£^ tic)
Jn

— e /  {(tic-i-c/i, tic)V • Vtic-j-c/i
Jn

-[{XUc+eh +  a )h 2 +  (Jhz +  7/l4](tic+e/i -  tic)}dx 

=  e  /  {  / i x V ( t i c + e f t  t i c )  ■ ^ ( X J ' c + e h  H e )  h i W u ^ ^  • V ( U c - i - e h  H e )

Jn

- \ { u c + e h  -  U c f h 2 -  ( ( A t i c  +  a ) h 2 +  P h  +  7 / i 4 ) ( t i c + £ / i  -  t i c ) } d r n

—   ̂ /  {^i'^(Hc+6/i H e ) )  ■ V(tic4-e/i H e )

Jn

+  i(l/llV H c|^ +  |V(tic+£?i -  H e)n

+  2  a ) h 2  +  P h ^  +  7 / 1 4 ) ^  +  ( t t c + e  —  H c ) ^ )

d"A/I2 (tic-xe/i He)

and using the inequality ab < (a^ +  fe^)/2 .

Now, w ith the assumption th a t q is lower bounded by some positive number, we 

have th a t the left hand side of the above inequality is bounded below by a constant 

multiple of l|tic-fe/i — tie||wi.2(n)- Oh f^e other hand, the terms on the right hand side 

are independent of e except for Uc+eh- So when e is small enough, we can move the 

term s on the right hand side which contain Uc+eh — Hc to the left hand side so th a t 

the left side is still lower bounded by a constant multiple of \\uc+eh — He|lwi.2(n) and 

the remaining right hand side is 0 (e). Then part (c) follows.
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In order to prove (d), we define a functional F  on Wq’̂ (Q) by F (0 ) =  rjVuc+eh'

V^. Since the entries of r] are in >C°°(r2), (2.41) implies th a t

(2.43) \F{cl))\ <  K\\(f>\\wi,'2{n)^

when e is small enough, and K  does not depend on e. Thus F  € (Wo’""’(17))* =

The estimate (2.42) then follows from (2.43). □

T h e o r e m  2 .4. (a ). The first Gateaux differential of G is given by

(2.44) G'{c, A)[/i] =  /  { ^ iV u  • V n -  h iV u c  ■ Vuc+
Ja.

+  [A(n^ -  u^) + 2a{u — Uc)]/i2

— 2{u — Uc)[Phz 4- '-fhi\}dx,

where h = [hi, h2 , fis, hf), h i  is a symmetric matrix with entries in C°°{Q,),

hi\do, — 0 , and h2 , fis, hi in 

(b). The second Gateaux dijferential of G is given by

(2.45) G"(c, A)[fi, k] = 2 { L - \e {h ) ) ,  e{k)),

where h =  (^ i, ^2, fisj ^4)? k =  (fci, ^2; ^3, ^4); o,nd h i ,  k i  are symmetric

matrices with entries in £ °°(n ) with /iijan =  ^ilan =  0 , and the functions

/i2) hs, hi, k 2 , k^, ki lie in  £^(fl),

(2.46) e{h) = —V • h iV u c  + [Xuc +  a]h2  — (3hs — 7 /14,

and (•, •) denotes the usual inner product in £^(12).

P r o o f . B y  L e m m a  2.3 (b ), fo r e >  0,

-(G (c  +  eh, A) — G{c, A)) =  j { q h iV u  ■ V u — qh iV uc  ■ Vuc+eh
 ̂ Jo,

+  [pVu ■ V u -  pVUc • V U c + e h  +  A(u^ -  Uc+^hUc) +  2tt(u -  i(U c +  U c+eh) ]h 2 

-2[u  -  i(u c  +  U c + e h ) ] [ P h 3  +  7 ,̂4 ] +  e[h2 h i V u V u  -  h 2 h i V u c V u c + e h ] } d x .
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Then part (a) follows from Lemma 2.3 (c) by letting e go to 0.

To prove (b), note tha t by (a),

G'{c + eh,X)[k] -  G'(c, X)[k] =

=  -  /  • VUc+eft -  fciVUc ■ VUc
J n

+[X{ul^^i^ -  ul)  +  2a{uc+th ~  Uc)]k2 

-2{uc+di -  Uc)[pk3 +  jk4]}dx

=  -  /  { k i V { U c + e h  +  Uc )  ■ V (U c + c h  -  Uc )  [
J n

+ [Kul+eh -  “ c) +  2a(«c+eh -  Uc)]k2 

- 2 { U c + e h  -  U c ) [ f J k z  +  ^ k 4 ] } d x

=  /  { U c + e h  -  U c ) { V  • ( f c i V ( l t c + e h  +  U c ) )
Jn

—[X(uc+eh + Uc) + 2a]k2 + 2[pk3 + jki]}dx,

after an integration by parts.

Subtract the equations

(2.47) Luc =  - V  • (pVuc) +  XucQ =  - a q  + Pr{x) + j s ( x )  +  <5

and

(2.48) Luc+eh  =  - V - ( ( p  +  ehi)V'iic+€/i) +  Awc+e/i(9 +  eh2)

=  -o : (g  +  e/12) + /?(r +  e h s ) + 7 ( s  +  e/14) +  5

we have

L{Uc+eh Uc) =  V • p V (Uc-̂ eh Uc) +  X{Uc+eh Uc)q

— —e[—V  • h i X 7 u c + e h  +  (Auc+e/i +  a )h 2 — {Ph^ +  7/14)],

or

(2.49) Uc+eh — Uc =  —eL ’̂ (—V  • h \ V u c + e h  +  (Awc+e/i +  a ) h 2 — (P h ^  +  7 /1 4 ))-
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Thus

G'{c + eh ,X )[k]-G '{c ,  A)[/c] _  
e

=  /  ■ h i V U c + e h  +  { XucJ re h +  a ) h 2 - { I 3 h3 +  ' y hi ) )  X
Jn

x { - V  • { k i W { u c + e h  +  Uc)) +  [X{uc+eh +  Uc) +  2 o \ k 2  ~  2[/3/c3 +  j k i ] } d x

=  2 /  L~^[e{h)]{—V  ■ (kiVuc) + {Xuc + a ) k 2  — {Pk^ + ^ k i ) } d x +
Jn

j  L  [ V  • h \ ^  (Uc+eh Uc) T  X(^Uc+eh ^c)^^2] ^
Jn

X{ — V  • (fe iV {uc+eh +  Uc)) +  [X[uc+eh +  Uc) +  o;]/c2 — {/Jk^ +  ' yki ]}dx  +

+  /  L ~ ' ^ [ e { h ) ] { - V  • { k i V { U c + e h - U c ) )  + X { U c + e h -  U c ) k 2 } d x .
Jn

It remains to be shown th a t the second and third integrals of the last expression 

tend to zero as e —)■ 0. As the operator is self-adjoint, if we set

We =  - V  ■ { k i V { U c + e h  +  Uc)) +  [X{Uc+eh +  Uc) +  Q:]A;2 -  [/3/C3 +  7^4], 

the second integral may be rewritten as

/ [ -V  • hi\/{Uc+ek -  Uc) + X{Uc+eh -  '*4c)̂ 2] X L~'\We)
Jn

= / hiS/{Uc+eh-Uc) ■ {L~^{We)) + Xk2{Uc+eh-Uc)L~^{Wc).
Jn

From (2.42), We is uniformly bounded in e in and as L~^ may be extended

uniquely as a bounded linear operator from to L~^{we) is bounded

independently of e in From the boundedness of V on to x

£^(f2) it follows th a t \L~^{we)\ is bounded independently of e in From (2.41)

it now follows th a t the second integral tends to zero with e -> 0. Finally, note th a t 

L~^[e{h)] lies in VF’̂’̂ (fl), and th a t the th ird  integral vanishes as e —> 0 follows via 

(2.41) after an integration by parts. This completes the proof of the theorem. □

T h e o re m  2.5. (a). For c in V  and A >  0

G(c, A) =  0 G^(c, A) =  0 Uc = u.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



55

where is the solution of (2.26), u is the solution of (2.25), i.e., the known 

data.

(b). Assume thai c lies in V  and G"{c, A)[/i, h] = 0 for some h = {hi, li2 , /13, h^) 

where h i is symmetric matrix with entries in C°^{Q,), h i  |gn =  0 , and h^, /13, /14 

in C'^{Vl). Then for all e small enough.

P r o o f . The assertion in (a) th a t G(c, A) =  0 if and only if ttc — u follows

immediately from the definition of G, and one direction of the remaining assertion 

is obvious. If G'{c,X)[h] = 0 for all h, then the gradient of G, VG, satisfies 

VG(c, A) =  (7jfc) =  0, where, for I < j, k < n,

'Jjk — '̂ Xj'̂ Xk ~~ '̂ c,Xj'̂ c,Xk-

Consequently, from Theorem 2.4 part (a) and Lemma 2.3 (a),

G{c,X) = / {p{x )V {u  — Uc) ■'^{u — u f ) \ { u  — u f fq { x f } d x
Jn

— —2 / 5{u — uf)dx.
Jn

If we interchange c and G in this formula and note th a t a  =  uc, we have

/ {K { x )V { u  — Uc) ■ V ( u  — Uc) + X{u — Uc)‘̂ Q{x)}dx = —2 6{uc — u)dx.
Jn Jn

Adding, we find tha t

/  {{p{x) +  K { x ) )V { u  — Uc) • V (u — Uc) +  X{u — Uc)'^{q{x) +  Q{x))}dx — 0,
Jn

from this and the fact th a t p, K  are positive definite and q,Q  > 0, it follows th a t

u — Uc = 0.

Part (b) is a consequence of Theorem 2.4 part (b) in tha t, if we assume th a t 

G"(c, X)[h, h] =  0, then

e{h) =  —V • h iV u c  +  [Auc +  ajfia — ~  7^4  =  0,
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SO th a t from (2.26), for all e small enough p  +  e h i  is strictly positive and

-  V • {p{x) + ehi)Vuc  +  {Xuc +  oi){q{x) +  eh2 )

— I3{r{x) +  eha) +  j{s{x)  +  eh^) + 6.

But Uc+eh is the unique solution of this equation with the boundary da ta  it

follows immediately th a t Uc+eh = Uc- □

T heorem 2.6. Assume that the uniqueness assumption of the previous section 

holds, and in (2.32) set M  > =  5. Then for c in V ,

(2.50) H{c) =  0 ^  H'{c) = 0  ^  c = C{= {K , Q, R, S))

where K , Q , R , S  are the coefficients in equation (2.25), i.e., the coefficients we in

tended to recover. And the functional H  is strictly convex on V .

P roof . Noting th a t H{c) =  0 if and only if G { c , \ )  =  0 for 1 <  z <  M , the 

first assertion follows from Theorem 2.5 and the uniqueness assumption. Next, if 

H'{c) =  0, the same proof th a t was used for G shows th a t H{c) = 0, and the rest 

follows from the statem ents above. Finally, let H"{c)[h,h] =  0. As the functionals 

G(c, Xi), 1 < i  < M ,  are convex, it follows th a t G"(c, Xi)[h, /i] =  0 for 1 <  i <  M . By 

Theorem 2.5 part (b), for all e small enough , Uc+eh =  Ug for A =  Aj, 1 <  i <  M .  The 

uniqueness assumption now indicates th a t h = 0. □

2.7 . A  descent a lgorithm

Theorem 2.6 shows th a t, under computationally verifiable conditions on the da ta  

functions, Uj =  u{c, Aj), 1 <  i <  M , and the coefficients {K , Q, R, S) can be uniquely 

recovered by minimization of the functional H  given by (2.32). Recall th a t by Taylor’s 

expansion,

M M
/ / ( c  +  eh) ^ i7 ( c )  +  ei?'(c)[/i] =  ^ G ( c , A )  +  e 5 ^ G '(c , Ai)[/i]

i - l  i=l
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for the direction h. If we can find a direction h such tha t the second term  of the 

right-hand side above is negative, then we can get to a point ci =  c -f eh, such tha t 

H{ci) < H{c) when e > 0 is not too big. So the search for a descent direction is an 

im portant part in our minimization procedure. First for h = (h i, 0 ,0 ,0 ), Theorem 

2.4 gives

G'{c,X)[h] =  / h iV u  ■ V u — hiV uc • Vuc 
Jn

n

^   ̂ I hij(^UiUj UciUcj  ̂
i,j=l 

n  „

— 'y  ̂ / hijTjij

where u is the solution of (2.25), Uc is the solution of (2.26), Ui = Ud = and 

h i  = {hij) is a symmetric m atrix with hij in £°°(0 ) and hijan =  0. Notice th a t if we 

define the inner product for n x n m atrix functions h = {hij) and g = {gij) to be

Tl n
{h,g)ji^2 = Y ^  /  hij{x)gij{x)dx, 

and 77 =  [rjij) then G'{c, A)[/i] =  (77, h i ) ^ 2 . Now let h^  be the solution of

( 2 .51) JXgij  -j- g i j  =  { ' ^ G ) i j  — Tjij 9 i j \ d n  ~  Oj

then

G'{c,X)[h] =  j  {rj, h i ) ^ 2 dx

n  „

i j - l  

^   ̂ r
=  X )  /  { - A g i j  +gij)gtjdx  

i , j = i

Tl n

— ^  9 i j  ■ ^ 9 i j  T  9 i j  ■ 9 i j } d '
i , j = i
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innerwhere g = {gij)- { ') ')y}  is the vSobolev inner product corresponding the 

product above. So we get a descent direction g, which is called the Neuberger gradient 

[73]. Thus for the m atrix direction hi,  we can choose the Neuberger gradient as the 

descent direction. Note th a t we can not choose the gradient V G  — {rjij) as 

our descent direction here, because V G  is generally not zero on the boundary dCt. 

For other directions, h2 ,hz,h^,  this requirement is not necessary. So we can simply 

choose the gradient as the descent direction. If we know the boundary value 

of a coefficient, such as the storativity, we can choose the Neuberger gradient as the 

descent direction. This usually leads to a better result. For a more detailed discussion 

about this descent method, please refer to [52].
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CHAPTER 3 

N um erical Im p lem en ta tion  and  R esu lts

3.1. T h e  n u m e ric a l im p le m e n ta tio n

There are two approaches we can adopt in the actual recovery. A to ta l of six 

coefficients, K ,  Q, R, and S, are involved in our recovery procedure. We can regard 

H  as a function of six variables and use a minimization method for multiple variable 

functions, such as the “Powell” method. This method is generally more efficient for 

the recovery of JT, [59]. We can also code to recover the variables one by one. The 

advantage of this method is th a t we can control the actual recovery for each individual 

variable. If one variable is more difficult to recover than  the others, we can set more 

iterations for this variable in each step. Our example shows th a t K  is most difficult to 

recover, compared to other variables. We use the second m ethod in this dissertation. 

Here is a brief illustration of our minimization step. Assume the six variables to be 

recovered are denoted by fj, 1 < i < 6. Our algorithm is implemented according to 

the following scheme:

a) Choose an appropriate initial guess for the functions c =  (rj), 1 <  i <  6 ; 

these can be arbitrary, except th a t some of them  must satisfy some boundary 

conditions, such as rjjan =  Ki\da, i = 1 ,2 ,3 , where the boundary values for 

Ki come from the known boundary values of K .

b) Set i = 1, i.e., the search variable is ri. Also set the control variable f la g  = 0.

c) Compute the descent direction hi. If the boundary values of are known, 

such as 1 <  i <  3 for the two-dimensional case, the descent direction is 

computed as the Neuberger gradient; otherwise, it is the gradient.

d) Let h be the direction such th a t the ith  component is hi and all the others 

are 0. Check to see if H  can be minimized in direction h by comparing H{c)

59
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and H[c — ah) for some small number a  (=  10“^). If

H{c) > H { c - a h ) ,

then set f lag  =  1 and go to the next step. Otherwise, set i i +  1 and go 

to step g).

e) Do a line-minimization in the direction h, using the one-dimensional search 

routine to compute =  c —

f) Set c =  and i = i + 1.

g) If i <  6 , then go back to step c); otherwise, go back to step b) if f la g  =  1, 

or exit the search (since no search is successful in this iteration step).

One of the advantages of this algorithm is th a t it is easily parallelized. Recall th a t 

in our actual recovery, we need to compute a to tal of M Hi functionals, and all these 

functionals can be minimized separately. We can set the program to M  processes 

to recover those Hi separately on different processors. There is a second level of 

parallelization. Since each Hi{c) is the sum of N  different G{c, Aj), and the gradient 

is also the sum of the N  different VG(c, Aj), we can write the program as a master- 

slave program such th a t the m aster process mainly does the line search work, while 

the slave part deals with the numerical solution of the partial differential equations 

and the quadrature needed for computing the values of the functionals G and the 

gradient VG. In our program, we use the PVM package [15] for message passing 

between the m aster and the slave programs. Some of routines are implemented or 

adopted from the Numerical Recipes [82] in our programs. Note also

(1). The elliptic PDE solver. Since the recovery is very sensitive to the error of 

the numerical solution, a solver is needed th a t can accurately and efficiently 

solve elliptic boundary value problems of the type

- V  • K V u  + Qu =  F, 

u(a;,y)[aa =  B {x ,y ) .
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with minimal error. We use the nine-point difference method for the dis

cretization and then employ the band-solving subroutine BANDEC adopted 

from [82] to solve the resulting system of linear equations. This solver was 

called upon to determine the various solutions Uc during the descent search

ing procedure and the Neuberger gradient. The solver we implemented is 

efficient for two dimensions. For three dimensions, a more efficient solver is 

required.

(2). The numerical differentiation. We use central differences for the numerical 

derivatives for our synthetic dataset. This is accurate and efficient here, 

because the solutions being differentiated are sufficiently smooth functions. 

For practical data  w ith noise, one must apply more sophisticated numerical 

differentiation techniques. We implemented a routine by using the mollifier 

function

I  0 otherwise,

where [5 is chosen so th a t p(x)dx  =  1, to  regularize the d a ta  function u 

by

(3.1) Uh{x) =  p { ^ - j^ )u { y )d y ,

for some small h > 0. One can then compute the numerical derivatives of Uh 

using central differences and use these as approximations to the derivatives 

of u. For a more detailed discussion about this routine please see Section 

3.3.

(3). The quadrature. We iterate the Simpson’s rule function QSIMP in [82] 

to perform the required quadrature in the formula (2.31) for G{c, A) and 

the finite Laplace transformation. Given th a t parts of the integrand lack 

smoothness, Simpson’s rule is an effective choice here.

(4). The line minimization routine. In the minimization search, we adopted the 

bracketing and line minimization approach in [82]. The idea is as follows.
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If H  can be minimized along a given direction, we use our own (somewhat 

primitive but safe) bracketing method to find the bracketing points. First we 

choose an initial stepping distance, and then step along the chosen direction 

using this stepping size as an increment until either a bracketing is found 

or a preset stepping limit is encountered. In the la tte r case the original c is 

reset to the new c at the stepping limit and a new gradient is computed. In 

practice we use the actual length of the movement in the previous search to 

make some adjustm ent to the stepping distance. Once the bracketing points 

are found, we adopt the BRENT function [82] to find the minimum.

(5). The parabolic PDE solver. In our test program, we need a parabolic solver 

to solve the flow and transport equations. To this end, we adopted the pde 

solver PDETW O of [6 8 ], modified so th a t it can handle the matrix-valued 

case with nonzero cross-term coefficients. This solver is efficient and quite 

accurate, with smooth boundary and initial values. The solution formed our 

synthetic dataset.

Note th a t since the elliptic solvers are extremely sensitive to a loss of positivity 

for p, the program would tend to crash when non-positive eigenvalues for p  were 

encountered. Noting th a t p  is positive definite if and only if

Pn > 0, P2 2  > 0, pnP 2 2  -  Pn >

we argue th a t it is reasonable to  set lower bounds on the functions p u ,  P2 2  w ith local 

knowledge of a particular aquifer and w ith the knowledge [52] th a t the insertion of 

additional information tends to  have a stabilizing effect on an ill-conditioned com

putation. It is not clear from the physical problem how one might constrain P12; we 

chose to bound the absolute value of p i2 by the square root of the product of the 

lower bounds for p u  and P2 2 , so th a t pnP 2 2  “  P12 >  0 is always true. Whenever the 

computed values of p  are under the lower bound in the descent search for p n  and P22, 

or above the bound for p u ,  we set them  equal to the bound. W ith this arrangement,
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the algorithm became extremely stable with respect to allowing a large number of the 

descent iterations. From our test functions we can see th a t if we can assign a lower 

bound for p i2, the images are substantially improved.

As described in Section 2.5, we need at least five different A values to recover K , Q ,  

and R  for the flow equation and six different A values to recover JD, 9, B i,  and B 2  for 

the transport equations. In practice we found th a t increasing the number of A values 

used substantially improved the images. In our tests, we chose the number of A values 

to be 20. This is consistent with the view th a t the ill-posedness in the com putational 

problem corresponds to a certain loss of information in the data, and, as noted above, 

the most natural way to offset this is to add as much ancillary information as possible.

As is observed earlier, the recovery of the functions Di{x), i = 1, • • • ,  A/ is es

sentially equivalent to the recovery of the function D {v {x , t ) )  where the Darcy flow 

v{x ,t)  — —KV(j) may be regarded as already known. The remaining task is to re

cover the time-independent dispersion function JD(-) from the information gathered 

thus far.

The Darcy flow can be regarded as a function v  =  h {x , t )  from Q x [0,1] onto 

a vector subset, V ,  of K ^ ,  while the time-independent scalar dispersion £>(•) is a 

function from V  to the real line R. So, we can a t best recover D{-) restricted to V .  

The other issue is th a t if h is not one-to-one, the numerically recovered D {v {x , t ) )  

will most likely not take equal values on those points {x,t)  th a t map to the same 

flow vectors under h; we take the average of those values as the value of £)(•) a t th a t 

point.

The algorithm works in the two-dimensional case as follows. Let {xij} represent 

the grid points in O, and let tk denote a partition of the time interval. The vectors

' îjk — K  1 — {flijkt^ij}^

are computed and stored, and the minimum and maximum of the a^fc, amin and Omax 

are computed, together w ith the minimum and maximum of the bijk, 6rnin and Vax-
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The rectangle V  = [amin, o-max] x [^min,^max] is discretized by a grid with stepsize h, 

the stepsize used in the grid for Q. Each of the vectors Vij^ is then assigned to its grid 

square in V ,  and for each of the grid squares Vrs in V ,  the average of D[vijk) over 

all of the Vijk in Vrs is computed; this is the value of D(-) on Ks- If no Vijk lie in Ks 

we set D{Vrs) — cq, the predefined lower bound for D {v)  before. The test program 

shows th a t this method is effective.

3.2. R e su lts  w ith  s y n th e tic  d a ta

In our synthetic da ta  test, we assume th a t the region Vl =  [—1,1] x [—1,1] is 

overlaid with a 30 x 30 discretization grid. We deliberately chose all the coefficients 

to be non-smooth functions, because the non-smooth functions are more difficult to 

recover, and also because one cannot assume a priori tha t the param eters in a real 

groundwater system are smooth functions. The time period was set from 0 to 1. The 

code was w ritten in PG I Fortran 90 in double precision and run on a cluster consisting 

of Dell PowerEdge 2450 nodes with dual Intel 733MHz Pentium III processors and the 

Redhat Linux 6.2 O perating System. We used 20 nodes, one for each of the A-values 

in the functional H.

F ig u r e  3.1. True param eter functions K ,  Q, and i? -  1

{a)K 11 (b) K 12 (c) K 22

3.2.1. T h e  flow e q u a tio n . We assume th a t the time interval [0,1] is divided 

into 10 equal subintervals, and the hydraulic conductivity K ,  the storativity S,  and

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



65

F i g u r e  3 .2 . T rue p a ra m e te r  functions K ,  Q , and  i? -  2

X

( a )  Q ( b )  Rx ( c )  i ?2

( d )  Rz ( e )  R i (f)^5

(h) R, (i) R b

ii)R9 (k) Rio
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the source/sink term Rk, I < k < 10, are defined as in Figure 3.2.1 and Figure 3.2.1. 

And
10

R { x ,y , t )  = ^ R k { ^ , y ) X [ h ^ ± y
k=l

The piezometric head data, (j), is solved from the flow equation (2.3) with initial 

condition

w{x^ y, 0) =  2 +  0.5 cos(7ra;) cos(Try),

(to simulate slowly varying head d a ta ), and boundary conditions

w{x^ ±1, t) = 2 — (0.5 — t) cos(vrx), 

u ;(± l, y ,t)  = 2 — (0.5 — t) cos(Try),

by the PD E package PDETW O [68 ], over the region D and time [0,1]. Then we use 

the quadrature implemented with the Simpson’s rule to get the data  Uj, 1 <  i <  10.

E x a m p l e  3.1. Assume that the hydraulic conductivity K  is known. We recover Q 

and R  simultaneously for  1,000 iteration steps. Figure 3.2.1 shows the search result 

where we use the £} gradient as the descent direction. It can he seen that the result is 

really bad. I f  we have some information about the parameters, such as the boundary 

values of the storativity S, then we can get a much better result (see Figure 3.2.1(a) 

and Figure 3.2.1(b)) by adopting the Neuberger gradient for the descent direction.

There is still some “ju n k” in Figure 3.2.1(a) and Figure 3.2.1(b). This junk  

comes from the numerical difference of the solutions solved by the two PDE solvers 

- the parabolic PDE solver PD E TW O  and our elliptic PDE solver (together with the 

numerical Laplace transformation). Recall that the source data Ui, I < i < 1 0 , are 

computed by the Laplace transformation (2.9) of the solu tion of the parabolic equation  

(2.3). Since
rU

Ui\d(i= /  e~̂ (̂t){x,t)\dcidt,
Iti-i

we use this for the boundary values to solve the elliptic equation (2.8), with the true 

parameters K , S, and R, and use these Uf., 1 < A: <  10, as source data. Then all the
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F i g u r e  3 .3 . T he  recovery of Q and  R  w ith  K  fixed w ith  C} g rad ien t

(a) True Q (b) True R \

2.5

0.5

-0.5 - 0.5

0.5 ■0.5

(c) Recovered Q (d) Recovered R i

junk disappears, as in Figure 3.2.1(c) and Figure 3.2.1(d). Note that we still need 

the solution (f> of equation (2.3) to compute a, but we can regard them as fixed once 

(p is known.

Actually, the difference of the two solutions is very small. But the difference of the 

numerical derivatives is much bigger than  the difference of the solutions. Figure 3.2.1 

shows the differences of the solutions and the corresponding numerical derivatives 

between the solutions, with time period set k = 1 and A =  0.5. Since PDETW O is 

only used to generate the synthetic data, and since the source data  is gathered by
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F i g u r e  3 .4 . T he recovery of Q and  R  w ith  K  fixed w ith  N euberger g rad ien t

(a) Recovered Q (b) Recovered R i

(c) Recovered Q (d) Recovered i?i

field measurements in the real situation, we assume in the following examples tha t the 

synthetic da ta  u,, 1 <  i <  10, are generated by our elliptic solver together with the 

boundary values above. Example 3.1 also tells us th a t the more information we have 

about the recovered parameters, the more accurate the result. We assume th a t in the 

following examples we will use the Neuberger gradient for the descent directions.

E x a m p l e  3.2. Assuming that the storativity S  and the source term R  are known. 

We simultaneously recover the coefficients, K u ,  K 1 2 , and K 2 2 , of the anisotropic 

hydraulic conductivity K .  A fter  1,000 descent steps, we get the result shown in
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Figure 3.2.1. We can see that the result is good both in shape and height, and the 

discontinuity is quite clear.

F ig u r e  3.5. Difference of solutions between the two PDE Solvers when 
k = 1 and A =  0.5

(a) difference of u (b) difference of (c) difference of

F ig u r e  3 .6 . The recovery of K  when Q, R  are assumed known

(a) True K-11 (b) True K 12 (c) True K 22

(d) Recovered K u (e) Recovered K \2 (f) Recovered K 22
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F i g u r e  3 .7 . T he  recovery of the  p a ra m e te rs  of flow equation  of u n 
confined aquifer -  1

(a) true K \ i (b) true K \2 (c) true K 22

(d) recovered K] (e) recovered K 12 (f) recovered K 21

(g) true Q (h) true R i (i) true R 2

(j) recovered Q (k) recovered R \ (1) recovered R.
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E xam ple  3.3. As a final example of the flow equation, we simultaneously recov

ered all the coefficients of the flow equation (2.5) in an unconfined aquifer. The true 

parameters K ,  Q, and Ri, 1 < « <  10, were as in Figure 3.2.1 and Figure 3.2.1. Our 

search was scheduled as follows. We set an arbitrary initial position Cq =  {pq , qo, rifl.  

With the descent minimization, we searched to C3 by using the source data Ui as 

follows

4  =  {Po,qo,rifl —  ̂ c} =  {Pi,qoFio) — ^ --------^

Then we used cl = (Pi, 9i, ?’2o); “uihere f 2o was chosen arbitrarily, as the initial 

position and searched to c\ =  {P2 ,q 2 ,i'2 i) with source data U2 . Adopting the same 

procedure, we searched to point 4 °  =  {Pio, qw, t’io J . In the second iteration, we chose 

4  =  (pxoj qw, I'll) initial point and made a further search. After a total of 5, 000

descent steps, we got the recovered parameters as listed in Figure 3.2.1, Figure 3.3, 

and Figure 3.3. We can see that all the parameters recovered are quite accurate.

It should be noted th a t the true S  here is not physically reasonable in the ground

water context because the possible values for S  are very small, a t 0.0G3ft“  ̂ for clay, 

w ith very high compressibility and porosity, for example. This arises in the following 

example.

E x a m p le  3.4. In this example, we set S  to be much smaller, between 0.0005  

and 0.0015, as shown in Figure 3.2.1. The hydraulic conductivity, K ,  was set to be 

isotropic, while the source/sink term, R  was set as a step function of R i ,  i =  1, • • • ,6 . 

I f  we assumed that the aquifer was confined, and we recovered all the parameters 

simultaneously for  5 ,000  steps. The recovered parameters are shown in Figure 3.2.1 

and Figure 3.2.1. It can be seen that all the parameters except S  are very accurate. 

To prove that our recovery was effective, we computed the relative error between the 

“true" source data and our recovered data. The idea is as follows: regard the source 

data 4> solved by P D E TW O  with the true K ,  S , and Ri, i ■= 1, - ■ • ,Q as the true source 

data; the data solved by P D E TW O  with the recovered K ,  S, and R ,  i = 1, • • ■ ,6 is
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F ig u r e  3 .8 . T he  recovery of th e  p a ram ete rs  of flow eq u a tio n  o f u n 
confined aquifer -  2

(a) true (b) true R i (c) true  i ? 5

(d) recovered R 3 (e) recovered R i (f)  recovered i?s

(g) true Re (h) true i ? 7 (i) true Rs

(j) recovered Re (k) recovered JZ7 (I) recovered Rg
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F ig u r e  3 .9 . T he  recovery of th e  p a ra m e te rs  of flow equation  o f un 
confined aquifer -  3

(a) true R q (h) true i?io

2.5

0.5

-0.5

C.S

2.5

1.5

0.5

•0.5 •0.5

0.5 "O.S

(c) recovered Rg (d) recovered R\o

regarded as the recovered data. We then computed the relative error between <j) and <j)i. 

The result is shown in Figure 3.2.1. I t can be seen that the error is below 1%, very 

small. It also agrees with [83], in which it is stated that the storativity is insensitive 

to small changes of piezometric head.

However, in the real situation, the source/sink term  R  in the flow equation is also 

very small. This difficulty can be avoided by applying a variable substitution (see 

Section 4.6).
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F ig u r e  3 .1 0 . Recovery w ith  sm all 5 - 1

(a) true K (b) recovered K

1

(c) true S (d) recovered S

3.2.2. T h e  t r a n s p o r t  e q u a tio n . Assume th a t the param eters in the flow equa

tion are already known and the true param eters for the transport equation are defined 

as in Figure 3.2.2, Figure 3.2.2, and Figure 3.2.2. We will test the case of an uncon

fined aquifer here (similar results can be obtained for the confined case). Note th a t 

since the param eters {K , S, R)  are regarded as known, the param eter 5k in equation 

(2.19) can be computed as follows;

5k{x , X)= [ "  ■{cK^V(j))dt
Jtk-i
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F i g u r e  3 .1 1 . Recovery w ith  sm all S' -  2

(a) true R i ,  R 2 (b) recovered R i (c) recovered R 2

(d) true i?3 , R i (e) recovered Rs (f) recovered R i

(g) true i?5 , Re (h) recovered Re (i) recovered Re

rti
/  +  K(j)W(j) ■ Vc}dt

J  ti~i

r  e - ^ \ c [ S { x ) ^  -  Rk(x,t)] + K(j)V(l) ■ Wc}dt.
'ti-i

E x a m ple  3.5. In this example, the piezometric head (p is solved, as in the flow 

equation where the parameters K ,  S, and R  are those recovered in Example 3.3. Then
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F igure 3.12. Error between the recovered da ta  and the true source 
data with small S

Tim© (t)

(n)

we use the parabolic PDE solver P D E TW O  to solve the transport equation where the 

parameters are those listed in Figure S. 2.2, Figure 3.2.2, and Figure 3.2.2, with initial 

condition

w{x, r/, 0) =  1 +  0.5 sin(87r(a: +  y))

and boundary values

w{x,  ±1 , t) =  1 +  (0.5 — t) cos(87r(x ±  1)),

w (± l, y, t )  = 1 + (0.5 — t) cos(87r(?/ ±  1)).

Of  those parameters, D{-) is the most difficult to recover. So here we assume that all 

the B  coefficients are known, and we recover D u ,  D 1 2 , D 2 2 , and 9 simultaneously.

After 5,000 iteration steps, we get the recovered coefficients shown in Figure 3.2.2.

Note that the non-smoothness of K ,  when combined with the non-smoothness of  

D  itself and possible problems with the finite difference solvers, causes increased diffi

culties with the D{K(f)V(f)) term to recover [59]. However, we can see in Figure 3.2.2 

that the computed D{-) assembled from the recovered Dij^ ’s, except D u ,  is an effective 

reconstruction.
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F i g u r e  3 .1 3 . T rue p a ra m e te r  D, 6 of th e  t ra n s p o rt  equa tion

(a) true D u (b) true D i 2

(c) true D 22 (d) true 6

E xam ple  3.6. In this example, all the data and parameters are the same as in 

Example 3.'5. We assume that D  and 6 are known and recover the coefficients B l  

and B l, k — I , - ’ " ,20. After a total of b, 000 iteration steps, we get the recovered 

parameters, B l  and B l ,  1 < k < 20, shown in Figure 3.2.2, Figure 3.2.2, Figure 3.2.2, 

Figure 3.2.2, Figure 3.2.2, Figure 3.2.2, and Figure 3.2.2. It can be seen that the 

recovery is quite accurate.

In the previous example, we recovered D{-)  directly from the D{K(j)'V(f)) term. 

The hydrologists tend to  write D{-)  as the sum of (A j)  and (Section 1.3),
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F ig u r e  3 .1 4 . T rue  p a ra m e te r  of th e  t ra n s p o rt  equation

(a) true B }  (b) true (̂ ) true (d) true B j

(e) true B q (f) true Bg (g) true B~ (h) true Bg

(i) true Bg (j) true Bjo (k) true B}j  ̂ (1) true Bj.12

(m) true B}g (n) true B}^ (o) true Bjg (p) true B}g

(q) true B^j (r) true B l18 (s) true Bt19 (t) true Bgi20
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F i g u r e  3.15. True param eter B'̂  of the transport equation

(a) true B l (b) true B l  (c) true B^ (d) true jB|

(e) true (f) true Bg (g) true B l  (h) true B |

(i) true Bg (j) true B̂ ,10 (k) true Bji (1) true B̂ .12

(m) true Bf^ (n) true Bf^ (o) true Bjj (p) true B̂ g

(q) true B̂ y (r) true B̂ g (s) true B̂ g (t) true Bgg
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F i g u r e  3.16. Recovered D ( - )  and  9, assum ing  B  know n

(a) true D u (b) recovered D u

(c) true D i 2 (d) recovered D 12

(e) true D 22 (f) recovered D 22

(g) true 6 (h) recovered 0
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F i g u r e  3 .1 7 . Recovered Bj; -  Bg, assum ing  D  and  6> are know n

(a) true B j (b) true (c) true B 3

(d) recovered B } (e) recovered B 2 (f) recovered B^

(g) true B] (h) true B 5 (i) true Bg

(j) recovered B j (k) recovered B^ (1 ) recovered Bg
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F i g u r e  3 .1 8 . R ecovered Bj -  BI 2 , assum ing  D  and 6 are know n

(a) true B j (b) true Bg (c) true Bg

(d) recovered B \ (e) recovered B \ (f) recovered B \

(g) true B l10 (h) true B l11 (i) true B I 2

(j) recovered B l10 (k) recovered B l11 (1 ) recovered B I 2
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F i g u r e  3 .1 9 . R ecovered -  B}g, assum ing D  and  0 a re  know n

83

(a) true 13 (b) true B l14 (c) true B [15

(d) recovered B l13 (e) recovered Bl^ (f) recovered Bl^

(g) true B l16 (h) true B l17 (i) true B_lg

(j) recovered B l16 (k) recovered B l17 (1 ) recovered B l18
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F i g u r e  3 .2 0 . Recovered Rjg, an d  assum ing  D  and  9 are know n

(a) true R|g (b) true Bgi20

(c) recovered B l19 (d) recovered 20

(e) true B l19 (f) true R|o

(g) recovered Big (h) recovered B 2̂0
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F i g u r e  3 .2 1 . Recovered Bl -  Bl,  assum ing D  and  9 are know n

(a) true B f (b) true B l (c) true B l

(d) recovered B f (e) recovered B l (f) recovered

(g) true B l (h) true (i) true B q

(j) recovered (k) recovered (1 ) recovered B |
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F i g u r e  3 .2 2 . Recovered Bj -  BI 2 , assum ing  D  and  9 are know n

(a) true (b) true Bg (c) true B |

(d) recovered (e) recovered Bg (f) recovered Bg

(g) true B l10 (h) true B?n (i) true B l12

(j) recovered B l (k) recovered B l11 (1 ) recovered B ig
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F i g u r e  3 .2 3 . R ecovered R ?, ~ B' ô, assum ing  D  and  9 are  known

87

(a) true (b) true B l14 (c) true B l15

(d) recovered B l13 (e) recovered B l14 (f) recovered B l15

(g) true B l16 (h) true B y17 (i) true B y18

(j) recovered B y16 (k) recovered B y17 (1) recovered
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where

D^j = a i , k m ^ ^ f { P e , S )

and y  =  \V\ =  \K(f)V(f)\, 14 is the kih  component of velocity vector V , f {P e ,  ti) is a 

function which introduces the effect of tracer transfer by molecular diffusion between 

adjacent streamlines, is the coefficient of molecular diffusion, T t is the tortuosity. 

Mathematically, there are no differences for us to recover the D  as above or recover 

the coefficients aijkm and Dd directly, but the hydrologists prefer to recover these 

coefficients because they can be evaluated in the lab. We note here th a t we can 

actually recover those coefficients from the source da ta  with a slight modification of 

our code.

For simplicity, let us consider the isotropic case (in a confined aquifer). From 

Section 1.3, we know th a t for isotropic porous media, Dij can be w ritten in the 

following form (under some assumptions)

(3.2) D ll = Pi^L +  P2®T)

(3.3) D i2 = pip2{dL — o,t ),

(3.4) D 2 2  = p\a,L +  PiÔ T

for a two-dimensional case, where Pi = V i /V V .  If we neglect the molecular dispersion 

(which can be evaluated directly in the lab), the param eter D  =  {Dij) in the transport 

equation (2.2) becomes a function of and ar  since

^ _  F~1 _  ___________ Kll4>x + _Kl2(f)y___________ ^

"  \ / y  ”  V[Kll(f>x +  Ki2(^y? + [Ki2<I>, +  K22<j>yf 

V2  Ki2(t>x +  K22(j>y I
Oo — —-T— —   ■ - ■ — ■■ — ■ ■ — (h

\ /V  \/[Kii(f)x + Kl2^yY  +  [Ki2<Px +  K'22(t>yY 

are known once (j) and K  are determined. Now the functional

G{c, X)= /  pV(u — Uc) • V(w — Me) +  A0(u — Uc)̂
Jn

/  {aiOMi + at9M2)V{u — • V {u  — -h \9 {u  — Uc)^,
J n
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w here p = aiMi + at M 2 , and

M ,=  | A f e = f
P 1 P 2  p I  )  V - P 1 P 2  p \

can be regarded as a functional involving a; and at (assuming th a t 6 and B  are known 

for simplicity). Similar properties in Section 2.6 about G and H  can be obtained here. 

Thus g l  and ar  can be directly recovered.

3.3. Error analysis

From the examples in the previous section, we can see th a t the recovery is quite 

accurate, compared to the true param eters. In this section, we will analyse errors of 

various kinds compared to the original data. Four situations are considered here;

a) How accurate is the method? i.e., what is the error between the da ta  obtained 

from the recovered param eters and the original data? (Figure 3.24)

b) Is the method stable?, i.e., w ith a small change in param eters, does the 

recovered data  also change by a  small amount? (Figure 3.3)

c) If the original da ta  contains error, is this method still applicable? It is truly 

im portant since the field data  will inevitably contain error. (Figure 3.3)

d) Regarding sparse da ta  situation, i.e., if the original da ta  is not sufficient, is 

the method still applicable? It is also an im portant issue in economic and 

geological situations. (Figure 3.3)

E xam ple  3.7. For situation a), we set the parameters as in Figure 3.2.1 and Fig

ure 3.2.1. The solution, 4>{t,x), of the parabolic equation (2.5), solved by PD ETW O ,  

is set as the source data. We compute the recovered data, (f){t,x), by solving the par

abolic equation (2.5) with the parameters recovered from Example 3.3. The L°° error 

is computed between 0 and (f. Figure 3.2f depicts the error with the time period we 

defined from 0 to 1. We can see that the error is very small.
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F ig u r e  3 .2 4 . E rro r analysis of s itu a tio n  1

(a) \\(j){t,x) -

E x a m p l e  3.8. In this example, we add 1% of error and 100%  of L°° error to 

the parameter K  (see Figure 3.3). Let 4>{t, x) be the solution of equation (2.3) with the 

parameters as in Figure 3.2.1 and Figure 3.2.1, and (fi{t,x) the solution of equation

(2.3) with the modified parameters K  in Figure 3.3. We use (fi as the source data to 

recover K u ,  K u ,  and K 2 2  for  10,000 steps and use this recovered parameter as the 

coefficient to get the solution of (2.3), (j). Then the L°° error is computed between (p 

and (j). We can see in Figure 3.3(d) the error is still very small.

Since we repeatedly use numerical gradient, an efficient and accurate numerical 

differentiation method is essential for our numerical implementation. We use the 

central difference m ethod in our implementation for its efficiency. The m ethod is 

accurate enough in the situation when the source d a ta  is smooth. W ith the source 

da ta  contains error, the m ethod fails. To overcome this difficulty, we used a mollifier 

to smooth the original d a ta  and regarded the smoothed data  as the source data. The 

idea is as follows:

Let p be a C°° function defined on i?" such th a t p{x) = 0 when ||a:|| > 1 and

(3.5) / p[x)dx =  1.
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F ig u r e  3 .2 5 . E rro r analysis of s itu a tio n  2

(a) true K u

-0.5 -0.5

0.5 0.5

(b) true jK'i2

'c) true K 22

1% V error {100% L‘ error) 
added to parameter P

0.7

0.25 0.5
T (time)

(d) \\(f) -  (j>\\L=̂ (Q)

Let Q be a bounded open subset of and u be a continuous function defined on 

the compact set Q. Now we add some random {L°°) error Cq to  the function u and 

denote the corresponding function by u. Then u  can be represented as

(3.6) u{x) = u{x) +  e{x),

where ||e(a:)l|x,oo <  cq. Then u 6 £^(r2) with the assumption of e{x) in For

h >  0, the regularization

(3.7) Uh
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F i g u r e  3 .2 6 . E rro r analysis of s itu a tio n  3

Original data
20% of L error added

(a) 0(0.5, x) (b) ((>{0.5, x)

Smoothed data

(c) (f>i{0.5,x)

20% L error added 
added to source data u

I ■ i ■ r
0  0-25 0.5 0.75 1

T (timd)

of u  lies in Uh € for any O' C 0  with h < dist{Q.', dQ) [38], So the function

Uh is a sufficiently smooth function, and also the error, e/i, between Uh and u, will 

not exceed Cq by much. In fact, since u is continuous over Q,, for any e >  0, there is 

some h > 0 such th a t ju(x) — u{y)\ < e for any rr,y 6 0  and Ijo: — y]| <  h, where || • ||
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F i g u r e  3 .2 7 . E rro r analysis of s itu a tio n  4

93

Original data

(a) 0(0.5, a;) (b) 0(0.5, a;)

(c) 01 (0.5, a;) (d) 02 (0.5, a:)

(e) 03 (0.5, a:) (f) ||0(t,a:) -  04(t,a:)|E~(ii)
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denotes the Euclidean norm in i?". Thus we have

\uh{x) -  u{x)\ =  /r“” l [  {u{y) -  u{x))p{^^-—^ )d y \

< / i  \u{y) -  u { x ) \ p { ^ - ^ ) d y  +

< e +  eo-

So

(3.8) 6h =  sup{|u/i(x) — u{x)\ : 2; 6 Q} <  e +  Cq.

Practically, the error Ch will be much smaller than  eo, since

(3.9) J ^ e { y ) p { ^ - j ^ ) d y  = J ^ e - ^ { x ) p { ^ - ^ ) d y  -  j ^ e - { x ) p { ^ ^ - j ^ )

where e"*" and e~ denote the positive and negative part of e, and the first and second 

parts of the right-hand side in the previous expression tend to be equal due to the 

normal distribution of the errors.

Once the data has been smoothed, we can use any numerical derivative m ethod 

to compute the derivatives with the smoothed data. Because the smoothed da ta  is 

C°° at every inner point, the simple central difference method would be enough.

E x a m p l e  3.9. In this example, we add 20% of L°° error to the original data 

4>{t,x) to get (j){t,x). We then use the mollifier to smooth the data 4>{t,x) to get 

(f)i{t,x). Then we use the smoothed data (f)i{t,x) as the source data to recover the 

parameters. For simplicity, we only recovered the parameter K ,  and all the other 

parameters are assumed to be known. After 10,000 descent steps, we use the recov

ered parameters as the known parameters for equation (2.3). The numerical solution 

(p2 {t,x) was solved from (2.5). Then we compute the error between f>2 {t,x) and (f, the 

original data without errors. The results and those 4>s at time t = 0.5 are shown in
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Figure 3.3. We can see that the error is quite small. It is much smaller than 20%, 

the error we added to the original data.

E x a m p le  3.10. In this example, (f){t,x) is the data chosen from  25 grid points 

of the original data (j)i{t,x) is the data with 20% of error that was added to

(f{t,x). We then use a bilinear interpolation to get data (j)2 {t,x) which has values on 

the 30 X 30 grid, and finally we use the mollifier to smooth the data <̂2 (1 ,^ )  to get 

(j)3 {t,x). We treat (ff i t ,x)  as the source data to recover all the parameters K ,  Q, and 

Ri, i — 1, - , 10. After a total of 5,000 steps minimization searching, we treat the

recovered parameters as the known parameters and solve equation (2.5) to get data 

(f)fit,x). It can be seen that the error between (pfit,x) and the original data (f>(t,x), 

shown in Figure 3.3, is still reasonable.
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CHAPTER 4 

T he W illunga B asin, S ou th  A u stra lia

4 .1 . In tro d u c tio n

The W illunga Basin is located approximately 30 km southeast of Adelaide, South 

Australia. This is an area of significant agricultural production. V iticulture and 

almond are the main industries, and groundwater is the most im portant resources 

for them. Groundwater is also used to support livestock and some light industrial 

enterprises.

In the last few decades, the groundwater levels within the W illunga Basin region 

have declined greatly due to excessive pumping. Figure 4.1 [83] shows the decline of 

the piezometric head over the 10-year period 1988-1998. As is suggested in [66], this 

decline will certainly increase the costs for extraction of groundwater. The quality of 

the groundwater can also be degraded due to the long-term decline, especially in the 

coast regions where the salt water may intrude if the groundwater level is too low.

F ig u r e  4.1. Hydrographs of piezometric heads over the period 1988- 
1998 [83]

e
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(a) Hydrograph of WLG051 (b) Hydrograph of WLG067
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4.2. Hydrogeology

As summarized in [66], the W illunga Basin is part of the St. Vincent Basin. The 

Basin dips noticably to the southwest, and sits upon and is bounded to the north, east, 

and south by Late Precambrian and Cambrian age rocks belonging to the Adelaide 

Geosyncline, and consisting of interbedded slates, quartzites, and dolomites. It is 

wedge-shaped, with the southern and western portions the thickest, and tapers to the 

north. The groundwater in the Basin flows toward the coast of Gulf St. Vincent from 

the northeast corner. According to [3], the groundwater system in the W illunga Basin 

may be divided into four aquifer subsystems listed, from the bottom  upwards, as the 

Basement, Maslin Sands, Port W illunga Formation, and Quaternary; see Figure 4.2.

F i g u r e  4.2. Location map of the W illunga Basin, South Australia [83]

Souih Australia

•A.delaide
^Willunga
/  Basin

„..-b

KILOMETRES

4.3 . T h e  P ort W illu n ga  Form ation A quifer

The most im portant source of groundwater within the W illunga Basin is the Port 

W illunga Formation, which was formed in the late Eocene to the Oligocene period, 

and is bounded below by marls and marly limestone of the Blanche Point Formation 

aquatard, and confined from above by a clay layer from the Q uaternary period [26].
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It is recharged by direct rainfall infiltration over the outcropping area north of the 

town of McLaren Vale to the town of McLaren Flat, and also by streams and outflow 

from the basement rocks. The W illunga Fault is believed to be impervious along 

the greater part of its length and thus acts as an obstruction to lateral inflow from 

the adjacent basement rocks [66]. The rainfall infiltration for the Port W illunga 

Formation is estimated to be 1050 M L/year [66]. The broad scale transmissivity of 

this aquifer is estimated from pumping tests to lie between 45 and 5560 m^/day, while 

the storativity is estim ated to lie between 2.7 x 10“  ̂ and 0.011 [83]. The aquifer is 

reasonably constant in thickness, averaging around 100 metres [26], which makes it 

a viable candidate for our use here of a confined depth-average two-dimensional flow 

model.

4.4. O bservation w ells w ith in  th e  P o rt W illu n ga  Form ation  A quifer

There are about 36 observation wells within the Port W illunga Formation Aquifer 

[66] with the location of each well being shown in Figure 4.4. Piezometric head da ta  

from these wells has been collected spasmodically since December 1973.

In our test program, we chose 10 observation wells surrounding a rectangular 

region (shown in Figure 4.4). The reason we deliberately chose a rectangular region 

is because our model program is w ritten for a rectangular region A B C D .  For a more 

complete model, the finite element m ethod is an ideal choice, since it can handle 

nonregular boundaries.

4.5. G roundw ater levels w ith in  th e  P o rt W illu n ga  F orm ation  A quifer

The flow of groundwater within the Port W illunga Formation is from the north

eastern corner to the coast. The piezometric head a t the observation wells forms a 

piezometric surface, w ith the highest point a t the north-eastern corner and sloping 

downward to the coast [83]. The da ta  is from the Prim ary Industries and Resources, 

SA (PIRSA) web site. We chose a period of about one year (January 12, 1998 -
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F igure 4.3. Observation well locations of Port W illunga Formation 
Aquifer [66]
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F ig u r e  4 .4 . T est region an d  observa tion  wells

HD OF , . 
J  WILLUNGA

^ S E
> W L G  45 
^  - 3 . 1 1/'

W L G 69  
U -1.9

January 1, 1999) for testing. The piezometric head for all 10 observation wells in this 

period are shown in Figure 4.7, Figure 4.7, and Figure 4.7.

In our test program, the rectangular region A B C D  has AB =  1551.62 meters 

and EC =  2151.52 meters; these measurements were computed from latitude and 

longitude da ta  obtained from the PIRSA website. This region was scaled to the 

square [—1,1]^. This scaling is necessary. Recall th a t the transmissivity T , 45 to 

5560 (m ^/day) for the Port W illunga Formation Aquifer, for example, is much larger 

than  the storativity, Q, 2.7 x lO""  ̂ to 0.011, for the Port W illunga Aquifer. The 

recharge, measured in units of A:L/day/m^, is also very small. Our synthetic example 

shows th a t the recovery will be not accurate when Q is too small. If we assume 

x' = 2M ^^x  -  1, y' =  2M ^^y  — 1, where Mi - \BC\, M 2  = \AB\, the flow equation

(2.3) can be changed to

Q' dt
y n e w  . (j)) +  R'

where V " -  =  Q' =  M ^Q (x ,y ) ,  R' = M ^ R ( x ,v , t ) .  if! , =  i , j  =

1,2, and M  =  10^.
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After scaling the real field to a smaller region, the scaled parameters, Q and i?, 

in the flow equation (2.3) can be made relatively larger, making the recovery more 

accurate. We divided the square by a 30 x 30 grid and used triangular interpolation 

to get the data  at those grid points. Figure 4.5 represents the piezometric head 

on January 12, 1998, at those grid points. Since there is only approximately one 

observation data  for each well every month, in order to simulate the piezometric head 

as a continuous function of time variable, we used linear interpolation to simulate the 

daily data.

F igure 4.5. Piezometric head in the test region a t January 12, 1998

L»v« Z
15 67,912
U 66.8043
13 65.6965
12 64.5868
11 63.4811
10 62.3734
9 612657
e 60.156
7 59.0502
6 572425
5 56.8348
4 55.7271
3 54.6194
2 532117

R
1 52.4039

4.6. T h e  t e s t  p ro g ra m

In our test program, we divided the tim e period from January 12, 1998, to  January 

7, 1999, into 12 subintervals, and assumed th a t in each subintervals the source/sink 

term  R  was constant in time. This reflected the real situation since we had only one 

observation of the piezometric head each month.

We applied the finite Laplace transformation, using Simpson’s rule, to the piezo

metric head to get the source data. Then we input the source d a ta  to our test 

program to recover the transmissivity T , storativity S, and the source/sink term s Ri,
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In our test program, the upper and lower bounds for transmissivity, i.e., the 

estimated range values for transmissivity [83] were set to be 5,560, 45 (m^/day). 

The upper and lower bounds for storativity were set to be the estim ated values 0.011 

and 2.7 X 10"^ times the square of the scaling factor (M^ =  10®), as we mentioned 

in the previous section. For the scaled source/sink term, we set the upper and lower 

bounds to 10,000 and —10,000 respectively. Since we had no information about 

the source/sink term, this bound had to be large enough. Note th a t our algorithm 

requires the knowledge of the transmissivity T  at the boundary. Otherwise, it cannot 

guarantee the uniqueness of the recovery. Relatively accurate upper and lower bounds 

are therefore especially im portant here.

Since we could not get the boundary values for the conductivity which were essen

tial in our algorithm, we adopted a trick by propagating the recovered interior values 

to  the boundary in every step of the iteration search. The idea is as follows. At the 

beginning, we set the initial values between the preset lower and upper bounds. After 

every step of the iteration search, the boundary values were replaced by the recovered 

values a t the adjacent grids. In our test program we set the lower bounds as the initial 

values. This is an effective m ethod when we do not know the actual boundary values. 

As is known from the recovery with synthetic data, better results can be obtained 

for the storativity S  and the source/sink term  R  if we know the boundary values; we 

adopted the same m ethod for S  and R. The number of A-values was set to be 20.

The to ta l iteration count for the recovery was 4,000, which took about a week on 

our Beowulf cluster using 20 nodes.

4.7 . T h e effectiveness o f th e  recovery

To check the accuracy of the recovery, we used the recovered param eters to solve 

the parabolic flow equation (2.3) using the PD E solver PDETW O and compared the 

results with the original well data. The piezometric heads constituting the original 

and recovered data, as well as the relative error between the original and recovered
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data at all the chosen observation wells, are shown in Figure 4.7, Figure 4.7, and 

Figure 4.7. We can see th a t at all the observation wells, except wells WLG069 and 

WLG045, the data is quite accurate (error below 0.4%) and the shapes of the data 

are very similar. The errors for well WLG045 and well WLG069 are relatively bigger. 

One possible explanation for this error is tha t they are far from the selected test 

region, especially well WLG069 (see Figure 4.4). We can see from Figure 4.5 th a t the 

Piezometric head near corner C of our test region is higher than those around corner 

D, and this causes the flow tu rn  to the direction away from corner C (see Figure 4.8). 

The reason for this phenomenon is probably tha t there are some underground stream  

recharges near corner C. The well WLG045 is located at a position with a very high 

transmissivity (see Figure 4.8) compared to other regions. This is probably the other 

reason th a t the recovered da ta  at well WLG045 is not as accurate as th a t at other 

wells.

The recovered param eters have some “spikes” which make it difficult to see the 

shape. In order to better represent the shape of the recovered param eters, the figures 

of the recovered param eters shown in the following sections have been smoothed with 

our mollifier.

4.8. T he tran sm issiv ity  w ith in  th e  P ort W illu n ga  Form ation  A quifer

In our recovery, the transmissivity was assumed to be anisotropic. Figure 4.8 

shows the recovered transmissivity (the average conductivity of the aquifer can be 

obtained from the transmissivity by dividing by the aquifer height, approximately 

100 meters). We can see th a t the value of Tn is mostly larger, except near the C 

corner of the region. Prom this we can conclude th a t the conductivity in the Port 

W illunga Formation Aquifer is anisotropic; it is more conductible in the x  direction 

than  the y  direction. Figure 4.8 shows the actual Darcy flux q — —K V (^  direction.
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F i g u r e  4 .6 . Accuracy of Recovery -  1

(a) WLG006 (b) Error

(c) WLG014 (d) Error

(e) WLG045 (f) Error

(g) WLG051 (h) Error
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F ig u r e  4 .7 . A ccuracy  of Recovery ~ 2

(a) WLG055 (b) Error

(c) WLG060 (d) Error

(e) WLG064 (f) Error

(g) WLG067 (h) Error
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F i g u r e  4.8. Accuracy of Recovery -  3

(a) WLG069 (b) Error
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F ig u r e  4 .9 . The Darcy flux in the test region at January 12, 1998
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F ig u r e  4 .1 0 . T h e  recovered tran sm issiv ity  T

107

( a ) T11 (b) Coutour plot of Tu
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(c) r i 2 (d) Coutour plot of T 12

(e) T22 (f) Coutour plot of T2 2
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4.9. The storativity within the Port Willunga Formation Aquifer

The recovered storativity is shown in Figure 4.9. It can be seen th a t in most of 

the region, the storativity is small, around 2.7 x 10“"'̂ .

F ig u r e  4.11. The recovered storativity S

(a) 5 (b) Coutour plot of S

4 .10 . T he recharge w ith in  th e  F ort W illu n ga  F orm ation  A quifer

Figure 4.10, Figure 4.10, Figure 4.10, and Figure 4.10 show the recovered source/sink 

terms in the selected region. Positive values indicate inflow at those points, while 

negative values indicate outflow. We can see th a t the recharge, measured in units of 

kL/m ^/day, is changing gradually with respect to time. There is a big inflow in June 

and July and a big outflow in November and December.

From the figures we can see th a t near Point A, the area near McLaren Vale, which 

is the main rainfall recharge area of the Port W illunga Formation Aquifer, the inflow 

is high, especially in the winter. Near the line CD, the area closer to  the coast, the 

outflow is high in the summer, which indicates th a t the artificial pumping in this 

region is high.
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F i g u r e  4.12. The recovered source term R, January -  March, 1998
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F i g u r e  4.13. The recovered source term R, April -  June, 1998
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F i g u r e  4.14. The recovered source term R, Ju ly -  September, 1998
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F i g u r e  4.15. The recovered source term R, October -  December, 1998

0.75

0.5

0.25

''/ s-

(A- /  '
<

S's* S'

'4'

D

(a) October R io (b) Coutour plot of R w

(c) November R n (d) Coutour plot of R n

Vv-

~  Tiji l \  !

* i f
I /  ' V'|. /'■\  fp,V-b.\.'vV.A\'vV b'®/

(e) December R i i (f) Coutour plot of R \2

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



113

4.11. Sustainability

Gleick et al. [40] gave a useful definition of sustainable water use: “The use 

of water th a t supports the ability of human society to endure and flourish into the 

indefinite future without undermining the integrity of the hydrological cycle or the 

ecological systems tha t depend on it.” Gleick et al. presented the following seven 

sustainability criteria.

1. A minimum water requirement will be guaranteed to all humans to m aintain 

human health.

2. Sufficient water will be guaranteed to restore and m aintain the health of 

ecosystems. Specific amounts will vary depending on climatic and other 

conditions. Setting these amounts will require flexible and dynamic manage

ment.

3. W ater quality will be maintained to meet certain minimum standards. These 

standards will vary depending on location and how the water is to be used.

4. Human actions will not impair the long-term renewability of freshwater stocks 

and flows.

5. D ata on water resources availability, use, and quality will be collected and 

made accessible to  all parties.

6. Institutional mechanisms will be set up to prevent and resolve conflicts over 

water.

7. W ater planning and decision-making will be democratic, ensuring represen

ta tion  of all affected parties and fostering direct participation of affected 

interests.

These criteria can provide the basis for alternative “visions” for future water 

management and can offer some guidance for legislative and non-govermental actions 

in the future [40].
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In an area such as the W illunga Basin where groundwater is the main water 

resource, a relatively accurate record of recharge and discharge is especially impor

tan t in determining the “safe yield.” The main inflows include rainfall, underground 

streams, and the lateral inflow from the adjacent basement rocks. The outflows in

clude evapotranspiration, the outflow to underground streams, and pumping. Since 

our test region is near McLaren Vale, which is the main recharge area of rainfall in

filtration [66], rainfall is an im portant source to our test region. The other inflows 

of the Port Willunga Formation Aquifer are stream infiltration and the lateral inflow 

from adjacent aquifers. However, these inflows are difficult to measure. The discharge 

of the Port Willunga Formation Aquifer includes the outflow to the sea, the lateral 

flow to adjacent aquifers, and artificial well pumping. Also, heretofore it has been 

difficult to correctly estimate the overall discharge. Since R{t, x) =  Ri{t, x) — Ro{t, x), 

where Ri{t ,x)  and Ro{t,x)  denotes the inflow and outflow respectively, it represents 

the difference of the inflow and outflow with respect to time t and position x. By 

integrating R{t, x)  over the region, we can get the to ta l difference of the inflow and 

outflow.

We note th a t Ri{t, x) is the positive part of R{t, x)  and th a t Ro{t, x) is the negative 

part of R{t ,x ) ,  and integrate them  over the test rectangular region. We get the to tal 

inflow and outflow per month, as shown in Figure 4.11. We can see from the figure 

th a t the inflow is higher in the winter during the rainy season; the outflow is higher 

in the summer.

The to tal computed inflow and outflow are about 450 M L/year and 265 M L/year, 

respectively. Compared to the estim ated to tal rainfall of 1050 M L/year [66] for the 

Port W illunga aquifer, this number is reasonable (the inflow includes underground 

recharges). The ratio of the inflow and outflow from January 12, 1998, to January 

7, 1999, is approximately 1.70. In order to have a “safe yield,” this ratio  should be 

not less than  1; i.e., the inflow should be not less than  the outflow. Since the ratio 

here is 1.70, we assert th a t the aquifer (in our test region) is sustainable. Note th a t

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



115

since our test region is near the main recharge area of the Port W illunga Formation 

Aquifer, the inflow is probably high compared to the rest of the aquifer. This result 

need not reflect the whole aquifer’s sustainability.

To determine the sustainability of the whole basin, we need to calculate every 

aquifer’s inflow and outflow, since there are lateral flows between the aquifers. A 

more complete study along these lines should provide a quantitatively effective model 

of this aquifer system.

F igure 4.16. The inflow and outflow in the test region

C 38.5

Time

22.1

Time

(a) inflow (b) outflow
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INTEGER :: n v a r s ,n t s t e p ,v a r i a b l e ,v a r l ,v a r 2  
INTEGER, DIMENSIOM(IOO) :: vars  
REAL(PREC), DIMENSIDN(2) :: searchVal 
REAL(PREC) ;; begVal, endV al, s t e p s i z e
CHARACTER(LEN=5).DIMENSION(NUM+2) :: searchVar, s u c c e s s V a r ,fa i lV a r  
INTEGER :: n s u c c e s s ,  n f a i l
CHARACTER(LEN=1) ,DIMENSI0N(3) :: n a m e = ( /^ P \ ’Q’ , ’F V )
REAL(PREC), DIMENSION(NUM+1+NSUBIN,MGRID,NGRID) pqf_c

INTERFACE
SUBROUTINE d e s c e n t_ s e a r c h (v a l , c u t , s tep )

USE ntype
REAL(PREC),DIMENSION(:) v a l  
REAL(PREC) :; s tep  
LOGICAL :: cut  

END SUBROUTINE d escen t_ sea rch  
END INTERFACE

!c: BEGIN PROGRAM 
! c ;

!c: INITIALIZATION
I Q I ^ 9 | c 3 ( ( :{<:3̂:̂ ^ ^

CALL spawnTask(slave)

IF (n p lo t)  THEN 
DO 1=1, MGRID 
DO j = l ,  NGRID 

DO 11=1, NUM
p q f_ c ( 1 1 , i , j ) = tru ep ( 1 1 , i , j )

END DO
pqf_c(NUM+l,i, j )  = t r u e q d j j )
DO 11=1, NSUBIN

p q f_ c (N U M + l+ ll , i , j )  = t r u e f ( 1 1 , 1 , j )
END DO 

END DO 
END DO
CALL PLOTTING(home,name,NUM,pqf_c. ’T R U E ',a ,b .h a ,h b )

END IF

!c: GET VARIABLES NEED TO SEARCH

s te p s= l .0 _ p r e c  
nvars=0
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vars=0
DO k = l,  MUM+2

IF ( lo o p s(k )  /=0 ) THEN
v a rs (n v a rs+ 1 :n v a r s+ lo o p s(k )) =k 
nvars=nvars+loops(k)

END IF 
END DO
nvars=SUM(LOOPS)

IF (NUM==1) THEN 
searchV ar( ! ) = ’? 
search V ar(2)= ’Q 
searchV ar(3)= 'F  

ELSE
searchV ar(1 ) = ’P I 1 
searchV ar( 2 ) = 'P12 
searchV ar( 3 ) = ’ P22 
searchV ar( 4 ) = ’Q 
searchV ar( 5 ) = ’F 

END IF

!c; INITIALIZE i t e r _ s t e p

IF (newSearch) THEN 
i t e r _ s te p = 0  

ELSE
OPEN(UNIT=4, FILE=datapath, STATUS=’OLD’ , 1 

ACCESS=’SEQUENTIAL’ , ACTION=’READ’ ) 
READ(4 ,* )  i t e r _ s t e p  

CLOSE( 4 , STATUS=’KEEP')
END IF

!c :c c c c c c c c c c c c c c c c c c c c c c c c  
!c: MINIMIZE G
! c :

!c: BEGIN DESCENT LOOP
!c :c c c c c c c c c c c c c c c c c c c c c c c c

!C: BEGIN SEARCH LOOP

DO ip = l ,  i t e r p
i t e r _ s t e p = i t e r _ s t e p + l
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p r in t  * , ’ '
p r in t  *, ’ ’
p r in t  * , ’ * loop s tep  = ’ , i t e r _ s t e p ,  ' * ’
pX'in't *j  ̂ p|< 5f: sj;  ̂ >|c ̂  5|: :4: 5̂: 5̂: >|c ̂ 4: ̂  4:5 | ( i f ;  5|c 5t=:+: >|c ^

fail=.TRUE. 
nsuccess=0  
n fa i l= 0

DO i = l ,  NSUBIN
p r in t  *, ' time in t e r v a l :  i

DO j = l ,  SUM(LOOPS) 
v a r l= i
var2=vars(MOD(j + i t e r _ s t e p ,n v a r s ) +1) 
variable=varl*1000+var2
p r in t  *, ’ search v a r ia b le  : searchVar(var2)

!C: COMPUTE THE GRADIENTS 

CALL G rad(variab le)

!C: DESCENT SEARCH

s t e p s i z e = s t e p s ( v a r l , var2)
CALL d e s c e n t_ se a r c h (se a r c h V a l, c u t , s t e p s i z e )  
c a l l  se n d _ u p d a te (s te p s iz e )
IF ( s t e p s i z e  > smstep) s t e p s ( v a r l , v a r 2 ) = s te p s i z e * 0 . 75_prec

IF ( i= = l)  begV al=searchV aI(l)
su c c e ss= (se a r c h V a l( 1 ) >searchV aI(2 ) )
f a i l =  f a i l  .AND. ( sea rch V a l( l)< = se a rch V a l(2 ) )

p r in t  * 

p r in t  * 
p r in t  * 
p r in t  * 
p r in t  *

' cut = ’ , cut  
’ s t e p s i z e  = ’ , s t e p s i z e  
’ At b eg in n ig  G = ’ , s e a r c h V a l( l)  
’ At end G = ’ , search V al(2)

IF ( s u c c e s s )  THEN 
endV a l= s  e ar chVal(2) 
n su c cess= n su c cess+ l  
su ccessV ar(n su ccess)= searchV ar(var2)  

ELSE
n fa i l= n fa iI + 1
fa i lV a r (n fa i l )= s e a r c h V a r (v a r 2 )
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END IF 
END DO 
END DO

!C: p r in t  out search  r e s u l t

p r in t  ’ In This Loop: ’
IF (nsuccess>0) THEN

p r in t  ’ su ccess  v a r ia b le s  
p r in t  su ccessV a r( 1 : n su c cess )  

END IF
IF (n fa i l> 0 )  THEN 

p r in t  *, ’ I

p r in t  ’ f a i l e d  v a r ia b le s  : 
p r in t  f a i l V a r ( 1 :n f a i l )

END IF
p r in t  * 
p r in t  * 
p r in t  * 
p r in t  * 
p r in t  *

;  6 /  0 /  0 /  0 /  0 /  07 0 /  0 /  OJ 07 0 /  0 /  0 /  0 /  0 /  0 /  0 /  07 0 /  0 /  0 /  0 /  07 0 /  0 /  0 /  0 /  0 /  0 /  07 0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  j
/o /o /o /o /o /o /o /o /o /o /o /o /o /e /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o

’ Beginning : G = ’ , begVal 
’ End : G = ’ , endVal
p 0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  >

/o /o /o /o /o /o /o /o /o /o /o /o /o /o /c /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o

!C: IF SEARCH FAILED, EXIT SEARCH

fail=.FALSE.
IF ( f a i l )  THEN

PRINT ’ TOTAL ITERATION STEPS: i t e r . s t e p
CALL StopProgramO 

END IF 
END DO 

END PROGRAM fl_ m a ster

FUNCTION g e tG (c u t-d ir )
USE ntype
USE pvm, ONLY : sen d _gstep , getD ata  
IMPLICIT NONE
REAL(PREC), IMTENT(IN) :: d ir  
LOGICAL, INTENT(IN) :: cut  
REAL(PREC) :: getG

!C: SEND OUT SEARCH STEPSIZE 

CALL se n d _ g s te p (c u t ,d ir )
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!C: GET G VALUE

CALL getD ata(getG )  
END FUNCTION getG
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lbd=>FL_lbd, u b d = > fl_ u b d ,n n p lo t= > fl_ n n p lo t , 
n p lo t s t e p = > f l_ n p lo t s t e p , lo o p s = > f l_ lo o p s , & 
no_bndry_value=>fl_no_bndry_value  

USE path , ONLY : home=>fl.home, datapath=>fl_datapath  
USE u t i l ,  ONLY : p a c k ,u n p a c k ,p lo t t in g  
USE PVM, ONLY : n _ id ,n _g ,n _pc ,n _p cc ,n_u ,n_p ara ,n _ecd ,&

n_hvec ,n_upd ate , n_stop  
USE fl_ s lv_m od , ONLY : s p c ,n e q ,p c c , l f a c t o r  
IMPLICIT NONE 
INCLUDE ’fpvfflS.h’

INTERFACE
: SUBROUTINE in it ( lm d v e c )

USE ntype
INTEGER, DIMENSION(:) :: Imdvec 

END SUBROUTINE i n i t

SUBROUTINE n b g (v a r l , var2)
USE ntype
INTEGER :: v a r l ,v a r 2  

END SUBROUTINE nbg

SUBROUTINE compG(varl, v a r 2 , c u t , s t e p , G)
USE ntype
INTEGER :: v a r l , v a r 2 , cut  
REAL(PREC) ;: s tep ,G  

END SUBROUTINE compG 
END INTERFACE

!C: LOCAL VARIABLES

INTEGER :: m ytid , p a ren t id
REAL(PREC), DIMENSION(NSUBIN) :: funG

REAL(PREC) : : gaimna,g
INTEGER ;; n v a r , n t v a r , v a r , v a r 1 ,v a r 2 , i p t e r , cut 
INTEGER,DIMENSION(1000) :: vars  
LOGICAL ;: p l o t S i t e

DOUBLE PRECISION, DIMENSION(MGRID*NGRID) :: vec  
INTEGER,DIMENSION(LMAX) :: Imdsvec
INTEGER :: m s g t y p e ,n in i t , b u f id ,  t i d ,  i e r r , b y t e s , ib u f ,k  

!C: BEGIN PROGRAM
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!C
!C
!C
!C
!C

!C
!C
!C

ENROLL THIS PROGRAM, REQUIRED BY PVMD

CALL PVMfmytid(mytid)
CALL PVMfparent(parentid)

CALL i n i t 1 ( n v a r ,v a r s , ip t e r )

ijs 5̂ 5jc 3̂ 3̂ 3|c 3̂ 3̂ 3̂ 3|C 3|C 3|C 3̂ ̂  3̂ 3|C 3̂ 3jc 3̂ 3̂ 3jc 3̂ 3̂C 3̂ 3|c 3̂ 5|c 3|C 3|s 3|c 3̂
BEGIN LOOP OF RECEIVING DATA

DO WHILE(.TRUE.)
CALL PVMfrecv(parentID, - 1 ,  b u fid )
CALL PVMfbufinf0 ( b u f i d ,b y t e s ,m sgtype, t i d , i e r r )

SELECT CASE (msgtype)

!C RECEIVE INFORMATION:
!C NUMBER OF lambdas

CASE (n_id)
CALL PVMfunpack(INTEGER4,neq,1 , 1 , i e r r )
CALL PVMfunpack(INTEGER4,Imdsvec( 1 ) , n e q , l , i e r r )  
IF (Im dsvec(1)==1) THEN 

plotSite=.TRUE.
ELSE

plotSite= .FALSE.
END IF

!C INITIALIZE THE PARAMETERS:
!C READ IN SOURCE DATA, a lpha AND b e ta

CALL in it (Im d sv e c )

!C: COMPUTE THE FUNCTIONAL G 
!C: (AT INITIAL POINT)

cu t= l
gamma=0. 0_prec  
var2=l
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DO varl=l,NSUBIN
CALL compG(var1 ,v a r 2 , c u t , gamma,g) 
funG (varl)=g  

END DO

!C: GET THE SEARCHING VARIABLE

varl=0
var2=0
ntvar= l
ip te r = ip te r + l
varl=MGD(varl, NSUBIN)+1
var2=vars(M OD(ntvar+ipter, nvar)+1)
var=var1*1000+var2

!C: COMPUTE GRADIENT AT ( p ,q , f ) _ 0  

CALL n b g (v a r l ,v a r2 )

!C: SEND BACK THE GRADIENT;
!C: SUM_{i=l,neq} (G_i)

k=SIZE(pcc, 1 ) *SIZE(pcc,2)
CALL p a c k ( v e c ( l : k ) , p c c ( : , : ) )

CALL P V M fin itsen d (n _ecd ,ib uf)
CALL PVMfpack(INTEGER4, v a r , 1 , 1 , i e r r )
CALL PVMfpack(INTEGER4,k,1 , 1 , i e r r )
CALL PVMfpack(REAL8,vec(l),k,1 , i e r r ) .
CALL PVMfsend(parentID, n_hvec, i e r r )

!C: RECEIVE THE GRADIENT:
!C: SUM_{i=l,N} (G_i)

CASE (n_pcc)
CALL PVMfunpack(INTEGER4,ninit, 1 , 1 , i e r r )  
CALL PVMfunpack(REALS,vec( 1 ) , n i n i t , 1 , i e r r )

CALL u npack(vec(1 :n i n i t ) , pcc)

!C: STOP THE PROGRAM DUE TO
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!C: REQUEST BY THE SERVER PROGRAM
!C: THERE IS BUG DUE TO PVM, FOR THIS ROUTINE

CASE (n_stop)
IF ( p lo t S i t e )  THEN 

CALL p l o t ( i p t e r , ! )
END IF
CALL P V M fexit(ierr)
STOP 

CASE (n_pc)
CALL p l o t ( i p t e r , ! )

!C; UPDATE THE RECOVERED PARAMETERS
!C; RECEIVE THE gamma VALUE USED IN H = H + gamma \n a b la  H

CASE (n_update)
CALL PVMfunpack(REALS, gamma, ! , ! , i e r r )

!C; UPDATE ( p ,q , f )  TO ; ( p , q , f ) _ { i }

IF (gamma > ! .0 e - 2 0 )  THEN 
IF (var2<NUM+2) THEN 

k=var2 
ELSE

k=MUM+!+var!
END IF
s p c ( k , : , : ) = s p c ( k , : , : )+gamma*pcc

!C: IN CASE NO BOUNDARY VALUES ARE GIVEN 
!C: THE INSIDE VALUES ARE PROPAGATE TO 
!C: THE BOUNDARY:

IF (no_bndry_value) THEN
s p c ( k , ! : I f a c t o r , : ) = s p c ( k , 2 :I f a c t o r + ! , : )  
spc(k,MGRID-lfactor+!:MGRID,:)= &

spc(k,MGRID-lfactor:MGRID-1,:) 
s p c ( k , : , ! : l f a c t o r ) = s p c ( k , : , 2 : l f a c t o r + ! )  
s p c ( k , : ,N G R ID -lfactor+!:NGRID)= &

s p c ( k , : ,NGRID-lfactor:NGRID-!)
END IF

!C: CUTOFF THE VALUES EXCEEDED THE

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



135

!C: LOWER AND UPPER BOUNDS

WHERE ( s p c ( k , : , : )< lb d (v a r 2 ))  s p c ( k , : , ; )= lb d (var2 )  
WHERE ( s p c ( k , : , : )>ubd(var2)) s p c ( k , : , : )=ubd(var2)

IF (var2<NUM+2) THEN 
DO k=l,NSUBIN

CALL compG(k, v a r 2 , c u t , 0 . 0 _ p rec , g) 
funG(k)=g  

END DO 
ELSE

IF (cut==0) CALL co m p G (v a r l ,v a r 2 ,c u t ,0 .0 _ p r e c ,g )  
funG (varl)=g  

END IF 
END IF

!C; PLOT THE RECOVERED PARAMETERS (IF REQUIRED)
!C: NOTE WE ONLY SAVE THE DATA TO A FORMAT THAT
!C: THE t e c p lo t  SOFTWARE CAN READ IT

IF ( p lo t S i t e )  THEN
IF (M OD(ipter,nnplot)==0) CALL p l o t ( i p t e r ,2)
IF (M O D (ipter ,nplotstep)==0) CALL p l o t ( i p t e r , l )

END IF

!C: GET THE NEXT SEARCHING VARIABLE

ntvar=MOD(ntvar, nvar)+1 
IF (n tvar= =l)  THEN 

var1=M0D(varl, NSUBIN)+1 
IF (v a r l= = l)  ip t e r = ip t e r + l  

END IF
var2=vars(M OD(ntvax+ipter, nvar)+1) 
var=varl*1000+var2

!C: COMPUTE GRADIENT AT ( p , q , f ) _ i  

CALL n b g (v a r l ,v a r 2 )

!C: SEND BACK THE GRADIENT:
!C; SUM_{i=l,neq} (G_i)
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k=SIZ E (pcc,l)*SIZ E (pcc,2)
CALL p a c k (v e c ( 1 : k ) ,p c c ( ; , : ) )

CALL P V M fin itsen d (n _ecd ,ib u f)
CALL PVMfpack(INTEGER4, v a r , 1 , 1 , i e r r )
CALL PVMfpack(INTEGER4, k , 1 , 1 , i e r r )
CALL PVMfpack(REALS,vec( 1 ) , k , l , i e r r )
CALL PVMfsend(parentID, n_hvec, i e r r )

!C: COMPUTE G, RECEIVE ganma
!C; THEN COMPUTE G(c+gainina \n a b la  g)

CASE (n_g)
CALL PVMfunpack(INTEGER4, c u t , 1 , 1 , i e r r )
CALL PVMfunpack(REALS,vec( 1 ) , 1 , 1 , i e r r )  
gajnma=REAL(vec(l) ,KIND=PREC)

!C: COMPUTE f u n c t io n a l  G

IF (gamma == 0 .0 _ p rec )  THEN 
g=funG (varl)

ELSE
IF (var2/=NUM+l) THEN

CALL compG(var1 ,var2 ,cut,gam m a,g)
ELSE

DO k=l,NSUBIN
CALL compG(k, var2 , c u t , gamma,funG(k)) 

END DO 
g=funG (varl)

END IF 
END IF

gamma=0. 0_prec  
DO k=l,NSUBIN

IF (k==varl) THEN 
gamma=gamma+g 

ELSE
gamma=gamma+funG(k)

END IF 
END DO

CALL P V M fin itsend(n _ecd ,ibuf)
CALL PVMfpack(REALS, dble(gamma), 1 , 1 , ie r r )
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CALL PVMfsend(parentID,n_g, ierr)

END SELECT 
END DO

!C: SUBROUTINES 

CONTAINS

!C: THIS SUBROUTINE SAVE THE DATA P, Q, R TO THE FILES P l l . d a t ,
!C: P 1 2 .d a t ,P 2 2 .d a t  AND Q.dat ,  R.dat r e s p e c t i v e l y .
!C: THE FORMAT OF THE FILES ARE COMPATIBLE WITH t e c p l o t  PROGRAM SO 
!C: THAT THE GRAPH CAN BE VIEWED WITH TECPLOT PROGRAM

SUBROUTINE p l o t ( f l a g l , f l a g 2 )
USE para,  ONLY : NUM => FL_NUM,a,b,ha,hb 
INTEGER, INTENT(IN) :: f l a g l , f l a g 2
CHARACTER(LEN=1), DIMENSION(3) ;; name=(/’P ’ , 'Q’ , ' F V )

IF ( f l a g 2  == 1) THEN
CALL PLOTTING(home, name, NUM, s p c , i p t e r , a , b , h a , hb)
OPEN(UNIT=4, FILE=datapath, STATUS=’REPLACE’ , &

ACCESS=' SEQUENTIAL’ , ACTION=’WRITE’ )
WRITE(4 ,* )  f l a g l  
do k = l ,  nsubin+l+num 

WRITE(4,*) s p c C k , : , : )  
end do 

CLOSE( 4 , STATUS=’KEEP’ )
ELSE IF (f lag2==2) THEN

CALL PLOTTING(home, name, NUM, s p c , 0 , a , b , h a , hb)
END IF 

END SUBROUTINE p l o t

!C; THIS SUBROUTINE SET THE SEARCH VARIABLES 
!C; AND INITIAL VALUES OF THE VARIABLES

SUBROUTINE i n i t 1 (n var , v a r s , i p t e r )
USE ntype
USE para ,  ONLY ; MGRID,NGRID,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN, & 

loops=>FL_loops , newSearch=>f l_newSearch, Sc 

pcO=>fl_pcO 
USE para_func,  ONLY : tru eP , tru eQ , tru eF  
USE f l_s lv_m od ,  ONLY ; spc
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IMPLICIT NOME
INTEGER,INTENT(OUT) :: n v a r , i p t e r
INTEGER,DIMENSION(:),INTENT(OUT) :: vars

INTEGER i , j , k

!C: GET SEARCHING VARIABLES

nvar=0
vars=0
DO k=l ,  NUM+2

IF ( loop s (k )  /=0 ) THEN
v a rs (n var+ 1:n v a r + lo o p s (k ) ) =k 
nvar=nvar+loops(k)

END IF
END DO
nvar=SUM(LOOPS)

!C; INITIALIZE p , q , f

IF (newSearch) THEN 
ip ter=0  
DO k = l ,  NUM

IF ( lo o p s (k )  /=0 ) THEN 
s p c ( k , : , : )=pcO(k)

ELSE
DO i=l,MGRID 
DO j=l,NGRID

s p c ( k , i , j ) = tru eP (k , i , j )
END DO 
END DO 

END IF 
END DO
IF (loops(NUM+l)/=0) THEN 

spc(NUM+l,: , :)=pcO(NUM+l)
ELSE

DO 1=1,MGRID 
DO j=l,NGRID

!spc(NUM+1 , i , j ) =trueQ( i , j )
END DO 
END DO
spc(NUM+l,: , :)=pcO(NUM+l)

END IF
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IF (loops(NUM+2)/=0) THEN
spc(NUM+2;NUM+1+NSUBIN,: , : ) =pcO(NUM+2)

ELSE
DO i=l,MGRID 
DO j=l,NGRID 
DO k=l,NSUBIN

spc(NUM+l+k, i , j ) = tru eF (k , i , j )
END DO 
END DO 
END DO 

END IF 
ELSE

0PEN(UNIT=4,FILE=datapath,STATUS='0LD', &
ACCESS=’SEQUENTIAL’ , ACTION=’READ’ )

READ(4 ,+)  i p t e r  
do 1=1, nsubin+l+num 

READ(4 ,* )  s p e d , : , : )  
end do 

CLOSE( 4 , STATUS=’KEEP’)
END IF 

END SUBROUTINE i n i t l

END PROGRAM f lo w _ s la v e

!C; THIS SUBROUTINE ALLOCATE THE VARIABLES, SET THE LAMBDA VALUES 
!C: AND READ IN THE SOURCE DATA u AND alpha,  b e ta

SUBROUTINE in i t ( Im d v ec )
USE ntype
USE para,  ONLY : MGRID,NGRID,a,b,ha,hb,lambda,TSIZE, &

refineData=>fl_refineData,NUM=>FL_NUM, & 
NSUBIN=>FL_NSUBIN 

USE para_func,  ONLY : t r u e P , t r u e Q , t r u e F , fb  
USE path,  ONLY : s o u r c e = > f l_ s o u r c e , fl_home  
USE u t i l ,  ONLY : createArray  
USE d i r ,  ONLY : d ir
USE f l _ s l v _ m o d ,  ONLY : s u u , s u x , s u y , s b n d r y , a l p h a , b e t a , I m d s , &

u u , u x , u y , t u , t u x , t u y , s t u , s t u x , s t u y , p e t ,& 
neq , count

IMPLICIT NONE
INTEGER,DIMENSION(;), INTENT(IN) Imdvec 

REAL(PREC),DIMENSI0N(NSUBIN+1,MGRID,NGRID) :: tbU
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INTERFACE 
SUBROUTINE s o l v e ( p c , k ,u u ,u x ,u y )

USE ntype
REAL(PREC),DIMENSIDN(:, : , : :  p c ,u u ,u x ,u y  
INTEGER ;: k 

END SUBROUTINE s o lve  
END INTERFACE

INTEGER :: i j , k  
REAL(PREC) :: Imd
REAL(PREC),DIMENSI0N(NSUBIN+1) :: tv ec

!C: ALLOCATE VARIABLES

suu => createArrayCNSUBIN,neq,MGRID,NGRID,’ s l a v e ' )  
sux => createArray(NSUBIN,neq,MGRID,NGRID,’s l a v e ’ ) 
suy => createArray(NSUBIN,neq,MGRID,NGRID,’s l a v e ’ ) 
sbndry => createArray(NSUBIN,neq,4 , NGRID,’ s l a v e ’ )

alpha => createArray(NSUBIN,neq,MGRID,NGRID,’ s l a v e ’ ) 
b e ta  => createArray(NSUBIN,neq,’ s l a v e ’ )
Imds => c r e a te A r r a y (n e q , ’ s l a v e ’ )

uu => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
ux => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
uy => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
t u  => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
t u x -  => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
tuy  => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
s t u  => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
s tu x  => createArray(neq,MGRID,NGRID,’ s l a v e ’ 
s tu y  => createArray(neq,MGRID,NGRID,’s l a v e ’

!C: SET THE TIME INTERVALS

lmd=tsize/NSUBIN 
DO k=0, NSUBIN 

tvec(k+l)=k*lmd  
END DO

!C: SET THE LAMBDA VALUES
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DO k =l ,n eq
Imds(k)=lmdvec(k)*lambda  

END DO

!C: READ IN SOURCE DATA

OPEN(UNIT=4, FILE=source, STATUS=’OLD \  &
ACCESS=’SEQUENTIAL’ , ACTION=’READ’ )

READ(4 ,* )  tbU 
DO k=l ,  Imdvec(1)-1  

READ (4 ,* )  s u u ( : , 1 , : ,
END DO 
DO k=l ,  neq

READ (4 ,* )  s u u ( : , k , ; , : )
END DO 

CLOSE( 4 , STATUS=’KEEP 0

sbndryC:, 1 : n e q ,1 , 1 : NGRID)=suu(; , l : n e q , l , ;) 
sbndry( : , 1 :n eq ,2 , 1 : NGRID)=suu(; , l : n e q , m g r i d , :) 
sbndry( ; , 1 : n e q , 3 , 1 :MGRID)=suu(: , 1 : n e q , : ,1 )  
s b n d r y ( : , l : n e q , 4 , 1 : MGRID)=suu(; , l :neq , : ,ngr id )

!C: COMPUTE THE DERIVATIVES

DO k=l,NSUBIN 
u u = s u u (k , : , : , : )
CALL d i r ( u u ( : , : , : ) , u x ( : , : , : ) , u y ( : , : , ; ) , a ,b , h a , hb) 
s u x ( k , : , : , : )=ux 
suyCk,: , : , :)=uy  

END DO

!C: COMPUTE alpha,  b e ta

DO k = l ,n eq  
lmd=lmds(k)
DO 1=1 ,NSUBIN

a l p h a d  , k , : , : ) = t b U ( i + l ,: , :) *exp(- lm d*tvec  ( i + 1 ) ) &
-  t b U ( i , : , : ) * e x p ( - l m d * t v e c ( i ) )

b e t a C i , k ) = ( e x p ( - l m d * t v e c ( i ) ) - e x p ( - l m d * t v e c ( i + 1 ) ) ) /Imd 
END DO 

END DO
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!C: RECOMPUTE SOURCE DATA, IF REQUIRED

IF (r e f in e d a ta )  THEN 
DO i=l,MGRID 
DO j=l,NGRID 

DO k=l,NUM
p e t ( k , i , j ) = tr u e P (k , i , j )

END DO
pet(MUM+1, i , j ) = t r u e Q ( i , j)

END DO 
END DO

DO k=l,MSUBIN 
DO i=l,MGRID 
DO j=l,NGRID

pet(NUM+2, i , j ) = tru eF (k , i , j )
END DO 
END DO
CALL s o lv e C p c t ,k ,u u ,u x ,u y )  
suuCk,: , : , : )=uu 
suxCk,: , : , : )=ux 
suyCk,: , : , : )=uy 

END DO

END IF 
END SUBROUTINE i n i t

!C: THIS SUBROUTINE COMPUTE THE (NEUBERGER) GRADIENT OR L~1 GRADIENT 
!C: FOR THE DESCENT DIRECTION OF THE SEARCHED VARIABLES

SUBROUTINE nbgCvarl ,var2)
USE ntype
USE para,  ONLY : MGRID,NGRID,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN
USE e l l s o v ,  ONLY : E l l i p t i e _ S o l v e r
USE u t i l ,  ONLY : paek
USE simpson, ONLY : quad2d
USE f l_s lv_m od ,  ONLY : s p e , s u u , s u x , s u y , n e q , u u , u x , u y , t u , t u x , t u y ,&

qNbg, fNbg, s t u , s t u x , s t u y , p e t , trap, g i n v , a lp h a , 
b e t a , Irads,p e e , eount  

USE path,  ONLY : horae=>fl_horae

IMPLICIT NONE
INTEGER,INTENT(IN) :: v a r l , v a r 2
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INTERFACE
SUBROUTINE s o lv e ( p c , k , u u , u x , u y )

USE ntype
REAL(PREC),DIMENSION(:, ; , : :  p c ,u u ,u x ,u y  
INTEGER :: k 

END SUBROUTINE s o lve  
END INTERFACE

!C: LOCAL VARIABLES 

INTEGER :: k ,11

!C: THERE IS A BUG HERE, WE HAVE TO SET THE PROGRAM TO PRINT 
!C: SOMETHING, OTHERWISE THE PROGRAM WILL STOP

p r in t  *, ' H i '
p c t ( l :N U M +l , : , : ) = s p c ( l :NUM+1, : , ; )  
pet(NUM+2, : , : )=spc(NUM+l+varl , : , : )

!C: GET THE SOLUTION OF
!C: - \ n a b l a  p \n a b la  u + ( \lambda u + alpha)  q = f
!C: CORRESPONDING TO VARIABLES v a r l  AND var2

CALL s o lv e C p c t , v a r l , t u , t u x , t u y )
uu=suu(varl
ux=sux(varl
u y=su y(var l ,

g inv=0 .0_prec

!C; COMPUTE THE L~1 GRADIENT

IF (NUM==1) THEN 
SELECT CASE (var2)

CASE (1)
DO k = l ,  neq

g in v = g in v + tu x (k , ; , : ) * t u x ( k , : , : ) + t u y ( k , : , : ) * t u y ( k , ; , : )  
- u x ( k , : , : ) * u x ( k , : , : ) - u y ( k , : , : ) * u y ( k , : , : )

END DO 

CASE (2)
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DO k =l ,  neq 
ginv=ginv &

+ l m d s ( k ) * ( t u ( k , : , : ) * t u ( k , : , : ) - u u ( k , : , : )*uu(k ,  : , 
+ 2 . 0 _ p r e c * a l p h a ( v a r l , k , : , ; ) * ( t u ( k , ; , ; ) - u u ( k , : ,

END DO

CASE DEFAULT 
DO k=l ,  neq

g i n v = g in v + b e t a (v a r l , k ) * ( u u ( k , : , : ) - t u ( k , :,
END DO 

END SELECT 
ELSE

SELECT CASE (var2)
CASE (1)

DO k =l ,  neq
g in v= g in v+ tux(k , : , : ) * t u x ( k , : , : ) - u x ( k , : , : ) *ux(k ,: , :)

END DO

CASE (2)
DO k =l ,  neq

g in v= g in v+ tux(k , : , : ) * t u y ( k , ; , : ) - u x ( k , : , : ) * u y(k , : , : )
END DO

CASE (3)
DO k=l ,  neq

g in v = g in v + tu y (k , : , : ) * t u y ( k , : , : ) - u y ( k , : , : ) * u y(k , ; , : )
END DO

CASE (4)
DO k = l ,  neq 

ginv=ginv &
+lmds(k)* ( t u ( k , ; , : ) * t u ( k , : , : ) - u u ( k , : , ; ) *uu(k , : , : ) )  
+ 2 . 0 _ p r e c * a l p h a ( v a r l , k , : , ; ) * ( t u ( k , : , : ) - u u ( k , ; , : ) )

END DO

CASE DEFAULT 
DO k = l , neq

g i n v = g i n v + b e t a ( v a r l , k ) * ( u u ( k , : , : ) - t u ( k , :,
END DO 

END SELECT 
END IF

!C: COMPUTE THE NEUBERGER GRADIENT (IF REQUIRED)

IF ((var2<NUM+l) .OR. (var2==NUM+l .AND. qNbg) &
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.OR. (var2==NUM+2 .AND. fNbg) ) THEN 
p e t ( 1 , 0_prec  
p c t ( 2 , : , : )=0 .0_prec  
p e t ( 3 , : , : ) = 1 . 0_pree
CALL E l l i p t i e _ S o l v e r ( p e t ( l ; 3 , : , , p e t ( l , : , ,  &

g i n v , p e t ( 2 , 1 : 4 , : ) ,h a ,h b ,p ee )
ELSE

pec=ginv  
END IF 

END SUBROUTINE nbg

!C: THE SUBROUTINE CALLS THE ELLIPTIC SOLVER TO SOLVE THE EQUATIONS AND 
!C: THE NUMERICAL DERIVATIVES OF THE CORRESPONDING SOLUTION FUNCTIONS

SUBROUTINE s o l v e ( p e , n , u u , u x , u y )
USE ntype
USE para,  ONLY : a,b,ha,hb,lambda,NUM=>FL_NUM 
USE e l l s o v ,  ONLY : E l l i p t i c _ S o l v e r  
USE d i r ,  ONLY : d ir
USE f l_ s lv_mod,  ONLY : s b n d r y , a l p h a ,b e t a , p v , q v , f v , n e q , I m d s , count
use path,  only : home=>fl_home
IMPLICIT NONE
INTEGER,INTENT(IN) :: n
REAL(PREC).DIMENSIONC:, : , ,INTENT(IN) :: pc 
REAL(PREC),DIMENSION(:, : , ,INTENT(OUT) :: u u ,ux ,uy

INTEGER k , i , j  
DO k=l,NUM

p v ( k , : , : ) = p c ( k , : , : )
END DO
IF (NUM==1) THEN 

p v ( 2 , : , ; )=0 .0_prec  
p v ( 3 , : , : ) = p v ( l , : , : )

END IF

DO k= l ,n eq
qv=lmds(k)*pc(NUM+1, : , : )
fv=bGta(n,k)*pc(NUM+2, : , : ) - a l p h a ( n , k , : , : ) *pc(NUM+1, : , : )

CALL E l l i p t i c _ S o l v e r ( p v , q v , f v , s b n d r y ( n , k , : , : ) , h a , h b , u u ( k , : , : ) )  
END DO
CALL d i r ( u u ( l : n e q , : , , u x ( l : n e q , ; , : ) , u y ( l : n e q , : , , a ,b , h a , h b )

END SUBROUTINE so lv e
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!C: THIS SUBROUTINE COMPUTE THE FUNCTIONALS G_i

SUBROUTINE compG(varl , v a r 2 , c u t , step,G)
USE ntype
USE para,  ONLY : MGRID,NGRID,a,b,ha,hb,NUM=>FL_NUM,

NSUBIN=>FL_NSUBIN, lbd=>fl_ lbd,ubd=>fl_ubd  
USE Simpson, ONLY : quad2d 
USE u t i l ,  ONLY : p o s i t i v e
USE f l_s lv_m od,  ONLY ; neq ,Imds, s u u , s u x , s u y , s p c , p c c , p e t , &

uu, u x , u y , t u , t u x , t u y , s t u , s t u x , s t u y , tmp , count  
use path,  only  ; home=>fl_home

IMPLICIT NOME
INTEGER, INTENT(IN) :: v a r l , v a r 2 , cut  
REAL(PREC), INTENT(IN) :: s t ep  
REAL(PREC), INTENT(OUT) G

INTERFACE
SUBROUTINE s o l v e ( p c , n ,u u ,u x ,u y )

USE ntype
R E A L ( P R E C ) , D I M E N S I O N ( : :: p c ,u u ,u x ,u y  
INTEGER :: n 

END SUBROUTINE 
END INTERFACE

!C: LOCAL VARIABLES 

INTEGER :; k

!C; COMPUTE t u , t u x , t u y  a t  p+h

p e t ( 1 : NUM+1,: , : ) = s p c ( l :NUM+1, : , ; )  
pet(NUM+2,: , : )=spc(NUM+l+varl, : , : )  
p e t ( v a r 2 , : , : ) = p c t ( v a r 2 , : , : ) +step*pcc

!C
!C
!C
!C
!C
!C
!C
!C
!C

IF WE MEED TO CHECK THE UPPER AND LOWER BOUND, THEN cu t= =l .
THIS SET WILL USUALLY MAKE THE SEARCH EFFICIENT, BUT WILL STUCK 
AT SOME SEARCHING STEP. SO WE SET THE VARIABLE cut TO BE 1 AS 
LONG AS THE SEARCH IS SUCCESSFUL. IF AT SOME STEP THE SEARCH IS 
FAILED THEN WE RESET cut TO BE 0 SO THAT WE CAN MAKE FURTHER 
SEARCH. THE CONTROL OF THE VARIABLE IS BY THE SERVER PART OF 
THE PROGRAM.
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IF (cut==l)  THEN
WHERE ( p e t ( v a r 2 , : , ; ) < l b d (v a r 2 ) ) p e t ( v a r 2 , ; , : ) =lbd(var2)
WHERE ( p e t (v a r 2 , : , : ) >ubd(var2)) p e t (v a r 2 , : , : ) =ubd(var2)

END IF

!C: IF p IS NOT POSITIVE, EXIT BY ASSING G A VERY BIG VALUE TO TELL 
!C; THE SERVER PART THAT SEARCHING IS FAILED. OTHERWISE, WE COMPUTE 
!C; THE SOLUTION OF EQUATION

IF (.NOT. p o s i t i v e ( p e t ( l : N U M , : , : ) ) )  THEN 
G=1000. 0_pree  
RETURN 

END IF

CALL s o l v e ( p e t , v a r l , t u , t u x , t u y )
uu=suu(varl
ux=sux(varl
uy=su y(var l ,

!C: COMPUTE FUNCTIONAL G AT: ( p , q , f ) _ { i } + a * h

tmp=0.0_pree  
DO k=l ,  neq

IF (NUM==1) THEN
tmpC: , : )=tmp(: , : ) + p c t ( l , : , : )  &

* ( ( t u x ( k , : , : ) - u x ( k , : , : ) ) * ( t u x ( k , : , : ) - u x ( k , : , : ) )  &
+ ( t u y ( k , : , : ) - u y ( k , : , : ) ) * ( t u y ( k , : , : ) - u y ( k , : , : ) ) )

ELSE
tmp( : , : ) =tmp( : , : )  &

+ p e t ( l , : , : ) * ( t u x ( k , : , : ) - u x ( k , : , : ) ) * ( t u x ( k , : , : ) - u x ( k , : , : ) )  & 
+2*pc t ( 2 , : , : ) * ( t u x ( k , : , : ) - u x ( k * ( t u y ( k , : , : ) - u y ( k & 
+ p c t ( 3 , : , : ) * ( t u y ( k , : , : ) - u y ( k , : , : ) ) * ( t u y ( k , : , : ) - u y ( k , : , : ) )

END IF 
END DO 
tmp=tmp 
DO k = l ,n eq

tmp=tmp+pct(NUM+1, : , : ) * lm ds(k)* ( t u ( k , : , : ) - u u ( k , : , : ) )  &
* ( t u ( k , : , : ) - u u ( k , : , : ) )

END DO
CALL quad2d(tmp,a ,b ,ha,hb,G)

END SUBROUTINE compG
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MODULE f l_ laplace_mod  
USE ntype
USE para, ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIN,NUM=>FL_NUM
REAL(PREC).DIMENSION(NUM+1+MSUBIN,MGRID,NGRID) :: spc
REAL(PREC).DIMENSION(MGRID.NGRID) :: vec
REAL(PREC).DIMENSION(2) rO
REAL(PREC) :: c o n s t= 0 .4665123934
LOGICAL :: smooth=. FALSE.

END MODULE fI_laplace_mod

PROGRAM Iaplace_transform  
USE ntype -
USE para.  ONLY : LMAX.MGRID.NGRID.NSTEPS.TSIZE.lambda.ha.hb.a.b.h.fe 

NSUBIN=>FL_NSUBIN, compare=>FL_compare 
USE path.  ONLY : s o u r c e = > f l _ s o u r c e .o r i g p h i = > f l _ o r i g p h i . &

compphi=>fl_compphi 
USE u t i l .  ONLY : q s im p .p lo t t in g  
USE f l_ laplace_mod  
USE quad2d. ONLY : quad2d_qgaus

IMPLICIT NONE
REAL(PREC). DIMENSION(NSUBIN+l.MGRID.MGRID) :: tbU 
REAL(PREC), DIMENSION(NSUBIN,LMAX,MGRID,NGRID) :: u 
REAL(PREC), DIMENSION(NSUBIN.NSTEPS+l.MGRID.NGRID) :: data  
REAL(PREC). DIMENSION(NSUBIN*NSTEPS+1,MGRID,NGRID) phi  
REAL(PREC), DIMENSION(NSTEPS+1) :: func  
REAL(PREC) t , t t . tO , t l , Imd.hx.hy , dump
INTEGER :: k . 1 1 , i , j , i t  
CHARACTER(LEN=100) :: f i l e p h i

!C: READ IN SOURCE DATA

p r in t  ' Read in  d a t a ’
OPEN(UNIT=4, FILE=ORIGPHI, STATUS=’OLD’ , &

ACCESS=’SEQUENTIAL’ , ACTION=’READ’ )
DO k=l ,  5

READ(4 ,* )  dump 
END DO
DO k=l ,  NSUBIN*NSTEPS+1 

READ (4 .* )  dump 
DO i = l .  MGRID 
DO j = l ,  NGRID

READ ( 4 ,* )  p h i ( k . i . j )
END DO
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END DO 
END DO 

CLOSE( 4 , STATUS=’KEEP')

!C: PLOT THE DATA AT TIME=10, 2 0 ,  30,  . . .
1

DO k=l ,  NSUBIN*NSTEPS, 30 
! CALL PLOTTING(phi(k,: , : ) , ' p h i ' , "  , a ,b ,h a ,h b )
! pause 'Check the  graph r e s u l t '

END DO

!C: SMOOTH THE DATA (IF REQUIRED)

p r in t  *, ' smooth data'
IF (smooth) THEN 

hx=ha/(MGRID-1) 
hy=hb/(NGRID-1)
DO k = l ,S I Z E ( p h i , l )  

p r in t  *,  ' k = ' ,  k 
v e c = p h i ( k , : , ; )
DO i=l,MGRID

r O ( l ) = a + h x * ( i - l )
DO j=l,NGRID

r 0 ( 2 ) = b + h y * ( j - l )
CALL quad2d_qgaus(rO( 1 ) - h , rO( 1 ) +h, p h i ( k , i , j ) )

END DO 
END DO 

END DO

!C: PLOT THE DATA AT TIME=10, 20,  30,  . . .

DO k=10, 100,  10 
! CALL PLOTTING(phi(k,: , : ) , ' p h i ' , "  , a ,b ,h a ,h b )

END DO 
END IF

! COPY THE DATA TO data VARIABLE 

DO k=l,NSUBIN
data(k, l:NSTEPS+1,; , : ) = p h i ( (k-1)*NSTEPS+1;k*NSTEPS+l, : , : )  
t b U ( k , : , : ) = d a t a ( k , 1 , : , : )

END DO
tbU(NSUBIN+l,: , :)=data(NSUBIN,NSTEPS+1,: , : )
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!C: Finite Laplace transform

p r in t  ’ Begin Laplace Transformation'
tt=TSIZE/NSUBIN
DO k=l,NSUBIN

p r in t  *, ' k = ’ , k 
t O = ( k - l ) * t t  
t l = k * t t

DO 11=1,LMAX 
DO i=l,MGRID 
DO j=l,NGRID

!C: load  simpson vec to r

DO it=l,NSTEPS+1
t = t O + ( i t - 1 ) * (tl-tO)/NSTEPS  
lmd=real( lambda*ll )  
f u n c ( i t ) = d a t a ( k , i t , i , j ) *exp(- lmd*t)  

END DO
c a l l  q s i m p ( f u n c , t O , t l , u ( k , l l , i , j ) )

END DO 
END DO 

END DO 
END DO

!C: SAVE THE RESULTS

OPEN(UNIT=4, FILE=source, STATUS=’REPLACE’ , 
ACCESS=’SEQUENTIAL’ , ACTION=’WRITE’ ) 

WRITE( 4 ,* )  tbU 
DO k=l,LMAX

WRITE(4,*) u ( : , k , :,
END DO 

CLOSE( 4 , STATUS=’KEEP’ )

END PROGRAM lap lace_tran sform
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!C: BOUNDARY AND INTEGRAL FUNCTIONS : y l_2d ,y2_2d , fu n c

FUNCTION yl_2d (x )
USE ntype
USE para, ONLY : h 
USE f l_ lap lace_m od,  ONLY ; rO 
REAL(PREC), INTENT(IN) :: x 
REAL(PREC) :: y l_2d

yl_2d = r0( 2 ) - s q r t ( h * h - ( x - r O ( 1 ) ) * (x-rO( 1 ) ) )
END FUNCTION yl_2d

FUNCTION y2_2d(x)
USE ntype
USE para,  ONLY : h 
USE f l_ lap lace_m od ,  ONLY : rO 
REAL(PREC), INTENT(IN) x 
REAL(PREC) :: y2_2d

y2_2d=r0( 2 ) + s q r t (h * h - (x -r O ( 1 ) ) * (x-rO( 1 ) ) )
END FUNCTION y2_2d

FUNCTION func_2d (x ,y )
USE ntype
USE para,  ONLY : h.TSIZE,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN 
USE u t i l ,  ONLY : b l i t p  
USE f l_ lap lace_m od  
IMPLICIT NOME
REAL(PREC), INTENT(IN) :: x 
REAL(PREC), DIMENSION(:), INTENT(IN) :: y 
REAL(PREC), DIMENSION(size(y)) :: func_2d

INTEGER ;; k ,n  
REAL(PREC) :: rho 
REAL(PREC) :: r  

DO k=l ,SIZE(y)
r= ( (x-rO (1 ) )  * (x-rO (1 ) )  + (y (k) -rO (2 ) )  * (y (k) -rO ( 2 ) ) )  /  (h*h) 
r h o = e x p ( l . 0 _ p r e c / ( r - 1 ) )
fu n c _ 2 d (k ) = r h o * b l i t p ( x , y ( k ) , v e c , a , b , h a , hb ) / (h*h*const)

END DO 
END FUNCTION func  2d
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MODULE fl_compErr_mod 
USE ntype
USE para,  ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIM,NUM=>FL_NUM,NSTEPS 
REAL(PREC), DIMENSION(NUM+l+NSUBIN,MGRID,NGRID) :: spc 
REAL(PREC).DIMENSION(MGRID,NGRID) :: vec  
REAL(PREC).DIMENSION(2) :: rO 
REAL(PREC) co n s t= 0 .4665123934  
REAL.DIMENSION(NSTEPS*NSUBIN+1,MGRID,NGRID) phi
REAL(PREC) :: d t ,d x ,d y  

END MODULE fl_compErr_mod

PROGRAM compError 
USE ntype
USE para,  ONLY : MGRID.NGRID.NSTEPS,TSIZE,ha,hb,a,b,h,& 

NSUBIN=>FL_NSUBIN 
USE path.  ONLY : o r i g p h i = > f l _ o r i g p h i , compphi=>fl_compphi.  ̂

datapath=>fl_datapath.home=>fl_home  
USE u t i l .  ONLY : p l o t t i n g  
USE fl_cofflpErr_mod 
USE quad2d, ONLY ; quad2d_qgaus

IMPLICIT NONE
REAL(PREC). DIMENSION(NSUBIN.NSTEPS+1,MGRID.NGRID) :: data  
REAL(PREC). DIMENSION(NSUBIN*NSTEPS+1,MGRID.NGRID) :: &

newphi, error
REAL(PREC), DIMENSI0N(NSTEPS+1) :: func  
INTEGER :: k . i . j
REAL(PREC) :; e r r . norm. t . h t . h x , h y . dump 
CHARACTER(LEN=2).DIMENSION(13) :: &

c h a r = ( / ’0 0 ’ . ’0 1 ’ . ' 0 2 ' . ’0 3 ' , ' 0 4 ’ . ’0 5 ’ , ’0 6 ’ .& 
’0 7 ’ , ’0 8 ’ , ’0 9 ’ . ’ 1 0 ’ , ’ 1 1 ’ , ’ 1 2 ’ / )  

CHARACTER(LEN=1),DIMENSI0N(3) name=(/’P ’ , ’Q’ , ’ ¥ ’ / )

REAL (PREC). DIMENSION (MGRID. NGRID) w e e

INTERFACE
SUBROUTINE g e tD ata (d a ta ,  bndryfunc)

USE ntype
REAL(PREC).DIMENSIONC: : :  data

INTERFACE
FUNCTION b n d r y f u n c ( x . y . t )

REAL :: x . y . t .b n d r y f u n c  
END FUNCTION 

END INTERFACE 
END SUBROUTINE
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FUNCTION t r u e U ( x , y , t )
REAL :: x , y , t , trueU  

END FUNCTION 
END INTERFACE

!C: READ IN DATA

dt=TSIZE/(NSUBIN*NSTEPS) 
dx=ha/(MGRID-1) 
dy=hb/(NGRID-l)
OPEN(UNIT=4, FILE=datapath, STATUS=’OLD’ , & 

ACCESS=’SEQUENTIAL' , ACTION=’READ ’ ) 
READ(4,*) k 
DO k=l ,  s i z e ( s p c , l )

READ( 4 ,* )  s p c ( k , : , : )
END DO 

CLOSE( 4 , STATUS=’KEEP’ )

p r in t  ’ Read in  d a t a ’
OPEN(UNIT=4, FILE=ORIGPHI, STATUS=’OLD’ , & 

ACCESS=’SEQUENTIAL’ , ACTION=’READ’) 
DO k=l ,  5

READ(4 ,* )  dump 
END DO
DO k=l ,  NSUBIN*NSTEPS+1 

READ (4 ,* )  dump 
DO i = l ,  MGRID 
DO j = l ,  NGRID

READ ( 4 ,* )  p h i ( k , i , j )
END DO 
END DO 

END DO 
CLOSE( 4 , STATUS=’KEEP’ )

!C: SMOOTH THE COMPUTED DATA

hx=ha/(MGRID-1) 
hy=hb/(NGRID-1)
DO k = l ,S I Z E (s p c ,l )
V6G=spc(k,:,
DO i=l,MGRID
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r O ( l ) = a + h x * ( i - l )
DO j=l,NGRID

r 0 ( 2 ) = b + h y * ( j - l )
CALL quad2d_qgaus(r0 ( 1 ) - h , rO( 1 ) + h , s p c ( k , i , j ) )

END DO 
END DO 

END DO

!C: COMPUTE DATA

CALL g e t D a t a ( d a t a , t r u e U )

DO k=l,NSUBIN
new phi ( (k-1)*NSTEPS+1:k*NSTEPS,: ) = d a t a ( k , 1 : NSTEPS,: ,  

END- DO
newphi(NSUBIN*NSTEPS+l,: , : )=data(NSUBIN,NSTEPS+1,: , : )

!C: SAVE DATA

OPEN(UNIT=4, FILE=compphi, STATUS=  ̂REPLACE’ , &
ACCESS=’SEQUENTIAL' , ACTION=’WRITE’ )

DO k = l ,  s i z e ( n e w p h i ,1)
DO i = l ,  MGRID 
DO j = l ,  NGRID

WRITE( 4 , + )  n e w p h i ( k , i , j )
END DO 
END DO 
END DO 

CLOSE( 4 , STATUS=' KEEP’ )

!C: COMPUTE ERROR
j CI  ̂̂  ̂  ̂  ̂  ̂  ̂ ^  ̂  ̂  ̂  ̂  ̂  ̂

DO k = l ,  NSUBIN*NSTEPS+1 
e r r = 0 .0 _ p r e c  
norm=0.0_prec  
norm=0. 0_prec  
DO i=l,MGRID 
DO j=l,NGRID

IF ( e r r < a b s ( p h i ( k , i , j ) - n e w p h i ( k , i , j ) ) )  &
e r r = a b s ( ( p h i ( k , i , j ) - n e w p h i ( k , i , j ) ) )

IF ( n o r i n < a b s ( p h i ( k , i , j ) ) )  n o r m = a b s ( p h i ( k , i , j ) )
END DO 
END DO
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e r r o r ( k ) = e r r /n o r m
p r i n t  ’ e r r o r ( k )  e r r o r ( k )

!C: p l o t  th e  e r r o r  a t  k = 1 0 , 2 0 , . . .

IF (M0D(K-1,10)==0) THEN
CALL PLOTTING(phi(k,; , : ) - n e w p h i ( k , : , ,  &

h o m e / / ' d a t a / e r r o r ’ / / c h a r ( ( k - l ) / 1 3 + l ) , ' ’ , a , b , h a , h b )
END IF 

END DO

!C: PLOT THE ERROR AS FUNCTION OF T 

ht=TSIZE/NSTEPS
OPEN (4,  f i l e = h o m e / / ’d a t a / e r r o r . d a t ’ )

WRITE( 4 , * )  ’TITLE=error: ’
WRITEC4,*) ’VARIABLES="T" "E rror"’
WRITE(4,*) ’ZONE 1 = ’ , NSTEPS+1, ’ , C=BLUE’
DO i = l ,  NSTEPS+1 

t  = ( i - l ) * h t  
WRITEC4,*) t ,  e r r o r ( i )

END DO 
CLOSE(4 .  STATUS=’k e e p ’ )

END PROGRAM compError

!C
!C
!C
!C

t e s t  s o l u t i o n  f u n c t i o n s

REAL FUNCTION trueU(X,Y,T)
USE para ,  ONLY : a , b , h a , h b  
USE fl_compErr_mod, ONLY : p h i ,  d t  
USE u t i l ,  ONLY : b l i t p  
i m p l i c i t  none  
REAL ;; T, X, Y, U 
REAL, PARAMETER ;; p i = 3 . 14159  
INTEGER :: n h l ,n h 2  
REAL :: h l , h 2 , v a l l , v a l 2 , v a l 3 , v a l 4  

nhl=CEILING(t/dt)  
nh2=FL00R(t /dt)  
h l = ( d t + n h l - t ) / dt  
h 2 = 1 . 0 - h l
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t r u e U = b l i t p ( x , y , p h i ( n h 2 + l , : , : ) , a ,b ,h a , h b ) * h l  
+ b l i t p ( x , y , p h i ( n h l + l , : , , a , b, ha , hb) *h2  

END FUNCTION trueU

!C: SUBROUTINES USED BY PDETWO

SUBROUTINE bndryv ( t , x , y , u , a v , b v , c v , n p d e )  
IMPLICIT NONE 
REAL t , u , x , y , b v , a v , c v  
INTEGER npde
DIMENSION u ( n p d e ) , a v ( n p d e ) , b v ( n p d e ) , c v ( n p d e )  
REAL, PARAMETER p i = 3 . 14159

INTERFACE
FUNCTION t r u e U ( x , y , t )

REAL x , y , t ,  trueU  
END FUNCTION trueU  

END INTERFACE 
a v ( l )  = 1 .0  
b v ( l )  = 0 . 0  
c v ( l ) = t r u e U ( x , y , t )

END SUBROUTINE bndryv

SUBROUTINE bndryh ( t , x , y , u , a h , b h , c h , n p d e )  
IMPLICIT NONE 
REAL t , u , x , y , b h , a h , c h  
INTEGER npde
DIMENSION u ( n p d e ) , all (npde) ,bh(npde)  ,ch (npde)  
REAL, PARAMETER :: p i = 3 . 14159

INTERFACE
FUNCTION t r u e U ( x , y , t )

REAL x , y , t ,  trueU  
END FUNCTION trueU  

END INTERFACE

a h ( l )  = 1 .0  
b h ( l )  = 0 . 0  
ch (1)  =t  rueU ( x , y , t )

END SUBROUTINE bndryh

SUBROUTINE d i f f h  ( t , x , y , u , d h , n p d e )
USE ntype
USE para ,  ONLY ; a , b , h a , h b  
USE fl_compErr_mod,  ONLY : spc
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USE u t i l ,  ONLY : b l i t p  
IMPLICIT NONE
REAL, INTENT(IN) :: t , x , y
INTEGER npde
REAL, DIMENSION(npde),INTENT(IN) :: u 
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dh

d h ( l , l ) = b l i t p ( x , y , s p c ( l , : , ; ) , a , b , ha , hb)
END SUBROUTINE d i f f h

SUBROUTINE d i f f v  ( t , x , y , u , d v , n p d e )
USE ntype
USE para,  ONLY : a , b , h a , h b , NUM=>FL_NUM 
USE fl_compErr_mod, ONLY : spc 
USE u t i l ,  ONLY : b l i t p  
IMPLICIT NONE
REAL, INTENT(IN) :: t , x , y
INTEGER npde
REAL, DIMENSION(npde).INTENT(IN) u 
REAL, DIMENSION(npde,npde) ,  INTENT(OUT) :: dv

IF (NUM==1) THEN
d v ( l , l ) = b l i t p ( x , y , s p c ( l , : , : ) , a , b , h a , h b )  

ELSE
d v ( l , l ) = b l i t p ( x , y , s p c ( 3 , : , ; ) , a , b , h a , h b )

END IF 
END SUBROUTINE d i f f v

SUBROUTINE d i f f c h  ( t , x , y , u , d c h , n p d e )
USE ntype
USE para ,  ONLY : a,b,ha,hb,NUM=>FL,NUM '
USE fl_compErr_mod,  ONLY : spc  
USE u t i l ,  ONLY : b l i t p  
IMPLICIT NONE
REAL, INTENT(IN) :: t , x , y
INTEGER npde
REAL, DIMENSION(npde), INTENT(IN) :: u
REAL, DIMENSION(npde,npde), INTENT(OUT) dch

IF (NUM==1) THEN 
d c h ( 1 , 1 ) = 0 . 0_prec  

ELSE
d c h ( l , l ) = b l i t p ( x , y , s p c ( 2 , : , : ) , a , b , h a , h b )  

END IF 
END SUBROUTINE d i f f c h
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SUBROUTINE d i f f c v  ( t , x , y , u , d e v , n p d e )
USE ntype
USE para,  ONLY : a , b , h a , h b ,  NUM=>FL_NUM 
USE fl_compErr_mod, ONLY : spc  
USE u t i l ,  ONLY : b l i t p  
IMPLICIT NONE
REAL, INTENT(IN) ;: t , x , y
INTEGER npde
REAL, DIMENSION(npde), INTENT(IN) ;; u
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dev

IF (NUM==1) THEN 
d e v ( l , 1 ) = 0 . 0_pree  

ELSE
d e v ( l , l ) = b l i t p ( x , y , s p e ( 2 , : , ; ) , a , b , h a , h b )

END IF 
END SUBROUTINE d i f f c v

SUBROUTINE f ( t , x , y , u , u x , u y , d u x x , d u y y , d u x y , duyx , d u d t , npde)
USE ntype
USE para ,  ONLY : a,b,ha,hb,TSIZE,NUM=>FL_NUM 
USE fl_eompErr_mod,  ONLY : spc,NSUBIN 
USE u t i l ,  ONLY : b l i t p  
IMPLICIT NONE
REAL, INTENT(IN) t , x , y  
INTEGER npde
REAL, DIMENSION(npde), INTENT(IN) :: u , u x , u y
REAL, DIMENSION(npde,npde) ,  INTENT(IN) d u xx , d u x y , d u y y , duyx  
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dudt

REAL :: t q , t f  
REAL(PREC) :; t t  
INTEGER :: k ,n  

t q = b l i t p ( x , y , s p c ( N U M + 1 , : , : ) , a , b , h a , h b )
■ tt=TSIZE/NSUBIN 

DO k=l ,NSUBIN+l
IF ( t > = t t * ( k - l ) )  n=k 

END DO
n=MIM(n,NSUBIN)
t f = b l i t p ( x , y , s p c ( N U M + l + n , : , : ) , a , b , h a , h b )  
d u d t ( l )  = ( d u x x d , l ) + d u x y ( l , l ) + d u y x ( l , l ) + d u y y ( 1 ,  l ) + t f ) / t q  

END SUBROUTINE f

!C: BOUNDARY AND INTEGRAL FUNCTIONS : y l _ 2 d , y 2 _ 2 d , f u n c
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FUNCTION y l _ 2 d ( x )
USE ntype
USE para,  ONLY : h 
USE fl_compErr_mod, ONLY : rO 
REAL(PREC), INTENT(IN) :: x 
REAL(PREC) ;: y l_2d

yl_2d=r0( 2 ) - s q r t ( h * h - ( x - r O ( 1 ) ) * (x-rO( 1 ) ) )
END FUNCTION yl_2d

FUNCTION y2_2d(x)
USE ntype
USE para,  ONLY : h 
USE fl_compErr_mod, ONLY : rO 
REAL(PREC), INTENT(IN) : : x 
REAL(PREC) :: y2_2d

y2_2d=r0( 2 ) + s q r t (h * h - (x -r O ( 1 ) ) * (x-rO( 1 ) ) )
END FUNCTION y2_2d

FUNCTION func_2d(x ,y )
USE ntype
USE para ,  ONLY ; h,TSIZE,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN 
USE u t i l ,  ONLY : b l i t p  
USE fl_compErr_mod 
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x 
REAL(PREC), DIMENSION(:), INTENT(IN) :: y 
REAL(PREC), DIMENSION(size(y)) :: func_2d

INTEGER :: k , n  
REAL(PREC) :: rho 
REAL(PREC) :: r  

DO k = l ,S IZ E (y )
r= ( (x-rO ( 1 ) )  * (x-rO ( 1 ) )  + (y (k) -rO ( 2 ) )  * (y  (k) -rO ( 2 ) ) )  /  (h*h)  
r h o = e x p ( l . 0 _ p r e c / ( r - 1 ) )
f u n c _ 2 d ( k ) = r h o * b l i t p ( x , y ( k ) , v e c , a , b , h a , h b ) / ( h * h * c o n s t )

END DO 
END FUNCTION func_2d
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PROGRAM s u s t a i n  
USE ntype
USE para ,  ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIN, &

MUM=>FL_NUM, a , b , h a , h b , d x , d y , conv  
USE p a t h ,  ONLY : d a t a p a t h = > f l _ d a t a p a t h , home=>fl_home  
USE simpson,  ONLY ; quad2d

IMPLICIT NONE
REAL(PREC), DIMENSION(NUM+l+NSUBIN,MGRID,NGRID) :: spc  
REAL(PREC), DIMENSION(MGRID,NGRID) :: vec  
REAL(PREC) :: d d , d d 2 , a l , b l , h a l , h b l  
REAL(PREC), DIMENSION(NSUBIN) :: i n f l o w ,  o u t f l o w  
INTEGER :: k

!C: READ IN DATA

OPEN(UNIT=4, FILE=datapath, STATUS=’OLD’ , &
ACCESS= ’ SEQUENTIAL ’ , ACTION= ’ READ ’ )

READ( 4 , * )  k 
READ( 4 , * )  spc  

CLOSE( 4 , STATUS=’KEEP’ )

a l = 0 . 0
b l = 0 . 0
ha l=dx*conv
hbl=hy*conv
spc(NUM+1:NUM+l+NSUBIN,: , : )=spc(NUM+1:NUM+l+NSUBIN,: , : ) / (conv+conv)

DO k = l ,  NSUBIN
vec=max(spc(NUM+l+k, : , : ) , 0 . 0 _ p r e c )
CALL q u a d 2 d ( v e c , a l , b l , h a l , h b l , dd)
PRINT *,   ̂ INFLOW = dd*30
in f lo w ( k ) = d d * 3 0

vec=min(spc(NUM+l+k,: , : ) , 0 . 0 _ p r e c )
CALL q u a d 2 d ( v e c , a l , b l , h a l , h b l , dd)
PRINT ’ OUTFLOW = ’ , -dd*30  
o u t f l o w ( k ) = - d d * 3 0  

END DO

dd=0 . 0_prec  
dd2=0 . 0_prec  
DO k = l ,  NSUBIN 

dd=dd+in flow(k)  
dd2=dd2+outf low(k)
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END DO

!C; plot the data

OPEN (4 ,  f i l e = h o m e / / ’f l o w / i n _ f l o w . d a t ' )  
WRITE(4,*) ’T IT L E =inf low ; '
WRITE(4,*) ’VARIABLES="T" "V">
WRITE(4,*) ’ZONE 1 = ’ , NSUBIN, C=BLUE’ 
DO k = l ,  NSUBIN

WRITE( 4 , * )  k ,  i n f l o w ( k )
END DO 

CLOSE( 4 , STATUS=’k e e p ' )

OPEN (4 ,  f i l e = h o m e / / ’ f l o w / o u t _ f l o w . d a t ' )  
W R I T E ( 4 , > i = )  ’TITLE=outf low: '
WRITE(4,*) 'VARIABLES="T" "V"’
WRITE(4,*) 'ZONE 1 = ' ,  NSUBIN, ' ,  C=BLUE' 
DO k = l ,  NSUBIN

WRITE(4,*) k,  o u t f l o w ( k )
END DO 

CLOSE (4 ,  STATUS='keep')
END PROGRAM s u s t a i n
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# #i
####################################################################i

0• 2=qq ‘0^Z=^^ ‘0 ' T-=q‘0 'T-=^ : : m aW VW d ‘ (Oaad) 1V33 
####################################################################1
#  # i

# B90mo\ NIVWOa 3H1 DMINId3a S3313WV3¥d #i
# # i 
####################################################################i
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####################################################################i
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####################################################################i
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####################################################################1
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####################################################################i
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####################################################################i
# # i
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####################################################################i
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# # i
#3iaVH0HV3S SI NGII03Hia N3AI0 3H1 31 1S31 01 Q3Sn H39WnN 31VHS V # i
# ■ # i
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#################################################################### i

XVW3/0‘ 1=^00^21 :: 33X3WV3V3 ‘ (033d)3V 33
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# #i
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#################################################################### i
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####################################################################i
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####################################################################
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####################################################################
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#
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####################################################################i
#
#
#
#
#
#

A3XD3H30D
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####################################################################i
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####################################################################i
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E.2. Fortran code: elliptic P D E  solver

MODULE e l l s o v  
USE ntype 
IMPLICIT NONE 
PRIVATE
PUBLIC E l l ip t ic _ S o I v e r

REAL(PREC), DIMENSIONC:, : , ,  POINTER :: ptr_p
REAL(PREC), DIMENSIONC:,:), POINTER :: p tr_q , p tr_ f ,p tr_ b n d ry
REAL(PREC) :: hx,hy
INTEGER :: m grid ,ngrid
INTEGER, PARAMETER :: R0W=10, C0L=20
INTERFACE E l l ip t i c _ S o l v e r

MODULE PROCEDURE E l l ip t i c _ S o lv e r _ 0  
END INTERFACE 
INTERFACE getRow

MODULE PROCEDURE getRow_l, getRow_2 
END INTERFACE 
INTERFACE getC ol  

MODULE PROCEDURE g e t C o l . l ,  getC ol_2  
END INTERFACE

CONTAINS
SUBROUTINE E l l ip t i c _ S o l v e r _ 0 ( p v e c , q v e c , fv e c ,b n d r y v e c ,h a ,h b , u) 

USE ntype  
USE u t i l  
IMPLICIT NONE
REAL(PREC), DIMENSIONC:, : , : ) ,TARGET,INTENT(IN) :: pvec  
REALCPREC), DIMENSIONC:, : ) .TARGET,INTENTCIN) :: q v ec ,fv ec ,&

bndryvec
REALCPREC), INTENTCIN) :: ha,hb
REALCPREC), DIMENSIONC: , : ) ,  INTENTCOUT) :: u

!C: LOCAL VARIABLES
REALCPREC), DIMENSIONC:,:), POINTER :: m_a, m_b 
REALCPREC), DIMENSIONC:), POINTER :: m_u 
INTEGER, DIMENSI0NCCSIZECu,l)-2)*CSIZECu,2)-2)):: indx  
REALCPREC) :: dump, tm p ,d e l ta  
INTEGER :: j , m , n , i , k  

ptr_p=>pvec 
ptr_q=>qvec 
p tr_ f= > fv ec  
ptr_bndry=>bndryvec 
mgrid=SIZECu,l) 
ngrid=SIZECu,2) 
m=mgrid-2
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n=ngrid-2  
hx = ha/(m +l)  
hy = hb/(n+1)  
d e l ta = 4 . 0_prec*hx*hy

C: COMPUTE the parameters  
C: OF THE DIFFERENCE EQUATION 
C:
C: l o w e r _ l e f t * U ( i - l , j - 1 )  + lo w er_ d ia g * U (i , j - 1 )  &
C: + lo w e r _ r ig h t* U ( i+ l , j - 1 )  + m id d l e _ l e f t * U ( i - l , j )  &
C: + m id d le_ d ia g * U (i , j )  + m id d Ie _ r ig h t* U (i+ l , j )  &
C: + u p p e r _ l e f t * U ( i - l , j+1) + u pper_d iag*U (i,j+ 1)  &
C: + u p p e r _ r ig h t* U (i+ l , j+1) = rhs 
C: AND PACKED THEM TO THE MATRIX m_a

C; COMPUTE rh s ,  SAVE IT IN u

u=0.0_prec
u ( l , l : n + 2 )  = getRow(pb, 1, 1, n+2) 
u (2 :m + l , l )  = getC oK pb, 1, 2, m+1)
DO j= 2 , n+1 

u (2 ;m + l ,j )  = getC olC pf, j ,  2, m+1)
END DO
u(2:m +l, n+2) = getC oK pb, n+2, 2 , m+1) 
u(m +2,l:n+2) = getRow(pb,m+2, l ,n + 2 )

u (2 ,2 :n + l )  = u ( 2 ,2 : n + l ) - lo w e r _ le f t ( R D W ,2 ,2 ,n + l ) * u ( l , 1 ;n) & 
-m iddle_left(RO W , 2 , 2 , n+1)*u( 1 , 2 : n+1) &
-upper_left(ROW, 2 , 2 , n+1) *u( 1 , 3 : n+2) 

u(m +l, 2 :n+l)=  &
u(m+1 , 2 : n+1 ) -lower_right(ROW,m+1 , 2 , n+1 ) *u(m+2, 1 : n) & 
-m id d le_ r ig h t  (ROW,m+l ,2,n+l)=t=u(m+2,2:n+l) &
-upper_right(ROW ,m +l,2,n+l)*u(m +2,3:n+2)  

u (2 :m + l ,2 )= u (2 :m + l,2 ) - lo w e r _ le f t (C O L ,2 ,2 ,m + l)* u ( l :m ,l )  & 
- low er_ d ia g (C 0 L ,2 ,2 ,m + l)* u (2 :m + l,1) &
-low er_right(C O L, 2 , 2 ,m + l)*u (3 :m+2,1 )  

u(2:m +l,n+l)=&
u (2 :m + i,n + l) -u p p er _ le f t (C D L ,n + l ,2 ,m + l)* u ( l :m ,n + 2 )  & 
-upper_diag(CO L,n+l, 2 , m+1)*u(2:m+l,n+2) &
-upper_right(COL, n+1, 2 , m + 1 ) (3 :m+2, n+2) 

tmp = -  ( (  p p ( 2 ,2 , l ) + p p ( 2 , l , 2 ) ) * 0 . 5 _ p r e c  + p p ( 2 , 2 , 2 ) ) / d e l t a  
u (2 ,2 )  = u (2 ,2 )  + tm p * u ( l , l )
tmp = ( ( p p ( 2 ,2 ,n + 2 ) + p p ( 2 , l ,n + l ) ) * 0 .5 _ p r e c  + p p ( 2 ,2 , n + l ) ) / d e l t a  
u (2 ,n + l)= u (2 ,n + l)+ tm p * u ( l ,n + 2 )
tmp = ( (p p (2 ,m + l , l )+ p p (2 ,m + 2 ,2 ) )* 0 .5 _ p r e c  + p p (2 ,m + l, 2 ) ) / d e l t a
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u(m +l, 2)=u(m+l,2)+tmp*u(m+2,1)
tmp ( (pp( 2 ,m+l,n+2) + p p (2 ,m + 2 ,n + l)) * 0 . 5_prec &

+ p p (2 ,m + l ,n + l) ) /  d e l t a  
u(m+l,n+l)=u(m+l,n+l)+tmp*u(m+2,n+2)

!C: PACK the parameters IN m_a

m_a => createArray(m*n, 2* (m + l)+ l,  ’E l l ip t i c _ S o l v e r  — m_a’ ) 
m_a=0. 0_prec 
DO j=2 , n

m_a(( j-1 )*m +2:j* m ,l )= lo w e r _ le f t (C O L ,j+ 1 , 3 , m+1) 
m_a(( j -1 )* m + i:j*m ,2)= low er_diag(C G L ,j+1, 2 ,m+l) 
m_a((j -1 )* m + l:j+m -1, 3 ) = low er_right(C O L ,j+1, 2,m)

END DO 
DO j = l ,  n

m_a(( j-1 )*m + 2:j*m ,m + l)= m iddle_ left(C O L ,j+ 1 , 3 ,m+l) 
m_a(( j -1 )+ m + l:j*m,m+2)=middle_diag(COL,j+1, 2 ,m+l) 
m_a(( j -1 )* m + l:j*m -l,m +3)=m iddle_right(C O L ,j+1, 2,m)

END DO 
DO j = l ,  n-1

m_a( ( j - 1 ) *m+2:j*m, 2*m+1 )=upper_left(CO L, j + 1 ,3 ,m+l) 
m_a((j - l ) + m + l :j*m,2+m+2)=upper_diag(C0L,j+1, 2 ,m+l) 
m_a(( j -1 )* m + l:j*m -l,2*m +3)=upper_right(C O L,j+1, 2 , m)

END DO

!C: CALL SUBROUTINE bandec FOR LU DECOMPOSITION

m_b => createArray(m*n, m+1, ’E l l i p t i c _ S o l v e r  — m_b’ ) 
c a l l  bandec(m_a,m+1,m+l,m_b,indx,dump)

!C: ADJUST u FOR BACKWARD AND FORWARD SUBSTITUTION

m_u => createArray(m*n, ’E l l ip t i c _ S o l v e r  — m_u’ )
DO j = l ,  n

n i_u ((j- l)*m + l:  j*m )=u(2:m +l, j + 1)
END DO
c a l l  banbks(m_a,m+1,m+1,m_b,indx,m_u)

!C: ADJUSTBACK THE SOLUTION

DO j = l ,  n
u (2 :m + l, j+ l)= m _ u (( j -1 )* m + l;j*m)

END DO
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CALL RELEASE_MEMORY(m_a, ’E l l ip t i c _ S o l v e r  — m_a’ )
CALL RELEASE_MEMORY(m_b, ’E l l ip t i c _ S o l v e r  — m_b’ )
CALL RELEASE_MEMORY(m_u, 'E l l ip t i c _ S o lv e r  — m_u’ )

END SUBROUTINE E l l ip t ic _ S o lv e r _ 0

SUBROUTINE bandec(a ,m l,m 2, a l , indx ,d )
USE ntype  
use u t i l  
IMPLICIT NONE
REALCPREC).DIMENSIONC; , : ) , INTENTCINOUT): :a
INTEGER,INTENTCIN): :ml,m2
REALCPREC).DIMENSIONC:, : ) . INTENTCOUT): :a l
INTEGER.DIMENSIONC: ) . INTENTCOUT): : indx
REALCPREC).INTENTCOUT): :d
REALCPREC). PARAMETER ; : TINY=1. 0e-20_prec

INTEGER: : i .k .l .m d u m .in in .n .i i  
REALCPREC): idum
REALCPREC). DIMENSION Cml+m2+l) :: temp

n=SIZECa.l)
mm=ml+m2+l
mdum=ml

aC l:m l . : )=eoshif tCaCl:mi. : ) , shif t=arthCml.- l .ml) .d im =2)
d=1.0
do k=l .n

l=minCml+k,n)
i=imaxloc Cabs CaCk: 1 . 1 ) ) ) +k-l  
dum=aCi,1)
i f  Cdum ==0.0)aCk.l)=TINY

indxCk)=i 
i f  Ci /=k)then  

d=-d
temp C1:mm)=a Ck.1 :mm) 
aCk.1 :mm)=aCi, 1 :mm) 
aCi, 1 :mm)=tempCl:mm) 

end i f  
do i = k + l . l

dum=aCi,l) /aCk.1) 
alCk.i-k)=dum
aCi, 1 :mm-l)=aCi, 2 :mm)-dum*aCk.2 :mm) 
aCi.mm)=0.0 

end do
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end do 
END SUBROUTINE bandec

SUBROUTINE banbks(a ,m l,m 2, a l , indx ,b )
USE ntype 
USE u t i l  
IMPLICIT NONE
REALCPREC).DIMENSIONC:INTENTCIN): : a ,a l  
INTEGER, INTENTCIN) : :inl,m2 
INTEGER.DIMENSIONC:).INTENTCIN); : indx 
REALCPREC).DIMENSIONC:).INTENTCINOUT): :b

INTEGER: : i . k . I . mdum,mm. n . i i  
REALCPREC) :: temp 

n=SIZECa.l) 
mm=ml+m2+l 
mdum=ml 
do k = l ,n

l=minCn.ml+k) 
i=indxCk) 
i f  Ci /=k) then 

temp=bCi) 
bCi)=bCk) 
bCk)=temp 

end i f
b Ck+1:1)=b Ck+1:1 ) -a lC k. 1 : 1-k)*b Ck) 

end do 
do i = n . l . - l

l=minCmm.n-i+l)
bCi) = CbCi)-dot_product CaCi. 2 : 1 ) .bC l+ i: i + 1 - 1 ) ) ) /a C i .  1) 

end do 
END SUBROUTINE banbks

FUNCTION imaxlocCarray)
USE ntype 
IMPLICIT NONE
REALCPREC). DIMENSIONC:). INTENTCIN) :: array

INTEGER :: imaxloc  
INTEGER. DIMENSIONCl) :: imax 

imax=maxloc Carray C: ) )  
imaxloc=imaxCl)

END FUNCTION

FUNCTION getRow_lCfunc. i ,  bg. ed)
USE ntype
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USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) :: i ,  bg, ed 
REALCPREC), DIMENSIONCbg:ed) :: getRow_l 
INTERFACE

FUNCTION funcCa,b)
USE ntype 
IMPLICIT NONE
INTEGER, INTENTCIN) :: a, b 
REALCPREC) :: func  
END FUNCTION 

END INTERFACE

INTEGER :: k
i f  Ced <= bg) c a l l  Error &

C’The ending p o in t  should  be b ig g er  than & 
the beg in n in g  p o in t  in  ’getRow_lO  

DO k=bg, ed 
getRow_1 Ck)=func C i , k)
END DO 

END FUNCTION getR ow.1

FUNCTION getRow_2Cfunc, k, i ,  bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) :: k, i ,  bg, ed 
REALCPREC), DIMENSIONCbg:ed) :: getRow_2 
INTERFACE

FUNCTION fu n cC a ,b ,c )
USE ntype  
IMPLICIT NONE
INTEGER, INTENTCIN) a , b, c 
REALCPREC) ;: func  
END FUNCTION 

END INTERFACE

INTEGER :: m
i f  Ced <= bg) c a l l  Error &

C’The ending p o in t  should  be b ig g er  thein & 
the b eg in n in g  p o in t  in  ’getRow_2’ ) 

getRow_2 = C /C funcC k,i,m ), m =bg,ed)/)
END FUNCTION getRow_2

FUNCTION g e tC o l . lC fu n c ,  j ,  bg, ed)
USE ntype
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USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) j ,  bg, ed 
REALCPREC), DIMENSIONCbg;ed) :: ge tC oI_ l  
INTERFACE

FUNCTION funcCa,b)
USE ntype 
IMPLICIT NONE
INTEGER, INTENTCIN) :: a, b 
REALCPREC) :: func 
END FUNCTION 

END INTERFACE

INTEGER :: k
i f  Ced <= bg) c a l l  Error &

C’The ending p o in t  should  be b ig g e r  than  
the  b eg inn ing  p o in t  in  ’g e t C o I _ l ’ ) 

getC oI_ l = C/C funcC k,j), k = b g ,e d ) /)
END FUNCTION getC oI_l

FUNCTION getCoI_2Cfnnc, k, i ,  bg, ed)
USE ntype  
USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) k, i ,  bg, ed 
REALCPREC), DIMENSION(bg:ed) :: getC ol_2  
INTERFACE

FUNCTION fu n cC a,b ,c)
USE ntype  
IMPLICIT NONE
INTEGER, INTENTCIN) :; a , b , c 
REALCPREC) :: func  
END FUNCTION 

END INTERFACE

INTEGER :: m
i f  Ced <= bg) c a l l  Error &

C’The ending p o in t  should  be b ig g e r  than  
th e  b eg inn ing  p o in t  in  ’g e tC o l_ 2 ’ ) 

getC ol_2 = C/CfuncCk,m,i), m =bg,ed)/)
END FUNCTION getCol_2

FUNCTION lo w e r . I e f t C f la g ,  k, bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
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INTEGER, INTENTCIN) :: f l a g ,  k, bg, ed 
REALCPREC), DIMENSIONCbg:ed) :: Io w e r_ le ft  

ifCed <= b g ) c a l l  Error &
C'The ending p o in t  should  be b igger  than & 

the b eg inn ing  p o in t  in  'Io w e r _ Ie f tO  
SELECT CASE Cflag)
CASE CROW)

Io w e r _ le f t  = -  CgetRowCpp, 2 , k , b g - l , e d - 1 ) * 0 .5_prec & 
+ getR o w C p p ,2 ,k - l ,b g ,ed )* 0 .5 _ p rec  &
+ getRowCpp, 2 ,k , b g , e d ) ) / C4. 0_prec*hx*hy)

CASE CCOL)
lo w e r _ le f t  = -  C g e tC o lC p p ,2 ,k - l ,b g ,ed )* 0 .5 _ p re c  &

+ g e tC o lC p p ,2 ,k ,b g - l ,e d - l )* 0 .5 _ p r e c  &
+ getColCpp, 2 , k , b g , e d ) ) / C4. 0_prec*hx*hy)

END SELECT 
END FUNCTION lo w e r . I e f t

FUNCTION low er_d iagC flag , k, bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g ,  k, bg, ed 
REALCPREC), DIMENSIONCbg:ed) :: lower_diag  

ifCed <= b g ) c a l l  Error &
C’The ending p o in t  should  be b ig g er  than & 

the b eg in n in g  p o in t  in  ’lo w er_ d ia g ’ )
SELECT CASE Cflag)
CASE CROW)

lo w er .d ia g  = CgetRowCpp,2,k+l,bg,ed) fe
-  getR ow C p p ,2 ,k -l ,b g ,ed )) /C 4 .0_p rec*h x*h y) &

-  CgetRowCpp,3,k,bg,ed) &
+ getRowCpp,3 , k ,b g - 1 ,e d - l ) ) /h y * * 2  

CASE CCOL)
lo w er .d ia g  = C getC olC p p ,2 ,k ,bg+ l,ed+ l)  &

-  g e tC o lC p p ,2 ,k ,b g - l ,e d - l ) ) /C 4 .0 _ p r e c * h x * h y )  &
-  C getC olC pp,3 ,k ,bg ,ed) &
+ g e tC o lC p p ,3 ,k - l ,b g ,e d ) ) /h y * * 2  

END SELECT
lowGr_diag=lower_diag*0. 5_prec 

END FUNCTION low er_diag

FUNCTION lo w er_ r ig h tC f la g ,  k, bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g ,  k, bg, ed
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REALCPREC), DIMENSION(bg:ed) :: Iow er_right  
ifCed <= b g ) c a l l  Error &

('The ending p o in t  should  be b ig g er  than & 
th e  beginn ing p o in t  in  ’I o w e r _ r ig h t’ )

SELECT CASE ( f la g )
CASE (ROW)

low er_r igh t = ( g e tR o w (p p ,2 ,k ,b g - l ,e d - l )* 0 .5 _ p r e c  
+ g e tR o w (p p ,2 ,k + l ,b g ,ed )* 0 .5 _ p rec  &
+ getRow(pp, 2 , k , b g , e d ) ) / ( 4 . 0_prec*hx*hy) 

CASE (COL)
Iow er_right = ( g e tC o l(p p ,2 , k - l , b g , e d ) * 0 . 5_prec S 

+ g e tC oI(p p , 2 ,k , b g + l , ed+1)* 0 . 5_prec &
+ g e tC o l(p p , 2 , k , b g , e d ) ) / ( 4 . 0_prec*hx*hy)

END SELECT 
END FUNCTION low er_r igh t

FUNCTION u p p e r _ le f t ( f l a g ,  k, bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g ,  k, bg, ed 
REALCPREC), DIMENSION(bg:ed) :: u p p er_ Ie ft  

i f ( e d  <= b g ) c a l l  Error &
( ’The ending p o in t  should  be b ig g er  than & 

the b eg in n in g  p o in t  in  ’u p p e r _ le f t ’ )
SELECT CASE ( f la g )
CASE (ROW)

u p p e r _ le f t  = ( g e tR o w (p p ,2 ,k ,b g + l ,e d + l)* 0 .5 _ p r e c  
+ getRow(pp,2 , k - l ,b g ,e d ) * 0 .5 _ p r e c  &
+ getRow(pp, 2 , k , b g , e d ) ) / ( 4 . 0_prec*hx*hy) 

CASE (COL)
u p p e r _ le f t  = ( g e tC o l(p p ,2 , k + l ,b g ,e d )* 0 .5 _ p r e c  & 

+ g e tC o l(p p ,2 , k ,b g - l , e d - l ) * 0 . 5 _ p r e c  &
+ g e tC o l(p p , 2 , k , b g , e d ) ) / ( 4 . 0_prec*hx*hy)

END SELECT 
END FUNCTION u p p e r _ le f t

FUNCTION u p p e r _ d ia g ( f la g ,  k, bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g ,  k, bg, ed  
REALCPREC), DIMENSION(bg;ed) :: up per .d iag  

i f ( e d  <= b g ) c a l l  Error &
( ’The ending p o in t  should  be b ig g er  than & 

th e  b eg in n in g  p o in t  in  ’u p per_d iag’ )
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SELECT CASE ( f la g )
CASE (ROW)

upper_diag = (getRow(pp,2 , k - l , b g , e d )  &
-  getRow(pp, 2 , k + l ,b g ,e d ) ) / ( 4 . 0_prec*hx*hy) &
-  ( getRow(pp,3 , k ,b g ,e d )  &
+ g e tR o w (p p ,3 ,k ,b g + l ,e d + l) ) /hy**2

CASE (COL)
upper_diag = ( getCoKpp ,2 , k , b g - l , ed-1) &

-  g e tC o l(p p ,2 ,k ,b g + l ,e d + l) ) / ( 4 .0 _ p r e c * h x * h y )  &
-  ( g e tC o l(p p ,3 ,k ,b g ,e d )  &
+ g e tC o l(p p ,3 ,k + l ,b g ,e d ) ) /h y * * 2  

END SELECT
upper_diag=upper_diag*0. 5_prec  

END FUNCTION upper_diag

FUNCTION u p p e r _ r ig h t ( f la g ,  k, bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
INTEGER, INTENT(IN) f l a g ,  k, bg, ed 
REAL(PREC), DIMENSION(bg:ed) u p p e r .r ig h t  

i f ( e d  <= b g ) c a l l  Error &
('The ending p o in t  should be b ig g e r  than & 

the b eg in n in g  p o in t  in  : ’ , ’u p p e r _ r ig h t’ )
SELECT CASE ( f la g )
CASE (ROW)

upper_right = -  ( getRow(pp,2 , k ,b g + l ,e d + l )* 0 .5 _ p r e c  & 
+ getRow(pp,2 , k + l ,b g ,e d )* 0 .5 _ p r e c  &
+ getRow(pp, 2 , k , b g , e d ) ) / ( 4 . 0_prec*hx*hy)

CASE (COL)
upper_right = -  ( g e tC o I (p p ,2 ,k + l ,b g ,e d )* 0 .5 _ p r e c  &

+ g e tC o I (p p ,2 ,k ,b g + l ,e d + l )* 0 .5 _ p r e c  &
+ g e t C o I ( p p , 2 ,k ,b g , e d ) ) / ( 4 . 0_prec*hx*hy)

END SELECT 
END FUNCTION upper_right

FUNCTION m id d le _ l e f t ( f l a g ,  k, bg, ed)
USE ntype 
USE u t i l  
IMPLICIT NONE
INTEGER, INTENT(IN) :: f l a g ,  k, bg, ed 
REAL(PREC), DIMENSION(bg:ed) :: m id d le . I e f t  

i f ( e d  <= b g ) c a l l  Error &
( ’The ending p o in t  should be b ig g e r  than & 

th e  b eg inn ing  p o in t  in  ’m i d d l e . I e f t ’ )
SELECT CASE ( f la g )
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CASE (ROW)
m id d le _ le f t  = ( g e tR o w (p p ,2 ,k ,b g + l ,ed + l)  &

-  getRow(pp, 2 , k , b g - 1 , e d - 1 ) ) / ( 4 . 0_prec*hx*hy)
-  ( getR ow(pp,1 ,k ,b g ,e d )  &
+ getR ow(pp,1 ,k - l ,b g ,e d ) ) / h x * * 2  

CASE (COL)
m id d le _ le f t  = ( g e tC o l (p p ,2 ,k + l ,b g ,e d )  &

-  getC oK p p , 2 , k - l  ,b g , e d ) ) / ( 4 . 0_prec*hx*hy) & 
-  ( g e tC o l(p p ,1 ,k ,b g ,e d )  &

+ getC oK pp, 1 ,k , b g - l  , e d - l )  ) /hx**2
END SELECT
m id d le _ le f t= m id d le _ le f t* 0 . 5_prec 

END FUNCTION m i d d le . l e f t

FUNCTION m id d le _ d ia g (f la g ,  k, bg, ed)
USE ntype  
USE u t i l  
IMPLICIT NONE
INTEGER, INTENT(IN) :: f l a g ,  k, bg, ed 
REAL(PREC), DIMENSION(bgted) :: m id d le .d ia g  

i f ( e d  <= b g ) c a l l  Error &
('The ending p o in t  should  be b ig g er  than & 

th e  b eg inn ing  p o in t  in  : ’ , ’m id d le_d iag ’ )
SELECT CASE ( f la g )

CASE (ROW) 
m iddle_diag = getR ow (p q ,k ,bg ,ed ) &

+ ( g e tR o w (p p ,l ,k + l ,b g ,e d )* 0 .5 _ p r e c  &
+ getR ow (p p ,l ,  k - l ,b g ,e d ) * 0 .5 _ p r e c  &
+ getR ow (pp,l ,k ,bg ,ed))/hx*=t:2  &

+ ( getRow(pp,3 , k ,b g + l ,e d + i )* 0 .5 _ p r e c  &
+ g e tR o w (p p ,3 ,k ,b g - l , e d - l )* 0 .5 _ p r e c  &
+ getRow (pp, 3 , k,bg,ed))/hy*=f=2 

CASE (COL) 
in iddle_diag = g e tC o l(p q ,k ,b g ,e d )  &

+ ( g e t C o l ( p p , l ,k ,b g + l ,e d + l ) * 0 .5 _ p r e c  &
+ g e t C o l ( p p , l ,k ,b g - 1 , e d - i ) * 0 .5 _ p r e c  &
+ g e t C o l ( p p , l , k , b g , e d ) ) /  hx**2 &

+ ( g e tC o l(p p ,3 , k + l ,b g ,e d )* 0 .5 _ p r e c  &
+ g e t C o l ( p p ,3 ,k - l ,b g ,e d )* 0 .5 _ p r e c  k  
+ g e tC o l(p p ,3 , k ,b g ,e d ) ) /h y * * 2

END SELECT 
END FUNCTION m iddle_diag

FUNCTION m id d le _ r ig h t ( f la g ,  k, bg, ed)
USE ntype 
USE u t i l
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IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g ,  k, bg, ed 
REALCPREC), DIMENSIONCbg:ed) m idd le_r igh t  

ifCed <= b g ) c a l l  Error &
C'The ending p o in t  should  be b igger  than & 

the b eg inn ing  p o in t  in  'm id d le _ r ig h t ’ )
SELECT CASE Cflag)

CASE CROW)
m id d le_r igh t  = C g e tR o w C p p ,2 ,k ,b g - l ,e d - l )  &

-getRowCpp,2 ,k , b g + l , ed+1)) / C4. 0_prec*hx*hy) & 
-  CgetRowCpp,l,k,bg,ed) &

+ g e tR o w C p p ,i ,k + l ,b g ,ed )) /h x * * 2  
^CASE CCOL)

m id d le_r igh t  = C getC olC pp,2 , k -1 ,b g ,e d )  &
-  getC olC pp,2 , k + 1 ,b g ,ed )) /C 4 .0_p rec*h x*h y) &
-  C g e tC o lC p p , l ,k ,b g ,e d )  &
+ getColCpp, 1 , k ,b g + l , ed+1)) /hx**2

END SELECT
m id d le_ r ig h t= in id d le_ r ig h t* 0 . 5_prec  

END FUNCTION m id d le_r igh t

FUNCTION p p C k , i , j )
USE ntype 
IMPLICIT NONE

INTEGER, INTENTCIN) k , i , j  
REALCPREC) :: pp 

pp = p tr_p C k ,i,j )
END FUNCTION pp

FUNCTION p q C i,j )
USE ntype  
IMPLICIT NONE

INTEGER, INTENTCIN) :: i , j  
REALCPREC) ;: pq 

pq=ptr_qC i,j)
END FUNCTION pq

FUNCTION p f C i , j )
USE ntype 
IMPLICIT NONE

INTEGER, INTENTCIN) :: i , j  
REALCPREC) :: pf  

p f= p tr _ fC i . j )
END FUNCTION pf

FUNCTION p b C i.j )
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USE ntype  
USE u t i l  
IMPLICIT NONE

INTEGER, INTENTCIN) :: i , j  
REALCPREC) :: pb 

IF Ci == 1) THEN 
pb=ptr_bndry C1 , j )

ELSE IF Ci == mgrid) THEN 
pb=ptr_bndry C2, j )

ELSE IF Cj == 1) THEN 
pb=ptr_bndryC3, i )

ELSE IF Cj == NGRID) THEN 
pb=ptr,_bndryC4, i )

ELSE
CALL ErrorC’In fu n c t io n  pb’ , ’Wrong parameter i  or j ’ ) 

END IF 
END FUNCTION pb

END MODULE e l l s o v
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E.3. Fortran code; subroutine of quadratic interpolation

MODULE quad2d 
USE ntype  
IMPLICIT NOME

PRIVATE
PUBLIC quad2d_qgaus 
REAL(PREC) :: x sa v ,y sa v  
INTERFACE

FUNCTION fu n c_2d (x ,y )
USE ntype  
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x 
REALCPREC), DIMENSIONC:), INTENTCIN) :: y 
REALCPREC), DIMENSIONCsizeCy)) :: func_2d  

END FUNCTION func_2d

FUNCTION yl_2dCx)
USE ntype
REALCPREC), INTENTCIN) :: x 
REALCPREC) :: yl_2d  

END FUNCTION y l_2d

FUNCTION y2_2dCx)
USE ntype  
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x 
REALCPREC) :: y2_2d 

END FUNCTION y2_2d 
END INTERFACE

CONTAINS
FUNCTION hCx)

IMPLICIT NONE
REALCPREC), DIMENSIONC:), INTENTCIN) :: x 
REALCPREC), DIMENSIONCsizeCx)) :: h 
INTEGER :: i  

do i= l , s i z e C x )  
xsav=xCi)
hCi)=qgausCf,yl_2dCxsav),y2_2dCxsav)) 

end do 
END FUNCTION h

FUNCTION fCy)
IMPLICIT NONE
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REALCPREC), DIMENSIONC:), INTENTCIN) :: y 
REALCPREC), DIMENSIQNCsizeCy)) :: f  
in te g e r  :: k 

do k = l ,s iz e C y )  
end do
f=func_2dCxsav,y)

END FUNCTION f

RECURSIVE FUNCTION qgausC func,a ,b)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a ,b  
REALCPREC) :: qgaus

INTERFACE
FUNCTION funcCx)

USE ntype  
IMPLICIT NONE
REALCPREC), DIMENSIONC:), INTENTCIN) :: x 
REALCPREC), DIMENSIONCsizeCx)) :: func  

END FUNCTION func  
END INTERFACE 
REALCPREC) :: xm,xr 
REALCPREC), DIMENSIONC5) :: dx, &

w = C/ 0 .2955242247_prec ,0 .2692667193_p rec ,l  
0 . 2190863625_prec, 0 . 1494513491_prec, ( 
0.0666713443_prec / ) ,&

X = C/ 0 .1488743389_prec,0 .4333953941_prec,J  
0 . 6794095682_prec, 0 . 8650633666_prec, i 
0.9739065285_prec / )  

xm=0. 5_prec* Cb+a) 
xr= 0 . 5_prec* Cb-a) 
dxC: )=xr*xC:)
qgaus=xr*sumCwC:)*  CfuncCxm+dx)+funcCxm-dx)) )

END FUNCTION qgaus

SUBROUTINE quad2d_qgaus Cxi, x 2 , s s )
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x l , x 2  
REALCPREC). INTENTCOUT) :: s s  

ss=qgaus C h ,x l , x2)
END SUBROUTINE quad2d_qgaus 

END MODULE quad2d
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E.4. Fortran code: subroutine of Sim pson’s rule

MODULE Simpson 
USE ntype 
IMPLICIT NONE 
PRIVATE 
PUBLIC quad2d 
INTEGER :: mgrid, ngrid 
REAL(PREC) :: xsav,ysav 
REAL(PREC) :: xmin, xmax, ymin, ymax 
REALCPREC), DIMENSIONC:, : ) ,  POINTER :: pf

CONTAINS

FUNCTION hCx)
REALCPREC), INTENTCIN): :x 
REALCPREC): :h

REALCPREC) :: sum 
INTEGER :: mstep 

mstep=mgrid-l 
xsav=x
CALL qsimpyCg, mstep, ylCxsav),  y2Cxsav), sum) 
h=sum 

END FUNCTION h

FUNCTION ylCx)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x 
REALCPREC) :: y l  

yl=ymin  
END FUNCTION y l

FUNCTION y2Cx)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x 
REALCPREC) :: y2 

y2=ymax 
END FUNCTION y2

FUNCTION gCy)
USE u t i l ,  ONLY : b l i t p  
IMPLICIT NONE
REALCPREC), INTENTCIN) :: y

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



187

REALCPREC) :: g 

ysav=y
g = b l i t p ( x s a v ,y s a v ,p f , xmin,ymin,xmax-xmin,ymax-yrain) 

END FUNCTION g

SUBROUTINE qs im px(func, n s t e p , a , b , sum)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a , b 
REALCPREC), INTENTCOUT) ;; sum 
INTEGER, INTENTCINOUT) :: n step  
INTERFACE 
FUNCTION funcCx)

USE ntype  
IMPLICIT NONE
REALCPREC), INTENTCIN) x 
REALCPREC) :: func  

END FUNCTION 
END INTERFACE

INTEGER :: i  
REALCPREC) :: h

i f  (MOD(nstep,2 ) /=0) n s te p  = nstep+1  
h=C b-a)/nstep  
sum=func(a)+func Cb)
DO i= 2 ,n s t e p ,2

sum=sum+4. 0 _ p r e c * fu n c (a + h * ( i -1 ) )
END DO
DO i = 3 , n s t e p - l , 2

sum=sum+2. 0 _ p r e c * fu n c (a + h * ( i -1 ) )
END DO
sum=sum*h/3. 0_prec 

END SUBROUTINE qsimpx

SUBROUTINE qsim py(func, n s t e p , a , b , sum)
IMPLICIT NONE
REALCPREC), INTENTCIN) 
REALCPREC), INTENTCOUT) 
INTEGER, INTENTCINOUT) 
INTERFACE 
FUNCTION funcCx)

USE ntype  
IMPLICIT NONE

a, b 
: sum 
n ste p
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REALCPREC), INTENTCIN) :: x 
REALCPREC) ;: func 

END FUNCTION 
END INTERFACE

INTEGER :; i  
REALCPREC) ; : h

i f  CMOD Cnstep,2 ) /= 0 )  n step = n step + l  
h=C b-a)/nstep  
sum=func Ca)+func Cb)
DO 1=2,n s t e p , 2

sum=sum+4. 0_prec*func Ca+h* C i-1 ) )
END DO
DO i = 3 , n s t e p - l , 2

sum=sum+2. 0_prec*func Ca+h* C i-1 ) )
END DO
sum=suin*h/3. 0_prec  

END SUBROUTINE qsimpy

SUBROUTINE quad2dCfunc,a,b,h.a, hb, sum)
IMPLICIT NONE
REALCPREC) :: a ,b ,h a ,h b ,su m
REALCPREC), DIMENSIONC:,:), INTENTCIN), TARGET :: func  
INTEGER :: n s tep  

mgrid=SIZECfunc,1)  
ngrid=SIZECfunc,2)  
xmin=a 
xmax=a+ha 
ymin=b 
ymax=b+hb 
pf=>func  
n s te p = n g r id - l
CALL qs impx Ch, n s t  e p , xmin, xmax, sum)

END SUBROUTINE quad2d 

END MODULE simpson
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E.5. Fortran code: subroutine of utility functions

MODULE u t i l  
USE ntype  
INTERFACE error  

MODULE PROCEDURE Error1 
END INTERFACE 
INTERFACE ASSERT_EQ 

MODULE PROCEDURE ASSERT_EQ_2, ASSERT_EQ_3, ASSERT_EQ_4, ASSERT_EQ_5,& 
ASSERT_EQ_6, ASSERT_EQ_7 

END INTERFACE 
INTERFACE createArray

MODULE PROCEDURE c r e a te A r r a y _ l , crea teA rray_2 , crea teA rray_3 , & 
crea teA rray_4 , createA rray_5 , createArray_6

END INTERFACE 
INTERFACE RELEASE.MEMORY 

MODULE PROCEDURE RELEASE_MEM0RY_1,RELEASE_MEM0RY_2,RELEASE_MEM0RY_3 
END INTERFACE 
INTERFACE outer_prod

MODULE PROCEDURE outer_prod l  
END INTERFACE 
INTERFACE d ia g n a l_ a s s ig n

MODULE PROCEDURE d ia g n a l_ a s s ig n l  
END INTERFACE

INTERFACE show
MODULE PROCEDURE show_1 , show_2, show_3, show_4, show_5, show_6, show_7 

END INTERFACE

INTERFACE arth  
MODULE PROCEDURE a r th l ,a r th _ d  

END INTERFACE

INTERFACE lo c a te  
MODULE PROCEDURE l o c a t e l , lo c a te 2  

END INTERFACE

INTERFACE to S tr in g
MODULE PROCEDURE t o S t r in g l  

END INTERFACE

INTERFACE b l i t p
MODULE PROCEDURE b l i t p l ,  b l i t p 2 ,  b l i t p 3 , b l i t p 4 , b l i t p 5 , b l i t p 6 , b l i t p 7  

END INTERFACE

INTERFACE p lo t t i n g
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MODULE PROCEDURE p lo t _ v e c l ,  p lo t_ v e c 2 ,  p l o t . f u n c ,  p lo t _ r e a l ,  & 
p lo t  1 , p l o t 2 , p l o t s , p l o t 4 , p l o t _ I d

END INTERFACE

INTERFACE c o n ta in in g
MODULE PROCEDURE con ta in s  1 

END INTERFACE

INTERFACE computeError
MODULE PROCEDURE computeError.1, computeError_2, computeError.O  

END INTERFACE

INTERFACE lapIaceTransform
MODULE PROCEDURE lapIaceTransform l 

END INTERFACE

INTERFACE put 
MODULE PROCEDURE p u t l  

END INTERFACE

INTERFACE qsimp
MODULE PROCEDURE qsim pl, qsimp2 

END INTERFACE

INTERFACE pack
MODULE PROCEDURE p a ck l,  pack2, packS 

END INTERFACE

INTERFACE unpack 
MODULE PROCEDURE unpackl, unpack2, unpacks 

END INTERFACE

INTERFACE p o s i t i v e  
MODULE PROCEDURE p o s i t i v e l  

END INTERFACE

INTERFACE smooth
MODULE PROCEDURE smoothl 

END INTERFACE

INTERFACE s p l i t  
MODULE PROCEDURE s p I i t 2 , s p I i t S , s p l i t 4  

END INTERFACE

INTERFACE p o l in t
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MODULE PROCEDURE p o l i n t l , p o l i n t 2  
END INTERFACE

INTERFACE im inloc
MODULE PROCEDURE im in lo c 1 , im in loc2  

END INTERFACE

INTERFACE geop
MODULE PROCEDURE geopl  

END INTERFACE

CONTAINS

SUBROUTINE E r r o r l ( s t r i n g l , s t r in g 2 )
CHARACTER(LEN=*) ,  INTENT(IN) :: s t r i n g l ,  s t r in g 2  

WRITE(*,*) s t r i n g l  
WRITE(*,*) s t r in g 2 ,  ’ * * * ’

!CALL EXIT(l)
STOP ’PROGRAM TERMINATED BY AN ERROR’

END SUBROUTINE Errorl

FUNCTION cre a teA rra y _ l(n ,  s t r in g )
INTEGER, INTENTCIN) n
REALCPREC), DIMENSIONC:), POINTER :: createA rray_ l  
CHARACTERCLEN=*) ,  INTENTCIN) :: s t r in g

REALCPREC), DIMENSIONC:), TARGET, ALLOCATABLE array  
INTEGER :: i e r r  

A llocateC arrayC n), STAT=ierr)
IF C ierr/=0) THEN

CALL ErrorC’ALLOCATION REQUEST IS DENIED I N : ’ , s t r in g )  
END IF
cre a te A r r a y .1 => array  

END FUNCTION c r e a te A r r a y .1 
FUNCTION createArray.2Cm, n , s t r in g )

INTEGER, INTENTCIN) :: m, n
REALCPREC). DIMENSIONC:,:), POINTER ;: cr e a te A r r a y .2 
CHARACTERCLEN=*) ,  INTENTCIN) :: s t r in g

REALCPREC), DIMENSIONC:,:), TARGET, ALLOCATABLE :: array  
INTEGER ;: i e r r

A llocateCarrayCm ,n), STAT=ierr)
IF C ierr/=0) THEN

CALL ErrorC’ALLOCATION REQUEST IS DENIED I N : ’ , s t r in g )
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END IF
createArray_2 => array  

END FUNCTION createArray_2  
FUNCTION createArray_3(m, n, r ,  s t r in g )

INTEGER, INTENT(IN) :: m, n, r
REAL(PREC), DIMENSIONC;, : , ,  POINTER :: createArray_3  
CHARACTER(LEN=*) ,  INTENT(IN) s t r in g

REAL(PREC), DIMENSIONC:, ; , ;) ,  TARGET, ALLOCATABLE ;; array  
INTEGER ;; i e r r

A l lo c a te ( a r r a y ( m ,n ,r ) , STAT=ierr)
IF ( ie r r /= 0 )  THEN 

CALL E r r o r ( ’ALLOCATION REQUEST IS DENIED I N ; ’ , s t r in g )
END IF
createArray_3 => array  

END FUNCTION createArray_3  
FUNCTION crea teA rray_4(l ,m , n, r ,  s t r in g )

INTEGER, INTENT(IN) ;; l , m,  n,  r
REAL(PREC), DIMENSIONC;, ; , ; , ; ) ,  POINTER ;; createA rray_4  
CHARACTER(LEN=*), INTENT(IN) ;; s t r in g

REAL(PREC), DIMENSIONC; TARGET, ALLOCATABLE ;; array  
INTEGER ;; i e r r

A l lo c a te ( a r r a y ( 1 , m , n , r ) , STAT=ierr)
IF ( ie r r /= 0 )  THEN

CALL E r r o r ( ’ALLOCATION REQUEST IS DENIED I N ; ’ , s t r in g )
END IF
createArray_4 => array  

END FUNCTION createA rray_4  
FUNCTION c r e a te A r r a y _ 5 ( l ,m ,n ,r ,s ,  s t r in g )

INTEGER, INTENT(IN) ;: l , m , n , r , s  ,
REAL(PREC), DIMENSIONC: POINTER :; createA rray_5  
CHARACTER(LEN=*), INTENT(IN) ;; s t r in g

REAL(PREC), D I M E N S I O N C T A R G E T ,  ALLOCATABLE :; array  
INTEGER ;; i e r r

A l lo c a te (a r r a y (I ,m ,n ,r ,s ) ,S T A T = ie r r )
IF ( ie r r /= 0 )  THEN

CALL E r r o r ( ’ALLOCATION REQUEST IS DENIED I N : ’ , s t r in g )
END IF
createArray_5 => ARRAY 

END FUNCTION createArray_5  
FUNCTION c r e a te A r r a y _ 6 (m ,s tr l , s tr 2 )

INTEGER, INTENT(IN) :; m
INTEGER, DIMENSIONC: ) ,  POINTER ;; createArray_6  
CHARACTER(LEN=*) ,  INTENT(IN) ;; s t r l , s t r 2
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INTEGER, DIMENSIONC;), TARGET, ALLOCATABLE :: array  
INTEGER :: i e r r

A llo c a te (a r r a y (m ) , STAT=ierr)
IF ( ie r r /= 0 )  THEN

CALL E r r o r ( ’ALLOCATION REQUEST IS DENIED I N: ’ , s tr 2 )
END IF
createArray_6 => array 

END FUNCTION createArray_6

SUBROUTINE ASSERT_EQ_2(nl, n 2 , s t r in g )
INTEGER, INTENT(IN) ;; n l ,  n2 
CHARACTER(LEN=* ) ,  INTENT(IN) :: s t r in g  

IF (n l/= n 2)  THEN
CALL E r r o r ( ’THE INPUT ARRAYS ARE NOT CONFORMAL I N: ’ , s t r in g )  

END IF 
END SUBROUTINE
SUBROUTINE ASSERT_EQ_3(nl, n 2 , n 3 , s t r in g )

INTEGER, INTENT(IN) :: n l ,  n2, n3 
CHARACTER(LEN=*), INTENT(IN) :: s t r in g  

CALL ASSERT_EQ_2(nl,n2,string)
CALL ASSERT_EQ_2(nl,n3,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_4(nl, n 2 , n 3 , n 4 , s t r in g )

INTEGER, INTENT(IN) :: n l ,  n2, n3, n4 
CHARACTER(LEN=*), INTENT(IN) :: s t r in g  

CALL ASSERT_EQ_3(nl, n 2 , n 3 , s t r in g )
CALL ASSERT_EQ_2(nl,n4,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_5(nl, n 2 , n 3 , n 4 ,n 5 , s t r in g )

INTEGER, INTENT(IN) :: n l ,  n2, n3, n4,n5  
CHARACTER(LEN=*), INTENT(IN) :: s t r in g  

CALL ASSERT_EQ_4(nl, n 2 , n 3 , n 4 , s t r in g )
CALL ASSERT_EQ_2(nl,n5,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_6(nl, n 2 , n 3 , n 4 , n 5 , n 6 , s t r in g )

INTEGER, INTENT(IN) :: n l ,  n2, n3, n 4 ,n 5 ,n 6  
CHARACTER(LEN=*), INTENT(IN) :: s t r in g  

CALL A SSER T_EQ _5(nl,n2,n3,n4,n5,string)
CALL ASSERT_EQ_2(nl,n6,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_7(nl, n 2 ,n 3 , n 4 , n 5 , n 6 , n 7 , s t r in g )

INTEGER, INTENT(IN) :: n l ,  n2, n3, n 4 ,n 5 ,n 6 ,n 7  
CHARACTER(LEN=*), INTENT(IN) :: s t r in g

CALL ASSERT_EQ_6(nl, n 2 , n 3 , n 4 , n 5 , n 6 , s t r in g )
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CALL ASSERT_EQ_2(nl,n6,string)
END SUBROUTINE

SUBROUTINE RELEASE_MEM0RY_1(p, s t r in g )
REAL(PREC), DIMENSIONC:), POINTER :: P 
CHARACTER(LEN=*) ,  INTENT(IN) :: s t r in g

INTEGER :; i e r r
IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
!IF ( ie r r /= 0 )  THEN

! WRITE(* ,* )  ’DEALLOCATION REQUEST IS DENIED IN ’ 
! WRITE(* ,* )  s t r in g  

!END IF
END SUBROUTINE RELEASE_MEM0RY_1 
SUBROUTINE RELEASE_MEM0RY_2(p, s t r in g )

REAL(PREC), DIMENSIONC:,:),  POINTER :: p 
CHARACTER(LEN=*) ,  INTENT(IN) :: s t r in g

INTEGER :: i e r r
IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
!IF ( ie r r /= 0 )  THEN

! WRITE(* ,* )  ’DEALLOCATION REQUEST IS DENIED IN’ 
! WRITEC*,*) s t r in g  

!END IF
END SUBROUTINE RELEASE_MEM0RY_2 
SUBROUTINE RELEASE_MEM0RY_3(p, s t r in g )

REAL(PREC), DIMENSIONC: POINTER :: p 
CHARACTER(LEN=*), INTENT(IN) :: s t r in g  
INTEGER :: i e r r

IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
!IF ( ie r r /= 0 )  THEN

! WRITEC*,*) ’DEALLOCATION REQUEST IS DENIED IN’ 
! WRITE( * ,* )  s t r in g  

!END IF
END SUBROUTINE RELEASE_MEM0RY_3

SUBROUTINE sh o w _ l(s tr in g )
CHARACTER(LEN=*) ,  INTENT(IN) :: string

T j n  y  T ' l ?  ^

WRITEC*,*) s t r in g
T .T T )  “V  ^  ^  }yy i\X  X

END SUBROUTINE show .l

SUBROUTINE s h o w _ 2 ( s t r in g l , s t r in g 2 )
CHARACTER(LEN=*), INTENT(IN) :: s t r i n g l ,  s t r in g 2
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WRITE(*,*) s t r i n g 2 ,  s t r i n g l
END SUBROUTINE show_2

SUBROUTINE show_3(x ,  s t r i n g )
REAL(PREC), INTENT(IN) :: x 
CHARACTER(LEN=*) ,  INTENT(IN) s t r i n g  

WRITE ( * , * )  s t r i n g ,  ’ = x 
END SUBROUTINE show_3

SUBROUTINE show_4(x,  s t r i n g )
REAL(PREC), DIMENSIONC;), INTENT(IN) x 
CHARACTER(LEN=*) ,  INTENT(IN) :: s t r i n g  
INTEGER k

DO k = l ,  SIZE(x)
c a l l  show(xCk),  s t r i n g )

END DO 
END SUBROUTINE show_4

SUBROUTINE show_5(x ,  s t r i n g )
REAL(PREC), DIMENSIONC:,:), INTENT(IN) :: x 
CHARACTERCLEN=*), INTENTCiN) :: s t r i n g  
INTEGER :: j

DO j = l ,  SIZECx,2)
WRITEC*,*) ’ J = ’ , j 
CALL SHOWCxC:,j), s t r i n g )

END DO 
END SUBROUTINE show_5

SUBROUTINE show_6(x,  s t r i n g )
REALCPREC), DIMENSIONC: , : , : ) ,  INTENTCIN) :: x 
CHARACTERCLEN=* ) ,  INTENTCiN) :: s t r i n g  
INTEGER :: k

DO k=l ,  SIZECx,3)
WRITEC*,*) 'K = ’ , k 
c a l l  s h o w C x C , k ) , s t r i n g )

END DO 
END SUBROUTINE show_6

SUBROUTINE show_7(n,  s t r i n g )
CHARACTERCLEN=*), INTENT(IN) :: s t r i n g  
INTEGER :: n

WRITEC*,*) s t r i n g ,  ’ = ’ , n 
END SUBROUTINE show_7

FUNCTION o u ter_ p ro d l (a ,b )
REALCPREC), DIMENSIONC:), INTENTCIN) :: a ,b
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REALCPREC), DIMENSION(sizeCa), s i z e ( b ) )  :: o u t e r _ p r o d l  
ou te r_ p ro d l  = s p r e a d C a , d i m = 2 , n c o p i e s = s i z e ( b ) ) * & 

s p r e a d ( b , d i m = l , n c o p i e s = s i z e ( a ) )
END FUNCTION o u t e r _ p r o d l

SUBROUTINE d i a g n a l _ a s s i g n l ( m a t , vec )
REALCPREC), DIMENSIONC:,;), INTENT(OUT) :: mat 
REALCPREC), DIMENSIONC:), INTENTCIN) :: vec

CALL ASSERT_EQCSIZECmat,l), SIZECmat, 2 ) ,  SIZECvec) , & 
’d i a g n a l _ a s s i g n l ' )  

mat=0.0_prec  
DO k=0, s i z e C v e c )  

matCk,k)=vecCk)
END DO

END SUBROUTINE d i a g n a l _ a s s i g n l

FUNCTION a r t h _ d C f i r s t , increment,n)
REALCPREC), INTENTCIN) :: f i r s t , increment  
INTEGER, INTENTCIN) :; n 
REALCPREC), DIMENSIONCn) :: arth_d  
INTEGER :: k,k2  
REALCPREC) :: temp
INTEGER, PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8 

i f  Cn > 0) a r t h _ d C D = f ir s t  
i f  Cn <= NPAR.ARTH) then  

do k=2,n
arth_d Ck)=arth_d Ck-1) +increment

end do 
e l s e

do k=2,NPAR2_ARTH
arth_d Ck)=arth_d Ck-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

i f  Ck >= n) e x i t  
k2=k+k
arth_d Ck+1:min Ck2, n ) ) =temp+arth_d C1:min Ck, n - k ) )
temp=temp+temp
k=k2

end do 
end i f  

END FUNCTION a r t h .d
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FUNCTION a r t h l ( f i r s t ,  in crem en t ,  n)
IMPLICIT NONE
INTEGER, IMTENT(IN) :: f i r s t ,  in c r e m e n t ,  n 
INTEGER, DIMENSIONCn) ;; a r t h l

INTEGER :: k
i f  (n<=0) c a l l  E r r o r ( ’ INVALID DIMENSION IN: \  ’ a r t h l ’ ) 
a r t h l ( l ) = f i r s t  
DO k=2,  n

a r t h l ( k ) = a r t h l ( k - 1 ) + i n c r e m e n t  
END DO 

END FUNCTION a r t h l

FUNCTION t o S t r i n g l ( i n t )
IMPLICIT NONE
INTEGER, INTENTCIN) i n t
CHARACTERCLEN=8) :: t o S t r i n g l
CHARACTER(LEN=1), DIMENSION(1 0 ) ,  PARAMETER :: &

c h a r = ( / ’0 ’ , ’ 1 ’ , ’2 ’ , ’3 ’ , ’4 ’ , ’5 ’ , ' 6 ’ , ’7 ’ , ’8 ’ , ’9 ’ / )  
INTEGER n,  k

IF( int>99999999.0R. in t<0)  THEN
CALL E rro r ( ’argument out of  bound’ , ’t o S t r i n g l ’ )

END IF
n=int
k=l
DO w h i le (n  >0)

t o S t r i n g l = c h a r ( m o d ( n , 1 0 ) + 1 ) / / t o S t r i n g l  
n=n/10  
k=k+l 

END DO 
DO n=k, 8

t o S t r i n g l = c h a r ( 1 ) / / t o S t r i n g l  
END DO 

END FUNCTION t o S t r i n g l

FUNCTION l o c a t e l ( x x , x )
IMPLICIT NONE
REALCPREC), DIMENSIONC:), INTENT(IN) :: xx 
REALCPREC), INTENTCIN) :: x 
INTEGER :: l o c a t e l

INTEGER :: n , j l , j m , j u  
LOGICAL :: ascnd  

n = s iz e (x x )
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ascnd = (xx(n) >= x x ( D )
j l= 0
ju=n+l
DO WHILE ( j u - j l  > 1) 

j m = ( ju + j l ) /2
IF (ascnd .eqv. (x >= xx ( jm )) )  THEN

ELSE 
ju=jm 

END IF 
END DO
IF (x == XX(D) THEN 

; l o c a t e l = l
ELSE IF (x == XX(n)) THEN 

l o c a t e l = n - l  
ELSE

l o c a t e l = j l  
END IF 

END FUNCTION l o c a t e l

FUNCTION l o c a t e 2 ( x x . x )
IMPLICIT NONE
REAL, DIMENSIONC;), INTENT(IN) :: xx 
REAL, INTENTCIN) :: x 
INTEGER :: l o c a te 2

INTEGER :: n , j u  
LOGICAL :: ascnd  

n = s iz e (x x )
ascnd = (xx(n) >= x x ( l ) )
j l= 0
ju=n+l
DO WHILE ( j u - j l  > 1) 

j m = ( j u + j l ) / 2
IF (ascnd .eqv.  (x >= xx ( jm ) ) )  THEN 

j l=jm  
ELSE 
ju=jm 

END IF 
END DO
IF (x == x x ( D )  THEN 

l o c a te 2 = l  
ELSE IF (x == XX(n)) THEN 

l o c a te 2 = n - l  
ELSE
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l o c a t e 2 = j l  
END IF 

END FUNCTION l o c a t e 2

FUNCTION b l i t p l ( x l , x 2 , v e c , a , b , h a , hb)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x l , x 2 , a , b , h a , h b  
REALCPREC), DIMENSIONC: , : ) ,  INTENTCIN):: vec  
REALCPREC) :: b l i t p l

REALCPREC) :: y l , y 2 , y 3 , y 4 , t , u , h x , h y  
INTEGER :: m,n,  j ,  k

m=SIZECvec, 1 ) - 1  
n=SIZECvec,2)-l  
hx=ha/m 
hy=hb/n
j=minCmaxCint Cm* C x l - a ) / h a ) + l , 1 ) ,m) 
k=minCmaxCint Cn* C x 2 -b ) /h b )+ l , 1 ) ,n)

y l=vecCj ,k)  
y2=vecCj+l ,k)  
y3=vec Cj+1,k+l)  
y4=vecCj,k+l)
t=C x l  -  Ca + hx*Cj- l ) )  ) /hx  
u=C x2 -  Cb + hy*Ck-i))  ) /h y

b l i t p l = C l . 0 _ p r e c - t ) * Cl. 0 _ p rec -u )* y l+ t*  C1 . 0_prec-u)*y2+t*u*y3  
+ C l .0 _ p rec - t )* u * y 4  

END FUNCTION b l i t p l

FUNCTION b l i t p 2 C x l , x 2 , v e c , a , b , h a , h b )
IMPLICIT NONE
REAL, INTENTCIN) :: x l , x 2 , a , b , h a , h b  
REAL,DIMENSIQNC;. : ) ,  INTENTCIN):: vec  
REAL :: b l i t p 2

REAL :: y l , y 2 , y 3 , y 4 , t , u , h x , h y  
INTEGER :: m,n,  j ,  k

m=SIZECvec,l)- l  
n=SIZECvec,2)-l  
hx=ha/m 
hy=hb/n
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j=min(max(ixit (m* ( x l - a )  / h a ) + l  ,1) ,m) 
k = m in (m ax( in t (n *(x2-b ) /h b)+ 1 , 1 ) ,n)

y l = v e c ( j , k )  
y 2 = v e c ( j + l ,k )  
y 3 = v ec ( j+ 1 ,k + l )  
y 4 = v e c ( j ,k + l )
t = (  x l  -  (a + h x * ( j - l ) )  ) / h x  
u=( x2 -  (b + h y * ( k - l ) )  ) / h y

b l i t p 2 = ( l , 0 - t ) * ( l . 0 - u ) + y l + t * ( l . 0-u )*y2+t*u*y3  & 
+ (1 .0 - t )+ u + y 4  

END FUNCTION b l i t p 2

FUNCTION b l i t p 3 ( x l , x 2 , v e c , a , b , h a , hb)
IMPLICIT NONE 
REAL, INTENT(IN) :: x l , x 2  
REAL(PREC), INTENT(IN) :: a , b ,h a ,h b  
REAL,DIMENSION(:, ; ) ,  INTENT( I N ) :: vec  
REAL :; b l i t p S

b l i t p 3 = b l i t p 2 ( x l , x 2 , v e c , r e a l ( a ) , r e a l ( b ) , r e a l ( h a ) , r e a l ( h b ) ) 
END FUNCTION b l i t p S

FUNCTION b l i t p 4 ( x l , x 2 , v e c , a , b , h a , h b )
IMPLICIT NONE 
REAL, INTENT(IN) :: x l , x 2  
REAL(PREC), INTENT(IN) a , b ,h a ,h b  
REAL(PREC),DIMENSION(:, : ) ,  INTENT( I N ) :; vec  
REAL ;: b l i t p 4

b l i t p 4 = b l i t p l ( R E A L ( x l , KIND=PREC), REAL(x2, KIND=PREC), & 
v e c , a , b , h a , h b )

END FUNCTION b l i t p 4

FUNCTION b l i t p S ( x l , x 2 , x 3 , v e c , a , b , c , h a , h b , h e )
IMPLICIT NONE
REAL, INTENT(IN) 
REAL, INTENT(IN) 
REAL,DIMENSIONC:, 
REAL :: b l i t p S

: x l , x 2 , x 3  
: a , b , c , h a , h b , h e  
, : ) ,  INTENTCIN):: vec

REAL,DIMENSI0NC8) :: y 
REAL :: t , u , w , h x , h y , h z  
INTEGER :: l , m , n ,  i , j , k  

l = S I Z E C v e c , l ) - l
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m=SIZE(vec ,2)- l
n =S IZ E (vec ,3 ) - l
hx=ha/l
hy=hb/m
hz=hc/n
i=miii(max(int (1* ( x l - a )  /ha) + 1 ,1 )  ,1)
j= m in (m a x ( in t (m * (x 2 -b ) /h b )+ l , 1 ) ,m)
k = m i n (m a x ( i n t ( n * ( x 3 - c ) /h c ) + l , 1 ) ,n)
y ( l ) = v e c ( i , j , k )
y ( 2 ) = v e c ( i + l , j , k )
y ( 3 ) = v e c ( i + l , j + l , k )
y ( 4 ) = v e c ( i , j + l , k )
y ( 5 ) = v e c ( i , j , k + l )
y ( 6 ) = v e c ( i + l , j , k + l )
y ( 7 ) = v e c ( i + 1 , j+ 1 ,k + l )
y ( 8 ) = v e c ( i , j + l , k + l )
t = (  x l  -  (a + h x * ( i - l ) )  ) / h x
u=( x2 -  (b + h y * ( j - D )  ) / h y
w=( x3 -  (c + h z * ( k - l ) )  ) / h z

b l i t p 5 = ( l - w ) * ( ( l - u ) * ( ( l - t ) * y ( l ) + t * y ( 2 ) ) + u * ( t * y ( 3 ) + ( l - t ) * y ( 4 ) ) ) S  
+w * ( ( l - u ) * ( ( l - t ) * y ( 5 ) + t * y ( 6 ) ) + u * ( t * y ( 7 ) + ( l - t ) * y ( 8 ) ) ) 

END FUNCTION b l i t p S

FUNCTION b l i t p S ( x 1 , x 2 , x 3 , v e c , a , b , c , h a , h b , he)
IMPLICIT NONE
REAL, INTENTCIN) :: x l , x 2 , x 3  
REALCPREC), INTENTCIN) :: a , b , c , h a , h b , h c  
REALCPREC), DIMENSION( ; , : , : ) ,  INTENT(IN):; vec  
REAL :: b l i t p S

REAL :: a l , b l , c l , h a l , h b l , h c l  
al=REALCa) 
bl=REALCb) 
cl=REALCc) 
hal=REALCha) 
hbl=REAL(hb) 
hcl=REAL(hc)
b l i t p 6 = b l i t p 5 ( x l , x 2 , x 3 , REAL(vec), a l , b l , c l , h a l , h b l , h c l )

END FUNCTION b l i t p S

FUNCTION b l i t p 7 ( x 1 , x 2 , x 3 , v e c , a , b , c , h a , h b , he)
IMPLICIT NONE 
REALCPREC), INTENTCIN)
REALCPREC), INTENTCIN)
REALCPREC), DIMENSIONC:,

: x l , x 2 , x 3  
: a , b , e , h a , h b , h e  
, : ) ,  INTENTCIN):: vee
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REAL(PREC) :: b l i t p 7
bl itp7=REAL(blitp6(REAL(xl ) ,REAL(x2) ,REAL(x3)  

v e c ,a ,b ,c ,h a ,h b ,h c ) ,K I N D = P R E C )  
END FUNCTION b l i t p 7

SUBROUTINE p l o t _ f u n c ( f u n c , f i l e N a m e , a , b , h a , h b ,  MGRID.NGRID) 
IMPLICIT NONE
CHARACTER(LEN=*) :: f i l e N am e  
REALCPREC), INTENTCIN) a , b , h a , h b  
INTEGER. INTENTCIN) MGRID.NGRID 
INTERFACE

FUNCTION funcC x .y )
USE ntype
REALCPREC), INTENTCIN) :: x ,  y 
REALCPREC) func  

END FUNCTION 
END INTERFACE

REALCPREC) x ,  y ,  hx .hy  
INTEGER :; i , j 

hx=ha/CMGRID-l) 
hy=hb/CNGRID-l)

OPEN C4, f i l e = f i l e N a m e / / ’ . d a t ’ )
WRITEC4,*) ’TITLE=V/fi leName  
WRITEC4,*) 'VARIABLES="X'' "Y" "Z"’
WRITEC4,*) 'ZONE I = ’ . m g r i d , ' ,  J = ’ , n g r i d , ’ , C=BLUE’
DO i = l ,  mgrid 

X = a + C i - l )*h x  
DO j = l ,  n gr id  

y = b + ( j - l ) * h y
WRITEC4,*) X, y ,  REALCfuncCx,y),KIND=PREC)

END DO 
END DO
CLOSE C4, STATUS='keepO 

END SUBROUTINE p l o t . f u n c

SUBROUTINE p l o t 1 (home, name, NUM, v e c , i n t , a ,b , h a ,hb)
IMPLICIT NONE

CHARACTERCLEN=*).INTENTCIN) :: home 
CHARACTER(LEN=*).DIMENSIONC:).INTENTCIN) :: name 
INTEGER. INTENTCIN) :: NUM.int
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REAL(PREC), DIMEMSIOM(: INTEMT(IN) ;: vec 
REALCPREC), INTENTCIN) :: a ,b ,h a ,h b

CHARACTERCLEN=8) :: s t r  
s t r = to S tr in g C in t )
IF Cint<10) THEN

CALL PLOTTINGChome, name, NUM, v e c , s t r  C8; 8 ) , a , b , h a , hb) 
ELSE IF Cint<100) THEN

CALL PLOTTINGChome,name,NUM,vec,strC7:8 ) , a ,b ,h a ,h b )  
ELSE IF Cint<1000) THEN

CALL PLOTTING Chome, name, NUM, v e c , s t r  C6: 8 ) , a , b , h a , hb) 
ELSE IF Cint<10000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC5:8 ) , a ,b ,h a , h b )  
ELSE IF Cint<100000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC4:8 ) , a ,b ,h a , h b )  
ELSE IF Cint<1000000) THEN

CALL PLOTTING Chome, name, NUM, v e c , s t r  C3; 8 ) , a , b , h a , hb) 
ELSE IF Cint<10000000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC2;8),a,b,ha,hb)  
ELSE IF Cint<100000000) THEN

CALL PLOTTING Chome, name, NUM, ve c , s t r  C l : 8 ) , a , b , h a , h b )  
END IF 

END SUBROUTINE p l o t l

SUBROUTINE p l o t 2 Chome, name, NUM, v e c , i n t , a , b ,h a , hb)
IMPLICIT NONE

CHARACTERCLEN=*) , INTENTCIN) home
CHARACTERCLEN=*), DIMENSIONC:).INTENTCIN) name
INTEGER, INTENTCIN) :: NUM,int
REALCPREC), DIMENSIONC;,:,:, :),  INTENT(IN) :; vec
REALCPREC), INTENTCIN) :: a ,b ,h a ,h b

CHARACTERCLEN=8) :: s t r  
s t r = to S tr in g C in t )
IF Cint<10) THEN

CALL PLOTTINGChome,name,NUM,vec,strC8:8 ) ,a ,b ,h a , h b )  
ELSE IF Cint<100) THEN

CALL PLOTTINGChome,name,NUM,vec,strC7;8 ) ,a ,b ,h a , h b )  
ELSE IF Cint<1000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC6:8 ) , a ,b ,h a , h b )  
ELSE IF Cint<10000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC5:8 ) ,a ,b ,h a , h b )  
ELSE IF Cint<100000) THEN

CALL PLOTTING Chome, name, NUM, v e c , s t r  C4: 8 ) , a , b , h a , hb) 
ELSE IF Cint<1000000) THEN
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CALL PLOTTING(home,name,NUM,vec,Str( 3 : 8 ) , a , b , h a , h b )  
ELSE IF ( in t<1000000G) THEN

CALL PLOTTING(home, name, NUM, v e c , s t r ( 2 : 8 ) , a , b , h a , hb) 
ELSE IF ( in t< 1 0 0 0 0 0 0 0 0 )  THEN

CALL PLOTTING(home, name, NUM, v e c , s t r ( 1 ; 8 ) , a , b , h a , hb) 
END IF 

END SUBROUTINE p l o t 2

SUBROUTINE p l o t S ( h o m e , name, NUM, v e c , s t r , a , b , h a , hb)
IMPLICIT NONE

INTEGER, INTENT(IN) :: NUM 
CHARACTER(LEN=*),INTENT(IN) home 
CHARACTER(LEN=*),DIMENSION(: ) , INTENT(IN) 
CHARACTER(LEN=*) ,  INTENT(IN) :: s t r  
REAL(PREC), DIMENSION(:, : , : ) ,  INTENT(IN) 
REAL(PREC), INTENT(IN) :: a ,b ,h a ,h b  
CHARACTER(LEN=1).DIMENSION( 1 0 ) .PARAMETER 

c h l = ( / ’0 ' , ' 1 ' ,  ’2 ' ,  \  ' 5 ^  ’6 ' ,  '7'
CHARACTER(LEN=3), DIMENSION(IOO), PARAMETER 

c h 2 = ( / ’0 0 1 ’
' 0 1 0 ’
'019 '

name

vec

: &  

’8 ' . ’9 V )

'028'
'037'
'046'
'055'
'064'  
'073'  
'082'  
’091'  
' 100 ' / )

' 0 0 2 '

' Oi l '
' 0 2 0 '

'029'
'038'
'047'
'056'
'065'
'074'
'083'
'092'

'003'
' 0 1 2 '

' 0 2 1 '

'030'
'039'
'048'
'057'
'066'
'075'
'084'
'093'

'004'
'013'
' 02 2 '

’0 3 1 ’
’0 4 0 ’
’0 4 9 ’
’0 5 8 ’
’0 6 7 ’
’0 7 6 ’
’0 8 5 ’
’0 9 4 ’

’0 0 5 ’
’0 1 4 ’
’0 2 3 ’
’0 3 2 ’
’0 4 1 ’
’0 5 0 ’
’ 0 5 9 ’
’0 6 8 ’
’0 7 7 ’
’0 8 6 ’
’0 9 5 ’

’0 0 6 ’
’0 1 5 ’
’024 ’
’0 3 3 ’
’0 4 2 ’
’0 5 1 ’
’0 6 0 ’
’0 69 ’
’0 7 8 ’
’0 87 ’
’ 096 ’

’0 0 7 ’
’0 1 6 ’
’0 2 5 ’
’0 3 4 ’
’0 4 3 ’
’0 5 2 ’
’0 6 1 ’
’0 7 0 ’
’0 7 9 ’
’0 8 8 ’
’0 9 7 ’

’008
’017
’026
’035
’044
’053
’062
’071
’080
’089
’098

’0 0 9 ’ ,& 
’0 1 8 ’ ,& 
’0 2 7 ’ ,& 
’0 3 6 ’ ,& 
’0 4 5 ’ ,& 
’0 5 4 ’ ,& 
’0 6 3 ’ ,& 
’0 7 2 ’ ,& 
’0 8 1 ’ ,& 
’0 9 0 ’ ,& 
’0 9 9 ’ ,&

INTEGER :: k

DO k=l,NUM
CALL PLGT_VECl(vec(k,: , : ) ,  h o m e / / ’PC/’ / / s t r / / ’_ ’/ /&

name( 1 ) / / c h i ( k + 1 ) , ’ ’ , a ,b , h a , h b )
END DO
CALL PLOT_VECl(vec(NUM+l,: , : ) ,  h o m e / / ’PC/’ / / s t r / / ’_ ’ / /&

n am e(2) , ’ ’ , a ,b ,h a , h b )
DO k=l,SIZE(vec, l)-NUM-1

CALL PLOT_VECl(vec(NUM+l+k,: , : ) .  h o m e / / ’PC/’ / / s t r / / ’ _ ’ / /  &
n a m e ( 3 ) / / c h 2 ( k ) , ’ ’ , a ,b ,h a , h b )

END DO 
END SUBROUTINE p lo tS
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SUBROUTINE p l o t 4 ( h o m e , name, NUM, v e c , s t r , a , b , h a , hb) 
IMPLICIT NONE

CHARACTER(LEN=*), INTENTCIN) :: home 
CHARACTER(LEN=*).DIMENSIONC:).INTENTCIN) :: name 
INTEGER. INTENTCIN) :: NUM 
CHARACTER(LEN=*). INTENT(IN) :: s t r  
REALCPREC). D IM EN SIO N C: , : . : , : ) ,  INTENT(IN) :: vec  
REALCPREC). INTENTCIN) :: a . b . h a . h b  
CHARACTER(LEN=1) .  DIMENSION( 2 0 ) .  PARAMETER

c h l = C / ' 0 ' , ’ 1 ’ . ’2 ’ ’ 3 ’> i ’4 ’ , ’5 , ' 6 ’ , ’7 ’ . ’8 , ’9 ’ / )
iRACTERCLEN=3), DIMENSIONClOO) PARAMETER : &
ch2=C/’001’ , ’002’ , ’003’ . ’004’ ’005’ . ’006’ ’007’ . ’008’ ’009’ &

’010’ . ’O i l ’ . ’012’ . ’013’ ’014’ , ’015’ ’016’ . ’017’ ’018’ &
’019’ . ’020’ . ’021’ . ’022’ ’023’ , ’024’ ’025’ . ’026’ ’027’ &
’028’ . ’029’ . ’030’ . ’031’ ’032’ , ’033’ ’034’ , ’035’ ’036’ &
’037’ . ’038’ . ’039’ , ’040’ ’041’ , ’042’ ’043’ . ’044’ ’045’ &
’046’ . ’047’ . ’048’ . ’049’ ’050’ , ’051’ ’052’ . ’053’ ’054’ &
’055’ , ’056’ , ’057’ , ’058’ ’059’ , ’060’ ’061’ , ’062’ ’063’ &
’064’ , ’065’ , ’066’ , ’067’ ’068’ , ’069’ ’070’ , ’071’ ’072’ &
’073’ . ’074’ , ’075’ , ’076’ ’077’ . ’078’ ’079’ , ’080’ ’081’ k
’082’ , ’083’ , ’084’ . ’085’ ’086’ . ’087’ ’088’ , ’089’ ’ 0 9 0 ’ k
’091’ , ’092’ , ’093’ . ’094’ ’095’ , ’096’ ’097’ . ’098’ ’099’ k
’ lOOV)

INTEGER :: k l , k 2  
DO k l = l .  s i z e C v e c . 1)

DO k2=l.NUM
CALL PL0T_VECl(vec(kl.k2,  : , : )  . h o m e / / ’P C / V / s t r / / ’_ ’ & 

/ / n a m e ( l ) / / c h l ( k 2 + l ) / / ’_ V / c h 2 ( k l ) , ’ ’ , a ,b ,h a , h b )
END DO
CALL PLOT.VECKvecCkl.NUM+1.: , : )  . h o m e / / ' P C / V / s t r / / ’_ ’ & 

/ / n a m e ( 2 ) / / ’_ ' / / c h 2 ( k l ) , ' ' . a .b .h a .h b )
CALL PL0T_VECl(vec(kl,NUM+2,: ,  :) , h o m e / / ' P C / V / s t r / / ' _ '  & 

/ / n a m e ( 3 ) / / ' _ V / c h 2 ( k l )  , ’ ’ . a .b .h a . h b )
CALL PL0T_VECl(vec(kl,NUM+3,: , : )  , h o m e / / ’P C / V / s t r / / ’ _ ’ & 

/ / n a m e ( 4 ) / / ' _ ’ / / c h 2 ( k l ) , ' ' , a .b .h a .h b )
END DO 

END SUBROUTINE p l o t 4

SUBROUTINE p l o t . v e c K v e c . f i l eNam e,STR ,a .b .ha .hb)
IMPLICIT NONE
CHARACTER(LEN=*) :: f ileName.STR
REALCPREC), DIMENSIONC: , : ) ,  INTENT(IN) :: vec
REALCPREC), INTENTCIN) :: a , b ,h a ,h b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



206

REALCPREC) x ,  y ,  h x ,h y  
INTEGER :: i ,  j ,  m, n 

m=SIZE(vec,1 )  
n=SIZ E(vec ,2)  
hx=ha/ (m-1)  
h y = h b / (n -1 )

OPEN (4 ,  f i l e = f i l e N a m e / / ' . d a t ')
WRITEC4,*) ’TITLE=’ / / f i l e N am e/ /S T R  
WRITE(4,*) 'VARIABLES="X" "Y" "Z"’
WRITE(4,*) ’ZONE J=’ , n , ’ , C=BLUE’
DO i = l ,  m

X = a + ( i - l ) * h x  
DO j = l ,  n

y = b + ( j - l ) * h y
WRITE(4,*) X, y.  REAL(vec(i,j),KIND=PREC)

END DO 
END DO
CLOSE(4,  STATUS=’k eep ’ )

END SUBROUTINE p l o t _ v e c l

SUBROUTINE p l o t _ v e c 2 ( v e c ,  f i l eN am e ,S T R ,a ,b ,ha ,h b )
IMPLICIT NONE
CHARACTER(LEN=*) :: fi leName.STR
REALCPREC), DIMENSIONC:.:,;), INTENT(IN) :: vec
REALCPREC), INTENTCIN) :: a .b .h a .h b

INTEGER :: n . i  
CHARACTERCLEN=8) :: sn 

n = S I Z E ( v e c , l ) ;
IF Cn==l) THEN

CALL PLOTTINGCVECC1 , : , : ) ,  f i l eN am e .S T R ,a .b .ha .h b )
ELSE

c a l l  p lo t t in g C v e c C l , : . : ) . f i l e N a m e / / ’_ l l ’ .STR ,a .b .h a .hb)  
c a l l  p l o t t in g C v e c C 2 . : . : ) . f i l e N a m e / / ’_ 1 2 ’ .STR ,a .b .h a .hb)  
c a l l  p l o t t i n g ( v e c C 3 . : . : ) . f i l e N a m e / / ’_ 2 2 ’ .S I R .a .b .h a .h b )  

END IF
END SUBROUTINE p lo t_ v e c 2

SUBROUTINE p l o t _ r e a l ( v e c . f i l eN am e .ST R .a .b .h a .h b)
IMPLICIT NONE
CHARACTER(LEN=*) :: fileName.STR  
REAL. DIMENSIONC:. : ) .  INTENT(IN) :: vec  
REALCPREC). INTENTCIN) :: a .b .h a .h b
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REAL ;: x ,  y ,  h x ,h y  
INTEGER :: i ,  j ,  m, n 

m =SIZE(vec , l )  
n=SIZ E (vec ,2 )  
hx=ha/ (m-1)  
h y = h b / ( n - l )

OPEN (4,  f i l e = f i l e N a m e / / ' . d a t ' )
WRITE(4,*) ’TITLE=’/ / f i leMame//STR  
WRITE(4,*) ’VARIABLES="X" "Y" "Z"’
WRITE(4,*) ’ZONE C=BLUE’
DO i = l ,  ra

X = a + ( i - l ) * h x  
DO j = l ,  n

y = b + ( j - l ) * h y
WRITE(4,*) X,  y ,  REAL(vec(i , j ) ,KIND=PREC) 

END DO 
END DO
CLOSE(4,  STATUS=’k eep ’ )

END SUBROUTINE p l o t _ r e a l

SUBROUTINE p l o t _ l d ( v e c ,  home, name, a , ha)
IMPLICIT NONE
CHARACTER(LEN=*) :: home,name 
REALCPREC), DIMENSIONC:), INTENT(IN) :: vec  
REALCPREC), INTENTCIN) :: a ,ha

REAL :: x,  y ,  hx,hy  
INTEGER :: i , m 

m=SIZECvec) 
hx=ha/Cm-1)

OPEN (4,  f i l e = h o m e / / n a m e / / ’ . d a t ’ )
WRITEC4,*) ’TITLE=’//name  
WRITEC4,*) ’VARIABLES="X" "Y" ’
WRITEC4,*) ’ZONE I = ’ , m , ’ , C=BLUE’
DO i = l ,  m

X = a + C i- l )*h x  
WRITE(4,=t=) X ,  y,  v e c ( i )

END DO
CLOSEC4, STATUS=’k e e p ’ )

END SUBROUTINE p l o t . l d

FUNCTION c o n t a i n s l  Ci, vec)
IMPLICIT NONE
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INTEGER, INTENT(IN) :: i  
INTEGER, DIMENSIONC;) :: vec  
LOGICAL :: c o n t a i n s l

INTEGER ;: k
DO k = l ,  S I Z E ( v e c , l )

IF ( v e c ( k ) = = i )  THEN 
c o n t a i n s  1 = . TRUE.
RETURN 

END IF 
END DO
c o n t a i n s  1= .FALSE.
RETURN 

END FUNCTION c o n t a i n s l

SUBROUTINE c o m p u te E r r o r _ 0 ( v e c , a , b , h a , hb , t 1 , t 2 , func )  
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a , b , h a , h b , t l , t 2  
REALCPREC), DIMENSIONC; , : , : ) ,  INTENT(IN) :: vec  
INTERFACE

FUNCTION f u n c ( x , y , t )
USE ntype
REAL(PREC) :: x , y , t  
REALCPREC) :: func  

END FUNCTION 
END INTERFACE

INTEGER :: n s t e p , n l , n 2 , l l , i , j  , i e r r , j e r r  
REALCPREC), DIMENSI0NCSIZE(vec,2) ,SIZE(vec,3)) :: v e c l  
REAL(PREC) :: x ,  y ,  hx,  h y , e r r , t  
CHARACTER(LEN=12) :: f i l eName  
CHARACTER(LEN=10) :: t i t l e  

n step  = S IZ E (vec , l )  
nl=SIZE(vec,2)  
n2=SIZE(vec,3)  
h x = h a / (n l -1 )  
h y=hb /(n 2- l )

DO 11=1, n s te p  
err=0.0_prec
t = t l + ( t 2 - t l ) * ( l l - l ) / ( n s t e p - 1 )
DO i = l , n l  

x = a + h x * ( i - l )
DO j = l , n 2  

y= b+ hy*( j - l )  
v e c l ( i , j ) = f u n c ( x , y , t )
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I F ( a b s ( v e c l ( i , j ) - v e c ( l l , i , j ) )  > err)  THEN 
e r r = a b s ( v e c l ( i , j ) - v e c ( 1 1 , i , j ))  
i e r r = i  
j err = j  

END IF 
END DO 

END DO
fileName=’P C /er ro r . d a t ’ 
t i t l e = M i f f e r e n c e  ’
CALL p l o t t i n g ( v e c l ( : , : ) - v e c ( l l , : , , ’P C /e r r o r . d a t ' , ’e r r o r ' ,& 

a , b ,h a ,h b )
CALL p l o t t i n g ( v e c l ( : , : ) , ’P C / v e c l . d a t ’ , ’v e c l ’ , a ,b ,h a ,h b )
CALL p l o t t i n g ( v e c ( : , : ) , ’PC /vec . d a t ’ , ’v e c ’ , a ,b ,h a ,h b )
PRINT ’ THE ERROR IS : ’
PRINT =*=, ’ I = ’ , IERR, ’ J = ’ , JERR, ’ ERR = ’ , err  
pause  

END DO 
STOP

END SUBROUTINE computeError.O

SUBROUTINE coniputeError_ l(u ,ux ,uy ,  u l ,  u l x , u l y , a , b , h a , h b )
IMPLICIT NONE
REAL(PREC), DIMENSION(:, : , ,  INTENT( I N ) :: u , u x , u y , u l , u l x , u l y  
REAL(PREC), INTENT(IN) :: a ,b ,h a ,h b

INTEGER :: n s t e p , n l , n 2 , 11
CALL a s s e r t _ e q ( S I Z E ( u , l ) , S I Z E ( u x , l ) , S I Z E ( u y , l ) , &

S I Z E (u l ,1 ) ,S I Z E (u lx ,1 ) , S I Z E (u ly ,1 ) ,  ’ computeError’) 
nstep=SIZE(u,1) 
nl=SIZE(u,2)  
n2=SIZE(u,3)
DO 11=1,n s te p

CALL p l o t t i n g ( u ( l l , : , : ) - u l ( l l , : , : ) ,  &
’P C / e r r o r . d a t ’ , ’ e r r o r ’ , a ,b ,h a , h b )

CALL p l o t t i n g ( u ( l l , : , : ) ,  ’P C / v e c .d a t ’ , ’v e c ’ , a ,b ,h a ,h b )
CALL p l o t t i n g ( u l ( l l , : , : ) , ’P C / v e c l . d a t ’ , ’v e c l ’ , a ,b ,h a , h b )

CALL p l o t t i n g ( u x ( l l , : , : ) - u l x ( l l , : , : ) ,  &
’P C /er rorx .d a t ’ , ’e r r o r x ’ , a , b , h a , hb)

CALL p l o t t i n g ( u x ( l l , : , : ) ,  ’P C /v e c x .d a t ’ , ’v e c x ’ ,a ,b ,h a , h b )  
CALL p l o t t i n g ( u l x ( 1 1 , : , : ) , ’P C / v e c x l . d a t ’ , ’v e c x l ’ , a ,b ,h a , h b )

CALL p l o t t i n g ( u y ( l l , : , : ) - u l y ( l l , : , : ) ,  &
’P C /er ro r . d a t ’ , ’ e r r o r ’ , a , b , h a , hb)

CALL p l o t t i n g ( u y ( l l , : , : ) ,  ’P C /v e c y .d a t ’ , ’v e c y ’ ,a ,b ,h a , h b )  
CALL p l o t t i n g ( u l y ( 1 1 , : , : ) , ’PC/vecy1 . d a t ’ , ’v e c y l ’ , a ,b ,h a , h b )
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PAUSE 
END DO 
STOP

END SUBROUTINE computeError_l

SUBROUTINE c o m p u te E r r o r _ 2 ( v e c , a , b , h a , h b , t 1 , t 2 , f u n c )
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a , b , h a , h b , t l , t 2  
REAL, DIMENSIONC:,:, :) ,  INTENT(IN) ;: vec  
INTERFACE

FUNCTION f u n c C x , y , t )
USE ntype  
REAL :: x , y , t  
REAL :: func  

END FUNCTION 
END INTERFACE

INTEGER :: n s t e p , n l , n 2 , 1 1 , i , j , i e r r , j e r r  
REALCPREC), DIMENSI0NCSIZECvec,2),SIZECvec,3)) :: v e c l  
REALCPREC) :; x ,  y ,  hx,  h y , e r r , t  
CHARACTERCLEN=12) :: f i leName  
CHARACTERCLEN=10) :: t i t l e  

n step  = S IZ E (vec . l )  
nl=SIZECvec,2)  
n2=SIZECvec,3)  
hx=ha/Cnl-1)  
hy=hb/Cn2-1)

DO 11=1,  n s tep  
err=0 .0_prec
t = t l +  C t 2 - t l ) * C l l - 1 ) / (ns tep -1 )
DO i = l , n l  

x=a+hx*Ci-l)
DO j = l , n 2  

y = b+ h y*( j - l )
ve c l ( i , j )= R E A L (fu n c (r e a lC x ) ,r e a l (y ) ,r e a l ( t ) ) ,K I N D = P R E C )  
I F ( a b s ( v e c l ( i , j ) - v e c ( l l , i , j ) )  > err)  THEN 

e r r = a b s ( v e c l ( i , j ) - v e c ( 1 1 , i , j ) )  
i e r r = i  
i e r r = i  

END IF 
END DO 

END DO
fi leN am e= ’P C /error . d a t ' 
t i t l e = ’d i f f e r e n c e ’
CALL p l o t t i n g C v e c l ( : , : ) - v e c ( l l , : , : ) , ’P C / e r r o r . d a t ’ , ’e r r o r ’ , l
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a , b ,h a ,h b )
CALL p l o t t i n g C v e c l ( : , : ) , ' P C / v e c l . d a t ' , ’v e c l ' , a ,b , h a ,h b )  
CALL p l o t t i n g ( v e c ( : , , ' P C / v e c . d a t ’ , ’v e c ’ ,a ,b ,h a , h b )  
PRINT *,  ’ THE ERROR IS : ’
PRINT ’ I = ’ , IERR, ’ J = ’ , JERR, ’ ERR = ’ , err
pause 

END DO 
STOP

END SUBROUTINE computeError_2

SUBROUTINE l a p l a c e T r a n s f o r m l ( f u n c , t l , t 2 , lmd,u)
IMPLICIT NONE
REALCPREC), DIMENSIONC: INTENT(IN) ;: func  
REALCPREC), DIMENSIONC:), INTENT(IN) :: Imd 
REALCPREC), INTENTCIN) :: t l , t 2  
REALCPREC), DIMENSIONC: , : , ; ) ,  INTENT(OUT) :: u

INTEGER :: n s te p ,  m, n, l l , i , j ,  i t ,  nlmd 
REALCPREC) :: lambda, t
REALCPREC), DIMENSIONCSIZECfunc,!)) :: f u n d

CALL assert_eqCSIZECu,1 ) ,  SIZEClmd,!) , ’la p laceT rans form ’ ) 
CALL a sse r t_eq C S IZ E (u ,2 ) , SIZE(func, 2 ) la p laceT ran s form ’ ) 
CALL asse r t_eq C S IZ E (u ,3 ) , SIZE(func ,3 ) , ’ l ap laceT rans form ’ )

nstep=SIZE(func, 1 ) - 1  
m=SIZE(func,2)  
n=SIZE(func,3)  
nlmd=SIZEClmd)
DO 11=1,nlmd 

lambda=lmdCll)
DO i= l ,m  
DO j = l , n

DO i t = l , n s t e p + l
t = t l + C t 2 - t l ) * C i t - l ) / n s t e p
f u n c 1 ( i t ) = f u n c  C i t , i , j ) *exp(-lambda*t)

END DO
c a l l  q s i m p C f u n c l , t l , t 2 , u C l l , i , j ) )

END DO 
END DO 

END DO
END SUBROUTINE lap laceTransforml  

SUBROUTINE q s i m p l ( f u n c , a , b , s s )
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IMPLICIT NONE
REALCPREC), INTENT(IN) : : a , b  
REALCPREC), DIMENSIONC:) :: func  
REALCPREC), INTENTCOUT) :: s s

INTEGER n s t e p , i  
REALCPREC) h

nstep=SIZECfunc)- 1  
h = C b -a ) /n s te p  
ss= fun c  CD +func  Cnstep+1)  
do i = 2 , n s t e p , 2

s s = s s + 4 . 0_prec*func Ci) 
end do
do i = 3 , n s t e p - 1 ,2

ss=ss+2 . 0_prec*func CD 
end do
s s= s s * h /3 .0 _ p r e c  

END SUBROUTINE qsimpl

SUBROUTINE q s im p 2C fu nc ,a ,b ,s s )
IMPLICIT NONE 
REAL, INTENTCIN) : : a , b  
REAL, DIMENSIONC:) :: func  
REAL, INTENTCOUT) :: s s

INTEGER n s t e p , i  
REAL h

nstep=SIZECfunc)-l  
h=Cb-a)/nstep  
ss=func CD +func Cnstep+1) 
do i = 2 , n s t e p , 2  

s s = s s + 4 . 0*f unc CD 
end do
do 1=3,n s t e p - 1 ,2  

s s = s s + 2 . 0*func Ci) 
end do 
s s = s s * h / 3 .0  

END SUBROUTINE qsimp2

SUBROUTINE p u t l  Ck, vec)
IMPLICIT NONE 
INTEGER, INTENTCIN) :: k
INTEGER, DIMENSIONC:), INTENTCINOUT) :: vec

INTEGER :: i  
DO i=SIZECvec) - l ,  1,  -1
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v e c ( i + l ) = v e c ( i )
END DO 
v e c ( 1 ) =k 

END SUBROUTINE p u t l

SUBROUTINE p a ck K v ec ,  mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC;), IMTENT(OUT) :: vec  
REALCPREC), DIMENSIONC:), INTENTCIN) :: mat 
INTEGER :: m

CALL assert_eqCSIZECvec), SIZECmat), ’p a c k l ’ ) 
m=SIZECmat)
vec C1:m)=dble Cmat C1;m))

END SUBROUTINE packl

SUBROUTINE pack2Cvec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENTCOUT) :: vec  
REALCPREC), DIMENSIONC:,:), INTENTCIN) :: mat 
INTEGER :: k,  m, n

CALL assert_eqCSIZECvec), SIZECmat, 1 ) *SIZECmat, 2 ) ,  'p ack 2’ ) 
m=SIZECmat,1)  
n=SIZECmat,2)
DO k =l ,  ra

vec C Ck-1)*n+l:k*n)=dble Cmat Ck, 1 : n ) )
END DO 

END SUBROUTINE pack2

SUBROUTINE packSCvec, mat)
IMPLICIT NONE
DOUBLE PRECISION. DIMENSIONC:), INTENTCOUT) :: vec  
REALCPREC), DIMENSIONC: , : , : ) ,  INTENTCIN) :: mat 
INTEGER :: k,  i ,  m, n,  r  

CALL assert_eqCSIZECvec), &
SIZECmat, 1 ) *SIZECmat, 2 ) ^SIZECmat, 3 ) ,  ’packS’ ) 

m=SIZECmat,2)  
n=SIZECmat,3)
DO k = l ,  SIZECmat,1)
DO i = l ,  m

r=Ck-l)*m*n+Ci-l)*n
vec Cr+1:r+n)=dble Cmat Ck, i , 1 :n ) )

END DO 
END DO
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END SUBROUTINE packS

SUBROUTINE unpackl (vec ,  mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENT(IN) :: vec  
REALCPREC), DIMENSIONC:), INTENTCOUT) :: mat 
INTEGER :: m

CALL assert_eqCSIZECvec) , SIZECmat), ’unpackl’ ) 
m=SIZECmat)
mat C1:m)=REAL Cvec C1:m), KIND=PREC)

END SUBROUTINE unpackl

SUBROUTINE unpack2Cvec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENTCIN) :: vec  
REALCPREC), DIMENSIONC; , : ) ,  INTENTCOUT) :: mat 
INTEGER :: k, m, n

CALL assert_eqCSIZECvec) , SIZECmat, 1)*SIZECmat, 2 ) ,  ’unpack2’ ) 
m=SIZECmat,1)  
n=SIZECmat,2)
DO k =l ,  m

mat Ck, 1 : n)=REAL Cvec C C k-1)*n+l:k * n ) , KIND=PREC)
END DO 

END SUBROUTINE unpack2

SUBROUTINE unpacksCvec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENTCIN) :: vec  
REALCPREC), DIMENSIONC: , : , : ) ,  INTENTCOUT) :: mat 
INTEGER :: k, i ,  m, n, r  

CALL assert_eqCSIZECvec), &
SIZECmat,1)*SIZECmat,2 ) *SIZECmat,3 ) ,  ’unpackS’ ) 

m=SIZECmat,2)  
n=SIZECmat,3)
DO k =l ,  SIZECmat,1)
DO i = l ,  m

r=Ck-l)*m*n+Ci-l) *n
mat Ck, i , 1 :n)=REALCvec Cr+1:r + n ) , KIND=PREC)

END DO 
END DO 

END SUBROUTINE unpacks
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FUNCTION p o s i t i v e l ( v e c )
IMPLICIT NONE
REALCPREC), DIMENSIONC:, : , :) ,  INTENTCIN) :: vec  
LOGICAL :: p o s i t i v e l

!C: LOCAL VARIABLES

IFCSIZECvec,! )= = ! )  THEN 
IF CANYCvecCl,: , : )< = 0 .0 _ p r ec ) )  THEN 

p o s i t i v e 1= .FALSE.
RETURN 

- END IF 
ELSE

IF CANYCvecCl,: , : )<=0 .0_prec  ) . 0R.  ANYCvecC3, : , : ) < = 0 . 0_prec) & 
■OR. ANYCvecCl, : , : ) * v e c C3 , : , : )

-v e c  C2, : , : ) *vec C2, : , : ) < = 0 . 0_ p r e c ) ) THEN 
p o s i t i v e l  = .FALSE.
RETURN 

END IF 
END IF
p o s i t i v e l  = .TRUE.

END FUNCTION p o s i t i v e l

SUBROUTINE smoothlCu)
IMPLICIT NONE
REALCPREC), DIMENSIONC:, : ) ,  INTENTCINOUT) :: u

REALCPREC), DIMENSIONCSIZECu,l),SIZECu,2)) :: tu  
INTEGER :: m, n, k 

m=SIZECu,l) 
n=SIZECu,2)
t u C l , 1 :n)=CuCl,1 :n)+uC2,1 :n ) ) * 0 . 5_prec  
tuCm, 1 :n) = CuCm-l, 1 ;n) +uCin, 1 :n ) ) *Q. 5_prec  
DO k=2,m-l

tuCk,1 :n)=CuCk-l , 1 :n)+2*uCk,1 :n)+uCk+l, 1 :n ) ) * 0 . 25_prec  
END DO
uCl :m, l )  = CtuCl:m, l )+ tu C l :n i ,2 ) )* 0 .5 _ p r e c  
uCl:m,n) = CtuCl:m,n-l )+tu  C1:m, n ) ) * 0 . 5_prec  
DO k = 2 ,n - l

uCl :m,k) = CtuCl :m,k-l)+2*tuCl:ni ,k)+ti iCl :m,k+l)  ) * 0 . 25_prec  
END DO 

END SUBROUTINE smoothl
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SUBROUTINE s p l i t 2 ( n u m , n , i , j )
IMPLICIT NONE
INTEGER,INTENTCIN) :: num,n 
INTEGER,INTENTCOUT) ;: i , j

j=MODCnum-l,n)+l 
i=Cnuin-j) /n+1 

END SUBROUTINE s p l i t 2

SUBROUTINE s p l i t s C n u m , m , n , i , j , k )  
IMPLICIT NONE
INTEGER,INTENTCIN) :: num,m,n 
INTEGER,INTENTCOUT) :: i , j , k

INTEGER :: i t  
it=num
k=MODCit-l,n)+l
i t= C i t -k ) /n + 1
CALL s p l i t 2 C i t , m , i , j )

END SUBROUTINE s p l i t s

SUBROUTINE sp l i t4C num,in ,n ,r , i , j ,k,  1) 
IMPLICIT NONE
INTEGER,INTENTCIN) num,m,n,r 
INTEGER,INTENTCOUT) :: i , j , k , l

INTEGER :: i t  
it=num
l=MODCit-l,r)+l
i t = C i t - l ) / r + l
CALL s p l i t S C i t , m , n , i , j , k )

END SUBROUTINE s p l i t 4

SUBROUTINE p o l i n t l C x a , y a , x , y , d y )
IMPLICIT NONE
REALCPREC).DIMENSIONC:),INTENT(IN): :xa ,ya  
REALCPREC).INTENTCIN); :x 
REALCPREC).INTENTCOUT): :y .dy

INTEGER::m.n.ns
REALCPREC). DIMENSIONCsizeCxa)): : c . d .d e n .h o  

CALL a s s e r t _ e q C s i z e C x a ) . s i z e C y a ) . ’p o l i n t ’ )
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n = s ize (x a )  
c=ya 
d=ya 
ho=xa-x
n s = ir a in lo c (a b s (x -x a ) )
y=ya(ns)
n s = n s - l
do m = l ,n - l

d en ( l  :n-m)=ho(l  :n-ni)-ho(l+in:n)  
i f  (any (d en ( i  :n-in)==0. 0_prec) )&

c a l l  ErrorC’C a lc u la t i o n  f a i l u r e ’ , ’P o l i n t ’ ) 
d e n ( l : n - m ) = ( c ( 2 : n - m + l ) - d ( l : n - m ) ) / d e n ( l : n - m )  
d ( 1 : n-m)=ho( 1+m:n )* d e n (1 :n-m) 
c ( 1 ;n-m)=ho( 1 ;n-m)*den(1: n-m) 
i f  (2*ns <n-m)then 
dy=c(ns+l)  
e l s e
dy=d(ns)  
n s= n s - l  
end i f  
y=y+dy 

end do 
END SUBROUTINE p o l i n t 1

FUNCTION im i n l o c l ( a r r )
REAL(PREC), DIMENSIONC:), INTENT(IN) :: arr  
INTEGER, DIMENSION(l) :: imin 
INTEGER :: im i n l o c l  

imin=m in loc (arr( : ) )  
i m in lo c l= im in (1)

END FUNCTION im i n l o c l

FUNCTION im in loc2 (arr )
REAL, DIMENSION(;), INTENT(IN) :: arr  
INTEGER, DIMENSION(l) :: imin 
INTEGER :: iminloc2  

im in=m in loc (arr( : ) )  
im in loc2= im in (1)

END FUNCTION iminloc2

SUBROUTINE p o l i n t 2 ( x a , y a , x , y , d y )
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IMPLICIT NOME
REAL,DIMEMSION(:),INTEMT(IN): :xa ,ya  
REAL,INTENT(IN): ;x 
REAL,INTENT(OUT): :y,dy

INTEGER::m,n,ns
REAL,DIMENSION(size(xa)): : c ,d ,d e n ,h o

CALL a s s e r t _ e q ( s i z e ( x a ) , s i z e ( y a ) , ' p o l i n t ’ )
n = s ize (xa )
c=ya
d=ya
ho=xa-x
n s = i m i n lo c ( a b s ( x -x a ) )
y=ya(ns)
n s= n s - l
do m = l ,n - l

den(1 :n-m)=ho( 1 : n -m )-h o( 1+m:n) 
i f  (any(den( l :n-m)==0.0 ) )&

c a l l  E rror( ’C a lc u la t i o n  f a i l u r e ’ , ’P o l i n t ’ ) 
d e n ( i : n - m ) = ( c ( 2 ; n - m + l ) - d ( i : n - m ) ) / d e n ( 1 : n-m) 
d( l:n-m)=ho( l+m:n)*den( l :n-m)  
c ( 1 :n-m)=ho( 1 : n-m)*den( 1 : n-m) 
i f  (2*ns <n-m)then 
dy=c(ns+l)  
e l s e
dy=d(ns) 
n s= n s - l  
end i f  
y=y+dy 

end do 
END SUBROUTINE p o l i n t 2

FUNCTION g e o p K f i r s t ,  f a c t o r ,  n)
REAL(PREC), INTENT(IN) :: f i r s t ,  f a c t o r  
INTEGER, INTENT(IN) :: n 
REAL(PREC), DIMENSION(n) :: geopl

INTEGER :: k, k2 
REAL(PREC) :: temp

IF(n>0) g e o p l ( l ) = f i r s t  
DO k=2, n

g e o p l ( k ) = g e o p l ( k - 1 ) * f a c t o r  
END DO 

END FUNCTION geopl
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END MODULE u t i l
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