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MEASURE OF AGREEMENT BETWEEN DISTRIBUTIONS___________

This study examines the sampling behavior of the overlapping 

coefficient, OVL, a proposed measure of the agreement between two 

probability distributions. OVL is defined as

OVL = fflinĵf x (x) ,f2 (x)J dx ;

where f^(x) and f2(x) are the probability density functions for the two 

distributions of interest. In addition, OVL = 1 - D, where D is the 

usual index of dissimilarity, but defined for continuous as well as 

discrete distributions.

Here the properties and sampling behavior of various estimators 

of OVL are investigated in three situations: maximum-likelihood estima­

tion of OVL when sampling from two normal distributions; nonparametric 

estimation of OVL using spline density estimates constructed from 

samples from two unspecified distributions; and estimation of OVL when



the two populations of interest, or samples from them, are represented 

by the rows in a 2 X C contingency table.

Using Monte Carlo techniques, it is discovered that the sample 

estimators of OVL in each of these circumstances exhibit downward bias, 

that is, the true overlap is underestimated, and that this bias in­

creases as the similarity of the distributions from which the samples 

are obtained increases. In the normal distribution and 2 X C table 

cases, approximations to the variance of the estimators of OVL are 

derived. The approximate sampling distribution of the estimator of OVL 

between two normal distributions with common variance can be related to 

the folded-normal distribution, and confidence intervals for OVL can be 

constructed from the sampling distribution of the Mahalanobis distance. 

Bootstrap estimators of the sampling variance of estimators of OVL in 

quadratic spline and 2 X C cases are shown to be reasonable, and boot­

strap methods of constructing confidence intervals for OVL are illus­

trated. The behavior of the sample estimators of OVL in all three 

situations suggests that OVL can serve as a valuable check on the 

meaningfulness of differences detected between the two distributions of 

interest by other statistical techniques, but that OVL itself should not 

be used to test for the equality of the two distributions compared.
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Chapter One

INTRODUCTION

Suppose we are given two probability distributions with 

probability (density) functions fjCx;©^ and f2(x;02). If both distri­

butions are of some common form indexed by the values of the parameters

9. and 0 , the two distributions must differ if 0  ̂0 . However, 01 2 ’ 1 2 ’ 1
and ©2 may differ and yet be similar in magnitude, suggesting that

an(̂ w -̂*-e not identical, are similar. On the other
hand, two distributions which are not of the same parametric form, say 

fl(x;0i) and f2(x;X2), cannot be identical, but for certain values of 

the parameters and they may in fact be quite similar. Once again, 

the issue is the degree to which two distributions, known to differ, are 

similar or dissimilar.

A more realistic setting for this problem appears when the 

question of the similarity of two distributions is addressed through 

random samples selected from each of the two unknown distributions or 

populations. Assuming common form, f^xjOj) and f2(x;02) can be shown 

to differ by the appropriate statistical test for the equality of the 

parameters 0̂  ̂and 02, given that 0j £ Since the power of such tests

is usually related to both the magnitude of the difference in 0̂  ̂

and 02 and the sizes of the two samples from which 0̂  and 02 are esti­

mated, small differences in 0̂  and 02 can be declared statistically

1
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significant given sufficiently large sample sizes. Nevertheless, it is 

the magnitude of the estimated difference between 0j and 02, not the 

sizes of the samples, which actually indicates the degree of separation 

between fjCxjOj) and f2(x;02). The prospect of declaring a trivial 

difference between 0̂  and ©2 statistically significant while missing the 

true similarity of the two populations of interest as sample sizes 

increase has not been ignored. Commentators on statistical practice in 

many diverse areas of application have urged that the distinction 

between the statistical significance and the practical significance of 

differences detected in the parameters of the distributions that the 

populations of interest are presumed to follow be recognized (Boring, 

1919; Cohen, 1962, 1977; Sheehan, 1980, for example), and introductory 

statistics textbooks often include a short discussion of the problem 

(for instance, Wallis and Roberts, 1956, pp. 384-85, 408-9; Snedecor 

and Cochran, 1980, p. 67; Moore, 1979, p. 292).

This study examines a measure of the agreement between two 

distributions proposed by Bradley and Piantadosi (1982) as a method of 

gauging the meaningfulness of some specified or estimated difference 

between the two probability distributions. This measure of agreement, 

the overlapping coefficient or OVL, indicates the similarity between the 

distributions of interest by computing— or estimating— the common area 

below the two probability densities; see figure 1.1. The greater the 

common area, the more similar are the two distributions. Bradley and 

Piantadosi determine OVL for several cases involving known distribu­

tions, but they do not consider the sampling behavior of estimators of 

OVL.
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Here the properties and sampling behavior of such estimators of 

OVL are investigated in three situations: when sampling from two normal 

distributions; when sampling from two distributions estimated non- 

parametrically by quadratic splines; and when samples from two discrete 

distributions are arranged in a 2 X C contingency table. It is dis­

covered that the sample estimators of OVL in each of these circumstances 

are characterized by downward bias, that is, the true overlap is under­

estimated, and that this bias increases as the similarity between the 

distributions from which the samples are obtained increases. Further 

insight into the sampling behavior of the estimators of OVL is provided 

by Monte Carlo simulation studies in each of the three cases examined.

In the normal distribution and the 2 X C table cases, estimates of the 

sample variance of the estimators of OVL can be derived, and normal 

approximations to the expectation and variance of the estimators of OVL 

in the 2 X C table are also presented. Bootstrap estimators of the 

sampling variance of the estimators of OVL in the quadratic spline and 

2 X C table cases are shown to be reasonable, and bootstrap methods of 

constructing confidence intervals for OVL are illustrated. The behavior 

of the sample estimators of OVL in all three situations suggests that 

OVL can serve as a valuable check on the meaningfulness of differences 

detected between the two distributions of interest by other statistical 

techniques, but that OVL itself should not be used to test for the 

equality of the two distributions compared.

Definition of OVL 

Let fj(x) and f2(x) be two probability (density) functions de­

fined on some common domain for x. If fjCx) and f2(x) are continuous
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distributions, then the overlapping coefficient is defined as

OVL = min[f1(x),f2(x)]dx . (1.1)

If fj(x) and f2(x) are discrete distributions, then the overlapping 

coefficient is defined in an analagous manner:

OVL = I minff^x) ,f2(x)] 
x

(1.2)

As Bradley and Piantadosi indicate, OVL follows one of the usual con­

ventions for measures of association (Goodman and Kruskal, 1979, p. 8). 

First, OVL always lies between zero and unity. Second, OVL attains 

unity if and only if the two distributions are identical. Finally, OVL 

is zero if and only if the two distributions being compared are totally 

distinct.

Relationship between OVL and the 
Index of Dissimilarity

OVL is directly related to a measure of association frequently 

used in the context of 2 X C contingency tables. The relationship 

between OVL and the index of dissimilarity, D, can be seen most easily 

if we rewrite the minimum of the two density functions, using the fact
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that fj(x) and f^(x) are nonnegative:

min[f1(x) ,f2(x)] = '|[f1(x) + f2(x> ~ | f x (x> - f2(x)l] • (1.3)

Substituting this expression into equations 1.1 and 1.2, we find

OVL = 1 - D ; (1.4)

where D in the continuous case is given by

Ifi(x) ~ f2(x)|dx , (1.5)

and in the discrete case by

D = \ I |f!(x) - f2(x)
X

(1.6)
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Thus the properties of OVL apply to D, except that D is zero when the 

two distributions compared are identical and unity when they are com­

pletely distinct. (D apparently always has been used in the discrete 

case and is usually defined as in equation 1.6.)

Calculation of OVL between Known Distributions

The method of determining the overlap between two specified dis­

tributions illustrates the general logic of computing OVL in any 

setting. Bradley and Piantadosi (1982) present as examples the overlap 

between two normal distributions, the overlap between the normal and 

the logistic distribution, and the overlap between two two-parameter 

exponential distributions. Here two additional examples are presented. 

In each, the computation of OVL is based on numerically or analytically 

determining min[fj(x),f2(x)] .

OVL between the Standard Normal and Standard 
Cauchy Distributions

Here the overlapping coefficient between the standard normal dis­

tribution and the standard Cauchy distribution is computed.

The density of the standard normal random variable is

f,(x) = --- exp(-x2/2)
/2tt

(1.7)

its distribution function is, of course, $(x).

The density of the standard Cauchy random variable is
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-1
f 2 ( x )  = [ it ( 1  +  x 2 ) ]  ; (1.8)

its distribution function is

F (x) = 4 + — tan1 (x) .2 2 77 (1.9)

Since the two densities are symmetric about the point x = 0, we 

see that the two points of intersection of the densities are equidistant 

from zero; see figure 1.2. Thus we need only find one of these points, 

the lower crossing point, say, to evaluate OVL. If we equate the 

densities f^(x) and f2(x), we obtain the following nonlinear equation 

for the crossing points:

The derivative of this function with respect to x is

x(1 - x2)
(1.11)
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By Newton's method, we find that the two points at which the densities 

intersect are -1.851229 and 1.851229.

Using the symmetry of the two densities, we obtain for OVL:

OVL = 1 + 2 *(-1.851229) - F2(-1.851229) = 0.748835 .

OVL between Two Poisson Distributions 

Suppose we have two Poisson distributions with probability 

functions

X. exp(-X.) 
P.(x;X.) = — ------ —

x!
, X_̂ > 0; i=l,2; x=0,l,2., (1.12)

By equating P^CxjX^) and P2(x;X2), we find a single "crossing point":

x0 =
X1 " A2

loggCXj) - logg(X2)
(1.13)

Let Xj > X2- Then for x < xQ, PjCx ^ j) < P2(x;X2); for x > x̂ , 

Pj(x;Xx) > P2(x;X2).
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Let [xQ] denote the largest integer less than or equal to xQ.

Then

OVL = j 0v x;v  +
i'=Cx0l+1

■ i -  i
x=0

X2 ‘exp(-A2) - A^expC-Aj)'
(1.14)

For example, if Aj = 5 and A2 = 4, then

x 0
5 - 4

loge(5) - loge(4)
= 4.4814 ,

and thus [xqJ = 4. Therefore OVL, computed from equation 1.14, is

4 4X*exp(-4) - 5X,exp(-5)
OVL = 1 - I ---------------------  = 0.811656

x=0L x!
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An Invariance Property of OVL 

A useful property of OVL follows directly from equation 1.1. Let 

g(x) be a continuous differentiable function defined for all x which is 

one-to-one and preserves order. Then OVL can be written in terms of 

g(x) instead of x, based on integration with a change of variable, as

OVL = min[fj(g(x)),f2(g(x))]dg(x) . (1.15)
g(x)

This invariance property of OVL is used explicitly in the development of 

the spline estimator of the overlapping coefficient in Chapter Three, 

but it is also allows immediate generalization of the results obtained 

for the estimation of OVL under normal theory to all cases where a 

normalizing transformation (Tukey, 1957; Box and Cox, 1964) can be 

found. An example of the latter instance is in fact presented in 

Chapter Two.

Previous Work Related to OVL 

In its manifestation as D, the basic idea behind the overlapping 

coefficient extends back to the early years of the development of 

mathematical statistics. During the 1890s, Karl Pearson used a measure 

equivalent to 2D as an indicator of the goodness-of-fit of sample data 

to some theoretical distribution before his development of the technique 

based on the chisquare statistic (Pearson, 1965). Shortly after the 

second World War, the index of dissimilarity was reformulated several
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times, apparently independently, by researchers in a number of disci­

plines (Duncan and Duncan, 1955). In the context of the 2 X C table, D 

is simply one of many proposed measures of association, and its general 

relationship to them is noted by Goodman and Kruskal (1979). More 

recently, interest in D appears to center on its use as an indicator

of racial segregation and the probability model for the 2 X C table

proposed by Cortese et al. (1976).

Weitzraan (1970) seems to be the first analyst to work with OVL

directly. He derived OVL in the discrete case from its relationship to

the index of dissimilarity, and he used it to explore the differences in 

the income distributions of whites and blacks in the United States. 

Gastwirth (1973, 1975) briefly examined OVL and judged it inferior to 

a measure of the similarity of income distributions related to the 

Mann-Whitney form of the Wilcoxon test for equality of population 

medians. Gastwirth's objection to OVL is that it is unable to detect 

changes in the location of the common probability mass shared by the 

two distributions compared. Thus OVL was insensitive to shifts in the 

median income of women relative to that of men in the United States in 

his analysis of a longitudinal sample of Social Security records. 

Interest in OVL among statisticians in the United States appears to have 

ended with Gastwirth's critique.

Two investigators outside the United States have published recent 

material using the concept of the overlap of distributions in unrelated 

contexts. In Germany, the overlapping coefficient as a measure of 

association between two normal distributions with equal variances was 

developed by Marx (1976a, 1976b), and his proposal comes closest to the
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form of OVL derived by Bradley and Piantadosi. Marx relies on the 

relationship of a sample estimator of the overlap between two identical 

normal distributions to the central t distribution (incorrectly 

specified) to produce a table of critical values for the sample over­

lapping coefficient. This, of course, accomplishes nothing, since Marx 

is simply transforming the scale of the usual t-test for the equality of 

the means of two normal populations. In addition, Marx assumes that 

because the sample realizations of OVL must lie between zero and unity, 

the sample overlapping coefficient can be treated as the usual sample 

estimator of a population proportion. Thus he compares two sample 

overlapping coefficients using the standard errors of sample estimators 

of population proportions and critical points from the central t distri­

bution. Throughout, Marx averages sample sizes to obtain the degrees of 

freedom for the points of the t distributions he chooses to use. Unfor­

tunately, then, there is nothing in Marx's work to increase our under­

standing of OVL, even in the simple case for which he proposes the use 

of the overlapping coefficient as a measure of association.

In Britain, Sneath (1977, 1979) has advanced the concept of 

overlap in the context of cluster analysis. Unlike Marx, Sneath 

correctly develops his treatment of the overlap of two normal distri­

butions with equal population variances, but the correspondence 

between the overlap of two such normal distributions and the usual t-test 

for equality of normal population means apparently leads Sneath astray 

when he attempts to extend his results to the overlap between two normal 

distributions with unequal variances. While OVL has a direct inter­

pretation in the problem of classifying individuals into two
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populations, Sneath's clustering perspective does not speak directly to 

the nore general issue of comparing distributions which is addressed 

here.



Chapter Two

OVL BETWEEN TWO NORMAL POPULATIONS

The overlapping coefficient, OVL, between two normal distri­

butions was derived by Bradley and Piantadosi (1982) for the equal 

and unequal population variances cases; they did not, however, discuss 

the estimation of OVL from sample data. Here the estimation of OVL 

using maximum-likelihood is addressed. The maximum-likelihood
A

estimator of OVL, OVL, is a biased estimator of OVL, and its bias 

depends directly on OVL itself: The bias of OVL increases as OVL 

nears one. As one should expect from the properties of maximum- 

likelihood estimators, the bias of OVL decreases as sample sizes 

become large, but this bias remains substantial when OVL is close to 

one even for large sample sizes. Estimates of the variance of OVL, 

developed by the technique of statistical differentials, closely 

approximate the observed variance of OVL in a Monte Carlo experiment 

in two situations: when the population variances are equal and the 

difference in population means is small, and when the population 

variances are unequal and the difference in population means is large. 

The sampling distribution of the maximum-likelihood estimator can 

be related to the folded-normal distribution in the case of equal 

population variances and thus, for sufficiently large samples, to the 

normal distribution. Taken together, the properties of OVL observed 

in the Monte Carlo experiment provide realistic guidance to the actual

16
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use of OVL. In particular, the bias of OVL and the problem of
A

estimating its variance accurately circumscribe the use of OVL as
A

as an inferential statistic, suggesting that the proper role for OVL 

when sampling from normal distributions is similar to that of OVL when 

the two distributions are known. That is, OVL provides an indication of 

the meaningfulness of any difference in the normal distributions 

determined by the sample estimates of their means and variances, 

whatever the statistical significance of any differences in the 

estimated parameters.

The Overlap Between Two Known 
Normal Distributions

Suppose we are given two normal distributions with densities

fl(x;yi,of) and f2 (x;y2,a$); that is, with means yj and y2 and

variances of and of respectively. From the general definition of the

overlapping coefficient, one can determine OVL between these normal

distributions in two cases of interest (Bradley and Piantadosi, 1982).

Equal Population Variances: of = = a2
In the case of equal population variances, the two normal 

densities intersect at a single point, xq» half-way between the means 

yi and y2 , ignoring the coincidence of the densities at -<*> and +°°; 
see figure 2.1. That is,

hi - h2
x 0 = (2 .1)
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0 .21-

0. 18-

Y 0.09-

N 0.06-

Y 0.03-

86-2-4-6
X

Figure 2.1 The overlap between two normal distributions 
with equal variances. The point of intersection, x q , is 
indicated by the vertical broken line. Here pi = 0, P2 = 
of = of = 4, and xq = 0.5.



From the symmetry of min[f i (x;pi ,crf) ,f2(x;u2 »°l)] in this circumstance 

and the properties of the standard-normal distribution function, 3>(z), 

it is easy to see that

OVL = 2$
f-Wi V2\

2a
(2.2)

Thus, if pj = 0, U2 = anc* o2 = 4 (the situation depicted in figure 

2.1), we compute OVL = 2$(-0.25) = 0.80258.

Unequal Population Variances: of  ̂a|

In the case of unequal population variances, the two normal 

densities— ignoring their coincidence at -00 and +°°— intersect at 

exactly two points; see figure 2.2. These points are determined by 

the solutions to the quadratic equation in x obtained by setting 

the two densities equal to each other. If we assume a\ > of, as in 
figure 2.2, the lower point of intersection, xi, is given by
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P
R 0.3- 
0 B A 
B 
I 
L
I 0.2-
T
Y
D
E
N
S
IT
Y

0.0-

- 6 - 4 - 2  0  2 4 6  8
X

Figure 2.2 The overlap between two normal distributions 
with unequal variances. The lower point, xj, and upper point, 
X2, of intersection are indicated by the vertical broken lines. 
Here pj = 0, p2 = 1* = 1* = 4, = -1.847545, and
x2 « 1.180878.
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and the upper point of intersection, x2, by

Piaf — y2of "b

x2 =
(pi - ^2)2 + (°i - °?)log.

of - of
wf/_

(2.4)

If we define

r.i ~ yj
ij

, i=l,2 ; j=l,2 ; (2.5)

then the overlap between the two distributions is given by the 

following equation:

OVL = $(zii) + $(z22) “ ^(zi2) ~ $(z2i) + • (2.6)

Thus, for yj = 0, y2 = 1, of = 1, and of = 4 (the situation illustrated
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in figure 2 .2), we can compute

-1 - 2/ 1 + log (4)
x1 ---------------    = -1.847545,

3

and

-1 + 2/ 1 + log (4)
x2 = --------------   = 1.180878.

3

Therefore

OVL = $(-1.847545) + $(0.090439) - $(-1.423773) - $(1.180878) + 1 

= 0.609934.

Although it is not obvious, equation 2.6 reduces to equation 2.2 

(in the limit) as a| -*■ of, or, equivalently, a2 -*■ aj. This becomes 

apparent when (2.3) and (2.4) are rewritten as the following.



23

02^1 + OlM2 °la2
Xj = --------------  +  --------

of - of

of
+ (of - of)log

Ml - v»2 + (Mi - M2)2 +

\o\L
(2.7)

a2'Jl "*■ °’lM2 al°2 
x2 = ----------  + ------

02 + 0 1  of - of
Ml - M2 + (yi - M2)2 +

+ (of - of)loge v  - ? / J (2.8)

Now because the product (of - of)log I —  j converges to zero much
e\0?/

faster than does (of - of) alone, we may write

Mi +  M2 T ° l a 2
limit(xi) = ------- h limit ------
02“*O1 2 02"*0 l L of - of

(Ml ~ M2 + |Ml ~ M2 I)

Ml + M2 r ala2
limit(x2) = ------- + limit — ----7 (mi - M2 " I Ml ~ M2 1)

■Oi L02-^01 2 02-nJi L of - of
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Thus if Pi > p2,

Pi + V z T 2cia2 -j
limit(xi) = --------M limit   (pi  - M2) = +“  »
a 2-*ai 2 0 2 ^ 1  L a |  -  a f  J

and

Pi +  P 2 f °1°2 I Ml +  M 2
limit(x2)  --------V limit   (0) =   = xq .
o2">oi 2 u2-kji L - af J 2

Hence

/x0 - P 2\ /x0 - pA
limit (OVL) = 1 + 4»(-------J - 1 - $1 1 + 1
a 2">crl =CT V ° / V a /

/ - I  Ml "  M 2 | \
= 2$   .

2a

On the other hand, if Pi < M2»
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Pi + V2 [ °102 1 V1 + v>2
limit (x̂ ) = ------- h limit   (0) =   = xg .
0 2 -^ 1  2 0 2 -^1  L -  a£  J  2

and

Ul + W2 r 2aia2
limit(x2> = ------  + limit   (yj - y2>
02-^1 2 a2-*oi L - af

Therefore

/ x0 -  Vi\ *0 “ V2\
limit (OVL) = ${------- J + 0 --$1--------1 - 0  + 1
V 2~y° l = a \ a / \ a /

/-lm - ^2 i\= 2$   .
2a

Finally, let yj = y2 = W- Obviously,

yi + \*2
limit (xi) = limit (X2 ) = -------  = y
02"^! cr2">0l 2
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Hence

limit (OVL) = 3>(0) + $(0) - $(0) - $(0) + 1 = 1.
CT2">al=a

The convergence of OVL in the unequal variance case to OVL in 

the equal variance case is evident in table 2.1, which presents the 

value of OVL between two normal distributions for selected 6 and y, 
where

lm - U21
6 = --------  and

CT1

(Note that equations 2.2, 2.5, and 2.6 can all be written in terms of

6 and y instead of p̂ , P2 , 0?> an<i CT§-)

Maximum-Likelihood Estimation of OVL 

Now suppose that, instead of working with two known normal 

distributions, we have two independent simple random samples of sizes 

n̂  and n£ from fj(x;pi,af) and f2(x;P2 *o£) respectively. Our problem

is to estimate OVL from these sample data. Maximum-likelihood

estimators of OVL can be derived simply in both the equal and the 

unequal variance cases by using the invariance property of the

(2.9)
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maximum-likelihood estimators of the parameters yj, y2» an^

computed from the two samples. Maximum-likelihood theory insures 

that these estimators of OVL, OVL, are asymptotically consistent, 

unbiased, efficient, and normally distributed (Kendall and Stuart, 

1979, chap. 17). The approximate variances of OVL in the equal and 

unequal variance cases are derived using statistical differentials.

The usual maximum-likelihood estimators for and U2 are 
the sample means:

Equal Population Variances: of = a| = a2

n.x

x.i , i—1,2 ; j l,...,n^. (2.10)

The variances of these estimators are given by

V a r ( x i ) =  —  , i = l , 2 . (2.11)
n.i

The maximum-likelihood estimator of a2 can be written in the following

way. Let
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n.

s2X

o1 - 2I (x.. - X.)
J-l 13 1

» i-1,2; j—l,...,n.
n .

Of course,

Var(s?)
2^  - l)aj

i=l,2.

Then the maximum-likelihood estimator of a2 (= of = a|) is

s2 =
n^sf +

nl n 2

its variance is given by

/ nl \2 / n2 \2
Var(s2) = f --------I Var(sf) + 1  1 Var(s^)

^ \nx + n2/ 'ni + n2/

(2 .12)

(2.13)

(2.14)
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(2.15)

Therefore, using equations 2.10 and 2.14, the maximum-likelihood 

estimator of OVL is the following:

OVL = 2$
M X 1 - * 2 |

2s
(2.16)

To obtain the variance of OVL, we note that xj - X2 is normally

n l ■*" n2
distributed with mean Ui - b2 an<* variance ------  a2. Thus the

n l n 2

the random variable |xx - X2 | has the folded-normal distribution with 

mean and variance (Leone et al., 1961):

E(|xj - x2|) =
2(nj + n2)

■a•exp
n l n2ir

-n1n2(Pi - 112)21

2(nx + n2)o2 .

+ (pj - y2) 1 - 2$
n l n 2 \  y i  -  P2

(2.17)
\nj + n 2,
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_ _ ni + n 2 _ _ 2
V a r C l x j  -  x 2 | )  =    <r2 +  ( u i  -  U 2 ) 2 “  [ 3 ( | x l ~  x 2 | ) ]  •

nln 2

Then, by statistical differentials (Kendall and Stuart, 1977, 

pp. 246-47),

90VL V /90VL\2
Var(OVL) = (-----------|Var(|xi - x2 I ) + ( ---- j Var(s2)

I9|xi - x2 |/ \9s2 / P

where the derivatives are understood to be evaluated at x̂  = pj, 

Xo = u2» and s2 = cr2. Butp

90VL 1 /-Ix! - x2|

3|xl “ x2 l sp \ 2sp

90VL |x! - x2| / |xx - x2|'

9s2 2 s3 \ 2sP P P

(2.18)

(2.19)

(2.20)

(2.21)
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where

exp(-z2/2) (2.22)

Combining equations 2.15, 2.18, 2.19, 2.20, and 2.21, we obtain

. J- IV, - U_, 
Var(OVL) = <f>2*--------—

2o
Var(|xx - x2|) + (yl " y2)2 , „---------  Var(s2)

4 o6 p

= *2r |y 1 ' V
2a

nl + n 2

nln2

rpl " V 1 + nl + n 2 “ ^
2 (nx + n2)

E(|x. - x |)
(2.23)

In passing, we note that if ŷ  = y2, that is, if OVL = 1.0, equation 

2.23 reduces to

/nx + n2\ ir - 2
Var(OVL) = j I------ 1-----  . (2.24)

\ n}n2 / r



Ordinarily, Var(OVL) must itself be estimated, substituting the 

sample estimates of the parameters pj, p 2 , and a2 into equation 2.17 to
A A

get E(|x^ - |) and equation 2.23 to get Var(OVL). This gives the

following computational formula.

Var(OVL) = 4>-
/_|X1 ‘ X2 '

2s
nl + n2

nln 2

1 + ni + n2 ~ 2' 

2 n̂i + n2^2-

e(|x1 - x2ir
(2.25)

Unequal Population Variances: a2  ̂a2 

In this case, the maximum-likelihood estimators Xj, x2, s2, and 

s2 from equations 2.10 and 2.12 can be substituted for p̂ , p2, a2, and 

a2 in equations 2.3, 2.4, 2.5, and 2.6 to obtain the maximum-likelihood 

estimator of OVL. Assuming s2 > s2,

X1S2 ' X2S 1 ‘ S1S2
2\n

(X1 - X2>2 <S2

2 2 
sl - sl

(2.26)

is the maximum-likelihood estimator of the lower point of intersection
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of the two densities, and

xis£ - x2s? + sis2 (xj - x2)2 + (s*s - s?)log (—
\s?>

x 2
s \  -  S?

(2.27)

is the maximum-likelihood estimator of the upper point of intersection 

of the densities f j (x;yi ,of) and f2(x;y2 ,o<?) . The maximum-likelihood 

estimator of OVL, then, is

OVL = <Kzn ) + $(z22) - $(z12) - 3>(z 2 1 ) + 1 , (2.28)

where

z . .ij
x . - x ._! 1

s.1
i = l , 2 ;  j = l , 2 . (2.29)

In the case of unequal population variances, the technique of 

statistical differentials provides the following equation for the 

approximate variance of OVL:



^OVlV  / 30Vl\2 / 30Vl\2
Var(OVL) = ( JVarCxj) + [ -----) Var(x2) + ( ----- } Var(sf) +

,3xi / \8x2 / \3sf

r30VL'2
Var(sf) ,

idst

where the derivatives of OVL are understood to be evaluated at Xj = ijj 

x2 = p2, sf = of, and sf = erf. It will be easier to write the 

expression above in this way:

60VL\2 _ /^OVLV / 30Vl\2
Var(OVL) = [ I Var(x2) + j JVar(x2) + [  J Var(sf) +

l3pi / \3y2 / \3of

2
Var(s5) ;

that is, differentiating equation 2.6 with respect to the parameters 

instead of differentiating equation 2.28 with respect to xi, x2, sf, 

and sf and then replacing xi, x2, sf, and sf in the derivatives with 

Pl, p2, of, and of. We have the following result.

. r  3 z l l  ° z 22 3z 12
Var(OVL) = majj)-----V <f>(z22)----- (z12)_

L 5,,. a,,. :3pi 3pi 3p]
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9z2 1 t  _ r 9 z l l  9z22
- <t>(z2i)----  Var(x^) +-<j>(zn)---- + <j>(z22)-----

3vi i 9p2 9P 2

9z l 2 9z2 lH 2 _ r  9 z l l
- <J>(zi2)------ 4>(z2i)  Var(x2) + U(zn)  +

3z22 9z12 9z21T
+ <j> (z22)------ <t>(zi2)------ 4>(z2i)---- Var(s?) +

3af 3a? 8a? J

2

9zl1 9z22 9z12
<t>(zii) h 4)(z22)----- 4>(z 12)

3a? 3a? 3a*

9 z 2 1 " |
- (j)(z2i)  Var(si) . (2.30)

3a? J

Here <j>(z) is defined as in (2.22).

The derivatives of the (i=l,2; j=l,2) can be written most 

easily in terms of the derivatives of and x2 with respect to the 

various parameters:

3z11 1 / 3xi

3pi Oi '3^1
- 1

9z21 

3y 1
1 (d*2 l) 3Z22 1 (

01 '3yi > 3vi o2 '

3z 12 1 / 9xl \

9P1 o2 '3y j ’

9z22 1 /9x2 \
3p1 a2 \3ui/

(2.31)
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9z.
11

1 / 3x

3y, © ■
3z12 1 / 3x

o \ 3u 1 2 3y, e - ) '\3y„ 2 2

3z21

3y 2 2

(2.32)

3z
1 1

1 / 3x.
3q2

3z,21
3a(

0 j \30j

1 / 3x_

3at

ll

2oi

Z 21
2a,

3z.
12

1 / 3x

3a(

3z.22

02 v 3a2

1 / 3x

3af

(2.33)

and

3z
11

1 / 3x

3a|

3z
21 1 / 3x,

3a2 3a|

1 / 3x/ dx \ dz 1 / 9x z \
( — )» =\3a|/ 3a^ a n V 3a^ 2o„/

3z22

2

1 / 3x

3a2

/ dX Z \/  2  22 \
'30? 2a. /02 V3a|

(2.34)

/a2 °(y - y )2 + (a2 - a2)log (—
1 2  2 1  \a2,j

Let U(y1,y2 ,a1,02)

Then, from equations 2.3 and 2.4, we obtain the derivatives of Xj and
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x2 with respect to y^, a2, and a2. These derivatives are the

following:

3xx o2 - o1o2(y1 - y2)[u(u1,y2,ol,a2)]
3y, 2 2 

°2 - ai
(2.35)

-1
9x2 a2 + o1o2(y1 - y2)[u(y1,y2 ,ai,a2)]

°2 -
(2.36)

9x,

9y,

,)[U(ylfi
-1

,)] (2.37)

-1
9x,

3y,

-o: - a1a2(yi '
2 2 

°2 °1
(2.38)

9x,

3c> 2 2 
°2 - "l

,-y* -
2o

U(y1,y2,01,o2) +

,o ro^ - /of\n

H ^ +10H; f ) ] [u<u’ +x-: (2.39)
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3x„

dai -y2 +
2o,

°1CT2 -  a;
+ [U(P, »lJ2 >'.J' + x. (2.40)

3x

CT2 ' °?
' 20

- u(m1,p2 ,o1,02) -
2

0 1°2 V°2 - /°2\1 -i
- —  [-- —  + loge(^) [ u a ^ t v v ^ ) ]  - x. (2.41)

3x„

3o§
V, + -----  U(y ,y ,0 , a  ) +

20.

2 2 2a,cr r<^ ~ erf /af' ->_J_2 [_*-L + log (-L
2 L 02 e\02/j

-i
[U(y1,y2 ,0 1,o2)] - (2.42)

Substituting these results into equation 2.30, we obtain the
A

following formula for the approximate variance of OVL in the unequal 

population variance case.

Var(OVL) =
<Kzn ) <l>(z10)12 3x, <l>(z22) d»(z21)' 3x_

3y,
+
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4>(z21) - 4>(zn ) 2 *?

n,

>(zn ) 9x,

9p,

(z ) d>(z ) 22 V 21 9x <}>(z ) - <J>(z ) 2 + 12 2 2

dp

<f>(zn ) t,(z12)'
2
9x.

n

1 +
3o1

+ U 21)

2

3x  2

'1 J 3°?
+

<i> (z„. ) • z_. — d>(z ) • z 21' 21 ll' 11
2 of

2 2(nj - l)oJ

— T ~
9x_

1 2 

4(Z12),Z12 - HZ22)'Z22

<j>(z ) <j>(z )
22 y 21

9x

3of

2o|

2 (n2 - l)aj
(2.43)

Equation 2.43 gives the approximate variance of OVL when the parameters 

of the two normal distributions, p̂ , p2, a2, and a2, are known. In 

practice, of course, one would compute an estimate of this variance, 

Var(OVL), using the sample estimates x^ x2> s2, and s2 for p̂ , p2> cr2, 

and a2 in this expression.

Monte Carlo Investigation of the
A

Properties of OVL 

Because the sample estimators of OVL given in equation 2.14 

(equal population variances) and equation 2.28 (unequal population 

variances) are the maximum-likelihood estimators of OVL, they have 

known asymptotic properties: consistency, unbiasedness, efficiency,
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and normality. Maximum-likelihood theory, of course, does not 

guarantee that the maximum-likelihood estimators of OVL exhibit these 

properties when they are based on small samples nor that these proper­

ties are attained rapidly as sample sizes increase. Since the
A

distribution of OVL in either of the two cases of interest is not 

immediately evident from (2.14) or (2.28), the distributional properties 

of OVL are not obvious. Here, the basic statistical properties of OVL 

shall be determined in a Monte Carlo simulation study. The three 

objectives of this study are to investigate the sampling distribution of 

OVL and, in particular, the bias of OVL as an estimator of OVL; to 

examine the usefulness of the approximation formulae in (2.23) and

(2.43) for the variance of OVL; and, if possible, to determine the form 

of the sampling distribution of OVL.

The Monte Carlo study itself can be described very briefly. For 

convenience, the first normal distribution is fixed at the standard 

normal, that is, with mean Pi = 0.00 and variance of = 1.0. The mean 

P2 and variamce a\ of the second normal distribution are then selected 
to create seven design points for the study. These points were chosen

A

to permit investigation of the properties of OVL in the following 

circumstances: 1) Two normal distributions with the same means and 

variances (p2 = 0 .0 0, cr£ = 1.0); 2) two normal distributions with the 

same variance but unequal means, where this difference is small and 

large (g2 = 0.25 and 1.00, cr$ = 1.0); 3) two normal distributions with 
identical means but unequal variances, where this difference is small 

and large (p2 = 0.00, 0$ = 1.2 and 3.0); and 4) two normal distributions 
with unequal means and unequal variances, where both differences are 

small and large (y2 = 0.25, a§ = 1.2 and u2 = 1-00, = 3.0). At each



of these seven design points, the sampling distribution of OVL is 

simulated for four sets of sample sizes for the independent samples 

from each distribution: ni = n2 = 50, 100, 250, and 500. One thousand 

Monte Carlo trials were run for each set of sample sizes at each design 

point in the study, as follows. In each trial, two samples of standard- 

normal random deviates of the required size were generated using the 

IMSL routine GGNML (IMSL, 1982), employing different seeds for the two 

samples. The second set of standard-normal random deviates was then 

transformed to the desired mean P2 an<̂ variance ô . Then the sample 

means and sample variance estimates were calculated for each of the two 

samples, using the West algorithm (Chan and Lewis, 1979, p. 528). The 

sample overlapping coefficient, OVL, was then calculated, using these 

estimates of the population means and variances, from equation 2.14 if 

a| = 1.0 and from equation 2.28 if 4 1.0. Thus at each design point

and for four sets of sample sizes we have 1000 Monte Carlo observations 

of OVL. (All computer routines used in the Monte Carlo study can be 

found in the appendix.)

A

Bias and Predicted Variance of OVL 

The results of the Monte Carlo simulation experiment are 

presented in table 2.2. The true overlap between the two normal 

distributions, OVL, is calculated from equation 2.2 or equation 2.6 as 

appropriate, using the assigned values of yj, P2 » an{* T^e

predicted variance shown in the table is computed from equation 2.23 

(if a\ = 1.0) or equation 2.43 (if / 1.0), also using the assigned 

values of plt P2 > an(* °1- The Monte Carlo mean and variance are 

computed from the observed first and second sample moments from the
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1000 simulated OVL in each design-point-sample-size combination. 

Comparisons of the Monte Carlo mean to the true OVL indicate the bias of
A

OVL as an estimator of OVL. Comparing the Monte Carlo variance to the 

variance predicted from the two approximation formulae demonstrates 

the utility of these equations in the best possible circumstance, when 

the parameters of the two distributions sampled are known. These 

comparisons are made explicitly in table 2.2 through the calculation of 

the standardized bias and the variance ratio. The standardized bias is 

simply the difference, Monte Carlo mean OVL minus OVL, divided by the 

square-root of the Monte Carlo variance. The variance ratio is the 

ratio of the Monte Carlo variance to the predicted variance.

The Monte Carlo experiment clearly demonstrated that OVL is 

biased: In general, OVL will understate OVL for the values of OVL con­

sidered here. As we should expect, this bias decreases as sample sizes 

increase, but this decrease in bias is apparently not monotone (see
A

= 0.25, = 1.0, n1 = n2 = 100 in table 2.2). The bias of OVL is

also directly related to the value of OVL. The largest bias observed in 

the simulation study occurs when OVL = 1.0, and the bias of OVL de­

creases the further OVL is from unity. Evidently, the more similar the 

two normal distributions from which the two samples are drawn, the

greater is the bias of OVL as an estimator of OVL.

The usefulness of the approximation formulae for the variance of

OVL also appears to be related to the value of OVL. From the ratio of

the Monte Carlo variance to the predicted variance, we see that in the 

equal population variance case, equation 2.23 performs well. In every 

set of Monte Carlo trials where = 1.0, the ratio of the two variances 

is very near unity. On the other hand, in the unequal population
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case, equation 2.43 performs best when OVL is distant from one and 

breaks down when Vj = Moreover, it is evident from the Monte Carlo

simulation study that the expression for the approximate variance of OVL 

in the unequal population variances case overstates the apparent
A

sampling variance of OVL when it fails.

The Sampling Distribution of OVL
A

The properties of OVL observed in the Monte Carlo study lead
A

directly to the identification of the approximate distribution of OVL, 

at least in the equal variance case. In fact, the Monte Carlo results 

suggest that, when the population variances are equal, the sampling
A

distribution of OVL can be simply related to the folded-normal distri­

bution. The justification for such a link can be made as follows.
A

First, suppose that a is known; OVL then becomes a function of the 
absolute difference in sample means only. This absolute difference, as 

we have already seen, follows the folded-normal distribution. If $(2) 

is viewed as an approximately linear transformation of this absolute 

difference, then OVL must also be related to this distribution. 

Naturally, as sample sizes increase and s provides a better estimate
A

of o, OVL should behave increasingly like this idealization. Thus as

sample sizes increase and the sampling variances of s and OVL decrease,P
the assumptions about a and $(z) become more reasonable, and we should

A

then expect that OVL can be linearly related to some folded-normal 

random variable. Second, from the Monte Carlo simulation is appears
A

that the bias of OVL diminishes with the distance of OVL, in units of
A A

the standard error of OVL, from one, and that OVL exhibits a normal 

sampling distribution when OVL is sufficiently far from one. Of course,
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OVL, like OVL, is bounded above by 1.0, and in the Monte Carlo study 

OVL tends to "bunch" below 1.0 when OVL is near unity. This bunching 

is most severe when OVL = 1.0, and this behavior seems to account for
^ A

the observed bias of OVL. This suggests that the distribution of OVL 

is folded about the point 1.0. Using an obvious notation based on the 

relationship of OVL to the index of dissimilarity, let D = 1 - OVL and 

D = 1 - OVL. The statistic D, in fact, follows the folded-normal 

distribution in the case of equal population variances.

The folded-normal distribution

The folded-normal distribution arises in the following way. Let 

the random variable x be normally distributed with mean £ and variance 

t2. The random variable y = |x| has the folded-normal distribution, 

a fact used to derive equation 2.23 above. The distribution of y is 

completely specified if £ and t are known, and the first and second 

noncentral moments of y are

(2.44)

and

U2 = T2 + ?2 • (2.45)
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Thus the variance of y is cr2 = x2 + £2 - y2 . (The subscript f is used

to identify the mean and variance of the folded-normal variate.) In 

the special case when £ = 0 (the half-normal distribution), we note that

Elandt (1961, p. 554) notes that the folded-normal random variable 

converges to the normal distribution as £/x increases, achieving 

approximate normality when > 3. Properties of the folded-normal

distribution, including higher moments and its tabulated distribution, 

are discussed in Leone et al. (1961) and Elandt (1961). The folded- 

normal distribution is directly linked to the noncentral chisquare 

distribution. Let A = £2/t 2 . Then the random variable y / T  is 

distributed as an<3 the random variable y2/x2 is distributed as

X2 (1,A); see Krishnaiah et al. (1963) and Johnson and Kotz (1970, 

p. 136).

Estimation of E, and x is considered in Elandt (1961),
Johnson (1962), and Johnson and Kotz (1970, pp. 136-37). Here £ and x 

will be estimated from the first and second Monte Carlo moments of D, 

mf and m^ respectively. Specifically, m^ is equated to y£ in equation 

2.45, giving

and Clearly, then, p. > and

must hold for any folded-normal variable.

5 = (m| - x2)'5 (2.46)
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This expression is substituted into equation 2.44, yielding the 

following nonlinear equation in x:

where £ is defined as in (2.46). Newton's method then permits 

estimation of x, and thus £, by finding the solution to equation 2.47 

subject to the condition that Z, > 0. (Since E, in the denominator of 
the second term in equation 2.48 proves awkward when Z, is close to or 
equal to zero, the successive terms of Newton's method are more stably 

determined by

f(x) = yf - mf = 0 . (2.47)

Then

(2.48)

5*f(x)

S-f'(x)
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which of course is algebraically equivalent to the usual formulation.)

A convenient initial value for the estimation of t  is ô .

Goodness of fit of D to the folded-normal 
distribution

Estimates of E, and x are presented in table 2.3 for each set of 
trials in the Monte Carlo simulation study. To determine whether the 

folded-normal distribution adequately characterizes the sampling 

distribution of D, A is calculated from E, and x, and the Kolmogorov 
statistic is used to test the equivalence of the empirical distribution 

function for D2/x2 to the noncentral chisquare distribution function 

with a single degree of freedom and noncentrality parameter A. The 

theoretical cumulative probabilities were calculated using the CPROB 

function in SAS (Hardison et al., 1983) or, when this proved unstable, 

the MDCHN routine in IMSL (1982). The Kolmogorov statistic, computed 

in the usual way (Gibbons, 1971, pp. 75-85), is then compared to the 

table of pseudocritical values in Stephans (1974) for testing normality 

when mean and variance are unknown. These statistics, together with 

similar Kolmogorov test statistics for normality, are presented in 

the last two columns of table 2.3. Obviously, there is no reason to 

reject the hypothesis that D follows the folded-normal distribution 

when of = of = 1.0. However, the folded-normal fails to represent 

the observed (Monte Carlo) sampling distribution of D when of / 1.0, 

agreeing only when D appears to be normally distributed. The

£ - D
standardized bias in table 2.3 is defined as ----  , and it indicates

x

that E, approaches D as nj and n£ increase. Therefore, the Monte Carlo
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study suggests that, in the case of sampling from two normal 

distributions with equal variances, D can be regarded as following 

the folded-normal distribution, with £ = D for sufficiently large 

samples, and that, after Elandt (1961), the sampling distribution of D,
A

and thus that of OVL, becomes approximately normal when > 3.

The failure of the simulated sampling distribution of D to follow 

the folded-normal distribution in the unequal population variance 

situation is not that surprizing, since the rationalization for the 

folded-normal D is the equal variance formulation of equation 2.16. The 

failure of the folded-normal model for D in the unequal variance case is 

apparent in the noncentral x 2 probability plots for the Monte Carlo 

trials where of ^ ct*j. Two such plots are reproduced in figure 2.3 and 

figure 2.4, illustrating the best and worst fits respectively of the
A

Monte Carlo distribution function of D to the folded-normal distribu­

tion— as indicated by the Kolmogorov statistic— among the simulation 

trials where of / cj£ and where the folded-normal distribution is 

rejected. In each probability plot, systematic deviation of the
A

Monte Carlo distribution of D from the folded-normal is clear, as the 

noncentral x 2 distribution function exceeds the empirical distribution 

at both low and high ends of the distribution of D2/t2 and falls short 

in between.

An Approximate Confidence Interval 
for OVL: a? = o$ = a2

Given the problems of bias and estimation of the standard error 

of OVL evident in the result of the Monte Carlo study, a somewhat 

different approach may prove more useful in gauging the uncertainties
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inherent to estimation of OVL from sample information. The maxiflium- 

likelihood estimator of OVL in the equal variance case can be regarded 

as a simple transformation of the maximum-likelihood estimator of the 

Mahalanobis distance separating fi(x;pi,oJ) and f2 (x;p2 >CTl) to the 

interval [0 ,l] through the standard-normal distribution function, $(z). 

That is, if

xj - x2’
(2.49)

then OVL = 2$(—6/2) . Moreover (Johnson and Wichern, 1982, p. 468), 

the random variable F defined by

nln 2 ~
F = ------  62 (2.50)

nj + n2

has a noncentral F distribution with a single numerator degree of 

freedom, nj + n2 - 2 denominator degrees of freedom, and noncentrality 

parameter X,
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n l n 2 „ nxn2 f v \  -  U2 \
A  62 =  [  ) . (2.51)

ni + n2 ni + n2

We can use the relationship in equation 2.50 to determine a 

(1 - a)100% confidence interval for 6 2 using the appropriate points of 

the indicated noncentral F distribution, taking as an estimate of the 

noncentrality parameter

nin2 .

A =   S2 . (2.52)
ni + n2

If we denote this interval by (62 ,62), a reasonable set of intervalLi U

boundaries is given by the following:

ni + n2 _
S2 =  F(|; 1, nx + n2 - 2, Xj , (2.53)

nln2

nl + n2 / "\
62 = ------  F(l - 1, ni + n2 - 2, A) . (2.54)

nln2
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The solutions to (2.53) and (2.54) can then be used to obtain a 

corresponding confidence interval for OVL:

ĵ2$(-60 /2), 2$( -V 2>] (2.55)

The idea of using a confidence interval for <52 to construct a confidence 

interval for OVL follows the argument used by Cheng and lies (1983) to 

develop confidence bands for the distribution function of a continuous 

random variable based on a confidence region obtained for the parameters 

of its distribution. The confidence interval for OVL is presented here 

as a proposal, since its properties have not been explored.

(Note that equations 2.49 and 2.50 can be used to derive, by 

statistical differentials, an alternative approximation formula for the 

variance of OVL to that in equation 2.23. From the Monte Carlo study, 

however, it appears that this approximation compares unfavorably to that 

given in equation 2.23 when |yi - U2 I is near or equal to zero, a 

situation of considerable interest. The noncentral x2 distribution is 

often used for the distribution of F in equation 2.50; see, for example, 

Anderson, 1958, p. 56. This, of course, is the argument for the use of 

the noncentral x 2 distribution as the basis of the sampling distribution 

of OVL in the previous section.)

Discussion

The sampling distribution of the maximum-likelihood estimator of 

OVL between two normal distributions with equal variances can evidently



be approximated by the folded-normal distribution. The characteristics
A

of the folded-normal distribution account for the behavior of OVL
A

observed in the Monte Carlo simulation study: the downward bias of OVL, 

the relationship of this bias to OVL, and the approximate normality of 

the smpling distribution of OVL when OVL is sufficiently distant from 

unity. These characteristics are also exhibited by the maximum- 

likelihood estimator of OVL in the unequal population variances case, 

but the sampling distribution of OVL in this circumstance cannot be 

represented by the folded-normal distribution. The utility of OVL as an 

inferential statistic is clouded further by the difficulties associated 

with the accurate estimation of its variance. For the equal variance
A

case, the approximation to the variance of OVL appears to provide
A

accurate estimates of the sampling variance of OVL as observed in the 

Monte Carlo study. When the population variances are unequal, the
A

approximation to the variance of OVL based on statistical differentials 

seems reasonable when OVL is not close to 1.0, and it overstates the 

sampling variance of OVL when OVL is near unity.

Thus the value of OVL as a measure of association between two 

normal distributions requires that it be based on known distributions of 

on samples large enough that they can be assumed sufficiently 

representative of their populations to be considered equivalent to the
A

populations themselves. To this extent, then, use of OVL depends on 

extremely large sample sizes or, alternatively, making the interpretation
A

as well as the computation of OVL conditional upon the observed sample
A

outcomes, treating OVL as OVL computed from the sample realizations of 

the parameters of the normal distributions in question. The overlapping
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coefficient may still prove useful in such situations, since it 

demonstrates the level of agreement between two samples which, on 

the basis of other statistical tests, represent two distinct but 

closely associated populations. The biased behavior of OVL, in fact, 

suggests that the true overlap between two normal populations, 

particularly when the observed OVL is near unity, is probably higher
A

than that indicated by OVL, a property which may have the desirable 

effect of tempering an overenthusiastic conclusion based solely on 

statistical tests of the equality of the parameters of two normal 

distributions without concern for the magnitude of any differences 

detected.

An Example

As an example of the use of OVL, let us consider one part of a 

study designed to investigate the selectivity of the migration of 

Alabama farmers between 1850 and 1860 (Inman, 1981). A simple random 

sample of 664 farm operators was obtained from the 1850 census of agri­

culture for ten Alabama counties. Each farm operator in the sample was 

matched to the corresponding entries for his household and his slave- 

force in the 1850 censuses of free population and slave population; from 

this information, his wealth in 1850 was estimated. Those farm opera­

tors in the sample who could be located in the same county in the 1860 

census are classified as persistent farmers. Those who were not found 

in the 1860 census of the county in which they resided in 1850 did not 

persist. (A rudimentary adjustment for the effect of mortality, not 

described here, is also made.) We shall concern ourselves with a 

subset of this sample, consisting of 601 male farm operators who were
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listed as the heads of their households in the census of free population 

and for whom consistent census data is available.

As one might expect, the distribution of estimated 1850 wealth 

is highly skewed. Examination of these data suggests that a logarithmic 

transformation is most appropriate, and the natural logarithm of esti­

mated wealth in 1850 is reported in table 2.4 for the 317 persistent and 

the 284 nonpersistent farmers in the reduced sample. Using these 

natural logarithms, the sample mean for the persistent farmers is 

7.570876, and the sample variance, computed according to equation 2.12, 

is 2.274353. For the nonpersistent farmers, the sample mean is 

7.045991, and the sample variance is 2.303979. An F-test for the 

equality of the population variances yields an F-ratio of 1.0130 

(p = 0.9068), so equal population variances will be assumed. The usual 

t-test for equality of population means yields a t-statistic of 4.2396, 

which, with 599 degrees of freedom, is statistically significant at the 

0.0001 level. Thus it appears entirely reasonable to conclude that the 

mean wealth of persistent Alabama farmers exceeded the mean wealth of 

their nonpersistent counterparts, indicating that tne migration of 

Alabama farm operators between 1850 and 1860 to some degree selected 

the poorer farmers.

The degree of selectivity depends not on the difference in 

population means but instead on the actual difference in the distribu­

tions of wealth of the two groups of farmers. If the distributions are 

highly distinct, then a strong case can be made for migration 

selective with respect to wealth. However, if we compute the maximum- 

likelihood estimate of the common population variance and use equation
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2.16 to calculate OVL, we obtain OVL = 0.859614, which certainly 

indicates that the distributions of wealth for these two groups of 

Alabama farmers are not as distinct as a simple comparison of the 

sample means might suggest. This leads us to conclude that, while 

the persistent and nonpersistent Alabama farmers differed in mean 

wealth, the actual difference in the distributions of wealth for 

these farm operators is not particularly great.

We can use equation 2.25 to compute an estimate of the standard 

error of OVL. Here the estimated variance of OVL is 0.00104634; thus
/v

the estimated standard error of OVL is 0.032347. We may also construct 

a confidence interval for OVL using the estimated Mahalanobis distance,
A A6 = 0.120394. From this, we see the estimated noncentrality parameter

for the required points of the appropriate noncentral F distribution is
A

X = 18.0346. Using the FINV function in SAS (Hardison et al., 1983)

with 1 numerator and 599 denominator degrees of freedom, we find that

the limits of a 90 percent confidence interval for 62 are

62 = 0.045069 and <S2 = 0.233791. We than obtain the corresponding

90 percent cenfidence interval for OVL using equation 2.55: (0.808967,

0.915465).

All of the computations performed here are based on the assumed 

normality of the two distributions compared. In this example, normally 

distributed natural logarithms of wealth imply that the wealth distri­

butions are log-normal. However, Kolmogorov tests for the normality of 

the natural logarithms of estimated wealth, using the Stephans (1974) 

modifications and pseudocritical values, indicate that the natural 

logarithms of estimated 1850 wealth are not normally distributed.



We shall return to this example in the following chapter, where 

nonparametric approach for the estimation of OVL is developed.



Chapter Three

NONPARAMETRIC ESTIMATION OF OVL

The calculation and estimation of the overlapping coefficient 

based on the assumed normal form of the density functions f̂ (x) and 

f^Cx) have been addressed in the previous chapter. The invariance 

property of OVL noted in Chapter One provides that if some normalizing 

transformation (Tukey, 1957; Box and Cox, 1964) can be found and applied 

to both sets of sample data, the machinery and conclusions concerning 

the estimation of OVL in the normal case can be implemented. As we 

have seen, the derivation of explicit or implicit formulations of OVL 

in other distributional settings is also possible. Suppose, however, 

that either the specific problem of interest or the data gathered to 

investigate it suggest no reasonable parametric form for f̂ (x) and f2(x) 

or lead to rejection of the presumed parametric distribution. In such 

circumstances there are two obvious approaches for the estimation of 

OVL. One can adopt a "quasi-parametric" approach, using a flexible 

family of distribution functions, like th Pearson, Burr, or Johnson 

families of distributions (Johnson and Kotz, 1970, pp. 9-33), to 

characterize the two distributions and thereby to estimate OVL. The 

other approach is to estimate the two distributions nonparametrically, 

using one of several nonparametric density estimation procedures 

(Wegman, 1972, 1982). The second of these paths is explored here.
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The nonparametric method investigated here uses piece-wise 

polynomial functions to estimate OVL from two independent samples from 

the unknown distributions fi(x) and f2 (x). By fitting quadratic 

spline functions to the empirical distribution functions through 

weighted least-squares, taking the derivatives of these spline 

functions as the estimated densities, and using these density estimates 

to determine points of intersection, it is possible to obtain a 

nonparametric estimate of OVL between fj(x) and f2 (x). The bootstrap 

(Efron, 1982) provides a natural method of obtaining an estimate of the 

variance of the estimated OVL, OVL. Because the estimation of OVL via 

quadratic splines substitutes a numerical technique for knowledge about 

the distributions from which the sample data arose, the discussion of 

the spline-estimator OVL which follows will be more desciptive than 

mathematical in orientation. To learn something of the properties of 

OVL as an estimator of OVL, OVL is compared to OVL using a subset of the 

Monte Carlo data generated from two normal distributions introduced in 

the previous chapter. The Monte Carlo evidence suggests that OVL can 

perform well as an estimator of OVL. Like OVL, OVL is a biased 

estimator of OVL, and, because of this bias, OVL generally underesti­

mates the true overlap between the normal distributions of interest.

The bias of OVL is related to OVL and the sizes of the two samples in

the same manner as OVL; but when sampling from normal distributions,

the bias of OVL almost always exceeds the bias of OVL. As we should

expect for a nonparametric estimator, the variance of OVL is greater

than that of OVL when sampling from two normal distributions.
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Spline Density Estimation

The use of polynomial splines to estimate the unknown density

of a continuous random variable from sample data x ,x is one of aI n
number of related nonparametric techniques of density estimation 

(Wegman, 1972; Wegman, 1982). Introduced and developed in Boneva et al. 

(1971), de Montricher et al. (1975), and Wahba (1975), the idea behind 

spline estimates of density functions is quite simple, and the spline 

density estimator exhibits desirable statistical properties. It is 

equivalent to the first derivative of a spline fitted to the empirical 

distribution function. Given a suitable penalty function, the spline- 

estimated density is the maximum-penalized-likelihood estimator of the 

unknown density. Statistical properties of spline-estimated densities 

have been investigated in several situations (see Wegman, 1982, for a 

brief review and citations). Lii and Rosenblatt (1975) and Rosenblatt 

(1977) derive the bias, variance-covariance structure, and asymptotic 

distributional behavior of densities estimated with cubic splines 

computed with equally-spaced breakpoints, for example.

Let us begin by defining the empirical distribution function

F^(x), computed from the simple random sample x^, x : n

0 if x < x
( 1) ’

F (x) = n < x < x(i+l) ’ 1 1 n-1, (3.1)

n . _--—  if x > x, v , n+1 ~ (n)
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where represents the i*"*1 sample order statistic. (The rationale

for the divisor n+1 in equation 3.1, rather than the more usual divisor

n, is the expectation of the probability-integral transform of the

order statistics x^,...,x^; see Gibbons, 1971, pp. 23, 32. For

large n, of course, this difference becomes trivial.) Based on the

relationship between F (x) and the binomial distribution (Gibbons, 1971,n
pp. 74-75), the variance of F (x) as defined in (3.1) is given by

Var (Fn « )  '
n-Fn(x)[l - Fn(x)] 

(n + l)2
(3.2)

and thus F (x) is a consistent estimator of the unknown distribution n
function F(x).

A
To obtain the spline-estimated density, f(x), we fit a polynomial

A
spline to F^(x); designate this piece-wise polynomial function F(x), 

which can be defined, after de Boor (1978), as follows. First, define 

a strictly increasing sequence of £+1 points, t1 c t2 < ••• < t^ < ,

such that x,,...,x are contained in the interval Et.,t., 1; we ignore
A XI ■* A/I X

for the moment how £ and tl5...,t^ are determined. Now define £ 

polynomials of degree k-1 as follows:

It” 1P.(x) = a + a. x + . . . + a.,x , i=l,...,£; 1 11 12 IK- (3.3)



where the constants a„ (1=1,...,SL; j=l,...,k) must be determined. 
The spline-estimated distribution function is then defined by the 

following equation.

F(x) = P1(x) , t. < x 1 < ti+1 (3.4)

The estimated density, f(x), is obtained by differentiating F(x): 

that is,

f (x) = -I- P. (x) = a. + 2a. x + . . . + (k-l)a., x^ 2 ox i x2 X3 xk

t. < x < t.., ; i=l,. x x+1 (3.5)

The properties of F(x) and f(x) require natural constraints on
A A

F(x) and f(x), and these restrictions are incorporated into the 

computation of F(x) as constraints on the constants a.. (i=l,...,£;
A

j=l,...,k). The continuity of F(x) can be assured by imposing the 

conditions
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Similar conditions make f(x) continuous as well:

fe V ei+1> ■3x Pi+l(ti+l) i=l,... ,2.-1, (3.7)

In addition, we should insist that

FCtj) = 0 (3.8)

F(t2+1} " 1 (3.9)

and

f «  - -  Pl(,) > 0 , i= 1,...,1. (3.10)

Finally, it will prove convenient to let

f(tx) = (3.11)



F(x), and thus f(x), is obtained from ^(x) by weighted least-squares, 

subject to the constraints in equations 3.6 through 3.11, to determine

the spline coefficients a^ (i=l A; j=l,...,k). (For the least-

squares approach to the general use of splines, see Wold, 1974; Buse 

and Lim, 1977; Suits et al., 1978; Sampson, 1979; Smith, 1979; and 

Wegman and Wright, 1983.)

Here the FORTRAN routine FC written by Hanson (1979) is used to 

specify the constraints in equations 3.6 through 3.11 and, following 

de Boor (1978), to compute the coefficients of the quadratic spline 

fitted to Fn(x) by weighted least-squares, using the variance estimate 

of Fn(x) at each data point x ,...,x̂  from equation 3.2 to determine 

the appropriate weights. The spline coefficients obtained from FC 

follow de Boor's basis-spline, or B-spline, notation rather than the 

piece-wise polynomial format of (3.4), and the FORTRAN routine BVALUE 

(de Boor, 1978) can be used to evaluate the spline-estimate of the 

distribution function, F(x), and its derivative, f(x), at any point 

desired. Of course, the order of the spline (k), and hence the degree 

of the polynomials (k-1), and the the sequence of breakpoints 

tj,..., must still be specified. But, given two samples, one can
A /V

construct estimates of the distribution functions, Fj(x) and F2(x), and
A A

from them estimates of the densities, f^x) and f^(x), and use them to 

estimate OVL.

In the investigation of the usefulness of spline-estimated 

densities in the estimation of OVL presented here, the order of the 

splines used to construct F^(x) and F2(x) is limited to the case of 

k = 3; that is, the splines consist of piece-wise quadratic polynomials.



This means that f^x) and f2(x) will be piece-wise linear functions with 

the appearance of frequency polygons terminating at the endpoints of 

the interval [t̂  »t̂ +iJ with vertices at all interior breakpoints. This 

stategy attains two objectives. First, nonnegative density estimates 

on the entire interval [t^,t^+ ]̂ are obtained by specifying constraint 

3.10 at all interior breakpoints:

f(t.) = a. +a. t. >0
x  x 2  13 l  ‘

i=2,...,Z. (3.12)

The problem of negative density estimates using cubic (or higher order) 

polynomial splines is not academic, and Boneva et al. (1971, pp. 3-4) 

expressly permit such negative densities in their approach. Second, 

the calculation of the points of intersection of the estimated densities 

becomes quite straight-forward when they are piece-wise linear 

functions.

The specification of the breakpoint sequence tj,...,t£+1 

really involves three separate issues: the number of subintervals 2. into 

which the interval is divided by the breakpoint sequence; the

endpoints t̂  and and the determination of the remaining break­

points, t , ...,t„, in the interval f t, , t „., ~|.2 & 1 x i iJ

The number of intervals required for the spline-estimation of 

an unknown density f(x) is a question with no clearcut answer, and the 

solution adopted here may strike the reader as somewhat arbitrary. The 

problem is that while specifying too few subintervals introduces error
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stemming from the failure of the quadratic pieces of the spline to 

fit Fn(x) adequately, specifying too many subintervals creates 

difficulties of another sort. Because the coefficients of the 

quadratic terms in the polynomial pieces determine the slopes of the 

line segments which compose the estimated density, the estimated 

density will become increasingly erratic as more subintervals are 

specified and as F^(x) can approximated more reasonably by linear 

terms alone on the more numerous, smaller subintervals. The number of 

subintervals used here is calculated from the rule proposed in 

Sturges (1926) for the number of classes in a frequency histogram, 

rounding down to the nearest interger to obtain £:

1 * 1 +  3.322-log (n')
10

(3.13)

where n' is the number of unique points in the sample distribution

function F^(x). The usual criticism of Sturges's rule, that it produces

too few histogram classes when the underlying distribution is asymmetric

or the sample contains outlying values (Snee and Pfeifer, 1983), does

not appear compelling in the role assigned to it here, since, as

described below, the values of the interior breakpoints defining the

boundaries of the subintervals in ft ,t„, 1 are chosen to allowL 1 £+1J
efficient use of the breakpoints rather than to divide £t ,t̂ +i] into 

subintervals of equal length. Further investigation may suggest a better 

algorithm for computing the number of polynomial pieces in the spline
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fitted to Fn(x) when, as here, these subintervals are of unequal 

length. If the breakpoints are chosen so that t^,...,t^^ are equally- 

spaced, the procedure proposed in Wahba (1975) may be employed to 

determine the number of subintervals and their common length.

The method used to fix tj and t̂   ̂ is a simple one, based on the 

transformation of the sample observations to the interval [0,l]. Three 

such transformations are the following. If the domain of the distribu­

tion presumed to generate the sample data is the interval [a,b], a 

simple linear transformation,

x - a
g(x) =

b - a
(3.14)

appears obvious. When the domain of the distribution is assumed to be 

[o,«>), we may choose

g(x) =
1 + x

(3.15)

Finally, if the domain of the distribution giving rise to the sample is 

(-oo}+a>), then we can use



82

exp(x)
g(x) = ---------  . (3.16)

1 + exp(x)

The spline is then fit to the empirical distribution function on the

transformed scale, F (g(x)), and t and t can be set to zero and onen 1 Jot 1
respectively. The inverse transformation, x = g 1(y) can then be used 

to obtain F(x), although this is not necessary for the calculation of 

OVL if the same transformation is applied to both sets of sample data, 

for OVL, as we have seen, is invariant under such transformation.

Thus only the placement of the £-1 interior breakpoints,

0 < t <...< t <1, remains. Here the sequence of breakpoints is
2 I

determined iteratively by fitting the quadratic spline to F (g(x)) usingn
an initial sequence of breakpoints derived from the empirical distri­

bution function itself; generating a new sequence of breakpoints from 

the fitted spline with de Boor's NEWNOT routine (de Boor, 1978, 

pp. 184-86); then recomputing the spline approximation F(g(x)) with this 

new breakpoint sequence. The placement of the interior breakpoints 

generated by NEWNOT appeals to the desideratum that the intervals 

between the knots, or breakpoints, should be relatively small where 

F(g(x)), hence Fn(g(x)), is changing rapidly and relatively large where
A

F(g(x)) is changing slowly. Since the estimated density (on the 

transformed scale) is the derivative of F(g(x)), NEWNOT in effect picks 

the vertices of a frequency polygon representing f(g(x)) by shortening 

and lengthening the intervals between breakpoints, based on the behavior 

of F^(g(x)). Successive computation of F(g(x)) and the construction
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of new sequences of breakpoints can be continued indefinitely, but the 

major improvement, indicated by a reduction in the residual sum of
A

squares for the fit of F(g(x)) to F (g(x)), appears in the first itera-n
tion. The initial sequence of breakpoints used here utilizes equally- 

spaced quantiles from the empirical distribution function for the 

interior breakpoints. That is, if equation 3.13 requires ten subin­

tervals (& = 10), then the deciles from F (g(x)) are used for the valuesn
of the breakpoints between t. = 0 and t = 1.

X All 1

Because the Hanson routine FC used to fit the spline to F (g(x))n
uses the de Boor B-spline representation, additional points, or knots, 

must be specified outside the interval [t ,t. 1: k-1 points equal to orX XfT x
less than ^  and k-1 points equal to or greater than (Hanson, 1979,

pp. 8-10). The sequence of the k-1 points less than or equal to t^, the 

Jl+1 points in the interval an  ̂the k-1 points greater than or

equal to t̂ + define the knot-sequence of the spline. Following Kozak 

(1980), the left-hand exterior knots are always set equal to t̂  = 0, and 

the right-hand exterior knots are always set equal to t. = 1. SinceJ6“r 1
A

here k = 3, the knot-sequence used to obtain F(g(x)) is

0,0,0,t ,...,t^,1,1,1, with t2,...,t^ changing with each pass through

NEWNOT.

The procedure adopted here to derive spline estimates of an 

unknown density can be summarized as follows. First, an appropriate 

transformation is used to map the sample data to the interval [0,l]. 

Next, the empirical distribution function is constructed from the sample 

on the transformed scale. The number of quadratic pieces in the spline 

is calculated from (3.13), and the initial sequence of internal
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breakpoints fixed from F (g(x)). A quadratic spline is fit to F (g(x)),n n
suject to the conditions embodied in equations 3.6, 3.7, 3.8, 3.9, 3.11, 

and 3.12, using weighted least-squares. NEWNOT is used to generate a 

new breakpoint sequence, and the spline is recomputed. The quadratic 

spline obtained after two passes through the NEWNOT-spline-computation 

process is taken as F(g(x)) and its derivative as f(g(x)). The entire 

procedure is illustrated in figures 3.1 through 3.10. The sample 

distribution function computed from a sample of 100 standard-normal 

deviates generated from the IMSL routine GGNML (IMSL, 1982) and trans­

formed by equation 3.16 is shown in figure 3.1. From equation 3.13, 

seven quadratic pieces are used in the spline fit to the empirical 

distribution function, and figure 3.2 illustrates the algorithm 

described above for obtaining the six breakpoints in the interval 

[0,1]. The fitted spline, using these breakpoints, is shown in figure 

3.3, and the derivative of this spline is depicted in figure 3.4.

Figure 3.5 shows the fitted spline obtained with the set of breakpoints 

constructed from the first spline with the NEWNOT procedure; movement of 

the internal breakpoints is clearly visible when this figure is compared 

to figure 3.3. The derivative of this quadratic spline is shown in 

figure 3.6. Figures 3.7 and 3.8 illustrate the spline-estimated
A A

distribution function F(g(x)) and the estimated density f(g(x)) obtained 

after a second pass through NEWNOT. Using the inverse of transformation 

3.16, one can obtain F(x), shown in figure 3.9 with the actual standard- 

normal distribution function for reference. The estimated density f(x) 

can also be obtained from the inverse transformation, scaling by the 

appropriate differential, and it is depicted in figure 3.10, together 

with the standard-normal probability density function.
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The effect of the number of quadratic pieces chosen to
A A

determine F(g(x)) on the estimated density f(g(x)) may be seen in 

figures 3.11 and 3.12. In figure 3.11, five quadratic pieces were 

used, with the result that the "notch" at the peak of the density 

estimate based on seven quadratic pieces (figure 3.8) is no longer 

present. Using nine quadratic pieces introduces additional jaggedness 

into the density estimate, as figure 3.12 demonstrates. Thus one 

might conclude that the choice of one or two fewer subintervals than 

the value of £ given by the algorithm based on Sturges's rule seems 

reasonable here, but the use of any more subintervals is probably 

unwise. The usefulness of the algorithm and the improvement in the 

estimated densities which accompany an increase in the sample size 

become evident in figures 3.13 and 3.14, which show F(x) and f(x) 

obtained from a sample of 500 standard-normal deviates, and figures

3.15 and 3.16, which display the spline-estimated distribution function 

and density based on a sample of size 1000 generated from the standard- 

normal distribution. These figures demonstrate that the spline-based 

approach to density estimation outlined here requires very substantial 

sample sizes for the successful representation— measured only in 

qualitative terms— of an unknown density.

Estimation of OVL with Quadratic Splines

Given the procedure for estimating an unknown density developed

above, obtaining an estimate of OVL based on quadratic splines is

remarkably straight-forward. From two independent samples from the

two unknown distributions, x ,...,x and x ,...,x , we construct
11 m 2 2 1  2T12 *

the two sample distribution functions, F (g,(x)) and F (g_(x)), andn1 l n2
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from them compute the spline distribution functions, F (x) and F (x),1 2 
^ A A

and the corresponding spline densities, f ̂ (x) and f^(x). Because f (x) 

and f2(x) are piece-wise linear functions, the intersection points and 

min^fj(x),f2(x)J can be determined easily, and F^(x) and F^(x) permit 

ready evaluation of an estimate of OVL, using these points of inter­

section and the definition of OVL:

OVL = mxn|fx(x),f2(x)jdx (3.17)

If the transformations used to map the two sets of sample observations 

to the interval [0,l] are identical, that is, gj (x) = g2(x) = g(x), then 

the invariance property of OVL can be exploited in the calculation of 

OVL:

OVL = min^f1(g(x)),f2(g(x))Jdg(x) . (3.18)
g(x)

The quantity min^fj(g(x)),f2(g(x))j can be determined most easily by 

computing f^(g(x)) and f^(g(x)) at each point in the sorted union-set 

of the two sets of breakpoints used in the computation of F^(g(x)) and
A A

F2(g(x)), since a change in the relative positions of f^(g(x)) and
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A

f2(g(x)) between any two such points necessarily requires that the 

two estimated densities intersect in the interval so defined. The
A A

linear character of f1(g(x)) and f2(g(x)) makes the determination of 

this point of intersection trivial.

Consider, for example, the two spline-estimated densities in 

figure 3.17, which are obtained from two samples of size 100 generated 

from two normal distributions. The first sample is generated from the 

standard-normal distribution, and it is the sample used in figures 3.1 

through 3.12; the density estimate derived from this sample is 

indicated by the solid line in figure 3.17. The second sample is 

generated from a normal distribution with mean 1.0 and variance 4.0; the 

density estimated from this sample is shown in figure 3.17 by the broken 

line. It is apparent in this figure that there are two points at which 

the estimated densities cross. Using the union set of breakpoints and 

the routine BVALUE, we find these points are 0.251679 and 0.777084 on 

the transformed scale (equation 3.16 was used to transform both 

samples). Thus

OVL = (0.251679) + F2(0.777084) - F2(0.251679) + F (1.000000)

- F (0.777084) = 0.583812 .

The actual overlap between the two normal distributions was calculated 

as an example in Chapter Two: OVL = 0.609934.
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An Estimate of the Variance of OVL

Considering the computation complexities inherent to the 

calculation of OVL from sample data, the problem of determining the 

sampling variance of OVL is obviously not a simple one. Variance 

formulae for spline-estimated densities at a specific point based on 

equally-spaced knot sequences (Lii and Rosenblatt, 1975; Rosenblatt, 

1977) or for spline-interpolated densities based on equally-spaced 

knots (Wahba, 1975) do not apply, and the problem posed by OVL— the 

sum of spline-estimated distribution functions evaluated at points 

determined from the intersection of their derivatives— quickly 

suggests that the variance of OVL be estimated indirectly. The 

method described here, and illustrated in the example below, is based 

on Efron's development of nonparametric variance estimation procedures 

(Efron, 1979, 1981, 1982, 1983; Efron and Gong, 1983). Indeed, once the 

computational set-up for calculating OVL has been realized, the process
~ itof generating additional OVL^, i=l,...,B, calculated from resamplings 

of the original sample data and the computation of a bootstrap estimate 

of the variance of OVL, Varg(OVL), involves little additional work. It 

may, however, involve considerable expense, given the computer-intensive 

calculation of OVL.

The idea behind the bootstrap variance estimator is quite simple. 

We are given the two independent samples, x11,..,,xln an  ̂X2i’'’*’X2n ’ 
From these sample data we calculate OVL. Now we treat the samples as 

two finite populations of size nj and n2 respectively, and draw two new 

bootstrap samples, one from each original sample, with replacement. The 

sizes of these bootstrap samples are n̂  and n̂  , or the sizes of the



two original samples, giving us the pseudodata, x,,,...,x, and11 In
* * 1 X2i>**'»X2n . Using this pseudodata, we then calculate the value of
our statistic, OVL. This resampling procedure is repeated some large

number, B, of times; each time we draw a new pair of bootstrap samples

from the original data and compute OVL. Let OVL^ denote the value of
~ tilOVL computed on the i iteration of this process. The bootstrap

estimator of the variance of OVL is then given by the usual formula for

the sample variance:

D * ~ 2 7 (OVL. - OVL ) 
i-1 1

VarB(OVL) (3.19)
B - 1

where

~ *  OVL

? ~ * I OVL.
i-1 1

(3.20)

The only difficulty with this is, of course, the value of B. As 

Efron (1982, p. 28) notes, how large "large enough" is depends on and 

varies from problem to problem, but improvement of the bootstrap
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variance estimator is often not great for numbers of bootstrap 

replications larger than B = 100. The bootstrap method also enables us 

to do more than simply estimating the variance of OVL, and Efron (1982, 

chaps. 5 and 10) describes how one may use the bootstrap to investigate 

bias and construct confidence intervals. For these purposes, a value 

of B much larger than 100 may well prove necessary.

Monte Carlo Investigation of the 
Properties of OVL

To get some idea of the properties of the spline estimator of 

OVL, OVL has been calculated on a set of Monte Carlo samples from two 

normal distributions, using a selected number of the design points and 

sample sizes of the simulation study described in the previous chapter. 

The design points chosen consist of the four corner points of the 

original simulation: p2 = 0.0, = 1.0; p2 = i*0* CT1 = 1-0; P2 = 0>0>

= 3.0; and p2 = 1.0, = 3.0. The sample sizes used to investigate

the sampling behavior of OVL are n̂  = n2 = 100 and n̂  = n2 = 500.

This simulation study permits preliminary assessment of OVL as an 

estimator of OVL when the two distributions sampled are identical, when 

the two distributions sampled differ by a substantial difference in 

their means, when the two distributions sampled differ only by a 

substantial difference in their variances, and when both the means and 

variances of the two distributions sampled differ.

On each of the 1000 Monte Carlo trials at each design point and 

sample size, OVL is computed as described above, using the transforma­

tion in (3.16) to map the two independently generated Monte Carlo 

samples onto the interval [0,l], and calculating OVL on this transformed
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scale. The results of this Monte Carlo study are summarized in table

3.1. Comparison of the Monte Carlo means to OVL demonstrates that OVL,

like OVL, is a biased estimator of OVL between two normal distributions.

Like OVL, OVL appears to understate OVL, since in only one instance

(y2 = 1*00, = 3.0, nj = n2 = 500) does the Monte Carlo mean of OVL
exceed OVL. The Monte Carlo variance of OVL presented in table 3.1 is

computed from the first two Monte Carlo moments. The variance of OVL

decreases as sample sizes increase from ni = n2 = 100 to ni = n2 = 500,

suggesting that OVL is a consistent estimator of OVL. (Because F (x)n
is a consistent estimator of F(x), we should expect OVL to be 

consistent.)

As before, the bias of OVL is addressed in table 3.1 by computing 

the standardized bias. Here the standardized bias of OVL is calculated 

two ways: the difference of the Monte Carlo mean minus OVL divided by 

the Monte Carlo standard error of OVL (standardized bias, column 1), and 

this difference divided by the Monte Carlo standard error of OVL 

(standardized bias, column 2). The bias of OVL can be compared to that 

of OVL, using the second of these quantities and the standardized bias 

of OVL reproduced in table 3.1 (standardized bias, normal). In units of 

the standard error of OVL, then, we see that the bias of OVL is always 

materially greater than the bias of OVL, with one exception ()J2 = 1.00, 

cr£ = 3.0, ni = ri2 = 100).
The relative inefficiency of OVL compared to OVL as estimators of 

OVL between two normal distributions is indicated by the ratio of their 

Monte Carlo variances, also shown in table 3.1. Evidently the variance 

of OVL is about 1.5 times the variance of OVL, running from a low of
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1.15 (ii2 = 1-00, cr£ = 1.0, ni = n2 = 100) to a high of 1.70 (U2 = 0.00, 

o| = 3.0, m  = n2 = 100). With only four points in this simulation 

study, we cannot say much about the relative efficiency of OVL versus 

OVL as a function of the difference in population means, the difference 

in population variances, and sample size, except to note that the ratio 

of the Monte Carlo variances of OVL and OVL changes little with the 

increase in sample sizes from nj = n2 = 100 to nj = n2 = 500 in the case 

of sampling from identical normal distributions, increases with sample 

size when sampling from normal distributions with different means, and 

decreases as sample sizes increase when sampling from normal distribu­

tions with the same mean but different variances. Finally, as the 

Kolmogorov statistics in table 3.1 indicate, OVL exhibits, at least 

approximately, a normal sampling distribution when sampling from 

sufficiently dissimilar normal distributions. Normality does not hold 

when the two distributions sampled are the same and sample sizes are 

small, but the normality or nonnormality of OVL when small differences 

in means or variances distinguish the distributions from which the two 

samples arise obviously cannot be determined from this Monte Carlo 

simulation study.

Discussion

The results of the Monte Carlo investigation of the behavior of 

OVL suggest that the spline estimator of OVL can perform well. The 

properties of OVL appear to echo those displayed by OVL; in particular, 

the bias of OVL is related to OVL and the sample sizes in the same way 

as the bias of OVL. As expected, the variance of OVL exceeds the 

variance of OVL when sampling from two normal distributions. Since



the primary advantage of OVL over OVL is its distribution-free approach,
-v A

the performance of OVL relative to OVL in the normal case indicates that 

OVL should perform adequately in situations of more immediate interest, 

where OVL is an inappropriate estimator of OVL. As the example below 

demonstrates, the spline-density estimator of OVL, combined with the 

bootstrap technique of estimating its variance and constructing con­

fidence intervals, can indeed prove worthwhile in real problems of data 

analysis. The bias-corrected percentile method of constructing con­

fidence intervals for the true overlap between the unknown distributions 

from the bootstrap distribution of OVL may, in fact, counter-balance the 

apparent increase in the downward bias of the estimator of OVL when 

nonparametric estimation is adopted.

The success of the spline-density based technique of estimating 

OVL raises the possibility that a less sophistocated nonparamteric 

method might also prove adequate in problem settings where distribu­

tional assumptions seem unwarranted. An obvious alternative to the 

spline estimator of the unknown densities is the kernal method of 

density estimation. A number of kernal functions can be used in this 

latter approach, but the "naive" kernal estimator offers a simple, and 

perhaps entirely adequate, technique for estimating the two densities 

required for the computation of an estimate of OVL (Rosenblatt, 1956; 

Waterman and Whiteman, 1978). If such density estimates are used to 

obtain the points of intersection of the densities, then the sample 

distribution functions themselves could be employed to evaluate the 

necessary components of the estimated overlapping coefficient, and the 

bootstrap can again be used to estimate the variance of the estimator of 

OVL and to construct confidence regions for the unknown OVL.
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For the present, the potential of these alternative nonparametric 

approaches for the estimation of OVL must remain an open question.

An Example

Let us now reconsider the wealth example introduced in Chapter 

Two. The reader will recall that the estimate of OVL, assuming nor-
A

mality and equal population variances, was OVL = 0.859614. Here we 

shall compute OVL from these data and use Efron's bootstrap methodology 

to obtain an estimate of the standard error of OVL and to construct 

confidence intervals for the unknown overlap between the distributions 

of wealth of the persistent and nonpersistent Alabama farmers.

The transformation chosen to map the natural logarithms of 

estimated 1850 wealth onto the interval [o,i] is that given in equation 

3.14, with a = 3 and b = 12. (Note that the smallest observation in the 

combined samples is 3.22865 and the largest observed natural logarithm 

of wealth is 11.47963, both in the nonpersistent group.) Thus the data 

actually used to compute OVL were obtained from the following 

transformation:

g(x) =
logg(x) - 3

This transformation is applied to the wealth data for both persistent 

and nonpersistent farmers, and OVL calculated as described above. From 

these data, OVL = 0.869152.
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Bootstrap estimates of the variance of OVL are readily obtained 

by equation 3.19. Here the bootstrap resamplings are accomplished with 

the simple FORTRAN subroutine RESAMP in the Appendix. Results for 

three different values of B are the following:

B = 100, OVL* = 0.843070, and Var„(0VL) = 0.00112578;B

B = 250, OVL* = 0.842914, and Var^OVL) = 0.000961849;B

B = 500, OVL* = 0.842576, and Var^OVL) = 0.000966696.D

This example demonstrates that the bootstrap estimate of the variance

of OVL is fairly good (that is, close to what is obtained for larger B)

when B = 100, but that a larger value of B is preferable. If we use the

result obtained when B = 500, the estimated standard error of OVL is

0.0310917. To provide some indication of the the cost of finding this

bootstrap estimate of the standard error of OVL, the computation of OVL
~ *and the generation of 500 OVL with the FORTRAN routines in the Appendix

required slightly more than seven minutes of CPU time on an IBM 4381-2

for this example.

Two of the methods described by Efron (1982, chap. 10) will be

used to construct bootstrap confidence intervals for OVL using the 1850
*wealth data. Let F (•) be the empirical distribution function con-D
~ * * ,structed from the OVL. (i=l,__,B), and let F„ (•) denote its inverse.i B

A (1 - a)100% confidence interval for OVL using the percentile method is

(3.21)
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Thus a 90% confidence interval for the true overlap between the wealth

distributions of the persistent and nonpersistent Alabama fanners, using
~ *the bootstrap distribution function constructed from the 500 OVL , is 

given by

£f*-J(0.05),F*”J(0.95)] = (0.792479,0.895659) ;

see figure 3.18.

The second method of constructing confidence intervals is what 

Efron calls the bias-corrected percentile method. Let denote the

inverse standard-normal distribution function. Define

zQ = (T^FgttWL)) , (3.22)

and

= if)—1
a/2 *_1(1 - a/2) (3.23)

Then the (1 - a)100% bias-corrected confidence interval .for OVL
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given by the following:

[V ‘tt(2!C - Za/2))'V '<,'(2Z0 ‘ './z”] ' ° ' U )

•kSince OVL computed from the wealth data is 0.869152 and F,.qq (0.869152)

is 0.818363, here zQ = 0.909145. If we want a 90% confidence interval

for OVL, a = 0.10 and z = 1.64485. The 90% bias-corrected confidencea /2
interval for the true overlap between the wealth distributions of the 

persistent and nonpersistent Alabama farmers is

[f*-J($(0.173440)),F*"J($(3.46314))] =

= [f*-J(0.568846),F*-J(0.999733)]

= (0.848472,0.941238) ;

see figure 3.19.

Note that the 90% confidence interval for OVL obtained by the 

percentile method is close to the interval obtained in Chapter Two by 

normal theory; the limits of the percentile confidence interval, 

however, are slightly below the corresponding normal theory limits of 

0.808967 and 0.915465. On the other hand, the limits of the bias- 

corrected confidence interval for OVL are more distant from the normal
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theory limits, and the bias-corrected percentile method produces an 

interval with upper and lower endpoints higher than either the normal 

theory or the percentile limits. Given our current knowledge of the 

sampling behavior of OVL, it is impossible to conclude that one of these 

confidence intervals is superior to the other two in every problem 

setting, but the evident nonnormality of these sample data and the 

general downward bias of estimators of OVL suggest that the bias- 

corrected confidence interval for the overlap between the distributions 

of wealth of persistent and nonpersistent Alabama farmers in 1850 is the 

most realistic of the three 90% confidence intervals constructed from 

the wealth data.



Chapter Four

OVL AS A MEASURE OF ASSOCIATION IN 

A 2 X C CONTINGENCY TABLE

The investigation of OVL as a measure of agreement between two 

distributions arranged in a 2 X C contingency table addresses the 

behavior of the overlapping coefficient in the context in which it was 

first proposed and used (Weitzman, 1970). The properties of the esti­

mator of OVL when the table entries are regarded as random variables is 

examined for two probability models of the 2 X C table, and in each 

case it is more convenient to use the index of dissimilarity, D 

(D = 1 - OVL), instead of OVL itself. The two probability models 

considered are first, when the rows of the table are independent 

realizations of two possibly identical multinomial distributions (row 

totals fixed), and second, when the cells of the table are determined 

by the multivariate hypergeomtric distribution of a single row of the 

table (both row totals and column totals fixed). Based on the behavior 

of D in the 2 X C table under these assumptions, it is apparent that 

in both situations the estimator of OVL is biased, that this bias means 

the estimator of OVL understates the true overlap of the row distribu­

tions, that the magnitude of the bias is directly related to C and the 

true overlap between the row distributions (unity in the multivariate 

hypergeometric model) and declines as the sizes of the row totals become

120
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large. Similarly, the variance of the estimator of OVL increases with C 

and decreases as the row totals increase.

OVL and D as Measures of Association Between 
Two Categorized Populations

The overlap between two Poisson distributions served as one of 

the examples introduced earlier as an illustration of the computation of 

the overlapping coefficient between two known distributions. Here a 

special case of OVL involving the overlap between two discrete distribu­

tions will be examined. Let us begin by supposing that we wish to 

compare two finite populations whose elements can be classified into C 

categories. One can think of this situation as the cross-classification 

of these two populations into a 2 X C contingency table, the two rows of 

the table representing the two populations and the C columns of the 

table representing the C categories into which the populations are 

sorted. Let n̂_. denote the number of individuals from population (row) 

i falling into category (column) j of this table. Finally, let Nj and 

N2 denote the population (row) totals for the first and second popula­

tions respectively. The overlap between the two populations may then 

be computed as follows:

OVL = ][ min
j=l

(4.1)

However, it will be more convenient in the discussion that follows if
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we use the relationship between OVL and D, the index of dissimilarity, 

and work with D rather than OVL. The usual formulation of D in the 

circumstance just described is

D = 1 C
.21
N1

n2j
N

(4.2)

Because OVL = 1 - D, it follows that any results we obtain for one 

automatically apply to the other.

In the context of the 2 X C table, OVL and D are simply two of 

many proposed measures of association (Goodman and Kruskal, 1979). They 

have the advantage that they are relatively easy to compute, and both 

remain unaffected by row or column permutation or the multiplication of 

an entire row by some nonzero constant. The measure D also appears to 

possess a natural meaning for many users: D represents the minimum 

proportion of individuals in either population (row) whose reclassifica­

tion into the appropriate categories (columns) would produce two popu­

lations with equal proportions in each category (Taeuber and Taeuber, 

1976, pp. 887-88; Goodman and Kruskal, 1979, p. 56). The properties of 

the index of dissimilarity as a measure of association, particularly as 

an indicator of residential segregation by race, have generated both 

controversy and confusion in the sociological literature (Jahn et al., 

1947, 1948; Hornseth, 1947; Williams, 1948; Jahn, 195C; Duncan and 

Duncan, 1955; Taeuber and Taeuber, 1965, 1976; Cortese et al., 1976,



1978; Winship, 1977, 1978; Massey, 1978; Falk et al., 1978; Elgie, 1979; 

Kestenbaum, 1980; Merschrod, 1981). Nevertheless, D has been extended 

to tables with more than two rows (Morgan and Norbury, 1981; Sakoda, 

1981), and it is used in a variety of applications, if not always de­

fined and computed correctly (Hout, 1983, pp. 12-13).

In the following discussion, properties of D— and thus OVL— will

be investigated in two circumstances where the cell counts of the 2 X C

table are presumed to follow a specified probability law. In the first

instance, the two rows of the table are treated as independent realiza­

tions of two possibly identical multinomial distributions, with the row 

totals fixed. The second situation to be examined is the multivariate 

hypergeometric model proposed by Cortese et al. (1976) for a 2 X C table 

with both row and column totals fixed. To indicate that the entries of

the table will now be treated as random variables, x.. (1=1,2;ij
j=l,...,C) will denote the number of individuals in row i and column j 

of the 2 X C contingency table.

The Multinomial Model of the 2 X C Table 

Let us assume that the two rows of the 2 X C table are indepen­

dent realizations of two multinomial distributions, possibly identical. 

Let Nj and N^, the two row totals, be fixed. Then the probability law 

for either row of the table is given by
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1=1,2; j=l,...,C; (4.3)

subject to the condition

C
I x.. = N. 
j=l ^  1

It can be shown that (Johnson and Kotz, 1969, pp. 51, 284)

Var(x_) = l^p (1 - p ) , i=l,2; j=l,...,C; (4.5)

and

Cov(x..,x.. =  - N.p..p..^ ,13 13 i 13 13
i=l,2; j=l,...,C; j'=l,...,C; . (4.6)
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Because of the assumed row independence, we note

Cov(x ,* ) = 0  , j=l,...,C; j'=l,...,C. (4.7)

This probability model for the 2 X C table arises naturally when 

the two rows represent two independent simple random samples of sizes Nj 

and classified into the C categories represented by the columns of 

the table, with the unknown proportion of each population in each of the 

C categories given by p (i=l,2; j=l,...,C). The true value of D for 

the two sampled populations, of course, is given by

d - i i
j=l lj - p2j (4.8)

The index of dissimilarity may be calculated for any realization
A

of the table generated by (4.3); let us denote this statistic by D:

„ i c
D = 2 I ldiI ’

j=l J
(4.9)
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where

x i • x o •d. = — , j=l,...,C. (4.10)
' h "z

In the case of two independent simple random samples classified into the
A

C categories, D is the maximum-likelihood estimator of D given in 

equation 4.8, and (i=l,2; j=l,...,C) is the maximum-likelihood

estimator of p...

Expectation and Variance of D 

By definition, the mean and variance of D are given by

E(D) = | I y, , (4.11)

Var(D) = j 0? +
CI I * JJ (4.12)

where y., a?, and a.., are defined as follows: 1 J JJ
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p = E(|d |) , j=l,...,C; (A.13)

cr* = Var(|d |) , j=l,...,C; (4.14)

and

= Cov(|dj|,|d |) , j=l,...,C; j'=l,...,C; j/j". (4.15)

Now from (4.3), the distribution of any x .̂ is binomial, with 

probability function

/N. \ x.. N. - x..
P(x. .) - 1 p.^-d - p,.) 1 1J

11 V x j j / ' ij . F i 1

0 < x.. < N.; i=l,2; j=l,...,C. ij x (4.16)

Furthermore, the joint distribution of any x „  and x„ (j ^ j'’) is 

multinomial, with probability function
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N. - x. .i ij x . .iJ

x. .!*x..A •(N. - x.. - x..^)!13 ij i 13
0<x..+x.., £ N.; i=l,2;13 13 1

3=1»**»jC; j =1,...,C; ĵ j • (4.17)

Because the rows are assumed to be independent, the joint 

distribution of x^ and x is simply the product of the marginal 

probabilities given by equation 4.16. Therefore the expectation of

Id.| is

y .  =

N1 N2I I
*1 -0 x2j=0

X l j  X 2 -

N1 N2
•P(x )*P(x2 ) (4.18)

Because E(|d^|2) = E(d2), the variance of | d̂  | is given by

= Var(dj) + [E(d.,]2 - [ECld^)]2 . (4.19)

From (4.10) and the assumption of row independence, it follows that



Finally, because d. • d.J = Id.d.J, the covariance of Id.i and Id..3 J 33 3 3
(j ^ j') can be written as

a. ..J J

x, ,+x,,^<N, x ,+x ,̂ <N 13 13 1 2 J  2 J  “  2

x .=0 x ,=0 x .=0 x .̂ =0 13 13 23 2 3

X .  . X .  . X  . X  . ^  +  X  . _ x  .13 13 _ 13 23 13 23 +
2Nf N1N2

x_.x„.. 2.1 2.j
•P(Xlj’XljJ ‘P(X2j’X2jJ yjyj" (4.21)

Substitution of equations 4.18, 4.20, and 4.21 into equations 4.11 and 

4.12 yields the expectation and variance of D.

Normal Approximation to the Mean
A

and Variance of D
A

The expressions for the expectation and variance of D derived 

above require extensive computation for nontrivial C, Nj, and N2- 

Equation 4.21 in particular proves difficult, as there are C(C - 1)/2 

unique covariance terms Cjj-- to calculated, each involving quadruple 

summation over Nj and N^. Considerably simpler expressions for the
A

mean of D and, in a special case of some interest, for the variance of 

D can be obtained by using a multivariate-normal approximation to the
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multinomial row distributions given by (4.3). That is, we assume the 

distribution of x^,...^ (1=1,2) is C-variate normal with elements of

the mean vector given by equation 4.4 and elements of the variance- 

covariance matrix given by equations 4.5 and 4.6. This immediately 

implies that d^,...^ are distributed as C-variate normal and that 

|d1|,...,|d̂,| are distributed as C-variate folded-normal.

Xl i  X2iWe argue as follows. Each d. = — J------L will be (approxi-
3 V M1*1 2

mately) normally distributed with expectation ,

S  = Pli - P2j (4.22)

and variance x̂ ,

N,
, P2.i(1 ' ^ (4.23)

It follows from our assumption of the approximate C-variate normality of

xjj,..., x ^  and X2i»*’*»X2C t̂ iat t'ie are normally distributed and
thus that the d. are distributed as the folded normal distribution. J
The mean p.. of each |d_. | is obtained from and x̂  by equation 2.44. 

Therefore the approximate expectation of D is provided by



If D = 0, that is if p,. = p . = p . (i = l,...,C), then*lj 2j

/N, + N C x
E(D) =(—  -j I [p. (1 - P.)Y2 . (4.25)

\2ttN N / j=l 2 3

This latter expression is always positive, except in the pathological 

case when one p̂  = 1 and all others are equal to zero, and therefore D 

will always be biased above as an estimator of D when the two distribu­

tions from which the two rows are obtained are identical. Of course,
A

this bias of D can be made to decrease by increasing Nj and N2. Because 

the elements of the sum in equations 4.24 and 4.25 are positive, the
A

bias of D is directly related to C, the number of columns in the table, 

and to the p (i=l,2; j=l,...,C), the multinomial probabilities.

The properties of the folded-normal distribution, discussed in
A

Chapter Two, suggest that the behavior of D when D = 0 represents the

extreme case in regard to bias. Thus as the magnitude of £j/Tj

increases, p. will approach |C.| = |p^. - p .|, and so the expected 1 1 3  1
A

value of D will approach D as the magnitudes of all ?-/Tj
A

become large. Once again, then, the bias of D is apparently least when 

the two distributions compared are sufficiently dissimilar, the sample
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sizes (row totals) Nj and N2 are sufficiently large, or some combination 

of the two, provided, of course, that p^ ^ p .̂ (j=l,...,C). It is also
A

evident that D may exhibit approximate normality if Pj/Xj > 3 for all j 

(j=l,...,C), since each |d̂ | becomes approximately normally distributed 

whenever this may hold, given our assumption about the normality of 

the xn ,...,xic and X2i’’-,’X2C (Elandt> 1961) .
An approximation to the variance of D is also possible when 

D = 0. In this instance, £ = 0 (j=l,...,C), and equation 4.23 can be

written as

x? = Ni + N;

N1N2
V 1 -pj) (4.26)

Because of the presumed row independence, the covariance of d̂  and d_. ̂ 

(j  ̂3') follows from (4.6) and (4.7):

x . . , = Cov(d.,d.>) = 33 3 3
N + N

N1N2
P.P.3 3 (4.27)

From equation 4.26 and equation 4.27, p ^ , the correlation between 

dj and d . (j ^ j"), is



From equations 2.44 and 2.45, the approximate variance of | |  is 

given by

a? = J ‘
Nj + N2 /tt - 2

N1N2
(4.29)

and from the absolute moments of the multivariate-normal distribution 

with zero mean vector (Nabeya, 1951, 1952), the approximate covariance 

of |d | and |d  ̂| (j 4- j") is given by

o. ., = tT(1 - + p. .^sin^p. . jlr.T., - y.y.,JJ * TT L JJ JJ ] ]  J ]  ]  J  J

2(N + N ) h ^
= ---------- P.d ~ P.)P.^(1 - P..) ■ (1 - P..J2 +

ttN N *" J J  J J L  J J
1 2

+ p..,sin (p..J - ll . (4.30)JJ JJ J

Substitution of (4.29) and (4.30) into equation 4.12 yields the fol-
A

lowing expression for the variance of D when D = 0:
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Var(D) = N1 + N 2
4ttN,N 1 2

(tt - 2)(1 - I p?) + 
3=1 J

+ 2 I I [p-jO ~ P-)P.-(1 “ P^)]*^1 'LI 3 3  3 J L

+ p..̂ sin1(p. . 33 33 “ ] (4.31)

Inspection of this expression for the approximate variance of D reveals

that Var(D) is directly related to the common multinomial probabilities,

Pj (j = l,... ,C) ; is an increasing function of C; and decreases as and

N increase.2

Monte Carlo Investigation of 
Properties of D

To examine the sampling behavior of D (and thus of OVL defined 

in the 2 X C table with independent multinomial row distributions), a 

Monte Carlo simulation study involving 1000 Monte Carlo trials at each 

of 48 design points was undertaken. The objectives of this study are
A

to determine how the bias and sampling variance of D vary with D, C, and 

the sample sizes (row totals) Nj and N2; to assess the utility of the
A

normal approximation to the expectation of D; and to investigate the
A

possibility of approximating the sampling distribution of D with some 

appropriately specified continuous probability law.

Four different values of D, 0.05, 0.25, 0.45, and 0.65, and three 

values of C, 4, 7, and 11, were chosen so that the behavior of D could 

be evaluated when the real association between the row distributions is



135

high, moderate, and low; and where the number of columns in the table

remains small enough to permit simple assessment of the effect of the

size of the table (C = 4 and C = 7) and large enough to represent a

more realistic setting for the actual use of D (C = 11). Multinomial

probabilities for each row of the table were then fixed to obtain the

desired D at every value of C; see table 4.1. At each combination of D

and C, four sets of values for N1 and N2 are used to generate the Monte

Carlo distributions of D: N, = N_ = 100; N, = 100, N = 200; N = 200,1 2  1 2 1
N = 100; and N = N = 200. (Note that when the multinomial proba- 2 1 2
bilities assigned to the two rows are reverse images of each other, as 

for D = 0.05 and C = 4, the sets of Monte Carlo trials with unequal 

sample sizes are actually replications of the same design point.) All 

sets of Monte Carlo trials were generated using the MATRIX procedure in 

SAS (SAS, 1982).

The results of the Monte Carlo simulation study are summarized in 

table 4.2. The Monte Carlo mean and variance of D are based on the 

first and second moments computed from the 1000 realizations of D at 

each combination of D, C, , and N2< Direct inspection of the Monte
A

Carlo means in table 4.2 demonstrates that D is a biased estimator of D, 

just as equation 4.24 suggests. The bias of D, nearly without excep­

tion, declines as and increase, but it remains substantial when
A

D = 0.05. The bias of D measured in units of the Monte Carlo standard 

error of D, the standardized bias in table 4.2, indicates not only that 

the bias of D declines absolutely as and N2 increase, but also that
A

this bias declines relative to the sampling error of D. The decline in 

both the bias and the standardized bias is sometimes erratic,
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particularly when D is large and C is small. Specifically, as equations 

4.24 and 4.25 indicate, the bias of D decreases as D increases and 

increases with C. The largest bias of D observed in the Monte Carlo 

study, absolutely and relatively, occurs when D = 0.05 and C = 11.

The predicted mean of D is also calculated for each set of Monte 

Carlo trials, using equation 4.24 with the appropriate values of C, , 

N^, and the multinomial probabilities in table 4.1. These predicted 

expectations are presented in table 4.2 as well. To aid our assessment 

of this approximation based on the normal and folded-normal distribu­

tions, the difference between the Monte Carlo and predicted means rela­

tive to the Monte Carlo standard error of D has been computed for every 

entry in table 4.2. We can observe that, with occasional exceptions, 

the normal approximation to the expected value of D accurately repre­

sents the means of D attained in the Monte Carlo study. Again with some 

irregularities, the accuracy of the predicted mean increases as and 

N2 increase, and, as the signs of standardized differences attest, the
a

approimation for the mean of D does not appear to systematically under-
A

state or overstate the means observed for the simulated D. Inter­

estingly, there also appears to be no clear relationship between the 

aggreement of the predicted and Monte Carlo means and C, the number of 

columns of the table, a somewhat encouraging result given the extremely 

small probabilities assigned to the rows in several of the trials and 

the usual warnings about the suitability of the normal approximation in 

such circumstances.

Unfortunately, the attempts to model the Monte Carlo distribu­

tion of D must be assessed as failures. Like the situation observed
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in the normal distribution case when OVL is near unity (or D is near
A

zero), the distribution of the simulated D in the 2 X C table seems to
A

bunch when D is small. The tendency of the distribution of D to con­

centrate toward zero is not, however, as severe as that observed earlier 

in the normal case. In addition, while the Monte Carlo distribution of
A

D appears to become symmetric for D distant from zero, or when and N2 

are sufficiently large, normality is uniformly rejected. In none of the 

48 sets of simulation trials does a Kolmogorov test for normality, 

using the Stephans (1974) pseudocritical points, indicate that the 

normal distribution serves as ar adequate probability model for the 

sampling distribution of D : .i the 2 X C table. Further attempts to fit 

the folded-normal and standard-beta distributions to these simulation 

data are also rejected by the Kolmogorov test. When C, N1, and N2 are
A

all small, the distribution of D becomes quite discrete, so no con­

tinuous probability model may suffice in such circumstances. Whether a 

continuous distribution can represent the behavior of D when C, Nj, and 

N2 are large can only be addressed when and N2 are much larger that 

the values considered here.

The Multivariate Hypergeometric Model 
of the 2 X C Table

Let us now assume that the column totals, n̂  (j=l,...,C), as well

as the row totals, and N2, of the 2 X C table are fixed. Let

N + N = N. If the cell counts of the table x.. (1=1,2; j=l,...,C) are1 2  lj J
regarded as a realization of the random assignment of the N individuals

to the cells of the table subject only to the constraints imposed by the

fixed row and column totals, the distribution of the x.. can be writtenij
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In terms of the multivariate hypergeometric distribution of either

X 1 1 » * * * » X 1 C  o r  X 2 i ’ ' * , , X 2 C  ^ B i s h o p  e t  a l *» 1 9 7 5 > P P -  450-52). Here 
we shall work with the first row and its distribution, given by

>X1C)

c /n. 
n J 
j=Axij

  , 0 < x,. < J.:
N v "  U  "  J

N,

(4.32)

where J_. = min(n .Nj). Then (Steyn, 1955; Bishop et al., 1975) it is 

known that

E(x ) =
n.N, 3 1
N

(4.33)

n.N / n.\ / N - N \
Var (x ) = - 1—  ( 1 -- 1 11 -----  , j=l,...,C; (4.34)

J N \ N / \ N - 1 /

and
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n.n.Jfl. /N - N \ 
Cov(x x ) = - ■ J  M  ,

13 13 N 2  V n  -  1 /

Let us define the random variable D for this model of the 2 X C 

table in the following way:

D = 1 C
(4.36)

where here

d. = 1
lj
N,

n. - x,. Nx.. - n.N 
_J LL =  U 1_1

Nr NX(N - Nj)
(4.37)

Then

1 C
E(D) = 2  I n , ,  

j = l 3
(4.38)



146

and

Var(D) = j
C C
1 °2- + 1 1 a - • 
3 = 1 J A'  JJ

(4.39)

where p_., cr|, and are again defined as in (4.12), (4.13), and

(4.14), but dj (j=l,...,C) is defined as in (4.37).

Now it follows from the probability model in equation 4.32 that 

the marginal distribution of any x̂  (j=l,...,C) is hypergeometric, 

with probability function

P(V  -

/n. w  N - n.

v w W  - vi (4.40)

where J. is defined as above. The joint distribution of x,. and x, .. J 13 lJ
(j  ̂ĵ ) is bivariate hypergeometric, with probability function
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/ ' i V V f - V V
_ \xijA3ii1-AN. - * n  - *ir

0 < < J_.; 0 < X  ̂< 3y-, X + x^. < Nj. (4.41)

By definition, y ̂ , the expectation of |d |, can be computed as

V. =
x. .=0

Nx.. - n.N, 13____1_L
NX(N - Nj)

•p<» ) (4.42)

Noting that E(d^) = 0 (j=l,...,C), we obtain from equation 4.19 the 

following expression for a ,̂ the variance of |d^|:

n . (N - n .)
a? = --- ^ ^ ----- - y? . (4.43)
J Nj(N - Nj)(N - 1) J

Finally, °jj'> covariance of |d̂.| and |d.p| (j  ̂j') is given by



Substitution of these expressions for vu, â, and into equations

4.38 and 4.39 provides the mean and variance of D.

Normal Approximation to the Expectation 
and Variance of D

The extensive computations required to calculate ŷ  , o^, and 

particularly CTjj^» suggest that some simpler method be used to 

find the mean and variance of D. Cortese et al. (1976) adopt a binomial 

approximation to the summation in (4.42) to calculate the expected value 

of D. Both jackknife (Taeuber and Taeuber, 1976) and bootstrap 

(Kestenbaum, 1980) methods have been advocated for computing the 

variance of D. The procedure introduced here parallels the method used 

earlier to derive the approximate mean of D in the multinomial case.

The x^,...,x are presumed to follow, at least approximately, a multi­

variate normal distribution with mean vector specified by equation 4.33 

and variance-covariance matrix specified by equations 4.34 and 4.35. It 

immediately follows from this assumption that the d̂  (j=l,...,C) are 

distributed as C-variate normal and the |d̂ | (j=l,...,C) are distributed 

as C-variate folded-normal. The relationship between the normal and 

folded-normal distributions then permits the derivation of relatively 

simple expressions for the approximate mean and variance of D.
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We begin by noting the expectiation of each cL (j=l,...,C) is

zero and that x?, the variance of each d., is 3 3

T? =
n.(N - n.)_J______3_____

N^N - ) (N - 1)
(4.45)

Thus the properties of the folded-normal distribution require that y^, 

the expected value of |d.|, be given by

T =
2n̂  (N - n ̂ )

_irN1(N - - 1).
(4.46)

The variance of |djl> is simply

,2 1 tr - 2 (ir - 2)n. (N - n.)

irN1 (N - N1)(N - 1)
(4.47)

From equation 4.35, x...., the covariance of d. and d.^ (j  ̂j'), is
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T . .JJ
n.n.,J J

Nj(N - Nj)(N - 1)
(4.48)

and therefore the correlation between d. and d.̂ , p..,, is given by

Pjj"
n.n. J J

.(N - n̂ ) (N - n J.
(4.49)

Hence by (4.30), the approximate covariance of |d̂ | and |dj,| (j ^ j”*) 

is here

2[n.(N - n.)n.,(N - n.,)] 2 r 
a...  L J --- L j L f (1 _ p^.^4.
33 ttN1(N - N ) (N - 1) L 33

,2 \h

+ p „ ,sin*(Pjj-) " • (4.50)

Combining these expressions for approximations to , â , and °jj-» we 

obtain from (4.38) and (4.39) the following expressions for the 

approximate expectation and variance of D:
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E ( D )  =
1 C

—  I^  j - 1

n . ( N  -  n . )
_ J __________ I _

N j ( N  -  N X) ( N  -  1 ) .

r  n i (  n a 1 C ' n . { n -V
2 tt( N  -  1 )  — * I 1N ^ N  / j  =  l .  N V N / .

( 4 . 5 1 )

and

V a r ( D )

t t  — 2  C n . ( N - n . )

  I   J L
TT j  =  l  N X ( N  -  N j ) ( N  -  1 )

C [ n . ( N  -  n . ) n . ^ ( N  -  n . ^ ) ]
J  X

Nj(N -  NX)(N -  1)

i 5 l ( p j r )  -  i ]+  p . . ^ s i n  
J J

Nl / * V
4 i r ( N  -  1 )  —  [ 1 ----------

N

C

+  2  I I  

j £ j '

N

1

Or -  2)

' n .  /  n . \  n .  ^  /  ,
_ X  f  i  _  - i )  - J _  1 -  2  J 1

. N  \  N /  N  \

j = l

i.

-1
+  p  . . _ s i n  ( p  . . -  1

J J  J J  J ( 4 . 5 2 )

C l e a r l y ,  b o t h  t h e  e x p e c t a t i o n  a n d  v a r i a n c e  o f  D  a p p e a r  t o  b e  f u n c t i o n s  

o f  C ,  N ,  N j / N ,  a n d  n ^ / N  ( j = l , . . . , C ) .

I n  t h e  e v e n t  t h a t  n  =  . . .  =  n  =  n  =  N / C ,  t h e  e x p r e s s i o n s  f o r
*



152

t h e  a p p r o x i m a t e  e x p e c t a t i o n  a n d  v a r i a n c e  o f  D  s i m p l i f y  e v e n  f u r t h e r :

E ( D )  =  ( C  -  l ) ^ *

N  / N l ' 
2 t t ( N  -  1 )  —  1 -  —

~ h

( 4 . 5 3 )

N N

a n d

C -  1

V a r ( D )  = +  2 { [ C ( C  -  2 ) f  -  s i n ^  ^  "  C l )  *

N 1 /  M
4 i r ( N  -  1 )  — I 1 ----------

N  \  N  /

- 1

( 4 . 5 4 )

T h u s ,  m o r e  o b v i o u s l y  t h a n  i n  t h e  c a s e  o f  u n e q u a l  c o l u m n  t o t a l s ,  w e  

o b s e r v e  t h a t  E ( D )  i n c r e a s e s  w i t h  C =  N / n ,  d e c r e a s e s  a s  N i n c r e a s e s ,  a n d  

i s  a  q u a d r a t i c  f u n c t i o n  o f  N / N .  W h i l e  V a r ( D )  d e c r e a s e s  a s  N i n c r e a s e s ,  

i t s  d e p e n d e n c e  o n  C  i s  m o r e  c o m p l e x .  W e  n o t e ,  h o w e v e r ,  t h a t  a s  C  =  N / n  

b e c o m e s  l a r g e ,

l i m i t  [ v a r ( D ) J  =

N /  N  ' 

4 ( N  -  1 )  —  1 -  —

-1

N N



A d e q u a c y  o f  t h e  N o r m a l  A p p r o x i m a t i o n  t o  

t h e  M e a n  a n d  V a r i a n c e  o f  D

B e c a u s e  t h e  p r o b a b i l i t y  m o d e l  f o r  D ,  t h e  i n d e x  o f  d i s s i m i l a r i t y  

i n  t h e  2  X  C m u l t i v a r i a t e  h y p e r g e o m e t r i c  t a b l e ,  i s  s o  r e s t r i c t i v e ,  w e  

s h a l l  l i m i t  f u r t h e r  c o n s i d e r a t i o n  o f  t h e  p r o p e r t i e s  o f  D t o  a  c o m p a r i s o n  

o f  t h e  a p p r o x i m a t e  e x p e c t a t i o n  a n d  v a r i a n c e  o f  D d e r i v e d  a b o v e  t o  s o m e  

M o n t e  C a r l o  r e s u l t s  i n  K e s t e n b a u m  ( 1 9 8 0 ) .  U s i n g  t h e  m u l t i v a r i a t e  h y p e r ­

g e o m e t r i c  m o d e l ,  K e s t e n b a u m  g e n e r a t e d  s i m u l a t e d  d i s t r i b u t i o n s  f o r  D i n  

t h e  2  X  C t a b l e  w i t h  e q u a l  c o l u m n  t o t a l s  f o r  s e v e r a l  v a l u e s  o f  C ,  N ,  a n d  

N j / N ,  a n d  h e  c o m p u t e d  t h e  M o n t e  C a r l o  m e a n  a n d  v a r i a n c e  o f  t h e  D  s o  

o b t a i n e d .  T h e  r e s u l t s  K e s t e n b a u m  r e p o r t s  f o r  N ^ / N  g r e a t e r  t h a n  o r  e q u a l  

t o  0 . 0 5  w i t h  N  =  1 0 0  a n d  N =  1 0 0 0  a r e  r e p r o d u c e d  i n  t a b l e  4 . 3  a n d  t a b l e

4 . 4 .  ( V a l u e s  o f  N j / N  l e s s  t h a n  0 . 0 5  f o r  t h e s e  v a l u e s  o f  N s e e m  p a t e n t l y  

u n r e a l i s t i c  a n d  a r e  n o t  c o n s i d e r e d  h e r e . )  T h e  v a l u e s  o f  C a r e  2 ,  4 ,  a n d  

1 0  f o r  N =  1 0 0  a n d  1 0 ,  2 0 ,  4 0 ,  a n d  1 0 0  f o r  N  =  1 0 0 0 .  T h e  M o n t e  C a r l o  

m e a n s  a n d  v a r i a n c e s  o f  D i n  t a b l e  4 . 3  a r e  c o m p u t e d  f r o m  1 0 0 0  M o n t e  C a r l o  

t r i a l s  a t  e a c h  c o m b i n a t i o n  o f  C a n d  N j / N ;  i n  t a b l e  4 . 4  t h e  M o n t e  C a r l o  

m e a n s  a n d  v a r i a n c e s  a r e  b a s e d  o n  o n l y  1 0 0  M o n t e  C a r l o  t r i a l s .

( K e s t e n b a u m  a l s o  r e p o r t s  M o n t e  C a r l o  m o m e n t s  o f  D w h e n  N  =  1 0 0 0 0 ,  b u t  

t h e s e  a r e  c o m p u t e d  f r o m  o n l y  1 0  M o n t e  C a r l o  t r i a l s . )

T h e  a p p r o x i m a t e  m e a n  a n d  v a r i a n c e  o f  D h a v e  b e e n  c a l c u l a t e d  f r o m  

e q u a t i o n s  4 . 5 3  a n d  4 . 5 4  u s i n g  t h e  a p p r o p r i a t e  v a l u e s  o f  C ,  N ,  a n d  N j / N ;  

t h e s e  a r e  p r e s e n t e d  i n  t a b l e s  4 . 3  a n d  4 . 4  a s  t h e  p r e d i c t e d  m e a n  a n d  t h e  

p r e d i c t e d  v a r i a n c e  o f  D .  B e c a u s e  K e s t e n b a u m  r e p o r t s  s o  f e w  s i g n i f i c a n t  

f i g u r e s ,  t h e  c o m p a r i s o n  o f  t h e  p r e d i c t e d  e x p e c t a t i o n s  a n d  v a r i a n c e s  t o  

h i s  M o n t e  C a r l o  r e s u l t s  w i l l  n e c e s s a r i l y  b e  s o m e w h a t  s u p e r f i c i a l .  

N e v e r t h e l e s s ,  t h e  s t a n d a r d i z e d  d i f f e r e n c e — t h e  M o n t e  C a r l o  m e a n  m i n u s
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t h e  p r e d i c t e d  m e a n  d i v i d e d  b y  t h e  M o n t e  C a r l o  s t a n d a r d  e r r o r — i n d i c a t e s  

t h a t  t h e  n o r m a l  a p p r o x i m a t i o n  t o  t h e  m e a n  o f  D a d e q u a t e l y  r e p r e s e n t s  

t h e  m e a n  o f  t h e  s i m u l a t e d  D  w h e n  N j / N  i s  s u f f i c i e n t l y  l a r g e  o r  C  i s  

s u f f i c i e n t l y  s m a l l .  W e c a n  s e e  t h a t  t h e  p r e d i c t e d  m e a n  a p p e a r s  t o  l i e  

c l o s e r  t o  t h e  M o n t e  C a r l o  m e a n  w h e n  N =  1 0 0 0  ( t a b l e  4 . 4 )  t h a n  w h e n  

N =  1 0 0  ( t a b l e  4 . 3 ) .  T h e r e  i s  a l s o  s o m e  e v i d e n c e  i n  t a b l e  4 . 3  ( C  =  1 0 )  

t h a t  w h e n  C i s  l a r g e  r e l a t i v e  t o  N ,  o r  n  i s  s m a l l  r e l a t i v e  t o  N ,  t h e  

p r e d i c t e d  m e a n  o v e r s t a t e s  t h e  e x p e c t a t i o n  o f  D o b s e r v e d  i n  t h e  M o n t e  

C a r l o  t r i a l s .

A  r e s u l t  o f  p e r h a p s  m o r e  i n t e r e s t ,  s i n c e  C o r t e s e  e t  a l .  ( 1 9 7 6 )  

h a v e  a p p a r e n t l y  d e v e l o p e d  a n  a d e q u a t e  a p p r o x i m a t i o n  m e t h o d  f o r  t h e  

e x p e c t e d  v a l u e  o f  D ,  i s  t h e  c o m p a r i s o n  o f  t h e  M o n t e  C a r l o  v a r i a n c e  g i v e n  

b y  K e s t e n b a u m  t o  t h a t  p r e d i c t e d  b y  e q u a t i o n  4 . 5 4 .  A s  t h e  r a t i o  o f  t h e s e  

v a r i a n c e s  ( M o n t e  C a r l o  t o  p r e d i c t e d  v a r i a n c e )  d e m o n s t a t e s ,  t h e  p r e d i c t e d  

v a r i a n c e  a p p e a r s  t o  o v e r s t a t e  t h e  M o n t e  C a r l o  v a r i a n c e  o f  D  f o r  s m a l l  

N 1 / N  b u t  i s  a c c u r a t e ,  a t  l e a s t  a s  f a r  a s  K e s t e n b a u m ' s  r e s u l t s  p e r m i t ,  

w h e n  N j / N  i s  s u f f i c i e n t l y  l a r g e ,  w h e r e  t h e  N j / N  r e q u i r e d  i n c r e a s e s  a s  

C i n c r e a s e s .  T h i s ,  o f  c o u r s e ,  i s  o n l y  t o  b e  e x p e c t e d ,  a s  t h e  a p p r o x i ­

m a t i o n  f o r m u l a e  o f  e q u a t i o n  4 . 5 3  a n d  e q u a t i o n  4 . 5 4  d e p e n d  o n  t h e  

a d e q u a c y  o f  t h e  n o r m a l  a p p r o x i m a t i o n  t o  t h e  m u l t i v a r i a t e  h y p e r g e o m e t r i c  

d i s t r i b u t i o n  a n d  t h u s ,  a l l o w i n g  f o r  t h e  u s u a l  r e q u i r e m e n t s  o f  s u c h  

a p p r o x i m a t i o n s ,  o n  C ,  s i n c e  C i s  a  f u n c t i o n  o f  t h e  c o l u m n  t o t a l s  o f  t h e  

2  X C  t a b l e  a n d  t o  t h e  e x p e c t e d  v a l u e s  o f  t h e  X j j , . . . , x  .

D iscu ss io n

T h e  b e h a v i o r  o f  D a n d  D a s  m e a s u r e s  o f  a s s o c i a t i o n  i n  t h e  2  X  C 

c o n t i n g e n c y  t a b l e  i n d i c a t e  t h a t  t h e  c o r r e s p o n d i n g  e s t i m a t o r s  o f  O V L ,  OVL



160

a n d  O V L ,  d i s p l a y  t h e  s a m e  p r o p e r t i e s  a s  t h e  e s t i m a t o r s  o f  t h e  o v e r l a p ­

p i n g  c o e f f i c i e n t  b e t w e e n  t w o  c o n t i n u o u s  d i s t r i b u t i o n s .  T h e  b i a s  o f  D 

a n d  D  d e m o n t r a t e s  t h a t  i n  t h e  2  X  C t a b l e ,  e s t i m a t o r s  o f  O V L w i l l  

e x h i b i t  d o w n w a r d  b i a s  a n d  t h i s  b i a s  i s  r e l a t e d  t o  C ,  N 1 ,  N 2 , a n d  t h e  

m u l t i n o m i a l  r o w  p r o b a b i l i t i e s  i n  t h e  m u l t i n o m i a l  c a s e  a n d  t o  C ,  N ,  N 1 , 

a n d  t h e  c o l u m n  t o t a l s  n_. ( j  =  l , . . . , C )  i n  t h e  m u l t i v a r i a t e  h y p e r g e o m e t r i c  

c a s e .  T h e  s a m p l i n g  v a r i a n c e  o f  t h e s e  e s t i m a t o r s  o f  O V L w i l l  b e  i d e n -

A

t i c a l  t o  t h e  v a r i a n c e  o f  D  a n d  D ,  s o  t h e  r e l a t i o n s h i p s  b e t w e e n  t h e  

v a r i a n c e  o f  t h e  i n d e x  o f  d i s s i m i l a r i t y  a n d  t h e  p a r a m e t e r s  o f  t h e  a s s u m e d  

d i s t r i b u t i o n  o f  t h e  2  X  C  t a b l e  o b v i o u s l y  h o l d  f o r  t h e  v a r i a n c e  o f  t h e  

e s t i m a t o r  o f  O V L  u n d e r  t h e s e  p r o b a b i l i t y  m o d e l s .

O f  t h e  t w o  c a s e s  e x a m i n e d  h e r e ,  t h e  m u l t i n o m i a l  m o d e l  o f  t h e  

2  X  C t a b l e  a p p e a r s  t o  b e  m o r e  r e l e v a n t  t o  o u r  g e n e r a l  e x p l o r a t i o n  o f  

t h e  p r o p e r t i e s  o f  O V L  a s  a  m e a s u r e  o f  a g r e e m e n t  b e t w e e n  d i s t r i b u t i o n s ,  

f o r  i t  c o r r e s p o n d s  t o  t h e  c o m p a r i s o n  o f  t w o  d i s t r i b u t i o n s  t h r o u g h  t h e  

a r r a n g e m e n t  o f  t w o  i n d e p e n d e n t  s a m p l e s  f r o m  t h e s e  d i s t r i b u t i o n s  i n  t h e  

2  X  C t a b l e  f o r m a t .  O n c e  a g a i n ,  t h e  e v i d e n t  b i a s  o f  t h e  e s t i m a t o r  o f

Aw
t h e  o v e r l a p p i n g  c o e f f i c i e n t  m a y  b e  t h e  m o s t  i m p o r t a n t  p r o p e r t y  o f  O V L  

u n c o v e r e d  h e r e .  A s  i n  t h e  c a s e  o f  t h e  e s t i m a t o r  o f  O V L  b e t w e e n  t w o  

n o r m a l  d i s t r i b u t i o n s  a n d  t h e  c a s e  o f  t h e  s p l i n e - b a s e d  e s t i m a t o r  o f  O V L  

b e t w e e n  t w o  u n s p e c i f i e d  d i s t r i b u t i o n s ,  t h e  c l o s e r  t h e  t r u e  o v e r l a p  t o  

u n i t y ,  t h e  g r e a t e r  t h e  d o w n w a r d  b i a s  o f  O V L .  T h e  f a c t  t h a t  t h e  m e a n ,  

a n d  i n  o n e  c i r c u m s t a n c e  t h e  v a r i a n c e ,  o f  D a n d  O V L  c a n  b e  c l o s e l y  

a p p r o x i m a t e d  m a y  p r o v e  u s e f u l  i n  s o m e  a p p l i c a t i o n s .  S e v e r a l  a t t e m p t s  

t o  e s t i m a t e  t h e  v a r i a n c e  o f  O V L  ( a n d  D )  i n  t h e  m u l t i n o m i a l  c a s e  b y  t h e  

j a c k k n i f e  m e t h o d  ( E f r o n ,  1 9 8 2 ,  c h a p .  3 )  d e m o n s t a t e  t h a t  t h e  b o o t s t r a p



p r o v i d e s  a  b e t t e r  n o n p a r a m e t r i c  e s t i m a t e  o f  t h e  v a r i a n c e  o f  O V L .  

A p p a r e n t l y  b e c a u s e  o f  t h e  d i s c r e t e  d i v i s i o n s  o f  t h e  2  X  C t a b l e ,  t h e  

j a c k k n i f e  s u b s t a n t i a l l y  u n d e r s t a t e d  t h e  M o n t e  C a r l o  v a r i a n c e  i n  e v e r y

A
c a s e  e x a m i n e d .  T h e  b o o t s t r a p  e s t i m a t o r  o f  t h e  v a r i a n c e  o f  O V L i n  t h e  

2  X C t a b l e  i s  i l l u s t r a t e d  i n  t h e  e x a m p l e  b e l o w .

T h e  p r i m a r y  i m p o r t a n c e  o f  t h e  m u l t i v a r i a t e  h y p e r g e o m e t r i c  m o d e l  

o f  t h e  2  X C t a b l e  i s  t h e  r o l e  i s  h a s  a s s u m e d  i n  t h e  s o c i o l o g i c a l  a n d  

d e m o g r a p h i c  l i t e r a t u r e .  S i n c e  a  p a r t  o f  t h e  d e b a t e  o v e r  t h e  p r o p e r  

i n t e r p r e t a t i o n  o f  t h e  i n d e x  o f  d i s s i m i l a r i t y  c e n t e r s  o n  i t s  e x p e c t a t i o n  

a n d  v a r i a n c e  u n d e r  t h i s  p r o b a b i l i t y  m o d e l ,  t h e  a p p r o x i m a t e  m o m e n t s  

d e r i v e d  f o r  D m a y  b e  h e l p f u l .  F i r s t ,  t h e  a g r e e m e n t  b e t w e e n  t h e  a p p r o x i ­

m a t e  m o m e n t s  a n d  t h e  M o n t e  C a r l o  m o m e n t s  r e p o r t e d  b y  K e s t e n b a u m  s u g g e s t s  

t h a t  i n  r e a l i s t i c  a p p l i c a t i o n s ,  w h e r e  N ,  ,  a n d  n ^  ( j = l , . . . , C )  a r e  

l a r g e ,  t h e  a p p r o x i m a t e  m o m e n t s  w i l l  a d e q u a t e l y  r e p r e s e n t  t h e  b e h a v i o r  o f  

t h e  r a n d o m  v a r i a b l e  D u n d e r  t h e  h y p e r g e o m e t r i c  m o d e l ,  i n  s o  f a r  a s  t h e  

m e a n  a n d  v a r i a n c e  o f  D d e s c r i b e  t h i s  b e h a v i o r .  T h e  f a c t  t h a t  u n e q u a l  

c o l u m n  t o t a l s  c a n  b e  h a n d l e d  a s  e a s i l y  a s  e q u a l  c o l u m n  t o t a l s  i n  t h e  

a p p r o x i m a t i o n  f o r m u l a e  i n d i c a t e s  t h a t  t h e s e  r e s u l t s  h a v e  d i r e c t  p r a c ­

t i c a l  a p p l i c a t i o n .  S e c o n d ,  t h e  e q u a t i o n s  f o r  t h e  a p p r o x i m a t e  m e a n  a n d  

v a r i a n c e  o f  D  c l e a r l y  d e m o n s t r a t e  t h e  d e p e n d e n c e  o f  t h e  b e h a v i o r  o f  D 

o n  t h e  c o l u m n  t o t a l s  n  , . . . , n  a s  w e l l  a s  C ,  N ,  a n d  N  ,  a n  o b v i o u s
I \s 1

f e a t u r e  w h i c h  i s  s o m e t i m e s  o v e r l o o k e d  w h e n  t h e  m u l t i v a r i a t e  h y p e r g e o ­

m e t r i c  m o d e l  i s  i n t r o d u c e d .

W h e t h e r  t h e  h y p e r g e o m e t r i c  m o d e l  i s  u s e f u l  i n  t h e  s i t u a t i o n s  f o r  

w h i c h  i t  i s  a d v o c a t e d  i s  a n o t h e r  q u e s t i o n .  I t  i s  o b v i o u s  f r o m  t h e

A
n o n n o r m a l  d i s t r i b u t i o n  o f  D i n  t h e  m u l t i n o m i a l  c a s e  t h a t  t h e
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d i s t r i b u t i o n  o f  D  i s  c e r t a i n l y  n o n n o r m a l  a s  w e l l ,  a n d  t h u s  t h e  p r o p o s a l  

o f  C o r t e s e  e t  a l .  ( 1 9 7 6 )  t h a t  s t a n d a r d i z i n g  D  w i t h  r e s p e c t  t o  i t s  m e a n  

a n d  s t a n d a r d  e r r o r  d o e s  n o t  s e e m  c o m p e l l i n g  a s  a n  a r g u m e n t  f o r  o v e r ­

c o m i n g  t h e  p e r c e i v e d  l i m i t a t i o n s  o f  D i t s e l f .  ( I n  t h i s  r e g a r d ,  s e e  

a l s o  C o h e n  e t  a l . ,  1 9 7 6 ;  M a s s e y ,  1 9 7 8 ;  C o r t e s e  e t  a l . ,  1 9 7 8 ;  F a l k  e t  

a l . ,  1 9 7 8 . )  W i n s h i p ' s  o b j e c t i o n  t o  D i s  t h a t  i t  i s  n o t  s u f f i c i e n t l y  

s e n s i t i v e ,  s i n c e  r e a l i z a t i o n s  o f  t h e  2  X  C t a b l e  w h i c h  s e e m  t o  i n d i c a t e  

d i f f e r i n g  d e g r e e s  o f  e q u i t y  b e t w e e n  t h e  r o w  d i s t r i b u t i o n s  m a y  y i e l d  t h e  

s a m e  v a l u e  o f  D ( W i n s h i p ,  1 9 7 8 ) .  H o w e v e r ,  i f  w e  a r e  w i l l i n g  t o  a s s u m e  

t h e  m u l t i v a r i a t e  h y p e r g e o m e t r i c  m o d e l  f o r  t h e  2  X  C t a b l e ,  a n  a l t e r ­

n a t i v e  t o  t h e  u s e  o f  D  ( o r  a n y  s u c h  m e a s u r e  o f  a s s o c i a t i o n )  i s  t h e  

n a t u r a l  e x t e n s i o n  o f  F i s h e r ' s  " e x a c t "  t r e a t m e n t  o f  i n d e p e n d e n c e  i n  t h e  

2 X 2  t a b l e  w i t h  f i x e d  m a r g i n s  ( K e n d a l l  a n d  S t u a r t ,  1 9 7 9 ,  p p .  5 8 0 - 8 3 ) .  

T h a t  i s ,  w e  s i m p l y  c o m p u t e  t h e  p r o b a b i l i t y  o f  o b t a i n i n g  t h e  r e a l i z a t i o n  

o f  t h e  2  X  C t a b l e  a c t u a l l y  o b s e r v e d  o r  o n e  m o r e  e x t r e m e ,  u s i n g  t h e  

p r o b a b i l i t y  f u n c t i o n  i n  e q u a t i o n  4 . 3 2  o r  s o m e  a p p r o x i m a t i o n  t o  i t  

( F r e e m a n  a n d  H a l t o n ,  1 9 5 1 ) .  T h e  p r o b a b i l i t y  o b t a i n e d  h a s  a  n a t u r a l  

i n t e r p r e t a t i o n ,  a n d  i t  m a y  p r o v e  m o r e  u s e f u l  t h a t  D w h e r e v e r  t h e  

m u l t i v a r i a t e  h y p e r g e o m e t r i c  m o d e l  i s  r e a s o n a b l e .

A n  E x a m p l e

A s  a n  e x a m p l e  o f  t h e  u s e  o f  O V L  i n  t h e  2  X  C c o n t i n g e n c y  t a b l e ,  

w e  s h a l l  a g a i n  u s e  t h e  s a m p l e  o f  A l a b a m a  f a r m  o p e r a t o r s  f r o m  t h e  1 8 5 0  

m a n u s c r i p t  c e n s u s  d e s c r i b e d  i n  C h a p t e r  T w o .  I n  t h e  a n a l y s i s  o f  t h i s  

s a m p l e  s u b s e q u e n t  t o  I n m a n  ( 1 9 8 1 ) ,  a  d i f f e r e n c e  i n  t h e  a g e  d i s t r i b u t i o n s  

o f  s l a v e h o l d e r s  ( N  =  2 5 1 )  a n d  n o n s l a v e h o l d e r s  ( N  =  3 5 0 )  b e c a m e  a p p a r e n t .  

H e r e  t h e  d i f f e r e n c e  i n  t h e s e  a g e  d i s t r i b u t i o n s  i s  e x a m i n e d  b y  c o m p a r i n g
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t h e  a g e s  o f  t h e  s l a v e h o l d e r s  a n d  t h e  n o n s l a v e h o l d e r s  i n  t h e  s a m p l e ,  

u s i n g  t h e  s t a n d a r d  a g e  c a t e g o r i e s  f a v o r e d  b y  d e m o g r a p h e r s ;  s e e  t a b l e

4 . 5 .  W h i l e  t h e  m a j o r i t y  o f  t h e  n o n s l a v e h o l d e r s  i n  t h e  s a m p l e  w e r e  i n  

t h e i r  t w e n t i e s  a n d  t h i r t i e s  i n  1 8 5 0 ,  t h e  b u l k  o f  t h e  s l a v e h o l d e r s  i n  t h e  

s a m p l e  a r e  s p r e a d  i n  a g e  f r o m  t h e  l a t e  t w e n t i e s  t h r o u g h  t h e  e a r l y  

f i f t i e s .  T h e  v a l u e  o f  t h e  c h i s q u a r e  s t a t i s t i c  c o m p u t e d  f r o m  t a b l e  4 . 5  

i s  2 6 . 7 3 8 ,  w h i c h  w i t h  1 1  d e g r e e s  o f  f r e e d o m  i s  s t a t i s t i c a l l y  s i g n i f i c a n t  

( p  =  0 . 0 0 2 9 ) .

T h e  o v e r l a p  b e t w e e n  t h e  a g e  d i s t r i b u t i o n s  o f  t h e s e  t w o  c l a s s e s  o f

A l a b a m a  f a r m e r s  e s t i m a t e d  f r o m  t h i s  t a b l e  i s  O V L  =  0 . 8 3 2 0 4 3 .  T o  o b t a i n

a  b o o t s t r a p  e s t i m a t e  o f  t h e  s t a n d a r d  e r r o r  o f  t h i s  e s t i m a t e d  o v e r l a p ,

t h e  R A N T B L  f u n c t i o n  i n  S A S  ( S A S ,  1 9 8 2 )  w a s  u s e d  t o  g e n e r a t e  5 0 0  b o o t -

s t r a p  O V L  f r o m  t a b l e  4 . 5 .  U s i n g  t h e s e  O V L  a n d  e q u a t i o n s  3 . 1 9  a n d  3 . 2 0
•»

A ^  A. A.

w e  c o m p u t e  O V L  =  0 . 8 1 1 4 1 9  a n d  V a r ^ Q p ( O V L )  =  0 . 0 0 1 1 4 2 7 7 ;  t h u s  t h e

A

b o o t s t r a p  s t a n d a r d  e r r o r  f o r  O V L  i n  t h i s  e x a m p l e  i s  0 . 0 3 3 8 0 5 .  F r o m  t h e  

b o o t s t r a p  d i s t r i b u t i o n  f u n c t i o n  c o n s t r u c t e d  f r o m  t h e  5 0 0  O V L  ,  a  9 0 %  

c o n f i d e n c e  i n t e r v a l  f o r  O V L b y  t h e  p e r c e n t i l e  m e t h o d  i s  ( 0 . 7 5 3 7 7 3 ,  

0 . 8 6 4 2 0 0 ) ;  s e e  f i g u r e  4 . 1 .  T h e  9 0 %  b i a s - c o r r e c t e d  c o n f i d e n c e  i n t e r v a l  

f o r  t h e  t r u e  o v e r l a p  b e t w e e n  t h e  a g e  d i s t r i b u t i o n s  o f  A l a b a m a  s l a v e -  

h o l d i n g  a n d  n o n s l a v e h o l d i n g  f a r m e r s  i n  1 8 5 0  i s  ( 0 . 7 6 6 0 9 0 , 0 . 8 7 1 9 9 8 ) ;  s e e

A A ^

f i g u r e  4 . 2 .  T h e  c o m p u t a t i o n  o f  O V L ,  t h e  g e n e r a t i o n  o f  t h e  5 0 0  O V L  ,

A

t h e  c a l c u l a t i o n  o f  t h e  b o o t s t r a p  v a r i a n c e  o f  O V L ,  a n d  t h e  c o n s t r u c t i o n  

o f  t h e  b o o t s t r a p  d i s t r i b u t i o n  f u n c t i o n  i n  S A S  r e q u i r e d  l e s s  t h a n  o n e  

m i n u t e  o f  C P U  t i m e  o n  a n  I B M  4 3 8 1 - 2 .

O n c e  m o r e ,  t h e  c o n c l u s i o n  w e  s h o u l d  r e a c h  i n  t h i s  e x a m p l e  i s  n o t  

t h a t  t h e  a g e  d i s t r i b u t i o n s  a r e  t h e  s a m e ;  w e  h a v e  a l r e a d y  d e t e r m i n e d  t h a t
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t h e  d i s t r i b u t i o n s  d i f f e r .  I n s t e a d ,  O V L  p r o v i d e s  a n  i n d i c a t i o n  o f  t h e  

i m p o r t a n c e  o f  t h e  d i f f e r e n c e  b e t w e e n  t h e  t w o  a g e  d i s t r i b u t i o n s .  I n  t h i s  

e x a m p l e ,  O V L  a c t u a l l y  r e p r e s e n t s  t h e  c o m m o n  a r e a  u n d e r  t h e  t w o  a g e  

d i s t r i b u t i o n s  o f  i n t e r e s t ,  w h e r e  t h e s e  d i s t r i b u t i o n s  a r e  e s t i m a t e d  b y  

t h e  r e l a t i v e  f r e q u e n c y  h i s t o g r a m s  s u m m a r i z e d  i n  t a b l e  4 . 5 .  I n s p e c t i n g  

t h e s e  h i s t o g r a m s ,  s h o w n  i n  f i g u r e  4 . 3 ,  v i s u a l l y  r e i n f o r c e s  t h e  m e s s a g e  

o f  O V L :  T h e  a g e  d i s t r i b u t i o n s  o f  t h e  f a r m e r s  w h o  d i d  a n d  d i d  n o t  o w n  

s l a v e  p r o p e r t y  i n  1 8 5 0  a r e  d i f f e r e n t ;  t h i s  w e  s h o u l d  e x p e c t ,  g i v e n  t h e  

g e n e r a l  a s s o c i a t i o n  o f  w e a l t h  a n d  a g e  i n  t h e  n i n e t e e n t h - c e n t u r y  U n i t e d  

S t a t e s .  T o o  n a r r o w  a  f o c u s  o n  t h e  d i f f e r e n c e  i n  t h e  a g e s  o f  s l a v e -  

h o l d i n g  a n d  n o n s l a v e h o l d i n g  A l a b a m a  f a r m e r s ,  h o w e v e r ,  m i s s e s  t h e  

c o n s i d e r a b l e  s i m i l a r i t y  o f  t h e  t w o  a g e  d i s t r i b u t i o n s .
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Chapter Five

C O N C L U S I O N

T h e  i m p l i c a t i o n s  o f  t h i s  s t u d y  o f  t h e  b e h a v i o r  o f  t h e  o v e r l a p p i n g  

c o e f f i c i e n t  c a n  b e  s u m m a r i z e d  b r i e f l y .  A l t h o u g h  t h e  s a m p l e  e s t i m a t o r s  

o f  O V L  i n v e s t i g a t e d  i n  t h e  t h r e e  d i s t r i b u t i o n a l  s e t t i n g s  i n v e s t i g a t e d  

h e r e  a r e  c o n s i s t e n t  e s t i m a t o r s  o f  t h e  t r u e  o v e r l a p  b e t w e e n  t h e  d i s t r i ­

b u t i o n s  f r o m  w h i c h  t h e  s a m p l e s  a r e  o b t a i n e d ,  t h e  d o w n w a r d  b i a s  o f  t h e s e  

e s t i m a t o r s  a n d  t h e  r e l a t i o n s h i p  o f  t h i s  b i a s  t o  t h e  t r u e  o v e r l a p  s u g g e s t  

t h a t  s a m p l e  e s t i m a t o r s  o f  O V L  a r e  n o t  u s e f u l  a s  t e s t  s t a t i s t i c s  f o r  t h e  

e q u a l i t y  o f  t h e  t w o  d i s t r i b u t i o n s  b e i n g  c o m p a r e d .  S i n c e  i n  e a c h  o f  t h e  

d i s t r i b u t i o n a l  s e t t i n g s  e x a m i n e d  h e r e  t h e r e  a r e  a c c e p t e d  s t a t i s t i c a l  

t e c h n i q u e s  f o r  t e s t i n g  t h e  e q u a l i t y  o f  t h e  d i s t r i b u t i o n s  o f  i n t e r e s t ,  

t h i s  r e s u l t  s h o u l d  n o t  n e c e s s a r i l y  d i s t u r b  u s .  L i k e l i h o o d  r a t i o  t e s t s  

o f  t h e  u s u a l  t e s t s  f o r  t h e  e q u a l i t y  o f  m e a n s  a n d  v a r i a n c e s  o f  t w o  

n o r m a l  p o p u l a t i o n s ,  K o l o m o g o r o v - l i k e  t e s t s  f o r  t h e  e q u a l i t y  o f  t w o  

u n s p e c i f i e d  d i s t r i b u t i o n s  u s i n g  t h e  s a m p l e  d i s t r i b u t i o n  f u n c t i o n s ,  

a n d  v a r i o u s  t e s t s  r e l a t e d  t o  t h e  c h i s q u a r e  s t a t i s t i c  s p e a k  d i r e c t l y  t o  

t h e  p r o b l e m  o f  w h e t h e r  t w o  u n k n o w n  d i s t r i b u t i o n s  a r e  i d e n t i c a l  i n  t h e  

n o r m a l  d i s t r i b u t i o n  c a s e ,  t h e  n o n p a r a m e t r i c  c a s e ,  a n d  t h e  2  X  C c o n t i n ­

g e n c y  t a b l e  c a s e  r e s p e c t i v e l y .  W h a t  O V L  c a n  p r o v i d e  i s  s o m e  m e a s u r e  o f  

t h e  m e a n i n g f u l n e s s  o f  t h e  d i f f e r e n c e s  t h a t  a r e  d e t e c t e d  b y  t h e s e  

s t a t i s t i c a l  t e c h n i q u e s .  T h u s  O V L  o f f e r s  o n e  m e t h o d  o f  e x p l o r i n g  t h e
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p r a c t i c a l  s i g n i f i c a n c e  o f  d i f f e r e n c e s  w h i c h  a p p e a r  t o  b e  s t a t i s t i c a l l y  

s i g n i f i c a n t .

A s  a  s a m p l e  s t a t i s t i c ,  O V L  s u f f e r s  n o t  o n l y  f r o m  i t s  b i a s  b u t  

f r o m  t h e  d i f f i c u l t i e s  a s s o c i a t e d  w i t h  e s t i m a t i n g  i t s  s t a n d a r d  e r r o r  a s  

w e l l .  T h e  s i t u a t i o n  w h e r e  e s t i m a t e s  o f  t h e  v a r i a n c e  o f  t h e  s a m p l e  

o v e r l a p p i n g  c o e f f i c i e n t  a p p e a r  r e l i a b l e ,  t h e  2  X C m u l t i v a r i a t e  h y p e r ­

g e o m e t r i c  t a b l e  c a s e ,  i s  s o  r e s t r i c t e d  t h a t  i t  i s  u n l i k e l y  t o  b e  o f  

m a j o r  i m p o r t a n c e .  I n  t h e  n o r m a l  d i s t r i b u t i o n  c a s e ,  t h e  e s t i m a t o r s  o f  

t h e  s a m p l i n g  v a r i a n c e  d e r i v e d  b y  s t a t i s t i c a l  d i f f e r e n t i a l s  a r e  l i k e l y  t o  

p r o v e  r e l i a b l e  i n  l i m i t e d  c i r c u m s t a n c e s  a l s o .  T h e r e f o r e  t h e  b o o t s t r a p  

m e t h o d  o f  o b t a i n i n g  t h e  e s t i m a t e d  s t a n d a r d  e r r o r  o f  t h e  e s t i m a t o r s  o f  

O V L  w i l l  u n d o u b t e d l y  s e r v e  i n  p r a c t i c e  a s  t h e  m o s t  e f f e c t i v e  p r o c e d u r e  

f o r  b o t h  a s c e r t a i n i n g  t h e  s t a n d a r d  e r r o r  o f  t h e  e s t i m a t o r  o f  O V L  a n d  

c o n s t r u c t i n g  c o n f i d e n c e  i n t e r v a l s  f o r  O V L  b e t w e e n  t h e  d i s t r i b u t i o n s  o f  

i n t e r e s t .

W h y ,  t h e n ,  u s e  O V L  a t  a l l ?  I n  t h e  c a s e  o f  t w o  n o r m a l  d i s t r i b u ­

t i o n s  w i t h  e q u a l  v a r i a n c e s ,  a  c o m p o n e n t s  o f  v a r i a n c e  a p p r o a c h  a d d r e s s e s  

t h e  s a m e  i s s u e ,  a n d  e v e n  t h e  s i m p l e  c h a r a c t e r i z a t i o n  o f  t h e  m a g n i t u d e  

o f  t h e  d i f f e r e n c e  b e t w e e n  p o p u l a t i o n  m e a n s  i n  u n i t s  o f  t h e  p o p u l a t i o n  

s t a n d a r d  d e v i a t i o n  m a y  s u f f i c e  ( C o h e n ,  1 9 7 7 ) .  I n  t h e  c a s e  o f  t h e  2  X  C 

t a b l e ,  m e a s u r e s  o f  a s s o c i a t i o n  e x i s t  i n  b o u n t i f u l  s u p p l y ,  a n d  O V L  m a y  

b e  n o  m o r e  a t t r a c t i v e  t h a n  m a n y  o f  o t h e r s .

T h e  a d v a n t a g e  o f  OV L i s  t w o - f o l d .  F i r s t ,  i t  o f f e r s  a  c o m m o n  

a p p r o a c h  f o r  t h e  m e a s u r e m e n t  o f  t h e  a g r e e m e n t  b e t w e e n  t w o  d i s t r i b u t i o n s  

i n  a n y  d i s t r i b u t i o n a l  s e t t i n g .  I n  t h i s  s e n s e ,  t h e n ,  O V L  i s  l e s s  

r e s t r i c t i v e  t h a n  o t h e r  p r o c e d u r e s  k e y e d  d i r e c t l y  t o  d i s t r i b u t i o n a l



a s s u m p t i o n s  t h a t  m a y  o r  m a y  n o t  p r o v e  w a r r a n t e d  i n  d a t a  a n a l y s i s .

S e c o n d ,  O V L  i s  b a s e d  o n  a  s i m p l e ,  e a s i l y  c o m p r e h e n d e d  c o n c e p t  o f  t h e  

a s s o c i a t i o n  b e t w e e n  d i s t r i b u t i o n s .  W h i l e  t h e  s i m p l i c i t y  o f  O V L  a s  t h e  

a m m o u n t  o f  p r o b a b i l i t y  m a s s  c o m m o n  t o  b o t h  d i s t r i b u t i o n s  i s  a p p e a l i n g  

i n  i t s  o w n  r i g h t ,  O V L a l s o  h a s  a n o t h e r  i n t e r p r e t a t i o n  b a s e d  o n  t h e  

c l a s s i f i c a t i o n  o f  i n d i v i d u a l s  i n t o  t w o  p o p u l a t i o n s .  G i v e n  t h e  t w o  

d i s t r i b u t i o n s  r e p r e s e n t i n g  t h e  p o p u l a t i o n s  o f  i n t e r e s t ,  OV L r e p r e s e n t s  

t h e  s u m  o f  t h e  c o n d i t i o n a l  p r o b a b i l i t i e s  o f  m i s c l a s s i f y i n g  a n  i n d i v i d u a l  

i n t o  t h e  t w o  p o p u l a t i o n s ,  w h e r e  t h e  c l a s s i f i c a t i o n  r u l e  i s  t h e  a s s i g n ­

m e n t  o f  a n  i n d i v i d u a l  a t  a n y  l e v e l  o f  t h e  c h a r a c t e r i s t i c  o f  c o n c e r n  

t o  t h e  p o p u l a t i o n  e i t h  t h e  g r e a t e r  p r o b a b i l i t y  a t  t h a t  l e v e l .  T h u s  OV L 

c a n  b e  r e g a r d e d  a s  a n  i n d i c a t o r  o f  t h e  d i f f e r e n c e  b e t w e e n  i n d i v i d u a l s  

i n  t h e  t w o  p o p u l a t i o n s  o r  d i s t r i b u t i o n s  o f  i n t e r e s t .  W h e t h e r  o r  n o t  

O V L  p r o v e s  u s e f u l  i n  a n y  g i v e n  s e t t i n g ,  t h e n ,  d e p e n d s  o n  t h e  m e a n i n g  O V L  

h a s  i n  t h e  c o n t e x t  o f  t h e  s p e c i f i c  p r o b l e m  a n d  t h e  v a l u e  o f  i t s  g e n e r a l  

a p p r o a c h .  T h e  f a c t  t h a t  t h e  p r o b l e m  i t  a d d r e s s e s ,  t h e  m e a n i n g f u l n e s s  

o f  d i f f e r e n c e s  b e t w e e n  t h e  t w o  d i s t r i b u t i o n s  o f  i n t e r e s t ,  i s  r a i s e d  m a y  

b e  m o r e  i m p o r t a n t  t h a t  w h e t h e r  t h e  o v e r l a p p i n g  c o e f f i c i e n t  i s  a d o p t e d  

a s  a  p o s s i b l e  s o l u t i o n .



A P P E N D I X

F O R T R A N  S U B R O U T I N E S

T h e  f o l l o w i n g  F O R T R A N  s u b r o u t i n e s  w e r e  u s e d  i n  t h e  M o n t e  C a r l o  

s i m u l a t i o n  s t u d i e s  o f  t h e  o v e r l a p p i n g  c o e f f i c i e n t  d e s c r i b e d  i n  C h a p t e r  

T w o  a n d  C h a p t e r  T h r e e .  T h e y  a r e  p r e s e n t e d  h e r e  a s  d o c u m e n t a t i o n ,  n o t  

b e a c a u s e  t h e  c o d e  i s  p a r t i c u l a r l y  i n n o v a t i v e .  S o m e  o f  t h e  s u b r o u t i n e s  

a r e  c a l l e d  f r o m  o t h e r s ;  i n  s e v e r a l  o f  t h e  s u b r o u t i n e s ,  F O R T R A N  r o u t i n e s  

a v a i l a b l e  f r o m  d e  B o o r  ( 1 9 7 8 ) ,  H a n s o n  ( 1 9 7 9 ) ,  a n d  I M S L  ( 1 9 8 2 )  a r e  

c a l l e d .  C a l l s  t o  s u c h  s u b r o u t i n e s  a r e  n o t e d  i n  t h e  p r e f a c e s  t o  e a c h  o f  

t h e  f o l l o w i n g  s u b r o u t i n e s .

S u b r o u t i n e  B S P L D F

T h e  o b j e c t  o f  s u b r o u t i n e  B S P L D F  i s  t o  o b t a i n  b y  w e i g h t e d  l e a s t  

s q u a r e s  t h e  q u a d r a t i c  s p l i n e  e s t i m a t e  o f  a n  u n k n o w n  d i s t r i b u t i o n  f u n c ­

t i o n  f r o m  a  s a m p l e  d i s t r i b u t i o n  f u n c t i o n .  T h e  H a n s o n  ( 1 9 7 9 )  r o u t i n e  

F C  i s  u s e d  t o  o b t a i n  t h e  c o e f f i c i e n t s  o f  t h e  q u a d r a t i c  B - s p l i n e .

C a l l e d  s u b r o u t i n e s :  B S P L P P  ( d e  B o o r ) ,  F C  ( H a n s o n ) ,  NEWNOT ( d e  

B o o r ) ,  R S S Q D F ,  a n d  X S E T F  ( H a n s o n ) .
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S U B R O U T I N E  B S P L D F ( N D A T A , X D A T A , Y D A T A , S D D A T A , N O R D , B K L O W , B K U P , I P A S S , N 
1 B K P T , B K P T , N C O E F F , C O E F F , R S S Q , M O D E )

S U B R O U T I N E  B S P L D F  C A L C U L A T E S  T H E  B R E A K P O I N T S  AND C O E F F I C I E N T S  O F  
A B - S P L I N E  E S T I M A T E D  ( C U M U L A T I V E )  D I S T R I B U T I O N  F U N C T I O N  F O R  T H E  
E M P I R I C A L  C D F  C O N T A I N E D  I N  T H E  A R R A Y S  X D A T A ,  Y D A T A .  N D ATA I S  T H E  
NUMBER O F  D I S T I N C T  P O I N T S  I N  T H E  E M P I R I C A L  C D F .  X D ATA C O N T A I N S  
T H E N D A TA  P O I N T S  O F  T H E  V A R I A B L E  X .  Y D A T A  C O N T A I N S  T H E  E S T I M A T E D  
VALU E O F  T H E  D I S T R I B U T I O N  F U N C T I O N  A T  T H O S E  P O I N T S .  SD D A T A  C O N ­
T A I N S  T H E  E S T I M A T E S  O F  T H E  S T A N D A R D  E R R O R  O F  T H E  C D F  A T  E A C H  P O I N T
I N  X D A T A .  NOR D I S  T H E  O R D E R  O F  T H E  B - S P L I N E  ( N O R D = O R D E R + l ) .
N I N T  I S  T H E  NUM BER O F  I N T E R V A L S  - -  D E C I L E S  ( N I N T = 1 0 ) ,  F O R  E X A M P L E  
- -  U S E D  T O  O B T A I N  T H E  B R E A K P O I N T S  O F  T H E  B - S P L I N E .  BK U P I S  A 
P O I N T  T O  T H E  R I G H T  O F  A L L  P O I N T S  I N  X D A T A  BY W H IC H  T H E
D I S T R I B U T I O N  F U N C T I O N  I S  A S S U M E D  T O  E Q U A L  O N E ;  BLOW I S  A S I M I L A R
P O I N T  T O  T H E  L E F T  O F  A L L  P O I N T S  I N  X D A T A  A T  W H IC H  T H E  D I S T R I B U T I O N  
F U N C T I O N  I S  A S S U M E D  T O  B E  E Q U A L  T O  Z E R O .  T H E  R O U T I N E  B S P L D F ( )  
R E T U R N S  T H E  NUM BER O F  B R E A K P O I N T S  ( I N C L U D I N G  T H O S E  C R E A T E D  T O  T H E  
L E F T  AND R I G H T  O F  T H E  P O I N T S  BKLOW AND B K U P  T O  F I T  T H E  B - S P L I N E ) ,  
T H E  A RR AY B K P T  C O N T A I N I N G  T H E  B R E A K P O I N T  V A L U E S ,  AND C O E F F ,  T H E  
ARRAY O F  B - S P L I N E  C O E F F I C I E N T S .  N O T E  T H A T  N B K P T = N I N T + 2 * N O R D - l ,
AND T H A T  T H E  NUM BER O F  C O E F F I C I E N T S  I S  N C O E F F = N B K P T - N O R D .
MODE I S  T H E  H A N SO N  D I A G N O S T I C  V A R I A B L E .

N O TE T H E  NUM BER O F  I N T E R V A L S  U S E D  F O R  C O N S T R U C T I O N  O F  T H E  B - S P L I N E  
D I S T R I B U T I O N  F U N C T I O N  (A N D  D E N S I T Y ) ,  N I N T ,  I S  B A S E D  ON S T U R G E S ' S  
R U L E  F O R  T H E  NUM BER O F  I N T E R V A L S  I N  A  H I S T O G R A M .  S E E  H .  A .  
S T U R G E S ,  J A S A  2 1  ( 1 9 2 6 ) :  6 5 - 6 6 .

A F T E R  T H E  R O U T I N E  F C Q  O B T A I N S  I N I T I A L  E S T I M A T E S  O F  T H E  B - S P L I N E  
U S I N G  T H E  B R E A K P O I N T S  G E N E R A T E D  FRO M  T H E  E M P I R I C A L  C D F  Q U A N T I L E S ,  
T H E  D E  BOOR R O U T I N E  N E W N O T ( )  I S  U S E D  T O  O B T A I N  A NEW S E T  O F  B R E A K ­
P O I N T S  AND T H E  B - S P L I N E  I S  R E E S T I M A T E D  . T H E  V A R I A B L E  I P A S S  S E T S  
TH E  NUM BER O F  P A S S E S  T H R O U G H  T H E  P R O C E D U R E  N E W N O T ( ) .

D I M E N S I O N  X D A T A ( N D A T A ) , Y D A T A ( N D A T A ) , S D D A T A ( N D A T A )
D I M E N S I O N  B K P T ( 4 0 ) , X C 0 N S T ( 5 0 ) , Y C O N S T ( 5 0 ) , N D E R I V ( 5 0 )
D I M E N S I O N  W ( 1 0 0 0 0 ) , I W ( 2 5 0 )
D I M E N S I O N  C O E F F ( 5 0 )
D I M E N S I O N  S C R T C H ( 2 0 , 2 0 ) , P P C O E F ( 2 0 , 5 0 ) , C 0 E F G ( 2 0 , 5 0 ) , P P B K P T ( 4 0 )  
D I M E N S I O N  B K N E W ( 4 0 )

I K N 0 T = 0
N I N T = I F I X ( 1 . 0 + 3 . 3 * A L 0 G 1 0 ( F L O A T ( N D A T A ) ) )
N I N T P 1 = N I N T + 1  
N I N T L 1 = N I N T - 1  
N B K P T = N I N T + 2 * N 0 R D - 1  
N C 0 E F F = N B K P T - N O R D

G E T  T H E  I N I T I A L  B R E A K P O I N T S  F O R  T H E  B - S P L I N E  R O U T N I E  F C ( ) .

B K P T ( N O R D ) = B K L O W  
B K P T ( N O R D + N I N T ) = B K U P  
K = 0
F N I N T = F L O A T ( N I N T )
DO 3 6 0  J = 1 , N I N T L 1  
F = F L O A T ( J ) / F N I N T  

3 1 0  K = K + 1
D = Y D A T A ( K ) - F
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I F  ( D )  3 2 0 , 3 4 0 , 3 3 0  
3 2 0  D L A S T = D  

GO T O  3 1 0  
3 3 0  D C O M P = A B S ( D ) - A B S ( D L A S T )

I F  ( D C O M P )  3 4 0 , 3 5 0 , 3 5 0  
3 4 0  B K P T ( N O R D + J ) = X D A T A ( K )

GO T O  3 6 0  
3 5 0  B K P T ( N O R D + J ) = X D A T A ( K - 1 )
3 6 0  C O N T I N U E

C
C E X T E R I O R  B R E A K P O I N T S  S E T  E Q U A L  T O  I N T E R V A L  ( B K L O W , B K U P )  E N D P O I N T S .  
C

N 0 R D L 1 = N 0 R D - 1  
DO 3 8 0  J = 1 . N O R D L l  

B K P T ( J ) = B K L O W  
B K P T ( N O R D + N I N T + J ) = B K U P  

3 8 0  C O N T I N U E
C
C W R I T E  C O N S T R A I N T S  F O R  B - S P L I N E  R O U T I N E .
C

N C 0 N S T = N I N T + 3
C
C C O N S T R A I N  B - S P L I N E  T O  BE Z E R O  A T  L E F T - M O S T  B R E A K P O I N T .
C

X C O N S T ( 1 ) = B K P T ( N O R D )
Y C O N S T ( 1 ) = 0 . 0  
N D E R I V ( 1 ) = 2

C
C C O N S T R A I N  F I R S T  D E R I V A T I V E  T O  B E  Z E R O  A T  L E F T - M O S T  B R E A K P O I N T .
C

X C O N S T ( 2 ) = B K P T ( N O R D )
Y C O N S T ( 2 ) = 0 . 0  
N D E R I V ( 2 ) = 6

C
C C O N S T R A I N  F I R S T  D E R I V A T I V E  T O  BE N O N N E G A T IV E  A T  A L L  I N T E R I O R
C B R E A K P O I N T S .
C

DO 4 0 0  1 = 1 . N I N T L 1  
J = I + 2
X C O N S T ( J ) = B K P T ( N O R D + I )
Y C O N S T ( J ) = 0 . 0  
N D E R I V ( J ) = 5  

4 0 0  C O N T I N U E
C
C C O N S T R A I N  B - S P L I N E  T O  BE ON E A T  R I G H T - M O S T  B R E A K P O I N T .
C

X C O N S T ( N I N T + 2 ) = B K P T ( N O R D + N I N T )
Y C 0 N S T ( N I N T + 2 ) = 1 . 0  
N D E R I V ( N I N T + 2 ) = 2

C
C C O N S T R A I N  T H E  F I R S T  D E R I V A T I V E  T O  B E  Z E R O  A T  R I G H T - M O S T
C B R E A K P O I N T .
C

X C O N S T ( N I N T + 3 ) = B K P T ( N O R D + N I N T )
Y C O N S T ( N I N T + 3 ) = 0 . 0  
N D E R I V ( N I N T + 3 ) = 6

C
C C A L L  H A N S O N  R O U T I N E  F C ( )  T O  G E T  B - S P L I N E  C O E F F I C I E N T S .
C
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I W ( 1 ) = 1 0 0 0 0  
I W ( 2 ) = 2 5 0  
M 0 D E = 2
C A L L  X S E T F ( 2 )
C A L L  F C ( N D A T A , X D A T A , Y D A T A , S D D A T A , N O R D , N B K P T , B K P T , N C O N S T , X C O N S T , YCO 

I N S T , N D E R I V , M O D E , C O E F F , W , I W )

B E G I N  I T E R A T E D  C O N S T R U C T I O N  O F  NEW K N O T S E Q U E N C E S .

I F  ( I K N O T  . G E .  I P A S S )  GO T O  4 4 0  
I K N O T = I K N O T + l

G E T  P P - R E P R E S E N T A T I O N  O F  B - S P L I N E  F O R  NEWNOT P R O C E D U R E .

S C R T C H  I S  WORK S P A C E  D I M E N S I O N E D  ( N O R D , N O R D ) .  N O T E  O U T P U T  O F  
B S P L P P ( ) .  A R R A Y  P P B K P T  C O N T A I N S  T H E  P P - R E P .  B R E A K P O I N T S .  A RR AY 
P P C O E F  C O N T A I N S  T H E  P P - R E P .  C O E F F I C I E N T S .  L  I S  N I N T ,  T H E  NUMBER 
O F  S U B I N T E R V A L S  I N T O  W H I C H  T H E  I N T E R V A L  ( B K L O W ,B K U P )  I S  D I V I D E D .  
F O R  D O C U M E N T A T IO N  O F  B S P L P P Q  S E E  DE B O O R ,  P P .  1 4 0 - 4 1 .

C A L L  B S P L P P ( B K P T , C O E F F , N C O E F F , N O R D , S C R T C H , P P B K P T , P P C O E F , L )

G E T  NEW S E Q U E N C E  O F  I N T E R I O R  K N O T S .

N O T E  O U T P U T  O F  N E W N O T ( ) .  A R R A Y  BKNEW C O N T A I N S  ( N I N T + 1 )  NEW 
B R E A K P O I N T S ,  I N C L U D I N G  BKLOW AND B K U P .  B K N E W ( 1 ) = B K P T ( N O R D ) = B K L O W ,  
AND B K N E W ( N I N T + 1 ) = B K P T ( N 0 R D + N I N T ) = B K U P . A R R A Y  C O E F G  C O N ­
T A I N S  T H E  C O E F F I C I E N T  P A R T  O F  T H E  P P - R E P R .  B K P T ,  C O E F G ,  L ,  2  F O R  
T H E  MONOTONE P . L I N E A R  F U N C T I O N  G WRTO W H IC H  BKNEW W I L L  BE 
E Q U I D I S T R I B U T E D .
F O R  D O C U M E N T A T IO N  O F  N E W N O T ( )  S E E  D E B O O R ,  P P . 1 8 4 - 8 6 .

C A L L  N E W N O T ( P P B K P T , P P C O E F , L , N O R D , B K N EW , N I N T , C O E F G )

C O N S T R U C T  NEW S E Q U E N C E  O F  B R E A K P O I N T S  F O R  B - S P L I N E  R O U T I N E  F C ( ) .

DO 4 2 0  I = 1 , N I N T P 1  
J = N O R D + I - 1  
B K P T ( J ) = B K N E W ( I )

4 2 0  C O N T I N U E  
GO T O  3 6 0  

4 4 0  C O N T I N U E

C A L C U L A T E  R E S I D U A L  SUM O F  S Q U A R E S  F O R  B - S P L I N E  D F .

C A L L  R S S Q D F ( N D A T A , X D A T A , Y D A T A , N O R D , B K P T , N B K P T , C O E F F , N C O E F F , R S S Q )
R E T U R N
EN D
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R e a l  F u n c t i o n  DNORML 

T h e  p u r p o s e  o f  t h e  r e a l  f u n c t i o n  DNORML i s  t o  e v a l u a t e  t h e  

s t a n d a r d  n o r m a l  d e n s i t y  f u n c t i o n  a t  t h e  p o i n t  x .

C a l l e d  s u b r o u t i n e s :  n o n e .
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R E A L  F U N C T I O N  D N O R M L (X )

E V A L U A T E  T H E  ST A N D A R D  NORMAL D E N S I T Y  A T  X .

I F  ( A B S ( X )  . G T .  1 3 . 0 )  GO T O  1 0  
D N O R M L = E X P ( - X * *  2 / 2 . 0 ) / S Q R T ( 6 . 2 8 3 1 8 5 3 )
GO T O  2 0  

1 0  D N 0 R M L = 0 . 0  
2 0  C O N T I N U E  

R E T U R N  
END
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S u b r o u t i n e  E M P C D F  

T h e  p u r p o s e  o f  t h e  s u b r o u t i n e  E M P C D F  i s  t o  c o n s t r u c t  t h e  e m p i r i ­

c a l  d i s t r i b u t i o n  f u n c t i o n  f r o m  s a m p l e  d a t a .

C a l l e d  s u b r o u t i n e s :  V S R T A  ( I M S L ) .
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SUBROUTINE EMPCDF(XWORK,NWORK,NCDF,XCDF,YCDF,SDCDF)
SUBROUTINE EMPCDF CALCULATES THE POINTS OF AN EMIRICAL CUMULATIVE 
DISTRIBUTION FUNCTION FOR THE DATA ARRAY XWORK. NWORK IS NUMBER 
OF DATA POINTS IN THE ARRAY XWORK. THE SUBROUTINE RETURNS NCDF, 
THE NUMBER OF DISTINCT POINTS OF THE EMPIRICAL CDF; XCDF, THE 
SORTED XDATA POINTS OF THE EMPIRICAL CDF; YCDF, THE ESTIMATED CDF 
AT THE POINTS XCDF (USING THE DIVISOR (NWORK+1)); AND SDCDF, THE 
ESTIMATED STANDARD ERROR OF THE EMPIRICAL CDF AT EACH POINT 
IN XCDF. THE MAXIMUM LENGTH OF THE ARRAYS XCDF, YCDF, AND SDCDF 
IS NWORK. EMPCDF() USES THE IMSL ROUTINE VSRTA TO SORT THE DATA 
IN XWORK.
DIMENSION XWORK(NWORK),XCDF(NWORK),YCDF(NWORK),SDCDF(NWORK)
CALL VSRTA(XWORK,NWORK)
NDIV=NWORK+l 
FNWORK=FLOAT(NWORK)
FNDIV=FLOAT(NDIV)
NDUP=0
DO 180 1=2,NWORK
J=I-1
K=J-NDUP
IF (XWORK(I) .EQ. XWORK(J)) GO TO 100 
XCDF(K)=XWORK(J)
YCDF(K)=FLOAT(J)/FNDIV
SDCDF(K)=SQRT(YCDF(K)*(1.0-YCDF(K))*FNWORK/FNDIV**2)
GO TO 120 

100 NDUP=NDUP+1 
120 IF (I-NWORK) 180,160,140 
140 STOP
160 NCDF=NWORK-NDUP

XCDF(NCDF)=XWORK(NWORK)
YCDF(NCDF)=FNWORK/FNDIV
SDCDF(NCDF)=SQRT(YCDF(NCDF)*(1.0-YCDF(NCDF))*FNWORK/FNDIV**2)

180 CONTINUE 
RETURN 
END
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Subroutine NSTAT 

The soubroutine NSTAT computes the maximum-likelihood estimates 

using the West algorithm (Chan and Lewis, 1979) of the mean and variance 

of a normal population from a simple random sample.

Called subroutines: none.
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SUBROUTINE NSTAT(X,N,U,V)
CALCULATE MAXIMUM LIKELIHOOD ESTIMATES OF THE NORMAL MEAN AND 
VARIANCE FOR SAMPLE ARRAY X OF SIZE N USING WEST’S ALGORITHM. U 
IS THE SAMPLE MEAN, V IS THE SAMPLE VARIANCE. SEE TONY F. CHAN 
AND JOHN GREGG LEWIS, COMMUNICATIONS OF THE ACM 22 (SEPT. 1979): 
528.
DIMENSION X(N)
SUMM=X(1)
SUMT=0.0 
DO 10 1=2,N 
XDIF=X(I)-SUMM 
XDIFIX=XDIF/FLOAT(I)
SUMM=SUMM+XDIFIX 
SUMT=SUMT+FLOAT(I-1)*XDIF*XDIFIX 

10 CONTINUE 
U=SUMM
V=SUMT/FLOAT(N)
RETURN
END
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Subroutine OVLEQ

The subroutine OVLEQ computes OVL and the estimated (approximate) 

variance of OVL for two normal distributions with equal population 

variances.

Called subroutines: DNORML, MDNOR (IMSL).
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SUBROUTINE OVLEQ(NONE,U1,VI,NTWO,U2,V2,IWRITE.OVL,VOVL)
CALCULATE THE OVERLAPPING COEFFICIENT AND THE VARIANCE OF ITS 
SAMPLE ESTIMATOR FOR THE CASE OF SAMPLING FROM 1V0 NORMAL POPULA­
TIONS WITH EQUAL VARIANCES. THE SUBROUTINE ASSUMES SAMPLE 
ESTIMATES OF THE MEANS AND VARIANCES ARE INPUTTED FOR THE VALUES 
OF U1 AND U2, THE MEANS OF THE TWO POPULATIONS, AND VI AND V2, THE 
SAMPLE ESTIMATES OF THE COMMON VARIANCE, AND CALCULATES A POOLED 
ESTIMATE OF THE COMMON VARIANCE FROM VI AND V2. IF THIS VARIANCE 
IS KNOWN, THEN THIS VALUE SHOULD BE USED FOR BOTH VI AND V2 IN THE 
CALL TO THE ROUTINE.
NOTE: IMSL ROUTINE MDNOR() IS USED TO EVALUATE THE STANDARD NORMAL 
DISTRIBUTION FUNCTION.
CALCULATE THE POOLED ESTIMATE OF THE COMMON POPULATION VARIANCE.
FNONE=FLOAT(NONE)
FNTWO=FLOAT(NTWO)
FNSUM=FLOAT(NONE+NTWO)
VPOOL=(FNONE*Vl+FNTWO*V2)/FNSUM
CALCULATE OVL.
SIGMA=SQRT(VPOOL)
UDIFF=U1-U2 
DELL=UDIFF/SIGMA 
Y1=-ABS(DELL/2.0)
CALL MDNOR(Yl.Pl)
0VL=2.0*P1
CALCULATE THE VARIANCE OF THE SAMPLE ESTIMATOR OF OVL.
FIND THE EXPECTATION OF ABS(XBAR1-XBAR2).
FACTOR=SQRT(FNSUM/(FNONE*FNTWO))
DELFAC=DELL/FACTOR 
Y2=-DELFAC 
CALL MDNOR(Y2,P2)
EXPECT=SQRT ( 0.6366198 )*S IGMA*FACTOR*EXP (-DELFAC**2/2.0) +UDIFF* (1.0 
1 -2.0*P2)
COMPUTE VARIANCE OF OVLHAT.
VOVL=(DNORML(Yl))**2*(FACTOR**2+DELL**2*(l.0+0.5*(FNSUM-2.0)/FNSUM 
1**2)-EXPECT**2/VPOOL)

C
IF (IWRITE .EQ. 0) GO TO 50 
WRITE(6,40) OVL

40 FORMAT(1H0,'THE OVERLAPPING COEFFICIENT:1,F20.8)
WRITE(6,41) EXPECT

41 FORMAT(1H0,'EXPECTED VALUE OF THE ABSOLUTE DIFFERENCE IN SAMPLE ME 
IANS:’,F20.8)
WRITE(6,44) VOVL

44 FORMAT(1H0,'THE APPROXIMATE VARIANCE OF THE SAMPLE OVERLAPPING COE 
1FFICIENT:',F20.12)

50 CONTINUE 
RETURN 
END
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Subroutine OVLNEQ
A.

The subroutine OVLNEQ computes OVL and its estimated (approxi­

mate) variance for two normal distributions with unequal population 

variances.

Called subroutines: DNORML, MDNOR (IMSL).
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SUBROUTINE OVLNEQ(N10,U10,V10,N20,U20,V20,IWRITE,OVL,VOVL)
CALCULATE THE (APPROXIMATE) VARIANCE OF OVLHAT, THE MAXIMUM 
LIKELIHOOD ESTIMATE OF THE TRUE OVERLAP BETWEEN TWO NORMAL 
DISTRIBUTIONS WITH UNEQUAL VARIANCES, USING AN APPROXIMATION 
PROCEDURE BASED ON THE TECHNIQUE OF STATISTICAL DIFFERENTIALS.
IF IWRITE IS SET EQUAL TO ZERO, NO OUTPUT WILL BE PRINTED, UNLESS 
VI AND V2 ARE EQUAL. IN THIS CASE A WARNING MESSAGE IS PRINTED 
AND THE OUTPUTTED VALUES FOR OVL AND VOVL ARE BOTH SET TO ZERO.
NOTE: V2 IS ASSUMED TO BE THE LARGER OF THE TWO VARIANCES, VI AND
V2. U1 AND U2 ARE THE MEANS ASSOCIATED WITH VI AND V2 
RESPECTIVELY. IF VI IS LARGER THAN V2, THE SAMPLE SIZES, MEANS, 
AND VARIANCES ARE INTERCHANGED SO THAT V2 IS THE LARGER VARIANCE.
NOTE: IMSL ROUTINE MDNOR() IS USED TO EVALUATE THE STANDARD
NORMAL DISTRIBUTION FUNCTION.
COMPARE VARIANCES.
IF (V20-V10) 10,997,20 

10 N0NE=N20 
NTW0=N10 
U1=U20 
U2=U10 
V1=V20 
V2=V10 
GO TO 30 

20 N0NE=N10 
NTWO=N20 
U1=U10 
U2=U20 
V1=V10 
V2=V20 

30 CONTINUE
CALCULATE CROSSING POINTS. XI IS LOWER CROSSING POINT, X2 IS THE 
UPPER CROSSING POINT.
SD1=SQRT(V1)
SD2=SQRT(V2)
SD1SD2=SD1*SD2
UDIFF=U1-U2
VDIFF=V2-V1
TERM1=U1*V2-U2*V1
TERM2=SQRT(UDIFF**2+VDIFF*AL0G(V2/V1))
X1=(TERM1-SD1SD2*TERM2)/VDIFF 
X2=(TERM1+SD1SD2*TERM2)/VDIFF
COMPUTE THE STANDARDIZED VALUES OF THE CROSSING POINTS. ZIJ IS 
XI STANDARDIZED WITH RESPECT TO MEAN UJ AND STANDARD DEVIATION 
SDJ.
Z11=(X1-U1)/SD1
Z12=(X1-U2)/SD2
Z21=(X2-U1)/SD1
Z22=(X2-U2)/SD2
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C CALCULATE THE OVERLAPPING COEFFICIENT.
C

CALL MDNOR(Z11,PI1)
CALL MDNOR(Z22.P22)
CALL MDNOR(Z12,P12)
CALL MDNOR(Z21.P21)
0VL=1.0+P11+P22-P12-P21
COMPUTE VARIANCES OF THE MAXIMUM LIKELIHOOD ESTIMATORS.
FNONE=FLOAT(NONE)
FNTWO=FLOAT(NTWO)
VMEAN2=V2/FNTWO
VMEAN1=V1/FN0NE
WAR1=2.0*FL0AT(NONE-1)*V1**2/(FN0NE**2)
VVAR2=2.0*FL0AT(NTWO-1)*V2**2/(FNTW0**2)
EVALUATE DERIVATIVES OF XI AND X2 WITH RESPECT TO Ul, U2, VI, V2.
TERM3=1.0/TERM2 
TERM4=SD1SD2*UDIFF*TERM3
TERM5=(SD1SD2/2.0)*(VDIFF/V1+ALOG(V2/V1))*TERN3 
TERM6=(SDlSD2/2.0)*(VDIFF/V2+AL0G(V2/V1))*TERM3 
DX1U1=(V2-TERM4)/VDIFF 
DX2U1=(V2+TERM4)/VDIFF 
DX1U2=(-V1+TERM4)/VDIFF 
DX2U2=(-VI-TERM4)/VDIFF
DX1V1=(-U2-SD2*TERM3/(2.0*SD1)+TERM5+Xl)/VDIFF 
DX2V1=(-U2+SD2*TERM3/(2.0*SD1)-TERM5+X2)/VDIFF 
DX1V2=(U1-SD1*TERM3/(2.0*SD2)-TERM6-XI)/VDIFF 
DX2V2=(U1+SD1*TERM3/(2.0*SD2)+TERM6-X2)/VDIFF
CALCULATE THE VARIANCE OF OVLHAT.
PHI1l=DNORML(Z11)
PHI12=DN0RML(Z12)
PHI2l=DNORML(Z21)
PHI22=DN0RML(Z2 2)
PHI11S=PHI11/SD1 
PHI12S=PHI12/SD2 
PHI21S=PHI21/SD1 
PHI22S=PHI22/SD2 
PTERM1=PHI11S-PHI12S 
PTERM2=PHI22S-PHI21S
VTERM1=(PTERM1*DX1U1+PTERM2*DX2U1-PHI11S+PH121S) ** 2 
VTERM2=(PTERM1*DX1U2+PTERM2*DX2U2-PHI2 2S+PH112S)**2 
VTERM3=(PTERM1*DXIV1+PTERM2*DX2V1+(PHI21*Z21-PHI11*Z11)/(2.0*V1))* 
1*2
VTERM4=(PTERM1*DX1V2+PTERM2*DX2V2+(PHI12*Z12-PHI22*Z22)/(2.0*V2))* 
1*2
V0VL=VTERM1*VMEAN1+VTERM2*VMEAN2+VTERM3*WAR1+VTERM4*WAR2
PRINT INTERMEDIATE CALCULATIONS AND RESULTS (IF IWRITE=0).
IF (IWRITE .EQ. 0) GO TO 999 
WRITE(6,191) NONE

191 FORMAT(1H0,'THE SIZE OF THE SAMPLE WITH THE SMALLER VARIANCE =',15 
1)WRITE(6,192) Ul
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192 FORMAT(1HO,
WRITE(6,193) VI

193 FORMAT(1HO,
WRITE(6,194) NTWO

194 FORMAT(1HO,
WRITE(6,192) U2 
WRITE(6,193) V2 
WRITE(6,203) X1,X2 

203 FORMAT(1H0,‘ 
WRITE(6,205)

205 F0RMAT(1H0,
WRITE(6,206) DX1U1,DX2U1

206 FORMAT(1H0,
WRITE(6,207) DX1U2.DX2U2

207 FORMAT(1H0,
WRITE(6,208) DX1V1.DX2V1

208 FORMAT(1H0,
WRITE(6,209) DX1V2.DX2V2

209 FORMAT(1H0,
WRITE(6,210) Zll

210 FORMAT(1H0,
10NE =',F20.8)
WRITE(6,215

215 FORMAT(1H0,
1TW0 =',F20.8)
WRITE(6,216) Z21

216 FORMAT(1H0,‘
10NE ='.F20.8)
WRITE(6,217) Z22

217 FORMAT(1H0,
1TW0 = ',F20.8)
WRITE(6,218) VMEAN1

218 FORMAT(1H0,‘
WRITE(6,219) VMEAN2

219 FORMAT(1H0,
WRITE(6,220) WAR1

220 FORMAT(1H0,
WRITE(6,221) WAR2

221 FORMAT(1H0,

ITS MEAN =',F20.8)
ITS VARIANCE =',F20.8)
THE SIZE OF THE SAMPLE WITH THE LARGER VARIANCE =’,15)

THE CROSSING POINTS = ',F20.8,F20.8)
THE DERIVATIVES OF THE CROSSING POINTS')
WITH RESPECT TO THE FIRST MEAN =',F20.8,F20.8)
WITH RESPECT TO THE SECOND MEAN =',F20.8,F20.8)
WITH RESPECT TO THE FIRST VARIANCE =',F20.8,F20.8)
WITH RESPECT TO THE SECOND VARIANCE =',F20.8,F20.8)
THE LOWER CROSSING POINT STANDARDIZED TC DISTRIBUTION
Z12
THE LOWER CROSSING POINT STANDARDIZED TO DISTRIBUTION )
Z21
THE UPPER CROSSING POINT STANDARDIZED TO DISTRIBUTION 
)
Z22
THE UPPER CROSSING POINT STANDARDIZED TO DISTRIBUTION

THE VARIANCE OF THE FIRST SAMPLE MEAN =’,F20.8)
THE VARIANCE OF THE SECOND SAMPLE MEAN =',F20.8)
THE VARIANCE OF THE FIRST SAMPLE VARIANCE =',F20.8)
THE VARIANCE OF THE SECOND SAMPLE VARIANCE =',F20.8)

WRITE(6,222) OVL
222 FORMAT(1H0,'THE OVERLAPPING COEFFICIENT =',F20.8)

WRITE(6,223) VOVL
223 FORMAT(1H0,'THE VARIANCE OF THE SAMPLE OVERLAPPING COEFFICIENT 

1F20.8)
GO TO 999

997 WRITE(6,998)
998 FORMAT(1H0,'THE VARIANCES ARE EQUAL')

0VL=0.0
V0VL=0.0

999 CONTINUE 
RETURN 
END
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Subroutine PLCDFS 

The subroutine PLCDFS plots two empirical distribution functions 

using the IMSL routine USPDF,

Called subroutines: USPDF (IMSL).
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SUBROUTINE PLCDFS(X1,N1,X2,N2,NTOTAL)
SUBROUTINE PLCDFS CALLS IMSL ROUTINE USPDF() TO OBTAIN A PLOT OF 
THE TWO EMPIRICAL DISTRIBUTION FUNCTIONS. XI IS THE DATA FROM THE 
FIRST SAMPLE OF SIZE Nl. X2 IS THE DATA FROM THE SECOND SAMPLE OF 
SIZE N2. TO MAKE LIFE SIMPLE, THE SUM OF Nl+N2=NTOTAL IS ALSO 
READ INTO THE ROUTINE.
DIMENSION XALL(4000).WHERE(4000,2),IRHERE(4000)
DIMENSION X1(N1),X2(N2)
DO 20 1=1,NTOTAL
IF (I .GT. Nl) GO TO 10
XALL(I)=X1(I)
GO TO 20 

10 XALL(I)=X2(I-Nl)
20 CONTINUE

CALL USPDF(XALL,N1,N2,WHERE,4000,IRHERE)
RETURN
END
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Subroutine PRTSPL 

The subroutine PRTSPL prints the output of the subroutine BSPLDF. 

Called subroutines: USWFV (IMSL).
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SUBROUTINE PRTSPL(MODE,RSSQ,NBKPT,BKPT,NCOEFF,COEFF)
PRINT BSPLDFO OUTPUT.
DIMENSION BKPT(NBKPT).COEFF(NCOEFF)
WRITE(6,10) MODE 

10 FORMAT(1H0,'THE HANSON DIAGNOSTIC MODE:’,15)
WRITE(6,20) RSSQ 

20 F0RMAT(1H0,'THE RESIDUAL SUM OF SQUARES:',F20.10) 
WRITE(6,30) NBKPT 

30 FORMAT(1H0,'THE NUMBER OF BREAKPOINTS:15)
WRITE(6,40) NCOEFF 

40 FORMAT(1H0,'THE NUMBER OF B-SPLINE COEFFICIENTS:',15)
CALL USWFV('BREAKPOINTS’,11,BKPT,NBKPT,1,3)
CALL USWFV('SPLINE COEFFICIENTS',19,COEFF,NCOEFF,1,3)
RETURN
END



192

Subroutine RESAMP 

The subroutine RESAMP obtains a simple random sample, with re­

placement, from the original sample for bootstrap replications.

Called subroutines: GGUBS (IMSL).
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SUBROUTINE RESAMP(XSEED,NDATA,XDATA,XRESAM)
GIVEN A SAMPLE OF DATA XDATA OF SIZE NDATA, ROUTINE RESAMP() 
GENERATES A SIMPLE RANDOM SAMPLE WITH REPLACEMENT OF SIZE NDATA 
FROM XDATA USING THE IMSL ROUTINE GGUBS() .
NOTE: XSEED IS A DOUBLE PRECISION SEED FOR THE IMSL ROUTINE 
GGUBS(). SEE IMSL DOCUMENTATION FOR REQUIREMENTS.
DIMENSION U(2000)
DIMENSION XDATA(NDATA),XRESAM(NDATA)
REAL*8 XSEED
GENERATE THE ARRAY OF UNIFORM (0,1) RANDOM DEVIATES.
CALL GGUBS(XSEED,NDATA,U)
CONSTRUCT NEW SAMPLE ARRAY.
FN=FLOAT(NDATA)
DO 10 1=1,NDATA 
ISUB=IFIX(FN*U(I))+1 

XRESAM(I)=XDATA(ISUB)
10 CONTINUE 

RETURN 
END
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Subroutine RSSQDF 

The purpose of the subroutine RSSQDF is to compute the residual 

sum of squares for the fitted B-spline estimate of an unknown distribu­

tion function.

Called subroutines: BVALUE (de Boor).
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SUBROUTINE RSSQDF(NDATA,XDATA,YDATA,NORD,BKPT,NBKPT,COEFF,NCOEFF,R 
1SSQ)
CALCULATE AND PRINT RESIDUAL SUM OF SQUARES FOR B-SPLINE DF.
DIMENSION XDATA(NDATA),YDATA(NDATA)
DIMENSION BKPT(40).COEFF(50)
RSSQ=0.0
DO 10 1=1.NDATA
YHAT=BVALUE(BKPT,COEFF,NCOEFF,NORD,XDATA(I),0)
SQDIFF=(YDATA(I)-YHAT)**2 
RSSQ=RSSQ+SQDIFF 

10 CONTINUE 
RETURN 
END
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Subroutine SPLOVL 

The object of the subroutine SPLOVL is to obtain OVL using 

quadratic spline estimates of two unknown distribution functions.

Called subroutines: BSPLDF, BVALUE (de Boor), EMPCDF, PLCDFS, 

PRTSPL, USPLO (IMSL), VSRTA (IMSL).
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SUBROUTINE SPLOVL(NONE,XONE,NTWO,XTWO,IPLOT,IWRITE,OVLSPL)
ROUTINE SPLOVL COMPUTES A SPLINE-FUNCTION ESTIMATE OF OVL.
DATA ARE ASSUMED TO BE TRANSFORMED TO THE INTERVAL (0,1).
DIMENSION XONE(2000),XTWO(2000)
DIMENSION XCDF1(2000),YCDF1(2000),SDCDF1(2000)
DIMENSION XCDF2(2000),YCDF2(2000),SDCDF2(2000)
DIMENSION BKPT1(50),BKPT2(50)
REAL COEFF1(50)/50*0.0/,C0EFF2(50)/50*0.0/
DIMENSION BKPTS(100),UBKPT(100)
DIMENSION XEST(lOl),DFEST(101,2),PDFEST(101,2)
REAL RPLOT0(4)/0.0,0.0,0.0,1.0/,RPLOT1(4)/0.0,0.0,0.0,0.0/
GET EMPIRICAL DISTRIBUTION FUNCTIONS FOR THE TWO SAMPLES.
CALL EMPCDF(XONE,NONE,NCDF1,XCDF1,YCDF1,SDCDF1)
CALL EMPCDF(XTWO,NTWO,NCDF2,XCDF2,YCDF2,SDCDF2)
GET B-SPLINES FOR THE TWO EMIRICAL DISTRIBUTION FUNCTIONS.
NORD=3 
BKLOW—0.0 
BKUP=1.0 
IPASS=2
CALL BSPLDF(NCDF1,XCDF1,YCDF1,SDCDF1,NORD,BKLOW,BKUP,IPASS,NBKPT1, 
1BKPT1,NCOEF1,COEFF1,RSSQ1,MODE 1)
CALL BSPLDF(NCDF2,XCDF2,YCDF2,SDCDF2,NORD,BKLOW,BKUP,IPASS,NBKPT2, 
1BKPT2,NC0EF2,COEFF2,RSSQ2,MODE2)
CREATE UNION SET OF THE TWO SETS OF BREAKPOINTS.
VECTOR UBKPTS OF LENGTH NUBKPTS CONTAINS THIS UNION WITH ELEMENTS 
SORTED IN INCREASING MAGNITUDE BY IMSL ROUTINE VSRTAQ.
NBKPTS=NBKPT1+NBKPT2 
DO 20 1=1,NBKPTS 
IF (I .GT. NBKPT1) GO TO 10 
BKPTS(I)=BKPT1(1)
GO TO 20 

10 BKPTS(I)=BKPT2(I-NBKPT1)
20 CONTINUE

DELETE DUPLICATE BREAKPOINTS AND BREAKPOINTS WHICH MAY HAVE BEEN 
DEFINED OUTSIDE THE INTERVAL (BKLOW,BKUP).
CALL VSRTA(BKPTS,NBKPTS)
NUBKPT=0
DO 40 1=1,NBKPTS 
IF (I .EQ. 1) GO TO 30
IF (BKPTS(I) .EQ. BKPTS(I-1)) GO TO 40

30 IF (BKPTS(I) .LT. BKLOW) GO TO 40
IF (BKPTS(I) .GT. BKUP) GO TO 40
NUBKPT=NUBKPT+1 
UBKPT(NUBKPT)=BKPTS(I)

40 CONTINUE
CALCULATE INTERVAL AREAS AND OVL.
DIFF IS THE DIFFERENCE IN ESTIMATED DENSITIES (DENSITY TWO MINUS
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DENSITY ONE) AT THE BREAKPOINT I; DIFLST IS THIS DIFFERENCE AT 
THE BREAKPOINT (1-1).
AREA IS THE AREA UNDER MIN(DENSITY ONE, DENSITY TWO) IN INTERVAL 
BETWEEN UBKPT(I-1) AND UBKPT(I). THESE AREAS ARE SUMMED TO 
CALCULATE OVLSPL, THE ESTIMATE OF OVL BASED ON THE B-SPLINE 
DISTRIBUTION FUNCTIONS AND DENSITIES.
NOTE: FUNCTION BVALUE(BKPT,COEFF,NCOEFF,NORD,X,I) EVALUATES THE
I-TH DERIVATIVE OF THE B-SPLINE GIVEN BY BKPT,COEFF, NCOEFF, AND 
NORD AT THE POINT' X. SEE DE BOOR, P. 144.
OVLSPL=0.0
DIFLST IS INITIALLY SET TO ZERO BECAUSE OF THE CONSTRAINT THAT THE 
ESTIMATED DENSITIES MUST BE ZERO AT THE BREAKPOINT ZERO.
DIFLST=0.0
DO 200 1=2,NUBKPT
J=I-1
DIFF=BVALUE(BKPT2,C0EFF2,NCOEF2,NORD,UBKPT(I),1)-BVALUE(BKPT1,COEF 
IF1,NCOEF1,NORD,UBKPT(I),1)
IF (DIFF) 110,120,130 

110 IF (DIFLST) 170,170,140
120 IF (DIFLST) 170,160,160
130 IF (DIFLST) 150,160,160
140 XCROSS=UBKPT(J)+DIFLST*(UBKPT(I)-UBKPT(J))/(DIFLST-DIFF)

AREA=BVALUE(BKPT1,C0EFF1,NCOEF1,NORD,XCROSS,0)-BVALUE(BKPT1,COEFF1 
1,NCOEF1,NORD,UBKPT(J),0)+BVALUE(BKPT2,COEFF2,NCOEF2,NORD,UBKPT(I), 
20)-BVALUE(BKPT2,COEFF2,NCOEF2,NORD,XCROSS,0)
GO TO 180

150 XCROSS=UBKPT(J)+DIFLST*(UBKPT(I)-UBKPT(J))/(DIFLST-DIFF)
AREA=BVALUE(BKPT2,C0EFF2,NCOEF2,NORD,XCROSS,0)-BVALUE(BKPT2,C0EFF2 
1.NCOEF2,NORD,UBKPT(J),0)+BVALUE(BKPT1,COEFF1,NCOEF1,NORD,UBKPT(I), 
20)-BVALUE(BKPT1,C0EFF1,NCOEF1,NORD,XCROSS,0)
GO TO 180

160 AREA=BVALUE(BKPT1,C0EFF1,NCOEF1,NORD,UBKPT(I),0)-BVALUE(BKPT1,COEF 
1F1,NCOEF1,NORD,UBKPT(J),0)
GO TO 180

17 0 AREA=BVALUE(BKPT2,C0EFF2,NCOEF2,NORD,UBKPT(I),0)-BVALUE(BKPT2,COEF 
1F2,NCOEF2,NORD,UBKPT(J),0)

180 OVLSPL=OVLSPL+AREA
DIFLST=DIFF 

200 CONTINUE
PRINT THE B-SPLINE ESTIMATE OF OVL, A PLOT OF THE TWO EMPIRICAL 
DISTRIBUTION FUNCTIONS, AND PLOTS OF THE B-SPLINE DISTRIBUTION 
FUNCTIONS AND DENSITIES. (IF IPLOT .NE. 0)
IF (IPLOT .EQ. 0) GO TO 900 
WRITE(6,210) OVLSPL 

210 FORMAT(1H0,'B-SPLINE ESTIMATED OVERLAPPING COEFFICIENT =',F20.10)
PLOT THE TWO EMPIRICAL DISTRIBUTION FUNCTIONS.
NTOTAL=NONE+NTWO
CALL PLCDFS(XONE,NONE,XTWO,NTWO,NTOTAL)
PLOT B-SPLINE ESTIMATED DF AND PDF



n 
o 

o 
o 

o
o

n
 

o
n
a 

n
o

n
 

n
o

n
 

o
n

o

199

RANGE=BKUP-BKLOW 
DIV=FLOAT(100)
DO 800 1=1,101
GENERATE PLOTTING POINTS.
XCAL=FLOAT(I-1)*RANGE/DIV 
XEST(I)=XCAL
GET B-SPLINE ESTIMATES OF DISTRIBUTION FUNCTIONS.
DFEST(1,1)=BVALUE(BKPT1,COEFF1,NCOEF1,NORD,XCAL,0)
DFEST(1,2)=BVALUE(BKPT2,C0EFF2,NC0EF2,NORD,XCAL,0)
GET B-SPLINE ESTIMATES OF DENSITY FUNCTIONS.
PDFEST(1,1)=BVALUE(BKPT1,COEFF1,NCOEF1,NORD,XCAL,1)
PDFEST(1,2)=BVALUE(BKPT2,C0EFF2,NCOEF2,NORD,XCAL,1)

800 CONTINUE
PLOT ESTIMATED DISTRIBUTION FUNCTIONS.
CALL USPLO(XEST,DFEST,101,101,2,1,’B-SPLINE ESTIMATED DISTRIBUTION 
1 FUNCTIONS’,41,’X’,1,'ESTIMATED DF AT X’,17,RPLOTO,2H12,1,IERO)
PLOT ESTIMATED DENSITY FUNCTIONS.
CALL USPLO(XEST,PDFEST,101,101,2,1,'B-SPLINE ESTIMATED DENSITY FUN 
1CTIONS',36,'X',1,'ESTIMATED DENSITY AT X',22.RPLOTl,2H12,1,IER1)
PRINT THE OUTPUT OF THE B-SPLINE ROUTINES USED TO ESTIMATE THE 
TWO DISTRIBUTION FUNCTIONS. (IF IWRITE .NE. 0)

900 IF (IWRITE .EQ. 0) GO TO 999 
WRITE(6,910)

910 FORMAT(1H0,'B-SPLINE RESULTS FOR THE FIRST SAMPLE1)
CALL PRTSPL(MODE1,RSSQ1,NBKPT1,BKPT1,NCOEF1,COEFF1)
WRITE(6,920)

920 FORMAT(1H0,'B-SPLINE RESULTS FOR THE SECOND SAMPLE')
CALL PRTSPL(MODE2,RSSQ2,NBKPT2,BKPT2,NCOEF2,COEFF2)

999 CONTINUE 
RETURN 
END
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Subroutine TRANSF 

The purpose of the subroutine TRANSF is to apply the selected 

tranformation to the data in the array X, thus mapping the data to the 

interval [0,l].

Called subroutines: none.
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SUBROUTINE TRANSF(N,X,ITRANS,A,B)
SUBROUTINE TRANSF() APPLIES THE TRANSFORMATION INDICATED BY THE 
INPUT VARIABLE ITRANS TO THE DATA IN THE ARRAY X. N IS THE LENGTH 
OF X. ITRANS SET TO ZERO RETURNS THE UNTRANSFORMED ARRAY X.
INPUT VARIABLES A AND B ARE USED FOR TRANSFORMATION ONE ONLY.

ITRANS=0, THE TRANSFORMATION IS X=X ;
ITRANS=1, THE TRANSFORMATION IS X=(X-A)/(B-A) ;
ITRANS=2, THE TRANSFORMATION IS X=X/(1.0+X) ;
ITRANS=3, THE TRANSFORMATION IS X=EXP(X)/(1.0+EXP(X)) .

DIMENSION X(N)
IF (ITRANS .EQ. 0) GO TO 400
IF (ITRANS .GT. 1) GO TO 200
APPLY FIRST TRANSFORMATION.
DIVIDE=B-A 
DO 10 1=1,N

X(I)=(X(I)-A)/DIVIDE 
10 CONTINUE

GO TO 400
200 IF (ITRANS .GT. 2) GO TO 300

APPLY SECOND TRANSFORMATION.
DO 20 1=1,N

X(I)=X(I)/(1.0+X(I))
20 CONTINUE

GO TO 400
300 IF (ITRANS .GT. 3) GO TO 400

APPLY THIRD TRANSFORMATION.
DO 30 1=1,N 

Y=EXP(X(I))
X(I)=Y/(1.0+Y)

30 CONTINUE
C
400 CONTINUE 

RETURN 
END
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