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T i t l e  AUTOMATIC TRANSFORMATION OF HIGH-LEVEL LOGIC SPECIFICATIONS

INTO HIGH-PERFORMANCE TARGET CODE

Development of software systems typically proceeds from informal user requirements through 

development of formal specifications which form the basis for detailed designs and implementations. 

Of these, implementation is the most involved, costly, and source of errors which require continuous 

maintenance throughout the software life-time. An additional source of errors is miscommunication 

between users who develop the informal requirements and designers and implementors who effect 

those requirements.

A methodology is proposed for formal specification and automatic generation of software systems, 

based upon the theory of TWo-Level Grammar (TLG). TLG is developed into a complete specification 

language under the paradigms of functional and logic programming. TLG specifications are unique in 

that they are a structured form of natural language which is executable, greatly increasing the reliability 

of the developed software system for the following reasons. Because it is a form of natural language, 

TLG may be used as an effective communication medium between users, designers, and implementors 

of the system, thereby reducing errors caused by miscommunication. Furthermore, because TLG is 

implementable, we may automatically generate the software system from the specification in a provably 

correct way. This is accomplished by transforming the TLG high-level specifications into efficient target 

programs expressed in C. Our target programs are then compiled using widely-available C compilers, 

making them highly portable, and they may interface with many existing C programs, facilitating 

software reuse. Finally, the main advantage is that developing TLG specifications is considerably easier 

and less error-prone than developing C programs, where considerably more implementation detail is 

needed.

The effectiveness of our method is demonstrated through the automatic generation of: 1) a laay 

functional language graph reduction implementation, 2) a semantics-directed compiler for a Pascal-like 

language, and 3) a database/knowledge-base management system based upon SQL. For the DBMS, we 

have the additional advantage that the TLG specification results in an embedding of SQL into TLG
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offering both deductive capabilities and expressive natural language queries. All the generated 

programs are comparable in time and space efficiency with corresponding C programs coded by hand 

and greatly improve upon interpretative and Prolog prototype versions of the TLG specifications.
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CHAPTER I 

INTRODUCTION

The development of software systems typically proceeds from a set of informal requirements of 

the users of the system through development of a more formal specification which can be used as the 

basis of detailed design and implementation. Of these steps, implementation is usually the most 

involved, costly, and greatest source of errors which must be continuously corrected throughout the life 

of the software. An additional source of errors is a lack of communication between the users who develop 

the informal requirements and the designers and implementors who effect those requirements. The 

objective of this research is to eliminate these sources of errors by the development of a formal 

specification language through which novice users can communicate with professional designers and 

implementors, and which itself may be efficiently, correctly, and automatically implemented, thereby 

eliminating the need for much of the implementation process.

The embodiment of what we are attempting has been realized in only a small number of 

application areas. Most notable among these is the automatic generation of programming language 

syntax analyzers from Backus-Naur specifications (BNF) [Back60]. For example, YACC (Yet Another 

Compiler Compiler) [John75] has been widely used in producing compiler front-ends for fifteen years. 

The reason for its success is that the input specification language, BNF, is the standard method of 

expressing language syntax in almost every programming language reference manual and has been for 

three decades. BNF is easily understandable to programmers using the language, but at the same time 

provides the mathematical foundation and formality upon which an automatic parser generation system 

can be constructed. Furthermore, in the case of YACC, the parsers which are generated are not 

stand-alone programs with narrow utility. They are coded in the C programming language [Kem88], 

also an industry standard for software development, and hence can interface easily with many existing 

C programs, such as compiler back-ends.

Unfortunately, most other application areas lag far behind automatic parser generation. Even the 

remaining portions of compilers are still written by hand. The primary reason for this is that the existing 

specification methods have not been as versatile as BNF has been in its domain. The specifications have 

been very difficult to implement or have been unclear to users or both. In the compiler field, 

denotational semantics (e.g., see [Schm86]) remains the standard method of specifying programming

1
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languages and is the principal subject for automatic compiler generation research. However, 

denotational semantics specifications are quite mathematical and so not well suited for user clarity. On 

the other hand, implementations, while provably correct, are also considerably slower than those 

produced the ’’old-fashioned way,” by hand. This is also due in part to the mathematical models which 

are used as the semantic foundations. The result is that the semantic descriptions given in programming 

language reference manuals are still written in natural language and the major portions of compilers 

are produced manually.

We propose to accomplish our stated goal by using a formal specification language based upon 

Tvo-Level Grammar (TLG, also called W-grammar) [Wijn65]. TLG was first proposed as formal 

language and later used as a specification method for the syntax and semantics of ALGOL 68 [Wijn74]. 

The method as used in the ALGOL 68 definition was neither understandable to users of the language 

nor did it lend itself well to implementation. These two factors are in large part responsible for the 

ultimate demise of ALGOL 68. Edupuganty [Edup87] developed a new method of expressing 

Two-Level Grammar which overcame many of the difficulties of the ALGOL 68 definition. He 

developed readable and implementable specifications of programming languages using operational, 

axiomatic and denotational semantics approaches. This thesis extends his work in two major ways:

1) We develop TLG as a general-purpose specification language, not just for language specification. 

Additional constructions and improvements are added to the language which are needed for this 

more general use. The readability of TLG is also greatly improved by generalizing the usage of 

natural language in the specifications.

2) Edupuganty’s work in the area of implementation was restricted to the development of prototypes. 

We give a method for the efficient implementation of TLG specifications so that these can be used 

in production-quality systems. Our primary method is to transform the specifications into target 

programs written in C. Because the distance between TLG and C is very wide, a number of new 

transformation and compilation techniques had to be developed to realize the desired efficiency.

In the sections which follow, the rationale and basis for our work will be further explored.

1.1. Formal Specification and IVansformation

Ideally the users will state their requirements to the software system designer using some form 

of informal document. This document is then formalized into a specification. We desire a specification 

language which is robust enough to accommodate the original informal specification and then move to 

a more design-oriented, even implementation-oriented description. Such a specification language is 

said to be wide spectrum because it can cover a wide variety of potential usages. We also want our formal
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specification to be expressed in a way that the user can still recognize his original intent. This goal is 

quite ambitious. It can only be accomplished if the specification is heavily natural language oriented. 

However, this is in direct confrontation with the goal of being formal. Natural language specifications 

tend to be quite informal and often ambiguous, incomplete, and imprecise. Therefore, we need to 

establish a framework for natural language specifications which avoids these pitfalls, lb  solve this, we 

will embed the natural language into the mathematically rigorous functional and logic programming 

paradigms, which have well-established advantages for formal specification languages (e.g., see 

[Kowa85] and flbm85]).

In functional and logic programming, the line between programs and specifications is very blurred, 

potentially reducing the problem of writing a specification to that of writing a program. Both methods 

are declarative. Functional and logic programming languages have simple data types and uniform syntax; 

they are considered easier for a human to write a correct program in but usually are not as fast as more 

machine-oriented languages, e. g., imperative languages such as C. It is an objective of programming 

language researchers for functional and logic programs to run as fast as imperative programs. Current 

research into solving this problem follows two directions: 1) the construction of hardware or virtual 

machines to execute those languages (e. g., [Fuch87] and [Thak87]), or 2) the development of a 

correctness preserving method to automatically translate these languages into more machine-oriented 

languages (e. g., [Burs77] and [Mann79]). We choose the latter approach for the following reasons:

1) We desire a general purpose software specification method. This implies that the developed 

systems should run on conventional architectures, not special-purpose ones. Therefore, 

constructing a hardware machine is impractical. Virtual machines are equally unattractive because 

of the overhead involved in running them on a conventional machine.

2. Translation into more machine-oriented languages has the advantage that the software systems 

which are developed in this way can interface with existing software already developed by hand. 

This makes the methodology more generally useful. For example, if we already have part of a 

software system, we can use this technique to generate the rest, thereby reusing what has already 

been done.

12 . TVvo-Level Grammar as a Specification Language

The TVvo-Level Grammar (TLG) specification language we propose follows the functional and 

logic programming paradigm espoused in the previous section. However, it has been shown in previous 

studies [Edup89] to have a number of advantages over conventional functional and logic programming 

languages. TLG most closely resembles Prolog in style but has been shown to be suitable as a functional
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language ([Biya88a], [Edup89]) and as a data flow language [Brya86a], thus allowing for possible parallel 

execution. Besides the versatility of TLG in fitting various computation models, its natural language 

feature is perhaps the most important from a software development viewpoint [Btya88b].

IVvo-Level Grammar is a declarative specification language. Since the language specifies only 

what is desired, rather than how to compute it, it is much simpler to write and easier to prove the 

consistency with the user’s requirements. TLG programs are self-documenting; a non-computer 

trained user can read the TLG specification by himself and easily understand what the system will do 

for him, so that he can more easily determine whether it matches his requirements. TLG specifications 

are also multi-layered, following the general principles of top-down design. The user can therefore view 

the system at whatever level of abstraction he wishes, thus facilitating the communication between the 

system designer and the user. This benefit can not usually be found in the other specification languages 

now in use. Because of the unique integration of natural language with functional and logic 

programming in TLG specification, a number of new implementation techniques must be developed in 

order to facilitate rapid prototyping of the system and automatic generation. We have the surprising 

result that the natural language part of the specification may actually be helpful in optimizing the logic 

of a TLG specification, for example, in resolving nondeterminism and directionality of variables.

The original TVo-Level Grammar model may be thought of as a logic programming model where 

the name of the predicate is written in infix notation and distributed among the variables to read like 

a sentence in natural language. Queries must match the rules exactly in order to be satisfied. In order 

for systems developed from TLG specifications to be more convenient, we relax this requirement to 

allow approximate matching of rules. That is, if the natural language construction of the predicate name 

is not totally exact, it can still match with the correct rule. This is veiy advantageous in carrying out the 

following tasks:

1) Rapid prototyping. This is usually done in an interactive mode. If TLG queries must exactly match 

rules, then there is a high likelihood of errors. Particularly if a novice user is evaluating the system, 

he may not know the exact way in which rules are specified although he may have a general idea 

of the keywords and variables. Allowing approximate matching provides a form of natural 

language interface to the prototype.

2) Interfacing between modules. In a large software system, the specification will typically be 

developed by a team, rather than a single person. Each member of the team may develop 

specifications for modules which interface with other modules being specified by other team 

members. A common problem in this scenario is that the team members may not always specify
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the interface with other modules correctly. Approximate matching allows these rough interfaces 

to be more smoothly integrated.

3) Natural language front end. Many applications, such as database and knowledge-base systems, 

require a natural language front end. The current difficulty in using natural language is the 

restrictiveness of the domains over which it may be applied. IWo-Level Grammar provides a 

flexible shell in which such systems can be constructed for arbitrary domains. The system is 

expressed in TLG and then may be queried using the TLG form of natural language. The domains 

will be built in as part of the specification.

13. Implementation of TWo-Level Grammar

There are three main approaches to implementing TWo-Level Grammar 1) interpretation as 

proposed by Edupuganty [Edup85], 2) preprocessing into Prolog, and 3) transformation into a 

machine-oriented language. The latter two approaches will be developed in this dissertation. 

Edupuganty’s interpretation is an effective mathematical model of TLG execution. It is based upon 

finite automata and context-free parsing techniques used for formal language recognition, with an 

elementary unification mechanism for handling logical variable instantiations. The primary 

disadvantage of this technique is that the pattern matching procedure must be executed repeatedly for 

every query and sub-query generated during the interpretation. This is compounded by the fact that 

context-free parsing for unambiguous grammars is at best 0 (n 2).

We first improved the existing TLG implementation technology by developing a method for 

translating the TLG specification into Prolog. This is an immediate improvement over the interpretation 

technique in that it can be regarded as a compilation. The structure of rules need only be parsed once 

instead of being processed each time the rule is invoked at execution time. Furthermore, the translation 

can take advantage of existing Prolog interpreters and compilers in providing additional optimizations. 

The main advantage of our technique is that we can determine directionality of variables as well as 

functionality of the predicates, facilitating the insertion of cuts into the generated Prolog programs. Such 

cuts greatly improve the efficiency of the generated Prolog programs. The results of the realization of 

this preprocessor are: 1) a method of interfacing TLG specifications with existing Prolog programs, and

2) immediate rapid prototyping of the specifications.

Our main objective in the implementation of TLG specifications is the production of high 

performance target code since this accomplishes automatic program generation. For this task, we 

require the use of transformation methods. The target language used by our transformation methods 

is C, which may be compiled into efficient machine code using existing compilers. C has become a
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standard implementation language for large software systems and as a result is widely portable. Using 

C as a target language allows us to take advantage of this, thus enhancing the utility of our 

transformation system. Furthermore, our target programs may interface with many existing C programs, 

facilitating software reuse. Software maintenance is also enhanced in that modules that need to be 

redesigned can be specified in TLG and then transformed into the necessary C code. C is efficient 

because its structure and syntax are relatively machine-oriented. However, this means that if we use 

C to write a program directly, we must not only pay attention to its syntax and data structures, but also 

be concerned about whether we write the correct instructions on how the machine is going to solve the 

problem in detail. If we write a parallel C program, the work is even more. Our transformation 

methodology allows us to get the advantages that C offers as a programming language without having 

to spend the detailed effort required to write C programs.

lb  accomplish our research goals, we develop the theory of a transformation system to 

automatically generate efficient C programs from Two-Level Grammar formal specifications. The 

advantages of using transformation methodology are:

1) Ease of correctness proof. If the specification is correct and the transformation is correct, then 

every generated program is automatically correct. Since the transformation program can be 

reused, we translate the proof of correctness of the C program into the proof of correctness of 

the specification. The latter is usually much easier to do.

2) lb  maximize the reusability of the programming techniques. Every time a programmer writes a 

C program, he needs to go through the same rules for constructing the program. He has to reapply 

the same knowledge that he has about C repeatedly. The automatic transformation helps to save 

development time and make the resulting software more reliable.

3) Tb guarantee the quality and efficiency of the generated program. Different persons write 

different quality programs. Even the same person may write different quality programs at different 

times. If the transformer is of good quality, the quality of generated programs will have a minimum 

standard which is always met.

4) Tb make the specification language run more efficiently, if the specification is executable. It is 

very common that specification languages used in practice are executable, that is, they are 

themselves implementation languages. This is true of functional and logic programming 

languages, for example, and also IWo-Level Grammar. By developing techniques for 

transforming the language into a more efficient target language, we have also increased the 

efficiency of the language.
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1.4. TWo-Level Grammar Specification of Database and Knowledge Base Systems

The IWo-Level Grammar specification language has been made much more general than the 

notation used in Edupuganty’s language definition studies, especially as a shell for database and 

knowledge-base systems. We pointed out earlier that the TLG shell offers a natural language interface 

within the framework of the TLG language. Besides the natural language interface, TLG offers many 

other advantages to the technology. When used as a query language, it offers the advantages of both 

functional and logic programming languages in expressivity of the queries. Logic programs have long 

been used in database systems, particularly for deductive and knowledge-base systems. The use of 

functional languages in this capacity is a much more recent research topic for which TLG is a timely 

solution.

Our main result is to show that when TLG is used as a specification language for such systems, 

it may also be used as an elegant query language for accessing information in the database. The query 

language is very close to natural language and can be made to fit the domain of the problem application 

very well. Using a form of natural language deducible from the tystem specification, a user can easily 

query the database and construct new rules. Furthermore, the robustness of the natural language which 

may be understood ty  the tystem increases as the domain becomes more specific. We view the 

relationship between TLG and databases in several levels. In the simplest example, epitomized by the 

use of the traditional TLG model, a TLG specification defines a database which may then be queried 

only according to the structure of the facts and rules in the database. This restrictiveness may be greatly 

loosened by our approximate matching methodology. Using approximate matching, the more restrictive 

the domain of the database, the more flexible the structure of the queries can be since the approximate 

matching has less ambiguity in a sparse collection of predicate/relation names. On the other hand, as 

the domain becomes wider, the rules will become correspondingly denser and queries must be more 

exact in order to avoid ambiguity. We call this technique multi-level natural language understanding.

Our first database application is the implementation of an SQL relational database management 

system with "intelligence.” This system supports the basic SQL queries but also allows the user to 

formulate more general forms of SQL queries, including queries over universal relations, SQL queries 

embedded into natural language, and pure natural language queries. The result is an embedding of SQL 

into a sophistocated database management system with deductive capabilities and a general-purpose 

natural langauge interface. As with the other components of our research, which allow convenient 

interfaces with exisiting tystems, it is also possible for existing SQL databases to be incorporated into 

our system allowing us to build extensions or make modifications to existing SQL systems.
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The second application is to an object-oriented database system with learning capabilities. The 

system accepts natural language queries from users and attempts to match the queries with its TLG 

rule-base. If an appropriate match can not be found, then the information from the query is added to 

the rule base. Hence, the system learns new rules from user queries. During the acquisition of the new 

rules, the new information is added into the database using an object-oriented structure similar to a 

semantic network. We therefore show that TLG is general enough to represent these type of graphical 

data structures.

15. IWo-Level Grammar Specification of Language Implementation Systems

There are many areas of programming language systems implementation that were not addressed 

by Edupuganty’s original work. His specification of denotational semantics was an elegant way of 

representing operational semantics in a denotational way. This facilitated implementation by 

interpretation. However, there was no good way to use the specification for compiler development. We 

have developed a more practical way of expressing denotational semantics specifications and have 

developed a complete denotational semantics for a subset of the Ada programming language. The 

denotations include both static and dynamic semantics. The nature of the TLG specification is similar 

to  an attribute grammar for producing the desired type checking and code generation in the form of 

lambda calculus expressions (e.g. see [Chur41]). The existing implementation methods for TLG can 

then be applied to produce a compiler for our subset of Ada which generates lambda code. This approach 

to automatic compiler generation works for any language which is specified using our method.

Lambda expressions produced Ity denotational semantics-directed compilers or compilers for 

functional languages are usually very inefficient to execute but the technique of graph reduction (e.g. 

see [Peyt87]) offers a time and space efficient method of both interpreting and compiling lambda 

expressions. Even though the specification of graph theoretic problems is somewhat alien to the logic 

programming style of TLG, as were the object-oriented data structures mentioned in the previous 

section, due to the lack of pointers for constructing such structures, we have completely specified this 

process and shown that our transformation techniques can translate logic specifications without pointers 

into C programs which take advantage of pointers to eliminate copies of shared data structures. Using 

TLG, we have specified a variety of virtual machines for the execution of lambda code, using the 

evaluation strategies of 1) strict evaluation, 2) lazy evaluation using tree reduction, 3) strict and lazy 

combinator reduction, 4) fully lazy evaluation using graph reduction, and 5) compilation into 

supercombinator programs. Any of these can be used as the back-end for compilers produced by our 

denotational semantics specifications. Therefore, TLG can be used as a specification method for all
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aspects of compiling and the implementation methods developed in this dissertation advance the field 

of automatic compiler generation.

1.6. Summary

The rest of this thesis will develop the idea in more detail and more clearly. We begin by 

introducing desirable properties of specification languages and the theoiy of program transformation 

in Chapter 2. Chapter 3 discusses Two-Level Grammar in detail, TLG as a logic programming language, 

and show why TLG is a good specification language. On the other hand, TLG is difficult to implement. 

In Chapter 4 we discuss the three main ways in which TLG implementation can be realized: 

interpretation, preprocessing into Prolog, and automatic transformation into C. Chapter 5 illustrates 

significant software systems which have been developed using the TLG specification methodology.
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CHAPTER H 

FORMAL SPECIFICATION AND TRANSFORMATION METHODOLOGIES

The traditional software life-cycle may be characterized by the diagram shown in Figure 2.1.

User Requirements

|  Requirements Analysis |

|_Sj3ecificatioiJ

J^etaU edD esignJ

jjm glem entationJ

|  Validation |

[M aintenance!

Software System

Figure 2.1. Software Life-Cycle

Currently, much of the life-time of a software system is spent in the maintenance phase, usually 

resulting from ”bugs” in the original implementation which are detected over time with use of the 

software. By ”bug” we usually mean a piece of code in the implementation which does not conform to 

the original specification, although there may also be flaws in the design as well, and it is even possible 

that the specification does not meet the user’s requirements. Of these potential problems, validation 

only addresses the detection of ”bugs” and it is well-known that it can not even detect all of these. 

Unfortunately, formal verification is not at present a practical reality. What is much more feasible is 

the automatic implementation of software from the specification. Such an "automatic programming” 

system would intend to avert the steps of detailed design and implementation, guaranteeing that the 

latter does follow its specification, thereby also eliminating the need for validation and a major portion 

of maintenance. The function of this type of system, also called an automatic program generator or 

program synthesizer, is shown in Figure 2.2.

10
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Specification- Automatic Program 
Generator Implementation

Figure 2.2. Automatic Program Generation

In order for this type of system to be realizable, it is necessary that the specification be formal. That is, 

it should be precisely defined in terms of a formal language with well-defined tyntax and semantics.

Our objective in this thesis is to automate the software design and implementation process, at the 

same time providing a better tool for requirements analysis. We propose TVvo-Level Grammar toward 

reaching this end. In this chapter, we study the properties of formal specifications and survey major 

existing specification languages, leading up to why TLG is the desired specification language.

2.1. Properties of Formal Specifications

The goals of a formal specification are:

1. Tb be a reference for software designers, facilitating improved software design through detection 

of incompleteness, inconsistency, and ambiguity. The designer needs to be able to express the user 

requirements correctly, as he understands them.

2. Tb be a reference for users of the system. A concise, understandable specification clearly states 

capabilities and features. After the designer has written the specification, the user’s ability to read 

and understand what has been written will greatly facilitate validation of the requirements analysis 

phase, detecting any inconsistencies between the requirements and specification as early as 

possible.

3. To be a reference for implementors, allowing implementation to rigorously follow the design 

specification. An implementor needs to understand the requirements of the user and plan of the 

designer. The specification serves as their primary medium of communication.

4. Correctness proofs of implementations are facilitated by formalization. It is impossible to reason 

about a specification, or anything else, unless it is well-defined. A formal specification provides 

the mathematical basis upon which to reason about the functionality of software systems.

5. Automatic implementation. The specification can be directly interpreted or automatically 

translated into executable code. Such an implementation can serve as a prototype of a 

production-quality system, or even be efficient enough to itself serve as the final product.

6. Facilitates modification of the system. Since the requirements of software systems may evolve over 

time, even an originally ’’perfect” software system may require maintenance. Such maintenance 

should be facilitated by the formal specification.
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In order to meet these goals, we must develop a specification language to be sufficiently wide 

spectrum to allow a range of specification paradigms. However, there are a number of potentially 

conflicting objectives to be met in such a specification language:

1. Specifications based on natural language must be facilitated to be readable to designers, 

implementors, and users. However, natural language itself is too broad to be efficiently 

implemented for general types of problems, since it requires domain specific knowledge to be 

understood.

2. In a specification, abstract data types should be supported, facilitating object-oriented design. This 

suggests a functional and/or object-oriented specification. However, languages following these 

models are typically not close to natural language in readability, often requiring detailed 

knowledge of the underlying paradigm. This is in direct confrontation with our goal that the 

specifications be understandable to the novice user.

3. Specifications must be structured and mathematical in nature in order to serve as a basis for 

correctness proofs and automatic implementation. It is obvious that a natural language-like 

specification would be too general to meet these criteria. Of existing paradigms, functional and 

logic programming specifications appear to suit this goal the best.

4. We desire that specifications can be efficiently implemented on conventional architectures, at 

least for the purpose of prototyping. It is ideal if the specifications can be directly implemented. 

The most efficiently executable languages continue to be the imperative languages. However, 

these require such detail that they are not suitable for expressing a formal specification.

5. Parallel execution should be facilitated tty the specification. Each paradigm we have mentioned 

offers a methodology for specifying parallelism, either implicitly or explicitly. However, how to 

express parallelism in high-level specifications is as yet a problem with no consensus solution.

2.2. Specification Languages

There are an endless number of specification languages, making an exhaustive comparison very 

difficult. We attempt to mention the major ones here. Formal specification languages tend to be algebraic 

or operational. Algebraic specifications are mathematical definitions of the properties that the software 

system should have, without specifying the implementation detail needed to achieve those properties. 

Major examples of algebraic specification languages include Obj [Gogu79], Clear [Burs81], VDM (the 

Vienna Development Method) [Bjor82], and CLU [Lisk86]. Operational specifications tend to be 

state-oriented, describing the system in terms of how it affects a notion of state. The main example of 

an operational specification language is Z [Abri79]. Outside of these main classifications, the paradigms
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of functional [Tbm85], logic [Kowa85], and object-oriented [Dahl87] programming have all been 

advocated as specification methodologies. These models may support either an algebraic or operational 

approach to specification. In general, one desires that the specification language which is used be 

executable in some manner. Executable specification languages have the following advantages: 1) 

incremental development of a specification is possible, 2) the specification is a prototype of the system 

it specifies, and 3) the behavior of the executable system can be checked for consistency with respect 

to the specification requirements.

Another major emerging theme in specification methodology is the notion of transformational 

programming [Pepp84], where not only a language but an entire theory of developing specifications into 

implementations is provided. The major embodiment of this idea is the CIP (Computer-aided, Intuition 

guided Programming) project at the Technical University of Munich [Baue85j. CIP-L, the specification 

language of the project, is wide-spectrum, allowing for the range of specifications between the formal 

problem description and efficient machine-oriented programs. An environment of transformation rules 

is provided to allow the software developer to initially develop his specifications at a high level and then 

move through stepwise refinement to the final production-quality code. The transformations are not 

completely automatic, instead relying on an experienced programmer’s ”intuition.”

The goals of the above specification languages are facilitated by their reliance on formal logic. 

Logic is concise, unambiguous, and allows automated reasoning about the specifications. For the 

remainder of this discussion, we would like to concentrate on "pure” logic specifications. However, it 

should be mentioned that functional languages also have many of the same properties exhibited here, 

namely a declarative style, inductive (i.e. recursive) definition of computation rules, and constructive 

data structures, and hence can be considered as a paradigm for formal specification in their own right 

fl\im85].

The discussion, definitions, and examples which follow are adapted from [Hogg84]. A logic 

specification is intended to give a precise definition of every relation required in computing the desired 

solution. The principal specified relation is the relation computed by the program when given a most 

general goal, a call to the top level procedure in the program using only variables. An example of 

specifying the subset relation using logic is given below.

subset(X, Y) iff (vUXUeY if U £X )
U SX  iff (3VX3X’XX=V:X’ A (U = V  V U eX ’))
empty(X) iff ->(3 V)(3X’)(X= V:X’)

This specification is comprised of three procedures, subset, £ ,  and empty, with obvious semantic 

interpretations. Each of these rules consists of a definiand, the left side of the iff, and a definiens, the
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right side. We regard subset as the principal specified relation. Therefore, the most general goal would 

be subset(X, Y). In contrast with Hogger’s separation of formal logic specifications, which are considered 

unexecutable, from logic programs, which are, Kowalski [Kowa85] treats these as inseparable. His 

specification of the subset relation might be expressed by the logic program below, given using Prolog 

notation.

subset([], Y).
subset([V | X], Y) member(V, Y), subset(X, Y).
member(V, [V | Z]).
member(V, [U | Z ])m em b er(V , Z).

Note that we have factored the empty predicate into the definition of subset. Tb contrast this approach 

with that taken in functional languages, consider the same specification coded in ML [Miln90].

fun subset [] Y =  true
| subset (V::X) Y = & (member V Y) (subset X Y); 

fun member V [] =  false 
| member V (U::Z) =  if U = V then true else member V Z;

The main differences between the two approaches are to be seen in the definition of the member

function. In Prolog, all cases not listed default to false. In ML, this must be explicitly specified. More

significantly, Prolog allows unification of variables as a means to test for equality. ML and most other

functional languages would require an explicit test for equality. Further discussion of the relationships

between functional and logic specifications may be found in [Kowa85] and [Tbm85]; [DeGr86] is an

entire volume devoted to relevant language issues in combining the two approaches in programming.

23. Verification of Logic Specifications

Program verification is the process of formally proving that a program functions according to its 

specification. This means that a proof is provided that, for any input, the program will execute correctly. 

This is in contrast with validation, which uses a set of test cases to demonstrate that the program behaves 

correctly on those set of test cases, not necessarily all possible inputs. One of the principal advantages 

in using logic specifications is the theory of verification which has been developed for logic programs, 

which is essentially a theorem proving process. We summarize that theory from [Hogg84] here.

There are three conditions which must be satisfied for a program to be considered correct.

1. The program must be implied tty the specification. That is, the program can not do more than the 

specification allows.

2. The program must be complete with respect to the specification. Everything that is specified must 

be included in the program.

3. The program must terminate when queried with the most general goal.
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The process of logic program verification developed in [Hogg84] uses a form of program 

transformation called definiens transformation whereby a definiand may be replaced by a definiens in 

deriving new definitions of predicates that follow from the specification. The goal of the transformation 

is to construct a program where every predicate is defined by a rule of the form: 

r( ) if Bj

which is then compatible with a Prolog rule definition. If the set of rules that are derived in this way are 

consistent with the program to be proven, then that program is judged to be verified.

Consider an example of the verification procedure for the Prolog subset program. The steps below 

outline the proof.

1. We start with the definiens of the subset specification: (VUXUe Y if UeX).

2. The sub-equation U EX  is a definiand of the membership rule so we can replace it with the

definiens for that rule. This is sometimes referred to as unfolding in program transformation. The 

result is (vU)(UEY if (3VX3X’)(X=V:X’ A (U = V  V U EX ’))).

3. This expression may then be transformed according to the logical rule:

A if (3ZXb(Z) A c(Z)) =  i ( 3 Z)b(Z) V (3Z)(b(Z) A A if c(Z»

Let A represent U e Y, Z  represent V and X’, b(Z) represent X = V:X\ and c(Z) represent (U = V 

V Ue X’). Then we have

O V )@ X ’XX =  V:X’) v  (3VX3X’XX=V:X’ A (VUXUe Y if U = V  V U e X’)

4. We now can apply a procedure known as folding to replace the first part of disjunction with 

empty(X), since it is the definiens of the empty rule.

empty(X) V (3VX3X’XX=V:X’ A (VU)(UeY if U = V  v  U e X’)

5. Next we decompose the inner disjunction as follows:

empty(X) V (3V)(3X’)(X=V:X’ A (VUXUeY if U = V )  a  (VUXUe Y if U e X’))

6. Simplifying (VU)(U£Y if U = V) to Ve Y and folding (vUXUe Y if U e X’) to subset(X’, Y) gives

empty(X) v  (3V)(3X’)(X=V:X’ A Ve Y a  subset(X’, Y)) 

which corresponds exactly to the body of the Prolog subset rules, thereby proving their consistency 

with the specification.

To verify the rest of the program, we would have to perform similar procedures for the member rules. 

The result would be a proof of partial correctness. Tb prove total correctness, we also need to prove 

termination. This is the most difficult aspect of program verification as it is undecidable in the general 

case, being reducible from the halting problem for Tiring machines (e. g., see [Mann74]). An informal 

argument may be used to explain that the above program terminates because eveiy recursive call to the
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subset and member further decomposes the list. As the list can not be infinite, we must ultimately reach 

the case where the list is empty, that is, the termination condition. More details about proofs of 

termination for inductive logical definitions may be found in [Mann74].

2.4. Program Transformation and Synthesis

The verification procedure of the last section used a form of program transformation to verify that 

Prolog rules could be derived from formal logic specifications. It should not be surprising that the same 

procedure can be used to synthesize those Prolog rules directly. The theory of logic program synthesis 

using definiens transformation is developed further in [Hogg84j. In general, program transformation 

([Burs77], [Burs81], [DarI82], [Feat87], [Meer87]) is a means to mechanically develop efficient programs 

from formal specifications. It has been proposed as a methodology for automating the software 

development process. The art of program transformation combines the knowledge and techniques from 

programming languages, artificial intelligence, and software theory. The long range objective is to 

dramatically improve the construction, reliability, maintenance, and extensibility of software. An 

alternative to program transformation as a method of synthesis is to use natural deduction ([Mann79, 

[Mann80]). However, the general procedure is the same.

There are some similarities between compilation (e. g., see [Aho86]) and transformation. Just as 

compilation develops efficient machine code from source programs, transformation develops efficient 

programs from specifications. Generally saying, a transformation is the formal development of 

specification to implementation while a compilation is the formal development from implementation 

to machine execution. Their difference is decided by our viewpoint of machine language, as illustrated 

in the following text.

Traditional compilation is characterized by the following key restrictions:

1. Compilation is automatic. That is, once we begin, the process continues without any additional 

input from the programmer, and the product of the process is ready for execution.

2. The source language is limited to that which a compiler can "cover,” that is, any program that is 

legal to express in the language should be compiled satisfactorily.

3. Compilation begins with the source program only, and needs no advice on how to proceed.

By relaxing combinations of the restrictions of compilation in certain ways, we get the major 

subcategories of transformation as below, from [Feat87].

1. Extended compilation, characterized by permitting advice from the user and partially relaxing the

limits on the source language. The transformation system accepts not only the source program, 

but also guidance on how to do the transformation. The source language is extended, taking
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advantage of the additional guidance to permit use of more expressive constructs. All guidance 

must be given at the very beginning, along with the program.

2. Meta-programming, characterized by relaxing the restrictions that the process be automatic and 

that it take no advice. The transformation process may involve significant interaction between 

system and programmer, meaning that advice can be provided both at the start of and during 

transformation. As a result, coverage of the specification language can be attained without 

significantly limiting the constructs of that language.

3. Synthesis, characterized by relaxing all language restrictions while attempting to retain the 

automatic and unadvised nature of compilation. A specification may be expressed in a style that 

gives no hint of a reasonably efficient implementation, hence the need to synthesize the program.

In summary, compilation develops efficient code from source programs. The result of the 

compilation is ready for execution (in particular, will not need to be further transformed or compiled) 

while transformation develops efficient programs from specifications. The result of transformation 

usually needs further compilation, or transformation in some cases. Figure 2.3 outlines the difference. 

Generally saying, a transformation is the formal development from specification to implementation, 

while a  compilation is the formal development from implementation to machine execution. There is no 

significant difference between a specification and an implementation, except a specification is more 

expressive and less algorithmically detailed. Therefore, under some conditions, a compilation can be 

viewed as a transformation. A case study is illustrated in the following section.

2.5. Overview of Transformation Strategies

It is clear that the nature of the specification to be transformed, the specification language, the 

target programming language, and the efficiency requirements may all influence the development from 

specification to program. Unfortunately, little is known about how to deal with all these issues at once 

in anything other than an ad-hoc manner.

Research that has addressed, but not solved, the problems at this strategic level includes:

compilation

transformation

any language machine language

higher level language lower level language

Figure 2.3. Compilation versus Tiansformation
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1. The structure of an applicative language specification is used to suggest an overall strategy for

improvement in efficiency, where the elements of the strategy are applications of several

transformation tactics [Feat82].

2. In an efficient implementation of a given specification, the optimal control structures and data

structures may be mutually dependent.

The following techniques are usually considered to help the transformation.

1. Techniques to introduce or alter the computation structure:

a) Fusion: the merging of nested function calls (in the context of recursion equation programs) 

or consecutive loops (in the context of iterative programs), where the first function call / loop 

builds up a composite object which is used by the second function call /  loop.

b) Tupling: merges parallel function calls or loops so that their independent computations may 

be performed collectively, and so that their common computations need not be repeated.

c) Generalization and specialization: Generalization is a technique to solve a problem by 

considering a more general one. Specialization is in some ways the complement of 

generalization. Its idea is to take advantage of the context in which some value is being 

computed to tailor that computation to the context, with the objective of realizing a more 

efficient computation of the same value.

d) Filter promotion is potentially applicable to a specification or a portion of a specification in 

"generate and test” form. Its effect is to merge the filter testing into the generation process, 

and it is thus a special case of fusion.

e) Removal: instances of forms of computation that are convenient in specification or 

intermediate stages in development, but can typically be replaced by lower-level more 

efficient code, are often used as goals for removal. The most common removal are removing 

recursion and nondeterminism.

f) Precomputation: When some but not all of the data to be given to a program are known in 

advance, the program may be partially processed with that known data to give a "residual” 

program, which can be run later on the remaining data. This goal is often called partial 

evaluation.

2. Techniques to introduce or alter the maintenance and retrieval of data:

a) Memoizing avoids recomputation of expressions by storing the results of evaluations the first

time they are computed, and retrieving the stored values upon subsequent requests for the 

same computation.
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b) Tabulation is a  specialized form of memoizing where the context is a goal of computing a 

single result or table of results.

c) Formal differentiation aims only to maintain computed results incrementally, as the values 

upon which they depend gradually change.

3. Techniques to manipulate and implement abstract data types and transformations on abstract data

types.

We may use many of these techniques in developing a transformation system from TWo-Level Grammar 

specifications into C target programs.
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CHAPTER HI 

TWO-LEVEL GRAMMAR SPECIFICATION LANGUAGE

Tvo-Level Grammar (TLG) was introduced by van Wijngaarden [Wijn65] as a formal grammar 

for the purpose of language specification. The name ”two-level” comes from the fact that TLG consists 

of two context-free grammars interacting in a manner such that their combined computing power is 

equivalent to that of a Tiring machine [Sint67]. TLG was first used in specification to successfully define 

the complete syntax (both context-free and context-sensitive aspects) of the programming language 

ALGOL 68 [Wijn74], It has also been applied in other language definition studies ([Marc76], [Paga81]) 

on a smaller scale, especially in the book by Cleaveland and Uzgalis [Clea77] completely devoted to the 

subject of TLG for language specification. This book introduces the notion of using TLG in an 

interpretive specification of semantics.

The first attempt to develop practical implementations of TLG was made by Wegner [Wegn80], 

who was able to develop a parsing technique for a restricted class of two-level grammars. Wegner’s 

parser allowed programs generated by TLG language specifications to be verified with respect to 

syntactic correctness, including for context-sensitive syntax. However, the semantics of programming 

languages did not become implementable until the TLG interpretation method of Edupuganty and 

Bryant [Edup85], which showed how operational semantics could be implemented. This was later 

generalized to other methods of specification, including axiomatic semantics [Brya86b] and denotational 

semantics [Edup87], which led to the ultimate use of TLG as a programming language in its own right.

Maluszynski [Malu84] proved the equivalence between a class of two-level grammars and logic 

programs. However, TLG did not become useful for practical programming until the functional and 

logic programming models of Bryant and Edupuganty ([Brya88a], [Biya88b], [Edup89]). They showed 

that the two-levels of the TLG notation could be formulated as a set of domain definitions and the set 

of function definitions operating on those domains.

3.1. Introduction to TVvo-Level Grammar Language

The type declarations of a TLG program define the domains of the functions and allow strong 

typing of identifiers used in the function definitions. Domains maybe structured as linear data structures 

such as lists, sets, or singleton data objects, or be configured as tree-structured data objects. The

20
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standard structured data types of product domain and sum domain may be treated as special cases of 

these. Type declarations have the following form:

IDENTIFIER-1, IDENTIFIER-2,..., IDENTIFIER-m:: data-object-1; data-object-2;...; data-object-n. 

where each data-object-i is a combination of domain identifiers, singleton data objects, and lists of data 

objects, which taken together form the type of IDENTIFIER-1, IDENTIFIER-2,..., IDENTIFIER-m. Note 

that if n =  1, then the domain is a true singleton data object, whereas if n > 1, then the domain is a set 

of the n objects. Syntactically, domain identifiers are written entirely in upper case letters, with 

underscores for readability (e. g., INTEGERJLIST, SYMBOLTABLE, etc.), and singleton data objects are 

finite lists of English words written entirely in lower case letters (e. g., sorted list). A list structure is 

denoted by a regular expression or by following a domain identifier with the suffix _LIST. For example, 

the following type declarations respectively define a list of integers and a compiler symbol table 

configured as a list of records, each with three fields: id, type and value.

INTEGER_LIST:: {INTEGER}*.
SYMBOLTABLE : {id IDENTIFIER type TYPE value INTEGER} + .

Note that the first of these is redundant since INTEGERJLIST already has the assumed meaning. 

Following conventional regular set notation, * implies a list of zero or more elements while +  denotes 

a list of one or more elements. As in any programming language, readability is promoted through the 

use of appropriate names for identifiers. Furthermore, there exists a predefined environment, defining 

such domains as INTEGER, BOOLEAN, CHARACTER, STRING, etc., in the obvious ways. The main 

difference between list structures and tree structured domains is whether the defining domain identifier 

declaration is recursive or not. Recursive domains are slightly more powerful in that they allow 

’’context-free” data types to be defined, such as expression strings with balanced parentheses as in the 

following example:

EXPRESSION :: ( EXPRESSION ).

The context-free grammars defining such data types must be unambiguous.

The function definitions are the main part of a TLG program. Their syntax allows for the semantics 

of the function to be expressed using a structured form of natural language. Function definitions take 

the form:

function-predicate : sub-function-1, sub-function-2,..., sub-function-n. 

where n> 0 . Function predicates are a combination of English words and domain identifiers, which 

correspond to variables in a conventional logic program (e. g., divide a list of numbers INTEGER_LIST 

into sub-lists INTEGER_LIST1 and INTEGERJLIST2). The use of English in the function predicate may 

be regarded as a form of infix notation for functions, in contrast with the customary prefix forms of most
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other programming languages. This greatly enhances readability of programs. Each sub-function on the

right hand side of a function definition should correspond to a function predicate defined within the

scope of the TLG program. The most important aspect of function definitions is that every domain

identifier with the same name is instantiated to the same value, as in Prolog. This is called consistent

substitution. If variables have the same root name but are subscripted, then the subscripts are used to

distinguish between variables. A subscripted variable VI will then be different from a variable V2 and

the two can have different values. However, they will be of the same type, namely type V.

The following is an example of a TLG specification for determining if a character string is a

palindrome.

Domain Declarations

LETTER:: CHARACTER.
LETTERS:: STRING.

Function Definitions

string EMPTY is a palindrome, 
string LETTER is a palindrome.
string LETTER LETTERS LETTER is a palindrome : string LETTERS is a palindrome.

Following consistent substitution, the two occurrences of LETTER in the third rule must have the same 

value. Note that the domain declarations are somewhat redundant since the types CHARACTER and 

STRING may be used in the function definitions for LETTER and LETTERS, respectively. However, we 

prefer that the writer of the specification not have to concern himself excessively with type declarations. 

Therefore, we propose to omit the domain declarations and specify only the function definitions. The 

types must then be inferred from the function definition rules as in modem functional languages. 

Further discussion of TLG type inferencing will take place in Chapter 4.

32. Type Structures

The notations for domain declarations allow us to define the principal domains of type theory, 

namely product domains (tuples), sum domains (discriminated unions), and function domains. Our types 

are modeled after the ML functional programming language [Miln90], with domains D ^ D2, ..., Dn 

structured as

1) A product domain D = D,xD2x...xDn with selection operation fm  to select the m-th component 

of D. In TLG, this may be represented as a tagged tuple (e. g., D : d l D1 d2 D 2... dn Dn) with the 

selection operation being directly by name. This is more general than usual product domains which 

allow selection by number only. For example, a symbol table record was defined earlier as a 

product of identifier name, type, and value.

SYMBOL_TABLE_RECORD : id IDENTIFIER type TYPE value INTEGER

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



23

A selection operation to select a field from this record would be of the form:

select id from id IDENTIFIER type TYPE value INTEGER giving IDENTIFIER 
select type from id IDENTIFIER type TYPE value INTEGER giving TYPE, 
select value from id IDENTIFIER type TYPE value INTEGER giving INTEGER

This selection operation generalizes to any product, with either named or numbered components

by the following rules:

select TAG from TAG NOTION FIELD_LIST giving NOTION, 
select TAG1 from TAG2 NOTION2 FIELD_LIST giving NOTION1: 

select TAG1 from FIELD_LIST giving NOTION1.

2) A sum domain D = D, + D2+ ... + D„ with injection operation inD Dm (dm£ D m) and projection

operation d | Dm (d£D). This is represented as a union of TLG domains which may be tagged

if necessary to distinguish between non-disjoint domains (e. g., D : d l Dl; d2 D 2;...; dn Dn) with

the injection operation consisting of adjoining the tag to the domain element to make it an element

of the domain D and the projection operation by pattern matching. For example, we can define

the set of all finite lists of elements from domain D by a sum domain as in [Schm86] as follows:

FINITE_LIST_OF_D :: null list; NON_NULL_LIST_OF_D. {D*}
NON_NULL_LIST_OF_D :: D; D NON_NULL_LIST_OF_D. {D +}

Now the constructor function for lists (i.e. cons (d, 1)) can be defined as the following sequence of

rules which project the list 1 into the domain D" and then inject the result of the function into

domain Dn+1.

cons D and null list into D.
cons D and NON_NULL_LIST_OF_D into D NON_NULL_LIST_OF_D.

3) A function domain Dj-vD2 with abstraction operation fun x =» E (x£Dj, EED 2), defining a

function with argument x and body E, and application operation f  x (f£Di-+I>2, xeD j). TLG can

define any function or function application which is expressible tty the X-calculus [Chur41]. The

abstract syntax of X-calculus expressed in TLG is given below.

LAMBDA_CONSTANT:: {definition of constants).
LAMBDA_VARIABLE :: {definition of variables).
LAMBDA_APPLICATIONLAMBDA_EXPRESSION LAMBDAEXPRESSION. 
LAMBDA_ABSTRACTION :: fun LAMBDA_VARIABLE =» LAMBDA_EXPRESSION.
LAMBDA EXPRESSION LAMBDA_CONSTANT; LAMBDA VARIABLE; LAMBDA APPLICATION; 

LAMBDA_ABSTRACTION.

Two-Level Grammar also supports polymorphic types. The predefined domain NOTION 

represents the universal domain of values. Any operation defined on domain NOTION is considered to 

be polymorphic; it may be applied to values of any type. In most cases, types may be inferred from their 

usage in function definitions. The actual usage of domain declarations is needed only to clarify the types 

of those functions which are defined in such a way that the types of variable can not be deduced from 

their usage in the function.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



24

3J. Built-In Functions

There are also several predefined functions in the TLG programming language. Primitive 

operations, such as arithmetic and logical operations, are defined by predicates o f  the form where 

OPERANDl operator OPERAND2 is RESULT. The list operations head and tail may be implicit and called 

through pattern-matching or be explicit; the append predicate is referenced explicitly. Control 

operations such as if-tfaen-else and endstmt to  provide function sequencing are also provided as 

predefined functions. Perhaps the m ost powerful feature provided as a TLG primitive is the Zermelo 

Frankel (ZF) set expression, which allows the implementation o f  abstract sets such as {x | x £ D } . We 

illustrate this with a TLG example o f  the quick sort algorithm using generators developed by T im er  

[Tim90].

Domain Declarations
PIVOT:: INTEGER.
INTEGERSLESS, INTEGERS_GREATER, SORTLIST :: {INTEGER}*.

Function Definitions

quick sort EMPTY_LIST into EMPTYUST.
quick sort PIVOT INTEGERJLIST into SORTJLIST1 PIVOT SORTJLIST2 : 

generate all INTEGER1 from INTEGER_LIST
condition INTEGER2 <  =  PIVOT giving NUMBERS_LESS, 

quick sort NUMBERSJLESS into SORT_LISTl, 
generate all INTEGER2 from INTEGER_LIST

condition INTEGER3 > PIVOT giving NUMBERS_GREATER, 
quick sort NUMBERS_GREATER into SORT_LIST2.

The TLG primitive function generate-all is used to produce the list of integers less than the pivot 

(NUMBERS_LESS) and the list of integers greater than the pivot (NUMBERS_GREATER). Further 

discussion of ZF expressions and their implementation in TLG is given in [Brya88b].

The evaluation rules for TLG lambda expressions described in the previous section are also 

primitives of the language. The following function evaluates a lambda expression.

reduce LAMBDAJEXPRESSION1 to LAMBDA_EXPRESSION2.

These rules can be completely defined using TLG functions, as will be shown later when we give a 

complete set of lambda reduction rules expressed in TLG. The efficient implementation of lambda 

reduction rules will be described in Chapter 5.

3.4. Determinism versus Nondeterminism

Function predicate definitions, hereafter called rules, may be either deterministic or 

nondeterministic. Nondeterminism can arise in two ways: 1) an assignment of values to variables is not 

unique, or 2) more than one rule may be applied. The rule heads below, adapted from [Edup87], 

illustrate both types of nondeterminism:
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partition INTEGERJLIST INTEGER_LIST into INTEGERLIST INTEGER_LIST.
partition INTEG ERjjSTl INTEGER_LIST2 into INTEGER_LIST1 INTEGERJLIST2.

The first rule accepts a list whose first half is the same as its second half and returns the content of each 

half in INTEGER_LIST and the second rule uses an arbitraiy partition to return part of the list in 

1NTEGER_LIST1 and the rest in INTEGERJLIST2. If a function call of the form partition 1 2 3 1 2  3 into 

INTEGER_LIST31NTEGER_UST4 is given, then both rules may be matched. In the case of the first rule, 

the variable INTEGERJLIST is instantiated to 1 2 3. In the second rule, the assignment of values to 

INTEGER_LIST1 and INTEGERJLIST2 is not unique. There are a total of eight different assignments 

possible, considering that the lists may also be empty.

Nondeterminism can often be eliminated from TLG specifications. Besides the partition function 

just given, all of our previous TLG specifications have been deterministic. In such examples as 

palindrome and quick-sort, the variables of the different rules are disjoint and hence can never be 

instantiated to the same values. In logic programming, this is one desirable way of eliminating 

nondeterminism. The other method is through the use of an if-then-else conditional statement. Figure 

3.1 shows a traditional quick-sort algorithm, adapted from [Brya88a]. The TLG is nondeterministic in 

the split function since the last two rule heads can not be distinguished. However, since each of these 

rules differs only in their initial guard predicate, the two rules can be combined into one using the guard 

as the condition of an if-then-else statement. The resulting function is shown in Figure 3.2.

Domain Declarations

PIVOT:: INTEGER.
INTEGERSJLESS, INTEGERS_GREATER, SORTLIST1, SORT.LIST2 :: {INTEGER}*. 

Function Definitions

quick sort EMPTYJLIST into EMPTY_LIST.
quick sort PIVOT INTEGERJLIST into SORTLIST1 PIVOT SORTJLIST2 :

split INTEGER LIST with PIVOT into lists INTEGERS_LESS and INTEGERS_GREATER, 
quick sort INTEGERS_LESS into SORT_LISTl, 
quick sort INTEGERS_GREATER into SORTLIST2.

split EMPTYJLIST with PIVOT into EMPTY_LIST and EMPTYJLIST. 
spiit INTEGER INTEGER_LIST with PIVOT~

into INTEGER INTEGERS_LESS and INTEGERS_GREATER : 
where INTEGER < =  PIVOT,
split INTEGERJLIST with PIVOT into INTEGERS_LESS and INTEGERS_GREATER. 

split INTEGER INTEGER LIST with PIVOT
into INTEGERSJLESS and INTEGER INTEGERS_GREATER : 

where INTEGER > PIVOT,
split INTEGER LIST with PIVOT into INTEGERS_LESS and INTEGERS_GREATER. 

Figure 3.1. Two-Level Grammar for Quick Sort
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split EMPTYLIST with PIVOT into EMPTYJJST and EMPTY_LIST.
split INTEGER INTEGER_LIST with PIVOT into lists INTEGERSJLESS and INTEGERS_GREATER:

if INTEGER < =  PIVOT then
split INTEGERJLIST with PIVOT

into INTEGERS_LES S2 and INTEGERS_GREATER2 endstmt 
append INTEGER with INTEGERS_LESS2 giving INTEGERS_LESS1

else
split INTEGERJLIST with PIVOT

into INTEGERS_LESS2 and INTEGERS_GREATER2 endstmt 
append INTEGER with"INTEGERS_GREATER2 giving INTEGERS.GREATERl

endif.

Figure 3.2. Deterministic Itoo-Level Grammar for Quick Sort Split Function

3.5. Mode Analysis

TLG functions may also return values in one or more variables as in Prolog. However, in contrast 

to Prolog, where the syntax of input and output variables is uniform, TLG variable modes may be 

determined by an analysis of the natural language framework of the function definition. For example, 

in a TLG rule of the form:

divide a list of numbers INTEGER_LIST into sub-lists INTEGER_LIST 1 and INTEGERJLIST2 

it is clear that INTEGERJLIST should be input to the divide function and INTEGER_LIST1 and 

INTEGER JLIST2 are output variables. Using the TLG natural language vocabulaiy for mode inferencing 

method was first proposed in [Biya88b].

3.6. Sequential Interpretation

The sequential interpretation of a Tvo-Level Grammar program was first detailed in [Edup85] 

and has been refined in several subsequent papers. Our discussion is adapted from [Biya86a]. Sequential 

interpretation may be thought of as the top-down construction of a context-free grammar derivation 

tree. Each function is expanded left to right recursively (a depth-first, in-order traversal) by applying 

its subfunctions, treated as its children in the derivation tree, until all the leaves of the tree are calls 

to functions with no subfunctions. This signifies the completion of the interpretation. The derivation 

tree of the Two-Level Grammar represents the control flow of the program execution. Execution 

consists of matching each function call in a "sentential form,” represented by a node in the tree, with 

a function definition and spawning new branches from the sequence of subfunctions in the function 

body. In a deterministic TLG, there will be at most one function definition corresponding to any function 

call. If there are more than one, the interpretation must be nondeterministic. During the execution of 

the TLG program there may be some variables whose instantiations are unknown during the expansion. 

These variables are instantiated using a process which is semantically equivalent to unification and may
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be realized by passing a pointer to the variable down the tree. In TLG terminology, this instantiation 

is called synthesis.

The interpretation algorithm is formalized below. For simplicity we assume that the TLG being 

executed is deterministic. 

procedure call (function)

1. Find the applicable function definition. This rule will be of the form 

function : subfunction-1, subfiinction-2,..., subfunction-n.

2. If any variables are synthesized by the rule match, create appropriate structures to represent the 

synthesized values.

3. Expand the derivation tree with function as the root and the branches being the n subfunctions.

4. For i =  1, 2,..., n, call (subfunction-i)

3.7. Data Flow Parallel Interpretation

The notion that TLG could be executed using the dataflow model of computation has been 

detailed in [Biya86a]. Data flow interpretation of function application is a move from sequential 

evaluation of functions to massively parallel evaluation wherever possible. In data flow models of 

computation, a function may be evaluated as soon as all of its arguments are available. Furthermore, 

only essential data dependencies are specified. Functional composition will be sequential but 

independent function arguments may be evaluated in parallel. It is also true that in a Two-Level 

Grammar, only essential functional dependencies are specified. Dependencies occur only in the 

following cases:

1) All subfunctions in a function body are always dependent on their parent function.

2) Synthesized variables in a function definition are dependent on the subfunctions which synthesize 

them.

3) Two subfunctions, subfunction-i and subfunction-j, in the same function body have a dependency 

if either synthesizes a variable which is also referenced in the other. If subfunction-i synthesizes 

the variable X, for example, and X is used in subfunction-j, then subfunction-j is dependent upon 

subfunction-i. Note that the same variable can only be synthesized by one subfunction or 

consistent substitution would be violated.

The sequential interpretation algorithm does not exploit the lack of dependencies for parallel 

evaluation. An interpretation algorithm based on dataflow parallelism is given below:
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procedure call (function)

1. Find the applicable function definition. This rule will be of the form 

function : subfunction-i, subfunction-2,..., subfunction-n.

2. If any variables are synthesized by the rule match, create appropriate structures to represent the 

synthesized values.

3. Expand the derivation tree with function as the root and the branches being the n subfunctions.

4. For all i ( l< i< n )  such that subfunction-i is not dependent on any subfunction-j ( l< j< n ), call 

(subfunction-i) concurrently. This step is repeated until all subfunctions have been expanded.

Note that because of step 4, this procedure is concurrent.

As an example of the application of this procedure, consider the TLG representation of the 

function f(x)=x2-x*2+3.

Domain Declarations

X, RESULT:: INTEGER.

Function Definitions

compute f  of X giving RESULT: 
where RESULT1 =  X * X, 
where RESULT2 = X * 2, 
where RESULT! =  RESULT1 -  RESULTS, 
where RESULT =  RESULT3 +  3.

When this function is called with argument X, all instances of X in the Ixxfy will be given the appropriate 

value simultaneously, according to the consistent substitution principle. It is also clearly seen that the 

first two subfunctions are independent, and hence would be evaluated by our interpretation algorithm 

in parallel, but the third subfunction depends on both of them and the fourth depends on the third.

Given the TLG definition of a function, we may either interpret it sequentially or by the data flow 

method. In general, the results will be the same. However, there are some functions for which the call 

by-value and call-by-name computation rules used in sequential (i.e., left-to-right order) 

interpretation are not considered to be safe computation rules [Vuil73]. These functions may only be 

correctly evaluated using fix-point computation rules [Mann74]. However, using the data flow concept, 

a TLG may be interpreted using only fix-point, i.e. safe, computation rules. We will therefore be 

guaranteed to always compute the correct result.

In order for TLG evaluation to be safe, we need to slightly redefine our concept of function 

“matching.” In particular, we need to allow partial parameterization [Paga79], which allows functions to 

be evaluated if only some of their input arguments are present. The result of this application will be 

another function. Partial parameterization may proceed until the resulting function is a constant. In
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some functions having many arguments, the result of the function may depend upon only one argument 

making the other arguments useless. The idea of partial parameterization is not present in the data flow 

concept which does not allow a function to be evaluated until all its arguments are present. To extend 

TLG to encompass partial parameterization, we will allow a function bodjy expansion to occur even if 

not all variables are instantiated, provided that this match can be done uniquely, without ambiguity. This 

will allow a function value to be computed if the minimum number of arguments are present to ensure 

correct computation. Partial parameterization of TLG combined with data flow interpretation 

effectively accomplishes delayed evaluation (i.e., call-by-name) and is an embodiment of the fu ll 

substitution computation rule (e. g., see [Mann74]) which is a safe computation rule always giving the 

correct result.

The concept of TLG interpretation by partial parameterization will be illustrated in the following 

examples. Consider the following recursive function: 

f(0,y)=0
f(x+ l,y)=f(x,f(x+ l,y»

By inspection we can see that the function calls itself repeatedly in the second case, continually 

decreasing the value of the first argument. Ultimately the first argument will become 0 and the result 

should be 1. By sequential interpretation, however, using call-by-value, this result can never be 

computed because the interpreter will attempt to evaluate the infinite recursion before applying the first 

function rule.

T he above function is expressed in TLG notation as follows. For convenience, we will use the 

unary alphabet {i} for numeric computations. Note that UNARYINTEGER and UNARY_ZERO are 

predefined domains.

Domain Declarations

X, Y, RESULT :: UNARYJNTEGER.

Function Definitions

compute f  of UNARY_ZERO and Y giving UNARY_ZERO. 
compute f  of X i and Y giving RESULT1:

compute f  of X i and Y giving RESULT2, 
compute f of X and RESULT2 giving RESULT1.

It can be seen that the value of Y is irrelevant in the first function definition. If X is i°, then the rule

will fire, regardless of the value of Y. If X >0, then the second function rule will fire, again regardless

of the value of Y. If we allow these rules to be applied even when Y is unknown, we can compute the

result of the function correctly. This is illustrated by the application of f(l,0) shown in Figure 3.3. This

interpretation tree shows the infinite recursion which would occur if the tree were traversed depth-first
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compute f  of i1 and i° giving RESULT1

compute f  of i1 and i° 
giving RESULT2

compute f  of i° and RESULT2 
giving RESULT1

compute f  of i1 and i° compute f of i° and RESULT3
giving RESULT3 giving RESULT2

RESULT1 =  i°

oo RESULT2 = i°

Figure 3.3. TWo-Level Grammar Derivation Tree for f(l,0)

(i.e. sequentially, left-to-right). However, using the data flow concept with partial parameterization, we 

see that the right branch of the tree at level 1 can compute the result of the entire function. The 

dependency of RESULT2 on the left branch is ignored because it is not essential -  because the first 

argument is 0, the first function rule will fire regardless of the value of RESULT2. No matter what the 

arguments, the TLG will compute the value 1 for the function. This is the least fix-point of the function

computation rule, but this rule is still not considered safe. The following example from [Mann74] shows

its fault.

g(0,y)=0
g(x + l,y)= g(x+ 2,g(x+ l,y))*g(x,g(x +  l,y))

We observe that the left operand of the multiplication operand results in an infinite sequence of 

recursive calls. The right operand, however, decreases to the fix-point of 0, as defined by the first rule. 

Therefore, the least fix-point of g will be 0. This is clearly indicated in the TLG representation of g shown 

below.

Domain Declarations

X, Y, RESULT:: UNARYJNTEGER.

Hyperrules

compute g of UNARYZERO and Y giving UNARY_ZERO. 
compute g of X i and Y giving RESULT1:

compute g of X i and Y giving RESULT2, 
compute g of X ii and RESULT2 giving RESULT3, 
compute g of X i and Y giving RESULT4, 
compute g of X and RESULT4 giving RESULT5, 
compute RESULT3 times RESULT5 giving RESULT1.

-f(x ,y )= l.

It should be pointed out that the above function is evaluatable by the sequential call-by-name

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



31

An example of computing g(l,0) is shown in Figure 3.4. The infinite sequences are clearly seen but the 

fourth and fifth subfunctions allow termination and computation of the value 0 for RESULT1.

IWo-Level Grammar may therefore be used as a data flow language with safe computation rules. 

This will later allow us to use TLG as a meta-language for denotational semantics and to transform TLG 

into parallel machine code.

3.8. Implementation of Rule Matching

An initial TLG interpreter has been prototyped ty  [Sund87]. The theory underlying this 

interpreter was developed tty [Edup87] and will be described here. The process of expanding a function 

call (steps 1 and 2 in the above algorithms) involves pattern matching. Because TLG is based on the 

theory of formal grammars and is composed of a collection of strings which may be either regular sets 

or context-free languages, the most straightforward way of implementing the pattern matching is 

through finite automata and context-free parsing techniques. We shall illustrate the techniques through 

the example of a function to divide a list of integers:

divide INTEGERJLIST1INTEGER1INTEGER2 into INTEGER L1ST21NTEGER2 
and INTEGER_LIST3 INTEGER2 : ....

and associated function call:

divide 1 2 3 4 into INTEGER_LIST1 and INTEGERJLIST2 

3.8.1. Finite Automata Techniques

Let us assume that all domain identifiers used in the example TLG program are defined tty regular 

expressions as follows:

INTEGER_LIST:: {INTEGER}*, 

lb  recognize the constants which comprise the function definition (e. g., divide-into-and in the above 

example) and the strings defined by regular domain identifiers, we generate finite automata (FA). A 

single FA would be sufficient for indexed variables (e. g., INTEGER_LIST1 and INTEGERJLIST2) having 

the same domain type. For the function matching problem, the FA’s corresponding to the different

compute g of i1 and i° giving RESULT1

compute g of 
i1 and i°
giving RESULT2

A

compute g of 
i2 and RESULT2 
giving RESULT3

A

compute g of 
i1 and i°
giving RESULT4

A

compute g of 
i° and RESULT4 
giving RESULT5

RESULT5 = i°

compute RESULT3 
times RESULT5 
giving RESULT1

RESULT1 =  i<>

Figure 3.4. TVo-Level Grammar Derivation Tree of g(l,0)
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variables and constants involved can be concatenated to form another FA. Thus, for the example given, 

to recognize the string 1234, the FA’s corresponding to the variables INTEGER LIST and INTEGER can 

be combined to form a single nondeterministic FA (NFA) and then converted into a deterministic FA 

(e. g., see [Hopc79]). All of these transformations can take place statically during compilation of a TLG 

and hence do not affect run-time efficiency.

In the example, it is seen that the initial constant divide is common to both the function call and 

the function definition, and the matching is straightforward. It now remains to match the string 12 3 

4 against the variables INTEGER_LIST1 INTEGER1 INTEGER2. Since the FA’s for variables 

INTEGER_LIST1 and INTEGER1 can be combined to form an NFA, this too poses no difficulties. If the 

matching is successful, which it is in this case, the other instances of INTEGER1 and INTEGER2 in the 

function definition are instantiated to actual values due to consistent substitution. Continuing, the next 

matching problem is whether the variable INTEGERJLIST1 in the function call matches INTEGER_LIST2 

INTEGER1 in the function definition. Here the variables INTEGERJLIST1 and INTEGER_LIST2 are 

synthesized variables (i.e. uninstantiated), whereas INTEGER1 is instantiated to 3 (from the previous 

pattern matching). The pattern matching thus involves matching the synthesized variable 

INTEGER_LIST1 with INTEGER_LIST2 3 (note that INTEGER_LIST2 is uninstantiated). This problem 

reduces to the question of whether the regular expressions represented by INTEGER_LIST1 and 

INTEGERJLIST2 3 are equivalent, which is known to be a decidable problem [Hopc79].

3.82. Context-Free Parsing Techniques

For explaining this method in the context of the example, we give the following context-free 

domain declaration:

INTEGERJLIST :: INTEGER_LIST INTEGER; EMPTY.

Now consider the problem of matching INTEGER_LIST1 INTEGER1 INTEGER2 against 1 2 3 4. To 

accomplish this parsing in a straightforward manner, a "dummy” start rule of the form S -»  

INTEGERJLIST INTEGER INTEGER is created. Then the parsing reduces to the question of whether S 

=►1234, which is straightforward by any traditional parsing technique for context-free grammars (e.g., 

see [Aho86]).

Let us now consider the case where the function variables are not instantiated. Consider the 

matching of INTEGERJLIST1 against INTEGERJLIST2INTEGER1. The matching proceeds by generating 

a parse tree for the variable INTEGERJLIST, and matching the frontier of a cut of the tree with the string 

being parsed (INTEGERJ.IST2 INTEGER1). The situation can be visualized as shown in Figure 3.5(a). 

The matching of the tree cut with the input string has to be done breadth-first. If the match is not
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INTEGER LIST INTEGER LIST
cut

INTEGER LISTINTEGER LIST INTEGER

cut

INTEGER LIST INTEGER INTEGER

(a) (b)

Figure 3.5. Tvo-Level Grammar Derivation Tree Cuts

successful, the parse tree is expanded another level (shown in Figure 3.5(b)). We are interested in 

matching only the structure of domain variable declarations and hence do not need to consider the 

subscripted variables as special cases.

3.9. Two-Level Grammar as Specification Language

TWo-Level Grammar is an embedding of natural language into a functional programming 

language, generically called FPL, and Prolog, as illustrated by Figure 3.6. To show this more clearly, let 

us contrast TLG specifications with functional and logic specifications. We have seen the TLG 

description of palindromes. Consider the definitions of this problem using ML and Prolog given in 

Figure 3.7, neither of which includes the type checking mandated by the TLG specification. Both of these 

assume the existence of additional functions (e. g., reverse) in order to accomplish the designated task. 

In our opinion, the TLG specification is more readable and considerably more concise. For another 

example, consider the quick sort algorithm specified in TLG given earlier showing the inclusion of 

generators and list comprehensions in TLG. Corresponding examples in Miranda fl\im90] and Prolog

Figure 3.6. Comparison of TWo-Level Grammar with Functional, Logic, and Natural Languages
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ML
fun palindrome [] =  true

| palindrome (LETTER :: LETTERSLETTER) = 
case LETTERS LETTER of 

[] =  > true
| HEAD OFJLETTERS LETTER :: TAIL OF LETTERS LETTER =  > 

let val LETTERLETTERS -= reverse LETTERS LETTER 
in (& ((hd LETTER LETTERS) =  LETTER)

(palindrome (tl LETTER LETTERS)))
end;

Proloe

palindrome([j).
palindrome([LETTER]).
palindrome([LETTER | LETTERS_LETTER])

reverse(LETTERS_LETTER, [LETTER | LETTERS]), palindrome(LETTERS).

Figure 3.7. ML and Prolog Specifications of Palindromes

[Cloc87] are given in Figure 3.8. The conciseness of the TLG version is comparable to that of Miranda 

because of the use of list comprehensions. However, we claim that the TLG version is considerably more 

readable because of the use of logical variables and natural language.

Miranda

quick_sort [] = []
quicksort (PIVOT: LIST) =  quicksort [X | X < -  LIST) X < =  PIVOT] + + [PIVOT]

+ + quicksort [Y | Y < -  LIST) Y > PIVOT]

Prolog

quick_sort([], []).
quick_sort([PIVOT | LIST], SORTED LIST)

splitCPIVOT, LIST, NUMBERSJLESS, NUMBERS_GREATER), 
quick_sort(NUMBERS_LESS, SORTED_USTl), 
quick_sort(NUMBERS_GREATER, SORTED_UST2), 
append(SORTED_USTl, [PIVOT | SORTED LIST2], SORTEDJLIST).

split(PIVOT, [X | LIST1], [X | LIST2], UST3)
X < =  PIVOT, split(PIVOT, LIST1, LIST2, LIST3). 

split(PIVOT, [Y | LIST1], UST2, [Y | LIST3])
X > PIVOT, splitCPIVOT, LIST1, LIST2, LIST3).

split(L»[].[].t])-

Figure 3.8. Miranda and Prolog Specifications of Quick Sort
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Two-Level Grammar has the combined advantages of functional programming specifications,

logic programming specifications, and natural language specifications, while eliminating many of their

disadvantages. Particularly notable advantages are:

1. IWo-Level Grammar provides exceptional clarity of specification. A novice computer user with 

an elementary knowledge of mathematics can understand the semantics of the algorithm without 

difficulty because what the specification does is written clearly in natural language.

2. TLG is strongly typed but free of type declarations. The specification writer needn’t write many 

type declarations as the TLG compiler will statically determine the types.

3. TLG is based upon logic but is purely functional. In logic programs, variables are bi-directional 

and hence have different modes in different situations, creating some confusion. The TLG 

compiler uses the vocabulary of function symbols to determine directionality. On the other hand, 

the functional and logic programming basis facilitates correctness proofs of the specification.

4. TLG specifications can be made completely deterministic and so can be executed using 

conventional programming techniques. TLG programs can be translated into efficient C 

equivalents, thereby accomplishing automatic implementation of the software from the 

specification.

5. The TLG specifications contain several levels of implicit parallelism which can be detected and 

exploited at compile-time.
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CHAPTER IV

IMPLEMENTATION TECHNIQUES FOR 
TWO-LEVEL GRAMMAR SPECIFICATIONS

The principal techniques for Two-Level Grammar implementation that we have developed are 

interpretation, preprocessing into Prolog, and transformation. The main difference among all these 

techniques is: the interpretation technique interprets the Tvo-Level Grammar program directly into 

the result, given a TLG query; the preprocessor technique first translates TLG programs into 

Prolog-like intermediate code, and then uses a conventional Prolog interpreter or compiler to execute 

it. The transformation technique is to automatically transform TLG programs into C programs and let 

the C program run using a conventional C compiler. Figure 4.1 illustrates the difference among the 

various techniques.

TLG Specification TLG Specification TLG Specification

TLG Preprocessor TLG Tansformation

TLG Interpreter Prolog Program C Program

Result

Prolog Interpreter

Result

C Compiler

Result

(a) Interpretation (b) Preprocessing (c) Tansformation

Figure 4.1. Implementation Techniques for Tiro-Level Grammar

However, before proceeding with the details of the different implementation techniques, we first 

discuss three significant extensions to the TLG language that we have developed.

1. lype declarations are allowed to be optional. This means that a TLG specification is reduced to 

a set of function definitions and the implementation must automatically infer the types of variables

36
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from their usage in the function definition. We have developed such a type inference system which 

is unique to Two-Level Grammar.

2. In order to make Tvo-Level Grammar even more natural language-like, we would like to ease 

some restrictions in rule matching of queries to enhance robustness and fault tolerance, including 

the capability to recognize simple grammatical mistakes, slight variations in word order, noise 

words, and punctuation, as well as omission of keywords or context. This requires that we develop 

some techniques for natural language processing. However, because Ttao-Level Grammar 

imparts a structure to natural language, we needn’t attempt a complete natural language syntax 

and semantics implementation. Such a system would be sufficiently complex as to negate the 

objectives we are trying to achieve, and may also not be within the bounds of current technology. 

Our approach relies on a natural language pattern matching technique we have developed called 

ordered keyword parsing.

3. Additional functions are added to Two-Level Grammar which allow reasoning. For example, in 

our query, we may ask ”how” or ’’why” questions or request the steps of the proof procedure using 

any style of natural language.

In Section 4.1, it is discussed how these extensions to the TLG model maybe implemented using 

the interpretation techniques developed by Bryant and Edupuganty ([Edup85], [Biya86a], [Brya88b], 

[Edup89]). Section 4.2 describes the preprocessor which translates TLG specifications into Prolog, and 

section 4.3 describes the transformation system which is the principal implementation technique we have 

developed.

4.1. Interpretation

lb  illustrate the capabilities which we wish to achieve, consider again the palindrome problem 

given in the previous chapter.

string EMPTY is a palindrome, 
string LETTER is a palindrome.
string LETTER LETTERS LETTER is a palindrome : string LETTERS is a palindrome.

The first modification to the traditional TLG model is the omission of the type declarations, l b  

implement th above program requires that the types for LETTER and LETTERS be determined. In 

our interpretive prototype, we perform this test at run-time, matching the rules with the respective 

queries dynamically, assuming that any successful match is correctly typed.

A more dramatic improvement in the Two-Level Grammar specification language is the 

relaxation of the way in which queries match rules. The traditional view of TLG was for each query to 

exactly match a rule in the TLG rule base. In Edupuganty’s interpreter, this was enforced by finite
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automata to match keywords and context-free parsing to match variables. Because one of the goals of 

our research is to make TLG a form of natural language interface between software users, designers, 

and implementors, as well as to  facilitate rapid prototyping, we do not require that the respective parties 

know all the details of the interface syntax. Approximate matches will be accepted as long as each query 

will match a specific rule. Only the use of variables must be exact -  the person writing the query must 

know what he is querying for. As examples of the type of flexibility we are seeking, the following queries 

should match the definition of palindrome given above.

1) is string abcba a palindrome?
2) is eve also a palindrome?
3) would toot be a palindrome too?
4) ww palindrome?
5) how about level?

In the first case, we allow the query to be stated as a natural language question which is a permutation 

of the original rules. In the second case, the keyword string is omitted. Query 3 shows a complete 

difference in wording from the original rule base. The fourth query is the minimum query which can 

still be matched; all other noise words are omitted. All of these queries may be successfully matched 

by our interpreter because of the distinguishing keyword, palindrome. Finally, we also allow queries to 

be based upon context. In the fifth query, even a reference to palindrome is omitted. The interpreter 

can detect the context of the query as pertaining to palindrome because all the previous queries do and 

there are no alternative rules in the rule base to match.

Allowing the flexibility of approximate rule matching provides the users of the system with a 

convenient mechanism for accessing the rules without knowing the exact syntactic details in which the 

rules are specified. However, it complicates the implementation considerably. A completely different 

method of rule matching must be employed in order for these types of queries to be answered. On the 

other hand, the system must be computationally efficient as well. O ur solution is to use a technique for 

pattern matching we have developed called ordered keyword parsing. In this approach we build several 

levels of lexicons, ordered by the importance of the words. For example, words such as a, the, etc., would 

be at a lower level than verbs such as is, would, and so forth, which would be at a lower level than nouns. 

The structure of our ordered keyword parsing algorithm is illustrated in Figure 4.2.

Our system processes the rule base prior to interpretation and constructs the keyword table. 

Obviously the larger and more diversified the rule base, the larger the lexicons and the narrower the 

margin for approximating the keyword matching. For this reason, we say that the our system 

’’understands” natural language at multiple levels. If the semantic domain expressed by the rule base 

is smaller, then the domain of syntax for queries is larger and more flexible because there are fewer
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begin

first level vocabulary

left side search right side search

finished a phrase

yes
| second level vocabulaiy

no
left side search right side search

| finished a phrase

finished
parsing

need further 
understanding?

first level semantic 
understanding

third level vocabulary"!

Figure 4.2. Ordered Keyword Parsing Algorithm

objects to match. On the other hand, as the semantic domain grows, the syntax domain correspondingly 

shrinks. The utility of this technique for processing queries to database and knowledge-base systems has 

also been researched.

The interpretation scheme for TLG which we have developed is shown in Figure 4.3. The input 

of this interpreter is a TLG program (rule base) and queries to be answered using that rule base. The 

TLG rules are interpreted using finite automata, context free parsing, and natural language processing 

techniques to match rules, applying the rules using backward chaining and unification as in Prolog. The 

multi-level key word parsing technique is the main technique that we use to understand the natural 

language part of the TLG. These three modules will be used in all the different implementation 

techniques of TLG.
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queries

results
 ̂Two-Level Grammar Interpreter |TLG rule base

context-free
parser

finite automaton 
interpreter

natural language 
processing unit

Figure 4.3. Tvo-Level Grammar Interpretation

42. Preprocessing

Another method for implementing TLG is the preprocessor technique. We translate TLG into 

a form of Prolog, made more efficient by automatically generating cuts where appropriate, as 

determined by the determinism of TLG rules. It is also possible to tag variables with their mode (input 

or output) and type (integer, boolean, etc.) using the mode and type inference procedures developed 

in the next section. Because of the nature of Prolog, these procedures take place at run-time. However, 

this method can be used as the front-end of the transformation system and is exactly the way in which 

we begin the transformation process. For this reason and the fact that other aspects of these procedures 

are extended to be applicable to C, more details about these components will be described in the next 

section. Figure 4.4 shows the basic mechanism of the preprocessor technique.

TLG rule base. 
with queries

natural language 
processing unit

Two-Level Grammar 
to Prolog Translator

Prolog rule base 
with queries

Figure 4.4. Implementation of Two-Level Grammar by Preprocessing

The Two-Level Grammar to Prolog translator includes a natural language processing unit, to 

translate the natural language of TLG into Prolog-like predicates. The finite automata and context-free 

parser of the previous section are not shown here as they play a lesser role. They are needed only for 

the syntactic parsing of TLG rules in the preprocessor. The semantics are now handled by the Prolog 

interpreter. The main approach of this method is to determine the collections of rules, identifying which 

rules belong to the same function. Once the keywords comprising a rule are determined, the remaining 

text is assumed to be the arguments. If the arguments make up regular domains, then they are grouped

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



41

into a list in the Prolog representation. If the arguments are part of a context-free domain, they must 

be represented by Prolog structures. The type inference algorithm we have developed determines this 

information.

As an illustration of this preprocessor method, consider the traditional example of the palindrome. 

The corresponding Prolog program is shown below: 

palindrome(input, nil, output, t r u e ) !.
palindrome(input, LETTER, output, tru e)character(L E T T E R ),!. 
palindrome(input, string(LETTER, LETTERS, LETTER), output, BOOLEAN)

!, character(LETTER), string(LETTERS), 
palindrome(input, LETTERS, output, BOOLEAN). 

palindrome(input, ANYTHING ELSE, output, false).

This program can run in Prolog directly, assuming the existence of the character and string type checking

predicates. Note that this program is semantically more equivalent to the TLG palindrome function than

the Prolog example given in Chapter 3. However, it is perhaps even worse as a specification because it

requires considerable implementation detail to be coded in the predicates. Fortunately our preprocessor

can generate this automatically.

It is also the case that different TLG’s might be translated into the same Prolog target programs.

As an example of this, consider two different TLG’s to describe paternal relationships, adapted from

[Chan73]. Program PI is:

john is mary’s father.
Z is Y’s grandfather: X is V s father, Z is X’s father.

The same program can also written in a different way, as shown in program P2 below: 

the father of mary is john.
the grandfather of Y is Z : the father of Y is X, the father of X is Z.

However, both TLG’s may be translated into the Prolog program:

father_of(input, maty, output, john). 
grandfather_of(input, Y, output, Z) :-

father_of(input, Y, output, X), father_of(input, X, output, Z).

The reason these two TLG’s are treated the same is that they have the same keywords, father and 

grandfather. All the other words are noise words. On the other hand, our natural language processing 

system can also detect the direction of possession (e. g., pertaining to the of and ’s constructions) in order 

to know which variables are input variables and which are output variables. Therefore, both TLG’s are 

translated into the same Prolog program.

Let us consider how the queries are handled by the preprocessor. For the above program, both 

yes/no and ”who is” type questions may be answered. These are respectively referred to as Class A and 

Class B type questions in [Chan73]. An example of a Class A question is:
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is john mary’s father?

This is translated into the Prolog query: 

father_of(input, mary, output, john). 

which can be seen to match the first rule. The formal answer given by our interpretive system would 

be:

yes, john is mary’s father.

which could be embedded in the Prolog prototype as well. Class B questions include ”who is,” "where 

is,” or ”under what condition” as an answer. The first of these is appropriate in this case. As an example, 

consider the query:

who is mary’s father?

This is translated into the Prolog query: 

father_of(input, mary, output, Who).

The TLG answer is:

john is mary’s father.

For a more complicated query, consider 

who is the grandfather of X?

This has two variables and no constants in the argument list. It may be translated into Prolog as follows: 

grandfather_of(input, X, output, Who).

This query can not be answered by Prolog unless we include the rule: 

grandfather_of(input, X, output, father_of(input, father_of(X)). 

and introduce a cut at the end of the previous grandfather rule. That is, this rule will only be matched 

if the other rule can not succeed. The rationale for adding this rule is the implicit relationship established 

by the use of the verb is in the original TLG rule. If the father of X is Y and the father of Y is Z, then the 

father of the father of X is Z, substituting for Y. This type of reasoning is not possible in Prolog without 

considering the natural language semantics of the rule. The query would then be answered in TLG by: 

the father of the father of x is the grandfather of x.

43. Transformation

The transformation technique that we mention here is the main topic of this dissertation. 

According to  our result, this is the most efficient technique for implementing TWo-Level Grammar, 

compared to  the other two techniques that we mentioned before. The transformation is totally 

automatic. The main job of the system is to transform high level TLG specifications into high 

performance C code and let the generated C  code run under the C environment (e. g., compiled into
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machine code by a C compiler). Since the transformation only takes place one time no matter how many 

times the resulting system is executed, even if transformation is a relatively complicated procedure, 

considerable work is saved at run-time, thereby producing overall performance improvement. Figure 

4.5 shows the main structure of the transformation system.

TLG rule base 
with queries

TLG rule base and queries 
with explicit variable modes

TLG rule base and queries with 
explicit variable modes and types

Tfte
inference

Mode
inference

Determinism
analyzer

Natural language 
processing unit

Deterministic TLG rule base 
and queries with explicit 
variable modes and types

TLG to C  
translator

C program

Figure 4.5. Implementation of IWo-Level Grammar by 'nansformation
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We will discuss the details of the transformation system in the next section. The main idea of 

this procedure is : we input the TLG rule base program (TLG specification), then we have several 

procedures to transform this high level logic specification into C code.

1. Mode inference. We use the natural language embedded in TLG rules to establish the 

directionality of the logical variables. For example, we define a set of keywords which may be 

reasonably associated with the notions of "input” and "output” variables, as originally suggested 

in [Brya88a]. We expect that this type of heuristic information can greatly improve upon traditional 

mode analysis techniques (e. g., see [Debr87]). In order to translate the TLG into C, we need to 

know which variables are to be passed as "in” parameters to C functions and which are to be passed 

as "out” parameters (i.e. using pointers).

2. Type inference. In order to effectively translate TLG specifications into C programs, the system 

of types must be well-known. As part of our enhancements in TLG, we have eliminated the 

explicit type declarations for programming convenience. This means that types of logical variables 

must be inferred from their usage. Because TLG "types” are defined by regular sets and 

context-free languages, we may use parsing to perform type inference. Parsing techniques offer 

improvements in efficiency and capability over existing type inference methods (e. g., see 

[Bans88]) since language recognition is computationally "easier” than unification used in other 

methods. However, we have also developed a method of type inference which is independent of 

parsing and may be applied directly to the Prolog intermediate form. Either of these techniques 

are sufficient for our purposes. The result of this step is a symbol table indicating the types of the 

various variables involved in the TLG program.

3. Determinism analysis. In the usual case, because of their functional nature, TLG specifications 

are deterministic. However, it is sometimes convenient to express problems nondeterministically. 

Given a slightly restricted form of nondeterminism, we are able to simulate it using multi-branch 

if-then-else statements and recursion. It should also be noted that the determinism or lack of it 

in TLG specifications can be determined partly by the type inference procedure which will 

establish the domains of the rule variables.

4. Translation into C. Once we know the modes and types of variables and choice points of 

nondeterminism, we generate C programs to effect the TLG specification. The primary goal of 

this translation will be to preserve the semantics of the TLG specification and our transformation 

rules are expressed in a provably correct manner. Second, we wish to  take advantage of the
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efficiency with which C programs can be written, including structure sharing, use of iteration 

instead of recursion, and replacement of dynamic data structures with static ones.

The result is a transformation system which can translate TVo-Level Grammar specifications into 

efficient C programs.

4.4. Automatic "type Inference

We give two methods of performing type inference. One uses the context-free parsing techniques 

that may also be used to interpret TLG specifications. The other uses \-<|>-reduction to compute the 

types from the formal function definitions.

4.4.1. TWo-Level Grammar Type Inference

l\vo-Level Grammar programs are normally interpreted using a combination of finite automata 

for matching regular set patterns and parsing for context-free patterns. These recognizers are set into 

motion by querying the TLG program with a function call. The main task is then to match the symbols 

of the function definition with the symbols of the function call to determine which rule is appropriate. 

For example, in the append function, if we give the query: 

append 1 2 3  with 4 5 6 giving LIST 

then the interpreter will fail to match 1 2  3 with EMPTY and instead will match it with INTEGER 

INTEGERJLIST1 (INTEGER =  1, INTEGER_LIST1 =  23). Continuing the interpretation, 45 6 will match 

INTEGERJLIST2 and LIST will match INTEGER INTEGER_LIST3. The remainder of the execution is 

essentially like that of Prolog, except the unification of terms is done using string pattern matching 

instead of unification.

In contrast with many existing type inference systems which use the query to determine the types 

of variables (e. g., see [Bans88]), we would like to perform a complete static analysis of the program, 

independent of any queries. Our method derives a grammar from the different alternatives of the 

function arguments. Since all invocations of our example function use the identifiers append, and, and 

giving, we can determine that the function has pattern append APPEND1 and APPEND2 giving APPEND3. 

That is, there are three variables. The way the variables are used in the function definitions then gives 

rise to the following initial production rules:

APPEND1:: EMPTY; INTEGER INTEGER_LIST.
APPEND2:: INTEGER_LIST.
APPEND3 :: INTEGERJLIST; INTEGER INTEGER_LIST.

We then proceed to unify the different function arguments. Beginning with the first function rule, we 

have that APPEND3 =  APPEND2 =  INTEGER_LIST, implying that INTEGER_LIST =  INTEGER_LIST 

and INTEGERJLIST =  INTEGER INTEGER_LIST. Treating these as regular expression equations and
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solving for INTEGER_LIST gives {INTEGER}’, i. e. a list of zero or more integers, as the type of both 

APPEND2 and APPEND3. Now, APPEND1 is equivalent to the regular expression EMPTY +  INTEGER 

INTEGER_LIST, which simplifies to {INTEGER}*. Therefore, the type of this function is {INTEGER}’ x  

{INTEGER}* -t- {INTEGER}*.

Note that the determination of types in the previous example was simplified tty the facts that 1) 

it was known that the element type of the lists was INTEGER, and 2) the patterns of the variables were 

right-linear, meaning that we only needed to solve for regular expressions. If case (1) had not been true 

and we did not know the type of the list elements, then it would be necessary to either treat the function 

as polymorphic (e. g., treat the list elements as being of type NOTION) or request the user to specify the 

type in an explicit domain declaration. If case (2) held, we would have a context-free pattern and so 

would be more limited in the types of equations we could solve, since the equivalence of two context-free 

languages is undecidable. Consider briefly the function definitions for the palindrome problem given 

earlier. The single argument has patterns of the form:

PALINDROME :: EMPTY; LETTER; LETTER LETTERS LETTER.

The only function call determines that LETTERS =  PALINDROME from which we can deduce the 

following context-free production rule defining LETTERS.

LETTERS :: EMPTY; LETTER; LETTER LETTERS LETTER.

Without domain declarations to te llu sth a t LETTER= CHARACTER, we can determine nothing further. 

It is worth noting that the type defined tty LETTERS is different from the type STRING, even though both 

are comprised o f  a list o f  CHARACTER’S. LETTERS is treated as a tree-structured domain while STRING 

is a linear domain. This assures that we never need to  question the equivalence o f regular sets and 

context-free languages.

It should be mentioned that the only previous work in this area was done tty Maluszynski and 

Nilsson [Malu82] who showed that TLG rule-matching could be reduced to standard unification. 

However, their goal was to show that two-level grammars defined a class of logic programs. We have 

extended this result considerably Ity defining a specific method tty which the pattern matching can take 

place, using both regular set patter matching and context-free parsing, and used this technique to infer 

the types of logic programs expressed in TLG.

4.4.2. Logical fype Inference

As mentioned earlier, our Prolog preprocessor is a front-end to the transformation system in the 

sense that we use Prolog as an intermediate language. Consequently, we will use Prolog syntax for data 

structures (e. g., [] for EMPTY, type(X) for X e  TYPE, where TYPE is a defined or basic type, upper
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case for variables and lower case for data structures, etc.)* For context-free patterns, we use a Prolog 

functor corresponding to the parse tree. For example, LETTER STRING LETTER is represented by 

string(LETTER, STRING, LETTER). Here, the functor string has no particular type connotation but 

serves to identify the argument to palindrome as being of that type. An example of this notation was 

shown earlier for palindrome. We call this form for our intermediate code TFM (fype Free 

Metalanguage). Because we begin with a restricted form of Prolog (although the original TLG 

specification has no restrictions), we are able to perform much better type inferencing than result from 

type inference techniques presented by [Bans88], [Zobe87], and others using abstract interpretation of 

standard Prolog. For example, BansaTs system is top down -  the initial basic type information is given 

in the user’s query. Our system extracts the type information from the source code by recognizing the 

data structure pattern and this analysis will be performed independently of user queries. Zobel’s work 

is bottom up, getting type information by rewriting rules, which will affect the efficiency of the system.

Our type system has the following characteristics:

1. The system is one pass and highly efficient. The source code doesn’t need to be rewritten, and 

the type inference procedure doesn’t have side effects to the source code. The algorithm is 

completely syntax directed, and uses a uniform way to handle all data types including recursive 

data types, and also handles all source code structures including recursive rules. We do not need 

to check whether a rule is recursive or not, in contrast with the other methods which must perform 

this time consuming test.

2. The type inference algorithm also detects type errors, and can report the type error at exactly the 

position at which it occurs and the type of error. We claim that our algorithm can instantiate the 

type to the maximum extent possible.

3. For most source code, all the types can be inferred without human interference Ity referring to 

some built-in type declarations, e. g., X <  Y has type Int < Int. However, for some programs, 

it is impossible to figure out all the types. This will be detected and the user is then requested 

to specify the undefined types.

4. We use a  new concept of unification, which we call inclusion unification. This is based on the 

standard unification techniques but has the added characteristic of being able to unify two terms 

without the concept of logical variables.

5. Our algorithm only needs one scan of the source code and hence is generally 0(n), where n is the 

length of the source code. The worst case of our algorithm is O(nm) where m is the environment 

length which is equivalent to the number of different functors in the source code. Although m
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is a function of n, it will generally be much smaller, which is why we argue that the complexity is 

approximately 0(n).

l b  perform the type inferencing, we use a new concept based on standard unification called 

inclusion unification. Our type inference algorithm is based on this inclusion unification. For efficiency 

considerations, all unifications are between a set of two elements. For clearer illustration, we give our 

inclusion unification algorithm by comparing with the standard unification algorithm (e. g., see 

[Chan73]):

Standard Unification Algorithm 

Input: A  pair of terms, denoted by W 

Output: Unified term, M, and most general unifier o  

Step 1: Set k =  0, Wk=W, and 0*=e

Step 2: If Wk is a singleton, M=Wk, halt; a=Ok is a most general unifier for W. Otherwise, find the

disagreement set Dk of Wk.

Step 3: If there exist elements vk and tk in Dk such that Vk is a variable that does not occur in tn, go to 

step 4. Otherwise, halt; W is not unifiable.

Step 4: Let Ok+i =  Ok {tk/vk} and Wk+i =  Wk {tk/vk}. (Note that Wk+i =  Wk {Ok+i}.)

Step 5: Set k =  k +  1 and go to step 2.

Inclusion Unification Algorithm

Input: A pair of terms, denoted by W and a definition of the inclusion relationship on the domain D 

Output: Unified term, M, and most general unifier O 

Step 1: Set k =  0, Wk=W, and Ok=e

Step 2: If Wk is a singleton, M=Wk, halt; 0 = 0 k is a most general unifier for W. Otherwise, find the

disagreement set Dk of Wk.

Step 3: If there exist elements Vk and tk in Dk such that Vk includes tkand vk does not occur in tk, go to 

step 4. Otherwise, halt; W is not unifiable (type error).

Step 4: Let Ok+i =  Ok {tk/vk} and Wk+i =  Wk {tk/vk}. (Note that Wk+i =  Wk{Ok+i}.)

Step 5: Set k =  k + 1 and go to step 2.

The difference between the standard unification and the inclusion unification is that, first an inclusion 

relation must be defined, and second the relationship between variable Vk and the unification result tk 

is determined by an inclusion relationship, no matter whether vk is a variable or not. This allows us to 

instantiate the type step by step. Finally, after scanning the whole source program, all the types should
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be ground. Otherwise, the user is asked to define the non-ground types. For convenience, we denote 

the inclusion unification of terms vk and tk resulting in tk by (vk,tk)-»tk.

Before proceeding with the details of inclusion unification, let us give a high-level view of the 

difference between this and standard unification. Consider the problem of unifying a pair of terms W 

=  {p(a, X, f(g(Y))), p(Z, f(Z), f(U))}. Using standard unification, the unifier is {a/Z, f(a)/X, g(Y)/U} 

and the resulting term is p(a, f(a), f(g(Y))). For inclusion unification, first set the inclusion relation as 

function C a C X c Y c Z C U . I n  this case, inclusion unification gives the same result as standard 

unification. However, if we set the relation a s U c Z d Y c X d a  C  function, then the result is p(Z, 

X, f(U)), with unifier {Z/a, X/f(Z), U/g(Y)}. Therefore, it can be seen that the inclusion unification 

result is based on the definition of the inclusion relation.

The terms that participate in unification are type expressions. A grammar for type expressions is 

given below. Since our type inference program is written in Lisp, the type expression is in Lisp form. 

For a list of multiple types, the manipulation is similar to structures.

Type ::=  Basic-type | Compound-type | -L 
Basic-type :: =  int | string | unknown 
C om poundtype:: =

[list, "fype] | [struct, Type] | rfypei, Type2, ..., Typen] | [function, Type] | [unknown, Id]

Note that we use nil as the base value for all structures. For example, when nil is met tty the system, 

the type that is inferred is [struct, unknown], it means the parameter is of type structure, with the 

element of unknown type. If [] is met, then the type is [list, unknown]. We define the inclusion 

relationship as

JL C  Type C  [unknown, Id] c  unknown 

where Type is the rest of the type list above corresponding to a discrete partial order, although compound 

types have their own partial orders. For example, [list, int] Cl [list, [unknown, Id]] C  [list, unknown]. 

The inclusion is transitive. Note that it is necessary to separate the types of unknown and [unknown, 

Id], and this is the key to making our implementation successful and highly efficient, [unknown, Id] 

denotes that while the specific type is unknown, we do know of a set of objects of that type which are 

unifiable and hence may be tagged with Id.

In type inference, we use an environment to record the data type. At the conclusion of the 

algorithm, the contents of the environment is the type specification of each argument in every predicate 

in the source code. The type inference algorithm is given below, divided into four cases for the program, 

individual rules, subgoals, and predicate arguments.
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Type Inference Algorithm

1. Program type inference

Inpu t: TFM program Q as collection of rules Ri, R2, R n 

Output: 'type environment E for Q 

Step 1: Set E to be empty.

Step 2: If Q is empty, halt and output E.

Step 3: Set R to be the first rule in Q. Delete R from Q.

Step 4: Rule type inference (R—iEr)

Step 5: Global inclusion unification (E, Er—lEn). Perform type reduction.

Step 6: Set E = E» and go to step 2.

2. Rule type inference

Inpu t: Rule R of the form H B 

Output: lype environment Er for R 

Step 1: Head type inference (H—»Eh).

Step 2: Body type inference (B-*Eb).

Step 3: Set Er = append (Eh,Eb).

3. Subgoal type inference 

Input: Subgoal p(Ai,A2,...,An)

Output: Environment EP for subgoal 

Step 1: Set P = {Ai,A2,.» An}.

Step 2: Set Pi to be the first parameter in P. Delete Pi from P.

Step 3: Parameter type inference (EP, Pi-fE).

Step 4. Set EP= E  and go to step 2.

4. Parameter type inference

Input: Parameter A, current rule environment Er, current program environment Ep 

Output: Environment E» for parameter

Step 1: Generate type expression Ea” according to the syntax of the parameter A 

Step 2: Local inclusion unification (Ea”, Er-vEa’)

Step 3: Global inclusion unification (Ea’, Ep—*Ea)

Local inclusion unification is to unify the current type expression with the other type expressions 

that have the same variable in the current rule. For example, the variable X underlined in 

append([X|Y],Z,[X|R]), X should have local inclusion unification with the X in append.l. Global
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inclusion unification unifies the current type expression with the type expression appearing in the last 

rule, with the same argument position in the same predicate. A central idea is that after we finish 

processing a rule (head and body), we need to do type reduction. The function of the type reduction is 

figuring out the optimal type expression and eliminating the redundant variable names. This step is very 

important because some recursive data types can be linearized in this step, which prevents the recursive 

data structures from unfolding too much during the inclusion unification procedure. The main algorithm 

is : if the parameter is of the same type, e. g., list, check the variable; if the variable is also the same name, 

e. g., X, then the new type is the tuple of the type expression and the variable’s name, e. g., [list,X]. 

If the variables names are different, then eliminate the variable’s name, and what remains is the desired 

type expression.

In summary, there are two situations under which we should perform inclusion unification:

1) When we have the same variable within the same rule (local inclusion unification).

2) When we have a parameter in the same position of the same functor (global inclusion unification). 

Only under one condition should we perform type-reduction: whenever we finish scanning a rule.

An example of this procedure is given below. Note that to simplify the discussion, we limit list 

elements to be of one type only. Lists with multiple types can be handled similarly using structured or 

union types.

Source Code

R l: append(input, [], X, output, X).
R2: append(input, [X | Y], Z, output, [X | R])append( input ,  Y, Z, output, R).

In the discussion which follows we use Rl-append to denote the time when the type inferencing system 

scans the append functor of R l, R2-h-append to denote the time when the type inferencing system 

scans the head of R2, and R2-b-append to denote the time when the type inferencing system scans the 

body of R2. We use append.l to denote the first argument to the predicate, append.2 to denote the 

second argument, etc. We have an environment denote by append.l, append.2 and append.3 to keep 

the most updated type expression of each parameter. We use parenthesis (...) to denote the tuple of 

a type expression and its variable, and use square brackets [...] to denote the type expression only. The 

tuple (...) also can take part in the inclusion unification. Usually, after type reduction, all tuples will 

be reduced into type expressions only. We use u as short for unknown. After processing R l, we have 

R l-append.l: [list,«]. This means that the first parameter of append is a list, with the type unknown, 

and there is no variable belonging to this type in this parameter;

Rl-append.2: («, X). The second parameter of append is an unknown type and there is a variable named 

X belonging to this type;
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R l-append3: (u, X). The third parameter is an unknown type and X belongs to this type.

At this point, we observe the same variable X within the same rule, and this is one of the conditions to 

perform local inclusion unification. The result of the local inclusion unification of (u, u) is still a, so the 

type remains unchanged.

Now we have finished processing R l and should do type reduction. The functions of type 

reduction are to optimize the type expression, e. g., straighten the recursive data structure from unfolded 

form into folded form, and to eliminate the variable because the same variable name doesn’t mean 

anything to the next rule. If the type is unknown, with variable name X in several parameters, then 

these variables should all have the same type. The type reduction makes the X part of the type 

expression, so the new type expression is [«, X], to specify this as a special type, and denoting type 

equivalence among unknown types. Note that this notation of type expression is better then the system 

mentioned in [Bans88] and [Zobe87], where they use a , p, etc. to denote specific types (type variables). 

This system allows more flexibility and has more readability. After type reduction, we have: 

environment:

append.l: [list, u]

append.2: [u, X ] . Now [u, X] is a type, with no elements. 

append.3: [u, X]

While the notation appears to remain the same, the meaning is actually quite different. At this point 

in the procedure each entity is a type expression and the variables have been eliminated. Before, (u, X) 

meant a list with the type unknown but a member of X; now [u, X] is reduced as a type expression. 

Next we scan a new rule R2.

R2-h-append.l: ([list, (u, X)], Y). The new type of append.l is [list, (u, X)] because X is an element 

of the list and X  is unknown type. Y is a variable of this type. Now it is time to perform global inclusion 

unification because condition (2) is encountered. After global inclusion unification, ([list,u], [list, (u, 

X)]) -*• [list, («, X)]. so the type expression in the environment append.l should be changed to [list, (u, 

X)].

R2-h-append.2: («, Z). The second argument is an unknown type and Z  is a variable of this type. 

After global inclusion unification, ([«, X], u) -+ [u, X]. The environment append.2 remained the same.

R2-h-append3: ([list, (u, X )], R). This situation is similar to R2-h-append.l. After global inclusion 

unification, the environment append.3 will be updated to [list, (w, X )], At the same time append.2 will 

also be updated to [list, (u, X )]. The system now begins processing the body of R2:

R3-b-append.l: (u ,Y). ([list, (u, X )],« )-» [list, (u, X)]. append.3 remains unchanged.
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R3-b-append.2: («, Z). ([list, (u, X)], u)—► [list, (u, X)].

R3-b-append3: (u, R). ([list, («, X)], «)-► [list, («, X)].

After outer level type reduction we, get rid of the variable X,Y, Z, we have: 

append.l: [list, (u, X)]; append.2: [list, (u, X)]; append.3 [list, («, X)]

After the inner level type reduction, we have 

environment:

append.l: [list,[u,X]]; append.2:[list,[u,X]] append.3:[list,[u,X]]

This is the final form of the environment, but the type of the list is still unknown as type [u, X], so the 

system will request user assistance in clarifying the type. If the user specifies type integer, for example, 

then the complete environment is: 

environment:

append.l: [list, int]; append.2: [list, int]; append.3: [list, int]

This can be directly translated into C type declarations using recursive data structures.

We have used this algorithm to test several more programs in this form, including a Prolog lambda 

calculus reduction machine [Pan89], a semantics-directed compiler for Ada [Pan90a], and a relational 

database tystem [Pan90b], and the result of the type inferencing is very accurate. It is infrequent that 

types have to be explicitly stated.

4£ . Generation of C Code

TFM differs from Prolog in two ways: 1) the input-output mode of a function is fixed, and 2) there 

is only limited backtracking, at most one level. These differences allow us to translate TFM into a static 

imperative language such as C.

Generally, if the nondeterminism is restricted to one level, that is, rules differ only in a set of 

guards that appear at the beginning of each rule bodly, then the nondeterministic conditional action can 

be translated into if-then-else statements. Our goal on code transformation is to work out an elegant, 

uniform, mechanical and efficient way to produce the target code. During this procedure, details of C 

functions and features must be considered for the mechanical transformation. The general scheme used 

to translate this form into C is described below:

1. Recursive data structures in TFM are translated into structures with the recursion replaced by 

pointers.

2. Functions in TFM are translated into C procedures with the same name and the same order of 

arguments, and the procedure also uses recursion as in the TFM program.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



54

3. For each argument in output mode of the TFM program, we define a pointer for it. Any time this 

procedure is called, we also allocate raemoiy to hold the value of the output parameter.

4. For data structures used in more than two procedures, we create a global static declaration.

5. Several automatic routines must also be included. Because the recursive structure in TFM is 

unlimited, we must have procedures to generate the input (initialize the data structure) and output 

(print out the data structure). The specific C routines will be based on the recursive data structure 

definitions.

6. Garbage collection routines also must be inserted in the appropriate place.

In the above translation scheme, we have several functions which generate the C code, each using the 

prefix "generate.” At the top level of the program, the procedure generate_global_definitions uses the 

environment to produce a set of global structure definitions. If the same type is required by more than 

two different rules, it is defined globally. As an example, consider the append function. The structure 

list is used tty both main and append so should be globally declared as follows: 

struct list {int data; struct list *link;};

The body of the main procedure is produced by a procedure called generate_main and has the following

structure:

generatem ain
{ generate_input_variable_declarations; 

generate_output_variable_declarations; 
generate_memoiy_allocations; 
generate_input; 
generate_queiy_call; 
generate_output }

The procedures generate_input_variable_declarations and generate_output_variable_declarations are 

to create the local variable declarations for the main procedure. All the output variables should be 

declared as pointers, in order to allow their contents to be changed ty  the procedures to which they are 

passed. Furthermore, each output variable must have storage allocated to contain the result and each 

different type of structure pointed to must have its own storage allocation procedure, hence the 

generate_memoiy_allocations procedure. The input variables are then retrieved, followed by a call to 

the top-level query. Finally the result variables are output.

As an example of C code generation, consider the append function given earlier, which results 

in the following:

mainO
{ struct list ‘appendl, *append2; /* generate_input_variable_declarations *1

struct list *append3; /* generate_output_variable_decIarations */

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



55

struct list *listalloc(); /* generate_memoiy_alIocations */
inputlist (appendl); inputlist (append2); /* generate_input */ 
append (appendl, append2, append3 ■= listallocO); /* generate_queiy_call */ 
outputlist (append3); } /* generate_output */

struct list *listalloc() {•••}

inputlist (input_variable) struct list *input_variable; {...} 

outputlist (output_variabIe) struct list *output_variable; {...}

Note that the listalloc, inputlist and outputlist procedures are generated at the same time as their calls 

in the main procedure.

Each of the predicate procedures is produced by sequencing through the statically created 

environment. The generate_procedure function maps each predicate onto the corresponding C 

procedure. The logical rules comprising the procedure will be partitioned into cases of an if-then-else 

conditional structure. The outline of generate_procedure is as follows:

generate_procedure (Proc)
{ generate_procedure_head (Head);

generate_local_variable_declarations (Proc); 
if (generate_condition (Rule))
{ generate_initial_assignment (Head);

generate_body (Body); 
generate_retum_assignments (Head); }

else
{ generatejirocedure (Rule); }}

The parameter to generate procedure, Proc, a procedure comprised of a list of rules, is of the form 

rule(Head, Body, Rule). First, the head of the C procedure is produced along with declarations of the 

formal parameters. There will be one formal parameter for each argument to the corresponding 

predicate. The body of the procedure begins with a declaration of the local variables. During the 

generation procedure, the intermediate local variables are added dynamically. Any time we need an 

intermediate variable to denote a pattern, this variable must be declared at the head of the procedure. 

Often there will not be any additional local variables to declare after the parameters. The 

generate_condition procedure produces the constraint checks under which a rule will be executed. 

These will be derived from either instantiations in the rule head (e. g., if the input variables are ground 

values) or from guards in the first position of the rule body. In initial assignment, local variables which 

are components of a structured data type are initialized to the appropriate values. The body of the rule 

is then expanded and a procedure call is generated for each subgoal. Finally, the output variables of the 

predicate currently being processed are assigned the appropriate values, if this has not already been done 

through calls to the subgoal procedures. The entire process is repeated for each successive rule 

belonging to the same predicate, generating an if-then-else structure to process all the rules. The final
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else clause is only executed in the case of failure to match any rule of the predicate in which case an 

error will be indicated. This will not be generated if the rules cover the entire domain of input values.

As an example of procedure generation, consider again the append function.

append (appendl, append2, append3) /* generate_procedure_head */ 
struct list ‘appendl, *append2, *append3;
{ int X; struct list ‘ listallocO, *Y, *R; /* generateJocal_variable_declarations */

if (appendl =  =  NULL) /* generate_condition */
{ /* generate initial assignment (none -  simple data type) */

/* generate_body (none) */
*append3 =  *append2; } /* generate_retum_assignments */

else
{ X =  appendl - >  data; /* generate_initial assignment (append([X| Y],Z,[X|R])) */ 

Y =  appendl -  > link;
append (Y, append2, R=listallocO); /* generate_body */
append3 - >  data =  X; /* generate_retum_assignments */
append3 - >  link =  R }}}

In the append predicate, the rules cover the entire domain of lists, so no final failure checking is needed 

after processing the second rule. For the second rule, we then need only assign the local variables their 

appropriate values (from components of the list). Note that the copy statements can be eliminated 

through further optimization. Through this example, we can see that the code generation is very 

mechanical and straightforward. — “=•-

4.6. Evaluation

The generation of C programs from TFM specifications is a transformation of logic programs into 

imperative programs. In Section 4.5, we studied the transformation from TFM without backtracking into 

C. Since TFM is a subset of Prolog, the non-backtracking TFM can be simulated in Prolog by adding 

cuts using the following rules:

1) If the rule is a goal only, then a clause containing only the cut operator is added.

2) If the rule is a goal with some clauses on the right hand side, then add the cut operator after eveiy 

clause.

This is not the same as a Prolog program with the maximum number of cuts. If that were the case, the 

Prolog program would not have any backtracking at all, and the if-then-else constructions will not work 

properly. In this sense, we have already implemented some backtracking facility in Prolog by using 

if-then-else. It is not difficult to implement this backtracking in C using ”multi-level recursion,” where 

the branch points are embedded in a series of nested if-then-else constructions.

Although full backtracking can be realized in the transformation system, we prefer not to do so. 

Our transformation system is intended to improve the execution efficiency of high-level specifications.
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Backtracking would be a detriment to this task. Furthermore, most practical programs never need to 

use nondeterministic backtracking. Even if we are programming a nondeterministic algorithm, the 

deterministic implementation of that algorithm is adequate for most purposes. Otherwise, the parallel 

implementation of nondeterminism, supported by the TVvo-Level Grammar interpreter, can substitute 

for backtracking.

The C code that is generated using the syntax-directed method of Section 4.5 can sometimes be 

optimized. The generate_procedure function in particular can be optimized for both generation of the 

initial assignments and generation of output assignments. Sometimes assignments will be duplicated in 

different rules of the same procedure. This will happen when the head of the rule uses the same 

parameters. For example, in the binary tree sort function:

insert_2tree(X, 2tree(Leftl, Data, Right), 2tree(Left2, Data, Right))
X < Data, inscrt_2tree(X, Leftl, Left2). 

insert_2tree(X, 2tree(Left, Data, Rightl), 2tree(Left, Data, Right2))
X > =  Data, insert_2tree(X, Rightl, Right2).

the assignment statements

L  = insert_2tree2 -  > left;
D =  insert_2tree2 -  > data;
R =  insert_2tree2 -  > right;

will be duplicated for these two rules. This can be optimized by making a comparison between them.

The intermediate variable assignments and memory allocation can also be optimized.

The final aspect that we discuss is parallel code generation. This requires that we perform 1) data

dependency analysis to determine the producer/consumer relationships and 2) annotation of the

program for parallel control. We illustrate this through an example. Consider the TLG below for

computing the Fibonacci function.

fibonacci of 0 is 1. 
fibonacci of 1 is 1. 
fibonacci of N is R :

N1 is N -  1,
N2 is N -  2, 
fibonacci of N1 is R l, 
fibonacci of N2 is R2,
R is R l +  R2.

From this TLG, we can generate C code executable on a dynamic parallel system such as the Sequent 

Balance 21000 [Oste86]. A pseudo-code parallel C program is shown below:

fib(N,R) 
int N, *R;
{int N1,N2,*R1,*R2 

fork: if(N= =0) {*R=1; #} 
fork: else if (N = =  1) {*R = 1; #}
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fork: else {N1=N-1; N2=N-2;
fork 1: fib(Nl,Rl=intallocO); fork 2: fib(N2,R2=mtallocO);
*R=*R1 + *R2; #}

This is an extension of the ideas for parallel execution of TVvo-Level Grammar given in the previous 

chapter.
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CHAPTER V

COMPLETE COMPILER SPECIFICATION 
USING TWO-LEVEL GRAMMAR

Edupuganty [Edup87] showed that TWo-Level Grammar could be used as a meta-language for 

the specification of operational semantics, axiomatic semantics, and denotational semantics. From his 

operational semantics definition, interpretation of the TLG with some input source program will give 

the result of executing that program, thereby accomplishing automatic interpreter generation. 

Interpreting the axiomatic definition with a source program, a precondition and a postcondition for that 

program, describing the characteristics of its input and output, respectively, gives a correctness proof 

that the program does give the desired output for any valid input. On the other hand, Edupuganty’s 

denotational semantics are quite operational in nature. Instead of defining denotational semantics of 

language constructs to map into a mathematic denotation, his TLG can only apply an internal denotation 

to an input program to derive the program’s output.

Using a TWo-Level Grammar representation of lambda calculus in denotational semantics, we can 

more define the denotational semantics of programming languages more completely using TLG. We 

may then compile input programs directly into denotational machine code (lambda calculus) and 

interpret this code by a lambda reduction machine, also defined using TWo-Level Grammar. Tb 

demonstrate the effectiveness of our methods, we have developed a TLG definition of a simple 

imperative subject language using a compiler-oriented approach, which translates programs into lambda 

calculus, essentially embedding a functional style into TLG predicates. It is found that there is a veiy 

natural representation of the denotational semantics domains and evaluation functions in TWo-Level 

Grammar. Furthermore, the implicit parallelism present in a denotational semantics definition can be 

realized in a parallel implementation of the TLG specifications. In particular, the compilation of source 

programs can be executed in parallel. Our result is that TLG is a very suitable metalanguage for 

denotational semantics.

In this chapter, we discuss our method for defining denotational semantics using TLG and how 

the resulting TLG lambda code is reduced, thereby establishing the complete implementation of a 

semantics-directed compiler. Much of this work has been described in [Brya89], [Pan89] and [Pan90a].

59
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5.1. Denotational Semantics

Formal specification of programming languages addresses both syntax and semantics. Syntactic 

specification in Backus-Naur form (BNF) [Back60] are well known and widely used by both language 

users and language implementors. It is even possible to automatically generate a syntactic parser from 

a BNF specification. However, semantic specification lags somewhat behind. Most language manuals 

still use natural language to describe both static and dynamic semantics. The three most common formal 

semantics specification approaches are 1) operation semantics, where a translation is given from the 

high-level language into abstract machine code which may be directly interpreted, 2) axiomatic 

semantics, which define the effect of executing statements as transformation on logical predicates 

describing the current state of computation, and 3) denotational semantics, which define a formal 

mapping of programs into mathematical functions whose semantics are well understood. Of these, 

denotational semantics [Schm86] receive the most attention in the research community because of their 

mathematical properties which enable implementations to be symbolically derived and the fact that 

both static and dynamic semantics can be completely specified within a single definition.

Denotational semantics have historically been specified using a functional programming style. 

However, the combined functional and logic programming paradigm of TWo-Level Grammar offers a 

number of advantages, namely:

1) there is a very natural representation of the denotational semantics domains and the domain 

constructors using TWo-Level Grammar functors,

2) TLG definitions are very readable and elegant,

3) TLG can be used to define both syntax and semantics in a single unified definition, including

interactions with other semantic specification styles, such as axiomatic and operational

specifications [Edup87],

4) TWo-Level Grammar definitions are directly implementable, as we have shown, making automatic 

compiler generation and semantics-directed interpretation feasible, and

5) the implementation can be made to run in parallel using many well-known techniques for 

AND-parallelism and OR-parallelism ([Cone87], [Wise86]), allowing both parallel compilation 

and interpretation.

A  denotational semantics specification consists of three main components:

1) abstract syntax, which defines the construction of syntax domains,

2) semantic domains and their associated operations, and
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3) semantic equations which map syntax domains into operations on semantic domains, effectively 

translating the syntactic representation of programs into their semantic representation.

The function notation used in denotational semantics is lambda calculus. Denotational semantics 

functions are strongly typed, in the sense of modem functional languages such as ML [Miln90]. Types 

may be scalar (e. g., integer), or structured as product domains, sum domains, or junction domains. In 

Chapter 3, we have seen how these types are represented in TVvo-Level Grammar.

The denotational semantics of a program are typically defined to map program constructs onto 

functions which operate on the machine state, or configuration. For example, at a high-level, a program 

may be viewed as a function which accepts an input file and produces an output file. A statement 

operates on the input file, output file, and memory store, usually modifying one or more of these 

components as directed by its semantics. An expression uses the store to look up the values of variables 

and returns a single value resulting from the evaluation of that expression. If we consider static 

semantics as well, then an environment will be added to the semantic rules for these program constructs. 

As a simplified example of denotational semantics, consider the rules defining assignment, statement 

composition, and the while loop shown below, adapted from [Paga81]. In each case, y represents a 

machine configuration consisting of a store a, input Hie <t>i, and output Hie «t>2.

1) 5£V:= EJ= Xy Jet c r= 'y |l/«  < update_store V£ [E J a  o, yj.2, y.J.3 > . An assignment statement will 

cause the expression E to be evaluated and stored into the associated memory location for variable 

V. Formally, we extract the store component of the machine configuration and return a new 

configuration whose input and output components remain unchanged, but whose store is updated 

to reflect the assignment to variable V. Note that the expression E is evaluated tty function E  and 

this evaluation also requires the store o.

2) 5[Si;S2j =  X/y .let y ’= S[SiJy in S[S2jy ’. This function begins with some machine configuration y 

and produces a machine configuration which reflects the results of executing statements St and 

S2. This requires that we first execute Si on the input configuration y to produce a new 

configuration y \  This will then be the configuration used to execute S2, which in turn produces 

the new configuration, not explicitly shown in the rule, which is the return value of the function.

3) 5[while C loop S endj =_/u/(X/.\y.(CfCl(y.J.l) —► /(S[SJy) , y)) • The semantics of the while loop 

require that we first evaluate the condition C using the function C and the store (the first 

component of configuration y). If this is true, we execute statement S and recursively invoke the 

while loop again. If the condition is false, we return the input configuration unchanged. The
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equation form indicates that the function is to be called recursively. More details about

this will be given later.

These definitions are typical of denotational semantics for these language constructs.

Current research is focussed on automatically generating compilers and interpreters given a 

denotational specification of the programming language. The approaches can be classified as the 

compile-evaluate and interpret-evaluale methods. The denotational semantics of a programming 

language may be viewed as an abstract interpreter for that language. For example, if the function P: 

Program - t  Input-file —► Output-file, typical of most denotational definitions, is applied simultaneously 

to a program and an input Hie, the result will be the output file which results from interpreting the 

program on the input file. This is interpret evaluation. In compile-evaluation, the function P is applied 

only to the program resulting in a new function IO: Input-file —*• Output-file. In this sense, P can be 

viewed as an abstract compiler of the program into "denotational machine code.” The compile-evaluate 

method is more popular since the techniques involved in compiling functional languages are applicable 

and the implementation is more efficient. The abstract machine is usually a stack machine. Such 

implementations use a metalanguage of their own (which is not a desirable situation) since the 

denotational definitions input to compile-evaluation have to be machine readable. The 

interpret-evaluate approach usually emphasizes readability and direct implementability of the 

definition over efficiency. It is our proposal that by using TVvo-Level Grammar, it is convenient to give 

two different definitions, each being more suitable to a different evaluation method. We claim that 

giving both a compiler-oriented and an interpreter-oriented definition serves the purpose of consistent 

and complementary definitions [Hoar74] for completeness.

S2 . Denotational Semantics Using IWo-Level Grammar

The use of TWo-Level Grammar for denotational definitions is quite natural. The meta-variables 

corresponding to the syntactic and semantic domains of the standard denotational definition are 

represented by TLG functors. The proper elements of a domain and constructed compound domains 

are defined by additional functors and atomic elements. The compound domains of a denotational 

specification are represented as discussed in Chapter 3. The semantic clauses (meaning functions) are 

represented by the TWo-Level Grammar rules. Depending on whether our definition is 

interpreter-oriented or compiler-oriented, the rules take a different style. We now discuss the two 

different methods in detail.
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5.2.1. Interpreter-Oriented Denotational Semantics

Our method of writing interpreter-oriented definitions is to encode the denotational definition 

directly as TWo-Level Grammar rules. For simplicity, we assume that the syntactic arguments to the 

semantic equations are a TWo-Level Grammar representation of the syntax tree. Every semantic 

equation will be fully parameterized so the general transformation is:

F [X J = \a .E  —► F(X,a,Y)e v a lu a te  E  as Y.

Since we assume that all necessary input values will be provided to the interpreter, the rules can be 

executed in a straightforward call by value order, the normal order in TWo-Level Grammar.

As an example of interpreter-oriented denotational semantics, consider the formal denotational 

semantics of the assignment statement, statement composition, and while loop shown previously. By way 

of comparison, the interpretive semantics are defined in TWo-Level Grammar as:

statement ID :=  EXP maps store STORE1 input file INPUT_FILE output file OUTPUT_FILE 
into store STORE2 input file INPUT_FILE output file OUTPUT_FILE : 

expression EXP maps STORE! into VALUE, 
update store STORE1 with ID bound to VALUE giving STORE2.

statement STATEMENT 1; STATE ME NT2 maps CONFIGURATION1 into CONFIGURATION : 
statement STATEMENT maps CONFIGURATION 1 into CONFIGURATIONS, 
statement STATEMENT2 maps CONFIGURATIONS into CONFIGURATIONS.

statement while COMP loop STATEMENT end loop maps CONFIGURATION into CONFIGURATIONS: 
select store from CONFIGURATION giving STORE, 
comparison COMP maps STORE into true,
statement STATEMENT maps CONFIGURATION 1 into CONFIGURATIONS, 
statement while COMP loop STATEMENT end loop maps CONFIGURATIONS 

into CONFIGURATIONS.

statement while COMP loop STATEMENT end loop maps CONFIGURATION into CONFIGURATION: 
select store from CONFIGURATION giving STORE, 
comparison COMP maps STORE into false.

It can be seen in these rules that intermediate values of configurations are represented as TWo-Level 

Grammar variables and the final results are returned at the top level. The assignment and composition 

rules are almost identical to the formal notation. The while loop rule has factored out the fix-point 

combinator into the inductive (recursive) and basis (termination) steps of a recursive function.

522 . Compiler-Oriented Denotational Definition

The goal of a compiler-oriented definition is to translate the concrete syntax (i.e. the textual form) 

of the source program into denotational machine code. The principal functions we are concerned with 

and their TWo-Level Grammar representations are:

1) Lambda abstraction -  Xx. E. A function is defined with formal parameter x and body E. This is

converted into the TLG data structure fun x = > E.
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2) Function application -  f  x. The function f  (usually a lambda abstraction) is applied to argument 

x. This operation is represented in Two-Level Grammar as apply f to x.

3) Let expression -  let x =  Ei in E2 . The expression Ei is substituted for all free occurrences of x 

in E2. This is equivalent to the composition of abstraction and application, i. e. (XX.E2XE1). In 

TLG, this is represented without change by let x = El in E2.

4) Conditional expression -  Ei—*E2, E3. Ei is evaluated to a Boolean result. If it is true then the value 

of the conditional expression is E2; if it is false, then the returned value is E3. The Tvo-Level 

Grammar representation of this operation is if Ei then E2 else Es.

5) Fix-point combinator - f ix  F. F  is a functional of the form X/g, where/ is a function appearing 

in the body of g such that /  will be applied when g is applied to some argument. The application 

of the fix-point combinator simulates a recursive application of the g  function. Formally, the 

fix-point combinator is defined as: fix  F  =  F{fix  F). It is represented in TLG as fix F.

6) Built-in functions. There are also a number of standard arithmetic and relational functions which 

are defined in the denotational machine code. These have the usual semantic interpretations and 

are defined straightforwardly in Tvo-Level Grammar.

Compare the following compiler-oriented denotational definitions in Tvo-Level Grammar with 

the standard and Tvo-Level Grammar interpreter-oriented definitions given previously.

statement ID :=  EXP maps to
fun configuration =  >

let store =  select 1st component from configuration in
store update store with ID bound to apply EXP_DENOTATION to store 
input file select 2nd component from configuration 
output file select 3rd component from configuration : 

expression EXP maps to EXP_DENOTATION.

statement STATEMENT! ; STATEMENT! maps to 
fun configurationl =  >

let configuration! =  apply STATEMENT_DENOTATIONl to configurationl in 
apply STATEMENT_DENOTATION2 to configuration! :

Statement STATEMENT1 maps to STATEMENT_DENOTATIONl, 
statement STATEMENT2 maps to STATEMENT~DENOTATION2.

statement while COMP loop STATEMENT end loop maps to 
fix (fun f =  >

fun configuration = >
if apply COMP_DENOTATION to select 1st component of configuration then 

f  (apply STATEMENT_DENOTATION to configuration)
else

configuration): 
comparison COMP maps to COMP_DENOTATTON, 
statement STATEMENT maps to STATEMENT_DENOTATION.
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Here it is seen that the Tiro-Level Grammar rules return the lambda code expressed in Two-Level 

Grammar form for the defined construct instead of actual values (i.e. machine configurations), again 

illustrating the difference between the two approaches. We have defined a complete programming 

language using this approach and found that the TLG definition of denotational semantics compares 

very favorably with a standard denotational definition with respect to both readability and facilitation 

of the compiler generation process. Our transformation system can convert this representation directly 

into a compiler for the specified programming language which emits denotational machine code in TLG 

form.

S3. A Tvo-Level Grammar Lambda Machine

The denotational machine code produced from our compiler-oriented definition is not executable 

in Two-Level Grammar directly. However, it is possible to define a lambda calculus machine in TLG 

which can execute all of the denotational expressions generated by the compiler. This definition is 

essentially a formal definition of the semantics of the lambda calculus using predicate logic, i.e. 

Two-Level Grammar. Consider the formal semantics of the six components of denotational machine 

code described in the previous section.

1) Lambda abstraction -  fun x =  > E. This is not executable until it is applied to an argument 

expression.

2) Function application -  apply f to x. There are three rules to interpret function application in our 

machine.

a) apply fun X =  > E2 to E l giving Result: let X = El in E2 giving Result.

In the case of simple application of a lambda abstraction XX.E2 to an argument expression 

Ei, the semantics are to substitute all free occurrences of X in E2 by Ei. This is accomplished 

by the let predicate which executes a let expression in the standard way (see below).

b) apply fix F to E giving Result: apply (apply F to fix F) to E giving Result.

Tb apply the fix-point function fix(F) to the expression E ,fix  should first be applied to its 

argument functional F and then the resulting function should be applied to E.

c) apply (apply F to G) to E giving Result:

apply F to G giving F_compose_G, apply F_compose_G to E giving Result.

This rule is a follow-up to the previous operation. F  represents the functional to which fix  

is being applied and G is fix  (F). G should be substituted unevaluated for all free occurrences 

of the function argument to F (e. g .,/ in  X/...). This gives a new recursive invocation of F 

(F_compose_G) which can then be applied to E to get the result. Note that this rule embodies
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a call by name computation order. If G is evaluated before substituting into F, the result will 

be an infinite loop.

3) Let expression -  let x = El in E2. Because this rule is used by apply, it is the central rule in our 

semantics of the lambda calculus. It traverses the structure of E2 in order to substitute Eifor every 

free occurrence of x. Some examples of the rules which evaluate let are:

let X =  E l in let X =  E3 in E4 giving RESULT:
let X =  E l in E3 giving ES, let X =  E5 in E4 giving RESULT.

letX  =  E l in let Y =  E3 in E4 giving RESULT : 
where X !=  Y, 
let X =  E l in E3 giving E5, 
let X =  E l in E4 giving E6, 
let Y =  E5 in E6 giving RESULT.

let X =  E l in (apply FI to F3) giving RESULT:
let X =  E l in E3 giving E4, let X =  El in FI giving F2, apply F2 to E4 giving RESULT.

These rules correspond to the following:

a) let x =  Ei in let x =  E3 in E4. The variable x is bound to expression Ei in expression E3 which 

then binds to the second instance of variable x in E4.

b) letx  =  E iin le ty  — E3 in E<. In this case, variable x has scope in both E 3 and E« while variable 

y has scope in E4.. The instantiation of the variables within these scopes is accomplished by 

the three let rules.

c) letx  =  Ei in F1E3. This is a function application. Variable x has scope in both Fi and E3. The 

instantiation is done, followed by the application.

4) Conditional expression -  if El then E2 else E3. This rule is implemented by adding another 

argument to contain the result. It is straightforward to evaluate Eiand then return the appropriate 

expression.

5) Fix-point combinator -  fix F. The details of the implementation of this have already been described 

in the discussion of the apply rule.

6) Built-in functions. Many of the built-in functions in our lambda machine also have equivalent 

built-in TWo-Level Grammar arithmetic and relational operators. Tb handle these, it is only 

necessary to generate the appropriate calls to the Tvo-Level Grammar operators.

Besides the combinator-reduction machine described above, we have also defined reduction 

machines for the denotational machine code using a variety of evaluation strategies -  strict evaluation, 

fully lazy evaluation using graph reduction, and compilation into super-combinators. Of these, the strict 

evaluator is naturally the most efficient, but it can not handle the fix-point combinator or more general
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functional constructions. For these, the fully lazy evaluator works veiy well and the graph reduction is 

implemented using logic programming techniques which fully utilize the features of unification 

nondeterminism. Compilation into super-combinators allows the denotational machine code to be 

compiled into Tvo-Level Grammar rules, thereby achieving a Tvo-Level Grammar program equivalent 

to the original source program. More details about the general implementation techniques may be found 

in [Peyt87]. Our specific techniques for implementing these using Tvo-Level Grammar are described 

in the next section.

5.4. IWo-Level Grammar Implementation of Functional Programs

The capability of Two-Level Grammar for defining a lambda machine suggests that TLG may be 

used as an implementation language for functional programming languages. In this section, we explore 

this point further, formally specifying lambda reduction machines using the evaluation strategies of strict 

and lazy evaluation, fully lazy evaluation using graph reduction, and compilation into supercombinators 

are all defined in Two-Level Grammar using techniques unique to logic programming. It is also shown 

how TLG may be used to efficiently implement polymorphic type checking.

Using logic programming techniques to implement functional languages is itself an interesting 

topic for research. Conventional logic programming languages do not directly support either 

higher-order functions or lazy evaluation. Instead, their distinguishing characteristics are unification, 

bi-directionality of ’’arguments,” and nondeterminism. In Chapter 3, we proposed that higher-order 

functions and lazy evaluation could be realized using the logic programming characteristics of 

Tvo-Level Grammar. We find that the inherent logic programming nature of TLG offers some 

advantages in the incorporation of these functional constructs. In order to make these constructs 

executable we will study the use of Tvo-Level Grammar to define reduction machines for X-calculus 

using a variety of evaluation strategies -  strict and lazy evaluation, fully lazy evaluation using graph 

reduction, a combination of strict and lazy evaluation using a fixed set of lazy combinators, and 

compilation into super-combinators. It will be shown that unification and nondeterminism are 

especially suitable as powerful mechanisms to increase both the elegance and the efficiency of TLG 

implementation of X-calculus. Currently, we have developed prototype TLG implementations of all of 

the aforementioned X-machines, taking as much advantage as possible of TLG features which may be 

efficiently interpreted by allowing structure sharing, dynamic rule generation, and direct access to 

predicates in the rule database. These prototypes have been translated into both Prolog and C using 

the techniques of Chapter 4. While these virtual lambda machines currently run on a sequential 

machine, they have been designed in such a way as to maximize parallelism. In addition to accomplishing 

the direct task of incorporating the desired features into Tvo-Level Grammar, our work also provides
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new insight into the implementation of functional programming languages and the relationship between 

functional and logic programming languages and how they may interact with one another.

The sections which follow will respectively introduce the necessary preliminaries about X-calculus 

reduction in Tvo-Level Grammar, including Tvo-Level Grammar definitions of strict and lazy 

evaluation, fully lazy evaluation using graph reduction, strict evaluation with a fixed set of combinators 

and super-combinators, some of which may be evaluated lazily, and the use of logic programming to 

realize polymorphic type inference.

5.4.1. Strict and Lazy Evaluation

The pure X-calculus is the theoretical foundation of any functional programming language. 

Therefore, our study on implementation of functional programming languages can be simplified to the 

implementation of X-calculus. We propose that the semantics of pure X-calculus can be 

straightforwardly expressed in Tvo-Level Grammar, whether by strict or lazy evaluation.

First, consider strict evaluation of p-reduction ((Xx.E) M E [M / x]), where M is reduced prior 

to substitution for x. The operational semantics of the reduction rules are expressed by the following 

TLG rules straightforwardly:

strict beta reduce apply fun X = > E to M with ENVIRONMENT! giving RESULT: 
strict beta reduce M with ENVIRONMENT! giving M_VALUE,
update environment ENVIRONMENT1 with X bound to M_VALUE giving ENVIRONMENTS, 
strict beta reduce E with ENVIRONMENT2 giving RESULT.

Each strict beta reduce rule has three components: 1) the expression to be reduced, 2) the environment

containing the bindings of variables to values, and 3) the result of the reduction. The environment can

take several different forms but is generally a last-in first-out list of free variable-value associations,

where the values may be constants or X-abstractions. It is constructed by the update function which takes

an environment ENVIRONMENT1, a variable X, and the value to be bound to X (M_VALUE), and returns

a new environment, ENVIRONMENT2, with the updated binding. Completing the set of rules makes the

above definition executable; it is an extremely concise interpreter for strict reduction.

Normal order 0-reduction may also be defined using Tvo-Level Grammar. Consider the 

definition below, adapted from [Peyt87].

lazy beta reduce apply fun X = > E to M giving RESULT:
substitute X with M in E giving RESULT2, lazy beta reduce RESULT2 giving RESULT1.

The lazy beta reduce is the top-level rule, being used to reduce its first argument into a value which

is returned by the second argument. Note that there is no rule for evaluating free variables, since they

cannot be the result of a reduction. The rules for the substitute function are not shown but may be

developed straightforwardly. It is also possible to combine strict and lazy evaluation together. This can
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allow us to get the high efficiency from the strict evaluation and realize lazy combinators such as the 

fix point combinator.

The above definition is totally executable, accomplishing normal order reduction. The simplest 

implementation strategy for substitution in lazy evaluation uses tree reduction, which has the potential 

for combinatorial explosion of both time and space. This can be overcome by the graph reduction strategy 

discussed in the next section.

5.4.2. Fully Lazy Evaluation Using Graph Reduction

Fully lazy evaluation guarantees that the argument expression is evaluated at most one time and 

there are no duplicate versions of an expression introduced by reduction. Also, the expression is 

evaluated only when it is needed to complete the reduction of the outermost redex. This not only 

improves the time and space efficiency but also allows us to deal with infinite data structures or 

undefined items. Our implementation strategy is to use pointers instead of substitutions of the 

arguments. For Tvo-Level Grammar, we use two special techniques to realize this strategy: 1) simulate 

pointers using an association list indexed by variable names, which is actually an environment similar 

to that used in SECD machines [Land64], and 2) use Tvo-Level Grammar unification to perform both 

local and global substitutions of the arguments with the values to which they are to be bound.

5.4.2.I. Association List

We have two techniques to realize the association list. The simplest one is to represent 

identifier-value pairs in a list, indexed by the variable’s name. Initially these values will be unevaluated 

expressions. However, when the value of an identifier is first needed, the corresponding expression will 

be evaluated and the list will be updated ty  a reduced value. If the same identifier’s value is needed 

again, the reduced one will be used, so that the same evaluation procedure will be avoided. We can 

improve the efficiency of this procedure ty  using the global unification technique mentioned in the next 

section. If we handle the list as a stack, we can solve the name capture problem. The other technique 

is to generate a TLG rule for each identifier-value pair. The association list here is the set of rules 

generated dynamically. The advantage of this method is that the accessing time of the association list 

is constant when we execute our system in parallel. The price that we pay for our parallel mechanism 

is the need to substitute each identifier with a location counter in order to distinguish the variables in 

different scopes, especially variables with the same name. However, this becomes worthwhile after we 

have the local unification technique which is discussed in the following, because the substitution can be 

done very efficiently by using TLG’s unification characteristic. Furthermore, the location counter 

mechanism solves the name capture problem automatically.
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5.422. Unification

For improving the efficiency of the implementation mentioned above, we introduce two 

unification techniques: local unification which "unifies” the Tvo-Level Grammar rule’s local variable, 

and global unification which "unifies” the parent tree of the TLG variable. The following example shows 

how local unification works. If we have a X-expression E l = (Xx.(Xy.((Xx.x+ y )l)+ x)x)2 and we want to 

change the outer scope x into z, namely by doing an a-conversion, we can use local unification. We have 

a TVvo-Level Grammar predicate called locally unify which has the function: 

locally unify x and z in E l  giving E2 => E2 =  (Xz.(Xy.((Xx.x+y)l)+z)z)2 

This rule works efficiently because it uses Tvo-Level Grammar’s natural unification characteristic, so 

that all three occurrences of x are replaced by z in parallel.

Global unification is used for expressions that are not "visible” to the predicate at the moment 

it is being unified. For example, during the lazy graph reduction of expression E2, the evaluator will not 

find out z is needed until it traverses the subtree of ((Xx.x+y)l)+z. At this point, we search the 

association list to get the value of z; as soon as the system finds out the value is 2, it recognizes 

immediately that this is a normal form and will not take any further reduction. For efficiency 

considerations, it is better to bind this 2 to all other z’s of E2 at the same time if they are in the same 

scope. However, at this point in the reduction, the other z is not in the subtree and hence cannot be 

instantiated using the local unification technique mentioned above. To solve this problem, we can take 

advantage of TLG unification and synthesize this 2 to its parent tree. The idea is very similar to the 

evaluation of attribute grammar. By using this technique, we can distribute the value obtained at any 

leaf to all the nodes of the tree.

Global unification is a crucial mechanism in our implementation of fully lazy graph reduction. It 

guarantees that for each identifier, the system searches the association list only when it is needed and 

searches at most one time. Once the identifier is found, the system will not update its value until a 

normal form is obtained. This will also reduce the work of creating intermediate values in the association 

list.

5.4.2.3. Realizing Higher Order Functions in Tvo-Level Grammar

A higher order function is different from a first order function in the sense of argument domain. 

Higher order function arguments can themselves be functions including other higher order functions. 

Using our fully lazy graph reduction technique mentioned above, we build up the association list by 

binding the identifiers to their values. In the case of a higher order function, the value could be a 

X-abstraction instead of constant. Once the value is needed, we search the association list for the value.
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If the value contains a X-abstraction and it is not in weak head normal form [Peyt87], we reduce it to 

be a normal form and substitute it in the expression. In this case, we reduce the order of the function 

by 1. As the procedure continues, we finally reduce the higher order function to the first order function.

5.4.3. Compilation into Super-Combinators

The interpretive graph reduction has the disadvantage of requiring a complex set of tests to 

determine how a X-expression is to be reduced. Many of these tests can be avoided if the X-expressions 

are made more uniform, in which case they can even be compiled into a fixed set of instructions to 

perform the graph reduction. Ibward this end, Hughes [Hugh82] developed the concept of fully lazy 

X-lifting, whereby X-expressions may be transformed into supercombinators which are suitable for 

compilation into a fixed set of instructions. This work has opened up the possibility of abstract and real 

machines to execute the set of instructions, the most notable of which is the G-machine ([Augu84], 

[John84], [Kieb85]). O ur approach is to use the same idea as Hughes for generating supercombinators, 

followed by translation into code which will execute the supercombinators. Unlike the G-machine 

approach, however, we will generate code expressed in Tvo-Level Grammar. It will be shown that 

supercombinator reduction rules can be directly represented in TLG, and furthermore, the reduction 

can be implemented very efficiently by the techniques of Chapter 4. First, we give some preliminary 

definitions.

A supercombinator is defined by Peyton Jones [Peyt87] as

$S = X x i . Xx2  Axn . E

where

(i) E is not a X-abstraction

(ii) $S contains no free variables

(iii) any X-abstraction in E is also a supercombinator

(iv) n >  0

The supercombinator reduction rule is typically written as:

$S XI X2 . . .  Xn —> E

Now we make the following observation. Supercombinator reduction for a complete set of arguments 

can be expressed exactly by a Tvo-Level Grammar rule:

reduce S of XI and X2 and... and Xn giving RESULT : reduce E giving RESULT.

where E is an expression containing the variables XI, X 2,..., Xn. When S is invoked with n arguments, 

these arguments will be immediately instantiated in E through unification. At the implementation level, 

this means that every occurrence of XI, X2, etc. will be associated with a pointer to the instantiation.
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Furthermore, as desired in lazy evaluation, these arguments will remain unevaluated until needed by 

a reduction in E. This expression will then be further reduced until a RESULT is obtained. As a simplest 

example of the technique, consider the supercombinator:

$ADD x y =  x + y 

This can be straightforwardly expressed in Tvo-Level Grammar as:

reduce add of X and Y giving RESULT: where X +  Y = RESULT.

Because where is a strict function, X and Y will be evaluated immediately and the RESULT returned as 

a ground value. Supercombinators may also be called with more or less than the number o f arguments 

required. In this case, the type o f rule described above will not match the call to reduce. Therefore, we 

need additional rules to evaluate these calls correctly.

reduce S of XI and X2 and ... and Xn and ARGUMENT_LIST giving RESULT: 
reduce S of XI and X2 and... and Xn giving E, 
reduce E of ARGUMENT JLIST to RESULT.

reduce E to E.

The first rule evaluates the supercombinator redex with the appropriate number of arguments and then 

attempts to apply the result to the remaining arguments. The second rule, which must be placed at the 

end of all the reduce rules because it is the default case, essentially guarantees that all supercombinator 

applications with less than the required number of arguments remain unevaluated.

It can be seen that the implementation of supercombinator reduction is straightforward. It should 

also be pointed out that this reduction can be performed quite efficiently using our Tvo-Level Grammar 

implementation techniques. Furthermore, the reduction rules can be accessed almost directly since each 

supercombinator has a distinct name which tags the reduce rules which are applicable. Finally, on a 

parallel machine, the pattern matching of the reduce rules would be done in parallel to instantaneously 

access the desired rule.

Our method to abstract free variables and maximally free expressions from a general ̂ -expression 

is a straightforward TLG implementation of the algorithms described in [Hugh82] and [Peyt87]. The 

primary innovation is the fact that supercombinators are generated as TLG rules, meaning that our 

transformation system can map these directly into C procedures. No further work, outside of possible 

optimizations to the code, needs to be done. The generated C supercombinator programs execute the 

fastest of all the methods we have described.
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5.5. Polymorphic Type Inference

In addition to X-reduction, it is also well-known that polymorphic type checking in functional 

languages can also be done using unification [Miln78]. These rules can be stated very succinctly in 

Two-Level Grammar

infer type of apply F to X as TYPE2:
infer type of F as apply to TYPE1 giving TYPE2, 
infer type of X as TYPE1.

infer type of fun X =  > E as apply to TYPE1 giving TYPE2 : 
infer type of X as TYPE1, infer type of E as TYPE2.

Additional built-in functions and constants can be typed as follows:

infer type of +  as apply to integer giving apply to integer giving integer.
infer type of =  as apply to TYPE giving apply to TYPE giving boolean.
infer type of cons as apply to TYPE giving apply to list of TYPE giving list of TYPE.
infer type of INTEGER as integer.

Applying these rules to any functional expression will yield the appropriate types, including a 

polymorphic type, represented as an uninstantiated type variable in the above system. The rules above 

work for ordinary X-calculus without let and letrec constructions. Adding these to our system introduces 

several complications due to the typing of variables. The same variable may have different types in 

different instances. We solve this problem tty building an association list which binds variables to types. 

TJpes are represented as a pattern with uninstantiated variables representing polymorphic types. For 

example, the type of the S combinator:

is represented in Two-Level Grammar as:

apply to (apply to TYPE1 giving apply to TYPE2 giving TYPE3) 
giving apply to (apply to TYPE1 giving TYPE2) 

giving apply to TYPE1 giving TYPE3.

The variables having the same name must have the same type when instantiated. However, if the S

combinator is applied to different arguments, it is possible that these variables will take different

instantiations in different places. For a more detailed discussion of this subject, the reader is referred 

to [Peyt87]. We have developed an extensive set of Tvo-Level Grammar rules for polymorphic type 

inference in X-expressions with let and letrec expressions and a wide variety of built-in functions. The 

primary representations used are:

let VI =  E l and V2 =  E2 and ... and Vn =  En in E 
letrec VI =  E l and V2 =  E2 and... and Vn =  En in E

Our type checker first sequences through the variable bindings, building the association list. Then the 

type of the expression E is computed. Finally, the types are unified to verify that they are correct.
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5.6. Summary

All of the Two-Level Grammar definitions described in this chapter have been implemented in 

Prolog and C. Using this methodology, we have been able to develop a large number of compilers very 

quickly. The C implementations Cx these compilers has proven to be far superior to compilers for the 

same language coded in ML and Prolog and are comparable to those that are coded by hand. 

Furthermore, the correctness of these compilers is more easily proven because of the logic foundations 

underlying the formal specifications.

Our Tvo-Level Grammar specifications of denotational semantics allow the compilers to be 

executed in parallel wherever possible according to the rules for parallel implementation of logic 

programs. This work can be extended to consider additional aspects of parallel implementation of 

denotational semantics-directed compilation. In particular, it would be interesting to give Tvo-Level 

Grammar definitions of other forms of language constructs such as tasks, communicating processes, and 

logic programming itself. It is also of interest to consider logic program transformational aspects (e. g., 

see [Hogg84]) of our definitions, especially the denotational semantics-directed synthesis of source 

programs from high level specifications and the synthesis of the denotational definitions themselves.

A number of novel techniques for implementing functional programming languages using 

Tvo-Level Grammar have also been presented. By applying theses techniques, we have implemented 

several versions of a X.-machine using strict and lazy tree reduction, strict and lazy graph reduction and 

compilation into super-combinators. The development of a general X.-calculus reduction system in 

Tvo-Level Grammar extends earlier work done for Prolog by Narain [Nara86] who defined a method 

of delaying evaluation of predicates and Abramson [Abra86] who defined a combinator reduction 

machine in Prolog. Implementing functional programming languages in Tvo-Level Grammar allows 

further development of the interface between the two language paradigms of functional and logic 

programming that can be used for a wide variety of applications (see [DeGr86]) for a survey of additional 

work in this area).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



REFERENCES

[Abra86]

[Abri79]

[Aho86]

[Augu84]

[Back60]

[Bans88]

[Baue85]

[Bjor82]

[Brya86a]

[Biya86b]

[Brya88a]

[Brya88b]

[Bxya89]

[Burs77]

[Burs81]

[Chan73]

[Chur41]

Abramson, Harvey, ”A Prological Definition of HASL: A Purely Functional Language with 
Unification-Based Conditional Binding Expressions,” in [DeGr86], 1986, pp. 73-129.
Abrial, J. R., Schuman, S. A. and Meyer, B., Specification Language Z , Massachusetts 
Computer Associates, Inc., Boston, MA, 1979.
Aho, Alfred V., Sethi, Ravi and Ullman, Jeffrey D., Compilers. Principles, Techniques, and 
Tools, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1986.
Augustsson, Lennart, ”A Compiler for Lazy ML,” Proceedings o f the 1984ACM  Symposium 
on Lisp and Functional Programming, 1984, pp. 218-227.
Backus, John W., et al., ed., "Report on the Algorithmic Language ALGOL 60,”
Communications o f the ACM  3, 5 (May 1960), 299-314.
Bansal, Arvind K. and Sterling, Leon, ”An Abstract Interpretation Scheme for Logic
Programs Based on Type Expression,” Proceedings o f the 1988 International Conference on 
Fifth Generation Computer Systems, 1988.
Bauer, Friedrich L., et al., The Munich Project CIP. Volume I: The Wide Spectrum Language 
CIP, Springer-Verlag Lecture Notes in Computer Science, Vol. 183, Berlin, 1985.
Bjomer, Dines and Jones, Cliff B., Formal Specification and Software Development, 
Prentice-Hall International, Inc., Englewood Cliffs, NJ, 1982.
Bryant, Barrett R., et al., ”T\vo-Level Grammar as a Programming Language for Data Flow 
and Pipelined Algorithms,” Proceedings o f the IEEE Computer Society 1986 International 
Conference on Computer Languages, 1986, pp. 136-143.
Bryant, Barrett R., Edupuganty, Balanjaninath and Hull, Lee S., ”lWo-Level Grammar as 
an Implementable Metalanguage for Axiomatic Semantics,” Computer Languages 11, 3/4 
(1986), 173- 191.

Bryant, Barrett R., et al., “TWo-Level Grammar Data Flow English for Functional and 
Logic Programming,” Proceedings o f the 1988ACM Computer Science Conference, 1988, pp. 
469-474.

Bryant, Barrett R. and Edupuganty, Balanjaninath, "Enhancements in the TVvo-Level 
Grammar Functional Programming Language,” Proceedings o f the 1988 International 
Computing Symposium, 1988, pp. 157-162.

Bryant, Barrett R. and Pan, Aiqin, "Rapid Prototyping of Programming Language Semantics 
Using Prolog,” Proceeding o f COMPSAC '89, the Thirteenth Annual International Computer 
Software and Applications Conference, 1989, pp. 439-446.
Burstall, R. M. and Darlington, John, ”A Ihuisformation System for Developing Recursive 
Programs,” Journal o f the Association for Computing Machinery 2 4 ,1 (January 1977), 44-67.
Burstall, R. M. and Goguen, J. A., ”An Informal Introduction to Specifications Using 
CLEAR,” in The Correctness Problem in Computer Science, ed. R. S. Boyer and J. Strother 
Moore, Academic Press, Inc., London, 1981, pp. 185-213.
Chang, Chin-Liang and Lee, Richard C., Symbolic Logic and Mechanical Theorem Proving, 
Academic Press, Inc., Boston, Mass., 1973.

Church, Alonzo, The Calculi o f Lambda Conversion, Princeton University Press, Princeton, 
NJ, 1941.

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



76

[Clea77]

[Cloc87]

[Cone87]

[Dahl87]

[Darl82]

[Debr87]

[DeGr86]

[Edup85]

[Edup87]

[Edup89]

[Feat82]

[Feat87]

[Fuch87]

[Gogu79]

[Hoar74]

[Hoar85]

[Hogg84]

[Hopc79]

[Hugh82]

[John75]

[John84]

Cleaveland, J. C. and Uzgalis, R. C., Grammars for Programming Languages, Elsevier 
North-Holland, New York, 1977.

Clocksin, William F. and Mellish, Christopher S., Programming in Prolog, 3rd ed., 
Springer-Verlag, Berlin, 1987.

Conery, John S., Parallel Execution o f Logic Prvg'tims, Kluwer Academic Publishers, Boston, 
Massachusetts, 1987.

Dahl, Ole-Johan, "Object-Oriented Specification,” Research Directions in Object-Oriented 
Programming, eds. Bruce Shriver and Peter Wegner, MIT Press, Cambridge, MA, 1987, pp. 
561-576.

Darlington, John, "Program Thansformation,” in Functional Programming and its 
Applications: An Advanced Course, eds. J. Darlington, P. Henderson, and D. A. Tbmer, 
Cambridge University Press, Cambridge, England, 1982, pp. 193-215.

Debray, Saumya K., "Static Inference of Modes and Data Dependencies in Logic 
Programs,” Tfechnical Report TR 87-24, Department of Computer Science, University of 
Arizona, Tbcson, Arizona, 1987.

DeGroot, Doug and Lindstrom, Gary, Logic Programming. Functions, Relations, and 
Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1986.

Edupuganty, Balanjaninath and Bryant, Barrett R., "IWo-Level Grammars for Automatic 
Interpretation,” Proceedings o f the 1985 ACM Annual Conference, 1985, pp. 417-423.

Edupuganty, Balanjaninath, Two-Level Grammar. An Implementable Metalanguage for 
Consistent and Complementary Language Specifications, Ph. D. Dissertation, Department of 
Computer and Information Sciences, The University of Alabama at Birmingham, June 1987.

Edupuganty, Balanjaninath and Bryant, Barrett R., "Tvo-Level Grammar as a Functional 
Programming Language,” The Computer Journal 32,1 (February 1989), 36-44.
Feather, Martin S., "A System for Assisting Program Tiansformation,” ACM  Transactions 
on Programming Languages and Systems 4,1  (January 1982), 1-20.

Feather, Martin S., "A Survey and Classification of Some Program lianformation 
Approaches and Techniques,” in [Meer87], 1987, pp. 165-195.

Fuchi, K. and Furukawa, K., "The Role of Logic Programming in the Fifth Generation 
Computer Project,” New Generation Computing 5, 1 (1987), 3-28.

Goguen, J. A  and Thrdo, J. J., "An Introduction to OBJ: a Language for Writing and Testing 
Formal Algebraic Program Specifications,” Proceedings o f the Conference on Specifications o f 
Reliable Software, 1979, pp. 170-189.

Hoare, C. A. R. and Lauer, P. E., "Consistent and Complementary Formal Theories of the 
Semantics of Programming Languages,” Acta Informatica 3 (1974), 135-153.

Hoare, C. A. R. and Shepherdson, J. C., Mathematical Logic and Programming Languages, 
Prentice-Hall International, Englewood Cliffs, NJ, 1985.

Hogger, Christopher J., Introduction to Logic Programming, Academic Press, London, 1984.

Hopcroft, John E. and Ullman, Jeffrey D., Introduction to Automata Theory, Languages, and 
Computation, Addison-Wesley Publishing Co., Reading, M A  1979.

Hughes, R. J. M., "Super-Combinators: A New Implementation Method for Applicative 
Languages,” Proceedings o f the 1982 ACM  Symposium on Lisp and Functional Programming, 
1982, pp. 1-10.

Johnson, S. C., ” YACC -  Yet Another Compiler Compiler,” C. S. Technical Report #32, Bell 
Telephone Laboratories, Murray Hill, New Jersey, 1975.

Johnsson, Thomas, "Efficient Compilation of Lazy Evaluation,” Proceedings o f the 1984 
ACM  Conference on Compiler Construction, 1984, pp. 58-69.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[Kem88]

[Kers86]

[Kieb85]

[Kowa85]

[Land64]

[Lisk86]

[Malu82]

[Malu84]

[Mann74]

[Mann79]

[Mann80]

[Marc76]

[Meer87]

[Miln78]

[Miln90]

[Nara86]

[Oste86]

[Paga79]

[Paga81]

[Pan89]

[Pan90a]

[Pan90b]

77

Kemighan, Brian W. and Ritchie, Dennis M., The C Programming Language, 2nd ed., 
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1988.
Kerschberg, Larry, ed., Expert Database Systems, Proceedings from the Fast International 
Workshop, Benjamin/Cummings Publishing Co., Menlo Park, CA, 1986.

Kieburtz, Richard B., "The G-Machine: A Fast, Graph-Reduction Evaluator,” Proceedings 
o f the Conference on Functional Programming Languages and Computer Architecture, 1985, pp. 
400-413.

Kowalski, R., "The Relation Between Logic Programming and Logic Specification,” in 
[Hoar85], 1985, pp. 11-27.
Landin, Peter J., ”The Mechanical Evaluation of Expressions,” The Computer Journal 6 
(1964), 308-320.
Liskov, Barbara and Guttag, John, Abstraction and Specification in Program Development, 
MTT Press, Cambridge, MA, 1986.
Maluszynski, J. and Nilsson, J. F., “Grammatical Unification,” Information Processing Letters 
1 5 ,4 (1982), 150-158.
Malus2ynski, J., ”lbwards a Programming Language Based on the Notion of Tvo-Level 
Grammar,” Theoretical Computer Science 28 (1984), 13-43.

Manna, Zohar, Mathematical Theory o f Computation, McGraw-Hill Book Co., New York, 
1974.

Manna, Zohar and Waldinger, Richard, "Synthesis: Dreams =  > Programs,” IEEE 
Transactions on Software Engineering SE-5, 4 (July 1979), 294-328.
Manna, Zohar and Waldinger, Richard, ”A Deductive Approach to Program Synthesis,” 
ACM Transactions on Programming Languages and Systems 2 ,1 (January 1980), 90-121.
Marcotty, Michael, Ledgard, Henry and Bochmann, Gregor V., ”A Sampler of Formal 
Definitions,” Computing Surveys 8, 2 (1976), 191-276.
Meertens, L. G. L. T., ed., Program Specification and Transformation, Elsevier Science 
Publishers, Amsterdam, 1987.
Milner, Robin, ”A Theory of Type Polymorphism in Programming,” Journal o f Computer and 
System Science 17, (1978), 348-75.

Milner, Robin, Tbfte, Mads and Harper, Robert, The Definition o f Standard ML, MIT Press, 
Cambridge, MA, 1990.

Narain, Sanjay, ”A Technique for Doing Lazy Evaluation in Logic,” Journal o f Logtc 
Programming 3 (1986), 259-276.

Osterhaug, Anita,A Guide to Parallel Programming, Sequent Computer Systems, Beaverton, 
Oregon, 1986.

Pagan, Frank G., "ALGOL 68 as a Metalanguage for Denotational Semantics,” The 
Computer Journal 22, 1 (1979), 63-66.

Pagan, Frank G., Formal Specification o f Programming Languages: A  Panoramic Primer, 
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

Pan, Aiqin and Bryant, Barrett R., "Logic Programming Implementation of Functional 
Programming Languages,” Proceedings o f TENCON ’89, Fourth IEEE 10th Region 
International Conference, 1989, pp. 174-178.

Pan, Aiqin and Bryant, Barrett R., "Denotational Semantics-Directed Compilation Using 
Prolog,” Proceeding o f SAC-90, 1990 ACM Symposium on Applied Computing, 1990, pp. 
122-127.

Pan, Aiqin and Bryant, Barrett R., “Tvo-Level Grammar as a Specification Language for 
an Intelligent Database Query System,” submitted for publication.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[Pepp84]

[Peyt87]

[Schm86]

[Sint67]

[Sund87]

[Thak87]

[Tbm85]

[Thm90]

[UUm88]

[Vuil73]

[Wegn80]

fWijn65]

[Wijn74]

[Wise86]

[Zobe87]

78

Pepper, Peter, ed., Program Transformation and Programming Environments, Springer-Verlag, 
Berlin, 1984.

Peyton Jones, Simon L., The Implementation o f Functional Programming Languages, 
Prentice-Hall International, Englewood Cliffs, N. J., 1987.

Schmidt, David A., Denotational Semantics: A  Methodology for Language Development. Allyn 
and Bacon, Inc., Boston, MA, 1986.

Sintzoff, M., "Existence of a van Wijngaarden Syntax for Every Recursively Enumerable 
Set.” Annales de la Societe Scientifique de Bruxelles 81, 2 (1967), 115-118.

Sundararaghavan, K. R., Edupuganty, Balanjaninath and Bryant, Barrett R., ”Tb wards a 
IWo-Level Grammar Interpreter,” Proceedings ofthe 25th Annual Conference o f the Southeast 
Region o f the ACM, 1987, pp. 81-85.

Thakkar, S. S., ed., Selected Reprints on Dataflow and Reduction Architectures, IEEE 
Computer Society Press, Washington, D. C., 1987.

Ibm er, David A., "Functional Programs as Executable Specifications,” in [Hoar85], 1985, 
pp. 29-54.

Tbmer, David A., "An Overview of Miranda,” in Research Topics in Functional Programming, 
ed. David A Tbmer, Addison-Wesley Publishing Co., Reading, MA, 1990, pp. 1-16.

Ullman, Jeffrey D., Principles o f Database and Knowledge-Base Systems, Volume I, Computer 
Science Press, Rockville, MD, 1988.

Vuillemin, J., Proof Techniques for Recursive Programs, Ph. D. Dissertation, Stanford 
University, Stanford, California, 1973.

Wegner, Lutz Michael, ”On Parsing TWo-Level Grammars,” Acta Informatica 14 (1980), 
175-193.
van Wijngaarden, A., Orthogonal Design and Description of a Formal Language, Technical 
Report MR 76, Mathematisch Centrum, Amsterdam, 1965.

van Wijngaarden, A., "Revised Report on the Algorithmic Language ALGOL 68.” Acta 
Informatica 5 (1974), 1-236.

Wise, Michael J., Prolog Multiprocessors, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 
1986.

Zobel, J., "Derivation of Polymorphic Types for Prolog Programs,” Proceedings o f the 4th 
International Conference on Logic Programming, 1987, pp. 817-838.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



GRADUATE SCHOOL 
UNIVERSITY OF ALABAMA AT BIRMINGHAM 

DISSERTATION APPROVAL FORM

Name of Candidate Aiqin Pan
Major Subject Computer and Information Sciences
Title of Dissertation Automatic Trans formation of High-Level Logic
________________Specifications Into High-Performance Target Code

Dissertation Committee:

 , Chairman  -

Director of Graduate Program_ 
Dean, UAB Graduate School

Date

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


	Automatic transformation of high-level logic specifications into high-performance target code.
	Recommended Citation

	tmp.1716579362.pdf.zFH9L

