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Magnetic resonance (MR) imaging and spectroscopy have been used to investi-
gate characteristics of brain cancer in vivo, specifically, those arising from angiogenesis,
which is thought to be central to tumor growth and invasion. It was established that radio-
logical assessment of angiogenesis is possible with dynamic susceptibility contrast-
enhanced MRI (DSC-MRI) in patients with malignant brain tumors.

Thresholds of quality for the T2*-weighted perfusion MRI studies were deter-
mined and the effects of an angiogenesis inhibitor on relative cerebral blood flow (CBF)
and cerebral blood volume (CBV) changes in patients were evaluated. Quality tests were
performed on perfusion data by defining statistical thresholds of acceptance. Region of
interest analyses were performed on tumors, and kinetic parameters were normalized with
respect to healthy tissue. Decreases in CBF and CBV measurements were observed in
patients with clinical response. It was shown that malignant brain tumors have altered
perfusion parameters which may be used in the assessment of neovascularization.

The development and testing of a technique to quantify angiogenesis in brain tu-
mor patients using perfusion MR data is presented and used to examine the spatial vari-
ance of angiogenesis. The angiogenesis potential, 4, was computed for each pixel. A

concentric annular model is proposed to evaluate the spatial variance of 4. Inter-patient
i
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data was used to assess the spatio-temporal patterns of hemodynamics in malignant tu-
mors. It is possible to quantify angiogenesis on a pixel-by-pixel basis using hemody-
namic measures such as CBF, CBV, and T2* recovery. Malignant brain tumors have re-
markable similarity in the spatial distribution of their angio-architecture. Longitudinal
changes in angio-architecture can also be monitored using this method.

In the final phase, tumor hemodynamics are correlated with metabolite distribu-
tions, acquired using chemical shift imaging. The levels of N-acetyl aspartate (NAA) and
choline (Cho) are found to be significantly lower in the tumor core, where CBF is very
low. In the tumor fringes, where angiogenic activity is presumably high, increased CBF
corresponded to increased Cho and decreased NAA. The angiogenesis potential was also
compared with Cho/NAA ratio images. Hemodynamic and spectral data concur in brain

tumors with respect to their spatial variation.

111
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INTRODUCTION

Brain tumors have been extensively investigated using magnetic resonance-based
techniques because they afford excellent tissue contrast, spatial resolution, and sensitiv-
ity. Advances in hardware and software have led to faster and more efficient magnetic
resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). This, in turn, has
led to new approaches that enable us to evaluate the functionality, patho-physiology, bio-
chemistry, and metabolism of tumors in vivo.

Ever since it was postulated in the early 1970s that tumor-associated angiogenesis
is critical to growth and invasion of cancer (1), researchers have investigated aspects of
brain tumors that shed light on the metabolism associated with brain tumor angiogenesis.
The chief aims of this work were to design, implement, and test MRI/MRS techniques to
quantitatively assess angiogenesis in vivo. The broad goals were as follows:

1. Establishing the role of quantitative cerebral hemodynamics as surrogate markers
of brain tumor angiogenesis using perfusion MRI,

2. Developing postprocessing techniques to interrogate this data for spatio-temporal
information and attempt to quantitate angiogenesis on a pixel-by-pixel basis, and,

3. Correlating hemodynamic data with MRS/Spectroscopic imaging data in an at-
tempt to understand the spatial variation of angiogenesis-related biochemistry and
its relation to hemodynamic variations in brain tumor patients.

Accomplishing the aforementioned goals has been facilitated by development of

new techniques, modifications of existing algorithms, and image postprocessing ap-
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proaches, statistical validation and testing, and correlations of imaging and clinical data.
Each of these tasks is presented in the reprint/preprint format. The computer program-
ming for data analyses was done in MATLAB (The MathWorks Inc., Natick, MA). Other

commercial packages have been used and are reported in the reprint/preprints.

Brain Tumors

Primary brain cancer affects over 40,000 people in the United States each year.
Of those, it is estimated that around 18,000 cases will be malignant glioma. These in-
clude anaplastic (malignant) astrocytomas (AA), oligodendrogliomas, and glioblastoma
multiforme (GBM), the three types of tumors that account for a majority of the patients
studied in this work. Table 1 shows the most common types of brain tumors, their char-
acteristics and imaging features. Brain tumors are the second most common cancer of
children, the third most common cause of death for adults ages 15-34, and the third lead-
ing cause of years-of-life loss related to cancer. This is a tremendous toll given the rela-
tively low incidence. Survival for patients remains poor, with little improvement over the
past twenty years despite advances in therapeutic strategies, surgery, radiation, and che-
motherapy. Significant improvements in treatment options and patient outcomes will re-
quire advances in our understanding of the functionality of tumors and their patho-
physiology and biochemistry. Conceivably, this will not be possible without advances in
imaging and spectroscopy methodologies.

The hallmarks of malignant brain tumors are invasion and endothelial prolifera-
tion (2). The clinical features of a large, enhancing mass with destruction of normal brain

are a common presentation for patients with primary brain cancer. Malignant gliomas are
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Table 1 Feature Summary of Brain Tumors.

Tumor Type Clinical Characteristics Imaging Features
Pilocytic Astrocy- o Well circumscribed tumors ¢ Tumor nodules show intense en-
toma ¢ Less biologically aggressive hancement

¢ Favorable prognosis ¢ Cysts are hypointense on T1-

e Typically located in the midline, weighted images (T1WIs) and hy-
optic pathways, thalamus and brain perintense on T2-weighted images
stem (T2WIs)

e Occur in children and young adults * Not radiographically cystic

Astrocytoma (WHQ e Diffusely infiltrating tumors com- * Calcification present in 50% of the
grade IT) posed of neoplastic astrocytes case, though seldom appreciated in
¢ Occur in early to mid adult life MRI

¢ Microscopically ill-defined ¢ Well-defined homogenous masses

¢ 3 major histopathological variants: ¢ Hypointense on T1WI and hyper-
fibrillary, gemistocytic, and proto- intense on T2WI
plasmic e Enhancement is variable

o Usually superficial in location and
may involve overlying gray matter

Anaplastic Astrocy- e Occur later in life than grade I tu- ¢ Heterogeneous on MRIs
toma (WHO grade mors o Less well-defined borders and
111)  Pathologically, they have increased greater mass effect, vasogenic
hypercellularity, pleomorphism, and edema and enhancement
mitosis ¢ In non-contrast T1 and T2 images
e Necrosis and endothelial prolifera- heterogeneous signal intensity is
tion are absent present
Glioblastoma Multi- * Most common astrocytic tumor ¢ MRI reflects heterogeneous pa-
forme (WHO grade ° Peak incidence is at age 45-60 tholggy — heterogeneous signal in-
V) ¢ Occurs in the frontal lobe, cerebel- tensity on both T1WIs and T2WIs
lum, brain stem and spinal cord. ¢ Poorly defined with mass effect

o Spreads across white matter tracts to and vasogenic edema
involve contralateral hemisphere ¢ Hemorrhage is common and useful
(butterfly appearance) in distinguishing from lower grade

e Pathologically heterogeneous with astrocytomas
areas of necrosis, hemorrhage, and ¢ Signature: large region of high
endothelial proliferation signal on T2WIs (edema + micro-

e Spreads to subarachnoid space scopic tumor infiltration)

¢ T2 FLAIR provides good visuali-
zation
Oligodendrogliomas e Uncommon (4% to 7% of intracra- e High degree of calcification

nial gliomas) and slow growing

¢ Symptoms include long history of
seizures and (rarely) headaches

¢ Occur mostly in the peripheral as-
pects of the frontal and parietal lobes

 Solid, infiltrative lesions with well-
defined borders

¢ Generally round or oval

» Heterogeneous in signal intensity

¢ Predominantly isointense with
gray matter on T1WIs and hyper-
intense on T2WTIs

e GE imaging is more sensitive to
calcification and hemorrhaging
than SE and is useful in visualizing
these tumors

* 50% demonstrate faint enhance-
ment
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intensely angiogenic cancers. Clinical morbidity and mortality are related to the degree
of angiogenesis for astrocytomas. Most patients who were evaluated as a part of this
study had diagnoses of malignant tumors such as AA and GBM, World Health Organiza-
tion (WHO) grades III and IV, respectively. Patients typically have very low 1-year sur-
vival rates and usually receive a multitude of therapeutic interventions: chemo-therapy,
radiation, anti-angiogenic drugs, and/or surgery.

The non-invasive measurement of the extent of a brain tumor and its radiological
characteristics at diagnosis and during the clinical course is critical to the understanding
of clinical remission and, therefore, to the therapeutic response or failure and malignant

progression.

Angiogenesis

Angiogenesis is an essential component of tumor progression in which neovascu-
lature nourishes growing tumors and facilitates tumor expansion beyond 2 mm’ (3-5).
Malignant tumors are among the best vascularized tumors in humans (6). Several re-
searchers have focused on studying mechanisms of tumor vascularization, including stud-
ies of the growth factors and receptors involved. These efforts have resulted in various
approaches for anti-angiogenic treatment of brain tumors (7) and new approaches for
such therapy are constantly evolving. Cytotoxic chemotherapy has limited activity
against malignant gliomas. The blood brain barrier is partially responsible for the diffi-
culties with delivery of drugs to brain tumors and, thus, for some of the ineffectiveness of

such therapy.
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Angiogenesis-inhibiting agents like EMD121974 (cilengitide, a synthetic pen-
tapeptide, manufactured by Merck KgaA, Darmstadt, Germany), administered to brain
tumor patients in the preliminary stages of this research, are particularly promising for
primary malignant brain tumors. This is because malignant brain tumors have significant
neovascularization and the blood brain barrier does not have to be crossed to reach the
target cells.

Malignant glial tumors are characterized by their angiogenic behavior, and the
modulation of angiogenesis may be particularly effective in their treatment (8). The com-
plex angio-architectural arrangements accompanying brain tumor growth usually have
three components: tumor associated angiogenesis, tumor-induced vascular modifications,
and vascular expansion.

The key to evaluate angiogenesis in vivo is identifying parameters that quantify
the hemodynamics of brain tumors reliably. We have used blood flow and volume exten-
sively throughout this work, in addition to a couple of other indices. Additional measures
of microvascular permeability, diffusion, and histological markers could be used to com-
plement hemodynamic observations. It must be pointed out, however, that most imaging
techniques used to study tumor vascularization fail to delineate the heterogeneity inherent

to tumors and, hence, do not fully reveal their spatial characteristics.

MRI and MRS
Several MRI and MRS techniques have been successfully devised to study brain
tumors in a clinical setting, ranging from radiological diagnosis to tumor characterization

and from size and volume computations to measurement of bio-chemical information. In
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this work, we investigate angiogenesis in primary malignant brain tumors using a combi-
nation of perfusion MRI and MRS. The non-invasive nature of an MRI examination al-
lows for longitudinal acquisition of data, which in turn allows for monitoring of disease
progression and/or therapy tracking. The preliminary MRI studies reported in this disser-
tation were performed at a field strength of 1.5T. Spectroscopic imaging and the correlat-
ing perfusion dynamic susceptibility contrast-enhanced MRI (DSC-MRI) studies were
performed at 3.0T.

Perfusion is the steady-state delivery of blood to tissue parenchyma through the
capillaries, representing the microscopic coherent motion of water and cellular material
(9). We use perfusion imaging to correlate angiogenesis and kinetic parameters reflecting
tumor vasculature changes. The validation of functional MRI techniques like DSC-MRI
for assessment of anti-angiogenic response in brain tumors, and the development of so-
phisticated postprocessing algorithms to extract and interpret functional and biochemical
information, will be required to move novel brain tumor therapy to comparative trial test-
ng.

Early applications of dynamic T2*-weighted perfusion MR imaging have shown
that bolus administration of a paramagnetic contrast medium can be used to quantify re-
gional blood flow and volume (10,11). The variations in signal intensity of the brain tis-
sue and blood vessels during the first pass of the contrast agent are due to local field in-
homogeneity. Under such circumstances, it has been demonstrated that the acquired T2*-
weighted images provide information about blood flow dynamics in vivo.

As evidence mounts that techniques like DSC-MRI can be used to aid clinical di-
agnosis and interpretation of human brain tumors, more focus is being placed on under-

standing the basic molecular pathways and cellular processes involved. Towards this end,
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understanding angiogenesis, i.¢., the process of vascularization of tissue involving the
development of new capillary blood-vessels, is very important.

In tumor-induced angiogenesis, especially in malignant brain cancer, the capillar-
ies have discontinuous basement membranes that lack a blood-brain barrier. These ab-
normal capillaries permit diffusion of contrast agents such as Gd-DTPA into the extra-
vascular space, which leads to the classic contrast enhancement on MR images. The areas
of the greatest enhancement usually correspond to areas of the tumor that have the great-
est blood-brain barrier disruption.

MRS or MR spectroscopic imaging is, like conventional MRI, a non-invasive
method to map the distribution and measure concentrations of cerebral metabolites. Sev-
eral nuclei have been tapped for spectral acquisitions but 'H (proton) spectroscopy tech-
niques are best suited for brain pathologies, given the abundance of hydrogen in brain
tissue. The utility of using spectroscopy in studies of brain tumors has been well-
documented (12). Spectroscopy is currently being investigated as a tool to research brain
tumor heterogeneity and the biochemical changes associated with tumor pathology. Me-
tabolites like choline, N-acetyl aspartate (NAA), creatine, and lactate, which have been
implicated in brain tumor metabolism, are routinely imaged using techniques like chemi-
cal shift imaging (CSI), which enable multi-voxel acquisitions of fairly robust spectra
(13). These spectra can then be used to generate metabolite images and/or, with the help
of sophisticated time-domain analyses, be processed to quantitate metabolite concentra-
tions in vivo.

An understanding of the dynamics of angiogenesis cannot be achieved without an
integrated analysis of morphological, functional, and molecular approaches that shed

light on changes in tissues. Functional characterization of the tumor neovasculature by
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imaging will be important for the evaluation of patients receiving anti-angiogenic ther-
apy. Interest in imaging techniques that can provide early indicators of effectiveness at a
functional or molecular level has therefore increased. Tumor response to treatment can be
detected by functional imaging techniques that are capable of monitoring changes such as
perfusion, blood volume, or micro-vessel permeability. MRI can measure both blood vol-
ume and blood vessel permeability using dynamic enhancement with extra-cellular or
blood pool contrast agents. Contrast-enhanced MRI can distinguish between normal and
malignant tissues reflecting the hyper-permeable tumor vasculature. Contrast uptake cor-
relates with micro-vessel density in human and animal experimental tumors. This is the
basis for attempting to understand and track angiogenesis using non-invasive imaging
techniques like perfusion imaging.

Potential applications for such work would include tumor diagnoses, grading, sur-
gical planning, and radiation therapy, as well as the ability to quantify the functional effi-
cacy of cancer drugs targeted at specific molecular and cellular processes like angiogene-

sis inhibitors.

Human Subject Data Integrity

Since a large volume of medical imaging data was handled, we used the digital
imaging and communication in medicine (DICOM) standard for data storage, retrieval,
and processing. All patient data was handled in compliance with the health information
portability and accountability act (HIPAA) and utmost care was taken to ensure patient
confidentiality. All patient-identifying information such as name and medical record

number were stripped from the imaging and spectroscopy data sets and data processing
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was performed on University of Alabama at Birmingham (UAB)-owned computers, data-
devices, media, and peripherals only.

All the imaging and spectroscopic data acquisition was conducted after obtaining
informed consent from the patients. Data handled as a part of this research project were
used for secondary analyses only and can not be linked to the human subject from which
they were obtained. The protocols used were approved by the UAB Clinical Trials Re-
view Committee, and the UAB Institutional Review Board, overseeing all human ex-
periments. A letter from the Institutional Review Board indicating permission for use of
the data for this dissertation, along with copies of the original approval certification used

for obtaining data are attached in the appendix.

Overview of Dissertation Research

The chief motivation behind the quantitative investigation of tumor metabolism is
a better understanding of the patho-physiology and response to therapy. This will enable
better planning and treatment of these tumors. Measures of cerebral hemodynamics such
as relative CBF and relative CBV, response to exogenous contrast agents, and spatial
variations in quantitative indices of angiogenesis and similar variations in metabolite
concentrations are the focus of this study and, in the context of angiogenesis, provide
valuable information about tumor metabolism. For MR techniques to be able to measure
physiological changes that occur in response to anti-angiogenic/anti-vascular effects, sev-
eral developments are needed (14), including correlation of measurements, standardized
evaluation and modeling techniques, and co-registration of images for comparison. This
dissertation is a compilation of techniques developed, implemented, and tested towards

these goals.
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This dissertation is divided into three main sections. The first goal was to estab-
lish proof of principle that DSC-MRI using T2* susceptibility physics could be used to
assess angiogenesis In brain tumor patients by utilizing the CBF and CBV as end-points,
i.e., a statistical marker of the clinical outcomes in patients. This was accomplished in a
multi-institution study of the National Cancer Institute/New Approaches to Brain Tumor
Therapy consortium and is reported in the first article, published in the Journal of Mag-
netic Resonance Imaging in 2004 (15). Radiological and clinical observations are in
agreement with regards to efficacy of the anti-angiogenic drug cilengitide.

While the CBF and CBYV reveal functional information about brain tumors, they
do not provide details about the spatio-temporal variation of hemodynamics. To the best
of our knowledge, there are no known postprocessing techniques that provide a quantita-
tive insight into angiogenesis using perfusion MRI data. The second goal was to develop
a framework whereby such information could be extracted from the DSC-MRI studies on
brain tumor patients. Based on response to administration of gadolinium contrast agents,
the behavior of parameters like CBV and CBF were utilized to develop a formalism to
quantify angiogenesis. These results are reported in the second manuscript of the disserta-
tion. An abstract summarizing our technique (16) has been accepted for presentation at
the International Society for Magnetic Resonance in Medicine’s 2005 annual meeting and
will be submitted to the Journal of Magnetic Resonance Imaging as a full-length original
research paper.

Another critical aspect of the study of angiogenesis 1s the assessment of cerebral
biochemistry. This is done by mapping metabolites like NAA, choline, creatine, etc. to
evaluate their distributions. We acquire such information using CSI and report their cor-

relation with hemodynamic information in the third manuscript of the dissertation. This
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attempt to correlate spectral information with the hemodynamic information was taken up
as a pilot study in two brain tumor patients. With the feasibility of such acquisition and
analyses confirmed, studies involving MRI/MRS are ongoing and patient accrual is cur-
rently open. The results will be submitted to Magnetic Resonance Imaging for possible

publication.
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ABSTRACT

Purpose: To determine thresholds of quality for a T2*-weighted perfusion mag-
netic resonance imaging (MRI) study and evaluate the effects of an angiogenesis inhibitor
on relative blood flow and volume changes in brain tumor patients, in a multi-institution
setting.

Materials and Methods: A total of 36 volunteers from four participating institu-
tions with clinically diagnosed malignant gliomas were studied using perfusion MRI pro-
tocols. These included a baseline study and follow-up studies every eight weeks to evalu-
ate the effect of an anti-angiogenic agent on tumor perfusion. Quality tests were per-
formed on the perfusion imaging data by defining statistical thresholds of acceptance.
Region of interest (ROI) analysis was performed on tumors and kinetic parameters were
normalized with respect to normal tissue.

Results: Statistical thresholds for goodness of the gamma variate fit, T2* recov-
ery, and mean signal full-width half-minimum (FWHMIin) were computed for our data
sets with a 99% one-sided confidence interval; these were 6.91%, 79.48%, and 23.35
seconds respectively. Decreases in blood volume and flow measurements were observed
in patients with documented clinical response.

Conclusions: Malignant brain tumors have altered perfusion parameters that may
be used to understand and monitor neovascularization. This permits non-invasive as-

sessment of the efficacy of angiogenesis inhibiting drugs.

INTRODUCTION

Several magnetic resonance imaging (MRI) techniques have been successfully

devised to study brain tumors in a clinical setting ranging from radiological diagnosis,
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description of tumor characteristics, evaluation of size and volume, and determination of
biochemical information. The chief advantage of using MRI over other imaging modali-
ties is the excellent soft tissue contrast it affords coupled with very good resolution and
sensitivity. This work describes an attempt to acquire and analyze perfusion MRI data
from patients with primary brain tumors that were enrolled in an early phase clinical trial
of the anti-angiogenic compound, EMD 121974 (cilengitide). This was done to establish
statistical quality metrics and evaluate the effects of cilengitide therapy on relative cere-
bral blood flow (CBF) and cerebral blood volume (CBV) changes in these patients.

Angiogenesis is an essential component of tumor progression in which neovascu-
lature nourishes growing tumors and facilitates tumor expansion beyond 2 mm® (1-3).
Malignant gliomas are among the best vascularized tumors in humans (4,5).
Angiogenesis inhibiting agents, like EMD 121974 used in this study, are particularly
promising for brain tumors because these tumors have marked neovascularization, sig-
nificant molecular alterations producing an angiogenic and invasive phenotype, and a
poor clinical outcome that correlates with an angiogenic phenotype (6,7).

Perfusion is the steady state delivery of blood to tissue parenchyma through the
capillaries (8). Perfusion MRI may be used to evaluate kinetic parameters of blood in
normal and pathological conditions of the central nervous system. Applications of perfu-
sion MRI like dynamic susceptibility contrast-enhanced MRI (DSC-MRI) have shown
that bolus administration and tracking of a paramagnetic contrast medium can be used to
quantify regional blood flow and volume (9-13).

Contrast-enhanced MRI has been used to evaluate tumors by several groups pri-
marily to characterize tumor vascularization and flow properties and correlate these with

histologic grade (14-17). Daldrup et al (14) have shown a highly positive correlation be-
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tween tumor permeability to macromolecular contrast medium and tumor grade. MR-
derived relative CBV maps have also correlated with histological measures of microves-
sel density from surgical tissue in the evaluation of tumor angiogenesis (15). Sugahara et
al (18) demonstrated a relationship in astrocytic gliomas between the maximum CBV and
histological vascularities that correlated with tumor grade. Others have used T2*-
weighted MRI perfusion sequences for generating blood volume maps to improve the ac-
curacy of stereotactic biopsies. Knopp et al (19) used areas of perfusion abnormality to
aid targeting of biopsies in patients with astrocytomas. T2*-weighted perfusion methods
have also been shown to be effective in computing permeability of high and low grade
glial neoplasms while being consistent with earlier results reported using T1-weighted
methods (20).

Maximum signal drop and area under the signal-time curve have been monitored
to provide information about blood kinetics (21). The blood volume of glioblastoma mul-
tiforme (GBM) has been evaluated both qualitatively and quantitatively using dynamic
perfusion-weighted imaging and it was shown that double-echo imaging may be more
suitable for analysis of blood volume in GBM (22). Other attempts have been made to
quantify fractional volumes of different glioma compartments as well as vessel perme-
ability and CBF using T1-weighted dynamic MRI towards pharmacokinetic characteriza-
tion of gliomas (23). Variations in the recirculation characteristics of a contrast agent bo-
lus have been related to tumor grade in gliomas. Abnormalities in contrast agent recircu-
lation (24) provide independent information concerning the microcirculation in imaging
studies of angiogenesis and may be useful in the assessment of trials of anti-angiogenic
therapies like the one attempted in this study. DSC-MRI techniques have been tested as

surrogate markers of tumor response to anti-angiogenic therapy in xenograft models of
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human gliomas (14, 25) and reductions in relative CBV correlated well with tumor re-
sponse.

Functional perfusion imaging allows for the evaluation of the whole tumor and
not selected areas biased by biopsy samples. However, the use of imaging based surro-
gate markers for the assessment of the angiogenic process is strongly dependent on their
test-retest reproducibility. Jackson et al (26) have formally tested the reproducibility of
T2* blood volume and vascular tortuosity maps in cerebral gliomas and concluded that
measurement of relative blood volume in consecutive studies is statistically capable of
reliably detecting changes in excess of 15% in between group studies and 25% in indi-
vidual patients.

In this report, we evaluated the acquisition and analysis of DSC-MRI in a multi-
institutional setting. We will report on the statistical analysis of DSC-MRI data sets from
a clinical trial and our attempt to define thresholds for quality and reliability. For those
studies that meet the threshold measures, we have analyzed for perfusion parameters in a
large population of recurrent malignant gliomas. This represents one of the first efforts to
apply the principles of DSC-MRI to the clinical issue of early phase assessment of anti-

angiogenic agents.

MATERIALS AND METHODS
EMD 121974 (Cilengitide): Angiogenesis Inhibitor

EMD 121974 is a synthetic pentapeptide supplied in solution form for parenteral
administration (Merck KgaA, Darmstadt, Germany). It is supplied by the Division of
Cancer Treatment and Diagnosis (DCTD), National Cancer Institute (NCI), as an isotonic

solution containing 450 mg of lyophilized EMD 121974 dissolved in 30 mL of sodium
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chloride and water for injection (at a concentration of 15 mg/mL). This angiogenesis in-
hibitor is a potent and selective avp3 and avf5 vitronectin receptor antagonist.

Patients who were eligible to receive the drug were enrolled in NABTT 9911: A
Phase I study of EMD 121974 for patients with recurrent malignant glioma, conducted by
the NCI Central Nervous System Consortium, New Approaches to Brain Tumor Therapy
(NABTT). The clinical trial used a standard phase I dose escalation design. EMD
121974, with a starting dose of 120 mg/m’, was administered twice a week, intrave-
nously, over one hour. The dose of the drug was escalated in a stepwise fashion. The first
five dose levels were 120, 240, 360, 480, and 600 mg/mz. The protocol was subsequently
amended to allow for further dose escalations leading to dose levels of 1200, 1800, and

2400 mg/m”.

Perfusion MRI

The perfusion imaging sequences were run on 1.5 T scanners of different manu-
facturers—GE (Signa 5.7, GE Medical Systems, Milwaukee, WI), Siemens (Magnetom
Vision, Siemens Medical Systems, Erlangen, Germany), and Philips (Gyroscan ACS-NT,
Philips Medical Systems, Best, The Netherlands)-depending depending on trial site. A
total of 36 patients with clinically diagnosed malignant gliomas were imaged during mul-
tiple sessions. These included a baseline scan before first administration of the angio-
genesis inhibitor and follow-up perfusion scans performed after every eight weeks of
treatment with EMD 121974. Twenty-one patients were imaged multiple times, while the
others had only a baseline scan.

There were a total of 72 perfusion MRI studies analyzed during the preliminary

phase of this work. Due to the multi-institution setting of this study, the DICOM (digital
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imaging and communication in medicine) standard was used for image storage, ex-
change, and query. The cﬁief objectives of the DICOM standard are to achieve compati-
bility and improve the reliability and efficiency between imaging acquisition systems and
other information systems like picture archiving and communication systems in health-
care environments worldwide.

The gradient recalled echo-planar imaging (EPI) sequence was used for acquiring
functional perfusion data. This study used a TR of 1900 msec and a TE of 50 msec, ac-
commodating a 20% variation in both TR and TE to permit machine/trial site specific ac-
quisition settings. A 24 cm x 24 cm field of view was used and 5-10 (depending on the
size of the tumor) 6- to 8-mm axial slices passing through the center of the tumor were
imaged over 40 to 65 functional time points resulting in a total scan time of just over two
minutes. In some instances, the tumors were larger than the volume imaged by five slices;
in such cases, a greater number of slices were imaged and then the five contiguous slices
with the highest mean blood flow and volume were utilized for interpatient analyses of
the hemodynamics.

Spin-echo (SE) postcontrast T1-weighted images were acquired following perfu-
sion imaging for anatomic reference. These images were acquired with a TR of 450 ms
and TE of 10 ms. The standard dose of the gadolinium based contrast agent was 0.2
mmol/kg of patient body weight. The contrast agent was injected with a power injector at

a flow rate of 4.0 mL/sec and an injection delay of 15 seconds.
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Perfusion Analysis

Post processing and perfusion analysis was performed using the MedX software
(version 3.4.2, Sensor Systems, Sterling, VA) running on a Sun Blade 1000 workstation
(Sun Microsystems, Palo Alto, CA) with the Solaris 8§ Operating System.

Each of the N anatomic slices imaged at 40-65 time points were used to generate a
statistical mean image in preparation for temporal plotting of the susceptibility curves.
These mean functional images are then inspected for quality, contrast agent induced sus-
ceptibility behavior, and artifacts. In agreement with the theoretical models available, five
distinct features were observed (8,27):

1. A baseline phase consisting of the signal before contrast agent arrives in the tis-
sue,

2. Aurrival of the contrast agent triggering a drop in signal intensity,

3. Maximum signal drop that occurs when the highest concentration of contrast
agent is present in the blood vessels,

4. A wash out phase marked by a recovery of the signal, and finally,

5. A postinjection signal that is slightly lower than the preinjection baseline because
the concentration of the gadolinium is still sufficient to cause a slight signal drop.

The data sets were prepared for post-processing by inspection for quality, mask-
ing, and generation of parametric maps. Masking of the functional data based on an em-
pirically determined threshold was performed to ensure accurate determination of arterial
input function and to avoid curve-fitting of pixels outside the brain. A two-stage auto-
matic algorithm (28) was used for identifying arterial voxels in the DSC-MRI data and
constructing the arterial input function (AIF). This method uses multiple “arterial likeli-

hood” metrics to choose the best candidate input function for computing the AIF. Motion
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correction and spatial filtering were not performed. The arterial and mean tissue curves
are computed based on the signal-time curves. The arterial likelihood map was computed
based on maximizing P(large peak-height), where P represents the probability. Of the top
45 pixels in the selected arterial likelihood map, the first 20 pixels were excluded as noise
and the next 25 were averaged to create the input function. The relative CBV maps are
determined though gamma variate fitting (29) of the concentration curves and integration.
The relative CBF maps are generated from the amplitude of the residue curve which re-
sults from deconvolution of the tissue curve via singular value decomposition. A three-
point temporal smoothing is applied prior to analysis and a constant noise model is as-
sumed. Fitted measures and goodness of fit were computed for each data set.

A three parameter gamma variate model (Eq. [1]) was used for computing the
contrast agent concentration curve C(t):

Cty=Kt'e™ (D)

Here, 7 refers to time from bolus arrival, K is a scaling constant, and o and 3 are addi-
tional “rate” parameters. The T in this expression equals t-ty where ty is the arrival or take-
off time.

T2* recovery was computed by calculating the average signal intensity of the last

20 time points as a percentage of the pre-contrast maximum intensity.

Tumor Region of Interest (ROI) Analysis
Once perfusion analysis was completed, ROI analysis was performed. The ROIs
were drawn manually using a simple computer pointing device. Four regions of the brain

were analyzed in this study: the hemisphere containing the tumor, the contralateral hemi-
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sphere, an ROI encompassing the tumor, and an identical region containing healthy tis-
sue, preferably gray and/or white matter, from the uninvolved hemisphere. The hemi-
spheric regions were outlined on the echo-planar perfusion images. The tumor ROIs were
drawn on the T1-weighted post-contrast images. An identical area was outlined in the
contralateral area of the brain for baseline comparison and statistical evaluation of kinetic
parameters. Care was taken to not include the ventricles and bone in the tumor and con-
tralateral regions of interest. These regions were used for analysis of the functional data
and to generate relative CBV and CBF maps for each slice through the tumor. Normal-
ized ratios were determined for relative CBV and CBF by taking the mean of the slices

divided by the contralateral hemisphere or contralateral ROL

Statistical Analysis

Statistical analysis was performed using SAS (SAS Institute, Cary, NC). A 99%
confidence interval was used to determine cutoff thresholds. A one sample t-test deter-
mined the significance of relative CBV and CBF for ROI and hemispheric analyses. A
Student’s t-test was performed to compare relative CBV and CBF indices of patients with

documented clinical responses versus those with progressive disease.

RESULTS
Demographics of the Multi-Institution Trial

The imaging studies analyzed in this report were performed as a component of the
NABTT 9911 clinical trial. A total of four institutions were involved in the current phase
[ trial and are listed in Table 1. Listed in Table 2 are the trial test subjects and their clini-

cal diagnosis.
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Data Quality and Reliability

The temporal characteristics of a typical contrast-enhanced perfusion study indi-
cating the MR induced susceptibility drop, the minimum signal intensity time, the signal
full-width at half-minimum (FWHMin), and T2* recovery are demonstrated in Fig. 1a.
All the data sets were inspected with respect to multiple measures of perfusion reliability.
These included the susceptibility characteristics and goodness of the gamma variate fit.
Statistical thresholds were computed for these measures. Individual measurements are
shown in Fig. 2. The goodness of the gamma variate fit was chosen as a measure of the
perfusion analysis efficiency. The FWHMin, minimum signal intensity time and T2* re-
covery were selected as they reflect the full physical behavior of the MR signal recovery

after the susceptibility induced drop.

Table 1
EMD 121974 Multi-Institution Phase I Trial Site Breakdown

Institution No. of No. of perfusion studies
Patients
University of Alabama at Birmingham (UAB) 18 49
Henry Ford Hospital (HFH) 11 16
Massachusetts General Hospital (MGH) 5 5
Emory University (EMU) 2 2
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Table 2
NABTT 9911 Demographics

Patient No. Dose ~ Number of Test site Clinical diagnosis
level studies
1 1 4 UAB Glioblastoma Multiforme
2 1 2 UAB Glioblastoma Multiforme
3 1 3 UAB Anaplastic Astrocytoma
4 1 6 UAB Glioblastoma Multiforme
5 1 2 UAB Anaplastic Astrocytoma
6 1 2 UAB Glioblastoma Multiforme
7 2 2 UAB Glioblastoma Multiforme
8 2 1 HFH Anaplastic Oligodendroglioma
9 2 3 UAB Anaplastic Astrocytoma
10 2 1 HFH Anaplastic Astrocytoma
11 2 2 UAB Glioblastoma Multiforme
12 2 2 UAB Glioblastoma Multiforme
13 2 3 HFH Glioblastoma Multiforme
14 3 1 HFH Glioblastoma Multiforme
15 3 2 HFH Glioblastoma Multiforme
16 3 5 UAB Anaplastic Astrocytoma
17 3 1 EMU Glioblastoma Multiforme
18 3 5 UAB Glioblastoma Multiforme
19 3 1 UAB Mixed Glioma
20 4 1 EMU Glioblastoma Multiforme
21 4 1 MGH Glioblastoma Multiforme
22 4 1 MGH Anaplastic Astrocytoma
23 4 1 MGH Anaplastic Astrocytoma
24 4 2 UAB Glioblastoma Multiforme
25 4 2 HFH Glioblastoma Multiforme
26 5 1 HFH Glioblastoma Multiforme
27 5 2 UAB Glioblastoma Multiforme
28 5 2 HFH Anaplastic Astrocytoma
29 5 1 MGH Glioblastoma Multiforme
30 5 1 HFH Glioblastoma Multiforme
31 6 2 UAB Glioblastoma Multiforme
32 6 1 HFH Glioblastoma Multiforme
33 6 1 HFH Glioblastoma Multiforme
34 6 2 UAB Anaplastic Astrocytoma
35 6 1 MGH Mixed Glioma
36 8 2 UAB Glioblastoma Multiforme
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Figure 1. MR Signals. The upper graph (a) shows a typical functional time course of a
contrast-enhanced perfusion study. The lower graph (b) shows pixel time courses from
five different perfusion data sets for patient 16. The 32 week study of this patient was
discarded because of temporal aberration and a high pixel fit failure percentage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

[}
@ 20 T T — —— T T T
n:
o]
5
5 10t 1
(IR
E
20
O " 10 20 30 40 50 60 70 80
= 100 T T T T T — T
=
T
E 501 -
©
c
o
D
0 10 20 30 40 50 60 70 80
X 100 T T T T T T T
o
(5
8 1
(%
[H]
o
&
I,_
80
100 i T T T T T T
Q
Y
8
= 50
c
B2
3 | 1

30 40
Study. Number

Figure 2. Individual quality measurements for the perfusion data sets. The bar charts rep-
resent the four metrics used to statistically standardize the perfusion data sets: The
gamma variate fit failure rate, the signal full width at half minimum, the T2* recovery

percentage, and MR susceptibility induced signal drop.
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The 72 perfusion data sets were analyzed for goodness of the gamma variate fit
for all pixels by checking the values of a and 3. A pixel was identified as a poor fit if o
was negative and 3 was less than 1, where o and [} are the parameters in Eq. 1. Thomp-
son et al (30) showed that these arbitrary distribution parameters determine the shape of
the concentration curves. Our data had a mean failure rate of 5.77% (o = 3.74%). The
gamma variate fit failure rates for all the studies are illustrated in Fig. 2. The mean signal
FWHMin, T2* recovery and mean MR-induced susceptibility drop were 19.56 seconds
(c = 12.50 seconds), 82.79% (o = 10.88%), and 55.30% (c = 12.71%), respectively. The
average susceptibility drops were computed by using pixel information from four ran-
domly chosen pixels, one from each quadrant in the images. These pixels were chosen
from healthy tissue, i.e., outside the tumor region being studied.

Using a 99% one-sided confidence interval’s upper limit, the cut-off thresholds
were determined to be 6.91% for gamma variate fit failure rate, 79.48% for the T2* re-
covery, and 23.35 seconds for the signal FWHMin. Using such a statistical approach al-
lowed us to minimize the T2* effects during the gamma variate fit. All data sets that
passed the statistical thresholds for the three above mentioned parameters had a mean
minimum signal intensity time of 36.74 seconds (o = 7.32 seconds), corresponding to
maximum contrast agent concentration. Data sets that did not fall within the 99% confi-
dence interval for at least one of the three factors were discarded from further post-
processing. Fifty-nine of the data sets passed these quality thresholds. These data sets
were then considered for ROI analysis provided they did not have any significant motion

or other artifacts.
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The importance of statistically determining thresholds to limit data is illustrated in
the susceptibility curves of five studies from patient 16 shown in Fig. 1b. Notice that
while four studies (baseline, 8-week, 16-week, and 24-week) demonstrated a pattern con-
sistent with the expected theoretical behavior, the fifth study (32-week) shows a temporal
aberration in its susceptibility characteristics and was consequently discarded for further
post-processing. The temporal shift in signal drop in this study suggests a delayed arrival
of the bolus caused by discrepancies in the contrast injection procedure. Data exhibiting
such procedural irregularities are hence rejected by our data quality inspection process.
The gamma variate pixel fit failure percentages and MR signal statistics for these five

studies are tabulated in table 3.

Table 3
Data Quality Inspection Table for Patient No. 16

Study Percent Fit Signal Min Signal Full Percent Suscepti-
Failure Time Width at Half bility drop
Min
Baseline 2.55 30.40 13.54 82.14
8 weeks 2.65 36.10 17.70 53.70
16 weeks 3.45 28.50 14.40 52.26
24 weeks 2.40 30.40 16.11 74.92
32 weeks 12.72 76.00 57.85 61.95

Postprocessing and ROI analysis

Postprocessing was performed on the 59 data sets that met our defined thresholds
for quality. ROI analysis of relative CBF and CBV were performed with emphasis on
normalized kinetic ratios. The mean ratios for each of these studies are illustrated in Fig.

3. The data represented by diamonds are values for the tumor ROIs while points shown as
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squares represent hemispheric data. The dotted and bold lines indicate relative CBV and
CBF, respectively.

A one-sample t-test was performed on the normalized relative CBV and CBF ra-
tios. The mean normalized relative CBV ratios for hemispheric regions and tumor ROI
were 1.01 (standard error [SE] = 0.02, P = 0.55) and 1.45 (SE + 0.09, P < 0.0001), re-
spectively. The mean normalized relative CBF ratios for hemispheric regions and tumor
ROIs were 0.99 (SE £ 0.02, P = 0.48) and 1.34 (SE £ 0.07, P <0.0001), respectively. The
ROIs represent statistically significant increases of relative CBV and CBF by 43.6% and
35.4%, respectively, when analyzed by tumor defined ROI in recurrent malignant glioma.
These increases clearly suggest that localized measurements of kinetic parameters, i.e.,
over specific ROIs, are of greater value in assessing localized tumor perfusion parameters
than hemispheric measurements.

An individual example is illustrated in Fig. 4. The post-contrast T1-weighted im-
age with enhancement at the location of the tumor is shown in Fig. 4a. The average signal
across the 65 time points in the functional acquisition that generates the susceptibility
curve is shown in Fig. 4b. The normalized kinetic ratios (tumor ROI to contralateral ROI)
for the perfusion CBV maps are determined if the data set met threshold values. The bar
chart shows four clusters (one for each study, chronologically arranged) each with nor-
malized ratios from seven contiguous anatomic slices. This patient showed a partial clini-
cal response while on this trial. The parametric CBV and CBF maps generated by the per-

fusion analysis are shown in Fig. 4d and 4e, respectively.
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Figure 3. The normalized kinetic parameters for studies in this work showing the relative
CBYV and relative CBF for hemispheric data and tumor ROIs.
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Figure 4. Subject 16, dose level 3. a: The T1 post-contrast image indicating the anatomi-
cal location of the tumor. b: Graph showing the average signal intensity over the func-
tional study. ¢: The normalized CBV values for the seven slices over four studies (Stud-
ies were eight weeks apart. d: The perfusion CBV map. e: The perfusion CBF map. This
patient showed a partial clinical response to the angiogenesis inhibitor. Note: a,b,d, and e
are from the baseline study.
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In this trial the patient response criteria was defined as follows: 1) complete re-
sponse (CR), complete disappearance of the entire tumor on MRI images, off glucocorti-
coids, with a stable or improving neurologic examination for at least four weeks; 2) par-
tial response (PR), > 50% reduction in tumor size in volumetric MRI studies, on a stable
or decreasing dose of glucocorticoids, with a stable or improving neurologic exam for at
least four weeks; 3) progressive disease (PD), progressive neurologic abnormalities not
explained by causes unrelated to tumor progression, or > 25% increase in MR image tu-
mor volume; and 4) stable disease (SD), a patient whose clinical status and MRI volumet-
rics did not meet the criteria for either PR or PD.

In order to correlate the changes in relative CBV and CBF with the clinical re-
sponse, the normalized kinetic ratios were tracked longitudinally for patients with multi-
ple perfusion studies. We compared patients with PD with those that had any kind of
clinical response (CR + PR + SD = six cases) as well as PD with stable response. We
tested changes in relative CBV and CBF by measuring the maximal and minimal differ-
ences with respect to the pre-treatment baseline scan. For patients with only two studies,
the maximal and minimal differences would be the same. For statistical analysis, we util-
ized the minimal difference as it is a more rigorous value and less susceptible to bias. The
mean changes from baseline are summarized in Table 4. When comparing stable patients
and those with PD, the difference between CBV changes is 0.12 (P = 0.08) and difference
between CBF changes is 0.31 (P = 0.009). When comparing PD patients and those that
exhibited any response, the difference between CBV changes is 0.24 (P = 0.08) and dif-
ference between CBF changes is 0.38 (P = 0.004). These suggest that the change in rela-
tive CBF is the most significant statistical metric for differentiating between patients’

clinical responses.
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Table 4
Change in CBV and CBF: Comparison of Patients by Clinical Response

Parameter Clinical response Mean Standard error P-value
CBV Stable -0.07 0.03 0.08
Progression +0.05 0.05
CBF Stable -0.08 0.04 0.009
Progression +0.23 0.07
CBV All Response -0.19 0.08 0.08
Progression +0.05 0.05
CBF All Response -0.15 0.05 0.004
Progression +0.23 0.07

Radiographic return to normalcy was observed by tracking the CBF and CBV of
patients that demonstrated a clinical response to anti-angiogenic therapy. In addition, pa-
tients with documented clinical progression demonstrated increases in the relative CBV
and/or CBF. We illustrate four such cases that are summarized in table 5. Patient 4
showed an 8% and 15% decrease in relative CBV and CBF, respectively, from baseline
to most recent study. This patient exhibited a stable clinical response. Patient 16 had a
28% drop in CBV and 18% drop in CBF from baseline to most recent study, and clini-
cally showed a PR. Patient 36 showed a 35% and 27% decrease in relative CBV and
CBF, respectively, and a complete clinical response. Patient 2 had PD by clinical criteria

and a 22% increase in relative CBF.

DISCUSSION

Malignant brain tumors are characterized histologically as very heterogeneous tumors

with areas of intense tumor proliferation, neovascularization, and regions of tu-
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Table 5
Kinetic Parameters in Patients with Clinical Response to EMD 121974

Patient # 2 Patient # 4 Patient # 16 Patient # 36
Study Progressive Dis- Stable Re- Partial Re- Complete Re-
ease sponse sponse sponse

CBV CBF CBV CBF CBV CBF CBV  CBF
Baseline 1.33 1.29 1.08 1.19 1.18 1.19 1.37 1.31

+8 weeks 1.24 1.57 1.18 1.21 1.07 1.16 0.88 0.95

+16 weeks - - 1.06 1.13 0.85 0.95 - -
+24 weeks - - 1.07 1.29 0.84 097 - -
+32 weeks - - 1.14 1.10 - - - -
+40 weeks - - 0.99 1.01 - - - -

mor necrosis (31). The process of tumor-associated vascular proliferation or angiogenesis
is believed to be essential for malignant progression (1-3). The molecular steps important
for glioma angiogenesis are being elucidated resulting in therapeutic opportunities di-
rected toward this process. The assessment of anti-angiogenic agents in early phase
clinical trials has provided unique challenges. The traditional early phase clinical trial
design has relied on the development of toxicity to define doses for further efficacy test-
ing. For anti-angiogenic agents, toxicity may be mild and doses associated with toxicity
may not necessarily be those associated with biological activity. As a result, clinical in-
vestigation with this class of agents may best be served by determining the optimal bio-
logical dose (OBD) as opposed to the maximum tolerated dose (MTD). The determina-
tion of an OBD would require, as a gold standard, the quantitation of a molecular target
or phenotypic change in order to be valid. This validation typically requires obtaining

tissue from patients before treatment and at various time points during treatment. This is
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not possible with primary brain cancer for several reasons including risk, expense, and
biopsy bias. The utilization of non-invasive imaging methodologies like DSC-MRI to
assess tumor associated angiogenesis is thus essential for the advancement of novel
therapies. Their validation will ultimately require correlation with clinical outcomes that
will be possible once the phase I trials are complete.

To utilize noninvasive imaging methods in multi-institution clinical trials, we
must first define the requirements of quality and methods for the central analysis of such
data sets. The extraction of information on perfusion parameters such as CBV and CBF
from DSC-MRI studies and the comparison of this information from one patient to an-
other, from one institution to aﬁother, or from one point in time to another require a
method to determine if a study meets certain criteria. The susceptibility curve from
which perfusion data is extracted is subject to not only differences in the tissue microvas-
cular environment but also to technical factors such as contrast injection rate, contrast
concentration, and MR sequence parameters as well as patient factors such as cardiovas-
cular parameters. The standardization of technical and acquisition sequence factors is a
clear step in quality control. However, this alone is inadequate for the comparison of per-
fusion values across institutions and even longitudinally within the same patient. Malig-
nant gliomas are extremely heterogeneous both at the histological and imaging levels.
The utility of small ROIs (several pixels) placed in various regions of the tumor will not
allow an unbiased evaluation of relative CBV and CBF in the setting of an anti-
angiogenic trial. We recommend the use of a ROI, defined on the basis of the complete

tumor cross-section, in the post-contrast T1 images.
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An issue that merited study was the choice of imaging sequence for our data ac-
quisition. The gradient recalled EPI sequence with interleaved acquisition was chosen for
acquiring functional perfusion data. Gradient-echo (GE) EPI and spin-echo (SE) EPI
have shown different sensitivities to vessel size, indicating a variation in relative CBVs
based on different tumor sizes and grades. GE-EPI and SE-EPI techniques were com-
pared for detecting low- vs. high-grade gliomas and the GE-EPI technique seemed more
useful for detecting low- vs high-grade gliomas than the SE-EPI technique (32). In a
similar study comparing echo-planar sequences for perfusion-weighted MRI based on
image quality, artifacts, signal-to-noise ratio (SNR), and signal attenuation to noise ratio,
it was shown that at lower field strengths (2.35 T and less), GRE-EPI sequences are best
suited for perfusion studies because they have the highest SNR and T2* sensitivity (33).

Malignant gliomas characteristically have disruption of the blood-brain barrier re-
sulting in the extravasation (34) of gadolinium-based contrast agents into the interstitial
space. This may have unwanted effects leading to the underestimation of the CBV and/or
CBF. These include both T1 and T2* effects. The T1 effect caused by contrast extrava-
sation is seen as a rise in the signal intensity above baseline after the initial drop (35).
This is usually overcome by using techniques like limited integration methods. The T2*
effects result in an incomplete recovery of the signal-time intensity curve to baseline and,
if excessive, may not allow a gamma variate fit of the data to be achieved. The accuracy
of gamma variate fitting in the context of similar contrast-enhanced MRI techniques has
been documented earlier (36). Several computational models are available to partially
correct for such effects but these are computationally demanding. An alternate solution 1s

to administer a small pre-dose of contrast agent to saturate brain tissue and minimize con-
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trast agent leakage during the actual perfusion study. The use of statistical thresholds to
help define MRI parameters like susceptibility characteristics as well as CBV and CBF
computations is one option for enhancing the quality of study results. Of the data sets in
our study, 82% (59 out of 72) passed the statistical quality and reliability thresholds. We
believe that statistically limiting our data based on susceptibility characteristics and
gamma-variate fit failure rate will standardize results across the institutions involved in
the trial.

DSC-MRI has been shown to be a useful tool in assessing brain tumor angiogene-
sis. Perfusion analyses of primary brain tumors have demonstrated abnormal parameters
assoclated with higher grade (WHO grade 1T and IV) tumors when compared to normal
or low grade (WHO I) (6, 31). In addition, in vivo studies using animal xenograft models
of human gliomas support elevated perfusion parameters and are able to correlate these
findings with histological measures of angiogenesis (25). Our data is the first report of
T2* perfusion results for an early phase clinical trial and includes the evaluation of 36
patients with over 70 studies. Malignant gliomas have significantly altered perfusion pa-
rameters that vary widely throughout the tumor. The normalization of perfusion results
was accomplished by using either the tumor hemisphere to the uninvolved hemisphere or
a tumor defined ROI to a contralateral uninvolved ROI. Hemispheric information about
perfusion that was easier to define and less time consuming did not lead to significant
inferences about perfusion properties either at baseline or over time. The 34% to 42%
increase in kinetic indices when using a specific ROI indicate that ROI analysis is useful
for studying changes in tumor blood volume/flow. The changes in blood flow and volume

merit a detailed statistical analysis and possibly correlation with clinical outcomes of the
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patients. This could yield critical information about tumor proliferation or regression non-
invasively. The efficacy of angiogenesis inhibitors like EMD 121974 can be gauged by
non-invasively measuring local relative CBV and CBF. In select patients who were on
angiogenesis inhibitor treatment, significant reductions in the perfusion parameters in
surrounding areas of the primary tumor were observed. Patients were imaged before the
start of the administration of EMD 121974 and at subsequent intervals of eight weeks.
The temporal changes in normalized kinetic indices are suggestive of a slow decrease in
blood vessel proliferation in the tumor. The normalized kinetic ratios were tracked over a
period of time over several anatomic slices. The ratios for CBV and CBF decreased sig-
nificantly. The relative CBV ratios decreased 8% to 36% and relative CBF ratios de-
creased 15% to 28% in select patients that demonstrated a clinical response. In contrast,
patients with progressive disease clinically demonstrated increases in these values. The
variations in relative CBV and CBF across several anatomic slices indicate that these per-
fusion indices are very heterogeneous over the tumor volume. This is as suggested by
earlier reports on tumor histology although we did not attempt to establish such a correla-
tion in this study. Our results do indicate that in the assessment of anti-angiogenic agents
in early phase clinical trials, the definition of the ROI is of critical importance.

The use of DSC-MRI is a viable method for the assessment of perfusion parame-
ters in the evaluation of anti-angiogenic agents. This is confirmed for the measure of
relative CBF by a statistically significant correlation with clinical responses. This is sug-
gested for relative CBV that approached significance in our study. As we progress with
further clinical evaluations with increased sample size, statistical correlations will be

more robust. The present study included patients with recurrent malignant glioma, of
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which nine were initially diagnosed as anaplastic astrocytoma (AA, grade III) and 24 as
GBM (grade IV). An analysis of relative CBV and CBF did not demonstrate statistically
significant differences between GBM and AA. As the patient population eligible for this
trial was at recurrence, the lack of a difference may be reflected in the transformation or
progression of many of the AA cases to GBM. CBF and CBVmay not distinguish be-
tween these two grades of malignant tumors.

Specialized pixel coregistration techniques could help in monitoring the same lo-
cation of a patient’s brain images over a period of time and would potentially present
more accurate localized hemodynamics. In the case of patients who showed a clinical re-
sponse to the angiogenesis inhibitor, functional perfusion MRI studies showed a decrease
in normalized ratios of both relative blood volume and flow. The reduction of these ratios
shows that these patients had similar hemodynamics in the tumor ROI and in areas of
healthy tissue. These ratios typically dropped to 1.00 and below. Ratios below 1.0 are
possible effects of radiation necrosis, edema, or surgery. Radiographic response of brain
tumor patients using DSC-MRI can thus be used to non-invasively assess patient progress
and also the efficacy of the drug provided studies are subjected to rigorous quality
evaluations.

In summary, we have used DSC-MRI data from a multi-institution trial to define
the requirements for quality and reliability thresholds that permit analyses of perfusion
parameters. These parameters are abnormal in malignant gliomas when analyzed with a
defined ROI and may be utilized to evaluate the biological activity of anti-angiogenic

drugs in efficacy trial testing.
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ABSTRACT

Purpose: To develop and test a quantitative technique to quantify angiogenesis in
brain tumor patients using perfusion and anatomic magnetic resonance (MR) images, and
to examine the spatial and longitudinal variation of angiogenesis in vivo.

Materials and Methods: Five patients with clinical diagnoses of glioblastoma
multiforme (GBM) were imaged using dynamic susceptibility contrast-enhanced MRI
(DSC-MRI). Empirical hemodynamic information such as relative cerebral blood flow
(CBF) and relative cerebral blood volume (CBV) were used to estimate angiogenesis.
The angiogenesis potential, 4, was computed for each pixel. A concentric annular model
is presented and used to evaluate the spatial variance of 4. Inter-patient data was used to
assess the spatio-temporal patterns of hemodynamics in malignant tumors. One patient
with a follow-up imaging study was evaluated for longitudinal changes in angiogenic re-
gions.

Results: It is possible to quantify angiogenesis on a pixel-by-pixel basis using
hemodynamic indices such as CBF, CBV, and T2* recovery. All five patients demon-
strated a significant increase in vasculature and blood flow at distances of 60%-95% of
their tumor radii, and central necrotic areas consistent with the histopathology of malig-
nant brain cancer. The patient studied for longitudinal changes demonstrated an outward
growth in angiogenic areas.

Conclusions: Malignant brain tumors have remarkable similarity in the spatial
distribution of their angio-architecture, as assessed by perfusion MRL It is possible to
quantitatively estimate brain tumor angiogenesis in vivo and study its spatial variance

using a model such as the one proposed.
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INTRODUCTION

Ever since research has shown that tumor growth is angiogenesis dependent (1), the
understanding, regulating, and monitoring of tumor vasculature is developing into a clini-
cal strategy for tumor therapy and management. Non-invasive advances of techniques
such as perfusion magnetic resonance imaging (MRI) are now allowing the quantitative
interrogation of cerebral hemodynamics, thereby permitting increasingly accurate meas-
urements of tumor metabolism end-points. Several groups have focused on studying
mechanisms of tumor vascularization, including analyses of the growth factors and recep-
tors involved. These efforts have resulted in various approaches for anti-angiogenic
treatment of brain tumors (2). Many of the current techniques that are used to study tumor
vascularization are invasive and fail to delineate the spatial heterogeneity inherent to ma-
lignant gliomas.

In this work, we attempt to mathematically predict the likelihood of an image pixel
being angiogenic based on its characteristics, i.e., anatomy, blood flow, volume and other
T2*-susceptibility physics-dependent parameters. The model suggested here is easily ex-
tended to other indices such as diffusion and spectral/biochemical characteristics of the
pixel, whence greater accuracy will be possible. Our approach is strictly a post-
processing technique (3) and can be performed in conjunction with routine dynamic sus-
ceptibility contrast-enhanced MRI (DSC-MRI) studies on clinical scanners used routinely
to assess cerebral hemodynamics.

Blood supply characteristics can be detected in vivo based on the susceptibility
physics of paramagnetic contrast agents using fast echo-planar MR imaging techniques
with a temporal resolution of 1-2 seconds. Parametric maps of hemodynamic parameters

such as relative cerebral blood volume (CBV), relative cerebral blood flow (CBF) and
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mean transit time (MTT) may be obtained from perfusion imaging data-sets. These maps
have been shown to aid the diagnoses of infarcts, tumor, radiation necrosis, etc. (4). The
functional data sets also contain hemodynamic information such as mean signal drop, bo-
lus arrival time, and T2* recovery.

Parametric maps do however have a drawback in that they do not fully present the
spatio-temporal information of the cerebral hemodynamics. Because it is difficult to visu-
ally incorporate all the information available on the perfusion and parametric images,
segmentation of perfusion images is a valuable tool to distinguish tissues with different
blood supply patterns. Several groups have considered modeling approaches such as
principal component analysis (PCA) (5) and independent component analysis (ICA), and
thresholding and Bayesian estimation (6) to separate signal from different tissue com-
partments of a perfusion data set. Kao et al (6) applied their method to brain perfusion
MRI to classify the spatio-temporal characteristics of various brain tissue types in normal
human brains. Understanding the hemodynamics in abnormal brain pathology will pave
the way for improved therapy planning and management of brain tumors.

Perfusion imaging has also been used to segment gray and white matter in the
human brain using time-intensity curves obtained with DSC-MRI (7). It was suggested
that such techniques may enable identifications of sub-regions of images with homoge-
nous perfusion dynamics so that better analyses of perfusion parameters would be possi-
ble. The approach was also shown to be less sensitive to contamination of input curves
with tissue components. This is significant because tumor angiogenesis in human brain
tumors is thought to be spatially heterogeneous.

Changes in vascular morphology due to tumor angiogenesis have been studied

based on magnetic susceptibility contrast mechanisms (8). It was demonstrated that since
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AR2*/AR2 increases with vessel size, the ratio could be used as a measure of average
vessel size, thereby distinguishing areas of the brain with patho-physiologically altered
vascular proliferation. MR-based vessel size imaging (9) has also been exploited to ob-
tain quantitative measurements of tumor vascularization in rat glioma models. More re-
cently, microvasculature volume measurements using AR2 with a super-paramagnetic
intravascular agent were shown to correlate with morphometric CBV (10). Such tech-
niques may be used to track angiogenesis-induced changes in vivo.

Image segmentation has been used as a quantitative tool to characterize healthy
and pathologic brain tissue. Various techniques have included the use of mean gray level
and texture parameters (11), and it has been shown that MR brain images contain features
that can reveal discriminant features for tissue classification and image segmentation.
Other methods for segmenting brain MR images have included approaches such as artifi-
cial neural networks (12), statistical pattern recognition methods (13), histogram shape
analysis (14), and other mathematical techniques to extract cerebrospinal fluid, gray mat-
ter, and white matter (15, 16). The spatio-temporal characteristics of tumor perfitsion can
be, as shown in our approach, used to “functionally” segment tumors to identify and
monitor processes such as angiogenesis.

The extension of perfusion-based segmentation techniques to examining tumor
pathology is of immense clinical interest given the gamut of applications that will benefit
from information that can be extracted from such postprocessing techniques. There is a
relative paucity of literature studying the application of perfusion-based segmentation to
brain tumor models, especially the quantitation of patho-physiological processes like tu-
mor angiogenesis. Our model, based on empirical changes in perfusion parameters, repre-

sents one of the first attempts to quantify angiogenesis in vivo using MRL
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MATERIALS AND METHODS
MRI

The imaging sequences were run on a 1.5 T clinical scanner (Signa 5.7, GE Medi-
cal Systems, Milwaukee, WI). Five patients with clinically diagnosed high-grade malig-
nant gliomas (glioblastoma multiforme, WHO grade IV) were imaged. These patients
presented uni-focal lesions that enhanced upon administration of gadolinium-based con-
trast agents. They were enrolled in clinical trials to test the therapeutic efficacy of the an-
giogenesis-inhibitor cilengitide (17). Further, none of the five patients demonstrated clini-
cal response to the therapy. The gradient echo echo-planar imaging (GE-EPI) (128 x 128,
TR/TE of 1900/65 msec, FOV of 24 cm x 24 ¢cm, 6 mm slices) was used for DSC-MRI
acquisitions. The standard dose of the gadolinium based contrast agent was 0.2 mmol/kg
of patiént body weight. The contrast agent, magnevist (gadopentate dimeglumine, Berlex
Laboratories, Seattle, WA), was injected with a power injector at a flow rate of 4.0
mL/sec and an injection delay of 15 sec. Spin echo post-contrast T1-weighted images
(512 x 512, TR/TE of 450/10 msec) were acquired after perfusion imaging for anatomic
reference. All imaging studies were approved by our hospital committees. One patient
(patient 2) was imaged eight weeks after the initial scan to assess the longitudinal
changes in angiogenic patterns. The intra-patient data-sets were not coregistered for lon-

gitudinal comparisons.

MR Image Analysis and Postprocessing
Postprocessing and perfusion analysis were performed using the MedX software
(version 3.4.2, Medical Numerics, Sterling, VA) running on a Sun Blade 1000 work-

station (Sun Microsystems, Palo Alto, CA) with the Solaris 8 Operating System. The data
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sets were prepared for postprocessing by inspection for quality, masking, and generation
of parametric maps. Masking of the functional data was performed to ensure accurate de-
termination of arterial input function (AIF) and to avoid curve-fitting of pixels outside the
brain. A two-stage automatic algorithm (18) was used for identifying arterial voxels in
the DSC-MRI data and constructing the AIF. The relative CBV maps are determined
though gamma variate fitting (19) of the concentration curves and integration. The rela-
tive CBF maps are generated from the amplitude of the residue curve that results from
deconvolution of the tissue curve via singular value decomposition.

Further image analyses were then performed using custom-written programs in
MATLAB (The Mathworks Inc., Natick, MA). In addition to the relative CBV and CBF
parametric maps, we compute the T2* recovery for each pixel. This is done by calculat-
ing the difference between the precontrast signal and the average of the last 20 time-

points in the DSC-MRI series.

Parameters for angiogenesis quantification

The imaging-based parameters used in perfusion based studies of brain tumors
have typically included relative CBV and CBF. Both of these are presumably elevated in
angiogenic areas with blood vessels. We include the T2* recovery as a parameter that
reflects the leakiness of the vessel and is, hence, indicative of angiogenesis. The local
relative CBV, CBF, and T2* recovery were measured in the patient population in four
arbitrarily positioned 25 pixel square regions of interest (ROIs).

Based on empirical observations, we model angiogenesis as follows:
Aok fi(V) (1)

Aok f2(F) 2)
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Ao Ks/f5(T2%ec) | @)
where A is the “angiogenesis potential,” V is the relative CBV, F is the relative CBF,
T2*,. 1s the T2* recovery computed from the signal time curve of the perfusion study,
and ki, ky, and k3 are arbitrary constants. We are assuming that V and F vary linearly with
A and that T2* recovery has an inverse linear relationship with 4. Eq. [1-3] are com-
bined, yielding

A=k -V -F/T2%, (4)
This formalism is used to compute 4 on a pixel-by-pixel basis, and the maps are overlaid
onto the high-resolution post-contrast T;-weighted images. Values of 4 reported are rela-
tive, i.e., absolute 4 divided by the maximum A for a particular image. Flow, volume, and
T2* recovery are weighted equally, resulting in a value of k = 1 being used in our compu-

tations reported in this work.

Concentric Annular Model of Angiogenesis Quantification

The next step was to investigate the spatial variance of angiogenesis in regions of
the patients’ brains affected by tumors. The tumor enhancing area was outlined on the
post-contrast T1-weighted images and the centroid (planar center of mass) of the tumor
was determined. The equivalent tumor radius, Yym, was computed by dividing the equiva-
lent diameter of the ellipse bounding the enhancement area by two. Pixels were classified
into concentric annular regions of increasing radii based on their Euclidean distance from
the tumor centroid, as shown in Fig. 1. Mean 4, V, F, and T2*,,. were computed for each

annular region. A reference ROI was placed in the uninvolved hemisphere of the brain
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and similar calculations were performed for assessing the parameters in healthy brain tis-
sue.

To reconcile the differing spatial resolutions of the anatomic images and the DSC-
MRI perfusion series, the resulting 4 maps were resized to be superimposed on 512 x 512
post-contrast T1-weighted images. Nearest neighbor interpolation was performed to up-

sample the 128 x 128 maps generated by our programs.

RESULTS

The values of CBV and CBF changes in tumor fringes compared to healthy tissue,
averaged over four ROIs in the five patients, are shown in table 1. The mean increase in
CBYV was 206.4% and the mean increase in CBF was 179.2%. The T2* . decreased by an
average of 30.4%. Empirical trends of these parameters based on the four ROIs are sum-

marized in Table 2.

Table 1
Perfusion Parameters in Tumor Patients

Patient CBV CBF T2* rec.
1 +360% +362% -29%
2 +150% +82% -15%
3 +61% +154% -26%
4 +356% +202% -45%
5 +105% +96% -37%
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Figure 1. The concentric annular model of angiogenesis quantification. Shown here is the
post-contrast T1-weighted image of a subject (patient 1) with a GBM. The red asterisk
denotes the centroid of the tumor, while the yellow concentric circles represent the annuli
of increasing radii, used to compute various parameters utilized in this study.
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Table 2
Changes to Perfusion Parameters during Angiogenesis

Parameter Behavior in an “angiogenic” pixel, compared to normal
brain tissue

CBV (V) 1 Higher blood volume because of increased vasculature

CBF (F) 1 Higher blood flow because of increased vasculature

T2* recovery (T2%) | Recovery is lower because of vessel leakiness, inherent to

high-grade malignant tumors

Patient 1 presented with a GBM, representative of the patient population studied
in this work. Figure 2 shows the angiogenesis potential, A4, computed by our technique.
Results of application of the concentric annular model are illustrated in Fig. 3. The cumu-
lative CBV, CBF, and T2%*,. are shown as functions of distance from the tumor centroid.
The dotted lines represent values of the same parameters from a contralateral area of the
brain with healthy tissue.

Angiogenesis potential maps from the four other patients are presented in Fig. 4.
Note the similarity in the angiogenic pixel pattern, with a majority of those pixels nearer
the enhancing tumor margins rather than the center. The spatial characteristics of the five
patients are presented in Table 3. The 4 values for all five patients are show in Fig. 5 as a

function of their distance from their respective tumor centroids.
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Table 3
Spatial Characteristics of Brain Tumors
Patient Tnm (pixels) Peak A distance Increased A beyond tu-
( <Twm) mor radius

1 68 60% No
2 45 74% Yes
3 53 96% Yes
4 65 58% Yes
5 38 61% Yes

One patient (no. 2) was followed-up after 8 weeks to assess the longitudinal
changes in angiogenic patterns. The angiogenesis potential maps from the two studies are

presented in Fig. 6, and the findings are tabulated in Table 4.

Table 4
Spatial Characteristics of Patient 2: Longitudinal Changes
Study rum (pixels) Peak 4 distance Tumor enhancement ROI
date ( < Toum) (in pixels)
Baseline 45 74% 2697
+8 weeks 63 97% 3002
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Figure 2. Patient 1: The 4 map overlaid on a post-contrast T1-weighted image.
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Figure 3. Patient 1: Spatial variation of angiogenesis potential and other perfusion imag-
ing parameters. Illustrated here are the normalized plots of A4 and other indices as func-
tions of distance from tumor centroid. Data were computed using the concentric annular
model.
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Figure 4. Angiogenesis potential maps of patients. Patients (a:2, b:3, ¢:4, d:5) overlaid
onto respective post-contrast T1-weighted images. The tumor centroid in each case is
represented by a red asterisk, in the center of the enhancing area.
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Figure 5. Angiogenesis potential values as a function of distance from tumor centroid for
all five patients. The horizontal axis represents distance from the tumor centroid as a per-
centage of tumor radii. The vertical axis represents relative A4 value (absolute

value/maximum 4 value for patient).
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Figure 6. Patient 2: Longitudinal changes in angiogenesis. Shown above are the angio-
genesis potential maps at (a) baseline, and, (b) +8 weeks. The longitudinal spatial varia-
tion computed using our model is illustrated in (c).
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DISCUSSION

The radiological assessment of malignant brain tumors using MRI has tradition-
ally relied on the qualitative evaluation of enhancement, mass effect, vasogenic edema,
and blood flow and volume. The technique described in this paper is one of the first
methods proposed to quantitate angiogenesis based on MR characteristics of parameters
such as CBV, CBF, and T2* recovery. These parameters were assumed to have either
linear or inverse linear relationships with the proposed angiogenesis potential, 4. Other
mathematical relationships are being modeled and tested. Corroborating these estimates
using histological measures and/or other imaging techniques such as tractography or mi-
cro-vessel imaging could improve quantification of angiogenesis using empirical ap-
proaches such as the one proposed here. The use of MR relaxation parameters (20) for
obtaining high-resolution microvasculature maps could augment mathematical models of
angiogenesis.

All patients studied in this work showed similar trends in their angiogenesis po-
tential, 4. Beginning with very low values at the center of the tumor, the levels of “an-
giogenesis” peaked between 60% and 95% of tumor radius, shown in Fig. 5. The low lev-
els of angiogenesis near the tumor center are consistent with a necrotic core, a classic ra-
diological feature of GBM. Some patients showed elevated values of 4 even beyond the
tumor enhancement boundary, suggesting the presence of neovasculature beyond tumor
fringes as defined by contrast enhancement. This, too, is expected in malignant brain can-
cer, where disease progression is dependent on fringe neovascularization. Our technique
also handled healthy brain tissue reliably, not predicting “angiogenic” pixels in contralat-

eral regions of the brain, which were used as reference ROls.
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Given the inherent complexity of the process of angiogenesis, it is critical that
vascular morphology be studied in great detail. Tumor aggression and invasion are de-
pendent on the degree of neovascularization. Factors such as stress and hypoxia play sig-
nificant roles in tumor angiogenesis (21) and add to the heterogeneity of malignant tu-
mors. A quantitative evaluation of angiogenesis is essential for a better understanding of
disease progression.

A fundamental confound in susceptibility-based imaging of malignant brain tu-
mor hemodynamics is the leaky blood brain barrier, resulting in extravasation of contrast
agent (22). Calculations using a gamma-variate fit often wrongly estimate the blood vol-
ume because of the classic over-shoot in signal-time curve due to T1 effects. This may be
corrected using postprocessing techniques such as truncating the number of signal-time
curve points used or other more sophisticated algorithmic approaches (23), and/or pre-
loading of tissue with a token dose of contrast agent. In our case, the signal-time curve
used for the gamma-variate fit was truncated for such compensation. We are currently
investigating other approaches to minimize the overestimation of CBV due to the T1 ef-
fects.

A potential caveat of the approach suggested here is that the technique assumes
every pixel is either angiogenic or not, thereby leaving room for errors caused by partial-
volume effects. An increase in the spatial resolution of the DSC-MRI acquisition will, to
some degree, compensate for such an error. A more thorough examination of parameters
such as mean signal drop and mean transit time could be used to strengthen the model
presented, although overcoming the leaky blood brain barrier will continue to be a hurdle
in any approach that involves a gadolinium-based exogenous contrast agent. The wrong

estimation of hemodynamics caused by contrast agent extravasation could also be over-
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come by using either endogenous contrast agents or large particle contrast agents like
monocrystalline iron oxide nanocompounds (MIONs) (24). Other quantitative indices
such as the apparent diffusion coefficient and fractional anisotropy, which are both com-
puted during postprocessing, could aid in better mapping of vasculature. We have
avoided using the bolus arrival time as an indicator of hemodynamics because micro-
vessel distribution and vessel tortuosity were not factored into our model, and these are
likely to significantly alter the transportation of contrast bolus. MRI-derived CBV maps
have been compared with histological measures of micro-vessel density for the evalua-
tion of tumor angiogenesis (25).

Relative CBV and CBF, T2* recovery, and other parameters obtained using the
concentric annular model of analysis presented here are consistent with earlier reports of
angio-architecture. In large tumors, two distinct patterns have been ascertained (26, 27):

1. A peripheral pattern that involves the continuous development of new micro-
vessels and the incorporation of established vessels at the growing edge of the
tumor, and

2. A central pattern, in which the paucity of tumor micro-vessels is seen, associated
histologically with necrosis.

In patients imaged in this study, blood flow and volume were seen to be concentrated in
the fringe areas of the tumor.

Brain tumors are histologically very heterogeneous (28), a fact not always appre-
ciated in non-invasive anatomic and functional imaging techniques such as DSC-MRI.
Postprocessing approaches such as ours offer non-invasive methods to not only assess the
angiogenesis in vivo, but also provide a measure of the underlying spatial variation. They

have the potential to aid biopsy and surgery guidance, but will require reliable image co-
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registration algorithms, and are computationally intensive. Appropriate verification of
quantitative estimates will have to be made using brain tumor histology and other avail-
able techniques. Given the spatial characteristics and heterogeneity of most malignant
gliomas, the extension of models such as the one proposed in this work to three spatial
dimensions will be required for more comprehensive assessment of growth, metabolism,
angiogenesis, and invasion patterns of malignant brain tumors.

A very useful application of our technique is the longitudinal tracking of therapy
in patients with brain tumors. As evidenced by the studies on patient 2, it is possible to
apply the method to series perfusion studies in an attempt to evaluate the temporal
changes in tumor hemodynamics. Patient 2 demonstrated no clinical response to cilengi-
tide therapy. While increased tumor enhancement due to growth was seen in the post-
contrast T1 images, quantification of angiogenesis on a pixel-by-pixel basis provided ad-
ditional information about the vasculature and hemodynamics. In addition to increases in
CBV, CBF, and 4, patient 2 demonstrated an outward shift of 18 pixels in the enhancing
radius, and a corresponding right shift in the 4 peak, shown in Fig. 6¢. The evolution of
tumor hemodynamics over time could very well be a reliable tool in evaluating disease
progression, and the rate of change of angiogenesis and quantitative indices such as 4
could be utilized in measuring efficacy of anti-angiogenic drugs. Co-registration of intra-
patient data sets 1s of little consequence because the parameters being analyzed are re-
ported with respect to a tumor centroid, computed individually for each study.

More recently, it has been suggested that “normalization” of anti-angiogenic ther-
apy could lead to more efficient anti-cancer therapies (29). This will require frequent and
efficient in vivo monitoring of the delicate balance between glioma vascularization,

therapeutic interventions and drug uptake, as well as conditions like stress, hypoxia, and
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the ever-changing tumor micro-environment. Non-invasive imaging techniques and
analyses such as the one presented here provide accurate quantitative estimates of angio-
genesis that could be useful in therapy monitoring. Addition of a priori information such
as histological and pathological parameters could be used to strengthen quantitative ap-
proaches aimed at predicting angiogenesis in vivo. Knowledge of capillary network pat-
terns could also be used to assess the microvascular network in tumors. Based on our re-
sults, we strongly feel that the characterization of the “angiotype” of a tumor, first pro-
posed by Hansen-Smith (30), is very critical to our understanding of angiogenesis.

In conclusion, the spatio-temporal information obtained by analyses of DSC-MRI
data yields useful information about the vasculature and hemodynamic patterns in malig-
nant brain tumors. It is possible to assign each pixel a likelihood of being angiogenic
based on its hemodynamic behavior. The addition of other imaging parameters indicative
of tumor microvasculature and direction of blood flow will greatly enhance the clinical
utility of such a technique. Development of quantitative indices such as the angiogenesis
potential 4, presented here, and strengthening of spatio-temporal models for analysis will
be very useful tools in monitoring disease progression and therapy efficacy, as well as in

surgery and biopsy planning.
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ABSTRACT

Purpose: To perform perfusion magnetic resonance imaging (MRI) and MR spec-
troscopic imaging on brain tumor patients and develop a framework to correlate tumor
hemodynamics with metabolite concentrations in vivo.

Materials and Methods: Two patients with new clinical diagnoses of primary
brain cancer were imaged using dynamic susceptibility contrast-enhanced MRI (DSC-
MRI) and 2D chemical shift imaging (CSI). Blood flow and volume measures are com-
puted along with metabolite/spectroscopic images obtained using 2D CSI. These are
compared using custom-written MATLAB programs in an attempt to evaluate biochemi-
cal changes during tumor angiogenesis in vivo, with respect to three regions: healthy tis-
sue, tumor fringes, and tumor core.

Results: Both patients demonstrated very low cerebral blood flow (CBF) in the
tumor core. This corresponded with lowered concentrations of N-acetyl aspartate (NAA)
and Choline (Cho). Levels of Cho and CBF were higher in the tumor fringes, but demon-
strated variability. A well-resolved lactate/lipid peak was present in one patient.

Conclusions: Spatial variations of parameters that indicate tumor progression,
such as CBF and concentration of metabolites like Cho and NAA, correlate with each

other. Quantitating these variations will improve our understanding of angiogenesis.

INTRODUCTION

Angiogenesis (i.e., the sprouting of new blood vessels) is believed to be one of the
chief mechanisms by which primary malignant brain cancer invades and proliferates. The
neovasculature nourishes growing tumors and facilitates tumor expansion beyond 2 mm’

(1). It has also been shown that tumor phenotypes do not have the normal vascular com-
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plex. The interest in anti-angiogenic therapies targeting brain cancer has risen dramati-
cally, aided by the corresponding methodological advances in magnetic resonance imag-
ing (MRI) and spectroscopy, and postprocessing of data acquired therein. Most of the
non-invasive evaluations of angiogenesis in the context of brain tumors have relied tradi-
tionally on anatomic and perfusion and permeability MRI sequences. These techniques
provide anatomic and functional detail respectively, but do not provide biochemical in-
formation, which has immense potential to aid in the physiological and biochemical char-
acterization of brain tumor angiogenesis. One way to achieve this is using 'H (proton)
MR spectroscopy (MRS) or MR spectroscopic imaging (MRSI). Several reviews have
analyzed the role of MRS/MRSI in the evaluation of brain tumors and it is agreed that
spectroscopy provides additive information that complements conventional MR imaging
(2,3).

In this work, we have attempted to interrogate angiogenesis in vivo, via measure-
ments of metabolite distributions in patients with brain tumors, using spectroscopic imag-
ing sequences available on a clinical MR scanner. We attempt to correlate cerebral me-
tabolite distribution with perfusion measurements such as relative cerebral blood flow
(CBF), relative cerebral blood volume (CBV), and a quantitative index of angiogenesis
we term the angiogenic potential, 4 (4). Our group has reported earlier that relative cere-
bral blood flow and volume could be used as surrogate markers of angiogenesis in the
assessment of response to anti-angiogenic therapy (5). There have been no published re-
ports of application of MRSI techniques to assessment of angiogenesis, a critical aspect
of brain tumors, which we investigate in this paper. Absolute patho-physiological correla-

tions will require more rigorous analyses than the one presented here, on larger patient
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populations. We attempt to establish the feasibility of a correlative study using a quantita-
tive index of angiogenesis and metabolite maps/spectroscopic images.

Spectroscopy is able to assess tumor vasculature and the microenvironment that
sustains the metabolism needed for new blood vessels to form and spread indirectly by
evaluating the molecular composition of tissue and the levels of cerebral metabolites that
are altered by abnormal pathology. Various techniques involving proton and other nuclei
based MR spectroscopy measure the distribution and proportion of molecules within the
tissue reflecting factors such as bio-energetics, pH, membrane turnover, and cell oxy-
genation and death (6).

The combination of conventional volumetric MRI and multivoxel localized MRSI
data provides the potential for quantifying variations in tissue morphology and function.
Metabolic parameters found most useful in distinguishing tumor from normal and ne-
crotic tissue are levels of choline (Cho) and N-acetyl aspartate (NAA) (7). Levels of
creatine (Cre), lactate (Lac), and lipid (Lip) were found to be variable, both in their spa-
tial distribution within individual lesions and in different patients. It is possible to reliably
distinguish brain tumors and normal brain tissue based on spectral signatures obtained
using MRSI techniques. It has been shown that spectroscopy can also provide useful in-
formation about brain tumor type and grade (8). Low levels of NAA are characteristic of
high-grade tumors, although the metabolite concentrations differences between glioblas-
toma multiforme (GBM) and metastases were not statistically significant. In high-grade
tumors, the presence of necrosis reduces estimated absolute metabolite concentrations. It
is thought that the quantification of lipids may provide a measure of the hypoxic or ne-
crotic fraction. Howe et al. (8) have also observed that metabolic profiles shown by the

average 'H spectra for normal white matter, meningiomas, and astrocytomas were very
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different, confirming the differences in cell types and metabolism. Other metabolites like
alanine, glutamine, and glycine have also been investigated in the context of brain tumor
metabolism using MRS techniques.

Techniques for the evaluation of cerebral gliomas using a combination of MRSI,
perfusion, and other imaging techniques have been published recently. Relative CBV and
metabolite ratios have been shown (9) to increase the sensitivity and positive predictive
value when compared with conventional MRI alone. It has been strongly recommended
that longitudinal perfusion MRI and spectroscopic data be used in conjunction to predict
tumor behavior and patient prognosis. Attempts have been made to correlate kinetic pa-
rameters like CBV, the apparent diffusion coefficient (ADC), and metabolite information
obtained from proton MRS (10). It was suggested that tumors could be characterized with
a high degree of precision using multivoxel chemical shift imaging (CSI) techniques. Dif-
fusion-weighted studies showed a statistically significant inverse correlation with perfu-
sion MRI studies. ADC has been established as having an inverse correlation with the
choline MRS signal (11). The Cho signal intensity is indicative of cell proliferation and
hence, of the presence of neoplastic tissue. It can be utilized to measure the proliferative
potential when spatial indices of tumor growth and angiogenesis are available. To the
best of our knowledge, there have been no reports of the use of MRSI examining angio-
genesis and its spatial variation in the context of human brain tumors.

MRST has been used with automated segmentation for better delineation of tu-
mors (12). MRS techniques have also been applied to ex vivo tissue samples, yielding
significant information that aids in distinguishing active tumor tissue from healthy tissue,

edema, and/or radiation necrosis (13). From a patho-physiological perspective, tumor cel-
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lularity and vascularity may be related, which makes any correlates between hemody-
namics and biochemistry a critical component of understanding tumor metabolism.

Several significant metabolite correlations have been proposed which suggest that
crucial aspects of tumor proliferation like neuronal damage, energy metabolism, hypoxia,
necrotic transformation, and metastases may be better understood by using techniques
that provide biochemical information. Tumor heterogeneity has also been analyzed using
spectroscopic techniques (14). Ratios of metabolites, especially Cho/NAA and lac-
tate/lipid, were useful in distinguishing high-grade tumors from low-grade ones. In a re-
cent metabolite study (15), the ratios of NAA/Cre, NAA/Cho, Cre/Cho, NAA/H,0, and
Cre/H,O were significantly decreased in high-grade gliomas compared to those in normal
brain. The NAA/H,0 and NAA/Cho ratios were significantly reduced in high-grade
gliomas in comparison with low-grade gliomas. Spectroscopically, the difference be-
tween anaplastic astrocytoma (AA) and GBM is often the presence, or absence, of necro-
sis.

In a large study characterizing brain tumor metabolism (16), it was found that
higher grade tumors had a prominent lipid signal. The lipid signal correlates with cellular
necrosis, and it has been hypothesized that these lipid signals originate from mobile fatty
acids at the end stage of metabolic insult that precedes cell death. Lipids and lactate cor-
relate with necrosis in high-grade gliomas and may be used in determining tumor grade,
although their presence is not specific to high grade tumors. This is significant because
studies (17) have reported that relative CBV did not successfully discriminate between
AA and GBM. Hemodynamic studies of tumors that offer insight into the angiogenesis
potential (4) can be combined with analyses of their biochemistry to characterize tumor

vascularization and the resultant disease progression.
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MATERIALS AND METHODS
MR Spectroscopy and Imaging

All MRI and spectroscopy were performed on a clinical 3T scanner (Intera, Phil-
ips Medical Systems, The Netherlands). Two newly diagnosed brain tumor patients were
imaged before any therapeutic and/or surgical intervention (baseline). These patients will
be followed up every eight weeks hereafter to obtain longitudinal perfusion and spectro-
scopic imaging data. The protocol to image these patients is currently active and patient
recruitment 1s ongoing. The patients provided informed consent, approved by the Univer-
sity of Alabama at Birmingham Institutional Review Board and hospital committees
overseeing human experiments.

The MRI protocol consisted of T1-weighted (TR/TE = 400 msec/12 msec) scout
images followed by axial fluid-attenuated inversion recovery (FLAIR) images. These ac-
quisitions were followed by the 2D chemical shift imaging (2D-CSI) sequence, run on an
axial slice from the scout series. After automated shim optimization, the CSI spatial lo-
calization box inside the fat suppression slabs was positioned so as to cover the tumor
region and include contralateral normal tissue, to provide a reference for postprocessing
and analyses. The TR was 1500 msec and the TE was 80 msec for the CSI acquisition.
During measurement, water suppression was achieved by applying a chemical shift selec-
tive saturation (CHESS) pulse (18). Total acquisition time for the CSI sequence was
around 12 minutes, with an additional 3 minutes for shim-optimizing before spectro-
scopic acquisition.

CSI was followed by the DSC-MRI sequence for perfusion studies. The gradient
spin echo (GRASE) (19) with TR/TE of 1900/65 msec, and a 128 x 128 matrix, a field of

view (FOV) of 25 cm x 25 cm was used. Thirty 3.5 mm slices were imaged. The total
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DSC-MRI scan time was less than 2 minutes. All slices were parallel to the CSI acquisi-
tion slice, to allow correlation of perfusion and spectroscopic imaging data at the CSI
slice. We used Magnevist (Gadopentate dimeglumine, Berlex Laboratories, Seattle, WA),
a gadolinium based contrast agent, injected at a concentration of 0.2 mmol/kg of patient
body weight. The contrast agent was injected with a power injector at a flow rate of 4.0
ml/sec and an injection delay of 10 seconds. Spin echo post-contrast T1-weighted images

(TR/TE of 450/10 msec) were acquired after perfusion imaging, for anatomic reference.

Analysis of MRSI Data

The spectroscopic imaging data were exported to the XUNspec 1 analysis pack-
age (Philips Medical Systems, Best, The Netherlands), running on a Sun Blade 100 (Sun
Microsystems, Santa Clara, CA), for offline processing. The raw 2D-CSI data were Fou-
rier transformed in the &y and ky directions first. The data were zero-filled to 2048 points
to improve the spectral resolution. Gaussian apodization and direct current (DC) offset
correction were performed. Time domain filtering was applied to eliminate the residual
water peak using the Lanczos HSVD filter (20, 21). The data were then Fourier trans-
formed again to yield a stack of spectra, one per voxel. Levels of Cho, Cre, NAA, and
Lac/Lipid were estimated as the peaks at 3.2, 3.0, 2.0, and 1.0 — 1.5 parts per million
(ppm), respectively, and used to generate 24 x 24 metabolite maps. No peak quantitation

was performed.

Analysis of Perfusion Data

Postprocessing and perfusion analysis were performed using the MedX software

(version 3.4.2, Medical Numerics, Sterling, VA) running on a Sun Blade 1000 work-
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station. The data sets were prepared for postprocessing by inspection for quality, mask-
ing, and generation of parametric maps. Masking of the functional data was performed to
ensure accurate determination of arterial input function and to avoid curve-fitting of pix-
els outside the brain.

A two-stage automatic algorithm (22) was used for identifying arterial voxels in
the DSC-MRI data and constructing the arterial input function (AIF). The relative CBV
maps were determined though gamma variate fitting (23) of the concentration curves and
integration. The relative CBF maps were generated from the amplitude of the residue
curve that results from deconvolution of the tissue curve via singular value decomposi-
tion.

The angiogenesis potential (4) maps were generated using the CBF, CBV, and
T2* recovery information, computed from the T2* susceptibility perfusion data sets (4).

A value of k = 1 was used for computation of the 4 maps.

Correlation of Perfusion and Spectroscopic Imaging

All image analyses and correlative studies were performed using programs cus-
tom-written in MATLAB (The Mathworks Inc., Natick, MA). These data were correlated
with metabolite images obtained from the 2D-CSI acquisition. Nearest neighbor interpo-
lation was used to reconcile image sizes, because perfusion images (128 x 128), post-
contrast T1 weighted images (512 x 512) and metabolite maps (24 x 24) had different

matrix sizes.
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RESULTS

Figures 1 and 2 show anatomic images, CBF maps, and spectroscopic images,
from patient 1 and 2, respectively. Figures 3 and 4 show the spectra from voxels in pa-
tient 1 and patient 2, respectively. We illustrate the differences in metabolite peaks in
three distinct regions of the patients: healthy brain tissue, tumor fringes, and tumor core.
Spectra from these three regions are shown in green, blue, and red, respectively.

In our experience (5), CBF has been reliable as a quantitative surrogate of angio-
genesis in human brain tumor drug trials. We present only the CBF maps in this report,
although CBYV values have been tabulated in subsequent sections of this paper.

Both patients showed similar spectra obtained from healthy tissue, with well-
resolved Cho and NAA peaks. Patient 2 showed a distinct doublet peak around 1.3 ppm.
This is from the lactate/lipid molecules in the voxel that was placed in the tumor fringe
area. Both patients also showed a decrease in Cho and a sharp decrease in NAA at the
center of the tumor, presumably from necrosis. In the margins of the tumors, the levels of
Cho were elevated and the NAA peak was lower. Patient 2 also showed a decrease in the
Cre peak, at 3.0 ppm in the tumor fringes.

Figure 3c and 4c show profiles of relative CBF, Cho, NAA and Cho/NAA ratio,
obtained from a line spanning the FOV, shown in yellow in the respective anatomic im-
ages, Figs. 3a and 4a. Both patients showed very low CBF levels at the center of the tu-
mor. Patient 1 showed a distinct increase in relative CBF levels in margins, on both sides
of the tumor. In the tumor fringe areas, where CBF was significantly elevated, both pa-
tients showed increased Cho levels and decreased NAA. We noticed considerable varia-
tions in the Cho and NAA peaks in areas surrounding the tumor core. Creatine in the tu-

mor fringes was higher in patient 1, and lower in patient 2. Cho and NAA were consis-
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tently lower in the tumor core for both patients. Also, as shown in Fig 2b, patient 2 had
low relative CBF levels overall.

The relative CBF and CBV values from the color-coded ROIs in Figs. 3 and 4 are
shown in Tables 1 and 2, respectively. These were computed with respect to the mean
value of these parameters in healthy tissue, using 25 pixel ROIs, in the contralateral

hemisphere of the patient.

Table 1
Relative CBV and CBF Values for Patient 1

ROI Relative CBF Relative CBV
(Mean for 25 pixel ROI) (Mean for 25 pixel ROI)
Healthy tissue 1.01 1.03
Tumor fringe area 3.56 3.13
Tumor core 0.26 0.29
Table 2

Relative CBV and CBF Values for Patient 2

ROI Relative CBF Relative CBV
(Mean for 25 pixel ROI)  (Mean for 25 pixel ROI)
Healthy tissue 1.00 - 1.03
Tumor fringe area 2.82 2.65
Tumor core 0.13 0.17
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Figure 1. Patient 1: Comparison of hemodynamic and spectral data. a: Post-contrast T,
weighted image. b: Corresponding relative CBF map. ¢: Cho image. d: NAA image.
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Figure 2. Patient 2: Comparison of hemodynamic and spectral data. a: Post-contrast T,
weighted image. b: Corresponding relative CBF map. ¢: Cho image. d: NAA image.
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Figure 3. Patient 1: Correlation of spectroscopic and hemodynamic data. a: Anatomic
Image showing the 24 x 24 spectral grid. b: Individual spectra from voxels in healthy tis-
sue (green), tumor margin (blue), and tumor core (red). ¢: relative CBF, Cho, NAA and
Cho/NAA ratio profiles from the yellow line in 3a. The black triangles indicate tumor
margins.
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Figure 4. Patient 2: Correlation of spectroscopic and hemodynamic data. a: Anatomic
Image showing the 24 x 24 spectral grid. b: Individual spectra from voxels in healthy tis-
sue (green), tumor margin (blue), and tumor core (red). ¢: relative CBF, Cho, NAA and
Cho/NAA ratio profiles from the yellow line in 4a. The black triangles indicate tumor
margins.
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The angiogenesis potential maps for both patients are presented in Fig. 5 along
with the Cho/NAA ratio maps. The 4 map for patient 1 (Fig. 5(a)) shows increased an-
giogenesis potential in the “ring” surrounding the tumor and in a fringe area in the contra-
lateral hemisphere. Patient 2 did not show significant angiogenesis, as estimated by our
technique.

The Cho/NAA ratio images demonstrate hotspots, at areas that correspond to the
tumor, seen in both patients in Figs Sc and 5d, respectively. Patient 2 did not demonstrate
significant enhancement, and though the hemodynamics did not suggest a high-grade tu-
mor, the metabolite distribution is suggestive of a malignant neoplasm. The spatial loca-
tions of areas high in the Cho/NAA maps confirm that the angiogenesis potential maps
are fairly accurate in discerning areas that might be angiogenic and illustrate the utility of

spectral information when used alongside quantitative hemodynamic information.

DISCUSSION

Although blood flow and volume in brain tumors have been analyzed by several
groups along with metabolite distributions measured using MRSI techniques, there have
been relatively few papers describing their utility in evaluating angiogenesis, a critical
process in tumor growth and invasion. In this work, we report correlations between Cho,
NAA, and 4, the angiogenic potential, and demonstrate that concentrations of metabolites
indeed match the spatial variation of estimates of angio-architecture in brain tumors.
Values of the Cho/NAA ratios were high in tumor regions, in agreement with similar ob-
servations published earlier (7). The Cho/NAA ratio correlates with tumor location but
not does necessarily correlate with areas of high A4 This ratio is traditionally preferred

over others like Cho/Cre for two reasons:
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Figure 5. Angiogenesis potential and Cho/NAA ratio maps. a: Angiogenesis potential
map for patient 1. b: Angiogenesis potential map for patient 2. ¢: Cho/NAA ratio image
for patient 1. d: Cho/NAA ratio image for patient 2. The red asterisks indicate the tumor
centroid in each image, placed to enable comparison of 4 maps with Cho/NAA ratios.
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1. The signal-to-noise ratio (SNR) of the NAA signal is much higher than Cre or
any other metabolite, and
2. The variability of Cre in brain tumor pathology is far greater than that of NAA.
2D-CSI was chosen as the acquisition sequence for spectroscopic imaging be-
cause it combines the features of both imaging and spectroscopy (24). It is also well
suited to malignant brain cancer studies since single-voxel spectroscopy techniques do
not accurately characterize the heterogeneity of high-grade tumors. CSI is a technique for
collecting spectroscopic data from multiple adjacent voxels covering a large volume of
interest in a single measurement. In 2D-CSI, spatial localization is done by phase encod-
ing in two dimensions. A 2D Fourier transform yields localized spectra. The version of
2D-CSI used in our spectroscopic acquisition was combined with a slice selection excita-
tion in order to produce voxels of approximately 1 cm’ in about 12 minutes using a stan-
dard imaging head coil. This, combined with perfusion and anatomic image acquisitions,
resulted in a total imaging time of around 35 minutes for the brain tumor patients. We
used standard automated second-order shimming routines available on the scanner. Fur-
ther improlvements in SNR are possible by applying postprocessing software-based meth-
ods (25) that correct for eddy current distortions by measuring the distortions of a refer-
ence signal.

Since the primary focus of our correlative study was on spatial distributions of
metabolites and their comparison with hemodynamic parameters, we did not attempt to
perform absolute peak quantitation of the metabolites being imaged. Use of more refined
spectroscopic postprocessing algorithms could be considered to obtain such values of

concentrations. The utility of spectroscopic imaging data in therapeutic evaluations of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

angiogenesis will be greatly enhanced by quantitating metabolites and their distribution
in vivo. The comparative studies could also be extended to three spatial dimensions for

more comprehensive assessment of tumor angiogenesis and growth. Longitudinal meas-
urements of spectral information could also be used in monitoring of therapy efficacy in
brain tumor patients.

Gadolinium-based contrast agents, like Magnevist used in our study, shorten the
T1 relaxation time of the metabolites, increasing their signal contributions, especially
during short TR scans. Local tissue susceptibility may also be shortened by the contrast
agent, reducing T2* and causing line broadening. Some studies suggest that good quality
spectra may be obtained from MR spectroscopic studies performed after contrast admini-
stration, although there is widespread disagreement on this issue. It has been argued that
the effects of contrast administration on levels of metabolites like Cho, Cre, and NAA are
minimal because these metabolites are almost entirely intracellular and hence are not ex-
posed to gadolinium. A 15% decrease in Cho levels has been reported following gadolin-
ium-based contrast administration (26). Our data was unaffected by contrast administra-
tion because 2D-CSI was performed before contrast administration.

Increased Cho is suggestive of cell proliferation (27) and has been reported in as-
trocytomas. Choline has also been associated with myelin breakdown and the Cho peak
might contain information related to cell density. Both the patients studied in this work
had elevated Cho peaks at 3.2 ppm in the tumor fringe areas, shown in Figs. 3b and 4b.
These are in agreement with data published by several groups earlier and support the hy-
pothesis that angiogenic and mitotic activity are increased in the tumor fringe areas. An
Increase in membrane synthesis in proliferating cells and increased membrane turnover

contribute to elevated levels of Cho. Though it is agreed that the Cho resonance peak is
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generated by the nine protons in the (CHs); group of the Cho molecule, several aspects of
the peak composition remain unexplained including the variation of the spectra with ab-
normal pathology.

The N-acetyl aspartate peak at 2.0 ppm 1s another major peak in the normal adult
brain and acts as a neuronal and axonal marker. It drops sharply in areas that are hypoxic
and necrotic. In both our patients, there were significant decreases in the NAA peaks, ob-
served both in tumor fringe areas, and in the tumor cores. Residual peaks around the 2.0
ppm mark are either from contamination due to tumor infiltration into normal tissue
and/or from the partial volume effect. The elevated NAA peaks seen in spatial profiles of
both patients are likely due to contamination by fat from nearby tissue, seen as bright ar-
eas in Figs. 1d and 2d. This could be eliminated by more efficient lipid suppression rou-
tines before the CSI acquisition. Both NAA and Cho concentrations are in agreement
with earlier reports of biochemical profiles of necrotic and proliferative areas.

MRS does suffer from poor sensitivity in the context of assessment of tumor vas-
culature (28). Spectroscopy has been used in animal models to assess effects of blood
flow modifiers such as nicotinamide and carbogen (29). Advances in spectral data proc-
essing and increase in spatial resolution will be required to make metabolite maps and
spectral data a reliable component of the clinical analyses of angiogenesis.

We have shown that tumor characteristics obtained from quantification of hemo-
dynamics and those extracted from MRSI techniques are in agreement. Merging the two
threads validates a multi-compartment model of brain tumors proposed earlier (30,31).
These models did not, however, study angiogenesis and/or the spatial variation of pa-
rameters that influence tumor proliferation. Correlating the spatial variation of parameters

obtained through perfusion MRI and MRSI modalities provides valuable information
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about growth and invasion patterns of gliomas. The addition of a priori information, ra-
diological and/or histological, could improve the characterization of spatial heterogeneity
in tumors. It will require analyses of larger patient populations to validate the statistical
significance of correlative approaches that incorporate hemodynamics as well as spectro-
scopic information. Such quantitative approaches would be valuable in measuring cancer

aggression, biopsy guidance, and the planning and monitoring of brain tumor therapy.
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CONCLUSIONS

MRI and MRS are powerful tools to study the invasion and proliferation of brain
cancer, resultant changes to hemodynamic characteristics, and the impact on variations in
cerebral biochemistry. In this dissertation, the broad goals were to establish the feasibility
of using relative cerebral blood flow and volume as a marker of brain tumor angiogenesis
and devise a framework where CBV and CBF could be measured and tracked longitudi-
nally in patients with primary brain cancer. A technique was also developed to quantitate
angiogenesis in vivo. Finally, spectroscopic imaging was used to obtain metabolite distri-
butions and study spatial variation of tumor signatures alongside their hemodynamics.

We have demonstrated that CBF and CBV could be used as surrogates of tumor
angiogenesis in a large multi-institution study involving over thirty patients. Considerable
time was spent in acquiring MR data that were subject to stringent quality tests and de-
veloping the analyses methodology to enable both inter- and intra-patient assessment.
Statistical thresholds for goodness of the gamma variate fit, T2* recovery, and mean sig-
nal full-width at half-minimum were computed for our data sets with a 99% one-sided
confidence interval. Several of these patients were monitored for longitudinal changes in
hemodynamics, and quality thresholds were calculated for perfusion data sets. The results
of analysis of CBV and CBF were correlated with clinical responses of the patients stud-
ied and it was shown, with statistical significance, that a systematic study of the afore-

mentioned indices could provide reliable measures of tumor angiogenesis in vivo. It was
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established that malignant brain tumors have altered perfusion parameters, as assessed by
DSC-MRI, which may be used to understand and monitor neovascularization.

While standard radiological investigations can provide information regarding the
spatial location of brain tumors, treatment is usually decided by results of invasive biop-
sies. In malignant tumors, the blood brain barrier has been thought of as a critical factor
in determining the grade, in part because of the relationship between permeability and
angiogenesis. Permeability could be due to increased levels of vascular endothelial factor
(VEGF), a factor that is responsible for the growth of blood vessels. Perfusion maps and
sophisticated postprocessing techniques could provide valuable information concerning
blood flow, volume, and the blood brain barrier permeability, which would make tumor
characterization more reliable.

A common feature of malignant gliomas is the disruption of the blood-brain bar-
rier resulting in the extravasation (17) of gadolinium-based contrast agents into the inter-
stitial space. Glial cells typically infiltrate into brain parenchyma as a result of neo-
plasms, usually along paths of least resistance. The biomechanical consequences of these
cell-shifts could disrupt vessel integrity. Typically, the capillaries are disrupted making
the vessels in the tumor-affected area more permeable or “leaky.” The resulting mis-
estimation of blood flow and volume obtained through methods like DSC-MRI has been
studied by several groups, and this is of special interest to quantitative analyses of hemo-
dynamics such as ours. Several correction strategies have been published that account for
both the T1 and T2* effects. The use of large particles like MIONS, endogenous contrast
agents, and arterial spin labeling (ASL) techniques, which bypass such effects, are being

tried in various animal and human models investigating tumor vasculature. Advanced
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molecular imaging techniques that “tag” certain physiology-specific processes are also
becoming popular among groups investigating cancer.

As it becomes apparent that understanding tumor vascularization could hold the
key to unraveling the phenotype of several cancers, the focus moves from identifying
non-invasive imaging-based markers to the search for reliable quantitative measures that
enable predictive and diagnostic assessment. There are several groups, including ours,
currently investigating animal models of human brain cancer using magnetic resonance
and other imaging modalities. The role of angiogenesis in the sustenance and prolifera-
tion of cancer, especially brain cancer, is being appreciated at several levels: imaging,
pharmaco-kinetic, molecular, and genetic. As evidenced by the growing number of anti-
angiogenic cancer therapies (7), the quantitative study of angiogenesis guided by in vivo
MRI correlates has the potential to be a valuable tool in the clinical assessment of malig-
nant brain tumors and offers several therapy-planning options for neuro-oncologists.

Brain tumors are histologically very heterogeneous, a fact not always obvious in
non-invasive anatomic and functional imaging techniques such as DSC-MRI. A large part
of our emphasis in mapping angiogenesis was quantitating the underlying spatial varia-
tion. Considerable efforts will be required to develop reliable image co-registration algo-
rithms which enable multi-modality comparisons of structural and functional aspects of
tumor pathology. Appropriate verification of quantitative estimates will have to be made
using brain tumor histology and other techniques, some of which are invasive. Given the
inherent heterogeneity of most malignant gliomas, the extension of models such as the
one proposed in this work, to three spatial dimensions, will be required for more accurate

evaluation of brain tumors. It has also been speculated (18) that tumor vessels are highly
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permeable and extravasate fluid, hence increasing the local tissue pressure around tumor
vessels. The balance between decreased intravascular pressure and increased interstitial
fluid pressure may result in dynamic alterations of blood flow in tumor micro-vessels.
This often leads to intraluminal platelet deposition and thrombosis, leading to focal areas
of necrosis and tumor-associated hemorrhage. These changes may be identified by a
combination of MRI feature changes and incorporated into hemodynamic changes asso-
ciated with malignant tumors. These could lead to a better understanding of the angio-
genesis cascade (19) and the associated variations in angio-architecture and biochemical
modulations.

A very useful application of our technique is the longitudinal tracking of therapy
in patients with brain tumors. As evidenced by the studies on patient 2 (preprint 2), it is
possible to apply the method to series perfusion studies in an attempt to evaluate the tem-
poral changes in tumor hemodynamics. This patient demonstrated no clinical response to
cilengitide therapy. While increased tumor enhancement due to growth was seen in the
post-contrast T1 images, quantification of angiogenesis on a pixel-by-pixel basis pro-
vided additional information about the vasculature and hemodynamics. In addition to in-
creases in CBV, CBF, and A4, patient 2 demonstrated an outward shift of about 18 pixels
in the A peak. The evolution of tumor hemodynamics over time could very well be a reli-
able tool in evaluating disease progression. Co-registration of intra-patient data sets is of
little consequence since the parameters being analyzed are reported with respect to a tu-
mor centroid, computed individually for each study.

More recently, “normalization” of anti-angiogenic therapy has been proposed as a

more effective strategy in combating cancer (20). This will require frequent and efficient
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in vivo monitoring of the delicate balance between glioma vascularization, therapeutic
interventions, and drug uptake, as well as physiological conditions like stress, hypoxia,
and the tumor micro-environment. Strengthening the imaging-based evaluations of tu-
mors in vivo will allow us to monitor these aspects non-invasively.

Limitations of MRI/S techniques include decreased sensitivity to calcification and
lack of specificity; several pathologies have similar presentations (e.g. infarcts, demyel-
nation, abscesses). Enhancement on DSC-MRI does not equate to tumor grade and also
does not delineate borders of tumor cells. Techniques like the one proposed in the second
manuscript that quantify angiogenesis will need to be developed and perfected to under-
stand the spatial complexity of malignant tumors.

In addition to the study of hemodynamics, we have imaged and analyzed metabo-
lite distributions in brain tumor patients. Up to this point, much of the metabolic imaging
has been done using either magnetic resonance spectroscopy or nuclear medicine tech-
nologies such as positron emission tomography (PET) and single-photon emission com-
puted-tomography (SPECT). PET studies of tumor metabolism using 18-fluoro-
deoxyglucose have been used in distinguishing metabolically active areas from necrotic
regions. These studies have shown that glucose utilization is a predictor of prognosis in
brain lesions (21). For the most part, MRS techniques have relied on single-voxel tech-
niques because comprehensive examinations could easily take over one hour for obtain-
ing biochemical information alone. With several technological and computational hurdles
now cleared, faster, more efficient spectroscopic imaging techniques are being tested and
implemented on commercially available clinical MR scanners. Significant improvements

in the signal-to-noise ratio and spatial resolution are also critical to making spectroscopy
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a clinically viable investigational tool for brain tumors. Spectroscopic imaging greatly
enhances the diagnostic utility of conventional functional and anatomic MR imaging. Our
data demonstrate that brain tumor pathology is well suited to interrogation by spectro-
scopic imaging techniques.

The Cho/NAA ratio images from the patients examined showed good spatial cor-
relation with areas of altered hemodynamics, corroborating that the angiogenesis poten-
tial estimated by our technique indeed identifies areas of abnormal pathology. This illus-
trates the utility of spectral information when used alongside quantitative hemodynamic
information. MR spectroscopy techniques have shown promise in distinguishing necrosis
from recurrent tumors (22), a fact that makes them attractive to characterizing angiogenic
areas surrounding malignant tumors.

Another analysis tool that is used in interpreting MR spectra is absolute quantita-
tion of peaks. Since establishing a framework to compare hemodynamics and biochemi-
cal distributions was our chief objective, we have not attempted peak quantitation. Rou-
tinely used gadolinium-based contrast agents shorten the relaxation times of the metabo-
lites being imaged. While some studies suggest that reasonably good quality spectra may
be obtained after contrast administration, there is no clear consensus on how administra-
tion of contrast agents affect spectral peaks. Consequently, all spectroscopic image acqui-
sitions were performed before administration of contrast.

Future directions for the continuation of the research presented in this dissertation
would include addition of statistical significance to the results presented herein, espe-
cially the MRSI and correlations between hemodynamics and biochemistry. The role of

white matter tracts in the invasion of cancer is of special interest in brain tumor pathol-
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ogy. The addition of modalities that quantitatively map the role of tracts such as diffusion
tensor imaging would strengthen mathematical modeling approaches aimed at under-
standing the angiogenic cascade. It is also recommended that MR imaging and spectros-
copy be coupled with histological measurements that further validate multi-compartment
models in tissue classification, especially in studies involving animal models.

Inclusion of a priori information such as tumor shape attributes and more sophis-
ticated geometric modeling might enhance the accuracy of estimates of angiogenesis. For
example, the annular model used to compute the angiogenesis potential could be replaced
with a tumor-shaped region. Extension of the modeling approaches to three spatial di-
mensions would also make the estimates more realistic. The addition of physiology-
specific bio-molecular markers that target processes in the angiogenesis cascade will aid
imaging based predictions of angiogenesis.

In conclusion, results, both hemodynamic and spectroscopic, are in agreement
with histological characteristics of malignant brain tumors (2). The data acquired and
analyzed suggest that a three- or possibly four-compartment model 1s ideally suited for
analysis of progression of brain cancer. Based on CBF, CBV, 4, and distribution of me-
tabolites like Cho and NAA, it is suggested that characterization of tissue in vivo be per-
formed as healthy tissue, angiogenic region, necrosis and a fourth region, that includes
metastases, areas of abnormal mitosis, vasogenic edema, and other effects of neoplastic
activity. The systematic study of the “angiotype” of a tumor, reflecting the behavior of
the blood vessels nourishing it, and the capillary network patterning (23) that occurs as a
result of neovascularization will augment our current understanding of the role of angio-

genesis in cancer. Imaging and spectroscopy provide reliable and accurate measures of
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angiogenesis that add to the prognostic value of routine radiological and histological ex-

aminations.
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