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Although immunological memory is characterized by both an increase in the fre­

quency of antigen-specific T cells and a qualitative change in the pattern of their subse­

quent response, it is not clear which of these components is more significant in the over­

all enhanced response to secondary stimulation. To address this question for the CD4+ T 

cell response, DO 11.10 TCR Tg T cells were adoptively transferred to normal syngeneic 

mice that were immunized with the relevant peptide. After the initial expansion of TCR 

Tg T cells, the size of the subsequent memory population of T cells was approximately 

the same as the size of the starting population, independent of the number of TCR Tg 

cells initially transferred. This result was not due to redistribution of memory cells into 

non-lymphoid tissues, although the relative frequency of antigen-specific T cells in these 

sites was increased after immunization. The fraction of the antigen-specific TCR Tg cells 

that responded by production of either IL-2 or IFN-y in vitro was substantially higher af­

ter immunization. Thus, the increased frequency of functionally responsive T cells was 

primarily due to a higher fraction of responding T cells, rather than a substantial increase 

in the absolute number of antigen-specific CD4+ TCR Tg T cells.

Adoptive transfer experiments were also carried out using the OT-II and OT-I 

model systems. The results of the OT-II experiment confirmed that expanded popula-
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tions of CD4+ memory cells do not persist in vivo. Unexpectedly, CD8 + OT-I adoptive 

transfer cells failed to persist as an expanded memory population.
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INTRODUCTION 

The Peripheral Thymocyte-derived Cell From 1961 to the Present 

The history of peripheral T-cell biology can arguably be divided into three eras— 

functional, cellular, and molecular. The functional era began in 1961 when J.F.A.P. 

Miller published his article “Immunological Function of the Thymus” in The Lancet (1). 

Over the next 10 to 15 years the role of the thymus and thymus-derived lymphocytes in 

the immune response began to emerge.

However, the regulation behind this function remained unclear. In 1973 Rosen­

thal and Shevach published their finding that T lymphocytes were capable of mounting a 

response against a soluble antigen only after presentation of that antigen by histocom- 

patible macrophages (2). Zinkemagel and Doherty’s papers appeared in 1974 (3,4) and 

put forth the idea that T cells respond against target cells which bear a self H-2 gene 

product that has been altered in some way by the antigen. These findings provided a cor­

rect, precise theory of the target of the T cell response rather than simply observing al- 

loreactivity among cells from different strains of mice. This new understanding opened 

the door to experiments aimed at understanding cellular events in T cell activation rather 

than simply observing the functions which result from that activation.

Over approximately the next 20 years, the period that can be regarded as the cel­

lular era, a great deal was learned about the effector immune response and the pathways 

through which it acts. Advances in molecular biology facilitated the identification of
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numerous effector and regulatory cytokines, and the availability of monoclonal antibod­

ies allowed firm identification of the cell types involved. During this period, much of the 

immunology community spent their efforts on defining and characterizing different popu­

lations o f cells. The view of the role of T cell was refined from a broad functional level 

to the level o f knowing many of its effector response capabilities.

However, the molecular basis for the specificity behind these responses did not 

fully emerge until 1996, when the exact structure of the T cell antigen receptor and its 

precise relation to the major histocompatibility complex (MHC) was revealed through 

crystallographic studies (5,6). Also in 1996, soluble, peptide-loaded MHC reagents were 

developed that enabled the identification of peptide-specific populations of T cells (7). 

This advance began the molecular era of peripheral T-cell biology, and the ability to 

study T cells progressed from the population level to the level of the single, antigen- 

specific cell.

Advances in science are sometimes rapidly incorporated into mainstream think­

ing. Other times, incorporation is slower and possibly incomplete. The accomplishments 

listed above mark changes in how the immunology community thought about T cells. 

With each of these accomplishments, dominant ideas from the previous era were modi­

fied to account for new information. However, for cluster of differentiation 4 expressing 

(CD4+) T cells, the incorporation of new information into the collective schema has, on 

at least one point, been incomplete.

Prior to the ability to physically identify antigen-specific cells, assays for T-cell 

function were the best surrogate for T-cell frequency. Eventually this surrogate came to 

be mistaken for the actual frequency of antigen-specific T cells. This error occurred de­
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spite numerous papers published in the mid-1970s that focused on the functional hetero­

geneity o f T cells (8-15), and it resulted in the widespread perception that an increase in 

the number of antigen-specific cells is a large component of T cell memory. The data are 

now clear that this perception is correct as it pertains to CD8 + T cell memory. The data 

do not support the same conclusion in regards to CD4+ T cells, nor do they expressly dis­

prove it. This underappreciated uncertainty surrounding the contribution of increased 

antigen-specific cell frequency to CD4+ T cell memory is the focus of this dissertation.

Cellular Immunological Memory

The Early Days

An awareness of immunological memory existed as early as the Plague of Athens 

in 430 B.C., at which time Thucydides reported that survivors of the plague were “never 

attacked twice—never at least fatally” (16). In the early 1700s Lady Mary Wortley Mon­

tagu brought the practice of variolation, which consisted of scratching particles from a 

small pox sore into the skin of an uninfected person, from present day Turkey to England. 

The result of variolation was generally a much attenuated infection that conferred lifelong 

immunity against the virus. In 1796 Edward Jenner variolated a young boy with material 

from a cow pox lesion and several weeks later variolated him again with material from a 

small pox lesion. No clinical symptoms resulted from the small pox variolation, and the 

practice was soon rechristened “vaccination” (17).

By the 1950s the scientific community had learned a great deal more about im­

munology. The perception of immunity was that it “rises during recovery, reaches a peak 

in late convalescence, and falls gradually in succeeding months”(18). The protective ef­
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fects which result from a resolved infection were considered to be mediated mainly by 

circulating antibodies. A vague idea of “cellular antibodies” was associated with immu­

nity to malaria and syphilis, though it was thought to be short-lived (18).

The Cellular Basis of Immunity

In 1962, James Gowan reported that small lymphocytes initiate the immune re­

sponse (19). Earlier reports by another group had shown that the transfer of popliteal 

lymph node cells from rabbits that received injections of bacilli in the foot pad to unin­

jected rabbits resulted in detectable levels of antibody several days following cell transfer 

(2 0 ), but the occurrence of antibody in the cell transfer recipient rabbit was not fully ac­

credited to the lymph node cells. Between 1962 and 1966, the observation was made that 

cell proliferation was linked to antibody formation following a secondary antigenic chal­

lenge (21,22). The origin of these proliferating cells remained uncertain until Gowans 

and Uhr immunized rats with 0X174, and then waited up to 15 months before transfer­

ring thoracic duct lymphocytes into irradiated recipient rats (23). Cell transfer recipient 

rats which remained unimmunized after transfer had negligible levels o f anti-OX174 an­

tibodies. Immunization of the experimental group resulted in high titers of virus-specific 

antibody compared to the antibody levels in rats that received control cells from unim­

munized mice. At that time, this experiment was the most definitive demonstration of the 

lymphocyte as the instrument of immunological memory.

The lymphocyte was still poorly characterized, but the mystery surrounding it was 

rapidly receding. In 1966 Claman et al. discovered that transfer of thymus-derived and 

marrow-derived cells into an irradiated host synergistically improved the antibody re-
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sponse (24). That same year, Cooper et al. were carrying out experiments on the effect of 

irradiation on bursectomized and thymectomized chickens (25,26). By the end of the 

decade the distinction was drawn between T cells and B cells (27,28).

Cellular Immunology

Having attained a basic awareness of the two arms of the adaptive immune sys­

tems, the immunology community was prepared to pursue the characterization of those 

two arms. In 1969, the discovery of the theta isoantigen, later to be named CD90, as a 

marker of thymus-derived lymphocytes was the first step in being able to physically iden­

tify lymphocytes independently of their function (29). It also made possible the depletion 

of T cells from the lymphocyte population while leaving the B-cell population intact.

In 1970, immunological memory was recognized to involve “heightened re­

sponse, earlier appearance of a detectable response, [and] more rapid development of 

peak values” (30). All o f these characteristics remain correct by today’s standard, but the 

understanding of how the cells of the immune system interact to achieve immunological 

memory was almost completely unknown. One central question was, for example, if  B 

cells or T cells carried immunological memory.

In 1971, Miller and Sprent answered this question by transferring lymphocytes 

from fowl immunoglobulin G immunized mice into irradiated, non-immunized mice (31). 

The experimental design also allowed them to measure the response generated by primed 

and unprimed T cells in combination with primed and unprimed B cells. Sprent and 

Miller reported that removal of the primed T-cell population greatly reduced but did not 

abolish the antibody response that followed immunization of adoptive transfer recipient
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mice. This effect could be overcome by transferring ten times as many unprimed T cells. 

The effect of the removal of primed B cells, however, could not be corrected by the trans­

fer of more cells. The result led Sprent and Miller to conclude “that both T and B cells 

carried memory and that cell collaboration occurred in the secondary response”(31). It 

also left them with two possible explanations of the general mechanism underlying T cell 

memory:

Since normal T cells can substitute for T cells from primed mice, albeit only when 
larger numbers are used, it might be concluded that memory in T cells involves a 
quantitative change in that population, i.e., an increase in the number o f T cells 
reactive to the antigenic determinants concerned. The possibility of a qualitative 
change in T cells is not, however, excluded by the present results (31).

It also became clear in the early 1970s that T cells had more than one function. In 

1970 Raff published a paper on the “role of thymus-derived lymphocytes in the secon­

dary humoral immune response in mice” (32). Later that year, thymus-derived lympho­

cytes were also discovered to have cytotoxic capabilities after being “sensitized to alloan- 

tigens” (33,34). Over the next several years numerous papers were published detailing 

the functional heterogeneity of T cells (8-15). Included among these functional hetero­

geneities were the effector responses.

Major advances in understanding the activities of T cells were not accompanied 

by similar advances in the understanding of their specificity. As mentioned earlier, 

Zinkemagel and Doherty’s work showed that T cells respond to antigen plus self MHC, 

but nothing was known of the molecular specifics involved in this recognition. As a re­

sult, the identification of antigen-specific T cells came to rely completely on their func­

tion. The qualitative differences between memory and naive cells revealed a clear in­

crease in the number of mtigen-reactive cells present in the memory response. However,
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the increase in numbers of antigen-reactive cells does not equate with an increase in the 

number of antigen-specific cells. In 1971 Sprent and Miller simply did not have access to 

an experimental system that would allow for making a distinction between antigen- 

reactive and antigen-specific cells. The methods developed in the 1970s and 1980s to 

measure the frequency of antigen-reactive cells would lead to a firm entrenchment of the 

idea that increases in absolute numbers of antigen-specific CD4+ T cells are a major 

component of CD4+ T cell memory despite a lack of data that explicitly supports that 

conclusion.

CD4+ T Cell Frequency Determination 

All methods used to measure the frequency o f antigen-specific T cells fall into ei­

ther of two categories, functional or physical. Functional methods include limiting dilu­

tion analysis of various elements of the T-cell response and also direct measurement of 

the frequency of cytokine-producing cells. Physical methods require identification of the 

antigen-specific T cells independent of their function. This method relies on the ability to 

identify antigen-specific T cells either by their T cell receptor (TCR) or in some model 

systems by other genetic markers.

Functional Measures ofT-Cell Frequency

The bulk of the early published experiments investigating antigen-reactive T-cell 

frequency obtained their results through limiting dilution analysis (35-39). These studies 

measured T-cell frequency on the basis of several functions, including proliferation in 

response to antigen, the ability to effect B cell help, and later Interleukin-2 and Inter­
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feron-y production. The Poisson distribution is the undergirding statistic for this measure 

of frequency. When a cell type is present at limiting dilution, the response being meas­

ured fails to occur in 37% of the replicate conditions. The derived frequency value re­

flects the frequency of “precursor” cells present in the culture, which give rise to the re­

sponse measured following stimulation.

Direct measurements of cytokine production, principally ELISPOT and flow cy­

tometry, are now more commonly used to estimate antigen-reactive CD4+ T cell fre­

quencies than are limiting dilution analyses. The ELISPOT assay was originally devel­

oped to detect enterotoxin producing E. coli (40). The method was soon adapted to 

measure the frequency of antibody-producing cells in a population (41) and later, after 

the necessary antibodies became available, to measure the frequency of cytokine- 

producing cells (42). In this method, cells are plated on top of a nitrocellulose membrane 

that has been coated with an anti-cytokine antibody. Cells are activated to produce cyto­

kine, and the nitrocellulose-bound antibodies capture the cytokine upon secretion from 

the cell. Enzyme-labeled antibodies specific for another epitope of the cytokine molecule 

are later applied to the membrane and developed with the appropriate substrate. The 

number of spots present on the membrane after development indicates the number of cy­

tokine-producing cells present in the culture.

Detection of intracellular cytokines by flow cytometry offers several advantages 

over the ELISPOT method. Foremost among these is the ability to observe the response 

of defined populations of lymphocytes rather than the mass response of the bulk culture. 

In this method, cells that have been labeled with fluorochrome-conjugated antibodies spe-
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cific for cell-surface markers are permeabilized and then incubated with fluorochrome- 

conjugated, cytokine-specific antibodies before analysis by flow cytometry.

While these methods are useful for measuring the frequency of cells that will re­

spond in a given assay, they neglect the heterogeneity of T-cell populations. For exam­

ple, all CD4+ T cells specific for a given antigen will not make IL-2 in response to stimu­

lation with that antigen (43). Additionally, using these techniques to measure the fre­

quencies o f antigen -specific CD4+ T cells presupposes that the level of response within 

the antigen-specific population is the same for memory and naive cells. True measure­

ment of antigen-specific CD4+ T cell frequencies requires certain physical identification 

of the antigen-specific cells independent of their function.

Physical Measures ofT-Cell Frequency

Antigen-specific T cells can be directly identified independently of their function 

by two different methods. In adoptive transfer, TCR transgenic (Tg) model systems, cells 

may be identified by expression of some genetic marker that distinguishes them from 

congenic host lymphocytes. In infectious systems, the means of identification is often 

dependent on recognition of specific TCR using fluorescently labeled peptide-MHC mul- 

timers.

Numerous TCR transgenic model systems have been developed. These systems 

have relied largely on known V beta usage by the antigen-specific TCR for identification 

following cell transfer into non-transgenic hosts. The presence of host cells that are not 

specific for the antigen under study but share V beta usage with the antigen-specific cells 

somewhat diminish the utility o f this system. Recently some TCR transgenic mice have
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been bred onto SCID-/- and RAG-/- backgrounds to express a different CD90 or CD45 

allele from their parent strain. In these systems, all T cells harvested from the TCR 

transgenic donor animal are specific for a single peptide and can be identified on the ba­

sis of CD90 or CD45 alloexpression from endogenous T cells in the recipient animal.

The DOl 1.10 TCR transgenic system is unique in that it relies on a monoclonal antibody 

KJ1-26.1 (44) that recognizes the chicken ovalbumin peptide 323-339 (OVAp)+I-Ad- 

specific TCR to identify antigen specific T-cells (45,46).

Altman and colleagues were the first to employ MHC tetramer complexes to 

characterize polyclonal populations of antigen-specific T cells at normal biological fre­

quencies (7) when they compared HIV- and influenza-specific CD8 + T cells from HIV 

infected individuals. Tetramers have subsequently been used most notably in the mouse 

lymphocytic choriomeningitis virus infection model (47,48). MHCII tetramers proved 

more difficult to develop (49) but have been used to study the CD4+ T cell response to 

influenza hemagglutintin (50) and hepatitis C virus (51). The ability to study the T cell 

response starting from normal numbers of antigen-specific cells is a major advantage 

over the TCR transgenic adoptive transfer model systems; however, the inability to detect 

antigen-specific cells prior to challenge limits the usefulness of tetramers in directly 

measuring the expansion of cell populations. Additionally, tetramers identify a poly­

clonal population of antigen-specific T cells rather than a single clone of cells (52). T 

cell recognition of antigen occurs across a range of avidities, thus tetramers may fail to 

detect low-avidity, antigen-reactive cells that could potentially play an important role in 

the response.
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Both approaches of physically measuring antigen-specific cells have provided in­

sights that were unattainable using functional assays alone. In the case of CD8 + T cell 

biology, the results from tetramer experiments have confirmed older results, which 

showed an increase in the number of antigen-specific cells present following resolution of 

an antigenic challenge. Similar results for CD4+ T cells have not been published.

Qualitative Differences in Memory and Naive Cells

Despite uncertainty about the contribution of increased numbers of antigen- 

specific cells to CD4+ T cell memory, some of the phenotypic and qualitative changes 

that occur in antigen-specific CD4+ T cells when they transition into memory cells have 

been documented.

The memory status of CD4+ T cells is usually correlated with increased expres­

sion o f CD44 (53,54) and decreased expression of CD45RB (55,56) and CD62L (57). 

While this phenotype has been useful in identifying populations of memory CD4+ T 

cells, the stability of expression of these markers is not absolute, and populations of 

memory cells may revert to a naive phenotype (58).

The functional differences discovered between memory and naive CD4+ T cells 

confirm the “possibility of a qualitative change” that Sprent and Miller considered in 

1971 (31). Specifically, these qualitative changes include faster enhy into the cell cycle 

and faster expression of IFN-y than naive cells (59). A reduced dependence on costimu­

latory molecules and the ability to respond to lower levels of antigen than naive cells (60) 

are other qualitative enhancements contributing to the memoiy phenomenon.
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The molecular mechanisms supporting these qualitative cellular changes are not 

yet completely clear. Farber and colleagues separated memory from na'ive cells on the 

basis of CD45 isoform expression and examined intracellular signaling events following 

restimulation of the different cell populations. They found that stimulation of naive cells 

leads to higher levels of tyrosine-phosphorylation than in memory cells and also that 

memory cells do not phosphorylate ZAP-70, though this molecule could still interact with 

the CD3/TCR complex. Phosphorylation levels of ZAP-70-related kinase and p72syk 

were unchanged by the memory status o f the cells (61).

Another group has reported that immunological synapse formation occurs more 

rapidly in memory than naive cells and also that some lipid-raft microdomains present on 

the surface o f memory but not naive cells contain high densities o f signaling molecules 

(62). Quicker synapse formation and entry into the cell cycle following antigen exposure 

by memory cells compared to naive cells, as well as their shorter intermitotic period (63), 

predicts that some lasting cytoskeletal differences result from antigen experience. Alpha- 

adducin, a cytoskeletal regulatory protein, is phosphorylated following TCR stimulation 

and its expression subsequently downregulated (64). Expression in resting memory cells 

remains lower than in naive cells. Though not yet proven, a-adducin may function in a 

maintaining more rigid cytoskeleton in naive cells.

Qualitative changes in the ability of memory cells to respond to antigen are now 

evident. These results, interpreted without knowledge of cell specificity, have led many 

to wrongly conclude that an increase in antigen-specific cell frequency is a component of 

CD4+ T cell memory.
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Focus of Dissertation Research and Experimental Strategy 

I have used the DO 11.10 adoptive transfer model system (46) to quantify the pos­

sible contribution of an increase in antigen-specific cell frequency to CD4+ T cell mem­

ory. In this system, TCR transgenic CD4+ T cells that recognize OVAP323-339 are trans­

ferred from transgenic mice into normal BALB/c recipient mice. Transgenic, antigen- 

specific cells can be identified with the monoclonal antibody KJ1.26, which recognizes 

an epitope on the transgenic TCR. Adoptive transfer recipient (ATR) mice were typically 

immunized one to two days following cell transfer. Mice were sacrificed at various time 

points following immunization and transgenic population sizes measured by flow cy­

tometry or immunohistochemistry. Activation/memory marker expression by antigen- 

specific cells was measured by flow cytometry. The functional responses of naive and 

memory cells were compared on the basis of IL-2 and IFN-y expression following in vi­

tro restimulation with OVAp. This information, in combination with the knowledge of 

the exact number of antigen-specific cells present, permitted comparison of the relative 

contribution of increased antigen-specific cell frequency to enhanced functional response. 

The expansion and contraction dynamics of the antigen-specific population were con­

firmed in another CD4+ TCR transgenic system, the OT-II system, and also compared to 

CD8 + dynamics using the OT-I system.
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Abstract

Although immunological memory is characterized by both an increase in the fre­

quency of antigen-specific T cells and a qualitative change in the pattern of their subse­

quent response, it is not clear which o f these components is more significant in the over­

all enhanced response to secondary stimulation. To address this question for the CD4+ T 

cell response, TCR Tg T cells were adoptively transferred to normal syngeneic mice that 

were immunized with the relevant peptide. After the initial expansion o f TCR Tg T cells, 

the size o f the subsequent memory population of T cells was approximately the same as 

the size of the starting population, independent of the number of TCR Tg cells initially 

transferred. This result was not due to redistribution of memory cells into non-lymphoid 

tissues, although the relative frequency o f antigen-specific T cells in these sites was in­

creased after immunization. The fraction of the antigen-specific TCR Tg cells that re­

sponded by production of either IL-2 or IFN-y in vitro was substantially higher after im­

munization. Thus, the increased frequency of functionally responsive T cells was primar­

ily due to a higher fraction o f responding T cells, rather than a substantial increase in the 

absolute number of antigen-specific CD4+ TCR Tg T cells.

Introduction

Understanding the mechanisms operative in the development o f T-cell memory is 

a central goal in the development of effective vaccination strategies for both infectious 

diseases and other clinically relevant immune responses. A key measure o f an effective 

immunization is the demonstration of an increased frequency of antigen-specific T cells 

in the population, following the conceptual scheme of the clonal selection theme first ar­
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ticulated almost 50 years ago (1). The clonal selection theory combines two simple ideas 

— that individual lymphocytes possess a single antigenic specificity and that changes in 

the frequency of such cells within a population are driven by antigen — and provides a 

symmetrical mechanism that accounts for both memory by an increased number of cells 

and tolerance by a decreased number of cells. Despite many refinements in our under­

standing o f lymphocyte biology, this concept remains a central feature of our approach to 

experimentally measuring the effectiveness of a particular immunization. The conven­

tional approach was to measure the precursor frequency of cells that could mediate a par­

ticular functional activity by limiting dilution analysis and assume that this frequency 

corresponded to the physical number of antigen-specific cells (2-6). More recently, a 

common surrogate for T cell memory is the frequency of T cells that produce cytokines 

immediately after in vitro antigen stimulation. This measure obviates the requirement for 

substantial growth of the precursor cells in order to experimentally detect the functional 

response. Both of these approaches make the fundamental assumption that all of the an­

tigen-specific cells functionally respond when exposed to antigen in the particular assay 

system used.

The advent of tetramers of MHC molecules with a specific peptide was a signifi­

cant advancement that allows the direct physical measurement of cells that bind a particu­

lar peptide/MHC (pMHC) epitope, independent of the functional capacity of these cells 

(7,8). Due to the greater stability of pMHC class I tetramers, most of the systems ana­

lyzed with this approach have been CD8 T cell responses (9-11), although some pMHCII 

tetramers have been developed more recently (12). However, analysis of CD4 T cell re­

sponses by using an alternative approach focusing on TCR Tg T cells has demonstrated
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substantial heterogeneity in the functional cytokine responses, even within a population 

of T cells with exactly the same clonal TCR sequence (13,14). Similar results have been 

found with influenza-specific clones of CD4+ T cells obtained from the periphery of 

normal mice (15). While pMHC tetramer binding allows the analysis of normal (non- 

transgenic) T cells, the avidity threshold for tetramer binding is not necessarily the same 

as that required for a particular functional response.

Another issue that complicates the rigorous measurement of the number of mem­

ory cells present in an organism is the altered recirculation pathways of memory cells 

compared to naive cells (16-18). T cell activation leads to altered chemokine receptor 

expression and differential trafficking of naive, effector, and memory cells through vari­

ous tissue compartments (19). The situation is further complicated by the existence of 

effector and central memory T cells that have distinct recirculation patterns (20). The 

relative enrichment of both CD4 (21) and CD8 (22) memory cells in non-lymphoid tis­

sues has been well documented, but this analysis has not been coupled with a precise 

measurement of the absolute number of T cells present in naive and memory situations. 

Thus the question remains: To what degree does an increase in the frequency of a single 

clonotype of antigen-specific CD4+ T cell contribute to immunological memory?

To address this question, we have employed the DO 11.10 adoptive transfer sys­

tem (23) to measure the expansion and contraction of CD4+ T cells following immuniza­

tion of the ATR mice. In this system, antigen-specific TCR Tg cells are detected with the 

KJ1.26 monoclonal antibody KJ1.26, which recognizes the DO11.10 OVAp-specific, Tg 

TCR (24). Using a combination of flow cytometry and immunohistochemistry, we have 

measured the number of T cells present in ATR mice both immediately before, and 30
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days following, immunization. Our data show that the fraction of KJ1.26+ TCR Tg cells 

that expressed cytokines after peptide restimulation was substantially higher within the 

memory pool, suggesting that an altered quality of response is a more critical feature of 

memory among CD4 T cells than a physical increase in numbers of antigen-specific cells.

Materials and methods

Mice

The DOl 1.10 Tg TCR mice were the kind gift of Dr. Dennis Loh. D O ll.lO m ice 

and BABL/cByJ mice (the Jackson Laboratory, Bar Harbor, ME) were bred in our facil­

ity in accordance with NIH regulations.

Flow cytometry

Cell-surface staining was performed using standard procedures. KJ1.26 mAb was 

purified and conjugated to fluorescein isothiocyanate (FITC) by Southern Biotechnology 

Associates (Birmingham, AL). KJ1.26PE and F4/80PE were purchased from Caltag (Bur­

lingame, CA). All other antibodies were purchased from BD-Pharmingen (San Diego, 

CA). Splenocytes or lymph node cells were incubated with KJ1 .26fItc specific for the 

transgenic TCR clonotype and PE-Cy5 conjugated anti-CD4 (RM4-5). For large list­

mode acquisitions, only F4/80 negative cells were analyzed to exclude CD4l0 non-T cells 

and autofluorescent cells for a precise enumeration of very rare CD4+KJ1.26+ T cells. 

For analysis of activation and memory marker expression, cells were incubated with 

KJ1.26fitc, CD4apc, F4/80pe, and biotin-conjugated a-CD25 (7D4), a-CD45RB (16A), 

a-CD62L (MEL-14), or a-CD122 (TM-pi). Biotin-labeled primary mAbs were devel­
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oped with streptavidin- conjugated Red670 (Invitrogen, Carlsbad, CA). Flow cytometry 

was performed on either a Becton Dickinson FACScan or FACScalibur and analyzed 

with CellQuest software on list-mode acquisitions of up to 1.5 x 106 lymphocytes based 

on forward and side scatter.

Adoptive transfer and immunization

Pooled DO 11.10 splenocytes and lymph node cells were analyzed by flow cy­

tometry to determine the percentage of CD4+KJ1.26+ cells in the population. An appro­

priate number of cells sufficient to achieve 0.04 x 106, 1 x 106, or 25 x 106 were injected 

into the tail veins of recipient mice in a final volume of 0.5 ml PBS. For analysis o f cell 

division, 5 x 106 cells per ml were incubated in 5 pM 5-(and-6)-carboxyfluorescein di­

acetate, succinimidyl ester (CFSE, Molecular Probes, Eugene, OR), for 8 min at 37°C. 

Labeling was quenched by the addition of newborn calf serum, and the cells were washed 

twice in serum-free PBS before transfer into recipient mice. One to three days following 

cell transfer, recipient mice were sacrificed or immunized with 100 pg OVA323.339 in 100 

pi of a multiple emulsion adjuvant (Pluronic F-127, squalene, Span 80, Tween 80, and 

Triton X-100 purchased from Sigma (St. Louis, MO)) adapted from Tomasi et al. (25). 

When compared with CFA, multiple emulsion adjuvant adjuvant generated higher re­

sponses of DO 11.10 CD4+ T cells as measured by both induction of IL-2 expression in 

the primary response and expansion of antigen-specific cell numbers (unpublished obser­

vations). Fifty pi of adjuvant was injected i.p., 25 pi s.c. at the base of the tail, and 25 pi 

s.c. at the scruff of the neck.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 0

Quantification of antigen-specific T cells

Mice were sacrificed without immunization (day 0) or 5,10, or 30 days after im­

munization. On the day of sacrifice, lymph nodes and spleens were harvested from the 

recipient mice. Half of each compartment was placed in an optimal cutting temperatureT 

block and snap frozen in liquid nitrogen. The remaining half was teased into suspension 

and counted in a hemocytometer. Cells were analyzed by flow cytometry to determine 

the percentage of CD4+ and KJ+ cells present. For immunohistochemistry, four micron- 

thick sections were cut from the frozen tissue blocks and immediately dried in acetone. 

Sections were next incubated in FITC-labeled KJ1.26 at room temperature and subse­

quently with horseradish peroxidase conjugated anti-FITC antibody (Vector Labs, Bur­

lingame, CA). For anti-CD4+ staining, cells were incubated in purified anti-CD4 anti­

body (H129.19 from BD Pharmingen), followed by a biotin-labeled anti-rat IgG antibody 

and ABC (Dako, Carpinteria, CA). Bound antibody was detected by precipitation of 

3,3’-diaminobenzidine (Dako), a substrate of horseradish peroxidase. Sections were 

counterstained with methyl green, and positive cells were quantified with bright field mi­

croscopy and direct counting. Tissue area was measured by grid point counting.

To measure the number of KJ1.26+ cells present in non-lymphoid compartments, 

each organ was weighed at the time of sacrifice, and the number of KJ1.26+ cells per 

mm2 of tissue (4-pm-thick sections) was calculated in a given mass of tissue assuming a 

density of 1 gram per ml. For the lamina propria, the length of the small intestine and the 

contribution of the lamina propria to the cross-sectional area of the small intestine were 

measured. After determining these two values, the number of KJ1,26+ cells present in the 

entire lamina propria was calculated using the same technique as used for the non­
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lymphoid compartments. The number ofKJ1.26+ cells present in Peyer’s Patches was 

calculated by finding the ratio of KJ 1.26+ cells to all CD4+ cells by immunohistochemis- 

try, and the number of CD4+ cells per average Peyer’s patch was measured by flow cy­

tometry. Observations were made to detect KJ 1.26+ populations in several other tissues, 

including salivary gland, kidney, heart, and smooth muscle. Extremely rare positive 

events were present in these tissues, but we calculated the combined populations of these 

compartments to be less than 300 cells per mouse and thus not a significant contribution 

to the whole body population of over 2 x 105 KJ1.26+ cells.

Detection o f cytokine-producing cells in vitro

Splenocytes from adoptive transfer recipient mice that received 4 x 106 

CD4+KJ1.26+ cells were plated at 3 x 106 cells per well in a 48-well plate and stimu­

lated for 5 hr in RPMI-1640 complete media (10% FCS). GolgiPlug was added to the 

wells for the final 2.5 hr of stimulation. Cells were then stained with KJ 1,26PE (Caltag) 

and a cocktail of biotinylated antibodies, F4/80 (Caltag), PK136,1D3, and SF1-1.1 (BD- 

Pharmingen) to exclude macrophages, NK cells, B cells, and all MHCII-expressing cells, 

respectively. Biotinylated antibodies were developed with streptavidin-conjugated 

Red670 (Invitrogen), and CD4-expressing cells were detected with APC-conjugated RM4- 

5 (BD-Pharmingen). Cytokine staining was performed with JES6-5H4FITC to detect R e ­

producing cells and XMG1.2FITC to detect IFNy-producing cells using the Cytofix- 

Cytoperm system from BD-Pharmingen, according to the manufacturer’s instructions.
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Results

In vivo expansion and contraction o f antigen-specific CD4+ T cells

To determine the effect of initial antigen-specific cell frequency on T-cell popula­

tion dynamics following exposure to antigen, various numbers of CD4+KJ1.26+ T cells 

from DO 11.10 donor mice were adoptively transferred into normal BALB/c recipient 

mice. Immunization with OVAp triggered clonal expansion in all recipients. In each 

case, the antigen-specific populations present in the lymph nodes (Fig. la) and spleen 

(Fig. lb) expanded by day 5 and then began a contraction phase until the last time point 

at day 30. For each cell dose, the number of antigen-specific cells remaining on day 30 

was approximately the same as the starting population (Fig. la  and lb). However, a 

striking inverse relationship exists between the initial cell dose and the extent of cellular 

expansion. The 25 x 106 cell dose expanded only 2-5 fold, while the 0.04 x 106 and 1 x 

106 cell doses expanded by about 40- and 70- fold, respectively. Likewise, the expansion 

and contraction of each dose of KJ 1.26+ cells was observed in histologically stained 

lymph nodes, spleen, and multiple other tissues (Fig. 2). CD4+KJ1.26+ cells did not ex­

pand in recipients after immunization with KLH (data not shown).

To further characterize the in vivo expansion of the KJ+ populations following 

immunization with OVAp, CFSE-labeled DOl 1.10 cells were transferred into normal 

BALB/c mice. In agreement with the increases in absolute cell numbers, smaller starting 

populations of CD4+KJ1.26+ cells underwent more cell cycles of division than larger 

starting populations by day 3 (Fig. 3). Analysis of CSFE dilution was also performed at 

day 2 and day 5 and showed similar results, but by day 5 the dilution o f CSFE were indis­

tinguishable from autofluorescence, thereby obscuring the differences between the
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Figure 1. Expansion and contraction o f adoptively transferred CD4+KJ1.26+ cell popu­
lations in recipient BALB/c ByJ mice as measured by flow cytometry. Cell transfers 
were performed on day -2, and mice were sacrificed on day 0 (unimmunized) and on days 
5,10, and 30 following immunization with 100 pg of OVA peptide in adjuvant. Circles- 
25 x 106 cell dose; triangles-1 x 106; diamonds-0.04 x 106. Error bars indicate the stan­
dard error of the mean. (A.) Lymph nodes. (B.) Spleen.
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Figure 2. Photomicrograph of lymph node sections stained with KJ1.26 on days 0, 5, 
and 30 following immunization. Mice received 0.04 x 106, 1 x 106, or 25 x 10 
CD4+KJ1.26+ cells. Equivalent expansion and contraction of the numbers of KJ1.26+ 
cells per square millimeter was observed in the spleen.
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Figure 3. CFSE dilution profiles of CD4+KJ1.26+ lymphocytes from the spleen on day 
3 following immunization. 25 x 106 -  grey fill; 1 x 106 -  solid line; 0.04 x 106 -  dotted 
line.
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different initial cell doses (data not shown). CD4+KJ1,26+ cells from unimmunized con­

trol mice did not proliferate (data not shown).

Activation and memory marker expression by K .f  cells

Decreased expressions of CD45RB and of CD62L are commonly used to distin­

guish antigen experienced from naive cells. Expression of four activation/memory mark­

ers by memory and control immunized cells was examined on day 30 (Fig. 4). Expres­

sion of CD25, the IL-2Ra subunit, was up-regulated on day 1 after immunization (data 

not shown), but returned to control levels by day 30. Expression of CD122, the IL-2RJ3 

subunit, was also increased soon after immunization (data not shown) but was expressed 

at elevated levels through day 30 compared to cells from mice immunized with control 

antigen. As expected, KJ1.26+ cells from mice immunized with OVAp showed reduced 

expression of CD45RB and CD62L. Similar results were found in spleen cells.

Antigen-specific CD4+ T cells in non-lymphoid tissues

The contraction of activated antigen-specific cell populations results mostly from 

activation-induced cell death (26), but redistribution into other compartments may con­

tribute to the disappearance of TCR Tg cells from the spleen and lymph nodes. To quan­

tify redistribution into other compartments 30 days after immunization, we used an im- 

munohistochemistry technique (Fig. 5) with accuracy equal to flow cytometry (27). The 

number o f KJ+ cells present in the lamina propria of the small intestine, Peyer’s Patches, 

lung, liver, salivary gland, heart, kidney, and skeletal muscle was measured on days 0 and 

30 in mice that received 1 x 106 KJ1.26+ cells (Fig. 6a). Although the fraction of the total
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Figure 4. Comparison of activation and memory marker expression by CD4+KJ1.26+ 
lymph node cells from OVAp immunized (thick line) and KLH control immunized (thin 
line) mice 30 days following immunization. Modulation of activation and memory 
marker expression by CD4+KJ1.26+ splenocytes was equivalent.
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Figure 5. Photomicrograph showing KJ1.26+ cells in the small intestine, lung, and liver 
in mice which received 1 x 106 CD4+KJ1.26+ cells.
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Figure 6. Absolute numbers o f KJ1.26+ cells in lymphoid and non-lymphoid 
compartments, (a.) KJ1.26+ cell numbers in spleen, lymph nodes, small intestine, 
Peyer’s patches, lung, liver, and combined other compartments (salivary gland, kidney, 
heart, and skeletal muscle) on day 0 without immunization (black) and day 30 following 
immunization (unfilled). Asterisks indicate total population sizes below the limit of 
detection for the respective compartment. Results are from four mice on day 0 and five 
mice on day 30. Adoptive transfer mice received lxlO6 CD4+KJ1.26+ cells, (b.) 
KJ1.26+ cell number in the lymph nodes and lungs of adoptive transfer recipient mice 
mice that were immunized with OVAp in multiple emulsion adjuvant or with OVAp in 
LPS. Results are from three mice for each condition.
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CD4 T cells that co-expressed KJ1.26 was significantly increased in the non-lymphoid 

compartments (Fig. 6a), the vast majority of KJ1.26+ cells present in the mouse resided in 

the lymphoid compartment.

This result contrasts with that reported by Reinhardt et al. which showed a net 

redistribution of antigen-specific T cells from the lymph nodes to the non-lymphoid tis­

sues 30 days following immunization with OVAp and LPS. Thus, we compared the ef­

fect of immunization route and adjuvant on antigen-specific cell distribution 30 days after 

immunization in adoptive transfer recipient mice, which received 3 x 106 CD4+KJ1.26+ 

cells (Fig. 6b). These results showed that i.v. immunization using LPS as an adjuvant 

resulted in only one-third as many CD4+KJ1.26+ T cells remaining in the lymph nodes 

compartment as compared to mice that were immunized subcutaneously and intraperito- 

neally with multiple emulsion adjuvant. Additionally, OVAp+LPS-immunized mice 

showed a 5-fold increase in the number of KJ1.26+ cells found in the lungs 30 days fol­

lowing immunization. No significant difference was found in cell numbers in other com­

partments. However, the basic result, that the majority of the CD4+ TCR Tg cells in the 

entire animal 30 days after immunization reside in the spleen and lymph nodes, was not 

altered by this alternative form of antigen delivery.

Functional differences in memory and naive cells

To determine whether the quality of the secondary response of these memory 

CD4+ T cells was altered, despite the minor change in total cell number, production of 

both IL-2 and IFN-y after in vitro stimulation was measured by intracellular cytokine 

staining. At the time of sacrifice, 35 days after immunization, the KJ1.26+ T cells com-
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prised approximately 1% of the splenic CD4+ population (Fig. 7a). Upon restimulation 

in vitro, a greater fraction of the antigen-specific cell population from adoptive transfer 

recipient mice previously immunized with OVAp produced IL-2 and IFNy than did popu­

lations containing similar frequencies of naive DO 11.10 cells at all doses of antigen 

tested (Fig. 7b). Approximately 30% of the memory CD4+KJ1.26+ population produced 

IL-2, compared with only 10% of the naive CD4+KJ1.26+ population after stimulation 

with 30 pg/ml OVAp (Fig. 8 a). The fraction of antigen-specific cells producing IFNy at 

this antigen dose ( 1 1 % positive) was also substantially higher in the memory population, 

compared to 0.9% positive in the naive population (Fig. 8 b). Thus, the number of 

OVA323 -339-responsive cells was substantially increased within the memory population, 

but this increase was due to a higher fraction of the clonotype-positive cells making a 

functional response, not an increase in the actual number of antigen-specific cells. Al­

though immunization may have activated some non-TCR Tg cells in these adoptively 

transferred mice, about 90% of the total cytokine-expressing cells measured by intracellu­

lar staining were KJ1.26+, indicating that the TCR Tg population comprises the bulk of 

the OVA323-339 peptide response in this experimental model (data not shown). A small 

fraction of the KJ1.26+ cells expressed CD8 rather than CD4, and they produced IFNy at 

higher levels than the CD4+ cells. Selection of TCR Tg T that recognize their specific 

antigen across MHC restriction barriers and thus develop as either CD4+ or CD8+ T cells 

has been previously reported (28). The increased fractional response of antigen-specific 

CD4+ T cells contributes more to the heightened memory response than does the increase 

in numbers of antigen-specific cells (Fig. 8c).
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Figure 7. Enhanced functional response in memoir cells compared to naive cells in 
adoptive transfer recipient mice that received 4x10 CD4+KJ1.26+ cells, (a.) KJ1.26+ 
cells composed approximately 1% of the total splenic CD4+ lymphocyte population, (b.) 
Intracellular IFNy and IL-2 production by KJ+CD4+ and KJ+CD4- splenocytes from 
OVAp-immunized adoptive transfer recipient mice and unimmunized control mice 
following a 5hr in vitro stimulation. Plots are gated on the KJ1.26+ population.
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Discussion

An increase in the number of antigen-specific cells has conventionally been re­

garded as a key component of the increased intensity of secondary immune responses. 

This measure has been widely applied in vaccine studies, in which the number of cells 

capable o f responding to a specific antigen as judged by a given assay during a recall 

challenge was measured rather than physical identification of cells with identical TCR 

sequences. The relative contribution of increased precursor frequency compared to the 

enhanced fractional response within a clonotype is unknown. Our results indicate that net 

increases in the absolute number of antigen-specific CD4+ T cells is relatively modest 

compared to the more substantial enhanced fractional response and dose sensitivity which 

are characteristic of memory populations.

Our data show that, regardless of the initial size of the adoptively transferred cell 

population, the respective populations at 0 and 30 days in the lymphoid compartments are 

approximately the same size. Kearney et a l saw similar expansion and contraction when 

they first transferred a single dose of CD4+ TCR Tg cells into recipient mice (23). When 

the adoptive transfer results in a supra-physiological frequency, the final population size 

might be determined by a limitation in the total size of a particular specificity. However, 

the result that the final population of memory cells is roughly equivalent to the stating 

cell number over a side range of initial frequencies suggests that some property inherent 

to the individual T cell governs the final population size. The contraction of antigen- 

stimulated CD4+ populations to approximately the same population size as before anti­

genic stimulation contrasts with the well-demonstrated biology of the expansion of CD8+
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cells, which expand and subsequently contract to a population size that may be many fold 

larger than the naive population (29-31).

Interestingly, the behavior of activated cells is affected more by total population 

size than by the behavior of resting cells. During the several days following immuniza­

tion, the adoptive transfer cell populations proliferate in response to antigen regardless of 

their initial population size, but the highest transferred cell dose expanded approximately 

5-fold in the spleen and 2-fold in the lymph nodes, while the 0.04 x 106 transfer popula­

tion expanded 73-fold in the spleen and 37-fold in the lymph nodes. The blunted re­

sponse in mice that received 25 x 106 CD4+KJ1.26+ cells likely results from the high fre­

quency of antigen-specific cells and the consequent competition for limited resources 

necessary for antigen-specific population expansion. These results support previously 

published findings showing that labeled TCR Tg populations transferred into TCR Tg 

recipient mice compete for resources available in the host animal (32) and that intraclonal 

competition can suppress the number of antigen-specific cells that produce IL-2 follow­

ing immunization (33). Additionally, we noted that the magnitude of change in activa­

tion marker expression by the largest transfer cell dose was also less than the change in 

activation marker expression shown by the smaller transfer doses (data not shown).

Another novel observation reported here concerns the pattern of recirculation of 

the memory T cells between lymphoid and non-lymphoid tissues. Although the fraction 

of KJ1.26+ OVAp-specific CD4+ cells increased after immunization, the majority o f the 

memory cells were found in the lymphoid tissues. Previous reports have shown conflict­

ing results on this point. Schiemann et al. (31) quantified the number of antigen- 

responsive CD4+ and CD8+ cells in lymphoid and non-lymphoid compartments 35 days
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after recall infection with Listeria and reported that the decline in the number of antigen- 

specific cells in the lymphoid tissues was not the result of net redistribution into non­

lymphoid compartments. By contrast, Masopust et al., using a VSV model system to 

study CD8 T cell memory, found that memory CD8 T cells preferentially localize in non­

lymphoid tissues (22). However, they looked only at the percentage of the CD8+ popula­

tion that was tetramer positive rather than measuring the absolute number of cells present 

in each compartment. Enrichment of CD8+ memory cells in these locations occurs, but 

this result does not indicate large-scale redistribution of bulk numbers of cells into these 

tissues. Reinhardt et al. reported a net redistribution of the antigen-specific CD4+ popu­

lation into non-lymphoid compartments (21). They obtained this result by quantifying 

the number of TCR transgenic (OT-II) cells that express Thy 1.1 present in single midline 

sections of an entire mouse. This single section samples many tissues simultaneously but 

may not accurately reflect the relative abundance of all body compartments, particularly 

the regional lymph nodes that are not present in a single midline section. The analysis 

reported here involves analysis of all body compartments with direct measurement of the 

mass and volume of each tissue by conventional techniques, rather than a single plane of 

section. Our results showed some redistribution of memory cells into non-lymphoid tis­

sues, but we found that 93% of the antigen-specific CD4+ cells remained in secondary 

lymphoid tissues 30 days following immunization. It is likely that this relative enrich­

ment of memory CD4+ cells in non-lymphoid peripheral tissues corresponds to a greater 

rate of recirculation through these compartments. These memory cells can gain access to 

the regional lymph nodes via drainage in the afferent lymph, and not merely through im­

migration directly from blood via the high endothelial venules (34). Precise measure­
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ment of the rates at which T cells recirculate through different compartments has not been 

performed, but the profound T cell depletion associated with thoracic duct drainage and 

the short residence time of T cells in the blood (35,36) strongly suggest that these rates 

are quite rapid. Thus, the localization of T cells in different compartments most likely 

reflects a highly dynamic equilibrium of recirculation patterns rather than a static local­

ization of T cells in these sites.

It has long been assumed that the enhanced functional response of a T-cell popu­

lation after a primary response is primarily due to an increase in the frequency of the an­

tigen-specific subset of cells. The underlying rationale for this concept is that all of the 

antigen specific-cells mediate functional activity, such as cytokine production, when 

stimulated with adequate amounts of the specific antigen in vitro. However, the activa­

tion of cytokine expression by individual T cells is far from uniform, even within clonal 

populations (13,14). Since the fraction of antigen-specific CD4 T cells that produce cy­

tokine with optimal stimulation is actually fairly low in naive cells, a higher functional 

response could be due to either an increase in the number of antigen-specific cells or to a 

higher probability of response for each individual cell. In the experimental system exam­

ined here, the frequency of CD4+ T cells that produce IFN-y is increased by about 25- 

fold in the memory population of cells compared to the naive cells. A relatively small 

proportion of this increase (about 2-fold) was due to the increase in the physical number 

of antigen-specific KJ 1.26+ cells, while each KJ 1.26+ cell was about 12 times more 

likely to produce this cytokine with optimal in vitro stimulation (Fig. 6). In addition, the 

memory cells show about a 10-fold increase in the sensitivity to antigen dose for func­

tional activation. In the response to an infectious agent, this increased sensitivity to low
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amounts of antigen would correlate to a greater response at an earlier time point in the 

growth of the infectious agent. Therefore, the increase in the quality of the response is a 

significantly larger component of the overall increase, although both an increase in abso­

lute cell number and an increase in fractional response contribute to the higher functional 

response in the memory population.

Since the functional phenomenon of antigen-specific memory in the CD4 T cell 

populations can result primarily from changes in the quality of the response, the assess­

ment of CD4 T cell function in vitro in various clinical conditions should also focus on 

the quality of the response. Measures such as a change in the pattern of cytokine expres­

sion and shifts in the sensitivity to peptide stimulation may be more relevant in some cir­

cumstances than direct frequency measurements.
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DISCUSSION

As previously shown, populations of memory CD4+KJ1.26+ T cells do not main­

tain expanded population sizes compared to the size o f the naive population. However, 

this result definitively represents only a single TCR clonotype out of all clonotypes pre­

sent in the periphery. The specificities of T cells that compose the peripheral population 

all recognize some selecting antigen in the context of the host MHC complex. The avid­

ities with which these cells recognize their ligands form a spectrum ranging from very 

low avidity to extremely high avidity recognition and affect the course of the response 

(65-68).

On a molecular level, avidity determines the dwell time of TCR with the loaded 

MHC complex (69). Very low avidity ligands fail to engage the TCR for sufficient time 

to trigger activation events in the cell. High avidity ligands, by contrast, have an unnec­

essarily long dwell time, which also has an inhibitory effect on T cell activation. Optimal 

cellular activation results from TCR interaction with a moderate avidity ligand.

CD4+ T cells function primarily to coordinate the immune response and they 

achieve this coordination in large part by secreting cytokines (70). Because cytokines are 

soluble and capable of diffusing away from the cell which produced them, one CD4+ T 

cell can affect the response of numerous surrounding cells. CD8+ T cells, by contrast, 

effect their response mainly through cytotoxic cell-cell contact interactions (71). One 

CD8+ T cell may serially kill numerous target cells, but a greater number of cells are
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likely required to effect a full response compared to CD4+ T cells. Additionally, CD8+ T 

cells do not completely contract to the levels at which they were present prior to the im­

mune response (72). This elevated memory CD8+ T cell frequency facilitates a more 

rapid secondary response, whereas the memory CD4+ T cell response in enhanced by an 

increase in the fraction of antigen-specific cells that respond rather than an increase in the 

absolute number of cells. This difference in biological function likely accounts for the 

distinct patterns of population expansion between the two cell types.

In models of the CD8+ T cell response, the magnitude of antigen-specific cell 

population expansion greatly surpasses the level of population expansion seen in CD4+ T 

cell model systems. In the lymphocytic choriomeningitis virus system, the virus-specific 

CD8+ T cell population expands from below the levels of detection prior to the response 

to approximately 50% CD8+ T cell population at its peak (47,73). An antigen-specific 

CD4+ T cell population expansion this great has never been demonstrated.

To compare the response of CD4+KJ1.26+ T cells following immunization of 

adoptive transfer recipient mice with another clonotype of CD4+ T cell, CD901/1B6 mice 

were transferred with 1 x 106 RAG'/‘CD902/2 OT-IICD4+ T cells. No anti-clonotypic 

antibody for the OT-II TCR was available, so adoptively transferred cells were identified 

on the basis of CD4 and CD90.2 expression. OT-I AT cells were identified on the basis 

of CD8 and CD90.2 expression. Recipient mice were immunized with 100 pg of OVAp 

or chicken ovalbumin peptide residues SIINFEKL on the day following cell transfer, ex­

cept for day 0, mice which were sacrificed on that day without immunization. Remaining 

mice were sacrificed on days 5,10, or 30 following immunization. At least three mice 

were sacrificed each day.
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OT-II ATR mice sacrificed on day 0 had an average of 1.4 x 105 AT cells in the 

spleen and 1.1 x 105 AT cells in the lymph nodes. This population expanded to 5.2 x 106 

in the spleen and 1.2 x 106 in the lymph nodes on day 5 following immunization. A con­

traction phase followed during which the AT population size was reduced to 1.9 x 105 in 

the spleen and 2.5 x 105 in the lymph nodes on day 10. The AT population continued to 

wane until day 30, when the population sizes in the spleen and lymph nodes were 7 x 104 

and 6 x 104 respectively (Fig. 1). These results are similar to those generated using the 

DO 11.10 adoptive transfer system in which the CD4+KJ 1.26+ population sizes in the 

spleen and lymph nodes were 9 x 104 and 1 x 105 30 days following immunization. OT- 

II populations in unimmunized mice did not expand following immunization. 31 days 

after cell transfer approximately 6 x 105 and 5 x 105 of these cells were present in the 

spleen and lymph nodes, respectively.

In OT-I ATR cohorts, mice sacrificed on day 0 had an average of 2.4 x 105 AT 

cells in the spleen and 1.8 x 105 AT cells in the lymph nodes (Fig. 2). This population 

expanded to 2.2 x 106 in the spleen and 1.7 x 106 in the lymph nodes on day 5 following 

immunization. A contraction phase followed during which the AT population size was 

reduced to 3 x 105 in the spleen and 7 x 104 in the lymph nodes on day 10. The AT popu­

lation continued to wane until day 30, when the population sizes in the spleen and lymph 

nodes were both 5 x 104.
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Figure 1. Expansion and contraction of adoptively transferred OT-II CD4+ T cells in the 
spleen and lymph nodes of recipient mice as measured by flow cytometry. Cell transfers 
were performed on day -2 and mice were sacrificed on day 0 (unimmunized) and on days 
5,10, and 30 following immunization with 100 pg of OVA peptide in adjuvant. Circles -  
spleen; triangles -  lymph nodes.
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Figure 2. Expansion and contraction of adoptively transferred OT-ICD8+ T cells in the 
spleen and lymph nodes of recipient mice as measured by flow cytometry. Cell transfer 
were performed on day -2 and mice were sacrificed on day 0 (unimmunized) and on days 
5,10, and 30 following immunization with 100 pg of OVA peptide in adjuvant. Circles -  
spleen; triangles -  lymph nodes.
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SIGNIFICANCE

While observing the response of only two clonotypes of CD4+ T cells is not rep­

resentative of the entire periphery, the similarity of response shown by DOl 1.10 and OT- 

II TCR Tg cells suggests that the phenomenon is not simply an artifact of the DO 11.10 

transgenic system. Another possible limitation, though difficult to address, is that TCR 

sequences which are most easily selected for cloning by in vitro proliferation and subse­

quent use in TCR transgenic line founding may represent a narrow range of avidities for 

their respective ligands. The approach to cloning antigen-specific TCR sequences and 

creating transgenic lines may have conserved a sampling bias across all TCR transgenic 

systems. Thus clonotypes may be present in the periphery that can recognize an antigen 

with sufficient avidity to generate a response but, because of the difference in avidity 

from TCR transgenic systems, the magnitude and manner of this response may vary.

The failure of OT-I CD 8+ memory cells to persist in this adoptive transfer system 

contrasts with the findings of published CD8+ studies, which show a maintained expan­

sion of the memoiy population following the response (47). A likely explanation for the 

discrepancy in results lies in the choice of model system. The experiments that have led 

to the current concept of CD8+ biology were largely conducted using viral infection 

models. Infection models create the possibility of persistence of low levels of antigen 

which may be extremely difficult to detect experimentally but sufficient to maintain 

CD8+ memory populations (74).
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In contrast to soluble peptide models, infection models have the benefit of creat­

ing cell-associated antigen rather than relying strictly on the uptake of antigen by APCs 

for subsequent presentation to T cells. This difference may be of particular importance 

for CD8+ responses. Li et al. have compared the effect of soluble versus cell-associated 

antigen on CD8+ and CD4+ T cell response using the OT-I and OT-II systems (75).

They report that cell-associated ovalbumin is presented 50 000-fold more efficiently to 

CD8+ T cells and 500-fold more efficiently to CD4+ T cells. The reduced efficiency of 

antigen presentation to CD8+ T cells effectively lowers the antigen dose they receive. 

Williams and Bevan conducted a set of experiments in which they temporally limited an­

tigen by administering antibiotics to Listeria infected mice 24-48 hr following infection 

(76). They report that the limited infection results in the same size primary CD8+ re­

sponse but a smaller subsequent population of memory cells.

The reliance entirely on soluble antigen to generate a response in the OT-I ex­

periment reported here may account for the failure to create a sustained memory popula­

tion. If this scenario proves true, it has important implications for therapeutic vaccine 

development against HIV, wherein a cellular immune response may be triggered but 

never result in the formation of effective cellular immune memory.
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SUMMARY

The results communicated herein demonstrate that increased antigen-specific cell 

frequency is not a substantial component of CD4+ T cell memory. Analysis of the anti­

gen responsiveness of populations of memory CD4+ T cells without the ability to physi­

cally identify antigen-specific cells have wrongly lead to the common perception that in­

creases in antigen-specific cell number is one of the mechanisms underlying the enhanced 

qualitative response of memory populations.

Additionally, I have shown that over 90% of antigen-specific cells remain in the 

lymphoid tissues 30 days following sacrifice. Adjuvant choice was found to have a mi­

nor effect on the distribution of memory cells.

Interestingly, I was unable to demonstrate that increased antigen-specific cell fre­

quencies are a component of CD8+ T cell memory. The failure of peptide antigen to per­

sist in vivo or the failure to provide CD8+ T cells with cell-bound antigen may account 

for this result. Should the latter prove true, it could be of great use in the design of vac­

cines intended to elicit CD8+ T cell memory and presents an interesting opportunity for 

further research.
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