
University of Alabama at Birmingham University of Alabama at Birmingham 

UAB Digital Commons UAB Digital Commons 

All ETDs from UAB UAB Theses & Dissertations 

1996 

A study of bifurcation for non-autonomous ordinary differential A study of bifurcation for non-autonomous ordinary differential 

equations. equations. 

Sarah Abdulrahman Al-Sheikh 
University of Alabama at Birmingham 

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection 

Recommended Citation Recommended Citation 
Al-Sheikh, Sarah Abdulrahman, "A study of bifurcation for non-autonomous ordinary differential 
equations." (1996). All ETDs from UAB. 5915. 
https://digitalcommons.library.uab.edu/etd-collection/5915 

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is 
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be 
directed to the UAB Libraries Office of Scholarly Communication. 

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/5915?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F5915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600





A STUDY OF BIFURCATION FOR NON-AUTONOMOUS 
ORDINARY DIFFERENTIAL EQUATIONS 

by

SARAH ABDULRAHMAN AL-SHEIKH

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy in the Department of Mathematics in the Graduate School, 

The University of Alabama at Birmingham

BIRMINGHAM, ALABAMA 

1996



UMI Number: 9627691

UMI Microform 9627691
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48103



ABSTRACT OF DISSERTATION
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Doctor of Philosophy Major subject Applied Mathematics

Name of Candidate Sarah Abdulrahman Al-Sheikh____________________________

Title A Study of Bifurcation for Non-autonomous

Ordinary Differential Equations

This dissertation is concerned with the study of the structure of the solution set for 

non-linear non-autonomous ordinary differential equations that involve a parameter. We 

study in particular the existence of bifurcation points and bifurcation continua. Many 

studies have been undertaken to investigate the existence of bifurcation for nonlinear 

autonomous differential equations; Krasnoselski’s and Rabinowitz’s theorems are some of 

these studies. They used the Leray-Schauder topological degree as a tool for their studies 

of nonlinear eigenvalue problems. In this work we use the Conley index theory, which has 

been used to study the global behavior of dynamical systems in the neighborhood of an 

isolated invariant set that can be applied to autonomous equations. The problem with non- 

autonomous equations is that the solutions do not form a usefid dynamical system, but we 

can overcome this difficulty by defining skew-product flows and using the Conley index 

theory to study them. First, we consider non-autonomous ordinary differential equations 

involving a parameter that belongs to a finite interval of the real line and we prove the 

existence of bifurcation points and bifurcation continua for this kind of problems. Then we 

prove similar results for non-autonomous ordinary differential equations involving a 

parameter that belongs to the whole real line and we obtain some global results conseming 
ii



parameter that belongs to the whole real line and we obtain some global results consenting 

the bifurcation continua. We also consider asymptotically autonomous ordinary differential 

equations that involve a parameter and we conclude that if bifurcation occurs for the 

autonomous limiting equation, then it also must occur for the original non-autonomous 

one. Finally, we prove a similar result on small perturbations. Throughout the dissertation, 

we examine a number of examples to see how we can apply our results.

Program Director

Date

Abstract Approved by:

Dean of Graduate School

Committee Chairman

iii



DEDICATION

I dedicate this dissertation to my parents, Salha Al-Ghalib and Abdulrahman Al- 

Sheikh. Words are not enough to express my gratitude to them for fostering within me 

the love of knowledge, for their continuous support and encouragement throughout my 

life, and for encouraging me to be the best that I can be. No matter what I say, I can never 

repay them.

I would also like to dedicate this dissertation to my husband, Khaled Al-Shaibi. He 

was there for me with his support during some difficult times. His support and 

encouragement helped me to finish my studies.



ACKNOWLEDGMENTS

I would like to acknowledge and express my gratitude to my mentor and teacher, 

James Ward, for his help, guidance, and support during the preparation of this dissertation 

and throughout my graduate studies at the University of Alabama at Birmingham (UAB) 

that have culminated in my goal of becoming a mathematician.

I would also like to acknowledge Ian Knowles, Marius Nkashama, and Robert 

Kauffman for their kind support and encouragement when I first enrolled in the graduate 

program here at UAB and throughout my stay in the department of mathematics, and to 

acknowledge my husband, Khaled Al-Shaibi, for his moral support and encouragement.



TABLE OF CONTENTS

Page

ABSTRACT.................................................................................................................... n

DEDICATION................................................................................................................ iv

ACKNOWLEDGMENTS............................................................................................. v

LIST OF FIGURES....................................................................................................... vü

CHAPTER

1 Introduction........................................................................................................ 1

2 Preliminary Results............................................................................................. 6

3 The Conley Index............................................................................................... 14
1. Isolated Invariant Sets and continuation................................................. 14
2. Sums and Products of Indices.................................................................. 19
3. More About the Conley Index................................................................. 21

4 The Existence of Bifurcation Continua............................................................. 24

5 Some Global Results.......................................................................................... 39

6 Examples and Applications................................................................................ 53

7 Asymptotically Autonomous Differential Equations........................................ 67

8 Conclusion and Future Work............................................................................. 78
1. Conclusion................................................................................................ 78
2. Future Work............................................................................................ 79

LIST OF REFERENCES.............................................................................................. 81

vi



LIST OF FIGURES

Figure Page

1 Graph off(x,X) = 0 for example 3.1.................................................................... 16

2 Graph of C+ for example 6.8................................................................................. 63

3 Graph of C+ for example 6.9................................................................................ 65

vii



CHAPTER 1

Introduction

Many non-linear differential equations in mathematics involve one or more param

eters. A large number of studies have been undertaken to investigate the structure of 

the solution sets that exhibit branching phenomena. The study of these phenomena is 

known as bifurcation theory, a topic that has been of great interest to many researchers, 

[5, 7]. Bifurcation phenomena also occur in many parts of physics and have been in

tensively studied [8, 17]. Researchers have used many techniques and tools to approach 

the study of bifurcation. One of these techniques is the Leray-Schauder degree [11], 

which was used by Krasnoselski [10 ] and Rabinowitz [15, 16 ] to study bifurcation for 

a special class of nonlinear differential equations: Suppose F : R x E—*E, where E 

is a real Banach space, F is continuous, and F possesses a simple curve C of zeros. 

{(A (a), u (a)) : a G I = (a, b) C R}. If there exists a G I, such that in every neighbor

hood of (A (ci), u (â)) F has a zero not in C, then (A(a),u(a)) is said to be a bifurcation 

point for F with respect to C. Krasnoselski and Rabinowitz considered the special case 

where

F (A, u) — u — (AZ/U -4- H (A, u)), (1-1)

where L is a compact linear operator, and H : RxE -» E is compact with H = o(||u||) 

at u — 0 uniformly on bounded A intervals. The zeros, C = {(A,0) : A G R}, of F are

1
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then called the line of trivial solutions of

u = XX/u 4- H (A, u). (1-2)

Tn this context, Krasnoselski [10] has shown, that if /z is a real characteristic value of L of 

odd multiplicity, then (/z, 0) is a bifurcation point of F with respect to C. Rabinowitz [15] 

further refined Krasnoselski s result by showing that, in the above situation, bifurcation 

has global consequences. More precisely, if /z is of odd multiplicity, and S denotes 

the closure of the set of nontrivial solutions of (1.2), then S possesses a component 

that contains (/z,0) and is either unbounded or meets Qs 0^, where p, P is also a 

characteristic value of L. He also considered an application of these global results to 

bifurcation from infinity [16].

Another technique that has been used to approach the study of bifurcation theory 

is the Conley index [4, 8, 20]. The Conley index is a powerful topological tool that 

was developed by Charles Conley in the 1970s, and since then has been used by many 

researchers. Ward [25, 26] used the Conley index to study the existence and bifurcation 

of continua of non-stationary solutions in infinite dimensional semiflows.

The solutions to a non-autonomous equation, by themselves, do not naturally form 

a useful dynamical system. However, non-autonomous equations may be used to define 

skew-product flows. The theory of skew-product flows has been developed by Miller 

and Sell, see [13, 19]. The use of the Conley index theory to study skew-product flows 

associated with non-autonomous equations was introduced by Ward [12, 21-24]. In this 

dissertation, we focus on the study of bifurcation that occurs for non-autonomous ordinary 
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differential equations. Suppose / : RxIVxR —» Rn, where W is an open and connected 

subset of Rn, and f is continuous, we consider the following differential equation:

ur (i) = f (fi, u (t), t). (1-3)

Assume that equation (1.3) possesses a line of trivial solutions, that is, a line R x {g}, 

where f (fi, g, t) = 0 V/z e [a, 6], and t € R. We consider this problem and look at the 

local and global behavior of the solution set, and we prove the existence of continua 

bifurcating from the line of trivial solutions at a special point Qzo, g).

As was mentioned at the beginning of this introduction, bifurcation phenomena 

occur in many parts of physics, and here is an example (see Hale [6]):

Example LI Consider a pendulum of mass m and length /, constrained to oscillate in 

a plane rotating with angular velocity w about a vertical line. If u denotes the angular 

deviation of the pendulum from the vertical line, the moment of centrifugal force is 

mu»2/2 sin u cosu, the moment of the force due to gravity is mg I sin u, and the moment 

of inertia is I = ml2. The differential equation of the motion is

Iv!' — mu’2/2 sin zi cos u + mgl sin u = 0.

If fi = ™^2*2 and A = then this equation is equivalent to the system

u' = v

V = p, (cos it — A) sinu.

The equilibrium points of this system are the points (n7r,0), where n = 0, q=l, f 2,. . . 

and (cos-1 A,0). So for any given A, the equilibrium points are (mr,0) and (cos-1 A,0), 
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the last one appearing only if |A| < 1 . A further examination of this system shows that 

the equilibrium point (0,0) is unstable (a saddle point) when A < 1, and stable (a center) 

when A > 1. It also can be shown that, when 0 < A < 1, the stable equilibrium points are 

(cos-1 A,0). So the nature of the equilibrium point (0,0) changes as we cross the value 

A = 1, and there is a branch of non-trivial equilibrium points {(cos-1 A,0, A) : |A| < 1} 

in the u-v-X space bifurcating from the point (0,0,1). Therefore, the point (0,0,1) is a 

bifurcation point.

Tn chapter 2, the notations that are used in this work, including some definitions of 

spaces and other concepts that the reader might not be familiar with, are given, as well 

as a statement of theorems without proof.

Chapter 3 is devoted to the explanation of the Conley index, due to its importance 

to this work.

Tn chapter 4 we first prove a general continuation theorem (Theorem 4.4). Then we 

consider equation (1.3), where f : [a, 6] x W x R —» Rn, and we prove that if we have a 

special value /zo € [a, 6], where the Conley index associated with the skew-product flow 

changes as we cross the value fio, then the point (/io, q) is a bifurcation point. The proof 

of the bifurcation theorem has some similarities to the proof of the global bifurcation 

theorem in [15] and other similarities to the main result in [25].

In chapter 5, we prove some global results, where we consider equation (1.3) with 

f : R x W x R —* Rn. First, we prove a global continuation theorem similar to the 
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result in [26]. Then we prove that, under some conditions on f and for a special value 

Ho, there exists a global bifurcation continuum bifurcating from the point (/zo, q).

In chapter 6, we examine a number of simple examples of our results in chapters 

4 and 5.

In chapter 7, we establish a bifurcation theorem for asymptotically autonomous 

differential equations. We consider the following equation

u> (*) = / (A, u (t)) 4- g (A, u (t), t), (1.4)

where A e [a, 6] c R, and gt -» 0 as \t\ —> oo, where gt is the translate of g, that is, 

gT (A, x, t) = g (A, x, t + t). We prove that, under some conditions on f and g, there is 

a bifurcation point for equation (1.4) whenever there is one for the limiting equation

In chapter 8, we give a conclusion to this dissertation and discuss some possible 

future work that can be done.



CHAPTER 2

Preliminary Results

This chapter gives some definitions and states some theorems that are well known 

but presented here for the sake of completeness. See references [9, 14] for more details. 

Definition. A topology on a set Xis a collection 9 of subsets of X having the following 

properties:

(1) <(> and X are in £r.

(2) The union of elements of any subcollection of S is in 9.

(3) The intersection of the elements of any finite subcollection of 9 is in S.

A set X for which a topology 9 has been specified is called a topological space. 

Definition. If X is a set, a basis for a topology on X is a collection 0 of subsets of X 

(called the basis elements), such that

(1) For each x E X, there is at least one basis element B containing x.

(2) If x belongs to the intersection of two basis elements Bi and B2, then there is 

a basis element B3 containing x, such that B3 C B] A B2.

Definition. If 0 is a basis for a topology on X, the topology S generated by 0 is 

described as follows: A subset U of X is said to be open in X if for each x eU, there 

is a basis element B E 0, such that x E B and B c U.

6
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Definition. A metric on a set X is a function

d:XxX-»R

having the following properties:

(1) d (x,y) > 0 for all x,y G X; equality holds if and only if x = y.

(2) d (x, y) = d (y, x) for all x, y G X.

(3) d(x,y) + d(y,z)>d(x,z) for all x, y, s G X.

Given a metric d on X, the number d (x, y) is often called the distance between x and y 

in the metric d. Given e > 0, consider the set

= {y :d{x,y) < e}

of all points y, whose distance from x is less than s. It is called the E-ball centered at x. 

Sometimes the metric d is omitted from the notation, and this ball is simply written as 

B (x,s) when no confusion will arise. The collection of all E-balls Ba (x, s), for x G X 

and e > 0, is a basis for a topology on X, called the metric topology induced by d.

Definition : A norm on a real vector space X is a function

Uli ; X —» R

having the following properties:

(1) ||x|| > 0 for all x G X; equality holds if and only if x = 0.

(2) ||x|| + \\y\\ > ||® + 7/11 for all x, y G X.

(3) ||a®|| = |a| ||®|| for all a G R and x G X.
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Next we define quotient spaces and homotopy, which are of great importance in 

the study of the Conley index, as is explained in the next chapter.

Definition : Let X and F be topological spaces; let p : X -» Y be a smjective map. 

The map p is said to be a quotient map, provided a subset U of F is open in F if and 

only if p-1 (U) is open in X.

Definition : If X is a space and A is a set, and if p : X -» A is a surjective map, then 

there exists exactly one topology 5 on A, relative to which p is a quotient map; it is 

called the quotient topology induced by p.

Definition : Let X be a topological space, and let X* be a partition of X into disjoint 

subsets whose union is X. Let p : X -» X* be a surjective map that carries each point of 

X to the element of X* containing it. In the quotient topology induced by p, the space 

X* is called a quotient space of X.

Definition : If f and f are continuous maps of the space X into the space F, we say 

that f is homotopic to f if there is a continuous map F : X x [0,1] —> F such that

F (æ, 0) = f (%) and F (ar, 1) = f (x) for each x e X.

The map F is called a homotopy between f and

Definition : A continuous map f : X -» F is called a homotopy equivalence if there is 

a continuous map g : F —» X such that g o f is homotopic to the identity map ix on X 

and / o g is homotopic to the identity map iy on F. The map g is said to be a homotopy 

inverse of the map f.
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It can be shown that, given any collection C of topological spaces, the relation of 

homotopy equivalence is an equivalence relation on C. Two spaces that are homotopy 

equivalent are said to have the same homotopy type.

Definition : A space X is said to be locally compact at x if there is some compact set 

C of X that contains a neighborhood of x. If X is locally compact at each of its points, 

X is said to be locally compact.

Now we define a topology that is of special interest in this study.

Definition : Let (F, d) be a metric space; let X be a topological space. Given a function 

/ : X —» y, a compact set C in X, and a number e > 0, let Bc (f, e) denote the set of 

all those functions g: X —>Y for which

lub{d (/ (x) ,g (z)) : x e C} < e.

The sets Bc (/, e) form a basis for a topology on yx(the set of all functions f : X —> Y). 

It is called the topology of uniform convergence on compact sets.

Theorem 2.1 A sequence fn : X Y of functions converges to the function f in the 

topology of uniform convergence on compact sets if and only if, for each compact subset 

C of X, the sequence fn \ C converges uniformly to / | C.

The following definitions are needed:

Definition : Let X be a topological space, and let R denote the real numbers. Let tt be 

a continuous function from X x R into X. This function is called a flow on X if the 

following conditions are satisfied for all x e X and s, t G R :
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(1) TT (æ, 0) = x.

(2) it {x, s 4-1) = it (ir (x, s) ,t).

Definition : Let X be a topological space, and let R denote the real numbers. Let 

DcXxRbean open subset, and let it : D —■► X be a continuous function. Then it 

is called a local flow on X if the following conditions are satisfied for all x G X and 

s, t G R :

(1) (x,0) G D for all x G X, and tt(x,0) = x.

(2) For every iGX, there exists an interval 7Z = /?,) C R containing zero,

such that (z, t) E D if and only if t G 7X.

(3) If (t,s) G 7), and (tt(a:,s),t) G D, then (x,s + t) G D, 

and it (x, 5 +1) = it (tt (æ, s), t).

Definition : A set 7 C X is said to be invariant under the flow it if {it (x,t) : t G Ix } C 7 

V x G 7. It is isolated if it is the maximal invariant set in some neighborhood of itself.

As an example of a local flow consider the differential equation

x = f (x)

on the Euclidean space Rn, where f is a C1-function. Then, for every point x G Rn, 

there is one and only one solution <p (z, t) that satisfies the initial condition 4> (x, 0) = x. 

We can define a local flow on Rn by setting it (æ, t) = </>(x,t). One can check easily 

that the conditions in the definition above are satisfied.
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Now let v : W x R —► Rn be a Cl function, where W is an open set in Rn, and 

consider the non-autonomous ordinary differential equation

x' = V (z, t) .

Let (j> (zo, to, t) be the solution to this equation that satisfies 0 (xo, to, to) = xo, and 

let I (zo, to) be the interval of definition of the solution. Clearly if we set ir (z, t) = 

0 (z, to, t), then this does not give us a local flow, since the third property in the definition 

above is not satisfied. Define

J (zo, to) = {t : t + to G J (zo, to)}

and let X = W x R. Define ir formally by

7T (jp, t) = (</> (zo, tQ,to t) ,to t) ,

where p = (zo, to) G X. The mapping it defines a local flow on X where the interval of 

definition of the motion tt (p, t) is J (p). It should be noted that the flow ir for this case 

has no rest points, no periodic points. We will overcome these deficiencies by giving a 

more appropriate definition of a flow for non-autonomous equations.

By Cc = Cc (W x R, Rn), we denote the linear space of all continuous functions 

mapping W x R into Rn with the topology of uniform conveigence on compact sets of 

W x R . For f G Cc (W x R, Rn), consider the ordinary differential equation

z' = /(z,f). (2.1)

By the hull of f, H (/), we mean the closure in Cc of the set of all translates of f. 

That is, H (/) = cl{fr : r G R}, where fT (z,t) = / (x,t + r) for all (x,t) G W x R.
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Assume that for each g G H (/) there is a unique solution 0 of

x = g (#, t)

that satisfies <p (0) = x. Let denote that solution, that is, <p(x,g,0) = x, and

let I (x,g) denote the maximal interval of definition for this solution. If we let

D = {(x,g,f) eW x H(f) xR:t 6 I(x,g)},

then we shall show that a flow tt : D —*► W x H (/) is given by

7T (x, g, t) = (</> (a:, g, t), St) • t2-2)

Now we are going to prove that (2.2) actually defines a local flow on IV x 77 (/), (see 

reference [19]).

Theorem 2.2 The mapping tt given by (2.2) defines a local flow on IV x 77(/) called 

the skew-product flaw.

Proof : We only need to check the third property. Assume that r G 7 for some

g E H (f) and tr G 7 (tt (a?,#,r)) and define

<p (i) = 0 (z, 5, i) , '«P (t) =</>(</,(7'),yr,i)X (*) = </> (t +1) -

Then <p is the solution of x' = g (x, t) that satisfies <t> (0) = z, and ip is the solution of

x' = gT (x, t) = g (x, t + r) (2-3)

that satisfies i/>(0) = 0(r) = 0(x,ÿ,r). However, Ç is also a solution of (2.3) and 

£ (0) = <p (r). Hence, by the uniqueness of solutions we have

£ (t) = 0 (t + t) = (t) for all t G 7 (tt (z,g,f)).



13

Consequently,

7r(ir (z,g,r) ,cr) = it ((0 (r) ,gr), a) = (ip (ff) ,pr+a) 

= (0 (r + tr) ,5t+£T) = fl1 (a?,p,T + <t) .

The continuity of it follows from the following lemma of Kamke.

Lemma 2.3 (Kamke): Let A denotes the collection of all functions / e C (W x R, Rn) 

that admit a unique solution of equation (2.1). Then the solution function <p(x,f,t) is 

continuous on the subset of W x A x R for which it is defined.

The proof of this lemma can be found in Appendix A in [19].



CHAPTERS

The Conley Index

Tn this chapter we describe a powerful topological tool, the Conley index, which is 

a generalization of the Morse index. Most of the material in this chapter can be found 

in more details in references [4, 18, 20].

1 Isolated Invariant Sets and Continuation

The basic objects of study are the isolated invariant sets of a differential equation. 

Definition : A set is called invariant if it is a union of solution curves. It is zso/ated if it is 

the maximal invariant set in some compact neighborhood of itself. Such a neighborhood 

is called an isolating neighborhood.

The interest in isolated invariant sets comes from the fact that they can be continued 

to nearby equations in a natural way; in this sense they are stable objects. The continuation 

is defined in terns of isolating neighborhoods as follows. A compact set AT is an isolating 

neighborhood of the maximal invariant set S contained in 2V if and only if S C N° (the 

interior of TV). Equivalently, TV is an isolating neighborhood if and only if no point on dN 

is on a solution curve that is contained completely in TV. This last condition is obviously 

stable under small changes in the equation. Therefore, if TV is an isolating neighborhood 

14
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of some equation, then TV will be an isolating neighborhood for all equations near the 

given one. The isolated invariant sets thus determined by TV are the continuations. 

Specifically, if TV is an isolating neighborhood for a connected set of equations, then 

the corresponding isolated invariant sets are said to be related by continuation. We can 

extend this relation to non-nearby equations by making the relation transitive.

We illustrate these ideas by means of a simple example.

Example 3.1 Consider the scalar equation on R given by

— = x 11- x I — A = y (ar, A), 
at x 7

where A is to be thought of as a parameter. In figure 1, we have sketched the curve 

f (x, A) = 0. Observe that this curve meets each horizontal line in the set of critical 

points of the equation with the corresponding value of A; for each fixed A = Ao, the 

horizontal line A = Ao is the phase space of the equation

5=/(«,*.).

At each of the three A-levels, the marked off intervals are isolating neighborhoods. The 

rest points are all examples of isolated invariant sets. But more generally, any interval, 

each of whose endpoints is a rest point, is also an isolated invariant set: a slightly larger 

interval will serve as an isolating neighborhood.
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Figure 1. Graph of f (a:, A) = 0 for example 3.1.

For example, the closed interval [d, 0] is an isolated invariant set for the A = 0 equation. 

Since disjoint union of isolated invariant sets are isolated sets, we can easily find all of 

them. Thus, for the A = A2 equation, there is only one (non-void) isolated invariant set: 

namely, the point a. Similarly, for the A = Ai equation, there are four isolated invariant 

sets: 6,c, {6, c}, and [b, c]. Finally, the A — O equation has 12 isolated invariant sets. If 

we choose AT to be the interval marked off on A = A2 level, we see that the left-hand rest 

points in phase portrait are related by continuation. If we choose N to be the interval 

depicted on A = 0 level, we see that a is related by continuation to the full set of bounded 

oibits in the other two phase portraits. It follows that d is related by continuation to the 

set of bounded orbits for the A = 0 equation. The same statement is true for the rest 

point e, but not all isolated invariant sets are in this class; for example, 0 is not, since no 

choice of N will continue 0 to a or e.
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The Conley index takes the fonn of the homotopy type of a pointed topological 

space. For our purposes, it suffices to think of a pointed space simply as a pair (X,®), 

where X is a topological space, and ® is a point that belongs to X that is often called the 

distinguished point. The pointed spaces (X,®) and (Y,y) are said to be homotopically 

equivalent, written (X,z) ~ (7,3/) if there is a homotopy from X into 7 which takes 

x into y. The Conley index is computed from special isolating neighborhoods called 

isolating blocks, having the property that the solution through each boundary point of a 

block goes immediately out of the block in one or the other time directions. If B is an 

isolating block, the subset of the boundary of B, dB, consisting of points that leave B 

in positive time (the exit set) is denoted by B". Denoting by S the maximal invariant 

set in B, the Conley index of S, k(S), is defined to be the homotopy equivalence class 

of the (pointed) quotient space B/B~, that is,

h(S) = ([B/B-], [b-]) .

Of course, this may be viewed as the pointed space obtained from B on collapsing B~ to 

a point. It is also important to note that isolating blocks always exist in locally compact 

metric spaces, and that the index is independent of the choice of the isolating block (see 

references [4, 20]).

The Conley index is invariant under continuation in the sense that, if $i and S2 

are isolated invariant sets that are related by continuation, then fi(S'i) = h(S2).

Let us return to the example and compute the indices of some of the isolated 

invariant sets. Consider first the rest point 0, taking for B any proper subinterval of the 
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interval [d, e], we find that B~ is the complete boundary of this subinterval. If we identify 

these two endpoints, we see that B/B~ has the homotopy type of (pointed) circle, which 

we denote as that is, h(0) = £?. Now consider the rest point a, taking for B the 

interval indicated in figure 1, we see that B~ is void. Now when the empty set of a 

space is collapsed to a point, the resulting space is homeomorphic to the dig oint union 

of the space and a point. We may deform the interval to a point without changing the 

homotopy type; this gives a pointed two-point space. Therefore, 7i(a) = 53°, the pointed 

zero-sphere, which is sometimes denoted by Ï. Since the zero sphere is not homotopically 

equivalent to the one-sphere, we see that a cannot be continued to 0. Finally, consider 

the rest point c, taking for B the interval indicated in figure 1, we see that B~ is the 

left end point. Thus B/B~ has the homotopy type of a pointed interval. Since a simpler 

representative can be obtained by collapsing the interval to a point, we see that 7i(c) = 0, 

a (pointed) one-point space. Now consider the interval about c, if we raise the interval 

(i.e., increase A), we see that c continues to the empty set. The empty set is always 

an invariant set: in fact, it is an isolating neighborhood and an isolating block of itself. 

The exit set is thus empty and the space obtained by collapsing the exit set to a point is 

therefore the one-point (pointed) space, 0 . This agrees with our above calculations since 

we have continued the rest point c to the empty set. Now suppose that we start with A 

slightly larger than A], and decrease A to Aj. Here we see that the empty set continues 

to the isolated invariant set c: that is, we may alternately say that c bifurcates out of the 
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empty set. For A slightly smaller than Als we see that c, itself, continues to an interval 

It follows that h ([0, e]) = Ü.

2 Sums and Products of Indices

Since the intersection and disjoint union of two isolated invariant sets are isolated, 

a relationship between the various indices might be expected.

Consider first the case of the disjoint union of two isolated invariant sets, Sy and 

S2. We may assume that each S, is contained in an isolating block Bi5 with B] nB2 = 0. 

Then Bj U B2 will be a block for Si U S2. To calculate h (Si U S2), we collapse the 

exit set of each block individually, and then collapse the resulting two distinguished 

points to a single point. The first collapse gives the disjoint union of Bi/Bf with 

B2/B2. The second, upon identifying Bÿ with B2, gives a space, which we denote 

by By/BY V B2/B2“. This is called the wedge or sum of the two pointed spaces, and 

is the pointed space that results from gluing the two pointed spaces together at their 

distinguished points. Thus

h (Si U S2) = h (Si) V h (S2).

This operation is always well defined on pointed spaces. Note that the zero element is 

just Q, that is, (X,z) V Ô = (X,%). However there are no inverses under the wedge 

operation. In fact the index is non-negative in the sense that, if the sum of two indices 

is zero, then they are both zero.
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Indices can also be multiplied; the smash product (X, x) A (V, y) of two pointed 

spaces is defined by

(X,x)A(y,y) = XxY/(Xxy)u(xxY),

that is, the space obtained from the topological product upon collapsing to a point the 

set of pairs, either of whose entries is a distinguished point The pointed zero-sphere £° 

(or I) is the multiplicative identity.

Lemma 3.2 Let X and Y be two connected topological spaces, and consider the pointed 

spaces (X, x) and (Y, y), where x & X and y $ Y. Then (X, x) V (V, y) is disconnected 

and (X, x) A (Y, y) is connected.

Proof : First it should be noted that we think of the space ('Y, y) as the pointed space 

(y Ù y, y ), where Y Ù y is the disjoint union of the space Y and the point y. From the 

definition of the sum of two pointed spaces above, the space (X, æ) V (y, y ) is the pointed 

space that results from gluing the pointed spaces (X, x) and (Y, y) at their distinguished 

points x and y, or in other words, we identify the point x with the point y, so the 

distinguished point for the new pointed space (X, ar) V (y, y) still does not belong to the 

space y, therefore (X, or) V (y, y) is disconnected.

Now (X, x) A (Y, y) is the space obtained by collapsing to a point the set of pairs, 

either of whose entries is a distinguished point, that is, the set (X x y) U (x x Y). But 

x x Y c X x y, so the distinguished point of the new space (X, x) A (y, y) belongs to 

the connected space X x Y. Therefore (X, x) A (y, y) is connected.
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3 More About the Conley Index

Theorem 3.3 Let B C Rn and f be a function that maps B into Rn, consider the 

ordinary differential equation

(3.1)

which admits xo as a rest point. Suppose that the linearized equations about xo are given 

by

dt
(3.2)

where A is a matrix, none of whose eigenvalues has zero real parts; that is, xo is 

a hyperbolic rest point Then xo is an isolated invariant set of equation (3.1), and 

h (xo) — £fc, the pointed k-sphere, where k is the number of eigenvalues of A with 

positive real parts.

The proof of this theorem can be found in [20] and is omitted here.

Example 3.4 This is an example of bifurcation. Suppose we are given a one-parameter

family of differential equations in Rn

^ = /(x,A), IA |< 1, (3.3)
at

and that the origin is a rest point for all A, that is, / (0, A) =0, for ] A |< 1. Suppose

also that this rest point is an attractor if A < 0, and a repellor if A > 0. Thus if A / 0,

the origin is an isolated invariant set, and we have

h (0) = <

k

S’* if A > 0

S° if A < 0
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This change of index reflects a change in structure of the solution set as A crosses 0. 

In fact if TV is any compact neighborhood of the origin in Rn, which is an isolating 

neighborhood for the origin when A = ±1, then for some A € (—1,1), there is a solution 

of the equation that lies in TV for all time and that passes through a boundary point of TV, 

Tn particular, this solution is not the rest point at the origin, otherwise TV would define 

a continuation of the origin to itself, for A = fl, and this would force the indices to be 

the same.

froposition 3.5 Let X be a locally compact metric space, and let J C X be a compact 

isolated invariant set for the local flow tt, with compact isolating neighborhood TV. Then 

(1) The Conley index 7) is defined, and 7) = ([B/B“], [B-]), where 7 c 

B C TV, and B is an isolating block.

(2) If h (tt, 7) 0, then 7^0.

Remark 3.6 We put the compact-open (c-o) topology on the set of functions from X x 

R —» X, that is, fn —> / if and only if fn converges to f uniformly on compact subsets 

of X x R.

Theorem 3.7 Let X be a locally compact metric space and a, b G R, and let be a 

family of local flows on X, where /z e [a, b], Suppose that

(1) The map /z —» ttm is continuous in the sense that, if {/zn} c [a, 6], {a?n} c X, and 

{tn} c R are sequences with p.n —> jz, xn —» x, tn —> t, and (%, t) is defined, then
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7fm„ (xn, tn) is defined for large n, and

(xn, tn) -> (a;, t) as n -> oo

(2) There is a compact set AT in X such that for each p, G [a, 6], AT is an isolating neigh

borhood for the flow tt/x.

Let 7m = {x g AT : tfm (x, t) g AT Vf g R}. Then the Conley index Æ 7m) is indepen

dent of p G [a, 6].

See [21] for details.

The preceding is an overview of the main features of the Conley index, together 

with an indication of how it can be applied. As previously noted, the material in this 

chapter can be found in Charles Conley’s book [4] or in [20], and the reader who wants 

to know more about the Conley index is referred to these two references.



CHAPTER 4

The Existence of Bifurcation Continua

Tn this chapter, we prove the existence of continua bifurcating from a line of trivial 

solutions for non-autonomous ordinary differential equations. We use the Conley index 

to prove our results.

Let R denote the real numbers, and W C Rn (n > 1) be an open and connected 

subset. Recall that by Cc = Cc (W x R, Rn), we denote the linear space of all continuous 

functions mapping W x R into Rn with the topology of uniform convergence on compact 

subsets of W x R This space is metrizable, and we will let d = d (.,.) denote a fixed 

metric on Cc.

For f &Cc(W x R,Rn), consider the ordinary differential equation

dx
(4.1) 

at

Definition : By the hull of f, H (/), we mean the closure in Cc of the set of all translates 

of f, that is, H (J) = cl{fT : r G R}, where

= y(œ,t + r) V(x,t) elVxR.

24
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For g & H (f) and x G W, consider the initial value problem

u (t) —g(u (4.2)

u (0) = x (4.3)

and assume:

(Al) For each g G H (J) and x G W, (4.2) and (4.3) has a unique solution.

Let I (x, g) be the maximal interval of existence of this solution, and let

D = {(®,g, t) G W x H (/) x R :t G I (x,g)} .

Define it: D —»W x H (/) by

it (or,g, t) = (u (t; x, g), gt), (4.4)

where u (t; x, g) is the solution to (4.2) and (4.3), and gt (y, s) = g (y, s 4-1) for (y, s) G 

W x R. It was explained in chapter 2 that (4.4) defines a local flow on W x 27 (/) 

called a skew-product flow.

It follows from Ascoli’s theorem and is shown in [19] that for f G Cc, the hull 

27 (J) is compact if and only if / is bounded and uniformly continuous on every subset 

of the form K x R, where K is a compact subset in W. Thus, we have the following 

result which enables us to use the Conley index.

Theorem 4.1 Let f G Cc. If f is bounded and uniformly continuous on sets of the form 

K x R, where K is a compact set in W, then W x 27 (/) is a locally compact metric 

space.
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Now we look at parameter dependent equations. For each gë [a, b], where [a, b] c 

R, let f (p,.) <E Cc (W x R, Rn), and consider the ordinary differential equation

^ = f(p,x,t). (4.5)
at

We assume

(A2) Let f : [a, b] x W x R —♦ Rn be bounded and uniformly continuous on sets of the 

form [a, 6] xKxR, where K is compact in W, and assume that for each p E [a, b], 

x e W and g E H (/ (/x,.)), the initial value problem

u (t) = g{p,u(t),tj (4.6)

u (0) = x

has a unique solution.

For each p e [a, b], we may define a skew-product flow on W x H (f (p,.,.)) as 

above; the latter space depends upon p. In order that our flows should all be in the same 

space we make the following assumption 

(A3) There is a function

9? : [a, b] x H (/ (b,.,.)) H {f (p,.,.))

continuous in the product topology, such that for all r € R, and p E [a, b], we have

.,.)) = fT (p, .

It follows from (A3) that tp(p,gT) = (</?(p,g))T for all p e [a,b], r G R, and g E 

(/ (b,.,.)). As an example, if f (p,x,t) = pA (x,t) + (l -p)B (æ) for some functions
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A and B, then we let

Ç9 (/Z, /T (1, -, .)) = ¥> (jZ, Ar) = ^Ar + (1 - fJ,) B.

Now let F = f (6,.). For each p E [a, 6], let

= {(a;,5,t) E IV x 27(F) x R: tel (®,y> (^,5))} ,

and define ttm : D (/z) —> IV x 27 (F) by

irM(ar,5,t) = (u(t;x,<p(24,fl)),yt), (4.7)

where ti (/z, y)) is the solution to the initial value problem

u'(t) = y»(A«,s)(u(t),t) (4.8)

u (0) — x.

Notice that the flow does depend upon /z but they all lie in the same space IV x 27 (F).

Theorem 4.2 If f satisfies (A2) and (A3), then for each /z E [a, 6] the mapping ttm given 

by (4.7) defines a continuous flow on the locally compact metric space IV x 27 (F).

Theorem 4.3 Let f satisfy (A2) and (A3), and let ttm, /z E [a, b], be the flow defined 

by (4.7). Suppose there is a non-empty compact set TV c IV x 27 (F), which is an isolating 

neighborhood for ttm for each /z E [a, 6]. Let 7^ = {(#,y) E TV : (x,y, t) E TV, Vt E R},

that is, 7M is the maximal invariant set in TV for the flow irM. Then the Conley index 

h (ttm, 7M) is independent of p, E [a, 6],

The proof of theorem (4.3) is omitted here; it can be found in [21].
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Definition : Let U C [a, 6] x Rrt x 27 (F), by Uf, we mean the section

U» = {{x,g) G Rn x H (F) : fax,g) E U}.

Now we prove a continuation theorem analogous to the one in [25].

Theorem 4.4 Let A c [a, 6] x W be an open and bounded set, and let O = A x 27 (F). 

Let If, = {(2,9) € Of, : ttm (s,9,t) 6 O^t G R}. Suppose that, if (x,g) G If, for some 

p e [a, 6], then (fit,x,g) £ 80. Then the Conley index h (ttm, 7m) is independent of

Pt-oof : If (x,g) G for some /z G [a, 6], then from our assumption we have (/z, 2,9) 

SO, which implies that (x,g) £ (dO)M. So is an isolating neighborhood of If,. Also 

we know from elementary ordinary differential equations (ODE) (see [3] or [6]) that If, 

is closed, so If, is a closed subset of the compact set AM xff(F). Hence If,, itself, is 

compact, and so is {/j.} x If, (c O). Let (/z, a:, 5) G {/z} x If, c O = A x 27(F), then 

(/z, a;) G A, which is open. So there exists a number 5X > 0, and an open set Vx C Rn, 

such that

(/z, a:) G |/z — ^z 4- 5Œ] x 14 C A.

Let = [/z - 6fgt p + 5X] x Vx, then we have Qz, x,g) EUX x H (F). Now

{[/, x H (F) : (a?,$) G 7M for some g G H (F)} is a cover of {/z} x If,, and since it is 

compact, there exists a finite subcover {IT, x 27 (F) : 1 < j < q}, where Uj = \fi- ôj, p + 6j]x 

Vj. Hence,

M x If, c U (ty x 27 (F)) = ,U Uj x 27(F).
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q
Let Vu = U 

M 3=1
Vj, and 6p = min {6j : 1 <j<q}. Then we have

{//} x Ip g - 6p,p + <îM] x V' x H (F) c A x H (F) = O.

Now Vp. x H (F) is an isolating neighborhood for the flow tfm. We claim that it is an 

isolating neighborhood for ir^ for all q sufficiently close to p, as we show. Suppose by 

way of contradiction that there exists a sequence {pm}C [a, 6], such that pm —> p as 

tti —> oo, and (a?m)g™) € Im = Ip.m with {xmigm) Vp x H (F) (i.e. xm Vp). Let 

Am = Apm = iTpm , and Om = OMm. Now we have

^m (*Cm, 9mt 4n C Am X (F) We R.

Recall that irm (xm, gm, t) = (« (t; a;m, 99 (tm, 5m)), (pm)t). Let P : Rn x 27 (F) -» Rn be 

the projection mapping, and let B — U Pip C Rn, then B is bounded since [a, 6] x B c 
At€[a,b]

A and A is bounded by assumption, also we have E B, Vm E N,

and t 6 R, so in particidar 21 (0; xm, <p (0,pm)) € B, Vm e N. But u (O,xm,95 (0,5™)) = 

ira, which means that the sequence {#m} is bounded (since {a?m} G B ) and, therefore, 

it has a convergent subsequence, which we relabel as {a?m}.

Let x = limm—oo . We claim that x EVp. To prove this claim, we will prove that 

there exists a function g E H (F) such that 7rg (5,5, t) € Op Vt G R , which implies that 

(x,g)Elp(ZVpXH (F), and so 5 e %.. Now the sequence {gm} lies in H (F), which 

is compact; therefore, it has a subsequence, which we relabel as {gm}, that converges 

to g E H (F), so tp (p,g) is defined and, hence, by (A2) the initial value problem (4.8) 

(4.3) has a unique solution. So (x, 5, t) is defined for every t El (x,p(p,g)). Now
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(pm,9m) € 7m. This implies that irm (xm,gm,t) e Om Vt e R, also, since -» x 

and gm —» ÿ, we know from elementary ODE, that irm (xm, gm, t) —> (æ, p, t) Vt € R.

Therefore, we have

(*^m, 9mi ^)) * (Z^i

But (A4n,7Fm(zm,gm^)) 6 Ô Vf € R. Therefore (g,?rM (®,ÿ,t)) e O Vt € R, which 

implies that ttm (æ, ÿ, t) e Vt e R This proves our second claim, that is, æ e 

V^, which contradicts our previous assumption that the sequence {æm} does not lie 

in V^. Hence, x H (F) is an isolating neighborhood for irn for all q sufficiently 

close to p. Therefore, by theorem (4.3), the Conley index h (7^, 7^) is independent of 

7j e (/z -qo,p + 7/o), where q0 > 0 is small enough. But since [a, 6] is connected and 

compact, and p was arbitrary, we can find a finite cover {(/zt - 77,,/a + 77J : 1 < z < m} 

of the interval [a, 6] where on each of these intervals 7, = (/z, - q^Pi + r/i) the Conley 

index is independent of p E 7,. But the intervals 7, are overlapping; therefore, we 

conclude that

= constant for e [a, b].

This proves our theorem.

For our next result we need to make the following definitions.

Definitions : Let q E W, and po E [a, b],

(1) We say that [a, 6] x {<7} is the line of trivial solutions if

/(/z, q,f) = 0 V/z E [a, b], and teR,
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which implies that

7TP (g, g, t) = (g,gt) Vi G R, /z € [a, b], and g G H (F),

that is,

u(t;g,</>(^z,g)) = g Vt G R, G [a, b], and g G H (F).

(2) The pair (po, g) is said to be a bifurcation point if for every e > 0, there exists a pair 

(/z, z) G [a, 6] x W, with x g, and g & H (F), such that

|M-A*o| + IKm ~ (?>£*) llRnxZT(F) — e Vf G R,

that is,

Im — Mol + ||u(t;x,¥>(M,ÿ)) -g||Rn < E, Vf G R

where the norm on Rn x H (F) is the sum of the norms for Rn and H (F).

Before proving our next results we need the following lemma:

Lemma 4.5 Assume that there is a line of trivial solutions, [a, 6] x {g}, and that {g} x 

H (F) is an isolated invariant set for each flow ttm, where p G [a, /?] C [a, 6]. Then 

there exists a number r > 0 such that B (g, r) x H (F) is an isolating neighborhood of 

{g} x H (F) for each flow ttm, where p G [a, 0\.

Roof : Let p G [a, 0], then there exists a number r(p)> 0 such that B (g, r (p) ) x H (F) 

is an isolating neighborhood of {g} x H (F) for the flow ir^. It is also an isolating 

neighborhood for each flow ?rM for p in a small neighborhood around p, otherwise we 
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would have W C [a,/3\ converging to/z, {gn} C H (F), and a sequence {yn(<)} C W 

of solutions to the problem

U (t) = V?(A4n,5n) (^ (*)>*) (4 9)

u (0) = x,

such that yn(t) C B(q,r(jz)) Vf G R and yn (tn) e dB(q,r(/z)) for some tn> 0. 

Now H (F) is compact, therefore the sequence {gn} has a convergent subsequence that 

we relabel as {gn}, which converges tog E H (F), so if the sequence {tn} converges 

to a number tE R, then from elementary ODE we know that {yn (<)} will converge to 

a solution ÿ (t) to the problem

u (t) = <p (/z, p) (u (t), t) (4 10)

zz (0) = a?,

such that ÿ (î) E 8B (q,r (jz)), which contradicts the fact that B (q, r (Jz)) x B (F) is an 

A A /A \
isolating neighborhood for the flow tt^. But if tn—♦ oo then we let yn vj = yn ( tn +t 1, 

and we have another sequence {yn (£)} C W of solutions to

ÎZ (t) = \ (Pn)* ) ('n (t) , ,
\ *n /

such that în (t) G B(q,r (ÿz)) Vt G R and yn (0) G dB (q, r (/z)) Vn G N, and again the 

sequence { (gn)* } has a convergent subsequence that converges to g G H (F). Thus 
tn

from elementary ODE {yn (t)} will converge to a solution to
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such that ÿ (0) G 8B (g, r (/z)). Therefore B (g, r (ÿz)) x 27 (F) is an isolating neighbor

hood for each flow ttm for /z in a small neighborhood around /z. Now for each /z € [a, /?] 

there is a neighborhood of /z such that for each flow ttm, /z € 14^, we have the 

same isolating neighborhood of {g} x 27(F). Consider the set {W^ : /j, G [a,/?]}. It 

forms an open cover of the interval [a,/?], which is compact, so it has a finite sub

cover {WMj : 1 < j < m}. Note that are overlapping. Therefore for each j 

we have an isolating neighborhood B (g,r (/zj)) x 27 (F) for rrM, where /z G Let 

r] = min{r (/zj : 1 < j < m}, then B (g, n) x 27 (F) C B (g, r (/zj)) x 27 (F) for every 

J. Therefore B (g,n) x 27 (F) is an isolating neighborhood for each flow where 

/z G [a, /?]. This proves the lemma.

Now we prove the main results of this chapter. As was mentioned in the introduc

tion, the proofs have some similarities to those in [25].

Theorem 4.6 Assume that there is a line of trivial solutions, [a, b] x {g}, and that {g} x 

27(F) is an isolated invariant set for each flow ttm, where /z G [a,6]\{/zo}, and that 

7i (7Ta, {g} x 27 (F)) =/ h (ttj,, {g} x 27 (F)). Then for every e > 0, there exists Qu, x, g) G 

[a, 6] x W x 27 (F), x^ q, such that

\^~ P'o\ + \\^(x,g,t) - (q,gt)\\ <E Vt G R,

that is, (/zO) g) is a bifurcation point.

Ptoof : Suppose, by way of contradiction, that (/zo, g) is not a bifurcation point, then 

there is an e > 0 such that there is no (/z, x, g) G [a, 6] x W x 27 (F) , with x g, that 
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satisfies

\M»-p.o\ + ||7rM(a;,ÿ,t) - (g, flt) || < e Vt € R.

This implies that the set B (g, f ) x H (F) is an isolating neighboihood of {g} x H (F) 

for eveiy flow ttp, where p E \p.o — e, po + e], so by theorem (3.4), the Conley index 

h (ffp, {g} x H (F)) is independent of p E \po — e, po + e], that is,

h (Tr^-e, {g} x H (F)) = h (ffP(>+E, {g} x H (F)).

But, since (g) x H (F) is an isolated invariant set for each flow ttm, where p po, then 

by lemma (4.5) we can find the same isolating neighborhood of {g} x H (F) for each 

flow iTp. where p E [a,po — 5], 5 < e. Hence by theorem (4.3),

h (ira, {g} x H (F)) = h {g} x H (F)).

Similarly,

h (irb, (g) x H (F)) = h (ttMo+e, {g} x H (F)).

Therefore, h (iro, {g} x H (F)) = h (irfr, {g} x H (F)). This contradicts our assumption. 

Hence, (/zo, g) is a bifurcation point, and this completes our proof.

To prove our next theorem, we need to state the following theorem. The proof will 

not be given here, but a proof is given in [2].

Theorem 4.7 (Separation Theorem). Let P and Q be disjoint closed subsets of a 

compact metric space K. Then either there exists a closed connected subset of K 
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meeting both P and Q, or there exist disjoint compact subsets A and B of K, such that 

P G A, Q G B, anà K = AU B.

Definition : Define the set S C [a, b] x W by

S = cl[(/j,, x) : x q, and there is a bounded solution through x 

for the problem (4.8) for some g GH (F)}.

Theorem 4.8 Assume that there is a line of trivial solutions [a, 6] x {g}, and again 

that {g} x H (F) is an isolated invariant set for each flow irM, p / po, and that 

h(ira,{q} x H (F)) h. (tf^ {g} x H (F)). Let C denote the component of S con

taining (po, g), then either

(1) C is unbounded in [a, 6] x VF, or

(2) C meets {a, 6} x VF.

Proof : If the set W is bounded, then by C beeing unbounded we mean that it meets 

[a, 6] x dW. First note that S is non-empty, since the bifurcation point (po, g) belongs to it. 

Suppose that C is bounded in [a, b]xW (if VF is bounded, then by C beeing bounded in 

[a, 6] x VF we mean that it meets [a, 6] x dVF), then we claim that C is compact. We show 

this by proving that C is also closed. So let {(pn, arn)} be a sequence in C that converges 

to (p, x). We want to show that (Ji, x) G C. Now the sequence {pn} is contained in [a, b\, 

which is closed, so its limit also belongs to [a, 6], that is, p G [a, b]. Let (p, x) G C G S, 

then there exists a function g G H (F) such that the solution u (t; x, (p,g)) is bounded. 

Now suppose that {(p,u(t-,x,<p(p,g))) : t G R} is not contained completely in C, 

then the set C U {(p,u(t-,x,<p(p,g))) : (p,u(t-,x,ip(p,g'))) C} is connected, and
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this contradicts the maximally of C. So we proved that for every (/x, rr) 6 C there 

exists a fonction g G H (F) such that {(/z,u : t G R} C C . Now

from assumption (A2), we have that for any g G H (F), ir^(x,g,t) is defined for t G 

I (x, tp (Ji, g)). Also from theorem (4.2), we have ir^ (xn, g, t) —> (z, g, t) as n —> oo, 

so

(^■u(t;a;n,¥>(Mn,g))) -» (£, u (t; æ, ç? (/z,s))) as n oo. (*)

Now assume that {(/z,zz(t;3;,y>(/z,g))) : t G 7 (z,9> (m,s))} is not contained completely 

in C, then the set CU {(£,« (t;5,92 (£,g))) : {p,-u{t-,x,<p(jl,g^ £ C} is connected, 

since from (*) above, for every t G 7 (z, (/z, g)), any open set in [a, b"\xW containing 

(Jz,iz(t;5,y? (/z,#))) must also contain points of the form (/zn,rz (t;zn,9? (Mn,p))) f°r 

n large enough, and this contradicts the maximality of C. Therefore, we must have 

(/z,it(t;æ,y>(/z,y))) G C Vt G 7 (^,9? (/z,g)). Hence, in particular (at t = 0) we have that 

(jt, x) G C. Hence, C is compact.

Now assume that C also does not meet {a, 6} x W. Let U be a ^-neighborhood 

of C such that dist {PC, {a, &}) > 6, where P : [a,b] x Rn -> [a, ft] is the projection 

mapping. Let K = Ü n S. Then obviously K is closed, and it is also bounded, since 

K CÜ, which means that K is compact. Now clearly 3U n C = 0 by construction and, 

therefore, {<XJ n S) n C — <j>. Also, there is no closed and connected set meeting both 

C and dUCïS, otherwise, if Cf is such a set, then CuC* would be connected, and this 

contradicts the fact that C is a component. So by the separation theorem (4.7), there are 

two disjoint compact sets A and B of K, such that C C A, dUnScB, and K — AuB.
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Choose p > 0, such that p < min{ctisi(A {u, ft} x W),ctist(A-B)}, and let Ap be a 

p-neighborhood of A. Now there is a maximal open interval ((, q) c [a, 6], such that 

(6 n) x {9} C Tip with A4) € ((, 77). We also may have /z (6 tj) with (/z, q) E A>- Also 

dAp n K = <j> by construction, so the only solution on dAp will be of the form ((, q), 

(77, q), or possibly other trivial solutions (p, q) where p £ ((, r/).

Now by hypothesis, {q} x 77 (F) is an isolated invariant set for each flow irp, where 

p =£ po, so by lemma (4.5) we can find a number r, > 0, such that B (q, rj x 77 (F) is an 

isolating neighborhood of {q} x77 (F) for each flow irp, with p E [cz, , and a number 

r2 > 0 such that B (q, r2) x H (F) is an isolating neighborhood of {q} x 77 (F) for each 

flow 7rM, where p E ft]. Let r0 < min{ri, r2], then B (q, ro) x 77 (F) is an isolating 

neighborhood of {q} x 77 (F) for each flow irp, where pe[a, ^^] U ft] and we 

can choose ro so small that éiy2Z] x B (q, ro) C A>- Now let Op = Ap x 77 (F), 

and let

O = Op U ([a, ft] x B (q, ro) x 77(F)).

Then O is open in [a,ft]xïVx77 (F), and if (x,g) E Ip = {(z,p) e : np(x,g,t) E

Vt e R}, then by construction we have that (p, x, g) £ dO. By theorem (4.4), the Conley 

index h (ttm, Ip) is independent of p E [a, ft]. But we also have

h (7Ta, Za) = h (ira, {q} x 77 (F)) / h (tt6, {q} x 77 (F)) = h (wà, 7fc), 

which is a contradiction and, hence, the theorem is proved.

Remark 4.9 Theorems (4.6) and (4.8) together prove the existence of a continuum 

(closed and connected set) that bifurcates from the line of trivial solutions. But this 
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continuum lies in the set S, which means that C is a continuum of solutions to the initial 

value problems

u (t) = (%

u (0) = x,

where G H(f Qu, .,.))> so C is not a continuum of solutions to the original 

problem

u (0) = x

as we would like it to be. We give some examples in chapter 6 where it is.



CHAPTERS

Some Global Results

In this chapter we prove some global bifurcation results for our initial value problem

« (t) = / « (*), 4, (5.1)

where f (/z,.) € Cc {W x R, Rn) and W C Rn is open and connected. But now the 

parameter /z can be any real number, that is, /z € R. We are going to assume that the 

function f satisfies the following conditions:

(Bl) f : R x W x R —» Rn is bounded and uniformly continuous on sets of the form 

[a, b] x K x R, where [a, 6] c R, K is compact in W, and for each fi E R, x E W and 

g E H {f {fi,.)) the initial value problem

u {t) = g{fi,u{t),t) (5.2)

u (0) = x

has a unique solution

Note that (Bl) is equivalent to saying that H (f {fi,.)) is compact

(B2) there is a function

y>:Rx j5T(/(0,.,.))-» UH (/(a-,.)) 

39
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continuous in the product topology, such that for all r, p € R, we have 

y (M, fr (0) •> •)) = fr (A1) •» •) •

Let F = f (0,.), and for each p e R consider the initial value problem 

u (t) = 95 (p, g) (« (t), f) (5.3)

it (0) = x, 

and let

D(p) = {(æ,p,f) eW x H (F) xR:t e 7 (ar, 95(^5))} ,

where 7 (^,9? (^,5)) is the maximal interval of existence of the solution to the problem 

(5.3) and define a flow ttm : D (/z) —> W x H (F) by

(a:,g,*) = (u(i;a;,95(/z,p)),gt),

where u (t; a;, 9? (//,#)) is the solution to problem (5.3).

Remark 5.1 Theorems (4.2) and (4.3) in the previous chapter can be stated with the 

parameter p no longer belonging to the interval [a, 6], but rather to the whole space of 

real numbers R.

Now we are ready to prove our first result in this chapter, which is a global con

tinuation theorem, similar to that in [26].

Theorem 5.2 Suppose that there is a bounded and connected open set U C Rn, such 

that Ü x H (F) is an isolating neighborhood for the flow tf0, and h (ir0,7) / 0, where

7 = {(*, g) G Ü x H (F) : tt0 (x, g, t) EÜ x H (F) Vf G R}.
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Let S+ = ({0} x [/) U cI{(jjl,x) G [0, oo) x W : there is a bounded solution through 

% for the problem (5.3) for some g G H (F)}, and let C+ be the component of S+ 

containing {0} x Ü. Also let S~ = ({0} xl/)u d{fa,x) 6 (-oo,0] x W : there is 

a bounded solution through x for the problem (5.3) for some g G H (F)}, and let C~ 

be tiie component of S~ containing {0} x U. Then either C+ meets {0} x ^R or 

else it is unbounded in [0, oo) x PV, and C~ either meets {0} x or else it is

unbounded in (—oo,0] x W.

Pt-oof : Suppose, by way of contradiction, that C+ is bounded in [0, oo) x W and doesn’t 

meet {0} x (Rn\£/). Let

= cZ{(/z,x) G [0, oo) x W : there is a bounded solution through x 

for our problem for some g G H (F)},

C* = {(/z, x) G C+ : there is a bounded solution through x for our problem}.

Now C* C C+, which implies that C* is bounded. Also C„ is closed; the proof 

is similar to the proof in theorem (4.8). So let {(^n,a:n)} c Co+ be a sequence that 

converges to a point (£,$). Now C*+ is bounded; this implies that there is a number 

b > 0 such that if (/z, x) G C+ then 0 < /z < 6, so the sequence {/zn} is contained in the 

interval [0,6], which implies that /z G [0,6] also. Now for any g G # (F), ^(x,g,t) is 

defined for t G I (x,^(jz,p)) (by assumption (Bl) ). From theorem (4.2) we have

7FMn (xn,g,t) -» TTg (æ, <7, t) as zi —> oo for t € I (x,tp (J^g))
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=> -» (/z,u(t;x,ç5(/z,p))) as n —> oo for i G 7 (x, y? (/z,ÿ)).

Now, as argued in the proof of theorem (4.8), we must have that 

(p,u(t;x,p(p,g))) 6 C+ Vt e I (x,<p(p,g)) = R, otherwise we would have a contra

diction to the maximality of C+ ; therefore, from the definition of C+, (/z, u (t; x, y> fag))) G 

C* Vt € R. Hence, in particular (/z, it (0; x, y? (/z,t?))) 6 C*, that is, (/z, x) G C*. There

fore, we proved that C* is closed and, hence, compact.

Let 8 > 0 be a positive real number, and let U5 be a «^-neighborhood of C*. Let

V = {fax) G Us : p > °}-

Then V is open and bounded in [0, oo) x Rn, since V = Us IT ([0, oo) x Rn), and 

ÔV D C„ = 4>, where dV is the boundary of V in [0, oo) x Rn. Let K = S„ FT V, where, 

again, the closure is taken in [0, oo) x Rn. Then K is compact in [0, oo) x Rn, and 

{dV n S*) n C* = 0 by construction. Also there is no closed and connected subset of 

K that meets both C* and dV n S*, since this again contradicts the maximality of C+, 

so by the theorem (4.7), there are two disjoint compact sets A and B of K, such that

C* c A avns+cB K=A\JB.

Let Ap be a /^neighborhood of A in [0, oo) x W, where p < dist (A, B). Then 8Ap IT 

S* = <$>. Let O — Ap x H (F). Then O is open in [0, oo) x IV x H (F), and if 

(x,g) G Ip = {(x,g) G Op : (x,t?,f) G Op Vf G R}, then (/z, x, g) dO. Therefore

by theorem (4.4), the Conley index h (irM, 7M) is independent of /z G [0, oo). But we 

assumed that C+ doesn’t meet {0} x (Rn\u\ so we can choose 8 and p so small that 
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(Ap)0 C Z7. Therefore, 70 G I. On the other hand, let (x,g) E 7. Then, by the definition 

of C*, (0,æ) eCo+C Ap. But O = Ap x 77(F), hence (0,z,g) e O => (x,g) e 70.

Therefore, 7 Ç 70. So 70 = 7 and, by hypothesis, we have At (tt0, 70) = h(ir0,7) / Ô.

Therefore, 

h (ttm, 7m) / 0 ty>0.

But O = Ap x H (F), and Ap is bounded in [0, oo) x W. Hence (A,)^ = for aU p 

sufficiently large and, therefore, Op = <t>. So

= 0 for all p sufficiently large,

which is a contradiction. Hence C+ either meets {0} x (Rn\I7) or else it is unbounded. 

This completes our proof, since the proof for C~ is similar.

For our next result, we need to make the following remark.

Remark 5.3 The Conley index is, as we explained in chapter 3, a homotopy type of a 

pointed topological space. Since homotopy preserves connectedness, it makes sense to 

talk about a connected index or a disconnected index. An example of a disconnected 

index is Ï.

From this point to the rest of this chapter we assume that there exists a line of 

trivial solutions, that is, there exists a point q EW such that

f (/a q, t) = 0 e R.

Theorem 5.4 Let pi and p3 be two distinct real numbers such that p^ < p2, and suppose 

that {q} x H (F) is an isolated invariant set for each flow irp, where p E R\{/zi,/z2}, 
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and that

h (irp, {g} x H (F)) is connected for p < Mi, and

h (ttm, {g} x H (F)) is disconnected for p G (mi, M2) •

Let S+ = c/{(/z, z) : x 4 q,p > pu and there is a bounded solution through x for 

the problem (5.3) for some g G H (F)}, and let C+be the component of S+ containing 

(pi,q). Assume that C+ is non-empty. Then, either

(1) C+ is unbounded in \pu 00) x W, or

(2) C+ meets every point (m, g), where p 6 \pi ,/z2]-

Proof : Suppose that C+ is bounded in \pA, 00) x IV and doesn’t meet the point (m, g), 

where MG (/zi,/z2]. Then we can prove, as before, that C+ is compact. Now by assump

tion (g) x H (F) is an isolated invariant set for each flow ttm, where p 4 Mi, M2, also C4" 

doesn’t meet the point (p, q). Assume that for every neighborhood of M in R there is a 

point a belonging to that neighborhood such that (a, g) G C+. Let pn G (m — M +7J 

be such a point, that is, (m™ 9) G C+. Then we have a sequence {(Mn,q)} in C* that 

converges to the point (m, g), but C+ is closed, which implies that (p, g) G C+ . There

fore, we conclude that there exists a neighborhood (£, () of M in R such that C+ doesn’t 

intersect the line (£, () x {g} . Assume that p\ < £, and let s = ( — C , and 0 < 5 < s, 

and let U be a ^-neighborhood of C* in R x W. We can choose Ô so small that there 

is a point (m, q) with p G (£, (), such that (m, q) 17. Let K = S+ D U. Then K is 

compact, and C+ n (S+ n dU) = 0. So by the separation theorem, there are two disjoint 
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compact sets A and B of K, such that

C+ C A S+ftdUcB K = A U B.

Let Ap be a /^-neighborhood of A, where p < dist (A, B) < 6. Let O = Ap x H (F). 

Then O is an open set in R x W x H (F), and it has the following properties :

(1) If (x,g) G Ip, then (p,x,g) £ 30.

(2) There exists a point (/x, ç,#), with p G ((, (), that does not belong to O.

Moreover, there exists a number eo < S such that (/x, ç) 6 for every /x G (/xa — eo, /X] + eo).

Define

(A»)m = {(®) G IV : (/x, z) G Tip}.

By lemma (4.5), there exists a number r, > 0, such that B (q, rj) x H (F) is an isolating 

neighborhood of {<?} x H(F) for each flow ttm, where p e [/X] + ^,P — ej], Ei > 0 is 

small enough that /x —£j > px +5. Now let p* < /x15 then similarly there exists a number 

r2 > 0, such that B (q,r2) x H (F) is an isolating neighborhood of {<?} x H (F) for each 

flow iTp, where p G [/x*,/xj - Now choose a number r < min{ri,r2}, such that: 

(1) (mi -^i + t)x5 W C Ap.

(2) n B (g,r) = </> for some p € «,<).

Clearly, we can find such a number (see property (2) on O above). Now let

V = OU(RxB(g,r) xZf(F)).

Then, by construction, we know that, if (z,y) G Ip = {(z,y) G : ttp (x,g,t) G
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Vt € R}, then (/z, a;,p) fÉ ÔV. So by theorem (4.4),

h (tfm, 7m) is independent of /z E R.

Now let 7)i 6 (£,£) be such that n S(g,r) = 0, and let ï = {{x,g) E : 

tf,,, (x,g,t) G Ô Vt 6 R}, which could be empty, but O„, = (A>) x h (-f) 311(1 

we have (^) n B(q,r) = 0; therefore, Oni n (B(g,r) x 77(F)) = 0, so / and 

{q} x 77 (F) are disjoint isolated invariant sets with disjoint isolating neighborhoods Om 

and B (q,r) x 77 (F), respectively. Now

/ru = {(^, y) € V,,, : tf,,, (a;, p, t) € Vr,,V7 € R}

= {(®,p) 6 O,,, U (B (q,r) x 77 (F)) : irm (x,p,i) E Om U (B (q,r) x 77 (F)) Vt E R}

== G O,,, : 77,,, (#,p, t) E Or,, Vt E R} U

{(«jP) E B (q, r) x 77 (F) : tf,,, (x, p, t) E B (q, 7*) x 77 (F) Vt E R}

= 7' U {q} x 77 (F).

Therefore, we have

h (% > A») = h (tf^ , / U {q} x 77 (F)) 

= h (tf,,,, /) V h (tf,,,, {q} x 77 (F)).

But /i (TF,,,, {q} x 77 (F)) is disconnected by assumption since tji > /zb so Æ(tf,,,, 7,,,) is 

also disconnected, no matter what h (irVi, Ï ) is (see the definition in chapter 3). Now 

choose 7)2 < /zi, such that (4>)tm = Clearly we can find such a number since Ap is 
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bounded. Then

h (%%, 4j2) = 4 {?} x H (F)),

which is connected by assumption. Hence

4 (^t 1 4ft ) 7^ 4 (^ITZ» 4)2 ) ,

which is a contradiction, and this proves our theorem.

Corollary 5.5 Let Mi and /z2 be two distinct real numbers, such that Mi > p2, and suppose 

that {q} x H (F) is an isolated invariant set for each flow 7rp, where p € R\(mi)M2}, 

and that

h (ttm, {q} x H (F)) is connected for p > pi, and

h (tfm, {q} x 27 (F)) is disconnected for p 6 (p2, Mi) •

Let S~ = cl{(p,x) : x q, p < pi, and there is a bounded solution through x for the 

problem (5.3) for some g e H (F)}, and let C~ be the component of S~ containing 

(Mi, q). Assume that C~ is non-empty. Then either

(1) C~ is unbounded in (—oo,Mi]xW, or

(2) C~ meets every point (p, q), where p e \p2, Mi]-

Hie proof of this corollary is very similar to that of theorem (5.4) and is omitted.

Definitions :

(1) The point q G W (in the assumption above) is said to be an attractor for our problem

(5.3) if there exists an open set UocW such that q e Uo and for each x eUo :
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(1) u(t-,x,ip(p,g)) G Uo for all t > 0, g G H (F).

(2) u (t; Ç? (ju, q)) —> q as t —» oo, that is , for every open neighborhood V of q 

there is a r > 0, such that u (t;, x, ip (p,g)) G V for all t > r.

(2) The point q is said to be a repellor if there is an open set Vo C W such that q E Vo 

and for each x eVo:

(1) There exists a r > 0 such that u (t; x, <p (p,g)) Vo for all t > r, g E H (F) 

and u (t; x, ip (/z, g)) G Vo for all t < r, g E H (F).

(2) u (t; x, 95 q)) -* g as t -» -oo.

Theorem 5.6 Assume that / is even in t, that is, f(p,x,t) — f(p,x, -t). Let pi and 

p2 be two distinct real numbers such that p\ < /z2, and suppose that {q} x H (F) is an 

isolated invariant set for each flow ttm, where p E R\{/zi,/z2}, and that

q is an attractor for p < pi, and

q is a repellor for p G (/zi,/z2).

Let S+ = cl{(p,x) : x =£ q, p > pi, and there is a bounded solution through x for the 

problem (5.3) for some g G H (F)}, and let C+ be the component of S'4" containing 

(pi,q). Assume that C+ is non-empty. Then either

(1) C+ is unbounded in \pi, oo) xW, or

(2) C+ meets every point (/z, q), where p G \pi,Pa\.

froof : Let u (t; x, f) be a solution to the problem (5.1), and define y (t) by

y(t) = u (-t; x, f).
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Let T = —t, then

I= a-to «-fl
- ^u(r'x'f}dit

= -/ (/^, u (r; x, /), r)

= -/(m, y (*),-*)•

Therefore, y (t) satisfies the equation

y' (t) = -f (m, y (*) » -*) • (5-4)

Now define a function h : Rx W x R —» Rn by

A (At, x,t) = -f (/i, ar, -t)

and a function p : R x H (h (0,.)) —* H (h (p.,.)) by

P (At, (0,.)) = hr (At,.),

where r e R, hT is the r-translate of h, and hr (^, x, t) = — fT (At, a;, — t). Then conditions

Bl and B2 are satisfied on the new functions h and p. Now consider the initial value 

problem

y'(i) = p (At, g) {y (t), t) (5.5)

y (0) = %,

where g € H (h (0,.,.)), and let

D (m) = {(%,y,t) G W xH(Ji (0,.,.)) x R:t G 7(æ,p(^,p))}, 
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where I (x, p (/i, g)) is the maximal interval of existence of the solution to problem (5.5), 

and define a flow tt:D (p) —> W x R by

(x,g, t) = (y (t; x, p (p,g)),gt),

Mere y (t; x, p (p, q)) is the solution to problem (5.5).

Now, by assumption q is an attractor for p < p\, where q is an equilibrium point 

for the problem (5.1), that is, f(p,q,t) = 0 \/p,t E R. From the definition of y 

and h we see that q is still an equilibrium point for problem (5.4), but it becomes a 

repellor. Similarly, it becomes an attractor for problem (5.4) for p E (pi,pz). Now 

fix a p E (-00,^1). For this value of p we know that q is a repellor; therefore, 

there is an open set Vo C W satisfying conditions (1) and (2) in the definition above. 

Consider the set Vo x H (h (0,.,.)). We can see clearly that this set is an isolating 

neighborhood of {q} x H (h (0,.,.)) for the flow and we have that for each x E Vo 

there exists a r > 0, such that y (t; x, p (p, g)) Vo for all t > r , g E H (h, (0, 

and y (t;x,p(p,g)) E Vo for all t < r, g E H(h(0,Let B C Vo x H (F) be an 

isolating block of {q} x H (h (0,.)), then the exit set is non-empty. Also note that the 

set Vo x H (h (0,.)) is connected and so is the isolating block B; therefore, the quotient 

space B/B~ is also connected, since it is the continuous image of B. So the Conley 

index h {q} x H (fi(0,.,.))) is a connected quotient space with a distinguished 

point that belongs to it. Therefore

A (%„,{<?} x g (A (0,.,.))) is connected for p < pv

Now fix a p E (pi,pz). Then, for this value of p, we know that q is an attractor; 
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therefore, there is an open set UocW satisfying conditions (1) and (2) in the definition 

above. Consider the set Üô x # (Æ (0, -,.)). Again, this set is an isolating neighborhood of 

{%} xH(h (0,.)) for the flow îr„, and for each xeUo we have that y (t; x, p (/z, g\) G 

Uo for all t > 0, g G 0,Let xo g SZ7O, and assume that there exists a 

g eH(h (0,.)) such that the solution u (t; xo, p (p,g)) stays in dUo for all £ G R. Now 

xo belongs to 6UO, so there is a sequence {zn} of points in U that converges to xo, 

but îz(t;arn,p(/z,g)) -> q as t -> oo and u(t\xo,p{p,g)) G dUo for all t G R, which 

contradicts the continuation of solutions with respect to initial conditions. Therefore, we 

can look at the set Ü~o x H (Æ(0,.,.)) as an isolating block and for the same reason we 

can see that solutions through any point on the boundary of Uo must go inside. This 

implies that the exit set is empty, so the Conley index h {?} xH(h(0,.,.))) is a 

connected quotient space with a distinguished point that does not belong to it. Therefore,

A(ï„Wx»W0,.,.))) is disconnected for p G (pbpz) -

Let S+= cZ{(p, x) : x / q, p > pb and there is a bounded solution through x for problem 

(5.5) for some g G H (h (0,.,.))}, and let C+ be the component of S containing (pb q). 

Clearly, £+= S+ and C+= C+. By assumption, C+ is non-empty, which implies that 

C+is also non-empty. Then by theorem (5.4), either C is unbounded in R x W, or 

it meets every point (p,q) where p G \pi, Pi\- Therefore, the theorem is proved since 

rv 4- 
c =c+.

Corollary 5.7 Assume that f is even in t. Let pi and pt be two distinct numbers, such 

that pi > P2, and suppose that {g} x H (F) is an isolated invariant set for each flow irM, 
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where p G R\{/Z],^2}, and that

g is an attractor for p > /ij, and

g is a repellor for p G (^2,^1).

Let S~ = {(p,x) : x q, p < pi, and there is a bounded solution through x for problem 

(5.3) for some g G H (F)}, and let C~ be the component of S~ containing Qzi,g). 

Assume that C~ is non-empty. Then either

(1) C~ is unbounded in (—00,/zj x W, or

(2) C~ meets every point (p, g), where p G \pi,pi\.



CHAPTER 6

Examples and Applications

Tn this chapter, we discuss some examples to see how we can apply our results 

from chapters 4 and 5.

Example 6.1 Consider the ODE

u = f , (6.1)

where / E Cc ([a, b] x W x R, Rn), W C Rn is open and connected, and f is T-periodic. 

Then f satisfies condition (A2) in chapter 4. And for every (J. E [a, 6], we have

f + — f (jj,, a, t) Vt € R, x E W.

Therefore, for any translate fr of f, r E R, we have

fT (/i,x,t) = f{(JL,X,t + T) = f (jJ,,X,t + T + T) = fr+T (Ml ^5 *) Vt E R, x E TV,

which means that fT = JV+t Vr E R So the set of all translates of / is A = {ft : t E 

[0, T]). This set is closed, as we now prove. Let {fTn} C A be a sequence of translates 

that converges to /E Ce (R x W x R,Rn). Then the sequence {rn} C Ris bounded, 

since it is contained in [0,7], so it has a convergent subsequence which we relabel as 

{rn} that converges to a point tE [0,T]. But fTn -»? and /T„ is continuous for every n, 
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so we have

lim fTn Qlz, »,t) = lim / (m, ®, t + rn) = f (/z, x,t+ r) = f~ (/x, », t).

Therefore, f (/z, », t) = /- (^, », t) and, hence, fe A Now, since A is closed, we must 

have H (/ (/x, .,.)) = A = A, so any function in the hull of / is a translate of f. Also 

H (f (y,,.)) is compact (see [6] for details). Now consider the initial value problem

u' (t) = ffau (t), t)

u (0) = x.

Let yi (t) be the solution to this problem, and let r e I (», f), and

g GCc ([a, b] x IV x R, Rn) be the ^--translate of f, that is, g (^, x,t) = f (/z, », t + r) 

for every /z e [a, 6], t e R, and x eW. Consider the initial value problem

rz'(t) =p{/z,îz(t),t) 

u (0) = yx (r).

Let j/2 (<) be the solution to this problem, then y2 (t) = t/i (t + r). Uris means that they 

have the same orbit, where by orbit of y\, we mean the set {j/i (t) : t G I (»,/)}, and 

the orbit of y2 is the set {y2 (t) : t G I (yA (r),g)} = {yA (t + r) : t 6 7 {yA (r) ,g)}. So 

if assumption (A3) in chapter 4 is satisfied and our function f satisfies the assumptions 

in theorems (4.6),and (4.8), then the continuum of solutions is a continuum of solutions 

to the original problem

U (t) — f (fZ, u (t) , t) .
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See remark(4.9).

For our next example, an introduction to almost periodic functions is needed. We 

follow [6] closely.

Notation: a, /?, ... will denote sequence {an}, {J3n}, ... in Rn. The notation 

denotes /? is a subsequence of a. If f and g are functions on R, and a is a sequence 

in R, then Taf = g means Um f(t + an) exists and is equal to g (t) for all t G R. 

The type of convergence (uniform, pointwise, etc.) will be specified when used. For 

example, we will write Taf = g pointwise, Taf = g uniformly, etc.

Definition: Let f be a continuous and complex valued function on R, then f is almost 

periodic if for every a there is an a C a such that Taf exists uniformly.

If AP = {f : f is almost periodic}, \f\ = supt \f (t)| if f G AP, then AP with 

this norm is a normed linear space, in fact a Banach space.

Lemma 6.2 (1) Every periodic function is almost periodic.

(2) Every almost periodic function is bounded.

Theorem 6.3 (properties of almost periodic functions)

(1) AP is an algebra (closed under addition, product, and scalar multiplication).

(2) If / G AP, F is uniformly continuous on the range of f, then F of e AP.

(3) If y G AP, inft If (t) I > 0, then ) G AP.

(4) If f,g G AP, then |f | ,min(f,p) ,max (f,g) G AP.

(5) AP is closed under uniform limits on R.

(6) (AP, |.|) is a Banach space.
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(7) If / e AP, and is uniformly continuous on R, then^ E AP.

The reader who is interested in the proofs of lemma (6.2) and theorem (6.3) can 

find them in [6].

Remark 6.4 The space AP contains all periodic functions. Theorem (6.3) shows that it 

contains all functions which are sums of periodic functions and, thus, all trigonometric 

polynomials. It also contains the uniform limits of trigonometric polynomials. One can 

actually show (but the proof is not trivial) that AP consists precisely of functions which 

are uniform limits of trigonometric polynomials.

Recall that, if / is periodic, then H (J) consists of all translates of f. Now if 

f E AP, then H (f ) may contain elements that are not translates of f. In fact, if 

f (t) = cost 4- cos then f E AP, since it is the sum of two periodic functions, 

but it is not periodic, since it takes the value 2 only at t = 0. Also f (t) > -2 for all 

t, and there is a sequence a = {a'J C R such that f (oQ —> -2. If a c a and 

Taf = g uniformly, then g (0) = lim_ f (an) = —2, and g cannot be a translate of f, but 

it belongs to H (f ) since it is the limit of a sequence of translates of f, namely {fn}, 

where fn (t) =f(t + an).

Theorem 6.5 f E AP if and only if H (/) is compact in the topology of uniform 

convergence on R. Furthermore, if / e AP, then H (g) = H (/) for all g E H (F).
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Now we are ready for our next example.

Example 6.6 Let a < 0, and b > 0 be two real numbers, and consider the ODE

u (t) = /zu (t) + q (t) u3 (t) = / (/Z, u (t), t), (6.2)

where u (t) e R, /z € [a, &], and q : R -» R is almost periodic. Then / e Cc ([a, b] x R x R, R) 

is almost periodic. Also we have a line of trivial solutions [a, 6] x {0}, and {0} is an 

isolated invariant set for each /z 0. Now let F = f (b,.), then {0} x H (F) is an iso

lated invariant set for each flow ttm, /z=/0. Let NxxH (F) be an isolating neighborhood 

of {0} x H (F) for the flow irb. Now consider the ODE

u (t) = bu(t)+ Xq (t) u3 (t) A e [0,1], (6.3)

and let tta be the skew-product flow associated with this equation. Then Ni x H (F) is 

still an isolating neighborhood of {0} x H (F) for each flow tta, A E [0,1]. This implies 

that

h. (if0, {0} x H (F)) = h (7fn {0} x H (F)). (6.4)

Now the flow 7T0 is the skew-product flow associated with the initial value problem

u'(f) = bzz(t) (6.5)

zz (0) — x,

which is defined by

7r0(x,g,t) = (u (t;x,<p(b,g)),gt) = (/? (x,t) ,-y(g,t)),
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where g G H (F), fi is the flow fi (x, t) = u (t; x) on R, where u (t; x) is the solution 

to problem (6.5), and 7 is the flow on # (F) defined by 7 (5, t) = It follows that 

h(ïfo, {0} x H (F)) = /i (/? x 7, {0} x If (F)) = h(fi, {0}) A h(y,H (F)). Therefore 

by (6.4) above, we have

h (Tfj, {0} x H (F)) = h (fi, {0})A/i (7, H (F)).

Now 6 > 0. This implies that h (fi, {0}) = £?. Now h (7, (F)) is of the form of a 

disjoint union of a compact connected space with a separate distinguished point (since 

H (F) has an empty exit set under the flow 7), that is, h (7, H (F)) is disconnected. But 

h (/?, {0}) is connected, so h (ttj, {0} x # (F)) is itself connected by lemma (3.2). But 

7f] = 7r&, and, hence,

Æ (-H-fr, {0} x H (F)) is connected. (6.6)

On the other hand, let N2x H (F) be an isolating neighborhood of {0} x H (F) for the 

flow ita and consider the ODE

u (t) = au (t) + Xq (t) u3 (t) A 6 [0,1]. (6.7)

Let tta be die skew-product flow associated with this equation. Then also N^xH (F) is 

an isolating neighborhood of {0} x H (F) for each flow tta, A 6 [0,1]. This implies that

/i (%0> {0} x H (F)) = h (7Fi, {0} x H (F)). (6.8)

Now the flow 7T0 is the skew-product flow associated with the initial value problem

u' (t) = au (t) (6.9)

u (0) = æ,
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which is defined by

5r0 (x, q, t) = (u (t; x,y,(a,^)) ,#t) = (a (x, t), 7 (5, *)),

where a is the flow a (x; t) = u (t; x) on R, u (t; x) is the solution to problem (6.9), 

and 7 is as above. So h (îfo, {0} x H (F)) = Æ (a x 7, {0} x H (F)) = h (a, {0}) A 

h (7, Z/- (F)). Therefore, from (6.8) above we have

A (MO) xH(F)) = M»> {0}) A h (7, ZZ (F)).

Now a < 0 implies that h (a, {0}) = Ï . So

MM0}xJT(F)) = M7,H(F)).

Therefore Æ (th, {0} x ZZ (F)) is disconnected. But tti = tto and, hence,

h (ira, {0} x ZZ (F)) is disconnected. (6.10)

Comparing (6.6) and (6.10), we conclude that

h (ffo, {0} x ZZ (F)) / h (7r6, {0} x ZZ (F)).

Therefore, by Theorem (4.6) (0,0) is a bifurcation point, that is, for eveiy s > 0, there 

exists a (^, x, p) e [a, &] x Rn x Zf (F) such that

||u(t;x,^(/z,p))|| + |/z| < e,

where u (t; x, (/n, 5)) is the solution to the initial value problem

«'(*) = P W) (w(*)>*)

u (0) = x.
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Now if ip (^, g) (u (t), t) = f (m, « (*) 5 * + r) for some r G R, that is, <p (p, 5) is just a 

translate of f (/z,.). Then as in example (6.1) our solution is a solution to the original 

problem. But if € H (/ (/z,.,.)) is not a translate, then <p (p, g} (u (t) ,i) = 

pu (t) + 9* (t) u3 (t), where (f £ H (q) is not a translate of <?. Now H{q) = H (y*) (see 

theorem (6.5)), so q 6 (?*), hence there is a sequence {tn} C R such that <&-►<?

uniformly. Setting un (t) = u (t 4- tn), and using the fact that ||u(t)|| < e - |/x|, we 

conclude that is a uniformly bounded and equicontinuous family of functions on 

the real line. It follows that there exists a subsequence {u^} which converges uniformly 

to a solution v (t) of

u' (t) = U (t) 4- q (t) Ît3 (t)

u (0) = (0)

and \\v(t)\\ < e-\p\ =» ||v(t)|| + \p\ < s. Therefore, assuming that the sequence 

(un (0)} doesn’t converge to zero, for every e > 0, there exists a non-trivial solution 

v (t) to the original problem that satisfies the above inequality. However, we cannot say 

the same thing about the continuum C (see theorem (4.8)), since not all the solutions on 

it are solution to the original problem.

Example 6. 7 Let a < 0, and b > 0 be two real numbers and consider the second order 

ODE

x (t) 4- px (t) 4-x(t) + q (t) x3 (t) = 0, (6.11)
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where x (t) e R , p E [a, 6] and q : R —> R is almost periodic. Equation (6.11) can be 

written as the following system of ODE

x' (t) = y (t)

y' (<) = -x (t) - py (t) - g (t) x3 (t),

which, in matrix form, can be written as 

x (t)

y (*)

= f(p,u(t),t)

i

2/(<)—1 —p -q (t)

where w (t) = (a; (t) ,y (£)) e R2. Then / e Cc ([a, b] x R2 x R, R2) is almost periodic, 

and we have a line of trivial solutions [a, b] x {0} E [a, b] x R2 and, as in the previous 

example, {0} is an isolated invariant set for each p ■=£■ 0. We proceed as before to show 

that

h (*„, {0} x H (F)) - h (0„, {0}) A h (f,H (F)),

where 3p is the flow generated by

x' (t) = y (t)

y' (t) = -x (t) - py (t),

and 7 is as in example (6.6). But h (&,{()}) = 52° (see theorem (3.3)) and, there

fore, h (fib, {0} x fl(F)) = h (7, fl" (F)), which is disconnected. On the other hand, 

h (3a, {0}) = £2 (see theorem (3.3)), which is connected and, therefore, h (irai {0} x fl (F) ) 
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is connected (see lemma (3.2)). Hence, we have

h (o, {0} x H (F)) J h (n, {0} xZf(F)),

and so (0,0) is a bifurcation point.

Now we give some examples on chapter 5.

Example 6. 8 This is a very simple example that illustrates the different cases we dis

cussed in theorems (5.4) and (5.6). Consider the ordinary differential equation

u' = -p.114- u3 = f (p, u), (6.12)

where u E R. Note that the differential equation is autonomous, but we can still apply 

our result. Obviously, f (/x,0) = 0 for every p E R. If we linearize the differential 

equation near the equilibrium point 0, we have the following linear differential equation

ii = —pu

and, therefore, for p < 0, 0 is unstable, and we have h (/3M, {0}) = where is the 

flow associated with equation (6.12). On the other hand, for p > 0, 0 is asymptotically 

stable, and we have h (/?M, {0}) = I. So we have

h {0}) is connected for p < 0, and

h (/?M, {0}) is disconnected for p> 0.

Also C+ is non-empty, since for each p > 0, there are bounded solutions to the problem, 

u = ^y/p. So we can apply theorem (5.4) to conclude that C+ is either unbounded 
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in [0, oo) x R, or it meets every point {yz,O), where /z > 0. Actually, if we solve the 

equation f (/z, u) = 0, we find that we have two curves of equilibrium points, namely 

u = 0 and u = and our C+ is the curve u2 = yz and the area inclosed by it.

10}

-20 -10

u 5„

-101

-5" ■

ia 20

Figure 2. Graph of C+ for example 6.8.

Now consider the differential equation

u' = /J.U — u3 = f (yz, u). (6.13)

Here we apply theorem (5.6), since 0 is an attractor for yz < 0 and a repellor for /z > 0. 

The difference between the bifurcation for equations 6.12 and 6.13 is that, in the first 

case, the equilibrium point 0 is unstable for /z < 0, and as the parameter yz passes through 

the bifurcation value yz = 0, the equilibrium at the origin loses its instability, by giving 

it up to the two new unstable equilibria u = =p^/yz, and becomes stable. In the second 

case the opposite happens where the origin loses its stability and becomes unstable.
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Now we give another example where the continuum C+ is bounded.

Example 6. 9 Consider the ODE

u' — —p?n + u — u3 = f (6.14)

where /z e R, and u G R. Clearly, / (/z, 0) = 0 for every p <eR. Again, if we look at 

the linearization near the point 0, we have the following equation

1? = /Z2 4- 1) 14.

-3 -2 2 3

Figure 3. Graph of C+ for example 6.9.

Therefore, if \p\ > 1, the equilibrium point 0 is asymptotically stable (an attractor), and 

we have h (/?M, {0}) = I, where 0^ is the flow associated with equation (6.14). But if 

\p\ < 1, the equilibrium point 0 is unstable (a repellor), and h (0^, {0}) = 521. So we 

have

{0} is an attractor for p < —1, and 

{0} is a repellor for p e (-1,1). 
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Also, C+ is non-empty, since for every /x G (-1,1), we have bounded solutions for 

the problem, for example the equilibrium points u = =Px/l — /x2. Therefore, we can 

apply theorem (5.6) to conclude that C+ is either unbounded in [—1, oo) x R, or else it 

meets every point (/x,0) where /x G (-1,1). Now if we solve the equation f (/x, u) = 0, 

we find out again that we have two curves of equilibrium points, namely u = 0 and 

u = f/I — /x2, so our C+ is the circle u2 + fj? = 1 and the area inclosed by it. In this 

example, C+ is bounded and meets every point (/x, 0), where /x G (—1,1).

Let us now consider a more complicated example (see [1]):

Example 6.10 Let ip : [a, b] x [0, oo) x R —> R be a function that is bounded and 

uniformly continuous on sets of the form [a, 6] x K x R, where a < 0 < b and K is 

compact in [0, oo). Assume that for p, 0, and v G [0, oo) in a small neighborhood of 0 

(that might depend on /x)

/xsign^ (/x, v, t) < 0 V t G R.

Consider the two-dimensional system

x\ = (/x, x2 + a?2, t) Z] - x2 (6.15)

x'2 = Zi + ip (/x, x2 + t) x2.

In polar coordinates the system can be written as

& = 1

r' — rip (/x, r2, t) .
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The origin (0,0) is an equilibrium point for every p e [a, b] /{0}. For p = a and r in 

a small neighborhood ofO, we have (a, r, t) > 0 V t e R. Therefore, r' > 0 and all 

solutions spiral counter-clockwise away from the origin. Let Uax. H (F) C R2 x H (F) 

be an isolating block of {(0,0)} x H (F), where Ua is connected. Then the exit set 

is non-empty and, therefore, the Conley index is in the form of a connected quotient 

space with a distinguished point that belongs to it; hence, h (?ra, {(0,0)} x H (F)) is 

connected, where ttm is the flow associated with equation (6.15). On the other hand, 

for p = b and r in a small neighborhood of 0, we have tp (&, r, t) < 0 V t G R; 

therefore, r' < 0, and all solutions spiral counter-clockwise towards the origin. Again 

let Ub x H (F) c R2 x H (F) be an isolating block of {(0,0)} x H (F), then the exit 

set is empty, and the Conley index is of the form of a connected quotient space with a 

distinguished point that does not belong to it; hence, h (ir6, {0} x H (F)) is disconnected; 

therefore, h (îro, {0} x H (F)) h (tf6, {0} x H (F)). Now we can apply theorem (4.6) 

to conclude that (0,0,0) is a bifurcation point. As an example of the function let

(p, v, t) = v cos41 - p. Clearly if p < 0, then we have <0 (p, v, t) > 0 for every 

v e [0, oo) and t G R, and if p > 0 then for v < p we have (p, v,t) <0 for every

tgR. Therefore for p 0 and v e <
[0, oo) for p < 0

■ we have /nsign^ (/z, y,t) < 0
[0, p) for p > 0

vteR.
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Asymptotically Autonomous Differential Equations

In this chapter we consider parameter dependent non-autonomous ordinary differ

ential equations that are asymptotically autonomous, in particular in the following setting:

u'(t) = /(A,u(t))+5(A,u(t),t), (7-1)

where gt -» 0 as |t| oo in H(p(A,Here, A G [a,b] C R, u G W, which 

is an open and connected subset of Rn and t G R, also f (A,.) G Cc (W, R ) and 

g (A,.) G Cc (W x R, Rn) are both bounded and uniformly continuous on sets of the 

form [a, 6] x K and [a, 6] x K x R, respectively, where K is compact in W. We tty to 

answer the following question: If bifurcation occurs for the limiting equation

(t) = / (A, % (t)), C7-2)

do we still have bifurcation for equation (7.1)?

Before we state our result, we need the following lemma, which will be given without 

proof [22 ]:

Lemma 7.1 Let th and tt2 be local flows defined on locally compact metric spaces X; 

and X2, respectively. Suppose Kx C Xj is a compact isolated invariant set for ttj and 
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X2 is compact, so that KA x X2 is a compact isolated invariant set for th x tt2. If 

h (ttj, Ki) 7^ 0, then h (tti x tt2, x X2) / 0.

Now consider the homotopy

w' (*) = f (A,u (*)) + AW (A>u (f) » *) » (7.3)

where p G [0,1], Assume the following:

(Cl) For each x G W, A g [a, h], p G [0,1], and g* G H(g (A,the initial value

problem

î/(t) = /(A,u(i))+/zg* (A,«(*),*) (7.4)

« (0) = æ

has a unique solution.

(C2) There exists a point q & W such that

f (A, ç) = g (A, g, f) = 0 for every A G [a, b], t G R,

h(/3a, {g}) is disconnected (connected), and h(/3b,{q}) is connected (disconnected),

where, for each A G [a, 6] 3x is the flow generated by equation (7.2), that is,

0x («> t) = « (t; ®) j

where u (t; x) is the solution to the initial value problem

u'(t) = / (A,u(t))

Ï4 (0) = %.
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Now for a fixed A G [a, 6], define the family of flows ttaon W x H (q (A,.)) by

= («(*;«>/ +MP*), Sth

where /z G [0,1], y* G #(p(A,.,.)), + pg*} is the solution to the initial

value problem (7.4). This defines a family of skew-product flows on the space W x 

H(g (A,

Theorem 7.2 Suppose (Cl) and (C2) hold and:

(1) there exists A* G [a, b] such that for each A G [a, 6] \{AO} the set {q} x H (p (A,.)) 

is an isolated invariant set for each flow ttAi/x, p G [0,1],

(2) for each A G [a, b] \{AO} there exists an isolating neighboihood U\ C W of {q} for 

the flow /?A, and

h (/?A, {q}) Ô for every A G [a, b] \{AO},

(3) if u(t} is a solution of equation (7.4) for some A G [a,6]\{Ao}, p G [0,1] and 

g* G H {g (A,.)), such that u (t) G Z7A for all t G R, then u (t) G Ux for all t G R.

(4) Let So = cl{(X, x} : x q and there is a bounded solution through x for the problem 

(7.2)}, and let Co be the component of So containing (Ao, q). Assume that Co contains 

a point (A*,p), where A" =/ A<> and p q is an isolated equilibrium point for equation 

(7.2) and that there exists an isolating neighborhood G W (V^ D Ux* — </>) of {p} for 

the flow fix- satisfying: if u (t) is a solution of equation (7.4) for A = A*, p G [0,1] and 

g* G H(g (A*,.)) such that u (t) G Vx- for all t G R, then u (t) G K- for all t G R. 

Then (Ao, q) is a bifurcation point for the problem (7.1).
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Remark 7.3 If we look at equation (7.2), we notice that under (Cl), (C2) and the as

sumptions of theorem (7.2), all the conditions of theorem (4.6) are satisfied. In fact {g} is 

isolated for each flow A, A G [a,&]\{A<>}. Also, from (C2), &(&,{g}) is disconnected 

(connected), and h (/%, {g}) is connected (disconnected). So h (&, {g}) h (A, {<?})• 

Therefore, (Ag) is a bifiircation point for the limiting equation (7.2), and that is how 

we know that Co (in the statement of the above theorem) exists.

Now we prove the theorem.

froof: For a fixed A G [a, b]\{AJ, let Nx = U~x x H (g (A,.,.)). We claim that Nx is 

an isolating neighborhood of {g} x H (g (A,.,.)) for each flow irA)P, /i G [0,1], To prove 

our claim, suppose that the solution u (t) = u (t;x, f + pg*) G Ux for all t G R, then we 

consider two possibilities:

(1) If g, = 0 or g* = 0, then u is a solution to u' (t) = f (A,u (t)) and u (t) G Ux for 

all t G R. But from hypothesis (2) U~x is an isolating neighborhood for the flow (3X and 

therefore u (t) G Ux for all t G R.

(2) If 0 < fj, < 1 and g* / 0, then by hypothesis (3) u (t) G Ux for all t G R. 

Therefore Nx is an isolating neighborhood of {g} x H (g(A,.,.)) for each flow 

where p. G [0,1]. So by theorem (4.3) we have

h (%A,o, {g} x H (g (A,.))) = h (irA,i, {g} x H (g (A,.,.))) VA G [a, b] \{A*}, (7.5)

where irA,i is the flow associated with

(t) = f (A, u (t)) + g* (A, u (t), t). (7.6)
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Now 7TÀi0 is the skew-product flow associated with the limiting equation (7.2). Let 7> 

denote the flow on H (g (A,.)) defined by 7a (q*, t) = g\ for g* e H (g (A,.)) and 

t e R. Now

7Ta,o = («(<;»,/),»?)= (Æx CM), 7a <£*,*))•

Hence 7rA,o = 7A. It follows that

M’Tm, {«} X (A,.,.))) = htJ3x x {<?} X .,.)))

= k(&,{g})AA(7À,ff(s(A,.,.))) VAC [a,6]\{Ao}.

So from (7.5) above, we have

M^a,!, {ç} X 2/(p (a,.,.))) = h((3a, {q}) /\h(ya,H (g(a,.,.)))

x H (»(6, •,•))) = & {?}) A Æ (nt, 2f (q (6,.))).

Clearly, h (7rail, {q} x H (q (a,.))) h (tt6|1, {q} x 2f (q (b,.))), since the first one 

is disconnected (the smash product of two disconnected spaces is disconnected), and 

the second one is connected by lemma (3.2). Therefore by theorem (4.6) (A*, q) is a 

bifurcation point for equation (7.6). Now, qt —» 0 in H (q (A,.)) as \t\ —> oc, so 

q* (A,.) is either a translate of q (A,.) or else q* (A,.) = 0. Suppose that u (t) is a 

bounded solution of equation (7.6) with q* (A,.) = gT (A,.), then y (t) = x (t — r) is a 

solution to equation (7.1). Then we can assume that in equation (7.6) either q* (A,.) = 

q (A,.,.) or q* (A,.) = 0. Now (Ao, q) is a bifurcation point for equation (7.6), so let 

S = cZ{(A, x) : x 7^ q and there is a bounded solution through z for problem (7.6) for 
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some g* G H (g (A,.,.))} = {(A,æ) : a? q and there is a bounded solution through x for 

problem (7.1) or (7.2)}, and let C be the component of S containing (A*, q). We want to 

prove that the point (Ao, q) is a bifurcation point for equation (7.1), so we need to prove 

that the new bifurcation continuum C is different from Co, that is, C Co. Suppose 

by way of contradiction that C = Co, which means that the bifurcation continuum for 

equation (7.1) is the same one that we get from the limiting equation (7.2). Now, by 

assumption, Co contains a point (A*,p) where A* A» and p =/ q is an isolated equilibrium 

point for equation (7.2), but 0 G H (g (A*,.,.)) and so (A*,p) is an isolated equilibrium 

point for equation (7.6) with g* = 0, also (A*,p) G C since C = Co. Now, as was 

proved or assumed earlier, U\- x H (g (A*,.,.)) and V\» x H (g (A*,.,.)) are isolating 

neighborhoods for each flow p G [0,1]. Also they are disjoint. It can be proved 

similarly that the set Mx. = (l7A. x H (g(A*,.,.)) is an isolating neighborhood 

for each flow p G [0,1]. Let I (p) denote the maximal invariant set in Mx- for the 

flow ïta‘,/2. By theorem (4.3) we get

h (irA.a, I (1)) = h (7TA.,o, I (0)) .

But I (0) = ({q} U {p}) xHÇg (A*,.,.)), so

A(irA.,o,7(O)) = h (irA.|0, ({q} U {p}) x H (g (A*,.,.)))

= h, (7ta.,0, {q} x H (g (A*,.,.))) V h (7rA.,0,{p} x H (g (A*,.)))

= {q}) A/i(7A-,Zf(q(A’,.,.)))) V/i(tta.,0,{p} x H (q(A*,.,.))).

But by assumption h (/3A., {q}) / 0, therefore by lemma (7.1) h (tta.i0, {q} x H (g (A*,.,.)))
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0, and so Æ (irÀ.i0,1 (0)) 0. Hence,

h (tTA‘,1, I (1)) 7^ Ô.

Now C = Co, so all solutions on C are solutions of the limiting equation (7.2) and the 

point p is an isolated equilibrium point under the flow tfa-j with g* = 0. Therefore, 

I (1) = ({q} U {p}) x {0}. Let s > Oand K (s) = {gt : \t\ > s} U {0}. Then for each 

A G [a, 6], K (s) is an isolating neighborhood of {0} for the flow 7a on H (g (A,.)). We 

claim that for all p € [0,1] and all s > 0 the set Ux- x K (s) is an isolating neighborhood 

of {q} x {0} for the flow tta-,m. This is so since, if irx.tti(x,g*,t) G Ux- x K (s) 

for all t € R, then g$ G K (s) for all t G R, which can only be if q* = 0. Also 

u(t-,x,f + pg*) will satisfy u' (t) = f (A*,u(t)), and u(t) G ZA- for all t G R, so 

by hypothesis, u (t) G ZA- for all t G R Therefore, our claim is proved, and we can 

prove similarly that for all p G [0,1] and s > 0 the set Vx* x K (s) is an isolating 

neighborhood of {p} x {0} for the flow tta-iM. Hence, for all p G [0,1] and all s > 0, 

the set Çux. U Va») x K (s) is an isolating neighborhood of ({q} U {p}) x {0} for the 

flow tta-,m. By theorem (4.3) we get

({?} U {p}) x {0}) = h{tta.,0, ({q} U {p} x {0}))

= {q} U {p}) A h (7a-, {0})

= h(/3x*,{q} U {p}) A0 = 0.

Thus

Æ(TTA-,1,7(1))=O 
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which is a contradiction. Therefore, C =£CO and (Aq, g) is a bifurcation point for equation 

(7.1). This completes our proof.

Next we are going to give a similar result to theorem (7.2) on small perturbations:

Corollary 7.4 Suppose that (Cl), (C2) and conditions (l)-(3) in the statement of theorem 

(7.2) are satisfied. Let c > 0 and consider the differential equation

v! (t) = f (A, u (t)) + eg (A, u (t), t). (7.7)

Let So and Co be as in theorem (7.2) and assume that Co contains a point (A*,p), where 

A* Ay and p =/ q is an isolated equilibrium point for equation (7.2). Then there is an 

eo > 0 such that (A*, q) is a bifurcation point for equation (7.7) whenever |e| < eo.

Proof: By theorem (7.2) it suffices to show that, given an isolating neighborhood Vx. c 

W of {p} for the flow &*, there is an eo > 0 such that, for |s| < so, if u (t) is a solution 

to

u' (t) = / (A, u (*)) + e^g* (A, u (t), t)

for g, E [0,1] and g* E H (g (A*,.,.)), such that u (t) E Vx- for all t e R, then u (t) E Va* 

for all t E R. Suppose that there is no such eo. Then there is a sequence {en}, converging 

to zero, such that for each n there is a solution un = un (t) to

u'(t) = /(A,it(t)) + sn/znyn(A,«(t),t),

where p,n E [0,1] and gn € H (g (X*,.,.)), such that Un(t) E for all t E R and 

un (tn) G dVx- for some tn E R. For each n let yn (t) = un (t 4- tn). Then yn solves

U' (t) = / (A, U (*)) + EnMn (Pn)^ (A, U (t) , t) ,
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with yn(t) G Va* for all t G R and ^(0) G dVx*. But —» 0 since the

sequence {/Zn} converges to some p- e [0,1] and (pn)^ —> 0 by assumption. Therefore, 

it follows that there is a subsequence of {yn} that converges to a solution y (t) to

with y (t) e V\- for all t G R and y (0) G <9Va* . This contradicts the assumption that 

p is an isolated equilibrium point for equation (7.2), and this contradiction proves the 

corollary.

Now we are ready to discuss the following example that can be applied to corollary 

(7.4):

Example 7.5 Consider the following ODE

u" 4- v! + Xu — u3 + eXe-1? sint u7 = 0,

where u, t G R and X G [—1,1], This equation can be written as the following system

x' = y (7.8)

V = —Xx — y + x3— eXe~t2 sint x7.

So the functions f and g in corollary (7.4) are

f (A, z, y) = (y, -Xx - y + z3) , g (A, z, y, t) = (o, -Ae-*2 sint z7) .

Clearly, f (A,.) G Cc (R2, R2)and g (A,.) G Cc (R2 G R —► R2), and they are both 

bounded and uniformly continuous on sets of the form [—1,1] x K and [—1,1] x K x R,
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respectively, where K is compact in R2. Also —► 0 as |t| —» oo in H(g(A,

Now f (A, 0,0) = 5 (A, 0,0, t) = 0 for eveiy A € [—1,1] and t E R. Linearizing equation 

(7.8) near the equilibrium point (0,0) gives us the following linear system, which in 

matrix form can be written as
f 

X

y

o i
—A —1

x

y

and we have the eigenvalues IïjZOâ. So for A = —1, the eigenvalues are < 0

and > 0. Therefore, Æ (/Li, {(0,0)}) = Z?. For A = 1, the eigenvalues are 

and, therefore, h (/?b {(0,0})) = £° = Ï- Also for each A e (0, {] we have two

negative real eigenvalues, and for each A E Q, 1] we have two complex eigenvalues with 

negative real parts, and for each A E [—1,0) we have two real eigenvalues, one of them 

is negative and the other is positive. Thus

M/M(0,0})) = 1 for A E (0,1]

A(/M(0,0)}) = E1 for A € [-1,0),

where fix is the flow associated with the equation

x' — y (7.9)

y' = —Ao? -y + x3.

Also for each A E [-1,1] \{0}, the set {(0,0)} x H {g (A,.,.,.)) is an isolated invariant 

set for each flow ttAiA1 , p e [0,1] associated with the equation

x' = y (7.10)

y = —Az — y + x3 — c/zAe sint x1.
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Now for A e [-1,1] \{0}, let ÜÂ c R3 be an isolating neighborhood of (0,0) for the flow 

3\ and let (x (t) be a solution of (7.10) for some y e [0,1] such that (a; (t) e

for all t £ R, then (a; (t),y(t)) e t/A for all t € R since |ÿ (A, a? (t), y (*), *) | <

|a:7 (t)|, which is very small near (0,0). If we look again at equation (7.9) we see that 

for each A 6 (0,1] there are two non-trivial equilibrium points, namely (VX,0 ) and 

(-VÂ,o). Let A* e (0,1] and linearize equation (7.9) for A = A* near the equilibrium 

point (VX*,o) to get the linear system

x

y

1

—1

and we have the eigenvalues so the equilibrium point is hyperbolic, since

one of the eigenvalues is negative and the other is positive. Hence, (VA*,o) is an 

isolated equilibrium point for equation (7.9). Now all the assumptions in corollary (7.4) 

are satisfied; therefore, there is an eo > 0 such that the point (0,0,0) is a bifurcation 

point for our problem whenever |e| < eo.
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Conclusion and Future Work

This chapter concludes by summarizing our results and suggesting directions for 

future work.

1 Conclusion

This dissertation was concerned with the study of the structure of the solution set 

to parameter dependent non-autonomous ordinary differential equations. Our results can 

be summarized in three parts:

(1) In the first part we studied the problem

uf (t) = f (/z, u (t) , t) ,

where /z G [a, b]. We proved in theorem (4.6) that, under some assumptions on the func

tion /, if there is a change in the Conley index h (tfp, {q} x #(F)), where/(/z,q,t) =0 

for every /z, t G R, as we cross a special value po G [a, 6], then there is a bifurcation 

point Moreover in theorem (4.8) we proved the existence of a continuum bifurcating 

from the bifurcation point that either meets [a, 6] x dW, or meets (a, 6} x W.

(2) In the second part we considered the same problem, but with p G R, and we studied 

the global behavior of the solution set. First, we proved a global continuation theorem

78
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(theorem (5.2)). Then in theorem (5.4) we proved that, if we have two distinct real 

numbers, /zj and /j,2, such that the Conley index h (tfm, {q} x H (F)) is connected for 

H < Hi and disconnected for /z e (^i,/z2), then the continuum C+ bifurcating from 

(/zbg) is either unbounded in |/Z],oo) x W, or it meets every point Qz,q), where /z e 

f/zi,/z3]. Then in theorem (5.6) we proved a similar result on the continuum C+ under 

the assumption that q is an attractor for /z < yz2 and a repellor for /z G (/zb /z2).

(3) In the third part, we studied parameter dependent non-autonomous ordinary differential 

equations that are asymptotically autonomous, in particular the following problem

where gt —> 0 as |f| —> oo in H (g (/z,.,.)). We proved in theorem (7.2) that, under 

some assumptions on the functions f and g, if there is a bifurcation point (/zo, q) for the 

limiting equation

(*) = /(/*» «(*)),

then (/zo, q) is also a bifurcation point for the original problem. We then proved a similar 

result (corollary (7.4)) on small perturbations.

We also gave some examples throughout this dissertation to illustrate the use of our 

results.

2 Firture Work

One possible direction for future work is to consider multiparameter bifurcation 

problems, that is, to study equations that involve more that one parameter. Another 
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possible direction is to study the existence of continua bifurcating from infinity. We say 

that (/zo, oo) is a bifurcation point provided that for all e > 0 there is a value /z of the 

parameter and a bounded solution u = ufl (t) satisfying

< e and ||uj| <
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