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ABSTRACT OF DISSERTATION 
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

D egree Doctor of Philosophy M ajor S u b jec t Physics__________________

Name o f  C an d id a te  David C lav P a tto n _________________________________ _

T i t l e  Computational Characterization of Prospective n- and p-type Dopants in

Cubic Boron Nitride________________

Wide band-gap semiconductors are of interest to materials scientists because of 

their potential electronic applications. One promising material is cubic boron nitride, 

the second hardest material known. Experimentally, cubic boron nitride has been 

doped to both n- and p-type conductivity. Introducing beryllium into cubic boron 

nitride has generated material th a t exhibits p-type behavior. Silicon has produced 

both p-type and n-type material when incorporated into cubic boron nitride. In this 

work, we have studied the electronic structure of beryllium and silicon substitutional 

for boron in cubic boron nitride. We have employed a density functional theory based 

linear combination of atomic orbitals (LCAO) cluster method to explore the electronic 

structure. A general method of embedding clusters with the LCAO code is developed 

and implemented. One of the im portant features of this embedding approach is that 

it allows for lattice relaxations within the cluster. In order to reproduce the bonding 

environment of the crystal, atoms in the cluster must be assigned the proper number 

of electrons necessary to produce the required sp3 hybrid orbitals. It was found that 

this electron filling requirement and embedding were not complementary. Therefore, 

embedding was shown to be of less importance in cubic boron nitride. Utilizing the
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LCAO cluster codes, the beryllium was found to produce an acceptor level 0.236 eV 

above the next highest occupied level. Silicon was found to produce a donor level 

0.116 eV below the lowest unoccupied level. Both beryllium and silicon induced the 

clusters nearest neighbor nitrogen shells to relax outward from the bulk geometry. A 

large part of the objective of this study was to calculate properties of these substitu

tional defects in cubic boron nitride that could be measured experimentally. Thus, 

calculations of vibrational spectra, Fermi contact terms, oscillator strengths, and 

vibrational spectra are presented for the pure cubic boron nitride clusters and the 

defect clusters.

A b s tra c t Approved by: Committee Chairman

D ate

Program  D ir e c to r  ^ -S

Dean o f  G raduate  School
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CHAPTER I 

INTRODUCTION

In the last few years, significant progress has been achieved in the crystal 

growth of wide energy band-gap semiconductors (Eg>2.3 eV). This has resulted in  an 

increased interest in using these materials for electronic and optoelectronic devices. 

Based on the physical properties of these m aterials, the fabrication of novel devices 

with operating characteristics greatly superior to those made from either silicon or 

gallium arsenide should be possible. Potential applications envisioned include elec

tronic devices capable of operation at elevated tem peratures (>600° C), high power, 

high frequency, and short wavelength optoelectronic devices such as solar blind u ltra 

violet light detectors, blue light emitting diodes, or ultraviolet laser diodes.

Devices with high quality operating characteristics require not only the neces

sary physical properties, but the means to produce them as well. In addition to crys

tal growth, methods of selective doping, metal contact formation, device isolation, 

and material etching m ust be established in order to produce devices. A realistic eval

uation of the prospects of a material for device implementation must, therefore, 

address the available processing technology as well as the physical properties of the 

semiconductor.

The major semiconducting materials th a t are currently under development for 

devices requiring wide energy band-gaps are diamond, silicon carbide, boron nitride,

1
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2

aluminum nitride, and gallium nitride. All of these semiconductors have tetragonal 

sp3 chemical bonds. The chemical bonding of these materials is partially ionic, with 

the notable exception of diamond, which is completely covalent. As a general trend, 

the energy band-gap increases as the chemical bonding becomes more ionic. This is 

illustrated in Table I. Associated with the increasing ionic character of these m ateri

als is the difficulty in obtaining both p-type and n-type conductivity. Unlike silicon, in 

which the conductivity type can be converted with the addition of the appropriate 

impurity (e.g., arsenic to convert p-type silicon to re-type), in general compensation 

will occur but conversion will not for wide band-gap semiconductors. That is, the 

charge carrier concentration is reduced but the majority charge carrier polarity does 

not change. This trend has also been observed in ionic semiconductors with small 

energy band-gaps such as cadmium telluride .1 This behavior is not well understood, 

but is believed to be associated with the  formation of point defects. Simultaneous 

with the introduction of impurities into the material, vacancies, antisite defects, or 

interstitials may form which compensate the effects of the impurity.1,2,3 Although we 

will not be addressing these compensation effects, there has been some work by 

Gubanov et czZ.4 in which vacancies were studied as p- and re-type doping agents.

These m aterials exist as semiconductors in variations of two basic structures: 

cubic and wurtzite. Two cubic structures are possible, the diamond structure for ele

mental semiconductors (diamond in this case) and the zincblende structure for com

pound semiconductors (cubic boron nitride). Gallium nitride and aluminum nitride 

are most commonly observed in the wurtzite structure, although evidence of cubic 

structures exists. Silicon carbide exists in  several forms containing various amounts 

of both wurtzite and cubic structures. Carbon and boron nitride commonly occur in 

cubic, wurtzite, and hexagonal (graphitic) structures. The graphitic structures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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TABLE I. Selected physical properties of wide band-gap semiconductors. Values are 
taken from Edgar.1

Material
Band-gap 

(eV) at 300 
K

Percent
ionicity

Band
transitions

Commonly 
observed 

conductivity types

IV Diamond 5.45 0% Indirect P

Silicon
carbide

P-(3C)

a-(6H)

2.3 12% Indirect n,p

2.9 12% Indirect n,p

r a -v P-boron
nitride

6.4 26% Indirect n,p

Gallium
nitride

3.4 35% Direct n

Aluminum
nitride

6.3 47% Direct n

contain sp2 bonds that make them useful for their mechanical properties, but neither 

(in its hexagonal form) is under consideration for electronic devices. BN is also known 

to exist in rhombohedral,5 simple cubic,6 and turbostratic7 phases. Fig. 1, Fig. 2, Fig. 

3, and Fig. 4 show the diamond, zincblende, wurtzite, and graphite structures, 

respectively.

The properties of cubic boron nitride are similar to those of carbon,8 and the 

success of diamond CVD has renewed interest in cubic boron nitride as well. Cubic 

boron nitride has the largest energy band-gap of all the semiconductors mentioned 

above, approximately 6.4 eV.26 The ionicity of cubic boron nitride has been reported 

in the range of 26% to 38%.1,9 With this large ionicity, crystal field effects may play 

an im portant part in determining the size of the energy band-gap and the location of 

dopant levels relative to the band edges, and must be investigated in calculations.
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FIG. 1. A cluster of carbon atoms in the diamond structure. Note the
tetrahedral bonding at each of the interior atom sites.
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FIG. 2. A cluster of boron nitride in the  zincblende structure. The 
cluster is centered on a boron site (lighter color) that clearly shows 
the tetrahedral bonding.
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FIG. 3. A cluster of boron nitride in the wurtzite structure. Again the 
bonding is tetrahedral.
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FIG. 4. The graphite crystal structure. Trigonal bonding is evident.
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Other properties of cubic boron nitride such as hardness, chemical resistance, and 

thermal conductivity are similar to that of diamond.

The principal advantages of cubic boron nitride are its very large energy band- 

gap and its ability to be doped to produce both n- and p-type conductivity. One major 

disadvantage of cubic boron nitride is the extreme conditions required to produce it. 

A large variety of experimental techniques have been used to synthesize cubic boron 

nitride, predominantly as thin films: chemical10 and physical vapor deposition11,12,13 

(CVD and PVD, respectively), plasma enhanced CVD,14,15,16 pulsed excimer laser 

ablation ,17 radio-frequency sputtering ,18 ion-assisted laser deposition,19,20 neutral

ized nitrogen ion bombardment,21 Ar ion-beam-enhanced deposition,22 and others. 

The progress which has been made in the low pressure deposition of diamond offers 

some hope that cubic boron nitride can be produced by a similar technique. While the 

results of th in  film deposition remain promising, the only clearly successful method 

for producing cubic boron nitride for semiconductor devices is the high pressure, tem

perature difference method developed by Mishima et a /.23 Cubic boron nitride can be 

made n-type with the addition of silicon, sulfur, KCN, melamine, 2-methyl pyrazine, 

and carbon; or p-type with the addition of beryllium 24,25 The ionization energy for 

these impurities is low enough that activation occurs near room temperature. Diodes 

have been fabricated which are rectifying up to 650° C, and which emit a broad spec

trum  of ultraviolet and visible light.23

The advantages of one semiconductor over another cannot be readily evaluated 

from functioning devices when the device fabrication technology for each is a t differ

ent levels of development. Therefore, it is very important that the properties of these 

m aterials be thoroughly investigated theoretically and th a t calculations give some
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insight into the interpretation of available experimental measurements. With this as 

our objective, we have carried out a computational characterization of prospective n- 

and p-type dopants in cubic boron nitride.

From a theoretical standpoint, cubic boron nitride is a very complex material to 

study. Although it is very similar to diamond, it has one substantial difference, that 

cubic boron nitride is a partially ionic material. Cubic boron nitride is a typical III-V 

binary compound with strong covalent bonds, leading to its similarity to diamond. 

However, there is a significant charge surplus at the nitrogen sites and a charge defi

ciency associated with the boron sites producing some ionic bonding th a t makes cubic 

boron nitride an intriguing wide band-gap material. As a consequence of ionic 

charges, long range Coulomb forces come into play. The covalency and ionic effects of 

cubic boron nitride play important roles when substitutional defects are introduced 

into cubic boron nitride as dopants. Unlike silicon, where dopant energy levels reside 

much less than half an eV into the band-gap, suitable dopants in cubic boron nitride 

may be deeper in the gap. Because of the high temperature operating range of these 

materials, activation energies greater than those in silicon are allowed and have been 

seen for silicon and beryllium doped m aterial.23 Hence the dopants may share simi

larities with defects in ionic insulators as well as dopants in standard semiconduct

ing materials.

In this work, we use various first-principles, ab-initio, and semi-empirical meth

ods to characterize prototypical dopants in cubic boron nitride. The dopants are each 

modelled as a substitutional defect a t the center of a large cluster of cubic boron 

nitride. Beryllium is chosen as an acceptor. Silicon is studied as a donor. Crystal field 

effects are studied with a new embedding procedure. Since limited work has been 

performed on pure cubic boron nitride and almost no previous studies by other
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authors have been undertaken to characterize the substitutional defects studied in 

this work, we have chosen to concentrate our efforts in three common areas of mea

surement. The three areas are the electronic structure, vibrational modes, and opti

cal spectra. The electronic structure including defect-induced lattice relaxations is 

calculated within the local spin density approximation of density functional theory 

via a linear combinations of atomic orbitals method. Vibrational characterization of 

the defects is performed with the use of the semi-empirical MOPAC6 package. Opti

cal characterization is done by using the output from the GAMESS code to perform 

calculations of the photoemission spectra, and oscillator strengths are investigated 

with the ICON-EDiT package.

The formulae and capabilities of each of the above methods is explained in 

Chapter II. In addition, Chapter II contains a discussion of the suitability of using 

cluster methods to study defects in solids. Chapter III is devoted to the effect of the 

crystal field on cluster calculations. Various methods of calculating the crystal field 

are proposed, and then their effectiveness for cubic boron nitride clusters is evaluated 

with regard to accuracy and computational efficiency. In Chapter IV, the calculated 

electronic structure of proto-typical dopants in cubic boron nitride is discussed. Addi

tional aspects such as vibrational and optical spectra are examined in Chapter V. 

Finally, Chapter VI contains concluding remarks. Unless otherwise noted, atomic 

units (in which e2 = h/2rt = m = 1) are used throughout this work.
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CHAPTER II 

ELECTRONIC STRUCTURE METHODS 

In this work, we use various first-principles, ab-initio, and semi-empirical m eth

ods to characterize prototypical dopants in cubic boron nitride. Each dopant is mod

elled as a substitutional defect at the center of a  large cluster of cubic boron nitride. 

The electronic structure including defect-induced lattice relaxations is calculated 

with a linear combination of atomic orbitals method. Part of the optical characteriza

tion is performed with the ab-initio GAMESS code and vibrational characterization 

of the defects is performed with the use of the semi-empirical MOPAC6 package. A 

discussion of the use of clusters to model solids and descriptions of each of the above 

mentioned electronic structure codes follows.

A. Modeling of defects by cluster methods

The use of cluster methods for solid state studies can be traced back to the work 

of Hans Bethe on the crystal field splitting of the energy levels of impurity ions in 

insulators.26 More recently, it has been realized that the applicability of such an 

approach is far broader. Cluster calculations are being applied to a remarkable diver

sity of physical problems. These include the hyperfine properties of insulators and 

semiconductors, point defects in solids, reaction energetics and adsorbate structure 

on surfaces, cluster assembled materials, magnetic properties of solids, etc.27 These 

different studies can usually be categorized as belonging to one of two types,

11
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involving either (i) ra ther small clusters w ith the embedding medium treated approx

imately, or (ii) larger clusters of increasing size extrapolated to approximate the infi

nite crystal. Where crystal field effects are not prominent, the first type of study may 

be utilized without any embedding medium. In the present study of dopants in cubic 

boron nitride, the first type of cluster method is used extensively. Clusters with and 

without embedding fields are considered. The second type of cluster method is used 

briefly to analyze the convergence of the energy band-gap in cubic boron nitride.

The cluster approach has a straightforward intuitive appeal in investigating 

localized defects in solids, in that the preponderance of computational effort is spent 

only on the region of interest and not on the essentially unperturbed regions of the 

host crystal. From a practical point of view, the cluster method allows for the investi

gation of structural properties associated w ith the defect and the importance of geo

metrical relaxation in determining the electronic properties associated with the 

defect. In addition, the method provides a direct and systematic means for determin

ing the convergence of calculated properties with respect to cluster size.

When a cluster is used to model a crystal, the surface of the cluster has elec

tronic states associated with it that may perturb the electronic structure in the inte

rior of the cluster. This makes analysis of substitutional defects a t the cluster center 

very difficult and questionable. The prim ary cause of this perturbation of the clus

te r’s electronic structure is that bonds a t the cluster’s surface have been broken. 

These dangling-bond states tend to penetrate into the cluster, and in many systems 

the electronic levels associated with these dangling bonds fall into the band-gap of 

the cluster. When studying dopants in wide band-gap semiconductors, it is very 

im portant not to have dangling bond states falling into the band-gap and interacting 

with the defect levels in the band-gap. The dangling-bonds are of much more concern
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when studying partially covalent materials as opposed to ionic m aterials where dan

gling bonds can be dealt with effectively by embedding methods.

To correct the problem of dangling bonds at the surface of a cluster, two tasks 

m ust be accomplished. First, the states associated with the bonds a t the surface 

should be localized to the surface and not penetrate significantly into the cluster inte

rior. Second, the energy levels of the dangling-bond states should be well away from 

the band-gap of the cluster, so th a t there will be no interaction with dopant defect 

levels in the band-gap. One of the most successful methods for accomplishing both of 

the tasks described above is the saturation of the dangling bonds with hydrogen 

atoms. The importance of the "tying off" of the dangling bonds with hydrogen atoms 

has been discussed previously by Tomanek and Schluter.28 They made it clear th a t 

the surface bonds m ust be properly treated because small clusters of atoms, without 

term inating hydrogen atoms, do not condense in the structure of the bulk material. 

Hydrogen-saturated clusters have been used extensively before to explore electronic 

and structural properties of solids.29,30,31,32,33,34’35 Because saturation of dangling 

bonds with hydrogen atoms has been applied to defects in diamond36 and III-V 

semiconductors37 with good results, we have chosen to utilize this method in our 

study.

In modeling III-V compounds such as cubic boron nitride with clusters, it is 

im portant to achieve the same bonding as is present in the crystalline form. Because 

cubic boron nitride is isoelectronic with diamond, we w ant to achieve the same type of 

sp3 hybrid orbitals that lead to tetrahedral bonding. In the isolated carbon atom, the 

electronic configuration of its six electrons is ls22s22p2. Another configuration may 

be more stable in a bonding environment. From the valence bond theory38 the two 

core electrons in the Is orbital are not involved in bonding. That leaves the bonding
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up to the four valence electrons in the 2s and 2p states. This arrangem ent would lead 

to the prediction of three nonequivalent bonds involving 2s states from one atom 

overlapping 2s states on a neighboring atom, 2s states from one atom overlapping its 

neighbor’s 2\p states, and 2p states overlapping neighboring 2p states. However, 

experimentally the bonds are seen to be equivalent in bond length and bond strength. 

For the atomic 2s and 2p orbital to become equivalent so as to form a single type of 

valence bond, they m ust hybridize to form sp hybrid orbitals. In graphite, the elec

tronic environment favors sp2 hybrid orbitals to be formed by one 2s orbital and two 

2p orbitals. This leads to the trigonal bonding structure seen in graphite. In diamond 

one of the 2s orbitals hybridizes with three 2\p states. This allows the formation of sp3 

hybrid orbitals. The number of hybrid orbitals is always equal to the number of 

atomic orbitals hybridized. Thus, the hybridization of one s orbited and three p  orbit- 

also gives four sp3 hybrids that bond tetrahedrally. Cubic boron nitride also is bonded 

tetrahedrally. In order for this to occur, sp3 bonding m ust take place. This means that 

there m ust be a valence electronic configuration of 2s22p2, like diamond. In order to 

achieve this configuration, boron and nitrogen m ust be filled with six electrons 

apiece. So in our clusters of cubic boron nitride, we have assigned six electrons to 

boron and six electrons to nitrogen. Previously, this type of electron filling has been 

used successfully in the study of defects in other III-V semiconductors.37

B. First-principles LCAO method

In this study, a finite cluster of atoms is embedded in a crystal field to simulate 

the infinite system. Ib calculate the ground state density for these systems, a Gauss- 

ian-orbital-based, linear combination of atomic orbitals (LCAO) approach is adopted, 

in which the one electron equations are solved self-consistently in a fixed basis set 

consisting of contracted Gaussian orbitals obtained from calculations for the relevant
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free atoms. When needed, additional single Gaussian orbitals centered a t the various 

nuclei may be used to augment the variational freedom of the basis.39 These basis 

functions are centered only on the atom sites of the finite cluster. The foundation of 

this LCAO cluster method is density functional theory and the local density approxi

mation (LDA), which are discussed in Appendix A. A recently developed variational 

mesh formalism is utilized for the numerical integration of all Hamiltonian matrix 

elements.40 This variational mesh approach is optimal for the type of embedding 

technique described in the next chapter. In order to determine defect-induced lattice 

relaxations, the forces are calculated as the proper total energy derivatives including 

the necessary basis-set corrections.41,42 In order to find the minimum total energy 

geometry, these forces are then used within the conjugate gradient method.43

C. GAMESS

The General Atomic and Molecular Electronic Structure System (GAMESS) is 

an ab-initio package put together from several existing quantum chemistry pro

grams, particularly HONDO. The latest version of GAMESS is maintained by Mike 

Schmidt of Ames Laboratory a t Iowa State University and is described by Schmidt et 

al.44 GAMESS performs a wide range of quantum chemical computations. One can 

calculate restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF), 

restricted open shell Hartree-Fock (ROHF), generalized valence bond (GVB), multi- 

configurational SCF (MCSCF), and configuration interaction (Cl) molecular SCF 

wavefunctions. The wavefunctions can then be used to calculate energy gradients for 

geometry optimization, find energy surface saddle points, or trace reaction paths. 

Additional properties such as normal modes, vibrational frequencies, IR intensities, 

radiative transition probabilities, dipole moments, spin densities, Mulliken popula

tions, and polarizabilities can also be calculated. We have used GAMESS for
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vibrational analysis of cubic boron nitride clusters with substitutional defects. 

GAMESS calculates the vibrational frequencies and IR intensities for each mode. 

This is accomplished by computing the energy second derivatives (the Hessian 

matrix) numerically and performing harmonic vibrational analysis.

D. MOPAC6

MOPAC6 is a general-purpose semi-empirical molecular orbital package for the 

study of chemical structures and reactions. The semi-empirical Hamiltonians45 

MNDO, MINDO/3, AMI and PM3 are used in the electronic p art of the calculation to 

obtain molecular orbitals, the heat of formation, and its derivative with respect to 

molecular geometry. Using these results MOPAC6 is capable of performing single 

(RHF, UHF, and Cl) SCF calculations, geometry optimizations, force constant analy

sis, reaction coordinate calculations, and many other property calculations. We have 

used MOPAC6 for vibrational analysis of cubic boron nitride clusters with substitu

tional defects.
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CHAPTER IH 

CRYSTAL FIELD EFFECTS 

As discussed in the previous chapter, modelling a  crystal with a  simple cluster 

consisting of the constituent atoms of the bulk m aterial does not sdways result in the 

same electronic and structured properties as th a t of the bulk material. Deficiencies of 

the cluster model m ust be accounted for in order to achieve the same environment as 

that found in the bulk. Surface bonds m ust be saturated with hydrogens and electron 

filling m ust produce similar bonding. In ionic systems, one more deficiency of the 

cluster model m ust be addressed. The long range crystal field effects from the Made- 

lung potential m ust be properly treated. An effective method of accounting for crystal 

field effects is to embed the cluster in some form of embedding potential. Embedding 

potentials have long been used for sim ulating the crystalline environment experi

enced by clusters and even atoms46 in ionic solids.

In Appendix A, the Kohn-Sham equations are discussed. In Eq. (A.9), the exter

nal potential is needed. For a cluster this can be written as

+ (3.i)
v I v[

where Vexf is the sum of the electron-nucleus attraction within the cluster, with Zv 

the charge on the vth nucleus, centered a t Ry and the electron interaction with the 

rest of the host crystal represented by the potential Vhos(. This potential, Vhost, is 

the embedding potential applied to the cluster and m ust be calculated a t mesh points

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

utilized in the integration of the Hamiltonian matrix. Several methods can be used to 

calculate this embedding potential. Each will be explained and then analyzed for its 

computational efficiency and accuracy.

A. The Watson sphere method

One of the first uses of an embedding potential to simulate the environment of a 

solid was by Watson.46 He studied the 0 “ ion in oxide crystals. He embedded the ions 

in stabilizing potential wells of positive charge. To calculate the embedding potential, 

he placed a  shell (the Watson sphere) of uniform positive charge around the 0 “ ion. 

The radius of the shell was equal to the ionic radius of the 0 “ ion. He chose as his 

positive charge magnitude +1 and +2. His choice of +1 was based on the following 

argument: consider the potential energy th a t one electron sees due to the nuclear 

charge of +8 and the other nine electrons. At the nucleus the potential energy has 

gone to -°o, and as the electron moves out radially, the potential energy increases, 

goes through a maximum, and then drops off slowly due to the net charge of -1 of the 

rest of the ion. A shell of charge +1 a t the maximum would destroy the repulsion for 

large radii, while leaving the correct potential for the interior. Argument for using a 

stabilizing well of +2 charge was made because the net charge produced by the 

rem ainder of the crystal would be ju st that. Watson successfully used this method in 

an analytical Hartree-Fock calculation. The method then became known as the Wat

son sphere method.

The Watson sphere method has been applied to clusters by placing a large 

sphere of uniformly distributed surface charge around the cluster. Fazzio et aZ.47 

applied this to the calculation of the electronic structure of IV and III-V covalent 

semiconductors in  which they used an outside sphere radius of 9.74 a.u. Although 

they restricted themselves to 17-atom clusters, their results encouraged us to
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attem pt to utilize the Watson Sphere method for clusters of cubic boron nitride. How

ever, the Watson sphere method did not prove to be a  satisfactory technique for 

embedding cubic boron nitride clusters. Although it  is a  computationally efficient 

method, ambiguities in assigning the charge of the sphere and the radius of the 

sphere make it difficult to utilize. We chose a  charge and radius th a t reproduced the 

Madelung constant a t the center of the cluster. However, we believe that this does not 

represent the potential accurately at the cluster edges and th a t i t  completely elimi

nates any nonspherical structure in the potential from the lattice geometry.

B. Direct summation

Another way of accounting for the potential of the  host crystal is to replace all 

the ions in the bulk crystal with point ions of charge +q and -q, w ith the magnitude of 

q depending on the particular system being studied. For example, the NaCl crystal is 

composed of Na+ and Cl* ions, so the value of q is l. Then, the point ions a t the posi

tions of atoms in the cluster are removed. This procedure produces an infinite distri

bution of point ions which results in an embedding potential th a t accounts for the 

crystal field effects. The difficult task in this embedding procedure is to calculate this 

embedding potential in an accurate and rapid manner.

This embedding potential of the point-ions is given by

sum in Eq. (3.2) is conditionally convergent. Suppose £  an is also a conditionally

convergent series. A conditionally convergent series is one in which the series, £  an,

converges and the series of absolute values, £  |an| , diverges. Conditional conver

gence can be tested by the alternating series test. To satisfy the alternating series 

test, the series m ust 1) be alternating, 2) \an + ,| < |a j  for all n, and 3) lim an = 0.

(3.2)

where m is the num ber of ions in the cluster and Ry are  the lattice points. The first
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Thus, direct summation of the terms in Eq. (3.2) will converge. Unfortunately, it con

verges very slowly and thus more powerful techniques than  direct summation must 

be used to speed up the convergence of the lattice summation calculation.

C. The Frank method

Series such as the one encountered in the first term  of Eq. (3.2) were first 

encountered in the calculation of the self potential of a crystal lattice. The self poten

tial is the electrostatic potential a t the negative atom site for the infinite distribution 

of point ions a t all lattice sites except a t the site where the potential is being evalu

ated. This self potential can be written in terms of a constant that is independent of 

the ionic charges.48 The constant is known as the Madelung constant and is unique 

for each crystal structure. The conditional convergence of the series which expresses 

the self potentials prevents their evaluation by straightforward lattice sum m ation; 

however, appropriate rearrangements of the terms of the series allows the calculation 

of the Madelung constant for special crystal structures by truncated direct summa

tion. Madelung49 calculated the Madelung constant for NaCl by transforming the 

electrostatic potential of a neutralized, linear, or planar Bravais lattice of unit point 

charges, a t a point outside of the lattice, into a  rapidly converging series over the 

reciprocal lattice. His method is accurate but is limited by its complexity and compu

tational inefficiency. Thus, it is not suitable to embedded cluster calculations. It is 

thought89 to be of use for the evaluation of the lattice sums encountered in surface 

problems.

Evjen51 devised a way of cleverly rearranging term s in the series to transform 

the conditionally convergent self potentials of a structure into rapidly converging 

series. Evjen evaluated the Madelung constant by splitting the crystal into concentric 

neutral blocks. The relevant point of the method is th a t the contribution to the
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electrostatic self potential a t a lattice site, due to a  neutral shell of ions surrounding 

the site, consists of positive and negative terms th a t nearly cancel for shells some

w hat removed from the site. The value that one finds for the electrostatic self poten

tial a t a given site by summing over a block depends only on the ions included in the 

block. The Evjen method is not so straightforward and is limited to the NaCl and 

CsCl structures.

The difficulties encountered in the application of the Evjen method are avoided 

in the method of evaluation of the Madelung constant by direct summation proposed 

by Frank.52 Frank evaluates the Madelung constant of the NaCl structure by divid

ing the crystal into Wigner-Seitz cubes (polyhedrons whose faces bisect orthogonally 

the lines joining an ion w ith its neighbors) of side r  and adding to the corners of each 

cube fictitious fractional charges that neutralize the ionic charge in the center. Since 

the comers of neighboring cubes touch each other, the charge distribution of the crys

tal remains effectively unaltered. The zeroth approximation for the NaCl Madelung 

constant, a, is then given by the potential generated a t the negative ion site in the 

center of a Wigner-Seitz cube by the eight charges of magnitude 1/8 located a t its cor-

negative ion. As a first approximation, one may consider the contributions of all the 

Wigner-Seitz cubes that touch the cell centered on the negative ion. In this way, one 

introduces the contributions of the first, second, and th ird  neighbors and of their neu

tralizing charges. The cubes to be considered form a cube of side 3r, and the only frac

tional charges which produce a net effect are those on its comers. One finds:

ners:

a  (NaCl) = 7—p r  = 1.155 • (3.3)

In this approximation one does not consider the contribution of any neighbor of the
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12 8 8(§ Ja  (NaCl) = 6 -  + 4= -  = 1.749 - (3.4)
72 J3  j 'T S j

The Frank method has the attractive qualities of a  simple physical interpretation 

and easy application to summation for off-lattice points. The Madelung potential is 

shown in Fig. 5 for the NaCl structure along the [100] direction. We have applied the 

Frank method to the study of point defects in rocksalt structures, including alkali 

halides, CaO,53 and MgO. Although Frank implied th a t his method is applicable to 

many other cubic structures, we have not been able to implement his technique 

within zincblende structures.

D. Ewald methods

The electrostatic potential of an infinite ionic crystal can be obtained quite gen

erally by superposing the electrostatic potentials of the component Bravais lattices. 

Each Bravais lattice is considered to be neutralized by a uniform charge distribution; 

in order to avoid a  divergence in its potential, the neutralizing distributions cancel 

out in the superposition because of the neutrality of the unit cell of the crystal. This 

superposition of electrostatic potentials is utilized in the Ewald-type methods. M ath

ematical descriptions of the method have been given by Born and Huang54 and by 

Leibfried.55 A more physical description of the method has been reported by Kittel.48 

The Ewald method56 transforms the potential of a  Bravais lattice of unit point 

charges, neutralized by a uniform charge distribution, into an expression consisting 

of two rapidly convergent series. This is accomplished by splitting the charge distri

bution under consideration into two components, as illustrated in Fig. 6 for a one

dimensional lattice. The first Ewald component of the charge distribution is a Bra

vais lattice of Gaussian functions normalized to +1 and neutralized by a uniform,
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(a)
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(b)

FIG. 6. (a) Charge distribution of a neutralized one-dimensional Bravais 
lattice. The vertical lines represent the unit point charges at the lattice 
sites, and the horizontal line represents the neutralizing uniform 
distribution of charge, (b) The Ewald components of the charge distribution 
(a). Each bell-shaped distribution represents a Gaussian centered on a 
lattice site and normalized to unity.
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negative charge distribution; the second Ewald component is a  Bravais lattice of unit 

point charges and neutralizing Gaussian functions. In the final expression of the 

required potential, the Fourier representation of th e  potential generated by the first 

component is combined with the potential of the second component, and an appropri

ate value of the half-width of the Gaussian function can thus be chosen so that both 

series converge rapidly. Physically, the rapid convergence of the two series arises 

from the fact th a t the first Ewald component of the charge distribution is smooth, 

while in the second component the neutralizing charges are piled up around the point 

charges of the ions.

The first Ewald component of the charge density a t the point r  is

where T| is the half-width of the Gaussian function, A is the volume of the unit cell, 

and ri are the lattice points. Expanding pj(r) into a  Fourier series of complex expo

nentials with the periodicity of the lattice,

tribution to rem ain neutral. In Eq. (3.6), we have capitalized on the fact that the Fou

rier coefficient corresponding to the reciprocal lattice vector k h *  0 is given by

A
(3.5)

(3.6)
h

where the constant term corresponding to k ^ O  is om itted in order for the charge dis-
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A
Expressing the potential associated with P i ( r )  by a Fourier series gives

27i ik h •  r
<t>! (r )  =  £ V ( k h) e  (3.8)

where we have used the convention of writing the 2ti as part of the Fourier series

instead of including it into the reciprocal lattice vector. The coefficients of the Fourier

series, V(kh), for the potential generated by Pi(r), corresponding to k h 0 , are evalu

ated using Eq. (3.6) in Poisson’s equation57

( r )  = -4 7 tp 1 ( r )  . (3.9)

From Eq. (3.8), it is evident that
/■

V fyjO 1) = V2 ̂ V(kh)e
h

2iiikh • r

■  ̂ -I 2 m kh ® r

h

h

Therefore, Poisson’s equation and Eq. (3.6) and Eq. (3.10) give the Fourier coefficients 

for the potential as

1 - tc2t| 2̂
v (k h ) =  “ 4 *  • (3.11)

A n k h
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The potential *l(r) is given by ( _ ^ 2 ^ 2  + ^  .  r J

♦. w - s i r  :i------ (3.12)

where the constant term  is omitted by choosing the average potential as zero, as the 

zero of reference for the potential in  an infinite three-dimensional crystal is arbi

trary.58 On the other hand, the second Ewald component of the charge density is

p2w = X'
/

5 ( r - r z) -

( r -r , )

(T | Jn)
(3.13)

where the point charge densities are represented by delta functions. The correspond

ing potential is found by using Gauss’ theorem57 to evaluate the electric field a t the 

point r due to a Gaussian charge distribution centered a t ri, and then integrating by

parts:

v r) = X -
1 - e r j [

r - r

r|
r - r

7CT|
A

(3.14)

The error function59 has been used in Eq. (3.14) and is defined by

where
« ( “ )

erf (x)  = —=je~‘ dt (3.15)

r - r , is the potential a t the point r of a  Gaussian charge distribution of

half-width T|, centered a t rj, and normalized to +1. The constant term  -7cri2/A is intro

duced in Eq. (3.14) so th a t the average potential is zero. The omission of this term 

would leave an expression of the potential which diverges in the lim it of infinite r\.
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The potential <p(r) of the neutralized Bravais lattice of unit point charges is the 

sum of ̂ ( r )  and <j)2(r):

[ ~ n r \ 2k \ + 2Kikh »r ]  ^ 1 - g r / ^  - - ■ 2

- -  ^ r -  • (3.16)-------------- 72------------+ I — F T 21
h n£dch l I l

The potential <|>(r) is independent of the half-width r\ of the Gaussian function. 

The component <j>2(r) vanishes in  the limit q-"0, and converges rapidly for small q’s, 

whereas, the component <j>i(r) vanishes in the limit and converges rapidly for 

large ti’s. A proper choice of r| ensures rapid convergence for both components.The 

Bravais symmetry ensures th a t the potential is known everywhere once it is known 

inside the unit cell. The mapping of the potential inside the unit cell can be further 

simplified by expanding it into lattice harmonics as discussed by de Wette and Nij- 

boer.60,61,62 It is im portant to note th a t the Ewald method is applicable to any point r  

in space. However, the Ewald method is most efficient for crystals th a t exhibit inver

sion symmetry because of the complex expression in <|>i(r).

E. Hund’s relations

From the Ewald method, the rotation and reflection symmetry imply that the 

potential need not be computed a t all points inside the un it cell. Other consequences 

of symmetry, which have been pointed out by Hund,63 allow one to derive linear rela

tionships between values of the potential at crystallographically nonequivalent 

points of the unit cell. So to evaluate the crystal potential of a series of structures 

based on the same Bravais lattice by the Ewald method, i t  is convenient to express 

the electrostatic potentials of the structures in terms of the electrostatic potential 

<(>(r) of the appropriate Bravais lattice of unit point charges, neutralized by a uniform 

distribution of charge. The ensuing expressions are considerably simplified by the use
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of the rotation and reflection symmetry of the Bravais lattice, and by linear relation

ships between values of <j>(r) a t different points of the un it cell th a t are a ra ther subtle 

consequence of symmetry. Tbsi50 has illustrated these relationships for the particular 

case of a neutralized simple cubic lattice. The potential a t the point (xa, ya, za) of the 

unit cell of a simple cubic lattice of lattice param eter a  can be regarded as the sum of 

the potentials arising from the eight simple cubic lattices of side 2a th a t can be 

thought to compose the given lattice (Fig. 7). The coordinates of the point (x, y, z) 

when referred to the latter lattices are (x/2, y/2, z/2), [(x-l)/2, y/2, z/2], (x/2, (y-l)/2, zJ 

2), (x/2, y/2, (z-l)/2), [(x-l)/2, (y-l)/2, z/2], [(x-l)/2, y/2, (z-l)/2], (x/2, (y-l)/2, (z-l)/2), 

and [(x-l)/2, (y-l)/2, (z-l)/2]. Also, the electrostatic potential arising from a  simple 

cubic lattice of side 2a, a t the point of coordinates (§, T|, t)  measured in units 2a, is 

equal to one half of the electrostatic potential arising from a simple cubic lattice of 

side a, a t the point of coordinates (£, q, Q measured in  units a. Thus, the Hund iden

tity follows:

<t>(x, y, z) = (l/2)[<i>(x/2,'y/2, z/2) + <t>((x-l)/2, y/2, z/2)

+ <j)(x/2, (y-l)/2, z/2) + <|>(x/2, y/2, (z-l)/2)

+ <K(x-l)/2, (y-l)/2, z/2) + <)>((x-l)/2, y/2, (z-l)/2)

+ <|>(x/2, (y-l)/2, (z-l)/2) + <|)((x-l)/2, (y-l)/2, (z-l)/2)]. (3.17)

For special values of (x, y, z), the terms of the right-hand side group together because 

of the cubic symmetry. So one has, for instance,

0(1/2, 1/2, 1/2) = 40(1/4, 1/4, 1/4). (3.18)
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The generalization of the identity Eq. (3.17) for a  simple cubic lattice is

m - 1  m - 1  m -1  ( x _  y _  z _  .

<!>(•*» y . z )  =  - y  y  y  4 — .— .— J (3.19)m ^  '  m m m '
n, = 0 n2 = 0 n3 = 0

where m is an  arbitrary positive integer. Similar identities can be derived for the 

other Bravais lattices.

lb  evaluate the crystal potential of other cubic structures, we express first, fol

lowing Hund,63 the electrostatic potential <p(x, y, z) a t the point (xa, ya, za) in the unit 

cell of each structure through the electrostatic potential <j>(x, y, z) a t the point (xa, ya, 

za) in the un it cell of a neutralized simple cubic lattice of positive unit point charges. 

The relevant equations, taking positive ions a t the origin, are as follows:

<PCsCl(x> y. z) = y, z) -<t>(x-l/2, y-1/2, z-1/2) (3.20)

<PNaCl(x> y. z) = <KX> y, Z) + <j)(x-l/2, y-1/2, z) + (j)(x-l/2, y, z-1/2)

+ <j>(x, y-1/2, z-1/2) - <|>(x-l/2, y, z) -<t>(x, y-1/2, z)

- <|)(x, y, z-1/2) -<t>(x-l/2, y-1/2, z-1/2) (3.21)

<PZnS(x> y. z) = <l>(x, y, z) + <()(x-l/2, y-1/2, z) + <j>(x-l/2, y, z-1/2)

+ <|>(x, y-1/2, z-1/2) - 4>(x-l/4, y-1/4, z-1/4)

- <j)(x+l/4, y+1/4, z-1/4) h))(x +  1/4,y-1/4, z+1/4)

-<()(x-l/4, y+1/4, z+1/4) (3.22)

<PCaF2(x. y» z) = 20(x, y, z) + 2(|)(x-l/2, y-1/2, z) +2<|>(x-l/2, y, z-1/2)

+ 2(J)(x, y-1/2, z-^2) -2<J)(2x-l/2, 2y-l/2, 2z-l/2) (3.23)

9 Cu2o(x» y» z) = <(>(x, y, z) + <j)(x-l/2, y-1/2, z) +<j)(x-l/2, y, z-1/2)

+ <|>(x, y-1/2, z-1/2) - 2<t»(x-l/4, y-1/4, z-1/4)

-2<j)(x+l/4, y+1/4, z+1/4). (3.24)
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The values of the electrostatic potential y, z) in the neutralized simple cubic lat

tice can quickly be determined by using the Ewald Method described in Eq. (3.16).

We have utilized Hund’s relations in our calculation of the embedding potential 

for the zincblende lattice. Even with the Hund relations, calculation of the embed

ding potential can be a time consuming step in the  LCAO cluster codes. A method uti

lized to parallelize the computation of the embedding potential and other aspects of 

the code is discussed in Appendix B. Fig. 8 shows the calculated potential along the 

[111] direction in the zincblende lattice of cubic boron nitride.
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CHAPTER IV

ELECTRONIC STRUCTURE

The electronic structure of substitutional defects in cubic boron nitride clusters 

is one of the most important factors when considering them  for application as p- and 

/i-type dopants. In this section, calculations of electronic structure have been per

formed with the LCAO cluster codes discussed in C hapter II. These codes allow us to 

study both the electronic structure and defect-induced structural changes in the 

geometry of the clusters. The Gaussian exponents utilized in the basis sets by the 

LCAO cluster codes are tabulated in Table II for each atom. The contraction coeffi

cients used in the basis sets are given for boron in Table III, for nitrogen in Table IV, 

for hydrogen in Table V, for beryllium in Table VI, and for silicon in Table VII.

When discussing the electronic structure of a  system, we will often refer to the 

orbital eigenvalues and the density of states. The density of states is a representation 

of the distribution of electronic states in the energy space of a cluster. It counts the 

number of eigenstates per unit energy in the neighborhood of a particular value of 

the energy, E. The number of states per unit energy, n, can be defined as

where 8 is the Dirac 8-function; are the energy eigenvalues of the eigenstates. In a 

finite system, like a cluster, the eigenvalues £j are discrete values. In such a case, 

n(E) represents a  collection of peaks with infinite height and zero width, that occur at

(4.1)

34
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TABLE II. The Gaussian exponents utilized in the basis sets of each type of atom by 
the LCAO cluster codes.

boron nitrogen hydrogen beryllium silicon

12149.300 22817.870 4.50038000 30176.700 26309.320

1820.8320 3025.6340 0.68127700 4506.1660 3948.5770

414.31530 619.78940 0.15137400 1014.1360 898.90420

117.30380 163.45230 278.28180 254.28510

38.201460 50.611880 88.495770 82.282210

13.634590 17.322670 31.283730 29.060560

5.1687100 6.3093750 11.792250 10.464420

1.9908150 2.2959410 4.7910830 3.8216270

0.6111868 0.8193595 2.3845370 1.3842760

0.2703730 0.2703301 1.0054450 0.3604883

0.1106789 0.0689153 0.2346328 0.1296625

TABLE HI. The contraction coefficients used in the basis set of boron.

Is 2s 3s 2p 3p 3d

-0.1674017 -0.0400882 0.02926312 0.00256518 0.06260111 -0.7567586

-0.3127616 -0.0764672 0.04803730 0.09326686 -0.1620154 0.52512365

-0.5354137 -0.1277466 0.09951308 0.04916389 0.07361840 -0.3649833

-0.8419727 -0.2117628 0.12260241 0.20944614 -0.2958450 0.23762368

-1.1694869 -0.2869014 0.24450503 0.17119896 0.01932949 -0.1892042

-1.3153617 -0.3779177 0.18606974 0.34057926 -0.4326083 0.10226920

-1.0098085 -0.3472018 0.37078419 0.30349964 -0.0738066 -0.1083695

-0.3644600 -0.2045949 0.00099176 0.45719599 -0.5158119 0.01006534

-0.0193191 0.07061905 0.21710219 0.27600085 -0.0904049 -0.0668382

0.00239808 0.17113233 -0.6681091 0.10586289 -0.2728575 0.00524532

-0.0002753 0.04770641 0.30413606 0.02686159 0.13364819 -0.0345775
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TABLE IV. The contraction coefficients used in the basis set of nitrogen.

Is 2s 3s 2p 3p 3d

-0.3037010 -0.0684307 0.02795965 0.07202304 -0.0022142 1.1370759

-0.6175038 -0.1394753 0.05231287 0.14250821 0.14676219 -0.8149142

-1.1016681 -0.2499578 0.10597267 0.26042821 0.07217341 0.55249744

-1.7372396 -0.4026192 0.14485802 0.42344393 0.34401360 -0.3720020

2.3222688 -0.5614600 0.25572885 0.63162833 0.25850779 0.26649291

-2.2951702 -0.6498658 0.20820184 0.81738725 0.59995737 -0.1684474

-1.1966076 -0.5156101 0.27949556 0.88955074 0.40347806 0.12494093

-0.1494537 -0.0519568 -0.0829863 0.76063183 0.56373916 -0.0579163

-0.0051458 0.27940394 0.00897375 0.40607549 0.15095094 0.04774843

0.00106878 0.15675202 -0.2724280 0.11014638 0.15049060 -0.0162063

-0.0000933 0.01092425 0.13837470 0.01505351 -0.0568691 0.01584676

TABLE V. The contraction coefficients used in the basis set of hydrogen.

-0.1149800

-0.1404700

-0.0717950

each value of £j. In the infinite crystal, the states are distributed continuously and 

n(E) will be smooth. Thus, for discrete systems, it is customary to approximate a con

tinuum  by broadening the states with a normalized Gaussian function. This can be 

used to compute a function, g(E), which resembles the density of states of the crystal:

g ( E )  =  - L y *  ^ '  (4.2)
A 4 k i

where A is the width of the Gaussian, an arbitrary parameter, typically about 0.3 eV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

TABLE VI. The contraction coefficients used in the basis set of beryllium.

1j 2s 2p

0.060239859 -0.015829928 0.0095508105

0.112080350 -0.034199826 -0.040905984

0.199891040 -0.049085202 0.0022026304

0.329422940 -0.106703600 -0.083652078

0.510622810 -0.116636370 -0.032194760

0.708859320 -0.257018290 -0.158686680

0.864539270 -0.174608690 -0.089614578

0.672072300 -0.407866350 -0.222062140

0.424274640 0.0158795020 -0.083799459

0.180930620 -0.281588530 -0.247119500

0.002905185 0.2928018800 -0.205633220

TABLE VII. The contraction coefficients used in the basis set of silicon.

Is 2s 3s 2/7 3P 3 d

-1.5605588 -0.4124863 0.12503216 1.1162462 -0.2639801 1.7100516

-2.8926404 -0.7675674 0.23392260 2.2208593 -0.6336407 -1.1103398

-4.8054133 -1.2981299 0.39347497 3.6290259 -0.9060273 0.92854392

-6.8143627 -1.9333681 0.59574033 5.8699334 -1.6261393 -0.3690238

-7.2246796 -2.3855570 0.73252107 7.8557310 -2.0208422 0.66294036

-3.9839243 -1.9636530 0.63104756 9.1916449 -2.5797449 0.09111600

-0.5826035 -0.1806871 0.05362494 7.5889551 -2.0298523 0.53900405

0.01736378 1.0696760 -0.4369356 3.5054752 -1.1442464 0.17353138

-0.0038183 0.50525555 -0.3666617 0.70834443 -0.0911417 0.27351764

0.00051062 0.01342618 0.15897169 0.01571973 0.18154593 0.06794445

-0.0000874 -0.0008969 0.11231594 -0.0008263 0.06986845 0.03669848
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As was discussed in Chapter II, to correctly study defects in solids with cluster 

methods, the electronic structure due to the host cluster m ust accurately reproduce 

th a t of the crystal in the region where the defect resides. One of the most important 

concerns when using cluster methods th a t m ust be addressed is tha t of dangling 

bonds a t the cluster surface. We have chosen to saturate these dangling bonds with 

hydrogen atoms. This has a dram atic effect on the electronic structure of the cluster. 

In particular the band gap of the hydrogen saturated cluster is free of dangling-bond 

states, as is shown in Fig. 9 for an  unembedded 29-atom cubic boron nitride cluster. A 

bond distance of 1.1 a.u. for the boron-hydrogen bonds and 1.1 a.u. for the nitrogen- 

hydrogen bonds has been utilized for all hydrogen saturated clusters. This bond dis

tance was found to consistently work well for saturating dangling bonds in many dif

ferent sized clusters.

Another concern when using cluster methods is how large a cluster is necessary 

to simulate the electronic environment of the host crystal. In  Table VIII, the eigenval

ues of the highest occupied molecular orbital (HOMO), lowest unoccupied molecular 

orbital (LUMO), and band gap (LUMO-HOMO) are given for clusters of varying size. 

These clusters were not embedded and were not allowed to relax from the bulk geom

etry. Clusters centered around boron atoms have the number of borons in the cluster 

name listed first (e.g., BN4H i2)- Nitrogen centered clusters have the number of nitro

gens in the name listed first (e.g., N 13B16H36). In Table EX, the highest occupied 

level, lowest unoccupied level, and band-gaps are given for some of these same clus

ters when they are embedded using the method discussed in Chapter III. The clus

ters range in size from 5 atoms to 35 atoms (hydrogen atoms are not included in the 

descriptions of the cluster size). They are built up by adding shells of symmetrically 

equivalent atoms. First a shell of 4 atoms is added to a single atom a t the center of
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TABLE VIE. The lowest unoccupied molecular orbital (LUMO) eigenvalue, the highest 
occupied molecular orbital (HOMO) eigenvalue, and the (LUMO-HOMO) band-gap 
are given for clusters of cBN ranging from 5 to 35 atoms. All clusters were calculated 
without embedding.

cluster LUMO (a.u.) HOMO (a.u.) band-gap (eV)

BN4H 12 -0.543838 -1.09475 14.99

NB4H i2 0.422065 0.336161 2.34

B 13N4H36 0.874489 0.863318 0.30

N i3B4H36 -1.40814 -1.84262 11.82

B 13N 16H 36 -0.331047 -0.625202 8.00

N 13B 16H 36 0.324376 0.190736 3.64

0.308179 0.180016 3.49

N 19B 16H 36 -0.332101 -0.629324 7.84

TABLE IX. The lowest unoccupied molecular orbital (LUMO) eigenvalue, the highest 
occupied molecular orbital (HOMO) eigenvalue, and the (LUMO-HOMO) band-gap 
are given for clusters of cubic boron nitride ranging from 5 to 29 atoms. All clusters 
were calculated with embedding.

cluster LUMO (a.u.) HOMO (a.u.) band-gap (eV)

BN4H 12 -0.822677 -1.38832 15.39

n b 4h 12 0.535839 0.491011 1.22

B13N4H36 1.14478 1.14193 0.08

N 13B4H36 -1.97437 -2.40832 11.80

B 13N 16H 36 -0.488105 -0.755022 7.26

N 13B 16H 36 0.490534 0.481862 0.24

the cluster forming a 5-atom cluster. Then a shell of 12 more atoms is added forming 

a cluster of 17 atoms. Next the cluster grows to 29 atoms and then to 35 atoms.

From Table VTII, it is evident th a t the band-gap is strongly dependent on 

whether the cluster contains more boron atoms or more nitrogen atoms. The clusters 

with more borons have smaller band-gaps than  those with more nitrogen atoms. This 

is a direct result of our method of electron filling discussed in Chapter II. Because the
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borons are populated with six electrons, they contribute a  charge of -1 to the overall 

charge of the cluster. The nitrogens are also populated w ith six electrons and thus 

give the cluster a positive charge. In the crystalline form, cubic boron nitride is sto- 

ichiometrically a binary compound with equivalent amounts of boron and nitrogen 

atoms. Using a cluster method, i t  is not always possible to form a cluster with the 

same stoichiometry as the crystal. However, as the cluster becomes larger, the non

equivalent numbers of borons and nitrogens become less im portant and the band-gap 

begins to converge. The relation of the band-gap to cluster size is shown for clusters 

containing three more borons than  nitrogens and those containing three more nitro

gen than borons is shown in Fig. 10. In order to investigate the convergence of the 

band-gap with cluster size and eliminate the effects of non-stoichiometric composi

tions, we looked at the average of equivalently sized nitrogen centered and boron cen

tered clusters. Fig. 11 shows the convergence of the band-gap. Studies33 of the 

convergence of the band-gap in diamond with cluster size have shown good agree

m ent with the bulk value by 29 atoms. Our results suggest sim ilar behavior in cubic 

boron nitride in which the band-gap appears to be converging to about 5.55 eV. This 

value compares nicely to the true value of 6.4 eV since the LDA generally underesti

m ates band-gaps. The band-gap, 5.55eV, to which we have extrapolated represents a 

13% underestimation of the band-gap.

We w ant to choose clusters th a t tend to come close to the crystalline stoichiome

try. In the case of cubic boron nitride, the 29 atom and 35 atom clusters are the best 

choices. We chose to study the 29 atom cluster, B13N 16H36, because it was computa

tionally feasible and the electronic structure of the gap was closer to that of the crys

tal. Furthermore, the gap is large enough to easily study defect states in the gap and 

the highest occupied and lowest unoccupied levels coincide well with that of LDA
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band structure calculations.64 Fig. 12 is a comparison of the electronic density along 

the B-N bond calculated by the cluster method versus a  summation of atomic densi

ties. This electronic charge density plot is almost identical to th a t given in the band 

structure calculation of Dovesi et al.65 Fig. 13, shows the charge density difference 

between the superposition of atomic densities and the cluster density. This charge 

density difference demonstrates an accumulation of extra charge on the electronega

tive nitrogen site and a deficiency of charge a t the boron site indicative of ionic bond

ing. In addition, there is a  buildup of charge in the in terstitial region indicating 

covalent bond formation. This is in  good agreement with the band structure calcula

tions .64

Now th a t a sufficiently large cluster has been chosen to study, the importance of 

embedding will be evaluated. The embedding model used in the calculated results 

given in Table IX was done with an  ionic charge of+.35 for the boron sites and -.35 for 

the nitrogen sites. This ionicity value was taken from the first-principles LDA band 

structure calculations of Zunger and Freeman .64 It is evident from the results for 

embedded clusters that the embedding potential produces an almost uniform shift in 

the eigenvalues of the cluster. Fig. 14 shows a plot of this embedding potential for the 

B19N 16H36 cluster. This shows th a t the effect of embedding in cubic boron nitride is 

basically to put the cluster into a  potential well. Furthermore, the shift in the eigen

values does not always bring them closer to the crystalline results of band structure 

calculations.65,64 The cause of this is the way in which we populate the clusters to 

assure proper sp3 hybrid bonding. As is discussed in several band structure calcula

tions,64,66 the top of the valence band is primarily composed of nitrogen 2p states and 

the bottom of the conduction band is primarily boron 2p-like. In Table X, we show the 

results of both atoms and ions embedded and not embedded. The ions are populated
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FIG. 12. Electronic charge density along the boron-nitrogen bond as calculated 
for a 29-atom cluster versus a summation of atomic densities.
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TABLE X. Non-spin polarized calculations of the electronic structure of boron and 
nitrogen atoms and ions. The lowest unoccupied molecular orbital eigenvalue and 
highest occupied molecular orbital eigenvalue are given (in a.u.) for each system in 
both the embedded and unembedded case.

system level free embedded

B atom LUMO 0.144924 0.207032

HOMO -0.134531 0.001404

N atom LUMO 0.295827 -0.142935

HOMO -0.260021 -0.434861

B+ ion LUMO 0.371043 0.412362

HOMO 0.136199 0.223435

N~ ion LUMO -0.050065 -0.211202

HOMO -0.765704 -0.956509

according to the method we use to assure sp3 bonding. Thus, the boron ion has six 

electrons and the nitrogen ion also has six electrons. In the LDA band structure 

results ,64 the top of the valence band is around -12 eV and the bottom of the conduc

tion band lies a t about -7 eV. Because the top of the valence band is primarily of nitro

gen character, it is clear from the result for the embedded and unembedded nitrogen 

atom th a t the embedding potential is pushing the eigenvalue of the highest occupied 

level to the right vicinity. In the case of the boron atom, the highest occupied level is 

of 2p character and should be elevated by embedding so as to contribute to the con

duction band in the crystal. Indeed, the embedded boron atom highest occupied level 

is substantially pushed up. In contrast to the results of embedding the atoms are the 

results of embedding the ions. The shifts in eigenvalues are in  the same direction as 

those in the atoms. However, since the systems are now charged, the shifts do not 

bring the values of the highest occupied and lowest unoccupied levels into close 

proximity to the crystalline levels. This is true for all of the clusters shown in Table
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IX as well. Therefore, embedding the clusters composed of ions with four valence elec

trons can actually worsen the electronic structure.

Another option is to occupy the clusters with the number of electrons of the 

atoms and do the embedding. However, this leads to a major problem because the 

assurance of proper tetrahedral bonding is not preserved. For example, a calculation 

ofB 13N16H36 w ith a total of 213 electrons assigned to it leads to the highest occupied 

level being partially occupied. Therefore, the B13N 16H3e atomic cluster will distort its 

geometry to a structure different from th a t of the bulk. So it is clear th a t for cubic 

boron nitride clusters, the electron filling to meet the sp3 bonding requirem ent is 

much more im portant than embedding. As a  consequence we have elected to perform 

calculations to characterize the electronic structure of clusters of pure cubic boron 

nitride and clusters of doped cubic boron nitride without embedding.

A. Pure cubic boron nitride

Since we are interested in the electronic structure of n- and p-type substitu

tional defects in cubic boron nitride, we will first characterize the electronic structure 

of the pure cubic boron nitride cluster, B13N 16H36. Initially, a calculation of the elec

tronic structure was performed a t the bulk geometry. The point group symmetry of 

the bulk geometry of the cluster is T<j. Thus the eigenfunctions transform as one of 

the allowed irreducible representations a j, a2,.e, tj, or t2. The highest occupied level 

corresponds to a  completely full tj  representation with an eigenvalue of -0.625202

a.u. The lowest unoccupied value corresponds to a ^  representation with an  eigen

value of -0.331047 a.u. Subsequently, the cluster was allowed to relax to a geometry 

of lower total energy while constrained to T<j symmetry in order to see how far it 

would differ from the bulk geometry. The positions of the symmetry unique atoms are 

given in Table XI for both the bulk and the relaxed geometries. Note th a t only the
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TABLE XI. Locations of the symmetry unique atoms for the relaxed and unrelaxed 
B i3N 16H36 cluster. The number of atoms per shell is indicated in parentheses 
beside the type of atom occupying a shell.

geometry shell x (a.u.) y (a.u) z (a.u)

unrelaxed B(l) 0.00000 0.00000 0.00000

N(4) 1.70784 1.70784 1.70784

B(12) 3.41568 0.00000 3.41568

N(12) 1.70784 -1.70784 5.12352

H(12) -2.34290 2.34290 5.75860

H(12) 0.63510 -4.05080 -4.05080

H(12) 5.76400 1.06700 -1.06700

relaxed B(l) 0.00000 0.00000 0.00000

N(4) 1.680906 1.680906 1.680906

B(12) 3.41568 0.00000 3.41568

N(12) 1.70784 -1.70784 5.12352

H(12) -2.34290 2.34290 5.75860

H( 12) 0.63510 -4.05080 -4.05080

H(12) 5.76400 1.06700 -1.06700

nearest neighbors to the center atom were allowed to move because all the other 

shells are bonded to hydrogens. When the cluster is allowed to relax, the nearest 

neighbors move inward by only about 1.6% of the bulk bond distance (0.7% of the lat

tice constant for cubic boron nitride). At the relaxed geometry, the  highest occupied 

level is a completely full t j  representation with an eigenvalue of -0.627265 a.u. The 

lowest unoccupied is a  t j  state a t  -0.331135 a.u. Thus, the band-gap of the relaxed 

cluster is nearly the same as the unrelaxed cluster, 8.05 eV vs. 8.00 eV. Fig. 15 shows 

the geometry of the relaxed B13N 16H36 cluster. Fig. 16 shows the density of states for 

the relaxed and unrelaxed B13N 16H36 cluster. As can be seen in the figure there is 

very little change in the electronic structure of the band gap when the cluster is
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FIG. 15. Geometry of the relaxed BjoNjcHog cluster. The borons are shown 
in grey. The nitrogens are dark and the nyarogens are white.
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allowed to relax. Fig. 17 shows total density contours for a plane intersecting the cen

te r boron atom and two of its  nearest neighbor nitrogens.

B. Beryllium substitutional

Tb study a prototypical p-type dopant in cubic boron nitride, beryllium was sub

stituted for boron at the center of the cluster to form BeB12N16H36. Following the 

pattern used for boron in which six electrons were assigned to it for electron filling, 

beryllium is assigned five electrons. At the bulk geometry the beryllium produced a 

partially occupied ^  acceptor level in the band gap. The spin up ^  state is fully occu

pied and has an eigenvalue of -0.599185 a.u. The spin down t j  state is occupied by 

two electrons and is at -0.590432 a.u. Thus the partially occupied tĵ  spin down state 

is 0.238 eV from the fully occupied t i  spin up state. The partially occupied t j  spin 

down state is 0.946 eV from the highest occupied level in the pure cluster at the bulk 

geometry. Next the cluster was allowed to relax while constrained to T<j symmetry. 

The positions of the symmetry unique atoms are given in Table XII for both the unre

laxed and the relaxed clusters. In the relaxed cluster the nearest-neighbor nitrogen 

shell relaxed outward from the bulk geometry by 5.2% of the bond distance (2.2% of 

the lattice constant for cubic boron nitride). The relaxation outward of the nearest 

neighbors compared to that of the relaxed pure cubic boron nitride cluster is about

6 .8% of the bond distance. At the relaxed geometry the beryllium produced a partially 

occupied t j  level in the band gap. The spin up t^ sta te  is fully occupied and has an 

eigenvalue of -0.591440 a.u. The spin down t j  state is occupied by two electrons and 

is a t -0.582751 a.u. Thus, the partially occupied t j  spin down state is 0.236 eV from 

the fully occupied t x spin up sta te  and is 1.211 eV from the highest occupied level in 

the relaxed pure cubic boron nitride cluster.
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FIG. 17. Total density of B13N16H36. The plane shown contains the central 
boron and two nearest neighbor nitrogens. Contours are in electrons/bohrs3 .
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TABLE XII. Locations of the symmetry unique atoms for the unrelaxed and relaxed 
BeBj2N i6H36 cluster. The number of atoms per shell is indicated in parentheses 
beside the type of atom occupying a shell.

geometry shell x (a.u.) y (a.u.) z (a.u.)

unrelaxed Be(l) 0.00000 0.00000 0.00000

N(4) 1.70784 1.70784 1.70784

B(12) 3.41568 0.00000 3.41568

N(12) 1.70784 -1.70784 5.12352

H(12) -2.34290 2.34290 5.75860

H(12) 0.63510 -4.05080 -4.05080

H(12) 5.76400 1.06700 -1.06700

relaxed Be(l) 0.00000 0.00000 0.00000

N(4) 1.795952 1.795952 1.795952

B(12) 3.41568 0.00000 3.41568

N(12) 1.70784 -1.70784 5.12352

H(12) -2.34290 2.34290 5.75860

H(12) 0.63510 -4.05080 -4.05080

H(12) 5.76400 1.06700 -1.06700

In Fig. 18, the density of states is plotted for the unrelaxed geometry of 

BeB12N1gH36. In Fig. 19, the density of states is plotted for the relaxed geometry of 

BeB12N16H36. Overall, there is almost no change in the density of states when allow

ing the cluster to relax in Td symmetry. Fig. 20 shows the geometry of the relaxed 

cluster. Fig. 21 shows total density contours for a plane intersecting the center beryl

lium atom and two of its nearest neighbor nitrogens.

A system in a degenerate state could lower its energy by distorting so as to split 

the degeneracy and then occupy the lower state (or states) whose total energy is 

lower. That such a phenomena would be expected to occur was pointed out by Jahn 

and Teller.67 The basic point of the Jahn-Teller theorem is th a t in any assumed
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FIG. 20. The geometry of the relaxed BeB12N1fiH36 cluster. The borons 
are shown in gray. The nitrogens are black ana the hydrogens are white. 
Beryllium is the gray atom a t the center of the cluster.
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FIG. 21. Total density of Be Bi2N 16H36 The plane shown contains the 
central beryllium and two nearest neighbor nitrogens. Contours units are in 
electrons/bohrs3 .
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equilibrium configuration, the energy will be a m i n i m u m  with respect to small dis

placements. If th a t system is in a degenerate electronic sta te  and the system distorts 

by a  small amount so as to split the degeneracy, and is able to occupy the lower state, 

the energy will decrease in  proportion to the distortion. Since, in Td symmetry, the 

highest occupied level of B e B ^ N ^ n ^  is a partially occupied degenerate t j  spin 

down state, BeB12N1eH36 will distort to a geometry of lower symmetry in which the 

degeneracy is lifted.

C. Silicon substitutional

Tb study a prototypical n-type dopant in cubic boron nitride, silicon was substi

tuted for boron a t the center of the cluster to form SiB^NigHag. Following the pat

tern  used for boron, silicon should have 15 electrons. At the bulk geometry the silicon 

produced a partially occupied ^  donor level in the band gap. The spin up tj_ state is 

occupied by one electron and has an eigenvalue of -0.348921 a.u. The spin down t j  

state is unoccupied and is a t -0.345454 a.u. Thus, the partially occupied t x spin up 

state is 0.094 eV from the unoccupied t j  state and is 0.486 eV from the lowest unoccu

pied level in the pure cluster a t the bulk geometry. Next the cluster was allowed to 

relax while constrained to Td symmetry. The positions of the symmetry unique atoms 

are given in Table XIII for both the bulk and the relaxed clusters. In the relaxed clus

ter the nearest neighbor nitrogen shell relaxed outward from the bulk geometry by 

7.0% of the bond distance (3.0% of the lattice constant for cubic boron nitride). The 

relaxation outward of the nearest neighbors compared to th a t of the relaxed pure 

cubic boron nitride cluster is about 8.7% of the bond distance. At the relaxed geome

try, the silicon produced a  partially occupied t x level in  the band gap. The spin up t j  

sta te  is occupied by one electron and has an eigenvalue of -0.351289 a.u. The spin
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TABLE XIII. Locations of the symmetry unique atoms for the unrelaxed and relaxed 
SiB12N 16H36 cluster. The number of atoms per shell is indicated in parentheses 
beside the type of atom occupying a shell.

geometry shell x (a.u.) y (a.u.) z (a.u.)

unrelaxed Si(l) 0.00000 0.00000 0.00000

N(4) 1.70784 1.70784 1.70784

B(12) 3.41568 0.00000 3.41568

N(12) 1.70784 -1.70784 5.12352

H(12) -2.34290 2.34290 5.75860

H(12) 0.63510 -4.05080 -4.05080

H(12) 5.76400 1.06700 -1.06700

relaxed Si(l) 0.00000 0.00000 0.00000

N(4) 1.827721 1.827721 1.827721

B(12) 3.41568 0.00000 3.41568

N(12) 1.70784 -1.70784 5.12352

H(12) -2.34290 2.34290 5.75860

H(12) 0.63510 -4.05080 -4.05080

H(12) 5.76400 1.06700 -1.06700

down t j  state is unoccupied and is a t -0.347013 a.u. Thus, the partially occupied trip

le t t j  spin up state is 0.116 eV from the unoccupied t j  spin down state and 0.548 eV 

from the lowest unoccupied level of the relaxed pure cubic boron nitride cluster.

In Fig. 22, the density of states is plotted for the bulk geometry of SiB12N 16H36. 

In Fig. 23, the density of states is plotted for the relaxed geometry of SiB^N ^H sg. As 

was the case for the beryllium substitutional, silicon also shows almost no change in 

the density of states when allowing the cluster to relax in Td symmetry. Fig. 24 shows 

the geometry of the relaxed cluster. Fig. 25 shows total density contours for a plane 

intersecting the center silicon atom and two of its nearest neighbor nitrogens.
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FIG. 24. The geometry of the relaxed SiB12N16H36 cluster. The borons 
are shown in gray. The nitrogens are black and the hydrogens are white. 
Silicon is the dark gray atom a t the center of the cluster.
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FIG. 25. Total density of Si B I2N16H36 The plane shown contains the 
central silicon and two nearest neighbor nitrogens. Contours units are in 
electrons/bohrs .
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In T,j symmetry the highest occupied level was a partially occupied degenerate 

level. Thus, as was the situation with the beryllium substitutional, the silicon substi

tutional is expected to induced a lattice distortion to a  geometry of lower symmetry, 

which will remove the degeneracy.
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CHAPTER V 

VIBRATIONAL AND OPTICAL SPECTRA 

In this chapter we discuss calculations of properties th a t can be experimentally 

investigated. There are a vast number of experiments that can be performed to char

acterize defects in solids. Very little work has been done on defects in cubic boron 

nitride. We have chosen to study four properties th a t may help to correlate our pre

dictions of the electronic structure w ith experiment. The Fermi contact interaction 

terms, vibrational spectra, oscillator strengths, and photoemission spectra are con

sidered.

A. Ferm i contact terms

In  a  cluster the ground state density has a nonzero value a t the nucleus, and 

this density is essentially constant throughout the small volume of the nucleus. 

Hence, the nucleus is in a uniformly magnetized medium with magnetization

M  = -S e|3 h /(0 ) |2s . (5.1)

The electronic magnetic dipole moment operator is ft = -g^ps . The nuclear 

magnetic moment operator is Ftn = gn Pfl/  . The energy of a nuclear magnetic dipole 

in the field resulting from M  is given by the Fermi contact interaction term:

H = = y  (0) |2I • J (5.2)

This Fermi contact term is characterized in cluster calculations as the differ

ence in  the majority and minority spin populations at the nucleus, i.e. the net

67
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magnitization. Thus, in order to produce a large Fermi contact term, there m ust be 

an  unpaired spin density associated with th a t particular nucleus. In pure cubic boron 

nitride, there is no unpaired spin density and so no hyperfine structure is seen in  the 

EPR data.68

In cubic boron nitride there is expected to be an unpaired spin density associ

ated with p- and n-type dopants. Thus, in experimental studies of pure cubic boron 

nitride systems and doped cubic boron nitride systems, there will be very different 

spectrums. The difference, in part, will be associated with a Fermi contact term  from 

the dopants. The expression for the Fermi contact term  involves individual electronic 

orbitals and spin angular momenta. Hence, it gives a measure of how delocalized the 

electronic state is and can be used together w ith EPR studies to unravel some of the 

local symmetry of the defect environment. We know of no EPR studies of beryllium or 

silicon substitutional dopants in cubic boron nitride.

In Table XIV the spin densities a t the nuclei are given for the symmetry unique 

atoms in the unrelaxed and relaxed clusters of BeBi2N 16H36 with Td symmetry. This 

leads to the Fermi contact terms listed in Table XV. There is very little dependence 

on cluster relaxation on the Fermi contact term s when the cluster is constrained to 

Td symmetry. Table XVI lists the spin densities a t the nuclei for the symmetry 

unique atoms in the unrelaxed and relaxed clusters of SiB^NjgHag with Td symme

try. This leads to the Fermi contact terms listed in Table XVII. From Table XVI it is 

apparent th a t there is significant decrease in the density a t the silicon nucleus when 

the cluster is allowed to relax. Because of a larger decrease in the spin down density 

the Fermi contact term  for the silicon site is enhanced in the relaxed cluster.
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TABLE XIV. The spin densities a t the nuclei of the symmetry unique atoms for the 
BeB ^N ieH 36 cluster. Majority (spin up), minority (spin down), and total spin 
densities are given.

cluster shell spin up spin down total density

unrelaxed Be(l) 16.66541 16.67584 33.34125

N(4) 97.34877 97.31780 194.6666

B(12) 97.83302 97.83272 195.6657

N( 12) 33.91701 33.91496 67.83197

relaxed Be(l) 16.63170 16.64207 33.27377

N(4) 97.32101 97.29655 194.6176

B(12) 97.83321 97.83205 195.6653

N(12) 33.90973 33.90666 67.81638

TABLE XV. Fermi contact terms for the symmetry unique atoms in the 
BeB12N16H36 cluster. The number of atoms per shell is listed beside the type of 
atom composing a particular shell.

Fermi Contact Terms

cluster shell spin/bohrs3 x 1020 spin/cm3

unrelaxed Be(l) 0.01043 0.338

N(4) 0.03097 1.003

B(12) 0.00040 0.013

N(12) 0.00205 0.066

relaxed Be(l) 0.01037 0.336

N(4) 0.02446 0.793

B(12) 0.00116 0.038

N(12) 0.00307 0.099

B. Vibrational spectra

Detailed analysis of vibrational modes in the clusters gives complementary 

information regarding the defect symmetry and elastic coupling to the host crystal. 

The interatomic forces of the cluster determine the vibrational spectrum, which may
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TABLE XVI. The spin densities a t the nuclei of the symmetry unique atoms for the 
SiB12N 16H36 cluster. Majority (spin up), minority (spin down), and total spin 
densities are given.

cluster shell spin up spin down total density

unrelaxed Si(l) 845.4542 845.4470 1690.901

N(4) 97.40365 97.33717 194.7408

B(12) 97.86950 97.82097 195.6905

N(12) 33.91136 33.91089 67.82226

relaxed Si(l) 845.3029 845.2857 1690.589

N(4) 97.39256 97.31692 194.7095

B(12) 97.86396 97.81955 195.6835

N(12) 33.90228 33.90031 67.80259

TABLE XVII. Fermi contact terms for the symmetry unique atoms in the 
SiB12N 16H36 cluster. The number of atoms per shell is listed beside the type of 
atom composing a particular shell.

Fermi Contact Terms

cluster shell spin/bohrs3 x 1020 spin/cm3

unrelaxed Si(l) 0.00720 0.233

N(4) 0.06648 2.154

B(12) 0.04853 1.572

N(12) 0.00047 0.052

relaxed Si(l) 0.01720 0.557

N(4) 0.07564 2.451

B(12) 0.04441 1.439

N(12) 0.00197 0.064

be probed by infrared, Raman, and other experimental techniques. With a large clus

ter the coupling between intra- and inter-cluster motions is relatively weak so what 

is discovered for the cluster should be approximately valid for the crystal for at least 

some of the modes.
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The vibrational frequencies of pure cubic boron nitride have been experimen

tally measured by Chrenko69 and by Gielisse et al.70 via infrared absorption studies. 

Their observed peaks and assignments of the peaks to certain vibrational modes is 

listed in Table XVIII. Discrepancies in the values were attributed by Chrenko as 

being a result of the smaller crystals used by Gielisse et al. The zone-center TO 

phonon frequency has been calculated to be a t 1063 cm'1 by Fahy.71

We have calculated the vibrational frequencies of the Bj^Nigl^e relaxed cluster 

with the MOPAC6 package. The calculation was performed with both the MNDO 

and AMI parametrization of the Hamiltonian. The calculation was done a t the geom

etry predicted by the LCAO cluster codes. All translational and rotational modes of 

the cluster are excluded from our results. Both parametrizations produce very simi

lar spectra with the same number of peaks. There is a slight shift of the higher fre

quency peaks downward in the AMI calculation. Fig. 26 shows the calculated 

spectrum of the vibrational density of states. The vibrational density of states is 

derived by weighting the spectra o f  vibrational frequencies with the vibrational tran

sition dipole moments. None of the high frequency (>1500cm'1) peaks seen in the 

experimental spectra are reproduced by the calculations. As was suggested by 

Chrenko, the experimental peaks are probably the result of defects or off-stoichiome- 

try in their crystals. In fact the crystal displaying all of the higher peaks was 

described as the thick yellow sample. The th in  colorless sample studied by Chrenko 

failed to reproduce most of the high frequency peaks.

When beryllium is substituted for the center boron atom, the cluster relaxes as 

was discussed in Chapter IV. The vibrational spectrum of BeB12N16H36 is shown in 

Fig. 27. The spectrum for the beryllium doped cluster is quite different from th a t of
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TABLE XVm. The experimentally observed infrared absorption peaks (vj is 
Chrenko’s value and v2 is Gielisse’s value) and their assignments by 
Gielisse with TO at 1000 cm*1 and LO at 1232 cm"1.

VjCcm*1) v2(cm*1) assignment

- 650 TO-TA

- 700 2TA

1000-1300 1000-1260 Reststrahlen

- 1370 2LA

1550 1580 LO+TA

1700 - -

1785 - -

1818 1830 -

1840 - -

1885 - -

1927 1920 LO+L.A

1985 2000 2TO

2140 - -

- 2230 LO+TO

2330 - -

- 2465 2LO

2560 - -

- 2700 2TO+LA

2910 - -

th e  p u re  cluster. In  particular, th e re  is  a  s tro n g  peak  a t  about 750 cm '1 th a t  

w as n o t ev iden t in  th e  pure cluster. (4.3)

When silicon is substituted for the center boron atom, the cluster relaxes as was 

discussed in Chapter IV. The vibrational spectrum of SiB12N 16H36 is shown in Fig. 

28. The spectrum shown for the silicon doped cluster varies substantially from the 

spectra of the beryllium dopant and the pure cluster. As was the case with beryllium,
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there is a particular peak which is directly related to the presence of the silicon. This 

peak is a t about 910 cm '1.

C. Oscillator strengths

Oscillator strength  measurements often require some assumptions regarding 

the number and charge state of impurity centers. However, if  calculations are avail

able, the experimentalist may use the theoretical oscillator strength to deduce the 

defect densities. Thus, such calculations provide a useful optical characterization of 

the defect centers.

lb  predict the optical absorption spectrum seen for a  particular material, the 

interaction of the system with electromagnetic radiation m ust be considered. A 

proper quantum-mechanical approach would trea t both the atom and the radiation 

quantum mechanically, but things can be simplified without great loss of accuracy by 

considering light as an electromagnetic wave of oscillating electric and magnetic 

fields. The electric component playing the major part, a further simplification is 

achieved by ju s t considering the electric part. Then the probability of absorption will 

be proportional to |(VmI^IVn)| where d  is the system’s dipole-moment operator. The 

integral is the transition (dipole) moment dmn. The dipole-moment operator has two 

forms: a length form where d -r ,  and a velocity or gradient form where d=V. Both the 

length form and the gradient form of the dipole-moment operator allow the oscillator 

strength to be characterized by its contributing components in the x, y, and z direc

tions. When the transition between states m and n with absorption or emis

sion of radiation is forbidden. Allowed transitions have d * 0 .  Because ofmn

approximations made in the derivation of the transition probabilities, forbidden tran 

sitions may have some small probability of occuring.72 At the present time there is no 

simple modification of our codes to explore vibronic effects on absorption levels. For
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the principal defects in these systems, i t  is expected that this will not present a  seri

ous limitation. The oscillator strength is given by73
4tcg) ,  £  -  £„

fm n  =  — j r K n \  ®m„ =  27C ~  ~  •

Since the orbitals given in the above expression for d mn can be broken down in terms 

of their contributions from different shells, the dipole moment can give a  measure of 

how much a shell is contributing to certain transitions.

W  = 5 > mv<pv (5.5)
V

where the sum  is over n shells with <Pv being the basis a t each shell. Then the oscilla

tor strength can be written in terms of its contribution from different shells in the fol

lowing manner:

u  = I KvXfi„>viai<fv>l -1 (o v <5.6)
v L v’ J v

This is sim ilar to a Mulliken analysis of the charge density. When v and v’ in Eq. (5.6)

are the same the transitions take place on the same shell and are expected to have an

atomic-like character.

For BeB12N16H36 and SiB12N 16H36 we have calculated the oscillator strengths 

associated w ith transitions from the defect levels to the first few excited levels. In 

order to perform the oscillator strength calculations, we have utilized the ICON- 

EDiT package by Gion Calzaferri, Ruedi Rytz, and Martin Braendle a t  the Institute 

for Inorganic and Physical Chemistry in Berne, Switzerland. ICON-EDiT performs 

extended-Hueckel and oscillator strength calculations based on Slater-type extended 

-Hueckel wave functions. We have used the relaxed geometries from the LCAO clus

ter codes as input to ICON-EDiT. Table XIX contains the transition oscillator 

strengths for several of the smallest transitions in the doped clusters calculated with 

the length form of the dipole-moment operator. In Table XX, we have included the 

contributions to the total oscillator strength from on-shell and off-shell contributions
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TABLE XIX. The transition oscillator strengths for the beryllium- and silicon-doped 
cubic boron nitride clusters. Contributions to the total oscillator strength are 
listed for the x, y, and z components of the dipole-moment operator.

dopant transition
(c m '1)

X y z total

Be 7791.2 0.031308 0.031297 0.031288 0.054209

9995.6 0.072723 0.072731 0.072732 0.125970

15584.9 0.283069 0.283000 0.282992 0.490206

18147.5 0.076067 0.076046 0.076063 0.131737

18563.0 0.026314 0.026319 0.026334 0.045592

19804.1 0.008251 0.008250 0.008263 0.014298

20573.4 0.004433 0.004432 0.004430 0.007676

Si 4445.3 0.024993 0.024992 0.024993 0.043289

6892.9 0.029686 0.029684 0.029690 0.051419

15036.5 0.127612 0.127627 0.127632 0.221051

-24469.0 0.206146 0.206131 0.206149 0.357048

as detailed in Eq. (5.6). There is a particularly large oscillator strength associated 

with the 15584.9 cm'1 transition in the beryllium-doped cluster. The major contribu

tion to this level is from the on-shell part. Thus this strong oscillator strength is due 

to an  atomic-like transition taking place at the beryllium site.

D. Photoemission spectra

X-ray (XPS) and ultraviolet (UPS) photelectron spectroscopy provide powerful 

experimental probes of the valence spectra of solids. Construction of theoretical XPS 

and UPS line shapes requires accurate ground state eigenvalues and the photoelec

tron cross sections. We perform the calculation of the spectra according to the formal

ism discussed by Mintmire et al. First-order, time-dependent perturbation theory and 

a semiclassical description of the radiation-m atter interaction is utilized. The differ

ential cross section for bound to free transitions from an initial state, u ., to a final
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TABLE XX. The transition oscillator strengths for the beryllium- and silicon-doped 
cubic boron nitride clusters. Contributions to the total oscillator strength are listed 
for the on-shell and off-shell components of the dipole-moment operator.

Dopant Transition
(cm'1) On-Shell Off-Shell Total

Be 7791.2 0.053604 0.000605 0.054209

9995.6 0.130011 -0.004041 0.125970

15584.9 0.460607 0.029599 0.490206

18147.5 0.135200 -0.003469 0.131737

18563.0 0.032194 0.013398 0.045592

19804.1 0.010736 0.003562 0.014298

20573.4 0.005201 0.002475 0.007676

Si 4445.3 0.136296 -0.093007 0.043289

6892.9 0.170836 -0.119417 0.051419

15036.5 0.730050 -0.508999 0.221051

24469.0 1.219463 -0.862415 0.357048
- i k ,  •  r

state, Uj-(r) = e , induced by incident radiation of energy to and averaged over 

polarization and direction of incidence is

^ ( « )  (5.7,

where F  is an unspecified constant tha t can be taken as unity because only the line 

shape of the photoemission spectrum is of interest. The bound initial electronic state

is simply the occupied Kohn-Sham orbital with energy . Note that the momentum

of the outgoing plane wave is determined by total energy conservation. P#  is the tran 

sition m atrix defined as

P i f  -  j u ;  ( r )  V ty ( r )  d r .  (5.8)

The non-angular-resolved photoemission spectra is then obtained by integrating 

over the solid angles of d£2 to obtain the contribution to the total cross section from 

the i’th  state,
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The solid angle integration is performed numerically using 14 quadrature points. The

m atrix elements Py involve Fourier transformations of Gaussian functions and are

calculated analytically. The measured photoemission spectra is a summation over all

the contributing initial states,
1

G, . ( £ )  =  — — V  exp

“ V E -  CD- 8 . 1 2"
i

1

<

i

CT( (Q)) (5.10)

where Gaussian broadening has been used as in the plots of the electronic density of 

states.

Although XPS22 of pure cubic boron nitride thin films have been experimentally 

measured, there has been no photoemission spectra taken for substitutional defects 

in cubic boron nitride. The theoretical calculation of the photoemission spectra for 

substitutional dopants in cubic boron nitride has not been previously done. We have 

calculated the photoemission spectra for a range of incident photon energies ranging 

from 10 eV to 90 eV (ultraviolet). In Fig. 29, the photoemission spectra of the pure 

cubic boron nitride cluster is shown for incident photon energies of 60 eV, 65 eV, and 

70 eV as a function of E  from Eq. (5.10). In Fig. 30, the photoemission spectra is 

shown for the beryllium doped cluster for incident photon energies of 60 eV, 65 eV 

and 70 eV. Fig. 31 shows the photoemission spectrum for the silicon doped cluster for 

these same incident photon energies. For each of the three clusters, the spectra 

changes with respect to incident photon energy. Recall from Chapter IV th a t the 

highest occupied level in the pure cluster was a t -17.01 eV. Thus, no peaks are evi

dent until the value of E  is below about -20 eV. The same basic peaks are observable 

at the different incident photon energies; however, the relative intensity of the peaks 

to each other can change substantially based on the incident photon energy. In addi

tion, there is a general trend for the peaks to move to lower values of E with higher

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

1200.0

60

1000.0
70

800.0c3

(0

-e 600.0to
&
10c0)
c 400.0

200.0

0.0
-60.0 -50.0 -40.0 -30.0 - 20.0 - 10.0 0.0

Energy (eV)

FIG. 29. The photoemission lineshapes for the B13N 16H36 cluster a t selected values of incident 
photon energies.

oo



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

1200.0

65
70

1000.0

(/)
‘c=3
CO

800.0

600.0
ca
&
toc<D 400.0c

200.0

0.0
-60.0 -50.0 -40.0 -30.0 -20.0

E n ergy  (eV )
- 10.0 0.0

FIG. 30. The photoemission lineshapes for the BeB12N16H36 cluster a t selected values of incident 
photon energies.

oo
to



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

1200.0

1000.0

£  800.0
c

cd
'? 600.0
.2 .
&
't o

f  400.0

200.0

0.0
-60.0 -50.0 -40.0 -30.0 -20.0 -10.0 0.0

E n ergy  (eV )

FIG. 31. The photoemission lineshapes foi1 the SiB12N 16H36 cluster a t selected values of incident 
photon energies.

60
65

ooco



84

photon incident energies. The photoemission spectra are shown for the pure and 

beryllium doped clusters in Fig. 32 for an incident photon energy of 60 eV. The photo

emission spectra are shown for the pure and silicon doped clusters in Fig. 33 for an 

incident photon energy of 60 eV. The presence of the dopants makes a large change in 

the lineshape of the spectra at this energy. This seems to be particularly prominent in 

the region between -20 eV and -40 eV. This reflects the changes in the electronic 

structure in the band gap when the dopants are introduced. The dopant levels in the 

band-gap are creating photoelectron cross sections th a t differ from those of the 

valence band of the pure cubic boron nitride.
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CHAPTER VI 

CONCLUSIONS

In this work, we have carried out a  computational characterization of prospec

tive n- and p-type dopants in cubic boron nitride. We have studied beryllium substitu

tional for boron as a p-type dopant and silicon substitutional for boron as a ra-type 

dopant. We have calculated selected properties of the dopants with the locally avail

able computational packages. Fermi contact terms, vibrational modes, oscillator 

strengths, and photoemission spectra were investigated. These properties were cho

sen based on their measurability by experimental techniques.

The electronic structures of pure cubic boron nitride, beryllium-doped cubic 

boron nitride, and silicon-doped cubic boron nitride were calculated with our LCAO 

cluster codes. As noted in Chapter II, the LCAO cluster codes allow full incorporation 

of the crystal field effects via an embedding potential and allow the determination of 

defect-induced lattice distortion within a given symmetry. A computationally efficient 

method for calculation of the embedding potential for the zincblende structure based 

on Hund’s relations was discussed and compared to other methods in Chapter III. 

The applicability of using cluster codes to simulate the environment of the crystal 

was discussed, and two important points were made. First, the concern of how to tie- 

off dangling bonds on the cluster surface was satisfactorily resolved by saturating 

them with hydrogen atoms. Second, the issue of how many electrons should be
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assigned to a cluster was addressed. It was found th a t in order to recreate the bond

ing environment of the crystal, the boron and nitrogen atoms must be assigned six 

electrons. This method of electron filling was found to reproduce the sp3 bonds 

present in the tetrahedral bonding environment of crystalline cubic boron nitride.

The importance of embedding clusters of cubic boron nitride was discussed in 

Chapter IV. It was found that the embedding potential places the cluster in an essen

tially uniform potential well. This causes a shift in the eigenvalues. Because the clus

ters were populated with quantities of electrons necessary to achieve the proper sp3 

bonding, embedding actually worsened the electronic structure. Therefore, the elec

tronic structure was studied without embedding. We chose to study boron-centered 

clusters of 29 atoms based on their ability to reproduce the crystalline environment 

and on the fact th a t their size made them computationally feasible.

Our LCAO cluster calculations indicated th a t when beryllium is substituted for 

a  boron, an acceptor level is created above the  valence band. The level is a t j  spin 

down state  containing two electrons. When the nearest neighbor nitrogens were 

allowed to relax, they were found to move outward by 5.2% of the bond distance of the 

bulk geometry. At the relaxed geometry, the acceptor level is still a two-thirds full 

spin down level and resides at 0.236 eV above the fully occupied tj  spin up level. This 

compares quite favorably with the estim ated activation energy of 0.23 ±0.02 eV 

reported by Mishima et al.23 for their p -type crystals. In Chapter V, calculated results 

of selected properties were presented for the BeB^NjeHsg cluster. Spin densities at 

the nuclei and the resultant Fermi contact term s were calculated for the first four 

shells with the LCAO cluster codes. A small decrease in the spin densities a t the 

beryllium nuclei and nearest neighbor nitrogens was observed when the cluster was 

allowed to relax.
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When silicon is substituted for boron, a donor level is created below the conduc

tion band. The level is a t i  spin up state  containing one electron. When the nearest 

neighbor nitrogens were allowed to relax, they were found to move outward by 7.0% 

of the bond distance of the bulk geometry. At the relaxed geometry, the donor level is 

still a  one-third full ^  spin up level and resides a t 0.116 eV below the unoccupied tj 

spin down level. This compares well with the estimated activation energy of 0.24 

±0.03 eV reported by Mishima et a/.23 for their n-type crystals. In addition, calculated 

results of selected properties were presented for the relaxed SiB12N 16H36 cluster. 

Spin densities a t the nuclei and the resu ltan t Fermi contact terms were calculated 

for the first four shells with the LCAO cluster codes. A decrease in the spin densities 

a t the silicon nuclei and nearest neighbor nitrogens was observed when the cluster 

was allowed to relax. There was also an increase in the Fermi contact term  at the sil

icon nuclei.

The MOPAC6 package was used in the calculation of the vibrational spectrum 

of the beryllium- and silicon-doped cubic boron nitride cluster. The spectrum calcu

lated is quite different from that of the pure cubic boron nitride cluster and may offer 

some insight into the symmetry of these p- and n-type dopants once experimental 

data are available. The oscillator strengths of beryllium- and silicon-doped cubic 

boron nitride were calculated with the ICON-EDiT program, and the photoemission 

spectra were calculated using the eigenfunctions output from the ab-initio GAMESS 

package. It is hoped that these results will provide some insight for any future exper

imental measurements. The oscillator strengths, especially for the transition at 

15584.9 cm '1 in the beryllium cluster, may be of particular import when determining
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dopant concentrations. The large difference in the photoemission spectra results for 

the silicon-doped cluster vs. the beryllium-doped cluster is particularly notable and 

should be an  interesting item for experimental study.

Our identification of the highest occupied levels in both BeB^N^gH^g and 

SiB12NigH36 as being partially-filled Tj levels, suggests a possible Jahn-Teller distor

tion associated with the substitutional dopants. The resolution of w hat the lowest 

total-energy geometry is for a distortion to a geometry of lower symmetry presents a 

demanding problem for future study. The study of larger clusters w ith faster codes 

may ultim ately be required to correctly predict low-symmetry relaxations in doped 

cubic boron nitride clusters.

In addition to the interesting question of defect-induced lowering of symmetry 

in the beryllium- and silicon-doped cubic boron nitride clusters, there are many other 

directions for future work. One possible direction is the study of other substitutional 

dopants and defects in cubic boron nitride. Vacancies, silicon and sulfur substitu

tional for nitrogen (as p- and n-type dopants, respectively), carbon substitutional for 

both boron and nitrogen, and antisite defects are some of the systems th a t present 

prospective problems. Another direction th a t will lead to more accurate calculation of 

most of the properties studied in this work is to be able to extract the eigenfunctions 

from the LCAO cluster codes. This wo.uld allow them to be used in the calculation of 

the oscillator strengths and the photemission spectra. It also would facilitate plotting 

of orbital densities. Currently the eigenfunctions are composed of symmetry-adapted 

linear combinations (SALC’s)74 of atomic orbitals. Thus, either the eigenfunctions 

m ust be extracted in a nonsymmetrized form or the codes for the oscillator strengths 

and photoemission spectra must be written so as to utilize symmetry. In the case of 

the photoemission spectra, simple analytic expressions for the transition matrix can
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be derived with the SALC’s. Improvement in the quality of the eigenfunctions will 

then become more critical because of the sensitivity of calculated optical properties to 

eigenfunction accuracy. Nonlocal corrections to the local density approximation uti

lized in our LCAO cluster codes, such as the generalized gradient approximation,75’76 

may lead to improved eigenfunctions.
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The prim ary theory, which is the foundation of our calculations, is density func

tional theory.75,77,78 It allows one to replace the complicated N-electron wave func

tion *P (Xj, x2, ..., xN) and the associated Schrodinger equation by the much simpler 

electron density p (r) and its associated calculational scheme.

Density functional theory is based on two theorems :

1) The external potential 1) (r) is determined, within a trivial additive constant, by 

the electron density p (r) .

2) For a trial density p ( r ) , such that p (r) SO and jp  (r)  d r  = N, EQ< E [ p] 

where E q is the ground state energy.

Since p determines the number of electrons, it also determ ines the ground 

state, 'Pq, and all other electronic properties of the system including the kinetic 

energy, the potential energy, and the total energy. Hence,

£ [ p ]  = _ n p ]  + Vne[p] + Vee[p] = JpCr JuCr Jdr  + F ^ C p ]  (A.1)

where F HK[p] = T[p]  + Veg[p] and Vgg[p] = C/c [p] + £ xc[p] .
i f f p ( r . ) p ( r , )

t/c [p] = x f f    d r ,d r2 (A.2)
L  12

is the classic Coulomb energy. The nonclassical term  E  [p] is the major part of the 

exchange-correlation energy.

The variational principle78

6 {£[ p]  — M-[JP ( r ) d r - A / ] }  = 0 (A.3)

gives the Euler-Lagrange equation where the chemical potential

„ -  8£tPl -  v (r )  I 5F^ t P l  
8p(r) 8p(r)

Note th a t if  FHK [p] were exactly known, then the variational principle above would

be an exact equation for the ground sta te  electron density. The unfortunate fact is

th a t exact form of the functional Fhk [p] is not known.
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The ground state density can be determined by the Kohn-Sham method.79 The 

kinetic energy of a noninteracting electron system th a t exists with the same p (r) as

the interacting system is written as
N

r „ [ p ]  = <A-5)
I = 1

where the \i/i (r) are the Kohn-Sham orbitals, such th a t

^ [ p ]  =  r 0 [ p ]  +UA p ]  + £ * J p 1  • (A -6 )

The exchange-correlation energy in Eq. (A.6) is not the same as th a t in Eq. (A.2) 

because it now contains the difference between the kinetic energies of an interacting 

and a noninteracting electron system. Thus, the exchange-correlation energy func

tional can be expressed as

E«[p] = n p ]  - r 0 [p] + v„ [p] -£ /c [p] (A/7)

The Euler equation then becomes
5 Tn 5(7. 5 E ir  5Tn [p]

p = tt— + + yj (r) = — + v - ( r )  (A.8)5p 5p 5p 5p(r)
where

8 U  8 E  
yeff(r) = u ( r ) + -^- + _

5 Uc
= - o ( r ) + - = -  + \j (r) (A. 9)

5E„ '  5,5
with uxc (r) = being the exchange-correlation potential. The density p (r) can

be obtained after solving the Kohn-Sham equations:

[ -  | V2 + Veff ( r) ]  v . ( r ) = e ^ -  ( r) (A. 10)

with
N

p ( 0  = X K ( r ) | 2- (A-11)
i — 1

Equations (A.9), (A.10), and (A.11) are the one-electron Kohn-Sham equations and 

are solved self-consistently to get the density.
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The Kohn-Sham equations still leave the exact form of the exchange-correlation 

functional unknown. One of the most successful forms is derived in the local density 

approximation (LDA). In the LDA,

ExcLDAl P] = J p ( r ) e xc[ p M r (A.12)

where exc is the exchange and correlation energy per particle of a uniform electron

gas. The corresponding form of the exchange-correlation potential is 
l d a  ^ r A 5e [p]

** (0 = "IT  = [P (r) 1 + P (r) ■ (A'13)
The functional ^ xc  [p] can be separated into the  exchange and correlation contribu

tions

exctpl = M p ] + M p 1 - (a*14)

The exchange energy for the homogeneous electron gas is already known and is 

given by the Dirac exchange-energy functional78

i ex [p] = ~ E X [ P  (r ) ] 3 (A. 15)

whereC' = !(s)3-
Tb allow for more accurate calculation, the local spin density approximation 

(LSD) is used:

E xcLS°  [P i = \ z xc [Pa* Ppl P <r ) d r  (A'16)

where a  and P indicate spin up and spin down respectively and

P ( r )  = pa ( r ) + p „ ( r )  (A. 17)
occu p ied

P c W  = X  Cr) |2 a  = a , p  (A.18)
i= l

and the LSDA Kohn-Sham SCF one electron equation becomes:

*<rV ,„(r) = e , 0V ,<,(r) ^  (A.19)
1 2 SC/,[p] 5E [p]

W- - 2 V + U ( r » + W  + ^ ( ^ -

Again, the exchange-correlation energy may be w ritten in terms of its contributions

from the exchange and correlation parts
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^ “ D[P«.Ppl = ^ “ " [ P c P p l  + £ “ D [P«'P|j) • (A.2W

The LSD exchange energy functional becomes
“ 4 4'

( p« ) 3+ ( p P) 3e “ d [p„.pp1 = - I  ( | ) ' /3| dr. (A.22)

The local density form of the correlation energy functional can be w ritten as:

EcLSD =  J e c tP«* Pp] P (r ) dr  (A -23)

where ec denotes the correlation energy per electron for an electron gas with uniform 

spin densities. This system has been simulated by Ceperley and Alder80 and parame

trized by Vosko et al.81 and Perdew and Zunger.82

In Perdew and Zunger’s param etrization, the correlation energy Ec and the 

corresponding potential t>c can be classified into the high and the low limits of the 

density after using the following derivatives a t the point rs=l,

\)c (p,£ = 0 , 1) = 11 -  j ec (P> C = 0, L) (A.24)
S  1 / 3  - 1 / 3where the Wigner-Seitz radius is rs = (3 / 4 k ) p in atomic units. For the low

density rs > 1 , the correlation energy and the corresponding potential are written as 

the following:

M O  = f -------------X lQ ------------- x (A.25)

(?) = ( 1 + I p ,  ( 0  V v * 5 P2 ( 0  r , ) ^ -  (A.26)

where Pj ( 0  , P2 ( 0  , and y ( 0  are fit-parameters, the index £ is for the polarized 

(£ = 1) or the unpolarized = 0) case. The parameters used to represent the 

Ceperley and Alder results are P1(0)=1.0529, Pi(l)=1.3981, P2(0)=0 .3334,

P2(l)=0.2611, t (0)=-0.1423, and y (1)=-0.0843.

For high density (0 < < 1) , the leading behavior of the high density

expansion is tied smoothly to the low density form with the following expression:

M O  = A ( O K + 8 ( 0  + C ( Q r slnrs + D( ta) r s (A.27)
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1)c = A ( Q l n r , +  { B ( 0  - | a  (?) } + ? C ( 0  rsln r ,+ 1 {2D  (Q - C ( C ) } r s . (A.28) 

Perdew and Zunger parameterized this form by taking the values A (0) = 0.0311 

and B (0) = -0.048 from the calculation of Gell-Mann and Brueckner,83 fixing the 

values A (1) = 0.01555 and B (1) = -0.0269 from the random phase scaling rela

tion by Hedin84 and Misawa85 and determining the values C(0)=0.0020, C(l)=0.0007, 

D(0)=-0.0116, D(l)=-0.0048 by matching the low density and high density forms and 

their derivatives a t rs = 1 .

For intermediate values of the von Barth-Hedin interpolation86 can be 

adopted. For the spin densities p^Cr) and px(r), the density is denoted as p ( r)  = 

PT (r ) + P i (r ) and the polarization factor can be written

£ ( ' )  = jyyyy [pt (r ) - P i  ( 01-  (A. 29)

The interpolation between the unpolarized paramagnetic (£ = 0) and the fully 

polarized ferromagnetic (£ = ± 1) limits can be written by

ef.(Q  =e,-(C = 0) + [ei. ( C = l ) - e l.(<; = 0 ) ] / (£( / • ) )  (A.30)

for the exchange ( /=  x) and correlation (/ = c) contributions to the energy per

particle. The interpolation function
/ i  Y  f  \  \  4/3 . , y  f  \  \  4 /3  *

/ ( C ( r ) )  = 2^ f /3 “ S  -----  (A'31)

is chosen to reproduce the ^-dependence of the exchange and the correlation 

energies. In the para- and ferro-magnetic limits, the exchange term  has the form

ex a =  1) = 2 1/ 3ex (C = 0) (A.33)

and from the random phase scaling relation

ec (<v S = 1) = k (  rt2 ^ '3, C = o ) . (A.34)
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In the calculation of the electronic structure of an embedded cluster, there are 

three computationally costly steps th a t the LCAO cluster codes perform. The first is 

the calculation of the embedding potential. The second is the calculation of the Cou

lomb potential via Poisson’s equation. The third is the calculation of the forces on 

each atom. All three of these steps involve some calculation of a  value a t points in the 

numerical integration mesh described by Pederson and Jackson .40 I t is the calcula

tion of this value that is computationally costly. Even more im portant is that the cal

culations at different mesh points are completely independent of one another. So 

when doing one of the steps detailed above, each calculation a t a mesh point could 

run separately from one another.

With the advent of massively parallel computers, parallelization of codes has 

become both feasible and necessary. The computational steps discussed above sure all 

good candidates for parallelization by the master/slave model. In the master/slave 

model, a m aster process is begun on one node (CPU) of a computer and a large num

ber of slave processes are started on other nodes. Each process in the master/slave 

model is running separately on its own node. The m aster process then sends a unique 

set of data to each slave process. The slaves receive their unique data set and begin to 

process it independently of the other slaves. After distributing all the data, the mas

ter process may continue working or i t  may wait for the processed answers to return 

from the slaves. The slaves compute the required answers for their unique data set 

and then send the data back to the m aster process. Load balancing can be provided 

by the way in which the data set is divided and distributed by the m aster process. 

Given n slaves and m data points, the m aster can then send m/n data points to each 

slave. However, if one of the slaves is slower than the others, the m aster will have to 

wait for this slowest slave to finish before continuing. A more effective use of the
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parallel machine would be for the master to break the data  up into smaller quantities 

than mln. Then the m aster can send each slave th is smaller number of data points. 

The first slave to return  an answer to the m aster would then receive another num ber 

of data points. This process would continue until all the data set was distributed and 

all the answers are returned.

We have implemented the master/slave model with the use of the Parallel Vir

tual Machine (PVM).87 PVM is basically a combination of a daemon program and 

message passing libraries to allow Fortran, C, and C++ programs to interact w ith the 

daemon. Through PVM, processes on separate nodes are able to communicate w ith 

one another. PVM nodes may be any combination of CPU’s on a parallel supercom

puter, a CPU on a serial supercomputer, workstations, and even PC’s. Below is an 

example of the Fortran code used in a m aster process with PVM:

program masterl 
include ‘.7include/fpvm3.h'

c Example fortran program illustrating the use of PVM 3
c  —  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

integer i, info, nproc, nhost, msgtype 
integer mytid, iptid, dtid, tids(0:32) 
integer who, speed 
double precision result(32), data(100) 
character*18 nodename, host 
character*8 arch

c --------------Starting up all the tasks-------------------------------

c Enroll this program in PVM
call pvmfmytid( mytid)

c Set number of slaves to spawn,
c Can't do standard input if master started with spawn so
c just set nproc = number of hosts in this case. Else ask for nproc.

call pvmfparent( iptid) 
if( iptid .gt. 1 )  then

call pvmfconfig( nhost, narch, dtid, host, arch, speed, info ) .
nproc = nhost
if( nproc .gt. 32 ) nproc = 32
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else
print VHow many slave programs (1-32)?' 
read *, nproc 

endif
c
c Initiate nproc instances of slavel program
c If arch is set to then ANY configured machine is acceptable

nodename = fslavel' 
arch =
call pvmfspawn( nodename, PVMDEFAULT, arch, nproc, tids, numt)

c Print out task IDs of spawned tasks and check for problems 
do 100 i=0, nproc-1 

print *,'tid',i,tids(i)
100 continue

if( numt .It. nproc) then 
print *, ‘trouble spawning ',nodename 
print * , 1 Check tids for error code' 
call shutdown( numt, tids) 

endif

c  Begin user program --------

n = 10 
c Initiate data array 

do 20 i=1,n 
data(i) = 1 

20 continue

c broadcast data to all node programs 
call pvmfinitsend( PVMDEFAULT, info ) 
call pvmfpack( INTEGER4, nproc, 1, 1, info ) 
call pvmfpack( INTEGER4, tids, nproc, 1, info) 
call pvmfpack( INTEGER4, n, 1,1,  info) 
call pvmfpack( REAL8, data, n, 1, info) 
msgtype = 1
call pvmfmcast( nproc, tids, msgtype, info)

c wait for results from nodes 
msgtype = 2  
do 30 i=1,nproc 

call pvmfrecv( -1, msgtype, info) 
call pvmfunpack( INTEGER4, who, 1,1, info) 
call pvmfunpack( REAL8, result(who+1), 1,1, info ) 
print *, 'I got‘,result(who+1),' from', who 

30 continue

c  End user program   .

c program finished leave PVM before exiting
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call pvmfexit(info)
stop
end

subroutine shutdown( nproc, tids) 
integer nproc, tids(*)

c
c Kill all tasks I spawned and then myself 
c

do 10 i=0, nproc 
call pvmfkill( tids(i), info)

10 continue 
call pvmfexit( info) 
return 
end

The Fortran code for the accompanying slave process follows:

program slavel 
include '.7include/fpvm3.h'

c Example fortran program illustrating use of PVM 3

integer info, mytid, mtid, msgtype, me 
integer tids(0:32) 
double precision result, data(100) 
double precision work

c Enroll this program in PVM 
call pvmfmytid( mytid)

c Get the master's task id 
call pvmfparent( m tid)

c  Begin user program --------

c Receive data from host 
msgtype = 1
call pvmfrecv( mtid, msgtype, info) 
call pvmfunpack( INTEGER4, nproc, 1,1,  info) 
call pvmfunpack( INTEGER4, tids, nproc, 1, info) 
call pvmfunpack( INTEGER4, n, 1,1, info) 
call pvmfunpack( REAL8, data, n, 1, info)

c Determine which slave I am (0 -- nproc-1) 
do 5 i=0, nproc 

if( tids(i) .eq. mytid ) me = i 
5 continue

c Do calculations with data
result = work( me, n, data, tids, nproc)
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c Send result to host
call pvmfinitsend( PVMDEFAULT, info) 
call pvmfpack( INTEGER4, me, 1,1,  info) 
call pvmfpack( REAL8, result, 1,1,  info) 
msgtype = 2
call pvmfsend( mtid, msgtype, info)

c -----------End user program ---------

c Program finished. Leave PVM before exiting
call pvmfexit(info) 
stop 
end

double precision function work( me, n, data, tids, nproc) 
include '.iinclude/fpvm3.h'

c Just a simple routine for illustration

double precision data(*), sum, psum 
integer i, n, me, inum 
integer tids(0:*)

sum = 0.0 
do 10 i=1,n 

sum = sum + me * data(i)
10 continue

c Pass partial result to neighboring node 
c to illustrate node-to-node communication
c  --------------------------------------------

call pvmfinitsend( PVMDEFAULT, info) 
call pvmfpack( REAL8, sum, 1,1,  info) 
inum = me+1
if( inum .eq. nproc) inum = 0
call pvmfsend( tids(inum), 77, info)
call pvmfrecv( -1, 77, info)
call pvmfunpack( REAL8, psum, 1,1,  info)

work = sum + psum
return
end

In our codes we change the m asterl program and slavel programs given above to do 

the types of calculations we need. This involves altering the "user p ro g ram " sec

tions in the m asterl and slavel codes.
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As an example of how these parallelization techniques are used in our LCAO 

cluster codes, consider the calculation of the embedding potential discussed in Chap

ter ID. Given a mesh of 10,000 points, we need to evaluate (PznsQx, y, z), Eq. (3.22), for 

each point x, y, z. Since the value of <PzaŜ x> z) a t eac^  point is completely indepen

dent of the value a t all other points, we can easily parallelize its calculation. Suppose 

our parallel machine has 100 nodes available, which are of equal power. If we start 

up a slave process on each node, then we send slavel mesh points 1-100, slave2 mesh 

points 101-200, etc. Each slave could then evaluate cp?ns(x, y, z) for the 100 mesh 

points it was assigned and then send the values back to the master. Perfect parallel 

performance would give a speed up of 100 times th a t of serial performance in the 

computation of (P/nsCx, y, z) for all the mesh points. In reality, the parallel perfor

mance is always below perfection because of the time required to send and receive 

data.

In  our LCAO cluster codes similar techniques are applied to the calculation of 

the Coulomb energy, Eq. (A.2), and the Hellman-Feynman-Pulay forces. These paral

lelization techniques have played an im portant role in the study of cubic boron 

nitride in th a t they have decreased the time required to perform calculations (mak

ing the calculation of larger clusters feasible) and they have allowed us access to 

state-of-the-art parallel supercomputers.
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