“ LI BRARI ES University of Alabama at Birmingham

UAB Digital Commons

The University of Alabama at Birmingham

All ETDs from UAB UAB Theses & Dissertations

2004

An inverse groundwater model.

Aimin Yan
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation
Yan, Aimin, "An inverse groundwater model." (2004). All ETDs from UAB. 5247.
https://digitalcommons.library.uab.edu/etd-collection/5247

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/5247?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

AN INVERSE GROUNDWATER MODEL

by

AIMIN YAN

A DISSERTATION
Submitted to the graduate faculty of The Universty of Alabama at Birmingham,
The University of Alabama in Huntsville, and The University of Alabama,
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
BIRMINGHAM, ALABAMA

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3133373

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alighment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3133373
Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF DISSERTATION
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Ph.D. Program Applied Mathematics

Name of Candidate Aimin Yan

Committee Chair Ian Knowles

Title An Inverse Groundwater Model

A groundwater system can be modeled by the following equations:

59 =~V a4+ Ria,1)

0(e) _ o (cq) + V- (8DV¢) + B,

ot

where g is the specific discharge, over z in a bounded region @ C R" n = 2, or 3,
and for ¢t > 0.

In this dissertation, we give a descent algorithm to recover all the coefficients of
the two equations above. This algorithm is stable and efficient. The method is used
in analyzing the Willunga Basin Aquifer in South Australia. A suggestion is given in

analyzing the sustainability of the aquifer.

it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I take this opportunity to give a very special thanks to Dr. Ian Knowles, my
Ph.D. advisor, for his wonderful guidance throughout the past few years. I want to
also thank him for all the lengthy hours we have spent discussing these mathematical
and computational, as well as geological, problems. I have greatly appreciated his
immense patience. Dr. Knowles is truly a mentor to me.

I also express my gratitude to Professor Yuan-Ming Li, my previous M.S. advisor
in China. Professor Li is one of the best professors I have ever met. It is Professor Li |
who first led me into the mathematical world.

I thank the other committee members, Drs. Robert Hyatt (The University of
Alabama at Birmingham), Tsun-Zee Mai (The University of Alabama), S. S. Ravin-
dran (The University of Alabama in Huntsville), Yanni Zeng (UAB), for their kind
guidance and suggestions. | |

A special thanks goes to Dr. Abe Springer, Professor at the Department of Geology
of Northern Arizona University. Dr. Springer, I thank you for your comments and
suggestions about the geological concepts.

Last, but certainly not least, I thank my wife, Jie Wei. She is especially deserving
of thanks, noﬁ only for all of the support that she has given 'rﬁe, but also for having
made these past several years much more pleasant than they otherwise would have

been.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract

List of Figures

Chapter‘ 1. Groundwater Hydrology

1.1.
1.2.
1.3.

Aquifers and porous media
The equation of groundwater motion

Hydrodynamic dispersion

Chapter 2. The Mathematical Model

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

Introduction

The flow equations

The transport equations

The inverse problem

The uniqueness

Properties of functionals G and H

A descent algorithm

Chapter 3. Numerical Implementation and Results

3.1.
3.2.

3.3.

The numerical implementation
Results with synthetic data

Error analysis

Chapter 4. The Willunga Basin, South Australia

4.1.
4.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction

Hydrogeology

iv

il

Vi

11
24

38
38
41
42
44
45
48
56

39
59
64
89

96
96
97

4.3.
4.4,
4.5.
4.6.
4.7.
4.8.

4.9.

The Port Willunga Formation Aquifer

Observation wells within the Port Willunga Formation Aquifer
Groundwater levels within the Port Willunga Formation Aquifer
The test program

The effectiveness of the recovery

The transmissivity within the Port Willunga Formation Aquifer

The storativity within the Port Willunga Formation Aquifer

4.10. The recharge within the Port Willunga Formation Aquifer

4.11.

Sustainability

Bibliography

Appendix A. Fortran codes to recover the parameters

Al

The master program

A.2. The slave program

Appendix B. Fortran code: Finite Laplace transformation

Appendix C. Fortran code: Compute the errors between the recovered and the

original data,

Appendix D. Fortran code: Compute the inflow and outflow

Appendix E. Fortran code: subroutines

E.1.
E.2.
E.3.
E.4.
E.5.

Fortran code: parameters

Fortran code: elliptic PDE solver

Fortran code: subroutine of quadratic interpolation
Fortran code: subroutine of Simpson’s rule

Fortran code: subroutine of utility functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97
98
98

116

123
124
130

148

153

162

165
166
171
184
186
189

1.1

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

3.1
3.2
3.3
3.4

3.5

3.6

List of Figures

Type of aquifers [9]

Definition of porosity and representative elementary volume. [13]

Darcy’s experiment. [9]

Flow through an inclined sand column. [13]

Approximations of phreatic surface and capillary fringe. [13]
The Dupuit assumption. [13]

Regions where Dupuit assumption is not valid. [13]
Nomenclature for mass conservation for a control volume. [13]
Breakthrough curve in one-dimensional ﬂov& in a sand column.
[13]

Spreading due to mechanical dispersion (a,b) and molecular
diffusion(c). [13]

Nomenclature for the dispersive flux. [13]

Principal axes of the coefficient of dispersion. [13]

True parameter functions K, Q, and R - 1
True parameter functions K,), and R — 2
The recovery of @ and R with K fixed with £! gradient

The recovery of @ and R with K fixed with Neuberger gradient

Difference of solutions between the two PDE Solvers when k =1

and A =0.5

The recovery of K when), R are assumed known

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

7

12

13

16

18

20

22

26

27

29

34

64

65

67

69

70

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

The recovery of the parameters of flow equation of unconfined
aquifer — 1
The recovery of the parameters of flow equation of unconfined
aquifer — 2
The recovery of the parameters of flow equation of unconfined

aquifer — 3
Recovery with small S -1
Recovery with small S — 2

Error between the recovered data and the true source data with

small S

True parameter D, 8 of the transport equation
True parameter B! of the transport equation
True parameter B? of the transport equation
Recovered D(-) and 6, assuming B known
Recovered B} — B, assuming D and 6 are known

Recovered B} — B{,, assuming D and 6 are known

‘Recovered B}, — Big, assuming D and 6 are known

Recovered Biy, Bi,, B% and B2, assuming D and § are known
Recovered B? — B2, assuming D and 6 are known

Recovered B? — B%,, assuming D and 6 are known

Recovered BZ;, — B%, assuming D and # are known

Error analysis of situation 1

Error analysis of situation 2

Error analysis of situation 3

Error analysis of situation 4

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

72

73

74

73

76

7

78

79

80

82

83

84

85

86

87

88

90

91

92

93

4.1

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Hydrographs of piezometric heads over the period 1988-1998 [83] 96
Location map of the Willunga Basin, South Australia [83] 97

Observation well locations of Port Willunga Formation Aquifer

(66] 99
Test region and observation wells 100
Piezometric head in the test region at January 12, 1998 101
Accuracy of Recovery — 1 | 104
Accuracy of Recovery -2 105
Accuracy of Recovery — 3 106
The Darcy flux in the test region at January 12, 1998 106
The recovered transmissivity T' 107
~ The recovered storativity S : 108
The recovered source term R, J anﬁary ~ March, 1998 109
The recovered source term R, April — June, 1998 110
The recovered source term R, July — September, 1998 111
The recovered source term R, October — December, 1998 112
The inflow and outflow in the test region 115

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

Groundwater Hydrology

Groundwater is that portion of the water beneath the surface of the earth that
can be collected with wells, tunnels, or drainage galleries. Groundwater can also flow
to the earth’s surface via seeps or springs. In many places, groundwater is the main
source to supply water for people and ifrigation.

Not all underground water is groundwater. The term “groundwater” is generally
referred to, by the hydrologist, as the water occupying all the voids, saturated, within
a geologic stratum. A better understanding about groundwater movements, and the
architecture of the aquifer the groundwater moves through, is essential to manage
and protect groundwater resburces against undue exploitation and pollution. Since
the aquifer is generally hundreds of meters below the earth’s surface, it is impractical
or impossible to directly determine the properties of the aquifer. Our study here uses
mathematical modeling equations about a groundwater system and data about the
groundwater movements to get the coefficients, the properties of the aquifer, of the

modeling equations.

1.1. Aquifers and porous media

Here we introduce some commonly used concepts in groundwater hydrology. For a

detailed discussion and examples please refer to textbooks on groundwater hydrology,

such as [9, 13].

1.1.1. Aquifers. An aquifer is a geological formation that contains water and
permits significant amounts of water to move through it under ordinary field con-
ditions. The most common aquifer materials are unconsolidated sands and gravels.

In contrast, an aquiclude is a formation that may contain water but is incapable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of transmitting significant quantities under ordinary fleld conditions. Clay is such
an example. Between the aquifer and aquiclude, an aquitard is a semipervious geo-
logic formation that transmits water‘ at a very slow rate as compared to the aquifer.
However, over a large (horizontal) area it may permit the passage of large amounts
of water between adjacent aquifers, which it separates. It is often referred to as a
leaky formation. An aquifuge is an impervious formation that neither contains nor
transmits water.

The portion in a rock that is not occupied by solid materials may be occupied
by water or air. These spaces are called the void spaces. Because the void spaces
can act as groundwater conduits, they are of fundamental importance to the study of
groundwater. Typically, they are characterized by their size, shape irregularity, and
distribution. Only connected interstices can act as elementary conduits within the
formation.

Aquifers may be regarded as underground storage reservoirs that are replenished
naturally by precipitation and influent streams, or through wells and other artificial
recharge methods. Water leaves the aquifer naturally through springs or effluent
streams and artificially through pumping wells.

The thickness and other vertical dimensions of an aquifer are usually much smaller
than the horizontal lengths involved. Aquifers may be classified as confined and
unconfined (or phreatic), depending upon the presence or absence of a water table.

A confined aquifer is one bounded above and below by impervious formations.
In a well penetration of such an aquifer, the water level will rise above the base of
the confining formation; it may or may not reach the ground surface. A properly
constructed observation well (or a piezometer) has a relatively short screened sec-
tion (not too short with respect to the size of the openings) such that it indicates the
piezometric head at a specific point. The water levels in a number of observation wells
tapping a certain aquifer define an imaginary surface called the piezometric surface.

When the flow in the aquifer is essentially horizontal, such that equipotential surfaces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are vertical, the depth of the piezometer opening is immaterial; otherwise, a differ-
ent piezometric surface is obtained for piezometers that have openings at different
elevations. Water enters a confined aquifer through an area between confining strata
that rise to the ground surface, or where an impervious stratum ends underground,
rendering the aquifer unconfined. The region supplying water to a confined aquifer
1s called a recharge area.

An unconfined aquifer (also called a phreatic aquifer) is one with a water table
(phreatic surface) serving as its upper boundary. Actually, above the phreatic surface
is a capillary fringe, often neglected in groundwater studieé. A phreatic aquifer is
recharged from the ground surface above it, except where impervious layers of limited
horizontal area exist between the phreatic surface and the ground surface.

Leaky aquifers are aquifers that can lose or gain water through either or both of the
formations bounding them above and below. Although these bounding formations
may have a relatively high resistance to the flow of water through them, over the
large (horizontal) areas of contact involved significant quantities of water may leak
through thém into or out of a particular aquifer. The amount and direction of leakage
is governed in each case by the difference in piezometric head that exists across the
semipervious formation.

A phreatic aquifer (or part of it) that rests on a semipervious layer is a leaky
phreatic aquifer. A confined aquifer (or part of it) that has at least one semipervious
confining stratum is called a leaky confined aquifer. Figure 1.1 shows several aquifers
and observation wells. The upper phreatic aquifer is underlain by two confined ones.
In the recharge area, aquifer B becomes phreatic. Portions of aquifers A, B, and C
are leaky, with the direction and rate of leakage determined by the elevation of the
piezometric surfaces of each of these équifers. The boundaries between the various
confined and unconfined portions may vary with time as a result of changes in water
table and piezometric head elevations. A special case of a phreatic aquifer is the

perched aquifer that occurs wherever an impervious (or relatively impervious) layer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 1.1. Type of aquifers [9]

Aquifer B
AL

{ .
r‘Rc —-{*Confhed—t-Lecky = Artesian *’-—Confmed ~{—Leaky

,%ff’f;omehic surface B

Flowing
—well

———

- Piezometric surface C

——
T ——

-~ Water Tabl
ater Table

—~L__ Aquifer A

n

Lis.

Aquifer B

Leakoge

P/77223 Impervious stratum
Semipervious stratum

of limited horizontal area is located between the water table of a phreatic aquifer and
the~ground surface. Another groundwater body is then built above this impervious
layer. Clay or loam lenses in sedimentary deposits have shallow perched aquifers
above them. Sometimes these aquifers exist only a relatively short time as they drain

to the underlying phreatic aquifer.

1.1.2. The porous medium. The materials forming an aquifer contain void
space filled with water and/or air. The connected interstices can act as elementary
conduits within the formation, allowing water to low. These materials can be viewed
as a porous medium, and the flow in the aquifer can be considered as the flow of
fluids through a porous medium. Soil, porous or fissured rocks, ceramics, and fibrous
aggregates are just a few examples of porous materials. All of these materials have
some characteristics in common that permit them to be grouped and classified as

porous media.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

Not all materials containing holes are porous media. For a media to be classified
as a porous media, some of the holes adjacent should be connected to allow fluid
moving through it. The following is a descriptive definition of a porous medium

(Bear, Zaslavsky, and Irmay [14]):

a) A portion of space occupied by heterogeneous or mutiphase matter. At least
one of the phases comprising this matter is not soltd. There may be gaseous
and/or liquid phases. The solid phase is called the solid matriz. That space
within the porous medium domain that is not part of the solid matrix is
referred to as void space (or pore space). ‘

b) The solid phase should be distributed throughout the porous medium within
the domain occupied by a porous medium; solid must be present inside each
representative elementary volume. An essential characteristic of a porous
medium is that the specific 'surface of the solid matrix is relative.ly high. In
many respects, this characteristic dictates the behavior of fluids in porous
media. Another basic feature of a porous medium is that the various openings
comprising the void space are relatively narrow.

c) At least some of the pores comprising the void space should be intercon-
nected. The interconnected pore space is sometimes termed the effective
pore space. As far as flow through porous media is connected, unconnected
pores may be considered as part of the solid matrix. Certain portions of
the interconnected pore space may, in fact, also be ineffecive as far as flow

through the medium is concerned.

1.1.3. Continuum approach to porous media. In an aquifer, water flows
through the complex network of pores and channels comprising the void space. This
flow is bounded by the (microscopic) solid-water interface. In principle, the flow of a
fluid in a porous medium may be treated at the microscopic level, at which we focus
our attention on what happens at a point within the fluid, regarded as a continuum

(i.e., overlooking its molecular structure). However, complexity of the pore space will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

usually make this treatment impossible. Moreover, even if we can solve for the values
of state variables, e.g., pressure, at the microscopic level, we could not verify these
solutions by measurements at this level.

To circumvent these difficulties, another level of description is needed. This is the
macroscopic level, at which quantities can be measured and boundary-value problems
can be solved. To obtain the description of the flow at this level, we adopt the
continuum approach. This is the same approach that is also used in order to pass
from the molecular level of description to the microscopic one, at which each phase
is regarded as a continuum. According to this approach, the real porous medium,
in which each phase (solid or fluid) occupies only a portion of the AEV (Arbitrary
Elementary Volume), is replaced by a fictitious model in which each phase is regarded
as a continuum that fills up the entire AEV. We thus obtain within every AEV a set of
overlapping and, possibly, interacting, continua. For each of these continua, average
values, referred to as macroscopic values, can be taken over the AEV and assigned to
its centroid, regardless of whether the latter falls within the solid or within one of the
fluids that occupy the void space. By traversing the entire porous medium domain
with a moving AEV, we obtain ﬁélds of macroscopic variables, which are differentiable
functions of the space coordinates.

The main drawback of the use of an. AEV is that every averaged value must be
accompanied by a label that specifies the volume over which this average was taken.
To circumvent this difficulty, we need a universal procedure that a) is applicable to
all porous media and b) will ensure that the averaged values will remain, more or less,
constant, at least for a certain range of averaging volumes, that corresponds to the
range of variations in instrument sizes. This universal averaging volume is referred
to as the representative elementary volume (REV).

The size of the REV is selected such that the averaged values of all geometrical
characteristics of the microstructure of the void space be a single valued function of

the location of that point only, independent of the size of the REV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 1.2. Definition of porosity and representative elementary vol-
ume. [13]

A Domain of 1+ Domain of Domain of (possible)

<microscopicsj<— porous — macroscopic inhomogeneity

effects | medium
1 Inhomogeneous
medium
Q Homogeneous
S INIVIN o medium
n

{ Range |
[{ for Up }
J' | ’ l
| -
0 Umin Umax U
Volume, U

To illustrate the determination of the size of an REV for a given porous medium
domain, D, consider, as an example of a geometrical characteristic of the void space
configuration, the ratio U,(zo)/U(zo), where U(zp) is a volume of a sphere centered
at an arbitrary point zo within D, and U,(z) is the volume of void space within
U(zy). Figure 1.2 shows the variations of the ratio U,(z,)/U(xzo) as U increases. For
very small values of U, this ratio is one or zero, depending on whether zy happens to
fall in the void space or in the solid matrix. As U increases, we note large fluctuations
in this ratio due to the random distribution of void and solid within U. However, as
U is further increased, these fluctuations gradually decay until above some volume
U = Upin they reduce to some small value. If U is further increased beyond some U =
Ummax, We may observe a trend in the considered ratio, due to a systematic variation
in the latter, resulting from macroscopic heterogeneity of the porous medium. The
size, Uy, of the REV that will make the chsidered ratio independent of the selected
volume, albeit possibly dependent on z, should be in the range Upin < Us < Upax-
For such a volume, the ratio Uy, /U, represents the medium porosity, n, at zg.

Once Up has been determined, it is used to derive the macroscopic (continuum)
description of the flow by averaging the microscopic one over it. Obviously, the

selected size of Uy must be uniform over the entire porous medium domain. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

macroscopic model obtained in this way describes the flow in terms of macroscopic

or averaged quantities defined by

1

(1.1) Go(z,t) = i

/ Go(2', t; 2)dUq (")
Uoe (2)

where G, is the state variable of the a-phase (such that its volumetric average is
physically meaningful), Uy, is the volume of the a-phase within UO,. and z' is a
point in the REV centered at z. From the discussion presented, we are assured that
the macroscopic geometrical characteristics that appear in the macroscopic model
represent properties of porous medium at z. The average 53 of Gy, as defined by
(1.1), is called an intrinsic phase average.

Another type of average, called a phase average, defined by

(1.2) Colz,t) = — / Gols!, t; 2)dU(2')
- Vo JUpa ()

is also often used. The two types of averages are related to each other by
(1.3) G = 0,G,,,

where 8, is the volumetric fraction of the a—phase.

If a volume Uy cannot be found for a given porous medium domain, the latter
cannot be treated as a continuum. In an analogous way, a representative elementary
area (REA) should also be selected for the porous medium domain, to be used for
averaging quantities for which only areal averages are meaningful. Throughout this

dissertation, it is assumed that the porous medium can be considered as a continuum.

1.1.4. Isotropic and anisotropic medium. A medium is said to be homoge-
neous with respect to a certain property if that property is independent of position
within the medium. Otherwise the medium is said to be heterogeneous. For example,
if the porosity of a certain material is constant, then it is a homdgeneous property;
otherwise it is heterogeneous. In the real world, most of the properties are heteroge-

neous.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A medium is said to be isotropic with respect to a certain property if that property
is independent of direction within the medium. If at a point within the medium
a property of the medium, e.g., permeability or thermal conductivity, varies with
direction, the medium is said to be anisotropic (or aleotropic) at the considered point
with respect to that property. In natural materials, anisotropy is encountered in soils
and in geological formations that serve as reservoirs or aquifers. In most stratified
materials the resistance to the flow is smaller (i.e., permeability is greater) along the
planes of deposition than across them. Piersol et al. [80] mention ratios of horizontal
to vertical permeabilities of sandstone of 1.5 : 3. Muskat [71, page 111} lists 65
pairs of sand samples, more than two-thirds of which had a larger permeability in the
direction parallel to the bedding plane than normal to it. The quotient of the two
values ranged from 1 to 42.

Stratified soils afe usually anisotropic. The stratification may result from the
shape of the particles. For example, plate-shaped particles (e.g., mica) will gener-
ally be oriented with the flat side down. Both sedimentation and the pressure of
overlaying material cause flat particles to be oriented with their longest dimensions
parallel to the plane on which they settle. This later produces flow channels parallel
to the bedding plane, differing from those oriented normal to this plane, and the
medium becomes anisotropic. Alternating layers of different texture also give rise to
anisotropy. However, in order for a stratified formation of this kind to be qualified
as an anisotropic homogeneous medium, the thickness of the individual layers should
be much smaller than the lengths of interest. There is no use in attempting to deter-
mine the permeability of such a formation from a core whose size is smaller than the
thickness of the single stratum. In many aquifers, fractures produce very high perme-
ability in the direction along the fracture, whereas the permeability of the rock in the
direction normal to the fractures is much smaller. In carbonate rocks, dissolving of
the rock takes place by means of the flowing water. This produces solution channels

that develop mainly in the direction of the flow; the rock becomes anisotropic, with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

a very high permeability in the general direction of these channels. In many soils
(e.g., loess), vertical joints, root holes, and animal burrows give rise to anisotropy in
permeability, with vertical permeability being greater than horizontal. In some soils,
structural fissures may develop more readily in some directions than in others, and

the soil will exhibit anisotropy.

1.1.5. The piezometric head. Flow occurs from a place of higher energy to one
of lower energy. In groundwater flow, potential is a concept describing this energy.
The total potential is an algebraic summation of various specific potentials acting on
the groundwater flow.

There are many alternate ways of defining a potential function. The ultimate
choice depends upon convenience and suitability for the range of problems with which
one is concerned. For subsurface water, potential may be defined in such a way that its
gradient is proportional to the water-moving forces. Furthermore, because potential
is defined relative to an arbitrary datum, one is concerned only with differences of
potential between specified points.

Bolt and Miller [16] define total potential of soil moisture in a fashion that is
extended readily to include groundwater. They define total potential as the minimum
energy per gram of water which must expended in order to transport an inﬁnitesimal.
test body of water from a specific reference state to any point within the liquid phase
of a soil-water system that is in a state of rest. Following Bolt and Miller’s fashion,
Remson [84] defines the potential in terms of energy per unit weight of water. With
this definition, potential has the dimension of length and is referred to as “head.”

In saturated subsurface systéms, the total potential is the algebraic summation of
the component potentials of the gravitational potential and the hydrostatic pressure

potential below the water table [84]:

¢ =V, + ¥,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

where

U, =z,
\IIP - p/’%
here z is the height of the water above the reference datum, p is the pressure, and
v = pg is the specific weight of water (p = density, g = acceleration of gravity).
For a homogeneous compressible fluid (i.e., no dissolved components) under isother-
mal conditions, Hubbert presented a particularly clear derivation of potential defined
on a work-per-unit-mass basis for saturated subsurface systems [45]. Under this fash-

ion, we have that the potential, ¢*, at point p (the velocity of which is usually small

and is neglected) is

P g
(1.4) ¢*=gz+/ P
P

where p is the pressure. This éxpression is known as Hubbert’s “force potential.” If

we set ¢ = ¢*/g, (1.4) gives the form

(1.5) qb:z—i-/pﬂ?—.
p

When p is constant and py is chosen to be 0, (1.5) reduces to

(1.6) ¢=2z+p/,

where v = pg is the specific weight of water.
We call ¢ the piezometric head. The gradient V¢ is called the hydraulic gradient;

it is proportional to the water-moving forces.

1.2. The equation of groundwater motion

In almost every field of science and engineering the techniques of analysis are
based on an understanding of the physical processes, and in most cases it is possible

to describe these processes mathematically. Groundwater flow is no exception.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

1.2.1. Darcy’s law and its extensions. Groundwater moves from levels of
higher energy to levels of lower energy, whereby its energy is essentially the result
of elevation and pressure. Kinetic energy, proportional to the square of the veloc-
ity, is neglected because groundwater velocities are very small, at least in laminar
flow. While flowing, groundwater experiences a loss in energy due to friction against
the walls of the granular medium along its seepage path. This loss pér unit length
of distance traveled, or hydraulic gradient, is simply proportional to the velocity of
groundwater for laminar flow in sandy aquifers or seepage through earth embank-
ments. When the proportionality of hydraulic gradient and groundwater velocity is

expressed by a mathematical equation, a linear law of flow, called Darcy’s law, arises.

FIGURE 1.3. Darcy’s experiment. [9]

!
t

" i
Fscreen !

—_—

SE—

/7777777777 777777777

In 1856, Henry Darcy investigated the flow of water in vertical homogeneous sand
filters in connection with the fountains of the city of Dijon, France. Figure 1.3 shows

the experimental set-up he employed (Darcy [28]). From his experiments, Darcy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13
concluded that the flow rate) equals:
Q= KA(hy — hy)/L,

where hy — hy is the energy loss, and L is the length of the flow path. A is the cross-
sectional area filled with sand, and K is a coefficient, called the hydraulic conductivity.

One can easily extend Darcy’s law to flow through an inclined homogeneous porous
medium column (Figure 1.4). With the nomenclature of this figure, Darcy’s law takes

the form

Q=KA(¢1 — ¢2)/L,
where ¢ is the piezometric head defined by
¢ =z +p/,

where z is the elevation of the point, p is the pressure, and + is the volumetric weight
of the water. The piezometric head expresses the sum of the potential energy and

pressure energy, per unit weight of water.

F1GURE 1.4. Flow through an inclined sand column. [13]

Area A
vt Ted =y Datum level y

e e A L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

The energy loss A¢ = ¢ — ¢9 is due to friction in the flow through the narrow
tortuous paths of the porous medium. In Darcy’s law, the kinetic energy of the water
has been neglected as, in general, changes in the piezometric head along the flow path
are much larger than changes in the kinetic energy. Inertial effects have also been
neglected. |

With the above definition of piezometric head, the quotient (¢ — ¢2)/L is the
hydraulic gradient (dimensionless). Denoting this gradient by J and defining the
specific discharge, q, as the volume of water flowing per unit time through a unit

cross-sectional area normal to the direction of flow, we obtain
qg=KJ.

Let us consider a point along the column’s axis and a segment of the column of length

s along the column’s axis on both sides of the point. For this case

¢‘s-—(As/2) — ¢|s+(As/2)
1.7 s = K ,
() q As

where the subscript in ¢, indicates that the flow is in the s-direction. In the limit, as

As — 0, converging on the point, we obtain

_ Bls—(asz) = Plsw(aszy 09
Alﬂlo As ~Bs’

and (1.7) reduces to

9¢

1.8 s = —K—.

(1.8) g 35
The experimentally derived form of Darcy’s law (for a homogeneous incompressible
fluid) was limited to one-dimensional flow. When the flow is three-dimensional, the

obvious formal generalization of Darcy’s law, is
q= _Kv¢a

where q is the specific discharge with components ¢, g,, and ¢, in the directions of

the Cartesian z, y, z coordinates, respectively, and V¢ = (g%, %%, %f). When the flow

takes place through a homogeneous isotropic medium, the coefficient K = K1, i.e.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

a scalar times the identity matrix; otherwise, it is a symmetric positive definite 3 x 3
matrix for the three-dimensional case, or 2 X 2 matrix for the two-dimensional case.

The coefficient K is called the hydraulic conductivity. The hydraulic conductiv-
ity indicates the ability of the aquifer material to conduct water through it under
hydraulic gradients. It is a combined property of the porous medium and the fluid
flowing through it. When the flow in the aquifer is essentially horizontal, the aguifer
transmissivity indicates the ability of the aquifer to transmit water through its entire
thickness. It is the product of the hydraulic conductivity and the thickness of the
aquifer. ’

As the specific discharge increases, Darcy’s law, Which specifies a linear relation-
ship between the specific discharge, ¢, and the hydraulic gradient, V¢, has been shown
by many investigators to be invalid. A definition of a range of validity of Darcy’s law
seems, therefore, appropriate.

In flow through conduits, the Reynolds number (Re), a dimensionless number
expressing the ratio of inertial to viscous forces, is used as a criterion to distinguish
between laminar flow occurring at low velocities and turbulent flow. The critical Re
between laminar and turbulent flow in pipes is around 2100. By analogy, a Reynolds

number is defined also for flow through porous media:

where d is some length dimension of the porous matrix, and v is the kinematic viscosity
of the fluid. Although, by analogy to the Reynolds number for pipes, d should be a
length dimension representing the elementary channels of the porous medium, it is
customary (probably because of the relative ease of determining it) to employ some
representative dimension of the grains for d (in an unconsolidated porous medium).
Often the mean grain diameter is taken as the length dimension, d. Sometimes d;q is
used, i.e., the grain size that exceeds the size of 10% of the material by weight. The

term dg is also mentioned in the literature as a representative grain diameter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

In practically all cases, Darcy’s law is valid as long as the Reynolds number based

on average grain diameter does not exceed some value between 1 and 10.

FIGURE 1.5. Approximations of phréatic surface and capillary fringe. [13]

A2 i

i

Relatively high
ground surface

Moisture distributions
in soil:

QObservation

well actual

top of
|capillary
[Pe—™) fringe N

1.0

T ; Phreatic surface
-p=vd b : d 3 / .
. LI 4
Fh -» OB T " 0.8
d, Degree of saturation, S,
{
3

—«—— Pressure distribution
p=vyd, >0

1.2.2. Dupuit assumption. As defined in Section 1.1.1, a phreatic aquifer is
one in which a water table (or a phreatic surface) serves as its upper boundary. Above
the phreatic surface, which is an imaginary surface, at all points of which the pressure ,
is atmospheric, moisture does occupy at least part of the pore space. The capillary
fringe was introduced as an approximation of the actual distribution of moisture in
the soil above a phreatic surface. .

Figure 1.5 shows how the actual moisture distribution is approximated by a step
distribution, assuming that no moisture is present in the soil above a certain level.
This step defines the height, h., of the capillary fringe. Obviously, this approximation
is justified only when the thickness of the capillary fringe thus defined is much smaller

than the distance from the phreatic surface to the ground surface. In the capillary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

fringe (as in the entire aerated zone above the phreatic surface), pressures are negative;
therefore, they cannot be monitored by observation wells which serve as piezometers.
A special device, called a tensiometer, is needed in order to measure the negative
pressures in the aerated zone (Figure 1.6b). Water levels in observation wells that
terminate below the phreatic surface give elevation of points on the phreatic surface.
Using a sufficient number of such points, we can draw contours of this surface.

Thus, the capillary fringe approrimation means that we assume a saturated zone
up to an elevation h. above the phreatic surface, and no moisture at all above it. In
this case, the upper surface of tile capillary fringe may be taken as the groundwater
table, as the soil is assumed saturated below it. Howéver, when h. is much smaller
than the thickness of an aquifer below the phreatic surface, and this is indeed the
situation encountered in most aquifers, the hydrologist often neglects the capillary
fringe. He then assumes that the (phreatic) aquifer is bounded from above by a
phreatic surface. This is also the assumption below.

An estimate of h., can be obtained, for example, from [67]

- 22,1—n
1 =22y
(1.9) he= (0,

where h. is in inches, and dg is the mean grain diameter, also in inches, and n is
porosity. Another expression is suggested by Polubarinova-Kochina [81):

_0451-n

1.10 =0
(1.10) he = ~——

where both h. and the effective particle diameter are in centimeters. Silin-Bekchurin
[94] suggested a capillary rise of 2 — 5 cm in coarse sand, 12 — 35 c¢m in sand, 35 — 70
cm in fine sand, 70 — 150 c¢m in silt, and 2 — 4 m and more in clay. Equations (1.9)
and (1.10) can be compared with the relationship A = 20 /7, which expresses the rise
of water in a capillary tube of radius r; a is the surface tension of the water.

Both ¢ and g vary from point to point within a phreatic aquifer. In order to obtain
the specific discharge ¢ = q(z, y, z,t) at every point, we have to know the piezometric

head ¢ = ¢(x,y, 2,t) by solving the low model in a three-dimensional space. An

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

additional difficulty stems from the fact that the location of the phreatic surface,
which serves as a boundary to the three-dimensional flow domain in the aquifer, is a
priori unknown. In fact its location is part of the sought solution. Once we solve for
¢ = d(z,y, z,t) within the flow domain, we use the fact that on the phreatic surface,
the pressure is zero to obtain ¢(z,y,z,t) = 2z on the phreatic surface. Hence, the

equation that describes the phreatic surface is

(1.11) F(m,y,z,t)_——:qﬁ(x,y,z,t)—zzo.

FIGURE 1.6. The Dupuit assumption. {13]

Phreatic surface

Observation well

Ve lldddd

From the above considerations it follows that this procedure is ﬁot a practical one
for solving common problems of flow in phreatic aquifers.

In view of this inherent difficulty, Dupuit [33] observed that in most groundwater
flows, the slope of the phreatic surface is very small. Slopes of 1/1000 and 10/1000
are commonly encountered. In steady flow without accretion in the vertical two-
dimensional zz-plane (Figure 1.6a), the phreatic surface is a streamline. At every
point, P, along this streamline, the specific discharge is in a direction tangent to the
streamline and is given by Darcy’s law

. d¢ dz)
(1.12) ¢s=—K—-= de— K sind,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

since along the phreatic surface p = 0 and ¢ = 2. As 0 is very small, Dupuit

suggested that sin @ be replaced by the slope tanf = g—'ﬁ. The assumption of small ¢

T
is equivalent to assuming that equipotential surfaces are vertical (i.e., ¢ = ¢(z) rather
than ¢ = ¢(z, z)) and the flow is essentially horizontal. Thus, the Dupuit assumption

leads to the specific discharge expressed by

dh
1.13 =K =
(113) 6= KT &
In general, h = h(z,y) and we have
oh . Oh
: e = —K—, =-K—.
(1.14) 6w=-Kg, =-Kg

Since q is thus independent of elevation, the corresponding total discharge through
a vertical surface of width W (normal to the direction of flow; Figure 1.6b) is

h oh
(1.15) Qs = ~KWh-, Qy=-KWha, h = h(z,y),

or, in the compact vector form

(1.16) Q = -KWhVh.
Per unit width, we obtain

(1.17) Q' =Q/W = —-KhVh.

In (1.15) through (1.17), the aquifer’s bottom is horizontal. it should be empha-
sized that the Dupuit assumption may be considered as a good approximation in
regions where 6 is indeed small and/or the flow is essentially horizontal. We note
that the assumption of horizontal flow is equivalent to the assumption of hydrostatic
pressure distribution Op/0z = —pg.

The important advantage gained by employing the Dupuit assumption is that
the state variable ¢ = ¢(z,y, z) has been replaced by h = h(z,y), i.e., z no longer
appears as an independent variable. In addition, since at a point on the free surface,
p = 0 and ¢ = h, we assume that the vertical line through the point is also an

equipotential line on which ¢ = h =const. In general, h varies also with time so that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

h = h(z,y,t). In this way, the complexity of the problem has been greatly reduced.
It is two-dimensional rather than three-dimensional, and the unknown location of the
phreatic surface is no longer an extra complication.

The Dupuit assumption presented above is probably the most powerful tool for
treating unconfined flows. In fact, it is the only simple tool available to most engineers

and hydrologists for solving such problems.

FiGURE 1.7. Regions where Dupuit assumption is not valid. [13]

z Vertical flow; horizontal water table

flow

Ll

«— Not valid

Seepage face

’
—

Equipotential

SRR

I

The Dupuit assumption should not be applied in regions where the vertical flow
component is not negligible. Such flow conditions occur as a seepage face is ap-
proached (Figure 1.7c) or at a crest (water divide) in a phreatic aquifer with accre-

tion (Figure 1.7b). Another example is the region close to the impervious vertical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

boundary of Figure 1.7a. It is obvious that the assumption of vertical equipotentials
fails at, and in the vicinity of, such a boundary. Only at a distance z >~ 2hg have we
equipotentials that may be approximated as vertical lines, or surfaces. It is important
to note here that in cases with accretion, a horizontal (or almost so) water table is
not sufficient to justify the application of the Dupuit assumption. One must verify
that vertical flow components may indeed be neglected, before applying the Dupuit

assumption.

1.2.3. Equation of continuity. The equation of continuity is a statement of
the law of conservation of matter. When applicable, it states that mass can be neither
created nor destroyed. It can be derived from the fact that the change in mass stored
in a small, elemental,‘rectangular parallel-piped equals the difference between the
mass entering and the mass leaving.

Consider a control bor having the shape of a rectangular parallel-piped of dimen-
sions dz,dy,dz centered at some point P(z,y, 2) inside the flow domain in an aquifer.
A control box may be any arbitrary shape, but once its shape and position in space
have been fixed, they remain unchanged during the flow, although the amount and
identity of the material in it may change with time. In the present analysis, water
and solids enter and leave the box through its surfaces. Our objective here is to write
a.balance equation for the mass of water entering, leaving, and being stored in the
box. Let the vector J = pg denote the mass flux (i.e., mass per unit area per unit
time) of water of density p at point P(z,y, z). It is easy to see that g is the specific
discharge in the Darcy’s law. Referring to Figure 1.8, the excess of inflow over outflow
of mass during a short time interval d¢, through the surfaces which are perpendicular

to the z, y and z direction, can be expressed by the differences

dt{Jm‘x—dm/Q,y,z - Jx|x+dm/2,y,z}dydz>
dt{Jylx,y—dy/Zz = Jyloy+ayse,. Ydzdz,

dt{Jz |:c,y,z—-dz/2 - Jz 1x,y,z+dz/2}dwdy-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

FIGURE 1.8. Nomenclature for mass conservation for a control volume. [13]

L

“lxyz+ 82
X y,z+3
Jt
17 X.y+%‘f.
s
s
J. —p
e ———— Mleyox,
5z)\ 2
J
Y %.9
¥4
_.4\</ y
6z
xr ,Z"———
y:27 %

The sum of the three expressions, for all three directions, is the total excess of mass
inflow over outflow during dt. So the excess of inflow over outflow per unit volume of

medium (around P) and per unit time is

o, 0J, 0J,,
(633 + Oy + 32) V- re.

On the other hand,

lim (np)lerae — (np)le _ 9(np)

D0 At ot
is the rate of change of the mass of the fluid per unit volume of porous medium where
n is the porosity. So we get the fundamental balance equation

6(np)

(1.18) ~Vpg=—5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

With some assumptions about the fluid flow [13], Q%ltp—) can be expressed as pSo%%

where Sy is called the specific storativity and is defined by
(1.19) | So = pg(a+np),

where p is the density, g is the acceleration of gravity, n is the porosity of the porous
medium, and (and o are derivatives of p and n with respect to the pressure p
respectively. The specific storativity indicates the ability for the medium to hold the

fluid. Substituting it into the balance equation, we get

0
(1.20) ~V - pgVe¢ = pSOa—gtb.

If p is constant we have

_ g 9¢
(1.21) -V g =55

1.2.4. The flow equations. The balance equations, (1.18), (1.20), and (1.21)
in section 1.2.3, do not include the recharge. If the distributed rates of artificial

recharge, R(z,t), and the pumping, P(z,t), are added, the balance equation can be

modified to

Applying Darcy’s law g = —K V¢, we get the flow equation in a confined aquifer

(1.23) sog—f =V-KV$+R—P.

We can also deduce the flow equation in an unconfined aquifer by applying the

Dupuit assumption ¢ = —KhVh:

(1.24) So-aa—? =V KhVh+R—P.

The equations above are three-dimensional. We can also get the two-dimensional

equations by integrating the above equations over the z direction (see [13]). For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

example, the two-dimensional flow equation for a confined aquifer is:

(1.25) S% =V - (TVh) + gy — g2+ R = P7,
where

ba
(1.26) S(z,y) = So(z,y, 2)dz

is the aquifer storativity,

bs
(1.27) T(:E,y):/ K(z,y,2)dz

is the aquifer transmissivity,

bo
R*(z,y,t) = /b R(z,y, z,t)dz,

b
P*(z,y,t) = /b P(z,y,z,t)dz,

are the source/sink terms and g9, g,; denote the leakage rates of the upper and lower
aquifers. Here b, and b; denote the elevations of the aquifer’s top and bottom. For a
confined aquifer without leakage, ¢,; and g, will be zero. For an unconfined aquifer,
the term Vh in the above equation will be replaced by AV h.

Note that the only term of the parameters that is dependent on the time in the

flow equations is the source term R — P, and we usually denote it by one symbol R.

1.3. Hydrodynamic dispersion

One major problem, of interest in the development and management of any water
resources system, is water quality. With the increased demand for water, the quality
problem becomes the limiting factor in the use and development of water resources.
Although it may seem that groundwater is more protected than surface water, it
is still subject to pollution, and when this occurs, the restoration to the original,

nonpolluted state is usually more difficult and lengthy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

We consider the mass of some substance contained in the groundwater as the
transport mass that moves with the water in the interstices of a porous medium.
The mechanisms affecting the transport of a pollutant in a porous medium are as
follows: advective, dispersive, and diffusive fluxes; solid-solute interactions; and vari-
ous chemical reactions and decay phenomena, which may be regarded as source-sink
phenomena for the solute.

Consider saturated flow through a porous medium and let a portion of the flow
domain contain a certain mass of solute. T_his solute will be referred to as a tracer. The
tracer, which is a labeled portion of the same liquid, may be identified by its density,
color, electrical conductivity, etc. Experience shows that, as flow takes place, the
tracer gradually spreads and occupies an ever-increasing portion of the flow domain,
beyond the region it is expected to occupy according to the average flow alone. This
spreading phenomenon is called hydrodynamic dispersion in a porous medium. It is a
nonsteady, irreversible process (in the sense that the initial tracer distribution cannot
be obtained by reversing the flow), in which the tracer mass mixes with the unlabeled
portion of the liquid. If initially the tracer-labeled liquid occupies a separate region,
this interface does not remain an abrupt one. Instead, an ever-widening transition
zone is created, across which the tracer concentration varies from that of the tracer
liquid to that of the unmarked liquid.

One of the earliest observations of this phenomenon is reported by Slichter [95],
who used an electrolyte as a tracer in studying the movement of groundwater. Slichter
observed that at an observation well downstream of a (continuous) injection point,
the tracer’s concentration increases gradually, and that even in a uniform (average)
flow field, the tracer advances in the direction of the flow in a pear-like shape that
becomes longer and wider as it advances.

The dispersion phenomenon may also be demonstrated by a simple laboratory
experiment. Consider steady flow in a cylindrical column of homogeneous sand, sat-

urated with water. At a certain instant, ¢ = 0, tracer-marked water (e.g., water

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

with NaCl at a low concentration, so that the effect of density variations on the flow
pattern is negligible) starts to displace the original unlabeled water in the column.
Let the tracer concentration, C = C(t), be measured at the end of the column and
presented in a graphic form, called a breakthrough curve, as a relationship between

the relative tracer concentration and time, or volume of effluent, U.

Ficure 1.9. Breakthrough curve in one-dimensional flow in a sand
column. [13]

1.0 r J
1~ actual (with dispersion)

co.5 | without dispersion
. [1 |

0 1 2 3 1
Q./U,

In the absence of dispersion, the breakthrough curve should have taken the form
of the broken line shown in Figure 1.9, where U is the pore volume of the column
and @ is the constant discharge. -Actually, owing to hydrodynamic dispersion, it will
take the form of the S-shaped curve shown in full line in Figure 1.9.

We cannot explain all of the above observations on the basis of the average wa-
ter flow. We must refer to what happens at the microscopic level, i.e., inside the
pore cross-section. We usually assume zero fluid velocity on the solid surface, with a
maximum velocity at some internal point (compare with the parabolic velocity dis-
tribution in a straight capillary tube). The maximum velocity itself varies according
to the size of the pore. Because of the shape of the interconnected pore space, the
(microscopic) streamlines fluctuate in space with respect to the mean direction of flow
(Figure 1.10). This phenomenon causes the spreading of any initially close group of
tracer particles; as flow continues, they occupy an ever increasing volume of the flow
domain. The two basic factors that produce this kind of spreading are, therefore, flow
and the presence of a pore system through which flow takes place.

Although this spreading is in both the longitudinal direction, namely that of the

average flow, and in the direction transversal to the average flow, it is primarily in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

. the former direction. Very little spreading can be caused in a direction perpendic-
ular to the average flow by velocity variations alone. Such velocity variations alone
also -cannot explain the ever-growing width of the zone occupied by dispersed tracer
particles normal to the direction of flow. In order to explain this spreading, we have
to refer to molecular diffusion, an additional phenomenon that take place in the void

space.

FIGURE 1.10. Spreading due to mechanical dispersion (a,b) and molec-
ular diffusion(c). [13]

Direction of average
flow
e

%//////
Grain

Veloci S
dist‘:'igfl.lttis(’)n .\A
, --‘ 7
Y)
(@) (b) (©

Molecular diffusion, caused by the random movement of molecules in a fluid,
produces an additional flux of tracer particles (at the microscopic level) from regions
of higher tracer concentrations to those of lower ones. This means, for example,
that as the marked particles spread along each microscopic streamt-ube, as a result
of velocity variations, a concentration gradient of these particles is produced, which
in turn produces a flux of tracer by the mechanism of molecular diffusion. The latter
phenomenon tends to equalize the concentrations along the steamtube. Relatively,
this is a minor effect. However, at the same time, a tracer concentration gradient will
also be produced between adjacent streamlines, causing lateral molecular diffusion
across streamtubes (Figure 1.10c), tending to equalize the concentration across pores.
It is this phenomenon that explains the observed transversal dispersion.

In addition to the role played at the microscopic level by molecular diffusion in en-

hancing the transversal component of mechanical dispersion, it produces macroscopic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

flux of its own. This is easily demonstrated by letting the velocity vanish. Then the
tracer is transported by (macroscopic) molecular diffusion only.

We shall refer to the spreading caused by the velocity variations at the microscopic
level, enhanced by molecular diffusion, as mechanical dispersion.

We use the term hydrodynamic dispersion to denote the spreading (at microscopic
level) resulting from both mechanical dispersion and molecular diffusion. Actually,
the separation between the two processes is rather artificial, as they are inseparable.
However, molecular diffusion alone does also takes place in the absence of motion
(both in a porous medium and in a fluid continuum). Because molecular diffusion
depends on time, its effect on the overall dispersion is more significant at low velocities.
It is molecular diffusion that makes the phenomenoﬁ of hydrodynamic dispersion in
purely laminar flow irreversible.

In addition to inhomogeneity on a microscopic scale (i.e., presence of pores and
grains), we may also have inhomogeneity on a macroscopic scale, due to variations in
permeability from 6ne portion of the flow domain to the next. This inhomogeneity
also produces dispersion of marked particles, but on a much larger scale.

Dispersion may take place both in a laminar flow regime, where the liquid moves |
along definite paths that may be averaged to yield streamlines, and in a turbulent
regime, where the turbulence may cause yet an additional mixing. In what follows,
we shall focus our attention only on flow of the first type.

In addition to a'dvection (at average velocity), mechanical dispersion, and molec-
ular diffusion, several other phenomena may affect the concentration distribution of a
tracer as it moves through a porous medium. The tracer (say, a solute) may interact
with the solid surface of the porous matrix in the form of absorption of tracer par-
ticles on the solid surface, deposition, solution of the solid matrix, or ion exchange.
All these phenomena cause changes in the concentration of a tracer in a flowing lig-
uid. Radioactive decay and chemical reactions within the liquid also cause tracer

concentration changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

In general, variations in tracer concentration cause changes in the liquid’s density
and viscosity. These, in turn, affect the flow regime (i.e., velocity distribution) that
depends on these properties. We use the term ideal tracer when the concentration
of the latter does not affect the liquid’s density and viscosity. At relatively low
concentrations, the ideal tracer approximation is sufficient for most practical purposes.
However, in certain cases, for example in the problem of sea water intrusion, the

density may vary appreciably, and the ideal tracer approximation should not be used.

1.3.1. Advective, dispersive, and diffusive fluxes. As explained above, at
every (microscopic) point within a porous medium domain, we have a velocity V
and a concentration, ¢, of some considered substance; c expresses the mass of the
substance per unit volume of the liquid. Figure 1.11 shows a point z’ belonging to an
REV centered at point z. The product ¢V at z' denotes the local flux (= quantity
of the considered substance per unit area of liquid) vector at that point. However,
we already know that we cannot predict values of V' and c at this microscopic level,
and that, instead, we should aim at predicting the average concentration, ¢, and the

average tracer flux, ¢V, at the macroscopic level. To achieve this goal, without going

FIGURE 1.11. Nomenclature for the dispersive flux. [13]

into the details of the continuum approach to transport in porous media, let the

liquid’s velocity at an arbitrary point, z', within the liquid that completely occupies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

the pore space, be denoted by V' (2, t; z). The symbol z in this parenthesis indicates
that point 2’ belongs to an REV centered at z (Figure 1.11). The velocity, V', can be
decomposed into two parts: the average velocity, V, of the liquid within the REV,

and a deviation, V', from that average. Thus
(1.28) Vi, t;x) = Vi, t) + V(' t;2),
(1.29) c(z',t,z) = ¢(z,t) + °(«, t; x).

In both cases, the average has the meaning of an intrinsic phase average as defined
by (1.1).

To obtain the average flux, we write

(1.30) V=C+O)(V+V)=cV +2V° +V + V"
‘However, in view of (1.1), °V =0 and &V = 0. Hence
(1.31) cV =8V + c°V?,

i.e., the average flux of the considered substance is equal to the sum of two macroscopic

Buxes:

a) An advective fluz, ¢V, expressing the flux carried by the water at the latter’s
average velocity, V, as determined by Darcy’s law.

b) A flux c°V° = cV? expressing an additional flux resulting from the fluctu-
ating velocity in the vicinity (i.e., within the REV) of the considered point.
Recalling the discussion in the previous section, this is the flux that pro-
duces the spreading, or dispersion. We refer to it as the dispersive flux. It is
a macroscopic flux that expresses the effect of the microscopic variations of
the velocity in the vicinity of a considered point. We note that this flux is
created by the averaging procedure. It does not exist at the microscopic levél.

In employing this flux, we are losing the information about the behavior at

the microscopic level (which we do not have anyway).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

1.3.2. Mechanical dispersion. Our next objective is to express the dispersive
flux in terms of averaged (and measurable) quantities, such as averaged velocity and
averaged concentration. Investigations over a period of about two decades, starting
from the mid-50s (see review, for example, in Bear, [9]), have led to the working
assumption that the dispersive flux can be expressed as a Fickian type law; ie., in
the form

| - .
(1.32) cV?=-D-Ve; Vi = —‘Dij'—c§
7 oz,

where D is a second rank symmetric tensor called the coefficient of (mechanical)
dispersion. We recall that ¢ denotes the mass of the dispersing substance per unit
volume of water, and ¢°V? represents a flux per unit area of the water. Equation
(1.32) indicates that the dispersive flux is linearly proportional to the gradient of the
average concentration and that this flux takes place from high concentrations to lower
ones. |

Several authors (e.g., Nikolaevskii [76], Bear [8], Scheidegger [92], Bear and Bach-
mat [10]) derived the following expression for the relationship between the coefficient

D and microscopic porous matrix configuration, flow velocity, and molecular diffusion

ViVm
(1.33) Dy =3 tisim—c=1 (Pe, 0),
k.m

where V' = |V is the average velocity, Pe is the Peclet number defined as Pe =
LV /Dy, L is some characteristic length of the pores, Dy is the coefficient of molecular
diffusion of the solute in the liquid phase, ¢ is the ratio of the length characterizing
the individual pores of a porous medium to the length characterizing their cross-
section, and f(Pe,d) is a function which introduces the effect of tracer transfer by
molecular diffusion between adjacent streamlines at the microscopic level. In this
way, molecular diffusion affects mechanical dispersion. One should not identify this

effect with the macroscopic flux due to molecular diffusion (see below), but with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

transfer between streamtubes at the microscopic level, as explained in the definition
of mechanical dispersion in the previous section. Bear and Bachmat [10] suggested
the relationship f(Pe,§) = Pe/(Pe + 2 + 45). In most cases, it is assumed that
f(Pe,d) =~ 1. Henceforth, we shall also make this assumption.

The coefficient a;jkm, (dims. L), called the dispersivity of the porous medium, is
a fourth-rank tensor which expresses the microscopic configuration of the solid-liquid

interface. Bear and Bachmat [10] and Bear 9, page 614] express aijxm by

(130) g =[> (VIL)(BT})/(BT}) (BT L,

where B is the conductance of an élementary medium channel, BT}, is an oriented
conductance of a channel, T;’; is the medium’s tortuosity, nB—Tg = k;; is the medium’s
permeability, and L is a characteristic length of the medium. Thus, the medium’s
dispersivity is related to the variance of (_B_sz_)_o, while its permeability is related to

of BT};.

the average, BT},

A fourth rank tensor has 81 components in a three-dimensional space (and 16 in a
two-dimensional one). Scheidegger [92] and Bear [9] showed that a;jxm has a number
of symmetries that reduce the number of nonzero components of the dispersivity
tensor, in a three-dimensional space, to only 36.

For an isoiropic porous medium, the number of nonzero components is further
reduced to 21. Furthermore, these 21 components are related to-two parameters: ay,
(dim. L), called the longitudinal dispersivity of the isotropic porous medium, and ar
(dim. L), called the transversal dispersivity. In the theoretical_ developments men-
tioned above, it is shown that a; expresses the heterogeneity of the porous medium
at the fnicroscopic scale due to the presence of pores and solids. Hence, in laboratory
experiments in homogeneous sand columns it' was found that a; is of the order of

magnitude of the average sand grain. The transversal dispersivity is estimated as

being 10 to 20 times smaller than that of ar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

With az, and ar, the components of the dispersivity for an isotropic porous medium
can be expressed in the form

ar — a
_L“})_Z((Sikdjm + 0im0jk),

Z

(135) aijkm = afTéijékm +

where
0 if¢#7,

1 otherwise,

513 =

is the Kroenecker delta. For an isotropic porous medium, the components a;jxm do
not change under rotation of the coordinate system.

For an anisotropic porous medium with azial symmetry, e.g., a medium made up
of a large number of thin layers normal to the axis of symmetry, the dispersivity can

be expressed in the form
Gijkm = G10ij0km + G11(0ik0jm + Oim0jk)
tarrr(8ijhkhm + Sgmhihs)
+ajv(6ikhjhm -+ 5jkhih'm + 6imhjhk + 5jmhihk)
+avh,-hjhkhm,
where aj,a;;,arr7,05v and ay are five independent parameters and h is a unit vector
directed along the axis of symmetry. Similar expressions can be written for other
types of anisotropy.
By combining (1.33) with (1.35) for f(Pe,d) = 1, we obtain
(136) D,;j = GTV&U‘ + (CLL - aT)Vﬂ/j/V,
where here, and hencefbrth, we have omitted the overline symbol that indicates the
velocity is an average one.
The permeability, k;;, of a porous medium is also a second-rank symmetric tensor.
However, there is a basic difference between tensors kij and D;;. In an isotropic porous

medium, any three mutually orthogonal directions in space may serve as principal

directions. However, due to the effect of the velocity pattern, one of the principal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

FIGURE 1.12. Principal axes of the coefficient of dispersion. [13]

Principal
normal (N)

Streamline

Tangent 1o
streamline (M

Binormal (B)

axes of the dispersion coefficient, D;;, at a point, is always in the direction of the
tangent of the streamline passing through that point. The other two principal axes
are in the directions of the two principal normals to this direction. Figure 1.12 shows
these directions. The unit vectors N, T', and B are called the principal normal, the
tangent, and the binomial to the curve.

Thus, although the porous medium is isotropic, we have a distinct set of principal
directions at every pdint of a flow domain. As the velocity varies from point to
point, so do the principal axes of the dispersion. Furthermore, at every point, these
directions may vary continuously as the flow pattern varies. This dependence of the
dispersion coefficient on the velocity introduces a major difficulty in the solution of
pollution problems, especially under unsteady flow conditions and when the velocity

is density (and hence, concentration) dependent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

1.3.3. Molecular diffusion. At the microscopic level, the flux vector, J @ due

to molecular diffusion is expressed by Fick's law
(1.37) J@ = _D,Ve,

where Dy is the coefficient of molecular diffusion. in a fluid continuum (equals about
1075c¢m?/sec in dilute systems). By averaging (1.37) over the REV, and introducing
certain simplifying assumptions, Bear and Bachmat [11, 12] derived an expression

for the macroscopic flux in the form

(1.38) J@ = D, T*. Ve = —D5 - Vg,

where D} = T*Dy is the coefficient of molecular diffusion in a porous medium and
T* is a second-rank symmetric tensor that expresses the effect of the configuration of
the water-occupied portion of the REV. We used the averaging symbol in (1.38) in
order to emphasize the difference between this equation and (1.37).

The coefficient T™, often referred to as a tortuosity, is defined by (Bear and Bach-
mat [11, 12])

" 1
(1.39) T = Usw - (zj — moj)1sdS,

where S,,,,, denotes the water-water portion of the bounding surface of the REV, z
is the centroid of the REV, v is the outwardly directed normal to the surface Sy,
and Up,, denotes the volume occupied by water within the REV.

For an isotropic porous medium, T* reduces to

« _ 0

where 05 = Sy /S0, 0w = Usw/Us, and §;; is the Kroenecker delta.

1.3.4. Coefficient of hydrodynamic dispersion. By adding the dispersive
flux, expressed by (1.32), and the diffusive flux, expressed by (1.38), we obtain

(1.41) V° +J9 = (D + D) - Ve = —Dy - Vg,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

where the coefficient D), = D + D is called the coefficient of hydrodynamic disper-
S10M.
The total flux, g s, Of @ pollutant, by advection, dispersion, and diffusion, can

now be written in the form
(1.42) qC,tOtal = gw(—c-:‘—/; - Dh N VE).

This is the amount per unit time of the pollutant passing through a unit area of

porous medium.

1.3.5. Balance equation for a pollutant. Five components should be taken

into account in the construction of a balance equation for a constituent ([13]).

a) The quantity of the pollutant entering and leaving a control volume around
a considered point by advection dispersion and diffusion, or the total flux,
g ota> Xpressed by (1.42).

We recall that in Section 1.3.1, using a parallelpiped control box, we
have shown that the negative divergence of a flur (of any extensive quantity)
represents the excess of inflow (of that quantity) over outflow, per unit volume
of porous medium, per unit time. Hence, here —div q, 4., total represents
the excess of inflow of a considered pollutant over outflow, per unit volume
of porous medium, per unit time.

b) Pollutant leaving the fluid phase through the water-solid interface as a result
of chemical or electrical interactions between the pollutant and the solid sur-
face. Phenomena of ion exchange and absorption may serve as examples. Let
f denote the quantity of pollutant that leaves the water by such mechanisms,
per unit volume of porous medium, per unit time. |

¢) Pollutant added to the water (or leaving it) as a result of chemical interactions
among species inside the water, or by various decay phenomena. Let I' denote

the rate at which the mass of a pollutant is added to the water per unit mass

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

of fluid, and @ be the moisture content (so that §pI" denotes the mass added
by such phenomena, per unit volume of porous medium per unit time).

d) Pollutant may be added by injecting polluted water into a porous medium
domain, e.g., as part of artificial recharge or waste disposal operations. Pol-
lutant may be removed from a porous medium domain by withdrawing (pol-
luted) water, e.g., by pumping. With P(z,t) and R(z,t) denoting the rates of
water withdrawn or added, respectively, per unit volume of porous medium
per unit time, and ¢(z, t) and cg(z,t) denoting the pollutant’s concentration
in the water present in the porous medium and in the wat:er added by injec-

- tion, respectively, the total quantity of pollutant added per unit volume of
porous medium per unit time is expressed by Rcg — Pc.

e) As a result of the above components, the quantity of the pollutant is in-
creased within a contfol box. With fc denoting the mass of a pollutant per
unit volume of porous medium, a_gf) denotes the rate at which this quantity

increases.

Combining all the components, we obtain

dfc

(1.43) 5

==V q ot — f + 00 — Pc+ Rep,

or, using (1.42) to express g ;oa,

dbc

(144) E—-——V-(cq—9Dh~Vc)—f+9pl"—Pc+RcR.

Equation (1.44) is the (macroscopic) mass balance equation of a pollutant, ex-
pressed in terms of ¢ = c(z,t). It is often called the equation of hydrodynamic disper-

sion, or the advection - dispersion equation.

The previous equation is a general case of unsaturated flow. For saturated flow,

0 is replaced by the porosity, n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

The Mathematical Model

2.1. Introduction

As stated in the previous chapter, the saturated flow and single-phase solute

transport in groundwater systems can be modelled by the equations

(2.1) S(x)—aa—(téz -V - q+ R(z,1),
(2.2) o) _ _g.(cq)+ V- (0DVe) + B,

ot

over z in a bounded region & C R* n = 2, or 3, and for ¢ > 0. Here, ¢(z,t) is
the piezometric head, ¢(z,t) is the solute concentration, S is the specific storativity,
6 is the porosity, D is the hydrodynamic dispersion tensor, and R(z,t), B are the
source/sink terms for the flow and solute, respectively. The term g is the specific
discharge. When applying Darcy’s law ¢ = —K V¢, we get the model equations in a

confined aquifer:

(2.3) 32 = v . (kv + Rz,1),

ot
8%6;6) =V (cKV¢)+V-(8DVc)+ B.

(2.4)

The model equations in an unconfined (phreatic) aquifer can be obtained by applying

the Dupuit assumption ¢ = —K ¢V ¢,

(2.5) S(m)%? = V- (KV) + R(z,2),
(2.6) 96) _ v . (c4KkV$)+V - (6DVC)+ B.

ot

Note: we changed some symbols here so that it is convenient for us in the later

discussion.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

A fundamentally important part of the modelling process is the full reconstruc-
tion problem, i.e., the problem of obtaining reliable estimates for all of the various
coefficient functions appearing in equations (2.1) and (2.2) from field measurements
of the quantities ¢ and ¢ (together with some ancillary data, such as boundary data
on K and D).

Many of the methods that have been employed on the inverse groundwater prob-
lem typically focus only on the recovery of the scalar (isotropic) hydraulic conductiv-
ity. These methods range from educated guesswork (referred to as “trial and error
calibration” in the hydrology literature, the method still preferred by some practition-
ers [5, page 226]) to various attempts at “automatic calibration” ([7, 62, 102, 103)
for survey materials; see also [19, 20, 23, 69, 78]). Some people [89, 91] have tried
the direct approach of viewing the steady state version of (2.3) as a first-order hy-
perbolic equation in the conductivity; in addition to the fact that one must somehow

-integrate, in stable fashion, along the characteristic curves (which depend on V¢), this
requires that one know the inflow part of fhe boundary, the determination of which is
itself a non-trivial ill-posed problem. Another approach is to reformulate the problem
as an optimization exercise, which can be done in several ways. One can work directly
to minimize the “equation error,” as in [34, 35, 36, 47, 48, 62, 72, 91, 97], or min-
imize over an “output error,” as in [21, 22, 37, 41, 65]. The output error methods
are applicable when the number of observations is limited, but suffer badly from non-
uniqueness problems, as well as numerical instabilities. Another optimization route
makes use of the general idea of Tikhonov regularization [70, 74]; examples include
(1, 18, 63, 98]. All Tikhonov regularization methods make use of a regularization
parameter whose critical value must be known quite accurately for the method to be
effective. This general class of methods is less effective because of the lack of reliable
methods for determining this critical value in practical situations; this problem can
be even more pronounced in the aquifer case due to the uncertainties in the available

data. A different regularization, asymptotic regularization, is employed in {4, 43]. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

the last two decades much work has appeared with the aim of applying geostatistical
techniques [46] to the aquifer problem; examples include (2, 27, 42, 48, 74, 89, 96].

A further point worthy of note is that in the current literature there are few
universally applicable techniques for recovering the specific storage and even fewer
viable methods available [5, page 153] for objectively assigning values to a time-
dependent recharge term. Once again, rainfall is not readily measured as a local
phenomenon, and the effect of supply and discharge from underground sources is
even more difficult to measure directly. There are also essentially no viable methods
for objectively obtaining the full hydraulic conductivity tensor.

It is evident that obtaining the dispersion tensor D in equation (2.2) is even
more difficult [48, page 2219]). Recall that the movement of. the contaminant fluid
in a groundwater system can be divided into three mechanisms (see Section 1.3):
advection, convective dispersion, and molecular diffusion. Advection is represented
by the first term on the right-hand side of equation (2.2); the sum of the convective
dispersion and molecular diﬂ“usion is the coefficient D of equation (2.2). Note that
the convective dispersion itself is a combination of the longitudinal dispersivity, ay,
and transversal dispersivity, ar, for an isotropic porous medium. It is a combination
of five independent parameters for the anisotropic case (see Section 1.3). So the full
reconsfruction problem for the groundwater model is a computationally formidable
inverse problem.

In this dissertation, we will extend the work of [64] to a full groundwater model
that can recover all the parameter functions in the flow equation (2.1) and the trans-
port equation (2.2) for both confined and unconfined aquifers. Observe that a major
difficulty encountered in the process is that these parameters can be very poorly rep-
resented by measurements taken at a fixed collection of points in an aquifer. This
is because quantities such as hydraulic conductivity, for example, can vary by up to
12 orders of magnitude at a given site [5], due in part to the presence of significant

geological inhomogeneities. In order to reliably model the flow of materials through

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

a porous medium, one has to somehow assign appropriate averaged values for these

parameters determined in a suitable way from the flow itself [5, page 329].

2.2. The flow equations

Recall that the source term R in the flow equation is time dependent. This makes
the problem more complicated. For simplicity, we assume that R is a piecewise
constant function with respect to the time variable ¢, i.e.,

N

(27) R(.’L‘, t) - Z Ri(I)X[ti—l,ti]

1=1

where 0 =ty < t; < --- < ty = 1. This assumption is justified since

a) the data is available for only a limited time period, and it is difficult to
monitor field data changing continuously in time;

b) R is generally a slowly varying function of time; and

¢) from a mathematical point of view, it will converge to the real case when the

time step is tends to 0.

Laplace transforming equation (2.3) in ¢ over [t;_q,t), 1 = 1,2,-+- ,n, we get N

equations
(2.8) -V - (K(2)Vu;) + {du; + a1 (2, M) }S(z) = Bia(z, \)Ri(z),
where

_ .
(2.9) Cule N = [ot

tio1
(2.10) ai1(z,A) = ¢(z, t)e™™ — d(z, t;_;)e -1,
: Lo e —Xt;

(2.11) Biai(z, A) = —)\—(e i1l eTAN),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

For the flow equation (2.5) of an unconfined aquifer, after the Laplace transfor-

mation above, we have

(2.12) —V (K (z)Vw;) + { w; + a;o(z,) }S(z) = Biolz, N)Ri(z),
where
(213) w,-(:c,)\) = /ti 6~)\t¢2(33,t)dt,

(214> ai,2(x) /\> =)\(2714 - ’LUi) -+ 2{¢(a:, ﬁi)e_kti — qﬁ(;g,ti_l)e*)\ﬁi—l }7

2 , Y
(215> /Bi,Z(‘T; >‘) = X(e_)\tl_l —€ MI))

t=1,2,---,N.

It is simple to compute values u;(z, A) and w;(z, A) from the known data #(z, 1)
with fixed A. Thus we arrive at a new problem: given data u;(x, A) (as well as w;(z, A)
for an unconfined aquifer) for z in Q and all A > 0 (and the boundary value of K),

determine the functions K, S, and R;, ¢ =1,2,---,N.

2.3. The transport equations

Consider the transport equations (2.4) and (2.6). Assuming that the hydraulic
conductivity K is known, then the first term of the right-hand side of equations (2.4)
and (2.6) are known data. The coefficient hydrodynamic dispersion tensor, D, is a
very complicated combination of some components (see Section 1.3). Here we adopt a
somewhat different approach. Consider D as a function of g; i.e., D = D(q), where
the specific discharge g is dependent on time (although the hydrodynamic dispersion
tensor D itself is time independent). So the term D(q) in the transport equations
(2.4) and (2.6) are actually time dependent. Adopting the technique as in the flow
equations, we assume

(2.16) D(z,t) = Y Di@)xprr i

=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

The source/sink term B is very complicated (see Section 1.3.5). For simplicity,

we assume here that B = B'(z,t)c + B*(z,t). Similar to the discussion above, we

assume
Na
(2.17) Bl(% t) = Z Bi1<x)X[ti—1,ti]7
. =1
N3
(2.18) B*(z,t) = > BX@)Xpu_y)
j=1

Without loss of generality, we can assume N; = N, = N3. Now, applying the finite

Laplace transformation to equation (2.2) in t over [t;—,1;], we have

(219) —V-(0(z)D;(z)Vv;) + {dv; + ozi(a:; M}Yo(z) = Bi(z, \) B} (z)+

+ 7z, \) B () + &(, M),

where
t
(2.20) vilz, \) = /t e el
(2.21) o (z,) = ez, t;)e™™ — ez, t;_q)e b1,
(2.22) ,Bi(a:,.)\): vi(z, A),
(2.23) W) = e e
(2.24) Si(z, \) = — " V - (cq)e™Mdt,

ti—1

i=1,2,---, N;. When the specific discharge is replaced by the Darcy flow (Dupuit
assumption) we get the transformed transport equation in the confined (unconfined)
aquifer. With the assumption that c¢(z,t) and K (z) are known, we have u;, oy, 5,
v; and §; are all known, ¢ = 1,2, - | N;. So our problem becomes as follows: given
data v;(z, A) for z € and all A > 0 (together with some boundary values of D; and

#), determine the parameters D;, 0, B} and B2, i =1,2,---, N;.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44
2.4. The inverse problem

If we regard 0(z)D;(z) in equation (2.19) as one (matrix) function K (z), then
compare the equations (2.8), (2.12), and (2.19), we have that these three equations

can be written in the following form:
(2.25) -V - (K(z)Vv) + (M + @)Q(z) = BR(z) + vS(z) + 6,

where a = a(z,), 8 = f(z,)), v = v(z,A), and § = §(x, A) are all known (y =6 =0
for flow equations). And our problem is to find the coefficient functions K, @, R,
and S from the known solution data v = u(z, \) and Kaq.

According to [38, Chapter 8], the generalized Dirichlet pfoblems associated with
(2.26-2.29) below are uniquely solvable, and the solutions v lie in the Sobolev space

Wh2(Q):
(2.26) Ly ==V - p(x)Vv + dvg(z) = —ag(z) + fr(z) + vs(z) + 4,

where z € ©, Q is a €2 domain in R*; A > 0; and

(2.27) a(z, A), B(z, X),v(z,), 8(z, A) € L3(Q);
(2.28) p = (ps;) symmetric, strictly positive with p;; € L
(2.29) q(z),7(2), s(x) € L*(Q). |

Now let D be the set of all ¢ = (p, g, 1, s), such that p, g, , s satisfy (2.28) and (2.29).
Denote u = u(z,) the solution of equation (2.25) and u, = u.(z, A) the solution of

equation (2.26) corresponding to ¢ = (p, g,7, s) € D such that
(2.30) Uclon = ulsn.

The functional G is defined as follows

(2.31) G(c,\) = /f;p(x)V(u —) - V(u — ue) + Mu — ug)?q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

For a fixed number of A values, Ay, Ay, - -+, Ay, we define functional H as the sum of
G at those fixed As, i.e.,
M
(2.32) Hc) = Gle, M),
k=1
where ¢ = (p,g,7,5) € D. We will prove that the functional H is convex and has a
global minimum point at (K, @, R, S). Thus the recovery of (K, Q, R, S) becomes a

procedure of minimization of the functional H.

2.5. The uniqueness

Before we give the method of recovery, we first show that the‘coefﬁcients in equa-
tion (2.25) can indeed be uniquely determined under some assumptions, provided we
already know the solutions. To this end we assume in this section that the matrix
function p in (2.28) has entries in C*(Q).

We proved, in [59], that if p is the only unknown parameter, then it can be
uniquely determined by two solutions u(z, A1) and u(z, As), A; # Ag, provided that

one of the entries is known and

uz(x,y,)\;) Uy (2, Y, A1) 40
Uz (T, Y, A2) uy(T, Y, Aa)

throughout the region §2. We also give a uniqueness assumption which states that, in
a two-dimensional case, p; = p, if and only if u(p;, A) = u(p,, A) for three distinct
values of), if all the other parameters are known. These results also apply to equation
(2.26).

Now let ¢ = (p,q,7,8) € D, u; = u(z, A;), s =1,- -+, 6, be solutions of (2.26) with
6 distinct values of A\. If there is é = (p,q,7,3) € D, which also gives solutions u;,

then

=V - p(x)Vu; + (M + o;)g(z) = Bir(z) + vis(z) + 6

=V - p(z)Vu; + (Miu; +)§(z) = Bif (z) + %3(z) + 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

where o; = a(z, \), B; = B(z, i), v = v(z, Ni), & =6(z, Ny), i =1,---,6. Thus we

have
=V - (p(x) = p(z)) Vi + (M +) (9(x) — G(z)) = Bilr(z) — F(z)) + wils(z) — 5(z)),
i=1,---,6, or in matrix form

(2.33) ~Ap, - Bp, -~ Cp=Mv,

where u= (a)b) C)T7 v = (q - (j,’l" - 'F75 - '§)T7

_ a b
p(z) - p(z) = ,
b ¢
“Mu—ar oM Uz O Uty
—Mug—az B2 72 Ugg 0 Ugy
~Asuz —az B3 73 uze 0 usy
M = , A= ,
—Aus — g Ps Vs Uz O Ugy
—Asus — s O5 Vs use 0 usy
—Xeus — s P e Uz O Ugy
0 Uy Uiz Uizgz Ulyy 2'U'l:z:y
0 Ugy Uy Uoze Uyy 2'U'2:1:y
0 usy, u U U 2u
Y 3z 3zz 3yy 3zy
B - y C =
0 Ugy Udg : Uz Udyy 2u4:1:y
0 Usy Usg Usgz Usyy 2'UIS:z:y
\ 0 Usy Uer Uszz Usyy 2“61‘;}

If p = p, from (2.33) we can see that if we want to recover m = 1,2, or 3
coefficients of ¢,r, s, we need only m solutions, provided the matrix M has rank m.
Now for the general case, suppose we want to recover m entries of p and n coeflicients
of g, 7, s. Without loss of generality we assume that n = 3. If M has rank 3 and M

is a 3 X 3 nonsingular submatrix, denote M, the submatrix of M whose elements are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

those not in M. Let Ay, Ay, By, B, Cg, and C be the submatrices of A, B, and
C which take the same rows as My and M, corresponding to the same subindices.

Then we can get

(2.34) {M\M;' Ay — Ar}p, + {MM;'By — Bi}p,+
+{M M;'Cy—Ci}un=0

from (2.33), where M is the inverse of M,. One can see that M My Ay — A,
and MlM{)’lBO — B have the form

a; 0 a
(2.35) M M7'Ay—Ar=1| b 0 b |,

01062

0 aa a4
(2.36) - M\Mi'Bo—-Bi=| 0 b b
0 Ca €1

Similar to the proof in {59}, we can show that

PROPOSITION 2.1. In two dimensions m + n distinct solutions u; are needed to
recover m < 3 entries of p and n < 3 coefficients of q,r, s of equation (2.26), provided

that M above and a submatriz of (2.85), namely

ap az .
by by

are non-singular throughout the region Q.
We assume

UNIQUENESS ASSUMPTION 2.2. In two dimensions, if p has entries in C*(),
then ¢ = (p,q,7,s) € D can be uniquely determined by N different solutions ug », of
(2.26),1=1,---,N, where N > 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Proposition 2.1 states that if the given data is “good enough,” then only six
solutions would be enough to recover all the coefficients (see [59]). In the real world,
six solutions is usually not enough. We test for different synthetic data, and find that
20 solutions is a good choice. On the other hand, the choice is justified, since in the
finite Laplace transformation of the flow equation, A acts as the time variable. If we
choose more A values, that means we use more data during the time period, which

should certainly gives us more information.

2.6. Properties of functionals G and H

In this section, we will give some properties, which are essential for the numerical
algorithms, of the functionals we constructed.

Let v be a solution of the generalized Dirichlet problem (2.26, 2.30), for ¢ €
Wy (), we have

(2.37) (Lv, ¢) = /(va -V + M(z)ve)de,
0

by (2.26),

(2.38) /Q¢V - (pVv)dz = — /Qva - Vdz.

The latter formula is essentially Green’s formula for this situation (“integration by
parts”) and will be used a great deal in the proof of the properties of the functional

G and H.

LEMMA 2.3. (a). For any c= (p,q,r,3) € D,

(2.39) G(c,\) = /Q{p(x)Vu - Vu — p(z)Vue - Vuc+
+ AU = uf) + 20(u - uc)lq(z)

= 2(u — u.)[Br(z) + vs(z) + 6]} dz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

(b). For c; = (py,q1,71,51) and ca = (Py, 2,72, S2) tn D we have

(2.40) Gley, \) — Gleg, A) =
/{ —py)Vu - Vu— (p; — Do) Ve, - Vg, +
M =) + 2000 = 5 (ks + 00101~ 2

2 (ke +][= 2) + (51 —)]

(c). For c = (p,q,7,8) in D and h = (hy, he, hs, hy), by symmetric matriz with
entries in L(Q), hilaa =0, and hy, hs, hy in L%(Q), we have

(2.41) lm Ueqen = U,
e—0
in WH(Q). v
(d). For ¢ = (p,q,7,5) in D and h = (hq, he, hs, hy), h1 symmetric matriz with

entries in LP(2), hilag = 0, and hg, ks, hy in L%(Q), and any symetric

matriz 1 with entries in L°(2),

(2.42) IV - (1Vucsen)llw-12¢0) < K,

where K is a constant that does not depend on € when € is not too big.

ProoF. To prove part (a) first note the identity

G(c,) = /ﬂ{p(x)Vu -Vu — p(z)Vu, - Vu+

+ 2p(2) Ve - V(u —) + Aa(ue — u)?q(z)}-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Now, using integration by parts and equation (2.26), together with the fact that the

solutions u and u, share the same boundary data, we have

A (2p(2) Vi - V(e — 1) + Al —) %a(c)}da
= /{;{;2(% —)V - (p(z)Vue) + Aa(u — u)’q(z) }dz
- /Q {200 — u)[~ (e + a)g(a) + Fr() + y5(z) + 6] + Aau — ue)q(z) }da
= [A7 1) + 20tu— ula(e) — 2= w[Br(a) +15(x) +)
and this gives the proof of (a).
To prove part (b), notice that by (a)
Gles, \) = Glen, N) =
/ (P, = Py) V- Vi = (py — py) Vi, - Vg +
+Mu? — ue ug,) + 20(u — %(uc1 + U,)@ — ¢2) +
=2 = 5ty + U B = 72) + (51 — s2)]}

/Q{_plvuqv(uq - ucz) - (ucl - ucz)[()‘uq + a)QI =+ ﬁ""l +vs1 + 6] +

=PV, V (Ue, - Ucy) = (Uey — gy)[(Ate, + @) g2 + Bz + v52 + 8] }dz

By integration by parts, equation (2.26), and the u,, = u., on the boundary 2, we
have that the second part of the right hand side equals to 0. This gives the proof of
part (b).

In order to prove part (c), we subtract the equations

-~V - (pVue) + Quc+a)g=Br+ys+46
~V - ((p + €h1)Vucren) + (Mucren + @) (g + €hy) =

= B(r + eh3) + (s +€hg) + 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

to get

-V (pv(uc+eh - Ufc)) +)‘(uc+eh - 'U'c)q =

€[V - hiVucren — (Aucten + @)hg + Bhs + vha)

Now we multiply t%cicn — ue on both sides of the above equation and integrate over €2

we get (after integration by parts)

/{pv(uc—}—eh - Ug) - v(“c-l—eh - uc) + MUcten — uc)QQ}d‘r

Q .

= /{—V ’ pv(uc+eh - uc) ('U'c—i-eh - uc) + /\(uc+€h — UC)ZQ}dm
Q

= € /Q{(U'c-i—eh —u)V - by Ve —
~[(Miegen + @)hg + Bhs + Yha) (Ueyen — uc) }dz
= ¢ /Q{—hlv(uc—l-eh —)+ V(Ugpen — Uc) — hyVu, - V(teten — Ue) —
~AMtcten — uc)2hy — ((Aue + @)ho + Bhs + Yhe) (Ucten — Uc) T
< e [(mVlterr = 1) Vs~
(Ve +19 (e — w)f?)
o (e 0y + Bhs + 7R + (tere —)

+ M hg (Ueyen — Ue)*

and using the inequality ab < (a® + b%)/2.

Now, with the assumption that g is lower bounded by some positive number, we
have that the left hand side of the above inequality is bounded below by a constant
multiple of ||u;+6h — tUc||wi2(q). On the other hand, the terms on the right hand side
are independent of ¢ except for ucyen. So when e is small enough, we can move the
terms on the right hand side which contain ucy e, — u. to the left hand side so that
the left side is still lower bounded by a constant multiple of ||ucyen — Uc|lwi2(q) and

the remaining right hand side is O(e). Then part (c) follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

In order to prove (d), we define a functional F on Wy*(Q) by F(¢) = JamVucien:
V¢. Since the entries of 77 are in £%°(Q2), (2.41) implies that

(2.43) [F()] < Kl|ol[wrza),

when ¢ is small enough, and K does not depend on e. Thus F € (W, *(Q)* =
W=12(Q). The estimate (2.42) then follows from (2.43). O

THEOREM 2.4. (a). The first Gateaur differential of G is given by

(2.44) G'(c, N)[h] = /Q{h1Vu -Vu —hiVu, - V:uc-i-
+ IMu? = ud) + 2a(u — uc)lhy
— 2(u — uc)[Bhs + vhy] }dz,

where h = (hy, ho, h3, ha), hy 18 a symmetric matriz with entries in L%°(£2),
hllag - 0, and hg, h3, h4 mn ,62(9)
(b). The second Gateauz differential of G is given by

(2.45) G"(c, \)[h, k] = 2(L7 (e(h)), e(k)),

where h = (hq, hg, hs, ha), k = (K1, ko, ks, k), and hq, k1 are symmetric
matrices with entries in L(Q) with hilaq = kilgn = 0, and the functions

Ry, ha, ha, ko, ks, ks lie in L2(),
(2.46) e(h) = =V - hiVu, + [Muc + alhg — Bhs — vhy,
and (-,+) denotes the usual inner product in L*(Q).
PRrROOF. By Lemma 2.3 (b), for € > 0,
%(G(c +¢h,A) — G(c, A)) = /Q{qh1Vu - Vu — ghyVue - Veien
+[pVu - Vu — pVu, - Vg + Mu? — ey entse) + 20(u — %(uc + Ueren) P2

1
—2[’& - §(Uc -+ Uc+eh)][,8h3 + ’)’h4] -+ e[h2h1VuVu - h2h1VucVuc+5h]}dx.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
Then part (a) follows from Lemma 2.3 (c) by letting € go to 0.
To prove (b), note that by (a),
G'(c+ eh, N[k] = G'(c, \)[k] =
~ /Q (k1 Vtg e - Vitgren — K Vite - Vit
M ulen = 1) + 20(Uucren — uc)]k2
| ~2Ugyen —)| Bks + vks) }dz
= = [V eren 10 ren = w2
+[%(UE+eh — u2) + 20 (Ueqen — Uc)]k2
~2(ucten — tc)[Bks + vka]}dz
= | (s = w7 (1T e)
~[A(Ueren + Ue) + 2a)ks + 2[Bks + vk4]}dz,

after an integration by parts.

Subtract the equations

(2.47) Lue, = =V - (pVug) + Aug = —aq + fr(z) +vs(z) + 9
and
(2.48) Lucren = =V - ((p+ €hy)VUcren) + Mcten(q + €ho)

= —a(q+chy) + B(r + €hs) +y(s +eha) + 6
we have

L(uc+eh - uc) = —-V- pv(uc—}—eh - uc) -+)\(Uc+eh - uc)q

= ——e[—V . h1VUC+Eh + ()\uc.;.eh + Of)h2 — (,Bhg, + ’Yh4)],

or

(2.49) Ugreh — Ue = —€L™H(=V - BiVUcyen + (Mucren + o) he — (Bhs + vhe)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Thus
G'(c+ €eh, \)[k] — G'(c, V) [k]

€

= /Q LN~V - hiVUeien + (Mieren + @)ha — (Bhs + vhe)) X
X{ =V« (k1V (Ueyen + ue)) + [MUcren + ue) + 2a)ks — 2[Bks + vk4]}dz
= 9 /ﬂ L (W)=Y - (k1 Vug) + (Ate + a)ks — (Bks + ko) }dz +
4 /Q L=V - Ay (tesen — 1) + Mutosen — ue)ha]
(= - (k1 V (tteren +) + Mutesen + o) + alks — [Bks + vk Yz +
+ /Q L W=V - (k1Y (Uoren —) + Atteren — we)ka}d.

It remains to be shown that the second and third integrals of the last expression

tend to zero as € — 0. As the operator L™! is self-adjoint, if we set
- We =~V - (R1V(teren + Ue)) + [Mtcren + o) + alke — [Bks + vk4],
the second integral may be rewritten as
/ﬂ[*v YV (Uogen — Ue) + MUeren — Uc)ho] X L7H(we)

= /Qh1V(uc+eh —1e) - (L7Hwe)) + Ahg(tepen — ue) L™t (we).

From (2.42), w, is uniformly bounded in ¢ in £2(f2), and as L~ may be extended
uniquely as a bounded linear operator from £3(Q) to W2(Q), L~!(w,) is bounded
independently of ¢ in W'2(Q). From the boundedness of V on W12(Q) to £3(Q) x
L%(R) it follows that |L~*(w,)]| is bounded independently of ¢ in £2(£2). From (2.41)
it now follows that the second integral tends to zero with e — 0. Finally, note that
L~e(h)] lies in W12(Q), and that the third integral vanishes as ¢ — 0 follows via

(2.41) after an integration by parts. This completes the proof of the theorem. O

THEOREM 2.5. (a). ForcinD and A >0

Gle,N) =0 <= G (c,\) =0 <= u,=u.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

where u, 18 the solution of (2.26), u is the solution of (2.25), i.e., the known
data. |

(b). Assume that ¢ lies in D and G"(c, \)[h, h] = 0 for some h = (hy, ha, hs, h4)
where hy is symmetric matriz with entries in L2(Q), hilsa = 0, and ho, hs, hy

in L2(Q). Then uesen = ue for all € small enough.

PrOOF. The assertion in (a) that G(c,A) = 0 if and only if u, = u follows
immediately from the definition of GG, and one direction of the remaining assertion
is obvious. If G'(c,\)[h] = 0 for all h, then the £* gradient of G, VG, satisfies
VG(c, A) = (v;5) = 0, where, for 1 < j, k < n,

Vik = Ug; Ugy — Uez,; U,z

Consequently, from Theorem 2.4 part (a) and Lemma 2.3 (a),

G(c,\) = /Q{p(x)V(u —ue) - V(u — ue) + Mu — u.)*q(z) }dzx
= —2/ 8(u — ue)dz.
If we interchange ¢ and ‘C in this formula and note that u = uc, we have
/ (K(2)V (1 — 1) - V(- 1) + AMu — u)?Q(z)}ds = -2 / 5(te — u)dz.
Q Q
Adding, we find that
[Aple) + (@)=) V=) + A = e alo) + Qe =0,

from this and the fact that p, K are positive definite and ¢,Q > 0, it follows that
u—u, = 0.
Part (b) is a consequence of Theorem 2.4 part (b) in that, if we assume that

G"(c, \)[h, h] = 0, then

6(h) = _v ' hlvu’c + {Auc + a]h2 - ﬂh,g —_ ’Yh,4 = O,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so that from (2.26), for all ¢ small enough p + eh, is strictly positive and

=V (p(z) + €h1)Vue + (Aue + a)(g(z) + €hs)

= B(r(z) + ehz) + v(s(z) + €hy) + 6.

But uc.en is the unique solution of this eciuation with the boundary data ulsq; it

follows immediately that uepcp = ue. Ol

THEOREM 2.6. Assume that the uniqueness assumption of the previous section

holds, and in (2.82) set M >=5. Then for c in D,
(2.50) H()=0 < H'(c)=0 > c=C(=(K,Q,R,3))

where K,Q, R, S are the coefficients in equation (2.25), i.e., the coefficients we in-

tended to recover. And the functional H is strictly convexr on D.

PRrROOF. Noting that H(c) = 0 if and only if G(c,A;) = 0 for 1 < 7 < M, the
first assertion follows from Theorem 2.5 and the uniqueness assumption. Next, if
H'(c) = 0, the same proof that was used for G shows that H(c) = 0, and the rest
follows from the statements above. Finally, let H"(c)[h,h] = 0. As the functionals
Gle, N), 1 <4< M, are convex, it follows that G"(c, \;)[h,h] =0for 1 <i < M. By
Theorem 2.5 part (b), for all € small enough , ueyen = uc for A= X, 1 < i< M. The

uniqueness assumption now indicates that h = 0. D

2.7. A descent algorithm

"Theorem 2.6 shows that, under computationally verifiable conditions on the data
functions, u; = u(c, M), 1 <1 < M, and the coefficients (K, @, R, S) can be uniquely

recovered by minimization of the functional H given by (2.32). Recall that by Taylor’s

expansion,
H(c+eh) ~ H(c)+ eH'(c)[h] = Z Gle, \) + e Z G'(c, \)[h]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

for the direction h. If we can find a direction h such that the second term of the
right-hand side above is negative, then we can get to a point ¢; = ¢ + €h, such that
H{cy) < H(c) when € > 0 is not too big. So the search for a descent direction is an
important part in our minimization procedure. First for A = (hy,0,0,0), Theorem
2.4 gives

G'(¢, \)[h] = / hiVu-Vu— hyVu, - Vu,
Q

n
=y / hig (uitt; = Uciticy)
Q

Li=1
n

= E /hijnij
ij=1"%

where u is the solution of (2.25), u, is the solution of (2.26), u; = %, Ueg = ‘3—2?, and

hy = (hi;) is a symmetric matrix with h;; in £2°(Q) and hi|sq = 0. Notice that if we

define the £? inner product for n x n matrix functions h = (h;;) and g = (g;;) to be

(hg) o =Y /ﬂhﬁmgﬁ (z)ds,

i,j=1

and 1 = (1;;) then G'(c, A)[h] = (n, h1) 2. Now let hy; be the solution of
(2.51) —Agij + gij = (VG)ij = my gijlaa =0,

then
G, N[H = /Q (n, h) prd

n
=Y /Qmjgijdx

1,7=1

= Z/Q("Agij“*’gij)gijdl”

=1

= Z /Q{Vgij - Vgij + gij - 955 }dx

i,j=1

= (g)g)%’a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

where g = (g;5), (-,-)%1 is the Sobolev inner product corresponding the £? inner
product above. So we get a descent direction g, which is called the Neuberger gradient
[73]. Thus for the matrix direction h;, we can choose the Neuberger gradient as the
descent direction. Note that we can not choose the £ gradient VG = (n;;) as
our descent direction here, because VG is generally not zero on the boundary 0S.
For other directions, ho, hs, hg, this requirement is not necessary. So we can simply
choose the £? gradient as the descent direction. If we know the boundary value
of a coefficient, such as the storativity, we can choose the Neuberger gradient as the
descent direction. This usually leads to a better result. For a more detailed discussion

about this descent method, please refer to [52].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

Numerical Implementation and Results

3.1. The numerical implementation

There are two approaches we can adopt in the actual recovery. A total of six
coefficients, K, @), R, and S, are involved in our recovery procedure. We can regard
H as a function of six variables and use a minimization method for multiple variable
functions, such as the “Powell” method. This method is generally more efficient for
the recovery of K, [59]. We can also code to recover the variables one by one. The
advantage of this method is that we can control the actual recovery for each individual
variable. If one variable is more difficult to recover than the others, we can set more
iterations for this variable in each step. Our example shows that K is most difficult to
recover, compared to other variables. We use the second method in this dissertation.
Here is a brief illustration of our minimization step. Assume the six variables to be
recovered are denoted by r;, 1 <4 < 6. Our algorithm is implemented according to

the following scheme:

a) Choose an appropriate initial guess for the functions ¢ = (r;), 1 < i < 6;
these can be arbitrary, except that some of them must satisfy some boundary
conditions, such as 7;|aq = K;|aq, ¢ = 1,2, 3, where the boundary values for
K; come from the known boundary values of K.

b) Seti =1, i.e., the search variable is ;. Also set the control variable flag = 0.

¢) Compute the descent direction h;. If the boundary values of r; are known,
such as 1 < 1 < 3 for the two-dimensional case, the descent direction is
computed as the Neuberger gradient; otherwise, it is the £! gradient.

d) Let h be the direction such that the ith component is h; and all the others

are 0. Check to see if H can be minimized in direction h by comparing H(c)
59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

and H(c — ah) for some small number a (= 1077). If
H{c) > H(c— ah),

then set flag = 1 and go to the next step. Otherwise, set © = ¢+ 1 and go
to step g).

e) Do a line-minimization in the direction h, using the one-dimensional search
routine to compute ¢ = ¢ — o],

f) Set c=c"" and ¢ =i+ L.

g) If i < 6, then go back to step c); otherwise, go back to step b) if flag = 1,

or exit the search (since no search is successful in this iteration step).

One of the advantages of this algorithm is that it is easily parallelized. Recall that
in our actual recovery, we need to compute a total of M H; functionals, and all these
functionals can be minimized separately. We can set the program to M processes
to recover those H; separately on different processors. There is a second level of
parallelization. Since each H;(c) is the sum of N different G{(c,);), and the gradient
is also the sum of the N different VG(c, A;), we can write the program as a master-
slave program such that the master process mainly does the line search work, while
the slave part deals with the numerical solution of the paLrtial differential equations
and the quadrature needed for computing the values of the functionals G and the
gradient VG. In our program, we use the PVM package [15] for message passing
between the master and the slave programs. Some of routines are implemented or

adopted from the Numerical Recipes [82] in our programs. Note also

(1). The elliptic PDE solver. Since the recovery is very sensitive to the error of
the numerical solution, a solver is needed that can accurately and efficiently

solve elliptic boundary value problems of the type

-~V -KVu+ Qu=F,

u(z,y)|sq = B(z,y).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

with minimal error. We use the nine-point difference method for the dis-
cretization and then employ the band-solving subroutine BANDEC adopted
from [82] to solve the resulting system of linear equations. This solver was
called upon to determine the various solutions u,. during the descent search-
ing procedure and the Neuberger gradient. The solver we implemented is
efficient for two dimensions. For three dimensions, a more efficient solver is
required.

(2). The numerical differentiation. We use central differences for the numerical
derivatives for our synthetic dataset. This is accurate and efficient here,
because the solutions being differentiated are sufficiently smooth functions.
For practical data with noise, one must apply more sophisticated numerical
differentiation techniques. We implemented a routine by using the mollifier

function

ﬂeXp(Hx”lz_l) iff ||| <1,

0 otherwise,

p(z) =

where £ is chosen so that [, p(z)dz = 1, to regularize the data function u

by

(3.1) un(z) = b / oY huly)dy,

for some small A > 0. One can then compute the numerical derivatives of uy
using central differences and use these as approximations to the derivatives
of u. For.a more detailed discussion about this routine please see Section
3.3.

(3). The quadrature. We iterate the Simpson’s rule function QSIMP in [82]
to perform the required quadrature in the formula (2.31) for G(c, \) and
the finite Laplace transformation. Given that parts of the integrand lack
smoothness, Simpson’s rule is an effective choice here.

(4). The line minimization routine. In the minimization search, we adopted the

bracketing and line minimization approach in [82]. The idea is as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

If H can be minimized along a given direction, we use our own (somewhat
primitive but safe) bracketing method to find the bracketing points. First we
choose an initial stepping distance, and then step along the chosen direction
using this stepping size as an increment until either a bracketing is found
or a preset stepping limit is encountered. In the latter case the original c is
reset to the new c at the stepping limit and a new gradient is computed. In
practice we use the actual length of the movement in the previous search to
make some adjustment to the stepping distance. Once the bracketing points
are found, we adopt the BRENT function [82] to find the minimum.

(5). The parabolic PDE solver. In our test program, we need a parabolic solver
to solve the flow and transport equations. To this end, we adopted the pde
solver PDETWO of [68], modified so that it can handle the matrix-valued
case with nonzero cross-term coefficients. This solver is efficient and quite
accurate, with smooth boundary and initial values. The solution formed our

synthetic dataset.

Note that since the elliptic solvers are extremely sensitive to a loss of positivity
for p, the program would tend to crash when non-positive eigenvalues for p were

encountered. Noting that p is positive definite if and only if

pu>0, p2>0, pupp-— pfz > 0,

we argue that it is reasonable to set lower bounds on the functions py1, pae with local
knowledge of a particular aquifer and with the knowledge [52] that the insertion of
additional information tends to have a stabilizing effect on an ill-conditioned com-
putation. It is not clear from the physical problem how one might constrain p;o; we
chose to bound the absolute value of p;; by the square root of the product of the
lower bounds for p;; and pyo, so that piipss — p2, > 0 is always true. Whenever the
computed values of p are under the lower bound in the descent search for p;; and pos,

or above the bound for p;, we set them equal to the bound. With this arrangement,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

the algorithm became extremely stable with respect to allowing a large number of the
descent iterations. From our test functions we can sée that if we can assign a lower
bound for p;,, the images are substantially improved.

As described in Section 2.5, we need at least five different A values to recover K, Q,
and R for the flow equation and six different A values to recover D, 8, By, and B, for
the transport equations. In practice we found that increasing the number of) values
used substantially improved the images. In our tests, we chose the number of A values
to be 20. This is consistent with the view that the ill-posedness in the computational
problem cdrresponds to a certain loss of information in the data, and, as noted above,
the most natural way to oﬁ"s.et this is to add as much ancillary information as possible.

As is observed earlier, the recovery of the functions D;(z), ¢ = 1, -, N is es-
sentially equivalent to the recovery of the function D(v(z,t)) where the Darcy flow
v(z,t) = —KV¢ may be regarded as already known. The remaining task is to re-
cover the time-independent dispersion function D(-) from the information gathered
thus far.

The Darcy flow can be regarded as a function v = h(z,t) from Q X [0, 1] onto
a vector subset, V, of R™, while the time-independent scalar dispersion D(-) is a
function from V to the real line R. So, we can at best recover D(-) restricted to V..
The other issue is that if h is not one-to-one, the numerically recovered D(v(z,t))
will most likely not take equal values on those points (z,t) that map to the same
flow vectors under h; we take the average of those values as the value of D(-) at that
point.

The algorithm works in the two-dimensional case as follows. Let {z;;} represent

the grid points in , and let t; denote a partition of the time interval. The vectors
vijr = K (i) Ve(zij, te) = (Qijk, bij) T

are computed and stored, and the minimum and maximum of the a;jk, Gmin and Gpax

are computed, together with the minimum and maximum of the b;jk, byin and bpax.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

The rectangle V' = [amin, Gmax] X [Dmin, bmax) 18 discretized by a grid with stepsize h,
the stepsize used in the grid for Q. Each of the vectors v;j is then assigned to its grid
square in V/, and for each of the grid squares Vs in V, the average of D(vyy) over
all of the v;j, in V;, is computed; this is the value of D(:) on Vis. If no v, lie in Vg
we set D(V,,) = ¢y, the predefined lower bound for D(v) before. The test program

shows that this method is effective.

3.2. Results with synthetic data

In our synthetic data test, we assume that the region Q = [-1,1] x [-1,1] is
overlaid with a 30 x 30 discretization grid. We deliberately chose all the coefficients
to be non-smooth functions, because the non-smooth functions are more difficult to
recover, and also because one cannot assume a priori that the parameters in a real
groundwater system are smooth functions. The time period was set from 0 to 1. The
code was written in PGI Fortran 90 in double precision and run on a cluster consisting
of Dell PowerEdge 2450 nodes with dual Intel 733MHz Pentium III processors and the
Redhat Linux 6.2 Operating System. We used 20 nodes, one for each of the A-values

in the functional H.

FI1GURE 3.1. True parameter functions K, @), and R - 1

(a) K11 ' (b) K2 (c) Koo

3.2.1. The flow equation. We assume that the time interval [0, 1] is divided

into 10 equal subintervals, and the hydraulic conductivity K, the storativity S, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 3.2. True parameter functions K, @, and R - 2

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

the source/sink term Ry, 1 <k < 10, are defined as in Figure 3.2.1 and Figure 3.2.1.

And

10

R(SE,y,t) - ;Rk(m>y)X[k_]”6l,l_’%]
The piezometric head data, ¢, is solved from the flow equation (2.3) with initial
condition

w(z,y,0) = 2 + 0.5 cos(nz) cos(my),

(to simulate slowly varying head data), and boundary conditions

w(z, £1,t) = 2 — (0.5 — t) cos(mx),
w(xl,y,t) = 2 — (0.5 — t) cos(my),

by the PDE package PDETWO [68], over the region and time [0, 1]. Then we use

the quadrature implemented with the Simpson’s rule to get the data u;, 1 <14 < 10.

EXAMPLE 3.1. Assume that the hydraulic conductivity K is known. We recover Q
and R simultaneously for 1,000 steration steps. Figure 8.2.1 shows the séarch result
where we use the L' gradient as the descent direction. It can be seen that the result is
really bad. If we have some information about the parameters, such as the boundary
values of the storativity S, then we can get a much better result (see Figure 3.2.1(a)
and Figure 3.2.1(b)) by adopting the Neuberger gradient for the descent direction.

There is still some “junk” in Figure 3.2.1(a) and Figure 3.2.1(b). This junk
comes from the numerical difference of the solutions solved by the two PDE solvers
- the parabolic PDE solver PDETWO and our elliptic PDE solver (together with the
numerical Laplace transformation). Recall that the source data u;, 1 < 1 <10, are

computed by the Laplace transformation (2.9) of the solution of the parabolic equation

(2.8). Since
ti
Uilon = / e ¢(z, t)]sadt,
. ti1
we use this for the boundary values to solve the elliptic equation (2.8), with the true

parameters K, S, and R, and use these ug, 1 < k < 10, as source data. Then all the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

FIGURE 3.3. The recovery of @ and R with K fixed with £' gradient

™~ z

/
2P
\

s

B
2t AN
l”"’)]‘\!‘{? k ‘ L
%43

ll“\\i‘

(c) Recovered @ (d) Recovered Ry

junk disappears, as in Figure 8.2.1(c) and Figure 8.2.1(d). Note that we still need
the solution ¢ of equation (2.8) to compute a, but we can regard them as ﬁxed once

¢ is known.

Actually, the difference of the two solutions is very small. But the difference of the
numerical derivatives is much bigger than the difference of the solutions. Figure 3.2.1
shows the differences of the solutions and the corresponding numerical derivatives
between the solutions, with time period set £k = 1 and A = 0.5. Since PDETWO is

only used to generate the synthetic data, and since the source data is gathered by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

FIGURE 3.4. The recovery of) and R with K fixed with Neuberger gradient

(c) Recovered Q (d) Recovered R;

field measurements in the real situation, we assume in the following examples that the
synthetic data u;, 1 <7 < 10, are generated by our elliptic solver together with the
boundary values above. Example 3.1 also tells us that the more information we have
about the recovered parameters, the more accurate the result. We assume that in the

following examples we will use the Neuberger gradient for the descent directions.

EXAMPLE 3.2. Assuming that the storativity S and the source term R are known.
We simultaneously recover the coefficients, K1, K1z, and Koy, of the anisotropic

hydraulic conductivity K. After 1,000 descent steps, we get the result shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Figure 8.2.1. We can see that the result is good both in shape and height, and the

discontinuity 18 quite clear.

FI1GURE 3.5. Difference of solutions between the two PDE Solvers when
k=1land A=0.5

'y

.

2 B
PN A

(a) difference of u (b) difference of 2% (c) difference of g—;‘

FIGURE 3.6. The recovery of K when (), R are assumed known

NN\ AN

SN X TN AN

g ",;Z'.

N\ N\ N\ AN

(a) True K13 (b) True Ki» : (¢) True Koo

(d) Recovered Ky {e) Recovered Kio (f) Recovered Kaz

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F1GURE 3.7. The recovery of the parameters of flow equation of un-
confined aquifer — 1

70

A
I e
u{y},},{‘lflg&i‘”"

-08 =%

(j) recovered @ (k) recovered R (1) recovered R»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

EXAMPLE 3.3. As a final example of the flow equation, we simultaneously recov-
ered all the coefficients of the flow equation (2.5) in an unconfined aquifer. The true
parameters K, @, and R;, 1 < i < 10, were as in Figure 3.2.1 and Figure 3.2.1. Our
search was scheduled as follows. We set an arbitrary initial position co = (Pg, qo,T1,)-
With the descent minimization, we searched to cs by using the source data u; as

follows

Cé = (p())q()vrlo) B C% = (plaQO7rlo) — Cé = (Pp(hﬂ”ll)-

Then we used ¢ = (py, qu,72,), Where o, was chosen arbitrarily, as the initial
position and searched to ¢z = (pq,q2,72,) with source data uy. Adopting the same
procedure, we searched to point ci® = (pyg, q10, 710,). In the second iteration, we chose
¢y = (P10, Gr0, 71,) @8 the initial point and made a further search. After a total of 5,000
descent steps, we got the recovered parameters as listed in Figure 8.2.1, Figure 5.3,

and Figure 3.8. We can see that all the parameters recovered are quite accurate.

It should be noted that the true S here is not physically reasonable in the ground-
water context because the possible values for S are very small, at 0.003ft™* for clay,
with very high compressibility and porosity, for example. This arises in the following

example.

EXAMPLE 3.4. In this example, we set S to be much smaller, between 0.0005
and 0.0015, as shown in Figure 8.2.1. The hydraulic conductivity, K, was set to be
isotropic, while the source/sink term, R was set as a step function of R;, i =1,--- ,6.
If we assumed that the aquifer was confined, and we recovered all the parameters
stmultaneously for 5,000 steps. The recovered parameters are shown in Figure 8.2.1
and Figure 8.2.1. It can be seen that all the parameters except S are very accurate.
To prove that our recovery was effective, we computed the relative error between the
“true” source data and our recovered data. The idea is as follows: regard the source
data ¢ solved by PDETWO with the true K, S, and R;, z =1,---,6 as the true source
data; the data solved by PDETWO with the recovered K, S, and R;, 1 =1,--- ,6 is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Ficure 3.8. The recovery of the parameters of flow equation of un-
confined aquifer — 2

. /jﬂ\v
i1

Il

S N
e

=
s

11

(7) recovered Rg (k) recovered Ry (1) recovered Rg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

FIGURE 3.9. The recovery of the parameters of flow equation of un-
confined aquifer — 3

™~

AN

(c) recovered Ry (d) recovered Riq

regarded as the recovered data. We then computed the relative error between ¢ and ¢.
The result is shown in Figure 8.2.1. It can be seen that the error is below 1%, very
small. It also agrees with [83], in which it is stated that the storativity is insensitive

to small changes of piezometric head.

However, in the real situation, the source/sink term R in the flow equation is also
very small. This difficulty can be avoided by applying a variable substitution (see
Section 4.6).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

FIGURE 3.10. Recovery with small S —1

(c) true S (d) recovered S

3.2.2. The transport equation. Assume that the parameters in the flow equa-
tion are already known and the true parameters for the transport equation are defined
as in Figure 3.2.2, Figure 3.2.2, and Figure 3.2.2. We will test the case of an uncon-
fined aquifer here (similar results can be obtained for the confined case). Note that
since the parameters (K, S, R) are regarded as known, the parameter §; in equation

(2.19) can be computed as follows:

5(z,) = / ey (K ¢V)dt

tr—1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

FiGUure 3.11. Recovery with small S -2

(a) true Ry, Ry (c) recovered Ry

(e) recovered Rg (f) recovered R4

(g) true Rs, Rg (h) recovered Rj (i) recovered Rg

t;
_ / eV - K¢V + K¢V - Veldt

i-1

= /ti e“’\t{c[S(w)%% — Ry(z,t)] + K¢V ¢ - Vcldt.
t

EXAMPLE 3.5. In this ezample, the piezometric head ¢ is solved, as in the flow

" equation where the parameters K, S, and R are those recovered in Example 3.83. Then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Ficure 3.12. Error between the recovered data and the true source
data with small S

)

o
@

T
—

4
3
1

°
-
B S Casos atinss wents AR RO N

o
3
l_

TR I | | I —

S 1
Time (Y

llg(t, z) — ¢1(t>x)”[,°°(n)

we use the parabolic PDE solver PDETWO to solve the transport equation where the
parameters are those listed in Figure 3.2.2, Figure 3.2.2, and Figure 8.2.2, with initial

condition

w(z,y,0) =14 0.5sin(87(z + y))

and boundary values

w(z,£1,t) =14 (0.5 — ¢) cos(8n(z £ 1)),

w(xl,y,t) =1+ (0.5 — t) cos(8n(y £+ 1)).

Of those parameters, D(:) is the most difficult to recover. So here we assume that all
the B coefficients are known, and we recover Dy, Dya, Do, and 6 simultaneously.
After 5,000 iteration steps, we get the recovered coefficients shown in Figure 3.2.2.
Note that the non-smoothness of K, when combined with the non-smoothness of
D itself and possible problems with the finite difference solvers, causes increased diffi-
culties with the D(K @V) term to recover [59]. However, we can see in Figure 8.2.2
that the computed D(-) assembled from the recovered Dj;, ’s, except Dyg, is an effective

reconstruction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

Ficure 3.13. True parameter D, § of the transport equation

(c) true Dag | (d) true 8

EXAMPLE 3.6. In this example, all the data and parameters are the same as in
Ezample 3.5. We assume that D and 6 are known and recover the coefficients B}
and BE, k = 1,---,20. After a total of 5,000 iteration steps, we get the recovered
parameters, Bl and BZ, 1 < k < 20, shown in Figure 8.2.2, Figure 8.2.2, Figure 3.2.2,
Figure 8.2.2, Figure 8.2.2, Figure 3.2.2, and Figure 3.2.2. It can be seen that the

Tecovery is quite accurate.

In the previous example, we recovered D(:) directly from the D(K¢V¢) term.
The hydrologists tend to write D(-) as the sum of (Dj;) and (T3) Dy, (Section 1.3),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 3.14. True parameter B!

78

of the transport equation

f

(a) true Bl

(b) true B}

(c) true B}

(e) true B}

(f) true B}

(g) true B:

(h) true B}

(i) true B}

(j) true Bi,

(k) true B},

(1) true Bl,

(m) true B},

(0) true By

(p) true Blg

(q) true B},

(r) true Big

(s) true Bi,

(t) true B},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

FIGURE 3.15. True parameter B? of the transport equation

(b) true B2 (c) true B2 (d) true B?

(e) true B2 (f) true B2 (g) true B? (h) true B2

(i) true BZ (j) true B, (k) true B?, (1) true B2,

(m) true B, (n) true BZ, (o) true BZ (p) true B%,

A

(q) true B%, (r) true B (s) true BZ, (t) true B,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 3.16. Recovered D(-) and §, assuming B known

(g) true 6 (h) recovered 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

FIGURE 3.17. Recovered B} — B}, assuming D and 6 are known

(a) true B} (b) true B} (c) true B}

(j) recovered B} (k) recovered B} (1) recovered B}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

FIGURE 3.18. Recovered Bl — Bl,, assuming D and § are known

(j) recovered Bi, (k) recovered B}, (1) recovered B},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

FIGURE 3.19. Recovered B}, — Blg, assuming D and 8 are known

-

(§) recovered Big (k) recovered B}, (1) recovered Blg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

FIGURE 3.20. Recovered Biy, B}, B?% and B%,, assuming D and 6§ are known

(g) recovered Bi, . (h) recovered Bi,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

FIGURE 3.21. Recovered B} — B2, assuming D and # are known

(j) recovered B} (k) recovered B2 (1) recovered B2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

FIGURE 3.22. Recovered B2 - B?,, assuming D and # are known

(j) recovered B, (k) recovered B% (1) recovered B2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

FIGURE 3.23. Recovered BZ, — B, assuming D and # are known

(a) true B, (b) true B%, (c) true B¥g

(j) recovered B, (k) recovered B2, (1) recovered B,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

88

where

ViV,
Dz’j = az'jkm”’liv—mf(PQ(S)

and V = |V| = |K¢V¢|, V} is the kth component of velocity vector V', f(Pe,?) is a
function which introduces the effect of tracer transfer by molecular diffusion between
adjacent streamlines, Dy is the coefficient of molecular diffusion, T} is the tortuosity.
Mathematically, there are no differences for us to recover the D as above or recover
the coefficients a;jxm and Dy directly, but the hydrologists prefer to recover these
coefficients because they can bie evaluated in the lab. We note here that we can
actually recover those coefficients from the source data with a slight modification of
our code.

For simplicity, let us consider the isotropic case (in a confined aquifer). From

Section 1.3, we know that for isotropic porous media, D;; can be written in the

following form (under some assumptions)

(3.2) ' Dy, = plag + p3ar,
(3.3) D1z = p1pa(ar, - ar),

(3.4) Dy, = phar, + plar

for a two-dimensional case, where p; = V;/ VV. If we neglect the molecular dispersion
(which can be evaluated directly in the lab), the parameter D = (D;;) in the transport

equation (2.2) becomes a function of ay, and ar since

oy = Vi _ Ki1¢s + K120y p
vV VIK118s + K12¢y? + [K12¢; + Koo dy)? ’

Vs K¢, + K
2 2 120z + Kaody é,

Y VIE1¢z + Ki120y]? + [K126: + K2a¢y?

are known once ¢ and K are determined. Now the functional
Gle, \) = / PV (1~ 1) - V(1 — 1) + A0t — 1,)?
)

/ (@OM; + 0 M)V (u —) - V(1w — 1) + A0 — ue)?,
Q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

where p = a;M; + a; M5, and

2 2
p —p1pP2
M, = P PPz , M, = 5 1 ,
pip2 P —ppa P
can be regarded as a functional involving a; and a; (assuming that # and B are known

for simplicity). Similar properties in Section 2.6 about G and H can be obtained here.

Thus ar, and ar can be directly recovered.

3.3. Error analysis

From the examples in the previous section, we can see that the recovery is quite
accurate, compared to the true parameters. In this section, we will analyse errors of

various kinds compared to the original data. Four situations are considered here:

a) How accurate is the method? i.e., what is the error between the data obtained
from the recovered parameters and the original data? (Figure 3.24)

b) Is the method stable?, i.e., with a small change in parameters, does the
recovered data also change by a small amount? (Figure 3.3)

c) If the original data contains error, is this method still applicable? It is truly
important since the field data will inevitably contain error. (Figure 3.3)

d) Regarding sparse data situation, i.e., if the original data is not‘éufﬁcient, is
the method still applicable? It is also an irriportant issue in economic and

geological situations. (Figure 3.3)

EXAM’PLE 3.7. For situation a), we set the parameters as in Figure 8.2.1 and Fig-
ure 3.2.1. The solution, ¢(t,z), of the parabolic equation (2.5), solved by PDETWO,
is set as the source data. We compute the recovered data, ¢(t,z), by solving the par-
abolic equation (2.5) with the parameters recovered from Ezample 3.83. The L™ error
is computed between ¢ and ¢. Figure 3.24 depicts the error with the time period we

defined from 0 to 1. We can see that the error is very small.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

FIGURE 3.24. Error analysis of situation 1

Error (%)

e e e L
) 0.25 0.5 0.76

.l

(@) [|6(t,) — ¢(t, 2)||L> (o)

EXAMPLE 3.8. In this ezample, we add 1% of L' error and 100% of L* error to
the parameter K (see Figure 3.3). Let ¢(t, z) be the solution of equation (2.3) with the
parameters as in Figure 8.2.1 and Figure 3.2.1, and ¢1(t,z) the solution of equation
(2.8) with the modified parameters K in Figure 3.3. We use ¢1 as the source data to
recover Ki1, Kio, and Koy for 10,000 vsteps and use this recovered parameter as the
coefficient to get the solution of (2.3), ¢. Then the L™ error is computed between ¢

and ¢. We can see in Figure 3.3(d) the error is still very small.

Since we repeatedly use numerical gradient, an efficient and accurate numerical
differentiation method is essential for our numerical implementation. We use the
central difference method in our implementation for its efficiency. The method is
accurate enough in the situation when the source data is smooth. With the source
data contains error, the method fails. To overcome this difficulty, we used a mollifier
to smooth the original data and regarded the smoothed data as the source data. The -
idea is as follows:

Let p be a C* function defined on R" such that p(z) = 0 when ||z|| > 1 and

(3.5) / ple)ds=1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

FIGURE 3.25. Error analysis of situation 2

(b) true K

1% L’ error (100% L" error)
added to parameter P

(c) true Kay (@) [|¢ = ¢llLo (o)

Let € be a bounded open subset of R” and u be a continuous function defined on
the compact set 2. Now we add some random (L®) error ey to the function u and

denote the corresponding function by @. Then % can be represented as

gl

(3.6) (z) = u(z) + e(2),

where ||e(z)||z= < €o. Then @ € £'(Q) with the assumption of e(z) in £'(). For

h > 0, the regularization

(3.7 w= 17 [awo* L,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

FIGURE 3.26. Error analysis of situation 3

Original data z
20% of I error added |

RN
RS
RRRRRY
R

(a) $(0.5,z) (b) ¢(0.5,z)
20% L error added
Smoothed data Zl 2 I addedto source datau
Bask /
AN /
3 N /
\ ,- /
254 //"
\ ,//
.t N /
_\ //
15F \-~-_j/
o T o5 o
T (time)
(c) ¢1(0.5,7) (d) lig — d2llre(a)

of @ lies in @y, € C®(Y) for any ' C Q with h < dist(,09Q) [38]. So the function
uy, is a sufficiently smooth function, and also the error, e, between %, and u, will
not exceed ey by much. In fact, since u is continuous over §, for any € > 0, there is

some h > 0 such that |u(z) — u(y)| < € for any z,y € and ||z — y|| < h, where || - |]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 3.27. Error analysis of situation 4

Original data /é\

"5"

005 AR
e R R
TR IIERRE IR
AR
SIS

SRS
%S .’c‘c,%:;:%

(a) ¢(0.5,z)

©
T

I a
s
/’/'
i
o

..
&
e
s’/‘ -
-
.
e T

a
R0 EREAS CANEs e A
-
-
!

(£) [16(t, 2) = ¢ (t, 2)l|> ()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

denotes the Euclidean norm in R™. Thus we have

e) = u(@)] =7 [(@) - u@)

<h- /nu ~ u(@)lp(*Y)dy +

e [el

S € + eg.
So
(3.8) en = sup{|un(z) — u(z)| : z € Q} < e+ ep.

Practically, the error e, will be much smaller than eg, since

39 [ety = [@ty - [e @oY)

where e* and e~ denote the positive and negative part of e, and the first and second
parts of the right-hand side in the previous expression tend to be equal due to the
normal distribution of the errors.

Once the data has been smoothed, we can use any numerical derivative method
to compute the derivatives with the smoothed data. Because the smoothed data is

C™ at every inner point, the simple central difference method would be enough.

EXAMPLE 3.9. In this ezample, we add 20% of L™ error to the original data
o(t,z) to get d(t,z). We then use the mollifier to smooth the data ¢(t,z) to get
é1(t,z). Then we use the smoothed data ¢1(t,x) as the source data to recover the
parameters. For simplicity, we only recovered the parameter K, and all the other
parameters are assumed to be known. After 10,000 descent steps, we use the recov-
ered parameters as the known parameters for equation (2.3). The numerical solution
B2(t,) was solved from (2.5). Then we compute the error between ¢o(t, z) and ¢, the

original data without errors. The results and those ¢s at time t = 0.5 are shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Figure 3.3. We can see that the error is quite small. It is much smaller than 20%,

the error we added to the original data.

EXAMPLE 3.10. In this ezample, ¢(t,z) is the data chosen from 25 grid points
of the original data ¢(t,z); ¢1(t,z) is the data with 20% of error that was added to
&(t,z). We then use a bilinear interpolation to get data ¢o(t,x) which has values on
the 30 x 30 g¢rid, and finally we use the mollifier to smooth the data ¢4(t,z) to get
b3(t,z). We treat ¢3(t, z) as the source data to recover all the parameters K, Q, and
R;, 1= i, ++,10. After a total of 5,000 steps minimization searching, we treat the
recovered parameters as the known parameters and solve equation (2.5) to get data
¢4(t,z). It can be seen that the error between ¢4(t,z) and the original data ¢(t,),

shown in Figure 8.3, is still reasonable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

The Willunga Basin, South Australia

4.1. Introduction

The Willunga Basin is located approximately 30 km southeast of Adelaide, South
Australia. This is an area of significant agricultural production. Viticulture and
almond are the main industries, and groundwater is the most important resources
for them. Groundwater is also used to support livestock ahd some light industrial
enterprises.

In the last few decades, the groundwater levels within the Willunga Basin region
have declined greatly due to excessive pumping. Figure 4.1 [83] shows the decline of
the piezometric head over the 10-year period 1988-1998. As is suggested in {66], this
decline will certainly increase the costs for extraction of groundwater. The quality of
the groundwater can also be degraded due to the long-term decline, especially in the

coast regions where the salt water may intrude if the groundwater level is too low.

FIGURE 4.1. Hydrographs of piezometric heads over the period 1988-
1998 [83]

68 T T
67 - —da
66

65.5 -

Piezometnc Head (m AHD)

Piezomeunic Head (m AHD)

1 1 i i 63 L d
1970 1974 1978 982 986 1990 1994 1998 1970 1974 1978 1982 1986 1990 1994 1998
Year Year

(a) Hydrograph of WLG051 (b) Hydrograph of WLG067

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97
4.2. Hydrogeology

As summarized in [66], the Willunga Basin is part of the St. Vincent Basin. The
Basin dips noticably to the southwest, and sits upon and is bounded to the north, east,
and south by Late Precambrian and Cambrian age rocks belonging to the Adelaide
Geosyncline, and consisting of interbedded slates, quartzites, and dolomites. It is
wedge-shaped, with the southern and western portions the thickest, and tapers to the
north. The groundwater in the Basin flows toward the coast of Gulf St. Vincent from
the northeast corner. According to [3], the groundwater system in the Willunga Basin
may be divided into four aquifer subsystems listed, from the bottom upwards, as the

Basement, Maslin Sands, Port Willunga Formation, and Quaternary; see Figure 4.2.

FIGURE 4.2. Location map of the Willunga Basin, South Australia [83]

South Australia

= Christies Beach

: Adelaide
Gt

ST VINCENT

---------- Limit ol Quaternary Aquiter
------------ Limit of Port Wikunga Formalion Aqulle

«Adelaide

Limil ol Blanch Point Aquitarg
------------- Limil of Masiin Sancis Agquliar
Limit of Basement Aquiter

0 1 2 3 4 8
| S T N I S

KILOMETRES

4.3. The Port Willunga Formation Aquifer

The most important source of groundwater within the Willunga Basin is the Port
Willunga Formation, which was formed in the late Eocene to the Oligocene period,
and is bounded below by marls and marly limestone of the Blanche Point Formation

aquatard, and confined from above by a clay layer from the Quaternary period [26].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

It is recharged by direct rainfall infiltration over the outcropping area north of the
town of McLaren Vale to the town of McLaren Flat, and also by streams and outflow
from the basement rocks. The Willunga Fault is believed to be impervious along
the greater part of its length and thus acts as an obstruction to lateral inflow from
the adjacent basement rocks [66]. The rainfall infiltration for the Port Willunga
Formation is estimated to be 1050 ML/year [66]. The broad scale transmissivity of
this aquifer is estimated from pumping tests to lie between 45 and 5560 m?/day, while
the storafivity is estimated to lie between 2.7 x 107 and 0.011 [83]. The aquifer is
reasonrably constant in thickness, averaging around 100 metres [26], which makes it
a viable candidate for our use here of a confined depth-average two-dimensional flow

model.

4.4. Observation wells within the Port Willunga Formation Aquifer

There are about 36 observation wells within the Port Willunga Formation Aquifer
[66] with the location of each well being shown in Figure 4.4. Piezometric head data
from these wells has been collected spasmodically since December 1973.

In our test program, we chose 10 observation wells surrounding a rectangular
region (shown in Figure 4.4). The reason we deliberately chose a rectangular region
is because our model program is written for a rectangular region ABCD. For a more
complete model, the finite element method is an ideal choice, since it can handle

nonregular boundaries.

4.5. Groundwater levels within the Port Willunga Formation Aquifer

The flow of groundwater within the Port Willunga Formation is from the north-
eastern corner to the coast. The piezometric head at the observation wells forms a
piezometric surface, with the highest point at the north-eastern corner and sloping
downward to the coast [83]. The data is from the Primary Industries and Resources,

SA (PIRSA) web site. We chose a period of about one year (January 12, 1998 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

o Ein u&nﬂwAﬂ 4
ey
~
W o7 T o S
Y .
Seaford, . [y % -
ﬂ hanbend kY

‘F1GurE 4.3. Observation well locations of Port Willunga Formation
Aquifer [66]

vrmﬂnrm

GU‘I"

Blenche
point

A.. P
\ R o WLGaE
- *WILG4T "1.3

v Wilunga Basin Procialmed Wells Area
& port N
Snappar Willunga| Aldinga OB A\ »)
roint : /.o wu n o - o Moratotium Area
. [-7\
: - NG . N
\ - -fwicsr i . Umit of Basin sediments
* WLG52, T :)
wiLGss | O *WIG3s N ;

0.1

L N »tf

Wi xi-h.—o:irm 7
‘ Bilver Sands N\ 7 5T

e

Bulf up area

swa s Obwrvation well and numbet
24 Water level change In (m)

o

WRIUNGA 8ASH GROUNOWATER NVESTIGATION
Port Willunga Formation Aquifer
WATER LEVEL CHANGE. 1989-1996

NANGKITA

/

V-0648 KA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

FIGURE 4.4. Test region and observation wells

January 1, 1999) for testing. The piezometric head for all 10 observation wells in this
period are shown in Figure 4.7, Figure 4.7, and Figﬁre 4.7.

In our test program, the rectangular region ABCD has AB = 1551.62 meters
and BC = 2151.52 meters; these measurements were computed from latitude and
longitude data obtained from the PIRSA website. This region was scaled to the
square [—1,1]2. This scaling is necessary. Recall that the transmissivity T', 45 to
5560 (m?/day) for the Port Willunga Formation Aquifer, for example, is much larger
than the storativity, Q, 2.7 x 10™* to 0.011, for the Port Willunga Aquifer. The
recharge, measured in units of kL/day / m?, is also very small. Our synthetic example
shows that the recovery will be not accurate when () is too small. If we assume
' = 2Mr — 1,y = 2M; 'y — 1, where M; = |BC|, M, = |AB)|, the flow equation
(2.3) can be changed to

Ql?a_qté —_ vnew . (Klvnew¢) + RI

where V™ = (2, %), Q' = M*Q(,y), R = M*R(z,y,1), Kj; = A‘}—?IA%M,-J-, i, =
1,2, and M = 10%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

After scaling the real field to a smaller region, the scaled parameters,) and R,
in the flow equation (2.3) can be made relatively larger, making the recovery more
accurate. We divided the square by a 30 x 30 grid and used triangular interpolation
to get the data at those grid points. Figure 4.5 represents the piezometric head
on January 12, 1998, at those grid points. Since there is only approximately one
observation data for each well every month, in order to simulate the piezometric head
as a continuous function of time variable, we used linear interpolation to simulate the

daily data.

FIGURE 4.5. Piezometric head in the test region at January 12, 1998

Lovel Z

15 67812
14 €8.8043
13 65.6985
12 64.5888
11 634811
10 623734
61.2657
60.158
59.0502
57.9425
58,8348
55,7271
54,6184
53117
524039

“NWAONO O

4.6. The test program

In our test program, we divided the time period from January 12, 1998, to January
7, 1999, into 12 subintervals, and assumed that in each subintervals the source/sink
term R was constant in time. This reflected the real situation since we had only one
observation of the piezometric head each month.

We applied the finite Laplace transformation, using Simpson’s rule, to the piezo-
metric head to get the source data. Then we input the source data to our test
program to recover the transmissivity T', storativity S, and the source/sink terms R;,

t=1,---,12.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

In our test program, the upper and lower bounds for transmissivity, i.e., the
estimated range values for transmissivity [83] were set to be 5,560, 45 (m?/day).
The upper and lower bounds for storativity were set to be the estimated values 0.011
and 2.7 x 107 times the square of the scaling factor (M? = 10°), as we mentioned
in the previous section. For the scaled source/sink term, we set the upper and lower
bounds to 10,000 and —10,000 respectively. Since we had no information about
the source/sink term, this bound had to be large enough. Note that our algorithm
requires the knowledge of the transmissivity T at the boundary. Otherwise, it cannot
guarantee the uniqueness of the recovery. Relati\’rely accurate upper and lower bounds
are therefore especially important here.

Since we could not get the boundary values for the conductivity which were essen-
tial in our algorithm, we adopted a trick by propagating the recovered interior values
to the boundary in every step of the iteration search. The idea is as follows. At the
beginning, we set the initial values between the preset lower and upper bounds. After
every step of the iteration search, the boundary values were replaced by the recovered
values at the adjacent grids. In our test program we set the lower bounds as the initial
values. This is an effective method when we do not know the actual boundary values.
As is known from the recovery with synthetic data, better results can be obtained
for the storativity S and the source/sink term R if we know the boundary values; we
adopted the same method for S and R. The number of A-values was set to Be 20.

The total iteration count for the recovery was 4,000, which took about a week on

our Beowulf cluster using 20 nodes.

4.7. The effectiveness of the recovery

To check the accuracy of the recovery, we used the recovered parameters to solve
the parabolic flow equation (2.3) using the PDE solver PDETWO and compared the
results with the original well data. The piezometric heads constituting the original

and recovered data, as well as the relative error between the original and recovered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

data at all the chosen observation wells, are shown in Figure 4.7, Figure 4.7, and
Figure 4.7. We can see that at all the observation wells, except wells WLG069 and
WLG045, the data is quite accurate (error below 0.4%) and the shapes of the data
are very similar. The errors for well WLG045 and well WLG069 are relatively bigger.
One possible explanation for this error is that they are far from the selected test
region, especially well WLGO069 (see Figure 4.4). We can see from Figure 4.5 that the
Piezometric head near corner C of our test region is higher than those around corner
D, and this causes the flow turn to the direction away from corner C (see Figure 4.8).
The reason for this phenomenon is probably that there are some underground stream
recharges near corner C. The Weil WLGO045 is located at a position with a very high
transmissivity (see Figure 48) compared to other regions. This is probably the other
reason that the recovered data at well WLG045 is not as accurate as that at other
wells.

The recovered parameters have some “spikes” which make it difficult to see the
shape. In order to better represent the shape of the recovered parameters, the figures
of the recovered parameters shown in the following sections have been smoothed with

our mollifier.

4.8. The transmissivity within the Port Willunga Formation Aquifer

In our recovery, the transmissivity was assumed to be anisotropic. Figure 4.8
shows the recovered transmissivity (the average conductivity of the aquifer can be
obtained from the transmissivity by dividing by the aquifer height, approximately
100 meters). We can see that the value of Ty; is mostly larger, except near the C
corner of the region. From this we can conclude that the conductivity in the Port
Willunga Formation Aquifer is anisotropic; it is more conductible in the x direction

than the y direction. Figure 4.8 shows the actual Darcy flux g = — K'V¢ direction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

F1GURE 4.6. Accuracy of Recovery — 1

|
1S) o7
g ouglna) | -
sk - Recovered | o :
o2f i
3
. _ 0t i
. g | i
125
2 i AN |
Z.b / | !
E / N
BN 1
TSR & A d
N s N 005 - /
PN A
. orf :
7085 0151 i
Y
)
0 L o oz 3 %
N T
(a) WLG006 (b) Error
sy var
- Ofginal | 03
s75) Recoverd | .
! - L 02k
87|
- o
Dossk g 3
T 7 ok
s esf Y F h N .\-
sssp 02}
r i
sl o3
N : SR L “ L n —L L
545 2 s e] ° B « © 0
T T
(c) WLG014 (d) Error
S5 “F
. t25
sk - onginat 3 /
. 4 /
L2213 g i1 /A\\ ’/
o5/ I
sl /
e g=p A
o FE) \. AT H
P g S Vo
7 w025 ~ 3
.7 o5 /
¥ 075 ",
-1
125
A ! +
) % T3 hs s 0
T T
(e) WLG045 (f) Error
o
i
wsf il
; i
s i
528 = oot \‘
2 -
Iz 2 H N
< . . —gms = 7N
E o5 i w i ~ a ’/
z | i / AN / NS Voo
W N il 3
- o \7
L o /;'_ i N
“";))/, ~ N oz f
sesf N i
¥ L L 1] 3 T
S 0 h s ©
T T

(g) WLGO51 (h) Error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 4.7. Accuracy of Recovery — 2

i i
B var
ST o 035~
onginal
575 Recovered B o3
srasl SR oz} ™.
r N
57 P . o2 N
5675 |- / . - |
é : s o £
Zoosp ! NS Toak s
\ §O'F
5525 - . | Sbos E
sef \ I
i : of
5575
¢ a0s
555y 5
o1
5525 9
sk o15p
. ; ; £ . . .
7 : : 0 s ez 0 d 0 i
A
(a) WLGO055 (b) Error
(32l AN o
6573 |- - Orginal cosk
- Recoversd
565 b p i of-
- ; S /
e 8
st ot o005 ~ /
B i = |t \/
Z_ [// 2 h i v
s / Rl L r
£ ¥ R 4
Tast L) ospl | ¥
o v/
N by
111 i azp i
exes k- ozsf
1 . L n .
[+ m 03 0 1o
T T
(c) WLG060 (d) Error
55 aq r
- o
54.5 b 3
[F13
/
/
o028 /
54 - B /
E - ;—ﬂl?‘ /.
%n - sE . /
£ i \ i
L3 RSN e Woyt // % -
s % R oo / Y /
! v / v/
. ok, / \
ssh ot v/
oosf Y
L L) s L 1) L
52 3 e ry 0 o F3 3 [L]
T T
(e) WLG064 (f) Error
02p
(X113
ok
oos k-
R
g R
roos
E Y JIEN Yy
dgyfY - 4
Y / AN
b ~
015 | / ~
E¥I Y /
e/
a2
S e} L)
o2 2 « 0] 0
T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(g) WLG067 (h) Error

105

FI1GURE 4.8. Accuracy of Recovery — 3

S D) Dt Bect st s ins s mana |

T

Original

S ot v i s cam e o s o |

FIGURE

{(c) WLG109

4.9. The Darcy flux in

the

.
Eafi
o
s 3 m
T
(b) Error
a4
DasE
03k
023%
02 ‘,
Rt ,"ﬁ\
:?:ax -,I " ll \\ Vi
ug.n.us‘i i / \/’
]
-0.05%'
nk
o1sf
.
5 T "
(d) Error

test region at January 12, 1998

C

Y
08f =
06 S e T R S N ~n S
04 e e A . e T
02 e e S e S e e S
0 o . S . e e e
b
o ¢ o e e e e
Q4 T e o e e o e R
N e e e I e e e i o
DB W e e e e e e P
_1 3 i) i A
-1 -0.5 o 0.5 1
A X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

107

FicURE 4.10. The recovered transmissivity T’

e

(e) Tog (f) Coutour plot of Th,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108
4.9. The storativity within the Port Willunga Formation Aquifer

The recovered storativity is shown in Figure 4.9. It can be seen that in most of

the region, the storativity is small, around 2.7 x 1074,

FIGURE 4.11. The recovered storativity S

C
7 RO ey
270853
A
V
&8
o~
13
Y
SEe\)
gl
% O
LAY
e
. 4meos,]
-0.5] X [X 1 D
(a) S (b) Coutour plot of S

4.10. The recharge within the Port Willunga Formation Aquifer

Figure 4.10, Figure 4.10, Figure 4.10, and Figure 4.10 show the recovered source/sink
terms in the selected region. Positive values indicate inflow at those points, while
negative values indicate outflow. We can see that the recharge, measured in units of
kL/m?/day, is changing gradually with respect to time. There is a big inflow in June
and July and a big outflow in November and December.

From the figures we can see that near Point A, the area near McLaren Vale, which
is the main rainfall recharge area of the Port Willunga Formation Aquifer, the inflow
is high, especially in the winter. Near the line CD, the area closer to the coast, the
outflow is high in the summer, which indicates that the artificial pumping in this

region is high.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

FIGURE 4.12. The recovered source term R, January — March, 1998

gt
-

-

C

(a) January R, (b) Coutour plot of R

(e) March R3 (f) Coutour plot of R3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 4.13. The recovered source term R, April — June, 1998

(e) June Rq (f) Coutour plot of Rg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

FIGURE 4.14. The recovered source term R, July ~ September, 1998

N
5L
AT RN
o5

{e) September Ry (f) Coutour plot of Ry

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

112

FIGURE 4.15. The recovered source term R, October — December, 1998

(a) October Rig

\.:«'\\L;g/’ 7]
PP
W7

NE,

(e) December R;» (f) Coutour plot of R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

4.11. Sustainability

Gleick et al. [40] gave a useful definition of sustainable water use: “The use
of water that supports the ability of human society to endure and flourish into the
indefinite future without undermining the integrity of the hydrological cycle or the
ecological systems that depend on it.” Gleick et al. presented the following seven

sustainability criteria.

1. A minimum water requirement will be guaranteed to all humans to maintain
human health.

2. Sufficient water will be guaranteed to restore and maintain the health of
ecosystems. Specific amounts will vary depending on climatic and other
conditions. Setting these amounts will require flexible and dynamic manage-
ment.

3. Water quality will be maintained to meet certain minimum standards. These
standards will vary depending on location and how the water is to be used.

4. Human actions will not impair the long-term renewability of freshwater stocks
and flows.

5. Data on water resources availability, use, and quality will be collected and -
made accessible to all parties.

6. Institutional mechanisms will be set up to prevent and resolve conflicts over
water.

7. Water planning and decision-making will be democratic, ensuring represen-
tation of all affected parties and fostering direct participation of affected

interests.

These criteria can provide the basis for alternative “visions” for future water
management and can offer some guidance for legislative and non-govermental actions

in the future [40].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

In an area such as the Willunga Basin where groundwater is the main water
resource, a relatively accurate record of recharge and discharge is especially impor-
tant in determining the “safe yield.” The main inflows include rainfall, underground
streams, and the lateral inflow from the adjacent basement rocks. The outflows in-
clude evapotranspiration, the outflow to underground streams, and pumping. Since
our test region is near McLaren Vale, which is the main recharge area of rainfall in-
filtration [66], rainfall is an important source to our test region. The other inflows
of the Port Willunga Formation Aquifer are stream infiltration and the lateral inflow

: from adjacent aquifers. However, these inflows are difficult to measure. The discharge
of the Port Willunga Formation Aquifer includes the outflow to the sea, the lateral
flow to adjacent aquifers, and artificial well pumping. Also, heretofore it has been
difficult to correctly estimate the overall discharge. Since R(t,z) = R;(t,z) — R,(t, z),
where R;(t,z) and R, (¢, z) denotes the inflow and outflow respectively, it represents
the difference of the inflow and outflow with respect to time ¢ and position z. By
integrating R(t, z) over the region, we can get the total difference of the inflow and
outflow.

We note that R;(t, z) is the positive part of R(t, z) and that R,(t, z) is the negative
part of R(t,z), and integrate them over the test rectangular region. We get the total
inflow and outflow per month, as shown in Figure 4.11. We can see from the figure
that the inflow is higher in the winter during the rainy season; the outflow is higher
in the summer. |

The total computed inflow and outflow are about 450 ML /year and 265 ML/year,
respectively. Compared to the estimated total rainfall of 1050 ML/year [66] for the
Port Willunga aquifer, this number is reasonable (the inflow includes underground
recharges). The ratio of the inflow and outflow from January 12, 1998, to January
7, 1999, is approximately 1.70. In order to have a “safe yield,” this ratio should be
not less than 1; i.e., the inflow should be not less than the outflow. Since the ratio

here is 1.70, we assert that the aquifer (in our test region) is sustainable. Note that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

since our test region is near the main recharge area of the Port Willunga Formation
Aquifer, the inflow is probably high compared to the rest of the aquifer. This result
need not reflect the whole aquifer’s sustainability.

To determine the sustainability of the whole basin, we need to calculate every
aquifer’s inflow and outflow, since there are lateral flows between the aquifers. A

more complete study along these lines should provide a quantitatively effective model

of this aquifer system.

FiGURE 4.16. The inflow and outflow in the test region

V (ML/month)
w
w 2
@ w
— —
V (ML/month)

i H
375} oy

—

37

—

[ree
| ern
|

I

(a) inflow (b) outflow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1) Acar, R. Identification of the coefficient in elliptic equations. SIAM J. Control and Optimization,
31: 1221-1244, 1993.

[2] Ahmed, S. and de Marsilly, G. Cokriged estimation of aquifer trzinsmissivity as an indirect
solution of the inverse problem: A practical approach. Water Resources Research, 29(2): 521-
530, 1993. '

[3] Aldam, R. G. Willunga Basin hydrogeological investigations. Technical Report Bk. No. 89/22,
South Australian Department of Mines and Energy, Adelaide, 1989.

[4] Alessandrini, G. An identification problem for an elliptic equation in two variables. Ann. Mat.
Pura Appl. 145: 265-296, 1986.

[5] Anderson, M. P. and Woessner, W. W. Applied Groundwater Modeling. Academic Press,
New York, 1992.

[6] Anderson, M. P. Aquifer heterogeneity-a geological perspective. In Parameter Identification and
Estimation for Aquifer and Reservoir Characterization. 3-22, Columbus, Ohio, 1991. National
Water Well Association.

[7) Banks, H. T. and Kunisch, K. Estimation Techniques for Distributed Parameter Systems.
Birkhauser, New York, 1989.

[8] Bear, J. On the tensor form of dispersion. J. Geophys. Res. 66(4), 1185-1197, 1961.

[9] Bear, J. Dynamics of Fluids in Porous Media. American Elsevier, New York, 1972.

[10] Bear, J. and Bachmat, Y. A generalized theory on hydrodynamic dispersion in porous media.
LA.S.H. Symp. Artificial Recharge and Management of Aquifers, Haifa, Ismei, IASH 72, 7-16,
1967.

[11] Bear, J. and Bachmat, Y. Transport phenomena in porous media — Basic equations, in J.Bear
and M.Y. Corapcioglu (eds.). Fundamentals of Transport Phenomena in Porous Media. Marti-
nus Nijhoff, Dordrecht, 3-61, 1984.

[12] Bear, J. and Bachmat, Y. Macroscopic modelling of transport phenomena in porous media, 2.
Applications to mass, momentum and energy transport. Transport in Porous Media 1, 241-269,

1986.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

[13] Bear, J. and Verruijt, A. Modeling Groundwater Flow and Pollution. D. Reidel Publishing
Company, 1987.

[14] Bear, J., Zaslavsky, D. and Irmay, S. Physical Principles of Water Percolation and Seepage,
UNESCO, Paris, 1968.

[15] Beguelin, A., Dongarra, J., Geist, G. A., Manchek, R., and Sunderam, V. A User’s Guide to
PVM: Parallel Virtual Machine. Technical Report TM-11826, Oak Ridge National Laboratories,
Oak Ridge, TN, 1991.

[16] Bolt, G. H. and Miller, R. D. Calculation of total and component potentials of water in soil.
Trans.. Am. Geophys. Union, 39, No. 5, 917-928, 1958.

[17] Bouwer, H. Groundwater Hydfology. McGraw-Hill, New York, 1978.

[18] Bruckner, G., Handrock-Meyer, S., and Langmach, H. An inverse problem from 2D groundwater
modelling. Inverse Problems. 13(4): 835-851, 1998.

[19] Carrera, J. State of the art of the inverse problem applied to the flow and solute equations. In
E. Custodio, editor, Groundwater Flow and Quality Modelling, 549-583. D. Reidel Publ. Co.,
1988,

[20] Carrera, J. and Neumann, S. Adjoint state finite element estimation of aquifer parameters under
steady-state and transient conditions. Proceedings of the 5th International Conference on Finite
Elements in Water Resources. Springer-Verlag, 1984.

[21] Carrera, J. and Neumann, S. Estimation of aquifer parameters under transient and steady
state conditions: Maximum likelihood method incorporating prior information. Water Resources
Research, 22(2) 199-210, 1986.

[22] Chavent, G. Identification of distributed parameter systems: about the output least square
method, its implementation and identifiability, Proceedings of the 5th IFAC Symposium on
Identification and System Parameter Estimation, R. Ismerman, editor, Pergamon Press, 1: 85—
97, 1980.

[23] Cooley, R. L. and Naff, R. L. Regression modeling of groundwater flow. Techniques of Water-
Resources Investigations, number 03-B4. USGS, 1990.

[24] Cooper, B. J. Eocene to Miocene stratigraphy of the Willunga Embayment. Technical Report
of Investigations No. 50, South Australian Department of Mines and Energy, Adelaide, 1997.

[25] Courant, R. and Hilbert, D. Methods of mathematical physics. vol. II: Partial Differential Equa-
tions. Interscience Publishers, New York-London, 1962.

[26] Cresswell, D. Willunga Basin: Integrated water resource study. Technical report, Department

of Environment and Natural Resources, Adelaide, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

[27] Dagan, G. and Rubin, Y. Stochastic identification of recharge, transmissivity and storability in
aquifer transient flow: A quasi-steady approach. Water Resources Research, 24(10): pp.1698,
1988.

[28] Darcy, H. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856.

[29] Deimling, K. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.

[30] Desbarats, A. J. Macrodispersion in sand-shale sequences. Water Resources Research, 26(1):
153-164, 1990.

[31] Dietrich, C. R., Newsam, G. N., Anderssen, R. S., Ghassemi, F., and Jakeman, A. J. A practical
account of instabilities in identification problems in groundwater systems. BMR Journal of
Australian Geology and Geophysics, 11(2)::273—284, 1989,

[32] Domenico, P. A. and Schwartz, F. W. Physical and Chemical Hydrogeology. John Wiley & Sons,
New York, 1990.

[33] Dupuit, J. Etudes théoriques et pratiques sur le mouvement des eaur dans les canaux découverts
et ¢ travers les terrains perméables, Dunod, Paris.

[34] Emsellem, Y. and de Marsily, G. An automatic solution for the inverse problem. Water Re-
sources Research, 7(5): 1264-1283, 1971.

[35] Falk, R. S. Error estimates for the numerical identification of a variable coefficient, Math. Comp.
40(162): 537-546, 1983.

[36] Frind, E. O. and Pinder, G. F. Galerkin solution of the inverse problem for aquifer transmissivity,
Water Resources Research, 9(5): 1397-1410, 1973.

[37] Galligani, I. Parameter identification using quasi-linearization. Simulation, 38(2): 55-60, 1982.

[38] Gilbarg, D. and Trudinger, N. S. Elliptic Partial Differential Equations of Second Order.
Springer-Verlag, New York, 1977.

[39] Ginn, T. R., Cushman, J. H., and Houch, M. H. A continuous-time inverse oper.a,tor for ground-
water and contaminant transport modeling: deterministic case. Water Resources Research, 26:
241-252, 1990.

[40] Gleick, P. H. Human population and water: To the limits in the 21st Century.” American Asso-
ciation for the Advancement of Science Symposium: Human Population and Water, Fisheries,
and Coastal Areas: Science and Policy Issues. Washington, D. C.

[41] Hanke, M. A regularizing Levenberg-Marquardt scheme, with applications to inverse ground-

water filtration problems. Inverse Problems, 13(1): 79-95, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

[42] Hoeksema, R. J. and Kitandis, P. K. Comparison of Gaussian conditional mean and kriging
estimation in the geostatistical solution of the inverse problem. Water Resources Research,
21(6): 825-836, 1985.

[43] Hoffman, K. H. and Sprekels, J. On the identification of coefficients of elliptic problems by
asymptotic regularization. Num. Funct. Anal. and Optimiz., 7: 157-177, 1984-85.

[44) Hughson, D. L. and Gutjahr, A. Effect of conditioning randomly heterogeneous transmissivity
on temporal hydraulic head measurements in transient two-dimensional aquifer flow. Stochastic
Hydrol. Hydraul., 12: 155-170, 1998.

[45] Hubbert, M.K. The theory of ground-water motion. Journal of Geology 48, No. 8, Part 1,
785-944, 1940. '

[46] Journel, A. G. and Huijbrgets, J. C. Mining Geostatistics. Academic Press, San Diego, Califor-

 nia, 1978.

[47] Karkkainen, T. An equation error method to recover diffusion from the distributed observation.
Inverse Problems, 13(4): 1033-1051, 1997.

[48] Keidser, A. and Rosbjerg, D. A comparison of four inverse approaches to groundwater flow and
trans-parameter identification. Water Resources Research, 27(9): 2219-2232, 1991.

[49] Kleinecke, D. Use of linear programming for estimating geohydrologic parameters of ground-
water basins. Water Resources Research, 7(2): 367-375, 1971.

[50] Knowlew, I. W. Parameter estimation in groundwater modelling. Developments in Theoretical
and Applied Mechanics XXI, 415-421, 2002, Rivercross Publishing Inc., Orlando, ISBN 0-615-
11944-1.

[51] Knowlew, I. W. Descent methods for inverse problems, Nonlinear Analysis 47: 3235-3245, 2001.

[62] Knowlew, I. W. Parameter identification for elliptic problems. J. Comp. Appl. Math. 131: 175~
194, 2001.

(53] Knowlew, I. W. Coeflicient identification in elliptic differential equations. Direct and Inverse
Problems of Mathematical Physics, 149-160, Int. Soc. Anal. Appl. comput., 5, Kluwer Acad.
Publ., Dordrecht, 2000.

[54] Knowlew, I. W. Uniqueness for an elliptic inverse problem. SIAM J. Appl. Math. 59(4): 1356—
1370, 1999.

[65] Knowlew, I. W., Le, T. A., and Yan, A. On the recovery of multiple flow parameters from
transient head data. J. Comp. Appl. Math (to appear)

[56] Knowlew, I. W., Teubner, M., Rasser, P., and Yan, A. Inverse Groundwater Modelling in the

Willunga Basin of South Australia. Preprint.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

[57] Knowlew, I. W. and Wallace, Robert. A variational method for numerical differentiation. Nu-
merische Mathematik, 70, 91_1,10’ 1995.

[58] Knowlew, I. W. and Wallace, Robert. A variational solution of the aquifer transmissivity prob-
lem. Inverse Problems, 12, 953-963, 1996.

[59] Knowlew, I. W. and Yan, A. The recovery of an anisotropic conductivity in groundwater mod-
elling. Applicable Analysis, 81: 1347-1365, 2002.

[60] Knowlew, I. W. and Yan, A. On the recovery of transport parameters in groundwater modelling.
J. Comp. Appl. Math (to appear)

[61] Knowlew, I. W. and Yan, A. The reconstruction of groundwater parameters from head data in
an unconfined aquifer. Preprint. :

[62] Kohn, R. V. and Lowe, B. D. A variational solution of the aquifer transmissivity problem.
Mathematical Modelling and Numerical Analysis, 22(1): 119-158, 1988,

[63] Kravaris, C. and Seinfeld, J. H. Identification of parameters in distributed parameter systems
by regularization. SIAM J. Cont. Optim., 23: 217-241, 1985.

[64] Le, T. A. An Inverse Problem in Groundwater Modeling. PhD thesis, University of Alabama at
Birmingham, 2000.

[65] Luce, R. and Perez, S. Parameter identification for an elliptic partial differential equation with
distributed noisy data. Inverse Problems, 15(1): 291-307, 1999.

[66] Martin, Russel R. Willunga Basin — Status of Groundwater Resources 1998, Technical Report
Book 98/28, Department of Primary Industries and Resources SA, 1998.

[67] Mavis, F. T. and Tsui, T. P. Percolation and capillary movement of water through sand prisms,
Bull. 18, Univ. of Iowa, Studies in Eng.., Iqwéu City. |

[68] Melgaard, D. and Sincovec, R. F. General software for two-dimensional non-linear partial dif-
ferential equations. ACM Transactions on Mathematical Software, 7(1):106-125, 1981.

[69] Menke, W. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, New York,
1989.

[70] Morozov, V. A. Methods for Solving Incorrectly Posed Problems. Springer-Verlag, Berlin, 1984,

[71] Muskat, M., Wycoff, R. D., Botset, H. G., and Meres, M. W. Flow of gas liquid mixtures
through sands, Trans. A.LLM.E. Petrol. 123, 69-96, 1937.

[72] Nelson, W. R. In-place determination of permeability distribution for heterogeneous porous
media through analysis of energy dissipation. Soc. Pet. Eng. J., 8(1): 32-42, 1968.

[73] Neuberger, J. W. Sobolev Gradients in Differential Equatioﬁs, volume 1670 of Lecture Notes in
Mathematics. Springer-Verlag, New York, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

[74] Neuman, S. P. and Yakowitz, S. A statistical approach to the inverse problem of aquifer hy-
drology. Water Resources Research, 15(4): 845-860, 1979.

[75] Neumann, J. W. Perspective on “delayed yield”. Water Resources Research, 15: 899-908, 1979.

[76] Nikolaevskii, V. N. Convective diffusion in porous media. J. Appl. Math. Mech. 23(6), 1042~
1050, 1959.

[77] Payne, L. E. Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia,
1975.

[78] Peck, A., Gorelic, S. M., de Marsily, G., Foster, S., and Kovalevsky, V. Consequences of Spatial
Variability in Aquifer Properties and Data Limitations for Groundwater Modeling Practice.
Number 175. International Association of Hydrologists, 1988.

[79] Perko, L. Differential Equations and Dynamical Systems. Springer-Verlag, New York, 1988.

[80] Piersol, R. J., Workman, L. E., and Watson, M. C. Porosity, total liquid saturation and per-
meability of Illinois oil sands III, Geol. Survey, Report No. 67, 1940.

[81] Ya, Polubarinova-Kochina, P. Theory of Groundwater Movement(in Russian), Gostekhizdat,
Moscow. English trans. by Roger J. M. de Wiest, Princeton Univ. Press, Princeton, N.J., 1962.

[82] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes in
Fortran 90, volume 2 of Fortran Numerical Recipes. Cambridge University Press, Cambridge,
second edition, 1996. The Art of Parallel Scientific Computing, With a foreword by Michael
Metcalf; with separately available software.

[83] Rasser, Paul Edward. Calibration of Numerical Models with Application to Groundwater Flow
in the Willunga Basin, South Australia. Thesis, June 1, 2001.

[84] Remson, L., Hornberger, G., and Molz, F. Numerical Methods In Subsurface Hydrology. John Wi-
ley & Sons, Inc., 1971.

[85] Rice, J. H. and Boisvert, R. F. Solving Elliptic Problems Using ELLPACK. Springer-Verlag,
Berlin, 1985.

[86] Richter, G. R. An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math.,
41(2): 210-221, 1981,

[87] Richter, G. R. Numerical identification of a spacially varying diffusion coefficient. Math. Comp.,
36(154): 375-386, 1981.

[88] Riviere, B. and Jenkins, L. In pursuit of better models and simulations: Oil Industry looks to
the math sciences. SIAM News, 35(1), 2002.

[89] Rizzo, D. M. and Dougherty, D. E. Characterization of aquifer properties using artificial neural
networks: Neural kriging. Water Resources Research, 30(2): 483-497, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

[90] Rose, H. E. An investigation into the laws of flow of fluids through beds of granular material.
Proc. Inst. Mech. Engrs., 153: 141-148, 1945.

[91] Sagar, B., Yakowitz, S., and Duckstein, L. A direct method for the identification of the
parametrs of dynamics nonhomogeneous aquifers. Water Resources Research, 11(4): 563-570,
1975.

[92] Scheidegger, A. E. General theory of dispersion in porous media. J. Geophys. Res. 66, 3273
3278, 1961.

[93] Simmers, J. Estimation of Natural Groundwater Recharge, volume 222 of NATO ASI Series C.
D. Reidel Publishing Co., 1988.

[94] Silin-Bekchurin. Dynamics of Ground Water (in Russian), Moscow Izdat., Moscow, 1958.

[95] Slichter, J. C. Field measurement of the rate of movement of underground waters, USGS Water
Supply Paper, 140.

[96] Sun, N. and Yeh, W. A stochastic inverse solution for transient groundwater flow: Parameter
identification and reliability analysis. Water Resources Research, 28(12): 3269, 1992.

[97] Surana, K. S. and Huels, C. R. A least squares finite element solution on the inverse problem
of aquifer transmissivity. Computers and Structures, 31(2): 249, 1989.

[98] Tautenhahn, U. A new regularization method for parameter identification in elliptic problems.
Inverse Problems, 6: 465-477, 1990.

[99] Thomas, H. E. Ground water regions of the United States—Their storage facilities, Vol. 3, Inter-
and Insular Affairs Comm., House of Representatives, 5 U.S. Congress, Washington, D.C. 1952.

[100] Tikhonov, A. N. and Arsenin, V. Y. Solutions of Ill-Posed Problems. V. H. Winston & Sons,
Washington D. C., 1977.

[101] Vézquez, C. R., Guidici, M., Parravicini, G., and Ponzini., G. The differential system method
for the identification of transmissivity and storativity. Transport in Porous Media, 26: 339-371,
1997. |

[102] Yakowitz, S. and Duckstein, L. Instability in aquifer identificatiion: theory and case studies.
Water Resources Research, 16(6): 1045-1064, 1980.

[103] Yeh, W. W-G. Review of parameter identification procedures in groundwater hydrology: The
inverse problem. Water Resources Research, 22(2): 95-108, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

Fortran codes to recover the parameters

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwiad inoyum paugiyosd uononpolidal sayung ssumo yblAdoo ayj Jo uoissiwiad yum paonpoiday

MO ITIRICSE900NS :: TYHINOT

dr‘deas™zeat‘y ‘[‘{7 ‘T :: WADIINI

sdeas :: (ZT+WAN‘NIGNSN)NOISNAWIQ‘ (DFY¥) TYAH
*okokokkokokaokokkokokkokokk 1))
SATaVIYYA TVDQT <Di
®kok ok okokdokdokkokokkokkok L D)

INON LIDITdWI
aqepdn~puss‘pein‘eiepaald‘uealoxgdoas ‘yserumeds : LINO ‘WA ISO
8uta3ord : AINO ‘TT3n 3Sn
Jeniqfphenigfdenia : ATINO ‘ouny~exed 4gn
aARTS TF<=04aRTS ‘yredeaep 1I<=yiedesep‘swoy TI<=owoy : XTINO ‘uzed ISn
sdoo1 T J<=sdooT
B yoxeagMeuTi<=yoresgmau‘ro0Tdu T i<=101du
3 'ODd—Td<=09d‘NIHQSN'T&<=NIHHSN‘NﬂN‘Td<=WﬂN
3 ‘dejsws‘dxe3r (I<=dre3Tquey‘q e qI¥HN ‘AI¥OW @ AINO ‘exed FSn
adfau 330
I91SBUTI wexdoxd

AR R R R

ruotaenbs #i

o1adrTTe oYz Jo siegeuwered oyjl Isaodcex ArTenioe weiSoid STUL #i
#i

oAaTqedou 10 oATaTsod ©Qq URD Y OTTUYM ‘UOTIOURT SATIeZ0U-UOU ® ST #j
‘XTtaqeuw gxg oaturyep oatatsod AT730TIAS OTIZOUMWAS ® ST J SIOUM #j
¢ (1) (2°%)4 + (T BIQRU\ d)BTqRU\- = 3Q/0qd (X){ #i
' :I931Inbe pouUTIUOD #j
J0 uotgenbe MOTJ oyl JO S3USTOTIFL0D oYl $I9A000X wexdoxd STYUL #i
HHAFH SRR R R S R AR R R A R S S R R R

BYep 9Y3 INnoQqe SBTTJ JI8Yl0 pue STTI 90IN0S BYL JO #j
©OWRU 8YJ] 3NOQe UOTIRWIOIUT I0F (06F Uied :oTTJ oYyl IoJol oseold #i
#i
‘oaeTs 17 :wexdoxd sAeTS 8yl 3IBIS #i
£1TeoTqRWOqNe TTTA 3T ‘Iogsew T3 :wexdoid ay3 1Ie1s NOL USUM #|
#i
*£T1001100 #j
dn qes eq prnoys auswoxtaus wad eyy ‘ueidoxd eyz unI oL #i
#i
‘oaeTs 17 wexdoxd #;
9ABRTS 9Y3 U3TM Ioyze307 UNI o9 3SNW 3] 'YODILOS UOTIRZTWTUTU #]
oyq Butop Atuteuw 37 ‘wexBoxd gxed 19AISS OYY ST STYL #]
#i
(1) 7o uotraenbe peuwiojsuerl odeTdeT 93TUTI ‘9T #j
(X)¥ ®3eq\ = (X)f (eudre\ + n epquwer)) +
(n erqeu\ (X)d)erqeu\- #i
#

#

#

weadoad 193sewt YT 'I'V

£A4!

125

INTEGER :: nvars,ntstep,variable,varl,var2

INTEGER, DIMENSION(100) :: vars

REAL(PREC), DIMENSION(2) :: searchVal

REAL(PREC) :: begVal, endVal,stepsize
CHARACTER (LEN=5) ,DIMENSION(NUM+2) :: searchVar, successVar,failVar
INTEGER :: nsuccess, nfail

CHARACTER(LEN=1) ,DIMENSION(3) :: name=(/’P’,’Q’,’F’/)

REAL(PREC), DIMENSION(NUM+1+NSUBIN,MGRID,NGRID) :: pgf_c

INTERFACE
SUBROUTINE descent_search(val,cut,step)
USE ntype
REAL(PREC) ,DIMENSION(:) :: val
REAL(PREC) :: step
LOGICAL :: cut
END SUBROUTINE descent_search
END INTERFACE

FC 1 okakokok ok o ok ok ok sk ok kok ok ok oK K K
!¢: BEGIN PROGRAM

lc:

tc: INITIALIZATION

1. 1 kokskskokodokokok ok koK ok ko ok kK K

CALL spawnTask(slave)

IF (nplot) THEN
DO i=1, MGRID
DO j=1, NGRID
DO 1l1=1, NUM
paf_c(11,1i, j)=truep(1l,i,j)
END DO
paf_c(NUM+1,1,3j) = trueq(i,j)
DO 11=1, NSUBIN
pqf_c(NUM+1+11,1,3) = truef(1l,i,j)
END DO
END DO
END DO
CALL PLOTTING(home,name,NUM,pqf_c, ’TRUE’,a,b,ha,hb)
END IF

1G5 skskeok sk okook ok ook ok ok ok ok ok sk sk ke ok ok ok ok ok sk ok o ok ok ok ok

'c: GET VARIABLES NEED TO SEARCH
UG 1 sokskokokok sk kokok ok ok o ok ook ok skok sk skook ook okok o o

steps=1.0_prec
nvars=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

vars=0
DO k=1, NUM+2
IF (loops(k) /=0) THEN
vars (nvars+1:nvars+loops(k))=k
nvars=nvars+loops (k)
END IF
END DO
nvars=SUM(LOOPS)

IF (NUM==1) THEN
searchVar (1)="P ?
searchVar(2)="Q !
searchVar (3)="F ?

ELSE
searchVar (1)="P11 ’
searchVar(2)=’P12
searchVar(3)=’P22
searchVar(4)="Q)
searchVar(5)="F ’

END IF

1o koo sk okok sk ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok okok ok sk ok

Yc: INITIALIZE iter_step
LG 2 ki ok ok sk sk ok ok ook ok ok sk ok o ok sk ok ok ok sk o o ok ok

IF (newSearch) THEN
iter_step=0

ELSE
OPEN(UNIT=4,FILE=datapath,STATUS="0LD’, &

ACCESS=’SEQUENTIAL’ ,ACTION="READ’)
READ(4,*) iter_step

CLOSE(4,STATUS="KEEP’)

END IF

Y¢:ceececcecccecccececcccecececcecccece
'c: MINIMIZE G

tc:

!c: BEGIN DESCENT LOOP
Ic:ceceececceecccccceecececec

L C 1 skokok sk sk ok ok ok o ok ok okok ok ok ok ook

1C: BEGIN SEARCH LOOP
F Qs skokskokok ok ok ok ok ok Kok KK KK K

DO ip=1, iterp
iter_step=iter_step+l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

print *,’’

Print s, sokkkookkkkkskkkokkonkdkor kool rx 7
print *,’ * loop step = ’, iter_step, ’ * ’
pPrint *, 7 skxskokokskskekskokkskokdokokdkodokokoR ok ok ok ok ’
fail=.TRUE.

nsuccess=0

nfail=0

DO i=1, NSUBIN

print *, ’ time interval: ’, 1
DO j=1, SUM(LOOPS)
varl=i

var2=vars (MOD (j+iter_step,nvars)+1)
variable=var1*1000+var2
print *, ’ search variable : ’, searchVar(var2)

VO 1 skokokoke sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ook

IC: COMPUTE THE GRADIENTS
VO 1 skokok sk ok ok skeok sk ok ok ook ok ok sk ok ok sk ok ke ok

CALL Grad(variable)

L O skokookook sk ok sk ok ok okok ok

!C: DESCENT SEARCH
1 C o skskokoskosk ok sksk sk sk ok sk ok

stepsize=steps(varl,var2)

CALL descent_search(searchVal,cut,stepsize)

call send_update(stepsize)

IF (stepsize > smstep) steps(varl,var2)=stepsize*0.75_prec

IF (i==1) begVal=searchVal(1l)
success=(searchVal (1) >searchVal(2))
fail= fail .AND. (searchVal(l)<=searchVal(2))

print *, ’ cut = ’, cut

print *, ’ stepsize = ’, stepsize

print *, ’ At beginnig G = ’, searchVal(1l)
print *, ’ At end G = ’, searchVal(2)
Print *, 7 skkkkkkkskkkkrkkkkkkk

IF (success) THEN
endVal=searchVal(2)
nsuccess=nsuccess+1
successVar(nsuccess)=searchVar (var2)
ELSE
nfail=nfail+i
failVar(nfail)=searchVar(var2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

END IF
END DO
END DO
1C 1 skorokoksksk sk ke skokok ok sk ok ok ok sk ok ok o ko
'C: print out search result
FC 1 shkokokskok ok skok ok ok ok sk ok skok ok ok ok ok o
Print s, 7skskskckkoksoksokkkoiokskokokodokkokokkok ok kR ok ok)
print *, ’ In This Loop: ’
IF (nsuccess>0) THEN

print *, ’ success variables :’
print *, successVar(1:nsuccess)
END IF

IF (nfail>0) THEN
print *, ’&&&&ELLLLLELLEELELLLLELELLLLLELLELLLE’
print *, ’ failed wvariables :’
print *, failVar(il:nfail)

END IF

print *, 2 RhhhhhALhI A b Iotololotololololnlslolotstollslolololoototolote’
print *, ’ Beginning : G = ’, begVal

print *, ’ End : G =7, endVal

print *, Whhhhhhhihhhhhbhhllelhlohllhhlelhhhhlslohlohlhh’
PTint *, 7xkkkkkskskokkokskokkokkokkokkokkkkokkokkokokk

FC s skkskkok Rk kbR ok K
IC: IF SEARCH FAILED, EXIT SEARCH
1O s kb ko ok ook ok ok o
fail= FALSE.
IF (fail) THEN
PRINT *, ’> TOTAL ITERATION STEPS: ’, iter_step
CALL StopProgram()
END IF
END DO
END PROGRAM fl_master

FUNCTION getG(cut;dir)
USE ntype
USE pvm, ONLY : send_gstep, getData
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: dir
LOGICAL, INTENT(IN) :: cut
REAL(PREC) :: getG

1 C 1 skoksk sk ok ok ok ok ok ok sk sk sk ke ok ok ok ok ok ok ok ok ok o ok ok

1C: SEND OUT SEARCH STEPSIZE
U 2 ok ok ok ke ok sk ook ok o ke o s ok ook sk skok ok skok ok sk

CALL send_gstep(cut,dir)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

10 skokokskeok ok ok ok ok ok sk sk ok ok ook sk ok ok ok koK ok

IC: GET G VALUE
[skokkskskokokokokok o ok ok skokok sk ok okokok ok o % %

CALL getData(getG)
END FUNCTION getG

1 ok sk ok ok sk sk sk 3k ok ok ok ok 3k >k ok ke ok ok ok s ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok kR ok sk okok sk skok Kok Kok

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwiad noyum paugiyolsd uononpolidal sayung saumo 1yblAdoo ayj Jo uoissiwiad yum paonpolday

B ‘NIINSNII<=NIFASN‘WAN™TI<=RAN ‘XVWI‘qI¥DN‘AI¥DW : AINO ‘exed Fsn
adfau gsn

OARTS MOTI WYYDOUd

sk e o KRR R K o ok o ok K o o R K KR ok ok K sk sk o ok o K ok ok Rk sk sk ok K Sk ok K KRk kKRR ok ok ok 0 D) |

D TVNOILONA DNILAdWOD : WVYDOUd FJAVIS :Di
ootk sk ok ok ook o sk ko ok ok o ok o s sk sk ook sk sk sk skok ok sk sk ook ok ok ok sk ok sk sk ok skok sk ko sk ok ok kokk $ D) |

powATS™ 1 ITNAON QNF

Junod I939quT

T=1032e3T ! YILAWVEVd ‘YIHILNI
fngs‘xnas‘nys‘Lnqfxna‘ng‘inxn‘nn

B i WALNIOL (:°:°:)NOISNIWIQ' (DAUL) 1YY

3od :: (QIHONQIUDK‘ Z+WAN) NOISNIWIA (DFUI) TVIY

AF‘ab‘aut8dwy :: (QI¥ON‘QIUDW)NOISNIWIA® (DFYUL)TVIY

ad i (QIYON QI¥OW‘E)NOISNIAWIA® (DFUd) TVIY

beu :: YIHIALNI
Lipuqs‘Ans‘xns‘nns :: YIINIOQ (:‘:‘:‘:)NOISNIWIQ® (DFUL) VY

ods :: (QIYON‘AIYOW‘WAN+T+NIGNSN)NOISNIWIQ® (DFUL) TVAY
Spuy :: YALNIOL® (:)NOISNAWIQ® (DAYUd)TVIY
®39q :: YALNIOA® (: “:)NOISNIWIA® (DT¥d)TVIY
eydie :: YHINIOL®(:‘:¢:“:)NOISNAWIA® (DFY¥d)TVaY
0od :: (QT¥HN‘AIYOW)NOISNAWIA® (DIYUL) TYIY
INON LIDITAWI
b8quT13<=3qNb ‘¥8qu 1I<=3qN3
B ‘NINSN Td<=NINSN‘WAN TI<=HAN‘QI¥ON QI¥OW @ AINO ‘exed gsn
adfau Hggn
powATSTTF ATNACK

FHEHHHH R R R R R R R R R R

:x931nbe poUTIUOD #j
70 uotaenbs MOTI ©Yl JO SIUSTIOTFFO0D Yl SI9A0001 weadoxd STUL #j
i R R R S SR R S R R A R R R R

#i
‘wex8oxd STY] UNI 03 #j
quowextnbex 107 g Ioasew I :wexl3oxd I93SeW OYl I9IOI OSBOTJ #i
#i
1oaxes 11 weidoxd Ieaxes oyl YITM I0U3e803 UNI 8q ST 4] “YOIBS #j
uotaeztututu oyl Sutop Arurtew 37 ‘weilSoxd jxed sAeTS YL ST STYL #i
#i
XTIqeW gYZ 83Tutjep oatarsod AT3oTxas ‘oTIjoumfs ® ST 4 9I0UM
(2°%X)Y + (n elqeu\ d)erqeu\- = 21q/ad (X)d #i
#

#

wrex8oad aaels YT, ‘T'V

0e1

USE path, ONLY :
: pack,unpack,plotting

USE util, ONLY

USE PVM, ONLY :

USE fl_slv_mod,

IMPLICIT NONE

1lbd=>FL_1bd, ubd=>fl_ubd,nnplot=>fl_nnplot, &
nplotstep=>fl_nplotstep,loops=>fl_loops, &
no_bndry_value=>fl_no_bndry_value
home=>fl_home, datapath=>fl_datapath

n_id,n_g,n_pc,n_pcc,n_u,n_para,n_ecd,&
n_hvec,n_update,n_stop
ONLY : spc,neq,pcc,lfactor

INCLUDE ’fpvm3.h’

INTERFACE

SUBROUTINE init(imdvec)

USE ntype

INTEGER, DIMENSION(:) :: lmdvec
END SUBROUTINE init

SUBROUTINE nbg(varl,var2)

USE ntype
INTEGER

:: varl,var2

END SUBROUTINE nbg

SUBROUTINE compG(varl,var2,cut,step,G)

USE ntype
INTEGER ::
REAL (PREC)

varl,var2,cut
:: step,G

END SUBROUTINE compG

END INTERFACE

PO ksokokokoskokskokok skok sk ok ook
1C: LOCAL VARIABLES
YO oksokakskokaokokok ok Kok ok
INTEGER :: mytid, parentId
REAL (PREC) ,DIMENSION (NSUBIN) :: funG

REAL (PREC)

: gamma,g

INTEGER :: nvar, ntvar,var,varl,var2,ipter,cut
INTEGER,DIMENSION(1000) :: vars
LOGICAL :: plotSite

DOUBLE PRECISION, DIMENSION(MGRID*NGRID) :: vec
INTEGER,DIMENSION(LMAX) :: lmdsvec
INTEGER :: msgtype,ninit, bufid, tid, ierr,bytes,ibuf,k

1O ook ok sk koK sk ok ok ok o ok
!C: BEGIN PROGRAM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

132

AELEET IS LTI LE LS
1C:
FC 1 skokok okt sk s o oo ok o sk sk ook ok ok ok sk ok o ok ok ok s ko sk ok ok
!C: ENROLL THIS PROGRAM, REQUIRED BY PVMD
FC 1 skakokakokokokokok steod o ook skok sk sk ok ok ok ook sk stk ok ok sk ok ok ok
CALL PVMfmytid(mytid)
CALL PVMfparent (parentid)

CALL initl(nvar,vars,ipter)

O ok ok skokok o s ok ko ok ok ko o ok ko o ok o ok o ok ok o kK

IC: BEGIN LOOP OF RECEIVING DATA
LC 2 sk ok ok bk oo ok ok ok ko ok ok Ko oo
DO WHILE(.TRUE.)
CALL PVMfrecv(parentID, -1, bufid)
CALL PVMfbufinfo(bufid,bytes,msgtype,tid,ierr)

SELECT CASE (msgtype)

§ Qoo ok ok ok ok ok ok ok ok ok ok sk ke ok sk ok sk ok ok ok ok ook ok ok

'C RECEIVE INFORMATION:
IC NUMBER OF lambdas
D Cokeskok ok o ok o ok ok ok ook kot ok ok sk okok ok ko
CASE (n_id)
CALL PVMfunpack (INTEGER4,neq,1,1,ierr)
CALL PVMfunpack (INTEGER4,1lmdsvec(1),neq,1,ierr)
IF (Imdsvec(1)==1) THEN
plotSite=.TRUE.
ELSE
plotSite=.FALSE.
END IF

§ Cokeokook sk ok ok ok sk ok ok ok sk ok sk o ok sk ok ok ok ok ok ok ok skok ok ok ok ok skok sk sk ok ok k

tC INITIALIZE THE PARAMETERS:
!C READ IN SOURCE DATA, alpha AND beta
1 C ok ok ok sk sk ok sk ok 3k sk sk ok ok ok Sk sk 3k sk sk ok ok ok 3k sk ok 3K ok 3k ok 3k ok %k 3k ok K Kk ok

CALL init(Imdsvec)

1 C 2 skokokosk ok skok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok
!C: COMPUTE THE FUNCTIONAL G
'C: (AT INITIAL POINT)
1C 2 sskoskok sk ofookook ok ook ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok
cut=1
gamma=0.0_prec
var2=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

DO varil=1,NSUBIN
CALL compG(varl,var2,cut,gamma,g)
funG(varl)=g

END DO

Q¢ skokoskskok ok ok sk ok o ok ok ok o ok ok s ok oK ok oK ok ok ok ok ok
1C: GET THE SEARCHING VARIABLE
EC 1 sokok ok ook ofokodok ok ko ok ok ook ok ook ok ok ok koK ok K
varl=0
var2=0
ntvar=1
ipter=ipter+1
var1=MOD(varl , NSUBIN)+1
var2=vars (MOD(ntvar+ipter,nvar)+1)
var=vari*1000+var?2

10 okeokok sk koo ok ok ok ok ok ok ok sk sk ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok

IC: COMPUTE GRADIENT AT (p,q,f)_0

1 C 2 okokok ok ok ok ok sk ok ok ok ok sk skok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok %k
CALL nbg(varl,var2)

LC 2 ok skskokok ok sk ok ok sk ook ok ook ok ok K

'C: SEND BACK THE GRADIENT:

IC: SUM_{i=1,neq} (G_i)

LC 2 skokokskok ok sk okok ks ok ok ok sk ok ok ok ok ok ok
k=SIZE(pcc,1)*SIZE(pcc,2)
CALL pack(vec(1i:k),pcc(:,:))

CALL PVMfinitsend(n_ecd,ibuf)

CALL PVMfpack(INTEGER4,var,i,1,ierr)
CALL PVMfpack(INTEGER4,k,1,1,ierr)
CALL PVMfpack(REAL8,vec(1),k,1,ierr).
CALL PVMfsend(parentID, n_hvec, ierr)

L C 1 skokkkokokokokokokok ok ok ok okokok ok ok ok Kok %
1C: RECEIVE THE GRADIENT:
IC: SUM_{i=1,N} (G_i)
1C 2 sokkokokokok sk s ok ok ko kK skok ok ok ok o ok kK
CASE (n_pcc)
CALL PVMfunpack (INTEGER4,ninit,1,1,ierr)
CALL PVMfunpack(REAL8,vec(1),ninit,1,ierr)

CALL unpack(vec(1:ninit), pcc)

FC 2 skskoskok sk sl sk sk sk ok sk sk sk ok sk sk ok ook ke ook ok ook ok koo ook sk sk sk okokok ok ok ok ok
1C: STOP THE PROGRAM DUE TO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

IC: REQUEST BY THE SERVER PROGRAM
IC: THERE IS BUG DUE TO PVM, FOR THIS ROUTINE
LC s ook ook ok ook ok ook ok ook o ok ok o Sk o K o o K o KoK Sk o ok K o
CASE (n_stop)
IF (plotSite) THEN
CALL plot(ipter,1)
END IF
CALL PVMfexit (ierr)
STOP
CASE (n_pc)
CALL plot(ipter,1)

VO 1 skokokook sk sk ok ok okok sk ok ok sk ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk sk ok ok sk sk sk sk okok ook ok ok ok

!1C: UPDATE THE RECOVERED PARAMETERS
'C: RECEIVE THE gamma VALUE USED IN H = H + gamma \nabla H
U C 2 ok ok ok ook ok ok o ok ok ok ok ok sk o o o ok ko ok sk oo ok ok ook ok ok ok ok ok ok ok sk ok o ok ok ok ok ok ok ok ook ok ok o o
CASE (n_update)
CALL PVMfunpack(REAL8,gamma,1,1,ierr)

VG skokokskook ok sk o stk o sk skok ook ok o sk ok sk ok ko sk ok ok sk ok sk ok sk ok ok ok ko
IC: UPDATE (p,q,f) TO : (p,q,f)_{i}
U C skskakskook ok stk o ko sk sk sk sk ok s ko sk ko ok ok o ok sk sk ok ok o ok o ko
IF (gamma > 1.0e-20) THEN
IF (var2<NUM+2) THEN
k=var2
ELSE
k=NUM+1+vari
END IF
spc(k,:,:)=spc(k,:,:)+gammaxpcc

1 C 2 skskok sk sk ok sk ok ok sk sk 3k ko ok ok ok ok sk sk 3k ok ok ok 3k ok ke ke 3k ok 3k ok ok % ok 3k ok ok K
!C: IN CASE NO BOUNDARY VALUES ARE GIVEN
IC: THE INSIDE VALUES ARE PROPAGATE TO
1C: THE BOUNDARY:
D C 1 skskokokskeok ok ok ook ok ok sk ok o sk ok ok sk ook s ok ok ok skokok ok ok
IF (no_bndry_value) THEN
spc(k,1l:1factor,:)=spc(k,2:1factor+l,:)
spc(k,MGRID-1factor+1:MGRID,:)= &
spc (k,MGRID-1factor:MGRID-1,:)
spc(k,:,1:1factor)=spc(k,:,2:1factor+1)
spc(k,: ,NGRID-1factor+1:NGRID)= &
spc(k, : ,NGRID-1factor:NGRID-1)
END IF

L 2 skokokskokok skokskook ok sk ok o ko ok ok sk s ok o sk o ok ok ok skok ok o
IC: CUTOFF THE VALUES EXCEEDED THE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

'C. LOWER AND UPPER BOUNDS
DO skskokokok o ok skokok ok sk sk skok ok o ok ok ok sk ok sk ok ok ok ok ok ok ok ok

WHERE (spc(k,:,:)<lbd(var2)) spc(k,:,:)=1bd(var2)
WHERE (spc(k,:,:)>ubd(var2)) spc(k,:,:)=ubd(var2)

IF (var2<NUM+2) THEN
DO k=1,NSUBIN
CALL compG(k,var2,cut,0.0_prec,g)
funG(k)=g
END DO
ELSE
IF (cut==0) CALL compG(varl,var2,cut,0.0_prec,g)
funG(varl)=g '
END IF
END IF

B G 1 3kook sk ok ok sk ok ok sk ok ok sk Sk ok sk ok 3 3 oK ok ok 3k ok ok ok ok 3K sk ok ok ok ok sk ok ok 3K ok ok ok ok ok ok ok ok ok ok
!C: PLOT THE RECOVERED PARAMETERS (IF REQUIRED)
!C: NOTE WE ONLY SAVE THE DATA TO A FORMAT THAT
!C: THE tecplot SOFTWARE CAN READ IT
UG 1 sk ok ok ok sk ok ok ok ok ok oK ok Sk ok sk ok o 3k ok sk ok oK ok ok ok ok sk ok ok ok oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k
IF (plotSite) THEN
IF (MOD(ipter,nnplot)==0) CALL plot(ipter,2)
IF (MOD(ipter,nplotstep)==0) CALL plot(ipter,1)
END IF

1 C s kot ok okokokok o ok ook ok ok ok o o o ok ok ok ok ok ok ok ok ok ok ok
IC: GET THE NEXT SEARCHING VARIABLE
1 G 2 ok koo sk sk ok sk ok ok ok ok ok sk ok ok sk ok ok ok 3k 3k 3k ok 3 ok ok ok ok 3k ok %k
ntvar=MOD(ntvar,nvar)+1
IF (ntvar==1) THEN
var1=MOD(var1l,NSUBIN)+1
IF (varl==1) ipter=ipter+1
END IF
var2=vars (MOD(ntvar+ipter,nvar)+1)
var=vari1*1000+var2

1 C 1 skok sk sk sk sk sk ok sk ok sk 3k ok ok sk sk sk sk 3k 3k ok ok ok 3k ok 3k 3k 3k 5k %k sk %k

IC: COMPUTE GRADIENT AT (p,q,f)_i
1 C 2 sk sk sk sk ok sk sk ok 3k ok ok 5k ok 3k 3k ok 3k ok ok ok 3k 3k ok 3k ok ok ok ok 3k ok ok %k

CALL nbg(vari,var2)

1 1 ok ok ok ook ok ook ok sk o ok ok sk ok Kok o kKoK ok K
IC: SEND BACK THE GRADIENT:
IC: SUM_{i=1,neq} (G_i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

FC 1 dokokok ok ok ook ok ok ook ok ok ok sk ok ok ook ook ok
k=SIZE(pcc,1)*SIZE(pcc,2)
CALL pack(vec(1:k),pcc(:,:))

CALL PVMfinitsend(n_ecd,ibuf)

CALL PVMfpack(INTEGER4,var,1,1,ierr)
CALL PVMfpack(INTEGER4,k,1,1,ierr)
CALL PVMfpack(REAL8,vec(1),k,1,ierr)
CALL PVMfsend(parentID, n_hvec, ierr)

VO ¢ stokok sk ook skokok sk ook ok okeoke ook sk ko sk ok ok okok skosk ok skokokok ok ok

!C: COMPUTE G, RECEIVE gamma

!C: THEN COMPUTE G(c+gamma \nabla g)

1 C: sheokok o ok ok sk ok sk ok o s okok ok 3k ok ok sk ok o 3k 3k ok ok sk ok ok sk ok sk ok

CASE (n_g)

CALL PVMfunpack(INTEGER4,cut,1,1,ierr)
CALL PVMfunpack(REAL8,vec(1),1,1,ierr)
gamma=REAL (vec (1) ,KIND=PREC)

FC 3 sk koo ok ok ok oK oK oK oK KK o oK
!C: COMPUTE functional G
LC 2 skt ok skok ko Kok KKK ok Ko
IF (gamma == 0.0_prec) THEN
g=funG(var1)
ELSE
IF (var2/=NUM+1) THEN
CALL compG(varl,var2,cut,gamma,g)
ELSE
DO k=1,NSUBIN
CALL compG(k,var2,cut,gamma,funG(k))
END DO
g=funG(varl)
END IF
END IF

gamma=0.0_prec
DO k=1,NSUBIN
IF (k==varl) THEN
gamma=gamma+g
ELSE
gamma=gamma-+funG (k)
END IF
END DO

CALL PVMfinitsend(n_ecd,ibuf)
CALL PVprack(REALS,dble(gamma),1,1,ierr)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137
CALL PVMfsend(parentID,n_g,ierr)

END SELECT
END DO

LC 1 swokokok ok sk ok skok ok ok ok ok

1C: SUBROUTINES

FC 1 ko sk ok ok K KoK oK KoK K
CONTAINS

G+ skook sk sk sk ok ok ok ok ok ok ok oK ok 3k ok ok o 5K ok 3K ok sk ok ok ok oK 3k ok ok 3K 3k ok ok sk 3K ok Sk 3k sk 3k ok 3k ok ok ok sk 3k 3K ok ok sk ok sk ok ok ok ok 3K 3K ok % oK ok ok
!C: THIS SUBROUTINE SAVE THE DATA P, Q, R TO THE FILES P1l.dat,
IC: Pl2.dat,P22.dat AND Q.dat, R.dat respectively.
!C: THE FORMAT OF THE FILES ARE COMPATIBLE WITH tecplot PROGRAM SO
!C: THAT THE GRAPH CAN BE VIEWED WITH TECPLOT PROGRAM
FC ook ok ok ok o ok ok o ok sk ok ok ok ok ook ok ok o ook ok o ok ok o ok sk ok ok ok oK ok ok ok sk o ok ok o ok sk ok ok o ok ok ok ok ok o ok ok ok ok 3Kk o ok ko K
SUBROUTINE plot(flagl,flag2)
USE para, ONLY : NUM => FL_NUM,a,b,ha,hb
INTEGER, INTENT(IN) :: flagl,flag?2
CHARACTER (LEN=1) ,DIMENSION(3) :: name=(/’P’,’Q’,’F’/)

IF (flag2 == 1) THEN
CALL PLOTTING(home,name,NUM,spc,ipter,a,b,ha,hb)
OPEN(UNIT=4,FILE=datapath,STATUS="REPLACE’, &
ACCESS="SEQUENTIAL’ ,ACTION="WRITE’)
WRITE(4,*) flagl
do k=1, nsubin+l+num
WRITE(4,*) spc(k,:,:)
end do
CLOSE(4,STATUS=KEEP’)
ELSE IF (flag2==2) THEN
CALL PLOTTING(home,name,NUM,spc,0,a,b,ha,hb)
END IF
END SUBROUTINE plot

T C 1 skoskok sk sk ok ok ok ok ok ok oK ok ok ok sk ok ok sk o sk 3k ok ok oK ok 3k ok ok ok 3k sk ok 3k ok sk ok ok sk ok ok ok ok ok ok

'C: THIS SUBROUTINE SET THE SEARCH VARIABLES
!C: AND INITIAL VALUES OF THE VARIABLES
1 C 2 3k ok ok 3k 3k 3k sk ok 3k 5K ok 3K 3k 3k ok 3k 3k ok 3k 3k 3k ok ok ok 3k ok 3K ok 3 ok sk ok ok ok ok sk sk ok ok ok ok ko
SUBROUTINE initl(nvar,vars,ipter)
USE ntype
USE para, ONLY : MGRID,NGRID,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN, &
loops=>FL_loops,newSearch=>fl_newSearch,&
pc0=>f1_pcO
USE para_func, ONLY : trueP,truel},trueF
USE fl_slv_mod, ONLY : spc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

IMPLICIT NONE
INTEGER, INTENT(OUT) :: nvar,ipter
INTEGER,DIMENSION(:) , INTENT(OUT) :: vars

INTEGER :: 1,j,k

1O 1 skskokok skok ok ok ok ok ok ok ok ok sk skok sk ok ok ok ok ok sk sk o ok
!C: GET SEARCHING VARIABLES
P skotok ook ok ok sk okok ok okok ok ok ok ok sk ok ok ok ok ok
nvar=0
vars=0
DO k=1, NUM+2
IF (loops(k) /=0) THEN
vars(nvar+l:nvar+loops (k))=k
nvar=nvar+loops (k)
END IF
END DO
nvar=SUM(LOOPS)

VO 1 ok sk kokok ook ok sk ook ok ok ok ok ook
IC: INITIALIZE p,q,f
VO ¢ dokskskokskokokok okok ok sk ok ok ok sk ok ok ok
IF (newSearch) THEN
ipter=0
DO k=1, NUM
IF (loops(k) /=0) THEN
spc(k, :, :)=pcO(k)
ELSE
DO i=1,MGRID
DO j=1,NGRID
spc(k,i,j)=trueP(k,1i,j)
END DO
END DO
END IF
END DO
IF (loops(NUM+1)/=0) THEN
spc(NUM+1, : , :)=pcO (NUM+1)
ELSE
DO i=1,MGRID
DO j=1,NGRID
Ispc(NUM+1,i, j)=trueQ(i, j)
END DO
END DO
spc(NUM+1, :, :)=pcO(NUM+1)
END IF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

IF (loops(NUM+2)/=0) THEN
spc (NUM+2 : NUM+1+NSUBIN, :, :) =pc0 (NUM+2)
ELSE
DO i=1,MGRID
DO j=1,NGRID
DO k=1,NSUBIN
spc (NUM+1+k, 1,) =trueF (k,1i,])
END DO
END DO
END DO
END IF
ELSE

OPEN(UNIT=4,FILE=datapath,STATUS="0LD’, &
ACCESS='SEQUENTIAL’ ,ACTION="READ’)
READ(4,%*) ipter
do i=1, nsubin+i+num
READ(4,*) spc(di,:,:)

end do

CLOSE(4,STATUS="KEEP’)

END IF
END SUBROUTINE initi

END PROGRAM flow_slave

VO 2 skookok ok ok ok ok o ok sk ok ok sk o ok ok ok o ok ok o ok o ok sk ok ok ok ok ok ok o ok ok ok ok sk ok ok ok ok o o ok ok ok ok ok ok o ke ok ok ok ok ok ok ok ok ke ok ok
!C: THIS SUBROUTINE ALLOCATE THE VARIABLES, SET THE LAMBDA VALUES
{C: AND READ IN THE SOURCE DATA u AND alpha, beta
b2 skook sk ok ok ok sk ok ok sk ok ok ok ok ok 3k 3k ok 3 ok ok ok 3K ok 3k ok 3k ok sk sk 3k 3k 3k ok sk ok s ok ok ok 3k ok 3K sk oK ok 3 ok 3k 3K sk 3k sk ok 3k ok K oK sk 3k ok ok sk sk ok sk ok
SUBROUTINE init(1lmdvec)
USE ntype
USE para, ONLY : MGRID,NGRID,a,b,ha,hb,lambda,TSIZE, &
' refineData=>f1_refineData,NUM=>FL_NUM, &
NSUBIN=>FL_NSUBIN
USE para_func, ONLY : trueP,trueQ,truelF,fb
USE path, ONLY : source=>fl_source, fl_home
USE util, ONLY : createArray
USE dir, ONLY : dir
USE f1l_slv_mod, ONLY : suu,sux,suy,sbndry,alpha,beta,lmds, &
uu,ux,uy,tu,tux,tuy,stu,stux,stuy,pct,&
neq ,count
IMPLICIT NONE
INTEGER,DIMENSION(:), INTENT(IN) :: lmdvec

REAL (PREC) ,DIMENSION (NSUBIN+1,MGRID,NGRID) :: tbU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

INTERFACE
SUBROUTINE solve(pc,k,uu,ux,uy)
USE ntype
REAL (PREC) ,DIMENSION(:,:,:) :: pc,uu,ux,uy
INTEGER :: k

END SUBROUTINE solve
END INTERFACE

INTEGER :: 1i,j,k
REAL(PREC) :: 1md
REAL(PREC) ,DIMENSION(NSUBIN+1) :: tvec

Vo sk ok ok skok okook sk koK sk ok ok 3k ok ok ok ok Rk

1C: ALLOCATE VARIABLES
1 Cok ok ok ok ok sk ok ok ok ok ok ok skok sk ok sk ok ok ok ok ok ok

suu => createArray(NSUBIN,neq,MGRID,NGRID, ’slave’)
sux => createArray(NSUBIN,neq,MGRID,NGRID, ’slave’)
suy => createArray(NSUBIN,neq,MGRID,NGRID, ’slave’)
sbndry => createArray(NSUBIN,neq,4,NGRID, ’slave’)

alpha => createArray(NSUBIN,neq,MGRID,NGRID, ’slave’)
beta => createArray(NSUBIN,neq,’slave’)
Imds => createArray(neq,’slave’)

uu => createArray(neq,MGRID,NGRID, ’>slave’)
ux => createArray(neq,MGRID,NGRID, ’slave’)
uy => createArray(neq,MGRID,NGRID, ’slave’)
tu => createArray(neq,MGRID,NGRID, ’slave’)
tux - => createArray(neq,MGRID,NGRID, >slave’)
tuy => createArray(neq,MGRID,NGRID, ’slave’)
stu => createArray(neq,MGRID,NGRID, ’slave’)
stux => createArray(neq,MGRID,NGRID, ’slave’)
stuy => createArray(neq,MGRID,NGRID, ’slave’)

LC 2 sk ok ok ook ook ook ok ook ok ok ok ok ook ok
1C: SET THE TIME INTERVALS
b 3k sk ok sk ok sk sk ok 3k ok sk ok ok 3 3k ok ok ok ok ok ok ok sk ok ok ok ok
1md=tsize/NSUBIN
DO k=0, NSUBIN
tvec (k+1)=k*1md
END DO

1 C 2 kokokkok ok sk ok ok ok ok skok o ok ok ok ok ok ok ok oK
!C: SET THE LAMBDA VALUES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

VG 1 skokok ook ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok okok ok ok ok
DO k=1,neq
I1mds (k)=1mdvec (k)*lambda
END DO

VO 1 skeokokoak ook o ok ok ok ok ok ook ok ok ok ok ok ok
!C: READ IN SOURCE DATA
TC ¢ stk sk ook ook ok o skokokok sk ok ok okok ok %
OPEN(UNIT=4,FILE=source,STATUS="0LD’, &
ACCESS=’SEQUENTIAL’ ,ACTION="READ’)
READ(4,%) tbU
DO k=1, lmdvec(1)-1
READ (4,%) suu(:,1,:,:)
END DO
DO k=1, neq
READ (4,%) suu(:,k,:,:)
END DO
CLOSE (4,STATUS="KEEP’)

sbndry(:,1:neq,1,1:NGRID)=suu(:,1:neq,1,:)
sbndry(:,1:neq,2,1:NGRID)=suu(:,1:neq,mgrid,:)
sbndry(:,1:neq,3,1:MGRID)=suu(:,1:neq,:,1)
sbndry(:,1:neq,4,1:MGRID)=suu(:,1:neq, : ,ngrid)

1 C 1 skokoakoskokok ok ok ok ok ok ok okoke o ok ok ok okoke ok ok ook ok ok ok
'C: COMPUTE THE DERIVATIVES
FC 5 skt ok ok ok ok ok ok ke ok ok ok ok ok ok ok ke ok ok o ok ok ok sk
DO k=1,NSUBIN
uu=suulk,:,:,:)
CALL dir(uu(:,:,:),ux(:,:,:),uy(:,:,:),a,b,ha,hb)

sux(k,:,:,:)=ux
suy(k,:,:,:)=uy
END DO

DC 2 okok ok ook ok ok kokok sk ok ok ook ok ok ok ok ok ok
IC: COMPUTE alpha, beta
L C s kok ok ok ok okokokok ok ok ok ok ok ok sk ok ok ok
DO k=1,neq
1md=1mds (k)
DO i=1,NSUBIN
alpha(i,k,:,:)=tbU(i+1,:,:)*exp(-lmd*tvec(i+l)) &
- tbU(4,:,:)*exp(-1md*tvec(i))

beta(i,k)=(exp(-1lmd*tvec(i))-exp(-lmd*tvec(i+1)))/1lmd

END DO
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

U0 2 sk sk ok sk sk sk ok ok sk ok ok ok ok ok sk ok ok sk ok sk sk 3k ok sk sk sk sk sk ok ok ok ok ok ok

tC: RECOMPUTE SOURCE DATA, IF REQUIRED
L C 2 skokokook ok o ok sk ok ok o ok ok ok ok ok ok ok sk ok ok o ok oo ook ok ok ok ok sk o ok

IF (refinedata) THEN

DO i=1,MGRID
DO j=1,NGRID
DO k=1,NUM
pet(k,i,j)=trueP(k,i,j)
END DO
pct (NUM+1,1, j)=trueQ(i,j)
END DO
END DO

DO k=1,NSUBIN

DO i=1,MGRID
DO j=1,NGRID
pct(NUM+2,1, j)=trueF(k,1i, j)
END DO
END DO
CALL solve(pct,k,uu,ux,uy)
suu(k,:,:, :)=uu
sux(k,:,:,:)=ux
suy(k,:,:,:)=uy
END DO
END IF

END SUBROUTINE init

D C 2 sk ook ko ok ook ok oo ok ook o o ok sk ok ook oo o ok ok o ok oo ok ok ok ok sk o sk ke sk sk sk o sk ok ok o s ko ok ook ok o K ok ok ok ok oK ok

IC: THIS SUBROUTINE COMPUTE THE (NEUBERGER) GRADIENT OR L~1 GRADIENT

!C: FOR THE DESCENT DIRECTION OF THE SEARCHED VARIABLES

1 C 2 skok sk ko o ok ok s sk ook oK o ok ok oo oo K o ok o o o sk ok o ok o sk ook oK o KoK oK o o oK ok o Kok ook oK oK o K o K ok oK o oK
SUBROUTINE nbg(varil,var2)

USE
USE
USE
USE
USE
USE

USE

ntype

para, ONLY : MGRID,NGRID,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN

ellsov, ONLY : Elliptic_Solver

util, ONLY : pack

simpson, ONLY : quad2d

fl_slv_mod, ONLY : spc,suu,sux,suy,neq,uu,ux,uy,tu,tux,tuy,&
qNbg,fNbg,stu,stux,stuy,pct,tmp,ginv,alpha,
beta,lmds,pcc,count

path, ONLY : home=>fl_home

IMPLICIT NONE
INTEGER, INTENT(IN) :: varl,var2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IC:
1C:
1C:

'C:
1C:
'C:
1C:

IC:
IC:
!C:
1C:
iC:

1Cr
1C:
1C:

INTERFACE
SUBROUTINE solve(pc,k,uu,ux,uy)
USE ntype
REAL (PREC) ,DIMENSIONC(:,:,:) :: pc,uu,ux,uy
INTEGER :: k

END SUBROUTINE solve
END INTERFACE

H ok oK oK oK K oK Kk oK K oK oK K oK koK ok
LOCAL VARIABLES

¥ ok ok ok Kk ok ok oK K ok ok ok ok K ok
INTEGER :: k,11

sk 3k o o o o ok sk sk o ok o sk ok ok o o ok o ok ok sk sk o sk sk o ok o sk ok sk ok ok sk ok ok ok ok sk ok sk sk o ok ok ok ok ok ok sk ok ok ok o
THERE IS A BUG HERE, WE HAVE TO SET THE PROGRAM TO PRINT
SOMETHING, OTHBERWISE THE PROGRAM WILL STOP

sk sk ok ok o o o ok sk ok sk ok ok sk o ok ok o o ok ok sk s sk sk ok sk sk ok o o ok ok ok ok ok ok sk s ok s o ok o o ok ok ok K ok sk ok ok

print *, ’ Hi’
pct (1:NUM+1,:,:)=spc(1:NUM+1,:,:)
pct (NUM+2, :, :)=spc (NUM+1+varl,:,:)

s sk o ok ko ok o ok sk o o o ok ok sk s o ok o sk ok o o ok sk sk s o s ok sk o sk ok sk sk o sk o ok ok sk ok ok ok sk ok o
GET THE SOLUTION OF
-\nabla p \nabla u + (\lambda u + alpha) q = f
CORRESPONDING TO VARIABLES vari AND var?2
s s o o ko o o ok sk ok o ok o ok oo o ks s o 3 ok sk sk s ok o ks sk sk ok ok ok sk sk sk o ke ok ko o ok kok ok
CALL solve(pct,varil,tu,tux,tuy)
uwu=suu(varl,:,:,:)
ux=sux(varl,:,:,:)
uy=suy(vari,:,:,:)

ginv=0.0_prec

sk ok 3k vk ok 3k ok vk ok %k K ok ok ok X kK ok ok ok ok %k % ok ok %k >k Kk
COMPUTE THE L~1 GRADIENT
3k 3k 3k sk sk sk ok %k 3k 3K 3k ok 3k 3k ok ok 3k ok ok %k ok ok %k ok ok k ok ok
IF (NUM==1) THEN
SELECT CASE (var2)
CASE (1)
DO k=1, neq

143

ginv=ginv+tux(k, :,) *xtux(k,:,:)+tuy(k,:,) *tuy(k,:,:) &

—ux(k,:,:)*ux(k,:,:)-uy(k,:,) *uy(k,:,:)
END DO

CASE (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

DO k=1, neq
ginv=ginv &
+1mds (k) * (tulk,:,) *xtulk,:,:)-uulk,:, D *xuulk,:,:)) &
+2.0_prec*alpha(varl k,:,:)*x(tu(k,:,:)-uulk,:,:))
END DO

CASE DEFAULT
DO k=1, neq
ginv=ginv+beta(varl,k)*(uu(k,:,:)-tulk,:,:))
END DO
END SELECT
ELSE
SELECT CASE (var?2)
CASE (1)
DO k=1, neq
ginv=ginv+tux(k,:,) *tux(k,:,)-ux(k,:,)*ux(k,:,:)
END DO

CASE (2)
DO k=1, neq
ginv=ginv+tux(k,:, D *tuy(k,:,)-ux(k,:,)*uy(k,:,:)
END DO

CASE (3)
DO k=1, neq
ginv=ginv+tuy(k, :,) *tuy(k,:,:)-uy(k,:, D *xuy(k,:,:)
END DO

CASE (4)
DO k=1, neq
ginv=ginv &
+1mds (k) * (tulk,:,) *tulk,:,:)-uulk,:,:)*uulk,:,:)) &
+2.0_prec*alpha(varl,k,:,:)*(tu(k,:,:)-uu(k,:,:))
END DO

CASE DEFAULT
DO k=1, neq
ginv=ginvt+beta(varl, k) *(uu(k,:,:)-tuk,:,:))
END DO
END SELECT
END IF

O 1 skokook ok sk ok ok ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok 3k sk sk ok sk ok ok sk sk ke e 3k ok ok oK ok ok sk sk ok ok ok oK

IC: COMPUTE THE NEUBERGER GRADIENT (IF REQUIRED)
FC 2ok ookokokok okok skok ok sk ok seokok sk skok ok ok o o kb ook ok s ok ok ok ok sk ok o o ok ok ok ok

IF ((var2<NUM+1) .OR. (var2==NUM+1 .AND. gNbg) &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

.OR. (var2==NUM+2 .AND. beg)) THEN
pct(l,:,:)=1.0_prec
pct(2,:,:)=0.0_prec
pct(3,:,:)=1.0_prec
CALL Elliptic_Solver(pct(1:3,:,:),pct(l,:,:), &
ginv,pct(2,1:4,:) ,ha,hb,pcc)
ELSE
pcc=ginv
END IF
END SUBROUTINE nbg

1O s okokdok okok ok sk sk koo o sk ok o ok ok ok ok o ok ok o ok oK ok o o oo oK ok K o ok ok ok ok sk o o ok KoK K o ok ok oK o o ok K K ok oK oK K ok ok
!C: THE SUBRCUTINE CALLS THE ELLIPTIC SOLVER TO SOLVE THE EQUATIONS AND
!C. THE NUMERICAL DERIVATIVES OF THE CORRESPONDING SOLUTION FUNCTIONS
V2 skokok ook ok ok ok ok ok ok ok ok ok o ook ok s oK ok oK o o ok o o ok oK 3K K oK oK ok 5K S oK oK 6 ok oK s ok ok o ok ok K o 3k 3 ok K ok ok ok ok ok oK oK
SUBROUTINE solve(pc,n,uu,ux,uy)

USE ntype

USE para, ONLY : a,b,ha,hb,lambda,NUM=>FL_NUM

USE ellsov, ONLY : Elliptic_Solver

USE dir, ONLY : dir

USE fl_slv_mod, ONLY : sbndry,alpha,beta,pv,qv,fv,neq,lmds,count

use path, only : home=>fl_home

IMPLICIT NONE

INTEGER, INTENT(IN) :: n

REAL(PREC) ,DIMENSION(:,:,:),INTENT(IN) :: pc
REAL(PREC) ,DIMENSION(:,:,:),INTENT(OUT) :: uu,ux,uy
INTEGER :: k ,1,j]
DO k=1,NUM
pv(k,:,:)=pc(k,:,:)
END DO

IF (NUM==1) THEN
pv(2,:,:)=0.0_prec
pv(3,:,:)=pv(l,:,:)

END IF

DO k=1,neq
qv=1mds (k) *pc (NUM+1,:,:)
fv=beta(n,k)*pc(NUM+2, :, :)-alpha(n,k,:, :) xpc(NUM+1, :,:)

CALL Elliptic_Solver(pv,qv,fv,sbndry(n,k,:,:),ha,hb,uu(k,:,:))
END DO ‘
CALL dir(uu(l:neq,:,:),ux(l:neq,:,:),uy(l:neq,:,:),a,b,ha,hb)
END SUBROUTINE solve

1 C ¢ ok sk sk ok ok ok ok ok ok ok ok oK ok ok ok sk 3k ok sk sk ok 3k ok 3K oK ok 3K 5K oK oK 3k ok 3K 5K oK 3K 3K ok ok ok 3k ko ok ok ok ok

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

!C: THIS SUBROUTINE COMPUTE THE FUNCTIONALS G_i
1 G s ok ok sk ok sk ok ok ok 3k ok ok 3k 3K 3k ok 3k ok ok ok 3k ok ok ok ok ok 3R ok 3k ok ok ok ok ok ok ok ok ok ok akook ok ok ok ok ok ok

1C:
1C:
1C:

1C:
1C:
1C:

1C:
I1C:
1C:
1C:
I1C:
IC:
1C:
1C:
1C:

SUBROUTINE compG(varl,var2,cut,step,G)

USE ntype

USE para, ONLY : MGRID,NGRID,a,b,ha,hb,NUM=>FL_NUM,
NSUBIN=>FL_NSUBIN,1lbd=>fl_1bd,ubd=>f1_ubd

USE simpson, ONLY : quad2d

USE util, ONLY : positive

USE fl_slv_mod, ONLY : neq,lmds,suu,sux,suy,spc,pcc,pct, &

uu,ux,uy,tu,tux, tuy,stu,stux,stuy,tmp ,count
use path, only : home=>fl_home

IMPLICIT NONE

INTEGER, INTENT(IN) :: varl,var2,cut
REAL(PREC), INTENT(IN) :: step
REAL(PREC) , INTENT(OUT) :: G

INTERFACE
SUBROUTINE solve(pc,n,uu,ux,uy)
USE ntype
REAL (PREC) ,DIMENSION(:,:,:) :: pc,uu,ux,uy
INTEGER :: n

END SUBROUTINE
END INTERFACE

ook ok ok ok ok ok ok o ok ok ok ok ok ok ok
LOCAL VARIABLES

ok ok ok ok ok ok ok ok ok ok ok ok ok ok
INTEGER :: k

sk o ok ok ok sk s ok o ok sk sk sk ok ok ok ok sk sk ok ok o o ok ok ok

COMPUTE tu,tux,tuy at p+h

sk stk sk ok ok sk ok ok ok sk ok sk ok ok sk sk sk ok sk s sk ok sk o
pct(1:NUM+1,:,:)=spc(1:NUM+1,:,:)
pct (NUM+2, :, :)=spc(NUM+1i+varl,:,:)
pct(var2,:,:)=pct(var2,:,:)+step*pcc

sk ok ok o koK ok oK ok ok ok ok ok o o ok koK ok ok o o ok sk ok ok ok ok o sk ok ok ok sk okok ok ok o ok sk o sk o ok sk ok sk ok ok sk ok ok skok ok ok
IF WE NEED TO CHECK THE UPPER AND LOWER BOUND, THEN cut==1.
THIS SET WILL USUALLY MAKE THE SEARCH EFFICIENT, BUT WILL STUCK
AT SOME SEARCHING STEP. SO0 WE SET THE VARIABLE cut TO BE 1 AS
LONG AS THE SEARCH IS SUCCESSFUL. IF AT SOME STEP THE SEARCH IS
FAILED THEN WE RESET cut TO BE 0 SO THAT WE CAN MAKE FURTHER
SEARCH. THE CONTROL OF THE VARIABLE IS BY THE SERVER PART OF
THE PROGRAM.

s ok ok sk ok ook sk sk sk o ok ok ok sk ok ok ks sk sk sk o ok ok sk sk ok ok ki sk sk ok ok s sk ok ok ok ok ok sk sk o sk o sk sk ok sk o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

IF (cut==1) THEN
WHERE (pct(var2,:,:)<lbd(var2)) pct(var2,:,:)=lbd(var2)
WHERE (pct(var2,:,:)>ubd(var2)) pct(var2,:,:)=ubd(var2)
END IF

FC 1 skokok kot ok sk ok ok ok ok ok ke ok ok ok ok o ok ok o ok ok ok sk ok ok e sk ok sk ok ok ko ok ok ook ok ok ok sk ok ook sk ok sk sk ok ko sk ok sk ok ok ok ko ok sk ok ok
!C: IF p IS NOT POSITIVE, EXIT BY ASSING G A VERY BIG VALUE TO TELL
!C: THE SERVER PART THAT SEARCHING IS FAILED. OTHERWISE, WE COMPUTE
!C: THE SOLUTION OF EQUATION
VO 2 okskokokskofok ok skok ok ok sk ok ok ok ok sk ofok kok ok sk ook ook ok sk sk ook ok ok ok sk o ok ok ok ok sk ok ook ook ok sk ok ok ok ok sk ok sk ok ok ok ok ok ok
IF (.NOT. positive(pct(1:NUM,:,:))) THEN
G=1000.0_prec
RETURN
END IF

CALL solve(pct,varl,tu,tux,tuy)
uu=suulvari,:,:,:)
ux=sux(vari,:,:,:)
uy=suy(varl,:,:,:)

L C s ok okokokook o ook ok ks sk ook ok s ook sk sk o ok ks s o ok sk sk sk s o ok sk sk o
!C: COMPUTE FUNCTIONAL G AT: (p,q,f)_{il}+a*h
D 2 ko Kook ok ok ook ok o ok ook o o ko ok o ko ok o ok ok sk o o ok sk sk o o ok ok ok o
tmp=0.0_prec
DO k=1, neq
IF (NUM==1) THEN
tmp(:,)=tmp(:,:)+pct(l,:,:) &
*((tux(k,:,) -ux(k,:,:))*x(tux(k,:,:)-ux(k,:,:)) &
+(tuy (k, :,) -uy(k,:,:))*(tuy(k,:,)-uy(k,:,:)))
ELSE
tmp(:, :)=tmp(:,:) &
+pet (1, o,) *#(vux(k,:,) -ux(k,:,:))*(tux(k,:,:)-ux(k,:,:)) &
+2kpct (2, :, D *(tux(k, :,) -ux(k,:,))*x(tuy(k,:,)-uyk,:,:))&
+pct (3, :,) x(tuy(k,:,) -uyk,:, D)) *x(tuy(k,:, D-uylk,:,:))
END IF .
END DO
tmp=tmp
DO k=1,neq
tmp=tmp+pct (NUM+1, :, :) *1lmds (k) *(tu(k,:, :)-uudk,:,:)) &
*(tulk,:,:)-uwulk,:,:))
END DO
CALL quad2d(tmp,a,b,ha,hb,G)
END SUBROUTINE compG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

Fortran code: Finite Laplace transformation

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

MODULE f1_laplace_mod
USE ntype
USE para, ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIN,NUM=>FL_NUM
REAL(PREC) ,DIMENSION (NUM+1+NSUBIN,MGRID,NGRID) :: spc
REAL (PREC) ,DIMENSION (MGRID,NGRID) :: vec
REAL (PREC) ,DIMENSION(2) :: r0
REAL(PREC) :: const=0.4665123934
LOGICAL :: smooth=.FALSE.
END MODULE f1l_laplace_mod

PROGRAM laplace_transform
USE ntype
USE para, ONLY : LMAX,MGRID,NGRID,NSTEPS,TSIZE,lambda,ha,hb,a,b,h,&
NSUBIN=>FL_NSUBIN, compare=>FL_compare
USE path, ONLY : source=>fl_source,origphi=>fl_origphi, &
compphi=>fl_compphi
USE util, ONLY : gsimp,plotting
USE f1l_laplace_mod
USE quad2d, ONLY : quad2d_qgaus

IMPLICIT NONE

REAL(PREC), DIMENSION(NSUBIN+1,MGRID,NGRID) :: tbU

REAL (PREC), DIMENSION(NSUBIN,LMAX,MGRID,NGRID) :: u

REAL (PREC), DIMENSION(NSUBIN,NSTEPS+1,MGRID,NGRID) :: data
REAL (PREC), DIMENSION(NSUBIN*NSTEPS+1,MGRID,NGRID) :: phi
REAL (PREC), DIMENSION(NSTEPS+1) :: func

REAL(PREC) :: t,tt,t0,t1,1md,hx,hy, dump

INTEGER :: k,11,i,7j,it

CHARACTER(LEN=100) :: filephi

VG 2 sskokokokokok ok ok ok skeok ok sk ok ok skook ok sk ok ok
!C: READ IN SOURCE DATA
TC 1 skokoksokok sk okeok ok ok ok ok sk ok skok ok ok ok sk ok ok ok
print *, ’ Read in data’
OPEN (UNIT=4,FILE=0RIGPHI,STATUS="0LD’, &
ACCESS=’SEQUENTIAL’ ,ACTION="READ’)
DO k=1, 5
READ(4,*) dump
END DO
DO k=1, NSUBIN*NSTEPS+1
READ (4,*) dump
DO i=1, MGRID
DO j=1, NGRID
READ (4,%) phi(k,i,j)
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

END DO
END DO
CLOSE(4,STATUS="KEEP’)
FC o koo sk ok s o koo sk o sk s ok ok ok sksk ok sk ok ok ok ok ok ok ok ok foF ok ok
tC: PLOT THE DATA AT TIME=10, 20, 30,
DG 2 kokokoskosksk ok ok ok skok sk sk kb ok o 36 ok sk skok ok ok o o ok ok sk sk ok sk ok o ok ok o

DO k=1, NSUBIN*NSTEPS, 30

! CALL PLOTTING(phi(k,:,:),’phi’,’’,a,b,ha,hb)
! pause ’Check the graph result’
END DO

DO 2 skokokookok ook o o okok skok sk ok o o ok sk ok ok ok ok ok ok o o K
IC: SMOOTH THE DATA (IF REQUIRED)
10 & skosk ok s ok ok ok ok ok o ok ok ok o ok K o ok ok ok ok 3k ok ok ok o ok Ok
print *, ’ smooth data’
IF (smooth) THEN
hx=ha/(MGRID-1)
hy=hb/(NGRID-1)
DO k=1,SIZE(phi,1)
print *, > k=7, k
vec=phi(k,:,:)
DO i=1,MGRID
r0(1)=a+hx*(i-1)
DO j=1,NGRID
r0(2) =b+hy*(j-1)
CALL quad2d_ggaus(r0(1)-h,r0(1)+h,phi(k,i,j))
END DO
END DO
END DO

L O 2 skskokoskok okeok ok sk sk ok o ok ok ok ok ok sk ok ok ok e ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok
1C: PLOT THE DATA AT TIME=10, 20, 30,
FC 2 shoskok sk ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok sk sk sk ok sk stk ok st ok ok sk ok ok sk ok ok ok ok ok
b0 k=10, 100, 10
! CALL PLOTTING(phi(k,:,:),’phi’,’’,a,b,ha,hb)
END DO
END IF

1 C 1 okokskeok sk ok sk ok ok o ok ok ok sk sk sk o o o ok ok ok ok Kok o sk o
| COPY THE DATA TO data VARIABLE
DO 3 okosk ok ok ok ks ok o o o ok sk ok ok sk sk o sk ok sk sk ok sk o
DO k=1,NSUBIN
data(k,1:NSTEPS+1,:,:)=phi((k-1)*NSTEPS+1:k*NSTEPS+1,:,:)
tbU(k, :, :)=data(k,1,:,:)
END DO
tbU(NSUBIN+1,:,:)=data(NSUBIN,NSTEPS+1,:,:)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 G 1 sk ok skok ok sk sk sk sk ok ok sk ok ok ok 3k ok 3 ok ok 5K oK ok ok 3k K ok
!C: Finite Laplace transform
FC o sk sk ok skokok o o ok ok ok ok skok ok o ok ok ok ok okok ok
print *, ’ Begin Laplace Transformation’
tt=TSIZE/NSUBIN
DO k=1,NSUBIN
print *, > k ="’, k
t0=(k-1) *tt
ti=k*tt

DO 11=1,LMAX
DO i=1,MGRID
DD j=1,NGRID

O 2 skokoskok ko sk ook ok ok ok ok ok sk ok ok okok ok
'C: load simpson vector
L C 2 skokok sk ok ok ok koK ok ok ok Sk ok KoK K oK K ok
DO it=1,NSTEPS+1
t=t0+(it-1)*(t1-t0) /NSTEPS
1lmd=real (lambdax*11)
func(it)=data(k,it,i,j)*exp(-lmd*t)
END DO
call gsimp(func,t0,tl,u(k,11,1,3))
END DO
END DO
END DO
END DO

LG 3 sokoskokk ok ok ok ok ok sk ok okok
1C: SAVE THE RESULTS
10 ¢ skokokok ok sokskokskokskok ok okok
OPEN(UNIT=4,FILE=source,STATUS="REPLACE’, &
ACCESS=’SEQUENTIAL’ ,ACTION="WRITE’)
WRITE(4,*) tbU
DO k=1,LMAX
WRITE(4,*) u(:,k,:,:)
END DO
CLOSE(4,STATUS="KEEP’)

END PROGRAM laplace_transform

1.C 1 skook ok st sk st ok sk o sk sk ok ok sk sk ok ok ke ok ok sk ok sk ok ok e ke ok ke sk ok ke ok ok ok ok ok sk ok sk sk sk ok ok ok ok sk ok ok ok ok K ok

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

'C: BOUNDARY AND INTEGRAL FUNCTIONS : y1_2d,y2_2d,func
FC ook otk o ok ok sk ok ok o ok o sk KKk ok ok o ok ok ok SRk KoK o KKK o o KoK ok o K ok
FUNCTION y1_2d(x)
USE ntype
USE para, ONLY : h
USE f1_laplace_mod, ONLY : rO
REAL(PREC) , INTENT(IN) :: x
REAL(PREC) :: yi1_2d
y1_2d=r0(2)~sqrt (h*h-(x-r0(1))*(x-r0(1)))
END FUNCTION y1_2d

FUNCTION y2_2d(x)

USE ntype

USE para, ONLY : h

USE f1_laplace_mod, ONLY : r0

REAL(PREC), INTENT(IN) :: x

REAL(PREC) :: y2_2d

y2_2d=r0(2) +sqrt (hxh-(x-r0(1))*(x-r0(1)))

END FUNCTION y2_2d

FUNCTION func_2d(x,y)
USE ntype
USE para, ONLY : h,TSIZE,a,b,ha,hb,NUM=>FL_NUM,NSUBIN=>FL_NSUBIN
USE util, ONLY : blitp
USE fl1_laplace_mod
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x
REAL(PREC), DIMENSION(:), INTENT(IN) :: y
REAL (PREC) , DIMENSION(size(y)) :: func_2d

INTEGER :: k,n
REAL(PREC) :: rho
REAL(PREC) :: r
DO k=1,SIZE(y)
r=((x-r0(1))*(x-r0(1))+(y (k) -r0(2)) *(y(k)-r0(2))) / (h*h)
rho=exp(1.0_prec/(r-1))
func_2d(k)=rho*blitp(x,y(k),vec,a,b,ha,hb)/(h*h*const)
END DO '
END FUNCTION func_24d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C

Fortran code: Compute the errors between the recovered
and the original data

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

MODULE £1_compErr_mod
USE ntype
USE para, ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIN,NUM=>FL_NUM,NSTEPS
REAL(PREC) ,DIMENSION(NUM+1+NSUBIN,MGRID,NGRID) :: spc
REAL (PREC) ,DIMENSION(MGRID,NGRID) :: vec
REAL (PREC) ,DIMENSION(2) :: rO
REAL(PREC) :: const=0.4665123934
REAL ,DIMENSION (NSTEPS*NSUBIN+1,MGRID,NGRID) :: phi
REAL(PREC) :: dt,dx,dy
END MODULE f1_compErr_mod

PROGRAM compError

USE ntype

USE para, ONLY : MGRID,NGRID,NSTEPS,TSIZE,ha,hb,a,b,h,&
NSUBIN=>FL_NSUBIN

USE path, ONLY : origphi=>fl_origphi,compphi=>fl_compphi, &
datapath=>fl_datapath,home=>f1_home

USE util, ONLY : plotting

USE f1_compErr_mod

USE quad2d, ONLY : quad2d_qgaus

IMPLICIT NONE

REAL(PREC), DIMENSION(NSUBIN,NSTEPS+1,MGRID,NGRID) :: data

REAL (PREC), DIMENSION(NSUBIN*NSTEPS+1,MGRID,NGRID) :: &

newphi,error

REAL(PREC), DIMENSION(NSTEPS+1) :: func

INTEGER :: k,i,j

REAL(PREC) :: err,norm,t,ht,hx,hy,dump

CHARACTER(LEN=2) ,DIMENSION(13) :: &
char=(/’00’,°01’,702°,°03’,°04°,°05°,°06° ,&

307)’308?’)09),110)’)11),)12)/)
CHARACTER(LEN=1) ,DIMENSION(3) :: name=(/’P’, ’Q’, ’F’/)
REAL (PREC), DIMENSION(MGRID,NGRID) :: vvec

INTERFACE
SUBROUTINE getData(data, bndryfunc)
USE ntype
REAL (PREC) ,DIMENSIONC(C:,:,:,:) :: data
INTERFACE

FUNCTION bndryfunc(x,y,t)
REAL :: x,y,t,bndryfunc
END FUNCTION
END INTERFACE
END SUBROUTINE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

FUNCTION trueU(x,y,t)
REAL :: x,vy,t, truelU
END FUNCTION
END INTERFACE

1 C s skoskoskok skok sk ok ok ok ok skokok
'C: READ IN DATA
1 Ce skoskokok skok ok ok ok ok sk ok ok
dt=TSIZE/ (NSUBIN*NSTEPS)
dx=ha/ (MGRID-1)
dy=hb/ (NGRID-1)
OPEN(UNIT=4,FILE=datapath,STATUS=’0LD’, &
ACCESS=’SEQUENTIAL’,ACTION=’READ’)
READ(4,*) k
DO k=1, size(spc,1)
READ(4,*) spc(k,:,:)
END DO
CLOSE(4,STATUS="KEEP?)

print *, ’ Read in data’
OPEN(UNIT=4,FILE=0ORIGPHI,STATUS="0LD’, &
ACCESS="SEQUENTIAL’ ,ACTION=’READ’)
DO k=1, 5
READ(4,#*) dump
END DO
DO k=1, NSUBIN*NSTEPS+1
READ (4,%) dump
DO i=1, MGRID
DO j=1, NGRID
READ (4,*) phi(k,i,j)
END DO
END DO
END DO
CLOSE(4,STATUS="KEEP’)

1O 1 okokskok ok sk sk sk sk ok sk ok skok ok ok ok ok ok ok ok ok ok

!C: SMOOTH THE COMPUTED DATA
PO sokokokskokok ook ok ok okok ok ok o sokok sk ok ok ok

hx=ha/(MGRID-1)

hy=hb/ (NGRID-1)

DO k=1,SIZE(spc,1)
vec=spc(k,:,:)
DO i=1,MGRID

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

r0(1)=a+thx*(i-1)
DO j=1,NGRID
r0(2) =b+hy* (j-1)
CALL quad2d_qgaus(r0(1)-h,r0(1)+h,spc(k,i,j))
END DO
END DO
END DO

FC 2 skokokok sk stk ok skoskeok ok ok ok
!C: COMPUTE DATA
1O ¢ skskok sk skok ok oksk ok ok ok sk ok
CALL getData(data,truelU)

DO k=1,NSUBIN :

newphi ((k-1)*NSTEPS+1:k*NSTEPS, :, :)=data(k,1:NSTEPS,:,:)
END- DO
newphi (NSUBIN*NSTEPS+1, :, :)=data (NSUBIN,NSTEPS+1,:,:)

FC 2 ok ook ok ok ok ok
!C: SAVE DATA
1 G 1 sk sk ok sk ok ok ok ok ok ok sk ok ok
OPEN (UNIT=4,FILE=compphi,STATUS="REPLACE’, &
ACCESS=’"SEQUENTIAL’,ACTION="WRITE’)
DO k=1, size(newphi,1)
DO i=1, MGRID
DO j=1, NGRID
WRITE(4,#*) newphi(k,i,j)
END DO
END DO
END DO
CLOSE(4,STATUS="KEEP’)

1O o skakokokskokskok %k ok Kk K
!C: COMPUTE ERROR
TC 2 skokoskok ok ook ok ok sk ok ok ok ok
DO k=1, NSUBIN*NSTEPS+1
err=0.0_prec
norm=0.0_prec
norm=0.0_prec
DO i=1,MGRID
DO j=1,NGRID
IF (err<abs(phi(k,i,j)-newphi(k,i,j))) &
err=abs ((phi(k,i,j)-newphi(k,i,j)))
IF (norm<abs(phi(k,i,j))) norm=abs(phi(k,i,j))
END DO
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

error(k)=err/norm
print *, ’ error(k) =’, error(k)

DO sk sk ok o o ok ook o o ok ok skook ok ok o 3 ko ok ok ok ok ok ok o
IC: plot the error at k=10,20,...
T s okok skok ok o ok sk okok ok ok ok ok ok oK ok ok ok ok kK ok KKK KK

IF (MOD(K-1,10)==0) THEN

CALL PLOTTING(phi(k,:,:)-newphi(k,:,:), &
home//’data/error’//char((k-1)/13+1),’’,a,b,ha,hb)
END IF
END DO

D C ook ok ok stk sk ko ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ke sk sk ok ok sk ok ok
!C: PLOT THE ERROR AS FUNCTION OF T
Q1 sk ok ok ok 3 sk sk 3k sk ok ok ok ok 3 ok 3k sk ok ok ok sk ok ok ok ok sk skok koK
ht=TSIZE/NSTEPS
OPEN (4, file=home//’data/error.dat’)
WRITE(4,*) ’TITLE=error:’
WRITE(4,*) ’VARIABLES="T" "Error"’

WRITE(4,*) ’ZONE I=’ NSTEPS+1, ’, C=BLUE’
DO i=1, NSTEPS+1

t = (i-1)*ht

WRITE(4,%) t, error(i)
END DO

CLOSE(4, STATUS=’keep’)
END PROGRAM compError

1+ ook ok sk ok ot ok ok s ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok o skok ok
1C:

1C: test solution functions

1C:

REAL FUNCTION trueU(X,Y,T)

USE para, ONLY : a,b,ha,hb

USE fl_compErr_mod, ONLY : phi, dt

USE util, ONLY : blitp

implicit none

REAL :: T, X, Y, U

REAL, PARAMETER :: pi=3.14159

INTEGER :: nhil,nh2

REAL :: hil,h2,vali,val2,val3,valéd
nhi1=CEILING(t/dt)
nh2=FLOOR(t/dt)
hi=(dt*nhi-t)/dt
h2=1.0~ht

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

trueU=blitp(x,y,phi(nh2+1,:,:),a,b,ha,hb)*hl &
+blitp(x,y,phi(nhl+1,:,:),a,b,ha,hb)*h2
END FUNCTION truelU

L C 3 sk sk ook ok ok oKk Sk koK o ok KoK oK oK oK ok oK o oK KKK R oK ok

!C: SUBROUTINES USED BY PDETWO

LC s sk ok ook ok ok KKKk ok ok KoK ok oK oK Kok K KoK oK

SUBROUTINE bndryv (t,x,y,u,av,bv,cv,npde)

IMPLICIT NONE
REAL t,u,x,y,bv,av,cv
INTEGER npde
DIMENSION u(npde),av(npde),bv(npde),cv(npde)
REAL, PARAMETER :: pi=3.14159

INTERFACE
FUNCTION trueU(x,y,t)
REAL x,y,t, trueU
END FUNCTION trueU
END INTERFACE
av(1l) = 1.0
bv(l) = 0.0
cv(1)=truel(x,y,t)
END SUBROUTINE bndryv

SUBROUTINE bndryh (t,x,y,u,ah,bh,ch,npde)
IMPLICIT NONE
REAL t,u,x,y,bh,ah,ch
INTEGER npde
DIMENSION u(npde),ah(npde) ,bh(npde),ch(npde)
REAL, PARAMETER :: pi=3.14159

INTERFACE
FUNCTION trueU(x,y,t)
REAL x,y,t, trueU
END FUNCTION trueU
END INTERFACE

ah(1) = 1.0

bh(1) = 0.0

ch(1)=truel(x,y,t)
END SUBROUTINE bndryh

SUBROUTINE diffh (t,x,y,u,dh,npde)
USE ntype
USE para, ONLY : a,b,ha,hb
USE fl_compErr_mod, ONLY : spc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

USE util, ONLY : blitp

IMPLICIT NONE

REAL, INTENT(IN) :: t,x,y

INTEGER npde

REAL, DIMENSION(npde),INTENT(IN) :: u

REAL, DIMENSION (npde,npde), INTENT(OUT) :: dh

dh(1,1)=blitp(x,y,spc(l,:,:),a,b,ha,hb)
END SUBROUTINE diffh

SUBROUTINE diffv (t,x,y,u,dv,npde)
USE ntype
USE para, ONLY : a,b,ha,hb,NUM=>FL_NUM
USE f1_compErr_mod, ONLY : spc
USE util, ONLY : blitp
IMPLICIT NONE
REAL, INTENT(IN) :: t,x,y
INTEGER npde
REAL, DIMENSION(npde),INTENT(IN) :: u
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dv

IF (NUM==1) THEN
dv(1i,1)=blitp(x,y,spc(l,:,:),a,b,ha,hb)
ELSE
dv(1,1)=blitp(x,y,spc(3,:,:),a,b,ha,hb)
END IF
END SUBROUTINE diffv

SUBROUTINE diffch (t,x,y,u,dch,npde)
USE ntype
USE para, ONLY : a,b,ha,hb,NUM=>FL_NUM
USE f1_compErr_mod, ONLY : spc
USE util, ONLY : blitp
IMPLICIT NONE
REAL, INTENT(IN) :: t,x,y
INTEGER npde
REAL, DIMENSION(npde),INTENT(IN) :: u
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dch

IF (NUM==1) THEN
dch(1,1)=0.0_prec
ELSE
dch(1,1)=blitp(x,y,spc(2,:,:),a,b,ha,hb)
END IF
END SUBROUTINE diffch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

SUBROUTINE diffcv (t,x,y,u,dcv,npde)
USE ntype
USE para, ONLY : a,b,ha,hb, NUM=>FL_NUM
USE fl_compErr_mod, ONLY : spc
USE util, ONLY : blitp
IMPLICIT NONE
REAL, INTENT(IN) :: t,x,y
INTEGER npde
REAL, DIMENSION(npde),INTENT(IN) :: u
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dcv

IF (NUM==1) THEN
dev(1,1)=0.0_prec
ELSE
dev(1,1)=blitp(x,y,spc(2,:,:),a,b,ha,hb)
END IF
END SUBROUTINE diffcv

SUBROUTINE £(t,x,y,u,ux,uy,duxx,duyy,duxy,duyx,dudt,npde)
USE ntype
USE para, ONLY : a,b,ha,hb,TSIZE,NUM=>FL_NUM
USE fl_compErr_mod, ONLY : spc,NSUBIN
USE util, ONLY : blitp
IMPLICIT NONE
REAL, INTENT(IN) :: t,x,y
INTEGER npde
REAL, DIMENSION(npde),INTENT(IN) :: u,ux,uy
REAL, DIMENSION(npde,npde), INTENT(IN) :: duxx,duxy,duyy,duyx
REAL, DIMENSION(npde,npde), INTENT(OUT) :: dudt

REAL :: tq,tf

REAL(PREC) :: tt

INTEGER :: k,n
tg=blitp(x,y,spc(NUM+1,:,:),a,b,ha,hb)

© tt=TSIZE/NSUBIN
DO k=1,NSUBIN+1

IF (t>=tt*(k-1)) n=k
END DO
n=MIN(n,NSUBIN)
tf=blitp(x,y,spc(NUM+1+n,:,:),a,b,ha,hb)
dudt (1) = (duxx(1,1)+duxy(1,1)+duyx(1,1)+duyy(i,1)+tf)/tq
END SUBROUTINE f

1 C 1 ok sk ke sk ok ok ok sk Sk sk sk ok sk ok ok ok ok sk sk ok ok ok sk ok ok ok ok ok ok ok ok oK ok oK ok oK ok ok ok ok ok ok ok ok ok ok

!C: BOUNDARY AND INTEGRAL FUNCTIONS : yl1_2d,y2_2d,func
FC 2 skk s sk ok kb ok sk sk ok sk skok o e skok ok ok sk ok ok ok ok sk ook ok sk ok o o ok okok ok ok ok skok

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

FUNCTION y1_2d(x)

USE ntype

USE para, ONLY : h

USE fl_compErr_mod, ONLY : rO0

REAL(PREC), INTENT(IN) :: x

REAL(PREC) :: yl_.2d

y1_2d=r0(2)-sqrt (h*h-(x-r0(1)) *(x-r0(1)))

END FUNCTION yi_2d

FUNCTION y2_2d(x)

USE ntype

USE para, ONLY : h

USE fl1_compErr_mod, ONLY : rO

REAL(PREC), INTENT(IN) :: x

REAL (PREC) :: y2.2d

y2_2d=r0(2) +sqrt (hxh- (x~r0 (1)) *(x-r0(1)))

END FUNCTION y2_2d

FUNCTION func_2d(x,y)
USE ntype
USE para, ONLY : h,TSIZE,a,b,ha,hb,NUM=>FL_NUM, NSUBIN=>FL_NSUBIN
USE util, ONLY : blitp
USE f1_compErr_mod
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x
REAL(PREC) , DIMENSION(:), INTENT(IN) :: y
REAL(PREC) , DIMENSION(size(y)) :: func_2d

INTEGER :: k,n
REAL(PREC) :: rho
REAL(PREC) :: r
DO k=1,SIZE(y) |
r=((x-r0(1))*(x-r0(1))+(y(k)-r0(2))*(y(k)-r0(2)))/ (h*h)
rho=exp(1.0_prec/(r-1))
func_2d (k)=rho*blitp(x,y(k),vec,a,b,ha,hb)/ (h*h*const)
END DO
END FUNCTION func_2d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D

Fortran code: Compute the inflow and outflow

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PROGRAM sustain
USE ntype
USE para, ONLY : MGRID,NGRID,NSUBIN=>FL_NSUBIN, &
NUM=>FL_NUM,a,b,ha,hb,dx,dy,conv

USE path, ONLY : datapath=>fl_datapath, home=>fl_home

USE simpson, ONLY : quad2d

IMPLICIT NONE

REAL(PREC) , DIMENSION(NUM+1+NSUBIN,MGRID,NGRID) :: spc

REAL(PREC), DIMENSION(MGRID,NGRID) :: vec
REAL(PREC) :: dd,dd2,al,bl,hal, hbl

REAL(PREC), DIMENSION(NSUBIN) :: inflow, outflow
INTEGER :: k

VG 2 skok ok ok ok ok ok sk ok o ok ok ok ok ok sk o ok ok ok ok ok ok ok sk ok ok ok ok ok ok oK
!C: READ IN DATA
12 skokok ok o ok ok koo ok ok o o ok ok ok o ok ok o ok oK oK ok o ok ok oK ok ok 0K
OPEN(UNIT=4,FILE=datapath,STATUS="0LD’, &
ACCESS=’SEQUENTIAL’ ,ACTION="READ’)
READ(4,%*) k
READ(4,%*) spc
CLOSE(4,STATUS=’KEEP’)

al=0.
b1=0.
hal=dx*conv
hbi=hy*conv

0
0

163

spc (NUM+1 : NUM+1+NSUBIN, : , :) =spc (NUM+1: NUM+1+NSUBIN, :, :) / (conv*conv)

DO k=1, NSUBIN
vec=max(spc (NUM+1+k,:,:),0.0_prec)
CALL quad2d(vec,ai,bi,hal,hbi,dd)
PRINT *, °> INFLOW = ’, dd*30
inflow(k)=dd*30

vec=min(spc (NUM+1+k,:,:),0.0_prec)
CALL quad2d(vec,al,bi,hal,hbl,dd)
PRINT *, ’ QUTFLOW = ’, ~-dd*30
outflow (k)=-dd*30

END DO

dd=0.0_prec

dd2=0.0_prec

DO k=1, NSUBIN
dd=dd+inflow (k)
dd2=dd2+outflow (k)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

END DO

VO 2 skskookookok sk ok ok ok ok ok ok ok ok
'C: plot the data
1C 1 sokok skokosk ok sk sk okok skok ok ok
OPEN (4, file=home//’flow/in_flow.dat’)
WRITE(4,*) ’TITLE=inflow:’
WRITE(4,*) °*VARIABLES="T" "y’
WRITE(4,*) ’'ZONE I=’, NSUBIN, ’, C=BLUE’
DO k=1, NSUBIN
WRITE(4,*) k, inflow(k)
END DO
CLOSE(4,STATUS="keep’)

OPEN (4, file=home//’flow/out_flow.dat’)
WRITE(4,*) ’TITLE=outflow:’
WRITE(4,*) °VARIABLES="T" "y’
WRITE(4,*) °ZONE I=’, NSUBIN, ’, C=BLUE’
DO k=1, NSUBIN

WRITE(4,*) k, outflow(k)

END DO

CLOSE (4, STATUS=’keep’)

END PROGRAM sustain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX E

Fortran code: subroutines

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwdad noyum paugiyosd uononpolidal sayung ssumo yblAdoo ayj Jo uoissiwiad yum paonpolday

dHL AJTHIOOWS 404 @3sSn SI YALANVHYd SIHL ‘YILANVEVA DNIHIOOWS #i
#i
BHRBRHHARRBHHERRRAHR GG RHERR R F R RR BB RR R R

0°Z=QU ‘0°Z=BU ‘0'7T-=Q°0 T-=® :: YILIWVHVd ‘(DTUd)TVIY
BHURRFHARER R AR R BB FR AR R B HAF SRR RRRRRE SRR HHRR SRR BB R R AR RH BB B RS R

#i
eBowQ\ NIVWOQ FHL HNINIJEA SYALAWVHVA #i
#i

HER I R R R R

00T=d¥dLI"IS .‘0CST=d¥ILI 14 ‘0€=QIYUDW 0€=QIUDN :: YALAIWVHUVd ‘YIDALNI

FHRBRRAH AR BR AR RARHHHRRRHF R R B HBRERRBR BRI R R
#i
"IYIHL DNd ON SI dYAHL JT JIYDW<AIYDN Y0 MHOM #i
0L Q41D0ddXd SI LI “AI¥DW=AIYDN FYIHM NOILYNLIS FHL LSAL ATINO HM #i
JI0N ° (QI¥DW=<QI¥YHN) LIWIT NOILVYALI ‘HIGNAN QI¥D J0 SUALAWVHUYL #i
#i
HHRBRBRHHRRRRF R R RRBRBHRF R R R BB R R

02=D0¥d" N ‘0Z=XVWT :: YILIWVYVd ‘HIDILNI
A S e R A
#i
sepqueT 40 #i
YIIWAN ANV SISSID0Ud JAVTIS A0 YAIWAN JHI DNITIOHLINOD SUALAWVHYL #i
#i
W S R S R R R R S R R R A
adf3u 3gn
exed FTINAOW

HHHHHHH R R R R R R R R I R R R
- #i

suotjenbe e3nros pue MOTF HIOH A9 QISA SI LI ASIM YAHIO #i

#i

TS HLIM SNIDIE YALAWYEVd #i

dHI NOILYADT #3ntos FHL A9 AINO QdSN SI YALIWVYVL FHL AT #i

#i

TF HLIM SNIDHL YALAWYHVd #i

JHI ‘WV¥D0Yd #O0TF FHLI Ad AINO (ISA SI YALAWYYVd FHL AT #i
*LVWHOA DNIMOTIOA JHL SVH LI “SWVHDOUd #i

230708 ANV MOT3 HHL NI {d4SN SYILIWVUVd dJHIL SINIAAA dINA0OW SIHL #i
#i

FHEHHHIHHE SRR R R RS RS RS SSRS R R R R E R R R R R R R R |

siojowered :opod werjiog ‘I'Yg

HOH F H H HH HH HH

991

‘uolssiwdad noyum paugiyosd uononpolidal sayung ssumo yblAdoo ayj Jo uoissiwiad yum paonpolday

RABBRBHARBRRBHFHRRBRARRRRFERHRB BB HRR R HRFR AR BB R R R R R AR

#i
NOILVADT IYOdSNVHL ¥0 NOILVADE MOTd ¥0d QISO SYIALAWVEVA #i
#i

HHHHRFHHRH AR R AR B R R R B R AR R R R R H R R

L-00 T=de3sws :: YILAWVYYd' (DFUd)TVIY
BHEBHEHRBR BB SRR R R R R |

#i
#ITAVHOUVAS SI NOILOIYIA NAAID FHL AT LSHL OL qISN YAGWAN TIVHS V #i
*o #i

FHBHHHHHRAHR BB R BRI R R R

0°T=4ZISL :: YALINVYVd ° (DFUd)TVAY
FHERRBRRAF R R R R R R R

#i
([1°0]) EWIL A0 HIONIT TVIOL #i
#i

RERBHHHHBRHRRRHERRBHRHERHHRRF R R RRRAF R BRI

0€=SdAISN :: YALINVUVd ‘YIDALNI
HERH R HHH R R R R R R R R

#i
WHOASNVYL JDVIdVT ANV Z3dd NI VIV dD¥N0S #i
HL0dWOD Y04 adsn STVAYILNI 0SS 40 YI9WAN dJHL DNILLAS YILIWVIVd #i
#i

R R R R R R

XVWI/0 T=epquel :: YILAWVHYd ‘ (DF™d)TVAY
R R R R R

#i
entes epqwel HHI DNINIJAA YIALIWVHV #i
‘ #i

ErE s s S s P s s S s s s s s s s s e s s s s S

T-90"T=U :: YILIWVYYd °(DIYUd)TVIYU
R R R R R R R R

ANV #i
Ip(U_|I-X|/T)dxe {I>U_|I-X|}73UT\ D = (X)OUI\ #j
#i
£q peutrzep ST oYX\ YIIJAITIOW THI TUIHM #i
#i
fp(fHyn(u_L-x|)oua\ {u>|L-x|} quT\=d™n #;
#i
*YATAITON JHI DNISH VLVA #i

L91

‘uolssiwdad noyum paugiyosd uononpolidal sayung ssumo yblAdoo ayj Jo uoissiwiad yum paonpolday

NOILISOdWOOdd ¥ NI #i
STYAYILNIEINS 40 ¥IHWAN * NIFASN 14 #i
#i
CSUALANYUVd YADALNI #i
#i

HAFFARFHAFHAH AR A AR BB R A HBHRHRABR R R HR R AR AR R RRR B H R R

01=207duu™Ig ‘Qi=30Tduu 14
B ‘T/(T+UTPTIS) *WIPIS=WNU™IS ‘Z=WIP~'IS
3 ‘Z/(T+WIPTII) 4WIP [J=WnuU"T] ‘Z=WTP1J
3 ‘0001=deaszordu™ig ‘Qor=deasiordu1i :: WIALAWVHYd ‘HADALNI
SR S S |

#i
d 40 / d DIJOYLOSINY [#i
d 40 / d DId0YLOST T = WIP #i
» ¥ ‘0 ‘d Vlva #i
HOYVAS dHL LOTd ANV ATLINIJIOOV INOd SVM SWYYDOUd #i
HASYD NI VIVA JHL FAVS NOILVYAINI sdeasiordu ¥irdy : dessiordu #;
#i
CSHALAWYYYd HADLNI #i
#i

HEFHF R AR RR R RR R R R R R R R R R

"dNYL° =e3e@BUTISI IS ' ISV =e3IRPOUTIOI 1]
3 ¢ ESTVA =exedwod™I§ ¢ -ANYUL =3r0TduTIS
3 ¢ ANYL =eleqIesI IS ¢ HNYL =UdIBOgMBUTIS
3 ¢ dSTYd =exedwod™Id ¢ HSTIVL =30Tdu I

3 ¢ dNYL =ereqres1 I ‘-ASTVL =UoTesgmeu Id ! YALANYHYd ‘IVIIDOT

FHEHHR AR R R R R

#i
V1vVd TYNIDIY¥O HHL #i
ANV SYILAWVYHVd JdIYIA0DEY HHL #i
ONISN JIATI0S VIVA JHL JYVIWOD ©oANYLT = exedwod)
("dSTIvd" 39 QIN0HS ‘eieqTEesI) #i
4 0 d SYILAWYYVd INUL FHL 10Id "INl = 3oTdu #j
YI1VQ DILAHLINAS HLIM HOWVAS - "HSTVd" #i
VIVQ TvdY HLIM HOWVAS - "dN¥L" = ®Bieqiesd #|
d40439 V1Vd TIHDYYIS HHL DNISQ » #i
DNISQ HOUVIS FYHHIMAA JAVW - "HSTvd” #i
YIVQ MAN HLIM HOWVAS - "dAYL" = UYOIeesSAdSU #j
#i
CSHALAWYYVd NYATI00d #i
#i

i R R R R R R R S R R R R R

891

‘uolssiwdad noyum paugiyosd uononpolidal sayung ssumo yblAdoo ayj Jo uoissiwiad yum paonpolday

(/0°G°ST00°0°0°G/)=Pqn ™14 i

3 “(/9°0°5000°0°G°0/)=PAT 14 i
3 ‘(/S°0°G000°0°S°0/)=02d"14 i
T=WIQ™1d 4T i

(/AUODxAUOI*T-00 " T ‘AUOD % AUOD%Z—-9T " T
B ‘0 p*(£p*£P) /070989 ‘0 * (AP*XD) /6 °%H ‘0 bk (XP*XP) /0 094G/)=PAn "4
B * (/AUODKAUOD*T-B(0 |- ‘AUOIAUOIxH-PL°T ‘0°SY ‘070 ‘§% 0/)=02d714
B ‘(/AUODKAUODI*T-8(0 T- ‘AUOI%AUOI*xY-PL T
‘0 7% (Ap*£P) /0°SF ‘0 Tx (AP*XP) /6 ¥h~ ‘0 ¥* (XP*XP) /0 S¥%/)=PAT™1d
C=WIQ 14 41 i
3 0 YALAWYYYd © (THRONTTI)NOISNIWIA ° (DIYUL) VY
B ‘PYE 690T=AU0D ‘016 T=ApP ‘0TT0'C=XP :: YALIWVYYd ° (DIUJ) TV

) "ESTYA =4SaNT1d ¢ ISV =bBaNTId i WALIWVEY TVOIDOT
RO
#i
KILOTYUOD #i
14S 49 LSNW AVYYY FHL 40 dAZIS FHL SNOILVALIS TvAY NI :FION #i
'SYALANYYYd ONIYAAODEY FHL 40 ANNOd HAdN ‘ANNOE #i
YIddn ANV YAMOT FHL ‘ANTYA TYILINI FHL LIS LVHL SHALAWVEYd #i
#i
HHHHHHE A |

H H H H R R

(/0°0°0°1/)=8d00T"1S i
T=WIQ Td 41 #i

(/0°0°0°0°0°T/)=S8d00T" 1S
Z=WIA™TIS I #i
¥ o MALIAWYHYd © (S+WANTTIS)NOISNAWIA ‘HADALNI

(/T°1°7/)=Sd0071 1d i
T=WIA1d AT #i

(/T°1°1°1°1/)=5d0071 14
C=NIQ 14 4TI #i
B 1 YALINVYYL © (T+WANTTA) NOISNAWIQ ‘YIDALNI
0Z=NIGASN™IS ‘ZT=NIGASN T1d :: YILIWVYYd “YIDALNI
B R R R R R R R R]

#i
RILDIYH0D 1dS d9 1SN #i
AVYYY FHI A0 AZIS FHI ‘NOILVALIS TVAY NI 410N #i
SIWIL (I)Sd00T JIHDY¥VIES H9 TIIM YILIWVYVd ST FHL #i
‘dd1S ALVYALI HOVA NI "WIQ NO ANIdId SI JZIS - Sd00T #i
NOILISOdWODEd d NI #i
STVAYALNIENS 40 YIEWAN * NIGOSN™IS #i

691

‘uolssiwdad noyum paugiyosd uononpolidal sayung ssumo yblAdoo ayj Jo uoissiwiad yum paonpolday

ered 00N ANA

"HNAL =ANTVA AMANE ON 14 :: ¥ILIWYHVd “TVOIDOT
FRHEHHH R R R R i R

#i
HOUVIS INIOSHd A0 d3LS AYIAT NI A¥VANNOE #i
JHL 0L S3NTVA YOIYALNI HHI dL¥DVd0Hd #i
NZHL IM “SANTVA AYVANNOd ON F¥Y FUFHL #i
¢ dNYL =enTeA”LIpUqTOUTTE AT #i
NOILIANGOD AYVANNOd FHL TOULNOD HALIWNVHVd #i

##|

"HSTVAT = MYYTIS
3 ‘CEAMML = AYACTIHATIS ‘TESTVAC = HIOOWS IS @ ¥ILAWNYYVd ‘TVDIDQT
HHHAHHHEE R R R R R R SR R R HH R R R R

#i
0 FLYYANID 0L IHd QIHIOOWS FHL ASN "ISTVA" #i
D V1Va ILV¥ANID 0l IHd VIva #i
(CIHIOOWSNA) FOUNOS MVY FHL ASA "ANUL" = MYYIS #i
FATLVAINEA FHL TINdWOD LON 0Q “ESTVL" #i
IHd 40 SAAILVAIYWAQ FHI JINAWOD “INUL' = A¥IC IHd™IS #i
HIOOWS LON 04 “dSTVd- #i
Y1Vd HIOOWS “FN¥YLl’ = HIOOWS IS #i
#i
tyd viva 30un0S #i
UL HIOOWS Ol QESN SI IVHL SHALAWVHYd #i

HHFH AR R R R R R R

(/0°G°0°S°0°1°0°G/)=PAn""IS i
3 (/S°0°G°0°20°0°S°0/)=PAT IS i
3 (/5°0°6°0°20°0°G 0/)=02d71S i
T=WIQ™IS 4TI |
(/0'S°0°G0°T°0°G°6%°0°0°G/)=Pan IS
3 ‘(/3°0°G°0°20°0°G°0°0°0°S°0/)=PAT""IS
3 (/S°0°6°0°C0° 06 0°0°0°G°0/)=02d7"IS
Z=WIQ™IS 41 i

B 0 YIIAWYHYd © (E+WANTIS)NOISNAWIQ ° (DI¥d)TvAY

0LT

171

E.2. Fortran code: elliptic PDE solver

MODULE ellsov
USE ntype
IMPLICIT NONE
PRIVATE
PUBLIC Elliptic_Solver

REAL(PREC), DIMENSION(:,:,:), POINTER :: ptr_p
REAL(PREC), DIMENSIONC(:,:), POINTER :: ptr_q, ptr_f,ptr_bndry
REAL(PREC) :: hx,hy
INTEGER :: mgrid,ngrid
INTEGER, PARAMETER :: ROW=10, COL=20
INTERFACE Elliptic_Solver
MODULE PROCEDURE Elliptic_Solver_0
END INTERFACE
INTERFACE getRow
MODULE PROCEDURE getRow_1, getRow_2
END INTERFACE
INTERFACE getCol
MODULE PROCEDURE getCol_1, getCol_2
END INTERFACE

CONTAINS

SUBROUTINE Elliptic_Solver_O(pvec,qvec,fvec,bndryvec,ha,hb,u)
USE ntype '
USE util
IMPLICIT NONE
REAL(PREC), DIMENSION(:,:,:),TARGET,INTENT(IN) :: pvec
REAL (PREC), DIMENSION(:,:),TARGET,INTENT(IN) :: qvec,fvec,&

bndryvec

REAL(PREC), INTENT(IN) :: ha,hb
REAL(PREC), DIMENSION(:,:), INTENT(OUT) :: u

!C: LOCAL VARIABLES

REAL(PREC), DIMENSION(:,:), POINTER :: m_a, m_b
REAL(PREC), DIMENSION(:), POINTER :: m_u
INTEGER, DIMENSION((SIZE(u,1)-2)#(SIZE(u,2)-2)):: indx
REAL(PREC) :: dump, tmp,delta
INTEGER :: j,m,n,i,k

ptr_p=>pvec

ptr_g=>qvec

ptr_f=>fvec

ptr_bndry=>bndryvec

mgrid=SIZE(u,1)

ngrid=SIZE(u,?2)

m=mgrid-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

n=ngrid-2
hx = ha/(m+1)
hy = hb/(n+1)

delta=4.0_precxhx*hy

1Cx skokesk koo sk ok ok koo sk sk ok ok ok sk sk ok sk ok ok o o o o ok o ok ok ok ok o o ok K oK ok ok
!C: COMPUTE the parameters
!C: OF THE DIFFERENCE EQUATION
'C:
tC: lower_leftxU(i-1,j-1) + lower_diag*U(i,j-1) &
!C: + lower_right#U(i+1,j-1) + middle_leftxU(i-1,j) &
1C: + middle_diag*U(i,j) + middle_right*U(i+1,j) &
!C: + upper_left*U(i-1,j+1) + upper_diagxU(i,j+1) &
IC: + upper_right*U(i+1,j+1) = rhs
'C: AND PACKED THEM TO THE MATRIX m_a
1 C 2 skokoskokokok ok ok sk ok ok o ook ok ok sk sk ok sk sk ok sk Sk o ok ko ok o ok ok ok ok ok ok okok ok
IC: COMPUTE rhs, SAVE IT IN u
VG 1 sk ok sk sk ok ok ok ok ok ok ok ok oK ok sk ok e ok ok ok ok sk ok ok ok ook ok ok ok ok ok ok ok

u=0.0_prec

u{1,1:n+2) getRow(pb, 1, 1, n+2)

u(2:m+1,1) = getCol(pb, 1, 2, m+l)

DO j=2, n+1

u(2:m+1,j) = getCol(pf, j, 2, m+l)

END DO

u(2:m+1, n+2) = getCol(pb, n+2, 2,m+1)

u(m+2,1:n+2) = getRow(pb,m+2, 1,n+2)

u(2,2:n+1) = u(2,2:n+1)-lower_left(ROW,2,2,n+1)*u(l,1:n) &
-middle_left (ROW,2,2,n+1)*u(1,2:n+1) &
-upper_left (ROW,2,2,n+1)*u(l,3:n+2)
u(m+1,2:n+1)= &
u(m+1,2:n+1)-lower_right (ROW,m+1,2,n+1)*u(m+2,1:n) &
-middle_right (ROW,m+1,2,n+1)*u(m+2,2:n+1) &
-upper_right (ROW,m+1,2,n+1)*u(m+2,3:n+2)
u(2:m+1,2)=u(2:m+1,2)-lower_left(COL,2,2,m+1)*u(l:m,1) &
-lower_diag(COL,2,2,m+1)*u(2:m+1,1) &
-lower_right(COL,2,2,m+1)*u(3:m+2,1)
u(2:m+1,n+1)=¢
u(2:m+1,n+1)-upper_left(COL,n+1,2,m+1)*u(l:m,n+2) &
-upper_diag(COL,n+1,2,m+1)*u(2:m+1,n+2) &
-upper_right (COL,n+1,2,m+1)*u(3:m+2,n+2)
tmp = - ((pp(2,2,1)+pp(2,1,2))*0.5_prec + pp(2,2,2))/delta
u(2,2) = u(2,2) +tmp*u(i,1)
tmp = ((pp(2,2,n+2)+pp(2,1,n+1))*0.5_prec + pp(2,2,n+1))/delta
u(2,n+1)=u(2,n+1) +tmp*u(1,n+2)
tmp = ((pp(2,m+1,1)+pp(2,m+2,2))*0.5_prec + pp(2,m+1,2))/delta

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

u(mtl,2)=u(m+1l,2)+tmp*u(m+2,1)

tmp =- ((pp(2,m+1,n+2) + pp(2,m+2,n+1))*0.5_prec &
+ pp(2,m+1,n+1)) / delta

u(m+1,n+1)=u(m+1,n+1) +tmp*u(m+2,n+2)

1 1 stk ok sk ok 3 sk ok 3k ok sk 3K ok 3k ok ok ok sk sk ok ok 3k ok ok sk ok ok 3K ok sk ok Sk ok 3k ok 3 ok oK K ok ok ok Kk K K K

'C: PACK the parameters IN m_a
FC 1 sk stk sk sk ok ook sk sk ok sk sk sk ok sk sk ok sk sk sk ok sk ok ok ok ok ok sk sk o ok ok ok ok ok

m_a => createArray(m*n, 2*(m+1)+1, ’Elliptic_Solver -- m_a’)
m_a=0.0_prec
DO j=2, n

m_a((j-1)*m+2:j*m,1)=lower_left(COL, j+1,3,m+1)
m_a((j-1)*m+1:j*m,2)=1lower_diag(COL, j+1,2,m+1)
m_a((j-1)*m+1:j*m-1,3)=lower_right (COL, j+1,2,m)
END DO
DO j=1, n
m_a((j-1)*m+2: j*m,m+1)=middle_left (COL, j+1,3,m+1)
m_a((j-1)*m+1:j*m,m+2)=middle_diag(COL, j+1,2,m+1)
m_a((j-1)*m+1:j*m~1,m+3)=middle_right (COL, j+1,2,m)
END DO
DO j=1, n-1
m_a((j-1)*m+2: j*m,2*m+1)=upper_left (COL, j+1,3,m+1)
m_a((j-1)*m+1:j*m,2+m+2) =upper_diag(COL, j+1,2,m+1)
m_a((j-1)*m+1:j*m-1,2*m+3)=upper_right (COL, j+1,2,m)
END DO
D C 2 ok ks ok ok ok ook ok Kok ok ok ok Kok o ok ook ook ok ook o ok ook o ok ok ok o ok
IC: CALL SUBROUTINE bandec FOR LU DECOMPOSITION
DO skokosk ok ook ok ok sk ok ok sk ok ke ok ok ke ok s ok ook sk ok sk ok ok ok sk ok sk ok ok ok ke sk ko sk o ok ok
m_b => createArray(m*n, m+l, ’Elliptic_Solver -- m_b’)
call bandec(m_a,m+l,m+1,m_b,indx,dump)

FC ¢ sk sk skske ok ok ok sk ok ok sk ok e ok ok ok sk ok ke ok ok sk ok ok ok ok ok ok ok ok ok s ok ok ok sk ok ok ok ok ok ok ok ok

!C: ADJUST u FOR BACKWARD AND FORWARD SUBSTITUTION
FC 2k kokokakokokok ok ok ko ok ok ook skokok ok ok o o ok ok ok ok skok skokook ok ok o o ok ok o ok ok ok skokok o

m_u => createArray(m*n, ’Elliptic_Solver -- m_u’)
DO j=1, n

m_u((j-1)*m+1:j*m)=u(2:m+1, j+1)
END DO

call banbks(m_a,m+i,m+1,m_b,indx,m_u)

L C 2 okokakskokok sk sk ok o ok ok ok ok ok ok sk o o

!C: ADJUSTBACK THE SOLUTION
L C o okakskskookok okok o o o ok ok ok okok okok ok ok ok o

DO j=1, n
u(2:m+1, j+1)=m_u((j-1) *m+1: j*m)
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

CALL RELEASE_MEMORY(m_a, ’Elliptic_Solver -- m_a’)

CALL RELEASE_MEMORY(m_b, ’Elliptic_Solver -- m_b’)
CALL RELEASE_MEMORY(m_u, ’Elliptic_Solver -- m_u’)

END SUBROUTINE Elliptic_Solver_0
F Gt skt okok ok ok 3k ok sk ok sk ok ok ok ok ok 3k sk 5k sk ok ok 3k ok ok ok ok ok 3k >k sk sk ok sk ok 3k ok sk ok ok sk ok ok ok sk

SUBROUTINE bandec(a,ml,m2,al,indx,d)
USE ntype
use util
IMPLICIT NONE
REAL (PREC) ,DIMENSION(:,:),INTENT(INOUT)::a
INTEGER, INTENT(IN) : :mi1,m2
REAL(PREC) ,DIMENSION(:,:),INTENT(OUT)::al
INTEGER,DIMENSION(:),INTENT(OUT) : :indx
REAL (PREC) , INTENT(QUT) : :d
REAL (PREC) ,PARAMETER ::TINY=1.0e-20_prec

INTEGER: :i,k,l,mdum,mm,n,ii
REAL (PREC) : :dum
REAL(PREC) , DIMENSION(m1+m2+1) :: temp

n=SIZE(a,1)
mm=ml+m2+1
mdum=m1

a(l:mi,:)=eoshift(a(i:mi,:),shift=arth(mi,-1,m1),dim=2)
d=1.0
do k=1,n

1=min(mi+k,n)

i=imaxloc(abs(a(k:1,1)))+k-1

dum=a(i,1)

if (dum ==0.0)a(k,1)=TINY

indx(k)=1

if (i /=k)then
d=-d
temp(1:mm)=a(k,1:mm)
a(k,1:mm)=a(i,1:mm)
a(i,1:mm)=temp(1:mm)

end if

do i=k+1,1
dum=a(i,1)/a(k,1)
al (k,i-k)=dum
a(i,1:mm-1)=a(i,2:mm)-dum+*a(k,2:mm)
a(i,mm)=0.0

end do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

end do
END SUBROUTINE bandec
VO skokokook ok ok ok ok ootk sk okt ok ok ook sk ok sttt ok ok ok o o ko ok ok fok ok ok ok ok okok ok ok
SUBROUTINE banbks(a,mi,m2,al,indx,b)
USE ntype
USE util
IMPLICIT NONE
REAL (PREC) ;DIMENSION(:,:),INTENT(IN)::a,al
INTEGER, INTENT(IN) : :m1,m2
INTEGER,DIMENSION(:),INTENT(IN)::indx
REAL(PREC) ,DIMENSION(:),INTENT (INOUT): :b

INTEGER: :i,%k,]1,mdum,mm,n,ii
REAL(PREC) :: temp
n=SIZE(a,1)
mm=mi+m2+1
mdum=m1
do k=1,n
1=min(n,ml+k)
i=indx (k)
if (i /=k) then
temp=b (i)
b(1i)=b(k)
b(k)=temp
end if
b(k+1:1)=b(k+1:1)-al(k,1:1-k)*b(k)
end do
do i=n,1,-1
1=min (mm,n-i+1)
b(i)=(b(i)~dot_product(a(i,2:1),b(1+i:i+1-1)))/a(i, 1)
end do
END SUBROUTINE banbks
DO 1 ok ok ok stk skokok o o o sk ook sk ok ook ok ok ook ok sk sk o ok sk o o ok ok ok ok o o ok sk sk o ok sk sk oo ok o
FUNCTION imaxloc(array)
USE ntype
IMPLICIT NONE
REAL(PREC), DIMENSION(:), INTENT(IN) :: array

INTEGER :: imaxloc
INTEGER, DIMENSION(1) :: imax
imax=maxloc(array(:))
imaxloc=imax (1)
END FUNCTION
1O & ootk sk ok ok sk stk ok sk okook ok ok sk ok ok sk sk ok ok ke ok ok ok sk sk ok ok ok ok ok ok ok ok ok
FUNCTION getRow_1(func, i, bg, ed)
USE ntype

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: i, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: getRow_1
INTERFACE
FUNCTION func(a,b)
USE ntype
IMPLICIT NONE
INTEGER, INTENT(IN) :: a, b
REAL(PREC) :: func
END FUNCTION
END INTERFACE

INTEGER :: k
if (ed <= bg) call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’getRow_1’)
DO k=bg, ed
getRow_1(k)=func(i,k)
END DO
END FUNCTION getRow_1

FUNCTION getRow_2(func, k, i, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: k, i, bg, ed
REAL(PREC) , DIMENSION(bg:ed) :: getRow_2
INTERFACE
FUNCTION func(a,b,c)
USE ntype
IMPLICIT NONE
INTEGER, INTENT(IN) :: a, b, c
REAL(PREC) :: func
END FUNCTION
END INTERFACE

INTEGER :: m
if (ed <= bg) call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’getRow_2’)
getRow_2 = (/(func(k,i,m), m=bg,ed)/)
END FUNCTION getRow_2
L C 2 skatokskokok ok ook ok ook ok sk ok sk ko ok ok ok ok ok o ok ok ok ok ok ok ook ok ok
FUNCTION getCol_1(func, j, bg, ed)
USE ntype

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

USE util
IMPLICIT NONE :
INTEGER, INTENT(IN) :: j, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: getCol_1
INTERFACE '
FUNCTION func(a,b)
USE ntype
IMPLICIT NONE
INTEGER, INTENT(IN) :: a, b
REAL(PREC) :: func
END FUNCTION
END INTERFACE

INTEGER :: k
if (ed <= bg) call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’getCol_1’)
getCol_1 = (/(func(k,j), k=bg,ed)/)
END FUNCTION getCol_1

FUNCTION getCol_2(func, k, i, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: k, i, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: getCol_2
INTERFACE
FUNCTION func(a,b,c)
USE ntype
IMPLICIT NOXNE
INTEGER, INTENT(IN) :: a, b, ¢
REAL(PREC) :: func
END FUNCTION
END INTERFACE

INTEGER :: m
if (ed <= bg) call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’getCol_2’)
getCol_ 2 = (/(func(k,m,i), m=bg,ed)/)
END FUNCTION getCol_2
1 C 2 ook sk ok ok ko sk o ok o 3o ok o KooK K ok oK o K ok K ok ok ok o ok o
FUNCTION lower_left(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: lower_left
if (ed <= bg)call Error &
(’The ending point should be bigger than &

the beginning point in :’, ’lower_left’)
SELECT CASE (flag)
CASE (ROW)
lower_left = - (getRow(pp,2,k,bg-1,ed-1)*0.5_prec &

+ getRow(pp,2,k-1,bg,ed)*0.5_prec &
+ getRow(pp,2,k,bg,ed))/(4.0_prec*hx*hy)
CASE (COL)
lower_left = - (getCol(pp,2,k-1,bg,ed)*0.5_prec &
+ getCol(pp,2,k,bg-1,ed-1)*0.5_prec &
+ getCol(pp,2,k,bg,ed))/ (4.0_precxhx*hy)
END SELECT
END FUNCTIOKN lower_left
L Qs ok koo sk ok Kook ok ok ook o ook ook ook ook ok Ko kK oo
FUNCTION lower_diag(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: lower_diag
if(ed <= bg)call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’lower_diag’)
SELECT CASE (flag)
CASE (ROW)
lower_diag = (getRow(pp,2,k+1,bg,ed) &
- getRow(pp,2,k-1,bg,ed))/(4.0_precxhx*hy) &
- (getRow(pp,3,k,bg,ed) &
+ getRow(pp,3,k,bg-1,ed-1)) /hy**2
CASE (cOL)
lower_diag = (getCol(pp,2,k,bg+l,ed+1) &
- getCol(pp,2,k,bg-1,ed-1))/(4.0_prec*hx*hy) &
- (getCol(pp,3,k,bg,ed) &
+ getCol(pp,3,k-1,bg,ed)) /hy**2
END SELECT
lower_diag=lower_diag*0.5_prec
END FUNCTION lower_diag
L C 1 sk ok ok ook ok ok o Kook oo ook ko oK K ok oK o o
FUNCTION lower_right(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

REAL(PREC), DIMENSION(bg:ed) :: lower_right
if(ed <= bg)call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’lower_right’)
SELECT CASE (flag)
CASE (ROW)
lower_right = (getRow(pp,2,k,bg-1,ed-1)*0.5_prec &
+ getRow(pp,2,k+1,bg,ed)*0.5_prec &
+ getRow(pp,2,k,bg,ed))/ (4.0 _precxhx*hy)
CASE (COL)
lower_right = (getCol(pp,2,k-1,bg,ed)*0.5_prec &
+ getCol(pp,2,k,bg+l,ed+1)*0.5_prec &

+ getCol(pp,2,k,bg,ed))/(4.0_precxhx*hy)
END SELECT

END FUNCTION lower_right
L Q2 skok sk ko ko ko ook ok ook ok oK o ok ook o ok oK oK ok Kok ok ok o oK oo
FUNCTION upper_left(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL(PREC) , DIMENSION(bg:ed) :: upper_left
if (ed <= bg)call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’upper_left’)
SELECT CASE (flag)
CASE (ROW)
upper_left = (getRow(pp,2,k,bg+l,ed+1)*0.5_prec &
+ getRow(pp,2,k~-1,bg,ed)*0.5_prec &
+ getRow(pp,2,k,bg,ed))/(4.0_prec*hx*hy)
CASE (COL)
upper_left = (getCol(pp,2,k+1,bg,ed)*0.5_prec &
+ getCol(pp,2,k,bg-1,ed-1)*0.5_prec &

+ getCol(pp,2,k,bg,ed))/(4.0_precxhx*hy)
END SELECT

END FUNCTION upper_left
FC 2 sk okokok ook ook o sk o ok oK KoK 3K oK o Kok oK K ok ok
FUNCTION upper_diag(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: upper_diag
if (ed <= bg)call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’upper_diag’)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

SELECT CASE (flag)
CASE (ROW)
upper_diag = (getRow(pp,2,k-1,bg,ed) &
- getRow(pp,2,k+1,bg,ed))/(4.0_precxhx*hy) &
- (getRow(pp,3,k,bg,ed) &
+getRow(pp,3,k,bg+l,ed+1)) /hy**2
CASE (COL)
upper_diag = (getCol(pp,2,k,bg-1,ed-1) &
- getCol(pp,2,k,bg+l,ed+1))/(4.0_precxhx*hy) &
- (getCol(pp,3,k,bg,ed) &
+ getCol(pp,3,k+1,bg,ed)) /hy**2
END SELECT
upper_diag=upper_diag*0.5_prec
END FUNCTION upper_diag
LC 2 stk ko sok ko sk ok Kook koK KoK Sk ok ok K ok ok o
FUNCTION upper_right(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL (PREC) , DIMENSION(bg:ed) :: upper_right
if (ed <= bg)call Error &
(’The ending point should be bigger than &

the beginning point in :’, ’upper_right’)
SELECT CASE (flag)
CASE (ROW)
upper_right = - (getRow(pp,2,k,bg+1l,ed+1)*0.5_prec &

+ getRow(pp,2,k+1,bg,ed)*0.5_prec &
+ getRow(pp,2,k,bg,ed))/(4.0_precxhx*hy)
CASE (COL)
upper_right = - (getCol(pp,2,k+1,bg,ed)*0.5_prec &
+ getCol(pp,2,k,bg+l,ed+1)*0.5_prec &
+ getCol(pp,2,k,bg,ed))/ (4.0 _precxhx*hy)
END SELECT
END FUNCTION upper_right
L C 2 sk ok ok ook ook o ok ok ok ok ook ok K ok oK o ok ook ok ok ok o o o ok ok ok ok ok K o K
FUNCTION middle_left(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: middle_left
if(ed <= bg)call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’middle_left’)
SELECT CASE (flag)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

CASE (ROW)
middle_left = (getRow(pp,2,k,bg+l,ed+1) &
- getRow(pp,2,k,bg-1,ed-1))/(4.0_prec*hx*hy) &
- (getRow(pp,1,k,bg,ed) &
+ getRow(pp,1,k-1,bg,ed)) /hx**2
CASE (COL)
middle_left = (getCol(pp,2,k+1,bg,ed) &
- getCol(pp,2,k-1,bg,ed))/(4.0_precxhx*hy) &
- (getCol(pp,1,k,bg,ed) &
+ getCol(pp,1,k,bg-1,ed-1)) /hx**2
END SELECT
middle_left=middle_left*0.5_prec
END FUNCTION middle_left
1 G 1 ok skook ok sk ok ok ok ok ok ok ok 3 sk ok ok sk ok sk sk ok s sk ok sk ok ok ok sk sk sk kok sk ok sk ok
FUNCTION middle_diag(flag, k, bg, ed)
USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL(PREC) , DIMENSION(bg:ed) :: middle_diag
if(ed <= bg)call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’middle_diag’)
SELECT CASE (flag)
CASE (ROW)
middle_diag = getRow(pq,k,bg,ed) &
+ (getRow(pp,1,k+1,bg,ed)*0.5_prec &
+ getRow(pp,1, k-1,bg,ed)*0.5_prec &
+ getRow(pp,1,k,bg,ed)) /hx*x2 &
+ (getRow(pp,3,k,bg+l,ed+1)*0.5_prec &
+ getRow(pp,3,k,bg-1,ed-1)*0.5_prec &
+ getRow(pp,3,k,bg,ed)) /hy**2 '
CASE (COL)
middle_diag = getCol(pqg,k,bg,ed) &
+ (getCol(pp,1,k,bg+l,ed+1)*0.5_prec &
+ getCol(pp,1,k,bg-1,ed-1)*0.5_prec &
+ getCol(pp,1,k,bg,ed))/ hx**2 &
+ (getCol(pp,3,k+1,bg,ed)*0.5_prec &
+ getCol(pp,3,k-1,bg,ed)*0.5_prec &
+ getCol(pp,3,k,bg,ed)) /hy**2
END SELECT
END FUNCTION middle_diag
L Q2 skokokok ok o sk skok sk ok ok ko ok ok ko ok ook o ok ok ok ok ook o
FUNCTION middle_right (flag, k, bg, ed)
USE ntype
USE util

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

IMPLICIT NONE
INTEGER, INTENT(IN) :: flag, k, bg, ed
REAL(PREC), DIMENSION(bg:ed) :: middle_right
if(ed <= bg)call Error &
(’The ending point should be bigger than &
the beginning point in :’, ’middle_right’)
SELECT CASE (flag)
CASE (ROW)
middle_right = (getRow(pp,2,k,bg-1,ed-1) &
-getRow (pp,2,k,bg+1l,ed+1))/(4.0_prec*hx*hy) &
- (getRow(pp,1,k,bg,ed) &
+ getRow(pp,1,k+1,bg,ed)) /hx**2
-CASE (COL)
" middle_right = (getCol(pp,2,k-1,bg,ed) &
- getCol(pp,2,k+1,bg,ed))/ (4.0_prec*hx*hy) &
- (getCol(pp,1,k,bg,ed) &
+ getCol(pp,1,k,bg+l,ed+1)) /hx**2
END SELECT
middle_right=middle_right*0.5_prec
END FUNCTION middle_right
EC 2 stk koo Kok ook ok ook ok ook oK ok ok ok ook ok o ook ook ok o o
FUNCTION pp(k,i,j)
USE ntype
IMPLICIT NONE
INTEGER, INTENT(IN) :: k,i,j
REAL(PREC) :: pp
pp=ptr_p(k,i,j)
END FUNCTION pp
[C 1 skkokok ook ook ok ok ok ok Kok oo o Sk ok ko ok KKk K K
FUNCTION pq(i,j)
USE ntype
IMPLICIT NONE
INTEGER, INTENT(IN) :: i,j
REAL(PREC) :: pq
pa=ptr_q(i,j)
END FUNCTION pq |
LG 2 soksk ook ko ok ok ok ook KooK oK oK KoK ook o K ok K K
FUNCTION pf(i,j)
USE ntype
IMPLICIT NONE
INTEGER, INTENT(IN) :: i,j
REAL(PREC) :: pf
pf=ptr_£(i,j)
END FUNCTION pf
LC sk skokok ok ok ok Kok Kok Kok K KKK ok K kKKK
FUNCTION pb(i,j)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

USE ntype
USE util
IMPLICIT NONE
INTEGER, INTENT(IN) :: i,j
REAL(PREC) :: pb
IF (14 == 1) THEN
pb=ptr_bndry(1,j)
ELSE IF (i == mgrid) THEN
pb=ptr_bndry(2,j)
ELSE IF (j == 1) THEN
pb=ptr_bndry(3,i)
ELSE IF (j == NGRID) THEN
pb=ptr_bndry(4,i)
ELSE "
CALL Error(’In function pb’, ’Wrong parameter i or j’)
END IF
END FUNCTION pb
L C 2 otk skobok sk ko ok ook oo ok o sk ok ok ok ok ook ok o s ok ook ok o o

END MODULE ellsov

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E.3. Fortran code: subroutine of quadratic interpolation

MODULE quad2d
USE ntype
IMPLICIT NONE

PRIVATE
PUBLIC quad2d_qgaus
REAL(PREC) :: xsav,ysav
INTERFACE
FUNCTION func_2d(x,y)
USE ntype
IMPLICIT NONE -
REAL(PREC), INTENT(IN) :: x
REAL(PREC), DIMENSION(:), INTENT(IN) :: y
REAL(PREC), DIMENSION(size(y)) :: func_2d
END FUNCTION func_2d

FUNCTION y1_2d(x)
USE ntype
REAL(PREC), INTENT(IN) :: x
REAL(PREC) :: yi_2d

END FUNCTION yi_2d

FUNCTION y2_2d(x)
USE ntype
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x
REAL(PREC) :: y2_2d
END FUNCTION y2_2d
END INTERFACE

CONTAINS
FUNCTION h(x)
IMPLICIT NONE
REAL(PREC), DIMENSION(:), INTENT(IN) :: x
REAL(PREC), DIMENSION(size(x)) :: h
INTEGER :: i
do i=1,size(x)
xsav=x (i)
h(i)=qgaus(f,y1_2d(xsav),y2_2d(xsav))
end do
END FUNCTION h

FUNCTION £ (y)
IMPLICIT NONE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

185

REAL(PREC), DIMENSION(:), INTENT(IN) :: y
REAL(PREC) , DIMENSION(size(y)) :: £

integer :: k
do k=1,size(y)
end do

f=func_2d(xsav,y)
END FUNCTION f

RECURSIVE FUNCTION ggaus(func,a,b)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: a,b
REAL(PREC) :: ggaus

INTERFACE
FUNCTION func(x)
USE ntype
IMPLICIT NONE
REAL(PREC), DIMENSION(:), INTENT(IN) :: x
REAL(PREC), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
REAL(PREC) :: xm,xr
REAL(PREC), DIMENSION(5) :: dx, &

w = (/ 0.2955242247_prec,0.2692667193_prec,&
0.2190863625_prec,0.1494513491 _prec,&
0.0666713443_prec /),&

x = (/ 0.1488743389_prec,0.4333953941_prec,&
0.6794095682_prec,0.8650633666_prec,&
0.9739065285_prec /)

xm=0.5_prec*(b+a)

xr=0.5_prec*(b-a)

dx(:)=xr*x(:)

qgaus=xr*sum(w(:)*(func (xm+dx) +func (xm-dx)))
END FUNCTION qgaus

SUBROUTINE quad2d_ggaus(x1,x2,ss)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x1,x2
REAL(PREC), INTENT(OUT) :: ss
ss=qgaus (h,x1,x2)
END SUBROUTINE quad2d_qgaus
END MODULE quad2d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

E.4. Fortran code: subroutine of Simpson’s rule

MODULE simpson
USE ntype
IMPLICIT NONE
PRIVATE
PUBLIC quad2d
INTEGER :: mgrid, ngrid
REAL(PREC) :: xsav,ysav
REAL(PREC) :: xmin, xmax, ymin, ymax
REAL(PREC), DIMENSION(:,:), POINTER :: pf

CONTAINS
FC 1 skskokakokokok ok ok okok ok ok 30k ok ok ok ok o ok ok
FUNCTION h(x)
REAL(PREC), INTENT(IN)::x
REAL(PREC)::h

REAL(PREC) :: sum
INTEGER :: mstep
mstep=mgrid-1
XSav=x
CALL gsimpy(g, mstep, yl(xsav), y2(xsav), sum)
h=sum
END FUNCTION h

YC 1 skokokokokokokok ok ok ok o ok ok skok skokkok ok ook ok

FUNCTION y1(x)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x
REAL(PREC) :: yi
yil=ymin
END FUNCTION yi1
1 C 2 ok ok sk ok ok ok ok ook ok ok ok ok ok ok ok ok sk ok ok 3k 3K 3k ok ok ok sk ok ok ok ok ok ok ok ok ok

FUNCTION y2(x)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x
REAL(PREC) :: y2
y2=ymax
END FUNCTION y2
[C 2 sokok sk ko sk ok sk ok ook ok ok o oK o ook oK ok K K K o ok Ko o K o
FUNCTION g(y)
USE util, ONLY : blitp
IMPLICIT NONE
REAL (PREC) , INTENT(IN) :: y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187
REAL(PREC) :: g

ysav=y
g=blitp(xsav,ysav,pf,xmin,ymin,xmax-xmin, ymax-ymin)
END FUNCTION g

1 G 2ok skok ok okt ok skok ok ok ok ok ok ok ok ko ok ook o ok sk ok ook Kok ok
SUBROUTINE gsimpx(func,nstep,a,b,sum)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: a, b
REAL(PREC), INTENT(OUT) :: sum
INTEGER, INTENT(INOUT) :: nstep
INTERFACE
FUNCTION func(x)
USE ntype
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x
REAL(PREC) :: func
END FUNCTION
END INTERFACE

INTEGER :: 1
REAL(PREC) :: h

if (MOD(nstep,2)/=0) nstep = nstep+l
h=(b-a) /nstep
sum=func (a) +func (b)
DO i=2,nstep,2
sum=sum+4 .0_prec*func(ath*(i-1))
END DO
DO i=3,nstep-1,2
sum=sum+2.0_prec*func (a+h*(i-1))
END DO
sum=sum*h/3.0_prec
END SUBROUTINE gsimpx

1O« seorokkokok ok ok ok ok ok Kok o ok ook koK ok o
SUBROUTINE gsimpy(func,nstep,a,b,sum)

IMPLICIT NONE
REAL(PREC), INTENT(IN) :: a, b
REAL (PREC), INTENT(OUT) :: sum
INTEGER, INTENT(INOUT) :: nstep
INTERFACE
FUNCTION func(x)

USE ntype

IMPLICIT NONE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REAL(PREC), INTENT(IN) :: x
REAL(PREC) :: func

END FUNCTION

END INTERFACE

INTEGER :: 1
REAL(PREC) :: h

if (MOD(nstep,2)/=0) nstep=nstep+l

h=(b-a)/nstep

sum=func (a)+func (b)

DO i=2,nstep,2
sum=sum+4.0_prec*func (a+h*(i-1))

END DO

DO i=3,nstep-1,2
sum=sum+2.0_prec*func (a+h*(i-1))

END DO

sum=sum*h/3.0_prec

END SUBROUTINE gsimpy

1C 1 sk kkokokokskokokok ok ok okokok o ok skokokok ok ok ok ok ok ok skok ok ok skok o
SUBROUTINE quad2d(func,a,b,ha, hb, sum)

IMPLICIT NONE
REAL(PREC) :: a,b,ha,hb,sum
REAL(PREC), DIMENSION(:,:), INTENT(IN), TARGET :: func
INTEGER :: nstep

mgrid=SIZE(func,1)

ngrid=SIZE(func,2)

xmin=a :

xmax=a+ha

ymin=b

ymax=b+hb

pf=>func

nstep=ngrid-1

CALL gsimpx(h,nstep,xmin,xmax,sum)

END SUBROUTINE quad2d

1 2 skokeokskokook ok ks sk ok ok ok ok ok ok ok ok sk sk sk ok o sk sk sk o ok o o ok sk sk ok
END MODULE simpson

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

189

E.5. Fortran code: subroutine of utility functions

MODULE util
USE ntype
INTERFACE error
MODULE PROCEDURE Errorl
END INTERFACE
INTERFACE ASSERT_EQ
MODULE PROCEDURE ASSERT_EQ_2,ASSERT_EQ_3,ASSERT_EQ_4,ASSERT_EQ_5,%&
ASSERT_EQ_6,ASSERT_EQ_7
END INTERFACE
INTERFACE createArray
MODULE PROCEDURE createArray_1,createArray_2,createArray_3, &
createArray_4, createArray_5, createArray_6
END INTERFACE
INTERFACE RELEASE_MEMORY
MODULE PROCEDURE RELEASE_MEMORY_1,RELEASE_MEMORY_2,RELEASE_MEMORY_3
END INTERFACE
INTERFACE outer_prod
MODULE PROCEDURE outer_prodl
END INTERFACE
INTERFACE diagnal_assign
MODULE PROCEDURE diagnal_assignl
END INTERFACE

INTERFACE show
MODULE PROCEDURE show_1,show_2,show_3,show_4,show_5,show_6,show_7
END INTERFACE

INTERFACE arth
MODULE PROCEDURE arthil,arth_d
END INTERFACE

INTERFACE locate
MODULE PROCEDURE locatel,locate2
END INTERFACE

INTERFACE toString
MODULE PROCEDURE toStringl
END INTERFACE
INTERFACE blitp
MODULE PROCEDURE blitpl, blitp2, blitp3,blitp4,blitp5,blitp6,blitp7
END INTERFACE

INTERFACE plotting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

MODULE PROCEDURE plot_vecl, plot_vec2, plot_func, plot_real, &
plotl,plot2,plot3,plot4,plot_1d
END INTERFACE

INTERFACE containing
MODULE PROCEDURE containsl
END INTERFACE

INTERFACE computeError
MODULE PROCEDURE computeError_1, computeError_2, computeError_0
END INTERFACE

INTERFACE laplaceTransform
MODULE PROCEDURE laplaceTransforml
END INTERFACE

INTERFACE put
MODULE PROCEDURE putl
END INTERFACE

INTERFACE qsimp
MODULE PROCEDURE qsimpl, gsimp2
END INTERFACE

INTERFACE pack
MODULE PROCEDURE packl, pack2, pack3
END INTERFACE

INTERFACE unpack
MODULE PROCEDURE unpackl, unpack2, unpack3
END INTERFACE ‘

INTERFACE positive
MODULE PROCEDURE positivel
END INTERFACE

INTERFACE smooth
MODULE PROCEDURE smoothi
END INTERFACE
INTERFACE split
MODULE PROCEDURE split2,split3,split4
END INTERFACE

INTERFACE polint

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

MODULE PROCEDURE polintl,polint2
END INTERFACE

INTERFACE iminloc
MODULE PROCEDURE iminlocl,iminloc?2
END INTERFACE

INTERFACE geop
MODULE PROCEDURE geopl
END INTERFACE

CONTAINS
FC: sokokokok sk sk ok ok ok sk ok ok ok sk ok sk ok stk ok skok sk ok ok ok o
SUBROUTINE Errori(stringl, string2)
CHARACTER (LEN=+) , INTENT(IN) :: stringl, string2
WRITE(*,*) stringl
WRITE(*,%) ’*%x’ string2, 7k*x’
ICALL EXIT(1)
STOP ’PROGRAM TERMINATED BY AN ERROR’
END SUBROUTINE Errori
POz soskorokokok ook ok ook ook sk ko ok ok ok o sk ok sk sk ok sk ko

FUNCTION createArray_1(n, string)
INTEGER, INTENT(IN) :: n
REAL(PREC), DIMENSION(:), POINTER :: createArray_1
CHARACTER (LEN=+), INTENT(IN) :: string

REAL(PREC), DIMENSION(:), TARGET, ALLOCATABLE :: array
INTEGER :: ierr
Allocate(array(n), STAT=ierr)
IF (ierr/=0) THEN
CALL Error (’ALLOCATION REQUEST IS DENIED IN:’, string)
END IF
createArray_1 => array
END FUNCTION createArray_1
FUNCTION createArray_2(m, n, string)
INTEGER, INTENT(IN) :: m, n
REAL(PREC), DIMENSION(:,:), POINTER :: createArray_2
CHARACTER(LEN=#), INTENT(IN) :: string

REAL(PREC), DIMENSION(:,:), TARGET, ALLOCATABLE :: array
INTEGER :: ierr
Allocate(array(m,n), STAT=ierr)
IF (ierr/=0) THEN
CALL Error (’ALLOCATION REQUEST IS DENIED IN:?’, string)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

END IF
createArray_2 => array
END FUNCTION createArray_2
FUNCTION createArray_3(m, n, r, string)
INTEGER, INTENT(IN) :: m, n, r
REAL(PREC), DIMENSION(:,:,:), POINTER :: createArray_3
CHARACTER (LEN=%) , INTENT(IN) :: string

REAL(PREC), DIMENSION(:,:,:), TARGET, ALLOCATABLE :: array
INTEGER :: ierr
Allocate(array(m,n,r), STAT=ierr)
IF (ierr/=0) THEN
CALL Error (’ALLOCATION REQUEST IS DENIED IN:’, string)
END IF
createArray_3 => array
END FUNCTION createArray_3
FUNCTION createArray_4(1l,m, n, r, string)
INTEGER, INTENT(IN) :: 1,m, n, r
REAL(PREC), DIMENSION(:,:,:,:), POINTER :: createArray_4
CHARACTER (LEN=%) , INTENT(IN) :: string

REAL (PREC), DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: array
INTEGER :: ierr
Allocate(array(l,m,n,r), STAT=ierr)
IF (ierr/=0) THEN
CALL Error (’ALLOCATION REQUEST IS DENIED IN:’, string)
END IF
createArray_4 => array
END FUNCTION createArray_4
FUNCTION createArray_5(1,m,n,r,s, string)
INTEGER, INTENT(IN) :: 1,m,n,r,s’
REAL(PREC), DIMENSION(:,:,:,:,:), POINTER :: createArray_5
CHARACTER (LEN=%) , INTENT(IN) :: string

REAL(PREC), DIMENSION(:,:,:,:,:), TARGET, ALLOCATABLE :: array
INTEGER :: ierr
Allocate(array(l,m,n,r,s),STAT=ierr)
IF (ierr/=0) THEN
CALL Error(’ALLOCATION REQUEST IS DENIED IN:’, string)
END IF
createArray_5 => ARRAY
END FUNCTION createArray_5
FUNCTION createArray_6(m,stril,str2)
INTEGER, INTENTC(IN) :: m
INTEGER, DIMENSION(:), POINTER :: createArray_6
CHARACTER (LEN=%), INTENT(IN) :: stril,str2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

INTEGER, DIMENSION(:), TARGET, ALLOCATABLE :: array

INTEGER :: ierr :
Allocate(array(m), STAT=ierr)
IF (ierr/=0) THEN

CALL Error(’ALLOCATION REQUEST IS DENIED IN:’, str2)
END IF
createArray_6 => array
END FUNCTION createArray_6
FC 1 skokokokokokskokskok ok ok ook ok okok ok ok sk ok okok sk okokskok ok ok ok ok o ok

SUBROUTINE ASSERT_EQ_2(n1,n2,string)
INTEGER, INTENT(IN) :: nl, n2
CHARACTER(LEN=%), INTENT(IN) :: string
IF(ni1/=n2) THEN
CALL Error(’THE INPUT ARRAYS ARE NOT CONFORMAL IN:’, string)
END IF
END SUBROUTINE
SUBROUTINE ASSERT_EQ_3(n1,n2,n3,string)
INTEGER, INTENT(IN) :: nil, n2, n3
CHARACTER(LEN=x), INTENT(IN) :: string
CALL ASSERT_EQ_2(n1,n2,string)
CALL ASSERT_EQ_2(n1,n3,string)
END SUBROUTINE
SUBROUTINE ASSERT_EQ_4(nl1,n2,n3,n4,string)
INTEGER, INTENT(IN) :: nl, n2, n3, né
CHARACTER (LEN=%), INTENT(IN) :: string
CALL ASSERT_EQ_3(n1,n2,n3,string)
CALL ASSERT_EQ_2(n1,n4,string)
END SUBROUTINE
SUBROUTINE ASSERT_EQ_5(n1,n2,n3,n4,n5,string)
INTEGER, INTENT(IN) :: ni, n2, n3, n4,nb
CHARACTER (LEN=x), INTENT(IN) :: string
CALL ASSERT_EQ_4(n1,n2,n3,n4,string)
CALL ASSERT_EQ_2(n1,n5,string)
END SUBROUTINE
SUBROUTINE ASSERT_EQ_6(n1,n2,n3,n4,n5,n6,string)
INTEGER, INTENT(IN) :: nl, n2, n3, n4,n5,n6
CHARACTER(LEN=*), INTENT(IN) :: string
CALL ASSERT_EQ_5(ni,n2,n3,n4,n5,string)
CALL ASSERT_EQ_2(n1,n6,string)
END SUBROUTINE
SUBROUTINE ASSERT_EQ_7(n1,n2,n3,n4,n5,n6,n7,string)
INTEGER, INTENT(IN) :: ni, n2, n3, n4,n5,n6,n7
CHARACTER(LEN=%), INTENT(IN) :: string
CALL ASSERT_EQ_6(nl1,n2,n3,n4,n5,n6,string)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

CALL ASSERT_EQ_2(n1,n6,string)
END SUBROUTINE

L O ook ok ok ko ook ook o skok ok o ok ok o o ok ok o KooK oK o oK ok K K oK o o
SUBROUTINE RELEASE_MEMORY_1(p, string)
REAL(PREC), DIMENSION(:), POINTER :: P
CHARACTER(LEN=+), INTENT(IN) :: string

INTEGER :: ierr
IF (ASSOCIATED (p)) DEALLOCATE(p, STAT=ierr)
'TF (ierr/=0) THEN
! WRITE(*,*) ’DEALLOCATION REQUEST IS DENIED IN’
! WRITE(*,*) string
'END IF
END SUBROUTINE RELEASE_MEMORY_1
SUBROUTINE RELEASE_MEMORY_2(p, string)
REAL(PREC), DIMENSION(:,:), POINTER :: p
CHARACTER(LEN=+), INTENT(IN) :: string

INTEGER :: ierr
IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
ITF (ierr/=0) THEN
! WRITE(*,*) ’DEALLOCATION REQUEST IS DENIED IN’
! WRITE(*,*) string
IEND IF
END SUBROUTINE RELEASE_MEMORY_2
SUBROUTINE RELEASE_MEMORY_3(p, string)
REAL(PREC), DIMENSION(:,:,:), POINTER :: p
CHARACTER(LEN=%), INTENT(IN) :: string
INTEGER :: ierr
IF(ASSOCIATED(p)) DEALLOCATE(p, STAT=ierr)
ITF (ierr/=0) THEN
| WRITE(*,*) ’DEALLOCATION REQUEST IS DENIED IN’
I WRITE(*,*) string
IEND IF
END SUBROUTINE RELEASE_MEMORY_3
POt sokokokokok sk ok sk ok ok ok o K o oK 3ok K ok sk ok ok ok ok ok ok ok KoK
SUBROUTINE show_1(string)
CHARACTER(LEN=*), INTENT(IN) :: string
WRITE (5, %) 2 skoksrokokokokok ok skokokok sk ook sk o ok sk ok sk ke kol o ko ok 2
WRITE(*x,*) ’x’, string
WRITE (%, %) 2sokskokokskorokokokokskokokok ok ko ok ok ok okokok sokokok ok ok ok ok ok
END SUBROUTINE show_1

SUBROUTINE show_2(stringl, string2)
CHARACTER(LEN=%), INTENT(IN) :: stringl, string?2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

WRITE(*,*) string2, ’=’, stringl
END SUBROUTINE show_2

SUBROUTINE show_3(x, string)
REAL(PREC), INTENT(IN) :: x
CHARACTER(LEN=*), INTENT(IN) :: string
WRITE (x,%) string, ' = 7, x
END SUBROUTINE show_3

SUBROUTINE show_4(x, string)
REAL (PREC), DIMENSION(:), INTENT(IN) :: x
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER k
DO k=1, SIZE(x)
call show(x(k), string)
END DO
END SUBROUTINE show_4

SUBROUTINE show_5(x, string)
REAL(PREC), DIMENSION(:,:), INTENT(IN) :: x
CHARACTER(LEN=#), INTENT(IN) :: string

INTEGER :: j
D0 j=1, SIZE(x,2)
WRITE(x,*) ’J = 7]
CALL SHOW(x(:,j), string)
END DO

END SUBROUTINE show_5

SUBROUTINE show_6(x, string)

REAL(PREC), DIMENSION(:,:,:), INTENT(IN) :: x
CHARACTER(LEN=%), INTENT(IN) :: string
INTEGER :: k
DO k=1, SIZE(x,3)
WRITE(*,*) 'K = 7, k
call show(x(:,:,k),string)
END DO

END SUBROUTINE show_6

SUBROUTINE show_7(n, string)
CHARACTER(LEN=%) , INTENT(IN) :: string
INTEGER :: n

WRITE(*,*) string, ’ = ’, n
END SUBROUTINE show_7
FC 2 kot ook kokskok ok okok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok okok ok ok sk o ook ok ok ok

FUNCTION outer_prodi(a,b)

REAL(PREC), DIMENSION(:), INTENT(IN) :: a,b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

REAL(PREC), DIMENSION(size(a), size(b)) :: outer_prodl
outer_prodl = spread(a,dim=2,ncopies=size(b)) * &
spread(b,dim=1,ncopies=size(a))
END FUNCTION outer_prodl

T C 2 skokok ko ok ok o ko ook ook ook sk o ok ook ok ook ok ok sk ok ok o ok ok ok ok ok ok ok ook ok ok o
SUBROUTINE diagnal_assignl(mat, vec)
REAL(PREC), DIMENSION(:,:), INTENT(OUT) :: mat
REAL(PREC), DIMENSION(:), INTENT(IN) :: vec
CALL ASSERT_EQ(SIZE(mat,1), SIZE(mat, 2), SIZE(vec), &
’diagnal_assignl’)
mat=0.0_prec
DO k=0, size(vec)
mat (k,k)=vec (k)
END DO
END SUBROUTINE diagnal_assignl

TG 1 okok ok ok ok ok ok ok sk ok ok ok ok ok ok 3k 3k ok ok ok ok sk 3k ok sk ok sk ok ok ok sk ok ok ok ok 3k ok ok 3k ok 3k sk oK

FUNCTION arth_d(first,increment,n)
REAL(PREC), INTENT(IN) :: first,increment
INTEGER, INTENT(IN) :: n
REAL(PREC), DIMENSION(n) :: arth_d
INTEGER :: k,k2
REAL(PREC) :: temp
INTEGER, PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
if (n > 0) arth_d(1)=first
if (n <= NPAR_ARTH) then
do k=2,n
arth_d(k)=arth_d(k-1)+increment
end do
else
do k=2,NPAR2_ARTH
arth_d(k)=arth_d(k-1)+increment
end do :
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH

do
if (k >= n) exit
k2=k+k
arth_d(k+1:min(k2,n))=temp+arth_d(i:min(k,n-k))
temp=temp+temp
k=k2

end do

end if

END FUNCTION arth_d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

1 o sk sk ok ok sk ok ok ok o ok ok sk ok ok ok ok ok K ok ok o ok sk ok sk sk sk ok ok sk o sk ok sk ok 3k ok ok sk ok sk
FUNCTION arthi(first, increment, n)
IMPLICIT NONE
INTEGER, INTENT(IN) :: first, increment, n
INTEGER, DIMENSION(n) :: arthil

INTEGER :: k
if (n<=0) call Error(’INVALID DIMENSION IN: ’, ’arthi’)
arthi(1)=first
DO k=2, n
arthi(k)=arthl(k-1)+increment
END DO
END FUNCTION arthi
TG 1 skt sk sk ko o ok ok o ks sk sk bk ok stk sk ok sk sk ok sk o ok o o ok o ok ok
FUNCTION toStringl(int)
IMPLICIT NONE
INTEGER, INTENT(IN) :: int
CHARACTER(LEN=8) :: toStringl
CHARACTER(LEN=1), DIMENSION(10), PARAMETER :: &
char=(/’0’,’1’,’2’,’3’,’4’,’5’ ,’6’,’7’,’8’,}9’/)
INTEGER :: n, k
IF(int>99999999.0R. int<0) THEN
CALL Error(’argument out of bound’,’toStringl’)
END IF
n=int
k=1
DO while(n >0)
toStringi=char(mod(n,10)+1)//toStringl
n=n/10 :
k=k+1
END DO
DO n=k, 8
toStringl=char(1)//toStringl
END DO .
END FUNCTION toStringl
1 G skokok sk ok sk ok sk ok ks ok o ok sk ok ok sk ok ok sk sk ok sk sk sk ok o sk ok o sk sk ok ok ko sk o
FUNCTION locatel(xx,x)
IMPLICIT NONE
REAL(PREC), DIMENSION(:), INTENT(IN) :: xx
REAL(PREC), INTENT(IN) :: x
INTEGER :: locatel

INTEGER :: n,jl,jm,ju

LOGICAL :: ascnd
n=size (xx)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

ascnd = (xx(n) >= xx(1))
j1=0
ju=n+1
DO WHILE (ju-jl > 1)
jm=(ju+jl)/2
IF (ascnd .eqv. (x >= xx(jm))) THEN
jl=jm
ELSE
ju=jm
END IF
END DO
IF (x == xx(1)) THEN
locatel=1
ELSE IF (x == xx(n)) THEN
locatel=n~-1
ELSE
locatel=jl
END IF
END FUNCTION locatel

FC 2 stk sk ok s ok sbok e skok ok stk sk ok kb o koo ok ok s ok ook ok ko o o ok ok o o
FUNCTION locate2(xx,x)
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(IN) :: xx
REAL, INTENT(IN) :: x
INTEGER :: locate2

INTEGER :: n,jl,jm,ju
LOGICAL :: ascnd
n=gize(xx)
ascnd = (xx(n) >= xx(1))
j1=0
ju=n+1
DO WHILE (ju-jl > 1)
jm=(ju+jl)/2 .
IF (ascnd .eqv. (x >= xx(jm))) THEN
jl=jm
ELSE
ju=jm
END IF
END DO
IF (x == xx(1)) THEN
locate2=1
ELSE IF (x == xx(n)) THEN
locate2=n-1
ELSE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

locate2=3j1
END IF
END FUNCTION locate2

VO 1 skokok ok sk sk ok ok ok sk ok ok koK ok ok ok ok ok ok ook ok ok sk ok ok ok ok sk sk sk sk ok ok ok ok ook ok

FUNCTION blitpi(x1,x2,vec,a,b,ha,hb)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x1,x2,a,b,ha,hb
REAL(PREC) ,DIMENSION(:,:), INTENT(IN):: vec
REAL(PREC) :: blitpl

REAL(PREC) :: y1,y2,y3,y4,t,u,hx,hy
INTEGER :: m,n, j, k

m=SIZE(vec,1)~-1

n=SIZE(vec,2)-1

hx=ha/m

hy=hb/n
j=min(max (int (m*(x1-a)/ha)+1,1) ,m)
k=min (max (int (n*(x2-b)/hb)+1,1) ,n)

yl=vec(j,k)

y2=vec(j+1,k)
y3=vec(j+1,k+1)

y4=vec (j,k+1)

t=(x1 - (a + hx*(j-1)))/hx
u=(x2 - (b + hy*(k-1)))/hy

blitpi=(1.0_prec-t)*(1.0_prec—u)*yl+t*(1.0_prec-u)*y2+t*uxy3 &
+(1.0_prec-t)*uxy4
END FUNCTION blitpl

FUNCTION blitp2(x1,x2,vec,a,b,ha,hb)
IMPLICIT NONE
REAL, INTENT(IN) :: x1,x2,a,b,ha,hdb
REAL,DIMENSION(:,:), INTENT(IN):: vec
REAL :: blitp2

REAL :: y1,y2,y3,y4,t,u,hx,hy
INTEGER :: m,n, j, k

m=SIZE(vec,1)-1
n=SIZE (vec,2)~1
hx=ha/m
hy=hb/n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j=min(max (int (m*(x1~a)/ha)+1,1) ,m)
k=min(max (int (n*(x2-b) /hb)+1,1) ,n)

yl=vec(j,k)

y2=vec (j+1,k)
y3=vec(j+1,k+1)

y4=vec (j,k+1)

t=(x1 - (a + hxx(j-1)))/hx
u=(x2 - (b + hy*(k-1)))/hy

blitp2=(1.0-t)*(1.0-u)*yl+t*x(1.0-u)*y2+t*ru*xy3 &
+(1.0-t) *uxy4
END FUNCTION blitp2

FUNCTION blitp3(x1,x2,vec,a,b,ha,hb)
IMPLICIT NONE
REAL, INTENT(IN) :: x1,x2
REAL (PREC), INTENT(IN) :: a,b,ha,hb
REAL,DIMENSION(:,:), INTENT(IN):: vec
REAL :: blitp3

blitp3=blitp2(x1,x2,vec,real(a),real(b),real(ha),real(hb))
END FUNCTION blitp3

FUNCTION blitp4(x1,x2,vec,a,b,ha,hb)
IMPLICIT NONE
REAL, INTENT(IN) :: x1,x2
REAL(PREC), INTENT(IN) :: a,b,ha,hb
REAL(PREC) ,DIMENSION(:,:), INTENT(IN):: vec
REAL :: blitp4

blitp4=b1itp1(REAL(X1,KIND=PREC),REAL(XQ,KIND=PREC), &
vec,a,b,ha,hb)
END FUNCTION blitp4

FUNCTION blitp5(x1,x2,x3,vec,a,b,c,ha,hb,hc)
IMPLICIT NONE
REAL, INTENT(IN) :: x1,x2,x3
REAL, INTENT(IN) :: a,b,c,ha,hb,hc
REAL ,DIMENSION(:,:,:), INTENT(IN):: vec
REAL :: blitpb

REAL,DIMENSION(8) :: y

REAL :: t,u,w,hx,hy,hz

INTEGER :: 1,m,n, i,j.k
1=SIZE(vec,1)-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

201

m=81ZE (vec,2)-1

n=SIZE(vec,3)-1

hx=ha/1l

hy=hb/m

hz=hc/n
i=min(max (int (I1*(x1-a)/ha)+1,1),1)
j=min(max (int (m* (x2-b) /hb)+1,1) ,m)
k=min(max (int (n*(x3-c) /hc)+1,1) ,n)
y(1)=vec(i,j, k)

y(2)=vec(i+1,j,k)
y(3)=vec(i+1,j+1,k)
y(4)=vec(i,j+1,k)
y(56)=vec(1i,j,k+1)
y(6)=vec(i+1,j,k+1)
y(7)=vec(i+1,j+1,k+1)
y(8)=vec(i,j+1,k+1)

t=(x1 - (a + hx*(i-1)))/hx

u=(x2 -~ (b + hy*(j-1)))/hy

w=(x3 - (¢ + hzx(k-1)))/hz

blitps=(1-w)* ((1-u)* ((1-t) *y (1) +t*y(2))+u*x(t*y (3)+(1-t)*y(4)))&
+w ok ((L=w)* ((1-t) *xy () +t*y (6)) +u* (t*y(7)+(1-t) *y(8)))
END FUNCTION blitpb

FUNCTION blitp6(x1,x2,x3,vec,a,b,c,ha,hb,hc)
IMPLICIT NONE
REAL, INTENT(IN) :: x1,x2,x3
REAL(PREC), INTENT(IN) :: a,b,c,ha,hb,hc
REAL (PREC) ,DIMENSION(:,:,:), INTENT(IN):: vec
REAL :: blitp6

REAL :: al,bl,c1,hal,hbl,hcl

al=REAL(a)

b1=REAL(b)

c1=REAL(c)

hail=REAL(ha)

hbi=REAL (hb)

hc1=REAL (hc)
blitp6=blitp5(x1,x2,x3,REAL(vec),al,bl,cl,hal, hbl, hcl)

END FUNCTION blitp6

FUNCTION blitp7(x1,x2,x3,vec,a,b,c,ha,hb,hc)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: x1,x2,x3
REAL(PREC), INTENT(IN) :: a,b,c,ha,hb,hc
REAL(PREC) ,DIMENSION(:,:,:), INTENT(IN):: vec

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

REAL(PREC) :: blitp?
blitp7=REAL(blitp6(REAL(Xl),REAL(XQ),REAL(X3),&
vec,a,b,c,ha,hb,hc),KIND=PREC)
END FUNCTION blitp7

§ Gk ok sk sk o ko koo o sk ok ok o ok ok sk o s o o okok sk ok sk ok sk ok ok ok R ok ok ok ok
SUBROUTINE plot_func(func, fileName,a,b,ha,hb, MGRID,NGRID)
IMPLICIT NONE
CHARACTER(LEN=%) :: fileName
REAL(PREC), INTENT(IN) :: a,b,ha,hb
INTEGER, INTENT(IN) :: MGRID,NGRID
INTERFACE
FUNCTION func(x,y)
USE ntype
REAL(PREC), INTENT(IN) :: x, y
REAL(PREC) func
END FUNCTION
END INTERFACE

REAL(PREC) :: x, y, hx,hy
INTEGER :: i, j
hx=ha/(MGRID-1)
hy=hb/ (NGRID-1)

OPEN (4, file=fileName//’.dat’)
WRITE(4,*) °TITLE=’//fileName
WRITE(4,*) ’VARIABLES="X" "y" "z"’
WRITE(4,*) ’ZONE I=’,mgrid,’, J=’,ngrid,’, C=BLUE’
DO i=1, mgrid
x = a + (i-1)#*hx
D0 j=1, ngrid
y = b + (j-1)*hy
WRITE(4,*) x, y, REAL(func(x,y),KIND=PREC)
END DO
END DO
CLOSE(4, STATUS=’keep’)
END SUBROUTINE plot_func

SUBROUTINE ploti(home,name,NUM,vec,int,a,b,ha,hb)
IMPLICIT NONE

CHARACTER (LEN=+) , INTENT(IN) :: home

CHARACTER (LEN=+*) ,DIMENSION(:),INTENT(IN) :: name
INTEGER, INTENT(IN) :: NUM,int

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

REAL(PREC), DIMENSION(:,:,:), INTENT(IN) :: vec
REAL(PREC), INTENT(IN) :: a,b,ha,hb

CHARACTER(LEN=8) :: str

str=toString(int)
IF (int<10) THEN

CALL PLOTTING(home,name,NUM,vec,str(8:8),a,b,ha,hb)
ELSE IF (int<100) THEN

CALL PLOTTING (home,name,NUM,vec,str(7:8),a,b,ha,hb)
ELSE IF (int<1000) THEN

CALL PLOTTING(home,name,NUM,vec,str(6:8),a,b,ha,hb)
ELSE IF (int<10000) THEN

CALL PLOTTING(home,name,NUM,vec,str(5:8),a,b,ha,hb)
ELSE IF (int<100000) THEN

CALL PLOTTING{(home,name,NUM,vec,str(4:8),a,b,ha,hb)
ELSE IF (int<1000000) THEN

CALL PLOTTING(home,name,NUM,vec,str(3:8),a,b,ha,hb)
ELSE IF (int<10000000) THEN

CALL PLOTTING(home,name,NUM,vec,str(2:8),a,b,ha,hb)
ELSE IF (int<100000000) THEN

CALL PLOTTING(home,name,NUM,vec,str(1:8),a,b,ha,hb)
END IF

END SUBROUTINE ploti

SUBROUTINE plot2(home,name,NUM,vec,int,a,b,ha,hb)
IMPLICIT NONE

CHARACTER (LEN=x) , INTENT(IN) :: home
. CHARACTER (LEN=%) ,DIMENSION(:) ,INTENT(IN) :: name
INTEGER, INTENT(IN) :: NUM,int

REAL(PREC), DIMENSION(:,:,:,:), INTENT(IN) :: vec
REAL(PREC), INTENT(IN) :: a,b,ha,hb g

CHARACTER(LEN=8) :: str

str=toString(int)
IF (int<10) THEN

CALL PLOTTING(home,name,NUM,vec,str(8:8),a,b,ha,hb)
ELSE IF (int<100) THEN

CALL PLOTTING(home,name,NUM,vec,str(7:8),a,b,ha,hb)
ELSE IF (int<1000) THEN

CALL PLOTTING (home,name,NUM,vec,str(6:8),a,b,ha,hb)
ELSE IF (int<10000) THEN

CALL PLOTTING(home,name,NUM,vec,str(5:8),a,b,ha,hb)
ELSE IF (int<100000) THEN

CALL PLOTTING(home,name,NUM,vec,str(4:8),a,b,ha,hb)
ELSE IF (int<1000000) THEN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

CALL PLOTTING(home,name,NUM,vec,str(3:8),a,b,ha,hb)
ELSE IF (int<10000000) THEN
CALL PLOTTING(home,name,NUM,vec,str(2:8),a,b,ha,hb)
ELSE IF (int<100000000) THEN
CALL PLOTTING(home,name,NUM,vec,str(1:8),a,b,ha,hb)
END IF
END SUBRQUTINE plot2

SUBROUTINE plot3(home,name,NUM,vec,str,a,b,ha,hb)
IMPLICIT NONE

INTEGER, INTENT(IN) :: NUM

CHARACTER (LEN=%) ,INTENT (IN) :: home .

CHARACTER(LEN=*) ,DIMENSION(:),INTENT(IN) :: name

CHARACTER (LEN=%), INTENT(IN) :: str

REAL (PREC), DIMENSION(:,:,:), INTENT(IN) :: vec

REAL(PREC), INTENT(IN) :: a,b,ha,hb

CHARACTER (LEN=1) ,DIMENSION(10) ,PARAMETER :: &

Ch1=(/’0,,’1’,’2’,’3’,’4’,,5’,;6’,,7),’8’,,9’/)
CHARACTER(LEN=3), DIMENSION(100), PARAMETER :: &
ch2=(/’001’,7002’,°003’,°004°,’005’,°006’,°007°,°008’,°009° ,&

’0107,°0117,°012°,°013°,°0147,°015°,°016°,°017°,°018’ ,&
’019’,’020°,°021°,°022°,°023°,°0247,°025°,°026°,°027’ ,&
’028’,’029°,°030°,7031°,°0327,70337,°0347,°035”,°036° ,&
’037’,’038°,70397,°040°,°0417,°0427,°043°,°044°,7045° ,&
’046°,°047°,°048°,7049°,°0560°,°051’,°052°,°0563”,°054’ ,&
’055’,°066°,°0567’,°0568”,7069’,°060’,°0617,7062’,°063’ ,&
’064°,°065°,’066°,°067°,°068°,7069’,°070°,°071>,°072” ,&
’073°,’074°,°075°,°076°,°077°,°078,°079°,°080’,°081’ ,&
’082’,’083’,7084’,°085’,’086°,°087’,7088”,°089’,°0907 ,&
’091°,7092°,°0937,°094°’,°095°,70967,°097,°0987,°099’ ,&

7100°/)
INTEGER :: k
DO k=1,NUM

CALL PLOT_VEC1(vec(k,:,:), home//’PC/’//stx//’_"//&
name(1)//ch1(k+1),’’,a,b,ha,hb)
END DO
CALL PLOT_VEC1(vec(NUM+1,:,:), home//’PC/’//stx//’_’//&
‘ name(2),’’,a,b,ha,hb)
DO k=1,SIZE(vec,1)-NUM-1
CALL PLOT_VEC1(vec(NUM+1+k,:,:), home//’PC/’//stx//’_"// &
name (3)//ch2(k),’’,a,b,ha,hb)
END DO
END SUBROUTINE plot3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

SUBROUTINE plot4(home,name,NUM,vec,str,a,b,ha, hb)
IMPLICIT NONE

CHARACTER (LEN=#) ,INTENT(IN) :: home

CHARACTER (LEN=%) ,DIMENSION(:),INTENT(IN) :: name

INTEGER, INTENT(IN) :: NUM

CHARACTER (LEN=#), INTENT(IN) :: str

REAL(PREC), DIMENSION(:,:,:,:), INTENT(IN) :: vec

REAL(PREC), INTENT(IN) :: a,b,ha,hb

CHARACTER(LEN=1), DIMENSION(20), PARAMETER :: &

Ch1=(/10’,’1’,’2’,)3’,)4’,’57,’6),’7’,’8’,’9’/)
CHARACTER (LEN=3), DIMENSION(100), PARAMETER :: & :
ch2=(/’0012,°002’,7003°,°004’,°005?,°0067,°007°,°0087,°009° ,&

'010°,°011°,70127,°0137,°014’,°015?,°016°,°017’,°018° ,&
’0197,°0207,°021°,°022?,70237,°024’,°0257,°026°,°027’ ,&
’028°,’029°,°030°,°031°,°032°,°033’,°0347,°035°,°036° ,&
’037?,°0387,°0397,°040°,70417,°042’,°043°,°044° ,°045° ,&
’0467,°047°,°048°,°049’,°0507,°0517,705627,°0563°,7054" ,&
’0b5’,°0567,°067°,°058°,°0569°,°0607,°061°,°062’,°063’ ,&
'064°,°065°,’066°,°067°,7068°,°069’,°070°,°071°,°072° ,&
'073’,'074°,°075°,°076°,°0777,°078°,°079°,°080°,°081’ ,&
'0827,°083’,7084°,°085’,°086’,°087’,°088’,°089’,°090"’ ,%&
’091’,°092’,7093°,7094°,°095’,7096’,°097°,%098°,°099’ ,&
>100°/)

INTEGER :: k1,k2
DO ki=1, size(vec,1)
DO k2=1,NUM
CALL PLOT_VEC1(vec(kl,k2,:,:),home//’PC/’//stx//’_’ &
//name(1)//ch1(k2+1)//’_?//ch2(k1),’’,a,b,ha,hb)
END DO Y
CALL PLOT_VEC1(vec(k1,NUM+1,:,:) ,home//’PC/’//stx//’_’ &
//name(2)//°_>//ch2(k1),’’,a,b,ha,hb)
CALL PLOT_VEC1(vec(k1,NUM+2,:,:),home//’PC/’//stx//’_" &
//name(3)//’_°//ch2(k1),’’,a,b,ha,hb)
CALL PLOT_VEC1(vec(k1,NUM+3,:,:) ,home//’PC/’//str//’_’ &
//name(4)//’_’//ch2(k1),’’,a,b,ha,hb)
END DO
END SUBROUTINE plot4

SUBROUTINE plot_veci(vec, fileName,STR,a,b,ha,hb)
IMPLICIT NONE
CHARACTER (LEN=%) :: fileName,STR
REAL(PREC), DIMENSION(:,:), INTENT(IN) :: vec
REAL(PREC), INTENT(IN) :: a,b,ha,hb

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

REAL(PREC) :: x, y, hx,hy
INTEGER :: i, j, m, n
m=SIZE(vec,1)
n=SIZE(vec,2)
hx=ha/{(m-1)
hy=hb/ (n-1)

OPEN (4, file=fileName//’.dat’)
WRITE(4,*) °TITLE=’//fileName//STR
WRITE(4,*) ’VARIABLES="X" nymw nzw
WRITE(4,*) ’ZONE I=’,m,’, J=’,n,’, C=BLUE’
DO i=1, m
x = a + (i-1)xhx
DO j=1, n
y = b + (j-1)*hy
WRITE(4,*) x, y, REAL(vec(i,j),KIND=PREC)
END DO
END DO
CLOSE(4, STATUS=’keep’)
END SUBROUTINE plot_vecl

SUBROUTINE plot_vec2(vec, fileName,STR,a,b,ha,hb)
IMPLICIT NONE
CHARACTER (LEN=x) :: fileName,STR
REAL (PREC), DIMENSION(:,:,:), INTENT(IN) :: vec
REAL(PREC), INTENT(IN) :: a,b,ha,hb

INTEGER :: n,i
CHARACTER(LEN=8) :: sn
n=SIZE(vec,1);
IF (n==1) THEN
CALL PLOTTING(VEC(1,:,:), fileName,STR,a,b,ha,hb)
ELSE
call plotting(vec(i,:,:),fileName//’_11’,STR,a,b,ha,hb)
call plotting(vec(2,:,:),fileName//’_12’,STR,a,b,ha,hb)
call plotting(vec(3,:,:),fileName//’_22’,STR,a,b,ha,hb)
END IF
END SUBROUTINE plot_vec2

SUBROUTINE plot_real(vec, fileName,STR,a,b,ha,hb)
IMPLICIT NONE
CHARACTER(LEN=*) :: fileName,STR
REAL, DIMENSION(:,:), INTENT(IN) :: vec
REAL(PREC), INTENT(IN) :: a,b,ha,hb

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

REAL :: x, y, hx,hy
INTEGER :: i, j, m, n
m=SIZE(vec,1)
n=SIZE(vec,2)
hx=ha/ (m—-1)
hy=hb/ (n-1)

OPEN (4, file=fileName//’.dat’)
WRITE(4,#*) ’TITLE=’//fileName//STR
WRITE(4,*) ’VARIABLES="X" Wwym nzw?
WRITE(4,*) ’ZONE I=’,m,’, J=’,n,’, C=BLUE’
DO i=1, m
x = a + (i-1)*hx
DO j=1, n
y = b + (j-1)*hy
WRITE(4,*) x, y, REAL(vec(i, j),KIND=PREC)
END DO
END DO
CLOSE(4, STATUS=’keep’)
END SUBROUTINE plot_real

SUBROUTINE plot_1id(vec, home,name,a,ha)
IMPLICIT NONE
CHARACTER(LEN=%) :: home,name
REAL (PREC), DIMENSION(:), INTENT(IN) :: vec
REAL(PREC), INTENT(IN) :: a,ha

REAL :: x, y, hx,hy

INTEGER :: i, m
m=SIZE(vec)
hx=ha/(m-1)

OPEN (4, file=home//name//’.dat?)
WRITE(4,*) ’TITLE=’//name
WRITE(4,*) °’VARIABLES="X" "y" ?
WRITE(4,*) °’ZONE I=’,m,’, C=BLUE’
DO i=1, m

x = a+ (i-1)*hx

WRITE(4,*) x, y, vec(i)
END DO
CLOSE(4, STATUS=’keep’)

END SUBROUTINE plot_1id

1 Cok sk sk ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok 3k o ok ok ok ok ok sk ok ok ok sk ok ok sk ok oK ok ok ke ook ok ok ok ok sk ok

FUNCTION containsi (i, vec)
IMPLICIT NONE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

INTEGER, INTENT(IN) :: i
INTEGER, DIMENSION(:) :: vec
LOGICAL :: containsli

INTEGER :: k
DO k=1, SIZE(vec,1)
IF (vec(k)==i) THEN
containsl=.TRUE.
RETURN
END IF
END DO
containsi=.FALSE.
RETURN
END FUNCTION containsl
G 1 skok skok ok sk ok ok ok oK sk sk ok ok ok s ok ok sk oK ok ok ok s ok oK ok ok sk sk 3k 3k ok ok ok ok ok 3k ok koK
SUBROUTINE computeError_O(vec,a,b,ha,hb,t1,t2,func)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: a,b,ha,hb,t1,t2
REAL(PREC), DIMENSION(:,:,:), INTENT(IN) :: vec
INTERFACE
FUNCTION func(x,y,t)
USE ntype
‘REAL(PREC) :: x,y,t
REAL(PREC) :: func
END FUNCTION
END INTERFACE

INTEGER :: nstep,ni,n2,11,i,j, ierr,jerr
REAL(PREC), DIMENSION(SIZE(vec,2),SIZE(vec,3)) :: vecl
REAL(PREC) :: x, y, hx, hy,err,t
CHARACTER(LEN=12) :: fileName
CHARACTER(LEN=10) :: title
nstep = SIZE(vec,1)
n1=SIZE(vec,2)
n2=SIZE(vec,3)
hx=ha/(n1-1)
hy=hb/ (n2-1)

DO 11=1, nstep
err=0.0_prec
t=t1+(t2-t1)*(11-1)/(nstep-1)
DO i=1,n1
x=athx*(i-1)
DO j=1,n2
y=b+hy* (j-1)
vecli(i, j)=func(x,y,t)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

IF (abs(vec1(i,j)-vec(1l,i,j)) > err) THEN
err=abs(vecl(i,j)-vec(1l,i,j))
ierr=i
jerr=j
END IF
END DO
END DO
fileName=’PC/error.dat’
title=’difference’
CALL plotting(veci(:,:)-vec(1ll,:,:),’PC/error.dat’,’error’ &
a,b,ha,hb)
CALL plotting(vecl(:,:),’PC/vecl.dat’,’vecl’,a,b,ha,hb)
CALL plotting(vec(:,:),’PC/vec.dat’,’vec’,a,b,ha,hb)
PRINT *x, * THE ERROR IS :’
PRINT *, > I = ?, IERR, > J = ’, JERR, ’ ERR = ’, err
pause
END DO
STOP
END SUBROUTINE computeError_0

SUBROUTINE computeError_1i(u,ux,uy, ul, uilx,uly,a,b,ha,hb)
IMPLICIT NONE
REAL(PREC) , DIMENSION(:,:,:), INTENT(IN):: u,ux,uy,ul,ulx,uly
REAL(PREC), INTENT(IN) :: a,b,ha,hb

INTEGER :: nstep,ni,n2,11
CALL assert_eq(SIZE(u,1),SIZE(ux,1),SIZE(uy,1), &
SIZE(u1,1),SIZE(ulx,1),SIZE(uly,1), °’computeError’)

nstep=SIZE(u,1)

ni=SIZE(u,2)

n2=SIZE(u,3)

DO 11=1,nstep
CALL plotting(u(ll,:,:)-ul(ll,:,:), &

’PC/error.dat’,’error’,a,b,ha,hb)

CALL plotting(u(ll,:,:), ’PC/vec.dat’,’vec’,a,b,ha,hb)
CALL plotting(ui(ll,:,:),’PC/vecl.dat’,’vecl’,a,b,ha,hb)

CALL plotting(ux(1l,:,:)-ulx(11,:,:), &

'PC/errorx.dat’, ’errorx’,a,b,ha,hb)
CALL plotting(ux(ll,:,:), ’PC/vecx.dat’,’vecx’,a,b,ha,hb)
CALL plotting(ulx(1l,:,:),’PC/vecxl.dat’,’vecxl’,a,b,ha,hb)

CALL plotting(uy(1l,:,:)-uly(1l,:,:), &
’PC/error.dat’,’error’,a,b,ha,hb)

CALL plotting(uy(1l,:,:), ’PC/vecy.dat’,’vecy’,a,b,ha,hb)

CALL plotting(uly(ll,:,:),’PC/vecyl.dat’,’vecyl’,a,b,ha,hb)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

PAUSE
END DO
STOP
END SUBROUTINE computeError_1

SUBROUTINE computeError_2(vec,a,b,ha,hb,t1,t2,func)
IMPLICIT NONE
REAL(PREC), INTENT(IN) :: a,b,ha,hb,t1,t2
REAL, DIMENSION(:,:,:), INTENT(IN) :: vec
INTERFACE
FUNCTION func(x,y,t)
USE ntype
REAL :: x,y,t
REAL :: func
END FUNCTION
END INTERFACE

INTEGER :: nstep,ni,n2,11,i,j, ierr, jerr
REAL (PREC), DIMENSION(SIZE(vec,2),SIZE(vec,3)) :: vecl
REAL(PREC) :: x, y, hx, hy,err,t
CHARACTER(LEN=12) :: fileName
CHARACTER(LEN=10) :: title
nstep = SIZE(vec,1)
ni1=SIZE(vec,?2)
n2=SIZE(vec,3)
hx=ha/(n1-1)
hy=hb/ (n2-1)

DO 11=1, nstep
err=0.0_prec
t=t1+(t2-t1)*(11-1)/(nstep-1)
DO i=1,nt
x=a+hx*(i-1)
DO j=1,n2
y=b+hy* (j-1)
vecl(i, j)=REAL(func(real(x),real(y),real(t)),KIND=PREC)
IF (abs(veci(i,j)-vec(11,i,j)) > err) THEN
err=abs(veci(i,j)-vec(11,i,j))
ierr=i
jerr=j
END IF
END DO
END DO
fileName=’PC/error.dat’
title=’difference’
CALL plotting(veci(:,:)-vec(1l,:,:),’PC/error.dat’,’error’,&

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211

a,b,ha,hb)
CALL plotting(veci(:,:),’PC/vecl.dat’,’vecl’,a,b,ha,hb)
CALL plotting(vec(:,:),’PC/vec.dat’,’vec’,a,b,ha,hb)
PRINT *, ’ THE ERROR IS :’
PRINT %, > I =, IERR, * J ="', JERR, ’ ERR = ’, errxr
pause
END DO
STOP
END SUBROUTINE computeError_2

FC 2 ko s ke s ok sk sk sk ok sk sk ok s ok sk sk s ok sk sk ok ok ko o koo ok ok o
SUBROUTINE laplaceTransforml (func,tl,t2,1lmd,u)
IMPLICIT NONE
REAL(PREC), DIMENSION(:,:,:), INTENT(IN) :: func
REAL (PREC), DIMENSION(:), INTENT(IN) :: 1md
REAL(PREC), INTENT(IN) :: t1,t2
REAL(PREC), DIMENSION(:,:,:), INTENT(OUT) :: u

INTEGER :: nstep, m, n, 11,1i,j, it, nlmd
REAL(PREC) :: lambda, t
REAL (PREC), DIMENSION(SIZE(func,1)) :: funcl

CALL assert_eq(SIZE(u,1), SIZE(1md,1),’laplaceTransform’)
CALL assert_eq(SIZE(u,2), SIZE(func,2),’laplaceTransform’)
CALL assert_eq(SIZE(u,3), SIZE(func,3),’laplaceTransform’)

nstep=SIZE(func,1)-1
m=SIZE (func,?2)
n=SIZE(func,3)
nlmd=SIZE (1md)
DO 11=1,nlmd
lambda=1md (11)
DO i=1i,m
DO j=1,n
DO it=1,nstep+1
t=t1+(t2-t1)*(it-1)/nstep
funcl(it)=func(it,1i,j)*exp(-lambda*t)
END DO
call gsimp(funcl,tl,t2,u(1l,i,j))
END DO
END DO
END DO
END SUBROUTINE laplaceTransformil

VO 1 okeskoodeok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok sk ok o ok ok ok ok ok ook ok ok ok ok
SUBROUTINE gsimpl(func,a,b,ss)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

IMPLICIT NONE

REAL(PREC), INTENT(IN) ::a,b
REAL(PREC), DIMENSION(:) :: func
REAL(PREC), INTENT(OUT) :: ss

INTEGER nstep, 1
REAL(PREC) h
nstep=SIZE(func)-1
h=(b-a) /nstep
ss=func(1)+func(nstep+1)
do i=2,nstep,2
ss=ss+4.0_precx*func (i)
end do
do i=3,nstep-1,2
ss=ss+2.0_precxfunc (i)
end do
ss=ss*h/3.0_prec
END SUBROUTINE gsimpl
L C 2 sk sk ook ok ook sk ok ook o Kok oK oK ok oK o oK oK oK ook oK oo ok
SUBROUTINE qsimp2(func,a,b,ss)
IMPLICIT NONE
REAL, INTENT(IN) ::a,b
REAL, DIMENSION(:) :: func
REAL, INTENT(OUT) :: ss

INTEGER nstep, i
REAL h
nstep=SIZE(func)-1
h=(b-a) /nstep
ss=func(1)+func(nstep+1)
do i=2,nstep,2
ss=ss+4.0*func(i)
end do
do i=3,nstep-1,2
ss=8s+2.0*xfunc (i)
end do
ss=ss*h/3.0
END SUBROUTINE qsimp2
FC 2 ok skok ook okok o ook ks ok o ook ook sk ok o ok o ko ok ok ok o ok okok
SUBROUTINE putl (k, vec)
IMPLICIT NONE
INTEGER, INTENT(IN) :: k
INTEGER, DIMENSION(:), INTENT(INOUT) :: vec

INTEGER :: i
DO i=SIZE(vec)-1, 1, -1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

vec(i+1i)=vec(i)
END DO
vec(l)=k
END SUBROUTINE putl

1O+ sk ok sk st skok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok bk sk s ok sk koo ok ok ok
SUBROUTINE packl(vec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) :: vec
REAL(PREC), DIMENSION(:), INTENT(IN) :: mat
INTEGER :: m
CALL assert_eq(SIZE(vec), SIZE(mat), ’packl’)
m=SIZE (mat)
vec(1:m)=dble(mat(1:m))
END SUBROUTINE packil
1 C 2 skokokokok ok sk o kb sk sk skok ok o sk o o ok ok ok ok ok ks ok sk ok o ok o ok

SUBROUTINE pack2(vec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) :: vec
REAL(PREC), DIMENSION(:,:), INTENT(IN) :: mat
INTEGER :: k, m, n
CALL assert_eq(SIZE(vec), SIZE(mat,1)*SIZE(mat,2), ’pack2’)
n=SIZE (mat,1) '
n=SIZE (mat,2)
DO k=1, m
vec((k-1)*n+1:k*n)=dble(mat(k,1:n))
END DO
END SUBROUTINE pack2
FC 2 skokokok sk ook stk sk ofesok ok ook sk okok ok okok sk o okok o ok

SUBROUTINE pack3(vec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) :: vec
REAL(PREC), DIMENSION(:,:,:), INTENT(IN) :: mat
INTEGER :: k, i, m, n, T
CALL assert_eq(SIZE(vec), &
SIZE(mat,1)*SIZE(mat,2)*SIZE(mat,3), ’pack3’)
m=SIZE(mat,2)
n=SIZE (mat,3)
DO k=1, SIZE(mat,1)
DO i=1, m ,
r=(k-1) *m*n+(i-1) *n
vec(r+1l:r+n)=dble(mat(k,i,1:n))
END DO
END DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

END SUBROUTINE pack3

1O ok ok ok ok ok ok ok ok okok ok ok ok ok ok ok ok e ok ok o o o ok ok ok ok sk ok ok ok ok K

SUBROUTINE unpackl(vec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: vec
REAL(PREC), DIMENSION(:), INTENT(OUT) :: mat
INTEGER :: m
CALL assert_eq(SIZE(vec), SIZE(mat), ’unpackl’)
m=SIZE (mat)
mat (1:m)=REAL (vec(1:m),KIND=PREC)
END SUBROUTINE unpacki
FC 2 sk ok kbt ko ok ok ok ko ok ok ok o 3k ok o Kok ok ok Kok oK oK oK K

SUBROUTINE unpack2(vec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: vec
REAL(PREC), DIMENSION(:,:), INTENT(OUT) :: mat
INTEGER :: k, m, n

CALL assert_eq(SIZE(vec), SIZE(mat,1)*SIZE(mat,2), ’unpack2’)
n=SIZE(mat,1)
n=SIZE(mat,2)
DO k=1, m
mat(k,1:n)éREAL(vec((k-1)*n+1:k*n),KIND=PREC)
END DO

END SUBROUTINE unpack2
FC skt sokosk ok sk s ok sk s ko sk koo sokskok ok ok ok sk skok o s kok

SUBROUTINE unpack3(vec, mat)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: vec
REAL(PREC), DIMENSION(:,:,:), INTENT(OUT) :: mat
INTEGER :: %k, i, m, n, r
CALL assert_eq(SIZE(vec), & '
SIZE(mat,1)*SIZE(mat,2)*SIZE(mat,3), ’unpack3’)
m=SIZE (mat,?2)
n=SIZE(mat,3)
DO k=1, SIZE(mat,1)
DO i=1, m
r=(k-1) *m¥n+(i-1) *n
mat (k,1,1:n)=REAL(vec(r+1:r+n) ,KIND=PREC)
END DO
END DO
END SUBROUTINE unpack3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

O 2 stokeokokokook sk ok ok sk ok ok ok sk sk sk sk sk stk ok ke ook sk Sk skok Kok ok ok okok
FUNCTION positivel(vec)
IMPLICIT NONE
REAL(PREC), DIMENSION(:,:,:), INTENT(IN) :: vec
LOGICAL :: positivel

FC sk sk sk o o ok o sk ok sk ok oK o ok ok ok oK oK
{C: LOCAL VARIABLES
1 C 3 skokok ko s ok stk o ok sk ok sk ok koo
IF(SIZE(vec,1)==1) THEN
IF (ANY(vec(l,:,:)<=0.0_prec)) THEN
positivel=.FALSE.
RETURN
- END IF
ELSE
IF (ANY(vec(1,:,:)<=0.0_prec).OR. ANY(vec(3,:,:)<=0.0_prec) &
.OR. ANY(vec(1,:,:)*vec(3,:,:)
-vec(2,:,:)*vec(2,:,:)<=0.0_prec)) THEN
positivel = .FALSE.
RETURN
END IF
END IF
positivel = .TRUE.
END FUNCTION positivel

DC skokatookoskokook o sk ook ok ok ok ok ks sk ok ok ok ok sk sk o o ok sk ok o sk ok ok sk sk sk ok ok o ok o
SUBROUTINE smoothi (u)
IMPLICIT NONE
REAL(PREC), DIMENSIONC(:,:), INTENT(INOUT) :: u

REAL(PREC), DIMENSION(SIZE(u,1),SIZE(u,2)) :: tu
INTEGER :: m, n, k
m=SIZE(u,1)
n=SIZE(u,2)
tu(l,1:n)=(u(1,1:n)+u(2,1:n))*0.5_prec
tu(m,1:n)=C(u(m-1,1:n)+u(m,1:n))*0.5_prec
DO k=2,m-1
tu(k,i:n)=(u(k-1,1:n)+2*u(k,1:n)+u(k+1,1:n))*0.25_prec
END DO
u(l:m,1)=(tu(l:m,1)+tu(l:m,2))*0.5_prec
u(l:m,n)=(tu(l:m,n~-1)+tu(i:m,n))*0.5_prec
DO k=2,n-1
u(l:m,k)=(tu(l:m,k-1)+2xtu(l:m,k)+tu(l:m,k+1))*0.25_prec
END DO
END SUBROUTINE smoothl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

L C skskok sk kok o ko ok sk ko s ok sk o ok ok 3k ok o ok ok o ok K ok ook o ok ok ok o ok sk ok ok Kok oK
SUBROUTINE split2(num,n,i,j)
IMPLICIT NONE
INTEGER, INTENT(IN) :: num,n
INTEGER, INTENT(OUT) :: i,j

j=MOD (num-1,n)+1
i=(num-j) /n+1
END SUBROUTINE split2

SUBROUTINE split3(num,m,n,i,j,k)
IMPLICIT NONE
INTEGER, INTENT(IN) :: num,m,n
INTEGER, INTENT(OUT) :: i,j,k

INTEGER :: it
it=num
k=MOD(it-1,n)+1
it=(it-k)/n+1
CALL split2(it,m,i,j)
END SUBROUTINE split3

SUBROUTINE split4(num,m,n,r,i,j,k,1)
IMPLICIT NONE
INTEGER,INTENT(IN) :: num,m,n,r
INTEGER, INTENT(OUT) :: i,j,k,1

INTEGER :: it
it=num
1=MOD(it-1,r)+1
it=(it-1) /r+1
CALL split3(it,m,n,i,j,k)
END SUBROUTINE split4

1ok ok sk ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok sk s ok ok ok sk ok ok ok sk ok sk ok ok ok ook ok sk ok ok ok ok ok ok

SUBROUTINE polintl(xa,ya,x,y,dy)
IMPLICIT NONE
REAL (PREC) ,DIMENSION(:) ,INTENT(IN)::xa,ya
REAL (PREC) , INTENT (IN) : : x
REAL (PREC) , INTENT (OUT) : :y,dy

INTEGER: :m,n,ns

REAL (PREC) ,DIMENSION(size(xa))::c,d,den,ho
CALL assert_eq(size(xa),size(ya),’polint’)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

n=size(xa)

c=ya

d=ya

ho=xa-x

ns=iminloc (abs(x-xa))

y=ya(ns)

ns=ns—-1

do m=1,n-1 :
den(1:n-m)=ho(1:n-m)~-ho(1l+m:n)
if (any(den(l:n-m)==0.0_prec))&

call Error(’Calculation failure’, ’Polint’)

den(1:n-m)=(c(2:n-m+1)-d(1:n-m))/den(1l:n-m)
d(1:n-m)=ho(1+m:n)*den(1:n-m)
c(1:n-m)=ho(1:n-m)*den(l:n-m)
if (2*ns <n-m)then
dy=c(ns+1)
else
dy=d(ns)
ns=ns-1
end if
y=y+dy

end do

END SUBROUTINE polintil

1 ok ok ok ok ok sk ok ok sk sk sk ok sk ok oK ok ok sk sk ok ok ok sk ok ok ok sk sk ok ok ok ok ok 3k ok 3k 3k %k ok K

FUNCTION iminloci(arr)
REAL(PREC), DIMENSION(:), INTENT(IN) :: arr
INTEGER, DIMENSION(1) :: imin
INTEGER :: iminlocl
imin=minloc(arr(:))
iminlocl=imin(1)
END FUNCTION iminlocl
1 G skokook ok ok ok sk ok ok 3k ok ok 3k ok 3k 3k ok sk 3k ok sk ok sk ok ok ok ok sk sk ok 3k ok ok ok ok ok ok skok sk ok sk ok kok

FUNCTION iminloc2(arr)
REAL, DIMENSION(:), INTENT(IN) :: arr
INTEGER, DIMENSION(1) :: imin
INTEGER :: iminloc2
imin=minloc(arr(:))
iminloc2=imin (1)
END FUNCTION iminloc2
DG skkokakokokok ok okok o sk ook ok ok ol ok ok sk sk ok ok sk sk ok ok o sk ok ok o o ok ok ok ke ok ok o ok ok

SUBROUTINE polint2(xa,ya,x,y,dy)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

IMPLICIT NONE

REAL ,DIMENSION(:),INTENT(IN)::xa,ya
REAL,INTENT(IN)::x
REAL,INTENT(OUT) : :y,dy

INTEGER: :m,n,ns
REAL ,DIMENSION(size(xa))::c,d,den,ho

CALL assert_eq(size(xa),size(ya),’polint’)

n=size(xa)

c=ya

d=ya

ho=xa-x

ns=iminloc(abs(x-xa))

y=ya(ns)

ns=ns-1

do m=1,n-1
den(1:n-m)=ho(1:n-m)-ho(l+m:n)
if (any(den(1:n-m)==0.0))&

call Error(’Calculation failure’, °’Polint’)

den(1l:n-m)=(c(2:n-m+1)-d(i:n-m))/den(1:n-m)
d(1:n-m)=ho(i+m:n)*den(1:n-m)
c(1:n-m)=ho(1:n-m)*den(1:n-m)
if (2#ns <n-m)then
dy=c(ns+1)
else
dy=d(ns)
ns=ns-1
end if
y=y+dy

end do

END SUBROUTINE polint2
DG ok koo sk ok ok ok ok sk ok ok sk ok skok ok ok ok sk sk sk ok ok ok o ok sk ok o o o ok sk o ok ok ok

FUNCTION geopl(first, factor, n)
REAL(PREC), INTENT(IN) :: first, factor
INTEGER, INTENT(IN) :: n
REAL(PREC), DIMENSION(n) :: geopl

INTEGER :: k, k2
REAL(PREC) :: temp
IF(n>0) geopl(1)=first
DO k=2, n
geopl (k)=geopl(k-1)*xfactor
END DO
END FUNCTION geopl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

FC 2 kokokoskokokok ok o ok ok ok okok ok ok ok ok ok sk ok stk sk ook skl ok ok ok ok ok ok ok ok ok ok
END MODULE util

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GRADUATE SCHOOL
UNIVERSITY OF ALABAMA AT BIRMINGHAM
DISSERTATION APPROVAL FORM
DOCTOR OF PHILOSOPHY

Name of Candidate Aimin Yan

Graduate Program _Applied Mathematics

Title of Dissertation An Inverse Groundwater Model

I certify that I have read this document and examined the student regarding its
content. In my opinion, this dissertation conforms to acceptable standards of
scholarly presentation and is adequate in scope and quality, and the attainments of
this student are such that he may be recommended for the degree of Doctor of
Philosophy.

Dissertation Committee:

Name Signature

Ian W. Knowles , Chair I(’f “ M W \/‘/C_/ By

Robert M. Hyatt /Q%Wf 7ﬁ ﬁ/ﬁ#

Tsun-Zee Mai

S. S. Ravindran

Yanni Zeng T~ Ve Pl

Director of Graduate Program ‘\ %d’\ Q\B/QVSQ%‘A
Dean, UAB Graduate School/7/ \A\/ /év\k/\
7

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	An inverse groundwater model.
	Recommended Citation

	ProQuest Dissertations

