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Title BEHAVIOR AND PROPERTIES OF THE OVERLAPPING COEFFICIENT AS A

MEASURE OF AGREEMENT BETWEEN DISTRIBUTIONS

This study examines the sampling behavior of the overlapping
coefficient, OVL, a proposed measure of the agreement between two

probability distributions. OVL is defined as

ovVL = J min[fl(x),fz(x)]dx s

X

where fl(x) and fz(x) are the probability density functions for the two
distributions of interest. In addition, OVL = 1 - D, where D is the
usual index of dissimilarity, but defined for continuous as well as
discrete distributions.

Here the properties and sampling behavior of various estimators
of OVL are investigated in three situations: maximum-likelihood estima-
tion of OVL when sampling from two normal distributions; nonparametric
estimation of OVL using spline density estimates constructed from

samples from two unspecified distributions; and estimation of OVL when
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the two populations of interest, or samples from them, are represented
by the rows in a 2 X C contingency table.

Using Monte Carlo techniques, it is discovered that the sample
estimators of OVL in each of these circumstances exhibit downward bias,
that is, the true overlap is underestimated, and that this bias in-
creases as the similarity of the distributions from which the samples
are obtained increases. In the normal distribution and 2 X C table
cases, approximations to the variance of the estimators of OVL are
derived. The approximate sampling distribution of the estimator of OVL
between two normal distributions with common variance can be related to
the folded-normal distribution, and confidence intervals for OVL can be
constructed from the sampling distribution of the Mahalanobis distance.
Bootstrap estimators of the sampling variance of estimators of OVL in
quadratic spline and 2 X C cases are shown to be reasonable, and boot-
strap methods of constructing confidence intervals for OVL are illus-
trated. .The behavior of the sample estimators of OVL in all three
situations suggests that OVL can serve as a valuable check on the
meaningfulness of differences detected between the two distributions of
interest by other statistical techniques, but that OVL itself should not

be used to test for the equality of the two distributions compared.
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Chapter One
INTRODUCTION

Suppose we are given two probability distributions with
probability (density) functions fl(x;el) and fZ(X;SZ)' If both distri-
butions are of some common form indexed by the values of the parameters
91 and 62, the two distributions must differ if 61 # 62. However, 61
and 62 may differ and yet be similar in magnitude, suggesting that
fl(x;el) and fz(x;ez), while not identical, are similar. On the other
hand, two distributions which are not of the same parametric form, say
fl(x;el) and fz(x;Az), cannot be identical, but for certain values of
the parameters 91 and Az they may in fact be quite similar. Once again,
the issue is the degree to which two distributions, known to differ, are
similar or dissimilar.

A more realistic setting for this problem appears when the
question of the similarity of two distributions is addressed through
random samples selected from each of the two unknown distributions or
populations. Assuming common form, f1(X;91) and fz(x;ez) can be shown
to differ by the appropriate statistical test for the equality of the
parameters 61 and 92, given that 61 # 62. Since the power of such tests
is usually related to both the magnitude of the difference in 91

and 02 and the sizes of the two samples from which 91 and 62 are esti-

mated, small differences in 8, and 62 can be declared statistically



significant given sufficiently large sample sizes. Nevertheless, it is

the magnitude of the estimated difference between 9l and € not the

5
sizes of the samples, which actually indicates the degree of separation
between fl(x;el) and fz(x;ez). The prospect of declaring a trivial
difference between Bl and 62 statistically significant while missing the
true similarity of the two populations of interest as sample sizes
increase has not been ignored. Commentators on statistical practice in
many diverse areas of application have urged that the distinction
between the statistical significance and the practical significance of
differences detected in the parameters of the distributions that the
populations of interest are presumed to follow be recognized (Boring,
1919; Cohen, 1962, 1977; Sheehan, 1980, for example), and introductory
statistics textbooks often include a short discussion of the problem
(for instance, Wallis and Roberts, 1956, pp. 384-85, 408-9; Snedecor

and Cochran, 1980, p. 67; Moore, 1979, p. 292),

Tﬁis study examines a measure of the agreement between two
distributions proposed by Bradley and Piantadosi (1982) as a method of
gauging the meaningfulness of some specified or estimated difference
between the two probability distributions. This measure of agreement,
the overlapping coefficient or OVL, indicates the similarity between the
distributions of interest by computing--or estimating--the common area
below the two probability densities; see figure 1.1. The greater the
common area, the more similar are the two distributions. Bradley and
Piantadosi determine OVL for several cases involving known distribu-

tions, but they do not consider the sampling behavior of estimators of

OvL.
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Figure 1.1 Graphical depiction of the overlapping
coefficient. OVL is the shaded area in the figure.



Here the properties and sampling behavior of such estimators of
OVL are investigated in three situations: when sampling from two normal
distributions; when sampling from two distributions estimated non-
parametrically by quadratic splines; and when samples from two discrete
distributions are arranged in a 2 X C contingency table. It is dis-
covered that the sample estimators of OVL in each of these circumstances
are characterized by downward bias, that is, the true overlap is under-
estimated, and that this bias increases as the similarity between the
distributions from which the samples are obtained increases. Further
insight into the sampling behavior of the estimators of OVL is provided
by Monte Carlo simulation studies in each of the three cases examined.
In the normal distribution and the 2 X C table cases, estimates of the
sample variance of the estimators of OVL can be derived, and normal
approximations to the expectation and variance of the estimators of OVL
in the 2 X C table are also presented. Bootstrap estimators of the
sampling variance of the estimators of OVL in the quadratic spline and
2 X C table cases are shown to be reasonable, and bootstrap methods of
constructing confidence intervals for OVL are illustrated. The behavior
of the sample estimators of OVL in all three situations suggests that
OVL can serve as a valuable check on the meaningfulness of differences
detected between the two distributions of interest by other statistical
techniques, but that OVL itself should not be used to test for the

equality of the two distributions compared.

Definition of OVL

Let fl(x) and fz(x) be two probability (density) functions de-

fined on some common domain for x. 1If fl(x) and fz(x) are continuous



distributions, then the overlapping coefficient is defined as

OvL = J min[f, (x),£,(x)]dx . (1.1)

X

If fl(x) and fz(x) are discrete distributions, then the overlapping

coefficient is defined in an analagous manner:

OVL = ) min[f, (),£, (0] . (1.2)
X

As Bradiey and Piantadosi indicate, OVL follows one of the usual con-
ventions for measures of association (Goodman and Kruskal, 1979, p. 8).
First, OVL always lies between zero and unity. Second, OVL attains
unity if and only if the two distributions are identical. Finally, OVL
is zero if and only if the two distributions being compared are totally
distinct.

Relationship between QOVL and the
Index of Dissimilarity

OVL is directly related to a measure of association frequently
used in the context of 2 X C contingency tables. The relationship
between OVL and the index of dissimilarity, D, can be seen most easily

if we rewrite the minimum of the two density functions, using the fact



that fl(x) and fz(x) are nonnegative:

[fl(x) +f () - Ifl(x) - £,(x) l] . (1.3)

N

minff (x),f,(x0)] =

Substituting this expression into equations 1.1 and 1.2, we find

OVL =1 - D ; (1.4)

where D in the continuous case is given by

J Ifl(x) - fz(x)!dx . (1.5)

X

o
]
(T

and in the discrete case by

D=7 lefl(x) - £, . (1.6)



Thus the properties of OVL apply to D, except that D is zero when the
two distributions compared are identical and unity when they are com-
pletely distinct. (D apparently always has been used in the discrete

case and is usually defined as in equation 1.6.)

Calculation of OVL between Known Distributions

The method of determining the overlap between two specified dis-
tributions illustrates the general logic of computing OVL in any
setting. Bradley and Piantadosi (1982) present as examples the overlap
between two normal distributions, the overlap between the normal and
the logistic distribution, and the overlap between two two-parameter
exponential distributions. Here two additional examples are presented.
In each, the computation of OVL is based on numerically or analytically
determining min[fl(x),fz(x)].

OVL between the Standard Normal and Standard
Cauchy Distributions

Here the overlapping coefficient between the standard normal dis-

tribution and the standard Cauchy distribution is computed.

The density of the standard normal random variable is

£, = —— exp(-x2/2) ; (1.7)

N

its distribution function is, of course, ¢(x).

The density of the standard Cauchy random variable is



-1
fz(x) = [ﬂ(l + xz)] 3 (1.8)

its distribution function is

[

F,(x) = 2 Lant(x) . (1.9)

2T

Since the two densities are symmetric about the point x = 0, we
see that the two points of intersection of the densities are equidistant
from zero; see figure 1.2. Thus we need only find one of these points,
the lower crossing point, say, to evaluate OVL. If we equate the
densities fl(x) and f2(x), we obtain the following nonlinear equation

for the crossing points:

g(x) = loge(l + x2) - %'xz +-%[loge(w) - 1oge(2)] =0 . (1.10)

The derivative of this function with respect to x is

x(1 - x2)
g'(x) = —— . (1.11)
1+ x2
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10

By Newton's method, we find that the two points at which the densities
intersect are -1.851229 and 1.851229.

Using the symmetry of the two densities, we obtain for OVL:

OVL = 1 + 2[@(—1.851229) - F2(-1.851229i] = 0.748835 .

OVL between Two Poisson Distributions
Suppose we have two Poisson distributions with probability

functions

x
AL exp(-li)
P.(x32,) = ———2 A, > 0; i=1,2; x=0,1,2... . (1.12)
i i X! i

By equating Pl(x;kl) and Pz(x;lz), we find a single "crossing point":

Ao = A
x. = LE— i (1.13)

0 =
1oge(A1) - 1oge(A2)

Let A, > A,. Then for x < x,, Pl(x;Al) < Pz(x;lz); for x > X

2 = 0°

Pl(x;kl) > Pz(x;Az).



Let [x0] denote the largest integer less than or equal to x

Then

[x()] -]
xzopl(x;xl) + ) Pz(x;lz)
x=[x0]+1

OVL

1 -~

x=0 x!

For example, if A, = 5 and A2 = 4, then

5-4
X, = = 4.4814 ,
lOge(S) - loge(4)

and thus [x0] = 4. Therefore OVL, computed from equation 1.14, is

4 4x-exp(—4) - SX'exp(—S)
OVL = 1 -

x=0 x!

X x X
[zo][kz'exp(—xz) - Al-exp(-kl)] .

] = 0.811656 .

11

0°

(1.14)
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An Invariance Property of OVL

A useful property of OVL follows directly from equation 1.1. Let
g(x) be a continuous differentiable function defined for all x which is
one-to-one and preserves order. Then OVL can be written in terms of

g(x) instead of x, based on integration with a change of variable, as

OVL = J min[f, (8(x)), £, (g(x))]dg(x) . (1.15)
g (x)

This invariance property of OVL is used explicitly in the development of
the spline estimator of the overlapping coefficient in Chapter Three,
but it is also allows immediate generalization of the results obtained
for the estimation of OVL under normal theory to all cases where a
normaliéing transformation (Tukey, 1957; Box and Cox, 1964) can be
found. An example of tha latter instance is in fact presented in

Chapter Two.

Previous Work Related to OVL

In its manifestation as D, the basic idea behind the overlapping
coefficient extends back to the early years of the development of
mathematical statistics. During the 1890s, Karl Pearson used a measure
equivalent to 2D as an indicator of the goodness-of-fit of sample data
to some theoretical distribution before his development of the technique
based on the chisquare statistic (Pearson, 1965). Shortly after the

second World War, the index of dissimilarity was reformulated several
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times, apparently independently, by researchers in a number of disci-
plines (Duncan and Duncan, 1955). 1In the context of the 2 X C table, D
is simply one of many proposed measures of association, and its general
relationship to them is noted by Goodman and Kruskal (1979). More
recently, interest in D appears to center on its use as an indicator

of racial segregation and the probability model for the 2 X C table
proposed by Cortese et al. (1976).

Weitzman (1970) seems to be the first analyst to work with OVL
directly. He derived OVL in the discrete case from its relationship to
the index of dissimilarity, and he used it to explore the differences in
the income distributions of whites and blacks in the United States.
Gastwirth (1973, 1975) briefly examined OVL and judged it inferior to
a measure of the similarity of income distributions related to the
Mann-Whitney form of the Wilcoxon test for equality of population
medians. Gastwirth's objection to OVL is that it is unable to detect
changes‘in the location of the common probability mass shared by the
two distributions compared. Thus OVL was insensitive to shifts in the
median income of women relative to that of men in the United States in
his analysis of a longitudinal sample of Social Security records.
Interest in OVL among statisticians in the United States appears to have
ended with Gastwirth's critique.

Two investigators outside the United States have published recent
material using the concept of the overlap of distributions in unrelated
contexts. In Germany, the overlapping coefficient as a measure of
association between two normal distributions with equal variances was

developed by Marx (1976a, 1976b), and his proposal comes closest to the
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form of OVL derived by Bradley and Piantadosi. Marx relies on the
relationship of a sample estimator of the overlap between two identical
normal distributions to the central t distribution (incorrectly
specified) to produce a table of critical values for the sample over-
lapping coefficient. This, of course, accomplishes nothing, since Marx
is simply transforming the scale of the usugl t-test for the equality of
the means of two normal populations. In addition, Marx assumes that
because the sample realizations of OVL must lie between zero and unity,
the sample overlapping coefficient can be treated as the usual sample

estimator of a population proportion. Thus he compares two sample

overlapping coefficients using the standard errors of sample estimators
of population proportions and critical points from the central t distri-
bution. Throughout, Marx averages sample sizes to obtain the degrees of
freedom for the points of the t distributions he chooses to use. Unfor-
tunately, then, there is nothing in Marx's work to increase our under-
standing of OVL, even in the simple case for which he proposes the use
of the overlapping coefficient as a measure of association.

In Britain, Sneath (1977, 1979) has advanced the concept of
overlap in the context of cluster analysis. Unlike Marx, Sneath
correctly develops his treatment of the overlap of two normal distri~-
butions with equal population variances, but the correspondence
between the overlap of two such normal distributions and the usual t-test
for equality of normal population means apparently leads Sneath astray
when he attempts to extend his results to the overlap between two normal
distributions with unequal variances. While OVL has a direct inter-

pretation in the problem of classifying individuals into two
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populations, Sneath's clustering perspective does not speak directly to
the nore general issue of comparing distributions which is addressed

here.



Chapter Two
OVL BETWEEN TWO NORMAL POPULATIONS

The overlapping coefficient, OVL, between two normal distri-
butions was derived by Bradley and Piantadosi (1982) for the equal
and unequal population variances cases; they did not, however, discuss
the estimation of OVL from sample data. Here the estimation of OVL
using maximum-likelihood is addressed. The maximum-likelihood
estimator of OVL, OGL, is a biased estimator of OVL, and its bias
depends directly on OVL itself: The bias of OQL increases as OVL
nears one. As one should expect from the properties of maximum-
likelihood estimators, the bias of OGL decreases as sample sizes
become iarge, but this bias remains substantial when OVL is close to
one even for large sample sizes. Estimates of the wvariance of OGL,
developed by the technique of statistical differentials, closely
approximate the observed variance of OGL in a Monte Carlo experiment
in two situations: when the population variances are equal and the
difference in population means is small, and when the population
variances are unequal and the difference in population means is large.
The sampling distribution of the maximum-likelihood estimator can
be related to the folded-normal distribution in the case of equal
population variances and thus, for sufficiently large samples, to the

normal distribution. Taken together, the properties of OVL observed

in the Monte Carlo experiment provide realistic guidance to the actual

16
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use of OGL. In particular, the bias of OGL and the problem of
estimating its variance accurately circumscribe the use of OGL as

as an inferential statistic, suggesting that the proper role for OGL
when sampling from normal distributions is similar to that of OVL when
the two distributions are known. That is, OGL provides an indication of

the meaningfulness of any difference in the normal distributions

determined by the sample estimates of their means and variances,

whatever the statistical significance of any differences in the

estimated parameters.

The Overlap Between Two Known
Normal Distributions

Suppose we are given two normal distributions with densities
f3(x3u;,0¢) and f,(x3up,0%8); that is, with means p; and u, and
variances of and of respectively. From the general definition of the
overlapping coefficient, one can determine OVL between these normal

distributions in two cases of interest (Bradley and Piantadosi, 1982).

Equal Population Variances: of = 0% = 0?2
In the case of equal population variances, the two normal
densities intersect at a single point, xp, half-way between the means
u; and up, ignoring the coincidence of the densities at -= and +=;

see figure 2.1. That is,

H1 — M2
Xg = —— . (2.1)
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Figure 2.1
with equal variances. The point of intersection, xq, is
indicated by the vertical broken line. Here u; =0, u =1,
0f = of = 4, and xg = 0.5.

The overlap between two normal distributions

18
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From the symmetry of min[fl(x;ul,cf),fz(x;uz,og)] in this circumstance
and the properties of the standard-normal distribution function, ¢(z),

it is easy to see that

(—Iw - uzl)
OVL = 2\——— . (2.2)
20

Thus, if u; = 0, up, = 1, and 02 = 4 (the situatiom depicted in figure

2.1), we compute OVL = 26(-0.25) = 0.80258.

Unequal Population Variances: 0% # 0%

In the case of unequal population variances, the two normal
densities—-ignoring their coincidence at -~ and +w--intersect at
exactly two points; see figure 2.2. These points are determined by
the solutions to the quadratic equation in x obtained by setting
the two densities equal to each other. If we assume 0% > o, as in

figure 2.2, the lower point of intersection, x;, is given by

g
X3y = ’

o3 - o}

0% L
H10% - up0f - 0102[(U1 - up)2 + (0% - 0%)108e<—%)]

(2.3)
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Figure 2.2 The overlap between two normal distributions
with unequal variances. The lower point, x;, and upper point,
X5, of intersection are indicated by the vertical broken lines.
Here u; = 0, up = 1, of =1, 0% = 4, x; = -1.847545, and
x> = 1,180878.

20
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and the upper point of intersectiomn, x5, by

o% i
1103 - up0f + 030, [(Ul - up)? + (0% - Uf)loge(—g)]
(o]
Xs = . (2.4)

03 - of

If we define

= =1 | i-1,2; j=1,2; (2.5)

then the overlap between the two distributions is given by the

following equation:

OVL = q)(zll) + @(222) - <I>(212) - 4)(221) + 1. (2.6)

Thus, for p; = 0, up =1, of = 1, and o% = 4 (the situation illustrated
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in figure 2.2), we can compute

-1-2/1+ loge(4)
x| = = -1.847545,
3

and

-1+ 2/ 1 + log (4)
Xy = = = 1.180878.
3

Therefore

ovVL

¢(~1.847545) + 9(0.090439) - $(-1.423773) - ¢(1.180878) + 1

0.609934.

Although it is not obvious, equation 2.6 reduces to equation 2.2
(in the limit) as c% -> o%, or, equivalently, o0, > o3. This becomes

apparent when (2.3) and (2.4) are rewritten as the following.



OzH1 + O1u2 0102
X = + uy - owp 4+ oy - w)? +
02 + 03 0% - of
05\1%
+ (05 - of)log [— s
e
of
Oauy + O1l2 0102
Xy = + Hp - up 4 ey - up)? +
gy + 0) 0% - O'%
o5\1%
+ (03 - o{)log [—
e
of
0%
Now because the product (¢% - Uf)loge-—— converges to zero much
o

faster than does (0% - 0f) alone, we may write

v +ou2 0102
limit(xy) = — + limit [ vy = up + |y - uzl)] s
0o>04 2 0003 0% - O'%

up + U2 0102
limit(x;_) = — 4+ 1imit[ (Ul - HUg = |y - UZI)] .
090} 2 go*o; Lot - 0o

23

(2.7)

(2.8)



Thus 1if py > o,

My + o2
limit(x;) = ——— + limit
02701 2 0270,

and

v T oo
limit(xp) = —— + limit | ————
[»]

090 2 0970

Hence

limit (OVL)

20102
[-—-—‘ Gy - uz)] =4,
% - of
0102 up + w2
o] -,
- o¢ 2

Xg — H2
1+ of——) -1 - of ——
C9>01=0 [¢)

20

On the other hand, if uj; < up,

(--lul - ug|
20—

24



up +oug 0102
limit(x;) = — + limit [——————— (04
090 2 00701 oﬁ - of
and
wy + uo 20109
limit(xp) = —— + limit[ (g
0p>07 2 0001 0% - 0’%
Therefore

limit (OVL)

up +oup

0
]

X0

- uz)] = -0

X — W Xp = W2
ol—) +0-¢(——] -0+ 1
02*01=0 (¢ g

=lur = w2
2 —Mmm——1 .
20
Finally, let uj; = up = u. Obviously,

limit(x;) = limit(xp) =
02701 02701

uy + w2

2

]
=

25
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Hence

1imit(OVL) = &6(0) + &(0) - &(0) - ¢(0) + 1 =1 .
02*01=0

The convergence of OVL in the unequal variance case to OVL in
the equal variance case is evident in table 2.1, which presents the
value of OVL between two normal distributions for selected § and v,

where

[u1 = w2l %
§ = ———— and vy = —. (2.9)
01 of

(Note that equations 2.2, 2.5, and 2.6 can all be written in terms of

¢ and vy instead of py, uj, c%, and G%.)

Maximum-~Likelihood Estimation of OVL

Now suppose that, instead of working with two known normal
distributions, we have two independent simple random samples of sizes
n; and n, from fl(x;ul,cf) and fz(X;U2,0§) respectively. Our problem
is to estimate OVL from these sample data. Maximum-likelihood
estimators of OVL can be derived simply in both the equal and the

unequal variance cases by using the invariance property of the
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maximum-likelihood estimators of the parameters uj;, u,, of, and o%

computed from the two samples.

that these estimators of OVL, OVL, are asymptotically consistent,

Maximum-likelihood theory insures

unbiased, efficient, and normally distributed (Kendall and Stuart,

1979, chap. 17). The approximate variances of OVL in the equal and

unequal variance cases are derived using statistical differentials.

The usual maximum—-likelihood estimators for u; and up are

Equal Population Variances: o% = o%

the sample means:

The variances of these estimators are given by

X,.
1 Y

n.
1

Var(xi) =

, i=1,2; j=1,...,ni.

I Q
N

, i=1,2.

=}

g

2

(2.10)

(2.11)

The maximum-likelihood estimator of 02 can be written in the following

way.

Let
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n,
i 2
jzl(xij )
s§ = , 1=1,25 j=1,....n.. (2.12)
n,
i
Of course,
2(ni - 1ot
Var(s?) = —=——2% | i=1,2. (2.13)
1 n2
i

Then the maximum-likelihood estimator of o2 (= o = 03) is

nlsf + nzsg
s}?, = — (2.14)

m + np

its variance is given by

ny 2 ny 2
Var(sg) = (-———————) Var(sf) + ————————) Var(s%)

n; + no ny + ny
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2(ny; + np - 2)o"
= ) (2.15)
(n; + ny)?

Therefore, using equations 2.10 and 2.14, the maximum-likelihood

estimator of OVL is the following:

- -x - x|
OVL = 2¢{——m™ ) . (2.16)

2s
P

-~

To obtain the variance of OVL, we note that Xj; - X, is normally
n; + ny
distributed with mean u; - us and variance ————— 02, Thus the
ninj

the random variable |X; - x;| has the folded-normal distribution with

mean and variance (Leone et al., 1961):

- - 2(n; + mp)|% -nyng (u - ng)?
E(|x; - %3]) =|————] -0 exp +

ninamT 2(n; + n2)02

i
njnz ‘ H1 — H2
+ (uy - w1 - 20|- . (2.17)
n; + np o]
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ny + nz
(2.18)

L o 2
var(|x; - x,|) = o2 + (up - up)? - [3(]x; - x,]D] .

njing

Then, by statistical differentials (Kendall and Stuart, 1977,

pPp. 246-47),

2 30VL\?

30VL L
Var(lxl - le) +

Var(sg) , (2.19)

ol

Var (OVL)
982
p

3% — xp|

where the derivatives are understood to be evaluated at §1 = Uy,
§2 = sy and S; = 02, But
30VL 1 /-]x%; - %3]
— = - — o ———) (2.20)
3i{x; - X s 2s
- Rl s
30VL  |x1 - x| lx1 - x2|
= ¢ . (2.21)
352 2s3 2s
p P P
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where

exp (-z2/2)
$(z) = —— ., (2.22)
Y2

Combining equations 2.15, 2.18, 2.19, 2.20, and 2.21, we obtain

U ol L u, | 1 L (uy - uy?
Var(ovL) = ¢2 —-—-Var(lx1 - x2|) + Var(s2)
20 o2 4o P
fu, = w N\ {n; +n
- ¢2 1 2 1 2 +
20 n,;n,
2 = = 2
U, - u n, +n, -2 E(lxl -x, )
+ 42 [1 + - 2 . (2.23)
G 2(n1 + n2) 1

In passing, we note that if Hy = My, that is, if OVL = 1.0, equation

2.23 reduces to

(2.24)

Var (OVL)

efle
B |
T
=]
o —
+
=]
=]
N
S —
=
E ] I
N
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Ordinarily, Var(OVL) must itself be estimated, substituting the
sample estimates of the parameters u,, My and 02 into equation 2.17 to
get E(|§1 - §2|) and equation 2.23 to get Var(OVL). This gives the

following computational formula.

N ~ -lx, - x I n, +n
1 2
Var(OVL) = ¢2 L 2,

ZSp n;n,

- > \2 s = 2

X, - X n, +n, -2 E(]x, - x.|)

+ L2 [1+ L2 2]-[ M . (2.25)
sp 2(1‘11 + nz) Sp

Unequal Population Variances: o% # c%

2, and

In this case, the maximum-likelihood estimators ;l’ Ez’ s]

sg from equations 2.10 and 2.12 can be substituted for Hys Hys c%, and

og in equations 2.3, 2.4, 2.5, and 2.6 to obtain the maximum-likelihood

2

estimator of OVL. Assuming sg > s]»

. = (2.26)

is the maximum-likelihood estimator of the lower point of intersection
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of the two densities, and

- - _ _ S% 1/2

x15% - xpsf + slsz[(xl - X5)2 + (s% - sf)loge(—%):l

- s

*2 = (2.27)
s} - s?

is the maximum-likelihood estimator of the upper point of intersection
of the densities fl(x;ul,of) and fz(x;uz,G%). The maximum-likelihood

estimator of OVL, then, is

OVL = (I)(Zl]) + @(222) - @(212) - @(221) +1, (2.28)
where
. X, - X,
o= ————d 421,25 §=1,2. (2.29)
ij
°3

In the case of unequal population variances, the technique of

statistical differentials provides the following equation for the

approximate variance of OVL:



~ ., faovL\e 30VL\2  _ 90VL\?
Var(OVL) =| — Var(x;) + Var(x,) + Var(sf) +
3X1 3X2 as
30VL \2
+ Var(s%) ,

as§

37

where the derivatives of OVL are understood to be evaluated at §1 = Uy,

X2 = Uy, s{ = of, and s% = 04. It will be easier to write the

expression above in this way:

~ . feovLy? sovL\2 sovL\2
Var (OVL) = Var(§1) + Var(x,) + Var(s%) +
ouy dup 30
s0vL\?
+ Var(s%) ;
305

that is, differentiating equation 2.6 with respect to the parameters
instead of differentiating equation 2.28 with respect to §1, §2, s%,
and s5 and then replacing xj, §2, s%, and s% in the derivatives with

M1> M2, 0f, and 03. We have the following result.

9211 3z59 9zyp
+ ¢(z32) - ¢(z12)
duy ou1 du

Var(O\AIL) = [q)(zl 1)
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2

dzp) _ 9z1 3zp2
- ¢(z21) ] Var(x;) + [¢(211) + ¢(z22) -
duy duy duz
3z 3 2 )
12 221 _ z11
- ¢(z12) - ¢(2271) ]Var(xz) + [¢(z11) +
3“2 auz o0
3222 3212 3221 2
+ ¢(z22) - ¢(z17) -~ ¢(z27) ] Var(s%) +
30t 3o¢ 3o
3211 3222 3212
+ [¢(Z11) + ¢(z22) - 6(z12) -
30% 30% 3o
9z9) 2
- ¢(z21) ] Var(s3) . (2.30)
Bo%

Here ¢(z) is defined as in (2.22).
The derivatives of the zij (i=1,2; j=1,2) can be written most
easily in terms of the derivatives of x; and x; with respect to the

various parameters:

3zy) 1 /3x; 39zy o 1 /9x;
. <— ) 1) ’ T <——> ’
aul g3 8u1 aul Oo aul

9291 1 <3X2 ) 9z59 1 /3%
Uy 01 \ouy U] 02 \3u;

(2.31)
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N
N

1 1 1 1 2
3221 _ _E-(ax 21 ) 3222 _ 1 <3x2> -
= - ] = - b ]
2 2 2 2
801 g, 801 201 acl o, 301

and

2 2
2 1 2 2 2 2
3221 _ 1 <3x2) 8222 _ 1 <3x2 222>
= —(—=], = — [ —<
2 2 2 2
802 o, 302 802 o, 302 202

o2\1%
2 2

Let U(u,,u,,0,,0,) [(u1 u,) < + (o5 Gl)loge(c?-):l .
1

Then, from equations 2.3 and 2.4, we obtain the derivatives of x

1

39

(2.32)

(2.33)

(2.34)

and
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following:

-1
2 . -
Bxl 05 0102(u1 uz)[U(ul,uz,ol,oz)]

2

_ 2
aul o5 o]

—1
2 -
x oy + cloz(ul uz)[U(ul,uz,ol,oz)]

oy g - o

2
1 2 1

=1
X -02 + g.0 v, - U g
8 1 9 1 2( 1 UZ)[ (ul’u2’01’ 2)]

auz 02 - a

2
2 1

=1
3 -02 - g0 -
x, =03 - 0,0, “z)[U(uz’”z’°1’°2)]
- s
2 _ .2
8u2 02 01
axl _ 1 o, ) N
30.2 = , N “Hy ~ ;_ U 1—11 ,UZ,UI 902)
1 9% 79 9
2 2 2
0.0 O o o} -1
12| 2 1 2
= +
+ [ ) + 1083( 2)][U(u1,u2,01,02)] X,
2 o] oy

X, with respect to M My of, and cg. These derivatives are the

b

40

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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sz 1 o,
= -u, U(ul,uz,cl,cz) +
30% 0% - c% 201
2 2 2
g.o g - ¢ o -1
172 2 1 2
- [ + loge(——)][U(ul,uz,ol,oz)] + X, (> (2.40)
2 o% 0%
Bxl 1 01
802 = 02 _ 02 111 - g U(U19u2901302) -
2 2 1 2
0,9, og - o% o% -1
- + 10ge - [U(Ul,uzscl 902)] - xl ’ (2-41)
2 o o%
sz 1 o,
= 111 + U(Ulsuzsclaoz) +
80% o% - o% 202
2 2 2
0.0 gt - d o -1
12 2 1 2
+ [ + loge<——>][U(ul,u2,cl,02)] - X, (- (2.42)
2 c% 0%

Substituting these results into equation 2.30, we obtain the

following formula for the approximate variance of OVL in the unequal

population variance case.

Var (OVL)
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6(z,.) - ¢(z ) )% o2 6(z,.)  ¢(z,.) ] ox
+ 21 11 __1_+ [ 117 12 1,
oy n, °1 02 Suz
[¢(z,.) ¢(z__)7] 9x $(z. ) = ¢(z_ ))? o2
+ 227 21 ] 2 . 12 22°(, 2
L 02 01 Buz 02 n,
N [tb(zll) i ¢(z12)] 8x . [¢(z22) i ¢(z21)] 9%, .
0, 02 ao% 02 o1 ac%
L ] — L ] — '+
. ¢(221) 2y, ¢(zll) z2,, .2(n1 1)0l .
20% n%
6(z,.) ¢(z )] ox ¢(z_ )  ¢(z__)7] ox
+ [ 117 12 ] 1+[ 227 _ 21] 2,
2 2
9, o, 302 o, 9, 302
¢6(z, Doz . - ¢(z_ Dz |2 2(n, - 1)o*
+ 12° 12 22° 221, 2 2 (2.43)
20% n%

-~

Equation 2.43 gives the approximate variance of OVL when the parameters

of the two normal distributions, His My o2

1’ and cg, are known. In

practice, of course, one would compute an estimate of this variance,

Var(OVL), using the sample estimates ;1’ ;2, sf, and s?

> for His Wy o2

11

and o% in this expression.

Monte Carlo Investigation of the

Properties of OVL

Because the sample estimators of OVL given in equation 2.14
(equal population variances) and equation 2.28 (unequal population
variances) are the maximum-likelihood estimators of OVL, they have

known asymptotic properties: consistency, unbiasedness, efficiency,
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and normality. Maximum-likelihood theory, of course, does not

guarantee that the maximum-likelihood estimators of OVL exhibit these
properties when they are based on small samples nor that these proper-
ties are attained rapidly as sample sizes increase. Since the
distribution of OGL in either of the two cases of interest is not
immediately evident from (2.14) or (2.28), the distributional properties
of OGL are not obvious. Here, the basic statistical properties of OGL
shall be determined in a Monte Carlo simulation study. The three
objectives of this study are to investigate the sampling distribution of
OGL and, in particular, the bias of OGL as an estimator of OVL; to
examine the usefulness of the approximation formulae in (2.23) and
(2.43) for the variance of OGL; and, if possible, to determine the form
of the sampling distribution of O&L.

The Monte Carlo study itself can be described very briefly. For
convenience, the first normal distribution is fixed at the standard
normal,‘that is, with mean u; = 0.00 and variance 0% = 1.0. The mean
up and variamce 0% of the second normal distribution are then selected
to create seven design points for the study. These points were chosen
to permit investigation of the properties of OGL in the following
circumstances: 1) Two normal distributions with the same means and
variances (up, = 0.00, 03 = 1,0); 2) two normal distributions with the
same variance but unequal means, where this difference is small and
large (up = 0.25 and 1.00, 0% = 1.0); 3) two normal distributions with
identical means but unequal variances, where this difference is small
and large (us = 0.00, 0% = 1.2 and 3.0); and 4) two normal distributions

with unequal means and unequal variances, where both differences are

small and large (up = 0.25, 0% = 1.2 and up = 1.00, 0% = 3.0). At each
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of these seven design points, the sampling distribution of OVL is
simulated for four sets of sample sizes for the independent samples

from each distribution: n; = np; = 50, 100, 250, and 500. One thousand
Monte Carlo trials were run for each set of sample sizes at each design
point in the study, as follows. In each trial, two samples of standard-
normal random deviates of the required size were generated using the
IMSL routine GGNML (IMSL, 1982), employing different seeds for the two
samples. The second set of standard-normal random deviates was then
transformed to the desired mean py and variance o%. Then the sample
means and sample variance estimates were calculated for each of the two
samples, using the West algorithm (Chan and Lewis, 1979, p. 528). The
sample overlapping coefficient, OQL, was then calculated, using these
estimates of the population means and variances, from equation 2.14 if
o% = 1.0 and from equation 2.28 if G% # 1.0. Thus at each design point
and for four sets of sample sizes we have 1000 Monte Carlo observations
of OGL. (All computer routines used in the Monte Carlo study can be

found in the appendix.)

A

Bias and Predicted Variance of OVL

The results of the Monte Carlo simulation experiment are
presented in table 2.2, The true overlap between the two normal
distributions, OVL, is calculated from equation 2.2 or equation 2.6 as
appropriate, using the assigned values of uj;, uj, o%, and o%. The
predicted variance shown in the table is computed from equation 2.23
(if c% = 1.0) or equation 2.43 (if o% # 1.0), also using the assigned
values of uj;, up, 0¢, and 0%. The Monte Carlo mean and variance are

computed from the observed first and second sample moments from the
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1000 simulated OVL in each design-point-sample-size combination.
Comparisons of the Monte Carlo mean to the true OVL indicate the bias of
OGL as an estimator of OVL. Comparing the Monte Carlo variance to the
variance predicted from the two approximation formulae demonstrates

the utility of these equations in the best possible circumstance, when
the parameters of the two distributions sampled are known. These
comparisons are made explicitly in table 2.2 through the calculation of
the standardized bias and the variance ratio. The standardized bias is
simply the difference, Monte Carlo mean OGL minus OVL, divided by the
square-root of the Monte Carlo variance. The variance ratio is the
ratio of the Monte Carlo variance to the predicted variance.

The Monte Carlo experiment clearly demonstrated that OVL is
biased: In general, OGL will understate OVL for the values of OVL con-
cidered here. As we should expect, this bias decreases as sample sizes
increase, but this decrease in bias is apparently not monotone (see

=qn_ = 100 in table 2.2). The bias of OVL is

= 2 _
M, = 0.25, o; = 1.0, n, 2

2
also directly related to the value of OVL. The largest bias observed in
the simulation study occurs when OVL = 1.0, and the bias of OGL de-
creases the further OVL is from unity. Evidently, the more similar the
two normal distributions from which the two samples are drawn, the
greater is the bias of OGL as an estimator of OVL.

The usefulness of the approximation formulae for the variance of
OVL also appears to be related to the value of OVL. From the ratio of
the Monte Carlco variance to the predicted variance, we see that in the
equal population variance case, equation 2.23 performs well. 1In every
set of Monte Carlo trials where 02 = 1.0, the ratio of the two wvariances

2

is very near unity. On the other hand, in the unequal population
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case, equation 2.43 performs best when OVL is distant from one and

= y_.. Moreover, it is evident from the Monte Carlo

breaks down when ul 5

simulation study that the expression for the approximate variance of OVL
in the unequal population variances case overstates the apparent

sampling variance of OVL when it fails.

The Sampling Distribution of OGL
The properties of OGL observed in the Monte Carlo study lead
directly to the identification of the approximate distribution of OGL,
at least in the equal variance case. In fact, the Monte Carlo results

suggest that, when the population variances are equal, the sampling

~

distribution of OVL can be simply related to the folded-normal distri~

bution. The justification for such a link can be made as follows.

First, suppose that o is known; OVL then becomes a function of the
absolute difference in sample means only. This absolute difference, as
we have already seen, follows the folded-normal distribution. If ¢(z)

is viewed as an approximately linear transformation of this absolute

difference, then OVL must also be related to this distribution.

Naturally, as sample sizes increase and sp provides a better estimate

of o, OVL should behave increasingly like this idealization. Thus as

~

sample sizes increase and the sampling variances of sp and OVL decrease,
the assumptions about 0 and ¢(z) become more reasonable, and we should
then expect that OGL can be linearly related to some folded-normal
random variable. Second, from the Monte Carlo simulation is appears
that the bias of OGL diminishes with the distance of OVL, in units of

the standard error of OVL, from one, and that OVL exhibits a normal

sampling distribution when OVL is sufficiently far from one. Of course,
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OGL, like OVL, is bounded above by 1.0, and in the Monte Carlo study
O&L tends to "bunch" below 1.0 when OVL is near unity. This bunching
is most severe when OVL = 1.0, and this behavior seems to account for
the observed bias of OGL. This suggests that the distribution of OGL
is folded about the point 1.0. Using an obvious notation based on the
relationship of OVL to the index of dissimilarity, let D = 1 - OVL and
6 =1 - OGL. The statistic 6, in fact, follows the folded-normal

distribution in the case of equal population variances.

The folded-normal distribution

The folded-normal distribution arises in the following way. Let
the random variable x be normally distributed with mean & and variance
t2. The random variable y = [xl has the folded-normal distribution,

a fact used to derive equation 2.23 above. The distribution of y is

completely specified if £ and T are known, and the first and second

noncentral moments of y are

% -g2 -£
HI = g = (;)‘T'EXP(-—;) + g[l - 2¢<——>] , (2.44)

and

ps = 12 + g2, (2.45)
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Thus the variance of y is cf =12 ¢+ 52 - uz

i (The subscript f is used
to identify the mean and variance of the folded-normal variate.) 1In

the special case when £ = 0 (the half-normal distribution), we note that

= -g>61 d o2 =121 - 2 Clearl then > (g-f d
Ve i an f T/ Y > Mg n) T @&n

12(1 —-g) < c% < 12 must hold for any folded-normal variable.

Elandt (1961, p. 554) notes that the folded-normal random variable
converges to the normal distribution as £/t increases, achieving
approximate normality when uf/cf > 3. Properties of the folded-normal
distribution, including higher moments and its tabulated distribution,
are discussed in Leone et al. (1961) and Elandt (1961). The folded-
normal distribution is directly linked to the noncentral chisquare
distribution. Let A = £2/t%2 . Then the random variable y/T is

2 js distributed as

distributed as x(1,\), and the random variable y2/t1

x2(1,)); see Krishnaiah et al. (1963) and Johnson and Kotz (1970,

p. 136). N
Estimation of £ and 1 is considered in Elandt (1961),

Johnson (1962), and Johnson and Kotz (1970, pp. 136-37). Here £ and T

will be estimated from the first and second Monte Carlo moments of 6,

m] and m; respectively. Specifically, mj is equated to uj in equation

2.45, giving

1
£ = (m5 - 12)° . (2.46)
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This expression is substituted into equation 2.44, yielding the

following nonlinear equation in T1:

f(r) = Mg = mjy =0 . (2.47)

Then
1 m5 -g2 -£ 2my (=%
f'(t) = (Z) (1 + —~—>exp<—> - g—l:l - 2@(—>:| - 2 cb(—) , (2.48)
T 272 T 12 T

where £ is defined as in (2.46). Newton's method then permits
estimation of 1, and thus £, by finding the solution to equation 2.47
subject to the condition that £ > 0. (Since £ in the denominator of
the second term in equation 2.48 proves awkward when £ is close to or
equal to zero, the successive terms of Newton's method are more stably

determined by

E«f(1)
g«f' (1)
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which of course is algebraically equivalent to the usual formulation.)

A convenient initial value for the estimation of 1 is of.

Goodness of fit of D to the folded-normal

distribution

Estimates of £ and T are presented in table 2.3 for each set of
trials in the Monte Carlo simulation study. To determine whether the
folded-normal distribution adequately characterizes the sampling
distribution of D, A is calculated from £ and 1, and the Kolmogorov
statistic is used to test the equivalence of the empirical distribution
function for 52/12 to the noncentral chisquare distribution function
with a single degree of freedom and noncentrality parameter A. The
theoretical cumulative probabilities were calculated using the CPROB
function in SAS (Hardison et al., 1983) or, when this proved unstable,
the MDCHN routine in IMSL (1982). The Kolmogorov statistic, computed
in the usual way (Gibbons, 1971, pp. 75-85), is then compared to the
table of pseudocritical values in Stephans (1974) for testing normality
when mean and variance are unknown. These statistics, together with
similar Kolmogorov test statistics for normality, are presented in
the last two columns of table 2.3. Obviously, there is no reason to
reject the hypothesis that ﬁ follows the folded-normal distribution
when of = 05 = 1,0. However, the folded-normal fails to represent
the observed (Monte Carlo) sampling distribution of 6 when 0% # 1.0,
agreeing only when ﬁ appears to be normally distributed. The

£E-D

standardized bias in table 2.3 is defined as , and it indicates

T

that £ approaches D as n; and np, increase. Therefore, the Monte Carlo
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study suggests that, in the case of sampling from two normal
distributions with equal variances, 5 can be regarded as following

the folded-normal distribution, with £ = D for sufficiently large
samples, and that, after Elandt (1961), the sampling distribution of 6,

~

and thus that of OVL, becomes approximately normal when uf/cf > 3.

The failure of the simulated sampling distribution of 6 to follow
the folded-normal distribution in the unequal population variance
situation is not that surprizing, since the rationalization for the
folded-normal ﬁ is the equal variance formulation of equation 2.16. The
failure of the folded-normal model for 6 in the unequal variance case is
apparent in the noncentral x2 probability plots for the Monte Carlo
trials where o% # 0%. Two such plots are reproduced in figure 2.3 and
figure 2.4, illustrating the best and worst fits respectively of the
Monte Carlo distribution function of 6 to the folded-normal distribu-
tion--as indicated by the Kolmogorov statistic-~-—among the simulation
trials where of # 0% and where the folded-normal distribution is
rejected. In each probability plot, systematic deviation of the
Monte Carlo distribution of 6 from the folded-normal is clear, as the
noncentral x2 distribution function exceeds the empirical distribution

at both low and high ends of the distribution of D2/t2 and falls short

in between.

An Approximate Confidence Interval

for OVL: 0% = 0% = 0?

Given the problems of bias and estimation of the standard error
of OVL evident in the result of the Monte Carlo study, a somewhat

different approach may prove more useful in gauging the uncertainties
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inherent to estimation of OVL from sample information. The maximum-.
likelihood estimator of OVL in the equal variance case can be regarded
as a simple transformation of the maximum~likelihood estimator of the
Mahalanobis distance separating fj(x;u;,0%) and f£5(x;u3,0%) to the
interval [0,1] through the standard-normal distribution function, ¢(z).

That is, if

(2.49)

then OVL = 2¢(-§/2) . Moreover (Johnson and Wichern, 1982, p. 468),

the random variable F defined by

F = —n §2 (2.50)

has a noncentral F distribution with a single numerator degree of
freedom, n; + ny - 2 denominator degrees of freedom, and noncentrality

parameter X,
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nyny mny fu; - uz\?
A —— 82 = ) (2.51)
ny + np nj + no o

We can use the relationship in equation 2.50 to determine a
(1 - @)100% confidence interval for &2 using the appropriate points of
the indicated noncentral F distribution, taking as an estimate of the

noncentrality parameter

niny .

> >
]
N

. (2.52)
n; + no

If we denote this interval by (6%,66), a reasonable set of interval

boundaries is given by the following:

n; + np -
52 = ———F(%—; 1, ny + n, - 2, x) , (2.53)
nijng
ny + nop ~
6% = — F(l - %; 1, ny +n, ~ 2, X) . (2.54)



62

The solutions to (2.53) and (2.54) can then be used to obtain a

corresponding confidence interval for OVL:

[2¢(-su/2) , 2@(-5L/2)] ) (2.55)

The idea of using a confidence interval for 62 to construct a confidence
interval for OVL follows the argument used by Cheng and Iles (1983) to
develop confidence bands for the distribution function of a continuous
random variable based on a confidence region obtained for the parameters
of its distribution. The confidence interval for OVL is presented here
as a proposal, since its properties have not been explored.

(Note that equations 2.49 and 2.50 can be used to derive, by
statistical differentials, an alternative approximation formula for the
variance of OGL to that in equation 2.23. From the Monte Carlo study,
however, it appears that this approximation compares unfavorably to that
given in equation 2.23 when |U1 - uZ] is near or equal to zero, a
situation of considerable interest. The noncentral x2 distribution is
often used for the distribution of F in equation 2.50; see, for example,
Anderson, 1958, p. 56. This, of course, is the argument for the use of
the noncentral x2 distribution as the basis of the sampling distribution

of OVL in the previous section.)

Discussion
The sampling distribution of the maximum-likelihood estimator of

OVL between two normal distributions with equal variances can evidently
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be approximated by the folded-normal distribution. The characteristics
of the folded-normal distribution account for the behavior of OGL
observed in the Monte Carlo simulation study: the downward bias of OGL,
the relationship of this bias to OVL, and the approximate normality of
the smpling distribution of OGL when OVL is sufficiently distant from
unity. These characteristics are also exhibited by the maximum-
likelihood estimator of OVL in the unequal population variances case,
but the sampling distribution of OGL in this circumstance cannot be
represented by the folded-normal distribution. The utility of OGL as an
inferential statistic is clouded further by the difficulties associated
with the accurate estimation of its variance. For the equal variance
case, the approximation to the variance of OGL appears to provide
accurate estimates of the sampling variance of OGL as observed in the
Monte Carlo study. When the population variances are unequal, the
approximation to the variance of OGL based on statistical differentials
seems réasonable when OVL is not close to 1.0, and it overstates the
sampling variance of OGL when OVL is near unity.

Thus the value of OVL as a measure of association between two
normal distributions requires that it be based on known distributions of
on samples large enough that they can be assumed sufficiently
representative of their populations to be considered equivalent to the
populations themselves. To this extent, then, use of OGL depends on
extremely large sample sizes or, alternatively, making the interpretation
as well as the computation of OGL conditional upon the observed sample

outcomes, treating OVL as OVL computed from the sample realizations of

the parameters of the normal distributions in question. The overlapping
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coefficient may still prove useful in such situations, since it
demonstrates the level of agreement between two samples which, on
the basis of other statistical tests, represent two distinct but
closely associated populations. The biased behavior of OGL, in fact,
suggests that the true overlap between two normal populations,
particularly when the observed OGL is near unity, is probably higher
than that indicated by OGL, a property which may have the desirable
effect of tempering an overenthusiastic conclusion based solely on
statistical tests of the equality of the parameters of two normal
distributions without concern for the magnitude of any differences

detected.

An Example

~

As an example of the use of OVL, let us consider one part of a
study designed to investigate the selectivity of the migration of
Alabama farmers between 1850 and 1860 (Inman, 1981). A simple random
sample of 664 farm operators was obtained from the 1850 census of agri-
culture for ten Alabama counties. Each farm operator in the sample was
matched to the corresponding entries for his household and his slave-
force in the 1850 censuses of free population and slave population; from
this information, his wealth in 1850 was estimated. Those farm opera-
tors in the sample who could be located in the same county in the 1860
census are classified as persistent farmers. Those who were not found
in the 1860 census of the county in which they resided in 1850 did not
persist. (A rudimentary adjustment for the effect of mortality, not
described here, is also made.) We shall concern ourselves with a

subset of this sample, consisting of 601 male farm operators who were
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listed as the heads of their households in the census of free population
and for whom consistent census data is available.

As one might expect, the distribution of estimated 1850 wealth
is highly skewed. Examination of these data suggests that a logarithmic
transformation is most appropriate, and the natural logarithm of esti-
mated wealth in 1850 is reported in table 2.4 for the 317 persistent and
the 284 nonpersistent farmers in the reduced sample. Using these
natural logarithms, the sample mean for the persistent farmers is
7.570876, and the sample variance, computed according to equation 2.12,
is 2.274353. TFor the nonpersistent farmers, the sample mean is
7.045991, and the sample variance is 2.303979. An F-test for the
equality of the population variances yields an F-ratio of 1.0130
(p = 0.9068), so equal population variances will be assumed. The usual
t-test for equality of population means yields a t-statistic of 4.2396,
which, With 599 degrees of freedom, is statistically significant at the
0.0001 level. Thus it appears entirely reasonable to conclude that the
mean wealth of persistent Alabama farmers exceeded the mean wealth of
their nonpersistent counterparts, indicating that tue migration of
Alabama farm operators between 1850 and 1860 to some degree selected
the poorer farmers.

The degree of selectivity depends not on the difference in
population means but instead on the actual difference in the distribu-
tions of wealth of the two groups of farmers. If the distributions are
highly distinct, then a strong case can be made for migration
selective with respect to wealth. However, if we compute the maximum-

likelihood estimate of the common population variance and use equation
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2.16 to calculate OGL, we obtain OGL = 0.859614, which certainly
indicates that the distributions of wealth for these two groups of
Alabama farmers are not as distinct as a simple comparison of the
sample means might suggest. This leads us to conclude that, while
the persistent and nonpersistent Alabama farmers differed in mean
wealth, the actual difference in the distributions of wealth for
these farm operators is not particularly great.

We can use equation 2.25 to compute an estimate of the standard
error of OGL. Here the estimated variance of OGL is 0.00104634; thus
the estimated standard error of OGL is 0.032347. We may also construct
a confidence interval for OVL using the estimated Mahalanobis distance,
82 = 0.120394. From this, we see the estimated noncentrality parameter
for the required points of the appropriate noncentral F distribution is
K = 18.0346. Using the FINV function in SAS (Hardison et al., 1983)
with 1 numerator and 599 denominator degrees of freedom, we find that
the limits of a 90 percent confidence interval for 62 are
6% = 0.045069 and 66 = 0.233791. We than obtain the corresponding
90 percent cenfidence interval for OVL using equation 2.55: (0.808967,
0.915465).

All of the computations performed here are based on the assumed
normality of the two distributions compared. In this example, normally
distributed natural logarithms of wealth imply that the wealth distri-
butions are log-normal. However, Kolmogorov tests for the normality of
the natural logarithms of estimated wealth, using the Stephans (1974)
modifications and pseudocritical values, indicate that the natural

logarithms of estimated 1850 wealth are not normally distributed.



We shall return to this example in the following chapter, where a

nonparametric approach for the estimation of OVL is developed.
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Chapter Three
NONPARAMETRIC ESTIMATION OF OVL

The calculation and estimation of the overlapping coefficient
based on the assumed normal form of the density functions fl(x) and
fz(x) have been addressed in the previous chapter. The invariance
property of OVL noted in Chapter One provides that if some normalizing
transformation (Tukey, 1957; Box and Cox, 1964) can be found and applied
to both sets of sample data, the machinery and conclusions concerning
the estimation of OVL in the normal case can be implemented. As we
have seen, the derivation of explicit or implicit formulations of OVL
in other distributional settings is also possible. Suppose, however,
that eifher the specific problem of interest or the data gathered to
investigate it suggest no reasonable parametric form for fl(x) and fz(x)
or lead to rejection of the presumed parametric distribution. In such
circumstances there are two obvious approaches for the estimation of
OVL. One can adopt a ''quasi-parametric'" approach, using a flexible
family of distribution functions, like th Pearson, Burr, or Johnson
families of distributions (Johnson and Kotz, 1970, pp. 9-33), to
characterize the two distributions and thereby to estimate OVL. The
other approach is to estimate the two distributions nonparametrically,
using one of several nonparametric density estimation procedures

(Wegman, 1972, 1982). The second of these paths is explored here.
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The nonparametric method investigated here uses piece-wise
polynomial functions to estimate OVL from two independent samples from
the unknown distributioms f;(x) and f,(x). By fitting quadratic
spline functions to the empirical distribution functions through
weighted least-squares, taking the derivatives of these spline
functions as the estimated densities, and using these density estimates
to determine points of intersection, it is possible to obtain a
nonparametric estimate of OVL between fj(x) and f,(x). The bootstrap
(Efron, 1982) provides a natural method of obtaining an estimate of the
variance of the estimated OVL, OGL. Because the estimation of OVL via
quadratic splines substitutes a numerical technique for knowledge about
the distributions from which the sample data arose, the discussion of
the spline-estimator OQL which follows will be more desciptive than
mathematical in orientation. To learn something of the properties of
OGL as an estimator of OVL, OGL is compared to OGL using a subset of the
Monte Carlo data generated from two normal distributions introduced in
the previous chapter. The Monte Carlo evidence suggests that OGL can
perform well as an estimator of OVL. Like OGL, O&L is a biased
estimator of OVL, and, because of this bias, O%L generally underesti-
mates the true overlap between the normal distributions of interest.
The bias of OGL is related to OVL and the sizes of the two samples in
the same manner as OGL; but when sampling from normal distributions,
the bias of OQL almost always exceeds the bias of OGL. As we should
expect for a nonparametric estimator, the variance of OGL is greater

~

than that of OVL when sampling from two normal distributiomns.
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Spline Density Estimation

The use of polynomial splines to estimate the unknown density
of a continuous random variable from sample data Kpseeos® is one of a
number of related nonparametric techniques of density estimation
(Wegman, 1972; Wegman, 1982). Introduced and developed in Boneva et al.
(1971), de Montricher et al. (1975), and Wahba (1975), the idea behind
spline estimates of demsity functions is quite simple, and the spline
density estimator exhibits desirable statistical properties. It is
equivalent to the first derivative of a spline fitted to the empirical
distribution function. Given a suitable penalty function, the spline-
estimated density is the maximum-penalized-likelihood estimator of the
unknown density. Statistical properties of spline~estimated densities
have been investigated in several situations (see Wegman, 1982, for a
brief review and citations). Lii and Rosenblatt (1975) and Rosenblatt
(1977) derive the bias, variance-covariance structure, and asymptotic
distributional behavior of densities estimated with cubic splines
computed with equally-spaced breakpoints, for example.

Let us begin by defining the empirical distribution function

Fn(x), computed from the simple random sample K seeesX i

Fn(x) = , i=1l,...,n-1, (3.1)
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where x(i) represents the ith sample order statistic. (The rationale
for the divisor nt+l in equation 3.1, rather than the more usual divisor
n, is the expectation of the probability-integral transform of the
order statistics x(l),...,x(n); see Gibbons, 1971, pp. 23, 32. For
large n, of course, this difference becomes trivial.) Based on the
relationship between Fn(x) and the binomial distribution (Gibbons, 1971,

pp. 74~75), the variance of Fn(x) as defined in (3.1) is given by

n*F (x)|1 - F (x)
Var(F (x)) =2 [ n®] , (3.2)
n (n + 1)2

and thus Fn(x) is a consistent estimator of the unknown distribution
function F(x).

fo obtain the spline-estimated density, %(x), we fit a polynomial
spline to Fn(x); designate this piece-wise polynomial function %(x),
which can be defined, after de Boor (1978), as follows. First, define

a strictly increasing sequence of 2+1 points, £, <ty < ..l < t2 < t2+1,

such that Xyye.0,X are contained in the interval [tl’t£+1]; we ignore

for the moment how £ and t are determined. Now define £

preeeatyyy

polynomials of degree k-1 as follows:

x5! , i=l,...,8; (3.3)

Pi(X) = a, +aizx+ .. tag

il
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where the constants aij (1=1,...,%; j=1,...,k) must be determined.
The spline-estimated distribution function is then defined by the

following equation.

F(x) = Pi(x) s b <X <t ; i=1,...,8. (3.4)

i+1

The estimated demsity, f(x), is obtained by differentiating F(x):

that is,

3 _ k-2
== P, (x) =a, + 2aiax + ...+ (k l)aikx .

£Gx) = 32 By i2

ti < X < ti+1 s i=1,...,%. (3.5)

The properties of F(x) and f(x) require natural constraints on
F(x) and f(x), and these restrictions are incorporated into the
computation of F(x) as constraints on the constants aij (i=1,...,2;

j=1,...,k). The continuity of F(X) can be assured by imposing the

conditions

Pi(ti+1) = Pi+1(ti+1) , i=1,...,%-1. (3.6)



Similar conditions make f(x) continuous as well:

2 3
ax P1(ti4) = 3

In addition, we should insist that

F(tl) =0,
F(tgp) =1,
and
%(x) = §-P (x>0 £, <x <t 3
ox ~i*T - S S SO

Finally, it will prove convenient to let

f(tl) = f(t2+

1

% Pi+1 (tih)

)

0

.

i=1,.

) , i=1l,...,2-1.

eyt
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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F(x), and thus f(x), is obtained from Fn(x) by weighted least-squares,
subject to the constraints in equations 3.6 through 3.11, to determine

the spline coefficients a (i=1,...,%; 3=1,...,k). (For the least-

1]
squares approach to the general use of splines, see Wold, 1974; Buse
and Lim, 1977; Suits et al., 1978; Sampson, 1979; Smith, 1979; and
Wegman and Wright, 1983.)

Here the FORTRAN routine FC written by Hanson (1979) is used to
specify the constraints in equations 3.6 through 3.11 and, following
de Boor (1978), to compute the coefficients of the quadratic spline
fitted to Fn(x) by weighted least-squares, using the variance estimate
of Fn(x) at each data point X seeesX from equation 3.2 to determine
the appropriate weights. The spline coefficients obtained from FC
follow de Boor's basis-spline, or B-spline, notation rather than the
plece-wise polynomial format of (3.4), and the FORTRAN routine BVALUE
(de Boor, 1978) can be used to evaluate the spline-estimate of the
distribﬁtion function, %(x), and its derivative, %(x), at any point
desired. Of course, the order of the spline (k), and hence the degree

of the polynomials (k-1), and the the sequence of breakpoints

tl""’ t2+1 must still be specified. But, given two samples, one can

~

construct estimates of the distribution functions, Fl(x) and gz(x), and
from them estimates of the densities, %l(x) and %Z(X), and use them to
estimate OVL.

In the investigation of the usefulness of spline-estimated
densities in the estimation of OVL presented here, the order of the
splines used to construct ﬁl(x) and ﬁz(x) is limited to the case of

k = 3; that is, the splines consist of piece-wise quadratic polynomials.
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This means that %1(x) and Ez(x) will be piece~wise linear functions with
the appearance of frequency polygons terminating at the endpoints of

the interval [tl’t2+l] with vertices at all interior breakpoints. This
stategy attains two objectives. First, nonnegative density estimates

on the entire interval [tl’t2+1] are obtained by specifying constraint

3.10 at all interior breakpoints:

f(ti) =a,, + ai3ti >0, i=2,...,8%. (3.12)

The problem of negative density estimates using cubic (or higher order)
polynomial splines is not academic, and Boneva et al. (1971, pp. 3-4)
expressly permit such negative densities in their approach. Second,
the calculation of the points of intersection of the estimated densities
becomes quite straight-forward when they are piece-wise linear
functions.

The specification of the breakpoint sequence tl""’t£+1
really involves three separate issues: the number of subintervals 2 into
which the interval [tl’tz+1] is divided by the breakpoint sequence; the

endpoints t1 and t2+1; and the determination of the remaining break-

points, tz""’tl’ in the interval [tl’tg+1]‘
The number of intervals required for the spline-estimation of
an unknown density f(x) is a question with no clearcut answer, and the

solution adopted here may strike the reader as somewhat arbitrary. The

problem is that while specifying too few subintervals introduces error
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stemming from the failure of the quadratic pieces of the spline to
fit Fn(x) adequately, specifying too many subintervals creates
difficulties of another sort. Because the coefficients of the
quadratic terms in the polynomial pieces determine the slopes of the
line segments which compose the estimated density, the estimated
density will become increasingly erratic as more subintervals are
specified and as Fn(x) can be approximated more reasonably by linear
terms alone on the more numerous, smaller subintervals. The number of
subintervals used here is calculated from the rule proposed in
Sturges (1926) for the number of classes in a frequency histogram,

rounding down to the nearest interger to obtain %:

L= 1+3.322000 (7, (3.13)

where n” is the number of unique points in the sample distribution
function Fn(x). The usual criticism of Sturges's rule, that it produces
too few histogram classes when the underlying distribution is asymmetric
or the sample contains ouflying values (Snee and Pfeifer, 1983), does
not appear compelling in the role assigned to it here, since, as
described below, the values of the interior breakpoints defining the

boundaries of the subintervals in [tl’t ] are chosen to allow

2+1
efficient use of the breakpoints rather than to divide [tl’t2+1] into

subintervals of equal length. TFurther investigation may suggest a better

algorithm for computing the number of polynomial pieces in the spline
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fitted to Fn(x) when, as here, these subintervals are of unequal

length. If the breakpoints are chosen so that t are equally-

127 2B
spaced, the procedure proposed in Wahba (1975) may be employed to
determine the number of subintervals and their common length.

The method used to fix t and ton is a simple one, based on the
transformation of the sample observations to the interval [0,1]. Three
such transformations are the following. If the domain of the distribu-

tion presumed to generate the sample data is the interval [a,b], a

simple linear transformation,

g(x) = R (3.14)

appears obvious. When the domain of the distribution is assumed to be

[O,w), we may choose

g(x) = s (3.15)
1 +x

Finally, if the domain of the distribution giving rise to the sample is

(~»,+w), then we can use



82

exp (x)
g(x) = —— . (3.16)
1 + exp(x)

The spline is then fit to the empirical distribution function on the
transformed scale, Fn(g(x)), and tl and t2+1 can be set to zero and one
respectively. The inverse transformation, x = g~1(y) can then be used
to obtain %(x), although this is not necessary for the calculation of
OGL if the same transformation is applied to both sets of sample data,
for OVL, as we have seen, is invariant under such transformation.

Thus only the placement of the £-1 interior breakpoints,
0 < t2 <...< ti < 1, remains. Here the sequence of breakpoints is
determined iteratively by fitting the quadratic spline to Fn(g(x)) using
an initial sequence of breakpoints derived from the empirical distri-
bution function itself; generating a new sequence of breakpoints from
the fitted spline with de Boor's NEWNOT routine (de Boor, 1978,
pp. 184-86); then recomputing the spline approximation %(g(x)) with this
new breakpoint sequence. The placement of the interior breakpoints
generated by NEWNOT appeals to the desideratum that the intervals
between the knots, or breakpoints, should be relatively small where
%(g(x)), hence Fn(g(x)), is changing rapidly and relatively large where
ﬁ(g(x)) is changing slowly. Since the estimated density (omn the
transformed scale) is the derivative of %(g(x)), NEWNOT in effect picks
the vertices of a frequency polygon representing f(g(x)) by shortening

and lengthening the intervals between breakpoints, based on the behavior

of Fn(g(x)). Successive computation of F(g(x)) and the construction
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of new sequences of breakpoints can be continued indefinitely, but the
major improvement, indicated by a reduction in the residual sum of
squares for the fit of %(g(x)) to Fn(g(x)), appears in the first itera-
tion. The initial sequence of breakpoints used here utilizes equally-
spaced quantiles from the empirical distribution function for the
interior breakpoints. That is, if equation 3.13 requires ten subin-
tervals (2 = 10), then the deciles from Fn(g(x)) are used for the values

of the breakpoints between tl = 0 and t%+1 = 1.

Because the Hanson routine FC used to fit the spline to Fn(g(x))
uses the de Boor B-spline representation, additional points, or knots,

must be specified outside the interval [tl,t ]: k-1 points equal to or

241

less than t, and k-1 points equal to or greater than t (Hanson, 1979,

1 2+1

pp. 8-10). The sequence of the k-1 points less than or equal to tl’ the

2+1 points in the interval [tl » and the k-1 points greater than or

el

equal to t2+1 define the knot-sequence of the spline. Following Kozak
(1980), the left-hand exterior knots are always set equal to £, = 0, and
the right-hand exterior knots are always set equal to t = 1. Since

41

here k = 3, the knot-sequence used to obtain F(g(x)) is

..,t, changing with each pass through

27"

0,0,0,tz,...,tl,l,l,l, with t 2

NEWNOT.

The procedure adopted here to derive spline estimates of an
unknown density can be summarized as follows. First, an appropriate
transformation is used to map the sample data to the interval [0,1].
Next, the empirical distribution function is constructed from the sample
on the transformed scale. The number of quadratic pieces in the spline

is calculated from (3.13), and the initial sequence of internal
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breakpoints fixed from Fn(g(x)). A quadratic spline is fit to Fn(g(x)),
suject to the conditions embodied in equations 3.6, 3.7, 3.8, 3.9, 3.11,
and 3.12, using weighted least-squares. NEWNOT is used to generate a
new breakpoint sequence, and the spline is recomputed. The quadratic
spline obtained after two passes through the NEWNOT-spline-computation
process is taken as ﬁ(g(x)) and its derivative as E(g(x)). The entire
procedure is illustrated in figures 3.1 through 3.10. The sample
distribution function computed from a sample of 100 standard-normal
deviates generated from the IMSL routine GGNML (IMSL, 1982) and trans-
formed by equation 3.16 is shown in figure 3.1. From equation 3.13,
seven quadratic pieces are used in the spline fit to the empirical
distribution function, and figure 3.2 illustrates the algorithm
described above for obtaining the six breakpoints in the interval

[0,1]. The fitted spline, using these breakpoints, is shown in figure
3.3, and the derivative of this spline is depicted in figure 3.4.

Figure 3.5 shows the fitted spline obtained with the set of breakpoints
constructed from the first spline with the NEWNOT procedure; movement of
the internal breakpoints is clearly visible when this figure is compared
to figure 3.3. The derivative of this quadratic spline is shown in
figure 3.6. Figures 3.7 and 3.8 illustrate the spline-estimated
distribution function %(g(x)) and the estimated density E(g(x)) obtained
after a second pass through NEWNOT. Using the inverse of transformation
3.16, one can obtain %(x), shown in figure 3.9 with the actual standard-
normal distribution function for reference. The estimated density %(x)
can also be obtained from the inverse transformation, scaling by the
appropriate differential, and it is depicted in figure 3.10, together

with the standard-normal probability density function.
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The effect of the number of quadratic pieces chosen to
determine %(g(x)) on the estimated density %(g(x)) may be seen in
figures 3.11 and 3.12. 1In figure 3.11, five quadratic pieces were
used, with the result that the "notch" at the peak of the density
estimate based on seven quadratic pieces (figure 3.8) is no longer
present. Using nine quadratic pieces introduces additional jaggedness
into the density estimate, as figure 3.12 demonstrates. Thus one
might conclude that the choice of one or two fewer subintervals than
the value of 2 given by the algorithm based on Sturges's rule seems
reasonable here, but the use of any more subintervals is probably
unwise. The usefulness of the algorithm and the improvement in the
estimated densities which accompany an increase in the sample size
become evident in figures 3.13 and 3.14, which show %(x) and %(x)
obtained from a sample of 500 standard-normal deviates, and figures
3.15 and 3.16, which display the spline-estimated distribution function
and density based on a sample of size 1000 generated from the standard-
normal distribution. These figures demonstrate that the spline-based
approach to density estimation outlined here requires very substantial
sample sizes for the successful representation--measured only in

qualitative terms--of an unknown density.

Estimation of OVL with Quadratic Splines

Given the procedure for estimating an unknown density developed
above, obtaining an estimate of OVL based on quadratic splines is
remarkably straight-forward. From two independent samples from the

two unknown distributions, xll,...,x and X ,...,X , we construct

lnl 21 2n,

the two sample distribution functions, F_ (g, (x)) and F (g,(x)), and
1 2
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from them compute the spline distribution functions, ﬁl(x) and ﬁz(x),
and the corresponding spline demsities, %l(x) and %z(x). Because %l(x)
and %z(x) are piece-wise linear functions, the intersection points and
min[%l(x),%z(x)] can be determined easily, and ﬁl(x) and ﬁz(x) permit
ready evaluation of an estimate of OVL, using these points of inter-

section and the definition of QVL:

OVL = J min[;l(x),gz(x)]dx . (3.17)

X

If the transformations used to map the two sets of sample observations
to the interval [0,1] are identical, that is, gl(x) = gz(x) = g(x), then
the invariance property of OVL can be exploited in the calculation of

~

OVL:

OVL = J min[El(g(x)),%2(g(x))]dg(x) i (3.18)
g(x)

The quantity min[fl(g(x)),fz(g(x))] can be determined most easily by
computing fl(g(x)) and fz(g(x)) at each point in the sorted union-set
of the two sets of breakpoints used in the computation of Fl(g(x)) and

Fz(g(x)), since a change in the relative positions of fl(g(x)) and
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%Z(g(x)) between any two such points necessarily requires that the
two estimated densities intersect in the interval so defined. The
linear character of %1(g(x)) and Ez(g(x)) makes the determination of
this point of intersection trivial.

Consider, for example, the two spline-estimated densities in
figure 3.17, which are obtained from two samples of size 100 generated
from two normal distributions. The first sample is gemerated from the
standard-normal distribution, and it is the sample used in figures 3.1
through 3.12; the density estimate derived from this sample is
indicated by the solid line in figure 3.17. The second sample is
generated from a normal distribution with mean 1.0 and variance 4.0; the
density estimated from this sample is shown in figure 3.17 by the broken
line. It is apparent in this figure that there are two points at which
the estimated densities cross. Using the union set of breakpoints and
the routine BVALUE, we find these points are 0.251679 and 0.777084 on
the transformed scale (equation 3.16 was used to transform both

samples). Thus

OVL = F1(0.251679) + F2(0.777084) - F2(0.251679) + Fl(l.OOOOOO)

- F1(0.777084) = 0.583812 .

The actual overlap between the two normal distributions was calculated

as an example in Chapter Two: OVL = 0.609934.
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An Estimate of the Variance of OVL

Considering the computation complexities inherent to the
calculation of OGL from sample data, the problem of determining the
sampling variance of OGL is obviously not a simple one. Variance
formulae for spline-estimated densities at a specific point based on
equally-spaced knot sequences (Lii and Rosenblatt, 1975; Rosenblatt,
1977) or for spline-interpolated densities based on equally-spaced
knots (Wahba, 1975) do not apply, and the problem posed by O&L-—the
sum of spline-estimated distribution functions evaluated at points
determined from the intersection of their derivatives--quickly
suggests that the variance of OGL be estimated indirectly. The
method described here, and illustrated in the example below, is based
on Efron's development of nonparametric variance estimation procedures
(Efron, 1979, 1981, 1982, 1983; Efron and Gong, 1983). Indeed, once the
computational set—up for calculating 06L has been realized, the process
of generating additional OGL:, i=1,...,B, calculated from resamplings
of the original sample data and the computation of a bootstrap estimate
of the variance of OGL, V;rB(OGL), involves little additional work. It
may, however, involve considerable expense, given the computer-intensive
calculation of OGL.

The idea behind the bootstrap variance estimator is quite simple.

eee and x eeesX .
’ ’Xln1 21’ ’2n2

From these sample data we calculate OVL. Now we treat the samples as

We are given the two independent samples, X,

two finite populations of size n, and n, respectively, and draw two new

bootstrap samples, one from each original sample, with replacement. The

sizes of these bootstrap samples are n, and n, , or the sizes of the
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% *
two original samples, giving us the pseudodata, XypoeeesX and
1
* %
le""’XZn Using this pseudodata, we then calculate the value of
2

our statistic, OVL. This resampling procedure is repeated some large
number, B, of times; each time we draw a new pair of bootstrap samples
from the original data and compute OGL. Let OGL: denote the value of
OGL computed on the ith iteration of this process. The bootstrap

estimator of the variance of OVL is then given by the usual formula for

the sample variance:

B

* < % 2
L (OVL, - OVL")
- ~ i=1
VarB(OVL) = , (3.19)
B~1
where
B~ &
) OVL;
" i=1
OVL = ——m— . (3.20)
B

The only difficulty with this is, of course, the value of B. As
Efron (1982, p. 28) notes, how large ''large enough" is depends on and

varies from problem to problem, but improvement of the bootstrap
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variance estimator is often not great for numbers of bootstrap
replications larger than B = 100. The bootstrap method also enables us
to do more than simply estimating the variance of OGL, and Efron (1982,
chaps. 5 and 10) describes how one may use the bootstrap to investigate
bias and construct confidence intervals. TFor these purposes, a value

of B much larger than 100 may well prove necessary.

Monte Carlo Investigation of the

Properties of OVL

To get some idea of the properties of the spline estimator of
OVL, OGL has been calculated on a set of Monte Carlo samples from two
normal distributions, using a selected number of the design points and
sample sizes of the simulation study described in the previous chapter.
The design points chosen consist of the four corner points of the
original simulation: ps = 0.0, o% = 1.0; up = 1.0, o% = 1.0; puo = 0.0,

0% = 3.0; and uy = 1.0, U% = 3.0. The sample sizes used to investigate
the sampling behavior of OGL are ny = np = 100 and n; = np = 500.
This simulation study permits preliminary assessment of OGL as an
estimator of OVL when the two distributions sampled are identical, when
the two distributions sampled differ by a substantial difference in
their means, when the two distributions sampled differ only by a
substantial difference in their variances, and when both the means and
variances of the two distributions sampled differ.

On each of the 1000 Monte Carlo trials at each design point and
sample size, OGL is computed as described above, using the transforma-

tion in (3.16) to map the two independently generated Monte Carlo

samples onto the interval [0,1], and calculating OVL on this transformed
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scale. The results of this Monte Carlo study are summarized in table
3.1. Comparison of the Monte Carlo means to OVL demonstrates that OGL,
like OGL, is a biased estimator of OVL between two normal distributions.
Like OGL, OGL appears to understate OVL, since in only one instance

(up = 1.00, 0% = 3.0, n; = n, = 500) does the Monte Carlo mean of OGL
exceed OVL. The Monte Carlo variance of O%L presented in table 3.1 is
computed from the first two Monte Carlo moments. The variance of OGL
decreases as sample sizes increase from n; = ny = 100 to n; = ny = 500,
suggesting that OGL is a consistent estimator of OVL. (Because Fn(x)
is a consistent estimator of F(x), we should expect OGL to be
consistent.)

As before, the bias of OGL is addressed in table 3.1 by computing
the standardized bias. Here the standardized bias of OGL is calculated
two ways: the difference of the Monte Carlo mean minus OVL divided by
the Monte Carlo standard error of OGL (standardized bias, column 1), and
this difference divided by the Monte Carlo standard error of OGL
(standardized bias, column 2). The bias of O%L can be compared to that
of OGL, using the second of these quantities and the standardized bias
of OGL reproduced in table 3.1 (standardized bias, normal). In units of
the standard error of OGL, then, we see that the bias of OGL is always
materially greater than the bias of OGL, with one exception (uy = 1.00,
0% = 3.0, n] = np, = 100).

The relative inefficiency of OQL compared to OGL as estimators of
OVL between two normal distributions is indicated by the ratio of their
Monte Carlo variances, also shown in table 3.1. Evidently the variance

~

of OVL is about 1.5 times the variance of OVL, running from a low of
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1.15 (up = 1.00, 0% = 1.0, n; = np = 100) to a high of 1.70 (uy = 0.00,
0% = 3.0, n; = np = 100). With only four points in this simulation
study, we cannot say much about the relative efficiency of O%L versus
OGL as a function of the difference in population means, the difference
in population variances, and sample size, except to note that the ratio
of the Monte Carlo variances of OGL and OGL changes little with the
increase in sample sizes from n; = n, = 100 to n; = ny = 500 in the case
of sampling from identical normal distributions, increases with sample
size when sampling from normal distributions with different means, and
decreases as sample sizes increase when sampling from normal distribu-
tions with the same mean but different variances. Finally, as the
Kolmogorov statistics in table 3.1 indicate, OGL exhibits, at least
approximately, a normal sampling distribution when sampling from
sufficiently dissimilar normal distributions. Normality does not hold
when the two distributions sampled are the same and sample sizes are
small, Sut the normality or nonnormality of OGL when small differences
in means or variances distinguish the distributions from which the two
samples arise obviously cannot be determined from this Monte Carlo

simulation study.

Discussion
The results of the Monte Carlo investigation of the behavior of
O&L suggest that the spline estimator of OVL can perform well. The
properties of OGL appear to echo those displayed by OGL; in particular,
the bias of OGL is related to OVL and the sample sizes in the same way
as the bias of OGL. As expected, the variance of O&L exceeds the

variance of OVL when sampling from two normal distributions. Since
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the primary advantage of 06L over OGL is its distribution-free approach,
the performance of OGL relative to OGL in the normal case indicates that
0§L should perform adequately in situations of more immediate interest,
where OGL is an inappropriate estimator of OVL. As the example below
demonstrates, the spline-density estimator of OVL, combined with the
bootstrap technique of estimating its variance and constructing con-
fidence intervals, can indeed prove worthwhile in real problems of data
analysis. The bias-corrected percentile method of constructing con-
fidence intervals for the true overlap between the unknown distributions
from the bootstrap distribution of OGL may, in fact, counter-balance the
apparent increase in the downward bias of the estimator of OVL when
nonparametric estimation is adopted.

The success of the spline-density based technique of estimating
OVL raises the possibility that a less sophistocated nonparamteric
method might also prove adequate in problem settings where distribu-
tional éssumptions seem unwarranted. An obvious alternative to the
spline estimator of the unknown densities is the kernal method of
density estimation. A number of kernal functions can be used in this
latter approach, but the 'naive" kernal estimator offers a simple, and
perhaps entirely adequate, technique for estimating the two densities
required for the computation of an estimate of OVL (Rosenblatt, 1956;
Waterman and Whiteman, 1978). If such density estimates are used to
obtain the points of intersection of the densities, then the sample
distribution functions themselves could be employed to evaluate the
necessary components of the estimated overlapping coefficient, and the

bootstrap can again be used to estimate the variance of the estimator of

OVL and to construct confidence regions for the unknown OVL.
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For the present, the potential of these alternative nonparametric

approaches for the estimation of OVL must remain an open question.

An Example

Let us now reconsider the wealth example introduced in Chapter
Two. The reader will recall that the estimate of OVL, assuming nor-
mality and equal population variances, was OGL = 0.859614. Here we
shall compute OGL from these data and use Efron's bootstrap methodology
to obtain an estimate of the standard error of OQL and to construct
confidence intervals for the unknown overlap between the distributions
of wealth of the persistent and nonpersistent Alabama farmers.

The transformation chosen to map the natural logarithms of
estimated 1850 wealth onto the interval [0,1] is that given in equation
3.14, with a = 3 and b = 12. (Note that the smallest observation in the
combined samples is 3.22865 and the largest observed natural logarithm
of wealth is 11.47963, both in the nonpersistent group.) Thus the data
actually used to compute OGL were obtained from the following

transformation:

log (x) - 3
g(x) = —S—— |

This transformation is applied to the wealth data for both persistent
and nonpersistent farmers, and OVL calculated as described above. From

these data, OVL = 0.869152.
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~

Bootstrap estimates of the variance of OVL are readily obtained
by equation 3,19, Here the bootstrap resamplings are accomplished with
the simple FORTRAN subroutine RESAMP in the Appendix. Results for

three different values of B are the following:

~ %
100, ovL

B = = 0.843070, and VarB(OVL) = 0.00112578;
"‘:._* ~ ~

B = 250, OVL = 0.842914, and VarB(OVL) = 0.000961849;
= - ~

B = 500, OVL = 0.842576, and VarB(OVL) = 0.000966696.

This example demonstrates that the bootstrap estimate of the variance
of OQL is fairly good (that is, close to what is obtained for larger B)
when B = 100, but that a larger value of B is preferable. If we use the
result obtained when B = 500, the estimated standard error of OGL is
0.0310917. To provide some indication of the the cost of finding this
bootstrap estimate of the standard error of OQL, the computation of OGL
and thevgeneration of 500 OQL* with the FORTRAN routines in the Appendix
required slightly more than seven minutes of CPU time on an IBM 4381-2
for this example.

Two of the methods described by Efron (1982, chap. 10) will be
used to construct bootstrap confidence intervals for OVL using the 1850
wealth data. Let F;(°) be the empirical distribution function con-
structed from the OGL: (i=1,...,B8), and let F*’l(-) denote its inverse.

B

A (1 - 0)100% confidence interval for OVL using the percentile method is

* *
[FB‘l(a/Z),FB 1y - a/2)] . (3.21)
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Thus a 90% confidence interval for the true overlap between the wealth

distributions of the persistent and nonpersistent Alabama farmers, using

-~

*
the bootstrap distribution function constructed from the 500 OVL , is

given by

* *
-1 -1 - .
[FSOO(O.OS),F500(0.95)] (0.792479,0.895659) ;

see figure 3.18.

The second method of constructing confidence intervals is what
Efron calls the bias-corrected percentile method. Let Q'l(-) denote the

inverse standard-normal distribution function. Define

z, = ¢-1(F;(0§L)) , (3.22)

and

z = o~1(1 - a/2) . (3.23)
ot/z

Then the (1 - «)100% bias—corrected confidence interval for OVL
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given by the following:

[F;'1(®(220 -z )),Fy (8 (22 - zalz))] : (3.24)

a/2

%*
500

is 0.818363, here z, = 0.909145. If we want a 907 confidence interval

for OVL, o = 0.10 and zm/2 = 1.64485. The 907 bias-corrected confidence

Since OVL computed from the wealth data is 0.869152 and F (0.869152)

interval for the true overlap between the wealth distributions of the

persistent and nonpersistent Alabama farmers is

* E
-1 -1 =
[F500(¢(0.173440)),F500(¢(3.46314))]
- [F*-l(o 568846),F. =1 (0.999733)
- L's00 " **500" "

(0.848472,0.941238) ;

see figure 3.19.

Note that the 90% confidence interval for OVL obtained by the
percentile method is close to the interval obtained in Chapter Two by
normal theory; the limits of the percentile confidence interval,
however, are slightly below the corresponding normal theory limits of
0.808967 and 0.915465. On the other hand, the limits of the bias-

corrected confidence interval for OVL are more distant from the normal
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theory limits, and the bias-corrected percentile method produces an
interval with upper and lower endpoints higher than either the normal
theory or the percentile limits. Given our current knowledge of the
sampling behavior of OGL, it is impossible to conclude that one of these
confidence intervals is superior to the other two in every problem
setting, but the evident nonnormality of these sample data and the
general downward bias of estimators of OVL suggest that the bias-~
corrected confidence interval for the overlap between the distributions
of wealth of persistent and nonpersistent Alabama farmers in 1850 is the
most realistic of the three 907 confidence intervals constructed from

the wealth data.



Chapter Four

OVL AS A MEASURE OF ASSOCIATION IN

A 2 X C CONTINGENCY TABLE

The investigation of OVL as a measure of agreement between two
distributions arranged in a 2 X C contingency table addresses the
behavior of the overlapping coefficient in the context in which it was
first proposed and used (Weitzman, 1970). The properties of the esti-
mator of OVL when the table entries are regarded as random variables is
examined for two probability models of the 2 X C table, and in each
case it is more convenient to use the index of dissimilarity, D
(D=1- 0VL), instead of OVL itself. The two probability models
considefed are first, when the rows of the table are independent
realizations of two possibly identical multinomial distributions (row
totals fixed), and second, when the cells of the table are determined
by the multivariate hypergeomtric distribution of a single row of the
table (both row totals and column totals fixed). Based on the behavior
of D in the 2 X C table under these assumptions, it is apparent that
in both situations the estimator of OVL is biased, that this bias means
the estimator of OVL understates the true overlap of the row distribu-
tions, that the magnitude of the bias is directly related to C and the
true overlap between the row distributions (unity in the multivariate

hypergeometric model) and declines as the sizes of the row totals become

120
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large. Similarly, the variance of the estimator of OVL increases with C

and decreases as the row totals increase.

OVL and D as Measures of Association Between
Two Categorized Populations

The overlap between two Poisson distributions served as one of
the examples introduced earlier as an illustration of the computation of
the overlapping coefficient between two known distributions. Here a
special case of OVL involving the overlap between two discrete distribu-
tions will be examined. Let us begin by supposing that we wish to
compare two finite populations whose elements can be classified into C
categories. One can think of this situation as the cross-classification
of these two populations into a 2 X C contingency table, the two rows of
the table representing the two populations and the C columns of the
table representing the C categories into which the populations are
sorted.. Let nij denote the number of individuals from population (row)
i falling into category (column) j of this table. Finally, let N, and
N2 denote the population (row) totals for the first and second popula-
tions respectively. The overlap between the two populations may then

be computed as follows:

C nl. nz.
OVL = 2min<—l,—l) . (4.1)
j=1 N, N,

However, it will be more convenient in the discussion that follows if
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we use the relarionship between OVL and D, the index of dissimilarity,
and work with D rather than OVL. The usual formulation of D in the

circumstance just described is

C in,. I, .
i e 3] (5.2)

Because OVL. = 1 - D, it follows that any results we obtain for one
automatically apply to the other.

In the context of the 2 X C table, OVL and D are simply two of
many proposed measures of association (Goodman and Kruskal, 1979). They
have the advantage that they are relatively easy to compute, and both
remain unaffected by row or column permutatior or the multiplication of
an entire row by some nonzero constant. The measure D also appears to
possess a natural meaning for many users: D represents the minimum
proportion of individuals in either population (row) whose reclassifica-
tion into the appropriate categories (columns) would produce two popu-
lations with equal proportions in each category (Taeuber and Taeuber,
1976, pp. 887-88; Goodman and Kruskal, 1979, p. 56). The properties of
the index of dissimilarity as a measure of association, particularly as
an indicator of residential segregation by race, have generated both
controversy and confusion in the sociological literature (Jahn et al.,
1947, 1948; Hornseth, 1947; Williams, 1948; Jahn, 195C; Duncan and

Duncan, 1955; Taeuber and Taeuber, 1965, 1976; Cortese et al., 1976,
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1978; Winship, 1977, 1978; Massey, 1978; Falk et al., 1978; Elgie, 1979;
Kestenbaum, 1980; Merschrod, 1981). Nevertheless, D has been extended
to tables with more than two rows (Morgan and Norbury, 1981; Sakoda,
1981), and it is used in a variety of applications, if not always de-
fined and computed correctly (Hout, 1983, pp. 12-13).

In the following discussion, properties of D--and thus OVL--will
be investigated in two circumstances where the cell counts of the 2 X C
table are presumed to follow a specified probability law. In the first
instance, the two rows of the table are treated as independent realiza-
tions of two possibly identical multinomial distributions, with the row
totals fixed. The second situation to be examined is the multivariate
hypergeometric model proposed by Cortese et al. (1976) for a 2 X C table
with both row and column totals fixed. To indicate that the entries of
the table will now be treated as random variables, xij (i=1,2;
j=1,...,C) will denote the number of individuals in row i and column j

of the 2 X C contingency table.

The Multinomial Model of the 2 X C Table

Let us assume that the two rows of the 2 X C table are indepen-
dent realizations of two multinomial distributions, possibly identical.
Let N1 and NZ’ the two row totals, be fixed. Then the probability law

for either row of the table is given by

P(xil,...,x,
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i=1,2; j=1,...,C; (4.3)

subject to the condition

Il e~10
»
It

j

It can be shown that (Johnson and Kotz, 1969, pp. 51, 284)

E(xij) = Nipij , i=1,2; j=1,...,C; (4.4)
Var(xij) = Nipij(l - pij) , i=1,2; j=1,...,C; (4.5)
and
Cov(xij,xij,) = - Nipijpij' ’

i=1,2; j=1,...,C; i°=1,...,C; j#3i~ . (4.6)
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Because of the assumed row independence, we note
COV(le’xzj‘) =0, j=1,...,C; j°=1,...,C. 4.7)

This probability model for the 2 X C table arises naturally when
the two rows represent two independent simple random samples of sizes N1
and N2 classified into the C categories represented by the columns of
the table, with the unknown proportion of each population in each of the
C categories given by pij (i=1,2; j=1,...,C). The true value of D for

the two sampled populations, of course, is given by
- Pl - (4.8)

The index of dissimilarity may be calculated for any realization

of the table generated by (4.3); let us denote this statistic by D:

c
Y 4.l (4.9)
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where

X X, .

4 =21 _ 21 4a1,... . (4.10)
N1 N2

In the case of two independent simple random samples classified into the

~

C categories, D is the maximum~likelihood estimator of D given in
equation 4.8, and xij/Ni (i=1,2; j=1,...,C) is the maximum-likelihood

estimator of p...
1]

Expectation and Variance of D

~

By definition, the mean and variance of D are given by

5y <L 3 (4.11)
ED) == ) u. , 4.11

2 =1 ]

SO
var(D) = jzl"j + §¢§ %37 ; (4.12)

where uj, U;, and Gj., are defined as follows:
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w, = EC(Jd.]) , j=1l,...,C; (4.13)
3 3
02 = Var(ld.|) , j=1,...,C; (4.14)
J J
and
oi5c = Cov(ldjl,ldj,l) > 3=l,...,C5 3°=1,...,C; 3#3i”. (4.15)

Now from (4.3), the distribution of any xij is binomial, with

probability function

(Ni > %35 Ny = %y
P(x,.) = p.. (1l - p.,.) s
ij xij ij ij
0 < Xij < Ni; i=1,2; j=1,...,C. (4.16)

Furthermore, the joint distribution of any X3 and X; 5 (G #37) is

multinomial, with probability function
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X X N, - x - X,..
ij ij” i ij ij
N !. . J. - - p...
P(X ’ ) = e Pij pij (l piJ plj ) »
13’7437 1. 1. - - y
xij' xij" (Ni Xij xij')'

0<x,.+x,,. £N,; i=1,2;
ij ij i

‘ B " (4.17
i=l,...,C; 37=1,...,C; 3#i°. ‘

Because the rows are assumed to be independent, the joint
distribution of le and x2j is simply the product of the marginal
probabilities given by equation 4.16. Therefore the expectation of

Idj[ is

1 2 1%, X, .
) J =L - 2 eex, ) R(x,,) . (4.18)
1j 23 1 2

Because E(|dj[2) = E(d?), the variance of Idjl is given by

o§ = Var(dj) + [E(dj)]2 - [E(Idj|)]2 . (4.19)

From (4.10) and the assumption of row independence, it follows that
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p,. (1 -p) p,.(1-p ) 2
02 = 1 Ly 2 2y o, -, -2 (4.20)
J N N 1] 23 3
1 2
Finally, because ld.i-]d,,l = |d.d,.|, the covariance of |d.| and |d,.]
J J J 1] J J

(3 # j°) can be written as

X .+x_..<N X .+x ,.<N

1j 1 2] 2 lexlj' xlszj, 13°%25

o= LT L) : ‘
le- XIJ, 0 xzj—O x23,~0 N1 NlN2
X2'x20J
+ ==l lop(x x )P x| - wLu,L . (4.21)
N2 137713 237723 33
2

Substitution of equations 4.18, 4.20, and 4.21 into equations 4.11 and

4.12 yields the expectation and variance of D.

Normal Approximation to the Mean

and Variance of 5
The expressions for the expectation and variance of 6 derived
above require extensive computation for nontrivial C, Nl’ and N2.
Equation 4.21 in particular proves difficult, as there are C(C - 1)/2
unique covariance terms Ujj’ to be calculated, each involving quadruple
summation over N1 and NZ‘ Considerably simpler expressions for the

mean of D and, in a special case of some interest, for the variance of

D can be obtained by using a multivariate-normal approximation to the
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multinomial row distributions given by (4.3). That is, we assume the
distribution of xil""’xic (1=1,2) is C-variate normalbwith elements of
the mean vector given by equation 4.4 and elements of the variance-
covariance matrix given by equations 4.5 and 4.6. This immediately
implies that dl""’dc are distributed as C-variate normal and that
ldll,...,|dc| are distributed as C-variate folded-normal.

X,. X
We argue as follows. Each dj S RS, will be (approxi-

N, N,

mately) normally distributed with expectation €j,

=p.. = P.. » 4,22
i le Pyj ( )

and variance T%,

T§= J 4 =l U (4.23)

It follows from our assumption of the approximate C-variate normality of

and X,_ . ,...5X

X pseees XlC 21 that the dj are normally distributed and

2C
thus that the Idj| are distributed as the folded normal distribution.
The mean uj of each |dj| is obtained from Ej and T§ by equation 2.44.

Therefore the approximate expectation of D is provided by
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- G -£2 £,
E(D) = — z T,%exp L1+ £l - 20] —L . (4.24)

V2 j=1 J 212 J T,

J J

If D = 0, that is if plj = ij = pj (j=1,...,C), then
Ao N+ N,
E(D) f( ) 2[p (l—p )]2 (4.25)
ZWN N j=1

This latter expression is always positive, except in the pathological
case when one pj = 1 and all others are equal to zero, and therefore B
will always be biased above as an estimator of D when the two distribu-
tions from which the two rows are obtained are identical. Of course,
this bias of 6 can be made to decrease by increasing N1 and Nz' Because
the elements of the sum in equations 4.24 and 4.25 are positive, the
bias of 6 is directly related to C, the number of columns in the table,
and to the pij (i=1,2; j=1,...,C), the multinomial probabilities.

The properties of the folded-normal distribution, discussed in
Chapter Two, suggest that the behavior of 6 when D = 0 represents the
extreme case in regard to bias. Thus as the magnitude of Ej/rj
increases, uj will approach |£j| = lplj - p2j|, and so the expected
value of 6 will approach D as the magnitudes of all Ej/rj (3=1,...,0)

become large. Once again, then, the bias of D is apparently least when

the two distributions compared are sufficiently dissimilar, the sample
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sizes (row totals) N1 and N2 are sufficiently large, or some combination

of the two, provided, of course, that plj # p2j (j=1,...,C). It is also

evident that D may exhibit approximate normality if uj/Tj > 3 for all j
(3=1,...,C), since each ldjl becomes approximately normally distributed
whenever this may hold, given our assumption about the normality of

the x and x REERE I (Elandt, 1961).

1177 2% 21

An approximation to the variance of D is also possible when

~

D = 0. 1In this instance, gj =0 (j=1,...,C), and equation 4.23 can be

written as

2
£ = = pj(l - pj) . (4.26)

Because of the presumed row independence, the covariance of dj and dj‘

(3 # 3°) follows from (4.6) and (4.7):

N1+N2
———= p.P.. . 4.27
pJpJ ( )

NN,

T,.., = Cov(d,,d..) = -
33 (J’J)

From equation 4.26 and equation 4.27, pjj" the correlation between

dj and dj‘ (G #3°), is
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1

]

P.P. -

.= - [ J ] ] ) (4.28)
(1 - Pj)(l - pj,)

p..
J]

From equations 2.44 and 2.45, the approximate variance of Idj] is

given by

s N
sl

N, + Ny, /7 - 2
( )pj(l - pj) s (4.29)

J
NlN2 T

and from the absolute moments of the multivariate-normal distribution
with zero mean vector (Nabeya, 1951, 1952), the approximate covariance

of |djl and ldj,l (3 # 3j°) is given by

- 2 2 N\3 .1 ]
o,.. ==|(1 ~p5..)" +p,, .51 caa)|TLTL L. = uLu, L
I "’B pJJ ) pJJ n (pJJ ) 3] uJuJ
2(N1 + Nz) [ ( o ¢ ) L , )%
=———|p, (1 - pJp..(1 - p,. ]-[ 1 -p..)0°%+
NN J 3] h| ij
172
+ i (o, ) 1] (4.30)
...sin (p,..) - . .
pJJ pJJ

Substitution of (4.29) and (4.30) into equation 4.12 yields the fol-

lowing expression for the variance of D when D = O:
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N1 + N

~ 2 C
var (D) (m -2 - § pJ%) +

4WN1N2 j=1

1

+22C2 [p 1-p)p..(1 -p )]1?[(1-92 )2+
j#j’ j j j‘ j‘ Jj‘

-1
+ s s, i « s - 1 . 4.31
pss-sin (pJJ ) ] ( )

~

Inspection of this expression for the approximate variance of D reveals
that Var(D) is directly related to the common multinomial probabilities,

pj (j=1,...,C); is an increasing function of C; and decreases as N1 and

N2 increase.

Monte Carlo Imnvestigation of
Properties of B

To examine the sampling behavior of 6 (and thus of OGL defined
in the 2 X C table with independent multinomial row distributions), a
Monte Carlo simulation study involving 1000 Monte Carlo trials at each
of 48 design points was undertaken. The objectives of this study are
to determine how the bias and sampling variance of 6 vary with D, C, and
the sample sizes (row totals) N, and N,; to assess the utility of the
normal approximation to the expectation of 6; and to investigate the
possibility of approximating the sampling distribution of 6 with some
appropriately specified continuous probability law.

Four different values of D, 0.05, 0.25, 0.45, and 0.65, and three

values of C, 4, 7, and 11, were chosen so that the behavior of D could

be evaluated when the real association between the row distributions is
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high, moderate, and low; and where the number of columns in the table
remains small enough to permit simple assessment of the effect of the
size of the table (C = 4 and C = 7) and large enough to represent a
more realistic setting for the actual use of ﬁ (C = 11). Multinomial
probabilities for each row of the table were then fixed to obtain the
desired D at every value of C; see table 4.1. At each combination of D
and C, four sets of values for N1 and N2 are used to generate the Monte

Carlo distributions of D: N1 = N, = 100; N1 = 100, N2 = 200; N

o = 200,

1
N2 = 100; and N1 = N2 = 200. (Note that when the multinomial proba-
bilities assigned to the two rows are reverse images of each other, as
for D = 0.05 and C = 4, the sets of Monte Carlo trials with unequal
sample sizes are actually replications of the same design point.) All
sets of Monte Carlo trials were generated using the MATRIX procedure in
SAS (5AS, 1982).

The results of the Monte Carlo simulation study are summarized in
table 4.2. The Monte Carlo mean and variance of 6 are based on the
first and second moments computed from the 1000 realizations of 5 at
each combination of D, C, Nl’ and NZ' Direct inspection of the Monte
Carlo means in table 4.2 demonstrates that 6 is a biased estimator of D,
just as equation 4.24 suggests. The bias of 5, nearly without excep-
tion, declines as N1 and N2 increase, but it remains substantial when
D = 0.05. The bias of ﬁ measured in units of the Monte Carlo standard
error of B, the standardized bias in table 4.2, indicates not only that
the bias of 6 declines absolutely as N1 and N2 increase, but also that

this bias declines relative to the sampling error of D. The decline in

both the bias and the standardized bias is sometimes erratic,
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particularly when D is large and C is small. Specifically, as equations
4.24 and 4.25 indicate, the bias of 6 decreases as D increases and
increases with C. The largest bias of 5 observed in the Monte Carlo
study, absolutely and relatively, occurs when D = 0.05 and C = 11.

The predicted mean of 6 is also calculated for each set of Monte
Carlo trials, using equation 4.24 with the appropriate values of C, Nl’

N_, and the multinomial probabilities in table 4.1. These predicted

2?
expectations are presented in table 4.2 as well. To aid our assessment
of this approximation based on the normal and folded-normal distribu-
tions, the difference between the Monte Carlo and predicted means rela-
tive to the Monte Carlo standard error of B has been computed for every
entry in table 4.2. We can observe that, with occasional exceptions,
the normal approximation to the expected value of 6 accurately repre-
sents the means of ﬁ attained in the Monte Carlo study. Again with some
irregul;rities, the accuracy of the predicted mean increases as N1 and
N2 increase, and, as the signs of standardized differences attest, the
approimation for the mean of ﬁ does not appear to systematically under-
state or overstate the means observed for the simulated 6. Inter-
estingly, there also appears to be no clear relationship between the
aggreement of the predicted and Monte Carlo means and C, the number of
columns of the table, a somewhat encouraging result given the extremely
small probabilities assigned to the rows in several of the trials and
the usual warnings about the suitability of the normal approximation in
such circumstances.

Unfortunately, the attempts to model the Monte Carlo distribu-

~

tion of D must be assessed as failures. Like the situation observed
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in the normal distribution case when OVL is near unity (or D is near
zero), the distribution of the simulated 6 in the 2 X C table seems to
bunch when D is small. The tendency of the distribution of 6 to con-
centrate toward zero is not, however, as severe as that observed earlier
in the normal case. In addition, while the Monte Carlo distribution of
6 appears to become symmetric for D distant from zero, or when N1 and N2
are sufficiently large, normality is uniformly rejected. In none of the
48 sets of simulation trials does a Kolmogorov test for normality,

using the Stephans (1974) pseudocritical points, indicate that the
normal distribution serves as ar adequate probability model for the
sampling distribution of 6 2. the 2 X C table. Further attempts to fit
the folded-normal and standard-beta distributions to these simulation
data are also rejected by the Kolmogorov test. When C, Nl’ and N2 are
all small, the distribution of ﬁ becomes quite discrete, so no con-
tinuous probability model may suffice in such circumstances. Whether a
continuous distribution can represent the behavior of D when C, Nl’ and
N2 are large can only be addressed when N1 and N2 are much larger that
the values considered here.

The Multivariate Hypergeometric Model
of the 2 X C Table

Let us now assume that the column totals, nj (3=1,...,C), as well
as the row totals, N1 and N2, of the 2 X C table are fixed. Let
N1 + N2 = N. If the cell counts of the table xij (1=1,2; j=1,...,C) are
regarded as a realization of the random assignment of the N individuals

to the cells of the table subject only to the constraints imposed by the

fixed row and column totals, the distribution of the xij can be written
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in terms of the multivariate hypergeometric distribution of either

Xypoee oK o O Xo0senesX, (Bishop et al., 1975, pp. 450-52). Here

we shall work with the first row and its distribution, given by

C /n,
=1V

) = ————, 0 <k, , <J,:
(s,
Nl

C
i=l,...,C; ) x,, =N (4.32)

LACOPEERRTL Y

where Jj = min(nj,Nl). Then (Steyn, 1955; Bishop et al., 1975) it is

known that

n.N1
E(x, ) = —1—, 3j=1,...,C; (4.33)
J
N
n.N1 n, N - N1
Var(x, ) =121 - A —=) , 3=1,...,c; (4.34)
J N N/\N-1

and
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n.n.,N1 N - N1
Cov(xl,,xl.,) = -~ s
S N2 N -1
j=1,...,C3 §°=1,...,C; j#3i”". (4.35)

Let us define the random variable D for this model of the 2 X C

table in the following way:

- 1 C
D=5 I ldal, (4.36)
j=1 7
where here
X, n, - x_, Nx. ., - n.,N
dj - 11 _ 3 1 _ 13 S (4.37)
N, N, N, (N - N;)
Then
~ 1 C
ED) =5 ] u. , (4.38)
2 j=1 j
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and

s (4.39)

where uj, o?, and cjj’ are again defined as in (4.12), (4.13), and
(4.14), but dj (j=1,...,C) is defined as in (4.37).

Now it follows from the probability model in equation 4.32 that
the marginal distribution of any xlj (j=1,...,C) is hypergeometric,

with probability function

< J.; j=1,...,C; (4.40)

where Jj is defined as above. The joint distribution of le and le'

(3 # 3°) is bivariate hypergeometric, with probability function
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J,
j le, - n,N1
uy = ) | Plxy ) - (4.42)
le=0 NI(N - Nl)

Noting that E(dj) =0 (j=1,...,C), we obtain from equation 4.19 the

following expression for 0?, the variance of ]dj|:

n, (N -mn,)
62 = i _ 2. (4.43)
oy -Np@ -1

Finally, 0442 the covariance of Idjl and |dj,| (i # ) is given by
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JJ Jj' N, , =, N)(Nx,,. -n,.N)
- 1 i1 1
it ) ) 2 2 'P(le’x |-
X J=0 X j‘=0 NI(N - Nl)
- U .U.. . 4.44
Hi¥5 ( )

Substitution of these expressions for uj, 0?, and ojj‘ into equations

4.38 and 4.39 provides the mean and variance of D.

Normal Approximation to the Expectation
and Variance of B

The extensive computations required to calculate pj, 0?, and
ojj” particularly cjj" suggest that some simpler method be used to
find the mean and variance of 5. Cortese et al. (1976) adopt a binomial
approximation to the summation in (4.42) to calculate the expected value
of 5. Both jackknife (Taeuber and Taeuber, 1976) and bootstrap
(Kestenbaum, 1980) methods have been advocated for computing the
variance of 5. The procedure introduced here parallels the method used

earlier to derive the approximate mean of D in the multinomial case.

The KppoeresX are presumed to follow, at least approximately, a multi-

1C
variate normal distribution with mean vector specified by equation 4.33
and variance~-covariance matrix specified by equations 4.34 and 4.35. It
immediately follows from this assumption that the dj (j=1,...,C) are
distributed as C-variate normal and the [dj! (j=1,...,C) are distributed
as C-variate folded-normal. The relationship between the normal and
folded-normal distributions then permits the derivation of relatively

~

simple expressions for the approximate mean and variance of D.
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We begin by noting the expectiation of each dj (3j=1,...,C) is

.zero and that T;, the variance of each dj’ is

n,(N -n.)
12 = u! 8! ) (4.45)
J NN - ND® - 1)

Thus the properties of the folded-normal distribution require that uj,

the expected value of ]djl, be given by

1
3

L 2n, (N - n,)
(%>fr = ] ] } : (4.46)
M (N - N)® - 1)

=
sfle

The variance of ldjl, 0?, is simply

-2 (m = 2)n,(N - n,)
12 = 1 1 (4.47)
T an(N - Nl)(N -1

From equation 4.35, Tjj,, the covariance of dj and dj’ (G#3i7), is



150

- n.n, .
T,.. = J ] , (4.48)
33 Ny (N - N - 1)

and therefore the correlation between dj and dj” pjj" is given by

1
73

n.n, .
... = - J J . (4.49)
3] GO W

Hence by (4.30), the approximate covariance of Idjl and Idj,l G #3i

is here
L
. 2[n.(N - n-)n.’(N - n.z)]z 1
o,,. = —L 1] . [(1 -2, )% +
33 ™, (N - NN - 1) JJ
+p,..sin (p,..) 1] (4.50)
s 8 » 1n > 8 -~ - A4 .
33 ®i3

Combining these expressions for approximations to uj, o§, and ojj" we

obtain from (4.38) and (4.39) the following expressions for the

-~

approximate expectation and variance of D:
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.., Cf n®-n) 7?
E(D)?_—Z[ ] N
/5173'=1N1(N-N1)(N—1)
N1 K C |n. n, s
TR BT R

N =] N

and

. mT-2 C n,(N - n,)
Var (D) % %- d u! +

T 3=l Ny(N - NN - 1)

C [nj(N - nj)nj,(N - nj,)]/2

+

L2
m

[(l - p2..)7
i#i7 N (N - N)® - 1) H

-1
+ p,..sin ces) — 1]
Py (oJJ )

-1

N N
- [lm(N 1) — (1 -—1>} |
N N
C |n, n,\n,. n,. 1
+2) E[-l(l - —l>—3—<1 - —J—>]-[(1 - 2,07+
3#31N N/ N N 33

-1
+ p...sin L) - 1] . 4.52
pJJ (DJJ ) ( )

Clearly, both the expectation and variance of D appear to be functions

of C, N, N;/N, and nj/N (j=1,...,C).

In the event that n, = ...=mn,=n-= N/C, the expressions for
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the approximate expectation and variance of D simplify even further:

. . N, N\
E(D) = (C - 1) 2|2n(n - 1) —(1 - —) , (4.53)
N

and

- c-1

1 -1f- 1
Var (D) T + 2{[C(C - 2)]? - sin ( ) - C%) X
c c-1

N, N, ~
x 47N -1) —{1 - ——) . (4.54)
N N

Thus, more obviously than in the case of unequal column totals, we
observe that E(D) increases with C = N/n, decreases as N increases, and
is a quadratic function of N /N. While Var(D) decreases as N increases,

its dependence on C is more complex. We note, however, that as C = N/n

becomes large,

. N, N\
limit[var(®)] = [4(N - 1) —|1 - — .

C > o
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Adequacy of the Normal Approximation to
the Mean and Variance of 5

Because the probability model for 5, the index of dissimilarity
in the 2 X C multivariate hypergeometric table, is so restrictive, we
shall limit further consideration of the properties of 5 to a comparison
of the approximate expectation and variance of 5 derived above to some
Monte Carlo results in Kestenbaum (1980). Using the multivariate hyper-
geometric model, Kestenbaum generated simulated distributions for B in
the 2 X C table with equal column totals for several values of C, N, and
NI/N, and he computed the Monte Carlo mean and variance of the 5 so
obtained. The results Kestenbaum reports for Nl/N greater than or equal
to 0.05 with N = 100 and N = 1000 are reproduced in table 4.3 and table
4.4, (Values of NI/N less than 0.05 for these values of N seem patently
unrealistic and are not considered here.) The values of C are 2, 4, and
10 for N = 100 and 10, 20, 40, and 100 for N = 1000. The Monte Carlo
means and variances of 6 in table 4.3 are computed from 1000 Monte Carlo
trials at each combination of C and Nl/N;vin table 4.4 the Monte Carlo
means and variances are based on only 100 Monte Carlo trials.
(Kestenbaum also reports Monte Carlo moments of 5 when N = 10000, but
these are computed from only 10 Monte Carlo trials.)

The approximate mean and variance of B have been calculated from
equations 4.53 and 4.54 using the appropriate values of C, N, and NllN;
these are presented in tables 4.3 and 4.4 as the predicted mean and the
predicted variance of B. Because Kestenbaum reports so few significant
figures, the comparison of the predicted expectations and variances to

his Monte Carlo results will necessarily be somewhat superficial.

Nevertheless, the standardized difference--the Monte Carlo mean minus
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the predicted mean divided by the Monte Carlo standard error--indicates
that the normal approximation to the mean of 5 adequately represents
the mean of the simulated 5 when NI/N is sufficiently large or C is
sufficiently small. We can see that the predicted mean appears to lie
closer to the Monte Carlo mean when N = 1000 (table 4.4) than when

N = 100 (table 4.3). There is also some evidence in table 4.3 (C = 10)
that when C is large relative to N, or n is small relative to N, the
predicted mean overstates the expectation of 5 observed in the Monte
Carlo trials.

A result of perhaps more interest, since Cortese et al. (1976)
have apparently developed an adequate approximation method for the
expected value of 5, is the comparison of the Monte Carlo variance given
by Kestenbaum to that predicted by equation 4.54. As the ratio of these
variances (Monte Carlo to predicted variance) demonstates, the predicted
Variancg appears to overstate the Monte Carlo variance of 5 for small
NI/N but is accurate, at least as far as Kestenbaum's results permit,
when Nl/N is sufficiently large, where the N1/N required increases as
C increases. This, of course, is only to be expected, as the approxi-
mation formulae of equation 4.53 and equation 4.54 depend on the
adequacy of the normal approximation to the multivariate hypergeometric
distribution and thus, allowing for the usual requirements of such

approximations, on C, since C is a function of the column totals of the

2 X C table and to the expected values of the XppseeesX oo

Discussion
The behavior of D and D as measures of association in the 2 X C

A

contingency table indicate that the corresponding estimators of OVL, OVL
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and OGL, display the same properties as the estimators of the overlap-
ping coefficient between two continuous distributions. The bias of ﬁ
and 5 demontrates that in the 2 X C table, estimators of OVL will
exhibit downward bias and this bias is related to C, Nl’ Nz, and the
multinomial row probabilities in the multinomial case and to C, N, N,
and the column totals nj (j=1,...,C) in the multivariate hypergeometric
case. The sampling variance of these estimators of OVL will be iden-
tical to the variance of 5 and 5, so the relationships between the
variance of the index of dissimilarity and the parameters of the assumed
distribution of the 2 X C table obviously hold for the variance of the
estimator of OVL under these probability models.

0f the two cases examined here, the multinomial model of the
2 X C table appears to be more relevant to our general exploration of
the properties of OVL as a measure of agreement between distributions,
for it corresponds to the comparison of two distributions through the
arrangement of two independent samples from these distributions in the
2 X C table format. Once again, the evident bias of the estimator of
the overlapping coefficient may be the most important property of'OGL
uncovered here. As in the case of the estimator of OVL between two
normal distributions and the case of the spline-based estimator of OVL
between two unspecified distributions, the closer the true overlap to
unity, the greater the downward bias of OGL. The fact that the mean,
and in one circumstance the variance, of 6 and OGL can be closely
approximated may prove useful in some applications. Several attempts

to estimate the variance of OVL (and D) in the multinomial case by the

jackknife method (Efron, 1982, chap. 3) demonstate that the bootstrap
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provides a better nonparametric estimate of the variance of OVL.
Apparently because of the discrete divisions of the 2 X C table, the
jackknife substantially understated the Monte Carlo variance in every
case examined. The bootstrap estimator of the variance of OGL in the
2 X C table is illustrated in the example below.

The primary importance of the multivariate hypergeometric model
of the 2 X C table is the role is has assumed in the sociological and
demographic literature. Since a part of the debate over the proper
interpretation of the index of dissimilarity centers on its expectation
and variance under this probability model, the approximate moments
derived for 5 may be helpful. First, the agreement between the approxi-
mate moments and the Monte Carlo moments reported by Kestenbaum suggests
that in realistic applications, where N, Nl’ and nj (j=1,...,C) are
large, the approximate moments will adequately represent the behavior of
the random variable 5 under the hypergeometric model, in so far as the
mean ana variance of 5 describe this behavior. The fact that unequal
column totals can be handled as easily as equal column totals in the
approximation formulae indicates that these results have direct prac-
tical application. Second, the equations for the approximate mean and

variance of D clearly demonstrate the dependence of the behavior of D

on the column totals Ny5...50. 88 well as C, N, and Nl’ an obvious

c
feature which is sometimes overlooked when the multivariate hypergeo-
metric model is introduced.

Whether the hypergeometric model is useful in the situations for
which it is advocated is another question. It is obvious from the

~

nonnormal distribution of D in the multinomial case that the
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distribution of D is certainly nonnormal as well, and thus the proposal
of Cortese et al. (1976) that standardizing 5 with respect to its mean
and standard error does not seem compelling as an argument for over-
coming the perceived limitations of 5 itself. (In this regard, see
also Cohen et al., 1976; Massey, 1978; Cortese et al., 1978; Falk et
al., 1978.) Winship's objection to 6 is that it is not sufficiently
sensitive, since realizations of the 2 X C table which seem to indicate
differing degrees of equity between the row distributions may yield the
same value of 5 (Winship, 1978). However, if we are willing to assume
the multivariate hypergeometric model for the 2 X C table, an alter-
native to the use of 5 (or any such measure of association) is the
natural extension of Fisher's "exact" treatment of independence in the
2 X 2 table with fixed margins (Kendall and Stuart, 1979, pp. 580-83).

That is, we simply compute the probability of obtaining the realization

of the 2 X C table actually observed or one more extreme, using the

probability function in equation 4.32 or some approximation to it
(Freeman and Haltom, 1951). The probability obtained has a natural

interpretation, and it may prove more useful that D wherever the

multivariate hypergeometric model is reasonable.

An Example

As an example of the use of OVL in the 2 X C contingency table,
we shall again use the sample of Alabama farm operators from the 1850
manuscript census described in Chapter Two. In the analysis of this
sample subsequent to Inman (1981), a difference in the age distributions
of slaveholders (N = 251) and nonslaveholders (N = 350) became apparent.

Here the difference in these age distributions is examined by comparing
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the ages of the slaveholders and the nonslaveholders in the sample,
using the standard age categories favored by demographers; see table
4.5, While the majority of the nonslaveholders in the sample were in
their twenties and thirties in 1850, the bulk of the slavéholders in the
sample are spread in age from the late twenties through the early
fifties. The value of the chisquare statistic computed from table 4.5
is 26.738, which with 11 degrees of freedom is statistically significant
(p = 0.0029).

The overlap between the age distributions of these two classes of
Alabama farmers estimated from this table is OGL = 0.832043. To obtain
a bootstrap estimate of the standard error of this estimated overlap,
the RANTBL function in SAS (SAS, 1982) was used to generate 500 boot-

strap OVL from table 4.5. Using these OVL and equations 3.19 and 3.20
@

X - R
we compute OVL = 0,811419 and Var5OO(OVL) = 0.00114277; thus the

bootstrap standard error for OGL in this example is 0.033805. From the
bootstrap distribution function constructed from the 500 OGL , a 90%
confidence interval for OVL by the percentile method is (0.753773,
0.864200); see figure 4.1. The 90% bias-corrected confidence interval
for the true overlap between the age distributions of Alabama slave-
holding and nonslaveholding farmers in 1850 is (0.766090,0.871998); see
figure 4.2. The computation of OGL, the generation of the 500 OGL*,
the calculation of the bootstrap variance of OGL, and the construction
of the bootstrap distribution function in SAS required less than one
minute of CPU time on an IBM 4381-2.

Once more, the conclusion we should reach in this example is not

that the age distributions are the same; we have already determined that
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the distributions differ. Instead, OVL provides an indication of the
importance of the difference between the two age distributions. In this
example, O&L actually represents the common area under the two age
distributions of interest, where these distributions are estimated by
the relative frequency histograms summarized in table 4.5. Inspecting
these histograms, shown in figure 4.3, visually reinforces the message
of O&L: The age distributions of the farmers who did and did not own
slave property in 1850 are different; this we should expect, given the
general association of wealth and age in the nineteenth-century United
States. Too narrow a focus on the difference in the ages of slave-

holding and nonslaveholding Alabama farmers, however, misses the

considerable similarity of the two age distributions.
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Chapter Five
CONCLUSION

The implications of this study of the behavior of the overlapping
coefficient can be summarized briefly. Although the sample estimators
of OVL investigated in the three distributional settings investigated
here are consistent estimators of the true overlap between the distri-
butions from which the samples are obtained, the downward bias of these
estimators and the relationship of this bias to the true overlap suggest
that sample estimators of OVL are not useful as test statistics for the
equality of the two distributions being compared. Since in each of the
distributional settings examined here there are accepted statistical
techniqﬁes for testing the equality of the distributions of interest,
this result should not necessarily disturb us. Likelihood ratio tests
of the usual tests for the equality of means and variances of two
normal populations, Kolomogorov-like tests for the equality of two
unspecified distributions using the sample distribution functions,
and various tests related to the chisquare statistic speak directly to
the problem of whether two unknown distributions are identical in the
normal distribution case, the nonparametric case, and the 2 X C contin-
gency table case respectively. What OVL can provide is some measure of
the meaningfulness of the differences that are detected by these

statistical techniques. Thus OVL offers one method of exploring the
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practical significance of differences which appear to be statistically
significant.

As a sample statistic, OVL suffers not only from its bias but
from the difficulties associated with estimating its standard error as
well. The situation where estimates of the variance of the sample
overlapping coefficient appear reliable, the 2 X C multivariate hyper-
geometric table case, is so restricted that it is unlikely to be of
major importance. In the normal distribution case, the estimators of
the sampling variance derived by statistical differentials are likely to
prove reliable in limited circumstances also. Therefore the bootstrap
method of obtaining the estimated standard error of the estimators of
OVL will undoubtedly serve in practice as the most effective procedure
for both ascertaining the standard error of the estimator of OVL and
constructing confidence intervals for OVL between the distributions of
interest.

Why, then, use OVL at all? 1In the case of two normal distribu-
tions with equal variances, a components of variance approach addresses
the same issue, and even the simple characterization of the magnitude
of the difference between population means in units of the population
standard deviation may suffice (Cohen, 1977). In the case of the 2 X C
table, measures of association exist in bountiful supply, and OVL méy
be no more attractive than many of others.

The advantage of OVL is two-fold. First, it offers a common
approach for the measurement of the agreement between two distributions
in any distributional setting. In this sense, then, OVL is less

restrictive than other procedures keyed directly to distributional
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assumptions that may or may not prove warranted in data analysis.
Second, OVL is based on a simple, easily comprehended concept of the
association between distributions. While the simplicity of OVL as the
ammount of probability mass common to both distributions is appealing

in its own right, OVL also has another interpretation based on the
classification of individuals into two populations. Given the two
distributions representing the populations of interest, OVL represents
the sum of the conditional probabilities of misclassifying an individual
into the two populations, where the classification rule is the assign-
ment of an individual at any level of the characteristic of concern

to the population eith the greater probability at that level. Thus OVL
can be regarded as an indicator of the difference between individuals

in the two populations or distributions of interest. Whether or not

OVL proves useful in any given setting, then, depends on the meaning OVL
has in the context of the specific problem and the value of its general
approach. The fact that the problem it addresses, the meaningfulness

of differences between the two distributions of interest, is raised may
be more important that whether the overlapping coefficient is adopted

as a possible solution.



APPENDIX

FORTRAN SUBROUTINES

The following FORTRAN subroutines were used in the Monte Carlo
simulation studies of the overlapping coefficient described in Chapter
Two and Chapter Three. They are presented here as documentation, not
beacause the code is particularly innovative. Some of the subroutines
are called from others; in several of the subroutines, FORTRAN routines
available from de Boor (1978), Hanson (1979), and IMSL (1982) are
called. Calls to such subroutines are noted in the prefaces to each of

the following subroutines.

Subroutine BSPLDF

The object of subroutine BSPLDF is to obtain by weighted least
squares the quadratic spline estimate of an unknown distribution func-
tion from a sample distribution function. The Hanson (1979) routine
FC is used to obtain the coefficients of the quadratic B-spline.

Called subroutines: BSPLPP (de Boor), FC (Hanson), NEWNOT (de

Boor), RSSQDF, and XSETF (Hanson).
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SUBROUTINE BSPLDF(NDATA,XDATA,YDATA,SDDATA,NORD, BKLOW , BKUP, IPASS,N
1BKPT, BKPT ,NCOEFF , COEFF ,RSSQ,MODE )

SUBROUTINE BSPLDF CALCULATES THE BREAKPOINTS AND COEFFICIENTS OF

A B-SPLINE ESTIMATED (CUMULATIVE) DISTRIBUTION FUNCTION FOR THE
EMPIRICAL CDF CONTAINED IN THE ARRAYS XDATA, YDATA. NDATA IS THE
NUMBER OF DISTINCT POINTS IN THE EMPIRICAL CDF. XDATA CONTAINS
THE NDATA POINTS OF THE VARIABLE X. YDATA CONTAINS THE ESTIMATED
VALUE OF THE DISTRIBUTION FUNCTION AT THOSE POINTS. SDDATA CON-
TAINS THE ESTIMATES OF THE STANDARD ERROR OF THE CDF AT EACH POINT
IN XDATA. NORD IS THE ORDER OF THE B-SPLINE (NORD=ORDER+1).

NINT IS THE NUMBER OF INTERVALS -- DECILES (NINT=10), FOR EXAMPLE
-- USED TO OBTAIN THE BREAKPOINTS OF THE B-SPLINE. BKUP IS A
POINT TO THE RIGHT OF ALL POINTS IN XDATA BY WHICH THE
DISTRIBUTION FUNCTION IS ASSUMED TO EQUAL ONE; BLOW IS A SIMILAR
POINT TO THE LEFT OF ALL POINTS IN XDATA AT WHICH THE DISTRIBUTION
FUNCTION IS ASSUMED TO BE EQUAL TO ZERO. THE ROUTINE BSPLDF()
RETURNS THE NUMBER OF BREAKPOINTS (INCLUDING THOSE CREATED TO THE
LEFT AND RIGHT OF THE POINTS BKLOW AND BKUP TO FIT THE B-SPLINE),
THE ARRAY BKPT CONTAINING THE BREAKPOINT VALUES, AND COEFF, THE
ARRAY OF B-SPLINE COEFFICIENTS. NOTE THAT NBKPT=NINT+2*NORD-1,
AND THAT THE NUMBER OF COEFFICIENTS IS NCOEFF=NBKPT-NORD.

MODE IS THE HANSON DIAGNOSTIC VARIABLE.

NOTE THE NUMBER OF INTERVALS USED FOR CONSTRUCTION OF THE B-SPLINE
DISTRIBUTION FUNCTION (AND DENSITY), NINT, IS BASED ON STURGES'S
RULE FOR THE NUMBER OF INTERVALS IN A HISTOGRAM. SEE H. A.
STURGES, JASA 21 (1926): 65-66.

AFTER THE ROUTINE FC() OBTAINS INITIAL ESTIMATES OF THE B-SPLINE

USING THE BREAKPOINTS GENERATED FROM THE EMPIRICAL CDF QUANTILES,

THE DE BOOR ROUTINE NEWNOT() IS USED TO OBTAIN A NEW SET OF BREAK-
POINTS AND THE B-SPLINE IS REESTIMATED . THE VARIABLE IPASS SETS

THE NUMBER OF PASSES THROUGH THE PROCEDURE NEWNOT().

DIMENSION XDATA(NDATA),YDATA(NDATA),SDDATA (NDATA)

DIMENSION BKPT(40),XCONST(50),YCONST(50),NDERIV(50)

DIMENSION W(10000),IW(250)

DIMENSION COEFF(50)

DIMENSION SCRTCH(20,20),PPCOEF(20,50),COEFG(20,50),PPBKPT(40)
DIMENSION BKNEW(40)

IKNOT=0
NINT=IFIX(1.0+3.3*ALOG10(FLOAT(NDATA)))
NINTP1=NINT+1

NINTL1=NINT-1

NBKPT=NINT+2*NORD-1

NCOEFF=NBKPT-NORD

GET THE INITIAL BREAKPOINTS FOR THE B-SPLINE ROUTNIE FC().

BKPT (NORD )=BKLOW
BKPT (NORD+NINT)=BKUP
=0
FNINT=FLOAT(NINT)

DO 360 J=1,NINTL1
F=FLOAT(J)/FNINT
K=K+1

D=YDATA(K)-F
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IF (D) 320,340,330
DLAST=D

GO TO 310
DCOMP=ABS (D) -ABS (DLAST)
IF (DCOMP) 340,350,350
BKPT (NORD+J)=XDATA (K)
GO TO 360

BKPT (NORD+J)=XDATA (K-1)
CONTINUE

EXTERIOR BREAKPOINTS SET EQUAL TO INTERVAL (BKLOW,BKUP) ENDPOINTS.

NORDL1=NORD-1
DO 380 J=1,NORDL1
BKPT (J)=BKLOW
BKPT (NORD+NINT+J)=BKUP
CONTINUE

WRITE CONSTRAINTS FOR B-SPLINE ROUTINE.
NCONST=NINT+3
CONSTRAIN B-SPLINE TO BE ZERO AT LEFT-MOST BREAKPOINT.

XCONST (1)=BKPT(NORD)
YCONST(1)=0.0
NDERIV(1)=2

CONSTRAIN FIRST DERIVATIVE TO BE ZERO AT LEFT-MOST BREAKPOINT.

XCONST(2)=BKPT(NORD)
YCONST(2)=0.0
NDERIV(2)=6

CONSTRAIN FIRST DERIVATIVE TO BE NONNEGATIVE AT ALL INTERIOR
BREAKPOINTS.

DO 400 I=1,NINTL1
J=I+2

XCONST (J)=BKPT(NORD+I)
YCONST(J)=0.0
NDERIV(J)=5

CONTINUE

CONSTRAIN B-SPLINE TO BE ONE AT RIGHT-MOST BREAKPOINT.
XCONST (NINT+2 )=BKPT (NORD+NINT)

YCONST (NINT+2)=1.0

NDERIV(NINT+2)=2

CONSTRAIN THE FIRST DERIVATIVE TO BE ZERO AT RIGHT-MOST
BREAKPOINT.

XCONST (NINT+3)=BKPT (NORD+NINT)
YCONST(NINT+3)=0.0
NDERIV(NINT+3)=6

CALL HANSON ROUTINE FC() TO GET B-SPLINE COEFFICIENTS.
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IW(1)=10000

IW(2)=250

MODE=2

CALL XSETF(2)

CALL FC(NDATA,XDATA,YDATA,SDDATA,NORD,NBKPT,BKPT,NCONST,XCONST, YCO
INST,NDERIV,MODE,COEFF,W, IW)

BEGIN ITERATED CONSTRUCTION OF NEW KNOT SEQUENCES.

IF (IKNOT .GE. IPASS) GO TO 440
IKNOT=IKNOT+1

GET PP-REPRESENTATION OF B-SPLINE FOR NEWNOT PROCEDURE.

SCRTCH IS WORK SPACE DIMENSIONED (NORD,NORD). NOTE OUTPUT OF
BSPLPP(). ARRAY PPBKPT CONTAINS THE PP-REP. BREAKPOINTS. ARRAY
PPCOEF CONTAINS THE PP-REP. COEFFICIENTS. L IS NINT, THE NUMBER
OF SUBINTERVALS INTO WHICH THE INTERVAL (BKLOW,BKUP) IS DIVIDED.
FOR DOCUMENTATION OF BSPLPP() SEE DE BOOR, PP. 140-41.

CALL BSPLPP (BKPT,COEFF ,NCOEFF,NORD,SCRTCH, PPBKPT, PPCOEF,L)
GET NEW SEQUENCE OF INTERIOR KNOTS.

NOTE OUTPUT OF NEWNOT(). ARRAY BKNEW CONTAINS (NINT+1) NEW
BREAKPOINTS, INCLUDING BKLOW AND BKUP. BKNEW(1)=BKPT (NORD)=BKLOW,
AND BKNEW (NINT+1)=BKPT (NORD+NINT)=BKUP. ARRAY COEFG CON-

TAINS THE COEFFICIENT PART OF THE PP-REPR. BKPT, COEFG, L, 2 FOR
THE MONOTONE P.LINEAR FUNCTION G WRTO WHICH BKNEW WILL BE
EQUIDISTRIBUTED.

FOR DOCUMENTATION OF NEWNOT() SEE DE BOOR, PP.184-86.

CALL NEWNOT (PPBKPT,PPCOEF,L,NORD, BKNEW,NINT, COEFG)
CONSTRUCT NEW SEQUENCE OF BREAKPOINTS FOR B-SPLINE ROUTINE FC().

DO 420 I=1,NINTP1
J=NORD+I-1

BKPT (J)=BKNEW(I)
CONTINUE

GO TO 360
CONTINUE

CALCULATE RESIDUAL SUM OF SQUARES FOR B-SPLINE DF.
CALL RSSQDF (NDATA,XDATA,YDATA,NORD,BKPT ,NBKPT,COEFF ,NCOEFF,RSSQ)

RETURN
END
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Real Function DNORML

The purpose of the real function DNORML is to evaluate the
standard normal density function at the point x.

Called subroutines: none.
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REAL FUNCTION DNORML(X)
EVALUATE THE STANDARD NORMAL DENSITY AT X.

IF (ABS(X) .GT. 13.0) GO TO 10
DNORML=EXP (-X*#2/2.0)/SQRT(6.2831853)
GO TO 20

DNORML=0. 0

CONTINUE

RETURN

END
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Subroutine EMPCDF

The purpose of the subroutine EMPCDF is to construct the empiri-
cal distribution function from sample data.

Called subroutines: VSRTA (IMSL).
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SUBROUTINE EMPCDF (XWORK ,NWORK ,NCDF ,XCDF,YCDF,SDCDF)

SUBROUTINE EMPCDF CALCULATES THE POINTS OF AN EMIRICAL CUMULATIVE
DISTRIBUTION FUNCTION FOR THE DATA ARRAY XWORK. NWORK IS NUMBER
OF DATA POINTS IN THE ARRAY XWORK. THE SUBROUTINE RETURNS NCDF,
THE NUMBER OF DISTINCT POINTS OF THE EMPIRICAL CDF; XCDF, THE
SORTED XDATA POINTS OF THE EMPIRICAL CDF; YCDF, THE ESTIMATED CDF
AT THE POINTS XCDF (USING THE DIVISOR (NWORK+1)); AND SDCDF, THE
ESTIMATED STANDARD ERROR OF THE EMPIRICAL CDF AT EACH POINT

IN XCDF. THE MAXIMUM LENGTH OF THE ARRAYS XCDF, YCDF, AND SDCDF
IS NWORK. EMPCDF() USES THE IMSL ROUTINE VSRTA TO SORT THE DATA
IN XWORK.

DIMENSION XWORK (NWORK) ,XCDF (NWORK) , YCDF (NWORK) , SDCDF (NWORK)
CALL VSRTA(XWORK,NWORK)

NDIV=NWORK+1

FNWORK=FLOAT (NWORK)

FNDIV=FLOAT (NDIV)

NDUP=0

DO 180 I=2,NWORK

J=I-1

K=J-NDUP

IF (XWORK(I) .EQ. XWORK(J)) GO TO 100

XCDF (K )=XWORK (J)

YCDF (K)=FLOAT (J) /FNDIV

SDCDF (K)=SQRT (YCDF (K)* (1.0-YCDF (K) )*FNWORK/FNDIV##2)
GO TO 120

NDUP=NDUP+1

IF (I-NWORK) 180,160,140

STOP

NCDF=NWORK-NDUP

XCDF (NCDF ) =XWORK (NWORK)

YCDF (NCDF ) =FNWORK/FNDIV

SDCDF (NCDF )=SQRT (YCDF (NCDF )# (1. 0-YCDF (NCDF ) )*FNWORK/FNDIV++2)
CONTINUE

RETURN

END
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Subroutine NSTAT

The soubroutine NSTAT computes the maximum-likelihood estimates
using the West algorithm (Chan and Lewis, 1979) of the mean and variance
of a normal population from a simple random sample.

Called subroutines: none.
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SUBROUTINE NSTAT(X,N,U,V)

CALCULATE MAXIMUM LIKELIHOOD ESTIMATES OF THE NORMAL MEAN AND
VARIANCE FOR SAMPLE ARRAY X OF SIZE N USING WEST'S ALGORITHM. U
IS THE SAMPLE MEAN, V IS THE SAMPLE VARIANCE. SEE TONY F. CHAN
AND JOHN GREGG LEWIS, COMMUNICATIONS OF THE ACM 22 (SEPT. 1979):
528.

DIMENSION X(N)
SUMM=X(1)

SUMT=0.0

DO 10 I=2,N
XDIF=X(I)-SUMM
XDIFIX=XDIF/FLOAT(I)
SUMM=SUMM+XDIFIX
SUMT=SUMT+FLOAT(I-1)*XDIF*XDIFIX
CONTINUE

U=SUMM
V=SUMT/FLOAT(N)
RETURN

END
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Subroutine OVLEQ

The subroutine OVLEQ computes OVL and the estimated (approximate)
variance of OVL for two normal distributions with equal population
variances.

Called subroutines: DNORML, MDNOR (IMSL).
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SUBROUTINE OVLEQ(NONE,U1,V1,NTWO,U2,V2,IWRITE,OVL,VOVL)

CALCULATE THE OVERLAPPING COEFFICIENT AND THE VARIANCE OF ITS
SAMPLE ESTIMATOR FOR THE CASE OF SAMPLING FROM TWO NORMAL POPULA-
TIONS WITH EQUAL VARIANCES. THE SUBROUTINE ASSUMES SAMPLE
ESTIMATES OF THE MEANS AND VARIANCES ARE INPUTTED FOR THE VALUES
OF Ul AND U2, THE MEANS OF THE TWO POPULATIONS, AND V1 AND V2, THE
SAMPLE ESTIMATES OF THE COMMON VARIANCE, AND CALCULATES A POOLED
ESTIMATE OF THE COMMON VARIANCE FROM V1 AND V2. IF THIS VARIANCE
IS KNOWN, THEN THIS VALUE SHOULD BE USED FOR BOTH V1 AND V2 IN THE
CALL TO THE ROUTINE.

NOTE: IMSL ROUTINE MDNOR() IS USED TO EVALUATE THE STANDARD NORMAL
DISTRIBUTION FUNCTION.

CALCULATE THE POOLED ESTIMATE OF THE COMMON POPULATION VARIANCE.

FNONE=FLOAT (NONE)

FNTWO=FLOAT (NTWO)

FNSUM=FLOAT (NONE+NTWO)
VPOOL~=(FNONE*V1+FNTWO*V2) /FNSUM

CALCULATE OVL.

SIGMA=SQRT (VPOOL)
UDIFF=U1-U2
DELL=UDIFF/SIGMA
Y1=-ABS(DELL/2.0)
CALL MDNOR(Y1,P1)
OVL=2.0*P1

CALCULATE THE VARIANCE OF THE SAMPLE ESTIMATOR OF OVL.
FIND THE EXPECTATION OF ABS(XBAR1-XBAR2).

FACTOR=SQRT (FNSUM/ (FNONE*FNTWO))

DELFAC=DELL/FACTOR

Y2=-DELFAC

CALL MDNOR(Y2,P2)
EXPECT=SQRT(0.6366198)*SIGMA*FACTOR*EXP(-DELFAC**2/2.0)+UDIFF#*(1.0
1 -2.0%P2)

COMPUTE VARIANCE OF OVLHAT.

VOVL=(DNORML (Y1) )**2% (FACTOR**2+DELL**2%*(1.0+0. 5% (FNSUM-2.0) /FNSUM
1%%2) -EXPECT*%*2 /VPOOL)

IF (IWRITE .EQ. 0) GO TO 50

WRITE (6,40) OVL

FORMAT (1HO, 'THE OVERLAPPING COEFFICIENT:',F20.8)

WRITE(6,41) EXPECT

FORMAT (1HO, 'EXPECTED VALUE OF THE ABSOLUTE DIFFERENCE IN SAMPLE ME
1ANS: ' ,F20.8)

WRITE (6,44) VOVL

FORMAT (1HO, 'THE APPROXIMATE VARIANCE OF THE SAMPLE OVERLAPPING COE
1FFICIENT:',F20.12)

CONTINUE

RETURN

END
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Subroutine OVLNEQ

The subroutine OVLNEQ computes OVL and its estimated (approxi-
mate) variance for two normal distributions with unequal population
variances.

Called subroutines: DNORML, MDNOR (IMSL).
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SUBROUTINE OVLNEQ(N10,U10,V10,N20,U20,V20,IWRITE,OVL,VOVL)

CALCULATE THE (APPROXIMATE) VARIANCE OF OVLHAT, THE MAXIMUM
LIKELIHOOD ESTIMATE OF THE TRUE OVERLAP BETWEEN TWO NORMAL
DISTRIBUTIONS WITH UNEQUAL VARIANCES, USING AN APPROXIMATION
PROCEDURE BASED ON THE TECHNIQUE OF STATISTICAL DIFFERENTIALS.

IF IWRITE IS SET EQUAL TO ZERO, NO OUTPUT WILL BE PRINTED, UNLESS
V1 AND V2 ARE EQUAL. 1IN THIS CASE A WARNING MESSAGE IS PRINTED
AND THE OUTPUTTED VALUES FOR OVL AND VOVL ARE BOTH SET TO ZERO.

NOTE: V2 IS ASSUMED TO BE THE LARGER OF THE TWO VARIANCES, V1 AND
VZ. Ul AND U2 ARE THE MEANS ASSOCIATED WITH V1 AND V2
RESPECTIVELY. IF V1 IS LARGER THAN V2, THE SAMPLE SIZES, MEANS,
AND VARIANCES ARE INTERCHANGED SO THAT V2 1S5 THE LARGER VARIANCE.

NOTE: IMSL ROUTINE MDNOR() IS USED TO EVALUATE THE STANDARD
NORMAL DISTRIBUTION FUNCTION.

COMPARE VARIANCES.

IF (V20-V10) 10,997,20
NONE=N20
NTWO=N10
U1l=020
U2=U010
V1=v20
V2=vV10
GO TO 30
NONE=N10
NTWO=N20
U1=U10
U2=020
V1i=V10
V2=v20
CONTINUE

CALCULATE CROSSING POINTS. X1 IS LOWER CROSSING POINT, X2 IS THE
UPPER CROSSING POINT.

SD1=SQRT (V1)

S$D2=8QRT(V2)

5D18D2=SD1*SD2

UDIFF=U1-0U2

VDIFF=V2-V1

TERM1=U1#*V2-U2%V1

TERM2=SQRT (UDIFF**2+VDIFF*ALOG(V2/V1))
X1=(TERM1-SD1SD2*TERM2) /VDIFF
X2=(TERM1+SD1SD2*TERM2) /VDIFF

COMPUTE THE STANDARDIZED VALUES OF THE CROSSING POINTS. ZI1J IS
XI STANDARDIZED WITH RESPECT TO MEAN UJ AND STANDARD DEVIATION
SDJ.

Z11=(X1-U1)/sD1
212=(X1-U2)/sD2
221=(X2-U1)/sD1
222=(X2-U2)/sD2
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CALCULATE THE OVERLAPPING COEFFICIENT.

CALL MDNOR(Z11,P11)
CALL MDNOR(Z222,P22)
CALL MDNOR(Z12,P12)
CALL MDNOR(Z221,P21)
OVL=1.0+P11+P22-P12-P21

COMPUTE VARIANCES OF THE MAXIMUM LIKELIHOOD ESTIMATORS.

FNONE=FLOAT (NONE)

FNTWO=FLOAT (NTWO)

VMEAN2=V2/FNTWO

VMEAN1=V1/FNONE
VVAR1=2.0*FLOAT(NONE-1)#V1#*%2/(FNONE**2)
VVAR2=2.0*FLOAT (NTWO-1)*V2¥**2/ (FNTWO**2)

EVALUATE DERIVATIVES OF X1 AND X2 WITH RESPECT TO U1, U2, Vi, V2.

TERM3=1.0/TERM2

TERM4=SD1SD2*UDIFF*TERM3
TERM5=(SD18D2/2.0)*(VDIFF/V1+ALOG(V2/V1))*TERMN3
TERM6=(5D1SD2/2.0)*(VDIFF/V2+ALOG(V2/V1))*TERM3
DX1U1=(V2-TERM4)/VDIFF

DX2U1=(V2+TERM&4) /VDIFF

DX1U2=(-V1+TERM&4 ) /VDIFF
DX2U2=(-V1-TERM&4)/VDIFF
DX1V1=(-U2-SD2*TERM3/(2.0*SD1)+TERM5+X1)/VDIFF
DX2V1=(-U2+8D2*TERM3/(2.0*SD1)-TERM5+X2) /VDIFF
DX1V2=(U1-SD1*TERM3/(2.0%SD2)-TERM6-X1) /VDIFF
DX2V2=(U1+SD1*TERM3/(2.0*SD2)+TERM6-X2) /VDIFF

CALCULATE THE VARIANCE OF OVLHAT.

PHI11=DNORML(Z11)

PHI12=DNORML(Z12)

PHI21=DNORML(Z221)

PHI22=DNORML(Z22)

PHI11S=PHI11/SD1

PHI128=PHI12/SD2

PHI21S=PHI21/SD1

PHI228=PHI22/SD2

PTERM1=PHI11S-PHI12S

PTERM2=PHI22S-PHI21S
VTERM1=(PTERM1*DX1U1+PTERM2*DX2U1-PHI11S+PHI218)**2
VTERM2=(PTERM1#DX1U2+PTERM2#*DX2U2-PHI22S+PHI12S8)*%*2
VIERM3=(PTERM1*DX1V1+PTERM2*DX2V1+(PHI21%Z21-PHI11%211)/(2.0%V1))*
1*2

VTERM4=(PTERM1*DX1V2+PTERM2*DX2V2+ (PHI12*%Z12-PHI122%Z22) /(2.0%V2))*
1%2

VOVL=VTERM1*VMEAN1+VTERM2#*VMEAN2+VTERM3#*VVAR1+VTERM4*VVAR2

PRINT INTERMEDIATE CALCULATIONS AND RESULTS (IF IWRITE=0).

IF (IWRITE .EQ. 0) GO TO 999
WRITE(6,191) NONE

191 FORMAT(1HO,'THE SIZE OF THE SAMPLE WITH THE SMALLER VARIANCE =', I5

1)
WRITE(6,192) U1l
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216

217

218

219

220

221

222

223

997
998

999

FORMAT(1HO, 'ITS MEAN =',F20.8)
WRITE(6,193) V1

FORMAT(1HO, 'ITS VARIANCE =',F20.8)
WRITE(6,194) NTWO

FORMAT (1HO, 'THE SI2E OF THE SAMPLE WITH THE LARGER VARIANCE ='

WRITE(6,192) U2

WRITE(6,193) V2

WRITE(6,203) X1,X2

FORMAT (1HO, "THE CROSSING POINTS =',F20.8,F20.8)
WRITE(6,205)

FORMAT (1HO, '"THE DERIVATIVES OF THE CROSSING POINTS')
WRITE(6,206) DX1U1,DX2U1

FORMAT (1HO, 'WITH RESPECT TO THE FIRST MEAN =',F20.8,F20.8)
WRITE(6,207) DX1U2,DX2U2

FORMAT (1HO, 'WITH RESPECT TO THE SECOND MEAN =',F20.8,F20.8)
WRITE(6,208) DX1V1,DX2V1

FORMAT (1HO, 'WITH RESPECT TO THE FIRST VARIANCE =',F20.8,F20.8)

WRITE(6,209) DX1V2,DX2V2

FORMAT (1HO, 'WITH RESPECT TO THE SECOND VARIANCE =',6F20.8,F20.8)

WRITE(6,210) 211
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,15)

FORMAT (1HO, 'THE LOWER CROSSING POINT STANDARDIZED TC DISTRIBUTION

10NE =',F20.8)
WRITE(6,215) 212

FORMAT (1HO, 'THE LOWER CROSSING POINT STANDARDIZED TO DISTRIBUTION

1TWO =',F20.8)
WRITE(6,216) 221 .

FORMAT (1HO, 'THE UPPER CROSSING POINT STANDARDIZED TO DISTRIBUTION

10NE =',F20.8)
WRITE(6,217) 222

FORMAT (1HO, 'THE UPPER CROSSING POINT STANDARDIZED TO DISTRIBUTION

1TWO =',F20.8)

WRITE(6,218) VMEAN1

FORMAT (1HO, 'THE VARIANCE OF THE FIRST SAMPLE MEAN =',F20.8)
WRITE(6,219) VMEAN2

FORMAT(1HO, 'THE VARIANCE OF THE SECOND SAMPLE MEAN =',F20.8)

WRITE(6,220) VVAR1

FORMAT (1HO, 'THE VARIANCE OF THE FIRST SAMPLE VARIANCE =',F20.8)

WRITE(6,221) VVAR2

FORMAT (1HO, 'THE VARIANCE OF THE SECOND SAMPLE VARIANCE =',F20.8)

WRITE(6,222) OVL
FORMAT (1HO, 'THE OVERLAPPING COEFFICIENT =',F20.8)
WRITE(6,223) VOVL

FORMAT (1HO, 'THE VARIANCE OF THE SAMPLE OVERLAPPING COEFFICIENT =',

1F20.8)

GO TO 999

WRITE(6,998)

FORMAT (1HO, 'THE VARIANCES ARE EQUAL')
0vVi=0.0

VOVL=0.0

CONTINUE

RETURN

END
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Subroutine PLCDFS

The subroutine PLCDFS plots two empirical distribution functions
using the IMSL routine USPDF,

Called subroutines: USPDF (IMSL).
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SUBROUTINE PLCDFS(X1,N1,X2,N2,NTOTAL)

SUBROUTINE PLCDFS CALLS IMSL ROUTINE USPDF() TO OBTAIN A PLOT OF
THE TWO EMPIRICAL DISTRIBUTION FUNCTIONS. X1 IS THE DATA FROM THE
FIRST SAMPLE OF SIZE N1. X2 IS THE DATA FROM THE SECOND SAMPLE OF
SIZE N2. TO MAKE LIFE SIMPLE, THE SUM OF N1+N2=NTOTAL IS ALSO
READ INTO THE ROUTINE.

DIMENSION XALL(4000) ,WHERE(4000,2),IRHERE(4000)
DIMENSION X1(N1),X2(N2)

DO 20 I=1,NTOTAL

IF (I .GT. N1) GO TO 10

XALL(I)=X1(I)

G0 TO 20

XALL(I)=X2(I-N1)

CONTINUE

CALL USPDF(XALL,N1,N2,WHERE,4000,IRHERE)
RETURN

END



190

Subroutine PRTSPL

The subroutine PRTSPL prints the output of the subroutine BSPLDF.

Called subroutines: USWFV (IMSL).
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SUBROUTINE PRTSPL(MODE,RSSQ,NBKPT,BKPT,NCOEFF,COEFF)
PRINT BSPLDF() OUTPUT.

DIMENSION BKPT(NBKPT),COEFF(NCOEFF)

WRITE(6,10) MODE

FORMAT(1HO, 'THE HANSON DIAGNOSTIC MODE:',IS5)
WRITE(6,20) RSSQ

FORMAT (1HO, 'THE RESIDUAL SUM OF SQUARES:',F20.10)
WRITE(6,30) NBKPT

FORMAT (1HO, 'THE NUMBER OF BREAKPOINTS:',IS)
WRITE(6,40) NCOEFF

FORMAT (1HO, 'THE NUMBER OF B-SPLINE COEFFICIENTS:',I5)
CALL USWFV('BREAKPOINTS',11,BKPT,NBKPT,1,3)

CALL USWFV('SPLINE COEFFICIENTS',19,COEFF,NCOEFF,1,3)
RETURN

END

191
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Subroutine RESAMP

The subroutine RESAMP obtains a simple random sample, with re-
placement, from the original sample for bootstrap replications.

Called subroutines: GGUBS (IMSL).
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SUBROUTINE RESAMP(XSEED,NDATA,XDATA,XRESAM)

GIVEN A SAMPLE OF DATA XDATA OF SIZE NDATA, ROUTINE RESAMP()
GENERATES A SIMPLE RANDOM SAMPLE WITH REPLACEMENT OF SIZE NDATA
FROM XDATA USING THE IMSL ROUTINE GGUBS()

NOTE: XSEED IS A DOUBLE PRECISION SEED FOR THE IMSL ROUTINE
GGUBS(). SEE IMSL DOCUMENTATION FOR REQUIREMENTS.

DIMENSION U(2000)
DIMENSION XDATA(NDATA) ,XRESAM(NDATA)
REAL*8 XSEED

GENERATE THE ARRAY OF UNIFORM (0,1) RANDOM DEVIATES.
CALL GGUBS(XSEED,NDATA,U)
CONSTRUCT NEW SAMPLE ARRAY.

FN=FLOAT (NDATA)

DO 10 I=1,NDATA

ISUB=IFIX(FN*U(I))+1
XRESAM(I)=XDATA(ISUB)

CONTINUE

RETURN

END
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Subroutine RSSQDF

The purpose of the subroutine RSSQDF is to compute the residual
sum of squares for the fitted B-spline estimate of an unknown distribu-
tion function.

Called subroutines: BVALUE (de Boor).
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SUBROUTINE RSSQDF(NDATA,XDATA,YDATA,NORD, BKPT ,NBKPT,COEFF ,NCOEFF,R
158Q)

CALCULATE AND PRINT RESIDUAL SUM OF SQUARES FOR B-SPLINE DF.

DIMENSION XDATA(NDATA),YDATA(NDATA)

DIMENSION BKPT(40),COEFF(50)

RSSQ=0.0

DO 10 I=1,NDATA

YHAT=BVALUE (BKPT,COEFF ,NCOEFF ,NORD,XDATA(1),0)
SQDIFF=(YDATA(I)-YHAT)#*2

RSSQ=RSSQ+SQDIFF

CONTINUE

RETURN

END
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Subroutine SPLOVL

The object of the subroutine SPLOVL is to obtain OVL using
quadratic spline estimates of two unknown distribution functions.
Called subroutines: BSPLDF, BVALUE (de Boor), EMPCDF, PLCDFS,

PRTSPL, USPLO (IMSL), VSRTA (IMSL).
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SUBROUTINE SPLOVL(NONE,bXONE,NTWO,XTWO, IPLOT, IWRITE,OVLSPL)

ROUTINE SPLOVL COMPUTES A SPLINE-FUNCTION ESTIMATE OF OVL.
DATA ARE ASSUMED TO BE TRANSFORMED TO THE INTERVAL (0,1).

DIMENSION XONE(2000),XTWO0(2000)

DIMENSION XCDF1(2000),YCDF1(2000),SDCDF1(2000)

DIMENSION XCDF2(2000),YCDF2(2000),SDCDF2(2000)

DIMENSION BKPT1(50),BKPT2(50)

REAL COEFF1(50)/50%0.0/,COEFF2(50)/50%0.0/

DIMENSION BKPTS(100),UBKPT(100)

DIMENSION XEST(101),DFEST(101,2),PDFEST(101,2)

REAL RPLOTO(4)/0.0,0.0,0.0,1.0/,RPLOT1(4)/0.0,0.0,0.0,0.0/

GET EMPIRICAL DISTRIBUTION FUNCTIONS FOR THE TWO SAMPLES.

CALL EMPCDF (XONE ,NONE,NCDF1,XCDF1,YCDF1,SDCDF1)
CALL EMPCDF (XTWO,NTWO,NCDF2,XCDF2,YCDF2,SDCDF2)

GET B-SPLINES FOR THE TWO EMIRICAL DISTRIBUTION FUNCTIONS.

NORD=3
BKLOW=0.0
BKUP=1.0
IPASS=2
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CALL BSPLDF(NCDF1,XCDF1,YCDF1,SDCDF1,NORD,BKLOW,BKUP, IPASS ,NBKPT1,

1BKPT1,NCOEF1,COEFF1,RSSQ1,MODE1)

CALL BSPLDF(NCDFZ XCDF2 YCDF2 ,SDCDF2,NCRD, BKLOW BKUP, IPASS ,NBKPT2,

1BKPT2 ,NCOEF2 COEFFZ RSSQ2 MODEZ)

CREATE UNION SET OF THE TwWO SETS OF BREAKPOINTS.

VECTOR UBKPTS OF LENGTH NUBKPTS CONTAINS THIS UNION WITH ELEMENTS

SORTED IN INCREASING MAGNITUDE BY IMSL ROUTINE VSRTA().

NBKPTS=NBKPT1+NBKPT2

DO 20 I=1,NBKPTS

IF (I .GT. NBKPT1) GO TO 10
BKPTS (I)=BKPT1(I)

GO TO 20

BKPTS (I)=BKPT2(I-NBKPT1)
CONTINUE

DELETE DUPLICATE BREAKPOINTS AND BREAKPOINTS WHICH MAY HAVE BEEN

DEFINED OUTSIDE THE INTERVAL (BKLOW,BKUP).

CALL VSRTA(BKPTS,NBKPTS)

NUBKPT=0

DO 4G I=1,NBKPTS

IF (I .EQ. 1) GO TO 30

IF (BKPTS(I) .EQ. BKPTS(I-1)) GO TO 40
IF (BKPTS(I) .LT. BKLOW) GO TO 40

IF (BKPTS(I) .GT. BKUP) GO TO 40
NUBKPT=NUBKPT+1

UBKPT (NUBKPT)=BKPTS(I)

CONTINUE

CALCULATE INTERVAL AREAS AND OVL.

DIFF IS THE DIFFERENCE IN ESTIMATED DENSITIES (DENSITY TWO MINUS
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DENSITY ONE) AT THE BREAKPOINT I; DIFLST IS THIS DIFFERENCE AT
THE BREAKPOINT (I-1).

AREA IS THE AREA UNDER MIN(DENSITY ONE, DENSITY TWO) IN INTERVAL
BETWEEN UBKPT(I-1) AND UBKPT(I). THESE AREAS ARE SUMMED TO
CALCULATE OVLSPL, THE ESTIMATE OF OVL BASED ON THE B-SPLINE
DISTRIBUTION FUNCTIONS AND DENSITIES.

NOTE: FUNCTION BVALUE (BKPT,COEFF ,NCOEFF,NORD,X,I) EVALUATES THE
I-TH DERIVATIVE OF THE B-SPLINE GIVEN BY BKPT,COEFF, NCOEFF, AND
NORD AT THE POINT X. SEE DE BOOR, P. 144.

OVLSPL=0.0

DIFLST IS INITIALLY SET TO ZERO BECAUSE OF THE CONSTRAINT THAT THE
ESTIMATED DENSITIES MUST BE ZERQ AT THE BREAKPOINT ZERO.

DIFLST=0.0

DO 200 I=2,NUBKPT

J=1-1

DIFF=BVALUE (BKPT2,COEFF2 ,NCOEF2 ,NORD,UBKPT(1),1)~-BVALUE (BKPT1,COEF
1F1,NCOEF1 ,NORD,UBKPT(I1),1)

IF (DIFF) 110,120,130

IF (DIFLST) 170,170,140

IF (DIFLST) 170,160,160

IF (DIFLST) 150,160,160

XCROSS=UBKPT(J)+DIFLST* (UBKPT(I)-UBKPT(J))/(DIFLST-DIFF)
AREA=BVALUE (BKPT1,COEFF1,NCOEF1,NORD,XCROSS,0)-BVALUE (BKPT1,COEFF1
1,NCOEF1,NORD,UBKPT(J),0)+BVALUE (BKPT2 ,COEFF2,NCOEF2 ,NORD,UBKPT(1),
20)-~-BVALUE (BKPT2 ,COEFF2 ,NCOEF2 ,NORD,XCROSS,0)

GO TO 180

XCROSS=UBKPT(J)+DIFLST*(UBKPT(I)-UBKPT(J))/(DIFLST-DIFF)
AREA=BVALUE (BKPT2 ,COEFF2 ,NCOEF2 ,NORD ,XCROSS,0) -BVALUE (BKPT2 ,,COEFF2
1,NCOEF2 ,NORD, UBKPT(J),0)+BVALUE (BKPT1,COEFF1,NCOEF1 ,NORD,UBKPT(I),
20)-BVALUE (BKPT1,COEFF1,NCOEF1,NORD,XCROSS,0)

GO TO 180

AREA=BVALUE (BKPT1,COEFF1 ,NCOEF1 ,NORD,UBKPT(1),0)~BVALUE (BKPT1,COEF
1F1,NCOEF1 ,NORD,UBKPT(J),0)

GO TO 180

AREA=BVALUE (BKPT2 ,COEFF2 ,NCOEF2 ,NORD ,UBKPT(1),0)~-BVALUE (BKPT2,COEF
1F2 ,NCOEF2 ,NORD,UBKPT(J),0)

OVLSPL=OVLSPL+AREA

DIFLST=DIFF

CONTINUE

PRINT THE B-SPLINE ESTIMATE OF OVL, A PLOT OF THE TWO EMPIRICAL
DISTRIBUTION FUNCTIONS, AND PLOTS OF THE B-SPLINE DISTRIBUTION
FUNCTIONS AND DENSITIES. (IF IPLOT .NE. 0)

IF (IPLOT .EQ. 0) GO TO 900

WRITE(6,210) OVLSPL

FORMAT (1HO, 'B-SPLINE ESTIMATED OVERLAPPING COEFFICIENT =',F20.10)
PLOT THE TWO EMPIRICAL DISTRIBUTION FUNCTIONS.

NTOTAL=NONE+NTWO
CALL PLCDFS (XONE ,NONE,XTWO,NTWO,NTOTAL)

PLOT B-SPLINE ESTIMATED DF AND PDF
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RANGE=BKUP - BKLOW
DIV=FLOAT(100)
DO 800 I=1,101

GENERATE PLOTTING POINTS.

XCAL=FLOAT(I-1)*RANGE/DIV
XEST(I)=XCAL

GET B-SPLINE ESTIMATES OF DISTRIBUTION FUNCTIONS.

DFEST(I,1)=BVALUE(BKPT1,COEFF1,NCOEFI,NORD,XCAL,O)
DFEST(I,2)=BVALUE (BKPT2,COEFF2 ,NCOEF2 ,NORD,XCAL,0)

GET B-SPLINE ESTIMATES OF DENSITY FUNCTIONS.

PDFEST(I,1)=BVALUE (BKPT1,COEFF1,NCOEF1,NORD,XCAL,1)
PDFEST(I,2)=BVALUE (BKPT2,COEFF2 ,NCOEF2,NORD,XCAL, 1)
CONTINUE

PLOT ESTIMATED DISTRIBUTION FUNCTIONS.

CALL USPLO(XEST,DFEST,101,101,2,1,'B-SPLINE ESTIMATED DISTRIBUTION
1 FUNCTIONS',41,'X',1, ESTIMATED DF AT X',17,RPLOTO,2H12,1,IER0)

PLOT ESTIMATED DENSITY FUNCTIONS.

CALL USPLO(XEST,PDFEST,101,101,2,1, 'B-SPLINE ESTIMATED DENSITY FUN
1CTIONS',36,'X',1, '"ESTIMATED DENSITY AT X',22,RPLOT1,2H12,1,IER1)

PRINT THE OUTPUT OF THE B-SPLINE ROUTINES USED TO ESTIMATE THE
‘TWO DISTRIBUTION FUNCTIONS. (IF IWRITE .NE. 0)

IF (IWRITE .EQ. 0) GO TO 999

WRITE(6,910)

FORMAT (1HO, 'B-SPLINE RESULTS FOR THE FIRST SAMPLE')
CALL PRTSPL(MODE1,RSSQ1,NBKPT1,BKPT1,NCOEF1,COEFF1)
WRITE(6,920)

FORMAT (1HO, 'B~SPLINE RESULTS FOR THE SECOND SAMPLE')
CALL PRTSPL(MODE2,RSSQ2,NBKPT2,BKPT2,NCOEF2,COEFF2)
CONTINUE

RETURN

END
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Subroutine TRANSF

The purpose of the subroutine TRANSF is to apply the selected
tranformation to the data in the array X, thus mapping the data to the
interval [0,1].

Called subroutines: none.
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SUBROUTINE TRANSF(N,X,ITRANS,A,B)
SUBROUTINE TRANSF() APPLIES THE TRANSFORMATION INDICATED BY THE
INPUT VARIABLE ITRANS TO THE DATA IN THE ARRAY X. N IS THE LENGTH
OF X. ITRANS SET TO ZERC RETURNS THE UNTRANSFORMED ARRAY X.
INPUT VARIABLES A AND B ARE USED FOR TRANSFORMATION ONE ONLY.

ITRANS=0, THE TRANSFORMATION IS X=X ;

ITRANS=1, THE TRANSFORMATION IS X=(X-A)/(B-4) ;

ITRANS=2, THE TRANSFORMATION IS X=X/(1.0+X) ;

ITRANS=3, THE TRANSFORMATION IS X=EXP(X)/(1.0+EXP(X))

DIMENSION X(N)
IF (ITRANS .EQ. 0) GO TO 400

IF (ITRANS .GT. 1) GO TO 200
APPLY FIRST TRANSFORMATION.

DIVIDE=B-A

DO 10 I=1,N
X(I)=(X(I)-A)/DIVIDE
CONTINUE

GO TO 400

IF (ITRANS .GT. 2) GO TO 300
APPLY SECOND TRANSFORMATION.

DO 20 I=1,N
X(I)=X(I)/(1.0+X(1))
CONTINUE

GO TO 400

IF (ITRANS .GT. 3) GO TO 400
APPLY THIRD TRANSFORMATION.

DO 30 I=1,N
=EXP(X(1))
X(I)=Y/(1.0+Y)
CONTINUE

CONTINUE
RETURN
END
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