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ABSTRACT OF DISSERTATION 
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Ph.D. _________________  Major Subject Biostatistics ____________

Name of Candidate Warsono________________________________________________
Title Analysis of Environmental Pollutant Data Using

Generalized Log-Logistic Distribution_____________________________

Environmental pollution studies conducted to monitor ambient levels and to quantify 

the concentration of various pollutants entering a given environmental area are of great 

interest for possible adverse-health effects. Of particular importance in environmental data 

analysis is to select appropriate probability models. The previous studies indicated that none 

of the probability models, including the classical lognormal, has been identified to be superior 

to others in a general sense. To address this problem, the purpose of this study is twofold. 

Firstly, we introduce a generalized log-logistics distribution as a general model in fitting 

environmental pollutant data, and develop maximum-likelihood techniques for estimating 

parameters of the proposed distribution. The family of the generalized log-logistics 

distribution includes several well-known distributions in modeling data of environmental 

pollutant concentrations, such as lognormal, weibull, and gamma as special cases. Secondly, 

by applying the proposed model to seven data sets, we explore the possibilities of using this 

model as a general probability model for representing environmental-quality data.

The results of applications indicate that the generalized log-logistics distribution could 

be a good alternative to the classical lognormal distribution for fitting environmental quality
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data. For ail of data sets, generally, the four-parameter GLL distribution fits better than the 

lognormal, log-logistic, and three-parameter GLL distributions, or provides at least as good 

a fit as the other distributions.
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CHAPTER I 

INTRODUCTION

Environmental pollution studies conducted to monitor ambient levels and to quantify 

the concentration of various pollutants entering a given environmental area are of great 

interest for possible adverse-health effects. Selecting appropriate probability models for the 

data is an important step in environmental data analysis. These probability models may 

become the basis for estimating the parameters to meet the evolving information needs of 

environmental quality management. Unfortunately, the environmental pollution data are 

frequently skewed to the right; that is, they have a long tail toward high concentration. 

Therefore, the validity of applying the normal distribution for curve fitting o f these type of 

data may be questioned. One way of modeling this type of distribution is to find a 

transformation of the data values so that the transformed values conform more closely to the 

normal distribution, and the logarithmic transformation is often applied in this context to 

pollution data. However, parameter estimates of the transformed data are rarely of interest. 

The estimate o f the mean, for example, in the original scale of measurement is the primary 

purpose of environmental study.

A further complication is introduced by the fact that there are a number of 

observations measured as less than detection limit (DL) established by analytical laboratories. 

The analysts may report them as nondetect (ND) or less than detection limit (LDL) rather

1
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than numerical values. In statistical terminology, data sets containing such data are called 

left-censored data because the values of data below the detection limit are not available. Even 

if the data are normally distributed, the presence of left-censoring creates some difficulties 

when applying classical methods because one will be uncertain as to what to use for censored 

values. In practical applications, to handle the censored data, many analysts ignore the values 

of observations below the DL or set them equal to zero, the DL or the DL divided by two 

(DL/2) prior to parameters estimation. Replacing with the DL/2 implicitly assumes a uniform 

distribution between zero and the DL. But the deletion or the replacement gives biased 

estimates o f the parameters, and the intensity of the bias will be worse as the degree of 

censoring increases (Newman et al., 1989). This is the main reason Newman et al. (1989) 

do not recommend the use of such techniques.

Many investigators in different environmental fields have reported that the pollutant 

concentrations measured in the environment have a lognormal distribution, or nearly so. 

Since environmental pollution data are inherently positive as well as highly skewed, the 

lognormal distribution is an ideal descriptor o f such data, with a positively skewed, positive 

range, and heavy right tail. A significant number of technical reports have been published 

suggesting that empirical distributions of pollutant concentration data tend to be lognormally 

distributed. An excellent review of applications of lognormal models to aerometric data is 

presented by Mage (1981). Recently, Ott (1995) provided a review of applications of 

lognormal distribution for analysis of water-, soil-, and air-quality data.

Although the lognormal distribution has been widely employed to represent pollution 

concentration data, a fact that also should be pointed out is that it is possible that other 

distributions might work better. The "same" lognormal distribution with different parameters
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is sometimes appropriate. Dealing with air-quality data, Larsen (1977) added a third 

parameter, an increment, to the lognormal distribution. The third parameter is either a 

positive or negative increment that is added to every observed concentration until a curved 

log-probability plot is transformed into a fairly straight line. However, Mage and Ott (1978) 

called their model the censored three-parameter lognormal model, criticized in Larsen's 1977 

article. Mage and Ott do not suggest the automatic use o f a particular model, because failure 

to consider the validity of the model, if hypothesis tests are involved, can lead to predictions 

that are not supported under scientific scrutiny.

Other parametric distributions can also be used successfully with positively skewed 

data. Using the sum-of-squares error as the goodness-of-fit criterion, Bencala and Seinfeld 

(1976) showed that the Weibull model produces lower values than that o f the lognormal for 

five of eight carbon monoxide (CO) data sets. Apt (1976) applied the Weibull distribution 

in relation to the distribution of atmospheric radioactivity data, with some success. He 

concluded that the Weibull distribution function can be used empirically to describe spatial 

and temporal distributions of atmospheric tritium oxide, gross-beta, and plutonium-239 

concentrations.

Berger, Melice, and Demuth (1982) examined the goodness-of-fit based on the 

extreme values and the median in fitting a gamma distribution to daily atmospheric sulfur 

dioxide (S02) concentrations in the Gent region of Belgium. They found that the gamma 

distribution provided a better representation of the whole ensemble than the usual lognormal. 

Jakeman and Taylor (1985) also observed that gamma models provide a better representation 

of acid-gas concentrations in an industrial airshed than does the lognormal model.
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Comprehensive studies to report a comparison o f the fits o f several distributions to 

pollutant concentrations were carried out by a number of researchers, such as Bencala and 

Seinfeld (1976), Holland and Fitz-Simons (1982), Georgopulos and Seinfeld (1982), and 

Gilliom and Helsd (1986). Using procedures of goodness-of-fit tests, such as chi-square and 

log-likelihood tests, Taylor, Jakeman, and Simpson (1986) conducted a comparison study of 

the fits of lognormal, gamma, exponential, and Weibull distributions to extensive air-quality 

data in Melbourne, Australia. In their study, the lognormal distribution was the best for the 

majority of the NO, NOx, and S02 data sets; the gamma distribution for 03, N02, and CO; 

and the Weibull distribution for CO and S02.

Obviously, none o f the probability models, including the classical lognormal, has 

been identified to be superior to others in a general sense. One approach to overcoming this 

problem could be to use a very general model that includes most o f the distributions. 

Among the general models, the generalized log-logistic (GLL) distribution has good potential 

for fitting environmental pollutant data. The GLL distribution is an extension of the log- 

logistic distribution. The log-logistic distribution is similar in shape to the lognormal 

distribution, but it may be more convenient to apply. This is because of its greater 

mathematical simplicity, especially when dealing with the censored data. As noted by Singh 

(1989), therefore, one advantage of the proposed model as a general model is the potential 

improvement in the fit to the data, while retaining mathematical simplicity.

In modeling lung cancer survival data, Singh (1989) demonstrated the application of 

three-parameter GLL models as alternatives to a log-logistic model. He considered that one, 

either the first or the second shape parameter of the shape parameters, has been assumed to 

be unity. Singh's work showed that the three-parameter GLL model fits the data better than
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log-logistic model. More recently, when applying breast cancer survival data, a similar 

conclusion was made by Singh, Bartolucci, and Burgard (1994).

Of particular interest is the feet that the GLL distribution may have attractive features. 

The family of the GLL distribution includes several well-known distributions in modeling 

contaminant concentrations, such as lognormal, Weibull, and gamma distributions as limiting 

distributions or special cases. Another interesting feature of the considered GLL model is that 

it might be linked to the other well-known generalized models reported upon in the literature.

It is clear that the common characteristics of environmental pollutant concentration 

data are skewed to the right, and the presence of left-censored data caused by the detection 

limit make it difficult to analyze. Though the lognormal distribution is often used for fitting 

pollutant concentration data, the data analyst should point out that it is possible that other 

distributions might work better. Moreover, the values of the parameter estimates depend 

considerably on the validity o f the assumptions regarding the underlying distribution. Thus, 

selecting an appropriate probability model for the data set under study is a very important step 

in the analysis of environmental quality data.

One approach to determining an appropriate model is to use a very general model that 

includes a suitable model as a special case. Although in environmental studies the GLL 

distribution is a relatively "unknown" distribution, as mentioned earlier the skewness and the 

heavy tail o f the GLL distributions seem to make it suitable for modeling environmental 

pollution data. Also, the family of the GLL distribution is quite rich and includes a number 

of submodels that are very common distributions in fitting pollutant concentration data. 

Therefore, the GLL distribution has desirable features and seems to be a promising 

distribution for environmental modeling. Thus, in this study we propose to consider the use
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of the GLL distribution in fitting pollutant concentration data. The proposed model may 

provide more flexibility to fit environmental data when the skewness, kurtosis, or other 

moments of the distribution fail to conform to lognonnality. Thus, the GLL distribution may 

become a good alternative to the log-normal distribution. The overall objective is to provide 

analysts, especially those who work in environmental areas, more latitude in selecting various 

models.

The objective of this study is twofold. First, we develop maximum-likelihood 

techniques for estimating parameters of the GLL distributions. In particular, we consider the 

four-parameter GLL where we assume that m,* m*, denoted by GLL(m,,m2). We also 

study the three-parameter GLL where we assume that m, = n^ = m, denoted by GLL(m,m). 

Second, by applying the proposed model to various sets of data, we explore the possibility 

of using GLL distribution as a general probability model for representing environmental 

quality data. For purposes o f comparison, we also consider the three-parameter GLL 

distribution where m, -  m, and m2 = 1, denoted by GLL(m,l); the three-parameter GLL 

distribution where m, = 1, and m* = m, denoted by GLL(l,m); the log-logistic distribution, 

denoted by GLL(1,1); and lognormal distribution.

The rest of the dissertation is conveniently organized as follows. Chapter II provides 

a brief historical review of the lognormal distribution and discusses the application of this 

distribution in fitting environmental pollutant data. Chapter m  is devoted to the details of 

the generalized log-logistic distribution, especially to a discussion of the theoretical 

development of the maximum-likelihood estimation procedure for estimating parameters of 

the proposed distribution. Along with chapter IV, chapter in  serves as the core of this 

dissertation. Chapter IV explores the possibilities of using the generalized log-logistic
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distributions as a general probability model in fitting data of environmental pollutant 

concentration and discusses a comparison with the lognormal distribution. Finally, chapter 

V gives directions and suggestions for further efforts and future research.
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CHAPTER n  

LOGNORMAL DISTRIBUTION 

In this chapter, we provide a brief review of lognormal (LN) distribution. The LN 

distribution has been known and discussed for almost a century, but it was not until Aitchison 

and Brown (1957) published a monograph devoted entirely to the LN distribution. In this 

landmark book, they deal rigorously with the theory, beginning with a discussion of the 

genesis of the LN distribution, passing through estimation problems of parameters, and ending 

with a review o f applications. Moreover, Johnson and Kotz (1970) summarized the history 

o f theory and applications of LN distributions and the estimation procedures for the two- 

parameter lognormal (LN2), three-parameter lognormal (LN3), and related distributions.

Since the publication of the books by Aitchison and Brown and by Johnson and Kotz, 

the theory of LN distributions has steadily progressed and fields of application have greatly 

increased. A book, edited by Crow and Shimizu (1988), containing contributions from 

several experts has comprehensively discussed the more recent developments in the genesis, 

properties, and applications of LN distributions, estimation and test theories, and some results 

for related distributions. Recently, Johnson, Kotz, and Balakrishnan (1994) revised the book 

published by Johnson and Kotz (1970).

Shimizu and Crow (1988) stated three reasons why there is much to discuss about the 

LN distribution if  the data analysis can be referred to the intensively studied normal

8
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distribution by taking the logarithm:

1. The parameter estimates resulting from the inverse transformation are biased.

2. The two-parameter distribution is often not a sufficient description; a third 

parameter, the threshold or location parameter is needed.

3. The distribution may be censored or truncated, or the data may be classified into 

groups, so that special methods are needed.

The LN distribution in its simplest form may be defined as the distribution o f a random 

variable whose logarithm is normally distributed. Such a variable is essentially positive. The 

LN distribution is positively skewed and completely characterized by two parameters, a 

geometric mean and a standard geometric deviation, but may be generalized by a translation 

parameter, truncation and censoring, adjoining a point probability mass, extension to two or 

more dimensions, and transformation (Shimizu and Crow, 1988).

The random variable A'is said to have a two-parameter lognormal distribution if the 

random variable V=lnX, where 0<X, is normally distributed with mean p and variance o2. 

The probability density function (PDF) ofX is given by

Ax) = — L _  e ** , 0<x.
x o y 2 k

The rth moment o f X  about the origin is expressed as

nitL-V
= £ t n  = < 2 .

From the properties of the moment generating function of the normal distribution, the 

corresponding mean and variance are respectively
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E(X) = e
and

VartX) = e 2* e *

The median is

MecKX) = e \

and the mode is

Mode{X) = e*-*1.

The relation among the mean, median, and mode of the lognormal distribution is

Mode(A) < Med(A) < E(X).

The cumulative distribution function (CDF) of the lognormal distribution is

where ®(z) is the CDF of standardized normally distributed random variable Z, expressed by

Now we review the estimation of the parameters of the LN distribution by the method 

of maximum-likelihood estimation, that is, by determining values o f these parameters that 

maximize the likelihood function. In order to get the maximum-likelihood estimates, we first 

need to form the likelihood function determined by the product o f the PDF values for the 

n observations. Thus, the likelihood function can be expressed by
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To find the values o f the parameters that maximize the likelihood function, it is 

generally more convenient to work with the logarithm of the likelihood function. Maximizing 

the log-likelihood function is equivalent to maximizing the likelihood function because the 

logarithmic transformation is monotonic. This practice simplifies problems in statistical 

inference because many probability models contain exponential terms. Thus, we form the log- 

likelihood function by taking the logarithm of L defined as follows

/(p,0£) = n ln[—L -]  -  £  ln(x,) -  - L  £  [ln(x.) -  p]2. 
o^2jt 2o2 /=1

Taking the first-order partial derivatives of the log-likelihood function with respect to g and 

a, and then setting the resulting functions equal to zero, we will obtain the maximum- 

likelihood estimates of parameters of the LN distribution. Then the maximum-likelihood 

estimates o f g and o, respectively, are

» - ■ ! • £  tax,  n

and

a  = [ - 1  o» *,-»o2 rn /=i
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Detailed discussions o f the maximum-likelihood estimation methodology for LN2 

distribution of censored data sets are provided by Aitchinson and Brown (1957), Kushner 

(1976), Gilbert and Kinnison (1981), Holland and Fitz-Simons (1982), and Gilbert (1987). 

Similar discussions for three-parameter lognormally distributed data sets are available in 

literatures by Harter and Moore (1966), Tiku (1968), Gilbert (1987), and Cohen (1988). 

Recently, Johnson et al. (1994) furnished an excellent review of the maximum-likelihood 

methods for estimation of the lognormally distributed parameters.

Mage and Ott (1984) made an attempt to show an effectiveness o f three different 

approaches (i.e., method of fractiles, method of moment, and method of maximum likelihood) 

for estimating parameters using the LN distribution as a parent distribution. Their results 

showed that if air-quality observations actually arise from a stationary LN distribution, then 

the maximum-likelihood approach gives minimum variance estimates, as also noted elsewhere 

(Holland and Fitz-Simons, 1982). Furthermore, Ott (1995) stated that if one is sampling from 

a true LN distribution, then it can be shown that the minimum-variance estimate o f the 

parameters is obtained by the maximum-likelihood estimation. In detail, Kendall and Stuart

(1979) discussed the properties o f the maximum-likelihood estimators.

The LN distribution has a long history of application in the field o f environmental 

pollution. A rich literature has been published over the past two decades, suggesting that 

pollutant concentration data tend to be lognormally distributed. The decision to apply the LN 

distribution in fitting pollutant concentration data can be attributed to the work of Larsen 

(1969, 1973, and 1974). Using graphical techniques, he concluded that regardless o f 

pollutant, city, or averaging time, the air concentration distributions are approximately 

lognormally distributed. An excellent review of the history of the applications of probability
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models, especially lognormal models, to aerometric data is given by Mage (1981). Under 

lognormally assumption, El-Shaarawi (1989) examined several methods for making inferences 

about the levels of many metals and organic contaminants in ambient water samples from the 

Niagara River. More recently, the applications of the lognormal model to air*, soil*, and 

water-quality data are presented in considerable detail by Ott (1995).

Having developed physical mechanisms generating environmental quality data, Ott 

(1995) provided an argument as to why the LN distribution is so ubiquitous in environmental 

phenomena. The LN distribution has been fitted not only for air quality data, as mentioned 

in this book, but also for water quality and geological data. Ott’s explanations involve the 

central limit theorem and the diffusion law.

The other examples of the LN distribution can be found in the articles o f Kalpasanov 

and Kurchatova (1976), Kushner (1976), Owen and DeRouen (1980), and Mage and Ott 

(1984) for air-quality data; Schubert, Brodsky, and Tyler (1967) and Gilbert and Kinnison

(1980) for radionuclide data; and Gilliom and Helsel (1986), Helsel and Gilliom (1986), 

Newman et al. (1989), and Stoline (1991) for water-quality data.

A number of investigators also considered other distributional forms for 

environmental-quality data. Using the sum-of-squares error as the goodness-of-fit criterion, 

Bencala and Seinfeld (1976) showed that Weibull models produce lower values than that o f 

the lognormal model for five o f eight CO data sets. But they stated that the LN model is 

convenient from a practical point of view. A similar study comparing the LN model with 

other probability models is also carried out by other reseachers, for example, by Berger et al. 

(1982), Simpson, Butt, and Jakeman (1984), Jakeman and Taylor (1985), and Taylor et al. 

(1986). Georgopoulos and Seinfeld (1982) presented a critical review of statistical
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distributions, such as Weibull, gamma, and many others, and stated that the LN distribution 

has been the most popular in representing urban air pollutant concentration data.
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CHAPTER m  

GENERALIZED LOG-LOGISTIC DISTRIBUTION 

In the statistical literature, the modeling of data by generalized probability models has 

been noted to be advantageous by numerous authors, because selecting the best probability 

model in a particular case is not an easy task. Each generalization usually includes normal, 

lognormal, and gamma distributions as its either limiting or special cases; consequently, the 

generalized models must provide at least as good a fit as other special models. A detailed 

discussion of these as well as many other related distributions are provided by McDonald and 

Richards (1987). In practice, however, the flexibility of the generalized model to include the 

distributional shapes involves intensive computations.

A general guideline of model selection of some generalized models, such as the 

generalized beta of the first and second kind (GB1, GB2), has been outlined by McDonald 

and Richards (1987). Applications of the distributions o f returns on stocks, M ure times of 

ball bearings, and incomes are discussed in their work. To fit survival data, Ciampi, Hogg, 

and Kates (1986) proposed a generalized F (GF) family as an alternative to the proportional 

hazards model. Moreover, Singh (1989) suggested a generalized log-logistic (GLL) 

distribution, which is a natural extension of the log-logistic (LL) distribution in modeling data 

of lung and other cancers.

15
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In relation to the LN distribution, it may be worthwhile to represent a brief discussion 

of the GLL distribution as an extension of the LL distribution provided by Singh (1989). The 

LL distribution is roughly similar in shape to the LN distribution, but a mathematical 

simplicity of the LL model seems to make it more attractive than the LN model. This is 

especially true when there are some censored observations. He then proposed a GLL model 

that reflects the skewness and the structure of the heavy tail of the model in fitting skewed 

hazard functions, while retaining mathematical simplicity. He also demonstrated the 

flexibility of the GLL model in fitting lung cancer survival data. Further illustrations of the 

GLL application in modeling breast cancer survival data are given by Singh et al. (1994). 

Four-Parameter Generalized Log-Logistic Distribution 

Let a random variable X  have four-parameter GLL distribution with shape parameters 

ni[ m2> denoted by X ~  GLI^m^mj), and then the CDF can be written in the form

m
= -------- f  w"1 1 (l-w)"*'1 d w  ; x , m v  m 1 > 0

B{mv m j  J

where B(m„m2) represents the complete beta function, which is defined as follows

_  > -  r <mi> r (m2>

where T is the gamma function, and

/ ( * )  = [1 + g-llWalnMI]-1 

is the log-logistic distribution function.

The corresponding PDF can be obtained by differentiating the CDF with respect to x  as 

follows:
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TO) = 4-dx

* -J- t p ,  1 ,  f  Wmr' (1-W)“‘'1* f  ]
dx B(mv m2) J

1 [TO]"r ‘ [1-TO)]"*'* 4 T O ) .
B(mlfm2) dx

But

— F (jc) =  —  [1 + ♦ « **» ]-»
dr dr

=  - [ l + e  -(P»ednC*))j-2  ̂ g  -<p*aln(r)) ^

X

= -  [TO!1 1— - _11x  Fix)

= -  [TO>]2 [ ^ r r i  
x  TO)

= -  [TO)] [I-T O ].
X

After simplification, the PDF of the GLLfmpiiij) distribution then becomes expressible as

TO) = ■ -■ [TO))"1 ti-TO]"*.
,/Wj)

In the PDF of GLL distribution, (3 and a  are the location parameter and the scale 

parameter, respectively, and (m ^m j are shape parameters. Note that if m t = m2 =1, 

GLLOn^mj) distribution reduces to the LL distribution. Observe that g(x) is positively 

skewed if mt > m2 and negatively skewed if mt < m2.

In order to gain more insight into the flexibility of GLL distribution, it is worthwhile 

to discuss its properties in terms of a hazard function. Let 7" be a random variable of the 

survival time. Setting X ~  T, the hazard function is given by

git)hit) =
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The hazard functions of the GLL model include increasing (I), decreasing (D), unimodal (H), 

and bathtub (U) shaped hazar rates (Singh, 1988; Singh et al., 1994). Graphs of hazard 

functions of GLL (m„m2) model for various values of parameters can be shown in Figures 

1-3.

The family of GLL distributions is quite rich and contains many distributions as 

limiting distributions or special cases. These distributions include the Weibull, LN, and 

gamma distribution, which are very popular in modeling environmental pollution data. Singh 

(1989) stated that the GLL model is a reparameterization of other well-known generalized 

models, such as the generalized F (GF) model discussed by Ciampi et al. (1986) and the 

generalized beta of second type (GB2) model considered by McDonald (1984) and McDonald 

and Richards (1987). The GLL model may also be linked to the generalized gamma (GG) 

model (Singh et al., 1994).

Before proceeding to generate the special case of the GLL distribution, it may be 

useful to give a discussion about its relationship to the other generalized models. 

Letting a = l/o and P = -p/o + InOn/mJ, it can easily be shown that the PDF of 

GLL(m„ni2) becomes

1 ( a / f f l / 1 x ^ ' 1
£(*) = - 5 7  r -------------- — --------------oB(mv m2) [i +(mi/W2) (*-/<*) 1/oj*.

which is the GF model deliberated by Hogg and Ciampi (1985) and Ciampi et al. (1986).

It can be seen that the GLL distribution and the GF distribution are similar. Following 

Hogg and Ciampi (1985), Ciampi et al. (1986) showed that the GG distribution is a special 

case of the GF distribution. Note that, in fitting air pollutant concentrations, the GG model
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t

Figure 1. Graph of the hazard function for a  -  1, 0 *  -1, m, = 1, and nij = 2.5.
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t

Figure 2. Graph of the hazard function for a  = 1, (J = -3, m, = 5, and nij = 2.5.
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Figure 3. Graph of the hazard function for a  = 2, P = -0.5, = 5, and m2 = 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22
has been proposed by Marani, Lavagni, and Buttazzoni (1986) and Okur (1988). 

Furthermore, a number of authors, such as Ciampi et al. (1986) and DiCiccio (1987), have 

demonstrated the relationship between the GG distribution with other parametric distributions 

including the LN, Weibull, and gamma distributions as limiting or special cases.

It can also be shown that if we let o=a and |5=-a ln(b) in GLL(m,,m2), the PDF of 

GLI^m^mj) becomes

am.-l
,  .  a x  'g(x) = ---------------------------------------

b am' B(mvm2) [l+(x/b)a]m''m*

which is the pdf of GB2 distribution considered by McDonald (1984) and McDonald and 

Richards (1987). Moreover, McDonald (1984) showed that for m2 -  ■» and b=y(m2)(l/a), 

the GB2 model will reduce to the GG model, that is, the GG distribution, which is a special 

case of the GB2 distribution as well.

Therefore, it is clear that the GG, LN, Weibull, and gamma distributions are the 

limiting or special cases of the GLL distribution, because the GLL distribution is similar to 

the GF and GB2 distributions. Consequently, the GLL model should provide at least as good 

a fit as these models.

Now we discuss the estimation o f the parameters of the GLL distribution by the 

method of maximum-likelihood estimation. Fork* sample, let nt and n2 be, respectively, the 

number uncensored and left censored observations. Let n* be the number of uncensored 

observations in N random samples, where

N
n * = £  nik- *=i

The likelihood function can be defined as
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L(a$,m vm2\£  * n i l f i ( * / )  • I Ifc=i f=i j - \

If there is no left censored observation, the likelihood function is expressed by

z(a,p,wP7n2ii) = n i u w
k=l i=l

The likelihood function of the GLL(m,,m2) is defined as follows

i ( a ,p ,« „ m 2ii ) = n < n  f  w r  .
k=i »=i x.
«» . W
U - s r 1 — r /  w " '- '
/=i B(ot1}w2) j

= n < n  f  rp- 1—  K w r  [ l - w .
Ar=l i=I X *  D \J 7J j j/^2  J

n ' w  f a )] >
y=i

where

^  W ’ *  ; 0 i*3 '

is the incomplete beta function with parameters m, and m2.

The log-likelihood function then can be expressed by

I (a,P,m 1,w2|i )  = Y , * %  £ Pn(a)] ~ Pd[B(ot1s/w2)]] ] +
*=i

*■ E >”FA,)] + m2 £  ln[l -£-„(*,)] - £ln(*,) +
»=1 «=1 »=1

E w / ^ f a - ) ] ) ) -
J* 1
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In order to obtain the maximum-likelihood estimators, we shall take first order

derivatives of the log-likelihood function with respect to a, p, m„ and m2, and we then set

the resulting functions equal to zero. Therefore, the maximum likelihood estimates of

parameters are given by the solutions of the following equations

8 /  (g,P,m ,,m 2|g) _ a  /  (g,p,m l,m2|g) _

da ’ ap

and

a  /  (tt,P,m,,m2lg) _ q a  /  (tt,p,m„m2|g) _

am, ’ dm2

The first-order derivatives of the log-likelihood function with respect to a, p, m„ and m2 are

#  = £ { * mi E w  [ i - w i  -  »>, E tto(x ,)i c f m } *oa a /=i ,=1

E 7—pft-t w i i F & r  n - F ^ r  iB(m,,m2) j-.x

I t  = E { m i” ik ~ ( « i +» 2) E  t W ]  +OP *=I /=!

'  £ -7------PFTTvT W  0 - W l '  >B(m,,m2) j-.x

~ -  = E { ~n \k [¥(/!»,)-¥(/»,+m2)] + E 1® ^ / ) ]om, t=i ,=i

£  i ,

and
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~n\k [^(/w^-YCmj+mj)] + J^ ln fl-F /x ,)] +
C7W2  *=1 /= !

»  1  ,
>=l ^m2 

where 7(m) is the psi (diganuna) function defined by

<P(IB) = - i [ t a  r(m)] 
am

_ i »

Let ft be the parameter vector, that is, ft' = (o^m ^m ^. An asymptotic variance- 

covariance matrix, V(fi), can be obtained by taking inverse of Fisher information matrix, I(ft). 

The Fisher information matrix has (i j )  element

a2/

25

N »i*

-  E
B e ty

The derivation of the first- and second-order derivatives of the log-likelihood function with 

respect to a, P, m,, and m2 are given in Appendix A.

The GLL model is attractive in form, but solving for the estimates of above 

parameters using maximum-likelihood techniques is not at all straightforward. Differentiating 

the gamma or beta function and dealing with some nonlinear equations simultaneously cause 

some computational difficulties. Because the log-likelihood equations are nonlinear in a, P, 

mb and m2, the maximum-likelihood estimates can not be solved analytically; therefore, 

iteration techniques are needed.

Fortunately, to solve nonlinear equations, which typically involves an optimization 

(maximization or minimization) of a function, there are good computer programs available 

in some packages of computer programs, such as MATLAB version 4, particularly in the
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FMINS procedure used for the purpose of minimizing a function o f several variables. The 

algorithm utilized in this procedure is the Nelder-Mead simplex (Hanselman and Littlefield, 

1995). Special functions, such as incomplete beta, natural logarithm of the beta function, 

incomplete gamma, and natural logarithm of the gamma function, are available in MATLAB. 

Three-Parameter Generalized Log-logistic Distribution 

The CDF of GLL(m,m) can be written in the form

m
G(x) = ■ jf O  (1-w)]*'1 dw.

The corresponding PDF can be obtained by differentiating the CDF with respect to r:

dx
d  • «■>

But

B (m,m) dx

— F{X) = —  [1 + e'tP'-bC*))]-! 
dx dx

-  _ [ l  + e  -(P»ataC*))j-2 e  -(P»ain(x))

X

= -  TO )]2 [-JJ--1]
X Fix)

* -  TOM* t - ~ |& ]
X Fix)

= -  T O ]  [l-TOJ-
X

After simplification, the PDF of the GLL(m,m) distribution is given by

f&) = [F(x)T [1-F(x)r.
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The likelihood function is expressed as follows:

= n <  i i  f  ■ t ( w >  (i*=i 1=1 x(. a(m,m)
»a W

f

The above equation can be rewritten as

£(o,p ,w |x) = n
N

n*=i

where

n  7  r ? 7 7 7  w r  n -*»(*,)]■ fU [Ffrp],=i x, a(m,m) y=i >

-  -goby ( (" r

is the incomplete beta function with parameters a and b. For notation simplicity, we write 

/c(x) for /  (Ci£)(x) whenever a = b = c.

The log-likelihood function then can be defined as

N
/  (a,P,m|£) = [ ln(a)-ln[B(m,/w)]] +

*=i

E t  D n ^ x ^ + ln tl-^ C x ^  ] -  £ ln (x f) +
»=i ,=i

E w .  t ^ i i  >.
/=l

The first-order derivatives of the log-likelihood function with respect to a, p, and m are

oa *=i a /=i

* b »  I  7’j h v  lM x )]  W  [1' ^ r  ’
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£ = £ ( ' i t a ^ 7  ^ O r 1  * £ [ to [ W 1  * ^ ‘- W J 1 *cm o\m ym) am /=i
£ r 1 « W  -1 a i ^m > [------------ -—  + --------------——1 +
f t  Fk{x) dm \-F k{x) dm

f t  i n j r w  i
&  W  *»

But

= B(m,m) ~[log(B(m,m)] 
dm dm

= B(m,m) - l [ l o g I O ^ ]  
dm B T(2m)

= B(m,m) ~[21og(T(m) -  log(T(2m)] 
dm

= B(m,m) [2 -  2
T(m) T(2m)

= 2 B(m,m) [Y(m) -  Y(2m)]

where Y(m) = P(m) / T (m) is the digamma function. Then

i j -  = £ {  -2  nu  (T(m) -  T(2m)] * £ 1  to[Ft(at,)l * ta[l-F„(j:.)] ] -  
am t=i 1=1

r _ i _ 5 S i
k  IJ F {* )\ Sm

= E <  -2  nlt PP(m) -  T(2m>] * £ l n l  [l-F^jr,)] ] *

f t _ i _  W £ ,
k  IJL F ty] dm ■
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The derivation of the first- and second-order derivatives o f the log-likelihood function with 

respect to a, P, and m are given in Appendix A.
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CHAPTER IV 

APPLICATIONS OF MODELS TO DATA SETS 

In order to explore the possibilities of using the GLL distribution as a general 

probability model for representing some statistical characteristics of environmental-quality 

data, in this section, the four-parameter and three-parameter GLL distributions are applied 

to several environmental pollutant data sets and the results are compared with those obtained 

using log-logistic and lognormal distributions. The comparison indicates that the GLL(m,,m2) 

distribution seems to be a promising probability model for fitting environmental-quality data.

Example 4.1

This example uses uncensored data of mercury concentration in ppm in 115 sample 

swordfish published by Lee and KrutchkofF (1980). The maximum-likelihood estimates of 

the parameters obtained by the GLLOn^mj) model are a  *  14.0428, 0 *  -5.4922, m, = 

0.1192, and m2= 0.4342. The 95% asymptotic confidence intervals for a, P, m„ and 

m2 are [13.7578,14.3278], [-5.6749,-5.3095], [0.1167,0.1217], and [0.4094,0.4580], 

respectively. The GLL(m,m) fit yields a =17.5504, p =-1.7498, and m = 0.1303. 

The 95% asymptotic confidence intervals for o, p, and mare [17.1572,17.9436], 

[-1.9612,-1.5384], and [0.1257,0.1349], respectively. Given in Table 1 are the log-likelihood 

function, and Akaike Information Criterion (AIC) under GLLOn^mj), GLL(m,m), GLL(m, 1),

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

GLL(l,ni), and GLL(1,1) distributions. For the purpose of comparison, the data set is also 

fitted by the lognormal distribution.

According to Table 1, it is clear that the value of the log-likelihood of the 

GLL(m„m2) distribution is considerably larger than those of the lognormal and GLL(1,1) 

distributions and slightly larger than those of the GLL(m,l), GLL(l,m), and GLL(m,m) 

distributions. Note, also, that these values of the GLL(m,l), GLL(m,l), and GLL(m,m) 

distributions are remarkably larger than that of the traditional lognormal distribution and the 

GLL(1,1) distribution is slightly larger than that of the lognormal distribution. Therefore, by 

looking of the maximum log-likelihood values, the GLI^m^niz) distribution seems to be a 

better statistical model in fitting data of mercury concentration. Moreover, the AIC of the 

GLL(m„m2) and GLL(m,l) distributions are considerably lower than those of log-logistic, 

GLL(l,m), and GLL(m,m) distributions. Consequently, from the AIC value standpoint, the 

GLLO&i.mj) and GLL(m,l) distributions may provide better description of the data of the 

mercury concentration.

Figures 4-6 present graphs of the CDFs of compared models superimposed on the 

empirical distribution function, which is defined as the proportion of sample observations less 

than or equal to x. The graphs suggest that there is improvement in fit using the GLL 

distributions. In particular, the GLI^m^m^ performs considerably better than the lognormal, 

GLL(1,1), GLL(l,m), GLL(m,m) distributions and slightly better than GLL(m,l) distribution. 

Notice that the other GLL distributions also appear to do better than the classical lognormal 

distribution.
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Tablel

Values of the log-likelihood functions and of AIC for models fitted to mercury data

Model Log-likelihood AIC

GLL(1,1) -100.4040 204.8080

GLL(m,l) -81.1847 168.3694

GLL(l,m) -85.5972 177.1944

GLL(m,m) -93.9988 193.9976

GLL(m„m2) -80.9181 169.8362

Lognormal -114.1681 -

Example 4.2

This example uses uncensored data of tritium oxide concentration of 26 air-sampling 

stations in the Los Alamos Scientific Laboratory, published by Apt (1976). The maximum- 

likelihood estimates of the parameters obtained by the GLLOn^mj) model are ft = 0.6063, 

P =-0.3132, mx = 28.3270, and m2 = 5.6582. The 95% asymptotic confidence intervals 

for b, p, m„ and m2 are [0.5730,0.6396], [-0.4189,-0.2075], [28.3094,28.3446], and 

[5.6573,5.6591], respectively. The GLL(m,m) fit yields 6=0.1160, 0 = -0.3832, and m 

= 239.7601. The 95% asymptotic confidence intervals for a, P, and m are 

[0.1039,0.1281], [-0.7881,0.0235], and [150.9256,328.4866], respectively. The maximum 

log-likelihood values and AIC under GLLOn^m^), GLL(m,m), GLL(m,l), GLL(l,m), and 

GLL(1,1) distributions are given in Table 2. For the purpose of comparison, we also
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Figure 4. Graphs of the CDFs of the GLLfm^m^ and GLL(m,m) distributions and the 
empirical distribution function (+ line) of mercury concentrations.
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Figure 5. Graphs of the CDFs of the GLL(m, 1) and GLL(l,m) distributions and the 
empirical distribution function (+ line) of mercury concentrations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

GLL(1,1) Distribution

1 M 
X

Lognormal Distribution

.2 QJ

o.i

Figure 6. Graphs of the CDFs of the GLL(1,1) and lognormal distributions and the 
empirical distribution function (+ line) o f mercury concentrations.
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calculate the value of the log-likelihood function of the lognormal distribution when data are 

fitted by the lognormal distribution.

Table 2 shows that the value of log-likelihood of distribution is slightly

larger than those of the lognormal, GLL(1,1), GLL(m,l), GLL(l,m), and GLL(m,m) 

distributions. Note that the value of log-likelihood of the lognormal is somewhat larger than 

those of the other GLL distributions. From the value of log-likelihood function standpoint, 

therefore, the GLL(m1,mx) model seems to be a promising model in fitting data o f tritium 

oxide concentration.

Table 2

Values of the log-likelihood functions and of AIC for models fitted to tritium oxide data

Model Log-likelihood AIC

GLL(1,1) -117.0293 238.0586

GLL(m,l) -116.5560 239.1120

GLL(l,m) -116.9560 239.9120

GLL(m,m) -116.2774 238.5548

GLL(m1,m2) -116.1760 240.3520

Lognormal -116.2738 •

Graphs of CDFs of models superimposed on the empirical distribution function 

suggest that there is a slight improvement in fit using the GLLOn^mj) distribution. The 

GLL(1,1), GLL(m,l), GLL(m,l), and lognormal distribution show a similar performance in
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Figure 7. Graphs of the CDFs of the G L L O n,^  and GLL(m,m) distributions and the 
empirical distribution function (+ line) of tritium oxide concentrations.
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Figure 8. Graphs of the CDFs of the GLL(m, 1) and GLL(l,m) distributions and the 
empirical distribution function (+ line) of tritium oxide concentrations.
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Figure 9. Graphs of the CDFs of the GLL(1,1) and lognormal distributions and the 
empirical distribution function (+ line) of tritium oxide concentrations.
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fitting data. See Figures 7-9. Hence, graphically, the GLLCtn^mj) distribution seems to be 

a better distribution in fitting data of tritium oxide concentration.

Example 4.3

This example uses data of copper concentrations with 34 uncensored and 14 censored 

observations in the San Joaquin Valley, California, published by Millard and Deverel (1988). 

The maximum-likelihood estimates of the parameters obtained by the GLL(m„m2) model 

are & =0.6560, (5 = 1.8748, mx-  41.9214, and th2 = 3.6089. The 95% asymptotic 

confidence intervals for a, p, mt, and tnj are [0.6551,0.6569], [1.8739,1.8758], [41.5963, 

42.2465], and [3.5251,3.6927], respectively. TheGLL(m,m) fit yields & =0.1103, 0 = 

-0.1184, and m = 199.5571. The 95% asymptotic confidence intervals for of a, P, and m are 

[0.11029,0.11031], [-0.707,0.4702], and [198.4403,200.6739], respectively. Table 3 

contains the log-likelihood function and AIC under GLLCm^m^, GLL(m,m), GLL(m,l), 

GLL(l,m), and GLL(1,1) or log-logistic distributions. Also, for the purpose of comparison, 

we fitted the lognormal distribution to the the same data set.

From Table 3, it can be seen that the value of log-likelihood of GLLCm^mj) 

distribution is larger than those of the lognormal, GLL(1,1), GLL(m,l), GLL(l,m), and 

GLL(m,m) distributions. Also note that the these values of the other GLL distributions are 

larger than that of the lognormal distribution. Hence, on the basis o f the values of log- 

likelihood functions, the GLL(m„m2) model seems to be a promising model in fitting data of 

copper concentration. However, the AIC of the GLL(1,1) distribution is slightly lower than 

the compared distribution. Thus, in this case, because of mathematical simplicity, the log- 

logistic distribution is preferable over the three-parameter and four-parameter GLL 

distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

Table 3

Yalass.flf thsJpg-likelihood functions.andjof AIC.fbr models fitted to.CQBECL.daia

Model Log-likelihood AIC

GLL(1,1) - 96.9766 238.0586

GLL(m,l) - 96.4600 239.1120

GLL(l,m) - 96.9296 239.9120

GLL(m,m) - 96.3422 238.5548

GLLCm^m^ - 96.0383 240.3520

Lognormal -100.0472 -

Figures 10-12 show graphs of CDFs of models superimposed on the empirical 

distribution function. The graphs suggest that the performances of the GLLOnj.nij), 

GLL(m,m), GLL(m,l), GLL(l,m), GLL(1,1), and lognormal are similar. In other words, the 

GLL(m„m2) distribution fits the data as well as the GLL(m,m), GLL(m,l), GLL(l,m), 

GLL(1,1), and lognormal distributions in fitting data of copper concentrations.

Example 4.4

This example is selected from Roberts (1979). For uncensored data of sulfur dioxide 

(S02) concentrations with 19 observations, the maximum-likelihood estimates of the 

parameters obtained by using the GLLfn^mJ model are ft = 1.0919, 0 = -2.6069, 

11.5423, and m2 = 61.4388. The 95% asymptotic confidence intervals for a, p, m,, and m2 

are [1.0108,1.173], [-2.6761,-2.5377], [11.5391,11.5455], and [61.4295,61.4481], 

respectively. The GLL(m,m) fit yields ft =0.2793, ^ =-0.2301, and m~ 286.9014.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

GLLOn^mj) Distribution

QJt

04 -
0.1

10 so
X

GLL(m,m) Distribution

0  M

0.7

0.1 10 1 0 00
X

Figure 10. Graphs of the CDFs of the GLLO^.n^) and GLL(m,m) distributions and the 
empirical distribution function (+ line) of copper concentrations.
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Figure 11. Graphs of the CDFs of the GLL(m, 1) and GLL(l,m) distributions and the 
empirical distribution function (+ line) of copper concentrations.
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Figure 12. Graphs of the CDFs of the GLL(1,1) and lognormal distributions and the 
empirical distribution function (+ line) of copper concentrations.
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The 95% asymptotic confidence intervals for the MLE of a, P, and m are [0.2376,0.321], 

[-0.7262,0.266], and [136.324,437.4788], respectively. The maximum log-likelihood values 

and AIC under C3X(m„m2), GLL(m,m), GLL(m,l), GLL(l,m), and GLL(1,1) distributions 

are exhibited in Table 4.4. For the purpose of comparison, we also fitted the lognormal 

distribution to the same data set.

Table 4 shows that the value of log-likelihood of GLLOn^m^ distribution is larger 

than those of the lognormal, GLL(1,1), GLL(m,l), GLL(l,m), and GLL(m,m) distributions. 

Thus, on the basis of the values of log-likelihood functions, the GLL(m„m2) model shows 

better fit than the other models in fitting data of S02 concentration. But, as can be seen from 

Table 4, the AIC of the GLL(1,1) distribution is somewhat lower than those of the other GLL 

distributions. Therefore, in terms of the AIC criterion, there is a slight improvement when 

the data are fitted by the GLL(1,1) distribution.

Figures 13-15 display graphs of the CDFs of models superimposed on the empirical 

distribution function. The graphs suggest that the performances of the GLLO^.nij), 

GLL(m,m), GLL(m,l), GLL(l,m), GLL(1,1), and lognormal in fitting data of S02 

concentration are similar. In other words, the GLLOn^n^) distribution fits the data as well 

as the lognormal and the other compared distribution.

Example 4.5

This example is selected from U.S. Environmental Protection Agency (EPA) (1979). 

For data of chloride concentrations, the maximum-likelihood estimates of the parameters 

obtained by the GLL(m,,m2) model are & =2.8195, 0 =-5.5151, m ^- 147.002, and mx ~ 

0.7440. The 95% asymptotic confidence intervals for o f o, P, m„ and m 2 are 

[2.3728,3.2662], [-7.2449,-3.7853], [143.5248,150.4792], and [0.739,0.7489], respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Table 4

Values of the log-likelihood functions and of AIC for models fitted to SQ2 data

Model Log-likelihood AIC

GLL(1,1) -20.1639 44.3278

GLL(m,l) -20.0832 46.1664

GLL(l,m) -19.8655 45.7310

GLL(m,m) -19.6455 45.2910

GLL(m„m2) -19.5852 47.1704

Lognormal -19.6431 -

The GLL(m,m) fit yieldsa = 20.2786, P = -82.0547, and m = 0.1222. The 95% asymptotic 

confidence intervals for a, p, and m are [20.0454,20.5118], [-83.0929,-81.0165], and 

[0.1199,0.1245], respectively. The maximum log-likelihood values and AIC under 

GLL(m,,m2), GLL(m,m), GLL(m,l), GLL(l,m), and GLL(1,1) distributions are given in 

Table 5. For the purpose of comparison, we also calculate the value of the log-likelihood 

function of the lognormal distribution when data are fitted by using the lognormal distribution.

It can be seen that the value of log-likelihood of GLL(m„m2) distribution is larger than 

those obtained by using the lognormal, GLL(1,1), GLL(m,l), GLL(l,m), and GLL(m,m) 

distributions. In terms of the values of log-likelihood functions, therefore, the GLI^m^mj) 

model seems to be a better distribution than the compared distributions in fitting data of 

chloride concentration. From Table 5, however, it is clear that the AIC of the GLL( 1,1) is
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GLLCm^mj) Distribution
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Figure 13. Graphs of the CDFs of the GLL^m^m^ and GLL(m,m) distributions and the 
empirical distribution function (+ line) of S02 concentrations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

GLL(m, 1) Distribution

0.7

O . l  -

I A ts
X

Si

GLL(l,m) Distribution

dj

0.7

04

0.1

IA Z AX

Figure 14. Graphs of the CDFs of the GLL(m,l) and GLL(l,m) distributions and the 
empirical distribution function (+ line) of S02 concentrations.
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Figure 15. Graphs of the CDFs of the GLL( 1,1) and lognormal distributions and the 
empirical distribution function (+ line) of S02 concentrations.
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relatively Iowct than the other GLL distributions. Thus, on the basis o f the AIC criterion, the 

GLL(1,1) distribution is preferred to the other GLL distribution in fitting chloride data. 

Table 5

Values of the log-likelihood functions and of AIC for models fitted to chloride data

Model Log-Likeiihood AIC

GLL(1,1) -49.2634 102.5268

GLL(m,l) -48.5229 103.0458

GLL(l,m) -48.7224 103.4448

GLL(m,m) -49.1838 104.3676

GLLOn^mj) -48.5134 105.0268

Lognormal -49.2495

For data o f iron concentrations, the maximum-likelihood estimates of the parameters 

obtained by using the GLLOn^mj) model are & = 1.1036, 0=0.1798, m x = 32.5857, 

and m2= 2.9799. The 95% asymptotic confidence intervals for a, 0, mt , and n^ are 

[0.9428,1.2644], [-0.1495,0.5091], [30.6092,34.5622], and [2.9738,2.9860], respectively. 

The GLL(m,m) fit yields & = 0.2178, 0 = -0.4679, and m = 122.0616. The 95% 

asymptotic confidence intervals for o, 0, and m are [0.2175,0.2181], [-0.4721,-0.4637] and 

[121.4759,122.6473], respectively. The maximum log-likelihood values and AIC under 

GLLXm^mJ, GLL(m,m), GLL(m,l), GLL(l,m), and GLL(1 , 1 ) distributions are given in 

Table 6 . For the purpose of comparison, we also calculate the value of the log-likelihood 

function of the lognormal distribution when data are fitted by the lognormal distribution.
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It can be seen from Table 6  that because the value of log-likelihood of the 

GLL(m„m2) distribution is larger than those o f the lognormal, GLL(1,1), GLL(m,l), 

GLL(l,m), and GLL(m,m) distributions, the GLLCm^mj) model seems to be a promising 

model in fitting data o f iron concentration. However, in terms o f the AIC criterion, the 

GLL(1,1) distribution is preferable over the other GLL distributions.

Table 6

Values of the log-likelihood functions and of AIC for models fitted to iron data

Model Log-likelihood AIC

GLL(1,1) -30.5016 65.0032

GLL(m,l) -30.2953 66.5906

GLL(l,m) -30.3906 66.7812

GLL(m,m) -30.3663 66.7326

GLLOn^mj) -30.2166 68.4332

Lognormal -30.3648 -

For data of aluminum concentrations, the maximum-likelihood estimates of the 

parameters of the GLLCm^m^ model are & =0.4105, $ = 1.5871, mx~ 242.760, and 

m2 = 28.7348. The 95% asymptotic confidence intervals for a, p, m, , and m2  are 

[0.3534,0.4676], [1.5102,1.6640], [241.29,244.230], and [27.772,29.6976], respectively. 

The GLL(m,m) fit yields & = 0.2864, 0 = -0.3924, and m = 104.2768. The 95% 

asymptotic confidence intervals for a, P, and m are [0.1548,0.4180], [-2.3358,1.551], and 

[-79.4834,288.037], respectively. The maximum log-likelihood values and AIC under
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GLI^m^m^, GLL(m,m), GLL(m,l), GLL(l,m), and GLL(1,1) distributions are listed in 

Table 7. For the purpose of comparison, we also calculate the value of the log-likelihood 

function of the lognormal distribution when data are fitted by the lognormal distribution.

As shown in Table 7, the value of log-likelihood of GLLOn^mJ distribution is larger 

than those of the lognormal, GLL(1,1), GLL(m,l), GLL(l,m), and GLL(m,m) distributions. 

From the value of log-likelihood function standpoint, therefore, the GLL  ̂m^mj) model seems 

to be a better distribution in fitting data o f aluminum concentration. But Table 7 also 

suggests that the AIC o f the GLL(1,1) is slightly lower than the other GLL distributions. 

Therefore, on the basis o f the AIC criterion, the GLL(1,1) distribution fits slightly better than 

the other GLL distribution in fitting aluminum data.

Table 7

Values of the log-likelihood functions and of AIC for models fitted to aluminum data

Model Log-likelihood AIC

GLL(1,1) -20.7721 45.5442

GLL(m,l) -20.7615 47.5230

GLL(l,m) -20.7715 47.5430

GLL(m,m) -20.6417 47.2834

GLL(m,,m2) -20.6239 49.2478

Lognormal -20.6399 •

Graphs of the CDFs of models superimposed on the empirical distribution functions 

for chloride data are given in Figures 16-18. As demonstrated by the graphs, all of the
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compared distributions show a similar performance. The similar results also are obtained for 

the data o f iron and aluminum concentration. See Figures 19-24. Hence, the GLLOn^mj) 

fits the data as well as the classical lognormal and the other GLL distribution in fitting data 

o f chloride, iron, and aluminum concentrations.
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Figure 16. Graphs of the CDFs of the GLLfnii.mj) and GLL(m,m) distributions and the 
empirical distribution function (+ line) of chloride concentrations.
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Figure 17. Graphs of the CDFs of the GLL(m,l) and GLL(l,m) distributions and the 
empirical distribution function (+ line) o f chloride concentrations.
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Figure 18. Graphs of the CDFs o f the GLL(1,1) and lognormal distributions and the 
empirical distribution function (+ line) of chloride concentrations.
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Figure 19. Graphs of the CDFs of the G L I^ m ,^  and GLL(m,m) distributions and the 
empirical distribution function (+ line) of iron concentrations.
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Figure 20. Graphs of the CDFs of the GLL(m, 1 ) and GLL(l,m) distributions and the 
empirical distribution function (+ line) of iron concentrations.
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Figure 21. Graphs of the CDFs of the GLL(1,1) and lognormal distributions and the 
empirical distribution function (+ line) of iron concentrations.
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Figure 22. Graphs of the CDFs of the GLL(mi,ni2) and GLL(m,m) distributions and the 
empirical distribution function (+ line) of aluminum concentrations.
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Figure 23. Graphs of the CDFs of the GLL(m, 1) and GLL(l,m) distributions and the 
empirical distribution function (+ line) of aluminum concentrations.
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Figure 24. Graphs of the CDFs of the GLL(1,1) and lognormal distributions and the 
empirical distribution function (+ line) o f aluminum concentrations.
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CHAPTER V 

FUTURE RESEARCH PROBLEMS 

Of primary interest is the fact that, in fitting environmental pollutant data, none o f the 

probability models, including the classical lognormal, has been identified to be superior to 

others in a general sense. It is reasonable, therefore, to use a rich family o f distributions that 

includes several well-known distributions as special cases for fitting environmental data. 

Based on its desirable features, as discussed in previous chapters, we introduced a GLL 

distribution as a general distribution of data o f environmental pollutant concentrations, and 

applied it to seven data sets.

As demonstrated in chapter four, in fitting environmental data, the GLL family of 

distributions is a good alternative to the lognormal distribution. For all o f data sets, the 

distributions o f GLL family are found generally better than the lognormal distribution. In 

particular, on the basis of the values of maximum log-likelihood functions, the GLL(m,,m2) 

seems to be a better probability model for all o f data sets. Moreover, graphs of the CDFs of 

the models superimposed on the empirical distribution suggest that the GLI^m^m^) is 

generally better than the lognormal and other families of the GLL distributions.

Hence, the use of the distribution of GLL family in fitting environmental data needs 

to be investigated further. Now we give a brief synopsis o f problems for future research.

63
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1. It is interesting that for data of mercury concentration with I IS sample size, the 

maximum log-likelihood value of GLLOn^nij) distribution is considerably larger than that of 

the other distributions, especially the lognormal distribution. But for the other data sets with 

a sample size much smaller, for example, for data of tritium concentration with 26 

observations, the improvement in the likelihood function is slight. What are the effects of 

sample size to the performance of the GLL(ml,m2) distribution in fitting data o f environmental 

pollutant concentration?

2. Following the first question, what are the effects o f the intensity o f censoring? 

To answer questions 1 and 2, simulation studies may be utilized.

3. The family of probability models may change significantly for different types of 

pollutant, averaging time of interest, different locations, and other factors. Hence, the 

performance of GLLOn^mj) when incorporating these factors needs to be examined further. 

How well does the GLLOn^m^ fit these data?

4. The log-logistic is a special case of the GLLO^m-t), when m;= m2  = 1. What is 

the effect of estimating the shape parameters mi and m2  on the estimation of the scale 

parameter a?

5. In this study we employed the method of maximum-likelihood estimation for 

estimating parameters of distributions. It is very interesting, therefore, to compare this 

method with others. What is the best method for estimating parameters of the GLL 

distributions for describing data o f pollutant concentrations?
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FIRST- AND SECOND-ORDER DERIVATIVES OF 
THE LOG-LKELIHOOD FUNCTIONS
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The log-likelihood function of the GLI^m^mj) is defined as follows

N
I (a,P,m,,/n2 |x) = £ i n lk [ [ln(a)]-[ln[B(i»i11jii2)]] ] +

k=l

m\ E ta[F*(x/)] + m2 £  ^ [ 1  ~F*(x/>] ~ E ta (x,) +
/=t i=l i=I

E ^ ^ ) t ^ ( xy)]>>-
yi

The first-order derivatives of the log-likelihood function with respect to a, P, m„ and m2  are 

listed below:

| L .  £ { f £  ♦ [to(=,)] I W 1 [!-/;(* ,)] -do *=i O ,=1 r k{xt)

"u

/■>

= E < — - E w*,)i [i - F & m  -  * 2 E Mx,)i t̂ (x,)]*=t o ,=i j=l

r  i  S!^ F ^ }

i "  da

= E ( -r * E W x,)] [ 1  -F^x,)] -  m, £  [ta(x,)] [Ft(x,)I
*=i a t*i I=1

d7 ~~T E 7 fp£TT [ta(x,)J [1-*,(*,)]"■ >
" (wpw 2 ) ■/*> (m|̂ n})[ fc(X/)j
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The second-order derivatives of the log-likelihood function with respect to a, P, mt, and nij 

are listed below:

i w  W l  [1 - W J  -coda *=i a »=i

[1‘ W  *

E  t 7  Jf TTTT ™ , [ w r rl t w i

[1 -F jU p ] [ l-F jtc p p  7

  i —  [F,U j)]” ' m J l- F .O r p p - ' [ -F t(.t.)] [ l - F ^ ; ]  7

 - j  e w f A > i  f s a .  [ f  o r  p - f w p  1 >
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= E (E - ŵ i fWik= 1 /=!
"2 *

E t  1
* W FA >1

i-‘ dm^d a
1

( ' « w w  )2 a“ ^
] )

p i t  N  "i* .

= E I E [ t-FTT W) [! -f*<*,»8m28p Jt=i /=! 1 -Fk(xt)

r r _ L _ £ W f M  
k  a m &

i a /(„ ^ ,[F ,(x .) ]  '

( W W >  ) 2  3P *"«
n "u "» , a2/, rFt(x)i■ e «e w *Ef, * —p L -

* = i  i = i  y = i  (m , 3 m 2 8 p

1 a/( , ^ ) t ^ ) ]

( W W )2 ap 8w>
] >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

The log-likelihood function of the GLL(m,m) is given by

I (o,p,i»|£) = [ [ln(a)-ln(B(/n,m)-] +
*=i

"  E I  D n(W ]-ln [l-F ,(x ,)] ] -  ln(x,)
»=1 » =1

I K / .  > •

The first-order derivative of the log-likelihood function with respect to a, p, and m is shown 

by

* m E 0 n(x,)] [ l - 2 F((x,)] *
Ott 1  ̂ Jt=l ct ,=1

a/ N
a s !«,=*,=* = - 2 »  E ^ ) ]  +
°P *=1 /=I/=I

1
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The second-order derivatives of the iog-likelihood function with respect to a , (J, and 

is shown by
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Below are data mercury concentration in ppm in 115 sample swordfish (Lee and 

Krutchkoff,1980):

0.05
0.07
0.07
0.13
0.13
0.19
0.24
0.25
0.28
0.32
0.39
0.45
0.46
0.53
0.54
0.56
0.60
0.60
0.61
0.62
0.65
0.71
0.72
0.75
0.76
0.79
0.81
0.81
0.82
0.82
0.82
0.83
0.83
0.83
0.84
0.85
0.89
0.90
0.91
0.92
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0.92
0.93
0.95
0.95
0.97
0.97
0.98
1.00
1.00
1.01
1.02
1.04
1.05
1.05
1.08
1.10 
1.12 
1.12
1.14
1.14
1.15
1.16 
1.20 
1.20 
1.20 
1.20 
1.20 
1.21
1.22
1.25
1.25
1.26
1.27
1.27
1.29
1.29
1.29
1.29
1.30
1.31
1.32
1.32
1.37
1.37
1.39
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1.39
1.40
1.40
1.41
1.42
1.43
1.44
1.45
1.54
1.54
1.58
1.58 
1.60 
1.60 
1.62
1.62 
1.66 
1.66 
1.68 
1.69
1.72 
1.74 
1.85 
1.89
1.96
2.06
2.10
2.23
2.25
2.72

Below are data o f annual average atmospheric tritium oxide concentrations (Apt,

1976):

6.8
7.2
9.5
11.8
12.9
14.7
15.2
16.2
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17.1
19.3 
20.0 
20.0
21.8 
26.7
28.0
34.0
36.3
41.5
42.6
45.4
58.2
64.4
67.5
81.2
97.7
141.3

Below are data groundwater concentrations of copper (cu) in micrograms per liter 

in the San Joaquin Valley, California (Millard and Deverel, 1988):

2
2
12
2
1
< 1 0  (censored) 
< 1 0  (censored) 
4
< 1 0  (censored) 
< 1  (censored) 
1

< 2  (censored) 
< 2  (censored) 
1 

2
< 1 0  (censored) 
3
< 1  (censored) 
1 

1
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3
<5 (censored)
17
23
9
9
3
3
<15 (censored)
<5 (censored)
4
<5 (censored)
<5 (censored)
<5 (censored)
4
8

1

15
3
3
1

6

3
6

3
4
5
14
4

Below are data o f annual average of sulfur dioxide (S02) concentrations in pphm 

in Long Beach, California (Roberts, 1979):

4.0
3.0
3.4
2.1
1.9
1.9
1.5
1.3
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1.4 
2.6
3.0
2.5
3.1
2.5
2.4
2.5
2.5
1.9
1.7

Below are data o f annual averages of chloride concentrations (U.S. EPA, 1979):

34.56
119.0
41.04 
53.81
197.1
49.65 
73.86 
28.88
62.00 
63.35

Below are data of annual averages of iron concentrations (U.S. EPA, 1979):

8.45
6.17
8.73
4.64
10.66
27.29
10.07
17.58
6.00
3.30

Below are data of annual averages of aluminum concentrations (U.S. EPA, 1979):

4.57
3.79
4.31
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2.15
4.82
3.42
6.62
9.95
2.98
1.73
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% this program computes the estimates of the parameters o f GLL(ml,m2) for censored 
% data using method of maximum likelihood.
% the MATLAB procedure used is fininsCfunction', initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a, beta=b, m l=m l, and 0 0 2 = 0 1 2  are the parameters.
% beta(ml,m2 ) : beta function with parameters ml and m2 .
% betainc(x,ml,m2 ) : an incomplete beta function with parameters ml and m2 .
% the user supplies data and initial values which are initial=[a0 ,b0 ,m l0 ,m2 0 ].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like 1 cu (initial, data)

a=initial(l, 1 ); % an initial value of alpha
b=initial(2 ,l); % an initial value of beta
ml=initial(3,1); % an initial value of ml
m2=initial(4,1); % an initial value of m2
number 1 =size(data);
nl=num berl(l,i); % a number o f uncensored data
laras=ones(nl, 1 ); % nl-by- 1  matrix of ones

logist 1 = 1 ./(laras+exp(-b-a* log(data))); % the log-logistic function for uncensored
data
templ=log(a)-log(beta(ml,m2 )); 
temp2 =log(logist 1 ); 
temp3=log(laras-logist 1); 
temp4=log(data);

censor=[10;10;10;l;2;2;10;l;5;15;5;5;5;5]; % "detection limit" of censored data 
number2 =size(censor);
n2 =number2 (l, 1 ); % a number of censored data
ati=ones(n2 , 1 ); % n2 -by-l matrix o f ones

logist2 =l ./(ati+exp(-b-a*log(censor))); % the log-logistic function for censored data
tempS=log(betainc(logist2 ,ml ,m2 ));

y=-(nl *temp 1+ml *sum(temp2)+m2*sum(temp3)
-sum(temp4)+sum(temp5)) % the objective function: function for

% maximizing 
% with minus sign
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For executing M-file in the MATLAB editor.

» load 'cu.dat'; % load 'filename of data1 with an extension "dat"
»  data=cu;
» initial=[aO,bO,m 1 0 ,m2 0 ]; % give an initial value for each parameter 
»  fininsClikelcu'̂ nitia^Q.O) % the fmins procedure compute the estimates o f parameters

% by maximizing the log-likelihood function
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% this program computes the estimates of the parameters o f GLL(m,m) for censored data 
% using method o f maximum likelihood.
% the MATLAB procedure used is fminsCfunction1, initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha-a, beta=b, and ml=m2 =m are the parameters.
% beta(m,m) : beta function with parameters ml=m2 =m.
% betainc(x,m,m) : an incomplete beta function with parameters m l-  m2 =m.
% the user supplies data and initial values which are initials [aO,bO,mO].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like2 cu(initiaL, data)
a=initial(l, 1 ); % an initial value of alpha
b=initial(2 ,l); % an initial value of beta
m=initial(3,1); % an initial value of m
number 1 =size(data);
nl=num berl(l, 1 ); % a number of uncensored data
laras=ones(nl, 1 ); % nl-by- 1  matrix of ones

logistl=l ,/(laras+exp(-b-a*log(data))); % the log-logistic function for uncensored 
data
temp l=log(a)-log(beta(m,m)); 
temp2 =log(logistl); 
temp3=log(laras-logist 1); 
temp4=log(data);

censor=[10;10;10;l;2;2;10;l;5;15;5;5;5;5]; % "detection limit" of censored data 
number2 =size(censor);
n2 =number2 ( l, 1 ); % a number of censored data
ati=ones(n2 , 1 ); % n2 -by- 1 matrix o f ones

logist2 =l ./(ati+exp(-b-a*log(censor))); % the log-logistic function for censored data
temp5=log(betainc(logist2,m,m));
y=-(nl *temp l+m*sum(temp2)+m*sum(temp3)

-sum(temp4)+sum(temp5)) % the objective function: function for
% maximizing 
% with minus sign
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For executing M-file in the MATLAB editor:

» load 'cu.dat'; % load 'filename o f data1 with an extension "dat"
»data=cu;
» initial=[a0 ,b0 ,m0 ]; % give an initial value for each parameter
»  finins0 1 ike2 cu',initial,[],[]) % the finins procedure compute the estimates o f parameters

% by maximizing the log-likelihood function
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% this program computes the estimates of the parameters of GLL(m, 1) for censored data 
% using method of maximum likelihood.
% the MATLAB procedure used is fininsCfunction', initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a, beta=b, and ml=m are the parameters.
% beta(m,l) : beta function with parameters ml=m and set m2 = l.
% betainc(x,m, 1 ) : an incomplete beta function with parameters ml=m and set m2 - l .
% the user supplies data and initial values which are initial-[aO,bO,mO].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like3 cu(initial, data)
a=initial(l, 1 ); % an initial value of alpha
bs=initial(2 , 1 ); % an initial value of beta
m=initial(3,l); % an initial value of alpha
numberl-size(data);
nl=numberl(l, 1 ); % a number of uncensored data
laras=ones(nl, 1 ); % nl-by - 1  matrix of ones

logistl=l ,/(laras+exp(-b-a*log(data))); % the log-logistic function for uncensored 
data
temp 1 =log(a)-log(beta(m, 1 )); 
temp2 =log0 ogist 1 ); 
temp3=log(laras-logistl); 
temp4-log(data);

censor=[10;10;10;l;2;2;10;l;5;15;5;5;5;5]; % "detection limit" of censored data 
number2 =size(censor);
n2 =number2 (l,l); % a number of censored data
ati=ones(n2 , 1 ); % n2 -by-l matrix of ones

logist2 =l ./(ati+exp(-b-a*log(censor))); % the log-logistic function for censored data
temp5=log(betainc0ogist2,m, 1));
y=-(nl *templ+m*sum(temp2)+sum(temp3)

-sum(temp4)+sum(temp5)) % the objective function: function for
% maximizing 
% with minus sign
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For executing M-file in the MATLAB editor:

» load 'cu.dat1; % load 'filename of data1 with an extension "datH
»  data=cu;
» initial=[aO,bO,mO]; % give initial values for each parameter 
»  fininsClike3cu',initial,[],[]) % the finins procedure compute the estimates o f parameters

% by maximizing the log-Iikelihood function
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% this program computes the estimates o f the parameters of GLL(l,m) for censored data 
% using method of maximum likelihood.
% the MATLAB procedure used is fminsCfunction', initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a, beta=b, and m2 =m are the parameters.
% beta(l,m ): beta function with parameters m2 =m and set m l= l.
% betainc(x,l,m): an incomplete beta function with parameters m2 =m and set m l-l.
% the user supplies data and initial values which are initial=[aO,bO,mO].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like4cu(initial, data)
a=initial(l, 1 ); % an initial value of alpha
b=initial(2 ,l); % an initial value o f beta
m=initial(3,1); % an initial value of m
number 1 -size(data);
nl=numberl(l, 1 ); % a number of uncensored data
laras^nesCnl, 1 ); % nl-by - 1  matrix o f ones

logist 1 = 1  ,/(laras+exp(-b-a*log(data))); % the log-logistic function for uncensored
data
temp 1 =log(a)-log(beta( 1 ,m)); 
temp2 =log(logistl); 
temp3=log(laras-logistl); 
temp4=log(data);

censoi=[10;10;10;l;2;2;10;l;5;l5;5;5;5;5]; % "detection limit" o f censored data 
number2 -size(censor);
n2 =number2 (l,l); % a number of censored data
ati=ones(n2 , 1 ); % n2 -by-l matrix o f ones

logist2 =l ./(ati+exp(-b-a*Iog(censor))); % the log-logistic function for censored data
temp5=log(betainc(logist2, l,m));
y=-(nl *temp l+sum(temp2)+m*sum(temp3)

-sum(temp4)+sum(temp5)) % the objective function: function for
% maximizing 
% with minus sign
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For executing M-file in the MATLAB editor:

» load *cu.dat'; % load * 6 1 6 0 3 0 1 6  of data* with an extension "dat"
»  data=cu;
» initial=[aO,bO,mO]; % give initial values for each parameter
»  fininsClike4cu',initial, [],[]) % the finins procedure compute the estimates of parameters

% by maximizing the log-likelihood function
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% this program computes the estimates o f the parameters of GLL(1,1) for censored data 
% using method of maximum likelihood.
% the MATLAB procedure used is finins('fiinction', initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a and beta=b are the parameters.
% b e ta (l,l): beta function and set m l= l and m2 =l.
% betainc(x, 1 , 1 ) :  an incomplete beta function and set m l-l and m2 = l.
% the user supplies data and initial values which are initial=[aO,bO].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like5 cu(initial, data)
a=initial(l, 1 ); % an initial value of alpha
b=initial(2 ,l); % an initial value of beta
number 1=size(data);
nl=numberl(l, 1 ); % a number of uncensored dat
laras=ones(nl, 1 ); % nl-by - 1 matrix of ones

logistl=l ./(laras+exp(-b-a*log(data))); % the log-logistic function for uncensored
data
temp 1 =log(a)-log(beta( 1 , 1 )); 
temp2 =log(logist 1 ); 
temp3=log(laras-logist 1); 
temp4=log(data);

censor=[10;10;10;l;2;2;10;l;5;15;5;5;5;5]; % "detection limit" of censored data 

number2 =size(censor);
n2 =number2 (l, 1 ); % a number of censored dat
ati=ones(n2 , 1 ); % n2 -by-i matrix of ones

logist2 = 1 ./(ati+exp(-b-a* log(censor))); % the log-logistic function for censored data
temp5-log(betainc(logist2,1,1)); 
y=-(nl *templ+sum(temp2)+sum(temp3)

-sum(temp4)+sum(temp5)) % the objective function: function for
maximizing

% with minus sign
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For executing M-file in the MATLAB editor

» load 'cu.dat'; % load 'filename of data' with an extension "dat”
»  data=cu;
» initial=[aO,bO]; % give initial values for each parameter
»  fmins(like5cu',initial, [],[]) % the finins procedure compute the estimates of parameters

% by maximizing the log-likelihood function
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% this program computes the estimates of the parameters o f GLL(ml,m2) for uncensored 
% data using method of maximum likelihood.
% the MATLAB procedure used is fminsCfunction1, initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a, beta=b, m l=ml, and m2 =m2  are the parameters.
% beta(ml,m2 ) : beta function with parameters ml and m2 .
% the user supplies data and initial values which are initial=[a0 ,b0 ,m l0 ,m2 0 ].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=likelu(initial,data); 
a=initial(l,l); 
b=initial(2 , 1 ); 
ml=initial(3,l); 
m2=initial(4,l); 
number=size(data); 
n=number(l,l); 
laras=ones(n,l);

% an initial value o f alpha 
% an initial value o f beta 
% an initial value o f ml 
% an initial value o f m2

% a number of data 
% n-by- 1  matrix o f ones

logist=l ./(laras+exp(-b-a*log(data))); % the log-logistic function
temp l=Iog(a)-log(beta(ml,m2));
temp2 =log(logist);
temp3=log(laras-iogist);
temp4=log(data);
y=-(n*temp 1 +m 1 *sum(temp2 )

+m2*sum(temp3 )-sum(temp4)) % the objective function : function for maxiini?ing
% with minus sign

For executing M-file in the MATLAB editor:

» load 'mercu.dat1; % load filename of data' with an extension "dat"
»  data=mercu;
» initial-[aO,bO,m 1 0 ,m2 0 ]; % give an initial value for each parameter 
» fmins('like 1 u',initial, Q, Q) % the finins procedure compute the estimates of parameters

% by maximizing the log-likelihood function
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% this program computes the estimates of the parameters of GLL(m,m) for uncensored 
% data using method of maximum likelihood.
% the MATLAB procedure used is fminsCfunction', initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a, beta=b, and ml=m2 =m are the parameters.
% beta(m,m): beta function with parameters ml=m2 =m.
% the user supplies data and initial values which are initial=[aO,bO,mO].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like2 u(initial,data); 
a=initial(l, 1 ); 
b=initial(2 ,l); 
m=initial(3,l); 
number=size(data); 
n=number(l,l); 
laras=ones(n,l);

% an initial value of alpha 
% an initial value of beta 
% an initial value of m

% a number of data 
% n-by- 1  matrix of ones

logist=l./(laras+exp(-b-a* log(data))); % the log-logistic function
temp l=log(a)-log(beta(m,m));
temp2 =log(logist);
temp3=log(laras-logist);
temp4=log(data);
y=-(n*Gog(a)-log(beta(m,m)))+m*sum(temp2 )

+m*sum(temp3)-sum(temp4)) % the objective function : function for maximizing
% with minus sign

For executing M-file in the MATLAB editor:

» load 'mercu.dat'; % load filename of data1 with an extension "dat"
»  data=mercu;
» initial=[aO,bO,mO]; % give an initial value for each parameter
» fmins(llike2 u',initial, [],[]) % the finins procedure compute the estimates o f parameters

% by maximizing the log-likelihood function
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% this program computes the estimates of the parameters o f GLL(m, 1) for uncensored 
% data using method of maximum likelihood.
% the MATLAB procedure used is fmins(>function,, initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a, beta=b, and ml=m are the parameters.
% beta(m, 1 ) :  beta function with parameters ml=m and set m2 = l.
% the user supplies data and initial values which are initial=[aO,bO,mO].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like3u(initial,data); 
a=initial(l, 1 ); 
b=initial(2 ,l); 
m=initial(3,l); 
number=size(data); 
n=number(l,l); 
laras=ones(n,l);

logist= 1 ./(laras+exp(-b-a*Iog(data))); 
temp 1 =log(a)-log(beta(m, 1 )); 
temp2 -log(logist); 
temp3=log(laras-logist); 
temp4=log(data); 
y=-(n*temp l+m*sum(temp2 ) 

+sum(temp3 )-sum(temp4))

% an initial value of alpha 
% an initial value of beta 
% an initial value of m

% a number of data 
% n-by- 1  matrix of ones

% the log-logistic function

% the objective function : function for maximising 
% with minus sign

For executing M-file in the MATLAB editor:

» load 'mercu.dat1; % load 'filename of data' with an extension "dat"
»  data=mercu;
» initial=[aO,bO,mO]; % give an initial value for each parameter 
»  finins(Tike3 u',initial, Q, Q) % the finins procedure compute the estimates of parameters

% by maximizing the log-likelihood function
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% this program computes the estimates o f the parameters of GLL(l,m) for uncensored 
% data using method of maximum likelihood.
% the MATLAB procedure used is fminsCfunction1, initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a, beta=b, and m2 =m are the parameters.
% beta(l,m) : beta function with parameters m2 =m and set m l= l.
% the user supplies data and initial values which are initials [a0 ,b0 ,m0 ].
% "log" stands for a natural logarithm.
% the program is saved in an M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=like4u(initial, data); 
a=initial(l,l); 
b=initial(2 ,l); 
m=initial(3,1); 
number=size(data); 
n=number(l,l); 
laras=ones(n, 1 );

% an initial value of alpha 
% an initial value of beta 
% an initial value of m

% a number of data 
% n-by- 1  matrix of ones

Iogist= 1 ./(laras+exp(-b~a* log(data))); % the log-logistic function
temp 1 =Iog(a)-log(beta( 1 ,m));
temp2 =log(logist);
temp3=log(laras-Iogist);
temp4=log(data);
y=-(n*temp 1 +sum(temp2 )

+m*sum(temp3 )-sum(temp4)) % the objective function: function for maximising
% with minus sign

For executing M-file in the MATLAB editor:

» load 'mercu.dat'; % load 'filename of data' with an extension "dat"
»  data=mercu;
» initial=[aO,bO,mO]; % give an initial value for each parameter 
»  finins('like4u',initial, □,[]) % the finins procedure compute the estimates o f parameters

% by maximizing the log-likelihood function
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% this program computes the estimates of the parameters o f GLL(1,1) for uncensored 
% data using method of maximum likelihood.
% the MATLAB procedure used is fminsCfunction1, initial, options) involving 
% the Nelder-Mead simplex as an algorithm.
% alpha=a and beta=b are the parameters.
% beta(l,l) : beta function and set m l=l and m2 =l.
% the user supplies data and initial values which are initial=[a0 ,b0 ].
% "log" stands for a natural logarithm.
% the program is saved in M-file.
% for convenience, a script M-file and data can be written in a text editor.

function y=likeSu(initial,data);
a=initial( 1 , 1 ); % an initial value of alpha
b=initial(2 ,l); % an initial value of beta
number=size(data);
n=number(l,l); % a number of data
laras=ones(n, 1 ); % n-by- 1 matrix o f ones

logist=l ./(laras+exp(-b-a*log(data))); % the log-logistic function
templ=log(a)-log(beta(l, 1 ));
temp2 =log(logist);
temp3=log(laras-logist);
temp4=Iog(data);
y=-(n*temp 1 +sum(temp2 )

+sum(temp3 )-sum(temp4)) % the objective function: function for maximizing
% with minus sign

For executing M-file in the MATLAB editor:

» load 'mercu.dat'; % load 'filename of data' with an extension "dat"
»  data=mercu;
» initial=[a0 ,b0 ,m0 ]; % give an initial value for each parameter
» fmins('like5u',initial,[],[]) % the finins procedure compute the estimates of parameters

% by maximizing the log-likelihood function
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