
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

1988

A high performance parallel algorithm to search depth-first game A high performance parallel algorithm to search depth-first game

trees. trees.

Robert Morgan Hyatt
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Hyatt, Robert Morgan, "A high performance parallel algorithm to search depth-first game trees." (1988). All
ETDs from UAB. 5694.
https://digitalcommons.library.uab.edu/etd-collection/5694

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/5694?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the
upper left-hand comer and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfilms International

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Order Number 8909785

A high-performance parallel algorithm to search depth-first
game trees

Hyatt, Robert Morgan, Ph.D.
The University of Alabama in Birmingham, 1988

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A HIGH-PERFORMANCE PARALLEL ALGORITHM
TO SEARCH DEPTH-FIRST GAME TREES

by

ROBERT MORGAN HYATT

A DISSERTATION

Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in the Department of

Computer and Information Sciences in the
Graduate School, The University of

Alabama at Birmingham

BIRMINGHAM, ALABAMA

1988

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF DISSERTATION
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Ph.D.Major Subject Computer & Information Sciences

Name of Candidate Robert Morgan Hyatt_______________________________

Tit Ie A High-Performance Parallel Algorithm to Search Depth-First

Game Trees__

The alpha-beta tree search problem is described in mathematical terms

to determine the feasibility of searching these trees in parallel. Three algorithms

are developed to search depth-first game trees in parallel using a shared-mem­

ory multiprocessing computer system. Test results for uniform, non-uniform

and alpha-beta depth-first game trees are provided.

The principal variation splitting algorithm (PVS) along with an en­

hanced version (EPVS) are described. After discussing the performance of

these algorithms, a new parallel tree search algorithm, dynamic tree splitting

(DTS) is developed and applied to the same trees. The DTS algorithm provides

superior performance on the three types of trees discussed above, primarily

because DTS does not require that all processors work together on descendants

of the same node. This reduces synchronization overhead where a processor is

out of work and has to wait on other processors to complete their work before

moving to some other part of the tree. The details of this algorithm are given

along with an explanation of the particular tree-searching problem each detail

addresses.

Test results were obtained using a Sequent Balance 21000 multiprocessor

with 30 processors. When searching alpha-beta game trees with sixteen proces­

sors, the PVS algorithm provides a speedup of 4.59, the EPVS algorithm pro­

vides a speedup of 5.98, and the DTS algorithm provides a speedup of 8.81.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The conclusions identify specific problem areas that must be addressed

to improve these results. In particular, the sequential search must become more

accurate in the nodes that it examines. Depth-first trees are inherently parallel,

but the alpha-beta algorithm adds a sequential property that makes them ex­

tremely difficult to search in parallel without adding search overhead that de­

grades the total performance.

Abstract Approved by:

Date Dean of Graduate School

Committee Chairman 70%/^

Program Director -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

The only unfortunate circumstance surrounding the awarding of the

Ph.D. degree is that the degree is awarded to only one person, regardless of how

many others had a hand in earning the degree. In my case, my family shares

equally in earning this degree, without any one of us, things would have cer­

tainly fallen apart. My wife, Janie, has always been ready to give me another

push at those times when my emotional and mental energies are at a low point.

My daughter, Tanya, who has abilities that exceed my own, has taken the

changes in our lifestyle in stride with no complaints and has actually enjoyed

and grown from this experience. My son Chris, who “wants to graduate from

High School, get his Ph.D. and work at UAB” has perhaps been most affected

by the past three years. He has seen less of me than normal, but has grown up

with the idea that education is everything. I could not have completed this

degree without their support and I am extremely proud of the way all three of

them have supported me.

The Department of Computer and Information Sciences at UAB has sup­

ported my interests in any way that I have asked. Dr. Bruce Suter, my advisor,

has become interested in parallel trees (as well as other parallel algorithms)

over the course of this research. The department chairman, Dr. Warren Jones,

has made a major commitment to parallel processing that provided the machine

used for this research. Drs. Kevin Reilly, Steve Harvey and Charles Katholi

have provided hours of stimulating conversation and assistance in getting this

research done. The department has supported me far beyond any reasonable

expectations, and I look forward to continuing my academic career at UAB.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page
TABLE OF CONTENTS

ABSTRACT.. ii

ACKNOWLEDGEMENTS.. iv

LIST OF TABLES .. viii

LIST OF FIGURES ... x

CHAPTER 1. GAME TREE SEARCHING .. 1
1.1 Introduction... 1
1.2 The Speed Problem ... 1
1.3 Parallel Search Requirements... 2
1.4 Purpose of This Research ... 3
1.5 Research Environment... 3

CHAPTER 2. GAME TREE CHARACTERISTICS.............................. 4
2.1 Minimax Game Trees ... 4
2.2 Uniform Minimax Game Trees... 5
2.3 Non-Uniform Minimax Game Trees .. 8
2.4 Alpha-Beta Minimax Game Trees... 10
2.5 Summary... 13

CHAPTER 3. PARALLEL TREE SEARCH ISSUES AND
PROBLEMS .. 14

3.1 Introduction... 14
3.2 The Transposition Table ... 14
3.3 The Killer Heuristic... 19
3.4 The System Problem ... 21
3.5 Non-Determinism... 22
3.6 Summary... 23

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS (continued)

Page

CHAPTER 4. MATHEMATICAL ANALYSIS OF ALPHA-BETA ... 25
4.1 Minimax Game Tree Search... 25
4.2 Alpha-Beta Game Tree Search... 25
4.3 Parallel Alpha-Beta Search... 26
4.4 Principle Variation Splitting (PVS)... 28
4.5 Summary... 31

CHAPTER 5. PRINCIPLE VARIATION SPLITTING (PVS) 32
5.1 Cray Blitz ... 32
5.2 The PVS Algorithm ... 32
5.3 PVS Results with Uniform Game Trees 34
5.4 PVS Results with Non-Uniform Game Trees........................ 37
5.5 F VS Results with Non-Uniform Alpha-Beta Game Trees 39
5.6 PVS Performance Summary ... 41

CHAPTER 6. ENHANCED PRINCIPLE VARIATION
SPLITTING (EPVS)............................... 43

6.1 The Enhanced PVS Algorithm (EPVS) 43
6.2 EPVS Results with Uniform Game Trees 45
6.3 EPVS Results with Non-Uniform Game Trees....................... 46
6.4 EPVS Results with Non-Uniform Alpha-Beta Game Trees .. 48
6.5 EPVS Performance Summary... 50

CHAPTER 7. DYNAMIC TREE SPLITTING (DTS)............................ 53
7.1 Introduction... 53
7.2 An Overview of the DTS Algorithm 54
7.3 The Help Request... 55
7.4 The Split Operation... 56
7.5 The Unsplit Operation... 60
7.6 The Merge Operation... 61
7.7 Processor Inter-Communication... 62
7.8 The Share Operation ... 63
7.9 Data Structures... 64
7.10 Task Granularity... 69
7.11 Synchronization Overhead... 70
7.12 Processor Clustering... 70

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS (continued)

Page

7.13 DTS Performance on Uniform Game Trees 71
7.14 DTS Performance on Non-Uniform Game Trees................. 73
7.15 DTS Performance on Non-Uniform Alpha-Beta Game Trees 76
7.16 DTS Performance Summary... 77

CHAPTER 8. CONCLUSIONS... 82
8.1 Summary.. 82
8.2 Conclusions... 85
8.3 Future Work... 86

REFERENCES ... 88

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

PRINCIPLE VARIATION SPLITTING (PVS)

5.1 PVS algorithm speedup when searching uniform minimax
game trees ... 35

5.2 PVS algorithm speedup when searching non-uniform minimax
game trees with varying depths (d) and branching
width (w) ... 37

5.3 PVS algorithm node counts.. 41

5.4 PVS algorithm speedup .. 42

ENHANCED PRINCIPLE VARIATION SPLITTING (EPVS)

6.1 EPVS algorithm speedup when searching uniform minimax
game trees .. 45

6.2 EPVS algorithm speedup when searching non-uniform minimax
game trees with varying depths (d) and branching
width (w) .. 47

6.3 EPVS algorithm node counts... 51

6.4 EPVS algorithm speedup .. 52

DYNAMIC TREE SPLITTING (DTS)

7.1 DTS algorithm speedup when searching uniform minimax
game trees .. 72

7.2 DTS algorithm speedup when searching non-uniform minimax
game trees with varying depths (d) and branching width (w) . 74

7.3 DTS algorithm node counts.. 80

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES (continued)

Table Page

7.4 DTS algorithm speedup .. 81

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page
GAME TREE CHARACTERISTICS

2.1 Uniform minimax game tree with constant width = 3 and
constant depth = 3.. 6

2.2 Non-Uniform minimax game tree... 9

2.3 Alpha-Beta minimax game tree ... 12

PARALLEL TREE SEARCH ISSUES AND PROBLEMS

3.1 Transposition of moves results in identical positions............... 15

3.2 No processor interaction... 17

3.3 Processors interact with each other... 17

3.4 Synergism between processors... 18

3.5 No synergism between processors... 18

PRINCIPLE VARIATION SPLITTING (PVS)

5.1 PVS algorithm speedup on uniform game trees 36

5.2 PVS algorithm speedup on non-uniform game trees 38

5.3 Percent increase of search overhead by number of
processors.. 39

5.4 Speedup as number of processors is increased......................... 40

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES (continued)

ENHANCED PRINCIPLE VARIATION SPLITTING (EPVS)
Figure Page

6.1 Percent increase of search overhead by numbers of
processors.. 48

6.2 EPVS algorithm speedup on alpha-beta game trees............... 49

DYNAMIC TREE SPLITTING (DTS)

7.1 Memory copy operation performed as a result of the
split request so that processors can share their local
memory areas.. 59

7.2 Memory operation done when an unsplit request occurs........ 61

7.3 data structures shared at a split ply and indexed by
block number.. 64

7.4 data structures for each processor indexed by processor id .. 66

7.5 DTS algorithm speedup when searching uniform minimax
game trees .. 72

7.6 DTS algorithm speedup when searching non-uniform
minimax game trees .. 75

7.7 DTS algorithm percent search overhead on alpha-beta game
trees... 77

7.8 DTS algorithm speedup on alpha-beta game trees.................. 78

CONCLUSIONS

8.1 speedups for all algorithms on alpha-beta game trees............ 82

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

GAME TREE SEARCHING

1.1. Introduction

Tree searching problems occur throughout the field of computer science.

Artificial intelligence has game-playing, expert systems and natural language

processing trees; compilers use parse trees and symbol tables; data bases use

tree structures; and finally, trees play an important role in operations research

for such things as the traveling salesman problem.

1.2. The Speed Problem

Since current programs running on the fastest available sequential

computer systems cannot search trees fast enough to satisfy every application,

developing high-performance tree search algorithms is quite important.

The most recent improvements in high-performance computation have

been in parallel processing machines. These include shared memory

architectures such as the Cray-XMP supercomputer and distributed

architectures such as the hypercube and Sun Microsystems networks. While

current examples of parallel supercomputing machines have a small number of

processors (four on the Cray XMP), future machines will increase this by more

than an order of magnitude.

Most current tree searching algorithms make little use of parallel

processing, while those few that do use parallel machines work with small

numbers of processors using distributed architecture machines [1, 2, 3, 5, 6, 8,

18, 25,27, 29].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

Current research centers on multiprocessing hardware connected via some

type of distributed network rather than the more costly (and less available)

shared memory architectures. The communication delays caused by the network

make search coordination and information interchange among the processors

critical when considering the time that is lost waiting on inter-processor

communication. Attempting to minimize these costs results in poor performance

in terms of the speedup obtained by using parallel processing.

1.3. Parallel Search Requirements

A properly designed parallel search algorithm addresses two important

performance-related issues. First, fully utilizing a parallel computer reduces the

total time required to complete a search. Second, real-time constraints are

sometimes imposed in systems that monitor processes, requiring accurate and

frequent control signals. Often, completing a search before the system must

make a decision is impossible. In that event, search speed is very important.

However, being sure to search the important areas of the tree while leaving the

less interesting areas for analysis if time permits is also necessary for making

the proper decision.

The real-time requirement can be most readily seen in robotics and

manufacturing. Work is now in progress to produce an autonomous vehicle

controlled by a computer. The pattern-matching task which steers the vehicle

must supply a control signal at the correct time regardless of whether the search

is complete or not. Similarly, when controlling some machines, directions must

be given at the appropriate time in order to avoid ruining the item being made

or to avoid delaying other work requiring the item.

A parallel search algorithm must handle trees of varying complexity, such

as those from chess and checker games. Trees produced near the end of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

games have low branching factors; likewise, trees produced when the position is

tactical in nature have low branching factors because there are usually few

responses to checks and captures. On the other hand, trees produced during the

early and middle parts of these games can be extremely “bushy” with a large

branching factor. The parallel algorithm must be able to handle this variance

and produce adequate load balancing to achieve reasonable performance.

1.4. Purpose of This Research

The purpose of this research is to extend the state-of-the-art in parallel

tree searching to take advantage of machines with more than four processors.

Rather than accept current algorithms that cannot reach a tenfold performance

increase with any number of processors, it seems intuitively possible to achieve

a near-linear speed-up for machines with large numbers of processors (12, 21,

22].

1.5. Research Environment

UAB has provided a unique environment to pursue this type of research

with the thirty processor Sequent Balance 21000 computer system that is readily

available. Its shared memory architecture simplifies data sharing and effectively

eliminates the cost of communication that is so significant on other types of

machines and architectures. Additionally, the machine provides a sufficient

level of parallelism so that testing algorithms targeted for the next generation of

supercomputers provides accurate simulations of the parallel performance of

the new machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

GAME TREE CHARACTERISTICS

2.1. Minimax Game Trees

Shannon proposed the minimax game tree search in 1949 as an algorithm

to allow a computer to play chess using a technique called the zero sum game

tree [29]. In this algorithm, positive scores represent good results for one side,

negative scores represent good results for the opposing side, and a score of zero

represents an equal state.

Minimax trees belong to the depth first class of tree searching algorithms

where the scores are only computed for nodes at the end of branches

(sometimes called terminal nodes). That is, scores are only computed when a

branch reaches its maximum length.

The term minimax comes from one side favoring higher (MAX) numeric

scores and the other side favoring lower (MIN) numeric scores. In this type of

tree, MAX moves first and chooses the successor branch (move) that results in

the highest numeric score. From each of these resulting positions, MIN moves

and chooses the successor branch (move) that results in the lowest numeric

score. MAX and MIN alternate turns in this manner until reaching some depth

limit.

For a branch that cannot extend deeper, the static evaluation routine

generates a numeric evaluation of the terminal node. MAX (or MIN depending

on where the node occurs) chooses the branch with the highest (or lowest)

numeric evaluation and returns this value to the previous level. There MIN (or

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

MAX) chooses the lowest (highest) of these backed up values and then returns

it to the previous level. This algorithm examines all branches from the root

position in this manner.

In these trees there is plenty of opportunity for parallel processing since

the branches of the tree are completely independent of each other. There are

synchronization points since MAX might give each of n processors a branch to

examine and then choose the largest value returned by any of the processors.

For common game trees, there are enough branches (millions, billions, or as

many as needed!) to keep any number of processors busy. However, using a

large number of processors turns out to be much more difficult than expected

from an initial analysis.

2.2. Uniform Minimax Game Trees

Uniform game trees provide an excellent theoretical basis for developing a

mathematical model for game trees. Chapter 4 uses this type of tree to develop

a mathematical description of parallel game tree analysis.

A uniform game tree has a constant branching factor and maximum depth

of search (figure 2.1). Each node has the same number of successors as any

other node, except for nodes at the maximum allowable depth which have no

successors. Also, all branches have the same length (from the root position).

This type of tree is the ideal model for parallel processing since each

branch from a given node requires the same amount of work to search as any

other branch from the same node. This “uniformity” simplifies the

mathematical analysis because stochastic behavior is not present.

Unfortunately, uniform trees do not occur in actual tree searching

problems. Even simple game tree searches must detect the occurrence of

duplicate branches and take some action which destroys this uniformity. If this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

• max to move

1 min to move

Figure 2.1: Uniform minimax game tree with constant width = 3 and
constant depth = 3.

is not done, the game can simply “cycle” between two moves and make no

progress toward the search goal. The mathematical analysis of uniform trees is

interesting, but the unrealistic assumptions of such trees provide little practical

benefit.

In uniform game trees, any two branches at the same depth generate

subtrees with identical sizes. This is an important property for parallel

processing since giving all processors identical amounts of work to do in parallel

is a desirable goal which prevents one processor from waiting on another to

complete a larger amount of work. A parallel search of such trees easily

produces a near-optimal speedup where n processors complete the entire search

in little more than 1/n time units. Knowing the amount of work required to

analyze a subtree greatly simplifies the scheduling problems and makes it quite

easy to keep all processors busy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

The primary consideration in searching uniform trees in parallel is to

choose the depth for parallel division so that the total number of “chunks” of

parallel work is evenly divisible by the number of processors available. This

ensures that each of the n processors will have the same quantity of work to do,

minimizing the amount of time where one processor is waiting on another to

finish. A secondary consideration is to avoid giving processors “chunks” of

work so small that the multiprocessing overhead of starting, coordinating, and

synchronizing the tasks becomes a major portion of the total work done. This

results in poor parallel performance since the sequential algorithm does not do

this superfluous work.

Developing such an algorithm is non-trivial unless the branching factor is

an exact multiple of the number of processors. Since this is unlikely, it is

necessary that processors work at different nodes within the tree rather than

simply dividing the work at one node among the available processors. This

requirement significantly adds to the complexity of the code, but satisfying it

produces good results on different computer systems with varying numbers of

processors.

This suggested search algorithm reduces the success of the common

“doall” or “doacross” type of parallel programming since there is no single loop

that can have iterations executed in parallel with synchronization at the end of

the loop. Conceptually, the algorithm appears as a sequential outer loop with an

inner loop having its iterations executed in parallel; however, to keep all

processors busy the next outer loop iteration begins as soon as one processor

runs out of work inside the inner loop. Without such a modification to the

search algorithm, parallel performance will never approach the maximum

speed-up possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

Neither an algorithm or code is given for this approach since the classic

recursive procedure call method does not apply to this type of programming.

While recursive procedure calls allow elegant solutions to tree search problems,

they cause problems in this algorithm. The difficulty comes from processing a

node of the tree by one instance of a recursive call. Until the return from the

procedure is made, no further work can be done. An actual code would not use

this approach and would therefore not suffer from this problem.

2.3. Non-Uniform Minimax Game Trees

Non-uniform game trees contain nodes with varying numbers of

successors or branches that are not constant in length. Common game trees

have both of these characteristics, generating trees that are very complex.

Figure 2.2 depicts such a tree.

This type of tree is a more natural representation of games since it is

unusual for both sides to have the same number of moves on their respective

turns at play. For example, in checkers a player must make a jumping move if

one is possible, giving only a few possible choices. If no jumps are possible,

then there are many possible playing choices. This results in some branches that

are quite simple (where jumps are possible at various nodes) while other

branches are more complex (where there are no jumps possible) since there are

more alternatives. Chess is similar in that when the king is in check, there are

few legal alternatives to get out of check, while in other cases there can be over

a hundred legal moves.

This type of tree causes significant problems for parallel implementations

since obtaining uniform load balancing is not easy. If processor one is given a

branch to examine where only one jump is possible, and processor two is given

a branch where no jumps are possible, processor two is going to have a more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

• max to move

■ min to move

Figure 2.2: Non-Uniform minimax game tree.

complex task to complete. It is quite easy to have one processor waiting for a

significant length of time while another processor searches a more difficult

branch.

While non-uniformity in width is one type of problem, variable-depth

searching is also necessary when trying to play certain types of games. In chess,

humans analyze complicated or unclear positions more deeply than simple

positions. Good programs must emulate this behavior and continue searching

until these positions are properly evaluated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

By varying the depth and width of the typical game tree, the complexity of

a given branch becomes impossible to determine without first searching it. This

causes significant problems for a parallel search since one branch might have a

subtree with few nodes while another branch generates a tremendous subtree

with no warning. Measurements of actual chess-playing programs have found

subtrees from the same parent that vary in size by several orders of magnitude.

Giving such a complex branch to one processor while giving a more normal

branch to another guarantees poor parallel performance. Even more important,

a processor cannot predict such behavior before analyzing the position. It only

discovers the complexity by searching the resulting [large] subtree.

This type of tree presents many different problems for a parallel search

algorithm design since achieving load balancing is difficult. The traditional

approach of splitting the tree at some node and giving each processor one or

more branches at that point fails miserably since invariably one processor

receives a branch that takes significantly more time to analyze than anything

given to the others. Searching different size trees in parallel reduces the total

search performance dramatically by increasing the inter-processor

synchronization overhead.

2.4. Alpha-Beta Minimax Game Trees

The alpha-beta algorithm was developed specifically to reduce the size of

the normal minimax game tree [13]. It is an intuitive method that refutes a

branch without having to search the entire subtree below that branch.

Assume that MAX is to move and that after examining the first branch in

the tree the minimax algorithm backs up a score of 1000 to this node. MAX

remembers this score and then tries move number two. MIN now has to

determine the best response to this move and after searching the first branch,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

the minimax algorithm returns a best score of -500 to MIN. At this point, MIN

could continue to examine the rest of its possible moves, but it turns out that it

is not necessary. Since MIN is going to return the LOWEST value it can

generate, the maximum of these values is -500 since MIN would never choose

any branch resulting in a score larger than -500. However, MIN also knows that

MAX already has a best score of 1000 and will not accept any score lower than

that lower bound. MIN therefore determines that additional analysis is not

necessary since the second branch tried by MAX is inferior to the first one

(comparing -500 to 1000).

The important point here is that a move is worse than another move;

exactly how much worse is not important since the move would never be chosen

anyway. This algorithm is known as the alpha-beta algorithm where alpha and

beta are the lower and upper search bounds. Any score lower than alpha can be

immediately discarded as can any score greater than beta. Note that the first

move sets the lower bound on the scores that MAX will accept. Whenever MAX

finds a better move, MAX replaces the old lower bound with the new score

since it is a better choice.

In the preceding example, consider what happens when examining the

second move first. MAX obtains a score of -500 (or even a lower value since we

do not know exactly how bad the second move is), and then discovers the next

move results in a better score (1000). The search must examine both subtrees in

their entirety resulting in a tree with more total nodes and more work. Move

ordering is therefore very important since examining the best branch first

generates the smallest possible tree (a mathematical discussion of this is given

in chapter 4). This move order sensitivity is an important property of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

• max to move

■ min to move

Figure 2.3: Alpha-Beta minimax game tree. Black circles and squares
represent nodes examined. White circles and squares represent nodes
not searched by the alpha-beta algorithm.

alpha-beta search; that is, the algorithm depends on sequential searching to

establish the proper upper and lower search bounds.

Another not-so-obvious problem is that suppose we choose to examine

moves one and two in parallel. Since the lower bound (score for the first move

of 1000) is not known when examining the second move in parallel with the

first, the resulting refutation (called a cutoff) does not happen. Again, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

parallel search examines more nodes to get the same result as the sequential

search. In this example, both processors examine the same number of nodes

and they do it in parallel, which takes only one-half of the time required to

search these nodes sequentially. Unfortunately, the sequential alpha-beta

algorithm does not examine ALL of these nodes. These extra nodes, called

search overhead, are the nodes searched by a parallel algorithm but not by a

sequential program. Chapter 4 mathematically quantifies this difference; suffice

it to say for now that on occasion it is large enough to more than offset any

benefit obtained by parallel processing.

Any parallel search that occurs when the upper or lower bound is

unknown increases the size of the resulting tree beyond that searched by a

sequential algorithm. This is the first tree searching example where parallel

processing can increase the size of the tree, even though everything is

technically done exactly right by the parallel algorithm.

2.5. Summary

The uniform, non-uniform, and alpha-beta trees become progressively

more difficult for parallel implementations. Load balancing becomes nearly

impossible when assigning the work without being able to determine the

complexity of each of the branches. Searching branches in parallel without the

knowledge of values for alpha and beta results in subtrees that are larger than

their sequential counterparts.

To understand this behavior, chapter 4 mathematically examines the

alpha-beta algorithm (for uniform trees) and then develops an approach to

searching them in parallel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

PARALLEL TREE SEARCH ISSUES AND PROBLEMS

3.1. Introduction

There are many issues and problems encountered when developing a

parallel search algorithm [11, 17, 21, 23]. These problems cause reduced search

efficiency at one extreme and cause non-deterministic search behavior at the

other extreme.

Before developing parallel search algorithms, understanding how

sequential search strategies and enhancements behave in a parallel environment

is very important. Some dependable sequential search techniques suddenly fail

or cause other detrimental search effects when ported to a parallel machine.

We analyze specific well-known sequential search techniques and

enhancements in the following sections, paying particular attention to their

behavior in a parallel environment.

3.2. The Transposition Table

The trees searched by game-playing programs are not perfect trees, but

are more properly labeled graphs because many different branches can lead to

the same node via a transposition of move sequences [17, 24]. In order to

eliminate the redundant searches caused by examining the same subtree

repeatedly (identical positions reached by different sequences of moves), the

transposition table holds results for every subtree examined (or at least holds as

many as will fit in available memory). In figure 3.1 the two nodes labeled Xy

and Xi are identical positions reached by different sequences of moves. The

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

subtree below node X2 (omitted from the diagram for clarity) is normally

searched twice since this position occurs two times in the search. The

transposition table saves the result from the first traversal of this subtree to

avoid the second.

Xi

X2

Figure 3.1: Transposition of moves results in identical position.

Since the table is not large enough to store all possible subtrees for

searches run on machines like the Cray XMP or Cray YMP (where trees easily

contain over 100,000,000 nodes) we require a replacement strategy to overwrite

entries based on some measure of expected usefulness. This replacement

strategy can be as simple or as complex as desired, and generally pays big

dividends in terms of achieving maximum search efficiency. However, the

simple idea of replacement begins to fall apart on parallel machines.

When two processors want to update or update/access the same position, a

difficult arbitration problem develops. Also, when accessing the table by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

hashing, what happens when two different positions hash to the same position in

the table?

A secondary issue is the effect caused by replacing table entries when

processors search large subtrees in parallel. Processors benefit most from

saving positions that occur in positions reasonably similar to each other, such as

those that occur in the same subtree. If two processors search two completely

different branches (with different tactical and positional considerations) then the

transposition information from one branch is not useful when searching the

other. The processors then continually overwrite each other’s table entries,

resulting in a general search performance reduction. If very fine grained

parallelism is possible (assuming low overhead from the system and hardware),

then processors search subtrees that are more closely related and therefore

share useful information through this table rather than sharing useless

information and overwriting critical data while doing so.

The first transposition table problem to solve is selecting a replacement

strategy. This is very important since finding a position in the table saves a

significant amount of work. Storing the entry that will save the most work is a

possible plan; alternatively, saving the entry with the highest probability of use

is another reasonable option even though this saves less work.

The replacement strategy is not as important as the replacement process

since this is where the non-deterministic quality slips in. When all processors

are updating data in the table and retrieving data from the table, many timing

dependencies exist (see figures 3.2 and 3.3). In figure 3.2, processor A can read

position x and save a significant amount of searching since the position is in the

table; in figure 3.3, processor B replaces position x with another position before

processor A tries the same table retrieval. Now processor A cannot avoid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

searching the resulting subtree since the table entry is unavailable; therefore, it

searches this subtree and replaces many entries in the table also, possibly

affecting other processors. This goes on and on and guarantees that running an

eight-ply search ten times yields ten different node counts and ten different

search times (sometimes dramatically different!).

Figure 3.2: No processor interaction.

time processor a processor b

1 read position x —

2 discontinue searching write position x

3 start new subtree —

time processor 1 processor b

1 — write positon x
2 lookup position x

and fail
—

3 continue searching
this subtree

—

Figure 3.3: Processors interact with each other.

This is not the end of the problems, however. Processors can interact with

each other in surprising ways with the transposition table handy to share search

results immediately. It is possible for processors to operate in a synergistic

manner where processor A barely completes a subtree search and enters it in

the table in time for processor B to look the position up and save a lot of time.

The next run may alter the timing of this store/retrieve sequence to a

retrieve-failure/store sequence with the resulting larger tree since processor B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

does not find the entry, forcing it to examine the complete subtree this time.

Figures 3.4 and 3.5 illustrate this problem using the same timing diagram as

before. In figure 3.4 processor B saves time by finding the information stored by

processor A. In figure 3.5 processor B does not find the information in the table

and continues searching, even though processor A places it there immediately

AFTER the lookup fails.

Figure 3.4: Synergism between processors.

time processor 1 processor b

1 store results from
subtree x

—

2 — lookup position x
3 — discontinue

searching this branch

time processor 1 processor b

1 — lookup position x and
fail to find it

2 store results from
position x

continue searching

Figure 3.5: No synergism between processors.

Documented cases exist of twenty-ply sequential searches returning

search values that are impossible to obtain with a search of twenty plies [24].

The transposition table causes this by grafting a subtree representing ten plies

onto another subtree representing fifteen plies. This depends on searching the

ten ply subtree before searching the tree that needs this information so that this

synergistic interaction is possible. The parallel case is even worse. In the 1984

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

ACM North American Computer Chess Championship, a parallel version of

Cray Blitz made a strange move (that later won the game and tournament). It

cannot reproduce this move with any time limit that we set. We suppose that

some transposition table interaction similar to that described earlier caused the

problem (this was an early parallel version of the chess program.)

3.3. The Killer Heuristic

The killer heuristic is a well-known strategy for alpha-beta tree searches

that depends on accurate move ordering [21, 22]. This algorithm simply stores

any move that causes a cutoff in the tree or any move backed up to any level in

the tree as a new best branch. Programs generally keep such a list of moves for

each different level in the tree.

The reasoning behind this algorithm is that when considering full-width

(or brute-force) searches that examine all successor branches, there is a

reasonably small set of moves that are “good.” If a strong move Mx occurs in

position X, then this same move is probably good in most (if not all) positions

that occur at this same depth in the tree. This is true because trying all moves at

the previous level follows many branches that the same “good” move refutes.

Of course there may be many good moves that refute a branch, but finding only

one is sufficient for the alpha-beta algorithm.

The killer heuristic “remembers” a small set of good moves at each level

and tries them first in the search at those levels. This allows the program to

adapt to changing board conditions and remember good moves in the current

configurations. The computational cost of the killer heuristic is virtually nil

while the savings due to alpha-beta cutoffs caused by good move ordering is

significant. Most running programs show a reduction in nodes examined by a

factor of three to five when using this ordering strategy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Parallel searching somewhat confuses this issue as each processor

develops its own “killer” list while searching its subtree. The questions quickly

follow: What to share with other processors? Which processor has the best killer

moves? When should they share them (during the parallel search, at the

synchronization point, when one causes a certain number of cutoffs?)

Since the transposition table is such a major contributor of

non-deterministic behavior, disturbing anything that affects the number of

nodes examined aggravates this problem even further. Sharing the killer moves

during the parallel search rather than at a synchronization point introduces the

possibility of timing sensitivity. If processor A finds a good killer and shares it

with processor B just before processor B needs it, the search proceeds rapidly

without including extra nodes and adding additional information in the

transposition table. The next test run might let processor B get to the same point

before processor A and try another move since the good killer move is not yet

available. Trying an inferior move does not generate the quick cutoff obtained

before (because the killer move is unknown), therefore the tree contains more

nodes than the earlier one and also generates more transposition table entries

that overwrite other entries.

It is generally felt that each processor should not share killer moves while

searching in parallel, but rather that they merge the most popular killers from

the entire pool into one list whenever processors complete their parallel search

of a particular node. This tends to reduce the timing difficulties mentioned

earlier, but it also gives up a possible reduction in tree search space made

possible by sharing the killer list dynamically. This is particularly important at

nodes deep into the tree since the processors have no prior killer move

information to speed up the search.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

3.4. The System Problem

After completing the parallel algorithm development, interface with the

operating system (OS) begins. System overhead is critical since every cycle

spent doing system tasks detracts from the computation power applied to the

search problem. This directly affects the algorithms developed since it is usually

too costly to create and discard tasks during the tree search [12, 23].

Instead of a simple ’fork’ model we suddenly have to create tasks, keep up

with them when there is no work, and then assign them to the correct place

when work is available. Using the system FORK procedure to generate tasks and

using some type of RETURN to kill the tasks introduces system overhead that

can degrade algorithm performance drastically. Later analysis (given in chapter

4) suggests that reasonably fine-grained parallel processing yields the best

results; however, if the overhead for creating and destroying processes is too

high, the speedup is much less than optimal.

Sharing data is also non-trivial when designing algorithms for the general

shared memory multiprocessor model. In some architectures (the Cray XMP for

example) all processors can directly address the entire physical memory. This

includes the so-called TASK COMMON (process local common) used by other

processors. At the other end of this spectrum are machines like the Cray-2 and

Cray-3 with real local memory accessible only by the processor connected to it.

Virtual memory machines such as the Sequent Balance 21000 and

Symmetry can directly address all physical memory, but since each processor’s

local memory is in the same virtual address area, processors cannot access each

other’s local memory. Processor A copies the local data it wants to share with

processor B into global (shared) memory where both processors can access it.

This forces a processor to ’give’ its local data to another, and prevents a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

processor from ’taking’ data from another processor’s private or local memory.

While this is a safe mechanism, it causes problems for dynamic algorithms that

need to share data with minimal “handshaking.”

This memory problem constrains the techniques used to share data. A

processor on the Cray XMP can easily pass the address of its local memory to

another processor which then freely reads/writes it as necessary (using some

type of hardware synchronization to prevent interleaved updating and other

types of problems). Running this same program on the Sequent generates

incorrect results since passing the address of local common between processors

fails because each processor has its own local common mapped into the same

virtual address space (using different areas of physical memory).

Developing algorithms for the general shared memory multiprocessor

model requires addressing these considerations in the algorithm design phase so

that the problems do not ’slip in’ and cause algorithm failures when transporting

a working code to a new machine.

3.5. Non-Determinism

It should be obvious by now that one of the most important problems

facing the designer of a parallel algorithm is debugging. The preceding

problems generally result in non-reproducible results; the search usually returns

the same suggested move, but the principle variation, score, and node counts

vary from test run to test run. The timing variance causes slight differences to

creep in during test runs, even on a dedicated machine. If the tests require

several consecutive searches from the root position, these differences can cause

the search to return completely different results from one run to another [5, 14,

23, 25, 27].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

A parallel search to some fixed depth never returns a search result worse

than that returned by the sequential search. The parallel search commonly

returns results BETTER than the sequential search because of the synergistic

behavior discussed earlier. However, when debugging these large and complex

algorithms, constant behavior simplifies the testing and debugging problem.

Eliminating the non-determinism causes a reduction in the quality of the search

results since the synergistic effect is lost. It is not clear that eliminating the

non-determinism is possible with the timing variances that regularly occur in

parallel machines since the operating system constantly responds to external

interrupts (such as network traffic, timer interrupts, I/O interrupts, etc.);

however, eliminating this behavior adversely affects the search results due to the

excessive synchronization overhead required.

3.6. Summary

Normal sequential algorithms exhibit strange and bizarre behavior when

used in a parallel environment. Non-deterministic behavior makes testing and

debugging extremely difficult since the timing data and results are often

non-reproducible.

Many researchers find that the best sequential algorithms perform poorly

in a parallel environment and this seems to carry through to the parallel search

of game trees.

With large numbers of processors, it is much more important to keep

them all busy than it is to minimize the search space. Search space cannot be

ignored, but the computational power lost when using efficient sequential

algorithms on parallel machines directly affects the total performance of the

system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Chapter 4 gives precise mathematical analysis of the alpha-beta problem

with particular emphasis on the parallel search performance issue. It seems to

hint that spectacular parallel performance is possible although previous results

fall short of this goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

MATHEMATICAL ANALYSIS OF ALPHA-BETA

4.1. Minimax Game Tree Search

In a minimax search to depth d with w possible successor branches at each

node of the tree, equation (1) defines N, the number of nodes examined.

N=Wd (1)

4.2. Alpha-Beta Game Tree Search

Knuth and Moore proved that the alpha/beta algorithm reduces this

number of nodes significantly[13]. Assuming perfect move ordering, the

alpha/beta algorithm reduces N to the value Nap defined by:

Nap = - 1 (2)

This reduction in total nodes examined allows searching to a depth that is

unreachable without the alpha-beta algorithm.

In defining this formula, Knuth and Moore classified all nodes occurring

in an alpha-beta tree into one of three types:

Type 1: The root position is a type 1 node. The first successor
of a type 1 node is itself a type 1 node, while all other successors of
a type 1 node are type 2 nodes. Type 1 nodes have all of their
successors examined.

Type 2: A type 2 node is a successor of a type 1 node (as given
above) or a type 3 node. A type 2 node only has one successor
examined (for perfectly ordered game trees).

Type 3: A type 3 node is a successor of a type 2 node and has
all of its successor branches examined. The ordering of branches
from a type 3 node is not important to the efficiency of the search.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

It is important to note that the number of successors given above is correct only

when perfect move ordering occurs (except for type 3 nodes). For example, if

the first branch chosen from a type 1 node is not the best one, the resulting

position is still searched as though it is a type 1 node (by rule 1 above). Later

however, when searching the best branch from the type 1 node, it also is a type

1 node (rather than a type 2 node) which results in examining extra nodes. This

happens because the lower/upper bound is incorrectly fixed by the poor original

successor to the type 1 node. The actual best branch correctly establishes the

bound but searches additional branches that are normally pruned. Ordering at a

type 2 node is also important since examining the best (or at least a good)

successor is necessary. If this is not done, the search examines unnecessary

successors before finding a refutation move.

As an example, noticing that the first successor of a type 1 node is itself a

type 1 node and that other successors of a type 1 node are type 2 nodes, a

parallel algorithm might examine one of the supposedly type 2 nodes before the

first node at that level (a type 1 node) is completely examined. The result would

be that the lower/upper bound is not properly identified, causing the type 2 node

to behave like a type 1 node requiring the examination of all successors. This

node typing therefore has a sequential property that can introduce a surprising

amount of overhead (that is difficult if not impossible to eliminate) when it is

used in a parallel tree searching algorithms

4.3. Parallel Alpha-Beta Search

The following sections show that for parallel implementations, Nap

increases well beyond the limit given in (2) above if care is not taken. First,

equation (2) requires perfect move ordering within the tree (for successors of

type 1 and type 2 nodes). While this is not always possible, well-known

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

algorithms exist that provide a reasonable approximation to this ordering.

Second, the alpha/beta algorithm uses information obtained from the first

branch of type 1 and type 2 nodes to reduce the work done when searching the

remaining branches. In particular, examining the first branch (at some level)

establishes the lower(upper) search bound for the rest of the branches at that

level since the minimax algorithm never chooses a move that is worse (better)

than one already examined.

Unfortunately, parallel searching of a minimax tree using the alpha/beta

algorithm violates this principle because at some node in the tree, the code

examines successor two (or some other successor) in parallel with successor one

so that the value (lower/upper bound) for move one is not available. This

difficulty with the parallel search tends to increase the value of Nap. Without

proper control, this increase is large enough that the additional time spent

examining the extra nodes will offset the time saved by searching multiple tree

branches in parallel.

It can be shown from equation (2) that the number of nodes examined on

the first branch taken (when no lower search bound is known), denoted Np,, is

given by the following equation:

(3)

The proof is as follows: equation (2) defines the minimum number of nodes

examined from a type 1 node with depth = d. Since the first descendent of a

type 1 node is also a type 1 node, reducing d by 1 defines the minimum number

of nodes examined for a tree that is one level shallower. From this equation and

equation (2), the number of nodes contained in each of the remaining branches,

denoted Nrb, is:

Subtracting (3) from (2) generates this equation. Since there are w-1 branches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

uW + wW-wlW
w — 1

left at the root position after examining the first branch, each of these

remaining branches contains l/(w-l) of the total nodes left to examine after the

first branch. By comparing equation (3) with equation (4), the first branch

examined (with no lower/upper bounds established) will contain significantly

more nodes than branches examined after the first one. For an eight ply search

of a game tree from chess, assuming w = 38, the first branch contains 2,140,007

nodes, and the remaining 37 branches (from the root position) contain 54,872

nodes each.

4.4. Principle Variation Splitting (PVS)

Since the first branch of the tree contains significantly more nodes than

any other branch, it seems reasonable that the processors search different parts

of this branch in parallel. Avoiding searching more than one root branch

without a known lower/upper search bound (alpha/beta) is an obvious benefit of

this algorithm.

By applying equations (3) and (4) to the subtree comprising the first

branch examined from the root position, the first branch examined in this

subtree will also have significantly more nodes than the remainder of the

branches that must be examined. This holds true for the first branch of every

node examined where the lower/upper bounds of the search are unknown (type

1 nodes).

From the preceding discussion, the search must avoid parallel division of

work at nodes where the lower/upper search bounds are unknown. If parallel

division does occur at such a node, then each processor searches a subtree

containing Np, nodes first, and therefore examines more than the minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

number of nodes (N^). Since violating this principle at some point in the tree

is necessary to use all available processors, the division must occur as deeply in

the tree as practical in order to minimize the difference between Nfb and Nrb.

The real purpose of the PVS algorithm [5, 12, 19, 25] is to minimize the

difference Nfb - Nrb. By inspection, this occurs when the exponent d is as small

as possible when the upper/lower search bounds are unknown. For example,

when executing an eight ply search, if the parallel division of the tree is done at

depth eight first, then each subtree (ignoring the quiescence search) would only

have one node. This would improve the performance of the parallel search since

parallel or sequential searches would contain the same number of nodes as

discussed earlier.

Next we modify equations (3) and (4) to determine the number of nodes

examined by the PVS algorithm. Let dp represent the depth where the parallel

division occurs. Since d in equations (3) and (4) represents the depth of the

tree, the corresponding value for the PVS algorithm, d-dp+1, represents the

depth of the subtree from the point of division. The resulting equations are:

(5)

Nrh = ul(^n/2j4V(dv+1)/2l-wL^ (6)

In these equations, replace dv with d-dp. These are then combined with

equation (3) to define the number of nodes in a tree using the PVS algorithm

and dividing the tree at depth dp using p processors.

Npvs = Nap + (p - 1) * (Nfb - Nrb) (7)

This can be proven by the following informal reasoning. Nap in the

equation defines the number of nodes in a perfect alpha/beta tree. The term

(p -1) * Nfb comes from equation (5) and defines the number of nodes p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

processors will look at on the first branch of level dp, since the first descendent

of a type 1 node is itself a type 1 node. If each processor takes a descendent of

a type 1 node to examine, then these will be type 1 nodes themselves, resulting

in a larger than optimal tree. The term (p-1) * (-Nrb) comes from equation

(6) and defines the number of nodes remaining after each processor searches

exactly one branch at the point of division (dp). When searching p-1 extra type

1 nodes, it follows that p-1 type 2 nodes disappear since these type 2 nodes

transform into type 1 nodes because of the parallel division.

In analyzing this equation, as dp approaches d, the number of extra nodes

approaches zero since a type 1 node has the same number of successors at the

terminal depth as does any other type of node (none). At the tip of the tree all

branches (including the first one) result in terminal positions that require no

additional searching.

From this discussion, it follows that dp should be as close to d as possible

in order to maximize the performance improvement made possible by the PVS

parallel searching algorithm. Equations (3) and (4) combined with the PVS

algorithm shows that if dp is chosen correctly (dp = depth of search), then (3) +

(4) result in the same number of nodes as defined by (2). This implies that a

parallel search with NO additional nodes is possible.

An unfortunate side-effect of such a choice for dp is that communication

and coordination between processors must occur at depth dp. At this point in the

tree, the processors share a list of branches to examine and access some type of

shared data structure to prevent different processors from choosing the same

branch. As dp increases (reducing the size of the subtree a processor searches)

a corresponding increase in coordination and communication traffic at depth dp

occurs. If the communication cost is high or the coordination is not efficient, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

time lost results in poor processor utilization even though examining few (or

even no) extra nodes.

4.5. Summary

For this algorithm to be most useful, dp must approach d. This requires

that the multiprocessing architecture supports efficient sharing of resources and

processor synchronization. Additionally, a processor must start processing

immediately whenever reaching a node where work is to be done in parallel.

The speed of these operations directly influences the overhead introduced as dp

approaches the value of d.

To summarize, the preceding analysis predicts reasonable parallel

performance of the alpha-beta algorithm. However, avoiding searching extra

nodes is not always easy and straightforward.

Chapters 5 through 7 use this mathematical analysis to develop

successively better algorithms for the parallel search of game trees. All of these

algorithms struggle to minimize the tree size based on these mathematical

premises while at the same time keeping all processors busy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

PRINCIPAL VARIATION SPLITTING (PVS)

5.1. Cray Blitz

Coding and testing algorithms for a parallel search requires a working tree

search program of some sort. The availability of Cray Blitz, a computer chess

program, eliminated the need for developing such a program first. A secondary

motive for using Cray Blitz is the active interest in making it as fast as possible,

particularly when considering that Cray Blitz runs on the fastest available

supercomputers.

5.2. The PVS Algorithm

The most widely used algorithm for searching game trees in parallel

(alpha/beta trees specifically) is the Principal Variation Splitting (PVS)

algorithm [1, 2, 5, 6, 7, 8, 11,12, 19, 20, 21, 22, 23, 25, 27]. Developed

simultaneously at several different universities, it is a natural result of the

preceding analysis.

The name comes from the “principal variation” idea in games where the

best sequence of moves from the root position is known as the principal

variation. Game programs take great pains to properly order the tree to

maximize the alpha-beta cutoffs that occur, generally resulting in nearly

optimal move ordering. If these ordering strategies are successful, then the first

node at each successive level in the tree is of type 1 (from the mathematical

analysis presented earlier.) These nodes represent ideal locations for parallel

processing since the search examines all successors of type 1 nodes.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

When executing a search to depth eight, one processor traverses the first

seven nodes (one at each successive depth) and then divides the work at depth

eight among the available processors. Since this node is a type 1 node,

examining all successors in parallel occurs with no loss of time. When a type 1

node at depth d is completely examined, all processors back up to depth d-1

and search the remaining branches (at that depth) in parallel. This process

continues until the group of processors reach depth one and search the entire

list of alternatives at that level.

This algorithm has little risk in terms of search overhead since parallel

splitting occurs only at type 1 nodes. The only circumstance that sometimes

causes extra search overhead is the improper ordering of branches somewhere

in the tree so that a type 1 node does not have all successors examined (it would

not be a type 1 node even though it matches the definition because move

ordering is not correct.)

The difficulty with this algorithm lies in the non-uniformity of the game

tree. Since the processors search successors of the same node in parallel, they

must finish before returning to the previous depth to continue the parallel

division. If some of the processors return to the previous level too soon, one of

the remaining busy processors might return a better bound to the current depth.

This causes the processors that returned too soon and started searching without

the proper search bounds to possibly (or probably) search extra nodes as a

result. The additional nodes searched make this algorithm unattractive;

however, eliminating this search overhead by not allowing any of the processors

to start work at the previous level until completing the current level causes

another type of problem: increasing the synchronization overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Synchronization overhead is a result of one processor (or more than one)

waiting on another to complete some type of work. Since the trees are not

uniform, this synchronization overhead accumulates very quickly. Technically, it

is the primary reason that variations of the PVS algorithm produce less than

optimal speedups when compared with the maximum performance obtainable

by parallel processing.

This algorithm produces reasonable performance (a speedup of five to

eight) with careful tweaking to balance search overhead caused by lack of

synchronization with synchronization overhead caused by trying to reduce the

search overhead. This is a circular type of problem where improving one area

adversely affects the other.

A more general defect in this algorithm is that all processors work at the

same node within the tree. For machines with large numbers of processors, it is

not unreasonable to expect that cases exist where there are more processors

than branches. If this happens, the parallel search starts at that point with

processors already idle, rapidly accumulating large amounts of synchronization

overhead. Even for current levels of parallelism, as the games progress (chess,

checkers, go, etc.) the board becomes simpler with the resulting less complex

(lower branching factor) trees. Here, the parallel performance steadily drops

lower and lower as the game progresses.

5.3. PVS Results With Uniform Game Trees

An old version of Cray Blitz uses the PVS algorithm just described. These

tests were run on a Sequent Balance 21000 computer with thirty NS32032

microprocessors and 16mb of shared memory.

This implementation of the PVS algorithm assigns the current search

depth to the variable dp. In these tests, dp was set to cause the first parallel split

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

along the principal variation to occur at the maximum depth of the search where

all nodes are terminal except for those expanded by the quiescence search.

We modified the Cray Blitz tree search in the following ways for these

tests. The move generator produces a constant number of moves at each

position (this parameter varies between 2 and 64 for these tests). We disabled

the quiescence search so that no branch extends deeper than any other branch.

These changes generate perfectly uniform trees. Additionally, we disabled the

alpha-beta algorithms for these tests making the code examine uniform game

trees using the minimax algorithm.

Table 5.1: PVS algorithm speedup when searching uniform game trees.

w d
time in seconds

1 2 4 8 16
speedup

2 4 8 16

2 16
4 9
8 6

16 5
32 4
64 3

575 581 584 590 594
795 537 275 278 277
523 301 154 78 84

1707 924 464 233 141
1563 819 410 2028 112

357 183 94 46 25

0.99 0.98 0.97 0.97
1.48 2.89 2.86 2.87
1.74 3.40 6.71 6.23
1.85 3.68 7.33 12.11
1.91 3.81 7.51 13.96
1.95 3.80 7.76 14.28

tot
avg

5520 3345 1981 1433 1233
920 557 330 238 2205 1.65 3.09 5.52 8.40

Table 5.1 gives the results obtained from using the PVS algorithm and

varying the numbers of processors to execute an exhaustive search on a test

position. The branching factor varies from two successors per node up to

sixty-four successors per node. This data is graphically summarized in figure

5.1.

Table 5.1 shows that when dividing the work up at only one node at a

time, the branching factor serves as an upper bound for the speedup obtained.

This obvious conclusion is supported by the results produced by smaller

branching factors. As most games progress they become simpler with a steadily

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

u

*Q
 c

cl
 n

 m 10

12

14

16

2

4

6

8

0------ -------1------ -----------------------------------
0 2 4 6 8 10 12 14 16

number of processors

Figure 5.1: PVS algorithm speedup on uniform game trees,

reducing branching factor in their trees. When there are more processors than

branches, performance suffers since the extra processors sit idle.

Several conclusions follow from this uniform tree search data. For very

small branching factors (two is an example), the parallel processing overhead of

the PVS algorithm causes less than optimal performance. Specifically, the PVS

algorithm (with more than one processor) provides no performance advantage

over the sequential algorithm.

This broad variation in branching factors represents the types of trees

encountered in games like chess and checkers. The narrow branching factors

represent the trees found early and late in the game or when captures are

possible in the game of checkers, and the wide branching factors represent the

trees found in the middle of the game when the positions are most complicated

in chess or no captures are possible in checkers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

5.4. PVS Results With Non-Uniform Game Trees

Next, we modified Cray Blitz so that it searches non-uniform minimax

game trees. Since non-determinism makes testing difficult, Cray Blitz uses the

relative position of a branch to determine the branching factor of the node it

produces. In this manner, searching the branches in any order still produces the

same search tree.

Table 5.2: PVS algorithm speedup when searching non-uniform game trees with
varying depths (d) and branching width (w).

For non-uniformity in depth, the program searches a wildly tactical

position with several queens and a king on each side. The many checking

variations (along with those that directly lead to checkmates and draws) cause

the desired non-uniformity in depth and even affects the non-uniformity in

width on occasion. The alpha-beta algorithm was left disabled so that the

program searches minimax trees for this test.

Table 5.2 gives the results obtained when using the PVS algorithm and

searching non-uniform game trees. The column labeled w gives the average

branching factor for this test. For example, if w = 8 and a node produces eight

branches, the first branch has one only one successor, the second branch has

two successors, and so forth. The actual branching factor averages (w+l)/2.

This data is graphically summarized in figure 5.2.

w d
time in seconds

1 2 4 8 16
speedup

2 4 8 16

2 16
4 9
8 6

16 5
32 4
64 3

351 360 391 453 581
294 242 217 229 288
503 336 252 224 271

1869 1064 696 522 490
3838 2071 1170 738 585
3462 1850 1013 622 447

0.98 0.90 0.77 0.60
1.21 1.35 1.28 1.02
1.50 2.00 2.25 1.86
1.76 2.69 3.58 3.81
1.85 3.28 5.20 6.56
1.87 3.42 5.57 7.74

tot
avg

10317 5923 3739 2788 2662
1719 987 623 464 443 1.53 2.27 3.11 3.60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

e
d
u
P

16

14

12

10s
p

0L
0 2 4 6 8 10 12 14 16

number of processors

Figure 5.2: PVS algorithm speedup on non-uniform game trees.

The non-uniform tree test illustrates the problem with the PVS algorithm.

Whenever the branching factor is less than the number of processors, the

speedup cannot exceed the branching factor. Since many branches are quite

narrow in trees such as these, the speedup shows even less improvement,

particularly with more and more processors available. For future machines with

hundreds of processors, these algorithms are totally unsuitable.

5.5. PVS Results With Non-Uniform Alpha-Beta Game Trees

Tables 5.3 and 5.4 give the results obtained when using the PVS algorithm

and varying the number of processors to execute an exhaustive 5-ply

alpha-beta search on a well known set of positions [23]. Table 5.3 gives the

node counts for the one, two, four, eight and sixteen processor test using the

Bratko-Kopec problem set. The total and avg rows at the bottom of each table

summarize the results and also smooth out the somewhat unusual data values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

collected for some of the test cases. Figure 5.3 depicts this data graphically and

shows the minimal search space increase when adding additional processors.

14

O > O k
 jS v

av u u u

n
10

12

2

4

6

8

0 —I—------ ------ ------ ------ ------ ------ ------
0 2 4 6 8 10 12 14 16

number of processors
Figure 5.3: Percent increase of search overhead by number of processors.

This data illustrates several interesting attributes of a parallel search.

Notice that the node counts do not uniformly increase as the number of

processors increases, but that they sometimes decrease by a significant amount.

This results from the non-deterministic behavior in the shared transposition

where all processors update and use information obtained by other processors in

an unsynchronized manner (described earlier).

Notice also that the node counts occasionally increase dramatically when

adding processors, sometimes causing the search to take longer with more

processors. Repeatedly running the same tests generally eliminates such

behavior; therefore, it makes more sense to use a statistical average of several

test runs to smooth out these anomalies although in these test cases the unusual

totals were left in to illustrate this behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

The performance data from table 5.3 shows that additional processors

increase the size of the tree by a small amount; this is offset by the benefit

gained in terms of search time shown in table 5.4.

u

•o
 C

0.
0 0

*0
 co 10

12

16

14

2

4

6

8

2 4 6 8 10 12 14 16
number of processors

OL
0

Figure 5.4: Speedup as number of processors is increased.

Figure 5.4 condenses the data from table 5.4 and shows the performance

speedup produced by the PVS algorithm. The PVS algorithm is quite efficient

because it results in little extra work being done. The average speedup for two,

four, eight and sixteen processors is also interesting in that the performance

curve flattens rapidly beyond four processors.

Two positions result in anomalies caused by the short amount of time

required to complete a five-ply search. In particular, problem one finds the

solution at a depth shallow enough that parallel processing is almost useless and

problem eight has such a low branching factor that most processors have no

work to do. The performance figures for problem one were excluded from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

tables since it is a special case and has been treated similarly by other

researchers.

Table 5.3: PVS algorithm node counts.

pos
total nodes

lcpu 2cpu 4cpu 8cpu 16cpu
1 ———
2 90337 90395 93968 91340 96479
3 29529 29528 29834 30215 30287
4 87411 82994 86938 82943 86214
5 153900 163048 166317 174911 171384
6 13379 13516 13904 14157 13962
7 50675 51405 54675 56167 48441
8 6530 6665 6699 6833 7447
9 75555 79260 77098 86639 55863

10 96369 98214 112360 96749 127496
11 56960 57261 59275 59759 60873
12 197945 206202 213085 214776 219764
13 66899 74519 84702 74484 94951
14 56660 57816 57547 59512 56364
15 53384 53913 54267 55665 56329
16 75483 82509 86909 96321 97722
17 58624 76723 89125 88307 69466
18 120988 124374 137831 138693 146334
19 62071 58784 61657 60079 61091
20 97537 98425 106257 111466 151428
21 141686 158172 157725 159302 162938
22 67291 66150 68198 69649 63782
23 50081 50552 52070 52925 55568
24 73479 73749 73676 74221 74497
tot 1782773 1854174 1944117 1955113 2008680

avg 77512 80616 84527 85005 87334

The table row labeled ”mse” is the mean standard error and represents

the variability of the timing data that is caused by the non-deterministic

behavior of the parallel algorithm. This table (and similar tables in later

chapters) represent average timing over many test runs. This data provides an

estimate of how much the timing varies from run to run with absolutely no

changes to the algorithm, test data or hardware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Table 5.4: PVS algorithm speedup.

pos
time in seconds speedup

lepu 2cpu 4cpu 8cpu 16cpu 2cpu 4cpu 8cpu 16cpu
1 — ■•wee» ... ——
2 970 508 278 210 201 1.91 3.49 4.62 4.82
3 375 205 124 93 87 1.83 3.02 4.03 4.31
4 1950 972 674 487 477 2.01 2.89 4.00 4.08
5 3193 1927 1035 986 971 1.66 3.09 3.24 3.28
6 141 77 50 41 41 1.83 2.82 3.44 3.44
7 584 312 190 134 111 1.87 3.07 4.36 4.36
8 75 46 34 42 42 1.63 2.21 1.79 1.79
9 958 554 315 263 122 1.73 3.04 3.64 3.64

10 1174 606 385 229 317 1.94 3.05 5.13 5.13
11 697 364 208 136 132 1.91 3.35 5.13 5.28
12 3763 2079 1131 675 439 1.81 3.33 5.57 8.57
13 652 374 239 148 175 1.74 2.73 4.41 3.73
14 1068 569 323 252 234 1.88 3.31 4.24 4.56
15 939 484 264 241 243 1.94 3.56 3.90 3.86
16 1283 732 526 436 417 1.75 2.44 2.94 3.08
17 737 514 442 366 128 1.43 1.67 2.01 4.66
18 1977 1042 659 460 461 1.90 3.00 4.30 4.29
19 741 419 316 255 249 1.77 2.34 2.91 2.98
20 2009 1060 596 393 371 1.90 3.37 5.11 5.42
21 2706 1458 811 554 549 1.86 3.34 4.88 4.93
22 840 426 280 236 120 1.97 3.00 3.56 7.00
23 600 325 188 124 113 1.85 3.19 4.84 5.31
24 758 391 217 146 140 1.94 3.49 5.19 5.41
tot 28190 15444 9285 6907 6143 1.83 3.04 4.08 4.59

mse 0 3 10 35 44 .00 .01 .05 .11

5.6. PVS Performance Summary

The PVS algorithm suffers from the defect of dividing one node at a time

among the various processors. If a chosen node does not have enough branches,

processors sit idle causing performance degradation.

To remedy this, we describe the enhanced PVS (EPVS) algorithm in

chapter 6. This algorithm attempts to address this problem and reduce this idle

time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

ENHANCED PRINCIPAL VARIATION SPLITTING (EPVS)

6.1. The Enhanced PVS Algorithm (EPVS)

As described, the PVS algorithm is efficient for trees that are perfectly

ordered (for reasonably small numbers of processors). The PVS algorithm has

one particular failing that greatly reduces the performance obtained on a

parallel machine. If the branches given to various processors for parallel

examination are not roughly equivalent in the amount of work required to

analyze them, then some processors sit idle waiting on others to finish

examination of the last few branches [5, 12, 19, 20, 23].

Even though move ordering cannot be perfect, there are several

algorithms that generate good ordering without requiring an unacceptable

amount of execution time. One of these, the iterated or staged search [2, 5, 10,

11, 18] provides good move ordering by first doing a shallow search and then

using information from this shallow search to improve the move ordering for a

deeper search. However, since the ordering is not perfect, at some point when

using the move ordering information from a depth d search to execute a depth

d+1 search, the depth d+1 search will discover that a different move is best.

We expect this “change of heart” since the reason for doing the depth d+1

search is to improve upon the information gained from the depth d search.

Every time the search finds a new best move for the same depth, it examines

additional (extra) nodes (Nfb-Nrb where dp = 1 to be exact). Finding a better

move at depth d+1 is the only justification for spending the time necessary to

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

complete the search. However, an unfortunate performance penalty occurs since

only one processor is searching this soon to be best move (recall that all

processors eventually split up the moves at ply=l and then synchronize before

starting the next search one ply deeper.)

If all processors work on the same node (as in PVS), a potential problem

of load balancing occurs when giving one processor a task that is significantly

more complex to do than those given to others. Whenever a processor runs out

of work while other processor(s) are busy, that portion of the total

computational power of the computer system is being lost.

In order to minimize this problem, we now modify the PVS algorithm to

address this case. The enhanced PVS (EPVS) algorithm detects the condition

where a processor becomes idle at any node in the tree. When a processor can

find no additional work to do at the current divide node, it assumes that the

remaining busy processors are searching complex branches and sends a stop

signal to them. The sequential search then advances two plies deeper (following

one of the complex branches deeper into the tree) before restarting the parallel

search. This allows all processors to work on the same subtree. The

transposition table [24] keeps the set of processors from re-examining branches

within this subtree already examined by a single processor before it honored the

resplit request.

This algorithm is recursive in that if the case again arises where one

processor becomes idle, the group will go two plies deeper into the remaining

subtree to re-divide the work up again. Each time this occurs, the division point

(dp) moves closer to the maximum depth of the search, resulting in smaller and

smaller subtrees for each processor to examine in parallel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

This has proven to be quite effective as will be seen in the results section.

This enhancement makes parallel processing with more than four processors

yield reasonable performance whereas the regular PVS algorithm shows little

benefit with more than four processors.

With this modification, there is a risk associated with the tree search. If

the move ordering is less than perfect, then the point chosen to re-divide the

tree search might not be a type 1 or type 3 node. If this occurs, extra work will

be done causing the corresponding loss of performance. This small loss of

efficiency is offset by the additional computational speed gained by keeping the

processors busy.

6.2. EPVS Results With Uniform Game Trees

For this test, we use the same modified tree search from section 5.3 which

produces a uniform game tree. The program searches the same position used in

section 5.3 and the corresponding results appear in table 6.1. This data is not

summarized in a figure because of the cases where the speedup was nearly zero

when there were more processors than branches at most node.

Table 6.1: EPVS algorithm results when searching uniform minimax game
trees. — entries indicate that the search takes an excessive amount of time
compared to the sequential search.

w d
time in seconds

1 2 4 8 16
speedup

2 4 8 16

2 16
4 9
8 6

16 5
32 4
64 3

575 475 “ - -
795 439 400 - -
523 268 150 - -

1707 861 433 538 -
1563 780 395 201 686
357 183 92 42 49

1.21 — — —
1.81 1.99 — —
1.95 3.49 — —
1.98 3.94 3.17 —
2.00 3.96 7.78 2.28
1.95 3.88 8.50 7.29

In table 6.1, the columns labeled “—” indicate that the corresponding

speedup is less than one. For this reason, totals and averages are not given since

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

the results are meaningless. These columns represent the cases where the

search “blows up” and requires excessive time when compared to the sequential

algorithm.

The EPVS algorithm is very sensitive to the ratio of the number of

processors to the number of moves (branching factor). As this ratio grows

beyond one, the overhead increases tremendously. Idle processors (which occur

at EVERY node) constantly request resplits. As the busy processors stop and

honor these requests, the next resplit operation immediately results in additional

resplit requests since idle processors report in at every node.

For current supercomputers like the Cray XMP which has four processors,

the search never “blows up” as it does in this test. As new machines with more

processors arrive however, we expect significant problems with this algorithm

when searching simple trees like those that occur in endgame positions.

EPVS shows little improvement over PVS for uniform trees. In fact, due to

its propensity for “blowing up” when the number of processors exceeds the

number of branches, it produces results worse than the basic PVS algorithm.

The next section applies the EPVS to the more difficult non-uniform tree search

problem where the results are more favorable.

6.3. EPVS Results With Non-Uniform Game Trees

Table 6.2 shows the performance for the same non-uniform test given in

section 5.4. The EPVS algorithm does better on this test since the non-uniform

character of the search produces both complex and simple branches from the

same parent node.

Once again, the EPVS algorithm shows a propensity for “blowing up”

when the number of processors exceeds the number of branches at a node. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

non-uniformity smoothes this out here since the resplitting operation usually

finds a complex node to split.

In this test case, the algorithm shows that it can offer significant

performance improvement over the PVS algorithm, but only when the number

of processors is less than the branching factor. Violating this requirement

sometimes results in search times an order of magnitude larger than the

sequential search time.

Table 6.2: EPVS algorithm results when searching non-uniform minimax game
trees with varying depths (d) and branching width (w). — entries indicate that
the search time takes an excessive amount of time.

w d
time in seconds

2
speedup

1 2 4 8 16 4 8 16

2 16 351 321 401 _ 1.09 0.88 __
4 9 294 231 198 — — 1.27 1.48 — —
8 6 503 307 212 227 — 1.67 2.37 2.22

16 5 1869 1013 599 421 467 1.85 3.12 4.44 4.00
32 4 3838 2020 1106 643 701 1.90 3.47 5.97 5.48
64 3 3462 1795 940 565 376 1.93 3.68 6.13 9.21

In chess, except for very simple endgame positions, this excessive search

overhead problem does not occur often enough to render this algorithm

unusable. While very narrow branches occur during the course of the tree

search, they occur infrequently, or at least they occur rarely enough that the

search does not “blow up” in actual play as it does in these examples. However,

the potential for disaster does exist with this algorithm as these tables show. If

the program spends most of its time executing overhead code, it can surely

make a tactical mistake due to the reduced search depth it obtains when wasting

so much time, resulting in a significant risk that the program might make a

tactical blunder due to the reduced search depth caused by this overhead. In

such a case, the parallel algorithm might actually lose where the sequential

algorithm would not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

6.4. EPVS Results With Non-Uniform Alpha-Beta Game Trees

This section tests the EPVS algorithm on the most difficult test tree of all,

the alpha-beta tree. The increased search depth made possible by this algorithm

greatly increases the effectiveness of the EPVS algorithm and seems to avoid

the conditions that cause the search to “blow up.”

Tables 6.3 and 6.4 provide the same information for the EPVS algorithm

as that presented in chapter 5 for the PVS algorithm. It is important to note that

even though EPVS is faster than PVS, the performance gain comes from

reducing processor idle time and adds virtually no additional nodes to the tree.

The data in tables 6.3 and 6.4 is graphically summarized in figures 6.1 and 6.2.

16

10

14

12

2

4

6

8

0 4-J------ ------ ------ 1------ ------ ------ ------
0 2 4 6 8 10 12 14 16

number of processors

Figure 6.1: Percent increase of search overhead by number of processors.

Test results are not given for more than sixteen processors even though

the Sequent Balance 21000 has 30 processors in our configuration. Using more

than sixteen processors causes the slope of the speedup curve to go negative,

showing that additional processors sometimes hurt performance. This is caused

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

d
u
P

16

14

12

10

0L
0

s
P
e

2 4 6 8 10 12 14 16
number of processors

Figure 6.2: EPVS algorithm speedup on alpha-beta game trees.

by the fact that the local memory used by each process created by the chess

program is sufficient to exhaust the real memory available on the Sequent when

using sixteen or more processors (a maximum of sixteen megabytes in the

current hardware configuration). Going beyond this point causes process

swapping (drastically increasing the I/O traffic) which causes severe

performance degradation.

It is worrisome that some branches are more complex than others, even

when the subtree examined occurs near the maximum search depth. Better

game-tree programs (chess in particular) must have a sophisticated quiescence

search to avoid tactical/positional blunders. This always results in narrow trees

that are unsuitable for large numbers of processors since the branching factor is

is extremely low in these cases. Tests with the quiescence search disabled

provide much more impressive results by eliminating the majority of these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

narrow branches, but they only do so by side-stepping the real issue of

improved performance without reducing the quality of the search.

Notice also that the variability of the search times increases when using

this algorithm. The resplit operations occur at unpredictable times and

sometimes occur at correct nodes. On other occasions, a resplit is done at a

node that doesn’t require a full search which introduces search overhead and

the time variability.

6.5. EPVS Performance Summary

The EPVS algorithm offers improved performance over the PVS algorithm

in most search problems. It also offers the potential for disastrous search

overhead when the number of processors gets large or the branching factor

becomes small.

Dividing the tree at one node at a time increases this risk when using large

numbers of processors. Chapter 7 describes a much-improved algorithm that

circumvents this problem completely.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

Table 6.3: EPVS algorithm node counts.

pos
total nodes

lepu 2cpu 4cpu 8cpu 16cpu
1 II ■ II

2 90337 75265 74507 96624 89464
3 29529 29645 30081 30319 30480
4 87411 84079 81469 103207 96552
5 153900 151460 161367 163222 167350
6 13379 13642 14004 14281 14631
7 50675 51450 51040 56138 58008
8 6530 6943 6989 7203 7772
9 75555 78509 81540 87161 85114

10 96369 93839 105983 104126 101158
11 56960 58373 59438 60717 61486
12 197945 207219 207426 216477 228925
13 66899 74318 75645 74664 88700
14 56660 58725 56561 58178 56636
15 53384 54096 54437 56888 56973
16 75483 82603 87025 95520 99733
17 58624 78252 84698 63189 94945
18 120988 131156 137621 138282 147557
19 62071 61086 61161 63067 66150
20 97537 97864 106242 114871 110267
21 141686 153738 157788 146496 177198
22 67291 66383 72557 76496 68029
23 50081 50082 52499 47160 56929
24 73479 73749 73457 75634 83936
tot 1782773 1832476 1893535 1949920 2047963

avg 77512 79673 82328 84779 89042

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Table 6.4: EPVS algorithm speedup.

pos lepu
time in seconds speedup

2cpu 4cpu 8cpu 16cpu 2cpu 4cpu 8cpu 16cpu
1
2 970 419 220 198 184 2.32 4.41 4.90 5.27
3 375 198 114 79 77 1.89 3.29 4.75 4.87
4 1950 925 480 382 380 2.11 4.06 5.10 5.13
5 3193 1569 874 586 546 2.04 3.65 5.45 5.85
6 141 76 45 35 35 1.86 3.13 4.03 4.02
7 584 308 171 120 112 1.90 3.42 4.87 5.21
8 75 46 35 35 34 1.63 2.14 2.14 2.21
9 958 525 324 224 161 1.82 2.96 4.28 5.95

10 1174 576 346 218 187 2.04 3.39 5.39 6.27
11 697 371 206 131 118 1.88 3.38 5.32 5.91
12 3763 2076 1069 589 438 1.81 3.52 6.39 8.58
13 652 373 205 134 143 1.75 3.18 4.87 4.56
14 1068 562 268 190 192 1.90 3.99 5.62 5.56
15 939 482 261 175 154 1.95 3.60 5.37 6.10
16 1283 729 461 324 282 1.76 2.78 3.96 4.55
17 737 509 294 139 119 1.45 2.51 5.30 6.19
18 1977 1095 625 367 301 1.81 3.16 5.39 6.57
19 741 372 207 158 160 1.99 3.58 4.69 4.63
20 2009 1143 596 361 334 1.76 3.37 5.57 6.02
21 2706 1478 780 413 412 1.83 3.47 6.55 6.57
22 840 424 249 175 136 1.98 3.37 4.80 6.18
23 600 315 178 96 87 1.90 3.37 6.25 6.90
24 758 392 216 137 131 1.93 3.51 5.53 5.79
tot 2819014963 8224 5266 4723 1.88 3.43 5.35 5.97

mse 0 3 13 47 61 .00 .01 .07 .16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

DYNAMIC TREE SPLITTING (DTS)

7.1. Introduction

Chapter 5 outlined the difficulties of parallel tree splitting algorithms that

are too static when managing parallel tasks. When watching ants devour crumbs

at a picnic, they do not gang up on one crumb and then stop and wait when the

crumb becomes too small for the entire group; rather, the ants that get crowded

out move to the next crumb immediately without waiting on the rest of the

group.

This “ants at a picnic” idea provides the basis for the correct approach to

solving the parallel search problem. Processors cannot wait for each other to

finish work, but rather they must immediately proceed to find another branch

and begin searching it. This autonomy is a nice concept, but it turns out to be

surprisingly difficult when implementing it on a parallel machine. The

interactions that naturally occur make coordination both necessary and at the

same time complex.

The correct approach to this problem is obvious but the solution is both

difficult to design and nearly impossible to debug. The processors search the

tree differently each time they try the same test, producing unpredictable

behavior that introduces a significant amount of non-determinism.

The following sections describe the basic operation of the DTS algorithm,

the various requests used to coordinate the parallel search, the data structures

required to implement the DTS algorithm and how they are used, and then

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

presents the DTS algorithm in detail along with actual performance data

produced by it for the same types of trees considered in chapters 5 and 6.

The mathematical analysis presented in chapter 4 is somewhat more

difficult to apply to trees examined by the DTS algorithm. Since the tree is

sometimes split before a search bound is established, equation 7 must be

applied to these subtrees individually and the resulting node counts must then

be added in to the total. In the optimal case, equation 7 can be applied to the

root node, but in practice non-optimal splits are sometimes done to keep

processors busy. The cost of the non-optimal splits is less than the

performance advantage gained by keeping the processors busy.

7.2. An Overview of the DTS Algorithm

Cray Blitz creates the parallel tasks when the operator requests parallel

processing. All processors (except for processor one, the original processor)

post help requests and wait for work.

When starting the tree search, the single processor quickly detects the help

requests from the idle processors, but takes no action until it searches down to

the search depth requested (just like the PVS and EPVS algorithms). At this

point, the processor executes a split operation which immediately attaches the

idle processors to some node and starts the parallel search.

As the search progresses, processors run out of work to do at an active

split node and then generate a help request. A processor accepting the help

request executes a split operation and starts a parallel search at some node. As

other processors run out of work, they also join at this split node and help with

the parallel search.

From this point on, idle processors (those “crowded”out) move to the next

reasonable split node (find the next available “crumb”) and search it in parallel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

This continues until all processors run out of work; then, processor one returns

the search value computed by the group to the main program.

The only special-purpose code present is in the routine that selects a split

node since it does not split type one nodes unless the search depth is deep

enough to avoid excess overhead (recall the Nap discussion from chapter 4.)

The search treats this as a special case, otherwise the many help requests

demand a node for splitting from some processor (only one is busy here).

7.3. The Help Request

When a processor needs work, it first checks the shared search data

structure and finds all active split points (ignoring the node just completed since

it contains no more work.) If any split points exist, the processor identifies the

split point with the most work remaining and immediately joins the parallel

search at that node. This eliminates any additional overhead whatever and also

keeps the processors together in the same area of the tree maximizing the

usefulness of the transposition table.

If the processor finds no split point, it uses the help request to ask one of

the other processors for work. The processor queried by this request examines

the work left at each of its nodes and determines if there is an appropriate place

to split the work with another processor. If there is, it executes a split operation

(discussed below) to let the idle processor help out.

If this processor finds no reasonable node to split, it passes the help

request to the next busy processor. This requests passes from processor to

processor unless one finds a good node to split (defined as a node almost

certainly needing all its successors examined.) This first cycle through the busy

processors finds the first processor with a node requiring examination of all its

branches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

If no processor finds such a node, the help request cycles back to the first

processor, but this time it relaxes the certainty requirement so that a processor

chooses a node less certain to need complete examination. This algorithm finds

the first good node to split without polling every processor for a response unless

• necessary; usually the first processor polled finds a node to split.

Since searching a node not needing examination leads to search overhead,

this algorithm invests a small amount of computation overhead to minimize the

size of the tree. It cycles through the pool of busy processors an arbitrary

number of times when trying to select the best possible new split point, each

time lowering the full-width confidence requirement by some amount. The help

request handler introduces virtually no overhead when processing these

confidence interval searches, so that the primary issue is locating the best

possible node choice for parallel splitting.

7.4. The Split Operation

Splitting should take place only at type 1 and type 3 nodes within the tree.

When asked (via a help request) to split a node and share it with another

processor, split uses a function ’typenode’ to classify each node in the current

tree being examined. Typenode uses the definitions from chapter four and

classifies each node from ply one through the current ply as 1, 2, or 3. After a

type 1 node has a value backed up to it (which signals that it is then safe to split

the node since the bound is properly established), typenode changes that node

type to 3.

Split then locates the type 3 node at the lowest depth and assigns

processors to it (assuming it has work left to be done). If there are more idle

processors than there are nodes remaining at this split point, only enough

processors are assigned to examine each of the remaining nodes. Split then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

once again finds the type 3 node at the lowest depth (again, with work

remaining) and repeats the previous procedure until either all idle processors

are busy or all type 3 nodes have been split.

If split finds that processors are still idle after the above procedure, it then

forwards the help request to the next processor so that it can split and assign

idle processors to help it. This represents a “worst case” condition and is the

first symptom of the “feeding frenzy” that occurs as more and more processors

become idle and request work.

It should be noted here that split never selects a type 2 node for splitting

(except as described below) since such a node only requires that one successor

be examined. Likewise, split never selects a type 1 node for splitting since the

corresponding lower or upper search bound is unknown, possibly causing extra

nodes (search overhead) to be examined.

The only time a type 2 node is selected for examination is when all

processors have tried to split based on the above criteria (phase I split

operation). If idle processors still exist after the above procedure is tried on all

processors, a phase 2 split is attempted. Here the processors split the deepest

type 1 node available. Share will inform these processors as soon as the bound

becomes known, meanwhile we risk search overhead rather than letting a

processor sit idle, since it would be doing nothing useful anyway.

If the phase 2 split operation still does not exhaust the idle processor list,

then a phase 3 split is tried. Here, even type 2 nodes may be split, but only if

more than one successor has already been examined. The reasoning here is

that if more than one successor has already been examined, then possibly this

node is a type 3 node due to a breakdown in move ordering. It might be that the

best move from the type 2 node has not been tried, and will cause a cutoff as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

soon as it is found. If so, then this will probably introduce additional search

overhead, but at a reduced cost since the processor searching these extra nodes

would be idle anyway. It should be noted that it is not reasonable to split “just

anywhere” rather than “nowhere” since once a split is done, additional

overhead is incurred due to the merge operation, share operations, and the

synchronization that occurs when processors update the shared memory block.

During the first 99.9% of a search iteration, this split overhead is

extremely low since phase 1 and phase 2 splits easily find work to do. However,

as the search nears the end, there are more and more idle processors

demanding work and there is less and less work to give them. Eventually, these

processors behave like a school of fish on a “feeding frenzy” and disturb the

search enough that the split overhead increases significantly. When only one or

two branches are left, this traffic can become nearly unbearable and has on

occasion resulted in tremendous increases in the time to complete a search even

though the best move was found in record time.

Whenever processors split work at any node, they share a block of global

memory that contains the entire tree search data structure up to that point in the

tree.

The split operation (illustrated in figure 7.1) copies the tree search data

structure (in the processor’s local memory) into global memory so the idle

processor can access it. This shared memory area contains approximately

10,000 words of memory (the same size as the local memory used by each

processor).

Since split operations occur frequently, the split code is very selective in

the data that it copies. To this end, the algorithm recognizes three distinct areas

of the shared common. The algorithm copies area one completely; it copies each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

array of area two from element one to the depth of the split node; it copies none

of area three since these contain purely local data passed between procedures

when processing one node. This usually copies only a few hundred words.

Local Memory
(process a)

Local Memory
(process b)

Local Memory
(process a)

Shared Memory
(accessible by
all processors)

Figure 7.1: Memory copy operation performed as a result of the split request so
that processors can share their local memory areas.

Except for branches selected from the split node, the parallel code

behaves exactly like the sequential code. At the split node, the processor

selecting a branch to follow first locks the shared data structure with a

semaphore operation, selects the next branch to follow and removes it from the

list of available branches to search, and then unlocks the shared data. This

avoids multiple processors following the same branch and duplicating the same

search tree.

The data structures that implement this split operation are described later.

However, since absolutely no distinction is made among the processors while

they execute the parallel search, the data structures become necessarily

complex. It is possible that processor 1 splits a node with processors 2 and 3

and then runs out of work at the split point. It will then enter the idle loop and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

eventually, either processor 2 or 3 will back up through the split point, even

though they did not originate the data above that level. Avoiding the so-called

master/slave relationship between processors is necessary to avoid those cases

where the master is busy waiting on one of its slaves to complete a search. This

synchronization overhead is highly undesirable, but is also quite complicated to

eliminate.

7.5. The Unsplit Operation

The next problem arises when all but one processor run out of work (at

the same split node). Each idle processor sends a help request as before, but

there is a memory usage problem associated with the remaining busy processor.

Notice that there is a shared memory block in use, even though only one

processor is now using it.

When the next-to-last processor at a split node becomes idle, it sends an

unsplit request to the remaining processor. The unsplit request conditionally

copies the shared memory back over the busy processors local memory if

appropriate. Specifically, the processor compares its value at the split node with

the value in the shared common (produced by the other processor or processors

that split the work up). If the shared common represents a better result than

what is in the local common, its contents replace the local common. Figure 7.2

illustrates this.

The last step is marking the shared common block as “not-in-use” so that

another split operation can use it. Without this unsplit operation, the shared

memory requirement of this algorithm is astronomical since processors may

execute the split operation thousands of times in a single search (depending on

the machine used.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Local Memory
(process a)

Shared Memory
(accessible by
all processors)

Figure 7.2: Memory operation done when an unsplit request occurs.

The unsplit request effectively eliminates any sign of parallel processing at

the node in question, including shared memory usage. After processing the

unsplit request, the processor still searching a branch at that node behaves as

though the split was never done.

7.6. The Merge Operation

When processors split a node into parallel tasks, they copy the shared data

(which originally came from a sequentially processed branch) to their own local

memory. After completing the examination of whatever branches they search,

the processors finish with n different results from searching n different subtrees.

To reconcile this, the first processor finishing its work copies its data back

over the shared data unconditionally. As each additional processor finishes, they

merge their data into the shared memory as needed. This operation compares

the results obtained by that processor’s search with the best results returned so

far. If the processor’s results are better, these results replace the ones in the

shared memory area.

The criteria for the merge operation is identical to those for the unsplit

requests. The best result returned from the parallel search replaces the global

memory data and eventually get merged back into the branch they originated

from.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

7.7. Processor Inter-Communication

As the parallel search progresses, processors encounter conditions that

affect other processors. This requires that certain types of messages (or

requests) pass between processors as rapidly as possible without the need for

handshaking during the communication.

An example of this occurs when move ordering breaks down at a node

within the tree (generally at a type 2 node) and successors of the resulting

position refute the branch when they should not. This requires searching another

branch from the type 2 node with the resulting search overhead. When this

happens, each of the processors starts searching at the split node and one

quickly finds a score which causes a cutoff. This processor quickly backs up to

the split point, but the other processors continue to search since they have not

detected the condition causing the cutoff. Rather than waiting until they also

find a move causing a cutoff, the processor finding the cutoff move immediately

informs all processors working at this split node that they should stop searching

and find work to do at some other node. Even though they searched extra

nodes, they stop as soon as one detects the cutoff and avoid even more search

overhead.

Another example occurs when processors split the tree at the root node. If

one of them then encounters a move (branch) better than the current best move,

a beta cutoff occurs. This processor informs the other processors of this so that

they split the subtrees of this new best branch and complete the analysis of it

more quickly, possibly avoiding running out of time without having the analysis

completed. Recall that the principle variation is very important as it guides the

next search iteration by providing good move ordering to minimize the search

tree size and also provides the search with an estimated move for the opponent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

The search then uses this estimated move to continue searching while waiting on

the opponent.

Another reason for stopping processors when a new best move is found is

that the new best move raises the lower search bound, resulting in a tree with

fewer nodes than one searched without this bound. Letting processors continue

to search the tree without knowledge of this better lower bound increases search

overhead (nodes examined) and adversely affects overall performance by

allowing a processor to search nodes that are not necessary. An interesting

point here is that with small numbers of processors this does not happen

frequently. However, when large numbers of processors are available, split

takes more risk in choosing split nodes, causing more communication.

7.8. The Share Operation

When processors split the tree at so-called split points, it sometimes

happens (particularly when searching type-1 nodes) that a new best score is

backed up to the level of a split point. This processor now has a better search

bound for searching the remainder of its subtrees more efficiently.

Unfortunately, the other processors know nothing of this new value and search

branches that are probably unnecessary.

To prevent this, whenever backing up a new best value to a level identified

as a split point, the processor sends a “share” request to all processors sharing

this split point. These processors then compare the shared scores with their

own and copy those that are better. A processor must check all split points it is

using when such a request comes in as it is possible for several share requests

to be generated simultaneously from each of these split points.

An added bonus of this share operation is that after doing it, it is not

necessary to do anything when an unsplit is done, since the score and related

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

information is already current in the last process at a split point. For timing

reasons, the unsplit checks are still made as a share request can come in as a

processor is finishing the last bit of work at a split point. When this happens,

the share operation might not be caught, but the unsplit operation correctly

handles the new best value anyway.

7.9. Data Structures

The data structures used to maintain order and integrity during the

parallel tree search are illustrated in figures 7.3 and 7.4. The major elements

are explained below to show how they are used during the course of the parallel

search.

block(i)

atply(i)alloc(i)

lock(i) nbusy(i)

stopping (i)

Figure 7.3: Data structures shared at a split ply and indexed by a
block number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

BLOCK(i) is the shared memory area used to split the tree among several

processors. It is essentially a duplicate of the local common each separate

processor used to perform a tree search.

If ALLOC(i) is non-zero, then BLOCK(i) is in use by some processor(s)

and is not free to be used at the next split point. If ALLOC(i) is zero, then the

corresponding BLOCK® is unused and available. To handle narrow trees, it is

necessary that i be at least the maximum number of processors plus one.

Otherwise, a split operation might have to wait for an unsplit to free up a

BLOCK(i), wasting time.

LOCK(i) is the semaphore array used to protect BLOCK® when it is

being accessed by one of several processors. Before BLOCK(i) is used in any

way (including reading and writing), the corresponding LOCK® must be set by

a semaphore test and set instruction. Even reading is not permissible without

protection since another processor might change part of the data while it is

being read, resulting in part of the copied data being old and part being new.

ATPLY® indicates the depth at which the corresponding BLOCK® was

produced by a split operation. This is used by debugging tools to dynamically

display what is going on during the parallel search without interfering with the

search in progress.

NBUSY(i) is a counter used to determine how many processors are busy

at the corresponding BLOCK® split point. As processors are assigned to

BLOCK®, NBUSY(i) is incremented. As processors finish at a split point and

call merge to possibly copy their results back to BLOCK®, merge decrements

NBUSY(i). When merge notices that NBUSY(i) is exactly one (after it

decrements it), it then sends an unsplit request to the last busy processor

working on BLOCK(i) so that BLOCK(i) can be freed up for re-use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

STOPPING(i) is used to indicate that a split point is bad, but has not been

cleaned up yet. No other processors should join with this split point even

though it appears that plenty of work is still available here. Essentially, this

node is not a type 3 node, even though it appeared to be when the split was

originally done. When some processor finds a refutation that makes the

remainder of the work left at this node unnecessary, it then sends a stop

requests to all processors busy at this split point, and uses STOPPING(i) to

make sure that no additional processors join in and miss the stop request which

was sent before they joined in.

dlevel(ply,n)

block(n) help(n) shareit(n) splitl(n)

stop(n) usplit(n) working (n)

Figure 7.4: data structures for each processor indexed by
processor id.

DLEVEL(ply,n), where n is a unique processor id, is the principle data

structure used by DTS to keep up with the split operations done. If processor n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

has split at ply 5 using block 3, then DLEVEL(5,n) is 3. This identifies each ply

at which processor n is splitting, and also identifies the associated shared

memory block that contains the tree data for that split point.

BLOCK(n) indicates the deepest split point for processor n. When a

merge is done, this pointer identifies the block without having to search through

DLEVEL(ply,n) to find the block number. Also, when a processor is idle and

waiting on work, BLOCK(n) is zero (note that if BLOCK(n) is zero, it does not

imply that the processor is idle, because it could be in unsplit and fixing to

change BLOCK(n) to a new block number). Split first finds a split point,

allocates a block and copies its local tree search data to this block and then sets

BLOCK(n) to point to the block. At this point, the idle processor exits the wait

loop (where it is waiting for BLOCK(n) to become non-zero) and starts the

parallel search.

HELP(n) is the method used to inform busy processors that an idle

processor is available. When processor n notices that HELP(n) is non-zero, it

calls split to attempt parallel division if any reasonable split node can be found.

A value of 1 indicates a phase 1 split attempt should be tried; if the help

requests cycles through all processors, it is incremented to 2. A value of 2

indicates that a phase 2 split attempt should be tried, which incurs more search

overhead than phase 1 attempts. If this help request cycles through all

processors, it is incremented to 3 indicating that a phase 3 split attempt should

be tried. It should be noted that only one HELP(n) will be non-zero at any

instant in time, since no broadcasting is currently done, but rather sequential

polling is used.

SHAREIT(n) indicates that some other processor is sharing a split point

with processor n and has posted a new best value at that depth. Processor n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

must copy this new best value if it is better than what it already has in order to

minimize the tree search overhead. Since a processor may have several active

split nodes, it must check them all when the share request is made because

several simultaneous share requests can arrive with no indication of which split

point to which they refer.

SPLITL(n) is used by the search routine as a quick check for if the current

ply is a split point. If SPLITL(n) = current ply, then special action is required

when choosing the next branch. Also, when completing such a ply, backing up

is not possible, rather a merge must be done with only the last processor at a

split point being allowed to back up beyond this ply.

STOP(n) is used to stop processors when their work is found to be

unnecessary. If a cutoff occurs that would makes complete examination of a

split point unnecessary, STOP(n) for each processor working at this split point is

set to the depth of the split point. When this is non-zero, each processor must

immediately stop, clean up the data structures and enter the idle loop after

posting a help request. The last processor busy at the split point returns through

it and continues the search, possibly splitting with the idle processors that just

quit, but at some other split point.

USPLTT(n) is used to inform a processor that it is the last one working at a

split point. It must call unsplit to clean up and release any BLOCK(i) shared

data area with NBUSY(i) = 1 so that these blocks can be used again.

WORKING(n) is used by the debugging display and is always set to 1 if a

processor is busy, and is set to 0 when a processor is idle. This is used to

determine if a processor is really busy, even though BLOCK(i) is zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

7.10. Task Granularity

Task granularity is a major consideration when developing a

high-performance algorithm such as this. Holding search overhead to a

minimum requires a code that can divide even the smallest trees into parallel

tasks. The analysis in chapter 4 proved that parallel division must be done

primarily at type 3 nodes (since there are only n type 1 nodes in a depth n

search). In a parallel search, choosing the best node for parallel analysis might

select a node deep in the tree, generating very small subtrees. If the time

required for starting or coordinating parallel tasks is high in relation to the time

required by the parallel search, then selecting such nodes causes unacceptable

overhead with poor performance.

The current code wastes less time when an idle processor joins in with a

busy processor than it uses when expanding a single node (depending on the

machine being used because much of the overhead is vectorizable on Cray

computers where the tree search code is not). A processor is rarely idle for

more than four or five node cycles, even on the Sequent, except near the end of

the search when little work is available. This means that this code works for

arbitrarily small trees (or for nodes arbitrarily deep in the tree). This small time

requirement allows parallel division in the quiescence search where small

subtrees and low branching factor nodes regularly occur.

This completely removes search depth and branching factor considerations

from the decision when choosing a node for parallel analysis. This algorithm

selects the best candidate for parallel processing without weighing any other

features (such as the probable size of the subtrees, the probable number of

subtrees, or any other related aspect). If this were not possible, then the code

would find circumstances where the only work available is too fine-grained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

7.11. Synchronization Overhead

Synchronization overhead occurs at many points during the parallel

search, even with the current algorithm. Whenever updating a shared data

structure, synchronization prevents problems such as interleaved updating or

traversing a broken linked list.

To reduce this synchronization overhead to an absolute minimum, these

timing windows are as small as possible. This minimizes the period of time

between loading a shared value and storing an updated value back possible.

Often this requires new code (that is somewhat less readable) to improve the

sequential update processing.

After minimizing these windows with optimized coding practices,

semaphores prevent the previously mentioned problems. However, since this

algorithm updates many different data structures during the course of the

search, it uses different semaphores for each different data structure. This

allows updating different shared data structures in parallel while avoiding

updating the same data structure in parallel.

This idea is particularly important when splitting and merging operations

occur on different nodes. Even though different processors update the same

shared data structure, they always access different parts of the shared tree data.

This lets different processors find split points in parallel except when they try to

join with the same processor where sequential processing occurs due to the

semaphore locking mechanism.

7.12. Processor Clustering

The primary reason for processors first trying to work at an existing split

node before creating a new one is that this keeps processors together in the

same area of the tree. This both maximizes the usefulness of the transposition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

table and also eliminates the small overhead required in creating a new split

node.

As a processor “peels off” from the cluster of busy processors (because

there are no additional branches), it creates a new split node. As other

processors peel off later, they immediately join with the first at the new split

node.

The normal parallel tree has two split nodes active at any time, one that

has no unsearched branches (except those branches in progress) and one that is

newly created. For narrow trees there may be many split nodes with no

unsearched branches (again, except for those in progress), but there is only one

split node with work available because idle processors will automatically join at

such a split node without ever sending a help request to another processor.

7.13. DTS Performance on Uniform Game Trees

The DTS design addresses uniform and non-uniform minimax game trees

in addition to alpha-beta trees. DTS searches uniform game trees exceptionally

well and produces near-optimal speedups when compared to the speed of the

sequential algorithm.

We modified Cray Blitz so that the move generator produces a fixed

number of moves when called. We also disabled the quiescence analysis and the

alpha-beta algorithm so that the program searches perfectly uniform trees.

Table 7.1 shows the results obtained with the DTS algorithm searching

uniform game trees. These test cases vary the branching factor and also vary the

number of processors searching each tree to show that this algorithm works

equally well for narrow or wide trees. Compare this with table 5.1 and table 6.1

to see the advantage DTS has over either PVS or EPVS. For these tests, DTS

exhibits no leveling off in the performance curve, showing that it produces a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Table 7.1: DTS algorithm speedup when searching uniform game trees.

w d
time in seconds

1 2 4 8 16
speedup

2 4 8 16

2 16
4 9
8 6

16 5
32 4
64 3

351 176 89 46 24
294 147 75 38 19
503 252 128 64 33

1869 935 474 239 119
3838 1919 965 484 244
3462 1731 870 441 220

1.99 3.94 7.63 14.63
2.00 3.92 7.74 15.47
2.00 3.93 7.86 15.24
2.00 3.94 7.82 15.71
2.00 3.98 7.93 15.73
2.00 3.98 7.85 15.74

tot
avg

10317 5160 2601 1312 659
1719 860 434 219 110 2.00 3.95 7.81 15.42

linear speedup as the number of processors is increased (meaning that a straight

line fits the speedup plot, even though it might not be optimal). This data is

graphically summarized in figure 7.5.

U

w 0.0 «D
'O O Q

.
10

12

14

16

2

4

6

8

0------ ------------- -------------------- ------ -------
0 2 4 6 8 10 12 14 16

number of processors

Figure 7.5: DTS algorithm speedup when searching uniform game trees.

The columns labeled “w” and “d” reflect the branching factor (w) and the

search depth (d) used for that particular test. These parameters generate trees

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

requiring approximately twenty minutes for one processor (except for w=8 as

the next depth generates a tree requiring over thirty minutes).

DTS provides almost linear speedups for any reasonable tree as table 7.1

shows. Note that the lowest branching factor trees (w=2) generated the poorest

speedup because there is little to do at each node (only two branches). Note also

that even the worse case shows no tapering off or asymptotic behavior; however,

it does show the loss of performance caused by the split/unsplit/merge overhead

(even though this overhead represents a fraction of the work spent in analyzing

one node).

Another consideration when testing an algorithm such as this is that using

large numbers of processors causes the search to slip inside the timing accuracy

of the hardware. For example, in the w=8 test, the code generates the sixteen

processor result in less than twenty seconds. A fraction of a second is very

significant when it potentially represents five percent of the total search time.

This greatly affects the speedup curve. Increasing the complexity of the problem

only slows down the single processor tests, making them very difficult to run

since they require long periods of dedicated test time.

7.14. DTS Performance on Non-Uniform Game Trees

We again modified Cray Blitz so that the search generates non-uniform

trees and left the alpha-beta algorithm disabled. The move generator produces

non-uniform trees where each branch from the root position produces a

predetermined number of successors. Each branch from these successors also

produces a predetermined number of successors. This provides a constant tree

that does not change when the parallel search examines branches in different

orders.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

A second modification to the search varies the depth of search according

to the position of the branch within the search tree. This also results in trees

with a constant shape regardless of the order in which the search examines the

various branches.

With these modifications, the program executes searches using the DTS

algorithm and produces the results in table 7.2. The search parameters cause

the search to vary the tree and produce six different test cases. For the test set,

the average branching factor w varies from 2 to 64 while the depth remains

constant. This data is graphically presented in figure 7.6.

Table 7.2: DTS algorithm speedup when searching non-uniform minimax
game trees with varying depths (d) and branching width (w).

w d
time in seconds

1 2 4 8 16
speedup

2 4 8 16

2 16
4 9
8 6

16 5
32 4
64 3

351 176 90 47 25
294 147 76 39 19
503 252 128 64 33

1869 935 475 240 120
3838 1919 965 484 244
3462 1731 870 441 220

1.99 3.90 7.47 14.04
2.00 3.87 7.54 15.47
2.00 3.93 7.86 15.24
2.00 3.93 7.79 15.58
2.00 3.98 7.93 15.73
2.00 3.98 7.85 15.74

tot
avg

10317 5160 2604 1315 661
1719 860 434 219 110 2.00 3.93 7.74 15.30

Notice that once again, the DTS algorithm has no problem in producing

results nearly identical to those from the uniform search tests. We expected this

since it performed so well on the uniform tree test with w=2. The only difficulty

the search faces in these tests is that after the basic full width search, many

branches have exactly one successor. This produces very narrow subtrees and

increases the search overhead when a help request cycles through all processors

more than once before finding a good split node, since in these cases some

nodes (and entire subtrees) present no opportunity for parallelism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

m Q
. <U uu 3 C

L

10

12

16

14

2

4

6

8

01------ ---
0 2 4 6 8 10 12 14 16

number of processors

Figure 7.6: DTS algorithm speedup when searching non-uniform minimax
game trees

As table 7.2 shows, these trees cause no problems for the DTS algorithm.

The results are nearly identical with the results using uniform trees. The search

copes with the narrow branching factor and variable length branches with little

difficulty. Some very Slight increase in the overhead results from the help

requests that cycle through several processors until reaching one with a node

that can be split.

The narrow trees are especially significant since the algorithm handles

them with the same efficiency it displays on wide trees. This implies that the

endgame and tactical tree problems discussed earlier disappear with this

algorithm.

7.15. DTS Performance on Non-Uniform Alpha-Beta Game Trees

This section tests the DTS algorithm on the alpha-beta tree problem. The

test results clearly show that the DTS algorithm outclasses either PVS or EPVS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

for all problem types. For small numbers of processors, the advantage is quite

narrow, but increases sharply as the number of processors increases.

Tables 7.3 and 7.4 provide the same information for the DTS algorithm as

that presented in chapters 5 and 6 for the PVS and EPVS algorithms. Before

comparing the single-processor times between PVS, EPVS and DTS, note that

the chess program used with PVS and EPVS were identical, but that

improvements have been made to the current chess program, changing the

single processor node counts, sometimes significantly. However, the speedup

data can be directly compared between the three algorithms.

Figure 7.7: DTS algorithm percent search overhead on alpha-beta game trees

-1

11

13

15

17

9

5

3

1

7

—3------*------------ ----------------------------------
0 2 4 6 8 10 12 14 16

number of processors

In analyzing this data, figure 7.7 graphically presents the search overhead

introduced as the number of processors increases. Notice that this number is

still quite low, suggesting a minimal cost increase when adding processors. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

two processor data is particularly interesting in that the search actually

examines fewer nodes with two processors than it does when only using one.

This is an anomaly caused by poor move ordering in the sequential search that

the parallel search happens to improve since it alters the order in which moves

are considered.

Figure 7.8 presents the speedup curve for the DTS algorithm. It is

interesting to note that not only is it significantly better than either PVS or

EPVS, but that for up to eight processors, the speedup curve is almost a straight

line, the first time this behavior has been seen.

U

*O
 C

0.
0

01
3 »

10

12

16

14

4

2

6

8

0------ ---
0 2 4 6 8 10 12 14 16

number of processors
Figure 7.8: DTS algorithm speedup on alpha-beta game trees

Looking at the raw data is much more revealing in that this algorithm

actually provides significant speedups for more than eight processors. There

are several examples where a speedup of more than ten is obtained with sixteen

processors, something that neither PVS or EPVS came close to producing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

The mean standard error reveals another interesting characteristic of this

algorithm. The variability of the search time is directly caused by the

unpredictability of where splits are done and the unrepeatability of doing them

the same way more than once. The PVS algorithm provides the most repeatable

timing data while DTS shows significant variance.

7.16. DTS Performance Summary

The DTS algorithm offers significantly improved performance over the

PVS algorithm in all search problems. It also avoids the potential for search

“thrashing” experienced by EPVS since DTS does not require that all processors

work at the same node, nor does it require that processors stop searching tree

branches just to allow idle processors to join in at some point in the tree.

The only multiprocessing problem exhibited with the DTS algorithm

occurs at the end of the search examining the first branch, and at the end of the

complete search for some fixed depth.

Since it is undesirable to examine a type 1 node until all of its successors

are completely examined, there are periods of time when the remaining work is

scarce, since the work division must be done below the type 1 node. As this

work is completed, idle processors increase their generation of help requests,

causing the busy processor(s) to continually try to split, only to find that there is

little or no work to split. In these peak periods, properly called a “feeding

frenzy,” the overhead climbs significantly, sometimes beyond the point where a

processor could complete the work faster if left completely alone.

This same condition arises at the end of a complete search for the same

reason. Again, the idle processors demand work and the busy processors have

no luck in giving it to them. Again, the overhead increases as busy processors

are continually interrupted for nothing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Several ideas to reduce this overhead have been suggested. When the

number of idle processors passes some lower limit, the code could assume that

the search is winding down and is susceptible to the “feeding frenzy” condition.

Under such circumstances, it might be more efficient to defer help requests

until a branch is encountered with enough work to warrant the overhead caused

by trying to split the tree at some point. This would occur when all nodes below

a type 1 node are completed, or when the next search starts after the current

one is finished.

Another suggestion would be to circulate the help request when the

number of idle processors is small, but to broadcast it to all processors when the

number of idle processors is large. This would allow the split to be done on the

absolutely best possible node, rather than on the best possible node of a random

processor, which might not provide much work for idle processors.

After all is said and done, however, the alpha-beta tree search problem is

difficult for parallel analysis, and the above ideas will not come anywhere close

to providing near-optimal speedups for most problems.

Chapter 8 details other problems with this type of tree search in general,

and addresses possible future work to solve them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Table 7.3 DTS algorithm node counts.

pos
total nodes

lepu 2cpu 4cpu 8cpu 16cpu
1 ———
2 96650 100694 96995 102753 121404
3 29500 29453 29562 29947 30059
4 87595 82822 87813 98382 91589
5 153571 151051 158544 154068 179707
6 13947 14034 13631 14099 13945
7 50709 51370 56909 57443 64321
8 6489 6763 8099 10203 7107
9 59488 56653 66493 75426 87156

10 97245 92149 97364 92733 100098
11 57070 58584 58835 61792 66122
12 198013 206831 215585 194690 188861
13 68961 70462 71949 75772 75002
14 59163 55089 52536 54102 54941
15 55082 55347 55353 55504 55202
16 133471 92350 98389 103750 122738
17 57479 64563 90445 87234 125545
18 121129 115684 133067 145535 169720
19 62117 64857 78068 90097 122089
20 122176 104371 107507 114070 121396
21 127709 132681 143856 149375 145584
22 69994 66914 74262 65411 74309
23 50142 52099 52419 52192 52648
24 73590 73659 73908 74631 76500
tot 1851240 1800480 1921589 1967209 2146043

avg 80489 78282 83547 85531 93306

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Table 7.4: DTS algorithm speedup.

pos lcpu
time in seconds speedup
2cpu 4cpu 8cpu 16cpu 2cpu 4cpu 8cpu 16cpu

1 —— — — —
2 1058 552 264 165 144 1.92 4.01 6.41 7.35
3 383 201 113 65 47 1.91 3.39 5.89 8.15
4 2086 1006 528 289 215 2.07 3.95 7.22 9.70
5 3224 1618 841 461 318 1.99 3.83 6.99 9.11
6 144 80 42 24 13 1.80 3.43 6.00 11.08
7 597 315 185 116 109 1.90 3.23 5.15 5.48
8 75 43 27 21 14 1.74 2.78 3.57 5.36
9 747 369 194 141 98 2.02 3.85 5.30 7.62

10 1210 591 328 188 155 2.05 3.69 6.44 7.81
11 699 373 205 129 123 1.87 3.41 5.42 5.59
12 3821 2077 1095 451 287 1.84 3.49 8.04 13.31
13 680 360 197 109 53 1.89 3.45 6.24 12.83
14 1142 503 247 151 122 2.27 4.62 7.56 9.36
15 960 499 258 145 112 1.92 3.72 6.62 8.57
16 2480 849 523 321 250 2.92 4.74 7.73 9.88
17 742 386 239 127 67 1.92 3.10 5.84 11.07
18 1996 973 603 354 308 2.05 3.31 5.64 6.48
19 749 379 208 131 115 1.98 3.60 5.72 6.51
20 2689 1148 590 364 301 2.34 4.56 7.39 8.48
21 2627 1313 801 459 295 2.00 3.28 5.72 8.82
22 890 427 248 137 123 2.08 3.59 6.50 7.24
23 620 320 185 111 97 1.94 3.35 5.59 6.39
24 769 397 218 133 94 1.94 3.53 5.78 8.18
tot 30388 14779 8139 4589 3460 2.02 3.73 6.64 8.81

mse 0 3 18 61 73 .00 .01 .09 .19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUSIONS

8.1. Summary

The PVS, EPVS, and DTS algorithms represent an organized algorithm

evolution for searching alpha-beta trees on parallel machines. The DTS

algorithm sets a new “high water mark” for parallel performance, but still falls

number of processors

far short of optimal performance for large numbers of processors. [28]

10

12

14

16

2

0

4

6

8 DTS

optimal

EPVS

PVS

0 2 4 6 8 10 12 14 16

Figure 8.1: speedups for all algorithms on alpha-beta game trees

Figure 8.1 depicts the speedups for all three algorithms (PVS, EPVS and

DTS) as well as the optimal speedup line. Note the closeness of the algorithms

for four processors, but that by eight the advantages of each improvement over

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

its predecessor becomes more apparent. Also note that DTS produces

significant improvement when going from eight to sixteen processors while the

other algorithms hardly produce any. The final point in figure 8.1 is how far all

of the algorithms diverge from optimal as the number of processors increases.

This problem is discussed later and is not caused solely by a poor parallel

algorithm, but is influenced by shortcomings in the sequential algorithm as well.

That move ordering is important for the sequential alpha-beta algorithm

was clearly shown in chapter 4. What might not have been gleaned from that

mathematical presentation is that poor move ordering reduces the performance

of a parallel algorithm even more. Since this code is more interested in the

“time to best move” rather than the “time to completely search the alpha-beta

tree,” move ordering at ply one is very important. If the code must change its

mind many times at ply one, the search overhead climbs rapidly. As a

processor finds a move that is better than the best so far (but does not know

how much better without searching it again with relaxed search bounds), it stops

all busy processors so that they can help with the new best branch. The portion

of the tree search done by these interrupted processors is lost when they stop. If

this happens many times (as it does when the program changes its mind

repeatedly), the overhead grows and there is nothing that can be done about it.

If move ordering is wrong farther down into the tree, a type three node

becomes a type 2 node. When processors split at such a node before realizing

what type of node it is, search overhead increases. In the worst case, no

speedup whatever is obtained since all of the work done in parallel is useless

because it is not searched by the sequential algorithm.

Testing done on the Sequent exhibits both of these problems due to the

relatively shallow searches that the Sequent can perform. Increasing the depth

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

of the test problems by one ply significantly improves the performance of the

search, as the deeper searches change their mind less frequently (a fact

observed by playing many similar positions using more powerful Cray XMP and

Cray YMP computers.) In fact, the tabular data obtained from the Sequent is

significantly worse than experiments run on the Crays in years past. We

anticipate better results when extensive test time on a Cray YMP becomes

available (eight processors) and then anticipate even better parallel performance

when a Cray-3 (32 processors with significantly faster processors) becomes

available.

It is important to note, however, that every performance gain obtained on

the Sequent directly carries over to the Cray, but is multiplied by some factor

(>1) due to the improved performance obtained with deeper searches.

Interpretation of the performance data in chapters 5, 6, and 7 requires a

certain level of caution. Due to the timing variance when running the same

problem many times with the same number of processors, each data point

represents an average. As the number of processors was increased, the number

of test runs for each problem was also increased so that the average of these

runs stabilized. The times for the two processor tests hardly varied at all, but

the times for the sixteen processor tests sometimes varied by a factor of two.

This averaging tended to smooth this out.

Note also that the speedup averages represent the average time to search

the entire problem set with a given number of processors. This lets the longer

problems “outweigh” the short problems and affect the speedup more. While a

case can be made for computing the speedup either way, we view the set of

problems as a single entity that must be searched as quickly as possible, rather

than as a set of twenty-four problems that are unrelated. It turns out that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

computing the time for each problem and averaging the sum produces a slightly

higher performance figure, but when the total time is measured it does not

generate the same result. The reader can decide on which method gives a more

useful result; however, all results reported herein are consistently computed as

explained.

8.2. Conclusions

While this algorithm represents current state-of-the-art to search

alpha-beta trees in parallel, it is still far from optimal in terms of the speedup

obtained for large numbers of processors (>8).

One significant research topic deserving more attention is the

mathematical analysis of alpha-beta trees relative to the parallel search

performance issue. In particular, by quantitatively measuring the move ordering

ability of this code, it should be possible to precisely define the upper bound for

the performance of a parallel algorithm. It is difficult to find ways to improve

the performance without knowing how well the current code compares to the

theoretical optimum. While we would like for sixteen processors to run sixteen

times as fast, if that is impossible, the upper bound would be useful information

when evaluating changes and making (or trying to make) improvements in the

parallel search.

It is interesting to note that DTS provides excellent performance on all

tests cases regardless of the branching factor of the tree searched. Even more

importantly, for those test cases where the program produces reasonable move

ordering, the performance of the parallel search is really outstanding, as was

seen in chapter 7. Those problems with large speedups were directly aided by

good move ordering, so that the search overhead did not increase significantly

as the number of processors was increased.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

8.3 Future Work

The overall efficiency of the DTS algorithm is quite high. However, as the

number of processors increases, the interactions between the processors

increases (help requests, unsplit requests, share requests, stop requests, etc.)

and serves to limit the ultimate performance of the algorithm. Some method for

separating the processors into groups is probably necessary so that the volume

of traffic between groups is at least an order of magnitude lower than the

volume of traffic between processors in a group. How this will work out

remains to be determined.

The search also needs to understand the concept of “futility” and not

choke the system with help requests and attempted split operations when only a

few nodes are left to examine. Even though the overhead of this code is very

low, it is still non-zero and enough excitation can make it much more than

merely measurable.

Splitting in the quiescence search is risky since it is very difficult to

identify type 2 and type 3 nodes there. It is desirable to be able to split the

quiescence search when it is complicated, or when it is the only work left.

Unfortunately, it easily drives the search overhead upward because splits are

done at type 2 nodes. A solution to this problem must exist, but the current

implementation does not contain it.

Finally, the split process itself must become more dynamic when finding a

split point. It doesn’t need to be as careful when only one processor is waiting

on work, but when many are waiting, the idle time accumulated while the help

request ripples from processor to processor quickly adds up. A threshold is

needed to trigger a help broadcast rather than a help circulate type of operation

when the code notices that much computational power is idle. It must also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

recognize the “feeding frenzy” and reconcile itself to the fact that at some point

in the tree, processors are going to be idle and there is nothing it can do to

prevent it. Some type of “futility indicator” is needed that defers split attempts

as long as it is active to reduce the thrashing at the end of each search.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] S. Aki, D. Barnard, and R. Doran, “The Design, Analysis and
Implementation of a Parallel Alpha-Beta Algorithm,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-4
(1982), 192-203.

[2] S. Aki and R. Doran, “A Comparison of Parallel Implementations of
the Alpha-Beta and Scout Tree Search Algorithms Using the Game of
Checkers,” Technical Report TR 81-121, Computing and Information
Science Department, Queen’s University, Kingston (1981).

[3] B. Awerbuch, “A New Distributed Depth-First Search Algorithm,”
Information Processing Letters, 20 (1985), 147-150.

[4] G. Baudet, “The Design and Analysis of Algorithms for Asynchronous
Multiprocessors,” PhD. Dissertation, Carnegie-Mellon University,
Pittsburg, Pa. (1978).

[5] M. Campbell, “Algorithms for the Parallel Search of Game Trees,”
M.Sc. Thesis, Technical Report TR 81-8, Computer Science
Department, University of Alberta, Edmonton (1981).

[6] R. Finkel and J. Fishbum, “Parallelism in Alpha-Beta Search,”
Artificial Intelligence, (1982), 89-106.

[7] R. Finkel and J. Fishburn, “Improved Speedup Bounds for Parallel
Alpha-Beta Search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-5, (1983), 89-92.

[8] J. Fishbum and R. Finkel, “Parallel Alpha-Beta Search on Arachne,”
Technical Report 394, Computer Science Department, University of
Wisconsin, Madison (1980).

[9] J. Fishbum, “Analysis of Speedup in Distributed Algorithms,” Ph.D.
Dissertation, University of Wisconsin, Madison (1981).

[10] R. Hyatt, A. Gower, and H. Nelson, “Cray Blitz,” Advances in
Computer Chess 4, Pergammon Press (1986), 8-18.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

[11] R. Hyatt, H. Nelson, A. Gower, “Cray Blitz - 1984 Chess Champion,”
Telematics and Informatics, 2 (1986), 299-305.

[12] R. Hyatt, H. Nelson, and B. Suter, “A Parallel Alpha/Beta Tree
Searching Algorithm,” accepted by Parallel Computing, to be published
Spring, 1989.

[13] D. Knuth and R. Moore, “An Analysis of Alpha-Beta Pruning,”
Artificial Intelligence, 6 (1975), 293-326.

[14] G. Li and B Wah, “Coping with Anomalies in Parallel
Branch-and-Bound Algorithms,” IEEE Transactions on Computers,
C-35 (1986), 568-573. - ,

[15] T. Lai and S. Sahni, “Anomalies in Parallel Branch-and-Bound
Algorithms,” Communications of the ACM, 27 (1984), 594-602.

[16] G. Lindstrom, “The Key Node Method: A Highly Parallel Alpha-Beta
Algorithm,” Technical Report UUCS 83-101, Department of
Computer Science, University of Utah, (1983).

[17] T. Marsland, “A Review of Game-Tree Pruning,” ICCA Journal, 9
(1986), 3-19.

[18] T. Marsland and F. Popowich, “A Multiprocessor Tree-searching
System Design,” Technical Report TR83-6, Department of Computing
Science, University of Alberta (1983).

[19] T. Marsland and M. Campbell, “Parallel Search of Strongly Ordered
Game Trees,” ACM Computing Surveys, 4 (1982), 533-551.

[20] T. A. Marsland and F. Popowich, “Parallel Game-Tree Search,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-7
(1985), 442-452.

[21] T. Marsland, M. Campbell, and A. Rivera, “Parallel Search of Game
Trees,” Technical Report TR 80-7, Computing Science Department,
University of Alberta, Edmonton (1980).

[22] T. Marsland and M. Campbell, “Methods for Parallel Search of Game
Trees,” Proceedings of the 1981 International Joint Conference on
Artificial Intelligence.

[23] T. Marsland, M. Olafsson, and J. Schaeffer, “Multiprocessor
Tree-Search Experiments,” Advances in Computer Chess 4, Pergammon
Press (1986), 37-51.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

[24] H. Nelson and R. Hyatt, “Hash Tables in Cray Blitz,” ICC A Journal, 8
(1985) 3-13.

[25] M. Newborn, “A Parallel Search Chess Program,” Proceedings, ACM
Annual Conference, (1985), 272-277.

[26] J. Pearl, “Scout: A Simple Game-Searching Algorithm with Proven
Optimal Properties,” Proceedings of the First Annual National
Conference on Artificial Intelligence, Stanford, (1980).

[27] F. Popowich and T. Marsland, “Parabelle: Experiments with a Parallel
Chess Program,” Technical Report TR83-7, Computing Science
Department, University of Alberta, Edmonton (1983).

[28] J. Schaeffer, “Experiments in Distributed Game-Tree Searching,”
Technical Report TR87-2, Computing Science Department, University
of Alberta, Edmonton (1987).

[29] C.E. Shannon, “Programming a Digital Computer for Playing Chess,”
Philosophical Magazine, 41 (1950), 256-275.

[30] B. Wah, G. Li, and C. Yu, “Multiprocessing of Combinatorial Search
Problems, Computer, 18 (1985), 93-108.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GRADUATE SCHOOL
UNIVERSITY OF ALABAMA AT BIRMINGHAM

DISSERTATION APPROVAL FORM

Name of Candidate Robert Morgan Hyatt

Major Subject Computer and Information Sciences

Title of Dissertation A High-Performance Parallel Algorithm to

Search Depth-First Game Trees

Dissertation Committee:

Chairman

Dean, DAB Graduate School

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A high performance parallel algorithm to search depth-first game trees.
	Recommended Citation

	tmp.1716579362.pdf._RSGq

