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Degree PH.D. Major Subject COMPUTER SCIENCE

Name of Candidate VIVEK ANUMOLU

Title A Hybrid Neural Network Methodology for Studying the Development of External

Memory Strategies in Problem—solving

Neural networks among other artificial intelligence methods offer advantages of
learning to adapt to novel and nonstationary environments. The operation of robots in such
environments is facilitated if they can learn new strategies appropriate to the situation. To
address this situation, we turn to the field of cognitive development for guidelines on how
humans construct and use strategies to solve problems. An object-target matching task
devised by N. W. Bray and his associates to investigate the differences in the use of external
memory strategies in children is seen as a representative case. This task involves matching
a subset of objects with a subset of targets, in a specified temporal order and according to
relations defining positions. In studying this situation, a hybrid neural network
methodology is followed that involves the integration of neural components and
mechanisms based on the instar, the outstar, a sequencer and shunting excitationintoa single
neural network to mediate desired behavior.

A hybrid neural network, known as the “sequence-associator,” is constructed to solve
the matching task and consists of a serial learning module and a series of associators. The
influences of postsynaptic threshold on serial leamning and of a nonspecific arousal on
object-target matching are examined.

The sequence-associator is extended to incorporate novelty bias and accuracy factors,
modeled after those postulated by R. S. Siegler and his associates; these factors are

responsible for strategy evolution. The resultant model, known as the “novelty bias neural
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network,” demonstrates the phenomena of strategy diversity and advancement observed in
the object—target matching task and other problems.

A variation of the novelty bias model known as the “components neural network”
model discards the notion of novelt); bias and introduces a notion of strategy components.
The latter model is based on the assumption that accuracy feedback information is
selectively encoded, first for objects, next for targets and ultimately for prepositions. The
assumption is motivated in part by the work of R. J. Sternberg, which established that
children spend less time than adults on encoding a given problem. The components model
exhibits not only the phenomena of strategy diversity and advancement but also strategy
discovery. We conclude that this model offers a plausible explanation in a neural network
framework for strategy discovery, a very difficult problem which existing information
processing theories in cognitive development as well as neural networks have yet to address

in a fully satisfactory way.
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CHAPTER 1
INTRODUCTION

Knowledge acquisition is a topic of great import to cognitive psychologists as well as
to computer scientists. It includes the acquisition of problem-solving skills that allow a
human as well as a machine to adapt to novel and nonstationary environments and perform
well. Even though people acquire skills such as typing, computer programming, and
arithmetic, the underlying cognitive processes are not well understood. The subject of
acquisition of problem—solving skills therefore has been identified as one of the key issues
in cognitive science (Norman, 1980). The various strategies people use while solving
problems have a practical application in improved curriculum methods in education and
training of children and adults. In the robotics domain, an autonomous agent should select
a strategy that is most appropriate to the prevailing environmental conditions and adapt its
strategy with change in the conditions.

In the 1980’s, neural networks became a popular research topic. One reason for this
popularity was that the representation and processing of knowledge in neural networks
comes closer to that in brain than other schemes, €.g., expert systems. The research reported
herein is concemed with how a neural network can capture problem-solving skills,
specifically, strategies.

When such a network is embedded in a robot, for example, the robot can acquire skills
that would help it survive in a novel and nonstationary environment. Researchers were quick
to see the application of neural networks to robotics in a problem-solving context, e.g.,
Reilly et al. (1987). Albus (1991) proposes an extensive system—theoretic approach of

hierarchically decomposing a problem for constructing arobot. He mentions the application

1
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of aevral networks for problem—solving in robots but does not specify the details. Waxman
and Bachelder (1992) have built arobot that classifies objects in its environment and exhibits
conditioned behavior based on the object class, using neural networks. These examples
illustrate the potential of neural network methodology for problem—solving by robots and
the relevance of this topic to this area in computer science.
1.1 Review of Literature on Strategies in Problem-solving

The topic of strategies has been dealt with extensively in the discipline of cognitive
development. One research thrust is to understand how children acquire and apply strategies
in the context of problem—solving as they grow older. The precise definition of a strategy
is subject to controversy (Bjorklund & Harnishfeger, 1990; Siegler & Jenkins, 1989). For
the purposes of this dissertation, 1 define strategy as a goal-directed, nonobligatory
procedure that is easy to execute and helps overcome the limitations of working memory.

Strategies may be internal or external. An example of an internal strategy is verbal
rehearsal to memorize a list of digits. Examples of external strategies include writing a
reminder note and adding two numbers by counting one’s fingers. Recent research efforts
incognitive development have begun to investigate external strategies because they are more
reliable, require less effort, and more accurate than internal strategies (Harris, 1980). Siegler
has been investigating how strategies (including external strategies) evolve among children
in addition, multiplication, time—telling and serial learning (McGilly & Seigler, 1989,
Siegler & Jenkins, 1989; Siegler, 1991). Bray etal. (1993) have been investigating the types
of external strategies that normal and mentally retarded children use in matching a set of
objects with another set of objects in a specified order.

The subject of strategy development is closely tied to that of metacognition.
Metacognition, simply put, refers to thinking about thinking. A person’s beliefs about self
and others, his knowledge about a given task and other environmental variables, and his

knowledge about existing strategies all play a role in the further development of strategies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Flavell, 1987). The beliefs and knowledge, which are jointly known as the “metacognitive
knowledge,” may be retrieved by that person either explicitly or implicitly. Brown (1987)
discusses the influence of self- regulation and regulation from others such as teachers and
peers on metacognition. Afterreviewing the literature on metacognition, she concludes that
the concept of “executive control” is needed to explain the role of metacognition in
problem-solving.

According to Sternberg’s (1985) theory of intelligence, metacognition is responsible for
the construction of strategies. The use of strategies involves the application to
problem-solving of performance components such as encoding, inference, mapping, etc.,
and of knowledge acquisition components such as selective encoding, selective
combination, and selective comparison. These components, in turn, guide the development
of strategies. During the course of the development of this theory, Sternberg observes that
adults typically spend more time on encoding to solve analogy problems than do children
(Sternberg & Rifkin, 1979). He notes that even though children’s practice of encoding only
one or a few features of a problem reduces the initial memory load, ultimately it extends their
solution time. We make use of this important observation in the construction of the
components neural network model, to be presented in Chapter four.

Siegler views the development of strategies as an evolutionary process (Siegler, 1991;
Siegler & Shipley, 1993). According to his theory of strategy development, there does not
exist a one—to-one correspondence between age and the use of a specific strategy. Instead,
at a given age, a person applies multiple strategies with different frequencies. Thus, as
strategies evolve, the frequency of strategy use varies and new strategies are discovered.
Based on evidence from many problem domains such as arithmetic, serial learning, time
telling, and formation of past tenses, Siegler postulates that strategy evolution is guided by
factors such as speed, accuracy, and novelty bias. If a given strategy results in faster or more

correctexecution of a given task, then a subject is likely to select that strategy again. Novelty
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bias refers to the element of curiosity that propels a subject to select a strategy that has been
recently discovered. Siegler derives this notion from Piaget’s axiom that “if a child has a
cognitive capability, he is going to put it to use.”

In the current research effort, we are interested in the construction of neural network
models that emulate the behavior of strategy evolution evidenced in the general
problem—solving of humans. We accomplish this by specifically modeling the
“object—target matching” task investigated by Bray et al. (1993), which forms our case study.
We note that the subjects in this investigation use multiple strategies in a single experimental
session on the same problem. Thus, the matching task meets the variability criterion in
strategy usage, laid out by Siegler in his theory. Moreover, experimental measurements,
readily available to us from Dr. Bray, include data on accuracy and strategy use. As the
reader can see, the conditions are proper for testing the generality of Siegler’s theory on
strategy development by considering the specific problem of object—target matching. The
predictions generated by neural network models that are constructed for solving this task can
be validated by the available empirical data.

In addition to the appropriateness of Siegler’s theory, we also find Sternberg’s empirical
studies on selective encoding relevant to the current research investigation. The relevance
of Siegler’s and Sternberg’s theories to our neural network models will be further elaborated
in Chapters three and four.

1.2 Review of Literature on Hybrid Methodology

Hybrid methodology is widely practiced in the field of neural networks. Hrycej (1992)
provides an excellent review of various plausible hybrid paradigms. The two most widely
used hybrid paradigms are based on learning and functionality, which we discuss here.
1.2.1 Hybrid Paradigm Based on Learning

Three types of learning schemes usually are identified in neural network literature:

unsupervised learning, supervised learning, and reinforcement learning. The hybrid
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paradigm based on learning combines all or parts of these schemes to derive a
neural-network—based solution to a given problem. A common architecture for two—phase
learning is illustrated in Figure 1.1. In this particular hybrid model, an unsupervised learning
module extracts the features from the input and a supervised learning module classifies the
features into one of the known classes. Since the dimensionality of the input space isreduced
in the feature extraction process, this hybrid model offers the advantage of making the work
of supervised learning module easier. Counterpropagation networks, hierarchical feature
map classifiers, and radial basis function networks all are based on this model (see Hertz,

Krogh, & Palmer, 1991 for details).

OUTPUT
: I output layer ] ,
supervised : - - :
learning , optional hidden layers .
module , '
: | input layer ] _
' I feature layer | )
unsupervised ! T .
learning module * '
: I input Jayer | '

INPUT

Figure 1.1. Architecture of a hybrid neural network model based on two—phase
learning. There exists a one—to-one correspondance between the input layer of
supervised learning module and the feature layer of unsupervised learning module
(Hrycej, 1992, p.87).
1.2.2 Hybrid Paradigm Based on Functionality

Neuroanatomical studies indicate that different parts of human brain subserve different
functions. Hybrid neural networks based on functionality are grounded on this simple
principle. Hrycej (1992) notes that the functional hybrid paradigm is quite useful for most

engineering and cognitive applications since these types of applications have inherent
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structure. These applications are more easily solved by hybrid neural networks rather than
by monolithic neural networks. In a hybrid solution, a task is decomposed into subtasks,
and neural networks called “neural components” that match the subtasks are selected. This
paradigm, thus, satisfies the principle of modularity, one of the key software engineering
principles. Because neural components are neural networks themselves developed by
various neural network researchers since the 1940’s, the functional hybrid paradigm
encourages the “reuse of code,” another key software engineering principle.

The development of neural network models based on this paradigm is also appealing
for the study of behavior because these models exhibit the property of “emergent behavior,”
which refers to behavior engendered by the network as a whole but not by individual
components. Braitenburg (1984) presents various artificial neural network models that
demonstrate such emergent behavior and identifies biological correlates of the hybrid
models.

Grossberg (1974, 1978) pioneered the development of the functional hybrid neural
network paradigm as applied to the study of behavior. He termed this concept the “method
of minimal anatomies” because it involves the construction of a minimal network based on
properties of biological neural networks. The network is analyzed rigorously using
mathematical tools to account for observed behavioral patterns. This methodology has led
Grossberg todiscover several neural components including an instar, an outstar, a sequencer,
and a gated dipole. We now briefly discuss some of the neural components developed by
Grossberg and others. The interested reader is referred to Levine (1991) who provides an
excellent review of various neural components that are available to a neural network builder.
The work of Levine (1991) places special emphasis on cognitive and neurological modeling.

An outstar is capable of storing any arbitrary spatial pattern (Grossberg, 1974) (Figure

1.2. [a]). During training, a spatial pattern across nodes Vi, Vy, ..,V,, is associated with
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activity at node Vo. After training, activity at node, Vg triggers recall of the stored pattern
across the series of nodes.

An instar is the complement of the outstar (Figure 1.2. [b]). During training, activity at
node Vy is associated with activity across nodes Vi, V,..,Vy, . After training, activity that
is a linear combination of activities across nodes Vy, V3, ..,V is triggered at node Vo
(Grossberg, 1974) .

In Grossberg’s formulation, a sequencer is a fully connected neural network which
learns to store a sequence of items in a specified order. Training of the network involves
repeated presentation of items to its nodes (Grossberg & Pepe, 1971). This is analogous to
arehearsal strategy which is common among humans of all ages. Full details of the workings

of a sequencer are presented in Chapter two.

Vo Vo
(a) (b)

Figure 1.2. Architectures of neural components: (a) outstar, (b) instar.

The neural component known as “gated dipole” compares the current values of stimulus
or reinforcement variables with recent past values of the same variables (Levine, 1991).
Figure 1.3 shows its architecture. A nonspecific input, 1, is fed to both channels in the
network, yj—to—x~to—x3 and y,-to-xp—to—x4 whereas an input J, such as electric shock

given to an animal in a conditioning experiment, is fed to left channel only as shown in
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Figure 1.3. The processes of transmitter depletion and feedforward competition in the
network lead to patterns of activity as shown in Figure 1.4. The network exhibits a transient
response after input J is removed which is analogous to relief observed in the animal after
shock is turned off. Levine and Leven (1993) designed a network of gated dipoles to model
consumer preferences for soft drinks. Their work takes into account not only sensory factors
such as taste of a product but also motivational factors such as novelty and security. They
conclude that sensory and motivational factors jointly explain the success or failure of a

product.

X4
X2
w2
Y1 y2
+ A +
J I

Figure 1.3. Schematic gated dipole network. J is a significant input while I is
nonspecific arousal (Levine, 1991).

In his theory on neuronal group selection, Edelman (1978, 1987) postulated that
neurons in the cerebral cortex organize into groups based on principles of confinement,
selection, and competition. A neuronal group is a functional component that elicits varying

levels of response to different stimuli. The organization of the cortex into neuronal groups
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offers a plausible explanation for the existence of plasticity in auditory, somatosensory, and

visual cortical areas of adult animals (Pearson, Finkel, & Edelman, 1987) .

on channel
activity x3
off channel
activity x4
time
INPUT

Figure 1.4. Typical time course of the channel outputs of a gated dipole (Levine, 1991).

The autoassociator type neural network models developed by such researchers as
Anderson et al. (1977) and Hopfield (1982) may be deemed as neural components that store
patterns by carving attractors in an energy landscape. These components may be termed
“neural attractors” and can be used as part of a hybrid network.

Other neural network researchers have used the hybrid paradigm based on functionality,
though often only implicitly. Edelman and Reeke (1982) in their Darwin II simulation
combine two subnetworks for pattern classification: one neural network responds to local
features of the stimulus, and the other to the global features. Levine and Prueitt (1989) study
the effects of frontal lobe damage by combining neural components such as gated dipoles
and outstars, and principles from the theory of adaptive resonance. Reilly and Villa (1990)
propose a hybrid neural network scheme based on barrel structures in the somatotopic maps
of rodents to be applied to computer and other communications systems.

In the context of the present research effort, which is concerned with the study of
strategies for problem-solving, we first emphasize the hybrid paradigm based on

functionality. As noted by Hrycej (1992), most cognitive and engineering applications have
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a built—in structure that makes the use of this paradigm feasible. The important problem of
object-target matching which is dealt with in this dissertation consists of a sequence of
instructions, three sets of objects, targets, and prepositions used in the instructions, and a set
of commonly used strategies. The interactions among all these entities give rise to the
structure in the problem.

Besides the hybrid paradigm based on functionality, we apply the hybrid paradigm
based on learning in the construction of neural networks discussed in Chapter three and
Chapter four. These latter networks are based on unsupervised learning, which refers to
self-organization and discovery of strategies by children, and on supervised learning, which
refers to the external presentation of accuracy information to the network.

It is not known whether strategy development in the context of object—target matching
and arithmetic has been studied in the framework of neural networks previously.

1.3 Overview of the Dissertation

In the current chapter, we have presented the significance of the current investigation
and briefly reviewed literature from cognitive psychology and cognitive development as
it pertains to problem-solving strategies. We also reviewed briefly the literature on hybrid
neural network methodology.

In Chapter two, we introduce the object—target matching task which has been devised
by Bray et al. (1993) for the purpose of investigating the differences in strategy use among
children of various chronological and intelligence groups. We view this task as consisting
of two subtasks: storage of a sequence of instructions and association of the stored
instructions with a set of objects, targets, and prepositions. We present two neural network
models designed to perform these two subtasks. The first neural network, a “sequence
generator,” stores and recalls a sequence of instructions. The second neural network, a
“sequence—associator,” is a hybrid of the sequence generator neural network and a series of

associators that can associate the instructions with the sets of objects, targets, and
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prepositions. We carry out computer simulations of these two models and present the results
of the simulations using two interpretations: a probabilistic interpretation and a maximum
activation interpretation. We also study the role of a postsynaptic threshold in serial learning
and of a nonspecific arousal mechanism in serial learning as well as in object—target
matching.

In Chapter three, we extend the sequence-associator neural network so that it can
simulate the behavior of strategy selection and evolution in the context of the object—target
matching task. The new model, known as the “novelty bias neural network,” is based on the
novelty bias and accuracy factors suggested by Siegler. In this model, we hypothesize that
strategy selection as observed by Bray et al. (1993) in various chronological and intelligence
groups are guided by these two mechanisms. We study the effects of strategy use on the recall
accuracy of the various entities involved in the task.

We present a neural network model that manifests the behavior of strategy selection and
evolution in Chapter four, similar to the novelty bias neural network model presented in
Chapter three. The model in Chapter four, however, known as the “components neural
network,” eliminates novelty bias as a controlling factor in siraicgy evolution. Instead, it
incorporates the idea of strategy components. The model is based on the hypothesis that
human subjects, as suggested by the work of Sternberg and others, selectively encode
accuracy information about the various components of strategies and that the ability to
encode this information increases with experience with the matching task. First, the effects
of strategy use by the model on recall accuracy are studied, and then the frequency of strategy
selection by the model is compared to that of the subjects in the study of Bray et al (1993).

In Chapter five, we draw some conclusions based on our experience with neural network
modeling in earlier chapters. Specifically, we discuss how the neural network models
presented in Chapters three and four meet the five empirical phenomena which Siegler and

Shipley (1993) associate with problem-solving strategies. We also address the question of
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how the neural network models presented in this dissertation can be further enhanced and/or

applied to related cognitive tasks, business applications and robotics.
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CHAPTER 2

A HYBRID SEQUENCE - ASSOCIATOR NEURAL
NETWORK MODEL

The study of Bray et al. (1993) provides one of the primary motivations behind the
construction of all neural network models presented in this dissertation. In this chapter, we
briefly review the experimental setup utilized in their study for investigating differences in
the use of external memory strategies among mentally retarded and nonretarded children.
We henceforth refer to the task involved in this study as the “object~target matching task.”
We follow the review with discussion of two neural network models: a sequence generator
model and a hybrid sequence-associator model. The former model learns to generate a
sequence of instructions. The latter model consists of a sequence generator as its neural
component and additionally consists of an outstar-like associator that associates the
generated instructions with cognitive mappings of entities. The outcomes of computer
simulations of these models are presented based on two interpretations: a normalized
activation scheme and maximum activation scheme. Lastly, we study the effects of a
nonspecific arousal mechanism on the performance of the models.

2.1 Motivation

Humans tend to use a variety of strategies in improving their memory performance in
daily life. Bray et al. (1993) investigated the differences between mentally retarded and
nonretarded children in the use of external memory strategies. External memory strategies
refer 1o the use of “external” memory aids such as putting objects in special places, writing

reminder notes, and asking other people to help remember something.

13
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An experimental setup designed to facilitate the testing of the use of external strategies
and utilized in the study of Bray et al. (1993) is shown in Figure 2.1. A subject is asked to
listen 1o a sequence of instructions and then carry them out. An instruction such as “put the
apple on the couch” always has the format of “Put <object> <preposition> <target>.” One
of the 12 toy objects is to be matched with one of the 6 toy targets. Only two prepositions,
“on” and “in front of,” are used as part of the instructions. Throughout the current
investigation, we only consider sequences of four instructions. An example of such a
sequence is given below:

(1) **Put the apple on the couch.”

(2) “Put the penny in front of the TV.”

(3) “Put the rock in front of the table.”

(4) “Put the stamp on the refrigerator.”

Targets

Yellow Wooden Board

D@&@@/§®i

Movable Objects :

1L

Figure 2.1 Experimental setup used in the study of external memory strategies
(Bray et al., 1993).
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While listening to the sequence, the children are allowed to use external strategies. A
bell after the fourth instruction is a signal to begin carrying out the instructions in the order
given. In variants of this experiment, order is waived, but we are concerned exclusively with
the ordered case. Typical strategies that children use while listening are holding an object
in one hand, pointing an object to a target, or moving an object close to a target.

Complex human behavior, in general, may be viewed as a product of multiple
subsystems working together. We adopt this viewpoint in modeling this experimental task.
The first neural network model that we present learns to store and recall a sequence of
instructions and is henceforth referred to as the “sequence generator.” Such leaming is
analogous to the development of seriality in children who acquire this concept over a period
of many years as they actively participate in everyday life. This model is to be viewed as
an independent network that can be embedded in or otherwise collaborate with another
network in order to effect behavior.

After the sequence generator has learned the concept of seriality, it is coordinated with
a second model for learning the associations between objects, prepositions, and targets in
correct sequence. The second model may be viewed as a hybrid neural network that consists
of a preconditioned sequence network and an associative network that is learned as a part
of a situation the subject is expected to master. This model is henceforth referred to as the
“sequence associator.” The hybrid of a model that represents past learning and a mode! that
quickly learns current situation—specific associations has great generality for modeling
behavior of both humans and robots. Villa and Reilly (1992) review the role of hierarchical
structures in building hybrid systems.

2.2 A Model to Learn the Serial Order of Instructions

Grossberg (1969), Grossberg and Pepe (1971), and Grossberg (1978) present neural

network models for serial learning of a list of items. We find these models relevant in the

simulation of the serial learning component of the Bray and coworkers (1993)’ experiment.
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However, these models need adjustment to exert refined control over both forward and
backward associations (among the units of a list). In this chapter, emphasis falls on control
of backward associations.

In the current modeling, an instruction unit activates object, preposition and target units
as well as the next instruction unit. If backward associations are present, they sustain the
activations of previous instruction units over longer durations and lead to continued recall
of items of previous instructions. This is undesirable since frequent repeated recall of the
items is not observed in humans. Only current instructions should be activated. For the
purposes of modeling the psychological experiment at hand, backward associations need to
be attenuated.

We introduce a postsynaptic threshold as a neurologically feasible mechanism to
attenuate backward associations. Edelman (1987) discusses the role of such a threshold in
modifying synaptic efficacy and in organizing cortical neurons into topographical maps, but
the effects of such a mechanism have not been actively explored in the context of a working
neural network model.

2.2.1 Training

Qur first version of a sequence generator learns to store and recall a sequence of
instructions. Its architecture is displayed in Figure 2.2a. All units are fully connected. The
four instruction units correspond to the four instructions in the experiment.

Priming signal

Instruction units

Figure 2.2a. A sequence generator neural network to learn a sequence of instructions.
A priming signal stimulates the network to recall the learned sequence.
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In our training procedure, we have initialized activation of instruction units to zero and
initialized the excitatory connections among them to small random values. The first
instruction unit is then presented with external input for one cycle and the activations and
weights are updated using equations (2.1) and (2.2).

Activation update equation for instruction units :

a(t+1) = (1 —a)a® -+ gl w0 +I0) @1
where J
a(t) = activation of unit i at time t
a = decay rale
B = net input factor
I', = presynaptic threshold
[x]‘r1=xonlyif_le'l
= 0.0 ofherwise
w; (1) = connection strength from unit j to unit i ar time t
I; (t) = external input to unit i at time L

Weight update equation :

wo i+ 1) = w () + 6y (g + 1) g+ 1) 5 (2.2)
where

wii (1) = connection strength from unit i 10 unit j at time t

0, = learning rate

a; (0, a; () = presynaptic and postsynaptic activatons at time ¢

Iy, I's = presynaptic and postsynaptic thresholds.

In the next cycle, the second instruction unit is presented with external input; the
activations and weights are updated for all units until the last instruction unit. The network
is then run without any external stimulus. This corresponds to a time interval elapsed
between presentations of two sequences.

Then the whole procedure is repeated starting with the first instruction unit. The
repetitions during the training phase correspond to the experience of a child with everyday
tasks from infancy, which results in the learning of the concept of seriality. The number of
repetitions in the computer simulation depends on chosen parameter values. Typical
parameters that we have used in computer simulations are listed in Table 2.1. The weights

in this model do not stabilize with increased training, so that, when the maximum weight
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exceeds 1.0, we halt the training. With the parameters specified in Table 2.1, we have found
nine repetitions adequate. Due to the absence of randomness in the processing of the model,
the weights are found not to vary from one run to another. The effects of postsynaptic
threshold on the development of weights is seen from Table 2.1.

At a lower value of this threshold (0.2), some backward associations are observed,
whereas no such associations are observed at a higher value (0.4). Therefore, on all our
subsequent simulations we have set the postsynaptic threshold to 0.4. We also note here that
forward associations are established if the postsynaptic threshold is greater than the
presynaptic threshold. Otherwise, forward associations as well as backward associations are

established, leading to interference in the recall of the sequence.

Table 2.1, Weights at the end of training phase in the sequence gengrator network, The

postsynapti¢ threshold I is set to 0.2 (0.4).
Sending
:Jr:zt:ucuon Receiving instruction unit
1 2 3 4
1 0.00 0.355 0.05 0.05
(0.00) (0.354) (0.05) (0.05)
2 0.05 0.00 0.545 0.209
(0.05) (0.00) (0.465) (0.05)
3 0.05 0.220 0.00 0.797
(0.05) (0.05) (0.00) (0.536)
4 0.05 0.05 0.581 0.00
(0.05) (0.05) (0.05) (0.00)

Parameters used in this simulation : a=0.7, B=0.7, 'y =0.1, I'=0.1, 03=0.4. The weights for
I'3 = 0.4 are shown in parentheses.

2.2.2 Recall

During the recall phase, the first instruction unit is stimulated with a priming signal, which
corresponds to recall of the instructions at the sound of the bell in the laboratory experiment.
The network is allowed to cycle without any weight modification or further external input.

The changes in activations of all instruction units are plotted in Figure 2.3a.
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The activations of instruction units rise and fall across cycles. The first instruction
reaches its peak initially followed by the second instruction unit which is followed by the
third unit. Lastly, the fourth instruction unit reaches its peak. The order of rise and fall of
activations of instruction units indicates that the network is recalling the instructions in
correct sequence. However, the peaks of activations are diminished as recall progresses

toward the end of the sequence.

1.0+
7 X X 1
A 2
} . 4
0.6
activation 4
0.4+
A
0.2 Ve,
a !,-’ - o e
//'/ x/v,_/"// ™ ‘~\ ~~~~~ ‘\ ‘‘‘‘‘ .
% S M e —
i 2 il 4 5 7

Figure 2.3a. Recall of instruction units in the sequence generator network. A
priming signal stimulates the first instruction unit at the beginning of recall. A
nonspecific arousal signal is absent in this case.

The recall performance of the network is assessed using the “normalized activation
scheme,” which is analogous to the “probabilistic scheme” of McClelland and Rumelhart
(1988). These authors have successfully applied the latter scheme to cognitive modeling
such as modeling effects of context and stimulus on word perception and speech perception.
The normalized activation scheme consists of computing averages of activations over

consecutive cycles and inferring recall accuracy from the running averages. Recall of an
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entity is deemed accurate if its normalized activation is the highest in the cycle of its training.
The formula for computing normalized activation of recall is stated by equation (2.3).

normalized activation of unit, i at time t :

0 = =2
i = - 2.3
Sz, 0 (2.3)
k
where
a; (1) = average activation of unit i at time 1
=Aag @O+ A-A)a ¢—-1) 2.4)

k ranges over units of the same class, for example, objects
A is a weighting factor; in current implementation, set at 0.5.

Figure 2.3billustrates changes in normalized activations for all four instructions in the
sequence generator model with time. Instruction one has the highest normalized activation
of recall as represented by the white bar at cycle one in Figure 2.3b. Atcycle two, instruction
two has the highest normalized activation of recall, as represented by the black bar and so
on. Thus the network has self-organized to store and recall a sequence of instructions in the
correct order and has a recall accuracy of 100%.

Figure 2.3balso indicates that normalized activation for instruction unit one atcycle one
is greater than that for instruction two at cycle two. Thus, the network displays a strong
primacy effectinits activation levels. Furthermore, the normalized activation for instruction
unit four at cycle four is greater than that for instruction three at cycle three. Thus, the
network also displays a recency effect in its activation levels. Overall, the network exhibits
a bowed pattern of recall.

In the second version of our sequence generator network, we studied the role of a
nonspecific arousal signal on recall as a neurologically feasible, compensating mechanism
for diminishing peak activations. At the beginning of recall, such a signal stimulates all
instruction units (Figure 2.2b). In addition to the nonspecific arousal signal, the first
instruction unit receives a priming signal mentioned above. The effects of combined

priming and nonspecific arousal on recall are illustrated in Figure 2.3c.
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Figure 2.3b. Normalized recall of instruction units in sequence generator network. A
priming signal stimulates the first unit during the beginning of recall. A nonspecific
arousal signal is absent in this case. “+” above a bar indicates correct recall of the
corresponding entity.

nonspecific arousal

priming signal

instruction units

Figure 2.2b. A sequence generator neural network to learn a sequence of instructions,
with a nonspecific arousal signal. As before, a priming signal stimulates the network to
recall the learned sequence.

With nonspecific arousal, the network recalls the first, second, and fourth instructions
correctly and does not recall instruction three correctly; thus, the network has a 75% recall
accuracy (Figure 2.3¢c). The inspection of activations of instruction units over time indicates

that nonspecific arousal has indeed boosted their values including peaks. The primacy effect
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has become weaker as indicated by a drop in the normalized activation of instruction one,
as seen in Figure 2.3c. At the same time, the normalized activation of instructions three and
four has increased at cycle one, two, and three, indicating a stronger recency effect. It is
known that children differ in the degree of primacy and recency which they demonstrate in
actual experiments. Qur simulation suggests that primacy and recency may be influenced

by cognitive and /or neural mechanisms similar to nonspecific arousal.

Recall of Instruction
“Arousal”

LN —

0.8
0.7-
0.6-
normalized 031
activation 0.4+
0.3+
0.24
0.1

0

1 2 3 |
cycle number

Figure 2.3c. Normalized recall of instruction units in sequence generator neural
network in the presence of a nonspecific arousal signal. *“+ above the bar indicates
correct recall of the corresponding entity and “~ indicates incorrect recall.

2.3 A Model to Execute a Sequence of Instructions

The hybrid model that we have developed and tested consists of two components: a
sequence generator component which leamns to store and recall a sequence of instructions
and an associator neural component which learns to store and recall different cognitive maps
for an arbitrary set of instruction units (Figure 2.4).

Our hybrid model, referred to as “sequence-associator neural network,” has features

similar to an avalanche model, which is used for learning arbitrary spatio-temporal patterns
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(Grossberg, 1978). Unlike Grossberg’s model, the sequence—associator is concerned with
temporal control of several spatial maps rather than a single spatial map. Each spatial map
represents a cognitive mapping for a class made up of several items, for example, objects.
Within a given cognitive map, lateral inhibitions exist among the items of that class so that
at any given time only a few items are activated.

The architecture of the sequence—associator neural network is illustrated in Figure 2.4.
Each instruction unit sends excitatory connections to all object, preposition, and target units.
Each item within a class is inhibited by other items within that class. This lateral inhibition
serves to enhance the activity of units with high activation and to suppress the activity of units
with low activation,

2.3.1 Training

At the beginning of the training phase, the connections among instruction units in the
sequence generator component are initialized to those weights which have been learned
during the training phase for the sequence generator neural network previously. This
corresponds to a child having already learned the concept of seriality before participating
in an experiment in the psychologist’ laboratory. These weights do not change during
training.

The weights between instruction units and item units, however, do undergo
modification during training. They are initialized to small random values (ranging from 0.0
to 0.05). The inhibitory connections among items of the same class have fixed weights,
which are each assigned a value of —0.2. The predefined units of the sequence generator
are effectively static, while the units of the associator undergo changes, illustrating the
hybrid nature of the learning mechanisms.

In a typical simulation, the network is trained on the following sequence of instructions
in the given order: (1) Put the apple on the couch, (2) Put the penny in front of the TV, (3)

Put the rock in front of the table, (4) Put the stamp on the refrigerator.
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Whenever an instruction is presented to the hybrid network, the corresponding
instruction unit, object unit, preposition unit, and target unit receive external input.
Activations and modifiable weights are updated using equations (2.4) and (2.5),

respectively.

nonspecific arousal

priming signal

instruction

preposition

units target units

object units

Figure 2.4. Architecture of the sequence—associator neural network. This is a hybrid of
sequence generator, associator, and nonspecific arousal.

The learning rate for connections between instruction units and item units is set high so
that one cycle is enough to partially learn associations between instructions and
corresponding items that make up the instructions. Training consists of only one cycle just
as the child in the psychological experiment hears the instructions only once. Some of the

parameter values used in a typical simulation are given below:
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2.3.2 Recall

As with the sequence generator model, we have studied the role of priming and
nonspecific arousal on the normalized activations for item units in the sequence—associator
model. The first instruction unit is stimulated with a priming signal at the beginning of recall
(Figure 2.4). Then the network is run without any further external input. The activation
values of objects, prepositions and targets are observed by the modeler. The normalized
activations of various objects used in a typical simulation (apple, penny, rock, and stamp)
are illustrated in Figure 2.5a.

Activation update equation for item units:

g+ 1) = (1-a)a®+B> (g0 w ) +7> q lam’ + 10
J k

(24)
where
w;(1) = connection strength from instruction unit jto item unit i at time 1.
y = net inhibition factor
q = fixed inhibitory strength among item units of the same class

Other terms are same as specified in eq. (1).

Weight updare equation:
- r, r
w,-j(t +1) = wl.j(t) + 6, [at+ 1) '+ l[aft + 1)] 73 (2.5)
where
wi(t) = connection strength from instruction unit i to item unit j at time 1.
at + 1) = activation of instruction unit i at time t+ 1
aft + 1) = activation of item unit j at time 1+ 1
I'y, I's = presynaptic and postsynaptic thresholds.
6, = learning rate

a =07, 8 =07y =02 ¢ =020 =01, [, =01, I, = 02,
6, = 02

We note here that there is variation neither in the external inputs presented to the units
nor in the activation processing of the units, in both sequence generator and
sequence—associator. Moreover, each object and target is repeated only once in a given

instruction sequence in the simulations of sequence-associator neural network. For these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26
reasons, the performance of the models as measured by recall accuracy is independent of any
particular combination of objects and targets. This independence is not valid in the case of
prepositions where they are repeated twice ina given instruction sequence and thus, the order
of prepositions determines the accuracy of recall.

With no arousal component, the hybrid network recalls the objects accurately in correct
order with the exception of rock which has higher normalized activation than stamp in the
fourth cycle (as indicated by unequal heights of the coarsely and densely shaded bars in
Figure 2.5a). Figure 2.5a shows that three out of four objects are being correctly recalled

and hence, the network exhibits a recall accuracy of 75% for objects.

Recall of Objects C—1 apple
“No Arousal” EEEN  penny
rock
stamp
0.6-
0.5
0.44
0.3
normalized

activation 0.2-

0.1

0

I 2 3 4
cycle number

Figure 2.5a. Normalized recall of objects in the sequence—associator model in the
absence of a nonspecific arousal signal.

The normalized activation of object one (apple) is significantly larger than that of other
objects at the beginning of recall (as indicated by the height of the white bar in Figure 2.5a).
Thus, the activation levels of the model exhibit a primacy effect. The normalized activation
of the object in the second instruction (penny) is slightly less than that of the other three

objects (as indicated by the height of the black barin Figure 2.5a). Thus the activation levels
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of the model exhibit slight bowing in a manner similar to that obtained for actual recall in
the experiment by Bray et al. (1993).

The hybrid model with no arousal component exhibits identical responses for targets
and objects and exhibits a recall accuracy of 75% for targets. This is because objects and
targets are treated identically in the training phase: each object or target is not repeated more
than once and an object and a target are presented to the network with equal amounts of
external inputs.

In this particular simulation run, as mentioned above, the following combination of
prepositions has been used in that order in training the sequence—associator network: (on,
in front of, in front of, on). The network recalls prepositions accurately in correct order
except for the last instruction, where “in front of”” has a higher normalized activation than
“on” (Figure 2.6a). Figure 2.6a also illustrates the absence of a bowing pattern in the
activation levels of prepositions.

Recall of Prepositions 1 on

0.8 “No Arousal” I in front of

0.74
0.6
0.54
0.44

normalized
activation 0.34

0.24
0.14
0

1 2 3 4
cycle number
Figure 2.6a. Normaized recall of prepositions in the sequence—associator model in the
absence of a nonspecific arousal signal. This particular recall is obtained after training

the network with an instruction sequence that contained the combination of (on, in front
of, in front of, on).
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The performance of the sequence-associator neural network on prepositions is
summarized in Table 2.2 which indicates that according to the normalized activation
interpretation, the recall accuracy of prepositions in the absence of nonspecific arousal varies
from 75% to 100%. The variation in accuracy is due to the fact that a preposition is used
multiple times in the same instruction sequence. The persistent activity in a preposition unit
as a result of multiple usage of that preposition causes interference in the recall of the other
preposition by the network. Thus, the order of prepositions determines whether the

interference is favorable or not to correct recall.

] apple

Recall of Object B penny

“Arousal” Teeay rock

stamp
0.6
0.5
0.4

normalized () 3]
activation

0.2

0.14

0-

2 3 4
cycle number

Figure 2.5b. Normalized recall of objects in the sequence-associator model in the
presence of a nonspecific arousal signal.

In the sequence—associator model with an arousal component, all instruction units were
stimulated with a nonspecific arousal signal at the beginning of recall, along with a priming
signal to the first instruction unit. Then the network was run without any external input. The
normalized activations for objects and prepositions are illustrated in Figures 2.5b and 2.6b

respectively. Objects in the third and fourth instructions dominate the other two objects
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throughout the duration of recall. The preposition “in front of” dominates the preposition
“on” throughout the duration of recall for this particular combination of (on, in front of, in
frontof , on) used in training the network. Targets exhibitresponse patterns that are identical

to those of objects.

Table 2.2, Recall of prepositions in_the sgqugngg—assggia];gr neural network when g

non ifi sal signal i nt. Evaluation of recall i S n_the normaliz
activation scheme.

Number Combination Accuracy
1 on, on, front, front 100%
2 on, front, on, front 75%
3 on, front, front, on 75%
4 front, front, on, on 100%
5 front, on, front, on 75%
6 front, on, on, front 75%
Recall of Prepositions C— on
0.8 “Arousal” M i front of
0.7
0.6 + +
0.5-
0.4 =
normalized
activation 0.3-
0.2
0.14
0
1 2 3 4

cycle number
Figure 2.6b. Normalized recall of prepositions in the sequence-associator model in the
presence of a nonspecific arousal signal. This particular recall is obtained after training
the network with an instruction sequence that contained the combination of (on, in
front of, in front of, on).
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Overall, presence of the nonspecific arousal mechanism causes a strong recency effect
in the recall of all items. In its presence, the network exhibits a recall accuracy of 50% each
for objects and targets. The accuracy of recall by the network on various combinations of
prepositions varies from 50% to 75%, as summarized in Table 2.3.
Table 2.3, Recall of prepositions in _th nce—associator_neura! network when

non ific ar I signal 1s present, Evaluation of recall i n_the normaliz
activation scheme.

Number Combination Accuracy
1 on, on, front, front 50%
2 on, front, on, front 75%
3 on, front, front, on 50%
4 front, front, on, on 50%
5 front, on, front, on 75%
6 front, on, on, front 50%

2.4 Interpretation of the Results Using Maximum Activation

The activations of units in the sequencer model as well as the sequence-associator
model, have so far been interpreted using the normalized activation scheme stated by
equation (2.3). As mentioned previously, this scheme is based on Luce’s (1959) choice
model and has been successfully applied to modeling of cognitive tasks such as word
perception and speech perception (McClelland & Rumelhart, 1988). In more recent
analysis, McClelland (1991) has observed that the normalized interpretation leads to a
distortion in the correspondence between interactive activation neural network models that
have beenused in studying these tasks, and classical models of perception such as the signal
detection model and the Luce’s choice model. He has attributed the distortion to competition
and nonlinearity processes that act upon the units within a pool in the neural network models.

McClelland (1991) has further observed that if a unit with the highest activation in its
pool is chosen as the response choice among the many alternatives, then the distortion in the

correspondence between the classical and neural network models is eliminated. In light of
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the new study, we reinterpret the results of sequence generator and sequence-associator
models using maximum activation as the response criterion. A unit in a pool is deemed to
be correctly recalled if (i) its activation exceeds the firing threshold, (ii) it has the highest
activation in its pool, and (iii) it meets conditions (i) and (ii) at the appropriate time interval
during recall.

Figures 2.7a and 2.7b show recall of instructions using the new interpretation in the
absence and presence of nonspecific arousal respectively. Figure 2.7a indicates that in the
absence of nonspecific arousal, the activations of second and third instruction units are
approximately equal in the third cycle. Also, the activations of third and fourth instruction
units are approximately equal in the fourth cycle. Figure 2.7b indicates that the activations
of all instructions are discriminated from each other by the presence of nonspecific arousal.
However, the recall accuracy for instructions both in the absence and presence of nonspecific
arousal is 100%. When these results are compared to the previous results obtained using the
normalized activation interpretation (refer to Figures 2.3b and 2.3c), it may be noted that the
newer results show weakerrecency effect and stronger primacy effect. This is due to the fact
that the normalized activation interpretation has the effect of smoothing caused by the
averaging of activations whereas the “maximum activation interpretation” does not require
averaging and, therefore, does not show smoothing effect.

Using the maximum activation interpretation, the recall of objects in the absence of
nonspecific arousal is 25% (refer to Figure 2.8a). Even though the pattern of activation
exhibits recall similar to that in the normalized activation interpretation (refer to Figure
2.5a), Figure 2.8a indicates that many of the activations fall below the firing threshold of
0.1 which leads to the low accuracy rate. Duringrecall, the nonspecific arousal signal boosts
the activations of most of the object units above the firing threshold and causes a strong
recency effect (Figure 2.8b). The accuracy of recall of objects in this case is 50%. This

outcome is analogous to that obtained using the normalized activation interpretation (refer
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to Figure 2.5b). The results for targets using the maximum activation interpretation are
identical to those for objects because of the fact that equal amounts of external inputs are
used in training both objects and targets.

Recall of In ion
1.1 “No Arousal”

1.04

0.9-

0.8-

0.7-
0.6
activation ¢ 5|
0.4-

0.3

0.2

0.14—|— —

0

cycle number

Figure 2.7a. Recall of instruction units in the sequence generator model in the absence
of a nonspecific arousal signal. The model is interpreted using the maximum activation
scheme. The dashed line indicates the firing threshold, “+ above a bar indicates
correct recall of corresponding entity and “~” indicates incorrect recall.

The recall of prepositions in the absence of nonspecific arousal when the combination
of (on, in front of, in front of, on) is used in the instruction presentation phase is shown in
Figure 2.9a.

The order of recall as indicated by the pattern of activation, which is evidenced in this
figure, is similar to that in the previous interpretation (compare to Figure 2.6a). However,
recall accuracy in the current interpretation is 50% compared to 75% in the previous
interpretation because the activation of “in front of”” unit falls below the firing threshold in
cycle two. Overall, the network recalls prepositions with an accuracy of 50% to 75% in the
absence of nonspecific arousal, as summarized in Table 2.4. The exact amount of accuracy

depends on the order of prepositions used in training the network.
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Figure 2.7b. Recall of instruction units in the sequence generator model in the presence
of a nonspecific arousal signal. Refer to Figure 2.7a for an explanation of notation.

Recall of Objects
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0.2
activation
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Figure 2.8a. Recall of objects in the sequence—associator mode! in the absence of a
nonspecific arousal signal. The model is interpreted using maximum activation scheme.
Refer to Figure 2.7a for further explanation of notation.

The recall of prepositions in the presence of nonspecific arousal for the combination of

(on, in front of, in front of, on) is shown in Figure 2.9b. The order of recall as indicated by
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the pattern of activation in this figure is similar to thatin the previous interpretation (compare
Figure 2.9b to Figure 2.6b). The network recalls this particular combination of prepositions
with an accuracy of 50%. Overall, the recall accuracy varies from 50% to 75%, as
summarized in Table 2.5, based on the order of prepositions used in training the network.
2.5 Discussion and Conclusions

The sequence generator neural network that we have presented self—organizes to store
and recall a sequence of instructions in the order in which they were presented. The
postsynaptic threshold term in the learning rule plays an important role in attenuating
backward assoc_:iations. This term, when later used in the hybrid sequence—associator neural
network, offers greater flexibility in the control of associations than the presynaptic
threshold term alone as used in the Hebbian learning rule.

Table 2.4. Recall of prepositions in the sequence-associator neural network when a
nonspecific arousal signal is absent. Evaluation of recall is based on maximum activation

scheme,
Number Combination Accuracy
1 on, on, front, front 75%
2 on, front, on, front 50%
3 on, front, front, on 50%
4 front, front, on, on 75%
5 front, on, front, on 50%
6 front, on, on, front 50%

The associations between instructions and item units are learned in a single time step
in contrast to many time steps that are needed to learn the temporal associations among
consecutive instructions. Qur observation regarding the difficulty of learning temporal
associations compared to spatial associations agrees with the work of other researchers.
Sompolinsky and Kanter (1986) and Kleinfeld (1986) in accordance with this observation

make use of fast and slow connections for automatic generation of temporal sequences.
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Figure 2.8b. Recall of objects in the sequence-associator model in the presence of a

nonspecific arousal signal. The model 1s interpreted using maximum activation

scheme. Refer to Figure 2.7a for further explanation of notation.
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Figure 2.9a. Recall of prepositions in the sequence—associator model in the absence of a
nonspecific arousal signal. This particular recall is obtained after training the network
with an instruction sequence that contained the combination of (on, in front of, in front
of, on). The model is interpreted using maximum activation scheme. Refer to Figure
2.7a for further explanation of notation.
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The recall accuracy of instructions in the absence of nonspecific arousal in both readout
schemes is 100%. The presence of arousal causes strong recency effect in activation levels
in both schemes. This effect, in turn, results in a drop in accuracy to 75% in the normalized
activation scheme. However, the recency effect enhances discrimination of instructions in
the maximum activation scheme and the recall accuracy remains at 100%.

The normalized activation scheme resulted in an accuracy of 75% for objects and
targets, and of 75 — 100% for prepositions in the absence of nonspecific arousal signal. The
maximum activation scheme resulted in an accuracy of 25% for objects and targets, and of
50 — 75% for prepositions under the same condition. The lower accuracy that resulted from
using maximum activation scheme is explained by the fact that the network parameters in
this scheme were not tuned for best performance. The same set of parameters that were used
in maximum activation scheme were kept constant for comparative study. As a result, many
activations did not exceed the firing threshold and thus lower recall accuracy was obtained

in the maximum activation scheme.

Table 2.5, Recall of pr itions_in th ncer— iator neural network when
nonspecific arousal signal is present. Evaluation of recall is based on maximum activation
scheme,
Number Combination Accuracy

1 on, on, front, front 75%

2 on, front, on, front 75%

3 on, front, front, on 50%

4 front, front, on, on 75%

5 front, on, front, on 75%

6 front, on, on, front 50%

Thus, based on the computer simulations in this chapter, we could not conclude whether
one readout scheme is better than the other. However, as discussed by McClelland (1991)
in detail, the normalized activation scheme is based on classical perception models and is

not well-suited for interpreting the output of neural network models if the units in them
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involve competition and nonlinearity processes. For this reason, we adopt exclusively the
maximum activation scheme for interpreting the results of neural network models on

strategy selection and evolution to be presented in Chapters three and four.

Recall of Prepositions —3 on
“Arousal” R ), front of
0.3 +
0.2 -
activation
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cycle number

Figure 2.9b. Recall of prepositions in the sequence—associator model in the presence of
a nonspecific arousal signal. This particular recall is obtained after training the
network with an instruction sequence that contained the combination of (on, in front of,
in front of, on). The model is interpreted using maximum activation scheme. Refer to
Figure 2.7a for further explanation of notation.

Priming in the sequence generator network causes strong primacy effect on the recall
of instructions, whereas it causes a somewhat diminished primacy effect on the recall of
objects, targets, and prepositions in the hybrid sequence—associator network.

Nonspecific arousal has the effect of uniformly boosting activations of all units, which
otherwise have diminished peaks toward the end of recall. It causes strong recency effects
in both models. The recency effect is so strong in the hybrid sequence—associator model that
it interferes with correct recall of initial items (see Figures 2.5b, 2.6b, 2.8b, and 2.9b). For
this reason, the nonspecific arousal mechanism is not invoked in extensions of the
sequence-associator neural network, which are undertaken in Chapters three and four for the

purpose of studying strategy development.
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The hybrid model in its present status neglects the time delays between the presentations

of objects and prepositions and targets that are evident in the experiment. It offers a
framework for analyzing the role of external strategies on memory recall. The hybrid of
models for previously learned and currently learned information provides a promising
framework for further development of cognitive and/or neural models for humans and

robots.
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CHAPTER 3

A NOVELTY BIAS NEURAL NETWORK MODEL OF
STRATEGY SELECTION AND EVOLUTION

In this chapter, we extend the hybrid sequence-associator model presented in Chapter
two to account for strategy selection and evolution behavior in children in the “object-target
matching task.” The model is referred to as the “novelty bias neural network” and contains
three new components: strategy selection, accuracy, and novelty bias. The choice of these
additional components is based on Siegler’s theory of strategy selection and evolution,
which postulates that strategy development is controlled by factors such as accuracy, speed,
and novelty bias. We first elaborate on the relevance of Siegler’s theory to the development
of the novelty bias neural network model. We follow this with a discussion of the
architecture of the model. Last, we present a discussion of computer simulations and
compare outcomes of the simulations with observed strategy behavior in children.

3.1 Motivation

Children use a variety of strategies in the object—target matching task described in
Chapter two. Examples of some commonly used strategies are pointing at an object, moving
an object with orientation toward a target, and placing an object in front of or on top of a
wooden separator directly across from a target. All these strategies may be incorporated into
three  categories: object encoding only, object-target encoding, and
object-target—preposition encoding. The investigations of Bray et al. (1993) show that older
children use “object—target encoding” and/or “object—target—preposition encoding” more

frequently than younger children. Younger children tend to use “object encoding only’ most
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frequently and, to a lesser degree, “object—target encoding.” Even though Bray et al. (1993)
observe that the subjects use a combination of these strategies in a given instruction
sequence, we assume in our computer simulations that they use a single strategy throughout
the instruction sequence. In a broader context, we are interested in identifying the various
cognitive mechanisms that mediate such developmental differences in strategy use.

Siegler and his colleagues empirically determined that for a given task a child will use
multiple strategies. This is true in a number of different tasks such as addition, subtraction,
multiplication, reading, time telling, and serial recall (McGilly & Siegler, 1989; Siegler &
Jenkins, 1989; Siegler, 1991). According to their findings, children switch from one strategy
to another on a given problem even though a particular strategy may work well on that
problem. Siegler (1991) proposes that cognitive factors such as accuracy of outcome, speed
of execution, and novelty of strategy are responsible for the variability in strategy selection
and for the evolution of strategies. Strategies that result in higher accuracy, those that are
faster and those that are newer are generally preferred over others, but there is variability in
strategy selection, and the evolution of strategy selection is gradual.

We hypothesize that factors similar to these may also be responsible for the selection
and evolution of strategies in the object—target matching task. A model constructed on this
hypothesis should explain the differences in strategy choices of different age groups on this
task. We turn to neural network models because they exhibit the characteristics of
adaptability, generalization, and neurological plausibility. In the current effort, we construct
a neural network model based on the assumption that accuracy and novelty are two key
cognitive factors that play a role in the selection and evolution of strategies in the
object-target matching task.

3.2 Architecture of the Neural Network
Figure 3.1 illustrates the various functional components in the neural network model for

the selection and evolution of strategies in the object—target matching task and the
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interactions among them. A sequence generator is responsible for storing and recalling a

Priming Signal One

—_— Sequence generator

Presentation of

Instruction sequence — -
———— | Cognitive Mappings for
Entities

Strategy Selector

|

Accu}acy NO\;elty Bias I

T 1

External Priming Signal
Teacher Two

Figure 3.1. Block diagram of the novelty bias neural network model. The various
neural components involved in strategy selection and evolution in the object-target
matching task are illustrated here. The bold arrows represent multiple inputs/ connec-
tions from/to the components. The light arrows represent single inputs.

sequence of instructions. It is assumed that a subject has become familiar with the concept
of seriality before attempting the matching task. Hence a neural network which has already
been trained on seriality and thus embodies knowledge of seriality is used as a sequence
generator.

Cognitive mappings are representations of the objects, targets, and prepositions used in
the experiment. An outstar-like associator couples the sequence generator with cognitive
mappings for the entities. Construction of the sequence generator and associator is
motivated by Grossberg’s work on serial recall and the outstar (Grossberg, 1978). Further
details of the model for the storage and recall of instruction sequences without the strategy
component are discussed in Chapter two.

The strategy selector contains multiple strategies, each of which receives a bias for

novelty and accuracy input based on previous experience of the network with the matching
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task. An external teacher provides the network with correct answers during the recall of
instruction sequences in each trial. A priming signal stimulates the accuracy component to
prompt the selection of a strategy. Another priming signal, corresponding to the cue torecall
in Bray et al. (1993), stimulates the sequence generator to prompt the recall of an instruction
sequence after its presentation.

The specifications and equations that govern the various neurons which constitute the
functional components in the neural network are described below. The neural network is
illustrated in Figure 3.2.

3.2.1 Instruction Units

The sequence generator consists of four instruction units corresponding to the number
of instructions presented in each wial. Instruction units are connected to every other
instruction unit and send excitatory connections to the entity units. As mentioned above, the
sequence generator component has been trained separately to control a sequence. Training
results in strong forward associations being established among the instruction units.
Henceforth these associations remain fixed. The first instruction unit receives a priming
signal at the beginning of recall. Further details on training and recall are discussed in
Chapter two.

3.2.2 Entity Units

Cognitive mappings for entities are represented by entity units. There are three entity
pools, one each for objects, targets, and prepositions. The object pool has 12 object units;
the target pool, 6 target units; and the preposition pool, 2 preposition units. These numbers
correspond to the actual numbers of objects, targets, and prepositions used in the experiment
of Bray et al. (1993). Each entity unit receives adjustable excitatory connections from all
instruction units, and fixed inhibitory connections from other entity units within its pool.
Units in the object pool also receive excitatory connections from all strategy units. Units in

the target pool receive adjustable excitatory connections from strategy units two and three
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Figure 3.2. Architecture of the novelty bias neural network mode!l for strategy selection
and evolution. For the sake of clarity, only a few units and connections are shown
here. All instruction units send excitatory connections to all object, preposition, and
target units (“entity units™). All accuracy units send excitatory connections to all
strategy units. Each entity unit sends an excitatory connection to a corresponding
accuracy unit. All instruction units send excitatory connections to every other
instruction unit. Entity units and strategy units receive inhibitory connections from all
other units within their pool. See text for further details.
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only. Units in the preposition pool receive adjustable excitatory connections from strategy
unit three only. The rationale for such selective connectivity comes from the fact that
strategy one encodes objects only, strategy two encodes objects and targets, and strategy
three encodes all three entity classes.
3.2.3 Strategy Units

The strategy selector consists of three strategy units. The first unit represents the object
encoding only strategy, the second unit the object—target encoding strategy, and the third unit
the object-target—preposition encoding strategy. Each strategy unit receives an excitatory
connection from a corresponding novelty bias unit and adjustable excitatory connections
from all accuracy units, which are described below. In the current implementation, the
strategy unit with the highest activation retains its value and the activations of other units
in the pool are set to zero. It would be possible to accomplish this using a “winner take all”
mechanism such as lateral inhibition within the pool.
3.2.4 Novelty Bias Units

The novelty bias component consists of three novelty bias units. The connection from
a novelty bias unit to its strategy is assigned a random weight each time the activations of
strategies are updated, reflecting the probabilistic nature of strategy selection. The
activation of a novelty bias unit starts at a given value and decays with time. It represents
the degree of novelty a subject may place on a strategy. A higher activation value indicates
that the strategy corresponding to the bias unit is newer and is strongly biased in favor of
selection, and vice—versa.
3.2.5 Accuracy Units

The accuracy component consists of three pools of units. The first pool contains 12
units, the second 6 units, and the third 2 units. Thus, there is a one—to—one correspondence
between accuracy units and entity units. Each accuracy unit receives an excitatory

connection from a corresponding entity unit. It also receives input from an external teacher
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during recall. It sends out its excitatory connections to all strategy units. An accuracy unit
shunts the input from an external teacher with excitatory input from its entity unit.
3.2.6 Activation and Weight Update
The activations of all units except accuracy units are updated using a general equation
(3.1). This equation contains a decay term, a net excitatory input term, a net inhibitory term,
and an external input term. The activation update for accuracy units takes place according
to equation (3.2), which contains a shunting term and a term for priming strategy selection.
The adjustable weights are updated using equation (3.3), which is motivated by the dual
learning rule proposed by Edeiman (1987) in his theory of neuronal group selection. This
equation is a generalized version of Hebbian learning, and synaptic weights may increase
or decrease based on presynaptic and postsynaptic thresholds.

Activation update equation:

at+1) = (1—a)a®+8) [gol" w0 +v> q lao" + 1o
R k

where (3-1)
aft) = activation of unit i at time t
a = decay rate
B = net input factor
w;(f) = connection strength from unit jto item unit i at time 1
y = net inhibition factor
q = fixed inhibitory strength among units of the same pool
I’y = presynaptic threshold
[x1" = x only if x = T,
= 0.0 otherwise
I; (ty = external input to unit i at time 1.
Activation update equation for accuracy units:
a@+1) =a( *xE@0+ 1,0 (3.2)
where
a,t) = activation of accuracy unit i at time t
a(t) = activation of corresponding entity unit k at time 1
E{t) = input from external teacher to accuracy unit i at time t
I{t) = priming signal to accuracy unit i at time t
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Weight update equation:

wiet D = w0 + 0 [at+ D2 g+ D5 (3.3)
where

w; () = connection strength from unit ito item unit j at time 1.

at + 1) = activation of unit i at time r+1

aft+1) = activation of unit j at time t+1

Iy, I's = presynaptic and postsynaptic thresholds.

0 = learning rate

Table 3.1. Parameters used in computer simulation of the novelty bias neural network

model.

a=098=07y =02 4q9g=-051T =01

for instructions to entity connections :
r, =01 rI; =04, 0 = 0. 4

Jfor strategy to entity connection.
r, =017, =04 6 = 0.2
for accuracy to strategy connections :
r, =01r; = 02
when accuracy unit =2 I'y : 0 = 0. 2;
when accuracy unit < I'; : 6 = — 0. 075;
Priming signal one = 1., priming signal two = 0.15;
Initial weights for all connections are set at 0.05;

3.3 Computer Simulation

Computer simulations of the neural network model have been carried out to evaluate
its utility as a predictor of strategy selection and strategy evolution in children. The
simulation consists of several trials, each made up of a presentation phase followed by a
recall phase. Multiple trials in the computer simulation are analogous to multiple learning
epochs, each involving exposure by children to tasks similar to object—target matching in
everyday life, which elicits changes in strategy choice in them. The current simulation is
intended to model the evolution of strategy selection across a number of years in a child’s
life, and therefore, is not to be confused with the multiple trials that are presented to children

in the course of the experiment performed by Bray et al. (1993).
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In the presentation phase of the simulation, a priming signal is given to accuracy units
to prompt selection of a strategy. Aninstruction scquence is presented starting the nextcycle.
Whenever an instruction is presented, the proper instruction unit, the object unit, the target
unit, and the preposition unit each receive an external input. A preposition, €.g., “on,” is
uniquely used exactly twice in an instruction sequence in order to maintain a correspondence
with the experiment of Bray et al. (1993). Each presentation cycle consists of an update of
the activations of all units in the network followed by an update of the connection strengths
from instruction units to entity units and from strategy units to entity units. All other
connection strengths remain fixed during the presentation phase.

In the recall phase, a priming signal is given to the first instruction unit to prompt the
recall of instruction sequence. As the recall of entities takes place, a constant external input
from the teacher is given to accuracy units. This input is positive if the entity corresponding
to that accuracy unit should be on in the current recall cycle and negative otherwise.
Activations of all units in the network and connection strengths from accuracy units to
strategy units are updated in that order in each recall cycle.

It should be noted here that learning occurs in the network in both presentation and recall
phases. The associations between a particular instruction sequence and a strategy are learned
in the presentation phase. Feedback concerning accuracy is provided by the teacher to the
accuracy units during the recall phase. It is assumed that sufficient time elapses between
trials sothat the associations learned between a strategy and a particular instruction sequence
during a presentation phase decay to resting value and, therefore, do not cause residual
associations during the next trial. However, the associations learned between accuracy units
and strategy units have negligible decay so that they last the entire life span of the network.

At the beginning of the computer simulation, the novelty bias unit, N1, which excites
strategy unit, S1, receives an external input. This input leads to the selection of strategy one

of object encoding only over the others. We henceforth refer to the process of preferentially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

setting the external input to a bias unit as “strategy initiation.” This corresponds toa subject’s
“decision” to try a new type of strategy. After a few trials (12 in this sample simulation),
strategy two of object—target encoding is initiated. After a few more trials (12 in this sample
simulation), strategy three of object—target—preposition encoding s initiated. The rationale
for such orderly initiation of strategies is that the first strategy of object encoding only is the
most basic of all strategies and the first to occur in the development of external strategies in
children. Strategy two is discovered after strategy one and strategy three after strategy two
by most children.

The computer simulation is terminated when any one of the strategy units reaches its
maximum activation value (in the current implementation, 1.0). Based on experience with
the computer simulations of the model, we know that when this criterion is satisfied, the
network has completed the process of strategy evolution and has converged on the strategy
with the maximum activation.

3.4 Results

The results of a typical simulation run are presented in Table 3.2 which lists net bias
input and net accuracy input to each strategy, the winning strategy and its activation forevery
trial for 50 trials. “Net bias input” to a strategy unit is defined as the net influence of its bias
unit in a given trial. “Net accuracy input” to a strategy unit is defined as the net influence
of all accuracy units to the strategy unit when a priming signal is given to accuracy units.

After “object encoding only” strategy was initiated at the beginning of the simulation,
it continues, being strongly biased over other strategies, to be selected until trial twelve. A
steady increase in its net accuracy input is noticeable.

After object-target encoding strategy was initiated at the beginning of trial thirteen, the
selection shifts between strategy one and strategy two until trial twenty—four. A steady

increase in the net accuracy input is noticeable for both strategy one and strategy two.
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Table 3.2 volution rved in one of th m r simulation runs of the novel
bias neural network model.

Tr Stategy 1 Swategy2  Stategyd SS  ASS
NB Al NB Al NB Al

< Strategy one is initiated >

1 0.682 0.150 0000 0.150 0.000 0.150 1 0.832
2 0431 0.169 0000 0.150 0.000 0.150 1 0.600
3 0.269 0.182 0.000 0.150 0.000 0.150 1 0.450
4 0277 0191 0000 0.150 0.000 0.150 1 0.468
5 0412 0.200 0000 0.150 0000 0.150 1 0.613
6 (0.280 0.217 0.000 0.150 0000 0.150 1 0.496
7 0381 0.227 0.000 0.150 0.000 0.150 1 0.607
8 0332 0.240 0.000 0.150 0000 0.150 1 0.572
9 0.067 0.252 0.000 0.150 0.000 0.150 1 0319
10 0.166 0258 0.000 0.150 0.000 0.150 1 0424
11 0.202 0.267 0.000 0.150 0.000 0.150 1 0.468
12 0.388 0276 0.000 0.150 0.000 0.150 1 0.664
< Strategy two is initiated>
13 0.130 0297 0.614 0.150 0.000 0.150 2 0.764
14 0.252 0.297 0.080 0.177 0.000 0.150 1 0.549
15 0.010 0310 0572 0.177 0.000 0.150 2 0.748
16 0,074 0310 0300 0205 0,000 0.150 2 0.505
17 0.029 0310 0.067 0.221 0.000 0.150 1 0.340
18 0.097 0317 0550 0221 0.000 0.150 2 0.771
19 0.094 0317 0411 0.248 0.000 0.150 2 0.659
20 0.046 0317 0.172 0.278 0.000 0.150 2 0450
21 0.190 0317 0425 0.288 0.000 0.150 2 0712
22 0229 0317 0414 0316 0.000 0.150 2 0.730
23 0.170 0317 0.098 0.343 0. 0.150 1 0487
24 0.030 0327 0.111 0343 0.000 0.150 2 0454
< Strategy three is initiated >
25 0.073 0327 0.093 0353 0.584 0150 3 0.734
26 0.169 0327 0.097 0353 0.160 0.197 1 0496
27 0.023 0337 0.074 0353 0.615 0.197 3 03812
28 0.159 0337 0.102 0353 0314 0.252 3 0.567
29 0.147 0337 0001 0353 0.164 0276 1 0484
30 0.057 0347 0.284 0353 0.131 0.276 2 0.637
31 0.050 0347 0.172 0381 0.380 0.276 3 0.656
32 0.008 0347 0.227 0381 0.197 0320 2 0.608
33 0011 0347 0.097 0.396 0.09 0.320 2 0.493
34 0.111 0347 0.058 0408 0389 0320 3 0.709
35 0.045 0347 0.139 0408 0.026 0366 2 0546
36 0.067 0347 0.118 0.424 0.046 0366 2 0.543
37 0.008 0.347 0.146 0441 0.163 0366 2 0.587
38 0.093 0347 0.061 0456 0.259 0.366 3 0.626
39 0.069 0347 0.182 0.456 0.080 0.407 2 0.637
40 0.025 0.347 0.053 0483 0.192 0407 3 0.599
41 0.003 0.347 0.064 0483 0.141 0434 3 0574
42 0.012 0347 0.062 0483 0.305 0459 3 0.765
43 0.061 0347 0.107 0483 0.132 0.508 3 0.641
44 0.064 0347 0.090 0.483 0.197 0549 3 0.747
45 0.036 0347 0.010 0483 0.172 0.600 3 0.77i
46 0.025 0347 0.063 0483 0.240 0.650 3 0.890
47 0.010 0.347 0.108 0483 0.163 0.706 3 0.870
48 0.007 0.347 0.079 0483 0.156 0.761 3 0917
49 0.051 0.347 0.002 0.483 0.078 0.822 3 0.900
50 0.024 0.347 0.028 0.483 0.131 0.880 3 1.000

Tr: Trial Number, NB: Net novelty Bias, Al: nct Accuracy Input, SS: Strategy Selected, ASS: Activation of
Strategy Selected. Net novelty Bias = (random number between 0.0 and 1.0) * (activation of bias unit); net

Accuracy Input = < Priming Signal two * activation of accuracy unit A strategy was initiated by setting
the activation of its novelty bias unit to 0.8.
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After object—target—preposition encoding strategy was initiated at the beginning of trial
twenty-five, all strategies were used at least twice. This behavior of the network of using
multiple strategies in close time intervals is similar to strategy selection by children in
arithmetic, serial recall, time telling and other task domains (McGilly & Siegler, 1989;
Siegler & Jenkins, 1989; Siegler, 1991).

Even though the net accuracy input for the object encoding only strategy unit, for
example, at trial twenty—eight is greater than that for the object—target—preposition encoding
strategy unit, the novelty factor allows the latter strategy to be selected. As the simulation
continues, the net novelty bias input diminishes for all strategies and net accuracy input
becomes the deciding factor in strategy selection. Since the object-target—preposition
encoding strategy gains the highest net accuracy input after trial forty—three, when the net
novelty biases for other strategies have nearly diminished to zero, it becomes the only
strategy selected by the network. This behavior is similar to most adults always selecting
a “retrieval” strategy over a “count from one” strategy or a “count from smaller addend”
strategy in simple addition as in Siegler and Jenkins (1989).

Due to randomness in the contribution of novelty bias units to the strategy units, the
results of strategy evolution and recall accuracy vary with each simulation run. The results
from 11 simulation runs are tabulated in Appendix A. These results indicate that strategies,
in general, advance from the object encoding only type to the object—target encoding type
to the object—target—preposition encoding type and the network converges to the
object—target—preposition encoding strategy. However, some simulation runs indicate that
the network occasionally converges to the object—target encoding strategy. Simulation run
eleven listed in Appendix A demonstrates this kind of behavior. The examination of the
simulation runs reveals that the randomness in the contribution of novelty bias units is

responsible for the differences in strategy convergence patterns.
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We observe from Appendix A that the number of trials when the activation of any
strategy reaches its peak value of 1.0 varies from one simulation run to another due to
randomness in the contribution of novelty bias. The number of runs when the network
converged on the object—target—preposition encoding strategy varies from 46 in simulation
run five to 65 in simulation run ten. The network converges on the object—target encoding
strategy in 79 trials as indicated by simulation run eleven.

The network is tested for recall accuracy of objects, targets, and prepositions using
minimum and maximum activations of strategy units which are obtained from simulation
runs one to eleven listed in Appendix A. The object encoding only strategy has a minimum
activation of 0.190 and a maximum activation of 0.9, the object-target encoding strategy
of 0.304 and 1.0, and the object—target—preposition encoding strategy of 0.431 and 1.0
respectively. The testing for recall accuracy included all possible combinations of
prepositions.

Activations of entities with regard to recall are interpreted using the maximum
activation scheme, discussed in Chapter two. To review, recall of an entity is deemed correct
if its activation exceeds the firing threshold of 0.1 (same as all other units in the network),
its activation is the highest inits pool, and it fires in the order of its training. Recall accuracy
of objects, forexample, isdetermined by the ratio of the number of objects correctly recalled
to the number of objects used in the sequence of four instructions.

Graphs §0.1, S0.2, and S0.3 in Figures 3.3, 3.5, and 3.7, respectively, illustrate that
without any strategy use, activations of all strategy units equal zero and only first entity units
exceed the firing threshold of 0.1. Recall accuracy for objects, targets, and prepositions is
25% each in this case.

With the use of an object encoding only strategy, the object units receive a boost in their
activation value (refer to graph S1.1 in Figures 3.3 and 3.4). However, when the activation

of the strategy is at a minimum (i.e., 0.190), the boost is not significant enough to raise the
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activations of object units above the firing threshold except that of the first object unit (refer
to graph S1.1 in Figure 3.3). When the activation of the strategy is at its maximum (i.c.,
0.900), the boost raises the activations of all object units above the firing threshold (refer to
graph S1.1 in Figure 3.4). Thus, the recall accuracy for objects using the object encoding
only strategy varies from 25% to 100%. The activations for target units and preposition units
using the object encoding only strategy (graphs S1.2 and §1.3, respectively, in Figures 3.5,
3.6, 3.7, and 3.8) are the same as those without any strategy use. The lack of a boost in
activations of these units is explained by the fact that they do not receive any excitatory
connections from strategy one unit. The recall accuracy for targets and prepositions is 25%
each.

When the activation of the object—target encoding strategy is at its minimum (i.e.,
0.304), the activations of objects, targets and prepositions during recall are illustrated in
graphs S2.1, S2.2 and S2.3, respectively (refer to Figures 3.3, 3.5, and 3.7). Even though the
object and target units receive a boost in their activation, at its minium, it does not raise
the activations above the firing threshold. When the activation of the object-target encoding
strategy is at its maximum (i.e., 1.0), the activations of objects and targets exceed the firing
threshold in correct order, as illustrated in graphs S2.1 and S2.2, respectively (see Figures
3.4and 3.6). Thus, the recall accuracy of objects and targets when the object—target encoding
strategy is used varies from 25% to 100%. Since this strategy does not encode prepositions,
its use does not have any effect on the recall accuracy of prepositions which remains at 25%.

Graphs S3.1 and S3.2 portray the effect of the use of the object—target-preposition
encoding strategy on the recall of objects and targets, respectively (refer to Figures 3.3 and
3.5), when the activation of the strategy is at its minimum (i.e., 0.431). The activations of
objects and targets receive a boost from the strategy but the boost is not significant enough

to raise them above the firing threshold. Thus, the recall accuracy of objects and targets
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remains at 25% each when activation of the object—target—preposition encoding strategy is
at its minimum value.

Graph S3.3 in Figure 3.7 portrays the effect of the use of the object—target—preposition
encoding strategy on the recall of the following combination of prepositions: (on, in front
of , in front of, on) when the activation of the strategy is at its minimum (i.e., 0.431). Both
prepositions receive a boost in their activations except the “on” unit in the last cycle of recall.
Thus, the recall accuracy of the network on this particular combination of prepositions is
75%. We tested the network for recall accuracy on other possible combinations of
prepositions. The use of the object—target—preposition encoding strategy, whenits activation
is at its minimum, has the effect of boosting the activations of prepositions in these
combinations except in one cycle. Thus, the recall accuracy for any given combination of
prepositions, when the activation of the strategy is at its minimum, is 75%.

Graphs S3.1 and 3.2 portray the effect of the use of object—target—preposition encoding
strategy on the recall of objects and targets, respectively (refer to Figures 3.4 and 3.6), when
the activation of the strategy is at its maximum (i.e., 1.0). The activations of all objects and
targets receive a boost from the object—target-preposition encoding strategy unit to raise
them above the firing threshold in the correct order. Thus, the recall accuracy of objects and
targets is at 100% each when activation of the object—target—preposition encoding sirategy
is at its maximum value.

Graph §3.3 in Figure S3.8 portrays the effect of the use of the object—target-preposition
encoding strategy on the recall of the following combination of prepositions: (on, in front
of, in front of, on) when the activation of the strategy is atits maximum (i.e., 1.0). The graph
indicates that the network recalls prepositions correctly in the first, second, and third
instructions. However, the activation of “in front of” which is used in the second and third
instructions persists and dominates that of “on” in the fourth cycle. The recall accuracy in

this case is 75%. We tested the network for recall accuracy on all other combinations of
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prepositions. The use of the object—target—preposition encoding strategy, when its activation
is at its maximum, has the effect of boosting the activations to such a large extent that the
boost interferes with correct order of recall. The recall accuracy for any given combination
of prepositions is found to vary from 50% to 75% when the activation of the
object—target—preposition encoding strategy is at its maximum.

As noted above, the object—target—preposition encoding strategy causes insufficient
boost in prepositions when its activation is at its minimum (i.e., 0.431), thus effecting a recall
accuracy of prepositions of 75%. Also, it causes a large boost that interferes with correct
recall of prepositions when its activation is at its maximum (i.e., 1.0), thus effecting a recall
accuracy of prepositions of 50-75%. Thus, the recall accuracy has improved over the
no-strategy case when the object—target—preposition encoding strategy is at its minimum but
has deteriorated when the object—target-preposition encoding strategy is at its maximum.
For this reason, we would like to determine if the network recalls prepositions with 100%
accuracy when the object—target—preposition encoding strategy takes on intermediate
values. We have tested the network for recall accuracy of prepositions when the activation
of the object—target—preposition encoding strategy takes on a value of 0.793. Indeed, the
network exhibits a recall accuracy of 100% at this value of the object~target—preposition
encoding strategy on all other combinations of prepositions. In summary, the accuracy of
network on the recall of prepositions varies from 50% to 100% based on the activation of
the object-target—preposition encoding strategy and on the order of prepositions used in the
instruction sequence.

The recall performance of the novelty-bias neural network on objects, targets, and
prepositions using various strategies is summarized in Table 3.3.

3.5 Discussion
Computer simulations of the object~target matching task demonstrate that strategies, in

general, evolve from the simple object encoding only type strategy to the sophisticated
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object-target—preposition encoding type strategy. This simulated behavior is in agreement
with observed behavior in children: younger children frequently use strategies such as
pointing to and holding objects, while older children frequently use strategies such as

moving objects with orientation toward targets and with encoding of prepositions (Bray et

al., 1993).
Table 3.3 Summary of performance of the novelty bias neural network on recall
accuracy.
STRATEGY USED

ENTITY NONE 1 2 3

OBl 25% 25-100% 25-100% 25-100%

TARG 25% 25% 25-100% 25-100%

PREP 25% 25% 25% 50-100%

Occasionally, the network converged on the moderately advanced object—target
encoding strategy rather than on the most advanced object—target—preposition encoding
strategy. This type of behavior by the novelty bias neural network resembles that of some
mentally retarded individuals who do not seem to advance to the more advanced strategies.
The differences in types of strategy convergence as exhibited by the network are attributed
to randomness in the novelty bias factor. The issue of how novelty bias and the concomitant
randomness translate into a plausible biological mechanism is not addressed in the current
model. Addressing this issue could eventually lead to a more satisfactory explanation of the
differences in strategy evolution between nonretarded and mentally retarded individuals.

The computer simulations are consistent with the supposition that the accuracy
information gained from previous experience with strategies and novelty bias are
responsible for the evolution of strategies from the simple to the advanced. With the use of
more advanced strategies, more accuracy input is gained for later use. For example, the

activations of preposition units are higher with the use of object-target—preposition
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encoding strategy than with the use of object—target encoding strategy because the former
encodes prepositions and the latter does not. Consequently, preposition accuracy units
receive  higher excitation from corresponding preposition units with the
object-target—preposition encoding strategy than with the object—target encoding strategy.
Thus, in the long run, the accuracy units contribute more input to the
object-target—preposition encoding strategy than to the object—target encoding strategy.
This explains why the network, in general, takes a longer number of trials to converge on
the object—target encoding strategy than on the object—target-preposition encoding strategy.
We noted in the results section that strategy use causes a boost in the activations of entity
units. If the boost is significantly high, then the activations of the entity units exceed the
firing threshold and correct recall of the entities ensues. Based on the minimum and
maximum activations of the object only encoding strategy and the object-target encoding
strategy observed in the computer simulations, the recall accuracy of the novelty bias neural
network on objects and targets varies from 25% to 100%. Thus, at lower values of the
activations of these strategies, the network does not exhibit any improvement in recall
accuracy. With higher activations, however, the network exhibits 100% recall accuracy.
Based on the minimum and maximum activations of the object—target—preposition
encoding strategy observed in the computer simulations, the recall accuracy of the network
on prepositions varies from 50% to 100%. For lower activation values of the
object—-target—preposition encoding strategy, the recall accuracy is 75% and for medium
activation values, the recall accuracy improves to 100%. For higher activation values of the
object—target—preposition encoding strategy, the recall accuracy deteriorates to 50%.
Analysis of the simulation results reveals that at higher values, spurious associations are
established between incorrect preposition units and instruction units because the preposition
units receive higher activation values that persist for longer cycles, due to increased

stimulation from the object—target-preposition encoding strategy units. These spurious
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associations lead to incorrect recall of prepositions. This anomaly in the recall of
prepositions needs to be addressed in future work.

In the current implementation of the model, strategies act as a uniform boosting signal
and do not increase recall discrimination within a class of entities — objects, for example.
Future implementations of strategy mechanism should address this issue.

As far as we know, long—term empirical studies dealing with the discovery of various
strategies in the same individuals have not yet been undertaken for the object—target
matching task. So the prediction of the model that children evolve their strategies motivated
by accuracy of outcome and novelty is yet to be tested empirically. The neural network
model suggests that cognitive factors such as accuracy of outcome and novelty of strategy
are plausible in the object—target matching task, and agrees with the postulation of Siegler

(1991) that such factors are general to strategy selection and strategy evolution.
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Figure 3.3 Effects of strategy use on recall of objects when strategies have minimum
activations. X axis denotes cycle number and Y axis activation of an object unit. Plots
S0.1, S1.1, §2.1 and S3.1: Recall of objects when “no-strategy,” strategy one, strategy
two, and strategy three were respectively used.
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Figure 3.4 Effects of strategy use on recall of objects when strategies have maximum
activations. X axis denotes cycle number and Y axis activation of an object unit. Plots
S0.1, S1.1, S2.1 and S3.1: Recall of objects when “no-strategy,” strategy one, strategy
two, and strategy three were respectively used.
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Figure 3.5. Effects of strategy use on recall of targets when strategies have minimum
activations. X axis denotes cycle number and Y axis activation of an entity unit. Plots
50.2, 81.2, §2.2 and S$3.2: Recall of targets with “no-strategy,” strategy one, strategy
two, and strategy three respectively.
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Figure 3.6. Effects of strategy use on recall of targets when strategies have maximum
activations. X axis denotes cycle number and Y axis activation of an entity unit. Plots
S0.2, S1.2, §2.2 and S3.2: Recall of targets with “no-strategy,” strategy one, strategy
two, and strategy three respectively.
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Figure 3.7. Effects of strategy use on recall of prepositions when strategies have
minimum activations. The network has been tested for recall accuracy on the
combination of (on, front, front, on). X axis denotes cycle number and Y axis
activation of an entity unit. Plots S$0.3, S1.3, §2.3 and S3.3: Recall of prepositions with
“no-strategy,” strategy one, strategy two, and strategy three, respectively.
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Figure 3.8. Effects of strategy use on recall of prepositions when strategies have
maximum activations. The network has been tested for recall accuracy on the
combination of (on, front, front, on). X axis denotes cycle number and Y axis
activation of an entity unit. Plots S0.3, S1.3, S2.3 and S3.3: Recall of prepositions with
“no-strategy,” strategy one, strategy two, and strategy three, respectively.
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CHAPTER 4

A COMPONENTS NEURAL NETWORK MODEL OF
STRATEGY SELECTION AND EVOLUTION

In this chapter, we introduce the “components neural network model” for strategy
selection and evolution. We construct this model to overcome the drawbacks of the novelty
bias neural network model presented in Chapter three and to explore the notion that subjects
are able to encode more sophisticated information with development. First, we discuss the
motivation for the components neural network model in detail and follow up with
discussions of its architecture, equations for activation and weight update, computer
simulation of the model, and simulation results.

4.1 Motivation

The novelty bias neural network model as discussed in Chapter three, though useful as
an initial prototype, is not completely satisfactory for the following reasons. First, the
orderly introduction of novelty biases at an arbitrary number of trials for the selection of
strategies seems less biologically plausible, even though this does emulate the formulation
of strategy discovery in Siegler’s model (Siegler & Jenkins, 1989). Second, the random
variation in the contribution of novelty toward strategy selection may be very large
compared to the contribution of accuracy. Our objective is to control the contributions of
randomness, eliminating them if desirable and including them when necessary, to make the
model more biologically plausible. Third, the novelty bias neural network model does not
incorporate the notion of strategy components, which as we proceed, will be shown to be a
useful formulation. Each of the strategy types considered in Chapter three may be broken

down into finer elements, called “strategy components.” For example, the object—target
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encoding strategy is made up of at least three components: looking at the object, grasping
the object, and moving the object toward the target.

Further, we want to explore the idea that children can encode increasingly sophisticated
information with age, in order to explain the evolution of external memory strategies with
development. This simple ideais evident in the work of Piaget (Siegler, 1991). Forexample,
in a “balancing of weights” experiment, younger children normally take into account only
one dimension, i.e., weight; whereas, older children normally take into account two
dimensions, i.e., weight and distance of the weight from the fulcrum.

Sternberg and Rifkin (1979) present the differences in encoding between adults and
children on analogy problems. According to their findings, adults spend a longer time on
encoding and encode more features of a given problem than children. As a result, the
solution times for adults are shorter than those for children.

Levine and Prueitt(1989), in their neural network modeling effort, adopt a similar idea
to explain the differences in the performance of frontal lobe damaged patients and normal
subjects. They attribute the differences in the performance of the two groups to differences
in the strength of signals from sensory loci to reinforcement loci. In the context of the
experiment of Bray et al. (1993), we postulate that children atearlier ages pay more attention
to feedback about recall of objects than to feedback about recall of targets or prepositions.
They gradually pay more attention to feedback about recall of targets and lastly, more
attention to feedback about recall of prepositions. In other words, the ability to assimilate
feedback about recall of objects, targets, and prepositions increases in that order,

As we shall see later, the components neural network model based upon this postulation
helps explain the differences in strategy use not only among younger and older children but
also among mentally retarded and nonretarded children. We may note here that feedback
information about the recall of entities may originate internally from another part of the brain

or externally from an experimenter.
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4.2 Architecture of the Neural Network

The components neural network model for strategy selection and evolution is illustrated
in Figure 4.1. Its architecture differs from that of the novelty bias neural network model
presented in Chapter three as follows: the newer model lacks novelty bias units and has
additional units that represent strategy components. The novelty bias units are eliminated
in the new model because they contribute a large amount of randomness as discussed in the
previous section. Further, according to Occam’s razor, a model with minimal mechanisms
is to be preferred if it can lead to equivalent behavior: novelty bias units are not needed if
differences in encoding of information at the accuracy units can alone lead to the evolution
of strategies. Specifications for instruction units, and entity units remain the same as
provided in the section “architecture of neural network” in Chapter three. Specifications for
strategy units, component units and accuracy units are presented below.
4.2.1 Component Units

Component units represent those parts that are postulated to make up strategies. Ina
bottom-up information processing perspective, which is commonly subscribed to in
psychology, components are abstracted or automatized into strategies. In the current
implementation of the model, three component units are used: object encoding unit, target
encoding unit, and preposition encoding unit. The object encoding unit represents, for
example, grasping an object in the hand. The target encoding unit represents, for example,
the orientation of an object toward a target. The preposition encoding unit represents, for
example, placing an object above or in front of the yellow board, corresponding to the
preposition in the instruction.

It is quite conceivable to have component units in addition to these, e.g., pointing at an
object, pointing at a target. The component units receive adjustable excitatory connections
from accuracy units of a given type and send excitatory signals to appropriate strategy units

through fixed excitatory connections, as illustrated in Figure 4.1.
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Figure 4.1. Architecture of the components neural network model for strategy
selection and evolution.

4.2.2 Strategy Units
As in the novelty bias neural network model described in Chapter 3, the strategy unit

pool consists of three units that represent three strategy types: object encoding only,
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object-target encoding and object—target—preposition encoding. Each strategy unit receives
excitatory connections from appropriate component units. In the current implementation,
the strategy unit with the highest activation retains its value, and the activations of other units
in the pool are set at zero. It would be possible to accomplish this using a “winner take all”
mechanism such as lateral inhibition within the pool.
4.2.3 Accuracy Units

In the novelty bias model, each accuracy unit sends excitatory signals to every strategy
unit; the underlying assumption is that all types of accuracy units potentially contribute to
the evolution of strategies in the absence of components. However, with the introduction
of component units in the current model, accuracy units send excitatory signals to relevant
component units only: object accuracy units send excitatory input to the object encoding
component only, target accuracy units to the target encoding component only, and
preposition accuracy units to the preposition encoding component only.
4.2.4 Activation and Weight Update

The activation update equation for all the units in the components model except for the
accuracy units and the strategy units takes the generalized form described by (3.1). The
activation update for the accuracy units is given by equation (4.1). This equation differs from
the accuracy equation (3.2) of the novelty bias model primarily through the new D (z) term
postulated to account for differences in encoding of information in the different types of
accuracy units. The object accuracy units reach their maximum encoding ability most
rapidly, the target accuracy units next, with the preposition units last. Characteristic D ()
curves for the three accuracy unit types are displayed in Figure 4.2.

In addition to decay, excitatory input, and inhibitory input terms, the activation update

equation for strategy units contains a term, Noise. Noise is assumed to be uniformly

distributed over the interval [0.0, MaxNoise]. MaxNoise is small compared to the possible

range of activation values in the network. In our assumptions, we are following researchers
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such as Reeke, Sporns and Edelman (1990) and McClelland(1991) who apply randomness
in neuronal processing to explain variation in behavior which arises even in the presence of
constant external stimulus input. As we shall see, the noise term in the activation update
equation of the strategy units allows for randomness in the selection of a strategy when two
strategy units have nearly equal activation values. It would be possible to incorporate the
same randomness term for all neuronal units in the neural network. The behavior of the
network when a randomness term is used in all activation update equations needs further
exploration.

Activation update equation for accuracy units:

a(t+1) =D, () *a@) *E@®O+ I;® (4.1)
where
a(r) = activation of accuracy unit i at time 1
a(t) = activation of corresponding entity unit k at time t
E(t) = input from external teacher to accuracy unit i at time t
1t) = priming signal to accuracy unit i at time 1
D, (1) = degree of encoding of information at accuracy unit i of type k
at time t

= Cp* {1./(1. + ¢~ 20/My — 0.5}

A(t) = degree of experience of subject in object — target matching task

=At-1) + C
A0) = 0.0
C,, C, = constants
T, = temparature constant for accuracy unit of type k

k = 1,2,3 for object, target and prepostion respectively,
In the current implementation, T, < T, < T,

The weight update equation for adjustable connections is the same as the generalized
Hebbian equation previously described by equation (3.3). We note here that the weights
from accuracy units to component units are normalized to discount the effect of the number
of units in each accuracy type. In other words, the total contribution of an accuracy type to
its component unit is independent of the number of units within that accuracy type.
Normalization is accomplished by dividing learning rate by the number of units within an

accuracy type. The connections from component units to strategy units have fixed weights.
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These weights are chosen under the assumption that components contribute in equal
proportion to a given strategy.
4.3 Computer Simulation

Computer simulations of the components neural network model have been carried out
to develop its performance characteristics. Each simulation run consists of several trials.
Each trial consists of three phases: strategy selection, instruction presentation, and
instruction recall. Simulation is halted when activations of strategy units reach stable values.

At the beginning of a trial, a priming signal to all accuracy units (priming signal two in
Figure 4.1) results in the activation of accuracy units, component units, and strategy units,
ultimately leading to the selection of a strategy. Itis postulated that the activation of accuracy
units, component units, and strategy units takes place in one cycle, without intermediate time
delays. The selected strategy is in effect over a trial, i.e., throughout the instruction
presentation and the instruction recall phases. We note here that this particular assumption
of strategy use does not cover the cases wherein a subject uses multiple strategies in a single
trial as seen, for example, in the experiment of Bray et al. (1993).

A sequence of four instructions is presented to the network with one instruction per
cycle. Ineachcycle, the activations of all the instruction units and entity units in the network
are adjusted, followed by the update of weights between instruction units and entity units,
and of weights between strategy units and entity units.

Atthe end of the instruction presentation phase, the priming signal to the first instruction
unit (priming signal one in Figure 4.1) triggers recall of the instruction sequence. When an
instruction is being recalled, a “teacher,” external to the model, provides reinforcement to
accuracy units. For example, if a particular object is supposed to have been recalled in a
given cycle and has been recalled (by exceeding the firing threshold), then the recall is
deemed correct; otherwise, the recall is deemed incorrect. The teacher provides positive

reinforcement to accuracy units corresponding to entities that have been recalled correctly.
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It provides negative reinforcement to accuracy units corresponding to entities that have been
recalled incorrectly. The teacher as discussed here may be external, such as the
experimenter, or internal, such as signals received from another part of the brain.

The components model, unlike the novelty bias model presented in Chapter three,
incorporates a D (¢) term that defines the degree of encoding of reinforcement information
at a given accuracy type as illustrated in equation (4.1). The A,(z) term which defines the
experience of the subject with the object—target matching task is incremented during the
strategy selection phase at the beginning of every trial. The T, term, which stands for a
Boltzman constant for each accuracy unit of type k, defines the differences in encoding of
reinforcement among the various accuracy types. As may be noted from equation (4.1), 4,(z)
and T, jointly determine the effectiveness of the encoding of reinforcement for a given trial.
Various parameters used in the computer simulation are listed in Table 4.1.

4.4 Results

The results of several computer simulation runs are presented in this section. The results
of atypicalrun are givenin Table 4.2. The table displays the strategy selected and its strength
corresponding to a trial. In this particular simulation run, the object only encoding is
discovered in trial forty—four. Discovery of a strategy occurs when its strength exceeds the
firing threshold. We may note here that a strategy unit has an effect on an entity unit only
when it exceeds the firing threshold. A firing threshold of 0.1 has been uniformly applied
to all neurons in the network. Of course, due to the presence of the noise term in the
activation update equation for strategy units, we observe a variation in the results from one
simulation run to another.

The behavior of the model is analogous to that of human subjects in several ways.
Children discover their first strategy only when they attain some chronological age (not at
the embryonic stage!). In the model too, it takes a “long time,” forty—three trials in this

particular run, before any strategy is discovered. Furthermore, the selection of various
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strategies before trial forty—four in the model illustrates that neuronal processing related to
eventual strategy discovery may be taking place in the brain even though it does not become

apparent through outward action.
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Figure 4.2. Characteristic curves for D(k)(t), ability to encode information at accuracy
units for each type, k as a function of a (t) and T(k). See text for further details.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

We may notice from Table 4.2 that after the object only encoding was discovered in trial
forty—four, it is not used in trial forty—five and trial forty-seven because its strength falls
below the firing threshold. The nonuse of a strategy after its discovery is reminiscent of what
Siegler and Jenkins (1989) report, i.e., that children do not use a strategy because they are
not certain about its execution. The study of Bray et al. (1993) also reveals that children do
not use a particular strategy even though they are cognizant of it. Thus, the model effects a

“nonuse of strategy” behavior after its discovery, similar to its being seen in children.

Table 4.1, Parameters used in computer simulation of the components neural network
model.

a =09 8=10,y =04, g = -05 I = 0.1,

for instructions to entity connections :
r, =011, =08 0 =04

for strategy to entity connections :
ry, =011I; =08, 6 =0.2

for accuracy to component connections :
r, = 01,15 = 0.01;
when accuracy unit = I’y : 6 = 0. 8;
when accuracy unit < I'; : 0 = —0. 4
C, = 100, C, = 0.025;
T,=01,T,=065, T; = 24

Priming signal one = 1., priming signal two = 0.3;
Initial weights for all connections are set at 0.05;

Noise in activation update equation for strategy units is uniformly distributed in the
interval 0.0 and 0.025.

At the beginning of the simulation, specifically until trial seventeen, all three strategies
are being alternately selected at subthreshold levels due to the contribution of the noise term
in the strategy update equation (refer to Table 4.2). Right after trial seventeen, the object
only encoding strategy is frequently selected over the other two strategies. The object only
encoding strategy exceeds threshold for the first time (is “discovered”) on trial forty—four.

This is caused by a higher degree of the encoding of feedback information for objects than
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for targets or prepositions. The object—target encoding strategy is discovered in trial
fifty—two and the object-target—preposition encoding strategy in trial fifty—nine. With the
experience of more trials, the network encodes more feedback information for targets similar
to objects as illustrated in Figure 4.2. This results in more frequent selection of the
object-target encoding strategy between trials fifty—two and sixty-six. Lastly, the network
encodes more feedback information for all three entities. This results in the eventual
selection of the object-target—preposition encoding strategy only. Thus, during the
“lifetime” of the network, its strategy choice progresses from the simplest, i.e., the object
only encoding strategy, to the most advanced, i.e., the object—target—preposition encoding
strategy.

This run and other runs presented in Appendix B illustrate the use of diverse strategies
within short intervals. As Siegler and Jenkins (1989, p.27) note, “at any one time, individual
children use diverse strategies to solve arithmetic problems.” Bray et al (1993) also observe
the use of diverse strategies in the object—target matching task. Examination of Table 4.2
reveals that all three strategies have been selected within the close interval of trial fifty—nine
to trial sixty-seven. This clearly demonstrates the diverse nature of strategy selection in the
model.

4.4.1 Recall Accuracy and Strategy Use

In this section, we deal with the effects of strategy use on recall accuracy. When a
strategy is used, the entity units that are connected to the strategy unit receive a boost in their
activations. The amount of boost depends on the activation of the strategy units. The recall
accuracy of the network using a particular strategy, therefore, depends on the activation of
the strategy. Among the entities, objects and targets are uniquely used in the instruction
sequences without repetition. Thus, the recall accuracy of the network is independent of the
order of the objects and targets. However, the two prepositions, “on” and “in front of,” are

each repeated twice in an instruction sequence and the recall accuracy of the network
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depends on the particular combination of the prepositions used in training the network.
Thus, we tested the components neural network using different values of strategy activations
and all possible combinations of prepositions.

The object only encoding strategy has a minimum activation of 0.100 in simulation run
four and a maximum activation of 0.203 in simulation run five (refer to Appendix B); The
object-target encoding strategy of 0.102 each in runs one and two, and 0.392 in run eight,
respectively; and the object—target—preposition encoding strategy of 0.139 in run two and
of 1.0 in all runs.

We illustrate the results on recall accuracy using the following instruction sequence:

(1) “Put the apple on the refrigerator.”
(2) “Put the shoe in front of the TV.”
(3) “Put the eraser in front of the chair.”
(4) “Put the shell on the table.”

Recall accuracy of an entity using a strategy, as noted in Chapter three, is defined as
the ratio of number of entities correctly recalled to the number of instructions (kept at four
throughout this investigation). Anentity is said tobe correctly recalled if it exceeds the firing
threshold, has the highest activation in its pool, and fires in the order of its training during
the instruction presentation phase.

The performance of the network with regard to the recall accuracy of objects is
illustrated in Figure 4.3 when strategies have minimum activations. When no strategy is
used, the network recalls apple, eraser, and shell correctly during cycles one, three, and four,
respectively (Chart SO in Figure 4.3). The “shoe” object has the highest activation in its pool
in cycle two; however, it does not exceed the firing threshold. Thus, the recall accuracy of
objects for “no-strategy use” case is 75%. As charts S1, S2, and S3 illustrate, use of
strategies one, two, and three has the effect of boosting the activation of previously trained

objects. However, the boost is not great enough to enhance the recall accuracy. Thus, the
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recall accuracy of objects, when the strategies are used with minimum strengths, remains at
75%.

Table 4.2. Results of a typical simulation run that indicate strategy evolution in the
mponents neural network model.

Trial¥ SS Strength Comments Trial# SS Swength Comments

1 2 0.030 40 1 0.082

2 2 0.038 41 1 0.089

3 3 0.038 42 1 0.083

4 1 0.040 43 2 0.084

5 1 0.039 4 1 0.102 discovered
6 2 0.039 45 1 0.099 not used
7 3 0.031 46 1 0.109

8 3 0.033 47 1 0.098 not used
9 3 0.040 48 1 0.14

10 1 0038 49 1 0117

11 1 0.030 50 1 0.121

12 2 0.029 51 1 0118

13 1 0.041 52 2 0135 discovered
14 2 0.043 53 1 0.148

15 2 0034 54 2 0.149

16 2 0041 55 1 0.140

17 3 0.041 56 1 0.166

18 1 0.044 57 1 0.162

19 1 0.048 58 1 0.168

20 1 0.048 59 3 0.180 discovered

21 1 0.046 60 1 091

22 1 0053 61 3 0204

23 1 0.054 62 2 0227

24 2 0.050 63 3 0.241

25 3 0.049 64 3 0252

26 1 0.048 65 2 0.286

27 1 0057 66 2 0310

28 2 0.056 67 3 0331

29 1 0.060 68 3 0.360

30 1 0052 69 3 0412

31 1 0071 70 3 0419

32 1 0055 71 3 0457

33 1 0071 72 3 0513

34 1 0056 73 3 0.569

35 1 0.069 74 3 0.609

36 2 0.065 75 3 0.693

37 1 0.085 76 3 0.775

38 1 0075 77 3 0.882

39 1 0082 78 3 1.000

Notation: SS: strategy selected: Strength refers to the activation of strategy unit selected.

Recall accuracy of the network, when strategies have maximum activations is portrayed
inFigure4.4. Ascharts S1, S2, and S3illustrate, all object units receive a boost with strategy
use. Activations of advanced strategies have higher maxima and the object units therefore

receive greater amounts of boost from these strategies. The recall accuracy of the network
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on objects when strategies are used with maximum strengths is 100%. Overall, it varies from
75% to 100% depending on the strength of the strategy.

Figure 4.5 depicts the recall accuracy of the network on targets when strategies have
minimum activations. Without the use of any strategy, the recall accuracy is 75% (see Chart
S0 in Figure 4.5). The object only encoding strategy has no effect on the recall of targets.
Thus, it does not bring about any changes in the activations of targets as compared to the
“no-strategy use” case (contrast Chart S1 with Chart SO in Figure 4.5). Use of the
object-target encoding strategy or the object—target—preposition strategy results in a boost
in the activations of previously trained targets. However, this boost is not big enough to
enhance the recall accuracy in either case. Thus, the recall accuracy of targets when the
strategies are used with minimum strengths remains at 75%.

Figure 4.6 depicts the recall accuracy of targets when the activations of strategy units
are at their maximum values. Charts S2 and S3 indicate that with the use of the object—target
encoding strategy and the object-target—preposition encoding strategy, the activations of
targets receive a boost that raises them above the firing threshold. Thus, the recall accuracy
using these two strategies is 100%. Overall, the recall accuracy of the network on targets
varies from 75% to 100%.

The performance of the network on the recall of prepositions is tested using the
minimum and maximum activations of various strategies (Figures 4.7 and 4.8). Neither the
object only encoding strategy nor the object—target encoding strategy encodes prepositions.
Use of the object only encoding strategy (see Chart S1 in Figures 4.7 and 4.8) and use of the
object-target encoding strategy (see Chart S2 in Figures 4.7 and 4.8), thus, do not bring about
any changes in the activations of prepositions as compared to the “‘no-strategy use” case (see
Chart S0 in Figures 4.7 and 4.8). The recall accuracy for any combination of prepositions
without any strategy use and with use of the object only encoding strategy or the

object-target encoding strategy is 75%.
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Use of the object-target—preposition encoding strategy results in a boost in the
activations of prepositions in appropriate cycles. When the network is trained on the
particular combination of (on, in front of, in front of, on) as part of the instruction sequence
and the object—target-preposition encoding strategy has a minimum activation, the “in front
of” unit receives a boost in cycle two but does not exceed the firing threshold (Chart S3 in
Figure 4.7). We tested the network on all possible combinations of prepositions with the
object-target-preposition encoding strategy at its minimum activation value and found that
the recall accuracy varies from 75% to 100%.

Table 4 mm f performan f th mponents neural network on recall

accuracy.
ENTITY STRATEGY USED
NONE 1 2 3
OBJ 75% 75-100% 75-100% 75-100%
TARG  75% 75% 75-100%  75-100%
PREP 75% 75% 75% 50-100%

When the network is trained on the particular combination of (on, in front of, in front
of, on) and the object—target—preposition encoding strategy has a maximum activation, the
activations of both preposition units receive significant boost in all four cycles of recall but
the activation of “on” dominates that of “in front of” in cycles two and three, leading to
incorrect recall in these latter cycles (Chart S3 in Figure 4.8). The recall accuracy, in this
case, is 50%. Testing of the network on all other combinations of prepositions revealed that
recall of one preposition dominates the recall of the other, and that the recall accuracy in all
these cases is 50% each.

As noted above, the performance of the network deteriorates when the activation of the
object—target—preposition encoding strategy increases from minimum to maximum. For this
reason, we have tested the network on all possible combinations of prepositions when the

activation of the object-target-preposition encoding strategy takes an intermediate value
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(0.180). The recall accuracy of the network on all these combinations is 100%. In summary,
the recall accuracy of the network on prepositions varies from 50% to 100%, based on the
activation value of the strategy and on the particular combination of the prepositions. The
performance of the network on recall of entities using the various strategies is summarized
in Table 4.3.

Table 4.4 Strategy use in nonmentally—retarded children (11-vear old).

RUN# STRATEGY USE IN 16 TRIALS

type 1 type 2 type 3
1 0 3 13
2 0 4 12
3 0 3 13
4 0 7 9
S 1 8 7
6 1 7 8
7 0 5 11
8 1 9 6
9 1 3 12
10 0 4 12
average use 0.4 5.3 10.3
% use 2.5 33.12 64.38
EMPIRICAL DATA:
% use 2.84 335 63.6

NOTE: The values of strategy use for neural network are computed starting at trial 60.
4.4.2 Comparison of Network Performance with Empirical Data

One of the motivations behind this research effort has been to account for the differences
in the performance of educable mentally-retarded children (EMR) and
nonmentally-retarded (NMR) children. A key difference between the two intelligence
groups is the frequency of strategy use. According to the study of Bray et al. (1993), EMR
children use the object only encoding strategy and the object—target encoding strategy more
frequently than NMR children. On the other hand, the latter group uses the
object-target—preposition strategy more frequently. Tables 4.4 and 4.5 list the empirical data

for strategy use in NMR and EMR children, respectively, in addition to data for strategy use
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Cases of the nonuse of any strategy and of pointing as a strategy are not included in the
empirical data in order to obtain the best possible correlation between observed data and the
performance of the neural network.

The use of various strategies in the network is compared to the same in the two
intelligence groups by averaging the results from multiple simulation runs. Due to
randomness in the processing of strategy units, strategy choice within a trial in one
simulation run often differs from the strategy choice within the same trial in another
simulatdon run. However, each simulation run is consistent with another in the manner of
progression of strategies, i.e., from simple to most advanced.

The results of strategy selection in the network for 10 simulation runs starting at trial
sixty and trial fifty—seven are shown in Table 4.4 and Table 4.5, respectively. Each row in
both tables lists the number of times every strategy type is selected starting at trial sixty or
fifty—seven for 16 successive trials. We choose 16 successive trials because it corresponds
to the number of trials that each child receives in the study of Bray et al. (1993). We settle
on starting trials of sixty and fifty—seven because the resultant percentages of strategy use
correlate best with the empirical data for NMR children and EMR children at these starting
values. We observe from Table 4.4 and Table 4.5 that the average percentages of strategy
selection in network match quite well with those of the NMR children and EMR children
in all strategy categories.

4.5 Discussion and Conclusions

In this chapter, we have proposed the construction of the components neural network
model for strategy selection, presented its architecture and the outcomes of computer
simulations, and compared the performance of the model with empirical data from the study
of Bray et al. (1993).

The formulation of the components neural network model is motivated by classical

Piagetian notions that children take into account more dimensions of information with
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development and their cognitive maturation involves advancement from simple
sensory-motor manipulation during infancy to abstract thinking during adolescence and
adulthood. In the context of the “object—target matching task,” these notions imply that
children pay attention to feedback information about the recall of concrete entities (objects
and targets) earlier, and to feedback information about the recall of abstract entities
(prepositions) later. The adoption of the “differences in feedback™ postulation has
eliminated the necessity fornovelty biasasa controlling factorin the selection and evolution
of strategies. As we have seen in Chapter three, the novelty bias neural network model
assumes that a strategy has already been discovered at the instant of the introduction of the
novelty bias for that strategy. Thus, the previous model does not explain how strategies are
discovered. In the components neural network model, a strategy is gradually formed by

continual inputs from accuracy units and actually discovered when its activation exceeds the

firing threshold.
Table 4 in le mentally-retar hildren (11-year old).
RUN# STRATEGY USE IN 16 TRIALS
type 1  type2 type 3
1 1 5 10
2 1 4 11
3 2 4 10
4 1 9 6
5 1 11 4
6 2 9 5
7 0 8 8
8 2 11 3
9 3 3 10
10 1 5 10
average use 14 69 1.7
% use 8.75 43,12 48.12
EMPIRICAL DATA:
% use 9.1 41.5 49.3

NOTE: The values of strategy use for neural network are computed starting at trial 57.
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An advantage of neural network modeling is evident here for the purposes of studying
cognitive development. The process of neural network construction forced us to abandon
the notion of novelty bias, which is abruptly introduced into the network and probably
biologically implausible, and to explore the idea of “differences in feedback.” The latter
idea seems biologically plausible in light of the modeling effort of Levine and Prueitt (1989).
They attributed the differences in the manifest behavior of normal subjects and frontal lobe
damaged patients to differences in the strength of signal from sensory loci to reinforcement
loci. The components neural network model, as we have seen, attributes the differences in
strategy selection between NMR children and EMR children to the degree of the encoding
of feedback information from the entities.

Although the initial fit to empirical data shown in Tables 4.4 and 4.5 is encouraging,
some ambiguity remains. Itis not clear why a difference of only three trials in the beginning
of the 16-trial block simulates the differences between the two groups of children. It may
be that the simulated trials of the model comrespond to larger psychological units of
experience. 'The NMR children, having more experience with encoding strategy
components, possess a higher proportion of more sophisticated strategies than the EMR
children. This aspect of the fit of the simulation to the empirical data requires further
investigation.

The components neural network model exhibits qualitative behavior observed by
Siegler and Jenkins (1989) in arithmetic tasks, and by Bray et al. (1993) in the external
memory task in several aspects: use of diverse strategies in short intervals, discovery of
strategies, nonuse of a strategy after its discovery, evolution of strategies from simple to
advanced in individuals, and use of simpler strategies by younger children and of more
advanced strategies by older children.

Outcomes from computer simulations point out that the behavior of the components

neural network model is not as variable as that of the children studied by Bray et al. (1993).
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Children in the study use a strategy as infrequently as about 50% of the trials. The model,
except for the few trials immediately following the discovery of the first strategy, always
uses a strategy. Children typically use a variety of strategies in any given trial. On the other
hand, the model uses the same selected strategy throughout the duration of a trial. The
accuracy of recall in children varies from 0% to 100% whether a strategy is used or not. The
accuracy of recall in the network is always 75% when a strategy is not used and can vary from
50% to 100% when a strategy is used. Thus, the model exhibits limited variability and
further enhancements of the model should be attempted to make it more realistic.

As with the novelty bias neural network, the components neural network recalls
prepositions with lower accuracy at high activations of the *“object—target—preposition
encoding” strategy. Analysis of the simulation results reveals that high activations of the
object-target—preposition encoding strategy lead to persistence of activity in preposition
units which establishes spurious associations between preposition units and instruction
units. The spurious associations cause incorrect recall of prepositions. This anomalous

result needs to be addressed in future work.
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only”, “object—target encoding” and “‘object—target-preposition encoding” cases. X
axis represents cycle number and Y-axis activation of a target unit. The dashed line

depicts the common firing threshold for all neurons in the network.
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Figure 4.7. Effects of strategy use on recall of prepositions when strategy units have
minimum activations. The combination of (on, in front of, on, in front of) is used in
in this particular testing. S0, S1, S2 and S3 refer to “no strategy use,” “object
encoding only”, “object—target encoding” and “object—target—preposition encoding”
cases. X-axis represents cycle number and Y-axis activation of a preposition unit.
The dashed line depicts the common firing threshold for all neurons in the network.
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Figure 4.8. Effects of strategy use on recall of prepositions when strategy units have
maximum activations. The combination of (on, in front of, on, in front of) is used in
in this particular testing. SO, S1, S2 and S3 refer to “no strategy use,” “object
encoding only”, “object—target encoding” and “object—target-preposition encoding”
cases. X-axis represents cycle number and Y-axis activation of a preposition unit.
The dashed line depicts the common firing threshold for all neurons in the network.
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CHAPTER 5
CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we evaluate what has been accomplished in the previous chapters. We
follow the example of Siegler and Shipley (1993) who evaluate three models of strategy
evolution based on five empirical phenomena that are observed in many cognitive problem
domains. The neural network models of strategy development presented in Chapters three
and four are assessed on how they exhibit these phenomena. Next, we offer some alternatives
with regard to the construction of neural network models which we faced during their design
but were bypassed to achieve the main objectives of the dissertation. These alternatives have
the potential of making the models more elegant and of suggesting other behavioral patterns.
Last, we identify other cognitive tasks, and business and robotic applications that are
relevant to the current investigation.

5.1 Assessment of Neural Network Models Based on the Phenomena of Strategy
Development

Based on evidence from several problem domains such as arithmetic, serial learning,
formation of past tense, and time telling, Siegler and Shipley(1993) observe five phenomena
that accompany strategy selection and evolution. They suggest that models of strategy
development exhibit these phenomena in order to be considered realistic. Here, we present
a brief description of these phenomena and assess the novelty bias neural network model and
the component neural network model based on them.

1. Variability: There does not exist a one—to—one comrespondence between the age of a
subject and his strategy choice. For example, a kindergartner, on the average, uses the

retrieval strategy on 16% of the addition problems in a session and the “minimum” strategy
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on 30% of the problems. A second grader, on the average, uses the retrieval strategy on 45%
and “minimum” strategy on 40% of the problems in the same session (Siegler & Shipley,
1993). Thus, the second grader uses both strategies similar to the kindergartner but with
different relative frequencies.

Both neural network models manifest the characteristic of variability in their of
selection of strategies. Between trials twenty—five and thirty—four in Table 3.1, the novelty
bias neural network selects strategy one twice, strategy two thrice and strategy three five
times. Between trial fifty—five and sixty—four in Table 4.2, the components neural network
selects strategy one five times, strategy two once and strategy three four times.

2. Adaptive Strategy Choices: In general, humans show adaptivity in strategy choice.
The more difficult a given problem is, the more often they rely upon well-understood but
slower strategies. In contrast, the easier the problem is, the faster the use of strategies. For
example, second grade children fall back on the sum strategy on more difficult addition
problems and use the retrieval strategy on easier addition problems.

Currently, the neural network models are trained on problems of equal difficulty. Each
problem in the context of object—target matching task consists of a sequence of four
instructions. The idea of difficultly may be incorporated into this task, for example, by
varying the number of instructions from one trial to another in the computer simulations of
the models.

3. Change: Three types of changes occur among humans in association with strategy
use across time.

(i) Relative frequencies of strategy use vary with time, as mentioned in the discussion of
variability above. Both neural network models show changes in relative frequencies of
strategy use with increasing simulation trials as discussed in Chapters three and four.

(ii) Effectiveness of implementation of a strategy improves with experience. For example,

after some experience with the “minimum” strategy, children execute the same more quickly
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and more correctly. The strategy units in both neural network models show higher gains in
the total accuracy input that they receive from accuracy inputs with increasing simulation
trials and, thus, the activations of the entity units during recall are, in general, higher.

(iif) Acquisition of new strategies: Children as well as adults never stop learning (or
discovering) new strategies. For example, children who are familiar with the “sum” and
“retrieval” types of strategy proceed to discover the “minimum” strategy (Siegler & Jenkins,
1989). According to Siegler and Shipley (1993), the current models of strategy evolution
lack a satisfactory explanation of mechanisms that lead to strategy discovery.

The novelty bias neural network implements the novelty bias mechanism to explain the
acquisition of new strategies. In this model, the initiation of a novelty bias for a strategy
corresponds to the discovery of the strategy. Thus, this model does not provide a satisfactory
explanation of strategy discovery.

However, the components neural network model provides some insights into strategy
discovery. According to this model, selective encoding of the accuracy information that
results from the use of various strategy components allows strategies to exceed firing
thresholds at different time periods. A strategy is discovered when its activation transcends
the firing threshold. Thus, this model attributes strategy discovery to accuracy and selective
encoding factors in a neural realm. An advantage of the neural network modeling endeavor
is highlighted here. The constraints that accompany the design of neural networks have led
us to finding these factors.

4. Generalization: It refers to the use of strategies on new problems. Children, for
example, extend the “minimum” strategy to new addition problems after they are faced with
challenge problems. In the context of the object-target matching task, new problems could
imply sequences with variable number of instructions. Currently, the structure of the neural
network models does not permit these types of instruction sequences and generalization of

the neural network models on strategy use could not, therefore, be tested.
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5. Individual Differences: Younger children differ from older children in patterns of
strategy use, and mentally retarded individuals from nonretarded individuals on the same.
In both neural network models, the activation update equations for strategy units each have
a noise term. This term leads to variability in computer simulation of the models from one
run to another with respect to strategy selection. As a consequence of this variability, each
simulation run may be treated as an “individual” who makes a series of strategy choices,
different from another “individual.”

The differences between chronological groups, as well as between intelligence groups,
may be emulated using the neural network models, as noted in Chapter four. Both models
select simpler strategies during the initial phase of a simulation and more advanced strategies
during the later phase of a simulation. The mentally retarded individuals and the younger
children use simpler strategies and, therefore, their strategy development corresponds to the
initial phase in a computer simulation. The nonretarded individuals and the older children
use more advanced strategies and, therefore, their strategy development corresponds to the
later phase in the simulation.

Thus, the neural network models, investigated in this dissertation, exhibit three of the
five phenomena: variability, change, and individual differences. Further work is necessary
to determine whether the models exhibit the phenomena of adaptive strategy choice and
generalization. Most importantly, it provides an important insight into the acquisition of
strategies. According to this insight, strategies are discovered when the components of
strategies are continually evaluated for their effectiveness e.g., accuracy and speed. This
insight may be of practical use, for example, in training the mentally-retarded individual on
strategy use.

5.2 Scope for Further Development of Neural Network Models
1. The strategy pools in the novelty bias neural network and the component neural

network are currently implemented by selecting the strategy with highest activation and
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setting the other two strategies to zero. For example, a suitable winner-take—all mechanism
can be implemented to achieve similar effect.

2. Currently, a noise term is included in the activation update equation of strategy units.
This noise term has led to diversity in strategy choice from trial to trial. Without the term,
we expect the strategies to evolve from the most simple to the most advanced but without
showing diversity behavior. The presence of a similar noise term in the activation update
equation of all units in every neural network that we considered should also be explored for
its effects on the manifest behavior of the network. For example, a noise term in the
activation update equation of accuracy units may simulate the effects of noise in encoding
accuracy information on strategy behavior.

3. The generalized Hebbian rule that is used in learning associations in all the neural
network models does not lead to the convergence of weights. For this reason, the following
rather arbitrary criterion is used in halting the simulation of the sequence generator neural
network in Chapter two : stop the simulation when one of the weights in the network reaches
a value of 1.0. Further research effort should be devoted in developing halting criteria for
learning of weights.

4. Currently, we get anomalous results with respect to the recall of prepositions when
“object—target—preposition encoding” strategy has high activation values. As discussed in
Chapters three and four, spurious associations occur due to the persistent activity in
preposition units. Further work should explore possible solutions, e.g., larger competition
within the preposition pool to rectify this anomaly.

5. In the current implementation of strategies, it is assumed that a single strategy is in
effect throughout the duration of a trial. However, this assumption is not realistic because
subjects in the investigation of Bray et al. (1993) apply multiple strategies in a single trial.

Future work should eliminate this restriction.
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5.3 Applications

The topic of strategy development and hybrid neural network methodology as discussed
in this dissertation is of interest to a variety of problems in cognitive psychology, business
and robotics. We identify these problems in this section.

Siegler and Shipley (1993) mention several cognitive problems where the subjects
exhibit the same characteristics of strategy selection and evolution as pursued in the neural
network models in this dissertation. These problems include arithmetic, time telling,
spelling, formation of past tense, causal reasoning, and number conservation. Fletcher and
Bray (1993) have more recently devised a “ghost task™ that involves placing objects in a
given spatial order around the ghost. This task is a modification of the object-target
matching problem investigated by Bray et al. (1993) and is supposed to further facilitate the
use of external memory strategies by the mental retarded and nonretarded subjects. All the
cognitive tasks referred to here are candidates for the development of hybrid neural network
models. During the course of current investigation, we gained the insight that selective
encoding of accuracy information as it pertains to strategy components may result in the
differences in strategy choice among the various chronological and intelligence groups. The
generality of this finding should be tested by the construction of neural network models for
the aforementioned cognitive tasks.

Waxman and Bachelder (1992) and Grefenstette (1992) discuss the application of neural
networks and genetic algorithms to the design of an adaptive autonomous system. Such a
system typically operates in an environment that can only be partially modeled or that
permits only limited sensing. Constraints such as these introduce uncertainty into the
decision-making process of the system. The work carried out in this dissertation offers a
framework that enables an autonomous system to overcome these constraints and to adapt

its decisions appropriately.
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M1 measurement units
decision units
certainty units

)

El

evaluation units

Figure 5.1. A hypothetical neural network for decision—switching in an autonomous
system. The connections between certainty units and decision units are shown dashed
to distinguish them from the connections between the evaluation units and the decision
units.

This framework is illustrated by a conceptual neural network, which is analogous to the
novelty bias neural network presented in Chapter three (Figure 5.1). Measurement variables,
M1, M2, .., M6 are sensory values after the system applies one or more decisions, D1, D2,
and D3 on the task at hand. Certainty factors, CF1, CF2 and CF3, which are analogous to
the novelty bias factors in the novelty bias model, are associated with the three decisions D1,
D2, and D3, respectively. The evaluation variables, E1, E2, .., E6 corresponding to the
measurement variables are built into the system at the time of commissioning of the system.
Evaluation may be based on performance criteria such as accuracy and speed. In a

semi-autonomous system, the operator of the system interactively supplies inputs to the
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evaluation units. At the end of each evaluation cycle, the weights between the decision units
and the evaluation units are updated. These weights are responsible for the switch in
decision-making in the long—term.

Levine and Leven (1993) illustrate the application of hybrid neural network
methodology for modeling irrational behavior of consumers. Specifically, they construct a
neural network that simulates consumer behavioral patterns where consumers favor the
introduction of “new coke” during market survey butrejectitin a buying situation. Our work
on strategy development further confirms the utility of the hybrid neural network
methodology. Similar to the work of Levine and Leven, models analogous to those
developed in the course of this research can be used in predicting shifts in consumer

preferences based on criteria such as taste and novelty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

Albus, J.S. (1991). Outline for a theory of intelligence. JEEE Trans. Systems, Man and
Cybernetics, 21, No. 3, 473-509.

Anderson, J.A., Silverstein, J.W., Ritz, S.A., & Jones, R.S. (1977). Distinctive features,
categorical perception, and probability learning: Some applications of a neural model.
Psychological Review, 84,413-451.

Bjorklund, D.F. & Harnishfeger, K.K.(1990). Children’s strategies: Their definitions and
origins. In D.F. Bjorklund (Ed.), Children’s strategies: Contemporary views of cognitive
development (pp. 309-323). Hillsdale, N.J.: Lawrence Erlbaum.

Braintenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge, MA:
MIT Press.

Bray, N.W., Saarnio, D.A., Borges, L.M,, & Hawk, L.W. (1993). Intellectual and
developmental differences in external memory strategies. American Journal on Mental
Retardation (in press).

Brown, A. (1987). Metacognition, executive control, self — regulation and other more
mysterious mechanisms. In FE. Weinert & R.H. Kluwe (Eds.), Metacognition, motivation,
and understanding, (pp. 65-116). Hillsdale, N.J.: Lawrence Erlbaum.

Edelman, G.M. (1978). Group selection and phasic re—entrant signalling: A theory of higher
brain function. In G.M.Edelman & V.B.Mountcastle (Eds.), The Mindful Brain (pp.51-100).
Cambridge, MA: MIT Press.

Edelman, G.M. (1987). Neural Darwinism: the theory of neuronal group selection. Basic
Books, New York.

Edelman, G.M. & G.N. Reeke, Jr,, (1982). Selective networks capable of representative
transformation, limited generalizations, and associative memory. In Proceedings of
National Academy of Sciences (USA), 79, 2091-2095.

Flavell, J.H. (1987). Speculations about the nature and development of metacognition. In
FE. Weinert & R.H. Kluwe (Eds.), Metacognition, motivation, and understanding, (pp.
21-29). Hillsdale, N.J.: Lawrence Erlbaum.

Fletcher, K. & N.W. Bray (1993). External memory strategies in children with and without
mild mental retardation. American Journal of Mental Retardation (in press).

Grefenstette, J.J. (1992). The evolution of strategies for multiagent environments. Adaptive
Behavior, 1, No. 1, 65-90.

Grossberg, S. (1969). On the serial learning of lists. Mathematical Biosciences. 4, 201-253.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99
Grossberg, S. (1974). Classical and instrumental learning by neural networks. In R.Rosen

& F.Snell (Eds.), Progress in theoretical biology, 3, 51-141.

Grossberg, S. (1978). A theory of human memory : self-organization and performance of
sensory-motor codes, maps and plans. In R.Rosen & F.Snell (Eds.), Progress in theoretical
biology, 5, 233-374.

Grossberg, S. & Pepe, J. (1971). Spiking Threshold and overarousal effects in serial
learning. Journal of Statistical Physics, 3, No.2, 95-125.

Harris, J.E. (1980). Memory aids people use: Two interview studies. Memory and Cognition,
8, 31-38.

Hertz,J., A. Krogh, & R.G. Palmer (1991). Introduction to the theory of neural computation.
Redwood City, CA: Addison — Wesley.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA, 79, 2554-2558.

Hrycej, T. (1992). Modular learning in neural networks: a modularized approach 1o neural
network classification. New York: Wiley.

Kleinfeld, D. (1986). Sequential state generation by model neural networks. Proceedings
of the National Academy of Sciences, USA, 83, 9469-9473.

Levine, D.S. (1991). Introduction to neural and cognitive modeling. Hillsdale, N.J.:
Erlbaum.

Levine, D.S. & Leven, S. (1993). A gated dipole architecture for multi~drive, multi-
attribute decision making. World Congress on Neural Networks, International Neural
Network Society, Washington, D.C., 1, 495-499.

Levine, D.S. & Prueitt, P.S. (1989). Modeling some effects of frontal lobe damage-novely
and perseveration. Neural Networks, 2, 103-116.

Luce, R.D. (1959). Individual choice behavior. New York: Wiley.

McClelland, J.L. (1991). Stochastic interactive processes and the effects of context on
perception. Cognitive Psychology, 23, 1-44.

McClelland, J.L. & Rumelhart, D.E. (1988). Explorations in parallel distributed
processing: a handbook of models, programs, and exercises. MIT Press, Cambridge, MA.

McGilly, K. & Siegler, R.S. (1989). How children choose among serial recall strategies.
Child Development, 60, 172-182.

Norman, D.A. (1980). Twelve issues for cognitive science. Cognitive Science, 4, 1-32.
Pearson, J.C., L.H. Finkel, & G.M. Edelman (1987). Plasticity in the organization of adult
cortical maps: A computer model based on neuronal group selection. Journal of
Neuroscience. 7, No.12, 4209-4223.

Reeke, G.N., Jr., Sporns, O. & Edelman, G.M. (1990). Synthetic neural modeling: the
Darwin series of recognition automata. Proceedings of the IEEE, 78, No.9, 1498-1530.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

Reilly, K. D., Amthor, F,, McAnulty, M. A., Thurston, P. W,, Villa, M. F,, & Wainer, M.
S. (1987). Neural Network Modeling and the Neuronal Robot. In Jordan Q. B.Chou, (Ed.)
Proc. 1987 Summer Computer Simulation Conference (pp. 448-453). San Diego, CA:
Simulation Councils.

Reilly, K.D. & Villa, M. (1990). A barrels organization for data fusion and communication
in neural network systems. Procs. First Workshop on Neural Networks:
Academic-Industrial-NASA-Defense 90-WNN-AIND (pp.115-122). San Diego, CA:
Simulation Councils.

Siegler, R.S. (1991). Children’s Thinking. Prentice Hall, Englewood Cliffs, NJ.

Siegler, R.S. & Jenkins, E. (1989). How children discover new strategies. Lawrence
Erlbaum, Hillsdale, N.J.

Siegler, R.S. & Shipley, C. (1993). Variation, selection, and cognitive change. In G. Halford
and T. Simon (Eds.), Developing cognitive competence: new approaches to process
modeling. Lawrence Erlbaum Associates, Hillsdale, N.J. (in press).

Sternberg, R.J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge
University Press.

Sternberg, R.J. & Rifkin, B. (1979). The development of analogical reasoning processes.
Journal of Experimental Child Psychology, 27, 195-232.

Sompolinsky, H. & Kanter, 1. (1986). Temporal association in asymmetric neural networks.
Physical Review Letters, 57, 2861-2864.

Waxman, A.M. & Bachelder, I. (1992). Neural networks for mobile robot visual navigation
and behavioral conditioning. Research conference on Neural networks for Learning,
Recognition, and Control, Department of Cognitive and Neural Systems, Boston
University, May 14-16, p.10.

Villa, M.E & Reilly, K.D. (1992). Hierarchical structures in hybrid systems. In A.Kandel

and G.Langholz (Eds.) Hybrid architectures for intelligent systems (pp.221-254). Boca
Raton, FL: CRC Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

SIMULATIONS FOR THE NOVELTY BIAS NEURAL
NETWORK

In the following simulation runs, the entries represent the following:
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0.682
0.431
0.269
0.277
0.412
0.280
0.381
0.332
0.067
10 0.166
11 0202
12 0.388
13 0.130
14 0.252
15 0.010
16 0.074
17 0.029
18 0.097
19 0.094
20 0.046
21 0.190
22 0229
23 0.170
24 0.030
25 0.073
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0.150

0.169
0.182
0.191

0.200
0.217

0.227

0.240
0.252
0.258
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0.310
0.310
0.310
0317
0.317
0317
0317
0317
0317
0327
0.327

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.614
0.080
0.572
0.300
0.067
0.550
0.411
0.172
0.425
0414
0.098
0.1
0.093

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.177
0.177
0.205
0.221
0.221
0.248
0.278
0.288
0.316
0.343
0.343
0.353

Trial number

R

n

1

n

net novelty bias input to strategy unit 1
net accuracy input to strategy unit 1
net novelty bias input to strategy unit 2
net accuracy input to strategy unit 2
net novelty bias to strategy unit 3

net accuracy input to strategy unit 3

winning strategy

activation of winning strategy

0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.000 0.150
0.584 0.150

Simulation Run 1
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0.832
0.600
0.450
0.468
0.613
0.496
0.607
0.572
0319
0.424
0.468
0.664
0.764
0.549
0.748
0.505
0.340
0.771
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0.450
0.712
0.730
0.487
0.454
0.734
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39
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43
44
45
46
47
48
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0.169
0.023
0.159
0.147
0.057
0.050
0.008
0.011
0.1
0.045
0.067
0.008
0.093
0.069
0.025
0.003
0.012
0.061
0.064
0.036
0.025
0.010
0.007
0.051
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0.337
0.337
0.337
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347

0.097
0.074
0.102
0.001
0.284
0.172
0.227
0.097
0.058
0.139
0.118
0.146
0.061
0.182
0.053
0.064
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0.108
0.079
0.002

50 0.024 0.347 0.028

0.353 0.160
0.353 0.615
0.353 0314
0.353 0.164
0.353 0.131
0.381 0.380
0.381 0.197
0.396 0.096
0.408 0.389
0.408 0.026
0.424 0.046
0.441 0.163
0.456 0.259
0.456 0.080
0.483 0.192
0.483 0.141
0.483 0.305
0.483 0.132
0.483 0.197
0.483 0.172
0.483 0.240
0.483 0.163
0.483 0.156
0.483 0.078
0.483 0.131
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0.276
0.320
0.320
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0.366
0.366
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0.407
0.407
0.434
0.459
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0.549
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0.761
0.822
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0.496
0812
0.567
0.484
0.637
0.656
0.608
0.493
0.709
0.546
0.543
0.587
0.626
0.637
0.599
0.574
0.765
0.641
0.747
0.771
0.890
0.870
0917
0.900
1.000



0.499
0.193
0.719
0.141
0.027
0.120
0.525
0.417
0.076
0.084
0.275
0.492
0.256
0.425
0.397
0.257
0.232
0.214
0.218
0.240
0.132
0.175
0.084
0.060
0.248
0.26%
0.252
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0.671
0.621
0.635
0.513
0.088
0.206
0.051
0.443
0.477
0.368
0.276
0.190
0.464
0.027
0.328
0.316
0.351
0.369
0.270
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0.150

0.163
0.168
0.178
0.182
0.185
0.189
0.200

0212
0.215
0219
0.226
0.238
0.245
0.258
0.271
0.271
0.279
0.286
0.295
0.303
0.303
0310
0310
0310
0317
3317

0.150
0.163
0.174
0.187
0.200
0.204
0.209
0213
0.226
0.239
0.247
0.256
0.262
0.274
0.274
0.283
0.291
0.304
0317

0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.042
0.416
0.083
0.697
0.340
0.249
0.066
0.368
0.311

0.120
0.392
0.349
0.012
0.433
0.071

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.069
0.657
0.351
0.340
0410
0.059
0.600

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.160
0.160
0.160
0.160
0.160
0.167
0.167
0.176
0.186
0.186
0.200

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.166
0.166
0.166
0.166
0.166

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.217
0.221
0.354

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150

Simulation Run 2

0.649

0.356
0.887
0.319
0.209
0.305
0.713
0.618
0.288
0.299
0.494
0.717
0.495
0.670
0.655
0.847
0.503
0.493
0.504
0.534
0.471

0.478
0.559
0.525
0.557
0.619
0.570

—_ N = NN s DD et e ms bt R) e mt et et et s P M e e s e e e

28
29
30
31

32
33
34
35
36
37

38
39
40
41

42
43

4“4
45
46
47
48
49

50
51

52
53

0.108
0.110
0.040
0.224
0.102
0.212
0.183
0.146
0.092
0.177
0.090
0.036
0.150
0.080
0.009
0.041

0.074
0.124
0.067
0.078
0.030
0.066
0.078
0.049

0.036
0.015

Simulation Run 3

0.821

0.784
0.810
0.700
0.288
0.410
0.260
0.655
0.703
0.606
0.523
0.445
0.726
0.807
0.602
0.598
0.642
0.673
0.766
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20
21
2
23
24
25
26

27
28
29
30
3
32
33
34
35
36
37
38

0.354
0.137
0.092
0.101
0.147
0.242
0.020
0.044
0.001
0.053
0.072
0.179
0.017
0.064
0.170
0.042
0.112
0.061
0.130

0.325
0.325
0.325
0.325
0.325
0.331

0.331

0.331

0.331

0.331

0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0.339

0317
0317
0.317
0.322
0.328
0.334
0.334
0.334
0339
0.339
0.339
0.339
0.347
0.347
0.347
0.347
0.347
0.347
0.347

0.289
0.404
0.100
0.359
0.053
0.291
0.283
0.273
0.222
0.242
0.197
0.062
0.010
0.215
0.109
0.090
0.014
0.015
0.197
0.103
0.118
0.100
0.060
0.127
0.087
0.012

0.532
0.550
0.097
0.041
0.054
0.275
0.286
0.158
0.343
0.076
0.321
0.274
0.174
0.256
0.035
0.160
0.051
0.078
0.115

0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200
0.200

0.182
0.198
0.215
0.215
0.215
0.215
0.215
0.215
0215
0.224
0.224
0.224
0.224
0.230
0.237
0.237
0.237
0.237
0.237

0.540
0.641
0.378
0.570
0.016
0.476
0.419
0.260
0.336
0.132
0.352
0.404
0.109
0.171
0.266
0.304
0.064
0.121
0.032
0.113
0.063
0.078
0.112
0.265
0.061
0.249

0.000
0.000
0.000
0.000
0.000
0.474
0.478
0.072
0.041
0.238
0.462
0.028
0.092
0.029
0.496
0.198
0.396
0.296
0.291

0.150
0.178
0.212
0.228
0.262
0.262
0.292
0.321
0.338
0.365
0.365
0.394
0.428
0.444
0.467
0.496
0.530
0.548
0.577
0.598
0.628
0.656
0.685
0.719
0.773
0.805

0.150
0.150
0.150
0.150
0.150
0.150
0.175
0.204
0.204
0.204
0.214
0.243
0.243
0.243
0.243
0.272
0.285
0313
0.334
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0.690
0.818
0.589
0.798
0.427
0.738
0.710
0.580
0.674
0.508
0.718
0.798
0.537
0.615
0.733
0.800
0.594
0.66%
0.609
0.711

0.691

0.734
0.797
0.984
0.834
1.000

0.714
0.748
0.409
0.423
0.474
0.624
0.653
0.378
0.558
0.442
0.677
0.518
0.398
0.486
0.739
0.470
0.681
0.609
0.625



39
40
41
42
43

45
46
47
48
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0.032
0.010
0.137
0.059
0.081
0.064
0.044
0.085
0.044
0.103

0.092
0.386
0.513
0.313
0.125
0.210
0.234
0.521
0.391
0.477
0.418
0.047
0.481
0.164
031
0.074
0.231
0.299
0.306
0.015
0.320
0.240
0.224
0.197
0.048
0.179
0.144
0.035

0.723
0.087
0.479
0.236
0.679
0.604
0.490

0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347

0.150

0.153
0.162
0.175
0.181

0.185
0.190
0.196
0.208
0.217
0.229
0.243
0.246
0.246
0.246
0.246
0.250
0.250
0.250
0.250
0.250
0.250
0.257
0.257
0.263
0.263
0.263
0.263

0.150
0.160
0.163
0.176
0.182
0.192
0.203

0.012
0.228
0.033
0.082
0.188
0.166
0.120
0.144
0.157
0.060

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.623
0.328
0.425
0.128
0.510
0.591
0.398
0.535
0.394
0.059
0.282
0.065
0.164
0.202
0.376
0.283

0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.237
0.237
0.237
0.237
0.237
0.237
0.237
0.237
0.237
0.237

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.166
0.174
0.184
0.184
0.201
0.214
0.228
0.244
0.262
0.262
0.273
0.273
0.279
0.279
0.298

0.150
0.150
0.150
0.150
0.150
0.150
0.150

0.217
0.432
0.341
0.239
0.135
0.024
0.084
0.317
0.168
0.183

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.210
0.482
0.074
0.210

0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.361
0.376
0.409
0.441
0.469
0.486
0.504
0.520
0.552
0.581

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.177
0.177

0.150
0.150
0.150
0.150
0.150
0.150
0.150

0.578
0.808
0.750
0.680
0.604
0.510
0.588
0.836
0.720
0.763
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49
50
51
52
53
54
55
56
57

0.089
0.075
0.045
0.008
0.029
0.067
0.048
0.030
0.001

Simulation Run 4

0.242

0.539
0.674
0.488
0.306
0.395
0.424
0717
0.599
0.693
0.648
0.290
0.773
0.495
0.599
0.320
0.694
0.792
0.613
0.763
0.638
0.490
0.544
0.454
0.437
0.632
0.656
0.581
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29
30
3l
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
S1
52
53
54
55

0.166
0.084
0.188
0.179
0.079
0.121
0.161
0.175
0.139
0.086
0.139
0.069
0.114
0.076
0.129
0.103
0.036
0.125
0.022
0.033
0.070
0.062
0.065
0.026
0.031
0.090
0.007

Simulation Run 5

0.873
0.247
0.642
0.412
0.861
0.796
0.693

— e . et s b e

8 0.469
9 0510

10
11
12
13
14

0.054
0.295
0.382
0.034
0.382

0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347
0.347

0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263
0.263

0.216
0.229
0.242
0.246
0.255
0.268
0.271

0.114
0.164
0.057
0.066
0.019
0.064
0.016
0.009
0.009

0.135
0.249
0.302
0.270
0.037
0.071
0.048
0.294
0.242
0.197
0.022
0.127
0.179
0.221
0.150
0.052
0.128
0.116
0.175
0.030
0.158
0.029
0.011
0.032
0.084
0.066
0.020

0.000
0.000
0.000
0.000
0.000
0.007
0.402

0.237 0.004
0.237 0.155
0.237 0.157
0.237 0.024
0.237 0.043
0.237 0.218
0.237 0.050
0.237 0.150
0.237 0.206

0.307 0.656
0.307 0.448
0.307 0.161
0.321 0.589
0.321 0.262
0321 0477
0.321 0.306
0.321 0.078
0.334 0.040
0.343 0.458
0.343 0417
0.343 0.298
0.343 0.176
0.343 0.198
0.343 0.256
0.343 0.010
0.343 0.013
0.343 0330
0.343 0.050
0.343 0.011
0.343 0.236
0.343 0.204
0.343 0.049
0.343 0.231
0.343 0.100
0.343 0.133
0.343 0.187

0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000

0.611

0.632
0.661
0.695
0.723
0.754
0.806
0.836
0.882

0.177
0.209
0.238
0.238
0.274
0.290
0.321
0.347
0.347
0.347
0.380
0414
0.444
0.466
0.495
0.527
0.544
0.558
0.591
0.619
0.644
0.676
0.709
0.740
0.795
0.829
0.877

0.150
0.150
0.150
0.150
0.150
0.150
0.150
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103

0.615
0.787
0.818
0.719
0.765
0972
0.856
0.987
1.000

0.833
0.658
0.609
0.827
0.536
0.767
0.627
0.615
0.576
0.805
0.798
0.712
0.620
0.664
0.751
0.536
0.557
0.888
0.641
0.630
0.880
0.880
0.758
0.971
0.895
0.962
1.000

0.685
0.740
0.296
0.541
0.637
0.302
0.653



15
16
17
18
19
20
21
22
23
24
25
26
27

29
30

0.292
0.360
0.397
0.251
0.087
0.107
0.198
0.180
0.190
0.138
0.282
0.017
0.258
0.112
0.052
0.140

1 0.172
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0.393
0.027
0.685
0.513
0.565
0.503
0.517
0.316
0.265
0.426
0.266
0.261
0.045
0.256
0.319
0.060
0.399
0.298
0.090
0.289
0.091
0.127
0.161
0.195
0.053
0.235
0.214
0.212
0.118
0.164

0.285
0.285
0.298
0.311
0318
0.318
0.318
0.318
0.325
0.333
0.340
0.340
0.340
0.348
0.348
0.348

0.435
0.041
0.304
0.303
0612
0.278
0.358
0.228
0.048
0.134
0.485
0.182
0.102
0.071
0.357
0.180

0.150 0.000

0.154
0.163
0.163
0.173
0.185
0.199
0.212
0.224
0.233
0.240
0.253
0.262
0.262
0.262
0.270
0.278
0278
0.278
0.286
0.291
0.299
0.299
0.304
0.311
0.311
0.311
0.311
0.311
0311
0.311

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.646
0.153
0.008
0.403
0.500
0.534
0.200
0.094
0.366
0.221
0.169
0.051
0.373
0.349
0.298
0.335
0.128
0.214
0.279

0.150
0.159
0.159
0.159
0.159
0.176
0.182
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.673
0.252
0.061
0.329
0.530
0.616

0.150 0.000

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.164
0.168
0.168
0.168
0.187
0.203
0.203
0.203
0.203
0.210
0.210
0.210
0.219
0.228
0.228
0.236
0.236
0.236

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.269
0.246
0.477
0.043
0.350
0.562
0.489

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.185
0.195
0.195
0.211
0.242

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.175
0.175
0.192
0.223

0.585
0.645
0.695
0.562
0.771
0.454
0.540
0.498
0.515
0.471
0.823
0.436
0.598
0.524
0.741
0.858
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0.025
0.043
0.113
0.030
0.045
0.185
0.003
0.025
0.015
0.152
0.004
0.000
0.048
0.071
0.067
0.036

Simulation Run 6

—

0322
0.547
0.190
0.848
0.686
0.751
0.701
0.729
0.540
0.497
0.666
0.519
0.796
0.316
0.518
0.588
0.668
0.721
0.575
0.376
0.580
0.425
0.425
0.465
0.583
0.567
0.627
0.562
0.525
0.754
0.712
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32
33
34
35
36
37
38
39
40
41
a2
43
44
45
46
47
a8
49
50
st
52
53
54
55
56
57
58
59
60
61
62

0.018
0.015
0.162
0.109
0.145
0.105
0.165
0.131
0.145
0.128
0.101
0.129
0.106
0.101
0.018
0.002
0.052
0.066
0.091
0.018
0.029
0.066
0.049
0.013
0.006
0.009
0.046
0.037
0.038
0.063
0.028

0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348
0.348

0.311
0.31
031
0311
0.311
0.317
0.317
0317
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323
0.323

0.250
0.296
0.172
0.234
0.203
0.189
0.226
0.020
0.112
0.130
0.175
0.022
0.087
0.038
0.136
0.123

0.130
0.168
0.079
0.277
0.177
0.230
0.210
0.010
0.161
0.128
0.127
0.014
0.161
0.028
0.112
0.021
0.050
0.056
0.041
0.138
0.126
0.057
0.020
0.000
0.114
0.010
0.064
0.099
0.013
0.042
0.030

0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193
0.193

0.236
0.241
0.247
0.247
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258
0.258

0.618
0.374
0.251
0.459
0.265
0.157
0.185
0.290
0.050
0.345
0.249
0.091
0.288
0.286
0.270
0.327

0.111
0.059
0.350
0.214
0.161
0.375
0.218
0.000
0.237
0.361
0.073
0.162
0.299
0.310
w131
0.227
0.042
0.087
0.109
0.107
0.233
0.241
0.067
0.026
0.164
0.033
0.170
0.075
0.137
0.101
0.167

0272
0.305
0.334
0.350
0.383
0411
0.426
0.447
0.478
0.494
0.524
0.556
0.583
0.614
0.648
0.683

0.252
0.252
0.252
0.269
0.269
0.269
0.296
0312
0312
0.329
0.358
0.367
0.382
0412
0.440
0.455
0.484
0.500
0.516
0.542
0.569
0.602
0.632
0.661
0.688
0.719
0.750
0.785
0.817
0.864
0914
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0.890
0.679
0.585
0.809
0.648
0.568
0.612
0.737
0.528
0.839
0.773
0.647
0.870
0.899
0919
1.000

0.366
0.410
0.602
0.524
0.455
0.644
0514
0.448
0.550
0.690
0.431
0.528
0.681
0.722
0.571
0.682
0.526
0.587
0.625
0.649
0.803
0.843
0.699
0.687
0.852
0.753
0.920
0.861
0.954
0.964
1.000
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12
13
14
15
16
17
18
19
20
21
22
23
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26
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0.750
0.479
0.275
0.065
0.418
0.633

0.622
0.061

0.551

0.481
0.140
0.493
0.296
0.099
0.091
0.099
0.260
0.202
0.048
0.335
0.194
0.208
0.326
0.027
0.207
0.109

0.747
0.103
0.715
0.415
0.254
0.432
0.253
0.100
0.577
0.177
0.311
0.437
0.215
0.442
0.063
0.268
0.048
0.151
0.158
0.102

0.150
0.160
0.173
0.179
0.182
0.191
0.204
0217
0.221
0.233
0.246
0.251
0.264
0.264
0.264
0.264
0.264
0.272
0.272
0.272
0.281
0.287
0.287
0.298
0.298
0.298

0.150
0.160
0.164
0.174
0.182
0.188
0.199
0.205
0.209
0.220
0.225
0.234
0.247
0.253
0.266
0.266
0.266
0.266
0.266
0.271

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0512
0.604
0.493
0.681
0.172
0.515
0.624
0.213
0.226
0.362
0.137
0.367
0.074
0.249

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.274
0.098
0.213
0.642
0.249
0.496
021
0.113

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.169
0.186
0.204
0.214
0.214
0.230
0.240
0.240
0.240
0.250
0.250
0.263
0.263

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.155
0.173
0.179
0.197
0.197

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0714
0.383

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.181

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150

Simulation Run 7
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0.900
0.640
0.448
0.244
0.600
0.824
0.826
0.278
0.772
0.714
0.386
0.743
0.662
0.773
0.679
0.885
0.524
0.728
0.854
0.607
0.475
0.602
0.613
0.616
0.864
0.563

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

0.016
0.054
0.151
0.046
0.077
0.203
0.014
0.000
0.047
0.115
0.119
0.152
0.164
0.116
0.156
0.060
0.097
0.086
0.002
0.060
0.031
0.043
0.017
0.030
0.089

Simulation Run 8

1
1
1
1
1
1
1
I
1
1
1
1
1
1
2
2
2
2
1
1

0.897
0.263
0.879
0.589
0.436
0.620
0.451
0.305
0.785
0.397
0.536
0.671
0.462
0.695
0.363
0.797
0.421
0.675
0.423
0.374

2]
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0.209
0.29
0.244
0.254
0.079
0.254
0.130
0.123
0.102
0.222
0.061
0.021
0.022
0.158
0.057
0.141
0.031
0.110
0.145
0.106

0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298
0.298

0.276
0.283
0.291
0.291
0.299
0.299
0.299
0.299
0.299
0.299
0.308
0.308
0.308
0.308
0.308
0.308
0.308
0.308
0.308
0.308

0.205
0.068
0.338
0.292
0.261
0.110
0.078
0.315
0.067
0.239
0.018
0.221
0.104
0.142
0.068
0.202
0.087
0.222
0.086
0.071
0.075
0.122
0.045
0.099
0.030

0.169
0.177
0.491
0.018
0.115
0.417
0.349
0.174
0.314
0.134
0.232
0.141
0.344
0.055
0.075
0.100
0.234
0.157
0.205
0.263

0.263
0.263
0.263
0.263
0.272
0.272
0.272
0.272
0.272
0.272
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283
0.283

0.197
0.197
0.197
0.214
0.214
0.214
0.231
0.240
0.240
0.240
0.240
0.240
0.240
0.250
0.250
0.250
0.250
0.257
0.257
0.257

0.533
0.160
0.585
0.161
0.558
0.474
0.040
0.396
0.227
0.070
0.123
0.168
0.108
0.425
0.320
0377
0.250
0.258
0.107
0.105
0.110
0.275
0.008
0.121
0.245

0.000
0.000
0.000
0.000
0.650
0.025
0.143
0.626
0.676
0.186
0.448
0.576
0.066
0.475
0.148
0.262
0.034
0.437
0.212
0.154

0.197
0.225
0.234
0.268
0.268
0.303
0.335
0.342
0371
0.389
0.389
0.406
0.422
0.438
0.469
0.498
0.530
0.560
0.594
0.623
0.651
0.682
0.729
0.759
0.792

0.150
0.150
0.150
0.150
0.150
0.184
0.184
0.184
0.218
0.252
0.252
0.280
0.312
0.312
0.341
0.354
0.375
0.375
0.409
0.430
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0.729
0.385
0.818
0.555
0.826
0.777
0.375
0.738
0.598
0.510
0.512
0.574
0.530
0.863
0.789
0.875
0.779
0.819
0.702
0.728
0.761
0.958
0.737
0.880
1.000

0.485
0.582
0.688
0.545
0.800
0.630
0.580
0.810
0.894
0.521
0.700
0.856
0.584
0.786
0.489
0.616
0484
0813
0.621
0.584
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42
43

45
46
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0.065
0.031
0.114
0.124
0.072
0.087

0.624
0.720
0.128
0.103
0.222
0.376
0.573
0.540
0.025
0.282
0.207
0.237
0.276
0.262
0.018
0.178
0.246
0.208
0.133
0.287
0.340
0.192
0.042
0.043
0.077
0.188
0.273
0.081

0.271
0.745
0.474
0.544
0.202
0.393
0.031
0.437
0.492
0.312
0517

0.308
0.308
0.308
0.308
0.308
0.308

0.150
0.163
0.173
0.177
0.181
0.186
0.194
0.206
0.219
0.223
0.231
0.237
0.243
0.251
0.260
0.260
0.260
0.268
0.275
0.275
0.282
0.293
0.293
0.293
0.297
0.297
0.297
0.305

0.150
0.156
0.166
0.179
0.191
0.196
0.205
0.208
0.221
0.234
0.242

0.024
0.181
0.128
0.156
0.114
0.058

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.277
0.126
0.657
0.335
0.256
0.056
0.345
0.290
0.269
0.518
0.531
0.103
0.288
0.341
0.138
0.178

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.257
0.257
0.257
0.257
0.257
0.257

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.166
0.177
0.177
0.177
0.187
0.187
0.187
0.204
0.221
0.221
0.232
0.232
0.232

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150

0.298
0.126
0.201
0.211
0.229
0.317

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.065
0.686
0.074
0.350

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.446
0.477
0.494
0.522
0.553
0.583

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.183
0.183

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150

0.744
0.603
0.695
0.734
0.782
0.900
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47
48
49
50
51

0.058
0.084
0.104
0.048
0.065

Simulation Run 9

0.774
0.883
0.302
0.280
0.403
0.562
0.767
0.746
0.244
0.505
0.438
0.474
0.520
0.514
0.807
0.501
0.506
0.476
0.522
0.562
0.622
0.705
0.735
0.336
0.510
0.836
0.570
0.533
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29
30
31
k?)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
s
52
53
54
55
56

0.131
0.043
0.033
0.152
0.004
0.092
0.097
0.104
0.148
0.032
0.015
0.052
0.118
0.109
0.141
0.011
0.129
0.000
0.055
0.036
0.042
0.108
0.069
0.028
0.001
0.085
0.082
0.081

Simulation Run 10

0.421
0.900
0.640
0.723
0.393
0.589
0.236
0.644
0.713
0.546
0.760

— e e et e et e eea e
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12
13
i4
15
16
17
18
19
20
21
22

0.456
0.134
0.181
0.386
0.276
0.106
0.341
0.106
0.367
0.188
0.288

0.308
0.308
0.308
0.308
0.308

0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305
0.305

0.255
0.268
0.273
0.273
0.273
0.273
0.273
0.284
0.284
0.297
0.297

0.060
0.050
0.080
0.013
0.087

0.371
0.396
0.310
0.082
0.185
0.299
0.007
0.074
0.281
0.209
0.083
0.076
0.014
0.155
0.088
0.005
0.051
0.030
0.089
0.024
0.072
0.079
0.163
0.072
0.037
0.037
0.113
0.1m

0.000
0.082
0.753
0.721
0.582
0.440
0.308
0.434
0.027
0.477
0.3%4

0.257
0.257
0.257
0.257
0.257

0.232
0.232
0.232
0.243
0.243
0.243
0.254
0.254
0.254
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265
0.265

0.150
0.150
0.150
0.160
0.170
0.188
0.205
0.205
0.223
0.223
0.241

0.232
0.301
0.060
0.173
0.262

0613
0.596
0.251
0.546
0.258
0.131
0243
0.203
0.127
0.260
0.030
0.050
0.246
0.322
0277
0.161
0.114
0.238
0274
0.013
0.043
0.261
0.117
0.109
0.175
0.064
0.154
0.207

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.616
0.647
0.686
0717
0.751

0.199
0.232
0.267
0.267
0.300
0315
0315
0.331
0.347
0.347
0.365
0372
0.381
0.408
0.437
0.465
0.491
0.508
0.539
0.573
0.589
0.615
0.647
0.677
0707
0.740
0.772
0.808

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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0.849
0.948
0.746
0.891
1.000

0.811
0.828
0.542
0.813
0.558
0.542
0.558
0.534
0.535
0.607
0.395
0.422
0.627
0.729
0.714
0.626
0.606
0.746
0.813
0.586
0.632
0.875
0.764
0.787
0.882
0.804
0.926
1.000

0.711
0.402
0.903
0.881
0.752
0.628
0.614
0.639
0.651
0.700
0.635
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25
26
27
28
29
30
31
32
13
34
35
36
37
18
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40
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0.150
0.175
0.042
0.008
0.034
0.115
0.035
0.185
0.056
0.106
0.008
0.039
0.147
0.084
0.139
0.161
0.106
0.044
0.053
0.011
0.093
0.136

Q0.374
0.719
0.152
0.225

0.277

0.440
0.001

0.500
0.236
0.209
0.207
0.410
0.028
0.340
0.306
0.291
0.088
0.150
0.183
0.276
0.085
0.163
0.198
0.145
0.123
0.237

0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297

0.150
0.158
0.169
0.173
0.178
0.184
0.196
0.196
0.209
0.215
0.221
0.227
0.239
0.239
0.239
0.239
0.239
0.239
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244

0.422
0.341
0.208
0.051
0.405
0.369
0.140
0.124
0.165
0.269
0.250
0.208
0.135
0.102
0.060
0.132
0.080
0.190
0.021
0.205
0.032
0.017

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.438
0.709
0.467
0.658
0.659
0.009
0.571
0.458
0.101
0.198
0.340
0.416
0.075
0.064

0.259 0.000
0.277 0.000
0.291 0.145
0.298 0.644
0.298 0.045
0.316 0352
0.334 0.117
0.342 0.650
0.342 0.126
0.352 0412
0.352 0.245
0.362 0.428
0.362 0.289
0.362 0.231
0.362 0.186
0.362 0.035
0.370 0.217
0.370 0.166
0.378 0.022
0.384 0.032
0.393 0.228
0.393 0.114

0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.150 0.000
0.159 0.000
0.169 0.000
0.187 0.000
0.197 0.000
0.207 0.000
0.207 0.000
0.223 0.000
0.242 0.000
0.246 0.000
0.253 0.000
0.262 0.000
0.280 0.684
0.280 0.025

0.150
0.150
0.150
0.150
0.180
0.180
0.180
0.180
0.211
0.211
0.234
0.234
0.263
0.280
0.297
0.308
0.309
0.325
0.325
0.325
0.325
0.342

0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.150
0.182

0.681
0.618
0.499
0.794
0.704
0.685
0.475
0.830
0.506
0.623
0.602
0.662
0.552
0.511
0.482
0.494
0.526
0.560
0.399
0.589
0.553
0.456
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47
48
49
50
51
52
53

&
o

55
56
57
58
59

61
62
63

65

0.033
0.044
0.112
0.069
0.062
0.076
0.069
0.044
0.062
0.033
0.043
0.034
0.000
0.064
0.022
0.015
0.035
0.028
0.021
0.034
0.049

Simulation Run 11

0.524
0.878
0.321

0.398
0.455

0.624
0.198
0.696
0.445
0.424
0.427
0.636
0.588
0.868
0.636
0.845
0.856
0.389
0.778
0.681
0.342
0.444
0.593
0.679
0.834
0.482

—_ R NN NN = NN RN RN e e e e e e e e

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
ry)
4
44
45
46
47
48
49
50
51
52

0.017
0.013
0.198
0.160
0.139
0.116
0.202
0.150
0.032
0.024
0.104
0.097
0.147
0.038
0.124
0.073
0.070
0.095
0.001
0.071
0.042
0.074
0.072
0.070
0.063
0.094

0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297
0.297

0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.251
0.25%
0.251
0.251

0.050
0.174
0.059
0.110
0.143
0.020
0.113
0.108
0.079
0.098
0.107
0.108
0.085
0.058
0.076
0.006
0.031
0.062
0.005
0.093
0.091

0.416
0.355
0.341
0.062
0.307
0.318
0.277
0.246
0.194
0.294
0226
0.213
0.22¢
0.040
0.218
0.208
0.165
0.069
0.138
0.023
0.179
0.002
0.011
0.012
0.053
0.152

0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393
0.393

0.280
0.280
0.298
0316
0316
0.334
0352
0370
0384
0.384
0.402
0.419
0.437
0.456
0.456
0.474
0.492
0511
0.520
0.539
0.548
0.564
0.573
0.582
0.592
0.610

0.090
0.239
0.325
0.204
0.295
0.268
0.056
0.264
0.021
0.146
0.073
0.057
0.146
0.171
0.159
0.081
0.067
0.132
0.116
0.033
0.129

0.592
0.259
0.342
0.533
0.257
0.092
0.142
0.234
0.505
0.292
0.114
0.137
0.125
0.356
0.041
0.051
0.268
0.031
0.166
0.190
0.043
0.254
0.217
0.236
0.167
0.144

0.355
0.365
0.382
0412
0.433
0.462
0.492
0.508
0.540
0.556
0.585
0613
0.641
0.670
0.700
0.732
0.765
0.797
0.834
0.873
0.907

0.182
0213
0213
0.213
0.243
0.243
0.243
0.243
0.243
0.275
0.275
0.275
0275
0.275
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
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0.445
0.605
0.707
0.616
0.728
0.730
0.548
0.772
0.561
0.702
0.657
0.670
0.787
0.840
0.859
0.812
0.832
0.928
0.950
0.906
1.000

0.773
0.635
0.640
0.745
0.623
0.652
0.630
0.616
0.749
0.678
0.628
0.632
0.663
0.631
0.674
0.682
0.657
0.580
0.658
0.562
0.727
0.566
0.584
0.594
0.645
0.762
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53 0.078 0251 0.038 0.626 0.028 0300 2 0.664 67 0.033 025! 0.088 0.835 0.018 0300 2 0923
54 0.004 0251 0095 0.645 0200 0300 2 0740 68 0.010 0.251 0.009 0.845 0.113 0300 2 0854
55 0.060 0251 0100 0.663 0.015 0300 2 0.763 6 0012 0251 0.022 0.855 0.063 0300 2 0876
56 0.013 0.251 0.057 0.679 0.059 0300 2 0.736 70 0034 0251 0.031 0.865 0.051 0300 2 0.896
57 0.014 0251 0029 0696 0206 0300 2 0.725 71 0.038 0.251 0.043 0.875 0.100 0300 2 0917
58 0.071 0.251 0085 0712 0064 0300 2 0.797 72 0012 0251 0.035 0.885 0.096 0.300 2 0919
59 0.069 0251 0114 0729 0.168 0300 2 0.843 73 0000 0251 0.022 0.895 0.058 0300 2 0917
60 0.005 0251 0001 0.739 0.165 0300 2 0.740 74 0.020 0251 0.022 0905 0.006 0300 2 0927
61 0.064 0.251 0063 0.756 0.001 0300 2 03819 75 0015 0251 0049 0915 0.052 0300 2 0965
62 0.041 0251 0078 0773 0090 0300 2 0851 76 0.023 0251 0016 0926 0957 §.300 2 0341
63 0013 0251 0065 0.782 0.127 0300 2 0.848 77 0.008 0251 0.033 0936 0.067 0300 2 0969
64 0056 0.251 0025 0792 0.114 0300 2 03817 78 0022 0.251 0.039 0946 0.087 0300 2 0985
65 0.025 0.251 0005 0808 0112 0300 2 03813 79 0021 0251 0050 0957 0.010 0300 2 1.000
66 0.034 0251 0071 0.825 0.132 0300 2 0.895
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APPENDIX B

SIMULATIONS FOR THE COMPONENTS NEURAL NETWORK
COMPUTER SIMULATION RUN 1

1 1 0.035 41 1 0.080
2 2 0.033 42 1 0.092
3 3 0.027 43 1 0.093
4 2 0.024 4 1 0.087
5 3 0.037
6 3 0037 45 1 0.103 discovered
7 2 0.039 46 2 0.102 discovered
8 3 0.027 47 1 0.118
9 1 0041 48 2 0.109
10 3 0.033 49 1 0.127
11 2 0.037 50 1 0.121
12 2 0.038 51 1 0.125
13 3 0.027 52 1 0.140
14 1 0044 53 1 0.136
15 1 0.047 54 1 0.148
16 2 0042 55 1 0.143
17 2 0.040 56 1 0.157
18 1 0043 57 1 0172
19 3 0042 58 2 0.181
20 3 0.043 59 2 0.187
21 2 0045 60 3 0.192 discovered
22 1 0053 61 3 0210
23 2 0.050 62 3 0229
24 1 0.059 63 2 0252
25 1 0054 64 2 0271
26 1 0061 65 3 0297
27 1 0.055 66 3 0.325
28 1 0.059 67 2 0341
29 1 0.049 68 3 0375
30 1 0.054 69 3 0412
31 1 0.058 70 3 0433
32 1 0063 71 3 0.487
33 1 0072 72 3 0529
34 1 0074 73 3 0.569
35 2 0.062 74 3 0.641
36 1 0078 75 3 0.735
37 1 0.084 76 3 0.818
38 1 0.070 77 3 0949
39 1 0.070 78 3 1.000
40 1 0.079
COMPUTER SIMULATION RUN 2
1 1 0034 5 1 0.040
2 1 0040 6 3 0.037
3 1 0031 7 3 0.037
4 3 0.031 8 3 0.040
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9 1 0.040
10 2 0.038
11 1 0041
12 3 0.035
13 3 0.042
14 3 0.041
15 1 0.028
16 1 0.036
17 2 0.046
18 1 0.035
19 2 0.043
20 1 0.041
21 1 0.045
22 2 0.050
23 1 0.046
24 3 0.043
25 2 0.052
26 1 0.051
27 3 0.052
28 1 0.048
29 1 0.054
30 3 0.055
31 1 0051
32 1 0.067
33 2 0.052
34 2 0.063
35 2 0.066
36 1 0.067
37 1 0.074
383 1 0.078
39 1 0.084
40 1 0.083
41 1 0.083
42 1 0.077
43 1 0.093
44 2 0.088
1 1 002
2 2 0.030
3 1 0029
4 2 0.032
5 2 0040
6 1 0036
7 2 0034
g8 1 0.034
9 3 0032
10 2 0.040
11 2 0.039
12 3 0.041
13 3 0.034
14 2 0.042
15 2 0.042
16 3 0.029
17 1 0.043
18 1 0.038
19 3 0.040
20 2 0.049
21 2 0.044
22 1 0.054
23 2 0.050

45 1 0.088
46 1 0.102
47 2 0.102
48 1 0.117
49 1 0.119
50 2 0.123
51 2 0131
52 1 0133
53 2 0.140
54 3 0139
55 2 0.159
56 1 0.160
57 3 0.166
58 3 0.175
59 1 0.19
60 2 0.198
61 2 0223
62 3 0231
63 3 0.248
64 3 0.264
65 2 0.290
66 3 0318
67 2 0336
68 3 0366
69 3 0405
70 3 0447
71 3 0482
72 3 0520
73 3 0.565
74 3 0.625
75 3 0.726
76 3 0.812
77 3 091
78 3 1.000

COMPUTER SIMULATION RUN 3

discovered
discovered

discovered

24 2 0.049
25 1 0.045
26 1 0.059
27 1 0.054
28 1 0.048
29 2 0.056
30 1 0.068
31 1 0.064
32 2 0.064
33 1 0.074
34 1 0076
35 1 0076
36 1 0071
37 1 0076
38 2 0072
39 1 0.084
40 1 0.085
41 1 0.089
42 1 0078
43 1 0.098
4 1 0102
45 1 0.097

discovered
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46 2 0.103 discovered 63 2 0.240
47 1 0.114 64 2 0266
48 1 0.105 65 3 0.288
49 1 0.125 6 3 0318
50 1 0.131 67 3 0341
51 2 0.131 68 3 0.362
52 1 0139 69 3 0411
53 1 0.149 70 3 0443
54 1 0.149 71 3 0465
55 1 0.155 72 3 0.507
56 1 0.160 73 3 0.561
57 1 0.163 74 3 0.635
58 2 0.175 75 3 0.699
59 1 0.191 76 3 0,789
60 3 0.190 discovered 77 3 0915
61 3 0211 78 3 1.000
62 2 0234
COMPUTER SIMULATION RUN 4

1 1 0.019 41 1 0.089
2 3 0.039 42 2 0.090
3 2 0.037 43 3 0.084
4 3 0.040 44 2 0097
5 2 0.038

6 3 0.025 45 1 0.100 discovered
7 3 0.034 46 1 0.105
8§ 1 0.039 47 1 0111
9 2 0.037 48 1 0.123
10 1 0.039 49 2 0.111 discovered
11 3 0.036 50 1 0.118
12 1 0.043 51 1 0.136
13 2 0.043 52 1 0142
14 2 0.028 53 1 0.145
15 1 0037 54 2 0.142
16 1 0.032 55 1 0.155
17 3 0.028 56 1 0.166
18 3 0.045 57 2 0.166
19 3 0.038 58 2 0.175
20 1 0.039 59 1 0.190
21 3 0.043 60 2 0.203
22 1 0.055 61 2 0220
23 3 0044 62 2 0226
24 3 0.044 63 2 0.231
25 1 0.047 6 2 0260
26 2 0.051 65 2 0.281
27 1 0.048 66 2 0316
28 1 0.062 67 3 0332 discovered
29 1 0.067 68 3 0.354
30 1 0054 69 3 0400
31 1 0065 70 3 0416
32 1 0.059 71 3 0455
33 2 0.066 72 3 0.500
34 2 0057 73 3 0.536
35 3 0.063 74 3 0.602
36 2 0067 75 3 0.666
37 1 0085 76 3 0.753
38 1 0075 77 3 0.848
39 1 0.083 78 3 0998
40 1 0.078
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COMPUTER SIMULATION RUN 5

1 3 0.030 41 1 0.086
2 1 0.030 42 1 0095
3 1 0.039 43 1 0.097
4 1 0.032

5 3 0.038 4 1 0.101 discovered
6 1 0033 45 1 0.0 not used
7 2 0.031 46 2 0.105 discovered
8 1 0.040 47 1 0.116
9 1 0.041 48 2 0.112
10 1 0038 49 1 0.117
11 2 0032 50 1 0.127
12 2 0040 51 1 0.123
13 2 0.039 52 1 0.143
14 2 0.040 53 1 0142
15 2 0.039 54 2 0.144
16 1 0046 55 1 0.158
17 2 0.039 56 1 0.163
18 2 0037 57 2 0164
19 3 0038 58 2 0174
20 1 0042 59 2 0.193
21 3 0047 60 1 0.203
22 3 0037 61 2 0216
23 1 0.055 62 3 0.227 discovered
24 3 0043 63 2 0244
25 1 0059 64 2 0273
26 1 0041 65 2 0.289
27 3 0052 66 2 0317
28 1 0040 67 2 0335
29 2 0059 68 2 0350
30 1 0065 69 2 0.389
31 2 0058 70 3 0417
32 3 0059 71 3 0461
33 1 0070 72 3 0.511
34 1 0064 73 3 0.544
35 1 0070 74 3 0.609
36 1 0061 75 3 0.669
37 2 0071 76 3 0737
38 1 0074 77 3 0.829
39 1 0085 78 3 0981
40 1 0.091

COMPUTER SIMULATION RUN 6

1 2 0029 17 2 0.032
2 1 0.040 18 3 0.037
3 3 0.040 19 2 0.043
4 1 0.031 20 2 0.039
5 1 0.039 21 2 0.048
6 1 0.041 22 1 0.042
7 2 0.038 23 1 0.045
8 2 0.029 24 1 0.055
9 2 0.038 25 2 0.036
10 1 0.035 26 1 0.051
11 1 0.029 27 1 0.057
12 2 0041 28 1 0.064
13 1 0032 29 1 0061
14 1 0044 30 1 0.047
15 2 0045 31 2 0.062
16 1 0048 32 2 0.058
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33 1 0068 6 1 0.161
34 1 0068 57 2 0.164
35 1 0068 58 2 0.179
36 2 0073 59 1 0.182
37 1 0061 60 1 0.201
38 1 0074 61 2 0.207
39 1 0084 62 2 0224
40 1 0.080 63 2 0.240
41 1 0.078 64 2 0.261
42 1 0.089 65 2 0.278
43 1 0.098 66 2 0311
44 1 0092 67 2 0.338
45 3 0.090 68 3 0.351 discovered

69 3 0.385
46 2 0.104 discovered 70 3 0411
47 2 0.096 not used 71 3 0460
48 1 0.101 discovered 72 3 0490
49 1 0122 73 3 0.545
50 2 0121 74 3 0.594
51 1 0.129 75 3 0.665
52 1 0.127 76 3 0.758
53 1 0134 77 3 0.859
54 1 0152 78 3 0.995
55 1 0.149

COMPUTER SIMULATION RUN 7

1 3 0.019 36 2 0.063
2 1 0.039 37 1 0.066
3 1 0.038 38 1 0073
4 2 0030 39 2 0070
5 2 0.030 40 3 0.076
6 2 0.039 41 1 0.088
7 1 0.039 42 1 0.080
8 3 0.040 43 1 0.093
9 3 0.038 4 1 0.095
10 2 0.030
11 1 0036 45 1 0.107 discovered
12 3 0036 46 1 0.095
13 2 0036 47 2 0.105 discovered
14 2 0.039 48 2 0.113
15 1 0041 49 1 0.118
16 1 0047 50 1 0127
17 1 0031 51 1 0.123
18 3 0.040 52 2 0.137
19 1 0041 53 2 0.140
20 1 0032 54 2 0136
21 3 0046 55 1 0162
22 1 0033 56 1 0.169
23 1 0048 57 2 0.163
24 2 0052 58 2 0.174
25 3 0045 59 2 0.19
26 1 0054 60 2 0.202
27 1 0060 61 2 0.205
28 1 0.050 62 2 0.220
29 1 0.049 63 3 0.240 discovered
30 1 0061 64 3 0272
A1 1 0064 65 2 0.299
32 1 0069 66 2 0319
33 1 0067 67 3 0.340
34 1 0070 68 3 0.374
35 1 0.069 69 3 0.392
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70 3 0436 75 3 0709
71 3 0486 76 3 0.794
72 3 0529 77 3 0.884
73 3 0.569 78 3 1.000
74 3 0632

COMPUTER SIMULATION RUN 8
1 1 0.032 41 2 0.080
2 1 0.029 42 1 0.091
3 3 0035
4 1 0033 43 1 0.102 discovered
S 3 0.039 4 2 0.095 no strategy use
6 3 0.040 45 2 0.09 no strategy use
7 2 0.036 46 1 0.102
8 2 0.037 47 1 0.11
9 1 0.028 48 1 0.124
10 2 0.041 49 1 0.116
11 3 0.038 50 2 0.124 discovered
12 3 0.039 51 2 0.128
13 3 0041 52 1 0133
14 2 0044 53 1 0.141
15 1 0.040 54 1 0.147
16 2 0.044 55 1 0.161
17 1 0042 56 2 0.166
18 1 0.047 57 2 0.155
19 1 0.046 58 1 0.185
20 3 0.045 59 2 0.186
21 2 0.045 60 1 0198
22 2 0.034 61 2 0203
23 2 0050 62 2 0226
24 1 0035 63 2 0242
25 1 0.036 64 2 0265
26 1 0.055 65 2 0289
27 1 0.052 66 2 0299
28 2 0.046 67 2 0325
29 1 0058 68 2 0358
30 1 0.062 69 2 0392
31 1 0067 70 3 0412 discovered
32 1 0073 71 3 0446
33 1 0.065 72 3 0497
34 1 0074 73 3 0538
35 2 0.066 74 3 0.597
36 1 0078 75 3 0651
37 1 007 76 3 0.734
38 2 0.069 77 3 0.826
39 1 0.083 78 3 0940
40 1 0074

COMPUTER SIMULATION RUN 9
1 2 0.030 12 2 0.029
2 2 0.038 13 1 0.041
3 3 0.038 14 2 0043
4 1 0.040 15 2 0.034
5 1 0.039 16 2 0.041
6 2 0.039 17 3 0.041
7 3 0.031 18 1 0.044
8 3 0.033 19 1 0.048
9 3 0.040 20 1 0.048
10 1 0.038 21 1 0.046
11 1 0.030 22 1 0053
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23 1 0.054 s1 1 0.118

24 2 0.050 52 2 0.135 discovered
25 3 0.049 53 1 0.148

26 1 0.048 54 2 0.149

27 1 0.057 55 1 0.140

28 2 0.056 56 1 0.166

29 1 0.060 57 1 0.162

30 1 0.052 58 1 0.168

31 1 0071 59 3 0.180 discovered
32 1 0055 60 1 0.191

33 1 0071 61 3 0.204

34 1 0056 62 2 0.227

35 1 0.069 63 3 0.241

36 2 0.065 64 3 0.252

37 1 0.085 65 2 0.286

38 1 0.075 66 2 0.310

39 1 0.082 67 3 0.331

40 1 0.082 68 3 0.360

41 1 0.089 69 3 0412

42 1 0.083 70 3 0419

43 2 0.084 71 3 0457

72 3 0513

4 1 0.102 discovered 73 3 0.569

45 1 0.099 not used 74 3 0.609

46 1 0.109 75 3 0.693

47 1 0.098 not used 76 3 0.775

48 1 0.114 77 3 0.882

49 1 0.117 78 3 1.000

50 1 0121

COMPUTER SIMULATION RUN 10

1 2 0.039 31 1 0.057

2 2 0.038 32 1 0.004

3 3 0040 33 2 0.066

4 1 0.040 34 1 0.065

5 1 0.026 35 2 0061

6 3 0.038 36 2 0.064

7 3 0.028 37 2 0.070

8 3 0.029 38 1 0.070

9 1 0.029 39 1 0.068

10 2 0.035 40 1 0.088

11 1 0.039 41 1 0.084

12 1 0.035 42 1 0.091

13 2 0.034 43 1 0.098

14 1 0.033 4 1 0.085

15 2 0.040 45 2 0.092

16 1 0.038

17 1 0.045 46 1 0.106 discovered
18 2 0.038 47 1 0.097 not used
19 1 0.040 48 1 0.122
20 2 0.032 49 1 0.115
21 1 0.054 S0 2 0.117 discovered
22 1 0044 51 1 0.137
23 2 0.043 52 1 0.122
24 1 0.056 53 1 0.139
25 2 0.046 54 1 0.149
26 1 0.049 55 1 0.142
27 1 0.055 56 1 0.152
28 1 0.047 57 3 0.164 discovered
29 1 0.057 58 1 0.175
30 1 0.052 59 2 0.194
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60 2 0.200 70 3 0449
61 2 0.212 71 3 0471
62 3 0.231 72 3 0517
63 2 0.256 73 3 0.574
64 2 0.268 74 3 0.638
65 3 0.280 75 3 0720
66 3 0315 76 3 0.790
67 3 0.330 77 3 0921
68 3 0.360 78 3 1.000
69 3 0419
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