
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

2004

An inverse groundwater model. An inverse groundwater model.

Aimin Yan
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Yan, Aimin, "An inverse groundwater model." (2004). All ETDs from UAB. 5247.
https://digitalcommons.library.uab.edu/etd-collection/5247

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/5247?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

AN INVERSE GROUNDWATER MODEL

by

AIMIN YAN

A DISSERTATION

Subm itted to the graduate faculty of The Universty of Alabam a at Birmingham,
The University of Alabama in Huntsville, and The University of Alabama,

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

BIRMINGHAM, ALABAMA

2004

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 3133373

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3133373

Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT OF DISSERTATION
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Ph.D. Program Applied M athematics

Name of Candidate Aimin Van

Committee Chair Ian Knowles

Title An Inverse Groundwater Model

A groundwater system can be modeled by the following equations:

= - V ■ q + R{x ,t) ,

^ = - V • icq) + V • {9DVc) + B,

where q is the specific discharge, over a; in a bounded region Q c i?", n = 2, or 3,

and for t > 0.

In this dissertation, we give a descent algorithm to recover all the coefficients of

the two equations above. This algorithm is stable and efficient. The m ethod is used

in analyzing the W illunga Basin Aquifer in South Australia. A suggestion is given in

analyzing the sustainability of the aquifer.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGMENTS

I take this opportunity to give a very special thanks to Dr, Ian Knowles, my

Ph.D. advisor, for his wonderful guidance throughout the past few years. I want to

also thank him for all the lengthy hours we have spent discussing these m athem atical

and computational, as well as geological, problems. I have greatly appreciated his

immense patience. Dr. Knowles is truly a m entor to me.

I also express my gratitude to Professor Yuan-Ming Li, my previous M.S. advisor

in China. Professor Li is one of the best professors I have ever met. It is Professor Li

who first led me into the m athem atical world.

I thank the other committee members, Drs. Robert H yatt (The University of

Alabama at Birmingham), Tsun-Zee Mai (The University of Alabama), S. S. Ravin-

dran (The University of Alabam a in Huntsville), Yanni Zeng (UAB), for their kind

guidance and suggestions.

A special thanks goes to Dr. Abe Springer, Professor at the D epartm ent of Geology

of Northern Arizona University. Dr. Springer, I thank you for your comments and

suggestions about the geological concepts.

Last, but certainly not least, I thank my wife, Jie Wei. She is especially deserving

of thanks, not only for all of the support th a t she has given me, bu t also for having

m ade these past several years much more pleasant than they otherwise would have

been.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C onten ts

Abstract ii

List of Figures vi

Chapter 1. Groundwater Hydrology 1

1.1. Aquifers and porous media 1

1.2. The equation of groundwater motion 11

1.3. Hydrodynamic dispersion 24

Chapter 2. The M athematical Model 38

2.1. Introduction 38

2.2. The flow equations 41

2.3. The transport equations 42

2.4. The inverse problem 44

2.5. The uniqueness 45

2.6. Properties of functionals G and H 48

2.7. A descent algorithm 56

Chapter 3. Numerical Implementation and Results 59

3.1. The numerical implementation 59

3.2. R esults w ith synthetic data 64

3.3. Error analysis 89

Chapter 4. The W illunga Basin, South Australia 96

4.1. Introduction 96

4.2. Hydrogeology 97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.3. The Port W illunga Formation Aquifer 97

4.4. Observation wells within the Port W illunga Formation Aquifer 98

4.5. Groundwater levels within the Port W illunga Formation Aquifer 98

4.6. The test program 101

4.7. The effectiveness of the recovery 102

4.8. The transmissivity within the Port W illunga Formation Aquifer 103

4.9. The storativity within the Port W illunga Formation Aquifer 108

4.10. The recharge within the Port W illunga Formation Aquifer 108

4.11. Sustainability 113

Bibliography 116

Appendix A. Fortran codes to recover the param eters 123

A.I. The m aster program 124

A.2. The slave program 130

Appendix B. Fortran code; Finite Laplace transform ation 148

Appendix C. Fortran code: Compute the errors between the recovered and the

original data 153

Appendix D. Fortran code: Compute the inflow and outflow 162

Appendix E. Fortran code: subroutines 165

E .l. Fortran code: parameters 166

E.2. Fortran code: elliptic PDE solver 171

E.3. Fortran code: subroutine of quadratic interpolation 184

E.4. Fortran code: subroutine of Sim pson’s rule 186

E.5. Fortran code: subroutine of utility functions 189

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of F igures

1.1 Type of aquifers [9] 4

1.2 Definition of porosity and representative elementary volume. [13] 7

1.3 - Darcy’s experiment. [9] 12

1.4 Flow through an inclined sand column. [13] 13

1.5 Approximations of phreatic surface and capillary fringe. [13] 16

1.6 The Dupuit assumption. [13] 18

1.7 Regions where Dupuit assumption is not valid. [13] 20

1.8 Nomenclature for mass conservation for a control volume. [13] 22

1.9 Breakthrough curve in one-dimensional flow in a sand column.

[13] 26

1.10 Spreading due to mechanical dispersion (a,b) and molecular

diffusion(c). [13] 27

1.11 Nomenclature for the dispersive flux. [13] 29

1.12 Principal axes of the coefficient of dispersion. [13] 34

3.1 True param eter functions K , Q, and R - I 64

3.2 True param eter functions K , Q, and R - 2 65

3.3 The recovery of Q and R w ith K fixed with jC.̂ gradient 67

3.4 The recovery of Q and R with K fixed with Neuberger gradient 68

3.5 Difference of solutions between the two PDE Solvers when k = 1

and A = 0.5 69

3.6 The recovery of K when Q, R are assumed known 70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.14

3.15

3.7 The recovery of the param eters of flow equation of unconfined

aquifer ~ 1 71

3.8 The recovery of the param eters of flow equation of unconfined

aquifer - 2 72

3.9 The recovery of the param eters of flow equation of unconfined

aquifer - 3 73

3.10 Recovery with small S' - 1 74

3.11 Recovery with small S' - 2 75

3.12 Error between the recovered data and the true source data with

small S' 76

3.13 True param eter D, 6 of the transport equation 77

True param eter of the transport equation 78

True param eter of the transport equation 79

3.16 Recovered D{-) and 9, assuming B known 80

3.17 Recovered B \ - Bg, assuming D and 9 are known 82

3.18 Recovered B] - BI 2 , assuming D and 9 are known 83

3.19 Recovered Bl^ - B}g, assuming D and 9 are known 84

3.20 Recovered ^19 -®2o> assuming D and 9 are known 85

3.21 Recovered B^ - B j , assuming D and 9 are known . 86

3.22 Recovered B^ - B I 2 , assuming D and 9 are known 87

3.23 Recovered B ‘1̂ - B\g, assuming D and 9 are known 88

3.24 Error analysis of situation 1 90

Error analysis of situation 2 91

Error analysis of situation 3 92

Error analysis of situation 4 93

3.25

3.26

3.27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1 Hydrographs of piezometric heads over the period 1988-1998 [83] 96

4.2 Location map of the W illunga Basin, South Australia [83] 97

4.3 Observation well locations of Port W illunga Formation Aquifer

[66] 99

4.4 Test region and observation wells 100

4.5 Piezometric head in the test region at January 12, 1998 101

4.6 Accuracy of Recovery - 1 104

4.7 Accuracy of Recovery - 2 105

4.8 Accuracy of Recovery - 3 106

4.9 The Darcy flux in the test region at January 12, 1998 106

4.10 The recovered transmissivity T 107

4.11 The recovered storativity S . 108

4.12 The recovered source term R, January - March, 1998 109

4.13 The recovered source term R, April - June, 1998 110

4.14 The recovered source term i?, July - September, 1998 111

4.15 The recovered source term R, October - December, 1998 112

4.16 The inflow and outflow in the test region 115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 1

G roundw ater H ydrology

Groundxuater is th a t portion of the water beneath the surface of the earth th a t

can be collected with wells, tunnels, or drainage galleries. Groundwater can also flow

to the earth ’s surface via seeps or springs. In many places, groundwater is the main

source to supply water for people and irrigation.

Not all underground water is groundwater. The term “groundwater” is generally

referred to, by the hydrologist, as the water occupying all the voids, saturated, within

a geologic stratum . A better understanding about groundwater movements, and the

architecture of the aquifer the groundwater moves through, is essential to manage

and protect groundwater resources against undue exploitation and pollution. Since

the aquifer is generally hundreds of meters below the earth ’s surface, it is impractical

or impossible to directly determine the properties of the aquifer. Our study here uses

m athem atical modeling equations about a groundwater system and da ta about the

groundwater movements to get the coefficients, the properties of the aquifer, of the

modeling equations.

1.1. A quifers and porous m edia

Here we introduce some commonly used concepts in groundwater hydrology. For a

detailed discussion and examples please refer to textbooks on groundwater hydrology,

such as [9, 13].

1 .1 .1 . A quifers. An aquifer is a geological formation th a t contains w ater and

perm its significant amounts of water to move through it under ordinary field con

ditions. The most common aquifer materials are unconsolidated sands and gravels.

In contrast, an aquidude is a formation th a t may contain water but is incapable

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of transm itting significant quantities under ordinary field conditions. Clay is such

an example. Between the aquifer and aquidude, an aqmtard is a semipervious geo

logic formation tha t transm its water at a very slow rate as compared to the aquifer.

However, over a large (horizontal) area it may permit the passage of large amounts

of water between adjacent aquifers, which it separates. It is often referred to as a

leaky formation. An aquifuge is an impervious formation th a t neither contains nor

transm its water.

The portion in a rock th a t is not occupied by solid materials may be occupied

by water or air. These spaces are called the void spaces. Because the void spaces

can act as groundwater conduits, they are of fundamental importance to the study of

groundwater. Typically, they are characterized by their size, shape irregularity, and

distribution. Only connected interstices can act as elementary conduits within the

formation.

Aquifers may be regarded as underground storage reservoirs th a t are replenished

naturally by precipitation and influent streams, or through wells and other artificial

recharge methods. W ater leaves the aquifer naturally through springs or effluent

streams and artificially through pumping wells.

The thickness and other vertical dimensions of an aquifer are usually much smaller

than the horizontal lengths involved. Aquifers may be classified as confined and

unconfined (or phreatic), depending upon the presence or absence of a water table.

A confined aquifer is one bounded above and below by impervious formations.

In a well penetration of such an aquifer, the water level will rise above the base of

the confining formation; it may or may not reach the ground surface. A properly

constructed observation well (or a piezometer) has a relatively short screened sec

tion (not too short with respect to the size of the openings) such th a t it indicates the

piezometric head at a specific point. The water levels in a number of observation wells

tapping a certain aquifer define an imaginary surface called the piezometric surface.

W hen the flow in the aquifer is essentially horizontal, such th a t equipotential surfaces

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

are vertical, the depth of the piezometer opening is immaterial; otherwise, a differ

ent piezometric surface is obtained for piezometers th a t have openings at different

elevations. W ater enters a confined aquifer through an area between confining stra ta

th a t rise to the ground surface, or where an impervious stratum ends underground,

rendering the aquifer unconfined. The region supplying water to a confined aquifer

is called a recharge area.

An unconfined aquifer (also called a phreatic aquifer) is one with a water table

{phreatic surface) serving as its upper boundary. Actually, above the phreatic surface

is a capillary fringe, often neglected in groundwater studies. A phreatic aquifer is

recharged from the ground surface above it, except where impervious layers of limited

horizontal area exist between the phreatic surface and the ground surface.

Leaky aquifers are aquifers th a t can lose or gain water through either or both of the

formations bounding them above and below. Although these bounding formations

may have a relatively high resistance to the flow of water through them, over the

large (horizontal) areas of contact involved significant quantities of water may leak

through them into or out of a particular aquifer. The am ount and direction of leakage

is governed in each case by the difference in piezometric head th a t exists across the

semipervious formation.

A phreatic aquifer (or part of it) th a t rests on a semipervious layer is a leaky

phreatic aquifer. A confined aquifer (or p art of it) th a t has a t least one semipervious

confining stra tum is called a leaky confined aquifer. Figure 1.1 shows several aquifers

and observation wells. The upper phreatic aquifer is underlain by two confined ones.

In the recharge area, aquifer B becomes phreatic. Portions of aquifers A, B, and C

are leaky, with the direction and rate of leakage determined by the elevation of the

piezometric surfaces of each of these aquifers. The boundaries between the various

confined and unconfined portions may vary with time as a result of changes in water

table and piezometric head elevations. A special case of a phreatic aquifer is the

perched aquifer th a t occurs wherever an impervious (or relatively impervious) layer

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

F i g u r e 1.1. Type of aquifers [9]
Aquifer B

__^ ̂
^ ^ r e ^ - * 4 - < k) n f i n e d * |* - L e a k y A r t e s i a n -•|*-Confined —j— Leaky

Flowing
-W£il

Leakoge

V ^ ///A Impervious stratum

V///,i'A Semipervious stratum

Perctied
woter

^ ^ z o m e t r l c surface B

_ ,^ P je 2omefric surface C

-jL W ater T able

•—- L _ ^ Aquifer A

B Leakoge ^

Aquifer C (confined)

of limited horizontal area is located between the w ater table of a phreatic aquifer and

the ground surface. Another groundwater body is then built above this impervious

layer. Clay or loam lenses in sedimentary deposits have shallow perched aquifers

above them . Sometimes these aquifers exist only a relatively short tim e as they drain

to the underlying phreatic aquifer.

1 .1 .2 . T h e p o ro u s m ed iu m . The materials forming an aquifer contain void

space filled with water and /o r air. The connected interstices can act as elementary

conduits within the formation, allowing water to flow. These materials can be viewed

as a porous medium, and the flow in the aquifer can be considered as the flow of

fluids through a porous medium. Soil, porous or fissured rocks, ceramics, and fibrous

aggregates are just a few examples of porous materials. All of these m aterials have

some characteristics in common th a t perm it them to be grouped and classified as

porous media.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Not all materials containing holes are porous media. For a media to be classified

as a porous media, some of the holes adjacent should be connected to allow fluid

moving through it. The following is a descriptive definition of a porous medium

(Bear, Zaslavskj^, and Irmay [14]):

a) A portion of space occupied by heterogeneous or mutiphase m atter. At least

one of the phases comprising this m atter is not solid. There may be gaseous

and /or liquid phases. The solid phase is called the solid matrix. T ha t space

within the porous medium domain tha t is not part of the solid m atrix is

referred to as void space (or pore space).

b) The solid phase should be distributed throughout the porous medium within

the domain occupied by a porous medium; solid must be present inside each

representative elementary volume. An essential characteristic of a porous

medium is th a t the specific surface of the solid m atrix is relatively high. In

many respects, this characteristic dictates the behavior of fluids in porous

media. Another basic feature of a porous medium is th a t the various openings

comprising the void space are relatively narrow.

c) At least some of the pores comprising the void space should be intercon

nected. The interconnected pore space is sometimes term ed the effective

pore space. As far as flow through porous media is connected, unconnected

pores may be considered as part of the solid matrix. Certain portions of

the interconnected pore space may, in fact, also be ineffecive as far as flow

through the medium is concerned.

1.1.3. C ontinuum approach to porous m edia. In an aquifer, water flows

through the complex network of pores and channels comprising the void space. This

flow is bounded by the (microscopic) solid-water interface. In principle, the flow of a

fluid in a porous medium may be treated a t the microscopic level, a t which we focus

our attention on what happens a t a point within the fluid, regarded as a continuum

(i.e., overlooking its molecular structure). However, complexity of the pore space will

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

usually make this treatm ent impossible. Moreover, even if we can solve for the values

of state variables, e.g., pressure, at the microscopic level, we could not verify these

solutions by measurements at this level.

To circumvent these difficulties, another level of description is needed. This is the

macroscopic levels at which quantities can be measured and boundary-value problems

can be solved. To obtain the description of the flow at this level, we adopt the

continuum approach. This is the same approach th a t is also used in order to pass

from the molecular level of description to the microscopic one, at which each phase

is regarded as a continuum. According to this approach, the real porous medium,

in which each phase (solid or fluid) occupies only a portion of the AEV (Arbitrary

Elementary Volume), is replaced by a fictitious model in which each phase is regarded

as a continuum th a t fills up the entire AEV. We thus obtain within every AEV a set of

overlapping and, possibly, interacting, continua. For each of these continua, average

values, referred to as macroscopic values, can be taken over the AEV and assigned to

its centroid, regardless of whether the la tter falls within the solid or within one of the

fluids th a t occupy the void space. By traversing the entire porous medium domain

with a moving AEV, we obtain fields of macroscopic variables, which are differentiable

functions of the space coordinates.

The main drawback of the use of an AEV is th a t every averaged value must be

accompanied by a label th a t specifies the volume over which this average was taken.

To circumvent this difficulty, we need a universal procedure th a t a) is applicable to

all porous media and b) will ensure th a t the averaged values will remain, more or less,

constant, at least for a certain range of averaging volumes, th a t corresponds to the

range of variations in instrum ent sizes. This universal averaging volum e is referred

to as the representative elementary volume (REV).

The size of the REV is selected such tha t the averaged values of all geometrical

characteristics of the m icrostructure of the void space be a single valued function of

the location of th a t point only, independent of the size of the REV.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

F ig u re 1.2. Definition of porosity and representative elementary vol
ume. [13]

Domain of i Domain of Domain of (possible)
■•microscopical-̂ — porous - macroscopic inhomogeneity

Inhomogeneous
medium

n

0

medium

Range I
for U o '

U m in U m a x

Volume, U

Homogeneous
^ medium

To illustrate the determ ination of the size of an REV for a given porous medium

domain, D, consider, as an example of a geometrical characteristic of the void space

configuration, the ratio Uv{xo)/U{xq), where U{xo) is a volume of a sphere centered

a t an arbitrary point xq within D, and Uy{xo) is the volume of void space within

U{xq). Figure 1.2 shows the variations of the ratio Uy{xo)/U{xo) as U increases. For

very small values of U, this ratio is one or zero, depending on whether xq happens to

fall in the void space or in the solid m atrix. As U increases, we note large fluctuations

in this ratio due to the random distribution of void and solid within U. However, as

U is further increased, these fluctuations gradually decay until above some volume

U — Vmin they reduce to some small value. If U is further increased beyond some U =

Vmax, we may observe a trend in the considered ratio, due to a systematic variation

in the la tter, resulting from macroscopic heterogeneity of the porous medium. The

size, [7o, of the REV th a t will make the considered ratio independent of the selected

volume, albeit possibly dependent on x, should be in the range Umin < Uo < Um&x-

For such a volume, the ratio Uq̂ /Uo represents the medium porosity, n, at Xq.

Once Uo has been determined, it is used to derive the macroscopic (continuum)

description of the flow by averaging the microscopic one over it. Obviously, the

selected size of Uo must be uniform over the entire porous medium domain. The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

macroscopic model obtained in this way describes the flow in terms of macroscopic

or averaged quantities defined by

(1-1) ^ J x , t) = ~ f a j x ' , f , x) d U „ (x ')
Uoa JUocix)

where Ga is the state variable of the a-phase (such tha t its volumetric average is

physically meaningful), Uoa is the volume of the a-phase within Uo, and x' is a

point in the REV centered at x. From the discussion presented, we are assured th a t

the macroscopic geometrical characteristics th a t appear in the macroscopic model

represent properties of porous medium at x. The average of Ga, as defined by

(1.1), is called an intrinsic phase average.

Another type of average, called a phase average, defined by

(1.2) Ga{x,t) = [Ga{x' ,t;x)dUc{x')
^0 JUocix)

is also often used. The two types of averages are related to each other by

(1.3) Ga - 0aGa,

where 0a is the volumetric fraction of the a —phase.

If a volume Uq cannot be found for a given porous medium domain, the la tte r

cannot be treated as a continuum. In an analogous way, a representative elementary

area (REA) should also be selected for the porous medium domain, to be used for

averaging quantities for which only areal averages are meaningful. Throughout this

dissertation, it is assumed th a t the porous medium can be considered as a continuum.

1.1.4, Iso tro p ic a n d a n iso tro p ic m e d iu m . A medium is said to be homoge

neous w ith respect to a certain property if th a t property is independent of position

within the medium. Otherwise the medium is said to be heterogeneous. For example,

if the porosity of a certain material is constant, then it is a homogeneous property;

otherwise it is heterogeneous. In the real world, most of the properties are heteroge

neous.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A medium is said to be isotropic with respect to a certain property if th a t property

is independent of direction within the medium. If a t a point within the medium

a property of the medium, e.g., permeability or therm al conductivity, varies with

direction, the medium is said to be anisotropic (or aleotropic) a t the considered point

with respect to tha t property. In natural materials, anisotropy is encountered in soils

and in geological formations th a t serve as reservoirs or aquifers. In most stratified

materials the resistance to the flow is smaller (i.e., permeability is greater) along the

planes of deposition than across them. Piersol et al. [80] mention ratios of horizontal

to vertical permeabilities of sandstone of 1.5 : 3.. Muskat [71, page 111] lists 65

pairs of sand samples, more than two-thirds of which had a larger permeability in the

direction parallel to the bedding plane than normal to it. The quotient of the two

values ranged from 1 to 42.

Stratified soils are usually anisotropic. The stratification may result from the

shape of the particles. For example, plate-shaped particles (e.g., mica) will gener

ally be oriented with the flat side down. Both sedim entation and the pressure of

overlaying material cause flat particles to be oriented with their longest dimensions

parallel to the plane on which they settle. This later produces flow channels parallel

to the bedding plane, difi'ering from those oriented normal to this plane, and the

medium becomes anisotropic. A lternating layers of different texture also give rise to

anisotropy. However, in order for a stratified formation of this kind to be qualified

as an anisotropic homogeneous medium, the thickness of the individual layers should

be much smaller than the lengths of interest. There is no use in attem pting to deter

mine the permeability of such a formation from a core whose size is smaller than the

thickness of the single stratum . In many aquifers, fractures produce very high perm e

ability in the direction along the fracture, whereas the permeability of the rock in the

direction normal to the fractures is much smaller. In carbonate rocks, dissolving of

the rock takes place by means of the flowing water. This produces solution channels

th a t develop mainly in the direction of the flow; the rock becomes anisotropic, with

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

a very high permeability in the general direction of these channels. In many soils

(e.g., loess), vertical joints, root holes, and animal burrows give rise to anisotropy in

permeability, with vertical permeability being greater than horizontal. In some soils,

structural fissures may develop more readily in some directions than in others, and

the soil will exhibit anisotropy.

1.1.5. T h e p ie z o m e tr ic h ead . Flow occurs from a place of higher energy to one

of lower energy. In groundwater flow, potential is a concept describing this energy.

The total potential is an algebraic summation of various specific potentials acting on

the groundwater flow.

There are many alternate ways of defining a potential function. The ultim ate

choice depends upon convenience and suitability for the range of problems w ith which

one is concerned. For subsurface water, potential may be defined in such a way th a t its

gradient is proportional to the water-moving forces. Furthermore, because potential

is defined relative to an arbitrary datum , one is concerned only w ith differences of

potential between specified points.

Bolt and Miller [16] define total potential of soil moisture in a fashion th a t is

extended readily to include groundwater. They define to tal potential as the minimum

energy per gram of water which must expended in order to transport an infinitesimal

test body of water from a specific reference state to any point within the liquid phase

of a soil-water system th a t is in a state of rest. Following Bolt and Miller’s fashion,

Remson [84] defines the potential in term s of energy per unit weight of water. W ith

this definition, potential has the dimension of length and is referred to as “head.”

In saturated subsurface systems, the to ta l potential is the algebraic summation of

the component potentials of the gravitational potential and the hydrostatic pressure

potential below the water table [84]:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

where

= p / t ,

here 2 is the height of the water above the reference datum , p is the pressure, and

j — pg is the specific weight of water (p = density, g = acceleration of gravity).

For a homogeneous compressible fluid (i.e., no dissolved components) under isother

mal conditions, Hubbert presented a particularly clear derivation of potential defined

on a work-per-unit-mass basis for saturated subsurface systems [45]. Under this fash

ion, we have th a t the potential, (p*, at point p (the velocity of which is usually small

and is neglected) is

(1.4) r = 9 2 + r ~
jpo pip)

where p is the pressure. This expression is known as H ubbert’s “force potential.” If

we set (j) = (f)*/g, (1.4) gives the form

When p is constant and po is chosen to be 0, (1.5) reduces to

(1.6) (p ^ z + p / j ,

where 7 = pp is the specific weight of water.

We call (j) the piezometric head. The gradient V p is called the hydraulic gradient;

it is proportional to the water-moving forces.

1.2. T he equation o f groundw ater m otion

In almost every field of science and engineering the techniques of analysis are

based on an understanding of the physical processes, and in most cases it is possible

to describe these processes mathematically. Groundwater flow is no exception.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

1.2.1. D a rc y ’s law a n d its e x ten s io n s . Groundwater moves from levels of

higher energy to levels of lower energy, whereby its energy is essentially the result

of elevation and pressure. Kinetic energy, proportional to the square of the veloc

ity, is neglected because groundwater velocities are very small, at least in laminar

flow. While flowing, groundwater experiences a loss in energy due to friction against

the walls of the granular medium along its seepage path. This loss per unit length

of distance traveled, or hydraulic gradient, is simply proportional to the velocity of

groundwater for laminar flow in sandy aquifers or seepage through earth embank

ments. When the proportionality of hydraulic gradient and groundwater velocity is

expressed by a m athem atical equation, a linear law of flow, called D arcy’s law, arises.

F ig u r e 1.3. D arcy’s experiment. [9]

SCREEN

:§ANP

SCREEN

'̂ TTTTTTTTTTTTTTTTT?

In 1856, Henry Darcy investigated the flow of water in vertical homogeneous sand

filters in connection w ith the fountains of the city of Dijon, France. Figure 1.3 shows

the experimental set-up he employed (Darcy [28]). From his experiments, Darcy

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

concluded th a t the flow rate Q equals;

Q = K A { h - h2)/L,

where hi - Ii2 is the energy loss, and L is the length of the flow path. A is the cross-

sectional area filled with sand, and K is a coefficient, called the hydraulic conductivity.

One can easily extend Darcy’s law to flow through an inclined homogeneous porous

medium column (Figure 1.4). W ith the nomenclature of this figure, Darcy’s law takes

the form

Q = KA{<^i - h) ! L ,

where <j) is the piezometric head defined by

(f) = z + p /7 ,

where z is the elevation of the point, p is the pressure, and 7 is the volumetric weight

of the water. The piezometric head expresses the sum of the potential energy and

pressure energy, per unit weight of water.

F ig u re 1.4. Flow through an inclined sand column. [13]

A rea^
Datum level

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

The energy loss Acj) = c/'i — ^2 is due to friction in the flow through the narrow

tortuous paths of the porous medium. In Darcy’s law, the kinetic energy of the water

has been neglected as, in general, changes in the piezometric head along the flow path

are much larger than changes in the kinetic energy. Inertial effects have also been

neglected.

W ith the above definition of piezometric head, the quotient ((̂ 1 — (t>2) / L is the

hydraulic gradient (dimensionless). Denoting this gradient by J and defining the

specific discharge, q, as the volume of water flowing per unit time through a unit

cross-sectional area normal to the direction of flow, we obtain

q = KJ.

Let us consider a point along the column’s axis and a segment of the column of length

s along the column’s axis on both sides of the point. For this case

^ - (p \ s+ (A s /2)

A s '

where the subscript in qs indicates th a t the flow is in the s-direction. In the limit, as

As —>• 0 , converging on the point, we obtain

^ <l>\s-{As/2) - <t>\s+{As/2) _ _ ^

As->o A s ds ’

and (1.7) reduces to

(1.8) = - K ^ ^ .

The experimentally derived form of D arcy’s law (for a homogeneous incompressible

fluid) was limited to one-dimensional flow. When the flow is three-dimensional, the

obvious formal generalization of Darcy’s law, is

q =

where q is the specific discharge with components q ^ , q y , and q̂ in the directions of

the Cartesian x, y, z coordinates, respectively, and Vfi = (| | , |^ , |^) . When the flow

takes place through a homogeneous isotropic medium, the coefficient K — K I , i.e.,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

a scalar times the identity matrix; otherwise, it is a symmetric positive definite 3 x 3

matrix for the three-dimensional case, or 2 x 2 m atrix for the two-dimensional case.

The coefficient K is called the hydraulic conductivity. The hydraulic conductiv

ity indicates the ability of the aquifer material to conduct water through it under

hydraulic gradients. It is a combined property of the porous medium and the fluid

flowing through it. When the flow in the aquifer is essentially horizontal, the aquifer

transmissivity indicates the ability of the aquifer to transm it water through its entire

thickness. It is the product of the hydraulic conductivity and the thickness of the

aquifer.

As the specific discharge increases, Darcy’s law, which specifies a linear relation

ship between the specific discharge, g, and the hydraulic gradient, V f , has been shown

by many investigators to be invalid. A definition of a range of validity of Darcy’s law

seems, therefore, appropriate.

In flow through conduits, the Reynolds number (Re), a dimensionless number

expressing the ratio of inertial to viscous forces, is used as a criterion to distinguish

between laminar flow occurring a t low velocities and turbulent flow. The critical Re

between laminar and turbulent flow in pipes is around 2100. By analogy, a Reynolds

number is defined also for flow through porous media:

V

where d is some length dimension of the porous matrix, and v is.the kinematic viscosity

of the fluid. Although, by analogy to the Reynolds number for pipes, d should be a

length dimension representing the elementary channels of the porous medium, it is

customary (probably because of the relative ease of determining it) to employ some

representative dimension of the grains for d (in an unconsolidated porous medium).

Often the mean grain diam eter is taken as the length dimension, d. Sometimes dio is

used, i.e., the grain size th a t exceeds the size of 10% of the m aterial by weight. The

term d^o is also mentioned in the literature as a representative grain diameter.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

In practically all cases, Darcy’s law is valid as long as the Reynolds number based

on average grain diameter does not exceed some value between 1 and 10.

F ig u re 1.5. Approximations of phreatic surface and capillary fringe. [13]

I

Observation
well

i
-P = ld 2

Relatively high
ground surface

Assumed
top of

capillary
fringe \ __

Moisture distributions
in soil:

actual

approximate.

T : ^P h re

 f--T

Phreatic surface

Water table

Capillary
fringe

0.5
Degree o f saturation, 5’„,

Pressure distribution

1 .2 .2 . D u p u it a s su m p tio n . As defined in Section 1.1.1, a phreatic aquifer is

one in which a water table (or a phreatic surface) serves as its upper boundary. Above

the phreatic surface, which is an imaginary surface, a t all points of which the pressure

is atmospheric, moisture does occupy a t least part of the pore space. The capillary

fringe was introduced as an approximation of the actual distribution of moisture in

the soil above a phreatic surface.

Figure 1.5 shows how the actual moisture distribution is approximated by a step

distribution, assuming th a t no moisture is present in the soil above a certain level.

This step defines the height, he, of the capillary fringe. Obviously, this approximation

is justified only when the thickness of the capillary fringe thus defined is much smaller

than the distance from the phreatic surface to the ground surface. In the capillary

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

fringe (as in the entire aerated zone above the phreatic surface), pressures are negative;

therefore, they cannot be monitored by observation wells which serve as piezometers.

A special device, called a tensiometer, is needed in order to measure the negative

pressures in the aerated zone (Figure 1.6b). W ater levels in observation wells th a t

terminate below the phreatic surface give elevation of points on the phreatic surface.

Using a sufficient number of such points, we can draw contours of this surface.

Thus, the capillary fringe approximation means th a t we assume a saturated zone

up to an elevation he above the phreatic surface, and no moisture a t all above it. In

this case, the upper surface of the capillary fringe may be taken as the groundwater

table, as the soil is assumed saturated below it. However, when he is much smaller

than the thickness of an aquifer below the phreatic surface, and this is indeed the

situation encountered in most aquifers, the hydrologist often neglects the capillary

fringe. He then assumes th a t the (phreatic) aquifer is bounded from above by a

phreatic surface. This is also the assumption below.

An estim ate of he, can be obtained, for example, from [67]

(1.9) A ,= ^ (i l U i) 3 / 2
dff n

where he is in inches, and dn is the mean grain diameter, also in inches, and n is

porosity. Another expression is suggested by Polubarinova-Kochina [81]:

I, 0-451 - n(1.10) ^c = -;------------,
dio n

where both he and the effective particle diameter are in centimeters. Silin-Bekchurin

[94] suggested a capillary rise of 2 — 5 cm in coarse sand, 12 — 35 cm in sand, 35 — 70

cm in fine sand, 70 — 150 cm in silt, and 2 — 4 m and more in clay. Equations (1.9)

and (1.10) can be compared with the relationship h = 2ajr , which expresses the rise

of water in a capillary tube of radius r; a is the surface tension of the water.

Both 4> and q vary from point to point within a phreatic aquifer. In order to obtain

the specific discharge q = q{x, y, z, t) a t every point, we have to know the piezometric

head 0 = cj){x,y,z,t) by solving the flow model in a three-dimensional space. An

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

additional difficulty stems from the fact th a t the location of the phreatic surface,

which serves as a boundary to the three-dimensional flow domain in the aquifer, is a

priori unknown. In fact its location is p art of the sought solution. Once we solve for

(j) = (j)[x, y, z, t) within the flow domain, we use the fact th a t on the phreatic surface,

the pressure is zero to obtain (f){x,y,z,t) = 2: on the phreatic surface. Hence, the

equation th a t describes the phreatic surface is

F{x, y, 2 , t) = (f){x, y , z , t) - z = 0.

F ig u re 1.6. The D upuit assumption. [13]

Phreatic surface

Observation well

dz = dh
ds

h(x)
Equipotential

X T r777777^n^^7T ^,

(a) (b)

From the above considerations it follows th a t this procedure is not a practical one

for solving common problems of flow in phreatic aquifers.

In view of this inherent difficulty, D upuit [33] observed th a t in most groundwater

flows, the slope of the phreatic surface is very small. Slopes of 1/1000 and 10/1000

are com m only encountered. In steady flow w ithout accretion in the vertical two-

dimensional xz-plane (Figure 1.6a), the phreatic surface is a streamline. At every

point, P , along this streamline, the specific discharge is in a direction tangent to the

streamline and is given by Darcy’s law

(1 .12) qs = - K ^ = = - K s m e ,
^ ds ds

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

since along the phreatic surface p = 0 and (j) — z. As 9 is very small, Dupuit

suggested th a t s in 6> be replaced by the slope tan 0 = The assumption of small 9

is equivalent to assuming th a t equipotential surfaces are vertical (i.e., (f) = 4>{x) rather

than (f) = (p{x, z)) and the flow is essentially horizontal. Thus, the Dupuit assumption

leads to the specific discharge expressed by

(1.13) = h ^ h { x) .
ax

In general, h = h{x, y) and we have

T^dh dh

Since q is thus independent of elevation, the corresponding to tal discharge through

a vertical surface of width W (normal to the direction of flow; Figure 1.6b) is

(1.15) Q, = - K W h ^ , Q y ^ - K W h ^ , h ^ h { x , y) ,

or, in the compact vector form

(1.16) Q = - K W h V h .

Per unit width, we obtain

(1.17) Q' = Q / W = - K h V h .

In (1.15) through (1.17), the aquifer’s bottom is horizontal, it should be empha

sized th a t the Dupuit assumption may be considered as a good approximation in

regions where 9 is indeed small and /o r the flow is essentially horizontal. We note

th a t the assumption of horizontal flow is equivalent to the assumption of hydrostatic

pressure distribution d p /d z = —pg.

The im portant advantage gained by employing the Dupuit assumption is th a t

the state variable cf) = cj){x,y,z) has been replaced by h = h{x,y) , i.e., z no longer

appears as an independent variable. In addition, since at a point on the free surface,

p = 0 and (j) = h, we assume th a t the vertical line through the point is also an

equipotential line on which (j) h =const. In general, h varies also w ith time so th a t

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20

h = h{x,y , t) . In this way, the complexity of the problem has been greatly reduced.

It is two-dimensional rather than three-dimensional, and the unknown location of the

phreatic surface is no longer an extra complication.

The Dupuit assumption presented above is probably the most powerful tool for

treating unconfined flows. In fact, it is the only simple tool available to most engineers

and hydrologists for solving such problems.

F ig u r e 1.7. Regions where Dupuit assumption is not valid. [13]

Vertical flow; horizontal water table

r n I

Not valid

Vertical
flow

Not valid

N t 1

Seepage face

Eqtiipotential

The D upuit assumption should not be applied in regions where the vertical flow

component is not negligible. Such flow conditions occur as a seepage face is ap

proached (Figure 1.7c) or a t a crest {water divide) in a phreatic aquifer with accre

tion (Figure 1.7b). Another example is the region close to the impervious vertical

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

boundary of Figure 1.7a. It is obvious th a t the assumption of vertical equipotentials

fails at, and in the vicinity of, such a boundary. Only a t a distance x have we

equipotentials th a t may be approximated as vertical lines, or surfaces. It is im portant

to note here th a t in cases with accretion, a horizontal (or almost so) water table is

not sufficient to justify the application of the Dupuit assumption. One must verify

th a t vertical flow components may indeed be neglected, before applying the Dupuit

assumption.

1.2.3. E q u a tio n of c o n tin u ity . The equation of continuity is a statem ent of

the law of conservation of m atter. When applicable, it states th a t mass can be neither

created nor destroyed. It can be derived from the fact th a t the change in mass stored

in a small, elemental, rectangular parallel-piped equals the difference between the

mass entering and the mass leaving.

Consider a control box having the shape of a rectangular parallel-piped of dimen

sions dx,dy,dz centered at some point P{x, y, z) inside the flow domain in an aquifer.

A control box may be any arbitrary shape, but once its shape and position in space

have been fixed, they remain unchanged during the flow, although the amount and

identity of the material in it may change with time. In the present analysis, water

and solids enter and leave the box through its surfaces. Our objective here is to write

a balance equation for the mass of water entering, leaving, and being stored in the

box. Let the vector J = pq denote the mass flux (i.e., mass per unit area per unit

time) of water of density p at point P { x ,y , z) . It is easy to see th a t q is the specific

discharge in the Darcy’s law. Referring to Figure 1.8, the excess of inflow over outflow

of mass during a short time interval dt, through the surfaces which are perpendicular

to the X , y and 2: direction, can be expressed by the differences

d t { ^ J x \ x —d x / 2 , y , z J x \ x + d x l 2 , y , z \ d y d z ^

d t { ^ J y \ x ^ y —d y j 2 , z J y \ x , y - \ - d y j 2 , z } d z d x ,

d t { J z \ x , y , z —d z ! 2 J z \ x , y , z + d z ! 2^ d x d y .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

22

F ig u r e 1 .8 . N o m e n c la tu re fo r m ass co n se rv a tio n for a c o n tro l v o lu m e . [13]

J.

J*

The sum of the three expressions, for all three directions, is the to ta l excess of mass

inflow over outflow during dt. So the excess of inflow over outflow per unit volume of

medium (around P) and per unit time is

dJ^ , dJy , dJ ,

On the other hand,

lim
—̂0

{np)\t+At - {np)\t d{np)
A t dt

is the rate of change of the mass of the fluid per unit volume of porous medium where

n is the porosity. So we get the fundamental balance equation

(1 .18) -V ■ p q
dt

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23

W ith some assumptions about the fluid flow [13], can be expressed as p 5 o ||

where So is called the specific storativity and is defined by

(1.19) ■ So = pg{a + nfi),

where p is the density, g is the acceleration of gravity, n is the porosity of the porous

medium, and /?' and a are derivatives of p and n with respect to the pressure p

respectively. The specific storativity indicates the ability for the medium to hold the

fluid. Substituting it into the balance equation, we get

(1.20) -SJ ■ pqV(j) = p S o ^ .

If p is constant we have

(1 .2 1) =

1.2.4. T he flow equations. The balance equations, (1.18), (1.20), and (1.21)

in section 1.2.3, do not include the recharge. If the distributed rates of artificial

recharge, R{x ,t) , and the pumping, P{x , t) , are added, the balance equation can be

modified to

(1.22) S o ^ ^ - V - q + R - P .

Applying Darcy’s law q = —K V f i , we get the flow equation in a confined aquifer

(1.23) S o ^ = V ■ KV(j) + R - P.
ot

We can also deduce the flow equation in an unconfined aquifer by applying the

D upuit assumption q = —K h V h :

(1.24) Sq^ ^ V - K h V h p R - P .
at

The equations above are three-dimensional. We can also get the two-dimensional

equations by integrating the above equations over the z direction (see [13]). For

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

example, the two-dimensional flow equation for a confined aquifer is:

(1.25) ^

where

(1.26) S { x , y) = [So{x ,y ,z)dz
Jbi

is the aquifer storativity,

(1.27) T { x , y) = [K { x , y , z) d z
Jbi

is the aquifer transmissivity,

pb2
R*{x,y , t) = / R { x ,y , z , t) d z ,

Jbi
pb2

P*{x ,y , t) = / P { x ,y , z , t) d z ,
Jbi

are the source/sink terms and q.u2 , qvi denote the leakage rates of the upper and lower

aquifers. Here and bi denote the elevations of the aquifer’s top and bottom . For a

confined aquifer w ithout leakage, q^i and g„2 will be zero. For an unconfined aquifer,

the term V h in the above equation will be replaced by hWh.

Note th a t the only term of the param eters th a t is dependent on the time in the

flow equations is the source term R — P, and we usually denote it by one symbol R.

1.3. H ydrodyn am ic d ispersion

One m ajor problem, of interest in the development and management of any water

resources system, is water quality. W ith the increased demand for water, the quality

problem becomes the limiting factor in the use and development of water resources.

Although it may seem th a t groundwater is more protected than surface water, it

is still subject to pollution, and when this occurs, the restoration to the original,

nonpolluted state is usually more difficult and lengthy.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

We consider the mass of some substance contained in the groundwater as the

transport mass tha t moves with the water in the interstices of a porous medium.

The mechanisms affecting the transport of a pollutant in a porous medium are as

follows: advective, dispersive, and diffusive fluxes; solid-solute interactions; and vari

ous chemical reactions and decay phenomena, which may be regarded as source-sink

phenomena for the solute.

Consider saturated flow through a porous medium and let a portion of the flow

domain contain a certain mass of solute. This solute will be referred to as a tracer. The

tracer, which is a labeled portion of the same liquid, may be identified by its density,

color, electrical conductivity, etc. Experience shows that, as flow takes place, the

tracer gradually spreads and occupies an ever-increasing portion of the flow domain,

beyond the region it is expected to occupy according to the average flow alone. This

spreading phenomenon is called hydrodynamic 'dispersion in a porous medium. It is a

nonsteady, irreversible process (in the sense th a t the initial tracer distribution cannot

be obtained by reversing the flow), in which the tracer mass mixes with the unlabeled

portion of the liquid. If initially the tracer-labeled liquid occupies a separate region,

this interface does not remain an abrupt one. Instead, an ever-widening transition

zone is created, across which the tracer concentration varies from th a t of the tracer

liquid to th a t of the unmarked liquid.

One of the earliest observations of this phenomenon is reported by Slichter [95],

who used an electrolyte as a tracer in studying the movement of groundwater. Slichter

observed th a t at an observation well downstream of a (continuous) injection point,

the tracer’s concentration increases gradually, and th a t even in a uniform (average)

flow field, the tracer advances in the direction of the flow in a pear-like shape th a t

becomes longer and wider as it advances.

The dispersion phenomenon may also be dem onstrated by a simple laboratory

experiment. Consider steady flow in a cylindrical column of homogeneous sand, sat

urated with water. At a certain instant, t = 0, tracer-marked water (e.g., water

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

26

with NaCl at a low concentration, so th a t the effect of density variations on the flow

pattern is negligible) starts to displace the original unlabeled water in the column.

Let the tracer concentration, C — C{t), he measured at the end of the column and

presented in a graphic form, called a breakthrough curve, as a relationship between

the relative tracer concentration and time, or volume of effluent, U.

F ig u r e 1.9. Breakthrough curve in one-dimensional flow in a sand
column. 113]

actual (with dispersion)C 0.5 without dispersion

In the absence of dispersion, the breakthrough curve should have taken the form

of the broken line shown in Figure 1.9, where Uq is the pore volume of the column

and Q is the constant discharge. Actually, owing to hydrodynamic dispersion, it will

take the form of the S-shaped curve shown in full line in Figure 1.9.

We cannot explain all of the above observations on the basis of the average wa

ter flow. We must refer to what happens at the microscopic level, i.e., inside the

pore cross-section. We usually assume zero fluid velocity on the solid surface, with a

maximum velocity a t some internal point (compare with the parabolic velocity dis

tribution in a straight capillary tube). The maximum velocity itself varies according

to the size of the pore. Because of the shape of the interconnected pore space, the

(microscopic) streamlines fluctuate in space with respect to the mean direction of flow

(Figure 1.10). This phenomenon causes the spreading of any initially close group of

tracer particles; as flow continues, they occupy an ever increasing volume of the flow

domain. The two basic factors th a t produce this kind of spreading are, therefore, flow

and the presence of a pore system through which flow takes place.

Although this spreading is in both the longitudinal direction, namely th a t of the

average flow, and in the direction transversal to the average flow, it is primarily in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

27

the former direction. Very little spreading can be caused in a direction perpendic

ular to the average flow by velocity variations alone. Such velocity variations alone

also cannot explain the ever-growing width of the zone occupied by dispersed tracer

particles normal to the direction of flow. In order to explain this spreading, we have

to refer to molecular diffusion^ an additional phenomenon th a t take place in the void

space.

F ig u r e 1.10. Spreading due to mechanical dispersion (a,b) and molec
ular diffusion(c). [13]

(a)

Direction of average
flow

y///////.

Velocity
distribution

i
(b) (c)

Molecular diffusion, caused by the random movement of molecules in a fluid,

produces an additional flux of tracer particles (at the microscopic level) from regions

of higher tracer concentrations to those of lower ones. This means, for example,

th a t as the marked particles spread along each microscopic stream tube, as a result

of velocity variations, a concentration gradient of these particles is produced, which

in tu rn produces a flux of tracer by the mechanism of molecular diffusion. The la tter

phenomenon tends to equalize the concentrations along the steamtube. Relatively,

this is a minor effect. However, at the same time, a tracer concentration gradient will

also be produced between adjacent streamlines, causing lateral molecular diffusion

across streamtubes (Figure 1.10c), tending to equalize the concentration across pores.

It is this phenomenon th a t explains the observed transversal dispersion.

In addition to the role played at the microscopic level by molecular diffusion in en

hancing the transversal component of mechanical dispersion, it produces macroscopic

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

flux of its own. This is easily dem onstrated by letting the velocity vanish. Then the

tracer is transported by (macroscopic) molecular diffusion only.

We shall refer to the spreading caused by the velocity variations at the microscopic

level, enhanced by molecular diffusion, as mechanical dispersion.

We use the term hydrodynamic dispersion to denote the spreading (at microscopic

level) resulting from both mechanical dispersion and molecular diffusion. Actually,

the separation between the two processes is rather artificial, as they are inseparable.

However, molecular diffusion alone does also takes place in the absence of motion

(both in a porous medium and in a fluid continuum). Because molecular diffusion

depends on time, its effect on the overall dispersion is more significant at low velocities.

It is molecular diffusion th a t makes the phenomenon of hydrodynamic dispersion in

purely laminar flow irreversible.

In addition to inhomogeneity on a microscopic scale (i.e., presence of pores and

grains), we may also have inhomogeneity on a macroscopic scale, due to variations in

permeability from one portion of the flow domain to the next. This inhomogeneity

also produces dispersion of marked particles, but on a much larger scale.

Dispersion may take place both in a laminar flow regime, where the liquid moves

along definite paths th a t may be averaged to yield streamlines, and in a turbulent

regime, where the turbulence may cause yet an additional mixing. In what follows,

we shall focus our attention only on flow of the first type.

In addition to advection (at average velocity), mechanical dispersion, and molec

ular diffusion, several other phenomena may affect the concentration distribution of a

tracer as it moves through a porous medium. The tracer (say, a solute) may interact

w ith the solid surface of the porous m atrix in the form of absorption of tracer par

ticles on the solid surface, deposition, solution of the solid m atrix, or ion exchange.

All these phenomena cause changes in the concentration of a tracer in a flowing liq

uid. Radioactive decay and chemical reactions within the liquid also cause tracer

concentration changes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

In general, variations in tracer concentration cause changes in the liquid’s density

and viscosity. These, in turn, affect the flow regime (i.e., velocity distribution) th a t

depends on these properties. We use the term ideal tracer when the concentration

of the latter does not affect the liquid’s density and viscosity. At relatively low

concentrations, the ideal tracer approximation is sufficient for most practical purposes.

However, in certain cases, for example in the problem of sea water intrusion, the

density may vary appreciably, and the ideal tracer approximation should not be used.

1.3.1. A d v ec tiv e , d isp e rs iv e , a n d diflfusive fluxes. As explained above, at

every (microscopic) point within a porous medium domain, we have a velocity V

and a concentration, c, of some considered substance; c expresses the mass of the

substance per unit volume of the liquid. Figure 1.11 shows a point x' belonging to an

REV centered at point x : The product c V at x' denotes the local flux (= quantity

of the considered substance per unit area of liquid) vector at th a t point. However,

we already know th a t we cannot predict values of V and c a t this microscopic level,

and tha t, instead, we should aim at predicting the average concentration, c, and the

average tracer flux, cV , a t the macroscopic level. To achieve this goal, w ithout going

F ig u r e 1 .1 1 . N o m e n c la tu re fo r th e d isp e rs iv e flux. [13]

Rev

SoUd

into the details of the continuum approach to transport in porous media, let the

liquid’s velocity at an arbitrary point, x', w ithin the liquid tha t completely occupies

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

the pore space, be denoted by V{x ' , t] x) . The symbol x in this parenthesis indicates

th a t point x' belongs to an REV centered at x (Figure 1.11). The velocity, V , can be

decomposed into two parts: the average velocity, V , of the liquid within the REV,

and a deviation, V°, from th a t average. Thus

(1.28) V{x ' , t]x) — V {x , t) + V ° { x ' , t] x),

(1.29) c{x', t, x) — c{x, t) -f c°(x', t\ x).

In both cases, the average has the meaning of an intrinsic phase average as defined

by (1.1).

To obtain the average flux, we write

(1.30) cV = (c + c°){V -t- V °) = c F + c y ° + c°V + c°V°.

However, in view of (1.1), c°V = 0 and c V = 0. Hence

(1.31) c V = c V + c°V°,

i.e., the average flux of the considered substance is equal to the sum of two macroscopic

fluxes:

a) An advective flux, c V , expressing the flux carried by the water a t the la tte r’s

average velocity, V , as determined by D arcy’s law.

b) A flux c°V° = cV ° expressing an additional flux resulting from the fluctu

ating velocity in the vicinity (i.e., within the REV) of the considered point.

Recalling the discussion in the previous section, this is the flux th a t pro

duces the spreading, or dispersion. We refer to it as the dispersive flux. It is

a macroscopic flux th a t expresses the effect of the microscopic variations of

the velocity in the vicinity of a considered point. We note th a t this flux is

created by the averaging procedure. It does not exist at the microscopic level.

In employing this flux, we are losing the information about the behavior at

the microscopic level (which we do not have anyway).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

1.3.2. M ech an ica l d isp e rs io n . Our next objective is to express the dispersive

flux in terms of averaged (and measurable) quantities, such as averaged velocity and

averaged concentration. Investigations over a period of about two decades, starting

from the mid-50s (see review, for example, in Bear, [9]), have led to the working

assumption th a t the dispersive flux can be expressed as a Fickian type law; i.e., in

the form

dc
(1.32) c°V “ = - D - V c ; = - D i j

where D is a second rank symmetric tensor called the coefficient of (mechanical)

dispersion. We recall tha t c denotes the mass of the dispersing substance per unit

volume of water, and c°V° represents a flux per unit area of the water. Equation

(1.32) indicates th a t the dispersive flux is linearly proportional to the gradient of the

average concentration and th a t this flux takes place from high concentrations to lower

ones.

Several authors (e.g., Nikolaevskii [76], Bear [8], Scheidegger [92], Bear and Bach-

m at [10]) derived the following expression for the relationship between the coefficient

D and microscopic porous m atrix configuration, flow velocity, and molecular diffusion

(1-33) A j = Y , i) ,
k , m

where V = jV] is the average velocity, Pe is the Peclet number defined as Pe =

L V/D d, L is some characteristic length of the pores, Dd is the coefficient of molecular

diffusion of the solute in the liquid phase, (5 is the ratio of the length characterizing

the individual pores of a porous medium to the length characterizing their cross-

section, and / (P e , (i) is a function which introduces the eflFect of tracer transfer by

molecular diffusion between adjacent streamlines a t the microscopic level. In this

way, molecular diffusion affects mechanical dispersion. One should not identify this

effect w ith the macroscopic flux due to molecular diffusion (see below), but with the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32

transfer between streamtubes at the microscopic level, as explained in the definition

of mechanical dispersion in the previous section. Bear and Bachmat [10] suggested

the relationship f {Pe ,5) = P e /{P e + 2 + 45^). In most cases, it is assumed th a t

f (P e ,5) ss 1. Henceforth, we shall also make this assumption.

The coefficient aijkm, (dims. L), called the dispersivity of the porous medium, is

a fourth-rank tensor which expresses the microscopic configuration of the solid-liquid

interface. Bear and Bachmat [10] and Bear [9, page 614] express aijkm by

(1,34)

where B is the conductance of an elementary medium channel, BTIj is an oriented

conductance of a channel, is the medium’s tortuosity^ nBT^j = kij is the m edium’s

permeability, and L is a characteristic length of the medium. Thus, the m edium’s

dispersivity is related to the variance of {BTk)°, while its permeability is related to

the average, BT k , of BTk.

A fourth rank tensor has 81 components in a three-dimensional space (and 16 in a

two-dimensional one). Scheidegger [92] and Bear [9] showed th a t aijkm has a number

of symmetries th a t reduce the number of nonzero components of the dispersivity

tensor, in a three-dimensional space, to only 36.

For an isotropic porous medium, the number of nonzero components is further

reduced to 21. Furthermore, these 21 components are related to two parameters:

(dim. L), called the longitudinal dispersivity oi the isotropic porous medium, and

(dim. L), called the transversal dispersivity. In the theoretical developments men

tioned above, it is shown th a t expresses the heterogeneity of the porous medium

at the microscopic scale due to the presence of pores and solids. Hence, in laboratory

experiments in homogeneous sand columns it was found th a t is of the order of

magnitude of the average sand grain. The transversal dispersivity is estim ated as

being 10 to 20 times smaller than th a t of a^.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

% =

33

W ith o l and ax, the components of the dispersivity for an isotropic porous medium

can be expressed in the form

(1.35) ^ijkrn ~ (^T^ij^km d ^ d" ^ivn^jk))

where
0 j ,

1 otherwise,

is the Kroenecker delta. For an isotropic porous medium, the components aijkm do

not change under rotation of the coordinate system.

For an anisotropic porous medium with axial symmetry, e.g., a medium made up

of a large number of th in layers normal to the axis of symmetry, the dispersivity can

be expressed in the form

^ijkm ~ ^I^ijdkm "b CLll{dik^jm “h dimdjk)

~ho,jji(^5ijhkhm "F dkmhihj^

~ \~ a j y (^ S i k h j h m “b d j k h i h m “b d i m h j h k d j m h i h k ')

~\~ay hi hj hk h<m)

where ai ,au ,an i ,a jv and ay are five independent param eters and h is a unit vector

directed along the axis of symmetry. Similar expressions can be w ritten for other

types of anisotropy.

By combining (1.33) with (1.35) for / (P e , 5) = 1, we obtain

(1.36) Dij = axVSij + {ai — 0'T)ViVj/V,

where here, and henceforth, we have om itted the overline symbol th a t indicates the

velocity is an average one.

The permeability, k i j , of a porous medium is also a second-rank symmetric tensor.

However, there is a basic difference between tensors k i j and D i j . In an isotropic porous

medium, any three m utually orthogonal directions in space may serve as principal

directions. However, due to the effect of the velocity pattern, one of the principal

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

F ig u r e 1 .1 2 . Principal axes of the coefhcient of dispersion. [13]

Principal
norm al (N)

Stream line

B inorm al (B)

X

axes of the dispersion coefficient, Dij, a t a point, is always in the direction of the

tangent of the streamline passing through th a t point. The other two principal axes

are in the directions of the two principal normals to this direction. Figure 1.12 shows

these directions. The unit vectors N , T , and B are called the principal normal, the

tangent, and the binomial to the curve.

Thus, although the porous medium is isotropic, we have a distinct set of principal

directions at every point of a flow domain. As the velocity varies from point to

point, so do the principal axes of the dispersion. Furthermore, a t every point, these

directions may vary continuously as the flow pattern varies. This dependence of the

dispersion coefficient on the velocity introduces a m ajor difficulty in the solution of

pollution problems, especially under unsteady flow conditions and when the velocity

is density (and hence, concentration) dependent.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

1.3.3. M o lecu la r d iffusion . At the microscopic level, the flux vector, due

to molecular diffusion is expressed by Pick’s law

(1.37) = -H dV c,

where is the coefficient of molecular diffusion, in a fluid continuum (equals about

10“°cm^/sec in dilute systems). By averaging (1.37) over the REV, and introducing

certain simplifying assumptions, Bear and Bachmat [11, 12] derived an expression

for the macroscopic flux in the form

(1.38) = -DdT* • Vc = - D * • Vc,

where = T*Dd is the coefficient of molecular diffusion in a porous medium and

T* is a second-rank symmetric tensor th a t expresses the effect of the configuration of

the water-occupied portion of the REV. We used the averaging symbol in (1.38) in

order to emphasize the difference between this equation and (1.37).

The coefficient T*, often referred to as a tortuosity, is defined by (Bear and Bach

m at [1 1 , 12])

(1.39) ^ = 7 ^ f x„j)uidS,
l-̂ Ow JSww

where denotes the water-water portion of the bounding surface of the REV, a:o

is the centroid of the REV, v is the outwardly directed normal to the surface Syjyj,

and Uow denotes the volume occupied by water within the REV.

For an isotropic porous medium, T* reduces to

(l - «) TJ. = f S i i ,

where 0^ = S w^ / S q, 0̂ , = Uqw/U o, and Sij is the Kroenecker delta.

1.3.4. CoefRcient o f hyd rod ynam ic d ispersion . By adding the dispersive

flux, expressed by (1.32), and the diffusive flux, expressed by (1.38), we obtain

(1.41) c°V° + = - { D -h ■ Vc = - D h • Vc,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36

where the coefficient Dh = D + is called the coefficient of hydrodynamic disper

sion.

The to tal flux, total) of ^ pollutant, by advection, dispersion, and diffusion, can

now be written in the form

(1.42) ĝ t̂otai = 0w{cV - Dh ■ Vc).

This is the amount per unit time of the pollutant passing through a unit area of

porous medium.

1.3.5. B a lan ce e q u a tio n for a p o llu ta n t . Five components should be taken

into account in the construction of a balance equation for a constituent ([13]).

a) The quantity of the pollutant entering and leaving a control volume around

a considered point by advection dispersion and diffusion, or the to tal flux,

9c,total) expressed by (1.42).

We recall th a t in Section 1.3.1, using a parallelpiped control box, we

have shown th a t the negative divergence of a flux (of any extensive quantity)

represents the excess of inflow (of that quantity) over outflow, per unit volume

of porous medium, per unit time. Hence, here —divgc ôtai) fotal represents

the excess of inflow of a considered pollutant over outflow, per unit volume

of porous medium, per unit time.

b) Pollutant leaving the fluid phase through the water-solid interface as a result

of chemical or electrical interactions between the pollutant and the solid sur

face. Phenomena of ion exchange and absorption may serve as examples. Let

/ denote the quantity of pollutant tha t leaves the water by such mechanisms,

per unit volume of porous medium, per unit time.

c) Pollutant added to the water (or leaving it) as a result of chemical interactions

among species inside the water, or by various decay phenomena. L etT denote

the rate a t which the mass of a pollutant is added to the water per unit mass

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

37

of fiuid, and 9 be the moisture content (so th a t 9pV denotes the mass added

by such phenomena, per unit volume of porous medium per unit time).

d) Pollutant may be added by injecting polluted water into a porous medium

domain, e.g., as part of artificial recharge or waste disposal operations. Pol

lu tant may be removed from a porous medium domain by withdrawing (pol

luted) water, e.g., by pumping. W ith P[x, t) and R{x, t) denoting the rates of

water withdrawn or added, respectively, per unit volume of porous medium

per unit time, and c{x, t) and c r {x , t) denoting the po llu tan t’s concentration

in the water present in the porous medium and in the water added by injec

tion, respectively, the to tal quantity of pollutant added per unit volume of

porous medium per unit time is expressed by Rcr — Pc.

e) As a result of the above components, the quantity of the pollutant is in

creased within a control box. W ith 9c denoting the mass of a pollutant per

unit volume of porous medium, denotes the rate at which this quantity

increases.

Combining all the components, we obtain

riBr
(1.43) a 7 = - P c + flcH,

or, using (1.42) to express

(1.44) ^ = _ v . (eg - BDh • Vc) - / + 9pV - P c + R c r .

Equation (1.44) is the (macroscopic) mass balance equation of a pollutant, ex

pressed in terms of c = c{x,t). It is often called the equation of hydrodynamic disper

sion, or the advection - dispersion equation.

The previous equation is a general case of unsaturated flow. For saturated flow,

9 is replaced by the porosity, n.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CH APTER 2

T he M athem atica l M odel

2.1. In trod u ction

As stated in the previous chapter, the saturated flow and single-phase solute

transport in groundwater systems can be modelled by the equations

(2 .1) S { x) ~ - \ 7 ■ q + R { x , t) ,

(2.2) = - V • (eg) + V ■ {eDVc) + B,

over a; in a bounded region 12 C R” , n = 2, or 3, and for t > 0. Here, t) is

the piezometric head, c{x,t) is the solute concentration, S is the specific storativity,

d is the porosity, D is the hydrodynamic dispersion tensor, and B are the

source/sink terms for the flow and solute, respectively. The term q is the specific

discharge. W hen applying Darcy’s law q = —KV(j), we get the model equations in a

confined aquifer:

(2.3) = +

(2.4) = V . (c ifV 0) + V ■ («D V c) + B.

The model equations in an unconfined {phreatic) aquifer can be obtained by applying

the Dupuit assumption q = —K(f)V(j),

(2.5) S (i) ^ = V . (^ J f V « + J J (i ,t) ,

(2.6) = V ■ {al>KV<l>) + V . (9£>Vc) + B.

Note: we changed some symbols here so th a t it is convenient for us in the later

discussion.

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

A fundamentally im portant part of the modelling process is the full reconstruc

tion problem, i.e., the problem of obtaining reliable estimates for all of the various

coefhcient functions appearing in equations (2.1) and (2 .2) from held measurements

of the quantities (j) and c (together with some ancillary data, such as boundary data

on K and D).

Many of the methods th a t have been employed on the inverse groundwater prob

lem typically focus only on the recovery of the scalar (isotropic) hydraulic conductiv

ity. These methods range from educated guesswork (referred to as “trial and error

calibration” in the hydrology literature, the method still preferred by some practition

ers [5, page 226]) to various attem pts at “autom atic calibration” ([7, 62, 102, 103]

for survey materials; see also [19, 20, 23, 69, 78]). Some people [89, 91] have tried

the direct approach of viewing the steady state version of (2.3) as a hrst-order hy

perbolic equation in the conductivity; in addition to the fact th a t one must somehow

integrate, in stable fashion, along the characteristic curves (which depend on V<^), this

requires tha t one know the inflow part of the boundary, the determ ination of which is

itself a non-trivial ill-posed problem. Another approach is to reformulate the problem

as an optimization exercise, which can be done in several ways. One can work directly

to minimize the “equation error,” as in [34, 35, 36, 47, 48, 62, 72, 91, 97], or min

imize over an “output error,” as in [21, 22, 37, 41, 65]. The ou tput error methods

are applicable when the number of observations is limited, bu t suflFer badly from non

uniqueness problems, as well as numerical instabilities. Another optim ization route

makes use of the general idea of Tikhonov regularization [70, 74]; examples include

[1, 18, 63, 98]. All Tikhonov regularization methods make use of a regularization

param eter whose critical value must be known quite accurately for the method to be

effective. This general class of methods is less effective because of the lack of reliable

methods for determining this critical value in practical situations; this problem can

be even more pronounced in the aquifer case due to the uncertainties in the available

data. A different regularization, asymptotic regularization, is employed in [4, 43]. In

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

40

the last two decades much work has appeared with the aim of applying geostatistical

techniques [46] to the aquifer problem; examples include [2, 27, 42, 48, 74, 89, 96].

A further point worthy of note is th a t in the current literature there are few

universally applicable techniques for recovering the specific storage and even fewer

viable methods available [5, page 153] for objectively assigning values to a time-

dependent recharge term. Once again, rainfall is not readily measured as a local

phenomenon, and the effect of supply and discharge from underground sources is

even more difficult to measure directly. There are also essentially no viable methods

for objectively obtaining the full hydraulic conductivity tensor.

It is evident th a t obtaining the dispersion tensor D in equation (2.2) is even

more difficult [48, page 2219]. Recall th a t the movement of the contam inant fluid

in a groundwater system can be divided into three mechanisms (see Section 1.3):

advection, convective dispersion, and molecular diffusion. Advection is represented

by the first term on the right-hand side of equation (2 .2); the sum of the convective

dispersion and molecular diffusion is the coefficient D of equation (2.2). Note th a t

the convective dispersion itself is a combination of the longitudinal dispersivity, a^,

and transversal dispersivity, ar, for an isotropic porous medium. It is a combination

of five independent param eters for the anisotropic case (see Section 1.3). So the full

reconstruction problem for the groundwater model is a computationally formidable

inverse problem.

In this dissertation, we will extend the work of [64] to a full groundwater model

th a t can recover all the param eter functions in the flow equation (2 .1) and the trans

port equation (2 .2) for both confined and unconfined aquifers. Observe th a t a m ajor

difficulty encountered in the process is th a t these param eters can be very poorly rep

resented by measurements taken at a fixed collection of points in an aquifer. This

is because quantities such as hydraulic conductivity, for example, can vary by up to

12 orders of m agnitude a t a given site [5], due in p art to the presence of significant

geological inhomogeneities. In order to reliably model the flow of m aterials through

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

a porous medium, one has to somehow assign appropriate averaged values for these

parameters determined in a suitable way from the flow itself [5, page 329].

2.2. T he flow equations

Recall th a t the source term R in the flow equation is time dependent. This makes

the problem more complicated. For simplicity, we assume th a t i? is a piecewise

constant function with respect to the time variable t, i.e.,

N

(2-7) R(x, t) - = Y ^ Riix)x[t,_„ti]
i = l

where 0 = < ti < ■ ■ ■ < = 1. This assumption is justified since

a) the da ta is available for only a limited time period, and it is difficult to

monitor field data changing continuously in time;

b) R is generally a slowly varying function of time; and

c) from a m athem atical point of view, it will converge to the real case when the

time step is tends to 0 .

Laplace transforming equation (2.3) in t over i = 1,2, • ■ • , n, we get N

equations

(2.8) - V ■ {K {x)V u i) + {Auj + o:j,i(a;, A)}5(x) = Pi^i{x, X)Ri{x),

where

r k
(2.9) Ui{x ,X)— / e~^^(j){x,t)dt,

Jti-i

(2 .10) Q!i,i(a:,A) = (j){x,ti)e~^^' - 4>{x,ti^i)e~^^^-\

(2 .11) =

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

42

For the flow equation (2.5) of an unconflned aquifer, after the Laplace transfor

mation above, we have

(2.12) - V ■ {K{x)'Vwi) -b {Xwi -f Q!i,2(-2̂ , A)}S'(x) = A,2(2:, X)R,{x),

where

rU
(2.13) Wi{x,X)= / e~^^(p'^{x,t)dt,

Jti-i

(2.14) Oiifi{x, A) = \ {2ui - Wi) + 2{4>{x, - (f){x, tj_ i)e -^ ^ '- '},

(2.15) =

i = 1, 2, ••• ,A .̂

It is simple to compute values U i (x , X) and W i (x , X) from the known d a ta (j){x,t)

with fixed A. Thus we arrive a t a new problem: given da ta Ui(x, A) (as well as Wi{x, A)

for an unconfined aquifer) for x in Q, and all A > 0 (and the boundary value of K) ,

determine the functions K , S, and i = 1,2, • • • ,N .

2.3 . T h e tran sp ort equations

Consider the transport equations (2.4) and (2.6). Assuming th a t the hydraulic

conductivity K is known, then the first term of the right-hand side of equations (2.4)

and (2.6) are known data. The coefficient hydrodynamic dispersion tensor, JD, is a

very complicated combination of some components (see Section 1.3). Here we adopt a

somewhat different approach. Consider D as a function of q; i.e., D — D{q), where

the specific discharge q is dependent on time (although the hydrodynamic dispersion

tensor D itself is time independent). So the term D{q) in the transport equations

(2.4) and (2.6) are actually tim e dependent. Adopting the technique as in the flow

equations, we assume

Ni
(2-16) D { x , t) =

iz=l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43

The source/sink term B is very complicated (see Section 1.3.5). For simplicity,

we assume here th a t B = B^{x ,t)c + B^{x,t) . Similar to the discussion above, we

assume

N2
(2.17) B \ x , t) = Y^Bl{x)x[u_ ,, t ih

i=l
Ns

(2.18) B^{x ,t) =

W ithout loss of generality, we can assume Ni = N 2 = N^. Now, applying the finite

Laplace transformation to equation (2.2) in t over we have

(2.19) - V ■ { 0 { x) D i (x) \ / V i) + (A-Ui + a i { x , A)}0(x) = / 3 i { x , X)Bl{x)+

+ j i {x ,X)B i{x) + 5i{x ,\) ,

where

-At,(2.20) V i { x , X) = / e c{x,t)dt,
Jti-1

(2 .21) o i i { x ,X) - c{x,ti)e~^^^ - c{x, t i - i)e~^^' - \

(2.22) /?i(a:, A)= ^^(rc.A),

(2.23) l i (x , X } = ([e-"**---

rU
(2.24) 5i(2;,A)= - V ■ {cq)e-^^dt,

Jti-i

i — 1,2, - ■ ■ ,N i . W hen the specific discharge is replaced by the Darcy flow (Dupuit

assumption) we get the transformed transport equation in the confined (unconfined)

aquifer. W ith the assumption th a t c{x,t) and K { x) are known, we have Ui , cti, /?i,

7i and Si are all known, i = 1, 2, • • • , N'l. So our problem becomes as follows: given

data Vi{x, A) for a; € and all A > 0 (together with some boundary values of jD, and

0), determine the param eters Di, 6, B] and i — 1,2,-■ ■ , Â i.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

44

2.4. T h e inverse p ro b le m

If we regard 9{x)Di{x) in equation (2.19) as one (matrix) function K{x), then

compare the equations (2.8), (2.12), and (2.19), we have tha t these three equations

can be w ritten in the following form:

(2.25) - V • {K{x)Vv) + (Au + a)Q{x) = PR{x) + 'jS{x) + 5,

where a = a{x, A), (5 = /3{x, A), 7 = ^{x, A), and 5 = 5{x, A) are all known (7 = 5 = 0

for flow equations). And our problem is to find the coefficient functions K , Q, R,

and S from the known solution data v = u{x, A) and K\Qa.

According to [38, Chapter 8], the generalized Dirichlet problems associated with

(2.26-2.29) below are uniquely solvable, and the solutions v lie in the Sobolev space

(2.26) Lv = —V • p{x)V v -1- Xvq{x) = —0 'q{x) -1- (5r{x) + j s {x) + S,

where x E Q, 2̂ is a domain in i?"; A > 0; and

(2.27) a(x ,A) , /3 (x ,A) , j (x ,X) ,S (x ,A) E £^(f2);

(2.28) p — (pij) symmetric, strictly positive with pij E C°°;

(2.29) q{x),r{x),s{x) E £^(fl).

Now let V be the set of all c = {p, q, r, s), such th a t p, q, r, s satisfy (2.28) and (2.29).

Denote u = u{x, A) the solution of equation (2.25) and Uc = Uc{x, A) the solution of

equation (2.26) corresponding to c = {p, q, r ,s) e V such tha t

(2.30) Uclaa = u\an-

The functional G is defined as follows

(2.31) G(c, A)= / p{x)'S/{u — Uc) ■'^{u — Uc) + X{u — Uc)‘̂q.
J u

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

45

For a fixed number of A values, Ai, A2, • • • , \ mi we define functional H as the sum of

G at those fixed As, i.e.,

M
(2.32) i^(c) = J] G (c ,A ,) ,

k=i

where c = {p,q,r,s) G V. We will prove th a t the functional H is convex and has a

global minimum point at { K , Q, R, S). Thus the recovery of {K , Q, R, S) becomes a

procedure of minimization of the functional H.

2.5. T h e u n iq u en ess

Before we give the method of recovery, we first show that the coefficients in equa

tion (2.25) can indeed be uniquely determined under some assumptions, provided we

already know the solutions. To this end we assume in this section th a t the m atrix

function p in (2.28) has entries in C^(f2).

We proved, in [59], th a t if p is the only unknown param eter, then it can be

uniquely determined by two solutions u{x,Xi) and u { x ^ \ 2), Ai ^ A2, provided th a t

one of the entries is known and

7^0
U2,(a:,y,Ai) Uy{x,y,Xi)

u^{x,y,X2) Uy{x,y,X2)

throughout the region We also give a uniqueness assumption which states th a t, in

a two-dimensional case, Pi = p j if if '^(Pd -̂) = '^{P2 j fo’̂ three distinct

values of A, if all the other param eters are known. These results also apply to equation

(2.26).

Now let c — (p, q, r, s) £X>, Ui = u{x, Aj), i = 1, • • • , 6, be solutions of (2.26) with

6 distinct values of A. If there is c = {p ,q , f , s) e V, which also gives solutions Ui,

then

-V • p{x)Vui + {Xui H- ai)q{x) = I3ir{x) + jis{x) -b

- V • p(x)'7ui + (AjUi -f ai)q{x) = Pif{x) -b ^is{x) + 6i,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

46

where a.i = a(x, Aj), /?,; = /3(x, Aj), j i = 7 (2:, Aj), = 5(x, Aj), z = 1, • • • , 6. Thus we

have

- V • (p(x) - p (x)) V u i - h (AiUi + a^)(g(x) - g(x)) = /3i(r(x) - f(x)) + ji(s(x) - s(x)),

2 = 1, • • • , 6 , or in m atrix form

(2.33)

where fx = (a, b, cY' , u = [g — g,r — r , s — s)^,

M =

B =

p{x) - p { x) =

 ̂ -A iU i - tti (5i 7 i ^

— X2 U2 — 0-2 /?2 72

— A 3 W 3 — 0 : 3 / ? 3 7 3

— A4li4 — Q;4 /?4 74

—A5U5 — a5 /?5 7s

—AeUe ~ Q!6 /?6 76 y

0

0

0 ^ 3 x

0 'll4.y '^4.x

0 'ii'Sx

^ 0 'ILQy '^Qx j

a b

b c

Uix 0

^3x 0 ^3y

U4x ^ '^4y

Û x 0

y '^6x ^ "̂ Gy j

\^Ixx ^lyy 2'Uixy

"̂ 2xx ^2yy ^^^2xy

^3xx ^3yy ^^Zxy

'^4xx 4̂t/2/ 2li43;y

*̂ 5xx '^Syy ^"^5xy

y ^6xx ^6yy ‘̂ '^Gxy J

l i p = from (2.33) we can see th a t if we want to recover m == 1,2, or 3

coefficients of s, we need only m solutions, provided the m atrix M has rank m.

Now for the general case, suppose we want to recover m entries of p and n coefficients

of g, r, s. W ithout loss of generality we assume th a t n = 3. If M has rank 3 and M q

is a 3 X 3 nonsingular submatrix, denote M i the subm atrix of M whose elements are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

47

those not in M q. Let Aq, A i , Bq, B i , Cq, and C i be the submatrices of A , B , and

C which take the same rows as M q and M i corresponding to the same subindices.

Then we can get

(2.34) { M iM o 'A o - A i} ^ , + { M . M ^ ^ B q - B i } ^ ^ +

,+ { M iM o - 'C 'o -C i} m = 0

from (2.33), where M q ̂ is the inverse of M q. One can see th a t M \ M q^ A q — A i

and M i M q^ B q — B \ ha,ve the form

(ai 0 0-2 ^

(2.35) M iM o 'A o - A i = bi 0 b2

\ 0 C2 /

 ̂ 0 02 Or ^

(2.36) M i M q^ B q - B , = 0 62 bi

U C2 Cl /

Similar to the proof in [59], we can show tha t

P r o po sitio n 2.1. In two dimensions m + n distinct solutions Ui are needed to

recover m < 3 entries of p and n < 3 coefficients of q, r, s of equation (2.26), provided

that M q above and a submatrix of (2.35), namely

ai 02

bi 62

are non-singular throughout the region Cl.

We assume

U niqueness A ssum ption 2.2. In two dimensions, i f p has entries in C^{Cl),

then c = {p, q, r ,s) £ V can be uniquely determined by N different solutions Uxx of

(2.26), i = 1, - ■ ■ ,N , where N >Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Proposition 2.1 states tha t if the given data is “good enough,” then only six

solutions would be enough to recover all the coefficients (see [59]). In the real world,

six solutions is usually not enough. We test for different synthetic data, and find tha t

20 solutions is a good choice. On the other hand, the choice is justified, since in the

finite Laplace transformation of the flow equation, A acts as the time variable. If we

choose more A values, th a t means we use more data during the time period, which

should certainly gives us more information.

2 .6 . P r o p e r t ie s o f fu n c tio n a ls G a n d H

In this section, we will give some properties, which are essential for the numerical

algorithms, of the functionals we constructed.

Let u be a solution of the generalized Dirichlet problem (2.26, 2.30), for </> e

IPo ’̂̂ (f2), we have

(2.37) {Lv,(j))= f {pV v • Vcj) + Xq{x)v(l>)dx,
Jn

by (2.26),

(2.38) I (j)V ■ {pV v)dx — — I pV u • V(j)dx.
J n Jn

The latter formula is essentially Green’s formula for this situation (“integration by

parts”) and will be used a great deal in the proof of the properties of the functional

G and H.

Lemma 2.3. (a). For any c = {p, q, r, s) 6 V,

(2.39) G(c, A)= I {p{x)Wu ■ Wu — p{x)V uc ■ Vuc+
Jn

+ [A(u^ — ul) + 2a(u — Uc)]q{x)

— 2{u — Uc)[/3r{x) + 7s(x) + 6]}dx.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

(b). For Cl = (Pi, ?i, ?'i, si) and C2 = (P2, Q2, i'2, S2) ^ have

(2.40) G(ci, A) — G(c2, A)

/ {(Pi - P 2)V'u ■ Vn - (pi - P2)"^Uc, ■ Vmc2+
Jn

I
+ [A(w ̂ - -licittcs) + 2a(u - -(Uci + Uc^))] {qi - 92)

- 2[u - ^(wci + Uc2)][^(ri - ra) + 7(^1 - S2)]}dx.

(c). For c = {p ,q ,r ,s) in V and h = i h i , h 2,h z ,h 4), h i symmetric matrix with

entries in C°°{Vl), hi\dci — 0, and /i2, /14 in C^{^), we have

(2.41) \imuc+eh = uc' e->0

in

(d). For c = (p ,q ,r ,s) in V and h = { h i ,h 2,h z ,h 4), h i symmetric matrix with

entries in C°^{Q), hi\gn = 0, and h2,h z ,h 4 in and any symetric

matrix p with entries in

(2.42) ||V • (?7Vuc+eA)lk-i.2(n) < K,

where K is a constant that does not depend on e when e is not too big.

P roof. To prove part (a) first note the identity

G(c, A) = / {p {x)V u ■ V n — p{x)Vuc ■ Vuc+
Jn

+ 2p{x)'Vuc • V (u — Uc) + Xa{uc — u)^g(2:)}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Now, using integration by parts and equation (2.26), together with the fact tha t the

solutions u and Uc share the same boundary data, we have

/ {2p{x)Vuc ■ V(uc - «) d- \ a { u - u^y‘q{x)]dx
J n

= { - 2 { u c ~ u) V ■ { p { x) ' 7 u c) + - U c Y q { x) } d x
J n

= / {2(uc - u)[~{Xuc + a)q{x) + (]r{x) + j s { x) + 5] + Xa{u - Ucyq{x)}dx
Jn

{[A(u^ - ul) + 2a{u - Uc)]q{x) - 2(u - Uc)[Pr{x) + 'ys{x) + 6]}dx
>n

and this gives the proof of (a).

To prove part (b), notice tha t by (a)

G { c i , X) — G (c2, X) —

/ {(Pl - - (Pl - P 2) • VUc2 +
Jn

+[X{u^ - UciUcJ + 2a{u - + 'Uc2))](9i - g2) +

-2[u - - ^2) + 7(^1 - S2)]}(ix

+ / { - P iV u c i V(wci - UcJ - (lici - UcJ[(Auci + a)qi + /3ri + j s i + h] +
Jn

-p2VUc2V(Wci - ^ 0 2) - {'^ci - Wc2)[(AUc2 + «)92 + (3^2 + 7^2 + 5] }dx

By integration by parts, equation (2.26), and the = Uĉ on the boundary dO,, we

have th a t the second part of the right hand side equals to 0. This gives the proof of

part (b).

In o rd e r to p rove p a r t (c), w e s u b t r a c t th e e q u a tio n s

—V • (pVuc) + {Xuc + oi)q = /?r + 7S + 5

—V • {{p + e/ii)Vuc+e/i) + (Artc+e/i + a)(g + th2) =

= /5(r + ehg) + 7(5 + e/2.4) + <5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

to get

- V • (pV(lic+e/i - Uc)) + X{Uc+ch - Uc)q =

e[V • hiVUc+eh — i^Uc+eh + Cx)h2 + /?/l3 + 7^4]

Now we multiply Uc+ek “ u,g on both sides of the above equation and integrate over Q.

we get (after integration by parts)

/ {p" ^ (uc+e/i Urg) ■ V(tic-i-f/j, — tic) + A('Uc_)_£/;, tic) q ' \ d x
Jn

— j { ^ ■ PV(ttc+e/i He)(tic-|-c/i tic) "b A(tic+£^ tic)
Jn

— e / {(tic-i-c/i, tic)V • Vtic-j-c/i
Jn

-[{XUc+eh + a)h 2 + (Jhz + 7/l4](tic+e/i - tic)}dx

= e / { / i x V (t i c + e f t t i c) ■ ^ (X J ' c + e h H e) h i W u ^ ^ • V (U c - i - e h H e)

Jn

- \ { u c + e h - U c f h 2 - ((A t i c + a) h 2 + P h + 7 / i 4) (t i c + £ / i - t i c) } d r n

— ̂ / {^i'^(Hc+6/i H e)) ■ V(tic4-e/i H e)

Jn

+ i(l/llV H c|^ + |V(tic+£?i - H e)n

+ 2 a) h 2 + P h ^ + 7 / 1 4) ^ + (t t c + e — H c) ^)

d"A/I2 (tic-xe/i He)

and using the inequality ab < (a^ + fe^)/2 .

Now, w ith the assumption th a t q is lower bounded by some positive number, we

have th a t the left hand side of the above inequality is bounded below by a constant

multiple of l|tic-fe/i — tie||wi.2(n)- Oh f^e other hand, the terms on the right hand side

are independent of e except for Uc+eh- So when e is small enough, we can move the

term s on the right hand side which contain Uc+eh — Hc to the left hand side so th a t

the left side is still lower bounded by a constant multiple of \\uc+eh — He|lwi.2(n) and

the remaining right hand side is 0 (e). Then part (c) follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

In order to prove (d), we define a functional F on Wq’̂ (Q) by F (0) = rjVuc+eh'

V^. Since the entries of r] are in >C°°(r2), (2.41) implies th a t

(2.43) \F{cl))\ < K\\(f>\\wi,'2{n)^

when e is small enough, and K does not depend on e. Thus F € (Wo’""’(17))* =

The estimate (2.42) then follows from (2.43). □

T h e o r e m 2 .4. (a). The first Gateaux differential of G is given by

(2.44) G'{c, A)[/i] = / { ^ iV u • V n - h iV u c ■ Vuc+
Ja.

+ [A(n^ - u^) + 2a{u — Uc)]/i2

— 2{u — Uc)[Phz 4- '-fhi\}dx,

where h = [hi, h2 , fis, hf), h i is a symmetric matrix with entries in C°°{Q,),

hi\do, — 0 , and h2 , fis, hi in

(b). The second Gateaux dijferential of G is given by

(2.45) G"(c, A)[fi, k] = 2 { L - \e {h)) , e{k)),

where h = (^ i, ^2, fisj ^4)? k = (fci, ^2; ^3, ^4); o,nd h i , k i are symmetric

matrices with entries in £ °°(n) with /iijan = ^ilan = 0 , and the functions

/i2) hs, hi, k 2 , k^, ki lie in £^(fl),

(2.46) e{h) = —V • h iV u c + [Xuc + a]h2 — (3hs — 7 /14,

and (•, •) denotes the usual inner product in £^(12).

P r o o f . B y L e m m a 2.3 (b), fo r e > 0,

-(G (c + eh, A) — G{c, A)) = j { q h iV u ■ V u — qh iV uc ■ Vuc+eh
 ̂ Jo,

+ [pVu ■ V u - pVUc • V U c + e h + A(u^ - Uc+^hUc) + 2tt(u - i(U c + U c+eh)]h 2

-2[u - i(u c + U c + e h)] [P h 3 + 7 ,̂4] + e[h2 h i V u V u - h 2 h i V u c V u c + e h] } d x .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Then part (a) follows from Lemma 2.3 (c) by letting e go to 0.

To prove (b), note tha t by (a),

G'{c + eh,X)[k] - G'(c, X)[k] =

= - / • VUc+eft - fciVUc ■ VUc
J n

+[X{ul^^i^ - ul) + 2a{uc+th ~ Uc)]k2

-2{uc+di - Uc)[pk3 + jk4]}dx

= - / { k i V { U c + e h + Uc) ■ V (U c + c h - Uc) [
J n

+ [Kul+eh - “ c) + 2a(«c+eh - Uc)]k2

- 2 { U c + e h - U c) [f J k z + ^ k 4] } d x

= / { U c + e h - U c) { V • (f c i V (l t c + e h + U c))
Jn

—[X(uc+eh + Uc) + 2a]k2 + 2[pk3 + jki]}dx,

after an integration by parts.

Subtract the equations

(2.47) Luc = - V • (pVuc) + XucQ = - a q + Pr{x) + j s (x) + <5

and

(2.48) Luc+eh = - V - ((p + ehi)V'iic+€/i) + Awc+e/i(9 + eh2)

= -o : (g + e/12) + /?(r + e h s) + 7 (s + e/14) + 5

we have

L{Uc+eh Uc) = V • p V (Uc-̂ eh Uc) + X{Uc+eh Uc)q

— —e[—V • h i X 7 u c + e h + (Auc+e/i + a)h 2 — {Ph^ + 7/14)],

or

(2.49) Uc+eh — Uc = —eL ’̂ (—V • h \ V u c + e h + (Awc+e/i + a) h 2 — (P h ^ + 7 /1 4))-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Thus

G'{c + eh ,X)[k]-G '{c , A)[/c] _
e

= / ■ h i V U c + e h + { XucJ re h + a) h 2 - { I 3 h3 + ' y hi)) X
Jn

x { - V • { k i W { u c + e h + Uc)) + [X{uc+eh + Uc) + 2 o \ k 2 ~ 2[/3/c3 + j k i] } d x

= 2 / L~^[e{h)]{—V ■ (kiVuc) + {Xuc + a) k 2 — {Pk^ + ^ k i) } d x +
Jn

j L [V • h \ ^ (Uc+eh Uc) T X(^Uc+eh ^c)^^2] ^
Jn

X{ — V • (fe iV {uc+eh + Uc)) + [X[uc+eh + Uc) + o;]/c2 — {/Jk^ + ' yki]}dx +

+ / L ~ ' ^ [e { h)] { - V • { k i V { U c + e h - U c)) + X { U c + e h - U c) k 2 } d x .
Jn

It remains to be shown th a t the second and third integrals of the last expression

tend to zero as e —)■ 0. As the operator is self-adjoint, if we set

We = - V ■ { k i V { U c + e h + Uc)) + [X{Uc+eh + Uc) + Q:]A;2 - [/3/C3 + 7^4],

the second integral may be rewritten as

/ [-V • hi\/{Uc+ek - Uc) + X{Uc+eh - '*4c)̂ 2] X L~'\We)
Jn

= / hiS/{Uc+eh-Uc) ■ {L~^{We)) + Xk2{Uc+eh-Uc)L~^{Wc).
Jn

From (2.42), We is uniformly bounded in e in and as L~^ may be extended

uniquely as a bounded linear operator from to L~^{we) is bounded

independently of e in From the boundedness of V on to x

£^(f2) it follows th a t \L~^{we)\ is bounded independently of e in From (2.41)

it now follows th a t the second integral tends to zero with e -> 0. Finally, note th a t

L~^[e{h)] lies in VF’̂’̂ (fl), and th a t the th ird integral vanishes as e —> 0 follows via

(2.41) after an integration by parts. This completes the proof of the theorem. □

T h e o re m 2.5. (a). For c in V and A > 0

G(c, A) = 0 G^(c, A) = 0 Uc = u.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55

where is the solution of (2.26), u is the solution of (2.25), i.e., the known

data.

(b). Assume thai c lies in V and G"{c, A)[/i, h] = 0 for some h = {hi, li2 , /13, h^)

where h i is symmetric matrix with entries in C°^{Q,), h i |gn = 0 , and h^, /13, /14

in C'^{Vl). Then for all e small enough.

P r o o f . The assertion in (a) th a t G(c, A) = 0 if and only if ttc — u follows

immediately from the definition of G, and one direction of the remaining assertion

is obvious. If G'{c,X)[h] = 0 for all h, then the gradient of G, VG, satisfies

VG(c, A) = (7jfc) = 0, where, for I < j, k < n,

'Jjk — '̂ Xj'̂ Xk ~~ '̂ c,Xj'̂ c,Xk-

Consequently, from Theorem 2.4 part (a) and Lemma 2.3 (a),

G{c,X) = / {p{x)V {u — Uc) ■'^{u — u f) \ { u — u f fq { x f } d x
Jn

— —2 / 5{u — uf)dx.
Jn

If we interchange c and G in this formula and note th a t a = uc, we have

/ {K { x)V { u — Uc) ■ V (u — Uc) + X{u — Uc)‘̂ Q{x)}dx = —2 6{uc — u)dx.
Jn Jn

Adding, we find tha t

/ {{p{x) + K { x))V { u — Uc) • V (u — Uc) + X{u — Uc)'^{q{x) + Q{x))}dx — 0,
Jn

from this and the fact th a t p, K are positive definite and q,Q > 0, it follows th a t

u — Uc = 0.

Part (b) is a consequence of Theorem 2.4 part (b) in tha t, if we assume th a t

G"(c, X)[h, h] = 0, then

e{h) = —V • h iV u c + [Auc + ajfia — ~ 7^4 = 0,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56

SO th a t from (2.26), for all e small enough p + e h i is strictly positive and

- V • {p{x) + ehi)Vuc + {Xuc + oi){q{x) + eh2)

— I3{r{x) + eha) + j{s{x) + eh^) + 6.

But Uc+eh is the unique solution of this equation with the boundary da ta it

follows immediately th a t Uc+eh = Uc- □

T heorem 2.6. Assume that the uniqueness assumption of the previous section

holds, and in (2.32) set M > = 5. Then for c in V ,

(2.50) H{c) = 0 ^ H'{c) = 0 ^ c = C{= {K , Q, R, S))

where K , Q , R , S are the coefficients in equation (2.25), i.e., the coefficients we in

tended to recover. And the functional H is strictly convex on V .

P roof . Noting th a t H{c) = 0 if and only if G { c , \) = 0 for 1 < z < M , the

first assertion follows from Theorem 2.5 and the uniqueness assumption. Next, if

H'{c) = 0, the same proof th a t was used for G shows th a t H{c) = 0, and the rest

follows from the statem ents above. Finally, let H"{c)[h,h] = 0. As the functionals

G(c, Xi), 1 < i < M , are convex, it follows th a t G"(c, Xi)[h, /i] = 0 for 1 < i < M . By

Theorem 2.5 part (b), for all e small enough , Uc+eh = Ug for A = Aj, 1 < i < M . The

uniqueness assumption now indicates th a t h = 0. □

2.7 . A descent a lgorithm

Theorem 2.6 shows th a t, under computationally verifiable conditions on the da ta

functions, Uj = u{c, Aj), 1 < i < M , and the coefficients {K , Q, R, S) can be uniquely

recovered by minimization of the functional H given by (2.32). Recall th a t by Taylor’s

expansion,

M M
/ / (c + eh) ^ i7 (c) + ei?'(c)[/i] = ^ G (c , A) + e 5 ^ G '(c , Ai)[/i]

i - l i=l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57

for the direction h. If we can find a direction h such tha t the second term of the

right-hand side above is negative, then we can get to a point ci = c -f eh, such tha t

H{ci) < H{c) when e > 0 is not too big. So the search for a descent direction is an

im portant part in our minimization procedure. First for h = (h i, 0 ,0 ,0), Theorem

2.4 gives

G'{c,X)[h] = / h iV u ■ V u — hiV uc • Vuc
Jn

n

^ ̂ I hij(^UiUj UciUcj ̂
i,j=l

n „

— 'y ̂ / hijTjij

where u is the solution of (2.25), Uc is the solution of (2.26), Ui = Ud = and

h i = {hij) is a symmetric m atrix with hij in £°°(0) and hijan = 0. Notice th a t if we

define the inner product for n x n m atrix functions h = {hij) and g = {gij) to be

Tl n
{h,g)ji^2 = Y ^ / hij{x)gij{x)dx,

and 77 = [rjij) then G'{c, A)[/i] = (77, h i) ^ 2 . Now let h^ be the solution of

(2 .51) JXgij -j- g i j = { ' ^ G) i j — Tjij 9 i j \ d n ~ Oj

then

G'{c,X)[h] = j {rj, h i) ^ 2 dx

n „

i j - l

^ ̂ r
= X) / { - A g i j +gij)gtjdx

i , j = i

Tl n

— ^ 9 i j ■ ^ 9 i j T 9 i j ■ 9 i j } d '
i , j = i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

innerwhere g = {gij)- { ') ')y} is the vSobolev inner product corresponding the

product above. So we get a descent direction g, which is called the Neuberger gradient

[73]. Thus for the m atrix direction hi, we can choose the Neuberger gradient as the

descent direction. Note th a t we can not choose the gradient V G — {rjij) as

our descent direction here, because V G is generally not zero on the boundary dCt.

For other directions, h2 ,hz,h^, this requirement is not necessary. So we can simply

choose the gradient as the descent direction. If we know the boundary value

of a coefficient, such as the storativity, we can choose the Neuberger gradient as the

descent direction. This usually leads to a better result. For a more detailed discussion

about this descent method, please refer to [52].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 3

N um erical Im p lem en ta tion and R esu lts

3.1. T h e n u m e ric a l im p le m e n ta tio n

There are two approaches we can adopt in the actual recovery. A to ta l of six

coefficients, K , Q, R, and S, are involved in our recovery procedure. We can regard

H as a function of six variables and use a minimization method for multiple variable

functions, such as the “Powell” method. This method is generally more efficient for

the recovery of JT, [59]. We can also code to recover the variables one by one. The

advantage of this method is th a t we can control the actual recovery for each individual

variable. If one variable is more difficult to recover than the others, we can set more

iterations for this variable in each step. Our example shows th a t K is most difficult to

recover, compared to other variables. We use the second m ethod in this dissertation.

Here is a brief illustration of our minimization step. Assume the six variables to be

recovered are denoted by fj, 1 < i < 6. Our algorithm is implemented according to

the following scheme:

a) Choose an appropriate initial guess for the functions c = (rj), 1 < i < 6 ;

these can be arbitrary, except th a t some of them must satisfy some boundary

conditions, such as rjjan = Ki\da, i = 1 ,2 ,3 , where the boundary values for

Ki come from the known boundary values of K .

b) Set i = 1, i.e., the search variable is ri. Also set the control variable f la g = 0.

c) Compute the descent direction hi. If the boundary values of are known,

such as 1 < i < 3 for the two-dimensional case, the descent direction is

computed as the Neuberger gradient; otherwise, it is the gradient.

d) Let h be the direction such th a t the ith component is hi and all the others

are 0. Check to see if H can be minimized in direction h by comparing H{c)

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60

and H[c — ah) for some small number a (= 10“^). If

H{c) > H { c - a h) ,

then set f lag = 1 and go to the next step. Otherwise, set i i + 1 and go

to step g).

e) Do a line-minimization in the direction h, using the one-dimensional search

routine to compute = c —

f) Set c = and i = i + 1.

g) If i < 6 , then go back to step c); otherwise, go back to step b) if f la g = 1,

or exit the search (since no search is successful in this iteration step).

One of the advantages of this algorithm is th a t it is easily parallelized. Recall th a t

in our actual recovery, we need to compute a to tal of M Hi functionals, and all these

functionals can be minimized separately. We can set the program to M processes

to recover those Hi separately on different processors. There is a second level of

parallelization. Since each Hi{c) is the sum of N different G{c, Aj), and the gradient

is also the sum of the N different VG(c, Aj), we can write the program as a master-

slave program such th a t the m aster process mainly does the line search work, while

the slave part deals with the numerical solution of the partial differential equations

and the quadrature needed for computing the values of the functionals G and the

gradient VG. In our program, we use the PVM package [15] for message passing

between the m aster and the slave programs. Some of routines are implemented or

adopted from the Numerical Recipes [82] in our programs. Note also

(1). The elliptic PDE solver. Since the recovery is very sensitive to the error of

the numerical solution, a solver is needed th a t can accurately and efficiently

solve elliptic boundary value problems of the type

- V • K V u + Qu = F,

u(a;,y)[aa = B {x ,y) .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

with minimal error. We use the nine-point difference method for the dis

cretization and then employ the band-solving subroutine BANDEC adopted

from [82] to solve the resulting system of linear equations. This solver was

called upon to determine the various solutions Uc during the descent search

ing procedure and the Neuberger gradient. The solver we implemented is

efficient for two dimensions. For three dimensions, a more efficient solver is

required.

(2). The numerical differentiation. We use central differences for the numerical

derivatives for our synthetic dataset. This is accurate and efficient here,

because the solutions being differentiated are sufficiently smooth functions.

For practical data w ith noise, one must apply more sophisticated numerical

differentiation techniques. We implemented a routine by using the mollifier

function

I 0 otherwise,

where [5 is chosen so th a t p(x)dx = 1, to regularize the d a ta function u

by

(3.1) Uh{x) = p { ^ - j^)u { y)d y ,

for some small h > 0. One can then compute the numerical derivatives of Uh

using central differences and use these as approximations to the derivatives

of u. For a more detailed discussion about this routine please see Section

3.3.

(3). The quadrature. We iterate the Simpson’s rule function QSIMP in [82]

to perform the required quadrature in the formula (2.31) for G{c, A) and

the finite Laplace transformation. Given th a t parts of the integrand lack

smoothness, Simpson’s rule is an effective choice here.

(4). The line minimization routine. In the minimization search, we adopted the

bracketing and line minimization approach in [82]. The idea is as follows.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

If H can be minimized along a given direction, we use our own (somewhat

primitive but safe) bracketing method to find the bracketing points. First we

choose an initial stepping distance, and then step along the chosen direction

using this stepping size as an increment until either a bracketing is found

or a preset stepping limit is encountered. In the la tte r case the original c is

reset to the new c at the stepping limit and a new gradient is computed. In

practice we use the actual length of the movement in the previous search to

make some adjustm ent to the stepping distance. Once the bracketing points

are found, we adopt the BRENT function [82] to find the minimum.

(5). The parabolic PDE solver. In our test program, we need a parabolic solver

to solve the flow and transport equations. To this end, we adopted the pde

solver PDETW O of [6 8], modified so th a t it can handle the matrix-valued

case with nonzero cross-term coefficients. This solver is efficient and quite

accurate, with smooth boundary and initial values. The solution formed our

synthetic dataset.

Note th a t since the elliptic solvers are extremely sensitive to a loss of positivity

for p, the program would tend to crash when non-positive eigenvalues for p were

encountered. Noting th a t p is positive definite if and only if

Pn > 0, P2 2 > 0, pnP 2 2 - Pn >

we argue th a t it is reasonable to set lower bounds on the functions p u , P2 2 w ith local

knowledge of a particular aquifer and w ith the knowledge [52] th a t the insertion of

additional information tends to have a stabilizing effect on an ill-conditioned com

putation. It is not clear from the physical problem how one might constrain P12; we

chose to bound the absolute value of p i2 by the square root of the product of the

lower bounds for p u and P2 2 , so th a t pnP 2 2 “ P12 > 0 is always true. Whenever the

computed values of p are under the lower bound in the descent search for p n and P22,

or above the bound for p u , we set them equal to the bound. W ith this arrangement,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

the algorithm became extremely stable with respect to allowing a large number of the

descent iterations. From our test functions we can see th a t if we can assign a lower

bound for p i2, the images are substantially improved.

As described in Section 2.5, we need at least five different A values to recover K , Q ,

and R for the flow equation and six different A values to recover JD, 9, B i, and B 2 for

the transport equations. In practice we found th a t increasing the number of A values

used substantially improved the images. In our tests, we chose the number of A values

to be 20. This is consistent with the view th a t the ill-posedness in the com putational

problem corresponds to a certain loss of information in the data, and, as noted above,

the most natural way to offset this is to add as much ancillary information as possible.

As is observed earlier, the recovery of the functions Di{x), i = 1, • • • , A/ is es

sentially equivalent to the recovery of the function D {v {x , t)) where the Darcy flow

v{x ,t) — —KV(j) may be regarded as already known. The remaining task is to re

cover the time-independent dispersion function JD(-) from the information gathered

thus far.

The Darcy flow can be regarded as a function v = h {x , t) from Q x [0,1] onto

a vector subset, V , of K ^ , while the time-independent scalar dispersion £>(•) is a

function from V to the real line R. So, we can a t best recover D{-) restricted to V .

The other issue is th a t if h is not one-to-one, the numerically recovered D {v {x , t))

will most likely not take equal values on those points {x,t) th a t map to the same

flow vectors under h; we take the average of those values as the value of £)(•) a t th a t

point.

The algorithm works in the two-dimensional case as follows. Let {xij} represent

the grid points in O, and let tk denote a partition of the time interval. The vectors

' îjk — K 1 — {flijkt^ij}^

are computed and stored, and the minimum and maximum of the a^fc, amin and Omax

are computed, together w ith the minimum and maximum of the bijk, 6rnin and Vax-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

64

The rectangle V = [amin, o-max] x [^min,^max] is discretized by a grid with stepsize h,

the stepsize used in the grid for Q. Each of the vectors Vij^ is then assigned to its grid

square in V , and for each of the grid squares Vrs in V , the average of D[vijk) over

all of the Vijk in Vrs is computed; this is the value of D(-) on Ks- If no Vijk lie in Ks

we set D{Vrs) — cq, the predefined lower bound for D {v) before. The test program

shows th a t this method is effective.

3.2. R e su lts w ith s y n th e tic d a ta

In our synthetic da ta test, we assume th a t the region Vl = [—1,1] x [—1,1] is

overlaid with a 30 x 30 discretization grid. We deliberately chose all the coefficients

to be non-smooth functions, because the non-smooth functions are more difficult to

recover, and also because one cannot assume a priori tha t the param eters in a real

groundwater system are smooth functions. The time period was set from 0 to 1. The

code was w ritten in PG I Fortran 90 in double precision and run on a cluster consisting

of Dell PowerEdge 2450 nodes with dual Intel 733MHz Pentium III processors and the

Redhat Linux 6.2 O perating System. We used 20 nodes, one for each of the A-values

in the functional H.

F ig u r e 3.1. True param eter functions K , Q, and i? - 1

{a)K 11 (b) K 12 (c) K 22

3.2.1. T h e flow e q u a tio n . We assume th a t the time interval [0,1] is divided

into 10 equal subintervals, and the hydraulic conductivity K , the storativity S, and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

65

F i g u r e 3 .2 . T rue p a ra m e te r functions K , Q , and i? - 2

X

(a) Q (b) Rx (c) i ?2

(d) Rz (e) R i (f)^5

(h) R, (i) R b

ii)R9 (k) Rio

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66

the source/sink term Rk, I < k < 10, are defined as in Figure 3.2.1 and Figure 3.2.1.

And
10

R { x ,y , t) = ^ R k { ^ , y) X [h ^ ± y
k=l

The piezometric head data, (j), is solved from the flow equation (2.3) with initial

condition

w{x^ y, 0) = 2 + 0.5 cos(7ra;) cos(Try),

(to simulate slowly varying head d a ta), and boundary conditions

w{x^ ±1, t) = 2 — (0.5 — t) cos(vrx),

u ;(± l, y ,t) = 2 — (0.5 — t) cos(Try),

by the PD E package PDETW O [68], over the region D and time [0,1]. Then we use

the quadrature implemented with the Simpson’s rule to get the data Uj, 1 < i < 10.

E x a m p l e 3.1. Assume that the hydraulic conductivity K is known. We recover Q

and R simultaneously for 1,000 iteration steps. Figure 3.2.1 shows the search result

where we use the £} gradient as the descent direction. It can he seen that the result is

really bad. I f we have some information about the parameters, such as the boundary

values of the storativity S, then we can get a much better result (see Figure 3.2.1(a)

and Figure 3.2.1(b)) by adopting the Neuberger gradient for the descent direction.

There is still some “ju n k” in Figure 3.2.1(a) and Figure 3.2.1(b). This junk

comes from the numerical difference of the solutions solved by the two PDE solvers

- the parabolic PDE solver PD E TW O and our elliptic PDE solver (together with the

numerical Laplace transformation). Recall that the source data Ui, I < i < 1 0 , are

computed by the Laplace transformation (2.9) of the solu tion of the parabolic equation

(2.3). Since
rU

Ui\d(i= / e~̂ (̂t){x,t)\dcidt,
Iti-i

we use this for the boundary values to solve the elliptic equation (2.8), with the true

parameters K , S, and R, and use these Uf., 1 < A: < 10, as source data. Then all the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67

F i g u r e 3 .3 . T he recovery of Q and R w ith K fixed w ith C} g rad ien t

(a) True Q (b) True R \

2.5

0.5

-0.5 - 0.5

0.5 ■0.5

(c) Recovered Q (d) Recovered R i

junk disappears, as in Figure 3.2.1(c) and Figure 3.2.1(d). Note that we still need

the solution (f> of equation (2.3) to compute a, but we can regard them as fixed once

(p is known.

Actually, the difference of the two solutions is very small. But the difference of the

numerical derivatives is much bigger than the difference of the solutions. Figure 3.2.1

shows the differences of the solutions and the corresponding numerical derivatives

between the solutions, with time period set k = 1 and A = 0.5. Since PDETW O is

only used to generate the synthetic data, and since the source data is gathered by

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

68

F i g u r e 3 .4 . T he recovery of Q and R w ith K fixed w ith N euberger g rad ien t

(a) Recovered Q (b) Recovered R i

(c) Recovered Q (d) Recovered i?i

field measurements in the real situation, we assume in the following examples tha t the

synthetic da ta u,, 1 < i < 10, are generated by our elliptic solver together with the

boundary values above. Example 3.1 also tells us th a t the more information we have

about the recovered parameters, the more accurate the result. We assume th a t in the

following examples we will use the Neuberger gradient for the descent directions.

E x a m p l e 3.2. Assuming that the storativity S and the source term R are known.

We simultaneously recover the coefficients, K u , K 1 2 , and K 2 2 , of the anisotropic

hydraulic conductivity K . A fter 1,000 descent steps, we get the result shown in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69

Figure 3.2.1. We can see that the result is good both in shape and height, and the

discontinuity is quite clear.

F ig u r e 3.5. Difference of solutions between the two PDE Solvers when
k = 1 and A = 0.5

(a) difference of u (b) difference of (c) difference of

F ig u r e 3 .6 . The recovery of K when Q, R are assumed known

(a) True K-11 (b) True K 12 (c) True K 22

(d) Recovered K u (e) Recovered K \2 (f) Recovered K 22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70

F i g u r e 3 .7 . T he recovery of the p a ra m e te rs of flow equation of u n
confined aquifer - 1

(a) true K \ i (b) true K \2 (c) true K 22

(d) recovered K] (e) recovered K 12 (f) recovered K 21

(g) true Q (h) true R i (i) true R 2

(j) recovered Q (k) recovered R \ (1) recovered R.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

E xam ple 3.3. As a final example of the flow equation, we simultaneously recov

ered all the coefficients of the flow equation (2.5) in an unconfined aquifer. The true

parameters K , Q, and Ri, 1 < « < 10, were as in Figure 3.2.1 and Figure 3.2.1. Our

search was scheduled as follows. We set an arbitrary initial position Cq = {pq , qo, rifl.

With the descent minimization, we searched to C3 by using the source data Ui as

follows

4 = {Po,qo,rifl — ̂ c} = {Pi,qoFio) — ^ --------^

Then we used cl = (Pi, 9i, ?’2o); “uihere f 2o was chosen arbitrarily, as the initial

position and searched to c\ = {P2 ,q 2 ,i'2 i) with source data U2 . Adopting the same

procedure, we searched to point 4 ° = {Pio, qw, t’io J . In the second iteration, we chose

4 = (pxoj qw, I'll) initial point and made a further search. After a total of 5, 000

descent steps, we got the recovered parameters as listed in Figure 3.2.1, Figure 3.3,

and Figure 3.3. We can see that all the parameters recovered are quite accurate.

It should be noted th a t the true S here is not physically reasonable in the ground

water context because the possible values for S are very small, a t 0.0G3ft“ ̂ for clay,

w ith very high compressibility and porosity, for example. This arises in the following

example.

E x a m p le 3.4. In this example, we set S to be much smaller, between 0.0005

and 0.0015, as shown in Figure 3.2.1. The hydraulic conductivity, K , was set to be

isotropic, while the source/sink term, R was set as a step function of R i , i = 1, • • • ,6 .

I f we assumed that the aquifer was confined, and we recovered all the parameters

simultaneously for 5 ,000 steps. The recovered parameters are shown in Figure 3.2.1

and Figure 3.2.1. It can be seen that all the parameters except S are very accurate.

To prove that our recovery was effective, we computed the relative error between the

“true" source data and our recovered data. The idea is as follows: regard the source

data 4> solved by P D E TW O with the true K , S , and Ri, i ■= 1, - ■ • ,Q as the true source

data; the data solved by P D E TW O with the recovered K , S, and R , i = 1, • • ■ ,6 is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72

F ig u r e 3 .8 . T he recovery of th e p a ram ete rs of flow eq u a tio n o f u n
confined aquifer - 2

(a) true (b) true R i (c) true i ? 5

(d) recovered R 3 (e) recovered R i (f) recovered i?s

(g) true Re (h) true i ? 7 (i) true Rs

(j) recovered Re (k) recovered JZ7 (I) recovered Rg

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

73

F ig u r e 3 .9 . T he recovery of th e p a ra m e te rs of flow equation o f un
confined aquifer - 3

(a) true R q (h) true i?io

2.5

0.5

-0.5

C.S

2.5

1.5

0.5

•0.5 •0.5

0.5 "O.S

(c) recovered Rg (d) recovered R\o

regarded as the recovered data. We then computed the relative error between <j) and <j)i.

The result is shown in Figure 3.2.1. I t can be seen that the error is below 1%, very

small. It also agrees with [83], in which it is stated that the storativity is insensitive

to small changes of piezometric head.

However, in the real situation, the source/sink term R in the flow equation is also

very small. This difficulty can be avoided by applying a variable substitution (see

Section 4.6).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74

F ig u r e 3 .1 0 . Recovery w ith sm all 5 - 1

(a) true K (b) recovered K

1

(c) true S (d) recovered S

3.2.2. T h e t r a n s p o r t e q u a tio n . Assume th a t the param eters in the flow equa

tion are already known and the true param eters for the transport equation are defined

as in Figure 3.2.2, Figure 3.2.2, and Figure 3.2.2. We will test the case of an uncon

fined aquifer here (similar results can be obtained for the confined case). Note th a t

since the param eters {K , S, R) are regarded as known, the param eter 5k in equation

(2.19) can be computed as follows;

5k{x , X)= [" ■{cK^V(j))dt
Jtk-i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

F i g u r e 3 .1 1 . Recovery w ith sm all S' - 2

(a) true R i , R 2 (b) recovered R i (c) recovered R 2

(d) true i?3 , R i (e) recovered Rs (f) recovered R i

(g) true i?5 , Re (h) recovered Re (i) recovered Re

rti
/ + K(j)W(j) ■ Vc}dt

J ti~i

r e - ^ \ c [S { x) ^ - Rk(x,t)] + K(j)V(l) ■ Wc}dt.
'ti-i

E x a m ple 3.5. In this example, the piezometric head (p is solved, as in the flow

equation where the parameters K , S, and R are those recovered in Example 3.3. Then

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

76

F igure 3.12. Error between the recovered da ta and the true source
data with small S

Tim© (t)

(n)

we use the parabolic PDE solver P D E TW O to solve the transport equation where the

parameters are those listed in Figure S. 2.2, Figure 3.2.2, and Figure 3.2.2, with initial

condition

w{x, r/, 0) = 1 + 0.5 sin(87r(a: + y))

and boundary values

w{x, ±1 , t) = 1 + (0.5 — t) cos(87r(x ± 1)),

w (± l, y, t) = 1 + (0.5 — t) cos(87r(?/ ± 1)).

Of those parameters, D{-) is the most difficult to recover. So here we assume that all

the B coefficients are known, and we recover D u , D 1 2 , D 2 2 , and 9 simultaneously.

After 5,000 iteration steps, we get the recovered coefficients shown in Figure 3.2.2.

Note that the non-smoothness of K , when combined with the non-smoothness of

D itself and possible problems with the finite difference solvers, causes increased diffi

culties with the D{K(f)V(f)) term to recover [59]. However, we can see in Figure 3.2.2

that the computed D{-) assembled from the recovered Dij^ ’s, except D u , is an effective

reconstruction.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

77

F i g u r e 3 .1 3 . T rue p a ra m e te r D, 6 of th e t ra n s p o rt equa tion

(a) true D u (b) true D i 2

(c) true D 22 (d) true 6

E xam ple 3.6. In this example, all the data and parameters are the same as in

Example 3.'5. We assume that D and 6 are known and recover the coefficients B l

and B l, k — I , - ’ " ,20. After a total of b, 000 iteration steps, we get the recovered

parameters, B l and B l , 1 < k < 20, shown in Figure 3.2.2, Figure 3.2.2, Figure 3.2.2,

Figure 3.2.2, Figure 3.2.2, Figure 3.2.2, and Figure 3.2.2. It can be seen that the

recovery is quite accurate.

In the previous example, we recovered D{-) directly from the D{K(j)'V(f)) term.

The hydrologists tend to write D{-) as the sum of (A j) and (Section 1.3),

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78

F ig u r e 3 .1 4 . T rue p a ra m e te r of th e t ra n s p o rt equation

(a) true B } (b) true (̂) true (d) true B j

(e) true B q (f) true Bg (g) true B~ (h) true Bg

(i) true Bg (j) true Bjo (k) true B}j ̂ (1) true Bj.12

(m) true B}g (n) true B}^ (o) true Bjg (p) true B}g

(q) true B^j (r) true B l18 (s) true Bt19 (t) true Bgi20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

79

F i g u r e 3.15. True param eter B'̂ of the transport equation

(a) true B l (b) true B l (c) true B^ (d) true jB|

(e) true (f) true Bg (g) true B l (h) true B |

(i) true Bg (j) true B̂ ,10 (k) true Bji (1) true B̂ .12

(m) true Bf^ (n) true Bf^ (o) true Bjj (p) true B̂ g

(q) true B̂ y (r) true B̂ g (s) true B̂ g (t) true Bgg

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

80

F i g u r e 3.16. Recovered D (-) and 9, assum ing B know n

(a) true D u (b) recovered D u

(c) true D i 2 (d) recovered D 12

(e) true D 22 (f) recovered D 22

(g) true 6 (h) recovered 0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

81

F i g u r e 3 .1 7 . Recovered Bj; - Bg, assum ing D and 6> are know n

(a) true B j (b) true (c) true B 3

(d) recovered B } (e) recovered B 2 (f) recovered B^

(g) true B] (h) true B 5 (i) true Bg

(j) recovered B j (k) recovered B^ (1) recovered Bg

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

82

F i g u r e 3 .1 8 . R ecovered Bj - BI 2 , assum ing D and 6 are know n

(a) true B j (b) true Bg (c) true Bg

(d) recovered B \ (e) recovered B \ (f) recovered B \

(g) true B l10 (h) true B l11 (i) true B I 2

(j) recovered B l10 (k) recovered B l11 (1) recovered B I 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

F i g u r e 3 .1 9 . R ecovered - B}g, assum ing D and 0 a re know n

83

(a) true 13 (b) true B l14 (c) true B [15

(d) recovered B l13 (e) recovered Bl^ (f) recovered Bl^

(g) true B l16 (h) true B l17 (i) true B_lg

(j) recovered B l16 (k) recovered B l17 (1) recovered B l18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

84

F i g u r e 3 .2 0 . Recovered Rjg, an d assum ing D and 9 are know n

(a) true R|g (b) true Bgi20

(c) recovered B l19 (d) recovered 20

(e) true B l19 (f) true R|o

(g) recovered Big (h) recovered B 2̂0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

85

F i g u r e 3 .2 1 . Recovered Bl - Bl, assum ing D and 9 are know n

(a) true B f (b) true B l (c) true B l

(d) recovered B f (e) recovered B l (f) recovered

(g) true B l (h) true (i) true B q

(j) recovered (k) recovered (1) recovered B |

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

86

F i g u r e 3 .2 2 . Recovered Bj - BI 2 , assum ing D and 9 are know n

(a) true (b) true Bg (c) true B |

(d) recovered (e) recovered Bg (f) recovered Bg

(g) true B l10 (h) true B?n (i) true B l12

(j) recovered B l (k) recovered B l11 (1) recovered B ig

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

F i g u r e 3 .2 3 . R ecovered R ?, ~ B' ô, assum ing D and 9 are known

87

(a) true (b) true B l14 (c) true B l15

(d) recovered B l13 (e) recovered B l14 (f) recovered B l15

(g) true B l16 (h) true B y17 (i) true B y18

(j) recovered B y16 (k) recovered B y17 (1) recovered

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

where

D^j = a i , k m ^ ^ f { P e , S)

and y = \V\ = \K(f)V(f)\, 14 is the kih component of velocity vector V , f {P e , ti) is a

function which introduces the effect of tracer transfer by molecular diffusion between

adjacent streamlines, is the coefficient of molecular diffusion, T t is the tortuosity.

Mathematically, there are no differences for us to recover the D as above or recover

the coefficients aijkm and Dd directly, but the hydrologists prefer to recover these

coefficients because they can be evaluated in the lab. We note here th a t we can

actually recover those coefficients from the source da ta with a slight modification of

our code.

For simplicity, let us consider the isotropic case (in a confined aquifer). From

Section 1.3, we know th a t for isotropic porous media, Dij can be w ritten in the

following form (under some assumptions)

(3.2) D ll = Pi^L + P2®T)

(3.3) D i2 = pip2{dL — o,t),

(3.4) D 2 2 = p\a,L + PiÔ T

for a two-dimensional case, where Pi = V i /V V . If we neglect the molecular dispersion

(which can be evaluated directly in the lab), the param eter D = {Dij) in the transport

equation (2.2) becomes a function of and ar since

^ _ F~1 _ ___________ Kll4>x + _Kl2(f)y___________ ^

" \ / y ” V[Kll(f>x + Ki2(^y? + [Ki2<I>, + K22<j>yf

V2 Ki2(t>x + K22(j>y I
Oo — —-T— — ■ - ■ — ■■ — ■ ■ — (h

\ /V \/[Kii(f)x + Kl2^yY + [Ki2<Px + K'22(t>yY

are known once (j) and K are determined. Now the functional

G{c, X)= / pV(u — Uc) • V(w — Me) + A0(u — Uc)̂
Jn

/ {aiOMi + at9M2)V{u — • V {u — -h \9 {u — Uc)^,
J n

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

89

w here p = aiMi + at M 2 , and

M ,= | A f e = f
P 1 P 2 p I) V - P 1 P 2 p \

can be regarded as a functional involving a; and at (assuming th a t 6 and B are known

for simplicity). Similar properties in Section 2.6 about G and H can be obtained here.

Thus g l and ar can be directly recovered.

3.3. Error analysis

From the examples in the previous section, we can see th a t the recovery is quite

accurate, compared to the true param eters. In this section, we will analyse errors of

various kinds compared to the original data. Four situations are considered here;

a) How accurate is the method? i.e., what is the error between the da ta obtained

from the recovered param eters and the original data? (Figure 3.24)

b) Is the method stable?, i.e., w ith a small change in param eters, does the

recovered data also change by a small amount? (Figure 3.3)

c) If the original da ta contains error, is this method still applicable? It is truly

im portant since the field data will inevitably contain error. (Figure 3.3)

d) Regarding sparse da ta situation, i.e., if the original da ta is not sufficient, is

the method still applicable? It is also an im portant issue in economic and

geological situations. (Figure 3.3)

E xam ple 3.7. For situation a), we set the parameters as in Figure 3.2.1 and Fig

ure 3.2.1. The solution, 4>{t,x), of the parabolic equation (2.5), solved by PD ETW O ,

is set as the source data. We compute the recovered data, (f){t,x), by solving the par

abolic equation (2.5) with the parameters recovered from Example 3.3. The L°° error

is computed between 0 and (f. Figure 3.2f depicts the error with the time period we

defined from 0 to 1. We can see that the error is very small.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

90

F ig u r e 3 .2 4 . E rro r analysis of s itu a tio n 1

(a) \\(j){t,x) -

E x a m p l e 3.8. In this example, we add 1% of error and 100% of L°° error to

the parameter K (see Figure 3.3). Let 4>{t, x) be the solution of equation (2.3) with the

parameters as in Figure 3.2.1 and Figure 3.2.1, and (fi{t,x) the solution of equation

(2.3) with the modified parameters K in Figure 3.3. We use (fi as the source data to

recover K u , K u , and K 2 2 for 10,000 steps and use this recovered parameter as the

coefficient to get the solution of (2.3), (j). Then the L°° error is computed between (p

and (j). We can see in Figure 3.3(d) the error is still very small.

Since we repeatedly use numerical gradient, an efficient and accurate numerical

differentiation method is essential for our numerical implementation. We use the

central difference m ethod in our implementation for its efficiency. The m ethod is

accurate enough in the situation when the source d a ta is smooth. W ith the source

da ta contains error, the m ethod fails. To overcome this difficulty, we used a mollifier

to smooth the original d a ta and regarded the smoothed data as the source data. The

idea is as follows:

Let p be a C°° function defined on i?" such th a t p{x) = 0 when ||a:|| > 1 and

(3.5) / p[x)dx = 1.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

91

F ig u r e 3 .2 5 . E rro r analysis of s itu a tio n 2

(a) true K u

-0.5 -0.5

0.5 0.5

(b) true jK'i2

'c) true K 22

1% V error {100% L‘ error)
added to parameter P

0.7

0.25 0.5
T (time)

(d) \\(f) - (j>\\L=̂ (Q)

Let Q be a bounded open subset of and u be a continuous function defined on

the compact set Q. Now we add some random {L°°) error Cq to the function u and

denote the corresponding function by u. Then u can be represented as

(3.6) u{x) = u{x) + e{x),

where ||e(a:)l|x,oo < cq. Then u 6 £^(r2) with the assumption of e{x) in For

h > 0, the regularization

(3.7) Uh

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

92

F i g u r e 3 .2 6 . E rro r analysis of s itu a tio n 3

Original data
20% of L error added

(a) 0(0.5, x) (b) ((>{0.5, x)

Smoothed data

(c) (f>i{0.5,x)

20% L error added
added to source data u

I ■ i ■ r
0 0-25 0.5 0.75 1

T (timd)

of u lies in Uh € for any O' C 0 with h < dist{Q.', dQ) [38], So the function

Uh is a sufficiently smooth function, and also the error, e/i, between Uh and u, will

not exceed Cq by much. In fact, since u is continuous over Q,, for any e > 0, there is

some h > 0 such th a t ju(x) — u{y)\ < e for any rr,y 6 0 and Ijo: — y]| < h, where || • ||

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

F i g u r e 3 .2 7 . E rro r analysis of s itu a tio n 4

93

Original data

(a) 0(0.5, a;) (b) 0(0.5, a;)

(c) 01 (0.5, a;) (d) 02 (0.5, a:)

(e) 03 (0.5, a:) (f) ||0(t,a:) - 04(t,a:)|E~(ii)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

denotes the Euclidean norm in i?". Thus we have

\uh{x) - u{x)\ = /r“” l [{u{y) - u{x))p{^^-—^)d y \

< / i \u{y) - u { x) \ p { ^ - ^) d y +

< e + eo-

So

(3.8) 6h = sup{|u/i(x) — u{x)\ : 2; 6 Q} < e + Cq.

Practically, the error Ch will be much smaller than eo, since

(3.9) J ^ e { y) p { ^ - j ^) d y = J ^ e - ^ { x) p { ^ - ^) d y - j ^ e - { x) p { ^ ^ - j ^)

where e"*" and e~ denote the positive and negative part of e, and the first and second

parts of the right-hand side in the previous expression tend to be equal due to the

normal distribution of the errors.

Once the data has been smoothed, we can use any numerical derivative m ethod

to compute the derivatives with the smoothed data. Because the smoothed da ta is

C°° at every inner point, the simple central difference method would be enough.

E x a m p l e 3.9. In this example, we add 20% of L°° error to the original data

4>{t,x) to get (j){t,x). We then use the mollifier to smooth the data 4>{t,x) to get

(f)i{t,x). Then we use the smoothed data (f)i{t,x) as the source data to recover the

parameters. For simplicity, we only recovered the parameter K , and all the other

parameters are assumed to be known. After 10,000 descent steps, we use the recov

ered parameters as the known parameters for equation (2.3). The numerical solution

(p2 {t,x) was solved from (2.5). Then we compute the error between f>2 {t,x) and (f, the

original data without errors. The results and those 4>s at time t = 0.5 are shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Figure 3.3. We can see that the error is quite small. It is much smaller than 20%,

the error we added to the original data.

E x a m p le 3.10. In this example, (f){t,x) is the data chosen from 25 grid points

of the original data (j)i{t,x) is the data with 20% of error that was added to

(f{t,x). We then use a bilinear interpolation to get data (j)2 {t,x) which has values on

the 30 X 30 grid, and finally we use the mollifier to smooth the data <̂2 (1 ,^) to get

(j)3 {t,x). We treat (ff i t ,x) as the source data to recover all the parameters K , Q, and

Ri, i — 1, - , 10. After a total of 5,000 steps minimization searching, we treat the

recovered parameters as the known parameters and solve equation (2.5) to get data

(f)fit,x). It can be seen that the error between (pfit,x) and the original data (f>(t,x),

shown in Figure 3.3, is still reasonable.

Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

T he W illunga B asin, S ou th A u stra lia

4 .1 . In tro d u c tio n

The W illunga Basin is located approximately 30 km southeast of Adelaide, South

Australia. This is an area of significant agricultural production. V iticulture and

almond are the main industries, and groundwater is the most im portant resources

for them. Groundwater is also used to support livestock and some light industrial

enterprises.

In the last few decades, the groundwater levels within the W illunga Basin region

have declined greatly due to excessive pumping. Figure 4.1 [83] shows the decline of

the piezometric head over the 10-year period 1988-1998. As is suggested in [66], this

decline will certainly increase the costs for extraction of groundwater. The quality of

the groundwater can also be degraded due to the long-term decline, especially in the

coast regions where the salt water may intrude if the groundwater level is too low.

F ig u r e 4.1. Hydrographs of piezometric heads over the period 1988-
1998 [83]

e

I 66
s 6.6.5

 i-

64.5

1970 1974 1978 982 986 1990 1994 1998

67.5

e 66.5

65.5

 ;■64.5

63.5

1970 1974 1978 1982 1986 1990 1994 1998
Year Yeai-

(a) Hydrograph of WLG051 (b) Hydrograph of WLG067

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

4.2. Hydrogeology

As summarized in [66], the W illunga Basin is part of the St. Vincent Basin. The

Basin dips noticably to the southwest, and sits upon and is bounded to the north, east,

and south by Late Precambrian and Cambrian age rocks belonging to the Adelaide

Geosyncline, and consisting of interbedded slates, quartzites, and dolomites. It is

wedge-shaped, with the southern and western portions the thickest, and tapers to the

north. The groundwater in the Basin flows toward the coast of Gulf St. Vincent from

the northeast corner. According to [3], the groundwater system in the W illunga Basin

may be divided into four aquifer subsystems listed, from the bottom upwards, as the

Basement, Maslin Sands, Port W illunga Formation, and Quaternary; see Figure 4.2.

F i g u r e 4.2. Location map of the W illunga Basin, South Australia [83]

Souih Australia

•A.delaide
^Willunga
/ Basin

„..-b

KILOMETRES

4.3 . T h e P ort W illu n ga Form ation A quifer

The most im portant source of groundwater within the W illunga Basin is the Port

W illunga Formation, which was formed in the late Eocene to the Oligocene period,

and is bounded below by marls and marly limestone of the Blanche Point Formation

aquatard, and confined from above by a clay layer from the Q uaternary period [26].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

98

It is recharged by direct rainfall infiltration over the outcropping area north of the

town of McLaren Vale to the town of McLaren Flat, and also by streams and outflow

from the basement rocks. The W illunga Fault is believed to be impervious along

the greater part of its length and thus acts as an obstruction to lateral inflow from

the adjacent basement rocks [66]. The rainfall infiltration for the Port W illunga

Formation is estimated to be 1050 M L/year [66]. The broad scale transmissivity of

this aquifer is estimated from pumping tests to lie between 45 and 5560 m^/day, while

the storativity is estim ated to lie between 2.7 x 10“ ̂ and 0.011 [83]. The aquifer is

reasonably constant in thickness, averaging around 100 metres [26], which makes it

a viable candidate for our use here of a confined depth-average two-dimensional flow

model.

4.4. O bservation w ells w ith in th e P o rt W illu n ga Form ation A quifer

There are about 36 observation wells within the Port W illunga Formation Aquifer

[66] with the location of each well being shown in Figure 4.4. Piezometric head da ta

from these wells has been collected spasmodically since December 1973.

In our test program, we chose 10 observation wells surrounding a rectangular

region (shown in Figure 4.4). The reason we deliberately chose a rectangular region

is because our model program is w ritten for a rectangular region A B C D . For a more

complete model, the finite element m ethod is an ideal choice, since it can handle

nonregular boundaries.

4.5. G roundw ater levels w ith in th e P o rt W illu n ga F orm ation A quifer

The flow of groundwater within the Port W illunga Formation is from the north

eastern corner to the coast. The piezometric head a t the observation wells forms a

piezometric surface, w ith the highest point a t the north-eastern corner and sloping

downward to the coast [83]. The da ta is from the Prim ary Industries and Resources,

SA (PIRSA) web site. We chose a period of about one year (January 12, 1998 -

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

99

F igure 4.3. Observation well locations of Port W illunga Formation
Aquifer [66]

VlNCEtfr

p
O
X
> z Qrn
wQD o
•P i

S D D D
o

15i!
aE^9

£

I£■3
I

§
?

I *

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100

F ig u r e 4 .4 . T est region an d observa tion wells

HD OF , .
J WILLUNGA

^ S E
> W L G 45
^ - 3 . 1 1/'

W L G 69
U -1.9

January 1, 1999) for testing. The piezometric head for all 10 observation wells in this

period are shown in Figure 4.7, Figure 4.7, and Figure 4.7.

In our test program, the rectangular region A B C D has AB = 1551.62 meters

and EC = 2151.52 meters; these measurements were computed from latitude and

longitude da ta obtained from the PIRSA website. This region was scaled to the

square [—1,1]^. This scaling is necessary. Recall th a t the transmissivity T , 45 to

5560 (m ^/day) for the Port W illunga Formation Aquifer, for example, is much larger

than the storativity, Q, 2.7 x lO"" ̂ to 0.011, for the Port W illunga Aquifer. The

recharge, measured in units of A:L/day/m^, is also very small. Our synthetic example

shows th a t the recovery will be not accurate when Q is too small. If we assume

x' = 2M ^^x - 1, y' = 2M ^^y — 1, where Mi - \BC\, M 2 = \AB\, the flow equation

(2.3) can be changed to

Q' dt
y n e w . (j)) + R'

where V " - = Q' = M ^Q (x ,y) , R' = M ^ R (x ,v , t) . if! , = i , j =

1,2, and M = 10^.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

101

After scaling the real field to a smaller region, the scaled parameters, Q and i?,

in the flow equation (2.3) can be made relatively larger, making the recovery more

accurate. We divided the square by a 30 x 30 grid and used triangular interpolation

to get the data at those grid points. Figure 4.5 represents the piezometric head

on January 12, 1998, at those grid points. Since there is only approximately one

observation data for each well every month, in order to simulate the piezometric head

as a continuous function of time variable, we used linear interpolation to simulate the

daily data.

F igure 4.5. Piezometric head in the test region a t January 12, 1998

L»v« Z
15 67,912
U 66.8043
13 65.6965
12 64.5868
11 63.4811
10 62.3734
9 612657
e 60.156
7 59.0502
6 572425
5 56.8348
4 55.7271
3 54.6194
2 532117

R
1 52.4039

4.6. T h e t e s t p ro g ra m

In our test program, we divided the tim e period from January 12, 1998, to January

7, 1999, into 12 subintervals, and assumed th a t in each subintervals the source/sink

term R was constant in time. This reflected the real situation since we had only one

observation of the piezometric head each month.

We applied the finite Laplace transformation, using Simpson’s rule, to the piezo

metric head to get the source data. Then we input the source d a ta to our test

program to recover the transmissivity T , storativity S, and the source/sink term s Ri,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

102

In our test program, the upper and lower bounds for transmissivity, i.e., the

estimated range values for transmissivity [83] were set to be 5,560, 45 (m^/day).

The upper and lower bounds for storativity were set to be the estim ated values 0.011

and 2.7 X 10"^ times the square of the scaling factor (M^ = 10®), as we mentioned

in the previous section. For the scaled source/sink term, we set the upper and lower

bounds to 10,000 and —10,000 respectively. Since we had no information about

the source/sink term, this bound had to be large enough. Note th a t our algorithm

requires the knowledge of the transmissivity T at the boundary. Otherwise, it cannot

guarantee the uniqueness of the recovery. Relatively accurate upper and lower bounds

are therefore especially im portant here.

Since we could not get the boundary values for the conductivity which were essen

tial in our algorithm, we adopted a trick by propagating the recovered interior values

to the boundary in every step of the iteration search. The idea is as follows. At the

beginning, we set the initial values between the preset lower and upper bounds. After

every step of the iteration search, the boundary values were replaced by the recovered

values a t the adjacent grids. In our test program we set the lower bounds as the initial

values. This is an effective m ethod when we do not know the actual boundary values.

As is known from the recovery with synthetic data, better results can be obtained

for the storativity S and the source/sink term R if we know the boundary values; we

adopted the same m ethod for S and R. The number of A-values was set to be 20.

The to ta l iteration count for the recovery was 4,000, which took about a week on

our Beowulf cluster using 20 nodes.

4.7 . T h e effectiveness o f th e recovery

To check the accuracy of the recovery, we used the recovered param eters to solve

the parabolic flow equation (2.3) using the PD E solver PDETW O and compared the

results with the original well data. The piezometric heads constituting the original

and recovered data, as well as the relative error between the original and recovered

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

103

data at all the chosen observation wells, are shown in Figure 4.7, Figure 4.7, and

Figure 4.7. We can see th a t at all the observation wells, except wells WLG069 and

WLG045, the data is quite accurate (error below 0.4%) and the shapes of the data

are very similar. The errors for well WLG045 and well WLG069 are relatively bigger.

One possible explanation for this error is tha t they are far from the selected test

region, especially well WLG069 (see Figure 4.4). We can see from Figure 4.5 th a t the

Piezometric head near corner C of our test region is higher than those around corner

D, and this causes the flow tu rn to the direction away from corner C (see Figure 4.8).

The reason for this phenomenon is probably tha t there are some underground stream

recharges near corner C. The well WLG045 is located at a position with a very high

transmissivity (see Figure 4.8) compared to other regions. This is probably the other

reason th a t the recovered da ta at well WLG045 is not as accurate as th a t at other

wells.

The recovered param eters have some “spikes” which make it difficult to see the

shape. In order to better represent the shape of the recovered param eters, the figures

of the recovered param eters shown in the following sections have been smoothed with

our mollifier.

4.8. T he tran sm issiv ity w ith in th e P ort W illu n ga Form ation A quifer

In our recovery, the transmissivity was assumed to be anisotropic. Figure 4.8

shows the recovered transmissivity (the average conductivity of the aquifer can be

obtained from the transmissivity by dividing by the aquifer height, approximately

100 meters). We can see th a t the value of Tn is mostly larger, except near the C

corner of the region. Prom this we can conclude th a t the conductivity in the Port

W illunga Formation Aquifer is anisotropic; it is more conductible in the x direction

than the y direction. Figure 4.8 shows the actual Darcy flux q — —K V (^ direction.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

104

F i g u r e 4 .6 . Accuracy of Recovery - 1

(a) WLG006 (b) Error

(c) WLG014 (d) Error

(e) WLG045 (f) Error

(g) WLG051 (h) Error

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105

F ig u r e 4 .7 . A ccuracy of Recovery ~ 2

(a) WLG055 (b) Error

(c) WLG060 (d) Error

(e) WLG064 (f) Error

(g) WLG067 (h) Error

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

106

F i g u r e 4.8. Accuracy of Recovery - 3

(a) WLG069 (b) Error

ongin»i
-

^ 1 5 1 \

/

-□.OS /

•0.1 '
O.IS

,

(c) WLG109 (d) Error

F ig u r e 4 .9 . The Darcy flux in the test region at January 12, 1998

0,8

0,6

0.4

0.2

- 0.2

- 0.4

- 0.6

- 0.8

0.5- 0.5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

F ig u r e 4 .1 0 . T h e recovered tran sm issiv ity T

107

(a) T11 (b) Coutour plot of Tu

f'Mhfr/ <

''Ĵ -----

(c) r i 2 (d) Coutour plot of T 12

(e) T22 (f) Coutour plot of T2 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

108

4.9. The storativity within the Port Willunga Formation Aquifer

The recovered storativity is shown in Figure 4.9. It can be seen th a t in most of

the region, the storativity is small, around 2.7 x 10“"'̂ .

F ig u r e 4.11. The recovered storativity S

(a) 5 (b) Coutour plot of S

4 .10 . T he recharge w ith in th e F ort W illu n ga F orm ation A quifer

Figure 4.10, Figure 4.10, Figure 4.10, and Figure 4.10 show the recovered source/sink

terms in the selected region. Positive values indicate inflow at those points, while

negative values indicate outflow. We can see th a t the recharge, measured in units of

kL/m ^/day, is changing gradually with respect to time. There is a big inflow in June

and July and a big outflow in November and December.

From the figures we can see th a t near Point A, the area near McLaren Vale, which

is the main rainfall recharge area of the Port W illunga Formation Aquifer, the inflow

is high, especially in the winter. Near the line CD, the area closer to the coast, the

outflow is high in the summer, which indicates th a t the artificial pumping in this

region is high.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

109

F i g u r e 4.12. The recovered source term R, January - March, 1998

(a) January R i

'r-

(c) February R 2

B C

0.5

0.25

>- 0

/ V . i V
(' ' V “ ' ■

; ! < \y \
'• i 1 \ C ^'■ '"'1 x
I f * \
' K , ! i i

\ 1 i f > W

■ [/ \
i. \ ̂ \ \ - l v | / /

iv 1 \
t . i l A i m

A '
-0.5 0.5

X D

(b) Coutour plot of Ri

B , C

-0.5

•0.75

p . ,

f ,A '

| \

, 1 n

«

A
•0.5 0.5

X D

(d) Coutour plot of R2

B , C

•025

•0.5

•0.75

‘ , \̂ \ 'O'v'V
V V A Z- %

A
f -0.5 0.5

X D

(e) March R 3 (f) Coutour plot of R 3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

110

F i g u r e 4.13. The recovered source term R, April - June, 1998

B

' S '

; \

 ̂ l''5
'0<—

■| .. '-«w ”E-<0

' D

(a) April R i (b) Coutour plot of R 4

(c) May R 5 (d) Coutour plot of R 5

(e) June R^ (f) Coutour plot of R q

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I l l

F i g u r e 4.14. The recovered source term R, Ju ly - September, 1998

B

0 25

> 0
■0.25

M
' D

(a) July i ? 7 (b) Coutour plot of R j

(c) August i?8 (d) Coutour plot of R s

A .

(e) September Rs (f) Coutour plot of i ? 9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

112

F i g u r e 4.15. The recovered source term R, October - December, 1998

0.75

0.5

0.25

''/ s-

(A- / '
<

S's* S'

'4'

D

(a) October R io (b) Coutour plot of R w

(c) November R n (d) Coutour plot of R n

Vv-

~ Tiji l \ !

* i f
I / ' V'|. /'■\ fp,V-b.\.'vV.A\'vV b'®/

(e) December R i i (f) Coutour plot of R \2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

113

4.11. Sustainability

Gleick et al. [40] gave a useful definition of sustainable water use: “The use

of water th a t supports the ability of human society to endure and flourish into the

indefinite future without undermining the integrity of the hydrological cycle or the

ecological systems tha t depend on it.” Gleick et al. presented the following seven

sustainability criteria.

1. A minimum water requirement will be guaranteed to all humans to m aintain

human health.

2. Sufficient water will be guaranteed to restore and m aintain the health of

ecosystems. Specific amounts will vary depending on climatic and other

conditions. Setting these amounts will require flexible and dynamic manage

ment.

3. W ater quality will be maintained to meet certain minimum standards. These

standards will vary depending on location and how the water is to be used.

4. Human actions will not impair the long-term renewability of freshwater stocks

and flows.

5. D ata on water resources availability, use, and quality will be collected and

made accessible to all parties.

6. Institutional mechanisms will be set up to prevent and resolve conflicts over

water.

7. W ater planning and decision-making will be democratic, ensuring represen

ta tion of all affected parties and fostering direct participation of affected

interests.

These criteria can provide the basis for alternative “visions” for future water

management and can offer some guidance for legislative and non-govermental actions

in the future [40].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

114

In an area such as the W illunga Basin where groundwater is the main water

resource, a relatively accurate record of recharge and discharge is especially impor

tan t in determining the “safe yield.” The main inflows include rainfall, underground

streams, and the lateral inflow from the adjacent basement rocks. The outflows in

clude evapotranspiration, the outflow to underground streams, and pumping. Since

our test region is near McLaren Vale, which is the main recharge area of rainfall in

filtration [66], rainfall is an im portant source to our test region. The other inflows

of the Port Willunga Formation Aquifer are stream infiltration and the lateral inflow

from adjacent aquifers. However, these inflows are difficult to measure. The discharge

of the Port Willunga Formation Aquifer includes the outflow to the sea, the lateral

flow to adjacent aquifers, and artificial well pumping. Also, heretofore it has been

difficult to correctly estimate the overall discharge. Since R{t, x) = Ri{t, x) — Ro{t, x),

where Ri{t ,x) and Ro{t,x) denotes the inflow and outflow respectively, it represents

the difference of the inflow and outflow with respect to time t and position x. By

integrating R{t, x) over the region, we can get the to ta l difference of the inflow and

outflow.

We note th a t Ri{t, x) is the positive part of R{t, x) and th a t Ro{t, x) is the negative

part of R{t ,x) , and integrate them over the test rectangular region. We get the to tal

inflow and outflow per month, as shown in Figure 4.11. We can see from the figure

th a t the inflow is higher in the winter during the rainy season; the outflow is higher

in the summer.

The to tal computed inflow and outflow are about 450 M L/year and 265 M L/year,

respectively. Compared to the estim ated to tal rainfall of 1050 M L/year [66] for the

Port W illunga aquifer, this number is reasonable (the inflow includes underground

recharges). The ratio of the inflow and outflow from January 12, 1998, to January

7, 1999, is approximately 1.70. In order to have a “safe yield,” this ratio should be

not less than 1; i.e., the inflow should be not less than the outflow. Since the ratio

here is 1.70, we assert th a t the aquifer (in our test region) is sustainable. Note th a t

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

115

since our test region is near the main recharge area of the Port W illunga Formation

Aquifer, the inflow is probably high compared to the rest of the aquifer. This result

need not reflect the whole aquifer’s sustainability.

To determine the sustainability of the whole basin, we need to calculate every

aquifer’s inflow and outflow, since there are lateral flows between the aquifers. A

more complete study along these lines should provide a quantitatively effective model

of this aquifer system.

F igure 4.16. The inflow and outflow in the test region

C 38.5

Time

22.1

Time

(a) inflow (b) outflow

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B ibliography

[1] Acar, R. Identification of the coefficient in elliptic equations. S IA M J. Control and O ptim iza tion ,

31; 1221-1244, 1993.

[2] Ahmed, S. and de Marsilly, G. Cokriged estimation of aquifer transmissivity as an indirect

solution of the inverse problem: A practical approach. W ater Resources Research, 29(2): 521-

530, 1993.

[3] Aldam, R. G. Willunga Basin hydrogeological investigations. Technical Report Bk. No. 89/22,

South Australian Department of Mines and Energy, Adelaide, 1989.

[4] Alessandrini, G. An identification problem for an elliptic equation in two variables. Ann. Mat.

Pura Appl. 145: 265-296, 1986.

[5] Anderson, M. P. and Woessner, W. W. Applied Groundwater Modeling. Academic Press,

New York, 1992.

[6] Anderson, M. P. Aquifer heterogeneity-a geological perspective. In Parameter Identification and

Estimation for Aquifer and Reservoir Characterization. 3-22, Columbus, Ohio, 1991. National

Water Well Association.

[7] Banks, H. T. and Kunisch, K. Estimation Techniques for Distributed Parameter Systems.

Birkhauser, New York, 1989.

[8] Bear, J. On the tensor form of dispersion. J. Geophys. Res. 66(4), 1185-1197, 1961.

[9] Bear, J. Dynamics of Fluids in Porous Media. American Elsevier, New York, 1972.

[10] Bear, J. and Bachmat, Y. A generalized theory on hydrodynamic dispersion in porous media.

I.A.S.H. Symp. Artificial Recharge and Management of Aquifers, Haifa, Israel, lASH 72, 7-16,

1967.

[11] Bear, J. and Bachmat, Y. Transport phenomena in porous media - Basic equations, in J.Bear

and M.Y. Gorapcioglu (eds.). Fundamentals of Transport Phenomena in Porous Media. Marti-

nus Nijhoff, Dordrecht, 3-61, 1984.

[12] Bear, J. and Bachmat, Y. Macroscopic modelling of transport phenomena in porous media, 2.

Applications to mass, momentum and energy transport. Transport in Porous Media 1, 241-269,

1986.

116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

117

[13] Bear, J. and Verruijt, A. Modeling Groundwater Flow and Pollution. D. Reidel Publishing

Company, 1987.

[14] Bear, J., Zaslavsky, D. and Irmay, S. Physical Principles o f W ater Percolation and Seepage,

UNESCO, Paris, 1968.

[15] Beguelin, A., Dongarra, J., Geist, G. A. , Manchek, R., and Sunderam, V. A U ser’s Guide to

PVM : Parallel Virtual Machine. Technical Report TM-11826, Oak Ridge National Laboratories,

Oak Ridge, TN, 1991.

[16] Bolt, G. H. and Miller, R. D. Calculation of total and component potentials of water in soil.

Trans.. Am . Geophys. Union, 39, No. 5, 917-928, 1958.

[17] Bouwer, H. G roundwater Hydrology. McGraw-Hill, New York, 1978.

[18] Bruckner, G., Handrock-Meyer, S., and Langmach, H. An inverse problem from 2D groundwater

modelling. Inverse Problems. 13(4): 835-851, 1998.

[19] Carrera, J. State of the art of the inverse problem applied to the flow and solute equations. In

E. Custodio, editor. G roundwater Flow and Q uality M odelling, 549-583. D. Reidel Publ. Co.,

1988.

[20] Carrera, J. and Neumann, S. Adjoint state finite element estimation of aquifer parameters under

steady-state and transient conditions. Proceedings of the 5th In ternational Conference on F in ite

E lem ents in W ater Resources. Springer-Verlag, 1984.

[21] Carrera, J. and Neumann, S. Estimation of aquifer parameters under transient and steady

state conditions; Maximum likelihood method incorporating prior information. W ater Resources

Research, 22(2) 199-210, 1986.

[22] Chavent, G. Identification of distributed parameter systems: about the output least square

method, its implementation and identifiability. Proceedings of the 5th IF A C S ym posium on

Identification and S ystem P aram eter E stim ation , R. Ismerman, editor, Pergamon Press, 1: 85-

97, 1980.

[23] Cooley, R. L. and Naff, R. L. Regression modeling of groundwater flow. Techniques of W ater-

Resources Investigations, number 03-B4. USGS, 1990.

[24] C ooper, B. J. E o cen e to M iocene stra tigrap h y of th e W illu n g a E m b aym en t. T ech n ica l R ep ort

of Investigations No. 50, South Australian Department of Mines and Energy, Adelaide, 1997.

[25] Courant, R. and Hilbert, D. M ethods of m athem atical physics, vol. II: P a rtia l D ifferen tia l Equa

tions. Interscience Publishers, New York-London, 1962.

[26] Cresswell, D. Willunga Basin: Integrated water resource study. Technical report. Department

of Environment and Natural Resources, Adelaide, 1994.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

118

[27] Da-gan, G. and Rubin, Y. Stochastic identification of recharge, transmissivity and storability in

aquifer transient flow: A quasi-steady approach. W ater Resources Research, 24(10): pp.1698,

1988.

[28] Darcy, H. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856.

[29] Deimling, K . Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.

[30] Desbarats, A. J. Macrodispersion in sand-shale sequences. W ater Resources Research, 26(1):

153-164, 1990.

[31] Dietrich, C. R., Newsam, G. N., Anderssen, R. S., Ghassemi, F., and Jakeman, A. J. A practical

account of instabilities in identification problems in groundwater systems. B M R Journal of

Australian Geology and Geophysics, 11 (2):'273-284, 1989.

[32] Domenico, P. A. and Schwartz, F. W. P hysical and Chem ical Hydrogeology. John Wiley & Sons,

New York, 1990.

[33] Dupuit, J. Etudes theoriques et pratiques su r le m ouvem ent des eaux dans les canaux decouverts

et d travers les terrains perm eables, Dunod, Paris.

[34] Emsellem, Y. and de Marsily, G. An automatic solution for the inverse problem. W ater R e

sources Research, 7(5): 1264-1283, 1971.

[35] Falk, R. S. Error estimates for the numerical identification of a variable coefficient, Math. Gamp.

40(162): 537-546, 1983.

[36] Frind, E. 0 . and Finder, G. F. Galerkin solution of the inverse problem for aquifer transmissivity,

W ater Resources Research, 9(5): 1397-1410, 1973.

[37] Galligani, I. Parameter identification using quasi-linearization. Sim ulation, 38(2): 55-60, 1982.

[38] Gilbarg, D. and Trudinger, N. S. E llip tic P artia l D ifferen tial Equations of Second Order.

Springer-Verlag, New York, 1977.

[39] Ginn, T. R., Cushman, J. H., and Houch, M. H. A continuous-time inverse operator for ground

water and contaminant transport modeling; deterministic case. W ater Resources Research, 26:

241-252, 1990.

[40] Gleick, P. H. Human population and water: To the limits in the 21st Century.” American Asso

ciation for the Advancement of Science Symposium: Human Population and Water, Fisheries,

and Coastal Areas: Science and Policy Issues. Washington, D. C.

[41] Hanke, M. A regularizing Levenberg-Marquardt scheme, with applications to inverse ground

water filtration problems. Inverse Problem s, 13(1): 79-95, 1997.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

119

[42] Hoeksema, R. J. and Kitandis, P. K. Comparison of Gaussian conditional mean and kriging

estimation in the geostatistical solution of the inverse problem. W ater Resources Research,

21(6): 825-836, 1985.

[43] Hoffman, K. H. and Sprekels, J. On the identification of coefficients of elliptic problems by

asymptotic regularization. Num . F u n d . Anal, and Optimiz., 7: 157-177, 1984-85.

[44] Hughson, D. L. and Gutjahr, A. Effect of conditioning randomly heterogeneous transmissivity

on temporal hydraulic head measurements in transient two-dimensional aquifer flow. Stochastic

Hydro!. HydrauL, 12: 155-170, 1998.

[45] Hubbert, M.K. The theory of ground-water motion. Journal of Geology 48, No. 8, Part 1,

785-944, 1940. -

[46] Journel, A. G. and Huijbrgets, J. C. M ining Geostatistics. Academic Press, San Diego, Califor

nia, 1978.

[47] Karkkainen, T. An equation error method to recover diffusion from the distributed observation.

Inverse Problems, 13(4): 1033-1051, 1997.

[48] Keidser, A. and Rosbjerg, D. A comparison of four inverse approaches to groundwater flow and

trans-parameter identification. W ater Resources Research, 27(9); 2219-2232, 1991.

[49] Kleinecke, D. Use of linear programming for estimating geohydrologic parameters of ground

water basins. W ater Resources Research, 7(2): 367-375, 1971.

[50] Knowlew, I. W. Parameter estimation in groundwater modelling. D evelopm en ts in Theoretical

and A pplied M echanics XXI, 415-421, 2002, Rivercross Publishing Inc., Orlando, ISBN 0-615-

11944-1.

[51] Knowlew, I. W. Descent methods for inverse problems, N onlinear A n alysis 47: 3235-3245, 2001.

[52] Knowlew, I. W. Parameter identification for elliptic problems. J. Com p. Appl. Math. 131: 175-

194, 2001.

[53] Knowlew, I. W. Coefficient identification in elliptic differential equations. D irect and Inverse

Problem s of M athem atical Physics, 149-160, Int. Soc. Anal. Appl. comput., 5, Kluwer Acad.

Publ., Dordrecht, 2000.

[54] K n ow lew , I . W. U n iq u en ess for an e llip tic inverse p rob lem . S I A M J. A p p l. Math. 5 9 (4) : 1 3 5 6 -

1370, 1999.

[55] Knowlew, I. W., Le, T. A., and Yan, A. On the recovery of multiple flow parameters from

transient head data. J. Comp. Appl. M ath (to appear)

[56] Knowlew, I. W., Teubner, M., Rasser, P., and Yan, A. Inverse Groundwater Modelling in the

Willunga Basin of South Australia. Preprint.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

120

[57

[58

[59

[60

[61

[62

[63

[64

[65

[66

[67

[68

[69

[70

[71

[72

[73

Knowlew, I. W. and Wallace, Robert. A variational method for numerical differentiation. Nu-

merische Mathematik, 70, 91-110, 1995.

Knowlew, I. W. and Wallace, Robert. A varia.tional solution of the aquifer transmissivity prob

lem. Inverse Problems, 12, 953-963, 1996.

Knowlew, I. W. and Yan, A. The recovery of an anisotropic conductivity in groundwater mod

elling. Applicable Analysis, 81: 1347-1365, 2002.

Knowlew, I. W. and Yan, A. On the recovery of transport parameters in groundwater modelling.

J. Comp. Appl. Math (to appear)

Knowlew, I. W. and Yan, A. The reconstruction of groundwater parameters from head data in

an unconfined aquifer. Preprint.

Kohn, R. V. and Lowe, B. D. A variational solution of the aquifer transmissivity problem.

Mathematical Modelling and Numerical Analysis, 22(1): 119-158, 1988.

Kravaris, G. and Seinfeld, J. H. Identification of parameters in distributed parameter systems

by regularization. SIAM J. Cont. Optim., 23: 217-241, 1985.

Le, T. A. An Inverse Problem in Groundwater Modeling. PhD thesis. University of Alabama at

Birmingham, 2000.

Luce, R. and Perez, S. Parameter identification for an elliptic partial differential equation with

distributed noisy data. Inverse Problems, 15(1): 291-307, 1999.

Martin, Russel R. Willunga Basin - Status of Groundwater Resources 1998, Technical Report

Book 98/28, Department of Primary Industries and Resources SA, 1998.

Mavis, F. T. and Tsui, T. P. Percolation and capillary movement of water through sand prisms,

Bull. 18, Univ. of Iowa, Studies in Eng.., Iowa City.

Melgaard, D. and Sincovec, R. F. General software for two-dimensional non-linear partial dif

ferential equations. ACM Transactions on Mathematical Software, 7(1):106-125, 1981.

Menke, W. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, New York,

1989.

Morozov, V. A. Methods for Solving Incorrectly Posed Problems. Springer-Verlag, Berlin, 1984.

Muskat, M., Wycoff, R. D., Botset, H. G., and Meres, M. W. Flow of gas liquid mixtures

through sands, Trans. A.I.M.E. Petrol. 123, 69-96, 1937.

Nelson, W. R. In-place determination of permeability distribution for heterogeneous porous

media through analysis of energy dissipation. Soc. Pet. Eng. J., 8(1); 32-42, 1968.

Neuberger, J. W. Sobolev Gradients in Differential Equations, volume 1670 of Lecture Notes in

Mathematics. Springer-Verlag, New York, 1997.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

121

[74] Neuman, S. P. and Yakowitz, S. A statistical approach to the inverse problem of aquifer hy

drology. W ater Resources Research, 15(4): 845-860, 1979.

[75] Neumann, J. W. Perspective on “delayed yield”. Water Resources Research, 15: 899-908, 1979.

[76] Nikola,evskii, V. N. Convective diffusion in porous media. J. Appl. Math. Meek. 23(6), 1042-

1050, 1959.

[77] Payne, L. E. Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia,

1975.

[78] Peck, A., Gorelic, S. M., de Marsily, G., Foster, S,, and Kovalevsky, V. Consequences of Spatial

Variability in Aquifer Properties and Data L im itations fo r Groundwater Modeling Practice.

Number 175. International Association of Hydrologists, 1988.

[79] Perko, L. Differential Equations and Dynamical Systems. Springer-Verlag, New York, 1988.

[80] Piersol, R. J., Workman, L. E., and Watson, M. C. Porosity, total liquid saturation and per

meability of Illinois oil sands III, Geol. Survey, Report No. 67, 1940.

[81] Ya, Polubarinova-Kochina, P. Theory of Groundwater Movementiya Russian), Gostekhizdat,

Moscow. English trans. by Roger J. M. de Wiest, Princeton Univ. Press, Princeton, N.J., 1962.

[82] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes in

Fortran 90, volume 2 of Fortran Numerical Recipes. Cambridge University Press, Cambridge,

second edition, 1996. The Art of Parallel Scientific Computing, With a foreword by Michael

Metcalf; with separately available software.

[83] Rasser, Paul Edward. Calibration of Numerical Models with Application to Groundwater Flow

in the Willunga Basin, South Australia. Thesis, June 1, 2001.

[84] Remson, L, Hornberger, G., and Molz, F. Numerical Methods In Subsurface Hydrology. John Wi

ley & Sons, Inc., 1971.

[85] Rice, J. H. and Boisvert, R. F. Solving Elliptic Problems Using ELLPACK. Springer-Verlag,

Berlin, 1985.

[86] Richter, G. R. An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math.,

41(2): 210-221, 1981.

[87] Richter, G. R. Numerical identification of a spacially varying diffusion coefficient. M ath . Comp.,

36(154): 375-386, 1981.

[88] Riviere, B. and Jenkins, L. In pursuit of better models and simulations: Oil Industry looks to

the math sciences. SIAM News, 35(1), 2002.

[89] Rizzo, D. M. and Dougherty, D. E. Characterization of aquifer properties using artificial neural

networks: Neural kriging. Water Resources Research, 30(2): 483-497, 1994.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

122

[90] Rose, H. E. An investigation into the laws of flow of fluids through beds of granular material.

Proc. Inst. Mech. Engrs., 153: 141-148, 1945.

[91] Sagar, B., Yakowitz, S., and Duckstein, L. A direct method for the identification of the

parametrs of dynamics nonhomogeneous aquifers. W ater Resources Research, 11(4): 563-570,

1975.

[92] Scheidegger, A. E. General theory of dispersion in porous media. J. Geophys. Res. 66, 3273-

3278, 1961.

[93] Simmers, J. E stim ation of Natural Groundwater Recharge, volume 222 of N A T O A S I Series C.

D. Reidel Publishing Co., 1988.

[94] Silin-Bekchurin. D ynam ics o f Ground W ater (in Russian), Moscow Izdat., Moscow, 1958. •

[95] Slichter, J. C. Field measurement of the rate of movement of underground waters, USGS W ater

Supply Paper, 140.

[96] Sun, N. and Yeh, W. A stochastic inverse solution for transient groundwater flow: Parameter

identification and reliability analysis. Water Resources Research, 28(12): 3269, 1992.

[97] Sur ana, K. S. and Huels, C. R. A least squares finite element solution on the inverse problem

of aquifer transmissivity. Computers and Structures, 31(2): 249, 1989.

[98] Tautenhahn, U. A new regularization method for parameter identification in elliptic problems.

Inverse Problems, 6: 465-477, 1990.

[99] Thomas, H. E. Ground water regions of the United States-Their storage facilities, Vol. 3, Inter-

and Insular Affairs Comm., House of Representatives, 5 U.S. Congress, Washington, B.C. 1952.

[100] Tikhonov, A. N. and Arsenin, V. Y. Solutions of Rl-Posed Problems. V. H. Winston & Sons,

Washington D. C., 1977.

[101] Vazquez, C. R., Guidici, M., Parravicini, G., and Ponzini., G. The differential system method

for the identification of transmissivity and storativity. Transport in Porous Media, 26: 339-371,

1997.

[102] Yakowitz, S. and Duckstein, L. Instability in aquifer identificatiion: theory and case studies.

Water Resources Research, 16(6): 1045-1064, 1980.

[103] Yeh, W. W-G. Review of parameter identification procedures in groundwater hydrology: The

inverse problem. Water Resources Research, 22(2): 95-108, 1986.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX A

F o rtran codes to recover th e p aram eters

123

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

■uo!SS!LUJ0d jnoL|J!M pajiqiLjOJcl uoqonpojclaj jaqprij j 0 u m o jLjBuAdoo 0 L|j jo uo!SS!LUJ0d l|J!m p0onpojd0y

q.no‘xT'6j‘ ss0DDns :: iVOIOOl
d x ‘d0q.s"J0q.T‘3[‘ C ‘n ‘ i :: HHOaiNI

sdeq-s (2+wnN‘NianSN)M0ISNaWia‘ (03Hd)lV3H

SaiaVIHVA 1VD03 :0i

3N0M lIDIldWI
aai2pdn“p u 0 s‘p0j:{)‘^:;Bpq.9S‘nreJ:Sojd[doq.s ‘5[s-Bj,uwads : ‘WAd 3Sfl

SuiaaoTd : A3NQ ‘TT̂ i ̂ 3Sn
ianj:q.‘ i3 0 nj:q.‘danjq. : aINQ ‘outij-aj^d gsfl

aA'e'i;s“xj<=9-A-‘B I s ‘xtq.'Bd‘eq.T3p"xj<='qq.'edBa'ep‘ 0uioii“xj<=9uioi[: A3N0 ‘ Q̂-'ed gsfl
sdoox“33<=sdoox

‘ ̂ ^a:■easw^u~ ̂j[<=-qD j-eegwau ‘ q.oxdn“qj<=q.oxdu
3j ‘ o o d ~ ii< = o o d ‘ NianSM'3d<=NianSM‘WnN"33<=WM

3J ‘d0asu is‘ d j0 a t-x f< = d j0 a T ‘qt[‘^ ^ ‘q ‘'e‘aiHON‘aiHDW : A3N0 3Sn
edAau 3sn

j©q.s^ui”x j ui'BjSoJd
###
-ea^p 0 -qq. anoqie saxTJ J9qao pure SXTJ so^nos eqq. jo
eureu eqq. qnoqe uoTqeuiaojut ao j 0 6 J ’qq^d :9XTJ s q i J 0 J0 j: eseexd
#
'© A exs'xJ •■OTBjSojd 0Aexs eqq q jeqs
AxieoxqeinoaTie n x n qx ‘aeqsera'xj ;tnej:9ojd eqq qjeqs noA U0 q//i
#
■Axqo9j;j:oo
dn qas aq pxnoqs quauioaxAua uiAd aqq ‘uiejSojd aqq u n j ox
#
'a A e x s 'x j oi^rrScjd
0 Aexs aqq qqxn xaqqeSoq unx aq qsniu qj ‘q o jeas uoxqezxuixuxra

eqq Suxop Axxcxeui qi 'urejSojd qaed xaAjas aqq sx sxqx
#
(i:) JO uoxqenba pauucjsuejq aoexdeq aqxxcxj ‘ -a'x
(x)H eq eq \ = (x)t) (eqdxB\ + n epquiex\) +
(n e iq e u \ (x)d)exq ^ u \- #i
:uoxqenba #]
oxqdxxx© sqq JO suaqauieaed aqq uaAooaj Axx^i^Joe uieuSoud sxqx #i
#i
aAxqeSau uo aAxqxsod aq ueo y axjqw ‘uoxqounj eAxqeSau-uou e sx #i
#(3 ‘xxjqeui ZXZ eqj^TJop OAxqxsod Apqojuqs ‘ oxuqauraiAs e sx d euaqn #j
(T) (q ‘x) 3 + (n exqBU\ j)exq ^ u \- = qa/UQ (x){] #j
-.uajxnbe pauijuoo #j
JO uoxqenba «oxj 9qq jo squaxoxjjaoo eqq SJeAOoej ureuSoud sxqx #i
###i

lueuSoud aaqsetxi g q x ‘I ’V

^zi

125

INTEGER :: n v a r s ,n t s t e p ,v a r i a b l e ,v a r l ,v a r 2
INTEGER, DIMENSIOM(IOO) :: vars
REAL(PREC), DIMENSIDN(2) :: searchVal
REAL(PREC) ;; begVal, endV al, s t e p s i z e
CHARACTER(LEN=5).DIMENSION(NUM+2) :: searchVar, s u c c e s s V a r ,fa i lV a r
INTEGER :: n s u c c e s s , n f a i l
CHARACTER(LEN=1) ,DIMENSI0N(3) :: n a m e = (/^ P \ ’Q’ , ’F V)
REAL(PREC), DIMENSION(NUM+1+NSUBIN,MGRID,NGRID) pqf_c

INTERFACE
SUBROUTINE d e s c e n t_ s e a r c h (v a l , c u t , s tep)

USE ntype
REAL(PREC),DIMENSION(:) v a l
REAL(PREC) :; s tep
LOGICAL :: cut

END SUBROUTINE d escen t_ sea rch
END INTERFACE

!c: BEGIN PROGRAM
! c ;

!c: INITIALIZATION
I Q I ^ 9 | c 3 ((:{<:3̂:̂ ^ ^

CALL spawnTask(slave)

IF (n p lo t) THEN
DO 1=1, MGRID
DO j = l , NGRID

DO 11=1, NUM
p q f_ c (1 1 , i , j) = tru ep (1 1 , i , j)

END DO
pqf_c(NUM+l,i, j) = t r u e q d j j)
DO 11=1, NSUBIN

p q f_ c (N U M + l+ ll , i , j) = t r u e f (1 1 , 1 , j)
END DO

END DO
END DO
CALL PLOTTING(home,name,NUM,pqf_c. ’T R U E ',a ,b .h a ,h b)

END IF

!c: GET VARIABLES NEED TO SEARCH

s te p s= l .0 _ p r e c
nvars=0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

126

vars=0
DO k = l, MUM+2

IF (lo o p s(k) /=0) THEN
v a rs (n v a rs+ 1 :n v a r s+ lo o p s(k)) =k
nvars=nvars+loops(k)

END IF
END DO
nvars=SUM(LOOPS)

IF (NUM==1) THEN
searchV ar(!) = ’?
search V ar(2)= ’Q
searchV ar(3)= 'F

ELSE
searchV ar(1) = ’P I 1
searchV ar(2) = 'P12
searchV ar(3) = ’ P22
searchV ar(4) = ’Q
searchV ar(5) = ’F

END IF

!c; INITIALIZE i t e r _ s t e p

IF (newSearch) THEN
i t e r _ s te p = 0

ELSE
OPEN(UNIT=4, FILE=datapath, STATUS=’OLD’ , 1

ACCESS=’SEQUENTIAL’ , ACTION=’READ’)
READ(4 ,*) i t e r _ s t e p

CLOSE(4 , STATUS=’KEEP')
END IF

!c :c
!c: MINIMIZE G
! c :

!c: BEGIN DESCENT LOOP
!c :c c

!C: BEGIN SEARCH LOOP

DO ip = l , i t e r p
i t e r _ s t e p = i t e r _ s t e p + l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

127

p r in t * , ’ '
p r in t *, ’ ’
p r in t * , ’ * loop s tep = ’ , i t e r _ s t e p , ' * ’
pX'in't *j ̂ p|< 5f: sj; ̂ >|c ̂ 5|: :4: 5̂: 5̂: >|c ̂ 4: ̂ 4:5 | (i f ; 5|c 5t=:+: >|c ^

fail=.TRUE.
nsuccess=0
n fa i l= 0

DO i = l , NSUBIN
p r in t *, ' time in t e r v a l : i

DO j = l , SUM(LOOPS)
v a r l= i
var2=vars(MOD(j + i t e r _ s t e p ,n v a r s) +1)
variable=varl*1000+var2
p r in t *, ’ search v a r ia b le : searchVar(var2)

!C: COMPUTE THE GRADIENTS

CALL G rad(variab le)

!C: DESCENT SEARCH

s t e p s i z e = s t e p s (v a r l , var2)
CALL d e s c e n t_ se a r c h (se a r c h V a l, c u t , s t e p s i z e)
c a l l se n d _ u p d a te (s te p s iz e)
IF (s t e p s i z e > smstep) s t e p s (v a r l , v a r 2) = s te p s i z e * 0 . 75_prec

IF (i= = l) begV al=searchV aI(l)
su c c e ss= (se a r c h V a l(1) >searchV aI(2))
f a i l = f a i l .AND. (sea rch V a l(l)< = se a rch V a l(2))

p r in t *

p r in t *
p r in t *
p r in t *
p r in t *

' cut = ’ , cut
’ s t e p s i z e = ’ , s t e p s i z e
’ At b eg in n ig G = ’ , s e a r c h V a l(l)
’ At end G = ’ , search V al(2)

IF (s u c c e s s) THEN
endV a l= s e ar chVal(2)
n su c cess= n su c cess+ l
su ccessV ar(n su ccess)= searchV ar(var2)

ELSE
n fa i l= n fa iI + 1
fa i lV a r (n fa i l)= s e a r c h V a r (v a r 2)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

128

END IF
END DO
END DO

!C: p r in t out search r e s u l t

p r in t ’ In This Loop: ’
IF (nsuccess>0) THEN

p r in t ’ su ccess v a r ia b le s
p r in t su ccessV a r(1 : n su c cess)

END IF
IF (n fa i l> 0) THEN

p r in t *, ’ I

p r in t ’ f a i l e d v a r ia b le s :
p r in t f a i l V a r (1 :n f a i l)

END IF
p r in t *
p r in t *
p r in t *
p r in t *
p r in t *

; 6 / 0 / 0 / 0 / 0 / 07 0 / 0 / OJ 07 0 / 0 / 0 / 0 / 0 / 0 / 0 / 07 0 / 0 / 0 / 0 / 07 0 / 0 / 0 / 0 / 0 / 0 / 07 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / j
/o /o /o /o /o /o /o /o /o /o /o /o /o /e /o

’ Beginning : G = ’ , begVal
’ End : G = ’ , endVal
p 0 / >

/o /o /o /o /o /o /o /o /o /o /o /o /o /o /c /o

!C: IF SEARCH FAILED, EXIT SEARCH

fail=.FALSE.
IF (f a i l) THEN

PRINT ’ TOTAL ITERATION STEPS: i t e r . s t e p
CALL StopProgramO

END IF
END DO

END PROGRAM fl_ m a ster

FUNCTION g e tG (c u t-d ir)
USE ntype
USE pvm, ONLY : sen d _gstep , getD ata
IMPLICIT NONE
REAL(PREC), IMTENT(IN) :: d ir
LOGICAL, INTENT(IN) :: cut
REAL(PREC) :: getG

!C: SEND OUT SEARCH STEPSIZE

CALL se n d _ g s te p (c u t ,d ir)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

129

!C: GET G VALUE

CALL getD ata(getG)
END FUNCTION getG

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

■uo!SS!LUJ0d jnoL|J!M pajiqiLjOJcl uoqonpojclaj jaqprij j 0 u m o jLjBuAdoo 0 L|j jo uo!SS!LUJ0d l|J!m p0onpojd0y

3? ‘N iensN "ii<=N iansN ‘wnN"ii<=wnN‘xvw i‘aiHDM‘aiHDw •• aino asn
0dAat[3sn

PABIS-WOIJ wVHDffad
'T̂ ^ T* *1̂ ^ ^ **T* *1̂ ^ 'T* T' 'T' *T̂ ^ ' T ' ^ ^ ^ ^ "T̂ ^ 'X' 'T* 'T' ^ *T* ^ ■T* *T' *T* ^ ^ 'T' ^ 'X x* *T* ^ ^ ^ ^ ^ ^ "x ^ ^ • 1̂ I

D IVMOIlOMd DNIindWOD : WVnOOHd 3AV3S :0i

pora-A is-ij ainaow qms

q.TinoD j 0 S0 q.uT
■[=JoaoBji : ; H313HVaVd ‘H3D31NI

Anq.s ‘ xnq.s ‘ nq.s ‘ Anq. ‘ xnq. ‘ nq ‘ An ‘ xn ‘ nn
3J :•■ H 3INI0d‘ (: ‘ : ‘ :)N 0ISN3H ia‘ (D3Hd)lV3H

qod :: (aiH0M‘ai3DW‘S+WnN)N0ISM3Wia‘ (03Hd)lV33
Aj‘Ab‘AxiiS‘duiq ;: (aiHDN‘ai'aDH)N0ISN3Mia‘ (033d)lV3H

Ad :: (ai3DW‘ aiH0W‘ £)N0ISM3Wia‘ (03Hd)3V3H

ben :: H3D31MI
Anpuqs‘Ans‘x n s‘nns :: H31NIQd‘ (: ‘ ‘ ‘ :)N0ISN3Wi a‘ (D3Hd)3V3H

0 ds ;: (ai30N'aiHDW‘wnM+T+NianSN)NOISN3Wia‘(033d)lV33
spuiT :: H31NI0d‘(:)N0ISN3Wia‘(D3Hd)3V3a

nqeq :: H3INI0d‘(: ‘ :)M0ISN3Wia‘(0333)3¥3H
nqdiB ;: H31NIQd‘(:‘ ‘ ‘:)MQISN3Wia‘(03Hd)3V3H

ood :: (aiHOM‘QIHDW)M0ISN3WIQ‘(03Hd)3¥3H
3M0N X IO IldH I

t)Sqn-xj<=Sq])ib‘'aSqxi-ij<=SqNJ
3? ‘NiansM“3i<=NiansM‘HnN~i3<=wnN‘ai3DN‘ai3ow ; aino ‘BJ^d asn

edAqu 3Sfl
poui-A is-ij ainaoM

###j
#i
•ureaSojd s iqq unn oq #j
qneuiejinbex j o j 06J ’ :iirejSoj:d neqseui eqq j e j e j eseexd #i
#i
'j0A j:es“xJ ureaSond xeAnes eqq qqxw neqqeSoq unj eq qsnui qj -qonees #j
uoTq'eziuiiuxui eqq Snxop Axnxeui qj -urenSoad qned eA^xs ©qq sx sxqx #j
#i
xxnqBU] ZJZ aqxuxjep eAxqxsod Axqoxjqs ‘ DxnqeuiuiAs e sx j eneqm #j
(a ‘x)H + (n exqBu\ d)^xqBU\- = qa/wa (x)t) #i
;j0Xxnbe peuxjuoo #j
JO uoxqenbe noxj eqq jo squaxDxjjeoo eqq sneAooex raexSoxd sxqx #i
###i

tuBxSoad eAB^s e q x ‘S'V

oei

131

lbd=>FL_lbd, u b d = > fl_ u b d ,n n p lo t= > fl_ n n p lo t ,
n p lo t s t e p = > f l_ n p lo t s t e p , lo o p s = > f l_ lo o p s , &
no_bndry_value=>fl_no_bndry_value

USE path , ONLY : home=>fl.home, datapath=>fl_datapath
USE u t i l , ONLY : p a c k ,u n p a c k ,p lo t t in g
USE PVM, ONLY : n _ id ,n _g ,n _pc ,n _p cc ,n_u ,n_p ara ,n _ecd ,&

n_hvec ,n_upd ate , n_stop
USE fl_ s lv_m od , ONLY : s p c ,n e q ,p c c , l f a c t o r
IMPLICIT NONE
INCLUDE ’fpvfflS.h’

INTERFACE
: SUBROUTINE in it (lm d v e c)

USE ntype
INTEGER, DIMENSION(:) :: Imdvec

END SUBROUTINE i n i t

SUBROUTINE n b g (v a r l , var2)
USE ntype
INTEGER :: v a r l ,v a r 2

END SUBROUTINE nbg

SUBROUTINE compG(varl, v a r 2 , c u t , s t e p , G)
USE ntype
INTEGER :: v a r l , v a r 2 , cut
REAL(PREC) ;: s tep ,G

END SUBROUTINE compG
END INTERFACE

!C: LOCAL VARIABLES

INTEGER :: m ytid , p a ren t id
REAL(PREC), DIMENSION(NSUBIN) :: funG

REAL(PREC) : : gaimna,g
INTEGER ;; n v a r , n t v a r , v a r , v a r 1 ,v a r 2 , i p t e r , cut
INTEGER,DIMENSION(1000) :: vars
LOGICAL ;: p l o t S i t e

DOUBLE PRECISION, DIMENSION(MGRID*NGRID) :: vec
INTEGER,DIMENSION(LMAX) :: Imdsvec
INTEGER :: m s g t y p e ,n in i t , b u f id , t i d , i e r r , b y t e s , ib u f ,k

!C: BEGIN PROGRAM

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

132

!C
!C
!C
!C
!C

!C
!C
!C

ENROLL THIS PROGRAM, REQUIRED BY PVMD

CALL PVMfmytid(mytid)
CALL PVMfparent(parentid)

CALL i n i t 1 (n v a r ,v a r s , ip t e r)

ijs 5̂ 5jc 3̂ 3̂ 3|c 3̂ 3̂ 3̂ 3|C 3|C 3|C 3̂ ̂ 3̂ 3|C 3̂ 3jc 3̂ 3̂ 3jc 3̂ 3̂C 3̂ 3|c 3̂ 5|c 3|C 3|s 3|c 3̂
BEGIN LOOP OF RECEIVING DATA

DO WHILE(.TRUE.)
CALL PVMfrecv(parentID, - 1 , b u fid)
CALL PVMfbufinf0 (b u f i d ,b y t e s ,m sgtype, t i d , i e r r)

SELECT CASE (msgtype)

!C RECEIVE INFORMATION:
!C NUMBER OF lambdas

CASE (n_id)
CALL PVMfunpack(INTEGER4,neq,1 , 1 , i e r r)
CALL PVMfunpack(INTEGER4,Imdsvec(1) , n e q , l , i e r r)
IF (Im dsvec(1)==1) THEN

plotSite=.TRUE.
ELSE

plotSite= .FALSE.
END IF

!C INITIALIZE THE PARAMETERS:
!C READ IN SOURCE DATA, a lpha AND b e ta

CALL in it (Im d sv e c)

!C: COMPUTE THE FUNCTIONAL G
!C: (AT INITIAL POINT)

cu t= l
gamma=0. 0_prec
var2=l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

133

DO varl=l,NSUBIN
CALL compG(var1 ,v a r 2 , c u t , gamma,g)
funG (varl)=g

END DO

!C: GET THE SEARCHING VARIABLE

varl=0
var2=0
ntvar= l
ip te r = ip te r + l
varl=MGD(varl, NSUBIN)+1
var2=vars(M OD(ntvar+ipter, nvar)+1)
var=var1*1000+var2

!C: COMPUTE GRADIENT AT (p ,q , f) _ 0

CALL n b g (v a r l ,v a r2)

!C: SEND BACK THE GRADIENT;
!C: SUM_{i=l,neq} (G_i)

k=SIZE(pcc, 1) *SIZE(pcc,2)
CALL p a c k (v e c (l : k) , p c c (: , :))

CALL P V M fin itsen d (n _ecd ,ib uf)
CALL PVMfpack(INTEGER4, v a r , 1 , 1 , i e r r)
CALL PVMfpack(INTEGER4,k,1 , 1 , i e r r)
CALL PVMfpack(REAL8,vec(l),k,1 , i e r r) .
CALL PVMfsend(parentID, n_hvec, i e r r)

!C: RECEIVE THE GRADIENT:
!C: SUM_{i=l,N} (G_i)

CASE (n_pcc)
CALL PVMfunpack(INTEGER4,ninit, 1 , 1 , i e r r)
CALL PVMfunpack(REALS,vec(1) , n i n i t , 1 , i e r r)

CALL u npack(vec(1 :n i n i t) , pcc)

!C: STOP THE PROGRAM DUE TO

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

134

!C: REQUEST BY THE SERVER PROGRAM
!C: THERE IS BUG DUE TO PVM, FOR THIS ROUTINE

CASE (n_stop)
IF (p lo t S i t e) THEN

CALL p l o t (i p t e r , !)
END IF
CALL P V M fexit(ierr)
STOP

CASE (n_pc)
CALL p l o t (i p t e r , !)

!C; UPDATE THE RECOVERED PARAMETERS
!C; RECEIVE THE gamma VALUE USED IN H = H + gamma \n a b la H

CASE (n_update)
CALL PVMfunpack(REALS, gamma, ! , ! , i e r r)

!C; UPDATE (p ,q , f) TO ; (p , q , f) _ { i }

IF (gamma > ! .0 e - 2 0) THEN
IF (var2<NUM+2) THEN

k=var2
ELSE

k=MUM+!+var!
END IF
s p c (k , : , :) = s p c (k , : , :)+gamma*pcc

!C: IN CASE NO BOUNDARY VALUES ARE GIVEN
!C: THE INSIDE VALUES ARE PROPAGATE TO
!C: THE BOUNDARY:

IF (no_bndry_value) THEN
s p c (k , ! : I f a c t o r , :) = s p c (k , 2 :I f a c t o r + ! , :)
spc(k,MGRID-lfactor+!:MGRID,:)= &

spc(k,MGRID-lfactor:MGRID-1,:)
s p c (k , : , ! : l f a c t o r) = s p c (k , : , 2 : l f a c t o r + !)
s p c (k , : ,N G R ID -lfactor+!:NGRID)= &

s p c (k , : ,NGRID-lfactor:NGRID-!)
END IF

!C: CUTOFF THE VALUES EXCEEDED THE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

135

!C: LOWER AND UPPER BOUNDS

WHERE (s p c (k , : , :)< lb d (v a r 2)) s p c (k , : , ;)= lb d (var2)
WHERE (s p c (k , : , :)>ubd(var2)) s p c (k , : , :)=ubd(var2)

IF (var2<NUM+2) THEN
DO k=l,NSUBIN

CALL compG(k, v a r 2 , c u t , 0 . 0 _ p rec , g)
funG(k)=g

END DO
ELSE

IF (cut==0) CALL co m p G (v a r l ,v a r 2 ,c u t ,0 .0 _ p r e c ,g)
funG (varl)=g

END IF
END IF

!C; PLOT THE RECOVERED PARAMETERS (IF REQUIRED)
!C: NOTE WE ONLY SAVE THE DATA TO A FORMAT THAT
!C: THE t e c p lo t SOFTWARE CAN READ IT

IF (p lo t S i t e) THEN
IF (M OD(ipter,nnplot)==0) CALL p l o t (i p t e r ,2)
IF (M O D (ipter ,nplotstep)==0) CALL p l o t (i p t e r , l)

END IF

!C: GET THE NEXT SEARCHING VARIABLE

ntvar=MOD(ntvar, nvar)+1
IF (n tvar= =l) THEN

var1=M0D(varl, NSUBIN)+1
IF (v a r l= = l) ip t e r = ip t e r + l

END IF
var2=vars(M OD(ntvax+ipter, nvar)+1)
var=varl*1000+var2

!C: COMPUTE GRADIENT AT (p , q , f) _ i

CALL n b g (v a r l ,v a r 2)

!C: SEND BACK THE GRADIENT:
!C; SUM_{i=l,neq} (G_i)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

136

k=SIZ E (pcc,l)*SIZ E (pcc,2)
CALL p a c k (v e c (1 : k) ,p c c (; , :))

CALL P V M fin itsen d (n _ecd ,ib u f)
CALL PVMfpack(INTEGER4, v a r , 1 , 1 , i e r r)
CALL PVMfpack(INTEGER4, k , 1 , 1 , i e r r)
CALL PVMfpack(REALS,vec(1) , k , l , i e r r)
CALL PVMfsend(parentID, n_hvec, i e r r)

!C: COMPUTE G, RECEIVE ganma
!C; THEN COMPUTE G(c+gainina \n a b la g)

CASE (n_g)
CALL PVMfunpack(INTEGER4, c u t , 1 , 1 , i e r r)
CALL PVMfunpack(REALS,vec(1) , 1 , 1 , i e r r)
gajnma=REAL(vec(l) ,KIND=PREC)

!C: COMPUTE f u n c t io n a l G

IF (gamma == 0 .0 _ p rec) THEN
g=funG (varl)

ELSE
IF (var2/=NUM+l) THEN

CALL compG(var1 ,var2 ,cut,gam m a,g)
ELSE

DO k=l,NSUBIN
CALL compG(k, var2 , c u t , gamma,funG(k))

END DO
g=funG (varl)

END IF
END IF

gamma=0. 0_prec
DO k=l,NSUBIN

IF (k==varl) THEN
gamma=gamma+g

ELSE
gamma=gamma+funG(k)

END IF
END DO

CALL P V M fin itsend(n _ecd ,ibuf)
CALL PVMfpack(REALS, dble(gamma), 1 , 1 , ie r r)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

137

CALL PVMfsend(parentID,n_g, ierr)

END SELECT
END DO

!C: SUBROUTINES

CONTAINS

!C: THIS SUBROUTINE SAVE THE DATA P, Q, R TO THE FILES P l l . d a t ,
!C: P 1 2 .d a t ,P 2 2 .d a t AND Q.dat , R.dat r e s p e c t i v e l y .
!C: THE FORMAT OF THE FILES ARE COMPATIBLE WITH t e c p l o t PROGRAM SO
!C: THAT THE GRAPH CAN BE VIEWED WITH TECPLOT PROGRAM

SUBROUTINE p l o t (f l a g l , f l a g 2)
USE para, ONLY : NUM => FL_NUM,a,b,ha,hb
INTEGER, INTENT(IN) :: f l a g l , f l a g 2
CHARACTER(LEN=1), DIMENSION(3) ;; name=(/’P ’ , 'Q’ , ' F V)

IF (f l a g 2 == 1) THEN
CALL PLOTTING(home, name, NUM, s p c , i p t e r , a , b , h a , hb)
OPEN(UNIT=4, FILE=datapath, STATUS=’REPLACE’ , &

ACCESS=' SEQUENTIAL’ , ACTION=’WRITE’)
WRITE(4 ,*) f l a g l
do k = l , nsubin+l+num

WRITE(4,*) s p c C k , : , :)
end do

CLOSE(4 , STATUS=’KEEP’)
ELSE IF (f lag2==2) THEN

CALL PLOTTING(home, name, NUM, s p c , 0 , a , b , h a , hb)
END IF

END SUBROUTINE p l o t

!C; THIS SUBROUTINE SET THE SEARCH VARIABLES
!C; AND INITIAL VALUES OF THE VARIABLES

SUBROUTINE i n i t 1 (n var , v a r s , i p t e r)
USE ntype
USE para , ONLY ; MGRID,NGRID,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN, &

loops=>FL_loops , newSearch=>f l_newSearch, Sc

pcO=>fl_pcO
USE para_func, ONLY : tru eP , tru eQ , tru eF
USE f l_s lv_m od , ONLY ; spc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

IMPLICIT NOME
INTEGER,INTENT(OUT) :: n v a r , i p t e r
INTEGER,DIMENSION(:),INTENT(OUT) :: vars

INTEGER i , j , k

!C: GET SEARCHING VARIABLES

nvar=0
vars=0
DO k=l , NUM+2

IF (loop s (k) /=0) THEN
v a rs (n var+ 1:n v a r + lo o p s (k)) =k
nvar=nvar+loops(k)

END IF
END DO
nvar=SUM(LOOPS)

!C; INITIALIZE p , q , f

IF (newSearch) THEN
ip ter=0
DO k = l , NUM

IF (lo o p s (k) /=0) THEN
s p c (k , : , :)=pcO(k)

ELSE
DO i=l,MGRID
DO j=l,NGRID

s p c (k , i , j) = tru eP (k , i , j)
END DO
END DO

END IF
END DO
IF (loops(NUM+l)/=0) THEN

spc(NUM+l,: , :)=pcO(NUM+l)
ELSE

DO 1=1,MGRID
DO j=l,NGRID

!spc(NUM+1 , i , j) =trueQ(i , j)
END DO
END DO
spc(NUM+l,: , :)=pcO(NUM+l)

END IF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

IF (loops(NUM+2)/=0) THEN
spc(NUM+2;NUM+1+NSUBIN,: , :) =pcO(NUM+2)

ELSE
DO i=l,MGRID
DO j=l,NGRID
DO k=l,NSUBIN

spc(NUM+l+k, i , j) = tru eF (k , i , j)
END DO
END DO
END DO

END IF
ELSE

0PEN(UNIT=4,FILE=datapath,STATUS='0LD', &
ACCESS=’SEQUENTIAL’ , ACTION=’READ’)

READ(4 ,+) i p t e r
do 1=1, nsubin+l+num

READ(4 ,*) s p e d , : , :)
end do

CLOSE(4 , STATUS=’KEEP’)
END IF

END SUBROUTINE i n i t l

END PROGRAM f lo w _ s la v e

!C; THIS SUBROUTINE ALLOCATE THE VARIABLES, SET THE LAMBDA VALUES
!C: AND READ IN THE SOURCE DATA u AND alpha, b e ta

SUBROUTINE in i t (Im d v ec)
USE ntype
USE para, ONLY : MGRID,NGRID,a,b,ha,hb,lambda,TSIZE, &

refineData=>fl_refineData,NUM=>FL_NUM, &
NSUBIN=>FL_NSUBIN

USE para_func, ONLY : t r u e P , t r u e Q , t r u e F , fb
USE path, ONLY : s o u r c e = > f l_ s o u r c e , fl_home
USE u t i l , ONLY : createArray
USE d i r , ONLY : d ir
USE f l _ s l v _ m o d , ONLY : s u u , s u x , s u y , s b n d r y , a l p h a , b e t a , I m d s , &

u u , u x , u y , t u , t u x , t u y , s t u , s t u x , s t u y , p e t ,&
neq , count

IMPLICIT NONE
INTEGER,DIMENSION(;), INTENT(IN) Imdvec

REAL(PREC),DIMENSI0N(NSUBIN+1,MGRID,NGRID) :: tbU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

INTERFACE
SUBROUTINE s o l v e (p c , k ,u u ,u x ,u y)

USE ntype
REAL(PREC),DIMENSIDN(:, : , : : p c ,u u ,u x ,u y
INTEGER ;: k

END SUBROUTINE s o lve
END INTERFACE

INTEGER :: i j , k
REAL(PREC) :: Imd
REAL(PREC),DIMENSI0N(NSUBIN+1) :: tv ec

!C: ALLOCATE VARIABLES

suu => createArrayCNSUBIN,neq,MGRID,NGRID,’ s l a v e ')
sux => createArray(NSUBIN,neq,MGRID,NGRID,’s l a v e ’)
suy => createArray(NSUBIN,neq,MGRID,NGRID,’s l a v e ’)
sbndry => createArray(NSUBIN,neq,4 , NGRID,’ s l a v e ’)

alpha => createArray(NSUBIN,neq,MGRID,NGRID,’ s l a v e ’)
b e ta => createArray(NSUBIN,neq,’ s l a v e ’)
Imds => c r e a te A r r a y (n e q , ’ s l a v e ’)

uu => createArray(neq,MGRID,NGRID,’ s l a v e ’
ux => createArray(neq,MGRID,NGRID,’ s l a v e ’
uy => createArray(neq,MGRID,NGRID,’ s l a v e ’
t u => createArray(neq,MGRID,NGRID,’ s l a v e ’
t u x - => createArray(neq,MGRID,NGRID,’ s l a v e ’
tuy => createArray(neq,MGRID,NGRID,’ s l a v e ’
s t u => createArray(neq,MGRID,NGRID,’ s l a v e ’
s tu x => createArray(neq,MGRID,NGRID,’ s l a v e ’
s tu y => createArray(neq,MGRID,NGRID,’s l a v e ’

!C: SET THE TIME INTERVALS

lmd=tsize/NSUBIN
DO k=0, NSUBIN

tvec(k+l)=k*lmd
END DO

!C: SET THE LAMBDA VALUES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

DO k =l ,n eq
Imds(k)=lmdvec(k)*lambda

END DO

!C: READ IN SOURCE DATA

OPEN(UNIT=4, FILE=source, STATUS=’OLD \ &
ACCESS=’SEQUENTIAL’ , ACTION=’READ’)

READ(4 ,*) tbU
DO k=l , Imdvec(1)-1

READ (4 ,*) s u u (: , 1 , : ,
END DO
DO k=l , neq

READ (4 ,*) s u u (: , k , ; , :)
END DO

CLOSE(4 , STATUS=’KEEP 0

sbndryC:, 1 : n e q ,1 , 1 : NGRID)=suu(; , l : n e q , l , ;)
sbndry(: , 1 :n eq ,2 , 1 : NGRID)=suu(; , l : n e q , m g r i d , :)
sbndry(; , 1 : n e q , 3 , 1 :MGRID)=suu(: , 1 : n e q , : ,1)
s b n d r y (: , l : n e q , 4 , 1 : MGRID)=suu(; , l :neq , : ,ngr id)

!C: COMPUTE THE DERIVATIVES

DO k=l,NSUBIN
u u = s u u (k , : , : , :)
CALL d i r (u u (: , : , :) , u x (: , : , :) , u y (: , : , ;) , a ,b , h a , hb)
s u x (k , : , : , :)=ux
suyCk,: , : , :)=uy

END DO

!C: COMPUTE alpha, b e ta

DO k = l ,n eq
lmd=lmds(k)
DO 1=1 ,NSUBIN

a l p h a d , k , : , :) = t b U (i + l ,: , :) *exp(- lm d*tvec (i + 1)) &
- t b U (i , : , :) * e x p (- l m d * t v e c (i))

b e t a C i , k) = (e x p (- l m d * t v e c (i)) - e x p (- l m d * t v e c (i + 1))) /Imd
END DO

END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

!C: RECOMPUTE SOURCE DATA, IF REQUIRED

IF (r e f in e d a ta) THEN
DO i=l,MGRID
DO j=l,NGRID

DO k=l,NUM
p e t (k , i , j) = tr u e P (k , i , j)

END DO
pet(MUM+1, i , j) = t r u e Q (i , j)

END DO
END DO

DO k=l,MSUBIN
DO i=l,MGRID
DO j=l,NGRID

pet(NUM+2, i , j) = tru eF (k , i , j)
END DO
END DO
CALL s o lv e C p c t ,k ,u u ,u x ,u y)
suuCk,: , : , :)=uu
suxCk,: , : , :)=ux
suyCk,: , : , :)=uy

END DO

END IF
END SUBROUTINE i n i t

!C: THIS SUBROUTINE COMPUTE THE (NEUBERGER) GRADIENT OR L~1 GRADIENT
!C: FOR THE DESCENT DIRECTION OF THE SEARCHED VARIABLES

SUBROUTINE nbgCvarl ,var2)
USE ntype
USE para, ONLY : MGRID,NGRID,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN
USE e l l s o v , ONLY : E l l i p t i e _ S o l v e r
USE u t i l , ONLY : paek
USE simpson, ONLY : quad2d
USE f l_s lv_m od , ONLY : s p e , s u u , s u x , s u y , n e q , u u , u x , u y , t u , t u x , t u y ,&

qNbg, fNbg, s t u , s t u x , s t u y , p e t , trap, g i n v , a lp h a ,
b e t a , Irads,p e e , eount

USE path, ONLY : horae=>fl_horae

IMPLICIT NONE
INTEGER,INTENT(IN) :: v a r l , v a r 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

INTERFACE
SUBROUTINE s o lv e (p c , k , u u , u x , u y)

USE ntype
REAL(PREC),DIMENSION(:, ; , : : p c ,u u ,u x ,u y
INTEGER :: k

END SUBROUTINE s o lve
END INTERFACE

!C: LOCAL VARIABLES

INTEGER :: k ,11

!C: THERE IS A BUG HERE, WE HAVE TO SET THE PROGRAM TO PRINT
!C: SOMETHING, OTHERWISE THE PROGRAM WILL STOP

p r in t *, ' H i '
p c t (l :N U M +l , : , :) = s p c (l :NUM+1, : , ;)
pet(NUM+2, : , :)=spc(NUM+l+varl , : , :)

!C: GET THE SOLUTION OF
!C: - \ n a b l a p \n a b la u + (\lambda u + alpha) q = f
!C: CORRESPONDING TO VARIABLES v a r l AND var2

CALL s o lv e C p c t , v a r l , t u , t u x , t u y)
uu=suu(varl
ux=sux(varl
u y=su y(var l ,

g inv=0 .0_prec

!C; COMPUTE THE L~1 GRADIENT

IF (NUM==1) THEN
SELECT CASE (var2)

CASE (1)
DO k = l , neq

g in v = g in v + tu x (k , ; , :) * t u x (k , : , :) + t u y (k , : , :) * t u y (k , ; , :)
- u x (k , : , :) * u x (k , : , :) - u y (k , : , :) * u y (k , : , :)

END DO

CASE (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

DO k =l , neq
ginv=ginv &

+ l m d s (k) * (t u (k , : , :) * t u (k , : , :) - u u (k , : , :)*uu(k , : ,
+ 2 . 0 _ p r e c * a l p h a (v a r l , k , : , ;) * (t u (k , ; , ;) - u u (k , : ,

END DO

CASE DEFAULT
DO k=l , neq

g i n v = g in v + b e t a (v a r l , k) * (u u (k , : , :) - t u (k , :,
END DO

END SELECT
ELSE

SELECT CASE (var2)
CASE (1)

DO k =l , neq
g in v= g in v+ tux(k , : , :) * t u x (k , : , :) - u x (k , : , :) *ux(k ,: , :)

END DO

CASE (2)
DO k =l , neq

g in v= g in v+ tux(k , : , :) * t u y (k , ; , :) - u x (k , : , :) * u y(k , : , :)
END DO

CASE (3)
DO k=l , neq

g in v = g in v + tu y (k , : , :) * t u y (k , : , :) - u y (k , : , :) * u y(k , ; , :)
END DO

CASE (4)
DO k = l , neq

ginv=ginv &
+lmds(k)* (t u (k , ; , :) * t u (k , : , :) - u u (k , : , ;) *uu(k , : , :))
+ 2 . 0 _ p r e c * a l p h a (v a r l , k , : , ;) * (t u (k , : , :) - u u (k , ; , :))

END DO

CASE DEFAULT
DO k = l , neq

g i n v = g i n v + b e t a (v a r l , k) * (u u (k , : , :) - t u (k , :,
END DO

END SELECT
END IF

!C: COMPUTE THE NEUBERGER GRADIENT (IF REQUIRED)

IF ((var2<NUM+l) .OR. (var2==NUM+l .AND. qNbg) &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

.OR. (var2==NUM+2 .AND. fNbg)) THEN
p e t (1 , 0_prec
p c t (2 , : , :)=0 .0_prec
p e t (3 , : , :) = 1 . 0_pree
CALL E l l i p t i e _ S o l v e r (p e t (l ; 3 , : , , p e t (l , : , , &

g i n v , p e t (2 , 1 : 4 , :) ,h a ,h b ,p ee)
ELSE

pec=ginv
END IF

END SUBROUTINE nbg

!C: THE SUBROUTINE CALLS THE ELLIPTIC SOLVER TO SOLVE THE EQUATIONS AND
!C: THE NUMERICAL DERIVATIVES OF THE CORRESPONDING SOLUTION FUNCTIONS

SUBROUTINE s o l v e (p e , n , u u , u x , u y)
USE ntype
USE para, ONLY : a,b,ha,hb,lambda,NUM=>FL_NUM
USE e l l s o v , ONLY : E l l i p t i c _ S o l v e r
USE d i r , ONLY : d ir
USE f l_ s lv_mod, ONLY : s b n d r y , a l p h a ,b e t a , p v , q v , f v , n e q , I m d s , count
use path, only : home=>fl_home
IMPLICIT NONE
INTEGER,INTENT(IN) :: n
REAL(PREC).DIMENSIONC:, : , ,INTENT(IN) :: pc
REAL(PREC),DIMENSION(:, : , ,INTENT(OUT) :: u u ,ux ,uy

INTEGER k , i , j
DO k=l,NUM

p v (k , : , :) = p c (k , : , :)
END DO
IF (NUM==1) THEN

p v (2 , : , ;)=0 .0_prec
p v (3 , : , :) = p v (l , : , :)

END IF

DO k= l ,n eq
qv=lmds(k)*pc(NUM+1, : , :)
fv=bGta(n,k)*pc(NUM+2, : , :) - a l p h a (n , k , : , :) *pc(NUM+1, : , :)

CALL E l l i p t i c _ S o l v e r (p v , q v , f v , s b n d r y (n , k , : , :) , h a , h b , u u (k , : , :))
END DO
CALL d i r (u u (l : n e q , : , , u x (l : n e q , ; , :) , u y (l : n e q , : , , a ,b , h a , h b)

END SUBROUTINE so lv e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

!C: THIS SUBROUTINE COMPUTE THE FUNCTIONALS G_i

SUBROUTINE compG(varl , v a r 2 , c u t , step,G)
USE ntype
USE para, ONLY : MGRID,NGRID,a,b,ha,hb,NUM=>FL_NUM,

NSUBIN=>FL_NSUBIN, lbd=>fl_ lbd,ubd=>fl_ubd
USE Simpson, ONLY : quad2d
USE u t i l , ONLY : p o s i t i v e
USE f l_s lv_m od, ONLY ; neq ,Imds, s u u , s u x , s u y , s p c , p c c , p e t , &

uu, u x , u y , t u , t u x , t u y , s t u , s t u x , s t u y , tmp , count
use path, only ; home=>fl_home

IMPLICIT NOME
INTEGER, INTENT(IN) :: v a r l , v a r 2 , cut
REAL(PREC), INTENT(IN) :: s t ep
REAL(PREC), INTENT(OUT) G

INTERFACE
SUBROUTINE s o l v e (p c , n ,u u ,u x ,u y)

USE ntype
R E A L (P R E C) , D I M E N S I O N (: :: p c ,u u ,u x ,u y
INTEGER :: n

END SUBROUTINE
END INTERFACE

!C: LOCAL VARIABLES

INTEGER :; k

!C; COMPUTE t u , t u x , t u y a t p+h

p e t (1 : NUM+1,: , :) = s p c (l :NUM+1, : , ;)
pet(NUM+2,: , :)=spc(NUM+l+varl, : , :)
p e t (v a r 2 , : , :) = p c t (v a r 2 , : , :) +step*pcc

!C
!C
!C
!C
!C
!C
!C
!C
!C

IF WE MEED TO CHECK THE UPPER AND LOWER BOUND, THEN cu t= =l .
THIS SET WILL USUALLY MAKE THE SEARCH EFFICIENT, BUT WILL STUCK
AT SOME SEARCHING STEP. SO WE SET THE VARIABLE cut TO BE 1 AS
LONG AS THE SEARCH IS SUCCESSFUL. IF AT SOME STEP THE SEARCH IS
FAILED THEN WE RESET cut TO BE 0 SO THAT WE CAN MAKE FURTHER
SEARCH. THE CONTROL OF THE VARIABLE IS BY THE SERVER PART OF
THE PROGRAM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

IF (cut==l) THEN
WHERE (p e t (v a r 2 , : , ;) < l b d (v a r 2)) p e t (v a r 2 , ; , :) =lbd(var2)
WHERE (p e t (v a r 2 , : , :) >ubd(var2)) p e t (v a r 2 , : , :) =ubd(var2)

END IF

!C: IF p IS NOT POSITIVE, EXIT BY ASSING G A VERY BIG VALUE TO TELL
!C; THE SERVER PART THAT SEARCHING IS FAILED. OTHERWISE, WE COMPUTE
!C; THE SOLUTION OF EQUATION

IF (.NOT. p o s i t i v e (p e t (l : N U M , : , :))) THEN
G=1000. 0_pree
RETURN

END IF

CALL s o l v e (p e t , v a r l , t u , t u x , t u y)
uu=suu(varl
ux=sux(varl
uy=su y(var l ,

!C: COMPUTE FUNCTIONAL G AT: (p , q , f) _ { i } + a * h

tmp=0.0_pree
DO k=l , neq

IF (NUM==1) THEN
tmpC: , :)=tmp(: , :) + p c t (l , : , :) &

* ((t u x (k , : , :) - u x (k , : , :)) * (t u x (k , : , :) - u x (k , : , :)) &
+ (t u y (k , : , :) - u y (k , : , :)) * (t u y (k , : , :) - u y (k , : , :)))

ELSE
tmp(: , :) =tmp(: , :) &

+ p e t (l , : , :) * (t u x (k , : , :) - u x (k , : , :)) * (t u x (k , : , :) - u x (k , : , :)) &
+2*pc t (2 , : , :) * (t u x (k , : , :) - u x (k * (t u y (k , : , :) - u y (k &
+ p c t (3 , : , :) * (t u y (k , : , :) - u y (k , : , :)) * (t u y (k , : , :) - u y (k , : , :))

END IF
END DO
tmp=tmp
DO k = l ,n eq

tmp=tmp+pct(NUM+1, : , :) * lm ds(k)* (t u (k , : , :) - u u (k , : , :)) &
* (t u (k , : , :) - u u (k , : , :))

END DO
CALL quad2d(tmp,a ,b ,ha,hb,G)

END SUBROUTINE compG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

F o rtran code: F in ite Laplace tran sfo rm atio n

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

MODULE f l_ laplace_mod
USE ntype
USE para, ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIN,NUM=>FL_NUM
REAL(PREC).DIMENSION(NUM+1+MSUBIN,MGRID,NGRID) :: spc
REAL(PREC).DIMENSION(MGRID.NGRID) :: vec
REAL(PREC).DIMENSION(2) rO
REAL(PREC) :: c o n s t= 0 .4665123934
LOGICAL :: smooth=. FALSE.

END MODULE fI_laplace_mod

PROGRAM Iaplace_transform
USE ntype -
USE para. ONLY : LMAX.MGRID.NGRID.NSTEPS.TSIZE.lambda.ha.hb.a.b.h.fe

NSUBIN=>FL_NSUBIN, compare=>FL_compare
USE path. ONLY : s o u r c e = > f l _ s o u r c e .o r i g p h i = > f l _ o r i g p h i . &

compphi=>fl_compphi
USE u t i l . ONLY : q s im p .p lo t t in g
USE f l_ laplace_mod
USE quad2d. ONLY : quad2d_qgaus

IMPLICIT NONE
REAL(PREC). DIMENSION(NSUBIN+l.MGRID.MGRID) :: tbU
REAL(PREC), DIMENSION(NSUBIN,LMAX,MGRID,NGRID) :: u
REAL(PREC), DIMENSION(NSUBIN.NSTEPS+l.MGRID.NGRID) :: data
REAL(PREC). DIMENSION(NSUBIN*NSTEPS+1,MGRID,NGRID) phi
REAL(PREC), DIMENSION(NSTEPS+1) :: func
REAL(PREC) t , t t . tO , t l , Imd.hx.hy , dump
INTEGER :: k . 1 1 , i , j , i t
CHARACTER(LEN=100) :: f i l e p h i

!C: READ IN SOURCE DATA

p r in t ' Read in d a t a ’
OPEN(UNIT=4, FILE=ORIGPHI, STATUS=’OLD’ , &

ACCESS=’SEQUENTIAL’ , ACTION=’READ’)
DO k=l , 5

READ(4 ,*) dump
END DO
DO k=l , NSUBIN*NSTEPS+1

READ (4 .*) dump
DO i = l . MGRID
DO j = l , NGRID

READ (4 ,*) p h i (k . i . j)
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

END DO
END DO

CLOSE(4 , STATUS=’KEEP')

!C: PLOT THE DATA AT TIME=10, 2 0 , 30, . . .
1

DO k=l , NSUBIN*NSTEPS, 30
! CALL PLOTTING(phi(k,: , :) , ' p h i ' , " , a ,b ,h a ,h b)
! pause 'Check the graph r e s u l t '

END DO

!C: SMOOTH THE DATA (IF REQUIRED)

p r in t *, ' smooth data'
IF (smooth) THEN

hx=ha/(MGRID-1)
hy=hb/(NGRID-1)
DO k = l ,S I Z E (p h i , l)

p r in t *, ' k = ' , k
v e c = p h i (k , : , ;)
DO i=l,MGRID

r O (l) = a + h x * (i - l)
DO j=l,NGRID

r 0 (2) = b + h y * (j - l)
CALL quad2d_qgaus(rO(1) - h , rO(1) +h, p h i (k , i , j))

END DO
END DO

END DO

!C: PLOT THE DATA AT TIME=10, 20, 30, . . .

DO k=10, 100, 10
! CALL PLOTTING(phi(k,: , :) , ' p h i ' , " , a ,b ,h a ,h b)

END DO
END IF

! COPY THE DATA TO data VARIABLE

DO k=l,NSUBIN
data(k, l:NSTEPS+1,; , :) = p h i ((k-1)*NSTEPS+1;k*NSTEPS+l, : , :)
t b U (k , : , :) = d a t a (k , 1 , : , :)

END DO
tbU(NSUBIN+l,: , :)=data(NSUBIN,NSTEPS+1,: , :)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

!C: Finite Laplace transform

p r in t ’ Begin Laplace Transformation'
tt=TSIZE/NSUBIN
DO k=l,NSUBIN

p r in t *, ' k = ’ , k
t O = (k - l) * t t
t l = k * t t

DO 11=1,LMAX
DO i=l,MGRID
DO j=l,NGRID

!C: load simpson vec to r

DO it=l,NSTEPS+1
t = t O + (i t - 1) * (tl-tO)/NSTEPS
lmd=real(lambda*ll)
f u n c (i t) = d a t a (k , i t , i , j) *exp(- lmd*t)

END DO
c a l l q s i m p (f u n c , t O , t l , u (k , l l , i , j))

END DO
END DO

END DO
END DO

!C: SAVE THE RESULTS

OPEN(UNIT=4, FILE=source, STATUS=’REPLACE’ ,
ACCESS=’SEQUENTIAL’ , ACTION=’WRITE’)

WRITE(4 ,*) tbU
DO k=l,LMAX

WRITE(4,*) u (: , k , :,
END DO

CLOSE(4 , STATUS=’KEEP’)

END PROGRAM lap lace_tran sform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

!C: BOUNDARY AND INTEGRAL FUNCTIONS : y l_2d ,y2_2d , fu n c

FUNCTION yl_2d (x)
USE ntype
USE para, ONLY : h
USE f l_ lap lace_m od, ONLY ; rO
REAL(PREC), INTENT(IN) :: x
REAL(PREC) :: y l_2d

yl_2d = r0(2) - s q r t (h * h - (x - r O (1)) * (x-rO(1)))
END FUNCTION yl_2d

FUNCTION y2_2d(x)
USE ntype
USE para, ONLY : h
USE f l_ lap lace_m od , ONLY : rO
REAL(PREC), INTENT(IN) x
REAL(PREC) :: y2_2d

y2_2d=r0(2) + s q r t (h * h - (x -r O (1)) * (x-rO(1)))
END FUNCTION y2_2d

FUNCTION func_2d (x ,y)
USE ntype
USE para, ONLY : h.TSIZE,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN
USE u t i l , ONLY : b l i t p
USE f l_ lap lace_m od
IMPLICIT NOME
REAL(PREC), INTENT(IN) :: x
REAL(PREC), DIMENSION(:), INTENT(IN) :: y
REAL(PREC), DIMENSION(size(y)) :: func_2d

INTEGER ;; k ,n
REAL(PREC) :: rho
REAL(PREC) :: r

DO k=l ,SIZE(y)
r= ((x-rO (1)) * (x-rO (1)) + (y (k) -rO (2)) * (y (k) -rO (2))) / (h*h)
r h o = e x p (l . 0 _ p r e c / (r - 1))
fu n c _ 2 d (k) = r h o * b l i t p (x , y (k) , v e c , a , b , h a , hb) / (h*h*const)

END DO
END FUNCTION func 2d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C

F o rtran code: C om pute th e erro rs betw een th e recovered
and th e original d a ta

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

MODULE fl_compErr_mod
USE ntype
USE para, ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIM,NUM=>FL_NUM,NSTEPS
REAL(PREC), DIMENSION(NUM+l+NSUBIN,MGRID,NGRID) :: spc
REAL(PREC).DIMENSION(MGRID,NGRID) :: vec
REAL(PREC).DIMENSION(2) :: rO
REAL(PREC) co n s t= 0 .4665123934
REAL.DIMENSION(NSTEPS*NSUBIN+1,MGRID,NGRID) phi
REAL(PREC) :: d t ,d x ,d y

END MODULE fl_compErr_mod

PROGRAM compError
USE ntype
USE para, ONLY : MGRID.NGRID.NSTEPS,TSIZE,ha,hb,a,b,h,&

NSUBIN=>FL_NSUBIN
USE path. ONLY : o r i g p h i = > f l _ o r i g p h i , compphi=>fl_compphi. ̂

datapath=>fl_datapath.home=>fl_home
USE u t i l . ONLY : p l o t t i n g
USE fl_cofflpErr_mod
USE quad2d, ONLY ; quad2d_qgaus

IMPLICIT NONE
REAL(PREC). DIMENSION(NSUBIN.NSTEPS+1,MGRID.NGRID) :: data
REAL(PREC). DIMENSION(NSUBIN*NSTEPS+1,MGRID.NGRID) :: &

newphi, error
REAL(PREC), DIMENSI0N(NSTEPS+1) :: func
INTEGER :: k . i . j
REAL(PREC) :; e r r . norm. t . h t . h x , h y . dump
CHARACTER(LEN=2).DIMENSION(13) :: &

c h a r = (/ ’0 0 ’ . ’0 1 ’ . ' 0 2 ' . ’0 3 ' , ' 0 4 ’ . ’0 5 ’ , ’0 6 ’ .&
’0 7 ’ , ’0 8 ’ , ’0 9 ’ . ’ 1 0 ’ , ’ 1 1 ’ , ’ 1 2 ’ /)

CHARACTER(LEN=1),DIMENSI0N(3) name=(/’P ’ , ’Q’ , ’ ¥ ’ /)

REAL (PREC). DIMENSION (MGRID. NGRID) w e e

INTERFACE
SUBROUTINE g e tD ata (d a ta , bndryfunc)

USE ntype
REAL(PREC).DIMENSIONC: : : data

INTERFACE
FUNCTION b n d r y f u n c (x . y . t)

REAL :: x . y . t .b n d r y f u n c
END FUNCTION

END INTERFACE
END SUBROUTINE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

FUNCTION t r u e U (x , y , t)
REAL :: x , y , t , trueU

END FUNCTION
END INTERFACE

!C: READ IN DATA

dt=TSIZE/(NSUBIN*NSTEPS)
dx=ha/(MGRID-1)
dy=hb/(NGRID-l)
OPEN(UNIT=4, FILE=datapath, STATUS=’OLD’ , &

ACCESS=’SEQUENTIAL' , ACTION=’READ ’)
READ(4,*) k
DO k=l , s i z e (s p c , l)

READ(4 ,*) s p c (k , : , :)
END DO

CLOSE(4 , STATUS=’KEEP’)

p r in t ’ Read in d a t a ’
OPEN(UNIT=4, FILE=ORIGPHI, STATUS=’OLD’ , &

ACCESS=’SEQUENTIAL’ , ACTION=’READ’)
DO k=l , 5

READ(4 ,*) dump
END DO
DO k=l , NSUBIN*NSTEPS+1

READ (4 ,*) dump
DO i = l , MGRID
DO j = l , NGRID

READ (4 ,*) p h i (k , i , j)
END DO
END DO

END DO
CLOSE(4 , STATUS=’KEEP’)

!C: SMOOTH THE COMPUTED DATA

hx=ha/(MGRID-1)
hy=hb/(NGRID-1)
DO k = l ,S I Z E (s p c ,l)
V6G=spc(k,:,
DO i=l,MGRID

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

r O (l) = a + h x * (i - l)
DO j=l,NGRID

r 0 (2) = b + h y * (j - l)
CALL quad2d_qgaus(r0 (1) - h , rO(1) + h , s p c (k , i , j))

END DO
END DO

END DO

!C: COMPUTE DATA

CALL g e t D a t a (d a t a , t r u e U)

DO k=l,NSUBIN
new phi ((k-1)*NSTEPS+1:k*NSTEPS,:) = d a t a (k , 1 : NSTEPS,: ,

END- DO
newphi(NSUBIN*NSTEPS+l,: , :)=data(NSUBIN,NSTEPS+1,: , :)

!C: SAVE DATA

OPEN(UNIT=4, FILE=compphi, STATUS= ̂REPLACE’ , &
ACCESS=’SEQUENTIAL' , ACTION=’WRITE’)

DO k = l , s i z e (n e w p h i ,1)
DO i = l , MGRID
DO j = l , NGRID

WRITE(4 , +) n e w p h i (k , i , j)
END DO
END DO
END DO

CLOSE(4 , STATUS=' KEEP’)

!C: COMPUTE ERROR
j CI ̂̂ ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂

DO k = l , NSUBIN*NSTEPS+1
e r r = 0 .0 _ p r e c
norm=0.0_prec
norm=0. 0_prec
DO i=l,MGRID
DO j=l,NGRID

IF (e r r < a b s (p h i (k , i , j) - n e w p h i (k , i , j))) &
e r r = a b s ((p h i (k , i , j) - n e w p h i (k , i , j)))

IF (n o r i n < a b s (p h i (k , i , j))) n o r m = a b s (p h i (k , i , j))
END DO
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

e r r o r (k) = e r r /n o r m
p r i n t ’ e r r o r (k) e r r o r (k)

!C: p l o t th e e r r o r a t k = 1 0 , 2 0 , . . .

IF (M0D(K-1,10)==0) THEN
CALL PLOTTING(phi(k,; , :) - n e w p h i (k , : , , &

h o m e / / ' d a t a / e r r o r ’ / / c h a r ((k - l) / 1 3 + l) , ' ’ , a , b , h a , h b)
END IF

END DO

!C: PLOT THE ERROR AS FUNCTION OF T

ht=TSIZE/NSTEPS
OPEN (4, f i l e = h o m e / / ’d a t a / e r r o r . d a t ’)

WRITE(4 , *) ’TITLE=error: ’
WRITEC4,*) ’VARIABLES="T" "E rror"’
WRITE(4,*) ’ZONE 1 = ’ , NSTEPS+1, ’ , C=BLUE’
DO i = l , NSTEPS+1

t = (i - l) * h t
WRITEC4,*) t , e r r o r (i)

END DO
CLOSE(4 . STATUS=’k e e p ’)

END PROGRAM compError

!C
!C
!C
!C

t e s t s o l u t i o n f u n c t i o n s

REAL FUNCTION trueU(X,Y,T)
USE para , ONLY : a , b , h a , h b
USE fl_compErr_mod, ONLY : p h i , d t
USE u t i l , ONLY : b l i t p
i m p l i c i t none
REAL ;; T, X, Y, U
REAL, PARAMETER ;; p i = 3 . 14159
INTEGER :: n h l ,n h 2
REAL :: h l , h 2 , v a l l , v a l 2 , v a l 3 , v a l 4

nhl=CEILING(t/dt)
nh2=FL00R(t /dt)
h l = (d t + n h l - t) / dt
h 2 = 1 . 0 - h l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

t r u e U = b l i t p (x , y , p h i (n h 2 + l , : , :) , a ,b ,h a , h b) * h l
+ b l i t p (x , y , p h i (n h l + l , : , , a , b, ha , hb) *h2

END FUNCTION trueU

!C: SUBROUTINES USED BY PDETWO

SUBROUTINE bndryv (t , x , y , u , a v , b v , c v , n p d e)
IMPLICIT NONE
REAL t , u , x , y , b v , a v , c v
INTEGER npde
DIMENSION u (n p d e) , a v (n p d e) , b v (n p d e) , c v (n p d e)
REAL, PARAMETER p i = 3 . 14159

INTERFACE
FUNCTION t r u e U (x , y , t)

REAL x , y , t , trueU
END FUNCTION trueU

END INTERFACE
a v (l) = 1 .0
b v (l) = 0 . 0
c v (l) = t r u e U (x , y , t)

END SUBROUTINE bndryv

SUBROUTINE bndryh (t , x , y , u , a h , b h , c h , n p d e)
IMPLICIT NONE
REAL t , u , x , y , b h , a h , c h
INTEGER npde
DIMENSION u (n p d e) , all (npde) ,bh(npde) ,ch (npde)
REAL, PARAMETER :: p i = 3 . 14159

INTERFACE
FUNCTION t r u e U (x , y , t)

REAL x , y , t , trueU
END FUNCTION trueU

END INTERFACE

a h (l) = 1 .0
b h (l) = 0 . 0
ch (1) =t rueU (x , y , t)

END SUBROUTINE bndryh

SUBROUTINE d i f f h (t , x , y , u , d h , n p d e)
USE ntype
USE para , ONLY ; a , b , h a , h b
USE fl_compErr_mod, ONLY : spc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

USE u t i l , ONLY : b l i t p
IMPLICIT NONE
REAL, INTENT(IN) :: t , x , y
INTEGER npde
REAL, DIMENSION(npde),INTENT(IN) :: u
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dh

d h (l , l) = b l i t p (x , y , s p c (l , : , ;) , a , b , ha , hb)
END SUBROUTINE d i f f h

SUBROUTINE d i f f v (t , x , y , u , d v , n p d e)
USE ntype
USE para, ONLY : a , b , h a , h b , NUM=>FL_NUM
USE fl_compErr_mod, ONLY : spc
USE u t i l , ONLY : b l i t p
IMPLICIT NONE
REAL, INTENT(IN) :: t , x , y
INTEGER npde
REAL, DIMENSION(npde).INTENT(IN) u
REAL, DIMENSION(npde,npde) , INTENT(OUT) :: dv

IF (NUM==1) THEN
d v (l , l) = b l i t p (x , y , s p c (l , : , :) , a , b , h a , h b)

ELSE
d v (l , l) = b l i t p (x , y , s p c (3 , : , ;) , a , b , h a , h b)

END IF
END SUBROUTINE d i f f v

SUBROUTINE d i f f c h (t , x , y , u , d c h , n p d e)
USE ntype
USE para , ONLY : a,b,ha,hb,NUM=>FL,NUM '
USE fl_compErr_mod, ONLY : spc
USE u t i l , ONLY : b l i t p
IMPLICIT NONE
REAL, INTENT(IN) :: t , x , y
INTEGER npde
REAL, DIMENSION(npde), INTENT(IN) :: u
REAL, DIMENSION(npde,npde), INTENT(OUT) dch

IF (NUM==1) THEN
d c h (1 , 1) = 0 . 0_prec

ELSE
d c h (l , l) = b l i t p (x , y , s p c (2 , : , :) , a , b , h a , h b)

END IF
END SUBROUTINE d i f f c h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

SUBROUTINE d i f f c v (t , x , y , u , d e v , n p d e)
USE ntype
USE para, ONLY : a , b , h a , h b , NUM=>FL_NUM
USE fl_compErr_mod, ONLY : spc
USE u t i l , ONLY : b l i t p
IMPLICIT NONE
REAL, INTENT(IN) ;: t , x , y
INTEGER npde
REAL, DIMENSION(npde), INTENT(IN) ;; u
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dev

IF (NUM==1) THEN
d e v (l , 1) = 0 . 0_pree

ELSE
d e v (l , l) = b l i t p (x , y , s p e (2 , : , ;) , a , b , h a , h b)

END IF
END SUBROUTINE d i f f c v

SUBROUTINE f (t , x , y , u , u x , u y , d u x x , d u y y , d u x y , duyx , d u d t , npde)
USE ntype
USE para , ONLY : a,b,ha,hb,TSIZE,NUM=>FL_NUM
USE fl_eompErr_mod, ONLY : spc,NSUBIN
USE u t i l , ONLY : b l i t p
IMPLICIT NONE
REAL, INTENT(IN) t , x , y
INTEGER npde
REAL, DIMENSION(npde), INTENT(IN) :: u , u x , u y
REAL, DIMENSION(npde,npde) , INTENT(IN) d u xx , d u x y , d u y y , duyx
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dudt

REAL :: t q , t f
REAL(PREC) :; t t
INTEGER :: k ,n

t q = b l i t p (x , y , s p c (N U M + 1 , : , :) , a , b , h a , h b)
■ tt=TSIZE/NSUBIN

DO k=l ,NSUBIN+l
IF (t > = t t * (k - l)) n=k

END DO
n=MIM(n,NSUBIN)
t f = b l i t p (x , y , s p c (N U M + l + n , : , :) , a , b , h a , h b)
d u d t (l) = (d u x x d , l) + d u x y (l , l) + d u y x (l , l) + d u y y (1 , l) + t f) / t q

END SUBROUTINE f

!C: BOUNDARY AND INTEGRAL FUNCTIONS : y l _ 2 d , y 2 _ 2 d , f u n c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

FUNCTION y l _ 2 d (x)
USE ntype
USE para, ONLY : h
USE fl_compErr_mod, ONLY : rO
REAL(PREC), INTENT(IN) :: x
REAL(PREC) ;: y l_2d

yl_2d=r0(2) - s q r t (h * h - (x - r O (1)) * (x-rO(1)))
END FUNCTION yl_2d

FUNCTION y2_2d(x)
USE ntype
USE para, ONLY : h
USE fl_compErr_mod, ONLY : rO
REAL(PREC), INTENT(IN) : : x
REAL(PREC) :: y2_2d

y2_2d=r0(2) + s q r t (h * h - (x -r O (1)) * (x-rO(1)))
END FUNCTION y2_2d

FUNCTION func_2d(x ,y)
USE ntype
USE para , ONLY ; h,TSIZE,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN
USE u t i l , ONLY : b l i t p
USE fl_compErr_mod
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x
REAL(PREC), DIMENSION(:), INTENT(IN) :: y
REAL(PREC), DIMENSION(size(y)) :: func_2d

INTEGER :: k , n
REAL(PREC) :: rho
REAL(PREC) :: r

DO k = l ,S IZ E (y)
r= ((x-rO (1)) * (x-rO (1)) + (y (k) -rO (2)) * (y (k) -rO (2))) / (h*h)
r h o = e x p (l . 0 _ p r e c / (r - 1))
f u n c _ 2 d (k) = r h o * b l i t p (x , y (k) , v e c , a , b , h a , h b) / (h * h * c o n s t)

END DO
END FUNCTION func_2d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D

F o rtran code: C om pute th e inflow and outflow

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

PROGRAM s u s t a i n
USE ntype
USE para , ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIN, &

MUM=>FL_NUM, a , b , h a , h b , d x , d y , conv
USE p a t h , ONLY : d a t a p a t h = > f l _ d a t a p a t h , home=>fl_home
USE simpson, ONLY ; quad2d

IMPLICIT NONE
REAL(PREC), DIMENSION(NUM+l+NSUBIN,MGRID,NGRID) :: spc
REAL(PREC), DIMENSION(MGRID,NGRID) :: vec
REAL(PREC) :: d d , d d 2 , a l , b l , h a l , h b l
REAL(PREC), DIMENSION(NSUBIN) :: i n f l o w , o u t f l o w
INTEGER :: k

!C: READ IN DATA

OPEN(UNIT=4, FILE=datapath, STATUS=’OLD’ , &
ACCESS= ’ SEQUENTIAL ’ , ACTION= ’ READ ’)

READ(4 , *) k
READ(4 , *) spc

CLOSE(4 , STATUS=’KEEP’)

a l = 0 . 0
b l = 0 . 0
ha l=dx*conv
hbl=hy*conv
spc(NUM+1:NUM+l+NSUBIN,: , :)=spc(NUM+1:NUM+l+NSUBIN,: , :) / (conv+conv)

DO k = l , NSUBIN
vec=max(spc(NUM+l+k, : , :) , 0 . 0 _ p r e c)
CALL q u a d 2 d (v e c , a l , b l , h a l , h b l , dd)
PRINT *, ̂ INFLOW = dd*30
in f lo w (k) = d d * 3 0

vec=min(spc(NUM+l+k,: , :) , 0 . 0 _ p r e c)
CALL q u a d 2 d (v e c , a l , b l , h a l , h b l , dd)
PRINT ’ OUTFLOW = ’ , -dd*30
o u t f l o w (k) = - d d * 3 0

END DO

dd=0 . 0_prec
dd2=0 . 0_prec
DO k = l , NSUBIN

dd=dd+in flow(k)
dd2=dd2+outf low(k)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

END DO

!C; plot the data

OPEN (4 , f i l e = h o m e / / ’f l o w / i n _ f l o w . d a t ')
WRITE(4,*) ’T IT L E =inf low ; '
WRITE(4,*) ’VARIABLES="T" "V">
WRITE(4,*) ’ZONE 1 = ’ , NSUBIN, C=BLUE’
DO k = l , NSUBIN

WRITE(4 , *) k , i n f l o w (k)
END DO

CLOSE(4 , STATUS=’k e e p ')

OPEN (4 , f i l e = h o m e / / ’ f l o w / o u t _ f l o w . d a t ')
W R I T E (4 , > i =) ’TITLE=outf low: '
WRITE(4,*) 'VARIABLES="T" "V"’
WRITE(4,*) 'ZONE 1 = ' , NSUBIN, ' , C=BLUE'
DO k = l , NSUBIN

WRITE(4,*) k, o u t f l o w (k)
END DO

CLOSE (4 , STATUS='keep')
END PROGRAM s u s t a i n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX E

F o rtran code: sub rou tines

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■uo!SS!LUJ0d jnoL|J!M pajiqiLjOJcl uoqonpojclaj jaq p rij j 0 umo jLjBuAdoo 0 L|j jo uo!SS!LUJ0d l|J!m p0on pojd 0y

3H1 A3IHIQ0WS HOd QHSfl SI HdldWVHVd SIHl ‘HaiHWVHVd ONIHIOOHS #i
#i
##i

0• 2=qq ‘0^Z=^^ ‘0 ' T-=q‘0 'T-=^ : : m aW VW d ‘ (Oaad) 1V33
##1
i

B90mo\ NIVWOa 3H1 DMINId3a S3313WV3¥d #i
i
##i

00T=dH3XI“3S .‘0SST=dH 3II"ld ‘ OS=aiHDW‘OS=aiHOM : : H313WVHVd ‘33031NI
##i
#i
-333H1 one ON SI 333HI d l ai'aDW<QIHON 30d MOM #i
01 a31D3dX3 SI I I •aiHOH=aiHDN 3H3HM MOIlVnilS 3HX XS3X A3N0 3M #i
3X0N • (QIH0W=<aiH0N) XIWIl N0IXVH3XI ‘HdaWHN QIHO dO SH3X3WVWd #i
i
i

OS=OOHd“N ‘ 02=XVW3 :: H3X3HVHVd ‘33D3XNI
i

i
s^pqiirei io #i
33awnN QNV S3SS3D03d 3AV3S dO HdaWAN 3HX ONmOdXNOO SHaXdWVHVd # i

i
##i

0dAqu 3sn
3inaow

##1
; #i
suoxq.0 nb0 0 q.nios pu^ w oij HXOa A3 Q3Sn SI Xi'dSIM H3HX0 #i
#i
IS HXIM SNIOaa H3XaWVHVd #i
3HX NOIXVnOd sqn ios 3HX A3 A3N0 0380 SI 33X3HV3Vd 3HX d l #i
#i
I I HXIM SMI033 H3X3HVH¥d #i
3HX ‘W¥3D0Hd ^ o u 3HX A3 AINQ Q3Sn SI 33X3H¥H¥d 3HX d l #i
:X¥WH0d DNIMOnOd 3HX S¥H XI ' SWYHOOHd #i
eqn ios qn¥ 3HX NI 33Sn S’H3X3W¥3¥d 3HX S3NId3a 3inaOW SIHX #i
#i
##i

991

■uo!SS!LUJ0d jnoL|J!M pajiqiLjOJcl uoqonpojclaj jaq p rij j 0 umo jLjBuAdoo 0 L|j jo uo!SS!LUJ0d l|J!m p0on pojd 0y

##i
i
NQIlVnbH IHOdSNVHl HO NOIlVniDH m i d HOd Q3Sn SH313H¥HVd # i
#i
##i

Z -eo • T=deq-sius :: H313WVHVd‘ (03Hd)3V3H
i
i
#3iaVH0HV3S SI NGII03Hia N3AI0 3H1 31 1S31 01 Q3Sn H39WnN 31VHS V # i
■ # i
i

0 ’ T=3ZISX :: H313HVHVd ‘ (03Hd)lV3H
i
i
([T ‘0]) 3WII 30 H10N31 IVIOX #i
#i
i

0£=Sd3XSN :: H3X3WVHVd ‘H303XNI
i
i
WH03SNVHX 30V3dVl QNV 23Qd NI VXVQ 303008 # i
3XOdWOO 303 Q3Sn S1VA33XNI SOS 30 339^00 3HX 0NIXX3S 33X3WV3Vd # i
i
i

XVW3/0‘ 1=^00^21 :: 33X3WV3V3 ‘ (033d)3V 33
i
#i
snx^A Bpqurei hhX DNINI33a 33X3WV3V3 #i
■ #i
i

T-90'T =0 :: 33X3WV3V3 ‘ (033d)3¥33
##1
aN¥ # i
j p (u j : c - x | / x)d x 0 I o = (x) o q j \ #j

i
Aq p 0u i 3;0p s i o q j \ 33I3nO W 3HX 333HM #i
#i
A p (A)n (u „ lA -x |)o q j \ { q > |A - x |} - a u i \= d - n #j

#i
:33I3nOW 3HX DNISO VXYQ #i

Z9T

■uo!SS!LUJ0d jnoL|J!M pajiqiLjOJcl uoqonpojclaj ja q p r ij j 0 umo jLjBuAdoo 0 L|j jo uo!SS!LUJ0d l|J!m p0onpojd0y

#
#
#
#
#

NOiiisodHooaa h n i
sivAHHiNians do HaawfiM NiansN’ i i

:SH31HWVWd HH03INI

#i
#i
#i
#i
#i

##i

OT=q.oiduti-is ‘OT=loi<i«'“~ ld
? ‘2/(T+'HTP"3S)*'iiTp“is=ranu~is ‘2=™TP“3S
5? ‘S/(T+“ TP~ld)*i“TP"33=iJm«"3d ‘2='HTp~li

g ‘ 000T=<i9^sq.oidu-qs ‘ 00T=daasq.oidTi-qj :: H3I.3WV'aVd ‘H303XMI
##
#
#
#
#
#
#
#
#
#

a HO / d DIdOHlOSIMV
a HG / d OldOHlGSI

H ‘b ‘d v iv a
HDHV3S 3H1 IG ld QNV AlIN3aiDDV 3NGQ SVW SHVHDGHd

3SVD MI v iv a 3H1 3AVS NGI1VH31MI sd©q.sq.oidxi H313V

Z
I = raip

d0 q.sq.o1du

:SH313WVHVd H301MI

##

■ 3I1H1 ■ =Bq.Ba0uiJ0J-7S ‘ • 3S1V 3' =Bqup0ui
2? ‘ •3SlVd'=9-iT2duioo“qs ‘ •3nH l'= ao idu -qs

‘ -31131 ■=^aBaiU0j;~qs ‘ -31131' =33-1^9S"9«"3S
3? ‘ -3S3V3"=9J:TBdraoo"q3 ‘ ■3sqv3-=qoidu-q3

J ‘ -3n31"=^a^aiT29J:“3d ‘ -3S1V3-=33J:^9SW9U“33 : 3313WV3Vd ‘IVDIDGI

##
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##

v iv a 1VMI0I3G 3H1
aNV S3313RV3Vd a333AG033 3H1

DNISn a3A3GS v iv a 3H1' 33VdW00
C 3S3V3- 33 aiilGHS ‘Tsa^ai^BJ)

3 b d S3313HV3Vd 31131 3H1 IG ld
v iv a 0I13H1MAS HUM H03V3S

v iv a 3V33 HUM HD3V3S
330333 v iv a a3HD3V3S 3H1 OMISfl

DNISn H03V3S 33331303 33VW
v iv a M3M HUM H03V3S

#
#
#

: -31131- = OJ^duioo #
#

■3031' = ^oidu #
•3S1V 3• #

: -3031' = B lBQ U eJ #
#

■3S3V 3■ #
'3 0 3 1 ' = qoj-eesweu #

#
:S3313HV3Vd NV3300a #

#

891

■uo!SS!LUJ0d jnoL|J!M pajiqiLjOJcl uoqonpojclaj jaq p rij j 0 umo jLjBuAdoo 0 L|j jo uo!SS!LUJ0d l|J!m p0on pojd 0y

(/ o •g ‘g io o •0 ‘0 •g /)= pqn“i j
‘ (/ g ‘o ‘g o o o '0 ‘g 'o /) = p q i“id
‘ (/ g •0 ‘gooo•o ‘g •o /)

T =w ia"ii j i

(/AUOO:<tAUOO*2-0O'X ‘ATIOO*AUOO*2-9T 'T
‘0 • x-*(^p=K^p)/o■ oggg ‘o • (^ p * x p) /e • ‘o • (x p * x p)/o • o g g g /) = p q n " ii

f ‘ (/AUOD*Auoo*s-eo-T- ‘ auod^auoo+Xt- p ^.-s ‘O’SX' ‘O'O ‘ ' 0 /) =0=»<i“ld[
3S ‘ (/ATIO O*AUO P=(c2 - 0 O ‘ T - ‘ AUOO:(tAUOO!)cX7-p^-2

‘0-t.*(iCp*jfp)/0-gX' ‘0•^'*(J^P*xp)/6•^^^.- ‘ 0 ’=E'*(xp*xp)/o-gV)=Pqi”l i
s=wia“id d i i

H3I3HVHVd ‘ (S+WnN"33)N0IStI3Hia ‘ 03Hd)3V33
^ ‘X^XrS-690T=AaoD ‘OTg '̂•T=J^P ‘02T0‘2=xp : : 33X3HV3Vd ‘ (03yd)3V3d

•3S3Vd‘=HSqN"3d ‘ '3S1V3‘=&9qM"33 - H313WVHVd ‘IVDIOQI
##i
#
#
#
#
#
#

A3XD3H30D
13S 3a ISnW AV3HV 3H1 30 3ZIS 3H1 SMQIlVnXIS 3V33 NI :31GN

■SH313WVHVd DNIH3A0D3H 3HX 30 QNnOa H3ddfl ‘QMnoa
H3ddfl ONV H3M01 3HX ‘3fnVA IV IIIN I 3H1 13S IVHl SH3X3WVaVd

#i
#i
#i
#i
#i
#i

##i

(/ 0 ‘0 ‘0 ‘T /)=Sd00T3S i
T=Wia“13 31 #i

(/ 0 ‘0 ‘0 ‘0 ‘0 'T /)=Sd003”3S
2=Wia“lS 31 #i

3? :: H313wvavd ‘ (e+WnN"lS)N0ISN3Wia ‘33D31MI

(/T ‘T‘ T/)=Sd003“13 i
T=Hia"33 31 #i

(/T ‘ T‘ T‘T‘ T /)= S d00T l3
S=Wia"13 31 #i

3? :: a3X3HVWd ‘ (2+WnM“13)N0ISN3Wia ‘33D31NI
02=NianSN“lS ‘ST=NianSN“33 :: 3313WV3Vd ‘33D31NI

##i
#
#
#

A3XD3'ayOO X3S 33 XSOW
AVHHV 3HX 30 3ZIS 3HX ‘MQIXVnXIS 3V33 MI :3X0N

S3WIX (I)SdOOT Q3HD3V33S 33 TOM H3X3WVHVd S<T 3HX
#
#
#

‘d3XS 3XV33XI H0V3 NI ’WIQ NO QN3d3a SI 3ZIS
MoixisodwoD3a a ni

SlVA33XNianS 30 y33HnN

SdOOl

NI3flSN~3S

#i
#i
#i
#i
#i
#i
#i

691

■uo!SS!LUJ0d jnoL|J!M pajiqiLjOJcl uoqonpojclaj jaq p rij j 0umo jLjBuAdoo 0L|j jo uo!SS!LUJ0d l|J!m p0on pojd 0y

■Gj^d ainaoH qn3

• 31131 •=3mVA AHaM9~QN 33 - H313WVHVd ‘3V0ID03
##i
#
#
#
#
#
#

#i
H0HV3S lM30S3a 30 331S A33A3 NI AHVaMnOa #i

3H1 01 S3H3VA 30IH31NI 3H1 31V3Vd03d # i
N3H1 3M ‘S3fl3VA AaVQMnoa ON 3HV 3H3H1 # i

‘ •3nH l-=9niG A -A jpuq-ou-i3; n #j
NOIliaNOD AaVQNnoa 3H1 IOHINOO 3313WVWd #i

##i

•3S3V3' = MH“3S
‘ •3 n H l‘ = AH3a"IHd“lS ‘ •3S3V3- = HIOOHS'IS - 'a313W¥H¥d ‘3¥DI003

#
0 31¥H3N30 01 IHd a3H100WS 3H1 3Sfl •3S3¥3'
D ¥ l¥ a 31¥H3N30 01 IHd ¥1¥0
(a3H100WSNn) 30Hn0S H¥H 3H1 3Sn -3nH l- = M¥H"3S
#
#
#
#
#
#
#

3AIl¥AIH3a 3H1 3indW0D ION 00 •3 S 3 ¥ 3 ’ #
IHd 30 S3AIl¥AIH3a 3H1 HlHdWOO ' 31131' = AH3a IHd"3S #

HIOOHS ION 00 •3S3¥3'
¥1¥0 HIOOWS ■3n31’

#
= H100HS"3S #

#
THd v i¥ 0 303005 #

3H1 HIOOWS 01 03Sn SI 1¥H1 S3313W¥3¥d #
##

(/ 0 ‘g ‘0 ' 9 ‘ 0 ‘T‘0 ‘9/)=Pqt^“3S
‘ (/ 9 ' 0 ‘ 9 - 0 ‘ S 0 ’0 ‘ 9 ' 0 /) = P q i " l S
‘ (/ 9 - 0 ‘9 -0 ‘S 0 -0 ‘9 -0 /)= 0 3 d -is

T=WI0"3S 31

(/ 0 ' 9 ‘0 ‘9 ‘0 ' T ‘ 0 ' 9 ‘6 ^ ' 0 ‘0 ’9/)=PqT^“3S
3? ‘ (/ 9 ‘0 ‘ 9 ' 0 ‘ 2 0 - 0 ‘9 ' 0 ‘ 0 ’0 ‘ 9 - 0 /) = P q i “3S
3? ‘ (/ 9 ’0 ‘9 - 0 ‘2 0 - 0 ‘9 - 0 ‘0 - 0 ‘9 ' 0 /) = 0 3 d - i s

2=WI0"3S 31 i
3313W¥3¥d ‘ (S+WnN"3S)N0ISN3WI0 ‘ (D33d)3V33

O A T

171

E.2. Fortran code: elliptic P D E solver

MODULE e l l s o v
USE ntype
IMPLICIT NONE
PRIVATE
PUBLIC E l l ip t ic _ S o I v e r

REAL(PREC), DIMENSIONC:, : , , POINTER :: ptr_p
REAL(PREC), DIMENSIONC:,:), POINTER :: p tr_q , p tr_ f ,p tr_ b n d ry
REAL(PREC) :: hx,hy
INTEGER :: m grid ,ngrid
INTEGER, PARAMETER :: R0W=10, C0L=20
INTERFACE E l l ip t i c _ S o l v e r

MODULE PROCEDURE E l l ip t i c _ S o lv e r _ 0
END INTERFACE
INTERFACE getRow

MODULE PROCEDURE getRow_l, getRow_2
END INTERFACE
INTERFACE getC ol

MODULE PROCEDURE g e t C o l . l , getC ol_2
END INTERFACE

CONTAINS
SUBROUTINE E l l ip t i c _ S o l v e r _ 0 (p v e c , q v e c , fv e c ,b n d r y v e c ,h a ,h b , u)

USE ntype
USE u t i l
IMPLICIT NONE
REAL(PREC), DIMENSIONC:, : , :) ,TARGET,INTENT(IN) :: pvec
REALCPREC), DIMENSIONC:, :) .TARGET,INTENTCIN) :: q v ec ,fv ec ,&

bndryvec
REALCPREC), INTENTCIN) :: ha,hb
REALCPREC), DIMENSIONC: , :) , INTENTCOUT) :: u

!C: LOCAL VARIABLES
REALCPREC), DIMENSIONC:,:), POINTER :: m_a, m_b
REALCPREC), DIMENSIONC:), POINTER :: m_u
INTEGER, DIMENSI0NCCSIZECu,l)-2)*CSIZECu,2)-2)):: indx
REALCPREC) :: dump, tm p ,d e l ta
INTEGER :: j , m , n , i , k

ptr_p=>pvec
ptr_q=>qvec
p tr_ f= > fv ec
ptr_bndry=>bndryvec
mgrid=SIZECu,l)
ngrid=SIZECu,2)
m=mgrid-2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

172

n=ngrid-2
hx = ha/(m +l)
hy = hb/(n+1)
d e l ta = 4 . 0_prec*hx*hy

C: COMPUTE the parameters
C: OF THE DIFFERENCE EQUATION
C:
C: l o w e r _ l e f t * U (i - l , j - 1) + lo w er_ d ia g * U (i , j - 1) &
C: + lo w e r _ r ig h t* U (i+ l , j - 1) + m id d l e _ l e f t * U (i - l , j) &
C: + m id d le_ d ia g * U (i , j) + m id d Ie _ r ig h t* U (i+ l , j) &
C: + u p p e r _ l e f t * U (i - l , j+1) + u pper_d iag*U (i,j+ 1) &
C: + u p p e r _ r ig h t* U (i+ l , j+1) = rhs
C: AND PACKED THEM TO THE MATRIX m_a

C; COMPUTE rh s , SAVE IT IN u

u=0.0_prec
u (l , l : n + 2) = getRow(pb, 1, 1, n+2)
u (2 :m + l , l) = getC oK pb, 1, 2, m+1)
DO j= 2 , n+1

u (2 ;m + l ,j) = getC olC pf, j , 2, m+1)
END DO
u(2:m +l, n+2) = getC oK pb, n+2, 2 , m+1)
u(m +2,l:n+2) = getRow(pb,m+2, l ,n + 2)

u (2 ,2 :n + l) = u (2 ,2 : n + l) - lo w e r _ le f t (R D W ,2 ,2 ,n + l) * u (l , 1 ;n) &
-m iddle_left(RO W , 2 , 2 , n+1)*u(1 , 2 : n+1) &
-upper_left(ROW, 2 , 2 , n+1) *u(1 , 3 : n+2)

u(m +l, 2 :n+l)= &
u(m+1 , 2 : n+1) -lower_right(ROW,m+1 , 2 , n+1) *u(m+2, 1 : n) &
-m id d le_ r ig h t (ROW,m+l ,2,n+l)=t=u(m+2,2:n+l) &
-upper_right(ROW ,m +l,2,n+l)*u(m +2,3:n+2)

u (2 :m + l ,2)= u (2 :m + l,2) - lo w e r _ le f t (C O L ,2 ,2 ,m + l)* u (l :m ,l) &
- low er_ d ia g (C 0 L ,2 ,2 ,m + l)* u (2 :m + l,1) &
-low er_right(C O L, 2 , 2 ,m + l)*u (3 :m+2,1)

u(2:m +l,n+l)=&
u (2 :m + i,n + l) -u p p er _ le f t (C D L ,n + l ,2 ,m + l)* u (l :m ,n + 2) &
-upper_diag(CO L,n+l, 2 , m+1)*u(2:m+l,n+2) &
-upper_right(COL, n+1, 2 , m + 1) (3 :m+2, n+2)

tmp = - ((p p (2 ,2 , l) + p p (2 , l , 2)) * 0 . 5 _ p r e c + p p (2 , 2 , 2)) / d e l t a
u (2 ,2) = u (2 ,2) + tm p * u (l , l)
tmp = ((p p (2 ,2 ,n + 2) + p p (2 , l ,n + l)) * 0 .5 _ p r e c + p p (2 ,2 , n + l)) / d e l t a
u (2 ,n + l)= u (2 ,n + l)+ tm p * u (l ,n + 2)
tmp = ((p p (2 ,m + l , l)+ p p (2 ,m + 2 ,2))* 0 .5 _ p r e c + p p (2 ,m + l, 2)) / d e l t a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

173

u(m +l, 2)=u(m+l,2)+tmp*u(m+2,1)
tmp ((pp(2 ,m+l,n+2) + p p (2 ,m + 2 ,n + l)) * 0 . 5_prec &

+ p p (2 ,m + l ,n + l)) / d e l t a
u(m+l,n+l)=u(m+l,n+l)+tmp*u(m+2,n+2)

!C: PACK the parameters IN m_a

m_a => createArray(m*n, 2* (m + l)+ l, ’E l l ip t i c _ S o l v e r — m_a’)
m_a=0. 0_prec
DO j=2 , n

m_a((j-1)*m +2:j* m ,l)= lo w e r _ le f t (C O L ,j+ 1 , 3 , m+1)
m_a((j -1)* m + i:j*m ,2)= low er_diag(C G L ,j+1, 2 ,m+l)
m_a((j -1)* m + l:j+m -1, 3) = low er_right(C O L ,j+1, 2,m)

END DO
DO j = l , n

m_a((j-1)*m + 2:j*m ,m + l)= m iddle_ left(C O L ,j+ 1 , 3 ,m+l)
m_a((j -1)+ m + l:j*m,m+2)=middle_diag(COL,j+1, 2 ,m+l)
m_a((j -1)* m + l:j*m -l,m +3)=m iddle_right(C O L ,j+1, 2,m)

END DO
DO j = l , n-1

m_a((j - 1) *m+2:j*m, 2*m+1)=upper_left(CO L, j + 1 ,3 ,m+l)
m_a((j - l) + m + l :j*m,2+m+2)=upper_diag(C0L,j+1, 2 ,m+l)
m_a((j -1)* m + l:j*m -l,2*m +3)=upper_right(C O L,j+1, 2 , m)

END DO

!C: CALL SUBROUTINE bandec FOR LU DECOMPOSITION

m_b => createArray(m*n, m+1, ’E l l i p t i c _ S o l v e r — m_b’)
c a l l bandec(m_a,m+1,m+l,m_b,indx,dump)

!C: ADJUST u FOR BACKWARD AND FORWARD SUBSTITUTION

m_u => createArray(m*n, ’E l l ip t i c _ S o l v e r — m_u’)
DO j = l , n

n i_u ((j- l)*m + l: j*m)=u(2:m +l, j + 1)
END DO
c a l l banbks(m_a,m+1,m+1,m_b,indx,m_u)

!C: ADJUSTBACK THE SOLUTION

DO j = l , n
u (2 :m + l, j+ l)= m _ u ((j -1)* m + l;j*m)

END DO

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

174

CALL RELEASE_MEMORY(m_a, ’E l l ip t i c _ S o l v e r — m_a’)
CALL RELEASE_MEMORY(m_b, ’E l l ip t i c _ S o l v e r — m_b’)
CALL RELEASE_MEMORY(m_u, 'E l l ip t i c _ S o lv e r — m_u’)

END SUBROUTINE E l l ip t ic _ S o lv e r _ 0

SUBROUTINE bandec(a ,m l,m 2, a l , indx ,d)
USE ntype
use u t i l
IMPLICIT NONE
REALCPREC).DIMENSIONC; , :) , INTENTCINOUT): :a
INTEGER,INTENTCIN): :ml,m2
REALCPREC).DIMENSIONC:, :) . INTENTCOUT): :a l
INTEGER.DIMENSIONC:) . INTENTCOUT): : indx
REALCPREC).INTENTCOUT): :d
REALCPREC). PARAMETER ; : TINY=1. 0e-20_prec

INTEGER: : i .k .l .m d u m .in in .n .i i
REALCPREC): idum
REALCPREC). DIMENSION Cml+m2+l) :: temp

n=SIZECa.l)
mm=ml+m2+l
mdum=ml

aC l:m l . :)=eoshif tCaCl:mi. :) , shif t=arthCml.- l .ml) .d im =2)
d=1.0
do k=l .n

l=minCml+k,n)
i=imaxloc Cabs CaCk: 1 . 1))) +k-l
dum=aCi,1)
i f Cdum ==0.0)aCk.l)=TINY

indxCk)=i
i f Ci /=k)then

d=-d
temp C1:mm)=a Ck.1 :mm)
aCk.1 :mm)=aCi, 1 :mm)
aCi, 1 :mm)=tempCl:mm)

end i f
do i = k + l . l

dum=aCi,l) /aCk.1)
alCk.i-k)=dum
aCi, 1 :mm-l)=aCi, 2 :mm)-dum*aCk.2 :mm)
aCi.mm)=0.0

end do

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

175

end do
END SUBROUTINE bandec

SUBROUTINE banbks(a ,m l,m 2, a l , indx ,b)
USE ntype
USE u t i l
IMPLICIT NONE
REALCPREC).DIMENSIONC:INTENTCIN): : a ,a l
INTEGER, INTENTCIN) : :inl,m2
INTEGER.DIMENSIONC:).INTENTCIN); : indx
REALCPREC).DIMENSIONC:).INTENTCINOUT): :b

INTEGER: : i . k . I . mdum,mm. n . i i
REALCPREC) :: temp

n=SIZECa.l)
mm=ml+m2+l
mdum=ml
do k = l ,n

l=minCn.ml+k)
i=indxCk)
i f Ci /=k) then

temp=bCi)
bCi)=bCk)
bCk)=temp

end i f
b Ck+1:1)=b Ck+1:1) -a lC k. 1 : 1-k)*b Ck)

end do
do i = n . l . - l

l=minCmm.n-i+l)
bCi) = CbCi)-dot_product CaCi. 2 : 1) .bC l+ i: i + 1 - 1))) /a C i . 1)

end do
END SUBROUTINE banbks

FUNCTION imaxlocCarray)
USE ntype
IMPLICIT NONE
REALCPREC). DIMENSIONC:). INTENTCIN) :: array

INTEGER :: imaxloc
INTEGER. DIMENSIONCl) :: imax

imax=maxloc Carray C:))
imaxloc=imaxCl)

END FUNCTION

FUNCTION getRow_lCfunc. i , bg. ed)
USE ntype

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

176

USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) :: i , bg, ed
REALCPREC), DIMENSIONCbg:ed) :: getRow_l
INTERFACE

FUNCTION funcCa,b)
USE ntype
IMPLICIT NONE
INTEGER, INTENTCIN) :: a, b
REALCPREC) :: func
END FUNCTION

END INTERFACE

INTEGER :: k
i f Ced <= bg) c a l l Error &

C’The ending p o in t should be b ig g er than &
the beg in n in g p o in t in ’getRow_lO

DO k=bg, ed
getRow_1 Ck)=func C i , k)
END DO

END FUNCTION getR ow.1

FUNCTION getRow_2Cfunc, k, i , bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) :: k, i , bg, ed
REALCPREC), DIMENSIONCbg:ed) :: getRow_2
INTERFACE

FUNCTION fu n cC a ,b ,c)
USE ntype
IMPLICIT NONE
INTEGER, INTENTCIN) a , b, c
REALCPREC) ;: func
END FUNCTION

END INTERFACE

INTEGER :: m
i f Ced <= bg) c a l l Error &

C’The ending p o in t should be b ig g er thein &
the b eg in n in g p o in t in ’getRow_2’)

getRow_2 = C /C funcC k,i,m), m =bg,ed)/)
END FUNCTION getRow_2

FUNCTION g e tC o l . lC fu n c , j , bg, ed)
USE ntype

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

177

USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) j , bg, ed
REALCPREC), DIMENSIONCbg;ed) :: ge tC oI_ l
INTERFACE

FUNCTION funcCa,b)
USE ntype
IMPLICIT NONE
INTEGER, INTENTCIN) :: a, b
REALCPREC) :: func
END FUNCTION

END INTERFACE

INTEGER :: k
i f Ced <= bg) c a l l Error &

C’The ending p o in t should be b ig g e r than
the b eg inn ing p o in t in ’g e t C o I _ l ’)

getC oI_ l = C/C funcC k,j), k = b g ,e d) /)
END FUNCTION getC oI_l

FUNCTION getCoI_2Cfnnc, k, i , bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) k, i , bg, ed
REALCPREC), DIMENSION(bg:ed) :: getC ol_2
INTERFACE

FUNCTION fu n cC a,b ,c)
USE ntype
IMPLICIT NONE
INTEGER, INTENTCIN) :; a , b , c
REALCPREC) :: func
END FUNCTION

END INTERFACE

INTEGER :: m
i f Ced <= bg) c a l l Error &

C’The ending p o in t should be b ig g e r than
th e b eg inn ing p o in t in ’g e tC o l_ 2 ’)

getC ol_2 = C/CfuncCk,m,i), m =bg,ed)/)
END FUNCTION getCol_2

FUNCTION lo w e r . I e f t C f la g , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

178

INTEGER, INTENTCIN) :: f l a g , k, bg, ed
REALCPREC), DIMENSIONCbg:ed) :: Io w e r_ le ft

ifCed <= b g) c a l l Error &
C'The ending p o in t should be b igger than &

the b eg inn ing p o in t in 'Io w e r _ Ie f tO
SELECT CASE Cflag)
CASE CROW)

Io w e r _ le f t = - CgetRowCpp, 2 , k , b g - l , e d - 1) * 0 .5_prec &
+ getR o w C p p ,2 ,k - l ,b g ,ed)* 0 .5 _ p rec &
+ getRowCpp, 2 ,k , b g , e d)) / C4. 0_prec*hx*hy)

CASE CCOL)
lo w e r _ le f t = - C g e tC o lC p p ,2 ,k - l ,b g ,ed)* 0 .5 _ p re c &

+ g e tC o lC p p ,2 ,k ,b g - l ,e d - l)* 0 .5 _ p r e c &
+ getColCpp, 2 , k , b g , e d)) / C4. 0_prec*hx*hy)

END SELECT
END FUNCTION lo w e r . I e f t

FUNCTION low er_d iagC flag , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g , k, bg, ed
REALCPREC), DIMENSIONCbg:ed) :: lower_diag

ifCed <= b g) c a l l Error &
C’The ending p o in t should be b ig g er than &

the b eg in n in g p o in t in ’lo w er_ d ia g ’)
SELECT CASE Cflag)
CASE CROW)

lo w er .d ia g = CgetRowCpp,2,k+l,bg,ed) fe
- getR ow C p p ,2 ,k -l ,b g ,ed)) /C 4 .0_p rec*h x*h y) &

- CgetRowCpp,3,k,bg,ed) &
+ getRowCpp,3 , k ,b g - 1 ,e d - l)) /h y * * 2

CASE CCOL)
lo w er .d ia g = C getC olC p p ,2 ,k ,bg+ l,ed+ l) &

- g e tC o lC p p ,2 ,k ,b g - l ,e d - l)) /C 4 .0 _ p r e c * h x * h y) &
- C getC olC pp,3 ,k ,bg ,ed) &
+ g e tC o lC p p ,3 ,k - l ,b g ,e d)) /h y * * 2

END SELECT
lowGr_diag=lower_diag*0. 5_prec

END FUNCTION low er_diag

FUNCTION lo w er_ r ig h tC f la g , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g , k, bg, ed

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

179

REALCPREC), DIMENSION(bg:ed) :: Iow er_right
ifCed <= b g) c a l l Error &

('The ending p o in t should be b ig g er than &
th e beginn ing p o in t in ’I o w e r _ r ig h t’)

SELECT CASE (f la g)
CASE (ROW)

low er_r igh t = (g e tR o w (p p ,2 ,k ,b g - l ,e d - l)* 0 .5 _ p r e c
+ g e tR o w (p p ,2 ,k + l ,b g ,ed)* 0 .5 _ p rec &
+ getRow(pp, 2 , k , b g , e d)) / (4 . 0_prec*hx*hy)

CASE (COL)
Iow er_right = (g e tC o l(p p ,2 , k - l , b g , e d) * 0 . 5_prec S

+ g e tC oI(p p , 2 ,k , b g + l , ed+1)* 0 . 5_prec &
+ g e tC o l(p p , 2 , k , b g , e d)) / (4 . 0_prec*hx*hy)

END SELECT
END FUNCTION low er_r igh t

FUNCTION u p p e r _ le f t (f l a g , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g , k, bg, ed
REALCPREC), DIMENSION(bg:ed) :: u p p er_ Ie ft

i f (e d <= b g) c a l l Error &
(’The ending p o in t should be b ig g er than &

the b eg in n in g p o in t in ’u p p e r _ le f t ’)
SELECT CASE (f la g)
CASE (ROW)

u p p e r _ le f t = (g e tR o w (p p ,2 ,k ,b g + l ,e d + l)* 0 .5 _ p r e c
+ getRow(pp,2 , k - l ,b g ,e d) * 0 .5 _ p r e c &
+ getRow(pp, 2 , k , b g , e d)) / (4 . 0_prec*hx*hy)

CASE (COL)
u p p e r _ le f t = (g e tC o l(p p ,2 , k + l ,b g ,e d)* 0 .5 _ p r e c &

+ g e tC o l(p p ,2 , k ,b g - l , e d - l) * 0 . 5 _ p r e c &
+ g e tC o l(p p , 2 , k , b g , e d)) / (4 . 0_prec*hx*hy)

END SELECT
END FUNCTION u p p e r _ le f t

FUNCTION u p p e r _ d ia g (f la g , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g , k, bg, ed
REALCPREC), DIMENSION(bg;ed) :: up per .d iag

i f (e d <= b g) c a l l Error &
(’The ending p o in t should be b ig g er than &

th e b eg in n in g p o in t in ’u p per_d iag’)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

180

SELECT CASE (f la g)
CASE (ROW)

upper_diag = (getRow(pp,2 , k - l , b g , e d) &
- getRow(pp, 2 , k + l ,b g ,e d)) / (4 . 0_prec*hx*hy) &
- (getRow(pp,3 , k ,b g ,e d) &
+ g e tR o w (p p ,3 ,k ,b g + l ,e d + l)) /hy**2

CASE (COL)
upper_diag = (getCoKpp ,2 , k , b g - l , ed-1) &

- g e tC o l(p p ,2 ,k ,b g + l ,e d + l)) / (4 .0 _ p r e c * h x * h y) &
- (g e tC o l(p p ,3 ,k ,b g ,e d) &
+ g e tC o l(p p ,3 ,k + l ,b g ,e d)) /h y * * 2

END SELECT
upper_diag=upper_diag*0. 5_prec

END FUNCTION upper_diag

FUNCTION u p p e r _ r ig h t (f la g , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENT(IN) f l a g , k, bg, ed
REAL(PREC), DIMENSION(bg:ed) u p p e r .r ig h t

i f (e d <= b g) c a l l Error &
('The ending p o in t should be b ig g e r than &

the b eg in n in g p o in t in : ’ , ’u p p e r _ r ig h t’)
SELECT CASE (f la g)
CASE (ROW)

upper_right = - (getRow(pp,2 , k ,b g + l ,e d + l)* 0 .5 _ p r e c &
+ getRow(pp,2 , k + l ,b g ,e d)* 0 .5 _ p r e c &
+ getRow(pp, 2 , k , b g , e d)) / (4 . 0_prec*hx*hy)

CASE (COL)
upper_right = - (g e tC o I (p p ,2 ,k + l ,b g ,e d)* 0 .5 _ p r e c &

+ g e tC o I (p p ,2 ,k ,b g + l ,e d + l)* 0 .5 _ p r e c &
+ g e t C o I (p p , 2 ,k ,b g , e d)) / (4 . 0_prec*hx*hy)

END SELECT
END FUNCTION upper_right

FUNCTION m id d le _ l e f t (f l a g , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENT(IN) :: f l a g , k, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: m id d le . I e f t

i f (e d <= b g) c a l l Error &
(’The ending p o in t should be b ig g e r than &

th e b eg inn ing p o in t in ’m i d d l e . I e f t ’)
SELECT CASE (f la g)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

181

CASE (ROW)
m id d le _ le f t = (g e tR o w (p p ,2 ,k ,b g + l ,ed + l) &

- getRow(pp, 2 , k , b g - 1 , e d - 1)) / (4 . 0_prec*hx*hy)
- (getR ow(pp,1 ,k ,b g ,e d) &
+ getR ow(pp,1 ,k - l ,b g ,e d)) / h x * * 2

CASE (COL)
m id d le _ le f t = (g e tC o l (p p ,2 ,k + l ,b g ,e d) &

- getC oK p p , 2 , k - l ,b g , e d)) / (4 . 0_prec*hx*hy) &
- (g e tC o l(p p ,1 ,k ,b g ,e d) &

+ getC oK pp, 1 ,k , b g - l , e d - l)) /hx**2
END SELECT
m id d le _ le f t= m id d le _ le f t* 0 . 5_prec

END FUNCTION m i d d le . l e f t

FUNCTION m id d le _ d ia g (f la g , k, bg, ed)
USE ntype
USE u t i l
IMPLICIT NONE
INTEGER, INTENT(IN) :: f l a g , k, bg, ed
REAL(PREC), DIMENSION(bgted) :: m id d le .d ia g

i f (e d <= b g) c a l l Error &
('The ending p o in t should be b ig g er than &

th e b eg inn ing p o in t in : ’ , ’m id d le_d iag ’)
SELECT CASE (f la g)

CASE (ROW)
m iddle_diag = getR ow (p q ,k ,bg ,ed) &

+ (g e tR o w (p p ,l ,k + l ,b g ,e d)* 0 .5 _ p r e c &
+ getR ow (p p ,l , k - l ,b g ,e d) * 0 .5 _ p r e c &
+ getR ow (pp,l ,k ,bg ,ed))/hx*=t:2 &

+ (getRow(pp,3 , k ,b g + l ,e d + i)* 0 .5 _ p r e c &
+ g e tR o w (p p ,3 ,k ,b g - l , e d - l)* 0 .5 _ p r e c &
+ getRow (pp, 3 , k,bg,ed))/hy*=f=2

CASE (COL)
in iddle_diag = g e tC o l(p q ,k ,b g ,e d) &

+ (g e t C o l (p p , l ,k ,b g + l ,e d + l) * 0 .5 _ p r e c &
+ g e t C o l (p p , l ,k ,b g - 1 , e d - i) * 0 .5 _ p r e c &
+ g e t C o l (p p , l , k , b g , e d)) / hx**2 &

+ (g e tC o l(p p ,3 , k + l ,b g ,e d)* 0 .5 _ p r e c &
+ g e t C o l (p p ,3 ,k - l ,b g ,e d)* 0 .5 _ p r e c k
+ g e tC o l(p p ,3 , k ,b g ,e d)) /h y * * 2

END SELECT
END FUNCTION m iddle_diag

FUNCTION m id d le _ r ig h t (f la g , k, bg, ed)
USE ntype
USE u t i l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

182

IMPLICIT NONE
INTEGER, INTENTCIN) :: f l a g , k, bg, ed
REALCPREC), DIMENSIONCbg:ed) m idd le_r igh t

ifCed <= b g) c a l l Error &
C'The ending p o in t should be b igger than &

the b eg inn ing p o in t in 'm id d le _ r ig h t ’)
SELECT CASE Cflag)

CASE CROW)
m id d le_r igh t = C g e tR o w C p p ,2 ,k ,b g - l ,e d - l) &

-getRowCpp,2 ,k , b g + l , ed+1)) / C4. 0_prec*hx*hy) &
- CgetRowCpp,l,k,bg,ed) &

+ g e tR o w C p p ,i ,k + l ,b g ,ed)) /h x * * 2
^CASE CCOL)

m id d le_r igh t = C getC olC pp,2 , k -1 ,b g ,e d) &
- getC olC pp,2 , k + 1 ,b g ,ed)) /C 4 .0_p rec*h x*h y) &
- C g e tC o lC p p , l ,k ,b g ,e d) &
+ getColCpp, 1 , k ,b g + l , ed+1)) /hx**2

END SELECT
m id d le_ r ig h t= in id d le_ r ig h t* 0 . 5_prec

END FUNCTION m id d le_r igh t

FUNCTION p p C k , i , j)
USE ntype
IMPLICIT NONE

INTEGER, INTENTCIN) k , i , j
REALCPREC) :: pp

pp = p tr_p C k ,i,j)
END FUNCTION pp

FUNCTION p q C i,j)
USE ntype
IMPLICIT NONE

INTEGER, INTENTCIN) :: i , j
REALCPREC) ;: pq

pq=ptr_qC i,j)
END FUNCTION pq

FUNCTION p f C i , j)
USE ntype
IMPLICIT NONE

INTEGER, INTENTCIN) :: i , j
REALCPREC) :: pf

p f= p tr _ fC i . j)
END FUNCTION pf

FUNCTION p b C i.j)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

183

USE ntype
USE u t i l
IMPLICIT NONE

INTEGER, INTENTCIN) :: i , j
REALCPREC) :: pb

IF Ci == 1) THEN
pb=ptr_bndry C1 , j)

ELSE IF Ci == mgrid) THEN
pb=ptr_bndry C2, j)

ELSE IF Cj == 1) THEN
pb=ptr_bndryC3, i)

ELSE IF Cj == NGRID) THEN
pb=ptr,_bndryC4, i)

ELSE
CALL ErrorC’In fu n c t io n pb’ , ’Wrong parameter i or j ’)

END IF
END FUNCTION pb

END MODULE e l l s o v

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

184

E.3. Fortran code; subroutine of quadratic interpolation

MODULE quad2d
USE ntype
IMPLICIT NOME

PRIVATE
PUBLIC quad2d_qgaus
REAL(PREC) :: x sa v ,y sa v
INTERFACE

FUNCTION fu n c_2d (x ,y)
USE ntype
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x
REALCPREC), DIMENSIONC:), INTENTCIN) :: y
REALCPREC), DIMENSIONCsizeCy)) :: func_2d

END FUNCTION func_2d

FUNCTION yl_2dCx)
USE ntype
REALCPREC), INTENTCIN) :: x
REALCPREC) :: yl_2d

END FUNCTION y l_2d

FUNCTION y2_2dCx)
USE ntype
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x
REALCPREC) :: y2_2d

END FUNCTION y2_2d
END INTERFACE

CONTAINS
FUNCTION hCx)

IMPLICIT NONE
REALCPREC), DIMENSIONC:), INTENTCIN) :: x
REALCPREC), DIMENSIONCsizeCx)) :: h
INTEGER :: i

do i= l , s i z e C x)
xsav=xCi)
hCi)=qgausCf,yl_2dCxsav),y2_2dCxsav))

end do
END FUNCTION h

FUNCTION fCy)
IMPLICIT NONE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

185

REALCPREC), DIMENSIONC:), INTENTCIN) :: y
REALCPREC), DIMENSIQNCsizeCy)) :: f
in te g e r :: k

do k = l ,s iz e C y)
end do
f=func_2dCxsav,y)

END FUNCTION f

RECURSIVE FUNCTION qgausC func,a ,b)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a ,b
REALCPREC) :: qgaus

INTERFACE
FUNCTION funcCx)

USE ntype
IMPLICIT NONE
REALCPREC), DIMENSIONC:), INTENTCIN) :: x
REALCPREC), DIMENSIONCsizeCx)) :: func

END FUNCTION func
END INTERFACE
REALCPREC) :: xm,xr
REALCPREC), DIMENSIONC5) :: dx, &

w = C/ 0 .2955242247_prec ,0 .2692667193_p rec ,l
0 . 2190863625_prec, 0 . 1494513491_prec, (
0.0666713443_prec /) ,&

X = C/ 0 .1488743389_prec,0 .4333953941_prec,J
0 . 6794095682_prec, 0 . 8650633666_prec, i
0.9739065285_prec /)

xm=0. 5_prec* Cb+a)
xr= 0 . 5_prec* Cb-a)
dxC:)=xr*xC:)
qgaus=xr*sumCwC:)* CfuncCxm+dx)+funcCxm-dx)))

END FUNCTION qgaus

SUBROUTINE quad2d_qgaus Cxi, x 2 , s s)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x l , x 2
REALCPREC). INTENTCOUT) :: s s

ss=qgaus C h ,x l , x2)
END SUBROUTINE quad2d_qgaus

END MODULE quad2d

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

186

E.4. Fortran code: subroutine of Sim pson’s rule

MODULE Simpson
USE ntype
IMPLICIT NONE
PRIVATE
PUBLIC quad2d
INTEGER :: mgrid, ngrid
REAL(PREC) :: xsav,ysav
REAL(PREC) :: xmin, xmax, ymin, ymax
REALCPREC), DIMENSIONC:, :) , POINTER :: pf

CONTAINS

FUNCTION hCx)
REALCPREC), INTENTCIN): :x
REALCPREC): :h

REALCPREC) :: sum
INTEGER :: mstep

mstep=mgrid-l
xsav=x
CALL qsimpyCg, mstep, ylCxsav), y2Cxsav), sum)
h=sum

END FUNCTION h

FUNCTION ylCx)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x
REALCPREC) :: y l

yl=ymin
END FUNCTION y l

FUNCTION y2Cx)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x
REALCPREC) :: y2

y2=ymax
END FUNCTION y2

FUNCTION gCy)
USE u t i l , ONLY : b l i t p
IMPLICIT NONE
REALCPREC), INTENTCIN) :: y

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

187

REALCPREC) :: g

ysav=y
g = b l i t p (x s a v ,y s a v ,p f , xmin,ymin,xmax-xmin,ymax-yrain)

END FUNCTION g

SUBROUTINE qs im px(func, n s t e p , a , b , sum)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a , b
REALCPREC), INTENTCOUT) ;; sum
INTEGER, INTENTCINOUT) :: n step
INTERFACE
FUNCTION funcCx)

USE ntype
IMPLICIT NONE
REALCPREC), INTENTCIN) x
REALCPREC) :: func

END FUNCTION
END INTERFACE

INTEGER :: i
REALCPREC) :: h

i f (MOD(nstep,2) /=0) n s te p = nstep+1
h=C b-a)/nstep
sum=func(a)+func Cb)
DO i= 2 ,n s t e p ,2

sum=sum+4. 0 _ p r e c * fu n c (a + h * (i -1))
END DO
DO i = 3 , n s t e p - l , 2

sum=sum+2. 0 _ p r e c * fu n c (a + h * (i -1))
END DO
sum=sum*h/3. 0_prec

END SUBROUTINE qsimpx

SUBROUTINE qsim py(func, n s t e p , a , b , sum)
IMPLICIT NONE
REALCPREC), INTENTCIN)
REALCPREC), INTENTCOUT)
INTEGER, INTENTCINOUT)
INTERFACE
FUNCTION funcCx)

USE ntype
IMPLICIT NONE

a, b
: sum
n ste p

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

188

REALCPREC), INTENTCIN) :: x
REALCPREC) ;: func

END FUNCTION
END INTERFACE

INTEGER :; i
REALCPREC) ; : h

i f CMOD Cnstep,2) /= 0) n step = n step + l
h=C b-a)/nstep
sum=func Ca)+func Cb)
DO 1=2,n s t e p , 2

sum=sum+4. 0_prec*func Ca+h* C i-1))
END DO
DO i = 3 , n s t e p - l , 2

sum=sum+2. 0_prec*func Ca+h* C i-1))
END DO
sum=suin*h/3. 0_prec

END SUBROUTINE qsimpy

SUBROUTINE quad2dCfunc,a,b,h.a, hb, sum)
IMPLICIT NONE
REALCPREC) :: a ,b ,h a ,h b ,su m
REALCPREC), DIMENSIONC:,:), INTENTCIN), TARGET :: func
INTEGER :: n s tep

mgrid=SIZECfunc,1)
ngrid=SIZECfunc,2)
xmin=a
xmax=a+ha
ymin=b
ymax=b+hb
pf=>func
n s te p = n g r id - l
CALL qs impx Ch, n s t e p , xmin, xmax, sum)

END SUBROUTINE quad2d

END MODULE simpson

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

189

E.5. Fortran code: subroutine of utility functions

MODULE u t i l
USE ntype
INTERFACE error

MODULE PROCEDURE Error1
END INTERFACE
INTERFACE ASSERT_EQ

MODULE PROCEDURE ASSERT_EQ_2, ASSERT_EQ_3, ASSERT_EQ_4, ASSERT_EQ_5,&
ASSERT_EQ_6, ASSERT_EQ_7

END INTERFACE
INTERFACE createArray

MODULE PROCEDURE c r e a te A r r a y _ l , crea teA rray_2 , crea teA rray_3 , &
crea teA rray_4 , createA rray_5 , createArray_6

END INTERFACE
INTERFACE RELEASE.MEMORY

MODULE PROCEDURE RELEASE_MEM0RY_1,RELEASE_MEM0RY_2,RELEASE_MEM0RY_3
END INTERFACE
INTERFACE outer_prod

MODULE PROCEDURE outer_prod l
END INTERFACE
INTERFACE d ia g n a l_ a s s ig n

MODULE PROCEDURE d ia g n a l_ a s s ig n l
END INTERFACE

INTERFACE show
MODULE PROCEDURE show_1 , show_2, show_3, show_4, show_5, show_6, show_7

END INTERFACE

INTERFACE arth
MODULE PROCEDURE a r th l ,a r th _ d

END INTERFACE

INTERFACE lo c a te
MODULE PROCEDURE l o c a t e l , lo c a te 2

END INTERFACE

INTERFACE to S tr in g
MODULE PROCEDURE t o S t r in g l

END INTERFACE

INTERFACE b l i t p
MODULE PROCEDURE b l i t p l , b l i t p 2 , b l i t p 3 , b l i t p 4 , b l i t p 5 , b l i t p 6 , b l i t p 7

END INTERFACE

INTERFACE p lo t t i n g

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

190

MODULE PROCEDURE p lo t _ v e c l , p lo t_ v e c 2 , p l o t . f u n c , p lo t _ r e a l , &
p lo t 1 , p l o t 2 , p l o t s , p l o t 4 , p l o t _ I d

END INTERFACE

INTERFACE c o n ta in in g
MODULE PROCEDURE con ta in s 1

END INTERFACE

INTERFACE computeError
MODULE PROCEDURE computeError.1, computeError_2, computeError.O

END INTERFACE

INTERFACE lapIaceTransform
MODULE PROCEDURE lapIaceTransform l

END INTERFACE

INTERFACE put
MODULE PROCEDURE p u t l

END INTERFACE

INTERFACE qsimp
MODULE PROCEDURE qsim pl, qsimp2

END INTERFACE

INTERFACE pack
MODULE PROCEDURE p a ck l, pack2, packS

END INTERFACE

INTERFACE unpack
MODULE PROCEDURE unpackl, unpack2, unpacks

END INTERFACE

INTERFACE p o s i t i v e
MODULE PROCEDURE p o s i t i v e l

END INTERFACE

INTERFACE smooth
MODULE PROCEDURE smoothl

END INTERFACE

INTERFACE s p l i t
MODULE PROCEDURE s p I i t 2 , s p I i t S , s p l i t 4

END INTERFACE

INTERFACE p o l in t

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

191

MODULE PROCEDURE p o l i n t l , p o l i n t 2
END INTERFACE

INTERFACE im inloc
MODULE PROCEDURE im in lo c 1 , im in loc2

END INTERFACE

INTERFACE geop
MODULE PROCEDURE geopl

END INTERFACE

CONTAINS

SUBROUTINE E r r o r l (s t r i n g l , s t r in g 2)
CHARACTER(LEN=*) , INTENT(IN) :: s t r i n g l , s t r in g 2

WRITE(*,*) s t r i n g l
WRITE(*,*) s t r in g 2 , ’ * * * ’

!CALL EXIT(l)
STOP ’PROGRAM TERMINATED BY AN ERROR’

END SUBROUTINE Errorl

FUNCTION cre a teA rra y _ l(n , s t r in g)
INTEGER, INTENTCIN) n
REALCPREC), DIMENSIONC:), POINTER :: createA rray_ l
CHARACTERCLEN=*) , INTENTCIN) :: s t r in g

REALCPREC), DIMENSIONC:), TARGET, ALLOCATABLE array
INTEGER :: i e r r

A llocateC arrayC n), STAT=ierr)
IF C ierr/=0) THEN

CALL ErrorC’ALLOCATION REQUEST IS DENIED I N : ’ , s t r in g)
END IF
cre a te A r r a y .1 => array

END FUNCTION c r e a te A r r a y .1
FUNCTION createArray.2Cm, n , s t r in g)

INTEGER, INTENTCIN) :: m, n
REALCPREC). DIMENSIONC:,:), POINTER ;: cr e a te A r r a y .2
CHARACTERCLEN=*) , INTENTCIN) :: s t r in g

REALCPREC), DIMENSIONC:,:), TARGET, ALLOCATABLE :: array
INTEGER ;: i e r r

A llocateCarrayCm ,n), STAT=ierr)
IF C ierr/=0) THEN

CALL ErrorC’ALLOCATION REQUEST IS DENIED I N : ’ , s t r in g)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

192

END IF
createArray_2 => array

END FUNCTION createArray_2
FUNCTION createArray_3(m, n, r , s t r in g)

INTEGER, INTENT(IN) :: m, n, r
REAL(PREC), DIMENSIONC;, : , , POINTER :: createArray_3
CHARACTER(LEN=*) , INTENT(IN) s t r in g

REAL(PREC), DIMENSIONC:, ; , ;) , TARGET, ALLOCATABLE ;; array
INTEGER ;; i e r r

A l lo c a te (a r r a y (m ,n ,r) , STAT=ierr)
IF (ie r r /= 0) THEN

CALL E r r o r (’ALLOCATION REQUEST IS DENIED I N ; ’ , s t r in g)
END IF
createArray_3 => array

END FUNCTION createArray_3
FUNCTION crea teA rray_4(l ,m , n, r , s t r in g)

INTEGER, INTENT(IN) ;; l , m, n, r
REAL(PREC), DIMENSIONC;, ; , ; , ;) , POINTER ;; createA rray_4
CHARACTER(LEN=*), INTENT(IN) ;; s t r in g

REAL(PREC), DIMENSIONC; TARGET, ALLOCATABLE ;; array
INTEGER ;; i e r r

A l lo c a te (a r r a y (1 , m , n , r) , STAT=ierr)
IF (ie r r /= 0) THEN

CALL E r r o r (’ALLOCATION REQUEST IS DENIED I N ; ’ , s t r in g)
END IF
createArray_4 => array

END FUNCTION createA rray_4
FUNCTION c r e a te A r r a y _ 5 (l ,m ,n ,r ,s , s t r in g)

INTEGER, INTENT(IN) ;: l , m , n , r , s ,
REAL(PREC), DIMENSIONC: POINTER :; createA rray_5
CHARACTER(LEN=*), INTENT(IN) ;; s t r in g

REAL(PREC), D I M E N S I O N C T A R G E T , ALLOCATABLE :; array
INTEGER ;; i e r r

A l lo c a te (a r r a y (I ,m ,n ,r ,s) ,S T A T = ie r r)
IF (ie r r /= 0) THEN

CALL E r r o r (’ALLOCATION REQUEST IS DENIED I N : ’ , s t r in g)
END IF
createArray_5 => ARRAY

END FUNCTION createArray_5
FUNCTION c r e a te A r r a y _ 6 (m ,s tr l , s tr 2)

INTEGER, INTENT(IN) :; m
INTEGER, DIMENSIONC:) , POINTER ;; createArray_6
CHARACTER(LEN=*) , INTENT(IN) ;; s t r l , s t r 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

193

INTEGER, DIMENSIONC;), TARGET, ALLOCATABLE :: array
INTEGER :: i e r r

A llo c a te (a r r a y (m) , STAT=ierr)
IF (ie r r /= 0) THEN

CALL E r r o r (’ALLOCATION REQUEST IS DENIED I N: ’ , s tr 2)
END IF
createArray_6 => array

END FUNCTION createArray_6

SUBROUTINE ASSERT_EQ_2(nl, n 2 , s t r in g)
INTEGER, INTENT(IN) ;; n l , n2
CHARACTER(LEN=*) , INTENT(IN) :: s t r in g

IF (n l/= n 2) THEN
CALL E r r o r (’THE INPUT ARRAYS ARE NOT CONFORMAL I N: ’ , s t r in g)

END IF
END SUBROUTINE
SUBROUTINE ASSERT_EQ_3(nl, n 2 , n 3 , s t r in g)

INTEGER, INTENT(IN) :: n l , n2, n3
CHARACTER(LEN=*), INTENT(IN) :: s t r in g

CALL ASSERT_EQ_2(nl,n2,string)
CALL ASSERT_EQ_2(nl,n3,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_4(nl, n 2 , n 3 , n 4 , s t r in g)

INTEGER, INTENT(IN) :: n l , n2, n3, n4
CHARACTER(LEN=*), INTENT(IN) :: s t r in g

CALL ASSERT_EQ_3(nl, n 2 , n 3 , s t r in g)
CALL ASSERT_EQ_2(nl,n4,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_5(nl, n 2 , n 3 , n 4 ,n 5 , s t r in g)

INTEGER, INTENT(IN) :: n l , n2, n3, n4,n5
CHARACTER(LEN=*), INTENT(IN) :: s t r in g

CALL ASSERT_EQ_4(nl, n 2 , n 3 , n 4 , s t r in g)
CALL ASSERT_EQ_2(nl,n5,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_6(nl, n 2 , n 3 , n 4 , n 5 , n 6 , s t r in g)

INTEGER, INTENT(IN) :: n l , n2, n3, n 4 ,n 5 ,n 6
CHARACTER(LEN=*), INTENT(IN) :: s t r in g

CALL A SSER T_EQ _5(nl,n2,n3,n4,n5,string)
CALL ASSERT_EQ_2(nl,n6,string)

END SUBROUTINE
SUBROUTINE ASSERT_EQ_7(nl, n 2 ,n 3 , n 4 , n 5 , n 6 , n 7 , s t r in g)

INTEGER, INTENT(IN) :: n l , n2, n3, n 4 ,n 5 ,n 6 ,n 7
CHARACTER(LEN=*), INTENT(IN) :: s t r in g

CALL ASSERT_EQ_6(nl, n 2 , n 3 , n 4 , n 5 , n 6 , s t r in g)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

194

CALL ASSERT_EQ_2(nl,n6,string)
END SUBROUTINE

SUBROUTINE RELEASE_MEM0RY_1(p, s t r in g)
REAL(PREC), DIMENSIONC:), POINTER :: P
CHARACTER(LEN=*) , INTENT(IN) :: s t r in g

INTEGER :; i e r r
IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
!IF (ie r r /= 0) THEN

! WRITE(* ,*) ’DEALLOCATION REQUEST IS DENIED IN ’
! WRITE(* ,*) s t r in g

!END IF
END SUBROUTINE RELEASE_MEM0RY_1
SUBROUTINE RELEASE_MEM0RY_2(p, s t r in g)

REAL(PREC), DIMENSIONC:,:), POINTER :: p
CHARACTER(LEN=*) , INTENT(IN) :: s t r in g

INTEGER :: i e r r
IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
!IF (ie r r /= 0) THEN

! WRITE(* ,*) ’DEALLOCATION REQUEST IS DENIED IN’
! WRITEC*,*) s t r in g

!END IF
END SUBROUTINE RELEASE_MEM0RY_2
SUBROUTINE RELEASE_MEM0RY_3(p, s t r in g)

REAL(PREC), DIMENSIONC: POINTER :: p
CHARACTER(LEN=*), INTENT(IN) :: s t r in g
INTEGER :: i e r r

IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
!IF (ie r r /= 0) THEN

! WRITEC*,*) ’DEALLOCATION REQUEST IS DENIED IN’
! WRITE(* ,*) s t r in g

!END IF
END SUBROUTINE RELEASE_MEM0RY_3

SUBROUTINE sh o w _ l(s tr in g)
CHARACTER(LEN=*) , INTENT(IN) :: string

T j n y T ' l ? ^

WRITEC*,*) s t r in g
T .T T) “V ^ ^ }yy i\X X

END SUBROUTINE show .l

SUBROUTINE s h o w _ 2 (s t r in g l , s t r in g 2)
CHARACTER(LEN=*), INTENT(IN) :: s t r i n g l , s t r in g 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

195

WRITE(*,*) s t r i n g 2 , s t r i n g l
END SUBROUTINE show_2

SUBROUTINE show_3(x , s t r i n g)
REAL(PREC), INTENT(IN) :: x
CHARACTER(LEN=*) , INTENT(IN) s t r i n g

WRITE (* , *) s t r i n g , ’ = x
END SUBROUTINE show_3

SUBROUTINE show_4(x, s t r i n g)
REAL(PREC), DIMENSIONC;), INTENT(IN) x
CHARACTER(LEN=*) , INTENT(IN) :: s t r i n g
INTEGER k

DO k = l , SIZE(x)
c a l l show(xCk), s t r i n g)

END DO
END SUBROUTINE show_4

SUBROUTINE show_5(x , s t r i n g)
REAL(PREC), DIMENSIONC:,:), INTENT(IN) :: x
CHARACTERCLEN=*), INTENTCiN) :: s t r i n g
INTEGER :: j

DO j = l , SIZECx,2)
WRITEC*,*) ’ J = ’ , j
CALL SHOWCxC:,j), s t r i n g)

END DO
END SUBROUTINE show_5

SUBROUTINE show_6(x, s t r i n g)
REALCPREC), DIMENSIONC: , : , :) , INTENTCIN) :: x
CHARACTERCLEN=*) , INTENTCiN) :: s t r i n g
INTEGER :: k

DO k=l , SIZECx,3)
WRITEC*,*) 'K = ’ , k
c a l l s h o w C x C , k) , s t r i n g)

END DO
END SUBROUTINE show_6

SUBROUTINE show_7(n, s t r i n g)
CHARACTERCLEN=*), INTENT(IN) :: s t r i n g
INTEGER :: n

WRITEC*,*) s t r i n g , ’ = ’ , n
END SUBROUTINE show_7

FUNCTION o u ter_ p ro d l (a ,b)
REALCPREC), DIMENSIONC:), INTENTCIN) :: a ,b

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

196

REALCPREC), DIMENSION(sizeCa), s i z e (b)) :: o u t e r _ p r o d l
ou te r_ p ro d l = s p r e a d C a , d i m = 2 , n c o p i e s = s i z e (b)) * &

s p r e a d (b , d i m = l , n c o p i e s = s i z e (a))
END FUNCTION o u t e r _ p r o d l

SUBROUTINE d i a g n a l _ a s s i g n l (m a t , vec)
REALCPREC), DIMENSIONC:,;), INTENT(OUT) :: mat
REALCPREC), DIMENSIONC:), INTENTCIN) :: vec

CALL ASSERT_EQCSIZECmat,l), SIZECmat, 2) , SIZECvec) , &
’d i a g n a l _ a s s i g n l ')

mat=0.0_prec
DO k=0, s i z e C v e c)

matCk,k)=vecCk)
END DO

END SUBROUTINE d i a g n a l _ a s s i g n l

FUNCTION a r t h _ d C f i r s t , increment,n)
REALCPREC), INTENTCIN) :: f i r s t , increment
INTEGER, INTENTCIN) :; n
REALCPREC), DIMENSIONCn) :: arth_d
INTEGER :: k,k2
REALCPREC) :: temp
INTEGER, PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8

i f Cn > 0) a r t h _ d C D = f ir s t
i f Cn <= NPAR.ARTH) then

do k=2,n
arth_d Ck)=arth_d Ck-1) +increment

end do
e l s e

do k=2,NPAR2_ARTH
arth_d Ck)=arth_d Ck-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

i f Ck >= n) e x i t
k2=k+k
arth_d Ck+1:min Ck2, n)) =temp+arth_d C1:min Ck, n - k))
temp=temp+temp
k=k2

end do
end i f

END FUNCTION a r t h .d

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

197

FUNCTION a r t h l (f i r s t , in crem en t , n)
IMPLICIT NONE
INTEGER, IMTENT(IN) :: f i r s t , in c r e m e n t , n
INTEGER, DIMENSIONCn) ;; a r t h l

INTEGER :: k
i f (n<=0) c a l l E r r o r (’ INVALID DIMENSION IN: \ ’ a r t h l ’)
a r t h l (l) = f i r s t
DO k=2, n

a r t h l (k) = a r t h l (k - 1) + i n c r e m e n t
END DO

END FUNCTION a r t h l

FUNCTION t o S t r i n g l (i n t)
IMPLICIT NONE
INTEGER, INTENTCIN) i n t
CHARACTERCLEN=8) :: t o S t r i n g l
CHARACTER(LEN=1), DIMENSION(1 0) , PARAMETER :: &

c h a r = (/ ’0 ’ , ’ 1 ’ , ’2 ’ , ’3 ’ , ’4 ’ , ’5 ’ , ' 6 ’ , ’7 ’ , ’8 ’ , ’9 ’ /)
INTEGER n, k

IF(int>99999999.0R. in t<0) THEN
CALL E rro r (’argument out of bound’ , ’t o S t r i n g l ’)

END IF
n=int
k=l
DO w h i le (n >0)

t o S t r i n g l = c h a r (m o d (n , 1 0) + 1) / / t o S t r i n g l
n=n/10
k=k+l

END DO
DO n=k, 8

t o S t r i n g l = c h a r (1) / / t o S t r i n g l
END DO

END FUNCTION t o S t r i n g l

FUNCTION l o c a t e l (x x , x)
IMPLICIT NONE
REALCPREC), DIMENSIONC:), INTENT(IN) :: xx
REALCPREC), INTENTCIN) :: x
INTEGER :: l o c a t e l

INTEGER :: n , j l , j m , j u
LOGICAL :: ascnd

n = s iz e (x x)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

198

ascnd = (xx(n) >= x x (D)
j l= 0
ju=n+l
DO WHILE (j u - j l > 1)

j m = (ju + j l) /2
IF (ascnd .eqv. (x >= xx (jm))) THEN

ELSE
ju=jm

END IF
END DO
IF (x == XX(D) THEN

; l o c a t e l = l
ELSE IF (x == XX(n)) THEN

l o c a t e l = n - l
ELSE

l o c a t e l = j l
END IF

END FUNCTION l o c a t e l

FUNCTION l o c a t e 2 (x x . x)
IMPLICIT NONE
REAL, DIMENSIONC;), INTENT(IN) :: xx
REAL, INTENTCIN) :: x
INTEGER :: l o c a te 2

INTEGER :: n , j u
LOGICAL :: ascnd

n = s iz e (x x)
ascnd = (xx(n) >= x x (l))
j l= 0
ju=n+l
DO WHILE (j u - j l > 1)

j m = (j u + j l) / 2
IF (ascnd .eqv. (x >= xx (jm))) THEN

j l=jm
ELSE
ju=jm

END IF
END DO
IF (x == x x (D) THEN

l o c a te 2 = l
ELSE IF (x == XX(n)) THEN

l o c a te 2 = n - l
ELSE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

199

l o c a t e 2 = j l
END IF

END FUNCTION l o c a t e 2

FUNCTION b l i t p l (x l , x 2 , v e c , a , b , h a , hb)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: x l , x 2 , a , b , h a , h b
REALCPREC), DIMENSIONC: , :) , INTENTCIN):: vec
REALCPREC) :: b l i t p l

REALCPREC) :: y l , y 2 , y 3 , y 4 , t , u , h x , h y
INTEGER :: m,n, j , k

m=SIZECvec, 1) - 1
n=SIZECvec,2)-l
hx=ha/m
hy=hb/n
j=minCmaxCint Cm* C x l - a) / h a) + l , 1) ,m)
k=minCmaxCint Cn* C x 2 -b) /h b)+ l , 1) ,n)

y l=vecCj ,k)
y2=vecCj+l ,k)
y3=vec Cj+1,k+l)
y4=vecCj,k+l)
t=C x l - Ca + hx*Cj- l))) /hx
u=C x2 - Cb + hy*Ck-i))) /h y

b l i t p l = C l . 0 _ p r e c - t) * Cl. 0 _ p rec -u)* y l+ t* C1 . 0_prec-u)*y2+t*u*y3
+ C l .0 _ p rec - t)* u * y 4

END FUNCTION b l i t p l

FUNCTION b l i t p 2 C x l , x 2 , v e c , a , b , h a , h b)
IMPLICIT NONE
REAL, INTENTCIN) :: x l , x 2 , a , b , h a , h b
REAL,DIMENSIQNC;. :) , INTENTCIN):: vec
REAL :: b l i t p 2

REAL :: y l , y 2 , y 3 , y 4 , t , u , h x , h y
INTEGER :: m,n, j , k

m=SIZECvec,l)- l
n=SIZECvec,2)-l
hx=ha/m
hy=hb/n

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

200

j=min(max(ixit (m* (x l - a) / h a) + l ,1) ,m)
k = m in (m ax(in t (n *(x2-b) /h b)+ 1 , 1) ,n)

y l = v e c (j , k)
y 2 = v e c (j + l ,k)
y 3 = v ec (j+ 1 ,k + l)
y 4 = v e c (j ,k + l)
t = (x l - (a + h x * (j - l))) / h x
u=(x2 - (b + h y * (k - l))) / h y

b l i t p 2 = (l , 0 - t) * (l . 0 - u) + y l + t * (l . 0-u)*y2+t*u*y3 &
+ (1 .0 - t)+ u + y 4

END FUNCTION b l i t p 2

FUNCTION b l i t p 3 (x l , x 2 , v e c , a , b , h a , hb)
IMPLICIT NONE
REAL, INTENT(IN) :: x l , x 2
REAL(PREC), INTENT(IN) :: a , b ,h a ,h b
REAL,DIMENSION(:, ;) , INTENT(I N) :: vec
REAL :; b l i t p S

b l i t p 3 = b l i t p 2 (x l , x 2 , v e c , r e a l (a) , r e a l (b) , r e a l (h a) , r e a l (h b))
END FUNCTION b l i t p S

FUNCTION b l i t p 4 (x l , x 2 , v e c , a , b , h a , h b)
IMPLICIT NONE
REAL, INTENT(IN) :: x l , x 2
REAL(PREC), INTENT(IN) a , b ,h a ,h b
REAL(PREC),DIMENSION(:, :) , INTENT(I N) :; vec
REAL ;: b l i t p 4

b l i t p 4 = b l i t p l (R E A L (x l , KIND=PREC), REAL(x2, KIND=PREC), &
v e c , a , b , h a , h b)

END FUNCTION b l i t p 4

FUNCTION b l i t p S (x l , x 2 , x 3 , v e c , a , b , c , h a , h b , h e)
IMPLICIT NONE
REAL, INTENT(IN)
REAL, INTENT(IN)
REAL,DIMENSIONC:,
REAL :: b l i t p S

: x l , x 2 , x 3
: a , b , c , h a , h b , h e
, :) , INTENTCIN):: vec

REAL,DIMENSI0NC8) :: y
REAL :: t , u , w , h x , h y , h z
INTEGER :: l , m , n , i , j , k

l = S I Z E C v e c , l) - l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

201

m=SIZE(vec ,2)- l
n =S IZ E (vec ,3) - l
hx=ha/l
hy=hb/m
hz=hc/n
i=miii(max(int (1* (x l - a) /ha) + 1 ,1) ,1)
j= m in (m a x (in t (m * (x 2 -b) /h b)+ l , 1) ,m)
k = m i n (m a x (i n t (n * (x 3 - c) /h c) + l , 1) ,n)
y (l) = v e c (i , j , k)
y (2) = v e c (i + l , j , k)
y (3) = v e c (i + l , j + l , k)
y (4) = v e c (i , j + l , k)
y (5) = v e c (i , j , k + l)
y (6) = v e c (i + l , j , k + l)
y (7) = v e c (i + 1 , j+ 1 ,k + l)
y (8) = v e c (i , j + l , k + l)
t = (x l - (a + h x * (i - l))) / h x
u=(x2 - (b + h y * (j - D)) / h y
w=(x3 - (c + h z * (k - l))) / h z

b l i t p 5 = (l - w) * ((l - u) * ((l - t) * y (l) + t * y (2)) + u * (t * y (3) + (l - t) * y (4))) S
+w * ((l - u) * ((l - t) * y (5) + t * y (6)) + u * (t * y (7) + (l - t) * y (8)))

END FUNCTION b l i t p S

FUNCTION b l i t p S (x 1 , x 2 , x 3 , v e c , a , b , c , h a , h b , he)
IMPLICIT NONE
REAL, INTENTCIN) :: x l , x 2 , x 3
REALCPREC), INTENTCIN) :: a , b , c , h a , h b , h c
REALCPREC), DIMENSION(; , : , :) , INTENT(IN):; vec
REAL :: b l i t p S

REAL :: a l , b l , c l , h a l , h b l , h c l
al=REALCa)
bl=REALCb)
cl=REALCc)
hal=REALCha)
hbl=REAL(hb)
hcl=REAL(hc)
b l i t p 6 = b l i t p 5 (x l , x 2 , x 3 , REAL(vec), a l , b l , c l , h a l , h b l , h c l)

END FUNCTION b l i t p S

FUNCTION b l i t p 7 (x 1 , x 2 , x 3 , v e c , a , b , c , h a , h b , he)
IMPLICIT NONE
REALCPREC), INTENTCIN)
REALCPREC), INTENTCIN)
REALCPREC), DIMENSIONC:,

: x l , x 2 , x 3
: a , b , e , h a , h b , h e
, :) , INTENTCIN):: vee

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

202

REAL(PREC) :: b l i t p 7
bl itp7=REAL(blitp6(REAL(xl) ,REAL(x2) ,REAL(x3)

v e c ,a ,b ,c ,h a ,h b ,h c) ,K I N D = P R E C)
END FUNCTION b l i t p 7

SUBROUTINE p l o t _ f u n c (f u n c , f i l e N a m e , a , b , h a , h b , MGRID.NGRID)
IMPLICIT NONE
CHARACTER(LEN=*) :: f i l e N am e
REALCPREC), INTENTCIN) a , b , h a , h b
INTEGER. INTENTCIN) MGRID.NGRID
INTERFACE

FUNCTION funcC x .y)
USE ntype
REALCPREC), INTENTCIN) :: x , y
REALCPREC) func

END FUNCTION
END INTERFACE

REALCPREC) x , y , hx .hy
INTEGER :; i , j

hx=ha/CMGRID-l)
hy=hb/CNGRID-l)

OPEN C4, f i l e = f i l e N a m e / / ’ . d a t ’)
WRITEC4,*) ’TITLE=V/fi leName
WRITEC4,*) 'VARIABLES="X'' "Y" "Z"’
WRITEC4,*) 'ZONE I = ’ . m g r i d , ' , J = ’ , n g r i d , ’ , C=BLUE’
DO i = l , mgrid

X = a + C i - l)*h x
DO j = l , n gr id

y = b + (j - l) * h y
WRITEC4,*) X, y , REALCfuncCx,y),KIND=PREC)

END DO
END DO
CLOSE C4, STATUS='keepO

END SUBROUTINE p l o t . f u n c

SUBROUTINE p l o t 1 (home, name, NUM, v e c , i n t , a ,b , h a ,hb)
IMPLICIT NONE

CHARACTERCLEN=*).INTENTCIN) :: home
CHARACTER(LEN=*).DIMENSIONC:).INTENTCIN) :: name
INTEGER. INTENTCIN) :: NUM.int

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

203

REAL(PREC), DIMEMSIOM(: INTEMT(IN) ;: vec
REALCPREC), INTENTCIN) :: a ,b ,h a ,h b

CHARACTERCLEN=8) :: s t r
s t r = to S tr in g C in t)
IF Cint<10) THEN

CALL PLOTTINGChome, name, NUM, v e c , s t r C8; 8) , a , b , h a , hb)
ELSE IF Cint<100) THEN

CALL PLOTTINGChome,name,NUM,vec,strC7:8) , a ,b ,h a ,h b)
ELSE IF Cint<1000) THEN

CALL PLOTTING Chome, name, NUM, v e c , s t r C6: 8) , a , b , h a , hb)
ELSE IF Cint<10000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC5:8) , a ,b ,h a , h b)
ELSE IF Cint<100000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC4:8) , a ,b ,h a , h b)
ELSE IF Cint<1000000) THEN

CALL PLOTTING Chome, name, NUM, v e c , s t r C3; 8) , a , b , h a , hb)
ELSE IF Cint<10000000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC2;8),a,b,ha,hb)
ELSE IF Cint<100000000) THEN

CALL PLOTTING Chome, name, NUM, ve c , s t r C l : 8) , a , b , h a , h b)
END IF

END SUBROUTINE p l o t l

SUBROUTINE p l o t 2 Chome, name, NUM, v e c , i n t , a , b ,h a , hb)
IMPLICIT NONE

CHARACTERCLEN=*) , INTENTCIN) home
CHARACTERCLEN=*), DIMENSIONC:).INTENTCIN) name
INTEGER, INTENTCIN) :: NUM,int
REALCPREC), DIMENSIONC;,:,:, :), INTENT(IN) :; vec
REALCPREC), INTENTCIN) :: a ,b ,h a ,h b

CHARACTERCLEN=8) :: s t r
s t r = to S tr in g C in t)
IF Cint<10) THEN

CALL PLOTTINGChome,name,NUM,vec,strC8:8) ,a ,b ,h a , h b)
ELSE IF Cint<100) THEN

CALL PLOTTINGChome,name,NUM,vec,strC7;8) ,a ,b ,h a , h b)
ELSE IF Cint<1000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC6:8) , a ,b ,h a , h b)
ELSE IF Cint<10000) THEN

CALL PLOTTINGChome,name,NUM,vec,strC5:8) ,a ,b ,h a , h b)
ELSE IF Cint<100000) THEN

CALL PLOTTING Chome, name, NUM, v e c , s t r C4: 8) , a , b , h a , hb)
ELSE IF Cint<1000000) THEN

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

204

CALL PLOTTING(home,name,NUM,vec,Str(3 : 8) , a , b , h a , h b)
ELSE IF (in t<1000000G) THEN

CALL PLOTTING(home, name, NUM, v e c , s t r (2 : 8) , a , b , h a , hb)
ELSE IF (in t< 1 0 0 0 0 0 0 0 0) THEN

CALL PLOTTING(home, name, NUM, v e c , s t r (1 ; 8) , a , b , h a , hb)
END IF

END SUBROUTINE p l o t 2

SUBROUTINE p l o t S (h o m e , name, NUM, v e c , s t r , a , b , h a , hb)
IMPLICIT NONE

INTEGER, INTENT(IN) :: NUM
CHARACTER(LEN=*),INTENT(IN) home
CHARACTER(LEN=*),DIMENSION(:) , INTENT(IN)
CHARACTER(LEN=*) , INTENT(IN) :: s t r
REAL(PREC), DIMENSION(:, : , :) , INTENT(IN)
REAL(PREC), INTENT(IN) :: a ,b ,h a ,h b
CHARACTER(LEN=1).DIMENSION(1 0) .PARAMETER

c h l = (/ ’0 ' , ' 1 ' , ’2 ' , \ ' 5 ^ ’6 ' , '7'
CHARACTER(LEN=3), DIMENSION(IOO), PARAMETER

c h 2 = (/ ’0 0 1 ’
' 0 1 0 ’
'019 '

name

vec

: &

’8 ' . ’9 V)

'028'
'037'
'046'
'055'
'064'
'073'
'082'
’091'
' 100 ' /)

' 0 0 2 '

' Oi l '
' 0 2 0 '

'029'
'038'
'047'
'056'
'065'
'074'
'083'
'092'

'003'
' 0 1 2 '

' 0 2 1 '

'030'
'039'
'048'
'057'
'066'
'075'
'084'
'093'

'004'
'013'
' 02 2 '

’0 3 1 ’
’0 4 0 ’
’0 4 9 ’
’0 5 8 ’
’0 6 7 ’
’0 7 6 ’
’0 8 5 ’
’0 9 4 ’

’0 0 5 ’
’0 1 4 ’
’0 2 3 ’
’0 3 2 ’
’0 4 1 ’
’0 5 0 ’
’ 0 5 9 ’
’0 6 8 ’
’0 7 7 ’
’0 8 6 ’
’0 9 5 ’

’0 0 6 ’
’0 1 5 ’
’024 ’
’0 3 3 ’
’0 4 2 ’
’0 5 1 ’
’0 6 0 ’
’0 69 ’
’0 7 8 ’
’0 87 ’
’ 096 ’

’0 0 7 ’
’0 1 6 ’
’0 2 5 ’
’0 3 4 ’
’0 4 3 ’
’0 5 2 ’
’0 6 1 ’
’0 7 0 ’
’0 7 9 ’
’0 8 8 ’
’0 9 7 ’

’008
’017
’026
’035
’044
’053
’062
’071
’080
’089
’098

’0 0 9 ’ ,&
’0 1 8 ’ ,&
’0 2 7 ’ ,&
’0 3 6 ’ ,&
’0 4 5 ’ ,&
’0 5 4 ’ ,&
’0 6 3 ’ ,&
’0 7 2 ’ ,&
’0 8 1 ’ ,&
’0 9 0 ’ ,&
’0 9 9 ’ ,&

INTEGER :: k

DO k=l,NUM
CALL PLGT_VECl(vec(k,: , :) , h o m e / / ’PC/’ / / s t r / / ’_ ’/ /&

name(1) / / c h i (k + 1) , ’ ’ , a ,b , h a , h b)
END DO
CALL PLOT_VECl(vec(NUM+l,: , :) , h o m e / / ’PC/’ / / s t r / / ’_ ’ / /&

n am e(2) , ’ ’ , a ,b ,h a , h b)
DO k=l,SIZE(vec, l)-NUM-1

CALL PLOT_VECl(vec(NUM+l+k,: , :) . h o m e / / ’PC/’ / / s t r / / ’ _ ’ / / &
n a m e (3) / / c h 2 (k) , ’ ’ , a ,b ,h a , h b)

END DO
END SUBROUTINE p lo tS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

205

SUBROUTINE p l o t 4 (h o m e , name, NUM, v e c , s t r , a , b , h a , hb)
IMPLICIT NONE

CHARACTER(LEN=*), INTENTCIN) :: home
CHARACTER(LEN=*).DIMENSIONC:).INTENTCIN) :: name
INTEGER. INTENTCIN) :: NUM
CHARACTER(LEN=*). INTENT(IN) :: s t r
REALCPREC). D IM EN SIO N C: , : . : , :) , INTENT(IN) :: vec
REALCPREC). INTENTCIN) :: a . b . h a . h b
CHARACTER(LEN=1) . DIMENSION(2 0) . PARAMETER

c h l = C / ' 0 ' , ’ 1 ’ . ’2 ’ ’ 3 ’> i ’4 ’ , ’5 , ' 6 ’ , ’7 ’ . ’8 , ’9 ’ /)
iRACTERCLEN=3), DIMENSIONClOO) PARAMETER : &
ch2=C/’001’ , ’002’ , ’003’ . ’004’ ’005’ . ’006’ ’007’ . ’008’ ’009’ &

’010’ . ’O i l ’ . ’012’ . ’013’ ’014’ , ’015’ ’016’ . ’017’ ’018’ &
’019’ . ’020’ . ’021’ . ’022’ ’023’ , ’024’ ’025’ . ’026’ ’027’ &
’028’ . ’029’ . ’030’ . ’031’ ’032’ , ’033’ ’034’ , ’035’ ’036’ &
’037’ . ’038’ . ’039’ , ’040’ ’041’ , ’042’ ’043’ . ’044’ ’045’ &
’046’ . ’047’ . ’048’ . ’049’ ’050’ , ’051’ ’052’ . ’053’ ’054’ &
’055’ , ’056’ , ’057’ , ’058’ ’059’ , ’060’ ’061’ , ’062’ ’063’ &
’064’ , ’065’ , ’066’ , ’067’ ’068’ , ’069’ ’070’ , ’071’ ’072’ &
’073’ . ’074’ , ’075’ , ’076’ ’077’ . ’078’ ’079’ , ’080’ ’081’ k
’082’ , ’083’ , ’084’ . ’085’ ’086’ . ’087’ ’088’ , ’089’ ’ 0 9 0 ’ k
’091’ , ’092’ , ’093’ . ’094’ ’095’ , ’096’ ’097’ . ’098’ ’099’ k
’ lOOV)

INTEGER :: k l , k 2
DO k l = l . s i z e C v e c . 1)

DO k2=l.NUM
CALL PL0T_VECl(vec(kl.k2, : , :) . h o m e / / ’P C / V / s t r / / ’_ ’ &

/ / n a m e (l) / / c h l (k 2 + l) / / ’_ V / c h 2 (k l) , ’ ’ , a ,b ,h a , h b)
END DO
CALL PLOT.VECKvecCkl.NUM+1.: , :) . h o m e / / ' P C / V / s t r / / ’_ ’ &

/ / n a m e (2) / / ’_ ' / / c h 2 (k l) , ' ' . a .b .h a .h b)
CALL PL0T_VECl(vec(kl,NUM+2,: , :) , h o m e / / ' P C / V / s t r / / ' _ ' &

/ / n a m e (3) / / ' _ V / c h 2 (k l) , ’ ’ . a .b .h a . h b)
CALL PL0T_VECl(vec(kl,NUM+3,: , :) , h o m e / / ’P C / V / s t r / / ’ _ ’ &

/ / n a m e (4) / / ' _ ’ / / c h 2 (k l) , ' ' , a .b .h a .h b)
END DO

END SUBROUTINE p l o t 4

SUBROUTINE p l o t . v e c K v e c . f i l eNam e,STR ,a .b .ha .hb)
IMPLICIT NONE
CHARACTER(LEN=*) :: f ileName.STR
REALCPREC), DIMENSIONC: , :) , INTENT(IN) :: vec
REALCPREC), INTENTCIN) :: a , b ,h a ,h b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

REALCPREC) x , y , h x ,h y
INTEGER :: i , j , m, n

m=SIZE(vec,1)
n=SIZ E(vec ,2)
hx=ha/ (m-1)
h y = h b / (n -1)

OPEN (4 , f i l e = f i l e N a m e / / ' . d a t ')
WRITEC4,*) ’TITLE=’ / / f i l e N am e/ /S T R
WRITE(4,*) 'VARIABLES="X" "Y" "Z"’
WRITE(4,*) ’ZONE J=’ , n , ’ , C=BLUE’
DO i = l , m

X = a + (i - l) * h x
DO j = l , n

y = b + (j - l) * h y
WRITE(4,*) X, y. REAL(vec(i,j),KIND=PREC)

END DO
END DO
CLOSE(4, STATUS=’k eep ’)

END SUBROUTINE p l o t _ v e c l

SUBROUTINE p l o t _ v e c 2 (v e c , f i l eN am e ,S T R ,a ,b ,ha ,h b)
IMPLICIT NONE
CHARACTER(LEN=*) :: fi leName.STR
REALCPREC), DIMENSIONC:.:,;), INTENT(IN) :: vec
REALCPREC), INTENTCIN) :: a .b .h a .h b

INTEGER :: n . i
CHARACTERCLEN=8) :: sn

n = S I Z E (v e c , l) ;
IF Cn==l) THEN

CALL PLOTTINGCVECC1 , : , :) , f i l eN am e .S T R ,a .b .ha .h b)
ELSE

c a l l p lo t t in g C v e c C l , : . :) . f i l e N a m e / / ’_ l l ’ .STR ,a .b .h a .hb)
c a l l p l o t t in g C v e c C 2 . : . :) . f i l e N a m e / / ’_ 1 2 ’ .STR ,a .b .h a .hb)
c a l l p l o t t i n g (v e c C 3 . : . :) . f i l e N a m e / / ’_ 2 2 ’ .S I R .a .b .h a .h b)

END IF
END SUBROUTINE p lo t_ v e c 2

SUBROUTINE p l o t _ r e a l (v e c . f i l eN am e .ST R .a .b .h a .h b)
IMPLICIT NONE
CHARACTER(LEN=*) :: fileName.STR
REAL. DIMENSIONC:. :) . INTENT(IN) :: vec
REALCPREC). INTENTCIN) :: a .b .h a .h b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

REAL ;: x , y , h x ,h y
INTEGER :: i , j , m, n

m =SIZE(vec , l)
n=SIZ E (vec ,2)
hx=ha/ (m-1)
h y = h b / (n - l)

OPEN (4, f i l e = f i l e N a m e / / ' . d a t ')
WRITE(4,*) ’TITLE=’/ / f i leMame//STR
WRITE(4,*) ’VARIABLES="X" "Y" "Z"’
WRITE(4,*) ’ZONE C=BLUE’
DO i = l , ra

X = a + (i - l) * h x
DO j = l , n

y = b + (j - l) * h y
WRITE(4,*) X, y , REAL(vec(i , j) ,KIND=PREC)

END DO
END DO
CLOSE(4, STATUS=’k eep ’)

END SUBROUTINE p l o t _ r e a l

SUBROUTINE p l o t _ l d (v e c , home, name, a , ha)
IMPLICIT NONE
CHARACTER(LEN=*) :: home,name
REALCPREC), DIMENSIONC:), INTENT(IN) :: vec
REALCPREC), INTENTCIN) :: a ,ha

REAL :: x, y , hx,hy
INTEGER :: i , m

m=SIZECvec)
hx=ha/Cm-1)

OPEN (4, f i l e = h o m e / / n a m e / / ’ . d a t ’)
WRITEC4,*) ’TITLE=’//name
WRITEC4,*) ’VARIABLES="X" "Y" ’
WRITEC4,*) ’ZONE I = ’ , m , ’ , C=BLUE’
DO i = l , m

X = a + C i- l)*h x
WRITE(4,=t=) X , y, v e c (i)

END DO
CLOSEC4, STATUS=’k e e p ’)

END SUBROUTINE p l o t . l d

FUNCTION c o n t a i n s l Ci, vec)
IMPLICIT NONE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

INTEGER, INTENT(IN) :: i
INTEGER, DIMENSIONC;) :: vec
LOGICAL :: c o n t a i n s l

INTEGER ;: k
DO k = l , S I Z E (v e c , l)

IF (v e c (k) = = i) THEN
c o n t a i n s 1 = . TRUE.
RETURN

END IF
END DO
c o n t a i n s 1= .FALSE.
RETURN

END FUNCTION c o n t a i n s l

SUBROUTINE c o m p u te E r r o r _ 0 (v e c , a , b , h a , hb , t 1 , t 2 , func)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a , b , h a , h b , t l , t 2
REALCPREC), DIMENSIONC; , : , :) , INTENT(IN) :: vec
INTERFACE

FUNCTION f u n c (x , y , t)
USE ntype
REAL(PREC) :: x , y , t
REALCPREC) :: func

END FUNCTION
END INTERFACE

INTEGER :: n s t e p , n l , n 2 , l l , i , j , i e r r , j e r r
REALCPREC), DIMENSI0NCSIZE(vec,2) ,SIZE(vec,3)) :: v e c l
REAL(PREC) :: x , y , hx, h y , e r r , t
CHARACTER(LEN=12) :: f i l eName
CHARACTER(LEN=10) :: t i t l e

n step = S IZ E (vec , l)
nl=SIZE(vec,2)
n2=SIZE(vec,3)
h x = h a / (n l -1)
h y=hb /(n 2- l)

DO 11=1, n s te p
err=0.0_prec
t = t l + (t 2 - t l) * (l l - l) / (n s t e p - 1)
DO i = l , n l

x = a + h x * (i - l)
DO j = l , n 2

y= b+ hy*(j - l)
v e c l (i , j) = f u n c (x , y , t)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

I F (a b s (v e c l (i , j) - v e c (l l , i , j)) > err) THEN
e r r = a b s (v e c l (i , j) - v e c (1 1 , i , j))
i e r r = i
j err = j

END IF
END DO

END DO
fileName=’P C /er ro r . d a t ’
t i t l e = M i f f e r e n c e ’
CALL p l o t t i n g (v e c l (: , :) - v e c (l l , : , , ’P C /e r r o r . d a t ' , ’e r r o r ' ,&

a , b ,h a ,h b)
CALL p l o t t i n g (v e c l (: , :) , ’P C / v e c l . d a t ’ , ’v e c l ’ , a ,b ,h a ,h b)
CALL p l o t t i n g (v e c (: , :) , ’PC /vec . d a t ’ , ’v e c ’ , a ,b ,h a ,h b)
PRINT ’ THE ERROR IS : ’
PRINT =*=, ’ I = ’ , IERR, ’ J = ’ , JERR, ’ ERR = ’ , err
pause

END DO
STOP

END SUBROUTINE computeError.O

SUBROUTINE coniputeError_ l(u ,ux ,uy , u l , u l x , u l y , a , b , h a , h b)
IMPLICIT NONE
REAL(PREC), DIMENSION(:, : , , INTENT(I N) :: u , u x , u y , u l , u l x , u l y
REAL(PREC), INTENT(IN) :: a ,b ,h a ,h b

INTEGER :: n s t e p , n l , n 2 , 11
CALL a s s e r t _ e q (S I Z E (u , l) , S I Z E (u x , l) , S I Z E (u y , l) , &

S I Z E (u l ,1) ,S I Z E (u lx ,1) , S I Z E (u ly ,1) , ’ computeError’)
nstep=SIZE(u,1)
nl=SIZE(u,2)
n2=SIZE(u,3)
DO 11=1,n s te p

CALL p l o t t i n g (u (l l , : , :) - u l (l l , : , :) , &
’P C / e r r o r . d a t ’ , ’ e r r o r ’ , a ,b ,h a , h b)

CALL p l o t t i n g (u (l l , : , :) , ’P C / v e c .d a t ’ , ’v e c ’ , a ,b ,h a ,h b)
CALL p l o t t i n g (u l (l l , : , :) , ’P C / v e c l . d a t ’ , ’v e c l ’ , a ,b ,h a , h b)

CALL p l o t t i n g (u x (l l , : , :) - u l x (l l , : , :) , &
’P C /er rorx .d a t ’ , ’e r r o r x ’ , a , b , h a , hb)

CALL p l o t t i n g (u x (l l , : , :) , ’P C /v e c x .d a t ’ , ’v e c x ’ ,a ,b ,h a , h b)
CALL p l o t t i n g (u l x (1 1 , : , :) , ’P C / v e c x l . d a t ’ , ’v e c x l ’ , a ,b ,h a , h b)

CALL p l o t t i n g (u y (l l , : , :) - u l y (l l , : , :) , &
’P C /er ro r . d a t ’ , ’ e r r o r ’ , a , b , h a , hb)

CALL p l o t t i n g (u y (l l , : , :) , ’P C /v e c y .d a t ’ , ’v e c y ’ ,a ,b ,h a , h b)
CALL p l o t t i n g (u l y (1 1 , : , :) , ’PC/vecy1 . d a t ’ , ’v e c y l ’ , a ,b ,h a , h b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

PAUSE
END DO
STOP

END SUBROUTINE computeError_l

SUBROUTINE c o m p u te E r r o r _ 2 (v e c , a , b , h a , h b , t 1 , t 2 , f u n c)
IMPLICIT NONE
REALCPREC), INTENTCIN) :: a , b , h a , h b , t l , t 2
REAL, DIMENSIONC:,:, :) , INTENT(IN) ;: vec
INTERFACE

FUNCTION f u n c C x , y , t)
USE ntype
REAL :: x , y , t
REAL :: func

END FUNCTION
END INTERFACE

INTEGER :: n s t e p , n l , n 2 , 1 1 , i , j , i e r r , j e r r
REALCPREC), DIMENSI0NCSIZECvec,2),SIZECvec,3)) :: v e c l
REALCPREC) :; x , y , hx, h y , e r r , t
CHARACTERCLEN=12) :: f i leName
CHARACTERCLEN=10) :: t i t l e

n step = S IZ E (vec . l)
nl=SIZECvec,2)
n2=SIZECvec,3)
hx=ha/Cnl-1)
hy=hb/Cn2-1)

DO 11=1, n s tep
err=0 .0_prec
t = t l + C t 2 - t l) * C l l - 1) / (ns tep -1)
DO i = l , n l

x=a+hx*Ci-l)
DO j = l , n 2

y = b+ h y*(j - l)
ve c l (i , j)= R E A L (fu n c (r e a lC x) ,r e a l (y) ,r e a l (t)) ,K I N D = P R E C)
I F (a b s (v e c l (i , j) - v e c (l l , i , j)) > err) THEN

e r r = a b s (v e c l (i , j) - v e c (1 1 , i , j))
i e r r = i
i e r r = i

END IF
END DO

END DO
fi leN am e= ’P C /error . d a t '
t i t l e = ’d i f f e r e n c e ’
CALL p l o t t i n g C v e c l (: , :) - v e c (l l , : , :) , ’P C / e r r o r . d a t ’ , ’e r r o r ’ , l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211

a , b ,h a ,h b)
CALL p l o t t i n g C v e c l (: , :) , ' P C / v e c l . d a t ' , ’v e c l ' , a ,b , h a ,h b)
CALL p l o t t i n g (v e c (: , , ' P C / v e c . d a t ’ , ’v e c ’ ,a ,b ,h a , h b)
PRINT *, ’ THE ERROR IS : ’
PRINT ’ I = ’ , IERR, ’ J = ’ , JERR, ’ ERR = ’ , err
pause

END DO
STOP

END SUBROUTINE computeError_2

SUBROUTINE l a p l a c e T r a n s f o r m l (f u n c , t l , t 2 , lmd,u)
IMPLICIT NONE
REALCPREC), DIMENSIONC: INTENT(IN) ;: func
REALCPREC), DIMENSIONC:), INTENT(IN) :: Imd
REALCPREC), INTENTCIN) :: t l , t 2
REALCPREC), DIMENSIONC: , : , ;) , INTENT(OUT) :: u

INTEGER :: n s te p , m, n, l l , i , j , i t , nlmd
REALCPREC) :: lambda, t
REALCPREC), DIMENSIONCSIZECfunc,!)) :: f u n d

CALL assert_eqCSIZECu,1) , SIZEClmd,!) , ’la p laceT rans form ’)
CALL a sse r t_eq C S IZ E (u ,2) , SIZE(func, 2) la p laceT ran s form ’)
CALL asse r t_eq C S IZ E (u ,3) , SIZE(func ,3) , ’ l ap laceT rans form ’)

nstep=SIZE(func, 1) - 1
m=SIZE(func,2)
n=SIZE(func,3)
nlmd=SIZEClmd)
DO 11=1,nlmd

lambda=lmdCll)
DO i= l ,m
DO j = l , n

DO i t = l , n s t e p + l
t = t l + C t 2 - t l) * C i t - l) / n s t e p
f u n c 1 (i t) = f u n c C i t , i , j) *exp(-lambda*t)

END DO
c a l l q s i m p C f u n c l , t l , t 2 , u C l l , i , j))

END DO
END DO

END DO
END SUBROUTINE lap laceTransforml

SUBROUTINE q s i m p l (f u n c , a , b , s s)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

IMPLICIT NONE
REALCPREC), INTENT(IN) : : a , b
REALCPREC), DIMENSIONC:) :: func
REALCPREC), INTENTCOUT) :: s s

INTEGER n s t e p , i
REALCPREC) h

nstep=SIZECfunc)- 1
h = C b -a) /n s te p
ss= fun c CD +func Cnstep+1)
do i = 2 , n s t e p , 2

s s = s s + 4 . 0_prec*func Ci)
end do
do i = 3 , n s t e p - 1 ,2

ss=ss+2 . 0_prec*func CD
end do
s s= s s * h /3 .0 _ p r e c

END SUBROUTINE qsimpl

SUBROUTINE q s im p 2C fu nc ,a ,b ,s s)
IMPLICIT NONE
REAL, INTENTCIN) : : a , b
REAL, DIMENSIONC:) :: func
REAL, INTENTCOUT) :: s s

INTEGER n s t e p , i
REAL h

nstep=SIZECfunc)-l
h=Cb-a)/nstep
ss=func CD +func Cnstep+1)
do i = 2 , n s t e p , 2

s s = s s + 4 . 0*f unc CD
end do
do 1=3,n s t e p - 1 ,2

s s = s s + 2 . 0*func Ci)
end do
s s = s s * h / 3 .0

END SUBROUTINE qsimp2

SUBROUTINE p u t l Ck, vec)
IMPLICIT NONE
INTEGER, INTENTCIN) :: k
INTEGER, DIMENSIONC:), INTENTCINOUT) :: vec

INTEGER :: i
DO i=SIZECvec) - l , 1, -1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

v e c (i + l) = v e c (i)
END DO
v e c (1) =k

END SUBROUTINE p u t l

SUBROUTINE p a ck K v ec , mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC;), IMTENT(OUT) :: vec
REALCPREC), DIMENSIONC:), INTENTCIN) :: mat
INTEGER :: m

CALL assert_eqCSIZECvec), SIZECmat), ’p a c k l ’)
m=SIZECmat)
vec C1:m)=dble Cmat C1;m))

END SUBROUTINE packl

SUBROUTINE pack2Cvec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENTCOUT) :: vec
REALCPREC), DIMENSIONC:,:), INTENTCIN) :: mat
INTEGER :: k, m, n

CALL assert_eqCSIZECvec), SIZECmat, 1) *SIZECmat, 2) , 'p ack 2’)
m=SIZECmat,1)
n=SIZECmat,2)
DO k =l , ra

vec C Ck-1)*n+l:k*n)=dble Cmat Ck, 1 : n))
END DO

END SUBROUTINE pack2

SUBROUTINE packSCvec, mat)
IMPLICIT NONE
DOUBLE PRECISION. DIMENSIONC:), INTENTCOUT) :: vec
REALCPREC), DIMENSIONC: , : , :) , INTENTCIN) :: mat
INTEGER :: k, i , m, n, r

CALL assert_eqCSIZECvec), &
SIZECmat, 1) *SIZECmat, 2) ^SIZECmat, 3) , ’packS’)

m=SIZECmat,2)
n=SIZECmat,3)
DO k = l , SIZECmat,1)
DO i = l , m

r=Ck-l)*m*n+Ci-l)*n
vec Cr+1:r+n)=dble Cmat Ck, i , 1 :n))

END DO
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

END SUBROUTINE packS

SUBROUTINE unpackl (vec , mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENT(IN) :: vec
REALCPREC), DIMENSIONC:), INTENTCOUT) :: mat
INTEGER :: m

CALL assert_eqCSIZECvec) , SIZECmat), ’unpackl’)
m=SIZECmat)
mat C1:m)=REAL Cvec C1:m), KIND=PREC)

END SUBROUTINE unpackl

SUBROUTINE unpack2Cvec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENTCIN) :: vec
REALCPREC), DIMENSIONC; , :) , INTENTCOUT) :: mat
INTEGER :: k, m, n

CALL assert_eqCSIZECvec) , SIZECmat, 1)*SIZECmat, 2) , ’unpack2’)
m=SIZECmat,1)
n=SIZECmat,2)
DO k =l , m

mat Ck, 1 : n)=REAL Cvec C C k-1)*n+l:k * n) , KIND=PREC)
END DO

END SUBROUTINE unpack2

SUBROUTINE unpacksCvec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSIONC:), INTENTCIN) :: vec
REALCPREC), DIMENSIONC: , : , :) , INTENTCOUT) :: mat
INTEGER :: k, i , m, n, r

CALL assert_eqCSIZECvec), &
SIZECmat,1)*SIZECmat,2) *SIZECmat,3) , ’unpackS’)

m=SIZECmat,2)
n=SIZECmat,3)
DO k =l , SIZECmat,1)
DO i = l , m

r=Ck-l)*m*n+Ci-l) *n
mat Ck, i , 1 :n)=REALCvec Cr+1:r + n) , KIND=PREC)

END DO
END DO

END SUBROUTINE unpacks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

FUNCTION p o s i t i v e l (v e c)
IMPLICIT NONE
REALCPREC), DIMENSIONC:, : , :) , INTENTCIN) :: vec
LOGICAL :: p o s i t i v e l

!C: LOCAL VARIABLES

IFCSIZECvec,!)= = !) THEN
IF CANYCvecCl,: , :)< = 0 .0 _ p r ec)) THEN

p o s i t i v e 1= .FALSE.
RETURN

- END IF
ELSE

IF CANYCvecCl,: , :)<=0 .0_prec) . 0R. ANYCvecC3, : , :) < = 0 . 0_prec) &
■OR. ANYCvecCl, : , :) * v e c C3 , : , :)

-v e c C2, : , :) *vec C2, : , :) < = 0 . 0_ p r e c)) THEN
p o s i t i v e l = .FALSE.
RETURN

END IF
END IF
p o s i t i v e l = .TRUE.

END FUNCTION p o s i t i v e l

SUBROUTINE smoothlCu)
IMPLICIT NONE
REALCPREC), DIMENSIONC:, :) , INTENTCINOUT) :: u

REALCPREC), DIMENSIONCSIZECu,l),SIZECu,2)) :: tu
INTEGER :: m, n, k

m=SIZECu,l)
n=SIZECu,2)
t u C l , 1 :n)=CuCl,1 :n)+uC2,1 :n)) * 0 . 5_prec
tuCm, 1 :n) = CuCm-l, 1 ;n) +uCin, 1 :n)) *Q. 5_prec
DO k=2,m-l

tuCk,1 :n)=CuCk-l , 1 :n)+2*uCk,1 :n)+uCk+l, 1 :n)) * 0 . 25_prec
END DO
uCl :m, l) = CtuCl:m, l)+ tu C l :n i ,2))* 0 .5 _ p r e c
uCl:m,n) = CtuCl:m,n-l)+tu C1:m, n)) * 0 . 5_prec
DO k = 2 ,n - l

uCl :m,k) = CtuCl :m,k-l)+2*tuCl:ni ,k)+ti iCl :m,k+l)) * 0 . 25_prec
END DO

END SUBROUTINE smoothl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

SUBROUTINE s p l i t 2 (n u m , n , i , j)
IMPLICIT NONE
INTEGER,INTENTCIN) :: num,n
INTEGER,INTENTCOUT) ;: i , j

j=MODCnum-l,n)+l
i=Cnuin-j) /n+1

END SUBROUTINE s p l i t 2

SUBROUTINE s p l i t s C n u m , m , n , i , j , k)
IMPLICIT NONE
INTEGER,INTENTCIN) :: num,m,n
INTEGER,INTENTCOUT) :: i , j , k

INTEGER :: i t
it=num
k=MODCit-l,n)+l
i t= C i t -k) /n + 1
CALL s p l i t 2 C i t , m , i , j)

END SUBROUTINE s p l i t s

SUBROUTINE sp l i t4C num,in ,n ,r , i , j ,k, 1)
IMPLICIT NONE
INTEGER,INTENTCIN) num,m,n,r
INTEGER,INTENTCOUT) :: i , j , k , l

INTEGER :: i t
it=num
l=MODCit-l,r)+l
i t = C i t - l) / r + l
CALL s p l i t S C i t , m , n , i , j , k)

END SUBROUTINE s p l i t 4

SUBROUTINE p o l i n t l C x a , y a , x , y , d y)
IMPLICIT NONE
REALCPREC).DIMENSIONC:),INTENT(IN): :xa ,ya
REALCPREC).INTENTCIN); :x
REALCPREC).INTENTCOUT): :y .dy

INTEGER::m.n.ns
REALCPREC). DIMENSIONCsizeCxa)): : c . d .d e n .h o

CALL a s s e r t _ e q C s i z e C x a) . s i z e C y a) . ’p o l i n t ’)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

n = s ize (x a)
c=ya
d=ya
ho=xa-x
n s = ir a in lo c (a b s (x -x a))
y=ya(ns)
n s = n s - l
do m = l ,n - l

d en (l :n-m)=ho(l :n-ni)-ho(l+in:n)
i f (any (d en (i :n-in)==0. 0_prec))&

c a l l ErrorC’C a lc u la t i o n f a i l u r e ’ , ’P o l i n t ’)
d e n (l : n - m) = (c (2 : n - m + l) - d (l : n - m)) / d e n (l : n - m)
d (1 : n-m)=ho(1+m:n)* d e n (1 :n-m)
c (1 ;n-m)=ho(1 ;n-m)*den(1: n-m)
i f (2*ns <n-m)then
dy=c(ns+l)
e l s e
dy=d(ns)
n s= n s - l
end i f
y=y+dy

end do
END SUBROUTINE p o l i n t 1

FUNCTION im i n l o c l (a r r)
REAL(PREC), DIMENSIONC:), INTENT(IN) :: arr
INTEGER, DIMENSION(l) :: imin
INTEGER :: im i n l o c l

imin=m in loc (arr(:))
i m in lo c l= im in (1)

END FUNCTION im i n l o c l

FUNCTION im in loc2 (arr)
REAL, DIMENSION(;), INTENT(IN) :: arr
INTEGER, DIMENSION(l) :: imin
INTEGER :: iminloc2

im in=m in loc (arr(:))
im in loc2= im in (1)

END FUNCTION iminloc2

SUBROUTINE p o l i n t 2 (x a , y a , x , y , d y)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

IMPLICIT NOME
REAL,DIMEMSION(:),INTEMT(IN): :xa ,ya
REAL,INTENT(IN): ;x
REAL,INTENT(OUT): :y,dy

INTEGER::m,n,ns
REAL,DIMENSION(size(xa)): : c ,d ,d e n ,h o

CALL a s s e r t _ e q (s i z e (x a) , s i z e (y a) , ' p o l i n t ’)
n = s ize (xa)
c=ya
d=ya
ho=xa-x
n s = i m i n lo c (a b s (x -x a))
y=ya(ns)
n s= n s - l
do m = l ,n - l

den(1 :n-m)=ho(1 : n -m)-h o(1+m:n)
i f (any(den(l :n-m)==0.0))&

c a l l E rror(’C a lc u la t i o n f a i l u r e ’ , ’P o l i n t ’)
d e n (i : n - m) = (c (2 ; n - m + l) - d (i : n - m)) / d e n (1 : n-m)
d(l:n-m)=ho(l+m:n)*den(l :n-m)
c (1 :n-m)=ho(1 : n-m)*den(1 : n-m)
i f (2*ns <n-m)then
dy=c(ns+l)
e l s e
dy=d(ns)
n s= n s - l
end i f
y=y+dy

end do
END SUBROUTINE p o l i n t 2

FUNCTION g e o p K f i r s t , f a c t o r , n)
REAL(PREC), INTENT(IN) :: f i r s t , f a c t o r
INTEGER, INTENT(IN) :: n
REAL(PREC), DIMENSION(n) :: geopl

INTEGER :: k, k2
REAL(PREC) :: temp

IF(n>0) g e o p l (l) = f i r s t
DO k=2, n

g e o p l (k) = g e o p l (k - 1) * f a c t o r
END DO

END FUNCTION geopl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

END MODULE u t i l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GRADUATE SCHOOL
UNIVERSITY OF ALABAM A AT BIRM INGHAM

DISSERTATION APPROVAL FORM
DOCTOR OF PHILOSOPHY

Name of Candidate AiminYan

Graduate Program Applied Mathematics

Title o f Dissertation An Inverse Groundwater Model

I certify that I have read this document and examined the student regarding its
content. In my opinion, this dissertation conforms to acceptable standards of
scholarly presentation and is adequate in scope and quality, and the attainments of
this student are such that he may be recommended for the degree o f Doctor of
Philosophy.

Dissertation Committee:

Name Signature

Ian W. Knowles___________________ , Chair S

Robert M. Hyatt

Tsun-Zee Mai

S. S. Ravindran

Yanni Zeng

Director o f Graduate Program

Dean, UAB Graduate School

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	An inverse groundwater model.
	Recommended Citation

	ProQuest Dissertations

