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ABSTRACT OF DISSERTATION 
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

D egree _______ PH.D.______________  Major S u b je c t  CO M PU TER SCIENCE

Name o f  C a n d id a te  ________ VIVEK A N U M O LU __________________________________

T i t l e  A H ybrid Neural Netw ork M ethodology fo r Studying the Developm ent o f  External

M em ory Strategies in Problem -solving______________________________________

Neural networks am ong other artificial intelligence m ethods offer advantages o f 

learning to adapt to novel and nonstationary environm ents. T he operation o f robots in such 

environm ents is facilitated if  they can learn new strategies appropriate to the situation. To 

address this situation, we m m  to the field o f  cognitive developm ent for guidelines on how 

hum ans construct and use strategies to solve problem s. A n object-target m atching task 

devised by N. W. Bray and his associates to investigate the differences in the use o f external 

m em ory strategies in children is seen as a representative case. This task involves matching 

a subset o f objects with a subset o f  targets, in a  specified tem poral order and according to 

relations defining positions. In studying this situation, a hybrid neural network 

m ethodology is followed that involves the integration o f  neural com ponents and 

m echanism s based on the instar, the outstar, a sequencer and shunting excitation into a single 

neural netw ork to mediate desired behavior.

A hybrid neural network, known as the “ sequence-associator,” is constructed to  solve 

the m atching task and consists o f a serial learning m odule and a series o f associators. The 

influences o f  postsynaptic threshold on serial learning and o f a nonspecific arousal on 

ob ject-target matching are examined.

The sequence-associator is extended to  incorporate novelty bias and accuracy factors, 

m odeled after those postulated by R. S. S iegler and his associates; these factors are 

responsible for strategy evolution. The resultant m odel, known as the “novelty bias neural
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netw ork,” dem onstrates the phenom ena o f  strategy diversity and advancem ent observed in 

the ob jec t-ta rg et m atching task and other problem s.

A  variation o f  the novelty bias m odel know n as the “com ponents neural netw ork” 

m odel discards the notion o f  novelty bias and introduces a notion o f  strategy com ponents. 

The latter m odel is based on the assum ption that accuracy feedback information is 

selectively encoded, first for objects, next for targets and ultimately for prepositions. The 

assum ption is m otivated in part by the work o f  R. J. Sternberg, which established that 

children spend less time than adults on encoding a given problem. The com ponents model 

exhibits no t only  the phenom ena o f  strategy diversity and advancem ent but also strategy 

discovery. We conclude that this m odel offers a plausible explanation in a neural network 

fram ew ork fo r strategy discovery, a very difficult problem  which existing information 

processing theories in cognitive developm ent as well as neural networks have yet to address 

in a fully satisfactory way.
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CHAPTER 1 

INTRODUCTION

K now ledge acquisition is a topic o f great import to cognitive psychologists as well as 

to com puter scientists. It includes the acquisition o f  prob lem -solv ing  skills that allow a 

hum an as well as a m achine to  adapt to  novel and nonstationary environm ents and perform 

well. Even though people acquire skills such as typing, com puter program m ing, and 

arithm etic, the underlying cognitive processes are not well understood. The subject o f 

acquisition o f problem -solving skills therefore has been identified as one o f the key issues 

in cognitive science (Norm an, 1980). The various strategies people use while solving 

problem s have a practical application in im proved curriculum  m ethods in education and 

training o f  children and adults. In the robotics dom ain, an autonom ous agent should select 

a strategy that is m ost appropriate to the prevailing environm ental conditions and adapt its 

strategy with change in the conditions.

In the 1980’s, neural networks becam e a popular research topic. O ne reason for this 

popularity was that the representation and processing o f know ledge in neural networks 

com es c loser to that in brain than other schem es, e.g., expert system s. The research reported 

herein is concerned with how a neural network can capture problem -solv ing  skills, 

specifically, strategies.

W hen such a network is em bedded in a robot, for exam ple, the robot can acquire skills 

that w ould help it survive in a novel and nonstationary environm ent. Researchers were quick 

to see the application o f  neural networks to robotics in a problem -solving context, e.g., 

Reilly et al. (1987). A lbus (1991) proposes an extensive system -theoretic approach o f 

hierarchically decom posing a problem  for constructing a robot. He m entions the application

1
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o f  neura). uetw orks for p roblem -solv ing  in robots but does not specify the details. Waxman 

and Bachelder (1992) have built a robot that classifies objects in its environm ent and exhibits 

conditioned behavior based on the object class, using neural networks. These exam ples 

illustrate the potential o f  neural netw ork m ethodology fo r problem -solv ing  by robots and 

the relevance o f  this topic to  this area in com puter science.

1.1 Review  o f  Literature on Strategies in Problem -solving

The topic o f strategies has been dealt with extensively in the discipline o f  cognitive 

developm ent. O ne research thrust is to understand how children acquire and apply strategies 

in the context o f problem -solv ing  as they grow  older. T he precise definition o f  a strategy 

is subject to controversy (B jorklund & Ham ishfeger, 1990; Siegler &  Jenkins, 1989). For 

the purposes o f this dissertation, I define strategy as a goal-d irected , nonobligatory 

procedure that is easy to execute and helps overcom e the lim itations o f working memory.

Strategies m ay be internal o r external. An exam ple o f an internal strategy is verbal 

rehearsal to m em orize a list o f digits. Exam ples o f  external strategies include writing a 

rem inder note and adding two num bers by counting on e’s fingers. R ecent research efforts 

in cognitive developm ent have begun to investigate external strategies because they are more 

reliable, require less effort, and m ore accurate than internal strategies (H arris, 1980). Siegler 

has been investigating how strategies (including external strategies) evolve among children 

in addition, m ultiplication, tim e-te lling  and serial learning (M cG illy & Seigler, 1989; 

Siegler & Jenkins, 1989; Siegler, 1991). Bray e ta l. (1993) have been investigating the types 

o f  external strategies that normal and mentally retarded children use in m atching a set of 

objects with another set o f  objects in a specified order.

The subject o f strategy developm ent is closely tied to that o f metacognition. 

M etacognition, sim ply put, refers to thinking about thinking. A person’s beliefs about self 

and others, his know ledge about a given task and other environm ental variables, and his 

know ledge about existing strategies all play a role in the further developm ent o f strategies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(Flavell, 1987). The beliefs and know ledge, which are join tly  known as the “m etacognitive 

know ledge,” may be retrieved by that person either explicitly or implicitly. Brown (1987) 

discusses the influence o f se lf-  regulation and regulation from others such as teachers and 

peers on metacognition. A fter review ing the literature on m etacognition, she concludes that 

the concept o f “executive control” is needed to explain the role o f m etacognition in 

problem -solving.

According to Sternberg’s (1985) theory o f intelligence, m etacognition is responsible for 

the construction o f  strategies. The use o f strategies involves the application to 

problem -solving o f perform ance com ponents such as encoding, inference, m apping, etc., 

and o f knowledge acquisition com ponents such as selective encoding, selective 

com bination, and selective com parison. These com ponents, in turn, guide the developm ent 

o f strategies. During the course o f the developm ent o f  this theory, Sternberg observes that 

adults typically spend more time on encoding to solve analogy problem s than do children 

(Stem berg & Rifkin, 1979). He notes that even though children’s practice o f encoding only 

one o r a few features o f  a problem reduces the initial m em ory load, ultim ately it extends their 

solution time. We make use o f this im portant observation in the construction o f the 

com ponents neural network m odel, to  be presented in Chapter four.

Siegler views the developm ent o f strategies as an evolutionary process (Siegler, 1991; 

Siegler & Shipley, 1993). A ccording to his theory o f strategy developm ent, there does not 

exist a one-to -o n e  correspondence between age and the use o f a specific strategy. Instead, 

a t a given age, a person applies multiple strategies with different frequencies. Thus, as 

strategies evolve, the frequency o f  strategy use varies and new strategies are discovered. 

Based on evidence from many problem dom ains such as arithm etic, serial learning, time 

telling, and formation of past tenses, Siegler postulates that strategy evolution is guided by 

factors such as speed, accuracy, and novelty bias. I f  a given strategy results in faster or more 

correct execution o f a given task, then a subject is likely to  select that strategy again. Novelty
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b ia s  re fe rs  to  the  e lem en t o f  cu rio s ity  th a t p ro p e ls  a su b jec t to  se lec t a  s tra teg y  th a t has been  

re c e n tly  d isco v ered . S ieg le r d e riv es  th is  no tio n  from  P ia g e t’s ax io m  that “ i f  a  c h ild  has a 

co g n itiv e  cap ab ility , he is g o in g  to  p u t it to  u se .”

In  the  cu rren t re sea rch  e ffo rt, w e a re  in te res ted  in  the c o n s tru c tio n  o f  n eu ra l n e tw o rk  

m o d e ls  th a t em u la te  th e  b eh av io r o f  s tra teg y  e v o lu tio n  e v id e n c e d  in  th e  genera l 

p ro b le m -so lv in g  o f  h um ans. W e acco m p lish  th is  by  sp ec if ica lly  m o d e lin g  the 

“ o b je c t- ta rg e t  m a tc h in g ” task  in v e s tig a te d  by  B ray  e t al. (1 9 9 3 ), w h ich  fo rm s o u r  case  study. 

W e n o te  th a t the sub jec ts  in th is in v es tig a tio n  use  m u ltip le  s tra teg ies  in  a s ing le  ex p erim en ta l 

se ss io n  o n  the  sam e p rob lem . T h u s, th e  m a tch in g  ta sk  m ee ts  the v a riab ility  c rite rio n  in 

s tra teg y  u sag e , la id  o u t by  S ie g le r  in h is theory . M oreover, e x p e rim e n ta l m easu rem en ts , 

re a d ily  av a ilab le  to  us from  D r. B ray, in c lu d e  d a ta  on  accu racy  an d  s tra teg y  use. A s the  

re a d e r  can  see , the  co n d itio n s a re  p ro p e r  fo r  te s tin g  the  g en e ra lity  o f  S ie g le r ’s th eo ry  on  

s tra te g y  d e v e lo p m e n t by  co n sid e rin g  the  spec ific  p ro b lem  o f  o b je c t- ta rg e t m a tch in g . T h e  

p re d ic tio n s  g en era ted  by neu ra l n e tw o rk  m o d e ls  tha t are  co n s tru c te d  fo r  so lv in g  th is task  can  

b e  v a lid a te d  by  the  av a ilab le  em p irica l da ta .

In ad d itio n  to  th e  ap p ro p ria ten ess  o f  S ie g le r ’s theory , w e  a lso  f in d  S te rn b e rg ’s em p irica l 

s tu d ie s  on  se lec tiv e  en co d in g  re le v a n t to  the cu rren t re se a rc h  in v es tig a tio n . T h e  re lev an ce  

o f  S ie g le r ’s an d  S te rn b e rg ’s th eo rie s  to  o u r  n eu ra l n e tw o rk  m o d e ls  w ill be fu rth e r  e lab o ra ted  

in  C h a p te rs  th ree  an d  four.

1.2 R ev iew  o f  L ite ra tu re  on  H y b rid  M eth o d o lo g y

H y b rid  m e th o d o lo g y  is w id e ly  p rac ticed  in the  fie ld  o f  n eu ra l n e tw o rk s. H ry ce j (1992) 

p ro v id e s  an  ex c e lle n t rev iew  o f  va rio u s p lau s ib le  h y b rid  p a rad ig m s. T h e  tw o  m o st w idely  

u se d  h y b rid  p a ra d ig m s are  b a sed  o n  le a rn in g  an d  fu n c tio n a lity , w h ich  w e d iscu ss  here.

1.2.1 H y b rid  P a rad ig m  B ased  on  L earn in g

T h ree  types o f  lea rn in g  sch em es u su a lly  a re  id e n tif ie d  in n eu ra l n e tw o rk  lite ra tu re : 

u n su p e rv ise d  lea rn in g , su p e rv ised  lea rn in g , an d  re in fo rc e m en t lea rn in g . T h e  hy b rid
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paradigm  based on learning com bines all or parts o f these schemes to derive a 

neura l-net w ork-based  solution to a given problem . A com m on architecture fo r tw o-phase 

learning is illustrated in Figure 1.1. In this particular hybrid m odel, an unsupervised learning 

m odule extracts the features from the input and a supervised learning m odule classifies the 

features into one o f  the known classes. Since the dim ensionality o f  the input space is reduced 

in the feature extraction process, this hybrid m odel offers the advantage o f m aking the work 

o f supervised learning m odule easier. Counterpropagation netw orks, hierarchical feature 

m ap classifiers, and radial basis function netw orks all are based on this m odel (see Hertz, 

Krogh, &  Palmer, 1991 for details).

OUTPUT

....................................... t ...................................

supervised
learning
m odule

unsupcrvised  
learning m odule

output layer

optional hidden layers

input layer

feature layer

input laver

INPUT
Figure 1.1. Architecture o f a hybrid neural netw ork model based on tw o-phase  
learning. There exists a o n e -to -o n e  correspondance between the input layer o f 
supervised learning module and the feature layer o f  unsupervised learning m odule 
(Hrycej, 1992, p.87).

1.2.2 H ybrid Paradigm  Based on Functionality

Neuroanatom ical studies indicate that different parts o f  hum an brain subserve different 

functions. H ybrid  neural networks based on functionality are grounded on this sim ple 

principle. Hrycej (1992) notes that the functional hybrid paradigm  is quite useful for m ost 

engineering and cognitive applications since these types o f  applications have inherent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

structure. These applications are more easily solved by hybrid neural networks rather than 

by m onolithic neural networks. In a hybrid solution, a task is decom posed into subtasks, 

and neural networks called “neural com ponents” that m atch the subtasks are selected. This 

paradigm , thus, satisfies the principle o f  m odularity, one o f  the key software engineering 

principles. Because neural com ponents are neural netw orks them selves developed by 

various neural netw ork researchers since the 1940’s, the functional hybrid paradigm 

encourages the “reuse o f code,” another key software engineering principle.

The developm ent o f neural network m odels based on this paradigm  is also appealing 

fo r the study o f  behavior because these m odels exhibit the property o f  “em ergent behavior,” 

which refers to behavior engendered by the netw ork as a whole but not by individual 

com ponents. B raitenburg (1984) presents various artificial neural network m odels that 

dem onstrate such em ergent behavior and identifies biological correlates of the hybrid 

m odels.

G rossberg (1974, 1978) pioneered the developm ent o f the functional hybrid neural 

netw ork paradigm  as applied to the study o f  behavior. H e term ed this concept the “m ethod 

o f  m inim al anatom ies” because it involves the construction o f  a m inim al network based on 

properties o f biological neural networks. The netw ork is analyzed rigorously using 

m athem atical tools to account for observed behavioral patterns. This m ethodology has led 

G rossberg to discover several neural com ponents including an instar, an outstar, a sequencer, 

and a gated dipole. We now briefly discuss som e o f the neural com ponents developed by 

G rossberg and others. The interested reader is referred to  Levine (1991) who provides an 

excellent review  of various neural com ponents that are available to a neural network builder. 

T he work o f  Levine (1991) places special em phasis on cognitive and neurological m odeling.

An outstar is capable o f  storing any arbitrary spatial pattern (G rossberg, 1974) (Figure 

1.2. [a]). D uring training, a spatial pattern across nodes V], V 2 , ..,V n is associated with
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activity at node Vo- After training, activity at node, Vo triggers recall of the stored pattern 

across the series o f nodes.

An instar is the com plem ent o f  the outstar (Figure 1.2. [b]). During training, activity at 

node Vo is associated with activity across nodes V j, V 2 , ..,Vn . A fter training, activity that 

is a linear com bination o f activities across nodes V j, V 2 , ..,Vn is triggered at node Vo 

(Grossberg, 1974).

In G rossberg’s form ulation, a sequencer is a fully connected neural network which 

learns to store a sequence o f items in a specified order. Training o f the network involves 

repeated presentation o f items to its nodes (Grossberg & Pepe, 1971). This is analogous to 

a rehearsal strategy which is com m on among humans o f all ages. Full details of the workings 

o f  a sequencer are presented in Chapter two.

Figure 1.2. Architectures o f  neural components: (a) outstar, (b) instar.

The neural com ponent known as “gated dipole” com pares the current values o f stimulus 

o r reinforcem ent variables with recent past values o f the same variables (Levine, 1991). 

Figure 1.3 shows its architecture. A nonspecific input, I, is fed to both channels in the 

network, y j- to -x i- to -X 3 and y2-to -X 2 -to-X 4 i whereas an input J, such as electric shock 

given to an anim al in a conditioning experim ent, is fed to left channel only as shown in

* *

(a) (b)
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Figure 1.3. The processes o f transm itter depletion and feedforw ard com petition in the 

netw ork lead to patterns o f activity as shown in Figure 1.4. The netw ork exhibits a transient 

response after input J is rem oved which is analogous to relief observed in the anim al after 

shock is turned off. Levine and Leven (1993) designed a network o f  gated dipoles to model 

consum er preferences for soft drinks. T heir work takes into account not only sensory factors 

such as taste o f a product but also m otivational factors such as novelty and security. They 

conclude that sensory and m otivational factors join tly  explain the success or failure o f a 

product.

wi

yi

J I
Figure 1.3. Schem atic gated dipole network. J is a significant input while I is 
nonspecific arousal (Levine, 1991).

In his theory on neuronal group selection, Edelman (1978, 1987) postulated that

neurons in the cerebral cortex organize into groups based on principles o f confinem ent,

selection, and competition. A neuronal group is a functional com ponent that elicits varying

levels o f response to different stimuli. The organization o f the cortex into neuronal groups
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offers a plausible explanation fo r the existence o f plasticity in auditory, som atosensory, and 

visual cortical areas o f adult animals (Pearson, Finkel, & Edelm an, 1987).

on channel 
activity X3

o f f  channel 
activity X4

time
INPUT

Figure 1.4. Typical time course o f the channel outputs o f a gated dipole (Levine, 1991).

The autoassociator type neural network m odels developed by such researchers as 

A nderson et al. (1977) and H opfteld (1982) m ay be deem ed as neural com ponents that store 

patterns by carving attractors in an energy landscape. These com ponents m ay be termed 

“neural attractors” and can be used as part o f  a hybrid network.

O ther neural network researchers have used the hybrid paradigm  based on functionality, 

though often only implicitly. Edelm an and Reeke (1982) in the ir Darwin II simulation 

com bine two subnetworks fo r pattern classification: one neural netw ork responds to local 

features of the stim ulus, and the other to  the global features. L evine and Prueitt (1989) study 

the effects o f  frontal lobe dam age by com bining neural com ponents such as gated dipoles 

and outstars, and principles from  the theory o f  adaptive resonance. Reilly and Villa (1990) 

propose a hybrid neural netw ork scheme based on barrel structures in the som atotopic m aps 

o f rodents to be applied to com puter and other com m unications system s.

In the context o f the present research effort, which is concerned with the study o f 

strategies for problem -solving, we first em phasize the hybrid paradigm  based on 

functionality. As noted by Hrycej (1992), m ost cognitive and engineering applications have
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a bu ilt-in  structure that m akes the use o f  this paradigm  feasible. The im portant problem of 

ob ject-target m atching which is dealt with in this dissertation consists o f  a sequence o f 

instructions, three sets o f  objects, targets, and prepositions used in the instructions, and a set 

o f com m only used strategies. The interactions am ong all these entities give rise to the 

structure in the problem.

Besides the hybrid paradigm  based on functionality, we apply the hybrid paradigm 

based on learning in the construction o f  neural netw orks discussed in Chapter three and 

C hapter four. These latter networks are based on unsupervised learning, which refers to 

self-organization and discovery o f strategies by children, and on supervised learning, which 

refers to the external presentation o f  accuracy inform ation to the network.

It is not know n whether strategy developm ent in the context o f  ob jec t-target matching 

and arithm etic has been studied in the fram ework o f neural netw orks previously.

1.3 O verview  o f  the Dissertation

In the current chapter, we have presented the significance o f the current investigation 

and briefly review ed literature from cognitive psychology and cognitive developm ent as 

it pertains to problem -solving strategies. We also review ed briefly the literature on hybrid 

neural network methodology.

In Chapter two, we introduce the ob ject-target m atching task which has been devised 

by Bray et al. (1993) for the purpose o f  investigating the differences in strategy use among 

children o f various chronological and intelligence groups. We view this task as consisting 

o f two subtasks: storage o f a sequence o f instructions and association o f the stored 

instructions w ith a set o f objects, targets, and prepositions. We present two neural network 

m odels designed to perform these tw o subtasks. The first neural netw ork, a “ sequence 

generator,” stores and recalls a sequence o f instructions. The second neural network, a 

“ sequence-associator,” is a hybrid o f the sequence generator neural netw ork and a series of 

associators that can associate the instructions with the sets o f objects, targets, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

p rep o sitio n s . W e ca rry  o u t c o m p u te r  sim u la tio n s o f  th ese  tw o  m o d e ls  an d  p re sen t the  resu lts 

o f  the sim u la tio n s u sing  tw o  in te rp re ta tio n s: a p ro b ab ilis tic  in te rp re ta tio n  an d  a m ax im um  

ac tiv a tio n  in te rp re ta tio n . W e a lso  study  the ro le  o f  a po s tsy n ap tic  th resh o ld  in se ria l learn ing  

an d  o f  a  n o n sp ec ific  aro u sa l m ech an ism  in  seria l lea rn in g  as w ell as in  o b je c t- ta rg e t 

m a tch in g .

In  C h ap te r  th ree , w e  e x te n d  the  se q u e n c e -a s so c ia to r  n eu ra l n e tw o rk  so  th a t it can  

s im u la te  the  b e h a v io r o f  stra teg y  se lec tion  an d  ev o lu tio n  in  the c o n tex t o f  the o b je c t- ta rg e t 

m a tch in g  task . T h e  new  m o d el, k n ow n  as the  “ novelty  b ias neu ra l n e tw o rk ,”  is b ased  on the 

n o v e lty  b ias an d  accu racy  fac to rs  su g g ested  by  Siegler. In th is m odel, w e hy p o th esize  tha t 

s tra teg y  se lec tion  as o b se rv ed  by  B ray  et al. (1993) in v a rio u s ch ro n o lo g ica l a n d  in te lligence  

g ro u p s  are  g u id ed  by  th ese  tw o  m ech an ism s. W e study th e  effec ts  o f  s tra tegy  u se  on  the recall 

a c cu racy  o f  the  v a rio u s en titie s  in v o lv ed  in  th e  task.

W e p re sen t a  neu ra l n e tw o rk  m o d e l th a t m an ifests  the  b eh av io r o f  s tra tegy  se lec tio n  and  

ev o lu tio n  in C h ap te r  four, s im ila r  to  the nove lty  b ias n eu ra l n e tw o rk  m odel p re sen ted  in 

C h a p te r  th ree . T h e  m o d el in C h a p te r  four, how ever, kno w n  as the “co m p o n en ts  neural 

n e tw o rk ,” e lim in a tes  n o v e lty  b ias as a  co n tro llin g  fa c to r  in s tra teg y  ev o lu tio n . In stead , it 

in co rp o ra te s  the id ea  o f  s tra teg y  co m p o n en ts . T he  m o d e l is b a se d  on  the h y p o th esis  tha t 

h u m an  su b jec ts , as su g g es ted  by  th e  w o rk  o f  S te rnberg  a n d  o th e rs , se lec tiv e ly  en co d e  

ac cu racy  in fo rm a tio n  ab o u t the  v ario u s co m p o n en ts  o f  s tra teg ies  an d  that th e  ab ility  to 

en c o d e  th is in fo rm atio n  in creases  w ith  ex p erien ce  w ith  the m a tch in g  task . F irs t, the effects 

o f  s tra teg y  use by the  m o d e l on  reca ll a ccu racy  are  stu d ied , an d  then  the  freq u en cy  o f  stra tegy  

se lec tio n  by the m o d el is c o m p ared  to  tha t o f  the su b jec ts  in the  s tudy  o f  B ray  e t al (1993).

In  C h ap te r five , w e d raw  som e co n c lu s io n s  b ased  on  o u r  ex p e rien ce  w ith  n eu ra l n e tw ork  

m o d e lin g  in  e a rlie r  ch ap te rs . S p ecifica lly , w e d iscu ss  how  th e  neu ra l n e tw o rk  m o d els  

p re se n te d  in C h ap te rs  th ree  an d  fo u r  m ee t the  five  em p irica l p h en o m en a  w hich  S ieg le r and  

S h ip ley  (1993) a sso c ia te  w ith  p ro b le m -so lv in g  s tra teg ies. W e a lso  add ress the q u estio n  o f
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how  the neural netw ork models presented in this dissertation can be further enhanced and/or 

applied to related cognitive tasks, business applications and robotics.
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CHAPTER 2 

A HYBRID SEQUENCE -  ASSOCIATOR NEURAL 
NETWORK MODEL

The study o f  Bray et al. (1993) provides one o f  the prim ary m otivations behind the 

construction o f  all neural network m odels presented in this dissertation. In this chapter, we 

briefly review  the experim ental setup utilized in their study for investigating differences in 

the use o f external m em ory strategies am ong mentally retarded and nonretarded children. 

We henceforth refer to  the task involved in this study as the “ob jec t-target m atching task.” 

We follow  the review  with discussion o f two neural netw ork m odels: a sequence generator 

m odel and a hybrid  sequence-associator model. The form er m odel learns to generate a 

sequence o f  instructions. The latter m odel consists o f  a sequence generator as its neural 

com ponent and additionally consists o f an ou tstar-like  associator that associates the 

generated instructions with cognitive m appings o f  entities. The outcom es o f  com puter 

sim ulations o f these m odels are presented based on tw o interpretations: a  norm alized 

activation schem e and m axim um  activation scheme. Lastly, we study the effects o f  a 

nonspecific arousal m echanism  on the performance o f the m odels.

2.1 M otivation

H um ans tend to use a variety o f  strategies in im proving their m em ory perform ance in 

daily life. Bray et al. (1993) investigated the differences betw een m entally  retarded and 

nonretarded children in the use o f  external mem ory strategies. External m em ory strategies 

refer to the use o f “external” m em ory aids such as putting objects in special places, w riting 

rem inder notes, and asking other people to help rem em ber som ething.

13
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An experim ental setup designed to facilitate the testing o f  the use o f  external strategies 

and utilized in the study o f  Bray et al. (1993) is shown in Figure 2.1. A subject is asked to 

listen to a sequence of instructions and then carry them out. An instruction such as “put the 

apple on the couch” alw ays has the format o f  “ Put <object> <preposition> <target>.” One 

o f  the 12 toy objects is to be m atched with one o f  the 6  toy targets. Only two prepositions, 

“on” and “ in front of,” are used as part o f  the instructions. Throughout the current 

investigation, we only consider sequences o f  four instructions. An exam ple o f  such a 

sequence is given below:

(1) “Put the apple on the couch.”

(2) “Put the penny in front o f  the TV.”

(3) “Put the rock in front o f  the table.”

(4) “ Put the stamp on the refrigerator.”

Targets

Yellow Wooden Board

Yellow Poster Board

Movable Objects

Figure 2.1 Experim ental setup used in the study o f  external m em ory strategies 
(Bray et al., 1993).
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W hile listening to the sequence, the children are allowed to use external strategies. A 

bell after the fourth instruction is a signal to begin carrying out the instructions in the order 

given. In variants o f this experim ent, order is waived, but we are concerned exclusively with 

the ordered case. Typical strategies that children use while listening are holding an object 

in one hand, pointing an object to a target, or m oving an object close to a target.

Com plex human behavior, in general, may be view ed as a product o f multiple 

subsystem s working together. We adopt this viewpoint in m odeling this experim ental task. 

The first neural network model that we present learns to store and recall a sequence of 

instructions and is henceforth referred to as the “ sequence generator.” Such learning is 

analogous to the developm ent o f seriality in children who acquire this concept over a period 

o f m any years as they actively participate in everyday life. This m odel is to be viewed as 

an independent network that can be em bedded in or otherwise collaborate with another 

netw ork in order to effect behavior.

After the sequence generator has learned the concept o f seriality, it is coordinated with 

a second m odel for learning the associations between objects, prepositions, and targets in 

correct sequence. The second m odel may be viewed as a hybrid neural network that consists 

o f a preconditioned sequence netw ork and an associative network that is learned as a part 

o f  a situation the subject is expected to master. This m odel is henceforth referred to as the 

“ sequence associator.” The hybrid o f a m odel that represents past learning and a model that 

quickly learns current situation-specific  associations has great generality for modeling 

behavior o f both hum ans and robots. Villa and Reilly (1992) review the role o f hierarchical 

structures in building hybrid systems.

2.2 A M odel to Learn the Serial O rder o f Instructions

G rossberg (1969), G rossberg and Pepe (1971), and Grossberg (1978) present neural 

netw ork m odels for serial learning o f  a list o f items. We find these m odels relevant in the 

simulation o f the serial learning com ponent o f  the Bray and cow orkers (1993)’ experiment.
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H owever, these m odels need adjustm ent to exert refined control over both forw ard and 

backw ard associations (am ong the units o f a list). In this chapter, em phasis falls on control 

o f  backward associations.

In the current m odeling, an instruction unit activates object, preposition and target units 

as well as the next instruction unit. If backw ard associations are present, they sustain the 

activations of previous instruction units over longer durations and lead to continued recall 

o f  item s o f previous instructions. This is undesirable since frequent repeated recall o f  the 

item s is not observed in humans. O nly current instructions should be activated. For the 

purposes o f  m odeling the psychological experim ent at hand, backward associations need to 

be attenuated.

We introduce a postsynaptic threshold as a neurologically feasible m echanism  to 

attenuate backward associations. Edelm an (1987) discusses the role o f  such a threshold in 

m odifying synaptic efficacy and in organizing cortical neurons into topographical m aps, but 

the effects of such a mechanism have not been actively explored in the context o f  a working 

neural network model.

2.2.1 Training

O ur First version o f a sequence generator learns to store and recall a sequence of 

instructions. Its architecture is displayed in Figure 2.2a. All units are fully connected. The 

four instruction units correspond to the four instructions in the experim ent.

Priming signal

Instruction units

F igure 2.2a. A sequence generator neural network to learn a sequence o f  instructions. 
A prim ing signal stim ulates the netw ork to recall the learned sequence.
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In our training procedure, we have initialized activation o f instruction units to zero and 

initialized the excitatory connections am ong them to small random  values. The first 

instruction unit is then presented with external input for one cycle and the activations and 

weights are updated using equations (2 .1 ) and (2 .2 ).

Activation update equation fo r  instruction units :

a,(r +  1 ) =  ( 1  -  a )  af t )  +  fi ^  [ a / r ) ] r ‘ Wj f t )  +  I f t )  (2 . 1 )
where j
a j t )  =  activation o f unit i at time t
a  =  decay rate
ft =  net input fa c to r

r x =  presynaptic threshold
[ x  ]r > =  x only if  x  >

=  0 . 0  otherwise
wji (t) =  connection strength from  unit j  to unit i a t time t
11 (r) =  external input to unit i at time t.

Weight update equation :
w t f i  +  1 ) =  Wi f t )  +  <5, [a,(r +  1)] r > [ af t  +  1)] (2.2)

where
wtj  (t) =  connection strength from  unit i to unit j  a t time t
<3j =  learning rate
a i (t), Qj (t) =  presynaptic  and postsynaptic activatons a t time t

r 2, r 3 =  presynaptic  and postsynaptic thresholds.

In the next cycle, the second instruction unit is presented with external input; the 

activations and weights are updated for all units until the last instruction unit. The network 

is then run w ithout any external stimulus. This corresponds to a time interval elapsed 

between presentations o f two sequences.

Then the whole procedure is repeated starting with the first instruction unit. The 

repetitions during the training phase correspond to the experience o f  a child with everyday 

tasks from infancy, which results in the learning o f the concept o f seriality. The num ber o f 

repetitions in the com puter simulation depends on chosen param eter values. Typical 

param eters that we have used in com puter sim ulations are listed in Table 2.1. The weights 

in this m odel do not stabilize with increased training, so that, w hen the m axim um  weight
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exceeds 1.0, we halt the training. With the param eters specified in Table 2.1, we have found

nine repetitions adequate. D ue to the absence o f  random ness in the processing o f  the model,

the w eights are found  not to vary from one run to another. T he effects o f  postsynaptic

threshold on the developm ent o f  weights is seen from Table 2.1.

A t a low er value o f this threshold (0.2), some backward associations are observed,

w hereas no such associations are observed at a higher value (0.4). T herefore, on all our

subsequent sim ulations we have set the postsynaptic threshold to 0.4. We also note here that

forw ard associations are established if the postsynaptic threshold is g reater than the

presynaptic threshold. O therw ise, forw ard associations as well as backw ard associations are

established, leading to interference in the recall o f  the sequence.

Table 2.1. W eights at the end o f  training phase in the sequence generator netw ork. The 
postsynaptic threshold fT  is set to 0.2 (0 .4).

Sending

'"“ tl0n Receiving instruction unit

1 2 3 4

1 0 . 0 0 0.355 0.05 0.05

(0 .0 0 ) (0.354) (0.05) (0.05)

2 0.05 0 . 0 0 0.545 0.209

(0.05) (0 .0 0 ) (0.465) (0.05)

3 0.05 0 . 2 2 0 0 . 0 0 0.797

(0.05) (0.05) (0 .0 0 ) (0.536)

4 0.05 0.05 0.581 0 . 0 0

(0.05) (0.05) (0.05) (0 .0 0 )
Parameters used in this sim ulation : a = 0 .7 , (5=0.7, f i = 0 . 1 ,  r 2 = 0 . 1 , 8 3 = 0 .4 . T he w eigh ts for 
T3  =  0 .4  are show n in parentheses.

2.2.2 R ecall

D uring the recall phase, the first instruction unit is stim ulated with a prim ing signal, which 

corresponds to recall o f  the instructions at the sound o f the bell in the laboratory experim ent. 

The netw ork is allow ed to cycle w ithout any weight m odification o r further external input. 

The changes in activations o f all instruction units are plotted in F igure 2.3a.
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The activations o f instruction units rise and fall across cycles. The first instruction 

reaches its peak initially follow ed by the second instruction unit which is follow ed by the 

third unit. Lastly, the fourth instruction unit reaches its peak. The order o f rise and fall of 

activations o f  instruction units indicates that the network is recalling the instructions in 

correct sequence. However, the peaks of activations are dim inished as recall progresses 

tow ard the end o f the sequence.

1.0 

0.8 

0.6
activation

0.4

0.2

o
cycle num ber

Figure 2.3a. Recall o f instruction units in the sequence generator network. A 
prim ing signal stim ulates the first instruction unit at the beginning o f  recall. A 
nonspecific arousal signal is absent in this case.

The recall perform ance o f the network is assessed using the “norm alized activation 

schem e,” which is analogous to the “ probabilistic schem e” o f  M cClelland and Rumelhart 

(1988). These authors have successfully applied the latter schem e to cognitive m odeling 

such as m odeling effects o f  context and stimulus on word perception and speech perception. 

The norm alized activation scheme consists o f com puting averages o f  activations over 

consecutive cycles and inferring recall accuracy from the running averages. Recall o f an
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entity is deem ed accurate if  its norm alized activation is the highest in the cycle o f  its training. 

The form ula for com puting norm alized activation o f recall is stated by equation (2.3).

normalized activation o f  unit, i a t time t : 

a-t (t)
n‘ «  =  v ^ - T T  (2.3)

k

where
a i (t) =  average activation o f  unit i a t time t

=  A  a,- (r) +  (1 -  A  ) d i (r -  1) (2.4)
k ranges over units o f  the same class, fo r  example, objects
A  is a weighting factor, in current implementation, set a t 0.5.

Figure 2.3b illustrates changes in norm alized activations for all four instructions in the 

sequence generator model with time. Instruction one has the highest norm alized activation 

o f  recall as represented by the white bar at cycle one in Figure 2.3b. A t cycle two, instruction 

two has the highest norm alized activation o f recall, as represented by the black bar and so 

on. Thus the network has self-organized to store and recall a sequence o f instructions in the 

correct order and has a recall accuracy o f  1 0 0 %.

Figure 2.3b also indicates that norm alized activation for instruction unit one at cycle one 

is greater than that for instruction two at cycle two. Thus, the netw ork displays a strong 

prim acy effect in its activation levels. Furtherm ore, the norm alized activation fo r instruction 

unit four at cycle four is greater than that for instruction three at cycle three. Thus, the

network also displays a recency effect in its activation levels. Overall, the netw ork exhibits

a bowed pattern o f  recall.

In the second version o f  our sequence generator network, we studied the role o f a 

nonspecific arousal signal on recall as a neurologically feasible, com pensating mechanism 

fo r dim inishing peak activations. At the beginning o f recall, such a signal stim ulates all 

instruction units (Figure 2.2b). In addition to the nonspecific arousal signal, the first 

instruction unit receives a priming signal m entioned above. The effects o f  com bined 

prim ing and nonspecific arousal on recall are illustrated in Figure 2.3c.
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Recall o f Instructions 
“No A rousal”

normalized 
activation q . 4

1 2  3 4
cycle number

Figure 2.3b. Norm alized recall o f instruction units in sequence generator network. A 
prim ing signal stimulates the first unit during the beginning o f recall. A nonspecific 
arousal signal is absent in this case. “+” above a bar indicates correct recall o f the 
corresponding entity.

nonspecific arousal

priming signal

instruction units

Figure 2.2b. A sequence generator neural network to learn a sequence o f instructions, 
with a nonspecific arousal signal. As before, a prim ing signal stim ulates the network to 
recall the learned sequence.

With nonspecific arousal, the netw ork recalls the first, second, and fourth instructions 

correctly and does not recall instruction three correctly; thus, the netw ork has a 75%  recall 

accuracy (Figure 2.3c). The inspection o f activations o f instruction units over tim e indicates 

that nonspecific arousal has indeed boosted their values including peaks. The prim acy effect
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has become w eaker as indicated by a drop in the norm alized activation o f instruction one, 

as seen in Figure 2.3c. A t the sam e time, the norm alized activation of instructions three and 

four has increased at cycle one, two, and three, indicating a stronger recency effect. It is 

know n that children differ in the degree o f prim acy and recency which they dem onstrate in 

actual experim ents. O ur sim ulation suggests that prim acy and recency m ay be influenced 

by cognitive and /o r neural m echanism s sim ilar to nonspecific arousal.

I - - ]  1
Recall o f Instructions 2

“ A rousal” 3

0.5
norm alized 
activation 0.4

1 2  3 4
cycle num ber

Figure 2.3c. N orm alized recall o f  instruction units in sequence generator neural 
network in the presence o f a nonspecific arousal signal. “ +” above the bar indicates 
correct recall of the corresponding entity and indicates incorrect recall.

2.3 A M odel to Execute a Sequence o f Instructions

The hybrid m odel that we have developed and tested consists of tw o com ponents: a 

sequence generator com ponent which learns to store and recall a sequence o f instructions 

and an associator neural com ponent which learns to store and recall different cognitive maps 

fo r an arbitrary set o f instruction units (Figure 2.4).

Our hybrid m odel, referred to as “sequence-associator neural netw ork,” has features 

sim ilar to an avalanche m odel, which is used for learning arbitrary spatio-tem poral patterns
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(Grossberg, 1978). Unlike G rossberg’s model, the sequence-associator is concerned with 

tem poral control o f several spatial maps rather than a single spatial map. Each spatial map 

represents a cognitive m apping for a class m ade up o f several items, for exam ple, objects. 

W ithin a given cognitive map, lateral inhibitions exist am ong the item s o f that class so that 

at any given tim e only a few items are activated.

The architecture o f the sequence-associator neural netw ork is illustrated in Figure 2.4. 

Each instruction unit sends excitatory connections to all object, preposition, and target units. 

Each item within a class is inhibited by other item s within that class. This lateral inhibition 

serves to enhance the activity of units with high activation and to suppress the activity o f  units 

with low  activation.

2.3.1 Training

At the beginning o f the training phase, the connections among instruction units in the 

sequence generator com ponent are initialized to those weights which have been learned 

during the training phase for the sequence generator neural netw ork previously. This 

corresponds to a child having already learned the concept o f  seriality before participating 

in an experim ent in the psychologist’ laboratory. These weights do  not change during 

training.

The w eights between instruction units and item units, however, do undergo 

m odification during training. They are initialized to small random  values (ranging from 0.0 

to 0.05). The inhibitory connections am ong item s o f  the same class have fixed weights, 

which are each assigned a value o f -0 .2 . The predefined units o f  the sequence generator 

are effectively static, while the units o f the associator undergo changes, illustrating the 

hybrid nature o f  the learning mechanism s.

In a typical sim ulation, the network is trained on the follow ing sequence o f instructions 

in the given order: (1) Put the apple on the couch, (2) Put the penny in front o f the TV, (3) 

Put the rock in front o f the table, (4) Put the stamp on the refrigerator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

W henever an instruction is presented to the hybrid network, the corresponding 

instruction unit, object unit, preposition unit, and target unit receive external input. 

Activations and m odifiable weights are updated using equations (2.4) and (2.5), 

respectively.

nonspecific arousal

prim ing signal

instruction
units

preposition. . u i v u u j u i o i i

object units • target units

Figure 2.4. Architecture of the sequence-associator neural network. This is a hybrid of 
sequence generator, associator, and nonspecific arousal.

The learning rate for connections between instruction units and item units is set high so 

that one cycle is enough to partially learn associations between instructions and 

corresponding items that make up the instructions. Training consists o f  only one cycle just 

as the child in the psychological experim ent hears the instructions only once. Some o f the 

param eter values used in a typical simulation are given below:
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2.3.2 Recall

As with the sequence generator m odel, we have studied the role o f  prim ing and 

nonspecific arousal on the norm alized activations for item units in the sequence-associator 

model. The first instruction unit is stim ulated with a prim ing signal at the beginning of recall 

(Figure 2.4). Then the network is run without any further external input. The activation 

values o f objects, prepositions and targets are observed by the modeler. The norm alized 

activations o f various objects used in a typical sim ulation (apple, penny, rock, and stamp) 

are illustrated in Figure 2.5a.

Activation update equation fo r  item units:

a f t  +  1 ) =  ( 1 -  a  ) af t )  +  / S ^  [a; (r)]r ‘ Wj f t )  +  7 ^  q  [a*(0 ] ' '  +  AW

'  * (2.4)
where
wjft )  =  connection strength from  instruction unit j  to item unit i a t time t.
Y =  net inhibition fa c to r
q =  fixed  inhibitory strength among item units o f  the same class 
Other terms are same as specified in eq. (1).

Weight update equation:

f t  +  1 ) =  f t )  +  d 2 [ af t  +  1 )] r * [ af t  +  1 )] Fi ( 25)

where
w f  t) — connection strength from  instruction unit i to item unit j  a t time t.
a f t  +  1 ) =  activation o f  instruction unit i a t time t +  1

a f t  + 1 ) =  activation o f  item unit j  a t time t +  1

r 4, r 5 =  presynaptic  and postsynaptic thresholds.
d 2 =  learning rate

a  =  0 .7 , 0  =  0 .7 , y  =  0 .2 , q  =  0 .2 , f l  =  0 .1 , r t  =  0 .1 , f s =  0 .2 ,

d 2 =  0 . 2 .

We note here that there is variation neither in the external inputs presented to the units 

nor in the activation processing o f the units, in both sequence generator and

sequence-associator. M oreover, each object and target is repeated only once in a given 

instruction sequence in the simulations o f  sequence-associator neural network. For these
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reasons, the perform ance o f  the m odels as m easured by recall accuracy is independent o f  any 

particular com bination o f objects and targets. This independence is not valid in the case of 

prepositions where they are repeated tw ice in a given instruction sequence and thus, the order 

o f prepositions determ ines the accuracy o f  recall.

W ith no arousal com ponent, the hybrid netw ork recalls the objects accurately in correct 

o rder with the exception o f  rock which has higher norm alized activation than stam p in the 

fourth cycle (as indicated by unequal heights o f the coarsely and densely shaded bars in 

F igure 2.5a). Figure 2.5a shows that three out o f four objects are being correctly recalled 

and hence, the network exhibits a recall accuracy o f  75% for objects.

CRecall o f Objects 
“No A rousal”

norm alized 
activation q 2

apple
penny
rock
stam p

2 3
cycle num ber

Figure 2.5a. Norm alized recall o f  objects in the sequence-associator m odel in the 
absence o f a nonspecific arousal signal.

The norm alized activation o f  object one (apple) is significantly larger than that o f  o ther 

objects at the beginning o f recall (as indicated by the height o f  the white bar in Figure 2.5a). 

Thus, the activation levels o f  the m odel exhibit a prim acy effect. The norm alized activation 

o f  the object in the second instruction (penny) is slightly less than that o f the o ther three 

objects (as indicated by the height o f  the black bar in Figure 2.5a). Thus the activation levels
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o f the m odel exhibit slight bowing in a m anner sim ilar to  that obtained for actual recall in 

the experim ent by Bray et al. (1993).

The hybrid m odel with no arousal com ponent exhibits identical responses for targets 

and objects and exhibits a recall accuracy o f 75%  for targets. This is because objects and 

targets are treated identically in the training phase: each object or target is not repeated more 

than once and an object and a target are presented to the netw ork with equal am ounts o f  

external inputs.

In this particular simulation run, as m entioned above, the following com bination o f 

prepositions has been used in that order in training the sequence-associator network: (on, 

in front of, in front of, on). The network recalls prepositions accurately in correct order 

except for the last instruction, where “ in front o f ’ has a higher norm alized activation than 

“on” (Figure 2.6a). Figure 2.6a also illustrates the absence o f a bowing pattern in the 

activation levels o f  prepositions.

Recall o f  Prepositions I I on
q g “No A rousal” ■ ■  in front of

0.7- 

0 . 6 -  

0.5- 

0.4-
norm alized 
activation 0.3-

0 . 2-

0 . 1-

0 -

Figure 2.6a. N orm aized recall o f  prepositions in the sequence-associator m odel in the 
absence o f  a nonspecific arousal signal. This particular recall is obtained after training 
the netw ork with an instruction sequence that contained the com bination o f (on, in front 
of, in front of, on).

cycle num ber
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T he p e rfo rm an ce  o f  the se q u e n c e -a s so c ia to r  neura l n e tw o rk  on  p rep o sitio n s is 

su m m arized  in  T ab le  2.2 w h ich  in d ica tes  tha t acco rd ing  to the  n o rm a lized  ac tiva tion  

in te rp re ta tio n , the reca ll a ccu racy  o f  p rep o sitio n s in the absence  o f  no n sp ec ific  aro u sa l varies 

from  7 5%  to  100% . T he va ria tio n  in accu racy  is d u e  to  the fact tha t a p rep o sitio n  is used 

m u ltip le  tim es in the sam e in stru c tio n  sequence . T he  p ers is ten t ac tiv ity  in a p rep o sitio n  unit 

as a  re su lt o f  m u ltip le  usage  o f  th a t p rep o sitio n  cau ses  in te rfe ren ce  in the reca ll o f  the  o th e r 

p rep o sitio n  by  the netw ork . T h u s, the o rd e r o f  p rep o sitio n s d e te rm in es  w h e th e r the 

in te rfe ren ce  is favo rab le  o r n o t to  co rrec t recall.

n o rm a lized  q  3  

ac tiv a tio n

R ecall o f  O b jects  
“ A ro u sa l”

app le
penny
ro ck
stam p

2 3
cy c le  n u m b er

F ig u re  2 .5b. N o rm alized  reca ll o f  o b jec ts  in the s e q u e n c e -a s so c ia to r  m odel in the 
p resen ce  o f  a nonspec ific  a ro u sa l signal.

In the  se q u e n c e -a s so c ia to r  m odel w ith  an arousal co m p o n en t, all in s tru c tio n  u n its  w ere 

s tim u la ted  w ith  a no n sp ec ific  aro u sa l s igna l at the beg in n in g  o f  reca ll, a lo n g  w ith  a p rim in g  

s igna l to  the  first in struc tion  un it. T hen  the n e tw ork  w as run  w ith o u t an y  ex te rn a l inpu t. T he 

n o rm a lized  ac tiv a tio n s fo r o b jec ts  an d  p rep o sitio n s are illu stra ted  in F ig u res  2 .5b  an d  2 .6b 

respec tive ly . O b jec ts  in the th ird  and  fou rth  in stru c tio n s do m in a te  the o th e r  tw o  o b jec ts
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throughout the duration of recall. The preposition “ in front o f ’ dom inates the preposition 

“on” throughout the duration o f recall for this particular com bination o f (on, in front of, in 

front o f , on) used in training the network. Targets exhibit response patterns that are identical 

to those o f  objects.

Table 2.2. Recall o f  prepositions in the sequence-associator neural network when a 
nonspecific arousal signal is absent. Evaluation o f recall is based on the norm alized 
activation scheme.

N um ber Com bination Accuracy

1 on, on, front, front 1 0 0 %
2 on, front, on, front 75%
3 on, front, front, on 75%
4 front, front, on, on 1 0 0 %
5 front, on, front, on 75%
6 front, on, on, front 75%

norm alized
activation

Recall o f Prepositions 
“A rousal”

on
in front o f

cycle num ber
Figure 2.6b. Norm alized recall o f prepositions in the sequence-associator m odel in the 
presence o f  a nonspecific arousal signal. This particular recall is obtained after training 
the network with an instruction sequence that contained the com bination o f  (on, in 
front of, in front of, on).
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O verall, presence o f the nonspecific arousal m echanism  causes a strong recency effect 

in the recall o f  all items. In its presence, the netw ork exhibits a recall accuracy o f 50% each 

for objects and  targets. The accuracy o f recall by the netw ork on various com binations o f 

prepositions varies from 50% to 75% , as sum m arized in Table 2.3.

Table 2.3. Recall o f  prepositions in the sequence-associator neural netw ork when a 
nonspecific arousal signal is present. Evaluation o f  recall is based on the norm alized 
activation scheme.

N um ber Com bination Accuracy

1 on, on, front, front 50%
2 on, front, on, front 75%
3 on, front, front, on 50%
4 front, front, on, on 50%
5 front, on, front, on 75%
6 front, on, on, front 50%

2.4 Interpretation o f  the Results Using M aximum A ctivation

The activations o f units in the sequencer m odel as well as the sequence-associator 

m odel, have so far been interpreted using the norm alized activation schem e stated by 

equation (2.3). As m entioned previously, this schem e is based on L uce’s (1959) choice 

model and has been successfully applied to m odeling o f  cognitive tasks such as word 

perception and speech perception (M cClelland &  R um elhart, 1988). In m ore recent 

analysis, M cClelland (1991) has observed that the norm alized interpretation leads to a 

distortion in the correspondence between interactive activation neural netw ork m odels that 

have been used in studying these tasks, and classical m odels o f perception such as the signal 

detection model and the L uce’s choice model. He has attributed the distortion to  com petition 

and nonlinearity processes that act upon the units w ithin a pool in the neural netw ork m odels.

M cC lelland (1991) has further observed that if  a unit w ith the highest activation in its 

pool is chosen as the response choice am ong the many alternatives, then the distortion in the 

correspondence betw een the classical and neural netw ork m odels is elim inated. In light o f
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the new study, we reinterpret the results o f sequence generator and sequence-associator 

m odels using m axim um  activation as the response criterion. A unit in a pool is deem ed to 

be correctly recalled if (i) its activation exceeds the firing threshold, (ii) it has the highest 

activation in its pool, and (iii) it meets conditions (i) and (ii) at the appropriate time interval 

during recall.

Figures 2.7a and 2.7b show recall o f instructions using the new interpretation in the 

absence and presence o f  nonspecific arousal respectively. Figure 2.7a indicates that in the 

absence o f nonspecific arousal, the activations o f second and third instruction units are 

approxim ately equal in the third cycle. Also, the activations o f  third and fourth instruction 

units are approxim ately equal in the fourth cycle. Figure 2.7b indicates that the activations 

o f  all instructions are discrim inated from each other by the presence o f  nonspecific arousal. 

H ow ever, the recall accuracy for instructions both in the absence and presence o f nonspecific 

arousal is 100%. W hen these results are com pared to the previous results obtained using the 

norm alized activation interpretation (refer to Figures 2.3b and 2.3c), it m ay be noted that the 

new er results show w eaker recency effect and stronger prim acy effect. This is due to the fact 

that the norm alized activation interpretation has the effect o f  sm oothing caused by the 

averaging o f  activations whereas the “ m axim um  activation interpretation” does not require 

averaging and, therefore, does not show  sm oothing effect.

U sing the m axim um  activation interpretation, the recall o f  objects in the absence o f 

nonspecific arousal is 25%  (refer to Figure 2.8a). Even though the pattern o f  activation 

exhibits recall sim ilar to that in the norm alized activation interpretation (refer to Figure 

2.5a), Figure 2.8a indicates that many o f the activations fall below the firing threshold o f 

0.1 w hich leads to the low accuracy rate. D uring recall, the nonspecific arousal signal boosts 

the activations o f  m ost o f  the object units above the firing threshold and causes a strong 

recency effect (Figure 2.8b). The accuracy o f  recall o f  objects in this case is 50%. This 

outcom e is analogous to that obtained using the norm alized activation interpretation (refer
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to Figure 2.5b). The results for targets using the m axim um  activation interpretation are 

identical to those for objects because o f  the fact that equal am ounts o f external inputs are 

used in training both objects and targets.

1.1 
1.0
0.9
0 .8-1
0.7
0.6

activation q  5 ,

0.4

0.3-|
0.2
0.1

0

Recall o f Instructions 
“ No Arousal”

1 2 3

cycle number

Figure 2.7a. Recall o f  instruction units in the sequence generator m odel in the absence 
o f a nonspecific arousal signal. The m odel is interpreted using the m aximum activation 
scheme. The dashed line indicates the firing threshold, “ +” above a bar indicates 
correct recall o f corresponding entity and indicates incorrect recall.

The recall o f prepositions in the absence o f nonspecific arousal when the com bination 

o f (on, in front of, in front of, on) is used in the instruction presentation phase is shown in 

Figure 2.9a.

The order o f recall as indicated by the pattern o f activation, which is evidenced in this 

figure, is sim ilar to that in the previous interpretation (com pare to F igure 2.6a). However, 

recall accuracy in the current interpretation is 50% com pared to 75%  in the previous 

interpretation because the activation o f “ in front o f ’ unit falls below the firing threshold in 

cycle two. Overall, the network recalls prepositions with an accuracy o f  50% to 75% in the 

absence o f nonspecific arousal, as sum m arized in Table 2.4. The exact am ount of accuracy 

depends on the order o f prepositions used in training the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Recall o f  Instructions 
“A rousal”

activation

0 . 1 - -

cycle num ber

Figure 2.7b. Recall o f instruction units in the sequence generator m odel in the presence 
o f a nonspecific arousal signal. Refer to Figure 2.7a for an explanation o f notation.
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Recall o f  Objects 
“No A rousal”
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activation
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cycle num ber

Figure 2.8a. Recall o f  objects in the sequence-associator m odel in the absence o f a 
nonspecific arousal signal. The model is interpreted using m aximum activation scheme. 
Refer to Figure 2.7a for further explanation o f  notation.

The recall o f prepositions in the presence o f  nonspecific arousal for the com bination of 

(on, in front of, in front of, on) is shown in Figure 2.9b. The order o f  recall as indicated by
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the pattern o f  activation in this figure is sim ilar to that in the previous interpretation (com pare 

Figure 2.9b to Figure 2.6b). The network recalls this particular com bination o f prepositions 

with an accuracy o f  50% . Overall, the recall accuracy varies from 50% to 75% , as 

sum m arized in Table 2.5, based on the order o f prepositions used in training the network.

2.5 D iscussion and Conclusions

The sequence generator neural network that we have presented self-organizes to store 

and recall a sequence o f instructions in the order in which they were presented. The 

postsynaptic threshold term in the learning rule plays an im portant role in attenuating 

backw ard associations. This term, when later used in the hybrid sequence-associator neural 

network, offers greater flexibility in the control o f  associations than the presynaptic 

threshold term alone as used in the Hebbian learning rule.

nonspecific arousal sienal is absent. Evaluation o f  recall is based on m axim um  activation
scheme.

Num ber Com bination Accuracy

1 on, on, front, front 75%
2 on, front, on, front 50%
3 on, front, front, on 50%
4 front, front, on, on 75%
5 front, on, front, on 50%
6 front, on, on, front 50%

The associations between instructions and item units are learned in a single tim e step 

in contrast to many time steps that are needed to learn the tem poral associations among 

consecutive instructions. O ur observation regarding the difficulty o f  learning temporal 

associations com pared to spatial associations agrees with the work o f o ther researchers. 

Som polinsky and K anter (1986) and K leinfeld (1986) in accordance with this observation 

m ake use o f  fast and slow connections for autom atic generation o f tem poral sequences.
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Recall o f  Objects 
‘Arousal”

activation

apple
penny
rock
stamp

cycle num ber
Figure 2.8b. Recall o f  objects in the sequence-associator model in the presence o f a 
nonspecific arousal signal. The model is interpreted using m axim um  activation 
schem e. R efer to Figure 2.7a for further explanation o f  notation.

0.3-
front o f

0 .2 -

activation

0.1

0
1 2  3 4

cycle num ber
Figure 2.9a. Recall o f  prepositions in the sequence-associator m odel in the absence o f a 
nonspecific arousal signal. This particular recall is obtained after training the network 
with an instruction sequence that contained the com bination o f  (on, in front of, in front 
of, on). The model is interpreted using m axim um  activation schem e. Refer to Figure 
2.7a fo r fu rther explanation o f notation.
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T he recall accuracy of instructions in the absence o f  nonspecific arousal in both readout 

schem es is 100%. The presence o f arousal causes strong recency effect in activation levels 

in both schemes. This effect, in turn, results in a drop in accuracy to 75%  in the norm alized 

activation schem e. However, the recency effect enhances discrim ination o f instructions in 

the m axim um  activation schem e and the recall accuracy rem ains at 1 0 0 %.

The norm alized activation schem e resulted in an accuracy o f 75% for objects and 

targets, and o f  75 -  100% for prepositions in the absence of nonspecific arousal signal. The 

maximum activation schem e resulted in an accuracy o f  25% for objects and targets, and of 

5 0 - 7 5 %  for prepositions under the same condition. The low er accuracy that resulted from 

using maximum activation schem e is explained by the fact that the network param eters in 

this scheme were not tuned for best perform ance. The sam e set o f  param eters that were used 

in m aximum activation scheme were kept constant for com parative study. As a result, many 

activations did not exceed the firing threshold and thus low er recall accuracy was obtained 

in the maximum activation scheme.

Table 2.5. Recall of prepositions in the sequencer-associator neural network when a 
nonspecific arousal signal is present. Evaluation o f recall is based on maximum activation 
scheme,

Num ber Com bination Accuracy

1 on, on, front, front 75%
2 on, front, on, front 75%
3 on, front, front, on 50%
4 front, front, on, on 75%
5 front, on, front, on 75%
6  front, on, on, front 50%

Thus, based on the com puter sim ulations in this chapter, we could not conclude w hether 

one readout schem e is better than the other. However, as discussed by M cClelland (1991) 

in detail, the norm alized activation scheme is based on classical perception m odels and is 

not w ell-su ited  for interpreting the output o f neural network m odels if the units in them
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involve com petition and nonlinearity processes. For this reason, we adopt exclusively the 

m axim um  activation scheme for interpreting the results o f  neural netw ork m odels on 

strategy selection and evolution to be presented in Chapters three and four.

Recall o f Prepositions 
“Arousal” 2  Pn ^■ in front o f

activation

1 2  3 4
cycle number

Figure 2.9b. Recall o f prepositions in the sequence-associator model in the presence of 
a nonspecific arousal signal. This particular recall is obtained after training the 
network with an instruction sequence that contained the com bination o f (on, in front of, 
in front of, on). The m odel is interpreted using maximum activation scheme. Refer to 
Figure 2.7a fo r further explanation o f  notation.

Prim ing in the sequence generator network causes strong prim acy effect on the recall 

o f instructions, whereas it causes a som ewhat dim inished prim acy effect on the recall o f 

objects, targets, and prepositions in the hybrid sequence-associator network.

N onspecific arousal has the effect o f  uniformly boosting activations o f  all units, which 

otherwise have dim inished peaks tow ard the end o f recall. It causes strong recency effects 

in both models. The recency effect is so strong in the hybrid sequence-associator m odel that 

it interferes with correct recall o f initial items (see Figures 2.5b, 2.6b, 2.8b, and 2.9b). For 

this reason, the nonspecific arousal m echanism  is not invoked in extensions o f  the 

sequence-associator neural network, which are undertaken in Chapters three and four fo r the 

purpose o f studying strategy development.
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The hybrid model in its present status neglects the tim e delays between the presentations 

o f objects and prepositions and targets that are evident in the experim ent. It offers a 

fram ew ork for analyzing the role o f external strategies on m em ory recall. The hybrid o f 

m odels for previously learned and currently learned inform ation provides a prom ising 

fram ework fo r further developm ent o f  cognitive and/or neural m odels for hum ans and 

robots.
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CHAPTER 3

A NOVELTY BIAS NEURAL NETWORK MODEL OF 
STRATEGY SELECTION AND EVOLUTION

In this chapter, we extend the hybrid sequence-associator m odel presented in Chapter 

tw o to account fo r strategy selection and evolution behavior in children in the “object-target 

m atching task.” The m odel is referred to as the “novelty bias neural netw ork” and contains 

three new com ponents: strategy selection, accuracy, and novelty bias. The choice o f  these 

additional com ponents is based on S iegler’s theory o f  strategy selection and evolution, 

which postulates that strategy developm ent is controlled by factors such as accuracy, speed, 

and novelty bias. We first elaborate on the relevance o f  S ieg ler’s theory to the developm ent 

o f  the novelty bias neural netw ork model. We follow this with a discussion o f  the 

architecture o f  the m odel. Last, we present a discussion o f com puter sim ulations and 

com pare outcom es o f  the sim ulations with observed strategy behavior in children.

3.1 M otivation

Children use a variety o f strategies in the ob ject-target m atching task described in 

C hapter two. Exam ples o f  some com m only used strategies are pointing at an object, moving 

an object with orientation tow ard a target, and placing an object in front o f  o r on top o f a 

w ooden separator directly across from  a target. All these strategies m ay be incorporated into 

three categories: object encoding only, object-target encoding, and

object-target-p reposition  encoding. The investigations o f Bray et al. (1993) show that older 

children use “ob ject-target encoding” and/or “ob ject-target-preposition  encoding” more 

frequently than younger children. Younger children tend to use “object encoding only” most
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frequently and, to a lesser degree, “object-target encoding.” Even though Bray et al. (1993) 

observe that the subjects use a com bination o f  these strategies in a given instruction 

sequence, we assum e in our com puter sim ulations that they use a single strategy throughout 

the instruction sequence. In a broader context, we are interested in identifying the various 

cognitive m echanism s that m ediate such developm ental differences in strategy use.

Siegler and his colleagues em pirically determ ined that for a given task a child w ill use 

m ultiple strategies. This is true in a num ber o f different tasks such as addition, subtraction, 

m ultiplication, reading, time telling, and serial recall (M cG illy & Siegler, 1989; Siegler & 

Jenkins, 1989; Siegler, 1991). According to their findings, children sw itch from one strategy 

to another on a given problem  even though a particular strategy m ay work well on that 

problem . Siegler (1991) proposes that cognitive factors such as accuracy o f  outcom e, speed 

o f  execution, and novelty of strategy are responsible for the variability in strategy selection 

and for the evolution o f strategies. Strategies that result in higher accuracy, those that are 

faster and those that are newer are generally preferred over others, but there is variability in 

strategy selection, and the evolution o f  strategy selection is gradual.

We hypothesize that factors sim ilar to these may also be responsible for the selection 

and evolution o f strategies in the object-target m atching task. A m odel constructed on this 

hypothesis should explain the differences in strategy choices o f  different age groups on this 

task. We tum  to neural netw ork m odels because they exhibit the characteristics of 

adaptability, generalization, and neurological plausibility. In the current effort, we construct 

a neural netw ork m odel based on the assum ption that accuracy and novelty are tw o key 

cognitive factors that play a role in the selection and evolution o f  strategies in the 

ob ject-target m atching task.

3.2 Architecture o f the Neural Network

Figure 3.1 illustrates the various functional com ponents in the neural network model for 

the selection and evolution o f strategies in the object-target m atching task and the
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interactions among them. A sequence generator is responsible for storing and recalling a

Prim ing Signal One

Presentation o f 
Instruction sequence

Accuracy Novelty Bias

Sequence generator

Strategy Selector

Cognitive M appings for 
Entities

External Prim ing Signal 
Teacher Two

Figure 3.1. Block diagram o f the novelty bias neural network m odel. The various 
neural components involved in strategy selection and evolution in the ob ject-target 
m atching task are illustrated here. The bold arrows represent m ultiple inputs/ connec
tions from /to the com ponents. The light arrows represent single inputs.

sequence o f instructions. It is assum ed that a subject has becom e fam iliar with the concept 

o f seriality before attem pting the matching task. Hence a neural network which has already 

been trained on seriality and thus em bodies knowledge o f  seriality is used as a sequence 

generator.

Cognitive mappings are representations o f the objects, targets, and prepositions used in 

the experim ent. An outstar-like  associator couples the sequence generator with cognitive 

mappings for the entities. Construction o f the sequence generator and associator is 

m otivated by G rossberg’s work on serial recall and the outstar (Grossberg, 1978). Further 

details o f  the model for the storage and recall o f instruction sequences without the strategy 

com ponent are discussed in Chapter two.

The strategy selector contains m ultiple strategies, each o f which receives a bias for 

novelty and accuracy input based on previous experience o f the network with the m atching
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task. An external teacher provides the netw ork with correct answers during the recall of 

instruction sequences in each trial. A prim ing signal stim ulates the accuracy com ponent to 

prom pt the selection o f a strategy. Another prim ing signal, corresponding to the cue to  recall 

in Bray et al. (1993), stim ulates the sequence generator to prom pt the recall o f an instruction 

sequence after its presentation.

The specifications and equations that govern the various neurons which constitute the 

functional com ponents in the neural network are described below. The neural network is 

illustrated in Figure 3.2.

3.2.1 Instruction Units

The sequence generator consists o f  four instruction units corresponding to the num ber 

o f  instructions presented in each trial. Instruction units are connected to every other 

instruction unit and send excitatory connections to the entity units. As m entioned above, the 

sequence generator com ponent has been trained separately to control a sequence. Training 

results in strong forw ard associations being established among the instruction units. 

Henceforth these associations rem ain fixed. The first instruction unit receives a prim ing 

signal at the beginning o f recall. Further details on training and recall are discussed in 

Chapter two.

3.2.2 Entity Units

C ognitive m appings for entities are represented by entity units. There are three entity 

pools, one each for objects, targets, and prepositions. The object pool has 12 object units; 

the target pool, 6  target units; and the preposition pool, 2 preposition units. These numbers 

correspond to the actual numbers o f objects, targets, and prepositions used in the experim ent 

o f Bray et al. (1993). Each entity unit receives adjustable excitatory connections from all 

instruction units, and fixed inhibitory connections from  other entity units w ithin its pool. 

Units in the object pool also receive excitatory connections from all strategy units. Units in 

the target pool receive adjustable excitatory connections from strategy units two and three
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prim ing signal one

instruction units

object unit: units

target units

strategy units

INovelty 
bias units

5  A ccuracy units

inputs from
external
teacher prim ing signal tw o

Figure 3.2. A rchitecture o f the novelty bias neural network m odel for strategy selection 
and evolution. F or the sake o f clarity, only a few  units and connections are shown 
here. A ll instruction units send excitatory connections to all object, preposition, and 
target units (“entity units”). A ll accuracy units send excitatory connections to  all 
strategy units. Each entity unit sends an excitatory connection to a corresponding 
accuracy unit. All instruction units send excitatory connections to every o ther 
instruction unit. Entity  units and strategy units receive inhibitory connections from all 
o ther units within their pool. See text for further details.
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only. Units in the preposition pool receive adjustable excitatory connections from  strategy 

unit three only. The rationale for such selective connectivity com es from the fact that 

strategy one encodes objects only, strategy two encodes objects and targets, and strategy 

three encodes all three entity classes.

3.2.3 Strategy Units

The strategy selector consists o f three strategy units. The first unit represents the object 

encoding only strategy, the second unit the object-target encoding strategy, and the third unit 

the ob ject-target-preposition  encoding strategy. Each strategy unit receives an excitatory 

connection from a corresponding novelty bias unit and adjustable excitatory connections 

from  all accuracy units, which are described below. In the current im plem entation, the 

strategy unit with the highest activation retains its value and the activations o f  o ther units 

in the pool are set to zero. It w ould be possible to accom plish this using a “w inner take ail” 

mechanism  such as lateral inhibition within the pool.

3.2.4 Novelty Bias Units

The novelty bias com ponent consists o f three novelty bias units. The connection from 

a novelty bias unit to its strategy is assigned a random w eight each time the activations of 

strategies are updated, reflecting the probabilistic nature o f  strategy selection. The 

activation o f a novelty bias unit starts at a given value and decays with time. It represents 

the degree o f novelty a  subject may place on a strategy. A higher activation value indicates 

that the strategy corresponding to the bias unit is new er and is strongly biased in favor of 

selection, and vice-versa.

3.2.5 A ccuracy Units

The accuracy com ponent consists o f three pools o f  units. The first pool contains 12 

units, the second 6  units, and the third 2 units. Thus, there is a o n e -to -o n e  correspondence 

betw een accuracy units and entity units. Each accuracy unit receives an excitatory 

connection from a corresponding entity unit. It also receives input from an external teacher
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during recall. It sends out its excitatory connections to all strategy units. An accuracy unit 

shunts the input from an external teacher with excitatory input from its entity unit.

3.2.6 Activation and Weight Update

The activations o f all units except accuracy units are updated using a general equation 

(3.1). This equation contains a decay term, a net excitatory input term, a net inhibitory term, 

and an external input term. The activation update for accuracy units takes place according 

to equation (3.2), which contains a shunting term and a term for prim ing strategy selection.

The adjustable weights are updated using equation (3.3), which is m otivated by the dual 

learning rule proposed by Edelman (1987) in his theory o f neuronal group selection. This 

equation is a generalized version o f Hebbian learning, and synaptic weights m ay increase 

or decrease based on presynaptic and postsynaptic thresholds.

Activation update equation:
a f t + l )  =  [a /r ) ] r > Wj f t )  + y ^  q  [ ^ ( r ) ] r . +  I f t )

where ( 31)
a f t )  =  activation o f  unit i a t time t
a  =  decay rate 
p  =  net input facto r
Wjiit) =  connection strength from  unit j  to item unit i a t time t
y  =  net inhibition factor
q  =  fixed inhibitory strength among units o f  the same poo l
r ,  =  presynaptic threshold
[ x  ] r ‘ =  x only if x  >  T ,

— 0.0 otherwise 
11 (t) =  external input to unit i a t time t.

Activation update equation fo r  accuracy units:
a f t  +  1) =  a f t ) * E fit) +  l i (t) (3.2)

where
a f t ) =  activation o f accuracy unit i a t time t
a f t )  =  activation o f corresponding entity unit k at time t
Ef t )  =  input from  external teacher to accuracy unit i a t time t
I f t )  =  priming signal to accuracy unit i a t time t
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Weight update equation:

w. f t  +  1) =  w . f t )  +  6 [ a f t  +  1)] [ f l / / + l ) ] rj  (3.3)

where
Wij (t) =  connection strength from  unit i to item unit j  a t time t.
a f t  + 1 )  =  activation o f  unit i a t time t +  1
a f t  + 1 )  =  activation o f  unit j  a t time t +  1
r2, r 3 =  presynaptic  and postsynaptic thresholds.
6 — learning rate

Table 3.1. Param eters used in com puter simulation of the novelty bias neural network 
m odel.

a  =  0.9, yS =  0.7, y  =  0.2, q  =  -  0.5, T , =  0.1;

fo r  instructions to entity connections :
r 2 =  0.1, r 3 =  0.4, 5 =  0. 4;

fo r  strategy to entity connection:
r 2 =  0.1, r 3 =  0.4, 6 =  0. 2;

fo r  accuracy to strategy connections :
r2 =  o.i, r 3 =  o.2;
when accuracy unit >  T 2 \ 5 =  0 . 2; 
when accuracy unit <  T 2 : d =  — 0. 075;

Priming signal one = 1., priming signal two = 0.15;
___________ Initial weights fo r  all connections are se t a t 0.05;____________________

3.3 C om puter Simulation

Com puter sim ulations o f the neural network model have been carried out to evaluate 

its utility as a predictor o f  strategy selection and strategy evolution in children. The 

sim ulation consists o f several trials, each made up o f a presentation phase follow ed by a 

recall phase. M ultiple trials in the com puter simulation are analogous to m ultiple learning 

epochs, each involving exposure by children to tasks sim ilar to ob ject-target m atching in 

everyday life, which elicits changes in strategy choice in them. The current simulation is 

intended to model the evolution o f strategy selection across a num ber o f years in a ch ild’s 

life, and therefore, is not to be confused with the multiple trials that are presented to children 

in the course o f the experim ent perform ed by Bray et al. (1993).
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In the presentation phase o f  the sim ulation, a prim ing signal is given to accuracy units 

to prom pt selection o f  a  strategy. An instruction sequence is presented starting the next cycle. 

W henever an instruction is presented, the proper instruction unit, the object unit, the target 

unit, and the preposition unit each receive an external input. A preposition, e .g ., “on,” is 

uniquely used exactly  tw ice in an instruction sequence in order to m aintain a correspondence 

with the experim ent o f Bray et al. (1993). Each presentation cycle consists o f  an update o f 

the activations o f all units in the network follow ed by an update o f  the connection strengths 

from  instruction units to entity units and from strategy units to entity units. All other 

connection strengths rem ain fixed during the presentation phase.

In the recall phase, a prim ing signal is given to the first instruction unit to prom pt the 

recall o f  instruction sequence. As the recall o f  entities takes place, a constant external input 

from  the teacher is given to accuracy units. This input is positive if  the entity corresponding 

to that accuracy unit should be on in the current recall cycle and negative otherwise. 

A ctivations o f all units in the network and connection strengths from accuracy units to 

strategy units are updated in that order in each recall cycle.

It should be noted here that learning occurs in the netw ork in both presentation and recall 

phases. The associations betw een a particular instruction sequence and a strategy are learned 

in the presentation phase. Feedback concerning accuracy is provided by the teacher to the 

accuracy units during the recall phase. It is assum ed that sufficient time elapses between 

trials so that the associations learned between a strategy and a particular instruction sequence 

during a presentation phase decay to resting value and, therefore, do  not cause residual 

associations during the next trial. However, the associations learned betw een accuracy units 

and strategy units have negligible decay so that they last the entire life span o f  the network.

At the beginning o f the com puter sim ulation, the novelty bias unit, N l, which excites 

strategy unit, S I , receives an external input. This input leads to the selection o f  strategy one 

o f object encoding only over the others. We henceforth re fe r to the process o f preferentially
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setting the external input to a bias unit as “strategy initiation.” This corresponds to a subject’s 

“decision” to try a new type o f strategy. After a few  trials (12 in this sam ple sim ulation), 

strategy two o f  object-target encoding is initiated. A fter a few  more trials (12 in this sample 

sim ulation), strategy three o f ob ject-target-preposition  encoding is initiated. The rationale 

for such orderly initiation o f  strategies is that the first strategy o f object encoding only is the 

m ost basic o f all strategies and the first to occur in the developm ent o f  external strategies in 

children. Strategy two is discovered after strategy one and strategy three after strategy two 

by m ost children.

The com puter sim ulation is term inated when any one o f  the strategy units reaches its 

m axim um  activation value (in the current im plem entation, 1.0). Based on experience with 

the com puter simulations o f the m odel, we know that when this criterion is satisfied, the 

netw ork has com pleted the process o f strategy evolution and has converged on the strategy 

with the m axim um  activation.

3.4 Results

The results o f a typical sim ulation run are presented in Table 3.2 which lists net bias 

input and net accuracy input to each strategy, the w inning strategy and its activation for every 

trial for 50 trials. “Net bias input” to a strategy unit is defined as the net influence o f its bias 

unit in a given trial. “Net accuracy input” to a strategy unit is defined as the net influence 

o f  all accuracy units to the strategy unit when a prim ing signal is given to accuracy units.

A fter “object encoding only” strategy was initiated at the beginning o f  the simulation, 

it continues, being strongly biased over other strategies, to be selected until trial twelve. A 

steady increase in its net accuracy input is noticeable.

A fter object-target encoding strategy was initiated at the beginning o f  trial thirteen, the 

selection shifts between strategy one and strategy two until trial tw enty-four. A steady 

increase in the net accuracy input is noticeable fo r both strategy one and strategy two.
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Table 3.2 Strategy evolution observed in one o f the com puter sim ulation runs o f  the novelty 
bias neural network m o d e l.

Tr Strategy 1 Strategy 2 Stratcgv3 SS ASS
NB Al NB Al NB Al

< Strategy one is initiated >
1 0.682 0.150 0.000 0.150 0.000 0.150 1 0.832
2 0.431 0.169 0.000 0.150 0.000 0.150 1 0.600
3 0.269 0.182 0.000 0.150 0.000 0.150 1 0.450
4 0.277 0.191 0.000 0.150 0.000 0.150 1 0.468
5 0.412 0.200 0.000 0.150 0.000 0.150 1 0.613
6 0.280 0.217 0.000 0.150 0.000 0.150 1 0.496
7 0.381 0.227 0.000 0.150 0.000 0.150 1 0.607
8 0.332 0.240 0.000 0.150 0.000 0.150 1 0.572
9 0.067 0.252 0.000 0.150 0.000 0.150 1 0.319

10 0.166 0.258 0.000 0.150 0.000 0.150 1 0.424
11 0.202 0.267 0.000 0.150 0.000 0.150 1 0.468
12 0.388 0.276 0.000 0.150 0.000 0.150 1 0.664

< Strategy two is initiatcd>
13 0.130 0.297 0.614 0.150 0.000 0.150 2 0.764
14 0.252 0.297 0.080 0.177 0.000 0.150 1 0.549
15 0.010 0.310 0.572 0.177 0.000 0.150 2 0.748
16 0.074 0.310 0.300 0.205 0,000 0.150 2 0.505
17 0.029 0.310 0.067 0.221 0.000 0.150 1 0.340
18 0.097 0.317 0.550 0.221 0.000 0.150 2 0.771
19 0.094 0.317 0.411 0.248 0.000 0.150 2 0.659
20 0.046 0.317 0.172 0.278 0.000 0.150 2 0.450
21 0.190 0.317 0.425 0.288 0.000 0.150 2 0.712
22 0.229 0.317 0.414 0.316 0.000 0.150 2 0.730
23 0.170 0.317 0,098 0.343 0.000 0.150 1 0.487
24 0.030 0.327 0.111 0.343 0.000 0.150 2 0.454

< Strategy three is initiated >
25 0.073 0.327 0.093 0.353 0.584 0.150 3 0.734
26 0.169 0.327 0.097 0.353 0.160 0.197 1 0.496
27 0.023 0.337 0.074 0.353 0.615 0.197 3 0.812
28 0.159 0.337 0.102 0.353 0.314 0.252 3 0.567
29 0.147 0.337 0.001 0.353 0.164 0.276 1 0.484
30 0.057 0.347 0.284 0.353 0.131 0.276 2 0.637
31 0.050 0.347 0.172 0.381 0.380 0.276 3 0.656
32 0.008 0.347 0.227 0.381 0.197 0.320 2 0.608
33 0.011 0.347 0.097 0.396 0.096 0.320 2 0.493
34 0.111 0.347 0.058 0.408 0.389 0.320 3 0.709
35 0.045 0.347 0.139 0.408 0.026 0.366 2 0.546
36 0.067 0.347 0.118 0.424 0.046 0.366 2 0.543
37 0.008 0.347 0.146 0.441 0.163 0.366 2 0.587
38 0.093 0.347 0.061 0.456 0.259 0.366 3 0.626
39 0.069 0.347 0.182 0.456 0.080 0.407 2 0.637
40 0.025 0.347 0.053 0.483 0.192 0.407 3 0.599
41 0.003 0.347 0.064 0.483 0.141 0.434 3 0.574
42 0.012 0.347 0.062 0.483 0.305 0.459 3 0.765
43 0.061 0.347 0.107 0.483 0.132 0.508 3 0.641
44 0.064 0.347 0.090 0.483 0.197 0.549 3 0.747
45 0.036 0.347 0.010 0.483 0.172 0.600 3 0.771
46 0.025 0.347 0.063 0.483 0.240 0.650 3 0.890
47 0.010 0.347 0.108 0.483 0.163 0.706 3 0.870
48 0.007 0.347 0.079 0.483 0.156 0.761 3 0.917
49 0.051 0.347 0.002 0.483 0.078 0.822 3 0.900
50 0.024 0.347 0.028 0.483 0.131 0.880 3 1.000

Tr: Trial Num ber, NB: N et novelty B ias, A l: net Accuracy Input, SS: Strategy S elected , A SS: A ctivation o f  
Strategy Selected . N et novelty B ias =  (random number betw een 0 .0  and 1.0) * (activation o f  b ias unit); net 
Accuracy Input =  £  Prim ing S ignal tw o * activation o f  accuracy unit A  strategy w as initiated by setting 
the activation o f  its novelty bias unit to 0 .8 .
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A fter ob ject-target-preposition  encoding strategy was initiated at the beginning o f trial 

tw enty-five, all strategies were used at least twice. This behavior o f  the network o f using 

m ultiple strategies in close tim e intervals is sim ilar to strategy selection by children in 

arithmetic, serial recall, tim e telling and other task dom ains (M cGiliy & Siegler, 1989; 

Siegler & Jenkins, 1989; Siegler, 1991).

Even though the net accuracy input for the object encoding only strategy unit, for 

exam ple, at trial tw enty-eight is greater than that for the ob ject-target-preposition  encoding 

strategy unit, the novelty factor allows the latter strategy to be selected. As the simulation 

continues, the net novelty bias input dim inishes for all strategies and net accuracy input 

becomes the deciding factor in strategy selection. Since the ob ject-target-preposition  

encoding strategy gains the highest net accuracy input after trial fo rty-three, when the net 

novelty biases for other strategies have nearly dim inished to zero, it becom es the only 

strategy selected by the network. This behavior is sim ilar to m ost adults always selecting 

a “retrieval” strategy over a “count from one” strategy or a “count from  sm aller addend” 

strategy in simple addition as in Siegler and Jenkins (1989).

Due to random ness in the contribution o f novelty bias units to the strategy units, the 

results o f  strategy evolution and recall accuracy vary with each sim ulation run. The results 

from 11 sim ulation runs are tabulated in Appendix A. These results indicate that strategies, 

in general, advance from the object encoding only type to the ob ject-target encoding type 

to the ob ject-target-preposition  encoding type and the netw ork converges to the 

ob ject-target-preposition  encoding strategy. However, some sim ulation runs indicate that 

the netw ork occasionally converges to the object-target encoding strategy. Sim ulation run 

eleven listed in Appendix A dem onstrates this kind o f behavior. T he exam ination o f the 

simulation runs reveals that the random ness in the contribution o f novelty bias units is 

responsible for the differences in strategy convergence patterns.
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We observe from A ppendix A that the num ber of trials when the activation o f  any 

strategy reaches its peak value o f 1 . 0  varies from one sim ulation run to another due to 

random ness in the contribution o f  novelty bias. The num ber o f  runs when the netw ork 

converged on the ob ject-target-preposition  encoding strategy varies from  46 in sim ulation 

run five to 65 in sim ulation run ten. The netw ork converges on the ob ject-target encoding 

strategy in 79 trials as indicated by sim ulation run eleven.

The network is tested for recall accuracy o f  objects, targets, and prepositions using 

m inim um  and m axim um  activations o f strategy units which are obtained from sim ulation 

runs one to eleven listed in Appendix A. The object encoding only strategy has a m inim um  

activation o f  0 .190 and a m axim um  activation o f 0.9, the ob ject-target encoding strategy 

o f  0.304 and 1.0, and the ob ject-target-preposition  encoding strategy o f 0.431 and 1.0 

respectively. The testing for recall accuracy included all possible com binations of 

prepositions.

Activations o f  entities with regard to recall are interpreted using the m axim um  

activation schem e, discussed in C hapter two. To review, recall o f an entity is deem ed correct 

if  its activation exceeds the firing threshold o f  0 . 1  (same as all o ther units in the netw ork), 

its activation is the highest in its pool, and it fires in the order o f  its training. R ecall accuracy 

o f  objects, for exam ple, is determ ined by the ratio  o f  the num ber o f  objects correctly recalled 

to the num ber o f  objects used in the sequence o f  four instructions.

G raphs S0.1, S0.2, and S0.3 in Figures 3.3, 3.5, and 3.7, respectively, illustrate that 

w ithout any strategy use, activations o f  all strategy units equal zero and  only  first entity units 

exceed the firing threshold o f 0.1. Recall accuracy for objects, targets, and prepositions is 

25% each in this case.

W ith the use of an object encoding only strategy, the object units receive a boost in their 

activation value (refer to graph S 1.1 in Figures 3.3 and 3.4). However, when the activation 

of the strategy is at a m inimum (i.e., 0.190), the boost is not significant enough to  raise the
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activations o f object units above the firing threshold except that o f  the first object unit (refer 

to graph S l . l  in F igure 3.3). W hen the activation o f  the strategy is at its m axim um  (i.e., 

0.900), the boost raises the activations o f  all object units above the firing threshold (refer to 

graph S l . l  in Figure 3.4). Thus, the recall accuracy for objects using the object encoding 

only strategy varies from 25% to 100%. The activations for target units and preposition units 

using the object encoding only strategy (graphs S1.2 and S I .3, respectively, in Figures 3.5, 

3.6, 3.7, and 3.8) are the same as those without any strategy use. The lack o f  a boost in 

activations o f these units is explained by the fact that they do not receive any excitatory 

connections from strategy one unit. The recall accuracy for targets and prepositions is 25% 

each.

W hen the activation of the object-target encoding strategy is at its m inim um  (i.e., 

0.304), the activations o f  objects, targets and prepositions during recall are illustrated in 

graphs S2.1, S2.2 and S2.3, respectively (refer to Figures 3 .3 ,3 .5 , and 3.7). Even though the 

object and target units receive a boost in their activation, at its m inim um , it does not raise 

the activations above the firing threshold. W hen the activation o f the ob jec t-target encoding 

strategy is at its m axim um  (i.e., 1 .0 ), the activations o f objects and targets exceed the firing 

threshold in correct order, as illustrated in graphs S 2 .1 and S2.2, respectively (see Figures

3.4 and 3.6). Thus, the recall accuracy o f  objects and targets when the ob jec t-target encoding 

strategy is used varies from 25% to 100%. Since this strategy does not encode prepositions, 

its use does not have any effect on the recall accuracy o f  prepositions w hich rem ains at 25%.

G raphs S3.1 and S3.2 portray the effect o f  the use o f  the ob ject-target-preposition  

encoding strategy on the recall o f  objects and targets, respectively (refer to Figures 3.3 and 

3.5), when the activation o f the strategy is at its m inim um  (i.e., 0.431). The activations of 

objects and targets receive a boost from the strategy but the boost is not significant enough 

to raise them above the firing threshold. Thus, the recall accuracy o f objects and targets
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rem ains at 25% each when activation o f  the object-target-preposition  encoding strategy is 

at its m inim um  value.

Graph S3.3 in Figure 3.7 portrays the effect o f  the use o f the object-target-preposition  

encoding strategy on the recall o f  the following com bination o f  prepositions: (on, in front 

o f , in front of, on) when the activation of the strategy is at its m inimum (i.e., 0.431). Both 

prepositions receive a boost in their activations except the “on” unit in the last cycle o f  recall. 

Thus, the recall accuracy o f  the network on this particular com bination o f  prepositions is 

75% . We tested the network for recall accuracy on o ther possible com binations of 

prepositions. The use o f the object-target-preposition  encoding strategy, w hen its activation 

is at its m inim um , has the effect o f  boosting the activations o f prepositions in these 

com binations except in one cycle. Thus, the recall accuracy for any given com bination of 

prepositions, when the activation o f the strategy is at its m inim um , is 75% .

Graphs S3.1 and S3.2 portray the effect o f the use o f object-target-preposition  encoding 

strategy on the recall o f  objects and targets, respectively (refer to Figures 3.4 and 3.6), when 

the activation o f  the strategy is at its m axim um  (i.e., 1.0). The activations o f  all objects and 

targets receive a boost from the object-target-preposition  encoding strategy unit to raise 

them above the firing threshold in the correct order. Thus, the recall accuracy o f objects and 

targets is at 1 0 0 % each when activation o f  the object-target-preposition  encoding strategy 

is at its m axim um  value.

Graph S3.3 in Figure S3.8 portrays the effect o f  the use o f  the object-target-preposition  

encoding strategy on the recall of the following com bination o f prepositions: (on, in front 

of, in front of, on) when the activation o f the strategy is at its maxim um  (i.e., 1.0). The graph 

indicates that the netw ork recalls prepositions correctly in the first, second, and third 

instructions. However, the activation o f  “ in front o f ’ which is used in the second and third 

instructions persists and dom inates that o f  “on” in the fourth cycle. The recall accuracy in 

this case is 75% . We tested the network for recall accuracy on all other com binations of
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prepositions. The use o f the object-target-preposition  encoding strategy, when its activation 

is at its m axim um , has the effect o f  boosting the activations to such a large extent that the 

boost interferes with correct order o f recall. The recall accuracy for any given com bination 

o f prepositions is found to vary from 50% to 75%  when the activation o f the 

ob ject-target-preposition  encoding strategy is at its m aximum.

As noted above, the ob ject-target-preposition  encoding strategy causes insufficient 

boost in prepositions when its activation is at its m inim um  (i.e., 0.431), thus effecting a recall 

accuracy o f prepositions o f 75% . Also, it causes a large boost that interferes with correct 

recall o f prepositions when its activation is at its m axim um  (i.e., 1 .0 ), thus effecting a recall 

accuracy o f prepositions o f 50-75% . Thus, the recall accuracy has im proved over the 

no-strategy case when the ob ject-target-preposition  encoding strategy is at its m inim um  but 

has deteriorated when the ob ject-target-preposition  encoding strategy is at its maximum. 

For this reason, we w ould like to determ ine if  the network recalls prepositions with 100% 

accuracy when the ob ject-target-preposition  encoding strategy takes on interm ediate 

values. We have tested the netw ork for recall accuracy o f  prepositions when the activation 

o f the ob ject-target-preposition  encoding strategy takes on a value o f  0.793. Indeed, the 

network exhibits a recall accuracy o f 1 0 0 % at this value o f the ob ject-target-preposition  

encoding strategy on all o ther com binations o f prepositions. In summary, the accuracy o f 

network on the recall o f prepositions varies from 50% to 100% based on the activation of 

the ob ject-target-preposition  encoding strategy and on the order of prepositions used in the 

instruction sequence.

The recall perform ance o f the novelty-bias neural netw ork on objects, targets, and 

prepositions using various strategies is sum m arized in Table 3.3.

3.5 Discussion

Com puter sim ulations o f the ob ject-target matching task dem onstrate that strategies, in 

general, evolve from the simple object encoding only type strategy to the sophisticated
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object-target-preposition  encoding type strategy. This sim ulated behavior is in agreem ent 

with observed behavior in children: younger children frequently use strategies such as 

pointing to and holding objects, while older children frequently use strategies such as 

m oving objects with orientation toward targets and with encoding o f  prepositions (Bray et 

al., 1993).

Table 3.3 Sum m ary o f perform ance o f the novelty bias neural netw ork on recall 
accuracy.

EN TITY
STRATEGY USED

NONE 1 2 3

OBJ 25% 25-100% 25-100% 25-100%
TARG 25% 25% 25-100% 25-100%
PREP 25% 25% 25% 50-100%

O ccasionally, the network converged on the m oderately advanced ob ject-target 

encoding strategy rather than on the m ost advanced ob ject-target-preposition  encoding 

strategy. This type o f behavior by the novelty bias neural netw ork resem bles that o f some 

mentally retarded individuals who do not seem to advance to the m ore advanced strategies. 

The differences in types o f strategy convergence as exhibited by the network are attributed 

to random ness in the novelty bias factor. The issue o f how novelty bias and the concom itant 

random ness translate into a plausible biological m echanism  is not addressed in the current 

model. A ddressing this issue could eventually lead to a more satisfactory explanation o f the 

differences in strategy evolution between nonretarded and m entally retarded individuals.

The com puter sim ulations are consistent with the supposition that the accuracy 

inform ation gained from previous experience with strategies and novelty bias are 

responsible for the evolution o f  strategies from the simple to the advanced. With the use o f  

more advanced strategies, m ore accuracy input is gained for later use. For exam ple, the 

activations o f preposition units are higher with the use o f ob ject-target-preposition
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e n c o d in g  s tra teg y  th an  w ith  the use o f  o b je c t- ta rg e t en co d in g  s tra te g y  b e c a u se  the  fo rm e r 

e n c o d e s  p re p o s itio n s  a n d  the la tte r  do es not. C on seq u en tly , p re p o s itio n  accu racy  un its 

rece iv e  h ig h e r  ex c ita tio n  from  co rresp o n d in g  p rep o s itio n  u n its  w ith  the 

o b je c t- ta rg e t-p re p o s it io n  e n co d in g  s tra teg y  than  w ith  th e  o b je c t- ta rg e t e n c o d in g  strategy . 

T h u s , in  the  lo n g  ru n , the accu racy  u n its  co n trib u te  m o re  in p u t to  the 

o b je c t- ta rg e t-p re p o s it io n  en co d in g  s tra teg y  than  to  the  o b je c t- ta rg e t e n c o d in g  strategy . 

T h is  e x p la in s  w hy  th e  n e tw o rk , in  g en era l, takes a  lo n g e r  n u m b er o f  tria ls  to  co n v erg e  on 

the  o b je c t- ta rg e t e n c o d in g  s tra teg y  than  on the  o b je c t- ta rg e t-p re p o s itio n  e n c o d in g  strategy .

W e n o ted  in the re su lts  sec tio n  that s tra tegy  use  cau ses  a  boost in  th e  a c tiv a tio n s  o f  en tity  

un its . I f  th e  boost is s ig n if ican tly  h igh , then  the ac tiv a tio n s  o f  the  e n tity  u n its  ex ceed  the 

firin g  th re sh o ld  an d  c o rre c t re c a ll o f  the  en tities  e n su e s . B a se d  o n  th e  m in im u m  an d  

m ax im u m  a c tiv a tio n s  o f  the o b je c t o n ly  e n c o d in g  s tra teg y  and  th e  o b je c t- ta rg e t en co d in g  

s tra teg y  o b se rv e d  in  th e  c o m p u te r  sim u la tio n s, the  reca ll accu racy  o f  the  n o v e lty  b ias n eu ra l 

n e tw o rk  o n  o b jec ts  a n d  targets  varies from  25%  to  100% . T h u s , a t lo w er v a lu es  o f  the 

ac tiv a tio n s  o f  these  s tra teg ie s , the  ne tw ork  do es no t ex h ib it an y  im p ro v e m e n t in reca ll 

accu racy . W ith  h ig h e r  a c tiv a tio n s , how ever, the n e tw o rk  ex h ib its  100%  reca ll accuracy .

B a se d  on  the m in im u m  a n d  m ax im um  ac tiv a tio n s  o f  the o b je c t- ta rg e t-p re p o s it io n  

e n c o d in g  s tra teg y  o b se rv e d  in th e  co m p u te r  sim u la tio n s, the  reca ll a c c u ra cy  o f  the  n e tw o rk  

on  p re p o s itio n s  v a rie s  from  50%  to  100% . F o r  lo w er a c tiv a tio n  v a lu es  o f  the 

o b je c t- ta rg e t-p re p o s it io n  e n co d in g  stra tegy , the reca ll a ccu racy  is 7 5 %  an d  fo r  m ed ium  

ac tiv a tio n  v a lu es , the  reca ll accu racy  im p ro v es to  100% . F o r h ig h e r ac tiv a tio n  va lu es  o f  the 

o b je c t- ta rg e t-p re p o s it io n  en co d in g  stra tegy , the  reca ll accu racy  d e te r io ra te s  to  5 0 % . 

A n a ly s is  o f  the s im u la tio n  re su lts  rev ea ls  tha t a t h ig h e r va lues, sp u rio u s  a sso c ia tio n s  are  

e s ta b lish e d  b e tw een  in c o rre c t p rep o sitio n  units an d  in stru c tio n  u n its  b e cau se  the  p rep o sitio n  

u n its  re c e iv e  h ig h e r ac tiv a tio n  values tha t p e rs is t fo r  lo n g e r c y c le s , d u e  to  in c reased  

stim u la tio n  from  th e  o b je c t- ta rg e t-p re p o s itio n  e n c o d in g  s tra tegy  un its . T h ese  sp u rio u s
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associations lead to incorrect recall o f prepositions. This anom aly in the recall of 

prepositions needs to be addressed in future work.

In the current im plem entation o f the model, strategies act as a uniform boosting signal 

and do not increase recall discrim ination within a class of entities -  objects, for example. 

Future im plem entations o f  strategy m echanism  should address this issue.

As far as we know, long-term  em pirical studies dealing w ith the discovery o f various 

strategies in the same individuals have not yet been undertaken for the object-target 

m atching task. So the prediction o f the m odel that children evolve their strategies motivated 

by accuracy o f outcom e and novelty is yet to be tested empirically. The neural network 

m odel suggests that cognitive factors such as accuracy of outcom e and novelty o f  strategy 

are plausible in the object-target m atching task, and agrees with the postulation o f Siegler 

(1991) that such factors are general to strategy selection and strategy evolution.
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Recall of Objects
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Figure 3.3 Effects o f strategy use on recall o f objects when strategies have minimum 
activations. X axis denotes cycle num ber and Y axis activation o f an object unit. Plots
S0.1, S l . l ,  S2.1 and S3.1: Recall o f  objects when “ no-strategy,” strategy one, strategy 
two, and strategy three were respectively used.
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Recall of Objects
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Figure 3.4 Effects o f  strategy use on recall o f  objects when strategies have maximum 
activations. X axis denotes cycle num ber and Y axis activation o f  an object unit. Plots
S0.1, S l . l ,  S2.1 and S3.1: Recall o f objects when “no-strategy ,” strategy one, strategy 
two, and strategy three were respectively used.
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Recall o f Targets
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Figure 3.5. Effects o f  strategy use on recall o f  targets w hen strategies have m inim um  
activations. X axis denotes cycle num ber and Y axis activation o f an entity unit. Plots
S0.2, S1.2, S2.2 and S3.2: Recall o f  targets w ith “no-strategy,” strategy one, strategy 
tw o, and strategy three respectively.
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Figure 3.6. Effects o f strategy use on recall o f targets when strategies have maximum 
activations. X axis denotes cycle num ber and Y axis activation o f an entity unit. Plots
S0.2, S1.2, S2.2 and S3.2: Recall o f targets with “no-strategy,” strategy one, strategy 
two, and strategy three respectively.
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Recall o f Prepositions
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Figure 3.7. Effects o f strategy use on recall o f prepositions when strategies have 
m inim um  activations. The network has been tested for recall accuracy on the 
com bination o f  (on, front, front, on). X axis denotes cycle num ber and Y axis 
activation o f an entity unit. Plots S0.3, S I .3, S2.3 and S3.3: Recall o f  prepositions with 
“no-strategy,” strategy one, strategy two, and strategy three, respectively.
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Recall of Prepositions
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Figure 3.8. Effects o f strategy use on recall o f  prepositions when strategies have 
m axim um  activations. The netw ork has been tested for recall accuracy on the 
com bination o f (on, front, front, on). X axis denotes cycle num ber and Y axis 
activation o f an entity unit. Plots S0.3, S1.3, S2.3 and S3.3: Recall o f  prepositions with 
“no-strategy,” strategy one, strategy two, and strategy three, respectively.
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CHAPTER 4 

A COMPONENTS NEURAL NETWORK MODEL OF 
STRATEGY SELECTION AND EVOLUTION

In this chapter, we introduce the “com ponents neural netw ork m odel” fo r strategy 

selection and evolution. We construct this model to overcom e the draw backs o f the novelty 

bias neural netw ork model presented in C hapter three and to explore the notion that subjects 

are able to encode m ore sophisticated inform ation w ith developm ent. First, we discuss the 

m otivation for the com ponents neural network m odel in detail and follow up with 

discussions o f  its architecture, equations for activation and w eight update, com puter 

sim ulation o f  the m odel, and sim ulation results.

4.1 M otivation

The novelty bias neural netw ork model as discussed in C hapter three, though useful as 

an initial prototype, is not com pletely satisfactory for the follow ing reasons. First, the 

orderly introduction o f  novelty biases at an arbitrary num ber o f  trials for the selection o f 

strategies seem s less biologically plausible, even though this does em ulate the form ulation 

o f strategy discovery in S ieg ler’s m odel (Siegler &  Jenkins, 1989). Second, the random 

variation in the contribution o f  novelty toward strategy selection may be very large 

com pared to the contribution o f  accuracy. O ur objective is to control the contributions of 

random ness, elim inating them  if  desirable and including them when necessary, to make the 

model m ore biologically plausible. Third, the novelty bias neural netw ork m odel does not 

incorporate the notion o f  strategy com ponents, which as we proceed, will be shown to be a 

useful form ulation. Each o f  the strategy types considered in C hapter three m ay be broken 

down into finer elem ents, called “strategy com ponents.” For exam ple, the object-target

64
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encoding strategy is m ade up o f at least three com ponents: looking at the object, grasping 

the object, and m oving the object tow ard the target.

Further, we want to explore the idea that children can encode increasingly sophisticated 

inform ation with age, in order to explain the evolution o f  external m em ory strategies with 

developm ent. This sim ple idea is evident in the work o f P iaget (Siegler, 1991). For exam ple, 

in a “ balancing o f w eights” experim ent, younger children norm ally take into account only 

one dim ension, i.e., weight; w hereas, o lder children norm ally take into account two 

dim ensions, i.e., weight and distance o f the weight from the fulcrum.

Sternberg and Rifkin (1979) present the differences in encoding between adults and 

children on analogy problem s. According to their findings, adults spend a longer tim e on 

encoding and encode m ore features o f a given problem  than children. As a result, the 

solution tim es for adults are shorter than those for children.

Levine and Prueitt(1989), in their neural network m odeling effort, adopt a sim ilar idea 

to explain the differences in the perform ance o f frontal lobe dam aged patients and normal 

subjects. They attribute the differences in the perform ance o f  the two groups to differences 

in the strength o f  signals from sensory loci to reinforcem ent loci. In the context o f  the 

experim ent o f Bray et al. (1993), we postulate that children at earlier ages pay m ore attention 

to feedback about recall o f objects than to feedback about recall o f targets o r prepositions. 

They gradually pay m ore attention to feedback about recall of targets and lastly, more 

attention to feedback about recall o f  prepositions. In o ther words, the ability  to assim ilate 

feedback about recall o f  objects, targets, and prepositions increases in that order.

As we shall see later, the com ponents neural network m odel based upon this postulation 

helps explain the differences in strategy use not only am ong younger and o lder children but 

also am ong m entally retarded and nonretarded children. We may note here that feedback 

inform ation about the recall o f  entities may originate internally from another pan  o f  the brain 

or externally from an experimenter.
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4.2 Architecture o f the Neural Network

The com ponents neural network model for strategy selection and evolution is illustrated 

in Figure 4.1. Its architecture differs from that o f the novelty bias neural network model 

presented in Chapter three as follows: the newer model lacks novelty bias units and has 

additional units that represent strategy components. The novelty bias units are elim inated 

in the new m odel because they contribute a large amount o f random ness as discussed in the 

previous section. Further, according to O ccam ’s razor, a model with m inim al m echanism s 

is to be preferred if  it can lead to equivalent behavior: novelty bias units are not needed if 

differences in encoding o f  inform ation at the accuracy units can alone lead to the evolution 

o f  strategies. Specifications for instruction units, and entity units rem ain the same as 

provided in the section “architecture o f  neural network” in C hapter three. Specifications for 

strategy units, com ponent units and accuracy units are presented below.

4.2.1 Com ponent Units

Com ponent units represent those parts that are postulated to m ake up strategies. In a 

bottom -up inform ation processing perspective, which is com m only subscribed to in 

psychology, com ponents are abstracted or autom atized into strategies. In the current 

im plem entation o f the model, three com ponent units are used: object encoding unit, target 

encoding unit, and preposition encoding unit. The object encoding unit represents, for 

exam ple, grasping an object in the hand. The target encoding unit represents, for exam ple, 

the orientation o f an object tow ard a target. The preposition encoding unit represents, for 

exam ple, placing an object above or in front o f the yellow board, corresponding to the 

preposition in the instruction.

It is quite conceivable to have com ponent units in addition to these, e.g., pointing at an 

object, pointing at a target. The com ponent units receive adjustable excitatory connections 

from  accuracy units o f a given type and send excitatory signals to appropriate strategy units 

through fixed excitatory connections, as illustrated in Figure 4.1.
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instruction units

prim ing signal one

strategy units

com ponent units

accuracy units

target units preposition units

inputs from external teacher

prim ing signal 
two

Figure 4.1. Architecture o f  the com ponents neural netw ork m odel for strategy 
selection and evolution.

4.2.2 Strategy Units

As in the novelty bias neural network m odel described in C hapter 3, the strategy unit 

pool consists o f  three units that represent three strategy types: object encoding only,
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ob ject-target encoding and object-target-preposition  encoding. Each strategy unit receives 

excitatory connections from  appropriate com ponent units. In the current im plem entation, 

the strategy unit w ith the highest activation retains its value, and the activations o f  o ther units 

in the pool are set at zero. It would be possible to accom plish this using a “ w inner take all” 

m echanism  such as lateral inhibition w ithin the pool.

4 .2.3 A ccuracy Units

In the novelty bias m odel, each accuracy unit sends excitatory signals to  every strategy 

unit; the underlying assum ption is that all types o f accuracy units potentially  contribute to 

the evolution o f  strategies in the absence o f  com ponents. H ow ever, with the introduction 

o f  com ponent units in the current m odel, accuracy units send excitatory signals to relevant 

com ponent units only: object accuracy units send excitatory input to the object encoding 

com ponent only, target accuracy units to the target encoding com ponent only, and 

preposition accuracy units to  the preposition encoding com ponent only.

4 .2.4 A ctivation and W eight U pdate

The activation update equation fo r all the units in the com ponents m odel except fo r the 

accuracy units and the strategy units takes the generalized form described by (3.1). The 

activation update for the accuracy units is given by equation (4.1). This equation differs from 

the accuracy equation (3.2) o f  the novelty bias model prim arily  through the new D k(t) term 

postulated to account fo r differences in encoding o f inform ation in the different types o f  

accuracy units. The object accuracy units reach their m axim um  encoding ability m ost 

rapidly, the target accuracy units next, with the preposition units last. C haracteristic D k(t) 

curves for the three accuracy unit types are displayed in Figure 4.2.

In addition to decay, excitatory input, and inhibitory input term s, the activation update 

equation for strategy units contains a term , Noise. Noise is assum ed to  be uniform ly 

distributed over the interval [0.0, M axN oise], M axNoise is small com pared to the possible 

range o f  activation values in the network. In our assum ptions, we are follow ing researchers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

such  as R eeke , S p o m s a n d E d e lm a n  (1 9 9 0 ) an d  M cC le llan d (1 9 9 1 ) w h o  ap p ly  ran d o m n e ss  

in  n eu ro n a l p ro cess in g  to  ex p la in  v a ria tio n  in b eh a v io r w h ich  a rises  ev en  in the p re se n c e  o f  

c o n s ta n t ex te rn a l s tim u lu s in p u t. A s w e  sh a ll see, th e  n o ise  term  in the  a c tiv a tio n  up d a te  

e q u a tio n  o f  the s tra te g y  u n its  a llow s fo r  ran d o m n e ss  in  the se lec tio n  o f  a  s tra te g y  w h en  tw o  

s tra teg y  u n its  hav e  n early  eq u a l ac tiv a tio n  values. I t w o u ld  be p o ss ib le  to  in c o rp o ra te  the 

sam e  ran d o m n ess  te rm  fo r a ll neu rona l un its  in the  n eu ra l ne tw ork . T h e  b eh a v io r o f  the 

n e tw o rk  w hen  a  ran d o m n ess  term  is u se d  in all a c tiv a tio n  u p d a te  e q u a tio n s  n eeds fu r th e r  

ex p lo ra tio n .

A ctiva tio n  u pda te  equ ation  f o r  accu ra cy  units:
a f t  + 1 )  =  D k (?) * a f t )  * £,■(*) +  /,• (r) (4.1)

w h ere
a f t )  =  a c tiva tio n  o f  a ccu racy  unit i a t  tim e t
a f t )  =  a c tiva tio n  o f  correspon din g  en tity  u n it k a t tim e t
E f t )  =  inpu t fro m  ex tern a l tea ch er to accu ra cy  unit i a t tim e t
I  f t )  =  prim in g  sig n a l to  a ccu racy  unit i a t tim e t

D k (t) =  d eg ree  o f  en cod in g  o f  in form ation  a t accu ra cy  unit i o f  type  k 
a t tim e t

= Cl* {l . /(l .  + « - W ‘) -  0.5)

A(r) =  d eg ree  o f  experien ce  o f  su b je c t in o b je c t — ta rg e t m atch in g  task  
=  A(r -  1) +  C 2 

A(0) =  0 .0  
C j ,  C 2 =  con stan ts
T k =  tem para tu re  con stan t f o r  a ccu ra cy  unit o f  typ e  k 
k =  1 ,2 ,3  f o r  o b jec t, ta rg e t an d  p re p o s tio n  resp ec tive ly ,
In the cu rren t im plem en ta tion , T x <  T 2 <  T 2

T h e  w e ig h t u p d a te  eq u a tio n  fo r a d ju s tab le  c o n n ec tio n s  is the  sam e as the g e n e ra liz ed  

H eb b ian  eq u a tio n  p rev io u s ly  d esc rib ed  by  eq u a tio n  (3 .3). W e no te  h e re  th a t the  w e ig h ts  

fro m  accu racy  u n its  to  co m p o n en t un its  a re  n o rm a lized  to  d isc o u n t the e ffe c t o f  th e  n u m b e r  

o f  u n its  in each  accu racy  type . In o th e r  w o rd s , the to ta l co n trib u tio n  o f  an  a c cu racy  ty p e  to  

its  co m p o n e n t u n it is in d ep en d en t o f  the  n u m b e r o f  u n its  w ith in  th a t accu racy  type. 

N o rm a liza tio n  is acco m p lish ed  by  d iv id in g  lea rn in g  ra te  by  the n u m b er o f  un its  w ith in  an 

a c cu racy  type. T h e  co n n ec tio n s  from  c o m p o n e n t u n its  to  s tra teg y  un its  h av e  f ix ed  w e ig h ts .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

These weights are chosen under the assum ption that com ponents contribute in equal 

proportion to a given strategy.

4.3 C om puter Simulation

C om puter sim ulations o f  the com ponents neural network model have been carried out 

to develop its perform ance characteristics. Each simulation run consists o f several trials. 

Each trial consists o f three phases: strategy selection, instruction presentation, and 

instruction recall. Sim ulation is halted when activations o f strategy units reach stable values.

At the beginning o f a trial, a prim ing signal to all accuracy units (prim ing signal two in 

Figure 4.1) results in the activation o f  accuracy units, com ponent units, and strategy units, 

ultim ately leading to the selection o f a strategy. It is postulated that the activation o f accuracy 

units, com ponent units, and strategy units takes place in one cycle, without interm ediate time 

delays. The selected strategy is in effect over a trial, i.e., throughout the instruction 

presentation and the instruction recall phases. We note here that this particular assumption 

o f strategy use does not cover the cases wherein a subject uses m ultiple strategies in a single 

trial as seen, for exam ple, in the experim ent o f Bray et al. (1993).

A sequence o f four instructions is presented to the network with one instruction per 

cycle. In each cycle, the activations o f all the instruction units and entity units in the network 

are adjusted, followed by the update o f weights between instruction units and entity units, 

and o f w eights between strategy units and entity units.

At the end o f the instruction presentation phase, the priming signal to the first instruction 

unit (prim ing signal one in Figure 4.1) triggers recall o f the instruction sequence. W hen an 

instruction is being recalled, a “ teacher,” external to the model, provides reinforcem ent to 

accuracy units. For example, if a particular object is supposed to have been recalled in a 

given cycle and has been recalled (by exceeding the firing threshold), then the recall is 

deem ed correct; otherwise, the recall is deem ed incorrect. The teacher provides positive 

reinforcem ent to accuracy units corresponding to  entities that have been recalled correctly.
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It provides negative reinforcem ent to accuracy units corresponding to entities that have been 

recalled incorrectly. The teacher as discussed here may be external, such as the 

experim enter, or internal, such as signals received from another part o f  the brain.

The com ponents m odel, unlike the novelty bias model presented in C hapter three, 

incorporates a D k(t) term that defines the degree o f encoding o f  reinforcem ent information 

at a given accuracy type as illustrated in equation (4.1). The 2.k(t) term  which defines the 

experience o f the subject with the ob ject-target m atching task is increm ented during the 

strategy selection phase at the beginning o f every trial. The Tk term , which stands for a 

Boltzm an constant for each accuracy unit o f  type k, defines the differences in encoding o f 

reinforcem ent am ong the various accuracy types. As may be noted from equation (4.1), Xk(t) 

and T k jo in tly  determ ine the effectiveness o f the encoding of reinforcem ent fo r a given trial. 

Various param eters used in the com puter sim ulation are listed in Table 4.1.

4.4 Results

The results o f several com puter sim ulation runs are presented in this section. T he results 

o f  a typical run are given in Table 4.2. The table displays the strategy selected and its strength 

corresponding to a trial. In this particular simulation run, the object only encoding is 

discovered in trial forty-four. D iscovery o f a strategy occurs when its strength exceeds the 

firing threshold. We m ay note here that a strategy unit has an effect on an entity unit only 

when it exceeds the firing threshold. A firing threshold o f 0.1 has been uniform ly applied 

to all neurons in the network. O f course, due to the presence o f  the noise term in the 

activation update equation for strategy units, we observe a variation in the results from one 

simulation run to another.

The behavior o f the m odel is analogous to  that o f hum an subjects in several ways. 

Children discover their first strategy only when they attain some chronological age (not at 

the em bryonic stage!). In the m odel too, it takes a “ long tim e,” fo rty -th ree trials in this 

particular run, before any strategy is discovered. Furtherm ore, the selection o f  various
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strategies before trial fo rty -four in the m odel illustrates that neuronal processing related to 

eventual strategy discovery m ay be taking place in the brain even though it does not becom e 

apparent through outw ard action.

5.0d
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2 . 0 -

=  2.4

1. 0 -
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0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

a(t)
Figure 4.2. Characteristic curves for D (k)(t), ability to encode inform ation at accuracy 
units for each type, k as a function o f  a  (t) and T(k). See text fo r further details.
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We may notice from Table 4.2 that after the object only encoding was discovered in trial

fo rty-four, it is not used in trial fo rty-five and trial forty-seven because its strength falls

below  the firing threshold. The nonuse o f a strategy after its discovery is rem iniscent o f  what

Siegler and Jenkins (1989) report, i.e., that children do not use a strategy because they are

not certain about its execution. The study o f Bray et al. (1993) also reveals that children do

not use a particular strategy even though they are cognizant o f it. Thus, the m odel effects a

“nonuse o f strategy” behavior after its discovery, sim ilar to its being seen in children.

Table 4.1. Param eters used in com puter simulation o f the com ponents neural network
m odel • ___________________________________________________
a  =  0.9, 0  =  1.0, y  =  0.4, q =  -  0.5, r x =  0.1;

fo r  instructions to entity connections :
r2 = 0.1, r 3 =  0.8, <3 = 0. 4;

fo r  strategy to entity connections :
r2 = 0.1, r 3 =  0.8, <3 = 0. 2;

fo r  accuracy to component connections :
r2 =  0.1, r 3 = 0 .01;
when accuracy unit >  T 2 : <5 =  0. 8;
when accuracy unit <  T 2 : 6 — — 0. 4;

Cj = 10.0, C2 = 0.025;
T x =  0.1, T2 =  0.65 , J 3 =  2.4;

Priming signal one = 1., priming signal two = 0.3;
Initial weights fo r  all connections are set a t 0.05;
N oise in activation update equation fo r  strategy units is uniformly distributed in the 
interval 0.0 and 0.025.

At the beginning o f the sim ulation, specifically until trial seventeen, all three strategies 

are being alternately selected at subthreshold levels due to the contribution o f the noise term 

in the strategy update equation (refer to Table 4.2). Right after trial seventeen, the object 

only encoding strategy is frequendy selected over the other two strategies. The object only 

encoding strategy exceeds threshold for the first time (is “discovered” ) on trial forty-four. 

This is caused by a higher degree o f  the encoding o f feedback inform ation for objects than
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fo r targets or prepositions. The object-target encoding strategy is discovered in trial 

fifty -tw o  and the object-target-preposition  encoding strategy in trial fifty -n ine. W ith the 

experience o f  more trials, the netw ork encodes more feedback inform ation for targets sim ilar 

to objects as illustrated in Figure 4.2. This results in more frequent selection o f the 

ob jec t-target encoding strategy between trials fifty -tw o and sixty-six . Lastly, the network 

encodes more feedback information for all three entities. This results in the eventual 

selection o f the object-target-preposition  encoding strategy only. Thus, during the 

“ lifetim e” o f  the network, its strategy choice progresses from the sim plest, i.e., the object 

only encoding strategy, to the m ost advanced, i.e., the ob ject-target-preposition  encoding 

strategy.

This run and other runs presented in Appendix B illustrate the use o f diverse strategies 

w ithin short intervals. As Siegler and Jenkins (1989, p.27) note, “at any one tim e, individual 

children use diverse strategies to  solve arithm etic problem s.” Bray et al (1993) also observe 

the use o f  diverse strategies in the object-target m atching task. Exam ination o f  Table 4.2 

reveals that all three strategies have been selected within the close interval o f trial fifty -n ine 

to  trial six ty-seven. This clearly dem onstrates the diverse nature o f  strategy selection in the 

model.

4.4.1 Recall A ccuracy and Strategy Use

In this section, we deal with the effects o f strategy use on recall accuracy. W hen a 

strategy is used, the entity units that are connected to the strategy unit receive a boost in their 

activations. The am ount o f boost depends on the activation o f the strategy units. The recall 

accuracy o f  the netw ork using a particular strategy, therefore, depends on the activation o f 

the strategy. Among the entities, objects and targets are uniquely used in the instruction 

sequences w ithout repetition. Thus, the recall accuracy o f  the network is independent o f  the 

o rder o f the objects and targets. However, the two prepositions, “on” and “in fron t of,” are 

each repeated twice in an instruction sequence and the recall accuracy o f the network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

depends on the particular com bination o f the prepositions used in training the network. 

Thus, we tested the com ponents neural network using different values o f strategy activations 

and all possible com binations o f prepositions.

The object only encoding strategy has a minim um  activation o f  0.100 in sim ulation run 

four and a m axim um  activation o f 0.203 in sim ulation run five (refer to A ppendix B); The 

object-target encoding strategy o f  0.102 each in runs one and two, and 0.392 in run eight, 

respectively; and the object-target-preposition  encoding strategy o f 0.139 in run two and 

o f  1.0 in all runs.

We illustrate the results on recall accuracy using the follow ing instruction sequence:

(1) “ Put the apple on the refrigerator.”

(2) “Put the shoe in front o f  the TV.”

(3) “Put the eraser in front o f the chair.”

(4) “Put the shell on the table.”

Recall accuracy o f  an entity using a strategy, as noted in Chapter three, is defined as 

the ratio o f num ber o f entities correctly recalled to the num ber o f  instructions (kept at four 

throughout this investigation). An entity is said to be correctly recalled i f  it exceeds the firing 

threshold, has the highest activation in its pool, and fires in the order o f its training during 

the instruction presentation phase.

The perform ance of the network with regard to the recall accuracy o f  objects is 

illustrated in Figure 4.3 when strategies have m inim um  activations. W hen no strategy is 

used, the netw ork recalls apple, eraser, and shell correctly during cycles one, three, and four, 

respectively (Chart SO in Figure 4.3). The “shoe” object has the highest activation in its pool 

in cycle two; however, it does not exceed the firing threshold. Thus, the recall accuracy o f 

objects for “ no-strategy use” case is 75%. As charts S I , S2, and S3 illustrate, use o f 

strategies one, two, and three has the effect o f boosting the activation o f  previously trained 

objects. However, the boost is not great enough to enhance the recall accuracy. Thus, the
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recall accuracy o f objects, when the strategies are used with m inim um  strengths, rem ains at 

15%.

Table 4.2. Results o f  a typical simulation run that indicate strategy evolution in the 
com ponents neural network m odel.

Trial# SS  Strength C om m ents

1 2 0 .030 4 0 1 0 .082
2 2 0 .038 41 1 0 .089
3 3 0 .038 42 1 0 .083
4 1 0 .040 43 2 0 .084
5 1 0 .039 44 1 0 .102
6 2 0 .039 45 1 0 .099
7 3 0.031 4 6 1 0 .109
8 3 0.033 47 1 0 .098
9 3 0 .040 48 1 0.114
10 1 0 .038 49 1 0.117
11 1 0 .030 50 1 0.121
12 2 0 .029 51 1 0 .118
13 1 0.041 52 2 0 .135
14 2 0.043 53 1 0 .148
15 2 0.034 54 2 0 .149
16 2 0.041 55 1 0 .1 4 0
17 3 0.041 56 1 0 .1 6 6
18 1 0.044 57 1 0 .1 6 2
19 1 0.048 58 1 0 .168
20 1 0.048 59 3 0 .1 8 0
21 1 0 .046 6 0 1 0.191
2 2 1 0.053 61 3 0 .204
23 1 0 .054 62 2 0 .227
24 2 0 .0 5 0 63 3 0.241
25 3 0 .049 64 3 0 .2 5 2
26 1 0 .048 65 2 0 .2 8 6
27 1 0 .057 6 6 2 0 .3 1 0
28 2 0 .056 67 3 0.331
29 1 0 .060 68 3 0 .3 6 0
30 1 0 .052 69 3 0 .4 1 2
31 1 0.071 70 3 0 .419
32 1 0.055 71 3 0 .457
33 1 0.071 72 3 0 .513
34 1 0 .056 73 3 0 .569
35 1 0 .069 74 3 0 .609
36 2 0.065 75 3 0 .693
37 1 0.085 76 3 0 .775
38 1 0.075 77 3 0 .882
39 1 0 .082 78 3 1.000

Trial# SS  Strength C om m ents

discovered  
not used

not used

discovered

discovered

N otation: SS: strategy selected: Strength refers to the activation o f strategy unit selected.

Recall accuracy o f the network, when strategies have m axim um  activations is portrayed 

in Figure 4.4. As charts S 1, S2, and S3 illustrate, all object units receive a boost with strategy 

use. A ctivations o f  advanced strategies have higher m axim a and the object units therefore 

receive greater am ounts o f  boost from these strategies. The recall accuracy o f  the network
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on objects w hen strategies are used w ith m axim um  strengths is 100%. O verall, it varies from 

75%  to 100% depending on the strength o f the strategy.

Figure 4.5 depicts the recall accuracy o f the network on targets when strategies have 

m inim um  activations. W ithout the use o f any strategy, the recall accuracy is 75% (see Chart 

SO in Figure 4.5). The object only encoding strategy has no effect on the recall o f  targets. 

Thus, it does not bring about any changes in the activations o f targets as com pared to the 

“ no-stra tegy  use” case (contrast Chart SI w ith Chart SO in F igure 4.5). U se o f the 

ob jec t-target encoding strategy o r the ob ject-target-preposition  strategy results in a boost 

in the activations o f previously trained targets. However, this boost is not big enough to 

enhance the recall accuracy in either case. Thus, the recall accuracy o f targets when the 

strategies are used w ith minimum strengths rem ains at 75%.

Figure 4 .6  depicts the recall accuracy o f targets when the activations o f strategy units 

are at their m axim um  values. Charts S2 and S3 indicate that with the use of the object-target 

encoding strategy and the ob ject-target-preposition  encoding strategy, the activations of 

targets receive a boost that raises them above the firing threshold. T hus, the recall accuracy 

using these tw o strategies is 100%. Overall, the recall accuracy o f the netw ork on targets 

varies from  75%  to 100%.

The perform ance o f the network on the recall o f  prepositions is tested using the 

m inim um  and m axim um  activations o f various strategies (Figures 4.7 and 4.8). N either the 

ob ject only encoding strategy nor the ob ject-target encoding strategy encodes prepositions. 

U se o f  the object only encoding strategy (see C hart SI in Figures 4.7 and 4.8) and use of the 

o b jec t-target encoding strategy (see Chart S2 in Figures 4.7 and 4.8), thus, do not bring about 

any changes in the activations of prepositions as com pared to the “no-stra tegy  use” case (see 

Chart SO in Figures 4.7 and 4.8). The recall accuracy fo r any com bination o f  prepositions 

w ithout any strategy use and with use o f the object only encoding strategy or the 

o b jec t-ta rget encoding strategy is 75%.
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Use o f  the ob ject-target-preposition  encoding strategy results in a boost in the

activations of prepositions in appropriate cycles. W hen the network is trained on the

particular com bination of (on, in front of, in front of, on) as pan  o f the instruction sequence

and the ob ject-target-preposition  encoding strategy has a minimum activation, the “ in front

o f ’ unit receives a boost in cycle two but does not exceed the firing threshold (Chart S3 in

Figure 4.7). We tested the netw ork on all possible com binations o f prepositions with the

object-target-preposition  encoding strategy at its minimum activation value and found that

the recall accuracy varies from 75% to 100%.

Table 4.3 Sum m ary o f perform ance o f the com ponents neural network on recall 
accuracy.

EN TITY STRATEGY USED

NONE 1 2 3

OBJ 75% 75-100% 75-100% 75-100%
TARG 75% 75% 75-100% 75-100%
PREP 75% 75% 75% 50-100%

W hen the netw ork is trained on the particular com bination o f  (on, in front of, in front 

of, on) and the ob ject-target-preposition  encoding strategy has a m aximum activation, the 

activations of both preposition units receive significant boost in all four cycles o f recall but 

the activation o f  “on ” dom inates that o f “ in front o f ’ in cycles two and three, leading to 

incorrect recall in these latter cycles (Chart S3 in Figure 4.8). The recall accuracy, in this 

case, is 50%. Testing o f the netw ork on all other com binations o f  prepositions revealed that 

recall o f  one preposition dom inates the recall of the other, and that the recall accuracy in all 

these cases is 50%  each.

As noted above, the perform ance o f the network deteriorates when the activation o f the 

ob ject-target-preposition  encoding strategy increases from minim um  to m axim um . For this 

reason, we have tested the netw ork on all possible com binations o f prepositions when the 

activation o f  the ob ject-target-preposition  encoding strategy takes an interm ediate value
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(0.180). The recall accuracy o f the netw ork on all these com binations is 100%. In summary, 

the recall accuracy o f the network on prepositions varies from 50% to 100%, based on the 

activation value o f the strategy and on the particular com bination o f the prepositions. The 

perform ance o f  the netw ork on recall o f  entities using the various strategies is sum m arized

in Table 4.3.

Table 4.4 Strategy use in nonm entallv-retarded children (11-vear o ld ).

RUN# STRATEGY USE IN 16 TRIALS

type 1 type 2 type 3

1 0 3 13
2 0 4 12
3 0 3 13
4 0 7 9
5 1 8 7
6 1 7 8
7 0 5 11
8 1 9 6
9 1 3 12

10 0 4 12

average use 0.4 5.3 10.3
% use 2.5 33.12 64.38

EM PIRICA L DATA:
% use 2.84 33.5 63.6

NOTE: The values o f  strategy use for neural network are com puted starting at trial 60. 

4 .4 .2  Com parison o f N etw ork Perform ance with Em pirical Data

One o f the m otivations behind this research effort has been to account fo r the differences 

in the perform ance o f  educable m entally-retarded children (EM R) and 

nonm entally-retarded (NM R) children. A key difference between the two intelligence 

groups is the frequency o f strategy use. According to the study o f Bray e t al. (1993), EM R 

children use the object only encoding strategy and the ob ject-target encoding strategy m ore 

frequently than NM R children. On the o ther hand, the latter group uses the 

ob ject-target-preposition  strategy m ore frequently. Tables 4.4 and 4.5 list the em pirical data 

fo r strategy use in NM R and EM R children, respectively, in addition to data for strategy use
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Cases o f the nonuse o f any strategy and o f pointing as a strategy are not included in the 

em pirical data in order to obtain the best possible correlation between observed data and the 

perform ance o f the neural network.

The use o f  various strategies in the network is com pared to the sam e in the two 

intelligence groups by averaging the results from m ultiple sim ulation runs. Due to 

random ness in the processing o f strategy units, strategy choice w ithin a trial in one 

sim ulation run often differs from  the strategy choice within the sam e trial in another 

sim ulation run. However, each sim ulation run is consistent with another in the m anner of 

progression o f strategies, i.e., from sim ple to most advanced.

The results o f  strategy selection in the network for 10 sim ulation runs starting at trial 

sixty and trial fifty-seven are shown in Table 4.4 and Table 4.5, respectively. Each row in 

both tables lists the num ber o f tim es every strategy type is selected starting at trial sixty or 

fifty -seven  for 16 successive trials. We choose 16 successive trials because it corresponds 

to the num ber o f trials that each child  receives in the study o f  Bray et al. (1993). We settle 

on starting trials o f  sixty and fifty -seven  because the resultant percentages o f  strategy use 

correlate best with the em pirical data for NM R children and EM R children at these starting 

values. We observe from Table 4.4 and Table 4.5 that the average percentages o f strategy 

selection in network match quite well with those o f the NM R children and EM R  children 

in all strategy categories.

4.5 D iscussion and Conclusions

In this chapter, we have proposed the construction o f the com ponents neural network 

m odel for strategy selection, presented its architecture and the outcom es o f com puter 

sim ulations, and com pared the perform ance o f the m odel with em pirical data from the study 

o f Bray et al. (1993).

The form ulation o f  the com ponents neural netw ork m odel is m otivated by classical 

Piagetian notions that children take into account m ore dim ensions o f inform ation with
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developm ent and their cognitive maturation involves advancem ent from simple 

sensory-m otor m anipulation during infancy to abstract thinking during adolescence and 

adulthood. In the context o f the “object-target m atching task,”  these notions im ply that 

children pay attention to feedback inform ation about the recall o f  concrete entities (objects 

and targets) earlier, and to feedback information about the recall o f  abstract entities 

(prepositions) later. The adoption o f  the “differences in feedback” postulation has 

elim inated the necessity fo r novelty bias as a controlling factor in the selection and evolution 

o f strategies. As w e have seen in C hapter three, the novelty bias neural network model 

assum es that a strategy has already been discovered at the instant o f  the introduction o f  the 

novelty bias for that strategy. Thus, the previous m odel does not explain how strategies are 

discovered. In the com ponents neural network m odel, a strategy is gradually form ed by 

continual inputs from accuracy units and actually discovered when its activation exceeds the 

firing threshold.

Table 4.5 Strategy use in educable m entally-retarded children (1 1 -vear old).

RU N # STRATEGY USE IN 16 TRIALS

type 1 type 2 type 3

1 1 5 10
2 1 4 11
3 2 4 10
4 1 9 6
5 1 11 4
6 2 9 5
7 0 8 8
8 2 11 3
9 3 3 10

10 1 5 10

average use 1.4 6.9 7.7
% use 8.75 43.12 48.12

EM PIR IC A L DATA:
% use 9.1 41.5 49.3

NOTE: The values o f  strategy use for neural network are com puted starting at trial 57.
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An advantage o f  neural netw ork m odeling is evident here for the purposes o f  studying 

cognitive developm ent. The process o f  neural network construction forced us to abandon 

the notion o f  novelty bias, w hich is abruptly introduced into the netw ork and probably 

biologically im plausible, and to explore the idea o f  “differences in feedback.” The latter 

idea seem s biologically plausible in light o f  the modeling effort o f  L evine and Prueitt (1989). 

They attributed the differences in the m anifest behavior o f normal subjects and frontal lobe 

dam aged patients to differences in the strength of signal from  sensory loci to reinforcem ent 

loci. The com ponents neural netw ork m odel, as we have seen, attributes the differences in 

strategy selection between NM R children and EM R children to the degree o f the encoding 

o f  feedback inform ation from the entities.

Although the initial fit to em pirical data shown in Tables 4.4 and 4.5 is encouraging, 

som e am biguity rem ains. It is not clear why a difference o f only three trials in the beginning 

o f the 16-trial block simulates the differences between the two groups o f  children. It may 

be that the sim ulated trials o f  the m odel correspond to larger psychological units of 

experience. The NM R children, having more experience w ith encoding strategy 

com ponents, possess a higher proportion o f  more sophisticated strategies than the EMR 

children. This aspect o f  the fit o f  the simulation to the em pirical data  requires further 

investigation.

The com ponents neural netw ork m odel exhibits qualitative behavior observed by 

Siegler and Jenkins (1989) in arithm etic tasks, and by Bray et al. (1993) in the external 

m em ory task in several aspects: use o f  diverse strategies in short intervals, discovery of 

strategies, nonuse o f  a strategy after its discovery, evolution o f strategies from simple to 

advanced in individuals, and use o f sim pler strategies by younger children and o f more 

advanced strategies by older children.

O utcom es from com puter sim ulations point out that the behavior o f  the components 

neural netw ork m odel is not as variable as that o f the children studied by Bray et al. (1993).
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Children in the study use a strategy as infrequently as about 50%  o f the trials. The m odel, 

except fo r the few trials im m ediately following the discovery o f  the first strategy, alw ays 

uses a strategy. Children typically use a variety o f  strategies in any given trial. On the o ther 

hand, the m odel uses the sam e selected strategy throughout the duration o f a trial. The 

accuracy of recall in children varies from 0% to 100% whether a strategy is used o r not. The 

accuracy o f recall in the netw ork is always 75% when a strategy is not used andean  vary from 

50% to 100% when a strategy is used. Thus, the m odel exhibits lim ited variability and 

further enhancem ents o f  the model should be attem pted to m ake it m ore realistic.

As with the novelty bias neural network, the com ponents neural netw ork recalls 

prepositions with lower accuracy at high activations o f the “object-target-preposition  

encoding” strategy. Analysis o f  the simulation results reveals that high activations o f the 

object-target-preposition  encoding strategy lead to persistence o f activity in preposition 

units which establishes spurious associations between preposition units and instruction 

units. The spurious associations cause incorrect recall o f prepositions. This anom alous 

result needs to be addressed in future work.
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Figure 4.3 Effects o f strategy use on recall o f objects when strategy units have 
m inim um  activations. SO, S I , S2 and S3 refer to “ no strategy use,” “object encoding 
only” , “object-target encoding” and “ob ject-target-preposition  encoding” cases. X 
axis represents cycle num ber and Y -ax is activation o f  an object unit. The dashed line 
depicts the com m on firing threshold for all neurons in the network.
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we evaluate what has been accom plished in the previous chapters. We 

follow  the exam ple o f Siegler and Shipley (1993) who evaluate three m odels o f strategy 

evolution based on five em pirical phenom ena that are observed in m any cognitive problem 

dom ains. The neural network m odels o f strategy developm ent presented in Chapters three 

and four are assessed on how they exhibit these phenom ena. Next, we offer some alternatives 

with regard to the construction o f  neural network models which we faced during their design 

but were bypassed to achieve the m ain objectives o f  the dissertation. These alternatives have 

the potential o f m aking the m odels m ore elegant and o f suggesting other behavioral patterns. 

Last, we identify other cognitive tasks, and business and robotic applications that are 

relevant to the current investigation.

5.1 Assessm ent o f  Neural N etw ork M odels Based on the Phenom ena o f  Strategy 
D evelopm ent

Based on evidence from several problem dom ains such as arithm etic, serial learning, 

form ation o f past tense, and time telling, Siegler and Shipley(1993) observe five phenom ena 

that accom pany strategy selection and evolution. They suggest that m odels o f strategy 

developm ent exhibit these phenom ena in order to be considered realistic. Here, we present 

a brief description o f these phenom ena and assess the novelty bias neural netw ork m odel and 

the com ponent neural network m odel based on them.

1. Variability: There does not exist a o n e-to -o n e  correspondence between the age o f a 

subject and his strategy choice. For example, a kindergartner, on the average, uses the 

retrieval strategy on 16% o f  the addition problems in a session and the “m inim um ” strategy
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on 30% o f the problems. A second grader, on the average, uses the retrieval strategy on 45% 

and “m inim um ” strategy on 40% o f  the problem s in the same session (Siegler &  Shipley, 

1993). Thus, the second grader uses both strategies sim ilar to the kindergartner but with 

different relative frequencies.

Both neural network models manifest the characteristic of variability in their o f 

selection o f strategies. Between trials tw enty-five and th irty -four in Table 3.1, the novelty 

bias neural network selects strategy one twice, strategy two thrice and strategy three five 

times. Between trial fifty-five and six ty-four in Table 4.2, the com ponents neural network 

selects strategy one five times, strategy two once and strategy three four times.

2. A daptive Strategy Choices: In general, humans show adaptivity in strategy choice. 

The more difficult a given problem is, the m ore often they rely upon w ell-understood but 

slow er strategies. In contrast, the easier the problem  is, the faster the use o f strategies. For 

exam ple, second grade children fall back on the sum strategy on m ore difficult addition 

problem s and use the retrieval strategy on easier addition problems.

Currently, the neural network m odels are trained on problem s o f equal difficulty. Each 

problem  in the context o f object-target m atching task consists o f a sequence o f four 

instructions. The idea o f difficultly may be incorporated into this task, for exam ple, by 

varying the num ber o f  instructions from one trial to another in the com puter sim ulations o f 

the models.

3. Change: Three types o f changes occur among hum ans in association with strategy 

use across time.

(i) Relative frequencies o f strategy use vary with time, as m entioned in the discussion of 

variability above. Both neural network m odels show changes in relative frequencies of 

strategy use with increasing simulation trials as discussed in Chapters three and four.

(ii) Effectiveness o f  im plem entation of a strategy im proves with experience. F or example, 

after some experience with the “m inim um ” strategy, children execute the same m ore quickly
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and m ore correctly. The strategy units in both neural network m odels show higher gains in 

the total accuracy input that they receive from accuracy inputs with increasing simulation 

trials and, thus, the activations o f  the entity units during recall are, in general, higher.

(iii) A cquisition o f  new strategies: Children as well as adults never stop learning (or 

discovering) new strategies. For exam ple, children w ho are fam iliar with the “ sum ” and 

“retrieval” types o f  strategy proceed to discover the “m inim um ” strategy (Siegler & Jenkins, 

1989). A ccording to Siegler and Shipley (1993), the current m odels o f  strategy evolution 

lack a satisfactory explanation o f  m echanism s that lead to strategy discovery.

The novelty bias neural netw ork im plem ents the novelty bias m echanism  to explain the 

acquisition of new strategies. In this m odel, the initiation o f  a novelty bias for a strategy 

corresponds to the discovery o f the strategy. Thus, this m odel does not provide a satisfactory 

explanation of strategy discovery.

However, the com ponents neural netw ork model provides some insights into strategy 

discovery. A ccording to this m odel, selective encoding o f  the accuracy inform ation that 

results from the use o f  various strategy com ponents allows strategies to exceed firing 

thresholds at different tim e periods. A strategy is discovered when its activation transcends 

the firing threshold. Thus, this m odel attributes strategy discovery to accuracy and selective 

encoding factors in a neural realm . An advantage o f the neural netw ork m odeling endeavor 

is highlighted here. The constraints that accom pany the design o f neural netw orks have led 

us to finding these factors.

4. G eneralization: It refers to  the use o f  strategies on new problem s. Children, for 

exam ple, extend the “m inim um ” strategy to new addition problem s after they are faced with 

challenge problems. In the context of the object-target m atching task, new problem s could 

imply sequences with variable num ber o f  instructions. Currently, the structure o f the neural 

network models does not perm it these types o f instruction sequences and generalization of 

the neural network m odels on strategy use could not, therefore, be tested.
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5. Individual D ifferences: Younger children differ from older children in patterns o f 

strategy use, and m entally retarded individuals from nonretarded individuals on the same. 

In both neural network m odels, the activation update equations for strategy units each have 

a noise term. This term leads to  variability in com puter sim ulation o f  the m odels from one 

run to another with respect to  strategy selection. As a consequence o f  this variability, each 

sim ulation run may be treated as an “ individual” who m akes a series o f  strategy choices, 

different from another “ individual.”

The differences between chronological groups, as w ell as between intelligence groups, 

m ay be em ulated using the neural network m odels, as noted in C hapter four. Both models 

select sim pler strategies during the initial phase o f  a sim ulation and more advanced strategies 

during the later phase o f  a simulation. The mentally retarded individuals and the younger 

children use sim pler strategies and, therefore, their strategy developm ent corresponds to the 

initial phase in a com puter simulation. The nonretarded individuals and the o lder children 

use more advanced strategies and, therefore, their strategy developm ent corresponds to the 

later phase in the sim ulation.

Thus, the neural netw ork models, investigated in this dissertation, exhibit three o f the 

five phenom ena: variability, change, and individual differences. Further work is necessary 

to determ ine w hether the m odels exhibit the phenom ena o f adaptive strategy choice and 

generalization. M ost im portantly, it provides an im portant insight into the acquisition o f 

strategies. According to this insight, strategies are discovered when the com ponents of 

strategies are continually evaluated fo r their effectiveness e.g., accuracy and speed. This 

insight m ay be o f  practical use, for exam ple, in training the m entally-retarded individual on 

strategy use.

5.2 Scope fo r Further D evelopm ent o f Neural Network M odels

1. The strategy pools in the novelty bias neural netw ork and the com ponent neural 

network are currently im plem ented by selecting the strategy with highest activation and
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setting the other two strategies to zero. F or exam ple, a suitable w inner-take-all m echanism  

can be im plem ented to achieve sim ilar effect.

2. Currently, a noise term is included in the activation update equation o f strategy units. 

This noise term has led to diversity in strategy choice from trial to trial. W ithout the term, 

we expect the strategies to evolve from the m ost sim ple to the m ost advanced but w ithout 

show ing diversity behavior. The presence o f a sim ilar noise term in the activation update 

equation o f all units in every neural netw ork that we considered should also be explored for 

its effects on the m anifest behavior o f the network. For exam ple, a noise term in the 

activation update equation o f  accuracy units may sim ulate the effects o f noise in encoding 

accuracy inform ation on strategy behavior.

3. The generalized H ebbian rule that is used in learning associations in all the neural 

netw ork m odels does not lead to the convergence o f weights. For this reason, the following 

rather arbitrary criterion is used in halting the sim ulation o f the sequence generator neural 

netw ork in Chapter tw o : stop the sim ulation when one o f the w eights in the netw ork reaches 

a value o f  1.0. Further research effort should be devoted in developing halting criteria for 

learning o f  weights.

4. Currently, we get anom alous results with respect to the recall o f prepositions when 

“ob ject-target-preposition  encoding” strategy has high activation values. A s discussed in 

Chapters three and four, spurious associations occur due to the persistent activity in 

preposition units. Further work should explore possible solutions, e.g., larger com petition 

within the preposition pool to  rectify this anomaly.

5. In the current im plem entation o f  strategies, it is assum ed that a single strategy is in 

effect throughout the duration o f  a trial. However, this assum ption is not realistic because 

subjects in the investigation o f Bray et al. (1993) apply m ultiple strategies in a single trial. 

Future w ork should elim inate this restriction.
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5.3 Applications

The topic o f strategy developm ent and hybrid neural network m ethodology as discussed 

in this dissertation is o f  interest to a variety of problem s in cognitive psychology, business 

and robotics. We identify these problem s in this section.

Siegler and Shipley (1993) m ention several cognitive problem s where the subjects 

exhibit the same characteristics o f strategy selection and evolution as pursued in the neural 

netw ork models in this dissertation. These problem s include arithm etic, time telling, 

spelling, form ation o f  past tense, causal reasoning, and num ber conservation. Fletcher and 

Bray (1993) have m ore recently devised a “ghost task” that involves placing objects in a 

given spatial order around the ghost. This task is a m odification o f the object-target 

m atching problem investigated by Bray et al. (1993) and is supposed to further facilitate the 

use o f  external m em ory strategies by the mental retarded and nonretarded subjects. All the 

cognitive tasks referred to here are candidates for the developm ent o f hybrid neural network 

m odels. During the course o f  current investigation, we gained the insight that selective 

encoding o f accuracy inform ation as it pertains to strategy com ponents m ay result in the 

differences in strategy choice am ong the various chronological and intelligence groups. The 

generality o f this finding should be tested by the construction o f neural netw ork models for 

the aforem entioned cognitive tasks.

W axman and B achelder (1992) and Grefenstette (1992) discuss the application of neural 

netw orks and genetic algorithm s to the design o f an adaptive autonom ous system. Such a 

system  typically operates in an environm ent that can only be partially m odeled or that 

perm its only lim ited sensing. Constraints such as these introduce uncertainty into the 

decision-m aking  process o f the system. The work carried  out in this dissertation offers a 

fram ew ork that enables an autonom ous system to overcom e these constraints and to adapt 

its decisions appropriately.
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T A S K

M3 M 4 M 5 M 6M 2M l m easurem ent units

D3D 2D1 decision units

c m  certainty unitsCFl

E4 E 6 evaluation units

F igure 5.1. A hypothetical neural network for decision-sw itching in an autonom ous 
system. The connections between certainty units and decision units are shown dashed 
to distinguish them from the connections between the evaluation units and the decision 
units.

This fram ew ork is illustrated by a conceptual neural netw ork, w hich is analogous to the 

novelty bias neural network presented in Chapter three (Figure 5.1). M easurem ent variables, 

M l, M 2 ,.., M 6 are sensory values after the system applies one or m ore decisions, D l ,  D2, 

and D3 on the task at hand. Certainty factors, C F l, CF2 and CF3, w hich are analogous to 

the novelty bias factors in the novelty bias m odel, are associated with the three decisions D 1, 

D2, and D3, respectively. The evaluation variables, E l ,  E2, .., E6 corresponding to the 

m easurem ent variables are built in to  the system at the time o f com m issioning o f  the system. 

Evaluation may be based on perform ance criteria such as accuracy and speed. In a 

sem i-autonom ous system, the operator o f the system interactively supplies inputs to the
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evaluation units. At the end o f  each evaluation cycle, the weights between the decision units 

and the evaluation units are updated. These weights are responsible fo r the switch in 

decision-m aking in the long-term .

Levine and Leven (1993) illustrate the application o f hybrid neural network 

m ethodology for modeling irrational behavior o f  consum ers. Specifically, they construct a 

neural network that simulates consum er behavioral patterns where consum ers favor the 

introduction o f  “new coke” during m arket survey but reject it in a buying situation. O ur work 

on strategy developm ent further confirm s the utility o f  the hybrid neural network 

methodology. Sim ilar to the work o f Levine and Leven, m odels analogous to those 

developed in the course of this research can be used in predicting shifts in consum er 

preferences based on criteria such as taste and novelty.
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APPENDIX A

SIMULATIONS FOR THE NOVELTY BIAS NEURAL
NETWORK

In the fo llo w in g  sim u la tio n  ru n s , the en trie s  re p re se n t the  fo llo w in g :
C o lu m n  R ep resen ta tio n

1 T ria l n u m b er
2  n e t n o v e lty  b ias in p u t to  s tra teg y  u n it 1
3 n e t accu racy  in p u t to  stra teg y  u n it 1
4  n e t n o v e lty  b ias in p u t to  stra teg y  u n it 2
5 n e t accu racy  in p u t to  s tra teg y  u n it 2
6  n e t n o v e lty  b ias to  s tra teg y  u n it 3
7  n e t accu racy  inpu t to  stra teg y  u n it 3
8 w in n in g  stra teg y
9  ac tiv a tio n  o f  w in n in g  stra teg y

S im u la tio n  R un  1

1 0.682 0.150 0.000 0.150 0.000 0.150 1 0.832 26 0.169 0.327 0.097 0.353 0.160 0.197 1 0.496
2 0.431 0.169 0.000 0.150 0.000 0.150 1 0.600 27 0.023 0.337 0.074 0.353 0.615 0.197 3 0.812
3 0.269 0.182 0.000 0.150 0.000 0.150 1 0.450 28 0.159 0.337 0.102 0.353 0.314 0.252 3 0.567
4 0.277 0.191 0.000 0.150 0.000 0.150 1 0.468 29 0.147 0.337 0.001 0.353 0.164 0.276 1 0.484
5 0.412 0.200 0.000 0.150 0.000 0.150 1 0.613 30 0.057 0.347 0.284 0.353 0.131 0.276 2 0.637
6 0.280 0.217 0.000 0.150 0.000 0.150 1 0.496 31 0.050 0.347 0.172 0.381 0.380 0.276 3 0.656
7 0.381 0.227 0.000 0.150 0.000 0.150 1 0.607 32 0.008 0.347 0.227 0.381 0.197 0.320 2 0.608
8 0.332 0.240 0.000 0.150 0.000 0.150 1 0.572 33 0.011 0.347 0.097 0.396 0.096 0.320 2 0.493
9 0.067 0.252 0.000 0.150 0.000 0.150 1 0.319 34 0.111 0.347 0.058 0.408 0.389 0.320 3 0.709

10 0.166 0.258 0.000 0.150 0.000 0.150 1 0.424 35 0.045 0.347 0.139 0.408 0.026 0.366 2 0.546
11 0.202 0.267 0.000 0.150 0.000 0.150 1 0.468 36 0.067 0.347 0.118 0.424 0.046 0.366 2 0.543
12 0.388 0.276 0.000 0.150 0.000 0.150 1 0.664 37 0.008 0.347 0.146 0.441 0.163 0.366 2 0.587
13 0.130 0.297 0.614 0.150 0.000 0.150 2 0.764 38 0.093 0.347 0.061 0.456 0.259 0.366 3 0.626
14 0.252 0.297 0.080 0.177 0.000 0.150 1 0.549 39 0.069 0.347 0.182 0.456 0.080 0.407 2 0.637
15 0.010 0.310 0.572 0.177 0.000 0.150 2 0.748 40 0.025 0.347 0.053 0.483 0.192 0.407 3 0.599
16 0.074 0.310 0.300 0.205 0.000 0.150 2 0.505 41 0.003 0.347 0.064 0.483 0.141 0.434 3 0.574
17 0.029 0.310 0.067 0.221 0.000 0.150 1 0.340 42 0.012 0.347 0.062 0.483 0.305 0.459 3 0.765
18 0.097 0.317 0.550 0.221 0.000 0.150 2 0.771 43 0.061 0.347 0.107 0.483 0.132 0.508 3 0.641
19 0.094 0.317 0.411 0.248 0.000 0.150 2 0.659 44 0.064 0.347 0.090 0.483 0.197 0.549 3 0.747
20 0.046 0.317 0.172 0.278 0.000 0.150 2 0.450 45 0.036 0.347 0.010 0.483 0.172 0.600 3 0.771
21 0.190 0.317 0.425 0.288 0.000 0.150 2 0.712 46 0.025 0.347 0.063 0.483 0.240 0.650 3 0.890
22 0.229 0.317 0.414 0.316 0.000 0.150 2 0.730 47 0.010 0.347 0.108 0.483 0.163 0.706 3 0.870
23 0.170 0.317 0.098 0.343 0.000 0.150 1 0.487 48 0.007 0.347 0.079 0.483 0.156 0.761 3 0.917
24 0.030 0.327 0.111 0.343 0.000 0.150 2 0.454 49 0.051 0.347 0.002 0.483 0.078 0.822 3 0.900
25 0.073 0.327 0.093 0.353 0.584 0.150 3 0.734 50 0.024 0.347 0.028 0.483 0.131 0.880 3 1.000
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1 0.499 0.150 0.000 0.150 0.000
2 0.193 0.163 0.000 0.150 0.000
3 0.719 0.168 0.000 0.150 0.000
4 0.141 0.178 0.000 0.150 0.000
5 0.027 0.182 0.000 0.150 0.000
6 0.120 0.185 0.000 0.150 0.000
7 0.525 0.189 0.000 0.150 0.000
8 0.417 0,201 0.000 0.150 0.000
9 0.076 0.212 0.000 0.150 0.000

10 0.084 0.215 0.000 0.150 0.000
11 0.275 0.219 0.000 0.150 0.000
12 0.492 0.226 0.000 0.150 0.000
13 0.256 0.238 0.042 0.150 0.000
14 0.425 0.245 0.416 0.150 0.000
15 0.397 0.258 0.083 0.150 0.000
16 0.257 0.271 0.697 0.150 0.000
17 0.232 0.271 0.340 0.160 0.000
18 0.214 0.279 0.249 0.160 0.000
19 0.218 0.286 0.066 0.160 0.000
20 0.240 0.295 0.368 0.160 0.000
21 0.132 0.303 0.311 0.160 0.000
22 0.175 0.303 0.120 0.167 0.000
23 0.084 0.310 0.392 0.167 0.000
24 0.060 0.310 0.349 0.176 0.000
25 0.248 0.310 0.012 0.186 0.217
26 0.263 0.317 0.433 0.186 0.221
27 0.252 0.317 0.071 0.200 0.354

1 0.671 0.150 0.000 0.150 0.000
2 0.621 0.163 0.000 0.150 0.000
3 0.635 0.174 0.000 0.150 0.000
4 0.513 0.187 0.000 0.150 0.000
5 0.088 0.200 0.000 0.150 0.000
6 0.206 0.204 0.000 0.150 0.000
7 0.051 0.209 0.000 0.150 0.000
8 0.443 0.213 0.000 0.150 0.000
9 0.477 0.226 0.000 0.150 0.000

10 0.368 0.239 0.000 0.150 0.000
11 0.276 0.247 0.000 0.150 0.000
12 0.190 0.256 0.000 0.150 0.000
13 0.464 0.262 0.069 0.150 0.000
14 0.027 0.274 0.657 0.150 0.000
15 0.328 0.274 0.351 0.166 0.000
16 0.316 0.283 0.340 0.166 0.000
17 0.351 0.291 0.410 0.166 0.000
18 0.369 0.304 0.059 0.166 0.000
19 0.270 0.317 0.600 0.166 0.000

S im u la tio n R u n  2

0.150 l 0.649 28 0.108 0.325

0.150 l 0.356 29 0.110 0.325

0.150 l 0.887 30 0.040 0.325

0.150 l 0.319 31 0.224 0.325

0.150 l 0.209 32 0.102 0.325

0.150 l 0.305 33 0.212 0.331

0.150 l 0.713 34 0.183 0.331
0.150 l 0.618 35 0.146 0.331
0.150 l 0.288 36 0.092 0.331

0.150 l 0.299 37 0.177 0.331

0.150 l 0.494 38 0.090 0.339
0.150 l 0.717 39 0.036 0.339
0.150 l 0.495 40 0.150 0.339
0.150 l 0.670 41 0.080 0.339
0.150 l 0.655 42 0.009 0.339
0.150 2 0.847 43 0.041 0.339

0.150 1 0.503 44 0.074 0.339

0.150 1 0.493 45 0.124 0.339
0.150 1 0.504 46 0.067 0.339
0.150 1 0.534 47 0.078 0.339
0.150 2 0.471 48 0.030 0.339
0.150 1 0.478 49 0.066 0.339
0.150 2 0.559 50 0.078 0.339
0.150 2 0.525 51 0.049 0.339
0.150 1 0.557 52 0.036 0.339
0.150 2 0.619 53 0.015 0.339
0.150 1 0.570

S im u la tio n R u n  3

0.150 l 0.821 20 0.354 0.317
0.150 l 0.784 21 0.137 0.317

0.150 l 0.810 22 0.092 0.317

0.150 l 0.700 23 0.101 0.322
0.150 l 0.288 24 0.147 0.328
0.150 i 0.410 25 0.242 0.334
0.150 i 0.260 26 0.020 0.334
0.150 l 0.655 27 0.044 0.334
0.150 i 0.703 28 0.001 0.339
0.150 i 0.606 29 0.053 0.339
0.150 i 0.523 30 0.072 0.339
0.150 i 0.445 31 0.179 0.339
0.150 i 0.726 32 0.017 0.347
0.150 2 0.807 33 0.064 0.347
0.150 1 0.602 34 0.170 0.347

0.150 1 0.598 35 0.042 0.347
0.150 1 0.642 36 0.112 0.347
0.150 1 0.673 37 0.061 0.347
0.150 2 0.766 38 0.130 0.347

0.289 0.200 0.540 0.150 3 0.690
0.404 0.200 0.641 0.178 3 0.818
0.100 0.200 0.378 0.212 3 0.589

0.359 0.200 0.570 0.228 3 0.798
0.053 0.200 0.016 0.262 1 0.427

0.291 0.200 0.476 0.262 3 0.738
0.283 0.200 0.419 0.292 3 0.710
0.273 0.200 0.260 0.321 3 0.580
0.222 0.200 0.336 0.338 3 0.674

0.242 0.200 0.132 0.365 1 0.508
0.197 0.200 0.352 0.365 3 0.718
0.062 0.200 0.404 0.394 3 0.798
0.010 0.200 0.109 0.428 3 0.537
0.215 0.200 0.171 0.444 3 0.615
0.109 0.200 0.266 0.467 3 0.733
0.090 0.200 0.304 0.496 3 0.800
0.014 0.200 0.064 0.530 3 0.594
0.015 0.200 0.121 0.548 3 0.669
0.197 0.200 0.032 0.577 3 0.609
0.103 0.200 0.113 0.598 3 0.711

0.118 0.200 0.063 0.628 3 0.691
0.100 0.200 0.078 0.656 3 0.734
0.060 0.200 0.112 0.685 3 0.797
0.127 0.200 0.265 0.719 3 0.984
0.087 0.200 0.061 0.773 3 0.834
0.012 0.200 0.249 0.805 3 1.000

0.532 0.182 0.000 0.150 2 0.714
0.550 0.198 0.000 0.150 2 0.748
0.097 0.215 0.000 0.150 1 0.409
0.041 0.215 0.000 0.150 1 0.423
0.054 0.215 0.000 0.150 1 0.474
0.275 0.215 0.474 0.150 3 0.624
0.286 0.215 0.478 0.175 3 0.653
0.158 0.215 0.072 0.204 1 0.378
0.343 0.215 0.041 0.204 2 0.558
0.076 0.224 0.238 0.204 3 0.442
0.321 0.224 0.462 0.214 3 0.677
0.274 0.224 0.028 0.243 1 0.518
0.174 0.224 0.092 0.243 2 0.398
0.256 0.230 0.029 0.243 2 0.486
0.035 0.237 0.496 0.243 3 0.739

0.160 0.237 0.198 0.272 3 0.470
0.051 0.237 0.396 0.285 3 0.681
0.078 0.237 0.296 0.313 3 0.609
0.115 0.237 0.291 0.334 3 0.625
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39 0.032 0.347 0.012 0.237 0.217

40 0.010 0.347 0.228 0.237 0.432
41 0.137 0.347 0.033 0.237 0.341

42 0.059 0.347 0.082 0.237 0.239
43 0.081 0.347 0.188 0.237 0.135
44 0.064 0.347 0.166 0.237 0.024

45 0.044 0.347 0.120 0.237 0.084
46 0.085 0.347 0.144 0.237 0.317
47 0.044 0.347 0.157 0.237 0.168
48 0.103 0.347 0.060 0.237 0.183

1 0.092 0.150 0.000 0.150 0.000

2 0.386 0.153 0.000 0.150 0.000

3 0.513 0.162 0.000 0.150 0.000

4 0.313 0.175 0.000 0.150 0.000

5 0.125 0.181 0.000 0.150 0.000

6 0.210 0.185 0.000 0.150 0.000
7 0.234 0.190 0.000 0.150 0.000
8 0.521 0.196 0.000 0.150 0.000

9 0.391 0.208 0.000 0.150 0.000
10 0.477 0.217 0.000 0.150 0.000
11 0.418 0.229 0.000 0.150 0.000

12 0.047 0.243 0.000 0.150 0.000
13 0.481 0.246 0.623 0.150 0.000
14 0.164 0.246 0.328 0.166 0.000
15 0.311 0.246 0.425 0.174 0.000
16 0.074 0.246 0.128 0.184 0.000
17 0.231 0.250 0.510 0.184 0.000
18 0.299 0.250 0.591 0.201 0.000
19 0.306 0.250 0.398 0.214 0.000
20 0.015 0.250 0.535 0.228 0.000

21 0.320 0.250 0.394 0.244 0.000

22 0.240 0.250 0.059 0.262 0.000
23 0.224 0.257 0.282 0.262 0.000
24 0.197 0.257 0.065 0.273 0.000
25 0.048 0.263 0.164 0.273 0.210
26 0.179 0.263 0.202 0.279 0.482
27 0.144 0.263 0.376 0.279 0.074
28 0.035 0.263 0.283 0.298 0.210

1 0.723 0.150 0.000 0.150 0.000
2 0.087 0.160 0.000 0.150 0.000
3 0.479 0.163 0.000 0.150 0.000
4 0.236 0.176 0.000 0.150 0.000
5 0.679 0.182 0.000 0.150 0.000
6 0.604 0.192 0.000 0.150 0.000
7 0.490 0.203 0.000 0.150 0.000

0.361 3 0.578 49 0.089 0.347
0.376 3 0.808 50 0.075 0.347

0.409 3 0.750 51 0.045 0.347
0.441 3 0.680 52 0.008 0.347
0.469 3 0.604 53 0.029 0.347
0.486 3 0.510 54 0.067 0.347
0.504 3 0.588 55 0.048 0.347
0.520 3 0.836 56 0.030 0.347
0.552 3 0.720 57 0.001 0.347
0.581 3 0.763

S im u la tio n R un  4

0.150 i 0.242 29 0.166 0.263
0.150 i 0.539 30 0.084 0.263

0.150 l 0.674 31 0.188 0.263

0.150 i 0.488 32 0.179 0.263
0.150 i 0.306 33 0.079 0.263
0.150 i 0.395 34 0.121 0.263
0.150 i 0.424 35 0.161 0.263
0.150 l 0.717 36 0.175 0.263
0.150 i 0.599 37 0.139 0.263
0.150 i 0.693 38 0.086 0.263
0.150 i 0.648 39 0.139 0.263

0.150 l 0.290 40 0.069 0.263
0.150 2 0.773 41 0.114 0.263
0.150 2 0.495 42 0.076 0.263
0.150 2 0.S99 43 0.129 0.263
0.150 1 0.320 44 0.103 0.263
0.150 2 0.694 45 0.036 0.263
0.150 2 0.792 46 0.125 0.263
0.150 2 0.613 47 0.022 0.263
0.150 2 0.763 48 0.033 0.263
0.150 2 0.638 49 0.070 0.263
0.150 1 0.490 50 0.062 0.263
0.150 2 0.544 51 0.065 0.263
0.150 1 0.454 52 0.026 0.263
0.150 2 0.437 53 0.031 0.263
0.150 3 0.632 54 0.090 0.263
0.177 2 0.656 55 0.007 0.263
0.177 2 0.581

S im u la tio n R un 5

0.150 l 0.873 8 0.469 0.216
0.150 l 0.247 9 0.510 0.229
0.150 l 0.642 10 0.054 0.242
0.150 l 0.412 11 0.295 0.246
0.150 l 0.861 12 0.382 0.255
0.150 l 0.796 13 0.034 0.268
0.150 l 0.693 14 0.382 0.271

0.114 0.237 0.004 0.611 3 0.615
0.164 0.237 0.155 0.632 3 0.787
0.057 0.237 0.157 0.661 3 0.818
0.066 0.237 0.024 0.695 3 0.719
0.019 0.237 0.043 0.723 3 0.765
0.064 0.237 0.218 0.754 3 0.972
0.016 0.237 0.050 0.806 3 0.856
0.009 0.237 0.150 0.836 3 0.987
0.009 0.237 0.206 0.882 3 1.000

0.135 0.307 0.656 0.177 3 0.833
0.249 0.307 0.448 0.209 3 0.658
0.302 0.307 0.161 0.238 2 0.609
0.270 0.321 0.589 0.238 3 0.827
0.037 0.321 0.262 0.274 3 0.536
0.071 0.321 0.477 0.290 3 0.767
0.048 0.321 0.306 0.321 3 0.627
0.294 0.321 0.078 0.347 2 0.615
0.242 0.334 0.040 0.347 2 0.576
0.197 0.343 0.458 0.347 3 0.805
0.022 0.343 0.417 0.380 3 0.798
0.127 0.343 0.298 0.414 3 0.712
0.179 0.343 0.176 0.444 3 0.620
0.221 0.343 0.198 0.466 3 0.664
0.150 0.343 0.256 0.495 3 0.751
0.052 0.343 0.010 0.527 3 0.536
0.128 0.343 0.013 0.544 3 0.557
0.116 0.343 0.330 0.558 3 0.888
0.175 0.343 0.050 0.591 3 0.641
0.030 0.343 0.011 0.619 3 0.630
0.158 0.343 0.236 0.644 3 0.880

0.029 0.343 0.204 0.676 3 0.880
0.011 0.343 0.049 0.709 3 0.758
0.032 0.343 0.231 0.740 3 0.971
0.084 0.343 0.100 0.795 3 0.895
0.066 0.343 0.133 0.829 3 0.962
0.020 0.343 0.187 0.877 3 1.000

0.000 0.150 0.000 0.150 1 0.685
0.000 0.150 0.000 0.150 1 0.740
0.000 0.150 0.000 0.150 1 0.296
0.000 0.150 0.000 0.150 1 0.541
0.000 0.150 0.000 0.150 1 0.637
0.007 0.150 0.000 0.150 1 0.302
0.402 0.150 0.000 0.150 1 0.653

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

IS 0.292 0.285 0.435 0.150 0.000 0.150 2 0.585 31 0.025 0.348 0.250 0.193 0.618 0.272 3 0.890

16 0.360 0.285 0.041 0.159 0.000 0.150 1 0.645 32 0.043 0.348 0.296 0.193 0.374 0.305 3 0.679

17 0.397 0.298 0.304 0.159 0.000 0.150 1 0.695 33 0.113 0.348 0.172 0.193 0.251 0.334 3 0.585

18 0.251 0.311 0.303 0.159 0.000 0.150 1 0.562 34 0.030 0.348 0.234 0.193 0.459 0.350 3 0.809

19 0.087 0.318 0.612 0.159 0.000 0.150 2 0.771 35 0.045 0.348 0.203 0.193 0.265 0.383 3 0.648

20 0.107 0.318 0.278 0.176 0.000 0.150 2 0.454 36 0.185 0.348 0.189 0.193 0.157 0.411 3 0.568

21 0.198 0.318 0.358 0.182 0.000 0.150 2 0.540 37 0.003 0.348 0.226 0.193 0.185 0.426 3 0.612

22 0.180 0.318 0.228 0.193 0.000 0.150 1 0.498 38 0.025 0.348 0.020 0.193 0.290 0.447 3 0.737

23 0.190 0.325 0.048 0.193 0.000 0.150 1 0.515 39 0.015 0.348 0.112 0.193 0.050 0.478 3 0.528

24 0.138 0.333 0.134 0.193 0.000 0.150 1 0.471 40 0.152 0.348 0.130 0.193 0.345 0.494 3 0.839

25 0.282 0.340 0.485 0.193 0.673 0.150 3 0.823 41 0.004 0.348 0.175 0.193 0.249 0.524 3 0.773

26 0.017 0.340 0.182 0.193 0.252 0.185 3 0.436 42 0.000 0.348 0.022 0.193 0.091 0.556 3 0.647

27 0.258 0.340 0.102 0.193 0.061 0.195 1 0.598 43 0.048 0.348 0.087 0.193 0.288 0.583 3 0.870

28 0.112 0.348 0.071 0.193 0.329 0.195 3 0.524 44 0.071 0.348 0.038 0.193 0.286 0.614 3 0.899

29 0.052 0.348 0.357 0.193 0.530 0.211 3 0.741 45 0.067 0.348 0.136 0.193 0.270 0.648 3 0.919
30 0.140 0.348 0.180 0.193 0.616 0.242 3 0.858 46 0.036 0.348 0.123 0.193 0.327 0.683 3 1.000

Simulation Run 6

1 0.172 0.150 0.000 0.150 0.000 0.150 1 0.322 32 0.018 0.311 0.130 0.236 0.111 0.252 2 0.366

2 0.393 0.154 0.000 0.150 0.000 0.150 1 0.547 33 0.015 0.311 0.168 0.241 0.059 0.252 2 0.410
3 0.027 0.163 0.000 0.150 0.000 0.150 1 0.190 34 0.162 0.311 0.079 0.247 0.350 0.252 3 0.602
4 0.685 0.163 0.000 0.150 0.000 0.150 1 0.848 35 0.109 0.311 0.277 0.247 0.214 0.269 2 0.524
5 0.513 0.173 0.000 0.150 0.000 0.150 1 0.686 36 0.145 0.311 0.177 0.258 0.161 0.269 1 0.455
6 0.565 0.185 0.000 0.150 0.000 0.150 1 0.751 37 0.105 0.317 0.230 0.258 0.375 0.269 3 0.644
7 0.503 0.199 0.000 0.150 0.000 0.150 1 0.701 38 0.165 0.317 0.210 0.258 0.218 0.296 3 0.514
8 0.517 0.212 0.000 0.150 0.000 0.150 1 0.729 39 0.131 0.317 0.010 0.258 0.000 0.312 1 0.448

9 0.316 0.224 0.000 0.150 0.000 0.150 1 0.540 40 0.145 0.323 0.161 0.258 0.237 0.312 3 0.550
10 0.265 0.233 0.000 0.150 0.000 0.150 1 0.497 41 0.128 0.323 0.128 0.258 0.361 0.329 3 0.690
11 0.426 0.240 0.000 0.150 0.000 0.150 1 0.666 42 0.101 0.323 0.127 0.258 0.073 0.358 3 0.431
12 0.266 0.253 0.000 0.150 0.000 0.150 1 0.519 43 0.129 0.323 0.014 0.258 0.162 0.367 3 0.528
13 0.261 0.262 0.646 0.150 0.000 0.150 2 0.796 44 0.106 0.323 0.161 0.258 0.299 0.382 3 0.681
14 0.045 0.262 0.153 0.164 0.000 0.150 2 0.316 45 0.101 0.323 0.028 0.258 0.310 0.412 3 0.722
15 0.256 0.262 0.008 0.168 0.000 0.150 1 0.518 46 0.018 0.323 0.112 0.258 0.131 0.440 3 0.571
16 0.319 0.270 0.403 0.168 0.000 0.150 1 0.588 47 0.002 0.323 0.021 0.258 0.227 0.455 3 0.682
17 0.060 0.278 0.500 0.168 0.000 0.150 2 0.668 48 0.052 0.323 0.050 0.258 0.042 0.484 3 0.526
18 0.399 0.278 0.534 0.187 0.000 0.150 2 0.721 49 0.066 0.323 0.056 0.258 0.087 0.500 3 0.587
19 0.298 0.278 0.200 0.203 0.000 0.150 1 0.575 50 0.091 0.323 0.041 0.258 0.109 0.516 3 0.625
20 0.090 0.286 0.094 0.203 0.000 0.150 1 0.376 51 0.018 0.323 0.138 0.258 0.107 0.542 3 0.649
21 0.289 0.291 0.366 0.203 0.000 0.150 1 0.580 52 0.029 0.323 0.126 0.258 0.233 0.569 3 0.803
22 0.091 0.299 0.221 0.203 0.000 0.150 2 0.425 53 0.066 0.323 0.057 0.258 0.241 0.602 3 0.843
23 0.127 0.299 0.169 0.210 0.000 0.150 1 0.425 54 0.049 0.323 0.020 0.258 0.067 0.632 3 0.699
24 0.161 0.304 0.051 0.210 0.000 0.150 1 0.465 55 0.013 0.323 0.000 0.258 0.026 0.661 3 0.687
25 0.195 0.311 0.373 0.210 0.269 0.150 2 0.583 56 0.006 0.323 0.114 0.258 0.164 0.688 3 0.852
26 0.053 0.311 0.349 0.219 0.246 0.150 2 0.567 57 0.009 0.323 0.010 0.258 0.033 0.719 3 0.753
27 0.235 0.311 0.298 0.228 0.477 0.150 3 0.627 58 0.046 0.323 0.064 0.258 0.170 0.750 3 0.920
28 0.214 0.311 0.335 0.228 0.043 0.175 2 0.562 59 0.037 0.323 0.099 0.258 0.075 0.785 3 0.861
29 0.212 0.311 0.128 0.236 0.350 0.175 3 0.525 60 0.038 0.323 0.013 0.258 0.137 0.817 3 0.954
30 0.118 0.311 0.214 0.236 0.562 0.192 3 0.754 61 0.063 0.323 0.042 0.258 0.101 0.864 3 0.964
31 0.164 0.311 0.279 0.236 0.489 0.223 3 0.712 62 0.028 0.323 0.030 0.258 0.167 0.914 3 1.000
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1 0.750 0.150 0.000 0.150 0.000 0.150

Simulation Run 7

1 0.900 27 0.016 0.298 0.205 0.263 0.533 0.197 3 0.729

2 0.479 0.160 0.000 0.150 0.000 0.150 1 0.640 28 0.054 0.298 0.068 0.263 0.160 0.225 3 0.385

3 0.275 0.173 0.000 0.150 0.000 0.150 1 0.448 29 0.151 0.298 0.338 0.263 0.585 0.234 3 0.818

4 0.065 0.179 0.000 0.150 0.000 0.150 1 0.244 30 0.046 0.298 0.292 0.263 0.161 0.268 2 0.555

5 0.418 0.182 0.000 0.150 0.000 0.150 1 0.600 31 0.077 0.298 0.261 0.272 0.558 0.268 3 0.826

6 0.633 0.191 0.000 0.150 0.000 0.150 1 0.824 32 0.203 0.298 0.110 0.272 0.474 0.303 3 0.777

7 0.622 0.204 0.000 0.150 0.000 0.150 1 0.826 33 0.014 0.298 0.078 0.272 0.040 0.335 3 0.375

8 0.061 0.217 0.000 0.150 0.000 0.150 1 0.278 34 0.000 0.298 0.315 0.272 0.396 0.342 3 0.738

9 0.551 0.221 0.000 0.150 0.000 0.150 1 0.772 35 0.047 0.298 0.067 0.272 0.227 0.371 3 0.598

10 0.481 0.233 0.000 0.150 0.000 0.150 1 0.714 36 0.115 0.298 0.239 0.272 0.070 0.389 2 0.510

11 0.140 0.246 0.000 0.150 0.000 0.150 1 0.386 37 0.119 0.298 0.018 0.283 0.123 0.389 3 0.512

12 0.493 0.251 0.000 0.150 0.000 0.150 1 0.743 38 0.152 0.298 0.221 0.283 0.168 0.406 3 0.574

13 0.296 0.264 0.512 0.150 0.000 0.150 2 0.662 39 0.164 0.298 0.104 0.283 0.108 0.422 3 0.530

14 0.099 0.264 0.604 0.169 0.000 0.150 2 0.773 40 0.116 0.298 0.142 0.283 0.425 0.438 3 0.863

15 0.091 0.264 0.493 0.186 0.000 0.150 2 0.679 41 0.156 0.298 0.068 0.283 0.320 0.469 3 0.789
16 0.099 0.264 0.681 0.204 0.000 0.150 2 0.885 42 0.060 0.298 0.202 0.283 0.377 0.498 3 0.875

17 0.260 0.264 0.172 0.214 0.000 0.150 1 0.524 43 0.097 0.298 0.087 0.283 0.250 0.530 3 0.779

18 0.202 0.272 0.515 0.214 0.000 0.150 2 0.728 44 0.086 0.298 0.222 0.283 0.258 0.560 3 0.819

19 0.048 0.272 0.624 0.230 0.000 0.150 2 0.854 45 0.002 0.298 0.086 0.283 0.107 0.594 3 0.702
20 0.335 0.272 0.213 0.240 0.000 0.150 1 0.607 46 0.060 0.298 0.071 0.283 0.105 0.623 3 0.728

21 0.194 0.281 0.226 0.240 0.000 0.150 1 0.475 47 0.031 0.298 0.075 0.283 0.110 0.651 3 0.761

22 0.208 0.287 0.362 0.240 0.000 0.150 2 0.602 48 0.043 0.298 0.122 0.283 0.275 0.682 3 0.958
23 0.326 0.287 0.137 0.250 0.000 0.150 1 0.613 49 0.017 0.298 0.045 0.283 0.008 0.729 3 0.737

24 0.027 0.298 0.367 0.250 0.000 0.150 2 0.616 50 0.030 0.298 0.099 0.283 0.121 0.759 3 0.880

25 0.207 0.298 0.074 0.263 0.714 0.150 3 0.864 51 0.089 0.298 0.030 0.283 0.245 0.792 3 1.000
26

1

0.109

0.747

0.298

0.150

0.249

0.000

0.263

0.150

0.383

0.000

0.181

0.150

3 0.563

Simulation Run 8

1 0.897 21 0.209 0.276 0.169 0.197 0.000 0.150 1 0.485

2 0.103 0.160 0.000 0.150 0.000 0.150 1 0.263 22 0.299 0.283 0.177 0.197 0.000 0.150 1 0.582
3 0.715 0.164 0.000 0.150 0.000 0.150 1 0.879 23 0.244 0.291 0.491 0.197 0.000 0.150 2 0.688
4 0.415 0.174 0.000 0.150 0.000 0.150 1 0.589 24 0.254 0.291 0.018 0.214 0.000 0.150 1 0.545
5 0.254 0.182 0.000 0.150 0.000 0.150 1 0.436 25 0.079 0.299 0.115 0.214 0.650 0.150 3 0.800
6 0.432 0.188 0.000 0.150 0.000 0.150 1 0.620 26 0.254 0.299 0.417 0.214 0.025 0.184 2 0.630
7 0.253 0.199 0.000 0.150 0.000 0.150 1 0.451 27 0.130 0.299 0.349 0.231 0.143 0.184 2 0.580
8 0.100 0.205 0.000 0.150 0.000 0.150 I 0.305 28 0.123 0.299 0.174 0.240 0.626 0.184 3 0.810
9 0.577 0.209 0.000 0.150 0.000 0.150 1 0.785 29 0.102 0.299 0.314 0.240 0.676 0.218 3 0.894

10 0.177 0.220 0.000 0.150 0.000 0.150 1 0.397 30 0.222 0.299 0.134 0.240 0.186 0.252 1 0.521
11 0.311 0.225 0.000 0.150 0.000 0.150 1 0.536 31 0.061 0.308 0.232 0.240 0.448 0.252 3 0.700
12 0.437 0.234 0.000 0.150 0.000 0.150 1 0.671 32 0.021 0.308 0.141 0.240 0.576 0.280 3 0.856
13 0.215 0.247 0.274 0.150 0.000 0.150 1 0.462 33 0.022 0.308 0.344 0.240 0.066 0.312 2 0.584
14 0.442 0.253 0.098 0.150 0.000 0.150 1 0.695 34 0.158 0.308 0.055 0.250 0.475 0.312 3 0.786
15 0.063 0.266 0.213 0.150 0.000 0.150 2 0.363 35 0.057 0.308 0.075 0.250 0.148 0.341 3 0.489
16 0.268 0.266 0.642 0.155 0.000 0.150 2 0.797 36 0.141 0.308 0.100 0.250 0.262 0.354 3 0.616
17 0.048 0.266 0.249 0.173 0.000 0.150 2 0.421 37 0.031 0.308 0.234 0.250 0.034 0.375 2 0.484
18 0.151 0.266 0.496 0.179 0.000 0.150 2 0.675 38 0.110 0.308 0.157 0.257 0.437 0.375 3 0.813
19 0.158 0.266 0.211 0.197 0.000 0.150 1 0.423 39 0.145 0.308 0.205 0.257 0.212 0.409 3 0.621
20 0.102 0.271 0.113 0.197 0.000 0.150 1 0.374 40 0.106 0.308 0.263 0.257 0.154 0.430 3 0.584
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41 0.065 0.308 0.024 0.257 0.298 0.446 3 0.744 47 0.058 0.308 0.060 0.257 0.232 0.616 3 0.849

42 0.031 0.308 0.181 0.257 0.126 0.477 3 0.603 48 0.084 0.308 0.090 0.257 0.301 0.647 3 0.948

43 0.114 0.308 0.128 0.257 0.201 0.494 3 0.695 49 0.104 0.308 0.080 0.257 0.060 0.686 3 0.746

44 0.124 0.308 0.156 0.257 0.211 0.522 3 0.734 50 0.048 0.308 0.013 0.257 0.173 0.717 3 0.891

45 0.072 0.308 0.114 0.257 0.229 0.553 3 0.782 51 0.065 0.308 0.087 0.257 0.262 0.751 3 1.000

46 0.087 0.308 0.058 0.257 0.317 0.583 3 0.900

Simulation Run 9

1 0.624 0.150 0.000 0.150 0.000 0.150 1 0.774 29 0.131 0.305 0.371 0.232 0.613 0.199 3 0.811

2 0.720 0.163 0.000 0.150 0.000 0.150 1 0.883 30 0.043 0.305 0.396 0.232 0.596 0.232 3 0.828

3 0.128 0.173 0.000 0.150 0.000 0.150 1 0.302 31 0.033 0.305 0.310 0.232 0.251 0.267 2 0.542

4 0.103 0.177 0.000 0.150 0.000 0.150 1 0.280 32 0.152 0.305 0.082 0.243 0.546 0.267 3 0.813

5 0.222 0.181 0.000 0.150 0.000 0.150 1 0.403 33 0.004 0.305 0.185 0.243 0.258 0.300 3 0.558

6 0.376 0.186 0.000 0.150 0.000 0.150 1 0.562 34 0.092 0.305 0.299 0.243 0.131 0.315 2 0.542

7 0.573 0.194 0.000 0.150 0.000 0.150 1 0.767 35 0.097 0.305 0.007 0.254 0.243 0.315 3 0.558

8 0.540 0.206 0.000 0.150 0.000 0.150 1 0.746 36 0.104 0.305 0.074 0.254 0.203 0.331 3 0.534

9 0.025 0.219 0.000 0.150 0.000 0.150 1 0.244 37 0.148 0.305 0.281 0.254 0.127 0.347 2 0.535

10 0.282 0.223 0.000 0.150 0.000 0.150 1 0.505 38 0.032 0.305 0.209 0.265 0.260 0.347 3 0.607

11 0.207 0.231 0.000 0.150 0.000 0.150 1 0.438 39 0.015 0.305 0.083 0.265 0.030 0.365 3 0.395

12 0.237 0.237 0.000 0.150 0.000 0.150 1 0.474 40 0.052 0.305 0.076 0.265 0.050 0.372 3 0.422

13 0.276 0.243 0.277 0.150 0.000 0.150 1 0.520 41 0.118 0.305 0.014 0.265 0.246 0.381 3 0.627

14 0.262 0.251 0.126 0.150 0.000 0.150 1 0.514 42 0.109 0.305 0.155 0.265 0.322 0.408 3 0.729

15 0.018 0.260 0.657 0.150 0.000 0.150 2 0.807 43 0.141 0.305 0.088 0.265 0.277 0.437 3 0.714

16 0.178 0.260 0.335 0.166 0.000 0.150 2 0.501 44 0.011 0.305 0.005 0.265 0.161 0.465 3 0.626

17 0.246 0.260 0.256 0.177 0.000 0.150 1 0.506 45 0.129 0.305 0.051 0.265 0.114 0.491 3 0.606

18 0.208 0.268 0.056 0.177 0.000 0.150 1 0.476 46 0.000 0.305 0.030 0.265 0.238 0.508 3 0.746

19 0.133 0.275 0.345 0.177 0.000 0.150 2 0.522 47 0.055 0.305 0.089 0.265 0.274 0.539 3 0.813

20 0.287 0.275 0.290 0.187 0.000 0.150 1 0.562 48 0.036 0.305 0.024 0.265 0.013 0.573 3 0.586

21 0.340 0.282 0.269 0.187 0.000 0.150 1 0.622 49 0.042 0.305 0.072 0.265 0.043 0.589 3 0.632

22 0.192 0.293 0.518 0.187 0.000 0.150 2 0.705 50 0.108 0.305 0.079 0.265 0.261 0.615 3 0.875
23 0.042 0.293 0.531 0.204 0.000 0.150 2 0.735 51 0.069 0.305 0.163 0.265 0.117 0.647 3 0.764

24 0.043 0.293 0.103 0.221 0.000 0.150 1 0.336 52 0.028 0.305 0.072 0.265 0.109 0.677 3 0.787

25 0.077 0.297 0.288 0.221 0.065 0.150 2 0.510 53 0.001 0.305 0.037 0.265 0.175 0.707 3 0.882

26 0.188 0.297 0.341 0.232 0.686 0.150 3 0.836 54 0.085 0.305 0.037 0.265 0.064 0.740 3 0.804

27 0.273 0.297 0.138 0.232 0.074 0.183 1 0.570 55 0.082 0.305 0.113 0.265 0.154 0.772 3 0.926
28 0.081 0.305 0.178 0.232 0.350 0.183 3 0.533 56 0.081 0.305 0.111 0.265 0.207 0.808 3 1.000

Simulation Run 10

1 0.271 0.150 0.000 0.150 0.000 0.150 1 0.421 12 0.456 0.255 0.000 0.150 0.000 0.150 1 0.711

2 0.745 0.156 0.000 0.150 0.000 0.150 1 0.900 13 0.134 0.268 0.082 0.150 0.000 0.150 1 0.402
3 0.474 0.166 0.000 0.150 0.000 0.150 1 0.640 14 0.181 0.273 0.753 0.150 0.000 0.150 2 0.903
4 0.544 0.179 0.000 0.150 0.000 0.150 1 0.723 15 0.386 0.273 0.721 0.160 0.000 0.150 2 0.881
5 0.202 0.191 0.000 0.150 0.000 0.150 1 0.393 16 0.276 0.273 0.582 0.170 0.000 0.150 2 0.752
6 0.393 0.196 0.000 0.150 0.000 0.150 1 0.589 17 0.106 0.273 0.440 0.188 0.000 0.150 2 0.628
7 0.031 0.205 0.000 0.150 0.000 0.150 1 0.236 18 0.341 0.273 0.308 0.205 0.000 0.150 1 0.614
8 0.437 0.208 0.000 0.150 0.000 0.150 1 0.644 19 0.106 0.284 0.434 0.205 0.000 0.150 2 0.639
9 0.492 0.221 0.000 0.150 0.000 0.150 1 0.713 20 0.367 0.284 0.027 0.223 0.000 0.150 1 0.651

10 0.312 0.234 0.000 0.150 0.000 0.150 1 0.546 21 0.188 0.297 0.477 0.223 0.000 0.150 2 0.700
11 0.517 0.242 0.000 0.150 0.000 0.150 1 0.760 22 0.288 0.297 0.394 0.241 0.000 0.150 2 0.635

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

23 0.150 0.297 0.422 0.259 0.000 0.150 2 0.681 45 0.033 0.297 0.050 0.393 0.090 0.355 3 0.445

24 0.175 0.297 0.341 0.277 0.000 0.150 2 0.618 46 0.044 0.297 0.174 0.393 0.239 0.365 3 0.605

25 0.042 0.297 0.208 0.291 0.145 0.150 2 0.499 47 0.112 0.297 0.059 0.393 0.325 0.382 3 0.707

26 0.008 0.297 0.051 0.298 0.644 0.150 3 0.794 48 0.069 0.297 0.110 0.393 0.204 0.412 3 0.616

27 0.034 0.297 0.405 0.298 0.045 0.180 2 0.704 49 0.062 0.297 0.143 0.393 0.295 0.433 3 0.728

28 0.115 0.297 0.369 0.316 0.352 0.180 2 0.685 50 0.076 0.297 0.020 0.393 0.268 0.462 3 0.730

29 0.035 0.297 0.140 0.334 0.117 0.180 2 0.475 51 0.069 0.297 0.113 0.393 0.056 0.492 3 0.548

30 0.185 0.297 0.124 0.342 0.650 0.180 3 0.830 52 0.044 0.297 0.108 0.393 0.264 0.508 3 0.772

31 0.056 0.297 0.165 0.342 0.126 0.211 2 0.506 53 0.062 0.297 0.079 0.393 0.021 0.540 3 0.561

32 0.106 0.297 0.269 0.352 0.412 0.211 3 0.623 54 0.033 0.297 0.098 0.393 0.146 0.556 3 0.702

33 0.008 0.297 0.250 0.352 0.245 0.234 2 0.602 55 0.043 0.297 0.107 0.393 0.073 0.585 3 0.657

34 0.039 0.297 0.208 0.362 0.428 0.234 3 0.662 56 0.034 0.297 0.108 0.393 0.057 0.613 3 0.670

35 0.147 0.297 0.135 0.362 0.289 0.263 3 0.552 57 0.000 0.297 0.085 0.393 0.146 0.641 3 0.787

36 0.084 0.297 0.102 0.362 0.231 0.280 3 0.511 58 0.064 0.297 0.058 0.393 0.171 0.670 3 0.840

37 0.139 0.297 0.060 0.362 0.186 0.297 3 0.482 59 0.022 0.297 0.076 0.393 0.159 0.700 3 0.859

38 0.161 0.297 0.132 0.362 0.035 0.309 2 0.494 60 0.015 0.297 0.006 0.393 0.081 0.732 3 0.812

39 0.106 0.297 0.080 0.370 0.217 0.309 3 0.526 61 0.035 0.297 0.031 0.393 0.067 0.765 3 0.832
40 0.044 0.297 0.190 0.370 0.166 0.325 2 0.560 62 0.028 0.297 0.062 0.393 0.132 0.797 3 0.928

41 0.053 0.297 0.021 0.378 0.022 0.325 2 0.399 63 0.021 0.297 0.005 0.393 0.116 0.834 3 0.950

42 0.011 0.297 0.205 0.384 0.032 0.325 2 0.589 64 0.034 0.297 0.093 0.393 0.033 0.873 3 0.906

43 0.093 0.297 0.032 0.393 0.228 0.325 3 0.553 65 0.049 0.297 0.091 0.393 0.129 0.907 3 1.000
44 0.136 0.297 0.017 0.393 0.114 0.342 3 0.456

Simulation Run 11

1 0.374 0.150 0.000 0.150 0.000 0.150 i 0.524 27 0.017 0.251 0.416 0.280 0.592 0.182 3 0.773
2 0.719 0.158 0.000 0.150 0.000 0.150 l 0.878 28 0.013 0.251 0.355 0.280 0.259 0.213 2 0.635
3 0.152 0.169 0.000 0.150 0.000 0.150 i 0.321 29 0.198 0.251 0.341 0.298 0.342 0.213 2 0.640
4 0.225 0.173 0.000 0.150 0.000 0.150 i 0.398 30 0.160 0.251 0.062 0.316 0.533 0.213 3 0.745
5 0.277 0.178 0.000 0.150 0.000 0.150 i 0.455 31 0.139 0.251 0.307 0.316 0.257 0.243 2 0.623
6 0.440 0.184 0.000 0.150 0.000 0.150 l 0.624 32 0.116 0.251 0.318 0.334 0.092 0.243 2 0.652
7 0.001 0.196 0.000 0.150 0.000 0.150 l 0.198 33 0.202 0.251 0.277 0.352 0.142 0.243 2 0.630
8 0.500 0.196 0.000 0.150 0.000 0.150 l 0.696 34 0.150 0.251 0.246 0.370 0.234 0.243 2 0.616
9 0.236 0.209 0.000 0.150 0.000 0.150 i 0.445 35 0.032 0.251 0.194 0.384 0.505 0.243 3 0.749

10 0.209 0.215 0.000 0.150 0.000 0.150 i 0.424 36 0.024 0.251 0.294 0.384 0.292 0.275 2 0.678
11 0.207 0.221 0.000 0.150 0.000 0.150 l 0.427 37 0.104 0.251 0.226 0.402 0.114 0.275 2 0.628
12 0.410 0.227 0.000 0.150 0.000 0.150 i 0.636 38 0.097 0.251 0.213 0.419 0.137 0.275 2 0.632
13 0.028 0.239 0.438 0.150 0.000 0.150 2 0.588 39 0.147 0.251 0.226 0.437 0.125 0.275 2 0.663
14 0.340 0.239 0.709 0.159 0.000 0.150 2 0.868 40 0.038 0.251 0.040 0.456 0.356 0.275 3 0.631
15 0.306 0.239 0.467 0.169 0.000 0.150 2 0.636 41 0.124 0.251 0.218 0.456 0.041 0.300 2 0.674
16 0.291 0.239 0.658 0.187 0.000 0.150 2 0.845 42 0.073 0.251 0.208 0.474 0.051 0.300 2 0.682
17 0.088 0.239 0.659 0.197 0.000 0.150 2 0.856 43 0.070 0.251 0.165 0.492 0.268 0.300 2 0.657
18 0.150 0.239 0.009 0.207 0.000 0.150 1 0.389 44 0.095 0.251 0.069 0.511 0.031 0.300 2 0.580
19 0.183 0.244 0.571 0.207 0.000 0.150 2 0.778 45 0.001 0.251 0.138 0.520 0.166 0.300 2 0.658
20 0.276 0.244 0.458 0.223 0.000 0.150 2 0.681 46 0.071 0.251 0.023 0.539 0.190 0.300 2 0.562
21 0.095 0.244 0.101 0.242 0.000 0.150 2 0.342 47 0.042 0.251 0.179 0.548 0.043 0.300 2 0.727
22 0.163 0.244 0.198 0.246 0.000 0.150 2 0.444 48 0.074 0.251 0.002 0.564 0.254 0.300 2 0.566
23 0.198 0.244 0.340 0.253 0.000 0.150 2 0.593 49 0.072 0.251 0.011 0.573 0.217 0.300 2 0.584
24 0.145 0.244 0.416 0.262 0.000 0.150 2 0.679 50 0.070 0.251 0.012 0.582 0.236 0.300 2 0.594
25 0.123 0.244 0.075 0.280 0.684 0.150 3 0.834 51 0.063 0.251 0.053 0.592 0.167 0.300 2 0.645
26 0.237 0.244 0.064 0.280 0.025 0.182 1 0.482 52 0.094 0.251 0.152 0.610 0.144 0.300 2 0.762
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53 0.078 0.251 0.038 0.626 0.028 0.300 2 0.664
54 0.004 0.251 0.095 0.645 0.200 0.300 2 0.740
55 0.060 0.251 0.100 0.663 0.015 0.300 2 0.763
56 0.013 0.251 0.057 0.679 0.059 0.300 2 0.736
57 0.014 0.251 0.029 0.696 0.206 0.300 2 0.725
58 0.071 0.251 0.085 0.712 0.064 0.300 2 0.797
59 0.069 0.251 0.114 0.729 0.168 0.300 2 0.843
60 0.005 0.251 0.001 0.739 0.165 0.300 2 0.740
61 0.064 0.251 0.063 0.756 0.001 0.300 2 0.819
62 0.041 0.251 0078 0.773 0.090 0.300 2 0.851
63 0.013 0.251 0.065 0.782 0.127 0.300 2 0.848
64 0.056 0.251 0.025 0.792 0.114 0.300 2 0.817
65 0.025 0.251 0.005 0.808 0.112 0.300 2 0.813
66 0.034 0.251 0.071 0.825 0.132 0.300 2 0.895

67 0.033 0.251 0.088 0.835 0.018 0.300 2 0.923
68 0.010 0.251 0.009 0.845 0.113 0.300 2 0.854
69 0.012 0.251 0.022 0.855 0.063 0.300 2 0.876
70 0.034 0.251 0.031 0.865 0.051 0.300 2 0.896
71 0.038 0.251 0.043 0.875 0.100 0.300 2 0.917
72 0.012 0.251 0.035 0.885 0.096 0.300 2 0.919
73 0.000 0.251 0.022 0.895 0.058 0.300 2 0.917
74 0.020 0.251 0.022 0.905 0.006 0.300 2 0.927
75 0.015 0.251 0.049 0.915 0.052 0.300 2 0.965
76 0.023 0.251 0.016 0.926 0.097 0.300 2 0.341
77 0.008 0.251 0.033 0.936 0.067 0.300 2 0.969
78 0.022 0.251 0.039 0.946 0.087 0.300 2 0.985
79 0.021 0.251 0.050 0.957 0.010 0.300 2 1.000
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APPENDIX B

SIM ULATIONS FOR THE CO M PO NENTS N E U R A L  NETW ORK  

COM PUTER SIM ULATION R U N  1

1 1 0.035 41 1 0.080
2 2 0.033 42 1 0.092
3 3 0.027 43 1 0.093
4 2 0.024 44 1 0.087
5 3 0.037
6 3 0.037 45 1 0.103
7 2 0.039 46 2 0.102
8 3 0.027 47 1 0.118
9 1 0.041 48 2 0.109
10 3 0.033 49 1 0.127
11 2 0.037 50 1 0.121
12 2 0.038 51 1 0.125
13 3 0.027 52 1 0.140
14 1 0.044 53 1 0.136
15 1 0.047 54 1 0.148
16 2 0.042 55 1 0.143
17 2 0.040 56 1 0.157
18 1 0.043 57 1 0.172
19 3 0.042 58 2 0.181
20 3 0.043 59 2 0.187
21 2 0.045 60 3 0.192
22 1 0.053 61 3 0.210
23 2 0.050 62 3 0.229
24 1 0.059 63 2 0.252
25 1 0.054 64 2 0.271
26 1 0.061 65 3 0.297
27 1 0.055 66 3 0.325
28 1 0.059 67 2 0.341
29 1 0.049 68 3 0.375
30 1 0.054 69 3 0.412
31 1 0.058 70 3 0.433
32 1 0.063 71 3 0.487
33 1 0.072 72 3 0.529
34 1 0.074 73 3 0.569
35 2 0.062 74 3 0.641
36 1 0.078 75 3 0.735
37 1 0.084 76 3 0.818
38 1 0.070 77 3 0.949
39 1 0.070 78 3 1.000
40 1 0.079

discovered
discovered

discovered

COM PUTER SIM ULATION R U N  2

1 1 0.034 5 1 0.040
2 1 0.040 6 3 0.037
3 1 0.031 7 3 0.037
4 3 0.031 8 3 0.040
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9 1 0.040 45 1 0.088
10 2 0.038
11 1 0.041 46 1 0.102
12 3 0.035 47 2 0.102
13 3 0.042 48 1 0.117
14 3 0.041 49 1 0.119
15 1 0.028 50 2 0.123
16 1 0.036 51 2 0.131
17 2 0.046 52 1 0.133
18 1 0.035 53 2 0.140
19 2 0.043 54 3 0.139
20 1 0.041 55 2 0.159
21 1 0.045 56 1 0.160
22 2 0.050 57 3 0.166
23 1 0.046 58 3 0.175
24 3 0.043 59 1 0.190
25 2 0.052 60 2 0.198
26 1 0.051 61 2 0.223
27 3 0.052 62 3 0.231
28 1 0.048 63 3 0.248
29 1 0.054 64 3 0.264
30 3 0.055 65 2 0.290
31 1 0.051 66 3 0.318
32 1 0.067 67 2 0.336
33 2 0.052 68 3 0.366
34 2 0.063 69 3 0.405
35 2 0.066 70 3 0.447
36 1 0.067 71 3 0.482
37 1 0.074 72 3 0.520
38 1 0.078 73 3 0.565
39 1 0.084 74 3 0.625
40 1 0.083 75 3 0.726
41 1 0.083 76 3 0.812
42 1 0.077 77 3 0.911
43 1 0.093 78 3 1.000
44 2 0.088

CO M PU TER SIM ULATION RUN 3

1 1 0.026 24 2 0.049
2 2 0.030 25 1 0.045
3 1 0.029 26 1 0.059
4 2 0.032 27 1 0.054
5 2 0.040 28 1 0.048
6 1 0.036 29 2 0.056
7 2 0.034 30 1 0.068
8 1 0.034 31 1 0.064
9 3 0.032 32 2 0.064
10 2 0.040 33 1 0.074
11 2 0.039 34 1 0.076
12 3 0.041 35 1 0.076
13 3 0.034 36 1 0.071
14 2 0.042 37 1 0.076
15 2 0.042 38 2 0.072
16 3 0.029 39 1 0.084
17 1 0.043 40 1 0.085
18 1 0.038 41 1 0.089
19 3 0.040 42 1 0.078
20 2 0.049 43 1 0.098
21 2 0.044
22 1 0.054 44 1 0.102
23 2 0.050 45 1 0.097

discovered
discovered

discovered

discovered
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46 2 0.103 discovered 63 2 0.240
47 1 0.114 64 2 0.266
48 1 0.105 65 3 0.288
49 1 0.125 66 3 0.318
50 1 0.131 67 3 0.341
51 2 0.131 68 3 0.362
52 1 0.139 69 3 0.411
53 1 0.149 70 3 0.443
54 1 0.149 71 3 0.465
55 1 0.155 72 3 0.507
56 1 0.160 73 3 0.561
57 1 0.163 74 3 0.635
58 2 0.175 75 3 0.699
59 1 0.191 76 3 0.789
60 3 0.190 discovered 77 3 0.915
61 3 0.211 78 3 1.000
62 2 0.234

COM PUTER SIM ULATION RUN 4

1 1 0.019
2 3 0.039
3 2 0.037
4 3 0.040
5 2 0.038
6 3 0.025
7 3 0.034
8 1 0.039
9 2 0.037
10 1 0.039
11 3 0.036
12 1 0.043
13 2 0.043
14 2 0.028
15 1 0.037
16 1 0.032
17 3 0.028
18 3 0.045
19 3 0.038
20 1 0.039
21 3 0.043
22 1 0.055
23 3 0.044
24 3 0.044
25 1 0.047
26 2 0.051
27 1 0.048
28 1 0.062
29 1 0.067
30 1 0.054
31 1 0.065
32 1 0.059
33 2 0.066
34 2 0.057
35 3 0.063
36 2 0.067
37 1 0.085
38 1 0.075
39 1 0.083
40 1 0.078

41 1 0.089
42 2 0.090
43 3 0.084
44 2 0.097

45 1 0.100
46 1 0.105
47 1 0.111
48 1 0.123
49 2 0.111
50 1 0.118
51 1 0.136
52 1 0.142
53 1 0.145
54 2 0.142
55 1 0.155
56 1 0.166
57 2 0.166
58 2 0.175
59 1 0.190
60 2 0.203
61 2 0.220
62 2 0.226
63 2 0.231
64 2 0.260
65 2 0.281
66 2 0.316
67 3 0.332
68 3 0.354
69 3 0.400
70 3 0.416
71 3 0.455
72 3 0.500
73 3 0.536
74 3 0.602
75 3 0.666
76 3 0.753
77 3 0.848
78 3 0.998

discovered

discovered

discovered
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COM PUTER SIMULATION RUN 5

1 3 0.030 41 1 0.086
2 1 0.030 42 1 0.095
3 1 0.039 43 1 0.097
4 1 0.032
5 3 0.038 44 1 0.101
6 1 0.033 45 1 0.096
7 2 0.031 46 2 0.105
8 1 0.040 47 1 0.116
9 1 0.041 48 2 0.112
10 1 0.038 49 1 0.117
11 2 0.032 50 1 0.127
12 2 0.040 51 1 0.123
13 2 0.039 52 1 0.143
14 2 0.040 53 1 0.142
15 2 0.039 54 2 0.144
16 1 0.046 55 1 0.158
17 2 0.039 56 1 0.163
18 2 0.037 57 2 0.164
19 3 0.038 58 2 0.174
20 1 0.042 59 2 0.193
21 3 0.047 60 1 0.203
22 3 0.037 61 2 0.216
23 1 0.055 62 3 0.227
24 3 0.043 63 2 0.244
25 1 0.059 64 2 0.273
26 1 0.041 65 2 0.289
27 3 0.052 66 2 0.317
28 1 0.040 67 2 0.335
29 2 0.059 68 2 0.350
30 1 0.065 69 2 0.389
31 2 0.058 70 3 0.417
32 3 0.059 71 3 0.461
33 1 0.070 72 3 0.511
34 1 0.064 73 3 0.544
35 1 0.070 74 3 0.609
36 1 0.061 75 3 0.669
37 2 0.071 76 3 0.737
38 1 0.074 77 3 0.829
39 1 0.085 78 3 0.981
40 1 0.091

COM PUTER SIMULATION RUN 6

1 2 0.029 17 2 0.032
2 1 0.040 18 3 0.037
3 3 0.040 19 2 0.043
4 1 0.031 20 2 0.039
5 1 0.039 21 2 0.048
6 1 0.041 22 1 0.042
7 2 0.038 23 1 0.045
8 2 0.029 24 1 0.055
9 2 0.038 25 2 0.036
10 1 0.035 26 1 0.051
11 1 0.029 27 1 0.057
12 2 0.041 28 1 0.064
13 1 0.032 29 1 0.061
14 1 0.044 30 1 0.047
15 2 0.045 31 2 0.062
16 1 0.048 32 2 0.058

discovered 
not used 
discovered

discovered
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33 1 0.068 56 1 0.161
34 1 0.068 57 2 0.164
35 1 0.068 58 2 0.179
36 2 0.073 59 1 0.182
37 1 0.061 60 1 0.201
38 1 0.074 61 2 0.207
39 1 0.084 62 2 0.224
40 1 0.080 63 2 0.240
41 1 0.078 64 2 0.261
42 1 0.089 65 2 0.278
43 1 0.098 66 2 0.311
44 1 0.092 67 2 0.338
45 3 0.090 68 3 0.351

69 3 0.385
46 2 0.104 discovered 70 3 0.411
47 2 0.096 not used 71 3 0.460
48 1 0.101 discovered 72 3 0.490
49 1 0.122 73 3 0.545
50 2 0.121 74 3 0.594
51 1 0.129 75 3 0.665
52 1 0.127 76 3 0.758
53 1 0.134 77 3 0.859
54 1 0.152 78 3 0.995
55 1 0.149

CO M PU TER SIM ULATION RUN 7

1 3 0.019 36 2 0.063
2 1 0.039 37 1 0.066
3 1 0.038 38 1 0.073
4 2 0.030 39 2 0.070
5 2 0.030 40 3 0.076
6 2 0.039 41 1 0.088
7 1 0.039 42 1 0.080
8 3 0.040 43 1 0.093
9 3 0.038 44 1 0.095
10 2 0.030
11 1 0.036 45 1 0.107
12 3 0.036 46 1 0.095
13 2 0.036 47 2 0.105
14 2 0.039 48 2 0.113
15 1 0.041 49 1 0.118
16 1 0.047 50 1 0.127
17 1 0.031 51 1 0.123
18 3 0.040 52 2 0.137
19 1 0.041 53 2 0.140
20 1 0.032 54 2 0.136
21 3 0.046 55 1 0.162
22 1 0.033 56 1 0.169
23 1 0.048 57 2 0.163
24 2 0.052 58 2 0.174
25 3 0.045 59 2 0.196
26 1 0.054 60 2 0.202
27 1 0.060 61 2 0.205
28 1 0.050 62 2 0.220
29 1 0.049 63 3 0.240
30 1 0.061 64 3 0.272
31 1 0.064 65 2 0.299
32 1 0.069 66 2 0.319
33 1 0.067 67 3 0.340
34 1 0.070 68 3 0.374
35 1 0.069 69 3 0.392

discovered

discovered

discovered

discovered
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70 3 0.436 75 3 0.709
71 3 0.486 76 3 0.794
72 3 0.529 77 3 0.884
73 3 0.569 78 3 1.000
74 3 0.632

COM PUTER SIM ULATION R U N  8

1 1 0.032 41 2 0.080
2 1 0.029 42 1 0.091
3 3 0.035
4 1 0.033 43 1 0.102
5 3 0.039 44 2 0.095
6 3 0.040 45 2 0.099
7 2 0.036 46 1 0.102
8 2 0.037 47 1 0.111
9 1 0.028 48 1 0.124
10 2 0.041 49 1 0.116
11 3 0.038 50 2 0.124
12 3 0.039 51 2 0.128
13 3 0.041 52 1 0.133
14 2 0.044 53 1 0.141
15 1 0.040 54 1 0.147
16 2 0.044 55 1 0.161
17 1 0.042 56 2 0.166
18 1 0.047 57 2 0.155
19 1 0.046 58 1 0.185
20 3 0.045 59 2 0.186
21 2 0.045 60 1 0.198
22 2 0.034 61 2 0.203
23 2 0.050 62 2 0.226
24 1 0.035 63 2 0.242
25 1 0.036 64 2 0.265
26 1 0.055 65 2 0.289
27 1 0.052 66 2 0.299
28 2 0.046 67 2 0.325
29 1 0.058 68 2 0.358
30 1 0.062 69 2 0.392
31 1 0.067 70 3 0.412
32 1 0.073 71 3 0.446
33 1 0.065 72 3 0.497
34 1 0.074 73 3 0.538
35 2 0.066 74 3 0.597
36 1 0.078 75 3 0.651
37 1 0.071 76 3 0.734
38 2 0.069 77 3 0.826
39 1 0.083 78 3 0.940
40 1 0.074

COM PUTER SIM ULATION RU N  9

1 2 0.030 12 2 0.029
2 2 0.038 13 1 0.041
3 3 0.038 14 2 0.043
4 1 0.040 15 2 0.034
5 1 0.039 16 2 0.041
6 2 0.039 17 3 0.041
7 3 0.031 18 1 0.044
8 3 0.033 19 1 0.048
9 3 0.040 20 1 0.048
10 1 0.038 21 1 0.046
11 1 0.030 22 1 0.053

discovered  
no strategy use  
no strategy use

d iscovered

discovered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

23 1 0.054 51 1 0.118
24 2 0.050 52 2 0.135
25 3 0.049 53 1 0.148
26 1 0.048 54 2 0.149
27 1 0.057 55 1 0.140
28 2 0.056 56 1 0.166
29 1 0.060 57 1 0.162
30 1 0.052 58 1 0.168
31 1 0.071 59 3 0.180
32 1 0.055 60 1 0.191
33 1 0.071 61 3 0.204
34 1 0.056 62 2 0.227
35 1 0.069 63 3 0.241
36 2 0.065 64 3 0.252
37 1 0.085 65 2 0.286
38 1 0.075 66 2 0.310
39 1 0.082 67 3 0.331
40 1 0.082 68 3 0.360
41 1 0.089 69 3 0.412
42 1 0.083 70 3 0.419
43 2 0.084 71 3 0.457

72 3 0.513
44 1 0.102 discovered 73 3 0.569
45 1 0.099 not used 74 3 0.609
46 1 0.109 75 3 0.693
47 1 0.098 not used 76 3 0.775
48 1 0.114 77 3 0.882
49 1 0.117 78 3 1.000
50 1 0.121

COM PUTER SIM ULATION R U N  1(

1 2 0.039 31 1 0.057
2 2 0.038 32 1 0.064
3 3 0.040 33 2 0.066
4 1 0.040 34 1 0.065
5 1 0.026 35 2 0.061
6 3 0.038 36 2 0.064
7 3 0.028 37 2 0.070
8 3 0.029 38 1 0.070
9 1 0.029 39 1 0.068
10 2 0.035 40 1 0.088
11 1 0.039 41 1 0.084
12 1 0.035 42 1 0.091
13 2 0.034 43 1 0.098
14 1 0.033 44 1 0.085
15 2 0.040 45 2 0.092
16 1 0.038
17 1 0.045 46 1 0.106
18 2 0.038 47 1 0.097
19 1 0.040 48 1 0.122
20 2 0.032 49 1 0.115
21 1 0.054 50 2 0.117
22 1 0.044 51 1 0.137
23 2 0.043 52 1 0.122
24 1 0.056 53 1 0.139
25 2 0.046 54 1 0.149
26 1 0.049 55 1 0.142
27 1 0.055 56 1 0.152
28 1 0.047 57 3 0.164
29 1 0.057 58 1 0.175
30 1 0.052 59 2 0.194

discovered

discovered

discovered 
not used

discovered

discovered
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60 2 0.200 70 3 0.449
61 2 0.212 71 3 0.471
62 3 0.231 72 3 0.517
63 2 0.256 73 3 0.574
64 2 0.268 74 3 0.638
65 3 0.280 75 3 0.720
66 3 0.315 76 3 0.790
67 3 0.330 77 3 0.921
68 3 0.360 78 3 1.000
69 3 0.419
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