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ABSTRACT OF DISSERTATION 
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree PhD. Program Biostatistics_______________________________________________  

Name of Candidate Craig Jefferson___________________________________________ ____

Committee Chairs Dr Alfred A Bartolucci. Chair, and Dr Karan P Singh. Co-Chair 

Title An Analysis for Establishing a Necessary Condition for Equivalence in Active
Control Clinical Trials____________________________________________________

The approach is an empirical Bayesian methodology in a survival analysis context 

with an application to clinical trials. The intent of this proposed methodology is to give 

individuals in clinical trial equivalency research more flexibility in model selection. The 

methodology is an extension of Bartolucci and Singh’s (1993) work to the Weibull and 

linear-exponential models that involves testing nonscale parameters by classical methods. 

For the nonscale parameter, the Thoman and Bain (1969) method is employed for the 

Weibull, and a nonconventional likelihood ratio test is derived in the linear-exponential 

case. Pertaining to the scale parameter, the approach defines a general class of 

discrepancy measures for equivalency, shows specific limiting cases of the general 

measures, and then applies the Bayesian neighborhood null hypothesis theory to derive 

posterior credibility regions on the measures for both distributions.
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PREFACE

This dissertation addresses some of the foundational issues in clinical trials 

research regarding equivalence. There are many unresolved issues pertaining to the 

determinance of equivalence. Some of those issues are inference, design, analysis, and 

some are nonstatistical in nature. However, given the information regarding some of the 

previously mentioned issues, the focus of this dissertation is on the analysis aspect of the 

determinance of equivalence. The proposed approach is an extension of Bartolucci and 

Singh’s (1993) work. This extension gives researchers more flexibility regarding model 

selection.

I
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1. INTRODUCTION

1.1 Prologue

Generally speaking, the topic of this discourse is equivalence. Equivalence may be 

defined as two or more treatments, drugs, or therapies yielding similar desirable results. 

Research scholars representing the Food and Drug Administration (FDA), medical, and 

pharmaceutical industries commonly refer to this topic as bio or therapeutic equivalence. 

However, the concept may be generalized to include the manufacturing industry. From a 

manufacturing perspective, manufacturers (suppliers and customers) are interested in 

providing or assuring that products, machines, services, and processes are equivalent in 

performance with respect to prototypes.

The equivalence problem area is rich with many unresolved issues. A few of those 

issues are listed below:

Inference Issues:

—Dosage (i.e., fixed dosage versus dose titration)

—Clinical practice versus clinical trials

Design Issues:

—Study biases

—Concomitant medication

Analysis Issues:

—Stopping rule

2
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—Proposed statistical methods are not accepted industry-wide 

Nonstatistical issues:

—Inadequate calibration of measuring instruments

—Lack of documentation during the clinical trial.

However, the emphasis of this writing is on the analysis of bio or therapeutic equivalence 

data from positive or active control trials.

1.2 Statement of the Problem

Imagine a statistician who received a data set one particular day from a superior.

The characteristics of the data set were as follows: two treatments were applied at random 

to two different groups of samples, but the samples within each group were from the same 

homogeneous population; and the random variable of interest was survival times. Imagine 

also that there was ancillary information available to the statistician that the superior had 

knowledge of and that was pertinent to the analysis. Finally, imagine that the superior 

requested that the statistician test the hypothesis of equivalence regarding the two 

treatments.

The above scenario describes very generally the point at which this dissertation 

begins. This dissertation focuses on the analysis aspect of equivalence only. It assumes 

that the design aspects of the study were carried out such that all parties of concern agree 

with the method. As a result, a formal statement of the following is

Given a data set of two drug formulations, one as an experimental formulation 

and the other as the standard formulation, with the objective of demonstrating 

equivalence of survival times in an active control clinical trial, how does one 

analyze the data set, assuming that the underlying distributions are either a Weibull
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density or a linear-exponential density and that prior information about the 

parameters of these distributions is available? Furthermore, what is the correct 

inference?

1.3 Research Objectives

There are several important objectives of this research. One important objective of 

this research is to extend the methodology of Bartolucci and Singh (1993) to include other 

survival distributions such as the Weibull and linear-exponential. The purpose of this 

objective is to give researchers greater flexibility in the modeling and analysis of the data. 

The Bartolucci and Singh (1993) methodology is also taken a step further to derive the 

asymptotic joint distribution of the credibility limits so that probabilistic statements can be 

made about the credibility limits being a subset of the specified interval or any other 

interval. Finally, the approach taken in this dissertation differs from the Bartolucci and 

Singh method in terms of calculating the test statistic and the credibility region.

Another objective of this research is to present an integration technique that can be 

used in integrating posterior distributions derived when using this methodology. This 

objective is crucial because the posterior distributions derived when using this 

methodology are usually such that analytical methods are not applicable.

Finally, a further important objective of this research is to provide an argument for 

the correct inference when the desire of the study is to demonstrate equivalence. The 

imperativeness of this objective stems from the need to correctly interpret the statistical 

results of an active control clinical trial.
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1A An Overview of Other Approaches

Current approaches regarding analysis are referred to as statistical salvage 

procedures (Pledger and Hall 1983). According to Pledger and Hall, researchers have 

concentrated on statistical calculations aimed at assuring power with adequate sample 

sizes and new statistical methods, rather than rethinking the whole experimental inference 

framework. Pledger and Hall further state, “if there is any discussion at all of inferential 

problems in connection with positive control trials it is generally a somewhat superficial 

consideration of the ability of the study to distinguish between A and B” (p. 3), where A is 

a test drug and B is an active drug. The basis of Pledger and Hall’s previous statement is 

with repect to the use of statistical power and its relationship to efficacy. Continuing, 

Pledger and Hall state, “sufficient statistical power is taken as grounds for concluding that 

a nonsignificant difference between A and B implies efficacy of A” (p. 3). Pledger and 

Hall state three reasons why the power approach is inadequate:

1. It encourages limiting study size, using insensitive measures of response, 
and allowing study characteristics which needlessly increase variation or obscure the test 
therapy versus the reference therapy.

2. The power approach makes little use of the observed results of the study.

3. The power approach depends on a quantity D (difference) that can not be 
empirically validated.

Note: The choice of an important difference in a clinical trial should be based 
not on what would be considered important in clinical practice but on 
what has been observed previously in similar controlled studies (Pledger and 
Hall 1983, p. 3).

Pledger and Hall are correct in regarding the need to rethink the whole 

experimental inference framework. Actually, what is needed is an experimental inference 

framework that establishes a sufficient condition for equivalence. A general definition of a 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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sufficient condition was given by Capaldi (1975) as a condition (state of affairs, thing, 

process, etc.) that automatically leads to the production of another event. Some 

academicians embrace the thoughts of Aristotle's "the fallacy of the universal negative," 

that is, the establishing of such a condition is impossible. As a result, this remains a 

challenge, and it is a different issue from the context of this dissertation.

However, regarding Pledger and Hall's correctness and my statements of what is 

needed, the power approach should not be regarded as an approach without merit. On the 

contrary, the power approach should be recognized for its value, that is, the establishing of 

a necessary condition. Generally, a necessary condition has been defined by Capaldi 

(1975) as a condition (state of affairs, thing, process, etc.) that must be present if we are 

to obtain the effect. Hence, therein lies the merit of the power approach, namely, the 

ability to establish a necessary condition.

Blackwelder (1982) proposed a nonconventional null hypothesis approach based 

on power with an associated test statistic. Blackwelder and Chang (1984) presented an 

equation and graphs for sample size determination that complement Blackwelder's (1982) 

proposed procedure. In the Confidence Interval section of Blackwelder's (1982) work, he 

states the usefulness of the theory of hypothesis testing in planning a clinical trial and the 

usefulness of confidence interval methods of Westlake (1972), Metzler (1974), Westlake 

(1976), and Westlake (1979) for analyzing, explaining, and reporting of the accumulated 

data. Blackwelder (1982) states the basis of his rationale as follows: “a hypothesis test 

tells us whether the observed data are consistent with the null hypothesis, and a confidence 

interval tells us which hypotheses are consistent with the data” (p. 3), which is well 

documented in Lehmann (1959), Remington and Schork (1970), and Armitage (1971).
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Blackweider's (1982) paper presents a power approach that is accepted by many as 

proving the null hypothesis. From an inference perspective, such a statement may be 

misleading to nonstatisticians.

This approach described by Blackwelder is referred to as an "operational definition 

of zero technique" by some statisticians, where operational can be defined as one of the 

following: (i) something that is easily understood, (ii) something that one can put into 

formulas, (iii) something that is so small all parties of concern would consider it zero. 

If one wanted to prove the null hypothesis by use of the power approach or the 

operational definitions of zero technique, the following would occur:

1. Define an operational definition of zero, for example Ô = 0.01.

2. Setup an experiment that would detect the operational definition of zero 

with "high" probability.

3. If the experiment fails to detect the operational definition of zero difference, 

then one can conclude that the treatments are equal (a proved null hypothesis).

A more correct characterization of the above approach is the establishing of a necessary 

condition.

Pledger and Hall (1983) state that the work of Blackwelder and others addresses 

criticisms (i) and (ii) of the power approach but not (iii). Pledger and Hall's rationale is 

that their approach is content to answer the question "Are A and B equivalent?" without 

addressing the possibility that neither A nor B would have out performed a placebo had a 

placebo group been included in the trial.

Hsu (1983) states that, for ethical reasons, active control trials are increasingly 

more popular than placebo control trials. Hsu also states that the methods for 
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demonstrating drug efficacy for active control trials versus placebo control trials are 

different. In the assessment of active control clinical trials, Hsu states that there are 

deficiencies in the design of a clinical trial, such as: (i) inadequate sample size, 

(ii) inappropriate enrollment criteria and patient selection procedure, (iii) high drop out 

rate, (iv) unlimited and uncontrolled use of concomitant medication, (v) imprecise 

measurement of the response variables. These deficiencies tend to obscure the results 

when using stochastic ordering as the method of analysis. Hsu further states that active 

control trials are useful, but they do not always produce clear results for evaluation of new 

drug efficacy. Hsu concludes his writing with suggestions for points of consideration in 

planning active control trials.

Munk (1993) proposed the mixtest. The mixtest is an improvement of two 

commonly used methods in bioequivalence, namely, Shuirmann's (1987) procedure and 

Anderson and Hauck's (1983) procedure. Munk's method is an improvement in the sense 

that it exploits Schuirmann's procedure with respect to power when the variances are small 

and employs Anderson and Hauck's procedure with respect to power when the variances 

are large.

Shuirmann's (1987) procedure is referred to as the double t-test (l-2a) confidence 

interval procedure. Anderson and Hauck's (1983) approach is a t-test procedure that is 

more powerful than methods based on usual (shortest) and symmetric confidence 

intervals.

Fluehler, Grieve, Mandallaz, Mau, and Moser (1983) presented a Bayesian 

approach which involves obtaining the posterior probability that the ratio of the true 

means of a new and a standard formulation lies within a given interval. Selwyn, Dempster, 
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and Hall (1981) proposed an alternative Bayesian approach in which the criterion for 

equivalence is that the difference in the response means is less than a specified percentage 

of the mean of the standard based on the posterior probability. Bartolucci and Singh 

(1993) propose a Bayesian approach that follows the credibility region methodology.

The Bartolucci and Singh (1993) approach defines a general class of discrepancy measures 

between parameters of interest, shows specific limiting cases of the general measures, and 

then applies the Bayesian neighborhood null hypothesis theory to derive posterior 

credibility regions on the measures.

For the most part, in a particular application, the Bartolucci and Singh (1993) 

method yielded similar conclusions to the result of analyses by classical methods. 

Bartolucci and Singh assure researchers, given in general the nontractable analytical 

results of their method, with present day computing capabilities that this is not a 

disadvantage:

The advantage to this approach is that one can clearly accommodate a variety 
of prior beliefs about behavior of the compounds involved and incorporate 
that information into the analysis to demonstrate whether or not the 
assumption of therapeutic equivalence is realistic (Bartolucci and Singh 1993).

More will be said about this approach in Chapter 4. In closing, it should be noted that 

Singh (1996) gives further details of the Bartolucci and Singh paper.

1.5 A Sketch of the Methodology of the Proposed Solution

In the context of a positive control clinical trials, in which there is a 

positive-control study upward bias (Pledger and Hall 1983), the approach taken in this 

dissertation will be an extension of Bartolucci and Singh's (1993) work. This 

methodology will be extended to include the Weibull and linear-exponential models. The 

Weibull and linear-exponential distributions were selected because of the increased 
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flexibility of the forms of their hazard functions when compared to the exponential model 

that Bartolucci and Singh used. The intent of a more flexible hazard function is to remedy 

the positive-control study upward bias because at the analysis stage of an experiment, a 

way to remedy this is by model selection. However, the success of this intent is not the 

primary focus of this dissertation. The overall objective of this dissertation is to provide 

researchers with a wider selection of models for the working theory established by 

Bartolucci and Singh. The action items of the objective are

1. Select two survival distributions that have the exponential distribution as a 

special case. The intent is to generalize from the exponential distribution. The selected 

distributions are Weibull and linear-exponential.

The Weibull distribution as defined in Chapter 4 is an exponential distribution 

when the shape parameter is one. The linear-exponential distribution as defined in Chapter 

4 is an exponential distribution when the parameter of the nonexponential linear term is 

zero. In addition to the Weibull and linear-exponential distributions being selected as 

generalizations of the exponential, these distributions were also selected because of the 

properties of their hazard functions. The hazard function of the Weibull distribution can 

assume the following forms: (i) constant, (ii) increasing linearly, (iii) increasing 

nonlinearly, and (iv) decreasing nonlinearly. The hazard function of the linear-exponential 

distribution as defined in Chapter 3 can assume the following forms: (i) constant, (ii) 

increasing linearly, and (iii) decreasing linearly.

2. The assumed prior density for the scale parameter of the linear-exponential is 

the Inverted-Gamma-One. The nonexponential linear term of the linear-exponential model 

is estimated from the joint likelihood function. The shape parameter of the Weibull will be
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estimated by obtaining the value that maximizes the joint likelihood function. An 

Inverted-Gamma-One prior will be assumed for the scale parameter for the Weibull 

distribution.

3. The ratio of the scale parameters in each of the distributions will be used as a 

discrepancy measure for equivalence.

4. The posterior distributions for the discrepancy measures will be derived.

5. The criteria for establishing a necessary condition regarding equivalence will be 

defined. The criteria will be based on a 100(l-a)% credible region for the discrepancy 

measure.

Note: Credibility is a wider and vaguer concept of probability which is 

defined as the amount of credence that it is logical to assign to a more or less 

uncertain proposition (Russell 1948).

1.6 Content of Other Chapters

The remainder of the document contains Chapter 2 through 7 with a reference list 

and appendices to support information in those chapters. Chapter 2 contains a detailed 

review of some of the references cited in section 1.4. The analyses and methods in this 

section vary from Bayesian and frequentist approaches. In some cases, the random 

variables are discrete, and in others cases some may be continuous.

In Chapter 3, an overview of active control clinical trials is given. The factors that 

influence clinical evaluations are presented. The attractiveness of the active control trial 

and the criticisms of that type of trial are presented.

Chapter 4 contains a detailed discussion of the methodology. This involves the 

stating of the hypotheses to the development of the test statistic.
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Chapter 5 presents a discussion about the integration of posterior kernels and the 

method of integration used to obtain the posterior credibility region of the test statistic in 

Chapter 4. The discussion begins with a characterization of the problem when integrating 

posterior kernels in several dimensions.

Chapter 6 is an application of the methodology to a published study. The study 

was a phase III active control clinical trial. The formulations involved the treatment of 

leukemia.

Finally, Chapter 7 is a discussion of future research. Future research is suggested 

with respect to design and analysis.
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2. SELECTED DETAILED REVIEW OF RELATED LITERATURE

2.1 Introduction

The different statistical approaches to the problem of equivalence are placed in 

different sections of this chapter. The selected approaches are in chronological order with 

respect to the date of the paper. The approaches are presented from the stating of the 

hypotheses to the derived test statistic. The details of the derivations are omitted. 

However, the reference for each approach is contained in the reference section if the 

reader requires further detail.

2.2 Selwyn et al. (1981)

The Selwyn et al. approach is based on their belief that a biologically meaningful 

measure of bioequivalence is the posterior probability that the difference in formulation 

means is less than a specified percentage of the mean of the standard drug. It is in the 

context of the 2 x 2 changeover design that the Selwyn et al. approach is developed. To 

this extent, it is assumed that data have been collected on the new and standard 

formulations according to a 2 x 2 changeover design with the response variable being a 

univariate characteristic of the concentration-time curve, such as AUC (area under the 

curve). Hence, the experiment is modeled as

Y*'t* ★p1tTl + & - =» 
for / = 1,2, j = 1,2, / = 1,2 "

13
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where g denotes the overall mean, P} denotes the period, T, denotes the formulation, 

Slk denotes the subject effects, and eijk denotes the error of measurement. This model 

assumes that^ ande^ are all independently normally distributed with means zero and 

variances o^ and o*, respectively.

Again, Selwyn et al. criterion for bioequivalence is a high posterior probability that 

the difference in formulation means is less than some fraction, say K, of the mean of the 

standard. Thus, they express the bioequivalence notation as

|27] < or Kx\a < T < (2.2.2)

K Kwhere Kx = — and K2 = Subsequently, the general approach is to calculate a

posterior density, p(p, 7]y), and then to integrate this density over the region defined by

eq. 2.2.2 to get the posterior probability. The formulations are considered bioequivalent if 

the posterior probability is high.

A reproduction of a portion Selwyn et al. Table 1 follows

* Selwyn et al.’s Table 1 (A selected portion) 
General Form (carry-over effect omitted)

Source
Degrees 
of 
freedom

Sum of squares
Expected mean 
square

Formulations 1

SSX=2N 2 -J

2 + 2NT2

Periods 1
c^2NP2

Subjects N-1
2 m 

”,=2S
1 = 1 k=l

Error N-2 SS4 (by subtraction)
«2

*Used with the permission o 'Biometrics (see Selwyn et al. (1981)).
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The above portion of Table 1 is a general form of the analysis of variance with the carry

over effect omitted. From the above table, Selwyn et al, considered four priors when 

modeling without the carryover effects:

(2.2.3)

P « a/a/ for aj>aj (2.2.4)

P (p^<t^) « o/a/ (2.2.5)

f°r (2.2.6)

As a result, Selwyn et al. obtained the following posterior densities for the above priors:

( 1V1 r . 21 1 v
^^(p,^)^^-2)^^^ 4̂^ Ji +

I iSSg
2M7-7)Hv4

S54 |
(2.2.7)

P1^M
XQy) (2.2.8)

P/p,%) = N(N-3} I dSS *SS J1 +
2 2

-ly-i
. : (2.2.9)

SS^ I ^4

P^M
pf^MpiC^Jy) 

p(C\y) (2.2.10)

where for p2

p^VpF^,.^
(^-2)^ 
(Â-W;

(2.2.11)

p(C|p,7^)

and for
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PO) = P F".2^
(N-3)SS3

(N-2)SS4

(N-2)0, 
p(q^W=pFv_w-2<w^

(2.2.12)

Note: Qx = 2JV(p-g)2 ; 02 = 2N(T-T)2 +SS4 ; andC denotes the constraint that

This is based on the independent components of the likelihood arising from

&S ~OxX%-i

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

For the model that includes the carry-over effects, based on the independent 

components of the likelihood arising from

/ 

t-N 
<

2'

2 2 N

2) 
. 2o;

R=y\.-y^N r,—ky 
n

SSS-c 2Xv-2

(2.2.18)

(2.219)

(2.2.20)

and using the following prior
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-IjL
\o 2) « o 2 a 2 e (2.2.21)

where the subject sum of squares has been partitioned into#, residual sum of squares, plus 

SSS, sum of squares for subjects within sequences, and R is centered at 0 with standard 

deviation aR. Hence, the posterior probability density is

2
Xu, W) = ^-2)^ (Dx^)2 W-u)2

D

l.v 1 + 2AVj^ 2 2 .(2.2.22)

Again, if the posterior probability is high then bioequivalence is accepted.

2.3 Blackwelder (1982)

Blackwelder’s approach involves formulating a one-sided appropriate (when 

compared to the conventional null hypothesis) null hypothesis, confidence interval, test 

statistics, and sample size calculation for a dichotomous response variable regarding 

clinical trials. More to the point, Blackwelder writes the null hypothesis and alternative as 

such

Ho : %, % n, + ô
H : it < 7t + Ô (2-3.1)

where denotes the true success proportion of the standard therapy, ne denotes the true 

success proportion of the experimental therapy, and Ô denotes a specified difference. He 

further writes the test statistic, confidence interval, and the sample size calculation as the 

following:

Test Statistic:

with SE equaling:
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«e

P S1 ~P^ (23.3)

where p$ denotes the observed success proportion of the standard therapy, pe denotes the 

observed success proportion of the experimental therapy, ns denotes the total number of 

patients observed in the standard therapy group, and ng denotes the total number of 

patients observed in the experimental therapy group. The 100 (1 -a )% confidence 

(2.3.4)

(2.3.5)

inteval is

and the sample size in each of the two groups is

(7t -It - Ô)2 

where tt,-^<0.

One of the major aims of Blackwelder’s paper is show the difference in hypothesis 

testing between that of the conventional approach and that of a specified difference for the 

purpose of a clinical trial. In Table 1 of Blackwelder’s paper, the null and alternative 

hypothesis, test statistic, confidence interval, and sample size calculations for the 

conventional approach are expressed as follows:

Hypothesis:

Test statistic:

where SE is previously defined above. Confidence interval and sample size are,

respectively,
(2.3.8)
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and 

where 7rj>7te.

Blackwelder’s paper also contains two additional tables that provide information 

on type I and II errors and sample size calculations. Reproductions of the tables are the 

following:

♦♦Table 2

Classification of Possible Decisions Based on Hypothesis Tests 
Result of test (choice of therapy)

Test difference TestingHQ: n, < ne Testing//o': ^>^+6

(correct choice Fail to reject Reject Reject Fail to reject
of therapy)_________ (experimental) (standard)________ (experimental) (standard)

0 (experimental) correct decision type I error correct decision type II 
error

ô (standard) type II error correct decision type I error correct 
decision

♦♦Reprinted by permission of the publisher from Proving the Null Hypothesis in Clinical 
Trials, by W. C Blackwelder, Controlled Clinical trials, Vol. No. 5, pp. 97-105 Copyright 
1982 by Elsevier Science Inc.

***Table 3

Sample Size Calculations for a= 0.05, P=0 10

Testing k$ > 7te + ôTesting//0: k. < ne

Kfi In %, Ke Ô 2 n

0.9 0.8 430 0.9 0.9 0.1 310

0.9 0.7 130 0.9 0.9 0.2 78
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***Table 3 (Continued)

Sample Size Calculations for a= 0.05, 0=0.10

Testing/7n: 7t, < it,______________________________ Testing#/: tr, > % + Ô

0.6 0.5 840 0.6 0.6 0.1 824

0.6 0.4 206 0.6 0.6 0.2 206

0.4 0.3 772 0.4 0.4 0.1 824

0.4 0.2 172 0.4 0.4 0.2 206

0.9 0.85 0.1 1492

0.9 0.8 0.2 430

0.6 0.55 0.1 3342

0.6 0.5 0.2 840
***Reprinted by permission of the publisher from Proving the Null Hypothesis in Clinical 
Trials, by W. C Blackwelder, Controlled Clinical trials, Vol. No. 5, pp. 97-105 Copyright 
1982 by Elsevier Science Inc.

Regarding Table 2 of Blackwelder’s paper, it is important to note the change in the 

relationship of the type I and type II errors between the conventional and specified 

difference approaches. Pertaining to Table 3 of Blackwelder’s paper, in the event that the 

sample size for the specified difference is not achievable, then a proposed approach for 

handling smaller studies involves expressing the hypothesis in terms of an odds ratio and 

constructing confidence intervals about that ratio.

In conclusion, one of the contributions that Blackwelder makes is to provide a 

statistical methodology to researchers for analyzing clinical trials. In doing so, 

Blackwelder provides a support discussion.

2.4 Anderson and Hauck (1983)

Anderson and Hauck’s approach is motivated by the fact that in practice no two 

drug formulations will result in bioavailability profiles which are exactly alike. It is from 
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this point that they make a strong case for a finite interval hypothesis test and not the point 

test of equality with the hypothesis of equivalence being written as the alternative 

hypothesis because of the desire to demonstrate equivalence. Their approach begins with 

stating the hypothesis for the mean values of the experimental, and standard, ps,

formulations in the following manner:

*o: ^e-^a orX <Hc-Ms<4 < 4-%)

where A = -B (most often). Anderson and Hauck use X’s to denote the data that are 

assumed to be normally distributed with a common variance o2. They further state that in 

some cases the X’s will be natural logarithms of biological measures. In such a case, the 

hypotheses corresponding to (2.4.1) on the log scale can then be stated as

, me n
*o: T7-Ao or TT Ms Ms

, M-

Ms

(2.4.2)

where ME and Ms are the means in the original scale and Ao = exp(.4) and Bo = exp(8).

The test statistic that Anderson and Hauck consider is

- - 1 % 1^4
T = Xf-Xs-±(A+B) - s —2 

2
(2.4.3)

where XE and Xs are the sample means, nE and ns are the group sample sizes, and S is 

obtained from the analysis of variance with degrees of freedom y. T has a noncentral 

/ distribution. The noncentrality parameter is calculated as

1 (a i )-
ô = Pr-Mc--W+^)-o—+ — 2 (2.4.4)

2 nE ns
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If the test is such that the magnitude of T is small, that is, Ct < T < C2, then Ho 

is rejected and equivalence of the two formulations is concluded. The selection of Cx and 

C2 is done such that the test is unbiased at level a, that is

P\CX < T< C2|^-gs = 5,o] = 
P[C < T< C | g -g =4,a] =a .

With the choice of a single C where C2 = C and Cx = -C, the level a rejection region can 

be determined by solving

P[|7] < C|H£-HS = X,O] =
P[|7] < C|u -g =B,o] = a.

In order to calculate the exact distribution for the test statistic, T, theno must be known 

or A and B must be such that they can be expressed as proportional to the unknown o. 

In practice, when testing the hypothesis given a known noncentrality parameter, Anderson 

and Hauck state that it is more informative and easier to work with the empirical 

significance level, p. Hence, if t is the observed value of T, then p is given by

p=P[|T| < |t| | P£-gs = S,o]. (2.4.7)

As a result, an a level test is obtained by rejecting HQwhenever p < a.

When testing the hypothesis given an unknown noncentrality parameter, Anderson 

and Hauck propose approximations to the empirical significance level, p, in 2.4.7. They 

then substitute the approximate level, p, for p and then proceed as if the noncentrality 

parameter were known.

2.5 Fluehler et al. (1983)

Fluehler et al. provide a Bayesian approach to comparative bioavailability studies. 

The comparative bioavailability studies are designed to gain knowledge of the 

pharmaceutical properties of two or more formulations of the same drug. Fluehler et al.’s
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concentration curve (AUC) and the maximum concentration of that curve (Cmax).

Subsequently, by their method, bioequivalence is inferred if the ratio, say 0, of the true 

means of the new to the standard formulation of the measure, AUC or C^, is within the 

given limits r, andr2, that is

(2.5.1) 

The limits r{ and r2 are based on medical and/or regulatory grounds. An example of 

values for rx and r2 are 0.8 and 1.2, but the values of r, and r2 do not have to be 

symmetric about 1.

In comparative bioavailability studies, the design considered most appropriate is 

the crossover design. This is due to the large inter-subject variability with respect to the 

absorption distribution. The crossover design is characterized by each of the subjects, say 

n, receiving the new and standard formulations with a reasonably long washout period 

between treatment applications. The crossover design model is

(2-5.2) 

where xijk denotes the observed values, p denotes the overall mean, denotes the i‘h 

subject effect (z = 1,2,3,...,/?), ^denotes the j,hperiod effect (/ = 1,2), and denotes 

the experimental error which is assumed 7/(0, a2). The AUC random variables are 

assumed to be normally distributed according to the model in eq. 2.5.2. The C^ random 

variables are assumed to be lognormally distributed, so that ln(Cmax) conforms to the 

assumptions of the model in eq. 2.5.2.

In Fluehler et al.’s approach, the posterior probability that 6 is between r{ andr2 

is calculated by
.4

P(rx < 6 <r2) = ft Jr) dr (2.5.3)
B
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where /v(r) follows a Student’s distribution and v denotes the degrees of freedom of error 

mean square from the ANOVA. The AUC integration limits are

(ê-rjn 2
A " x (2.5 4)

C^l .rtf

B= ± (2.5.5)
cp(l +/^2

where

(2.5.6)
*STD

and

CV=T~' (2.5.7)

S = Error Mean Square . (2.5.8)

The mean of the new formulation, xNEW , and the mean of the standard formulation, 

are observed treatment means. The In(C^) integration limits are

2
_ [XNEW ~ XSTD ~ ^1 )]^ 2

2
22S

2
n _ VnEW ” XSTD ' r2 )] n

2
22S

where xNBV and x^ denote the observed formulation mean of the logged values.

The Fluehler et al. approach infers that if the probability in eq. 2.5.3 is large enough, then 

bioequivalence is accepted.
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2.6 Schuirmann (1987)

Schuirmann writes that bioavailability is to be characterized by one or more blood 

concentration profile variables, such as AUC, C^, etc. As a result, the profile variables 

are synonymous with the random variables of interest for determining equivalence.

Given two formulations, say T (test product) and R (reference product), in a 

bioavailability/bioequivalence study, the hypotheses of interest are

#o: or
6, < pif-p*<6, # *

where pr denotes the mean bioavailability of the test product, denotes the mean 

bioavailability of the reference product, 61 denotes a specified lower limit, and 62 denotes 

a specified upper limit. The null hypothesis, Ho, is the hypothesis of nonequivalence 

between and Hx, on the other hand, says that pr and are equivalent.

The assumptions of Schuirmann’s approach are

1. The profile variable(s) are normally distributed.

2. The within-subject variances of the test and reference products are equal.

3. The study is a balanced crossover study, that is, there is an equal number of 

subjects in each treatment administration sequence and there are no missing observations 

from any subject.

The estimate of pr- is the observed average bioavailability difference of xT-xR. 

ol — 1 2 is the standard deviation estimate for pT - Because a is unknown, it is 

estimated by the square root of the error mean square from the crossover design analysis 

of variance, say S. Consequently, S is the standard error of xT~xR.

Now, to use Schuirmann’s methodology in a bioequivalence study, three measures 

are needed, namely, the degrees of freedom, say v, the estimate xT~xR, and its standard
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(2}~

error S — 2. Schuirmann’s two one-sided test procedure begins by restating the 
\n)

previously stated hypotheses in eq. 2.6.1 into two different sets of hypotheses, namely,

- ®i

^ir

^02 ®2

^12 ~ ®2 "

(2.6.2)

(2.6.3)

Schuirmann’s procedure rejects Ho of eq. 2.6.1 and concludes equivalence if and only if 

both H0l and HQ2 are rejected at a chosen nominal level of significance a. Test statistics 

for the set of hypotheses in eq. 2.6.2 and eq. 2.6.3 are

(xT xR) 0,

4 - 
I n

(2.6.4)

and

(2.6.5)

where and ^are the ordinary one-sided test statistics, respectively. The two one-sided 

test procedure is operationally identical to the confidence interval approach (recommended 

by Westlake 1981), if the ordinary 1 - 2a (not 1 - a ) confidence interval for pr- is 

completely contained in the equivalence interval [6,,8%].

2.7 Bartolucci and Singh (1993)

The Bartolucci and Singh approach can be referred to as a survival/bioequivalence 

method versus a bioavailability/bioequivalence method because the random variable of 

interest is survival times of subjects given a test and standard drug formulations.
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Bartolucci and Singh begin their approach with a statement of the hypotheses 

involved

Ho : T] $ 1 - 0 or r| 1 + 0
H : 1 - 0 <r| < 1 + 0 (2.7.1)

mean survival time of the subjects sampled from the population that received the / 'h 

formulation (test or reference). The assumptions involved in the Bartolucci and Singh 

approach are

1. The number of subjects, n, may enter randomly into a trial.

2. The random variable, 7/ / denotes the different formulations), is

distributed as a two-parameter exponential distribution.

3. The data are noncensored or right censored.

Bartolucci and Singh use the following definition for the two-parameter exponential:

1 (f-Q)
7(f) = —e Z>(o^0;p>0. (2.7.2)

g

Noting that their approach is Bayesian, Bartolucci and Singh assume a limiting form of the

following prior structure for co :
ve™ 

ay) =--------- 0 < (ù < a; v > 0 (2.7.3)
e^-1

lim^col^v) = 1. (2.7.4)
v-o a

Hence, co - U(0,a). The prior structure assumed for p is the inverted-gamma-one

(/Y]) family having prior shape and scale parameters noand to, respectively, that is,

= r^)'- M
p > 0. (2.7.5)
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The methodology of the Bartolucci and Singh approach proceeds in the following 

manner. Suppose there are two independent exponential populations. One population is 

parameterized by (^,«0, and the other population is parameterized by (p2,d>2). From 

each sample of the jth population there are r; noncensored observations and -r} 

censored data points. Subsequently, they proceed by obtaining the joint likelihood of the

parameters, (u^) and performing the following one-to-one transformation:

5 = h

q = —

(Di =C0i
(2.7.6) 

w2 = co2 .

As a result, a new parameter vector is derived, namely, (^ri^pWj).

Now, they are interested in the test of equivalence on q under the condition of 

either cd1=<o2 or w/w2, with the intent of computing the posterior density of q under 

each of the conditions and then deriving a l - a posterior density probability region for q.

They conclude that the two formulations are equivalent if the 1 - a posterior probability 

region for q is contained within the interval (1 - 6,1 +0).

For case 1, = w2, they obtained the following posterior density for q :

-(r, - no - I)
^q|^' = w2 = co) = -----------—IXf-j + r2 + no - 1)

”1 + ”2

< n -

2 *o
o

2 'o

r,-2no-l

r2-2n-\

___ k n (2.7.7)

1
2 1=2
nr(rfncr+vnxf^dx
:=i 7 J Vx
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r n

where T = 2^+ 2 // (t = failure time, = censored observations, and j = 1, 2), ô = 
i=l k-r~1

min[observations, a], and D denotes the data. For case 2, they obtained the

following posterior density:

Ô, 6t

0 0
-(2no-Yi*Y2*2)

dtoxdto2

gCrilAo,^,) = n (2.7.8)

/ / f{"UTnera‘O^^
0 0 0

To obtain the posterior credibility region, the Bartolucci and Singh approach is to plot 

£[7(71)10), = u>2] for case 1 and £[/(r])|o), * o)2] for case 2, then compute the 90% and

95% posterior probability regions for r|, the random variable of interest.

Bartolucci and Singh state some properties of the derived posterior densities under 

certain conditions. For co, =o)2 = O, their posterior density takes the form of the

F-distribution, that is,

(r, +/?)(£ +/)
(2.7.9)

For co, and co, known,

(2.7.10)

. . . Ô
Finally, if co, and co2 are replaced in eq. 2.7.10 by £(<o; |£) = y, then an approximation 

for case 1 and 2 of the observed posterior value of q will take the form

(2.7.11)
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2.8 Munk (1993)

In the 1993 paper, Munk presents an approach that is based on the double t-test 

and Anderson and Hauck approaches. Munk’s approach is uniformly more powerful than 

the double t-test method and maintains desirable asymptotic properties. The impetus for 

Munk’s approach is derived from Muller-Cohrs (1990). Muller-Cohrs paper is a study of 

the power of the Anderson-Hauck approach and the double t-test approach. As a result, 

Munk proposes a test that combines both the tests (double t-test and Anderson-Hauck) 

such that either of the tests is applied according to the empirical variance. Munk denotes 

this test as the “mixtest.” Before presenting the mixtest, Munk gives an example that 

yields conflicting conclusions between the double t-test and Anderson-Hauck methods. 

Subsequently, this indicates the need for a better testing method, especially since the 

double t-test and Anderson-Hauck methods are the two most commonly used methods.

The mixtest involves the determinance of equivalency between two treatments. 

The difference of the two treatment effects is estimated by a normally distributed random 

variable, say z, with mean ô and standard deviation o that are unknown, and the sample 

size is fixed. Let S be an estimate of a that is independent of z such that 

rç2 .
z~MÔ,o2) and ^~Xr - (2.8.1)

a2

Let also Fr denote the central t-distribution such that is the (1 -a) quantile of Fr. 

The null and alternative hypotheses are

where A denotes the maximum bound on ô. The hypotheses are stated in the above with 

the objective of establishing equivalence, that is, to confirm that | ô | < A at a controlled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

error rate. Continuing, Munk states the mixtest for ke [0,~)as

<PP —^k 
tS

—<k 
tS

(2.8.3)

where k denotes the mixing constant, <pk denotes the power function of the mixtest, <pr 

denotes the power function of the double t-test, and (p ^ denotes the power function of 

the Anderson-Hauck method. Hence, the mixtest indicates that the double t-test should be 

used if S < —, and the Anderson-Hauck method should be used if S > 4-. Finally, a 
tk tk

reproduction of Munk’s Table 1 is the following:

****Table 1

Optimal levels a" and constants k ’ for the “mixing” test <p" with respect to fixed degrees 
of freedom r and nominal level a

«: 0.01 0.025____________ Œ05_____________ OJ________

r: a' k' a’ k* a’ k' a’ k’

5 0.005 0.71 0.015 0.79 0.033 0.84 0.074 0.92

10 0.006 0.91 0.018 0.95 0.040 1.00 0.085 1.87

15 0.007 0.98 0.020 1.01 0.042 1.01 0.089 1.12

20 0.008 1.01 0.021 1.04 0.044 1.03 0.092 1.15

25 0.008 1.03 0.022 1.06 0.045 1.05 0.093 1.17

30 0.008 1.04 0.022 1.07 0.046 1.08 0.094 1.19

35 0.008 1.04 0.022 1.08 0.046 1.11 0.095 1.20

40 0.009 1.05 0.023 1.09 0.047 1.13 0.095 1.21

45 0.009 1.05 0.023 1.10 0.047 1.14 0.096 1.22

50 0.009 1.06 0.023 1.11 0.048 1.15 0.096 1.23

****Used with the permission of Biometrics (see Munk (1993)).

The above table is a tabulation of the maximum k ' =k\a,r) which ascertains the optimal 
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test (p. for a class of mixtests described above in eq. 2.8.3, where a is at a nominal level 

a' and r is the degrees of freedom.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. ACTIVE CONTROL TRIALS

An active control trial is a clinical trial. It is sometimes referred to as a positive 

control trial. The active control trial is similar to the placebo control with the exception 

that there is no placebo. For background information, a placebo is an inactive substance 

(with respect to the experiment under investigation) that has all of the similarities of the 

drug(s) under investigation, that is, taste, shape, appearance, etc. A placebo effect 

includes a large series of visceral, somatic, and psychic responses resulting from the 

symbolic implications of the physician, his ministrations, and his medicaments (Modell and 

Houde 1958). Active control trials usually involve two therapies, namely, an experimental 

and reference. The therapies are such that they have similar taste, shape, appearance, etc. 

This allows for the therapies to be distributed such that the patient is "blind" to the 

treatment he/she is receiving and the physician is "blind" to the treatment he/she is 

prescribing (Modell and Houde 1958). This technique is known as the double-blind 

technique.

In the design of any clinical trial, nine forces influence data in clinical evaluations, 

according to Modell and Houde (1958): (i) pharmacodynamic actions, (ii) dosage, 

(iii) choice of subject, (iv) use of controls, (v) collection of data, (vi) sensitivity of the 

method, (vii) placebo actions, (viii) bias, and (ix) forces extraneous to the experiment. 

In addition to the above, the regimen is another factor that should be considered when 

designing a clinical trial. Active control trials also include in their design some assurance

33
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that historical estimates of the active control drug's efficacy relative to placebo are 

applicable to the new experimental setting (Makuch and Johnson 1989).

The fundamental assumption of the active control is that the active control drug 

would have performed better than a placebo, had a placebo been used in the trial (Makuch 

and Johnson 1989). There are many criticisms to this fundamental assumption in the 

literature. One of the earlier criticisms was given by Modell and Houde (1958) who stated 

that no method of drug examination is more likely to lead to erroneous conclusions, 

because it has none of the safeguards provided by other controls, that is, the elimination of 

placebo effects and bias. The term “control” in this context means a basis of comparison.

Active control trials are popular for practical and ethical reasons. Some of the 

practical reasons for their popularity are (i) smaller sample sizes, (ii) enhance subject 

recruitment because there is no placebo, and (iii) lower dropout rate. The ethical reason 

for their popularity often stated in the literature is that it is unethical to deny a patient 

immediate access to a known effective treatment (Leber 1986). Some reasons active 

control trials are criticized are (i) the absence of information regarding the reference 

therapy's ability to perform better than a placebo, (ii) the increased possibility of 

misleading conclusions by misinterpretations of the data, and (iii) the inability to 

distinguish between true drug effects and improvements due to a placebo effect.

As alluded to previously, the merit of the design and analysis of the active control 

trial lies in its ability to establish a necessary condition. It is from this perspective that 

inferences should be made as a result of the analyses.
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4. PROPOSED METHODOLOGY

4.1 Introduction

The methodology begins by assuming a two parameter underlying distribution, and 

the desire is to determine the equivalence of the parameters of the underlying distribution. 

Hence, the methodology proceeds with the testing of each parameter. If the findings are 

such that each of the parameters (i.e., the nonscale and scale parameters from each of the 

distributions) are equivalent, then we conclude that we have established a necessary 

condition for equivalence for the two drug formulations.

For particular parameter values, the assumed distribution is the one-parameter 

exponential distribution. The parameters of the assumed distribution are classified as scale 

and nonscale parameters. In the case of the Weibull distribution, the nonscale of interest is 

called the shape parameter. In the case of the linear-exponential distribution, the nonscale 

parameter of interest is called the nonlinear exponential parameter. Consequently, the 

assumed two-parameter underlying distribution is either a Weibull or linear-exponential in 

terms of the context of this writing.

The methodology begins with a statement of hypotheses for each parameter. 

Beginning with the nonscale parameter for the Weibull distribution, the hypotheses are

#oo : ~>1+A
: Y (4.U)

1 < 21 < 1 +A .
Y2

35
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The Thoman and Bain (1969) test is used to test the hypotheses. The reader should see 

Appendix O for the details of the Thoman and Bain test.

The hypotheses for the nonexponential linear parameter of the linear-exponential 

distribution are

H^: — < I -A or — >1+A
Y2 y Y2 (4-1.2)

1-As 1+A .

A likelihood ratio test has been developed for testing the above hypotheses.

The testing of equivalence for the scale parameters for the Weibull and linear- 

exponential densities proceeds in a different manner. It begins with the methodology of 

Bartolucci and Singh (1993) that starts by the defining of a discrepancy measure, that is, 

coen where = ----------  . (4.1.3)
c

Their approach involves the obtaining of a limiting form of enM, namely,

lime11 = — (4.1.4)
c—0 A ।

(see Appendix C). In eq. 4.1.3 , X, represents the scale parameters being tested with 

respect to a particular distribution (i.e., Weibull or linear-exponential), and c is a constant.

X,
Redefining — = r|, the null and alternative hypotheses regarding equivalence are

Hov Un<l-A or ^>1 +A 
Hw 1-A<%<1+A. (4.1.5)

Notice in the above, that the null hypothesis is the hypothesis of nonequivalence, and the 

alternative hypothesis is the hypothesis of equivalence. This is also true for the way in 

which the hypotheses of the nonscale parameters are stated in eq. 4.1.1 and eq. 4.1.2.
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Stating the hypothesis of equivalence, in this way, is consistent with statistical theory (see 

Hauck and Anderson 1986).

After obtaining the credibility limits for pn, say (^,^ ), if such that it

is a subset of (1 -A, 1+A), then one would reject #0I and conclude that the two drug 

formulations are equivalent. Otherwise, one would fail to reject HQX, the hypothesis of 

nonequivalence.

4.2 Weibull Model-Survival Models, Prior Probability Structures and Estimation 

The two parameter Weibull probability density function may be defined (Lee 1992)

as

fit) = WW /, X, y > 0 (4.2.1)

with the following hazard and survivorship functions:

h(0 = XyW1 (4.2.2)

and

S(/) = eW (4.2.3)

(see Appendix H). The probability density function in a survival analysis context can be 

interpreted as the probability of an individual failing in a short interval; the hazard function 

can be interpreted as the probability of an individual failing within a short interval given 

that the individual has survived a certain length of time; finally, the survivorship function 

can be interpreted as the probability of an individual surviving longer than a particular time 

(see Lee 1992). Graphs of the probability density function, hazard function, and 

survivorship function for the Weibull distribution are in Appendix J.

Subjects, n, are assumed to enter the clinical trial randomly. Observations are 

made during the trial such that the survival or censored time can be determined. At the 
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final observation, the r survival times (tpZ2,/3,...,/r)and n-r censored times

respectively, are known. The likelihood function for A and y is

s yÿ
/(A,y) = yrA^ Hr/'1 

t=i
-X? St} 

e k" (4.2.4)

(see Appendix A). The joint likelihood function for two independent populations sampled 

from a Weibull distribution is

(4.25)

(see Appendix A).

4.2.1 Weibull-Prior Probability Structure for A and the MLE of y

The assumed prior probability structure for A is the inverted-gamma-one with prior 

shape and scale parameter^ and t0, respectively. The /y/n^O density is

f&\noJo) =
r«)l M

(4.2.1.1)

where A,no, to > 0. The estimate for y, say y, is obtained by selecting that value of y 

from the coordinate (A,y) that maximizes the joint likelihood function, eq. 4.2.4, (see 

Appendix E). An alternative way to get the MLE of y is to integrate the product of eq.

4.2.4 and eq. 4.2.1.1 with respect to A. This would result in a likelihood function in y 

only. Subsequently, one would maximize that function. The general form of that 

likelihood function is the following:

/(Y) ={^kW/(X,Y)^- (4.2.1.2)
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4.3 Linear-Exponential—Survival Model, Prior Probability Structures and Estimation

The two-parameter linear-exponential probability density function is
-(brly,:)

_Æ0=(X+yz)e (4.3.1)

where Z, k, y > 0. The hazard and survivorship functions of the Linear-Exponential model 

are

(4.3.2) 

and
S(/) = /"  ̂ (43.3)

respectively (see Appendix I). Graphs of h(t), and 5(f) for the linear-exponential are 

in Appendix K.

With the observance or r survival times and n-r censored times, the likelihood

function for X and y is

-(XT-lyS) r
Z(X,y) = e 2 H(X+yZ,) (43.4)

i=i

r n r n
where T - S + S z/ and 5 = S f+ S (z/)2 (see Appendix B). For two independent 

i=l £=r-i 1=1 t=r-l

populations sampled from the linear-exponential distribution, the joint likelihood function

for and ^(y^y,) is

2 
m) = n (4.3.5)

(see Appendix B).

4.3.1 Linear-Exponential—Prior Probability Structure for X and the MLE of y

An /y, prior probability structure for X is assumed for the Linear-Exponential

model (see eq. 4.2.1.1). The MLE of y is that value from the coordinate (X,y ) which
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maximizes the joint likelihood function for the linear-exponential model, eq. 4.3.4 (see 

Appendix D).

4.4 Methodology

Suppose the survival and censored times of a sample from a population are 

denoted as/l,/2,...,/r and respectively. Let’s refer to the total number of

survival times as rx for one population (consequently, the total number of censored times 

is nl -r1 ). Now suppose there is a second population with the total number of survival 

times referred to as r2 (consequently, the total number of censored times is n2~ri^- Let 

the first population be parameterized by (XpY,) and the second by (X2,y2). The joint 

likelihood of the parameters (Â,y.) is given by eq. 4.2.5 if sampling from the Weibull 

distribution, or eq. 4.3.5 if sampling from the linear-exponential distribution.

To test the hypothesis of equivalence for the shape parameter of the Weibull 

distribution (the hypothesis in eq. 4.1.1), the Thoman and Bain (1969) method is 

employed. The Thoman and Bain (1969) method begins with the obtaining of the 

maximum likelihood estimators fory, and y2, say y,and y2, respectively, by using eq. 

4.2.4. Placing the larger estimate in the numerator (in our case yj, the researcher

Y Ycomputes —. If > (1 +A)Z1_y, then the researcher would fail to rejectHQQ (in eq.

Yi
4.1.1) , where _v is the percentage point of the distribution of — that has the same 

(y /y ) Y2
distribution as —!——, where yand yZ are the maximum likelihood estimators of 

(Ÿ2/Y2) =

y1 and y,, respectively, for the two independent random samples from the standard 

Weibull distribution. Otherwise, reject HQQ (in eq. 4.1 1) and conclude that a necessary 

condition for equivalence has been established with respect to the shape parameter. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

reader is referred to Appendix O for a more detailed presentation of the Thoman and Bain 

(1969) test.

To test the hypothesis for the nonlinear exponential parameter, stated in eq. 4.1.2 

of the linear-exponential distribution, two likelihood ratio test statistics are derived. In 

order for the researcher to conclude equivalence, both of the test statistics must be such 

that they are greater than the critical value which would result in rejecting Hq0 .

In deriving the test statistics for the hypothesis in (4.1.2), let ^and^ be the 

following likelihood ratio statistics:

£(YpY2I<)
(4.41)

and

*2 (4.4.2)

where y^d y2are the maximum likelihood estimators for the two independent samples;

y is the maximum likelihood estimator for the combined sample; and Xj is

(4.4.3)

The numerator in eq. 4.4.1 and eq. 4.4.2 is the likelihood function for the two groups 

conditioned on X[ which has the following functional form:

Z(YpY2|A;) W+YiO û(x; + y20
1 = 1 (4.4.4)
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where y = 1,2. The denominator in eqs. 4.4.1 and 4.4.2 is the likelihood function for the 

combined sample, and it has the following function representation:

(445)

x e L 2 -

Finally, the functional form of kj in eq. 4.4.3 is

"«r1

(4.4.6)

dk

The reader should see Appendix M for the details of the derivations concerning eqs. 4.4.4, 

4.4.5, and 4.4.6.

Regarding the test of the nonlinear exponential parameter, if kx and k2 are greater 

than kQ (where ^is a fixed constant), then the researcher would reject HqQ and conclude 

that a necessary condition has been established for equivalence with respect to the 

nonlinear exponential parameter. Since the exact distribution of Kt is sometimes difficult 

to obtain, it was shown that -21og^ has an approximate chi-square distribution with 

one degree of freedom for Nt 25, where N=nx+n2. In this case, is rejected if 

~-log^ is below the 100a percentage point, %, % of the chi-square distribution with one 

degree of freedom.

Pertaining to the scale parameters for both of the models, the following one-to-one 

transformation
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= 6. 
X

(4.4.7)

results in the new parameter vector (£,t|,ypy2) • Now the parameter for the test of 

equivalence of interest is pn. The next step in the analysis process is to compute the 

posterior density of qand derive a 1-a posterior credibility region for pq.

For the Weibull model, the posterior density is of the form

sOW py2) =
o

(4.48)

Jj’g(Ç,TlAYpY2)^Tl
0 0

where

c 12

^nAŸpŸz) = r(mJ L-i
nt/'1 rit/2'1 Yi Y£

(4.4.9)

- Sr,’1-
xg V r

1S ^t2 - |i2 (tf1 W2s/
k:

(see Appendix F). Again, for obtaining Ÿ; and y2 in the Weibull model, the reader is 

directed to Appendix D.

The posterior density for the linear-exponential model is

S^YpY^ = T7---------------------------------

0 0

(4.4.10)
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where

gfLnAŸpŸz) n(^Ÿ/lz)
Z=1

(4.4.11)

e 2

(see Appendix G). Again, the reader should see Appendix E regarding the estimating of 

Yi and y2 for the linear-exponential model.

Pertaining to the obtainment of the 100(1-a) credibility regions, first the expected 

value, E(t]\D), and its error are determined. Second, asymptotic normal distributional 

theory is invoked to compute the 100(1 -a) credibility regions. This is the case for both 

models, Weibull and the linear-exponential. The reader is referred to Appendix N for the 

derivation and explanation of the asymptotic normality of £(t||D) for the Weibull model. 

A similar derivation can be done for the linear-exponential model. Third, if a researcher 

desires to compute probability that the credibility region is a subset of an interval, the joint 

asymptotic distribution of the credibility limits is derived in Appendix P. This step is 

optional.

4.5 Motivation for the Discrepancy Measure

The methodology presented in this paper takes a different approach in several 

ways from the approaches presented in Chapter 2. One difference has to do with the 

hypothesis testing of the parameters. In the approaches presented in Chapter 2, all of 

them were concerned with making inferences about the mean of a distribution, whether the 

data were discrete or continuous. The hypothesis testing was done such that inferences 

can be made regarding the mean. The Bartolucci and Singh (1993) approach differs from 
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the other approaches by defining a random variable to be a ratio of the means and then 

finding the distribution of that random variable, whereas with the other methods, the 

inference is based on the difference between estimators or ratio estimators regarding the 

means. The methodology that is being proposed in this text is to assume that the data 

follows an underlying distribution; estimate the non-scale parameters and test them; define 

a random variable that is the ratio of the scale parameters of the underlying distribution; 

find the density of that random variable; and test the hypothesis regarding the mean of that 

random variable.

The motivation for approaching the equivalence problem from the perspective of 

parameter equivalence of an underlying distribution is due to the fact that if inferences can 

be made that the parameters of the assumed underlying distribution are equivalent, then 

this is tantamount to saying that the mean, variance, median, and other statistical measures 

of that underlying distribution are equivalent.
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5. MULTIPLE INTEGRATION OF POSTERIOR KERNELS

5.1 Problem Statement

To begin to characterize a problem frequently faced by a Bayesian analysts, a

restatement of an excerpt of the introduction of Geweke’s (1991) work is in order:

The central technical problem in Bayesian inference is multiple integration, 
often in high dimensions. The central technical problem in non-Bayesian 
inference is optimization, often in high dimensions. The latter problem has 
been solved with some degree of generality.... The former problem has not 
been solved in any such degree of generality, because multiple integration is 
technically more demanding than optimization. ‘Because of the demanding 
nature of multiple integration,’ problems in Bayesian inference have historically 
been solved on a case-by-case basis, with the solution of one problem 
providing little to help with the solution of the next. (Geweke 1991)

Now, it is important to understand that to a Bayesian analyst faced with the 

challenge of multiple integration, his or her primary interest is completing the statistical 

inference of the problem that gives rise to the challenge of the multiple integration of a 

posterior kernel. Highly desirable characteristics of the technique for multiple integration 

sought by the Bayesian analyst are the speed, ease, and flexibility of computation.

On the other hand, a desirable characteristic of primary interest to a numerical 

analyst, when faced with the challenge of multiple integration, is the accuracy of the result. 

Such a characteristic should be encouraged; but from the Bayesian analyst’s perspective, 

the obtaining of such a result with a high order of accuracy is often a complex problem 

nested within a complex problem, such that the statistical inference process is clouded by 

secondary issues, which impedes the process and adds to the cost of producing results.

46
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5.2 Some of the Issues

Unfortunately, in Bayesian analysis, the integrals necessary for calculating 

posterior probabilities are seldom amenable to analytical methods (Wolpert 1991). Often, 

the integrands encountered are not such that they are well behaved in certain regions, and 

with the application of certain mathematical techniques, the “curse of dimensionality” is 

present.

The nontractability of multiple integration of a posterior kernel, consequently, 

leads one to pursue numerical methods of integration. The use of numerical methods of 

multiple integration for posterior kernels can lead the analyst to modify the integration 

such that the numerical range of the computing device is not exceeded, in order to avoid 

the use of scaling methods as a circumvention and/or to modify the integrand such that it 

is computable within the range of interest.

These are some of the problems that one may encounter when multiple integration 

of posterior kernels is involved. But recall that the primary interest of the Bayesian 

analyst is completing the statistical inference process.

5.3 Proposed Approaches at 1991 Conference

In 1991, a conference was sponsored by the American Mathematical Society, 

AMS, to bring together researchers to present topics on and to encourage the discussion 

of multiple integration among numerical analyst and statisticians. The proceedings from 

the conference were complied into a text (American Mathematical Society 1991). Some 

of the approaches presented were Monte Carlo integration, asymptotic expansions of the 

integral, parallel system and adaptive integration, and others. The reader may refer to the 

bibliography for further information regarding the following authors’ work: Doncker and 
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Kapenga (1991); Evans (1991); Genz (1991); Geweke (1991); Hardwick (1991); Kahaner 

(1991); Kaishev (1991); Kass, Tiemey, and Kadane (1991); Luzar and Olkin (1991); 

Mascagni (1991); Monahan and Liddle (1991); Muller (1991); Oh (1991); Tong (1991); 

Tsutakawa (1991); and Wolpert (1991).

From the papers presented at the 1991 conference, no universal technique could be 

deemed a panacea for nontradable multiple integration of posterior kernels. Each of the 

methods has its advantages under certain conditions. But this is not to say that no 

progress in this area has been made. On the contrary, much progress has been made in 

solving difficult multiple integration problems. However, the techniques proposed 

provide good solutions only for a subset of the complicated multiple integration problems. 

For further information and independent discussions of the techniques proposed, the 

reader is referred to the following articles: Albert (1991), Flournoy (1991), Luzar et. al. 

(1991), and Shanmugan (1991).

In light of the above, a Bayesian analyst may find himself or herself exploring 

several techniques before selecting one he/she thinks is most conducive for the problem 

encountered. Even after selection of a method, sometimes the Bayesian analyst has to 

make modifications to the technique and/or “prepare the problem for numerical analysis.” 

5.4 Method of Integration

The method of integration over the region of interest is Monte Carlo. More 

specifically, it is a nonrestrictive (with respect to the number of samples evaluated within a 

strata) stratification sampling mean method. Technically speaking, let R be the region 

over which integration of the posterior kernel is desired. Subsequently, R can be 
m 

partitioned such as R= URP where R, Fi R^a, for i*j. Now by definition
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= f(5 4.Ï)

where U^^I) denotes a multidimensional uniform probability density function with 

mean vector u and covariance structure of I (the previous Z refers to the identity matrix).

Assuming that the expectation and integral exist, now let us suppose that we want 

to integrate

(54.2)

then by substitution we have

I = 01 (5.4.3)

where k is a constant.

Now eq. 5.4.2 can be rewritten as

(5.4.5)
Rm

Hence, we have

1 = (5.4.6)

where

^[g(#] =yg(x)w,^^ (5 4 7)
R

Now suppose we write g(x)(note: g(r) is a pdf) as

, ) = 
' ' (5 4-8)

and suppose we are interested in the integration of g(x) over the region R \ where

R C<^R ; then
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Rc Rc
(5.4.9)

where C = j h(x)dx. Thus, we have
R ,

Now suppose we want the expected value of the random vector X with pdf, say

. (5.4.10)

b(x), then

; (5.4.11)
R

consequently, 

1 = kEuRVQ9\ (5.4.12)

where fix) = xb(x\ A similar argument can be made for higher order moments.

5.5 Comments-Modified Stratified Monte Carlo Technique

First of all, the variance reduction property of stratification is attractive, and with 

the flexibility of unrestrictive sampling within a stratum, it becomes more appealing. 

Second, Monte Carlo methods are known for their ease of implementation and 

inexpensive cost with a lower order of accuracy. But the lower order of accuracy is 

compensated for by the standard deviation (Berger 1991). Finally, the region of interest in 

terms of the context of the problem is easily characterized.
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6. APPLICATION OF THE METHODOLOGY

6.1 Problem Statement

An analysis of data from a published clinical study was performed. The 

objectives of the trial were (i) to compare the efficacy and toxicity of the combination 

of idarubicin (IDR) plus cytarabine (CA) to daunorubicin (DNR) plus CA for 

remission induction in previously untreated acute myelogenous leukemia; (ii) to 

compare the combination of IDR, CA and thioguanine (TG) to DNR, CA, and TG in 

consolidation; (iii) to compare IDR plus CA to DNR plus CA for intensification 

treatment during maintenance (Vogler et al. 1992). With respect to the context of this 

writing, the analysis performed is focused on the efficacy aspect of objective 1, where 

IDR (treatment 2) is the experimental drug and DNR (treatment 1) is the reference 

therapy.

6.2 Data Set Information

The total number of observations involved in the analysis was 225. The total 

number of survival times recorded for IDR is 109. Pertaining to IDR, there were 104 

noncensored and 5 censored survival times. When compared to DNR, the total number 

survival times was 116. There were 104 noncensored and 12 censored survival times for 

DNR. The unit of measurement regarding survival times is months.

51
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6.3 Analysis and Results

6.3.1 Introduction

Regarding the testing of the nonscale parameters, the Thoman and Bain (1969) 

methodology was used for the shape parameters of the Weibull distribution, and a 

likelihood ratio test was developed for the nonexponential linear parameter of the linear- 

exponential model. The results contained in Tables 2, 3, and 4 (in Appendix Q) pertain to 

the testing of the nonexponential linear parameter for the linear-exponential model.

Concerning the testing of the scale parameters, after deriving the posterior 

distribution for T|for each model, E(r\\D) and E{[r] -£(r||Z))]2|Z)} were computed for 

each model. Z0QS and Z0025 are the multipliers needed for computing the 90% and 95% 

limits, respectively, based on asymptotic normal distribution theory. The E{r\\D) has an 

asymptotic normal distribution (see Appendix N for the Weibull model). Consequently, 

the 90% and 95% credibility limits are calculated and compared to a predetermined 

interval (0.8, 1.2). The selection of the interval (0.8, 1.2) is from the bioavailability 

protocol guideline produced by the Food and Drug Administration (see FDA 1977). 

6.3.2 Weibull Model

The ML estimates for the shape parameters of the Weibull distribution for 

treatment 1 and treatment 2, respectively, are y1 = 0.815 and y2 = 0.91. Now, employing
Y

the Thoman and Bain (1969) test, k = 1.11656, where k-—. Because 
Yi

k= 1.1166 < (1.2)(1.180) = 1.416 at = 120 for a = 0.05 and 

k= 1.1166<(1.2)(1.199) = 1.4388 at nt = 100 for a = 0.05, 

a researcher should reject HQQ (in eq. 4.1.1 ) and conclude that a necessary condition for 

equivalence has been established with respect to the shape parameter of the Weibull 
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distribution. The reader should note that the values 1.180 and 1.199 were obtained from 

the table containing the percentage points of in the Thoman and Bain (1969) paper.

Regarding testing the hypothesis 2^ (in eq. 4.1.5), concerning the scale parameter 

equivalence for pn, the general case posterior distribution of q was derived (see eqs. 4.4.2 

and 4.4.3). Credibility limits were calculated for 16 different prior parameters 

combinations of the 2y t for the Weibull model at the 90% and 95% levels. The four 

selected values for the 7y1 prior distribution parameters ?zoand /owere 1.7, 4, 6, 9.5, and 

10, 17, 24, 33, respectively. The Zy1 prior density parameters were selected for 

comparison purposes with the results obtained by Bartolucci and Singh (1993).

Table 1 in Appendix Q contains the Weibull model results concerning scale 

parameter equivalence. All of the credibility regions (both 90% and 95%) for the Weibull 

model are within the predetermined interval (0.8, 1.2). As a result, a researcher would 

reject 2/01 (eq. 4.1.5 ), and conclude that a necessary condition for equivalence has been 

established with respect to the scale parameters for the Weibull density. The overall 

inference, regarding the findings of this clinical trial with the underlying assumption of a 

Weibull distribution, is that a necessary condition for equivalence has been established 

because both parameters of the Weibull distribution are equivalent among the two 

treatment therapies.

6.3.3 Linear-Exponential Model

The ML estimates for the nonexponential linear parameters were zero, indicating a 

single parameter exponential distribution as a more appropriate model given the data set. 

However, to illustrate the linear-exponential model, 0.01 was selected as an estimate for 

y j and y2, and 0.0101 was selected for y of the combined data sets. Tables 2 and 3 in
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Appendix Q contain the values of X" from eq. 4.4.6. These values (the values in Tables 2 

and 3) are the expected values of the random variable Ay (where j denotes the 

jth formulation) that has a posterior density as the one defined in eq. M.12 of Appendix 

M. Subsequently, the estimates in Tables 2 and 3 are used in the computation of

L(YpŸal^) in eq. 4.4.4 and Z(y,Y 1 \) in eq. 4.4.5, and they are needed to compute the 

derived likelihood ratio statistics kx in eq. 4.4.1 and k2 in eq. 4.4.2. Table 4 in Appendix 

Q contains the values of -21og(ÆJ and -21og(^)from eqs. 4.4.1 and 4.4.2, respectively. 

As expected, because of the selection of yp ?2&nd y, is rejected in all combinations 

of noandto because -21og(ÆJ< 3.841 (xt^o.os)-

Pertaining to the testing of in the hypothesis given in eq. 4.1.5, while assuming 

an underlying inear-exponential density, the posterior density in the general case was 

derived (see eqs. 4.4.4 and 4.4.5). The values of noand to were the same as in the Weibull 

model case, and they were selected for the same reasons. The 90% and 95% credibility 

regions were computed for the 16 different combinations of the prior parameter of the 

ZY] density.

Table 5 in Appendix Q contains the linear-exponential model results with respect 

to scale parameter equivalence. Each of the credibility regions is a subset of the specified 

interval. As a result, in each of those cases, a researcher would reject H0l in eq. 4.1.5 and 

conclude that a necessary condition for equivalence has been established with respect to 

the scale parameters, while assuming the linear-exponential model as the underlying 

distribution. The capstone inference, concerning the analysis and results of this clinical 

trial with the underlying distributional assumption of a linear-exponential, is that a 
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necessary condition for equivalence has been established, because both parameters of the 

linear-exponential density are equivalent among the two treatment therapies.

These findings support the hypothesis of equivalence. However, the inference 

regarding the findings of this trial is that of a necessary condition which is that for two 

therapies equivalent in their effectiveness to the treatment of a disease, then a credibility 

region must be such that it is within the predetermined interval.

6.4 Discussion

These findings support the hypotheses of equivalence for the scale and nonscale 

parameters. As a result, a researcher would conclude that a necessary condition has been 

established for equivalence between the two therapies, regarding their effectiveness in the 

treatment of a disease.

The results of the data analysis by both models of this clinical trial indicate that a 

necessary condition has been established for equivalence using this methodology. The 

findings using this methodology are consistent with the findings of the classical methods. 

In this particular clinical trial, the experimental therapy was selected for its potential 

equivalence to the standard therapy and less severe side effects.

This research demonstrates the increased flexibility of the Bartolucci and Singh 

(1993) methodology by extension to the Weibull and linear-exponential models. This 

methodology of Bartolucci and Singh also allows researchers to include their knowledge 

of the active agents in the compound by the selection of the prior parameters of the /y, 

distribution, namely, z^and t0.
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7. AREAS FOR FURTHER RESEARCH

7.1 Introduction

There are four main areas relating to this topic and others in which grand strides to 

increase the scope of our knowledge and understanding regarding statistical 

methodologies of this topic and its derivative areas can be made. The four areas can be 

characterized as one indirectly relating to the topic of equivalence and three as directly 

relating to the topic. They are the integration of posterior kernels (indirectly related), the 

development of statistical theory to the proposed procedure, other inference 

constructions, and the developing of an experimental inference framework that would 

establish a sufficient condition for equivalence or better.

7.2 Integration of Posterior Kernels in Multiple Dimensions

In Chapter 4, some of the issues pertaining to the integration of posterior kernels 

were mentioned. A restatement of those issues is not the intent here, but rather an 

emphasis on the demanding nature of multidimensional integration of posterior kernels and 

the need for more global methods that are easy to implement from a computational 

perspective.

The integration of posterior kernels in multiple dimensions, as it relates to the topic 

of equivalence, may appear to be written with only the Bayesian statistician in mind. 

However, the assertion is that there are other areas of mathematics and statistics that 

would benefit measurably from further research in this area.

56
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7.3 Statistical Theory of the Proposed Methodology

Statistical theory as stated by Berger (1991) is the study of properties of 

procedures. Some of the properties of this methodology were established in Bartolucci 

and Dickey’s (1977) work. One such property is the form of a posterior kernel for 

different values of c regarding the discrepancy measure. Simply stated, different values 

for c in the general discrepancy measure yield different posterior kernels (Bartolucci and 

Dickey 1977). But other areas need more exploration, such as the estimation involved 

regarding the credibility region about E(r|) and the robustness of this methodology 

pertaining to misspecification of prior parameters during the elicitation process concerning 

the active metabolyte of the therapies involved.

7.4 Other Statistical Inference Constructions

There are at least three reasons to encourage the development of other statistical 

inference constructions. One is to handle the diversity of trials regarding the manner in 

which data is collected and concerning the amount of information available before, during, 

and after the trial. Another reason is that existing methods sometimes have advantages 

under different conditions and that the development of a new technique which is more 

flexible to the conditions involved may exploit the advantages of the existing methods. 

One such method was mentioned in the introduction, Munk’s (1993) mixtest. A third 

reason is that new or other statistical inference constructions to the problem of 

equivalence bring fresh ideas that complement previous ones and help others evolve. It is 

by this process that we may approach and perhaps reach a methodology(ies) that are 

accepted industry-wide.
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7.5 Sufficient Condition: Experimental Inference Framework

In the process of searching for truth, the researcher’s desire is to have an 

experiment designed such that compelling empirical evidence is presented with respect to 

the hypothesis of interest conditioned on the truth of that hypothesis. From a statistical 

design perspective, the statistician’s aim is to assist the experimenter with his/her design 

such that the above intent is met without bias or confounding. From a statistical analysis 

point of view, the statistician’s interest is in making the strongest possible statement 

concerning the hypothesis. In the context of equivalence, such a statement would be that 

of a sufficient condition as generally defined in the introduction. But the statistician who 

performs the analysis is often restricted from making such inferences because of the 

limiting nature of the design of the experiment. This is perhaps the greatest challenge in 

the problem area of equivalence, that is, the design and analysis of an active control 

clinical trial such that a sufficient condition, with respect to the hypothesis of interest, can 

be made given the truth of that hypothesis.
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The likelihood function of the Weibull model for noncensored and censored data is

%?) = n
/=! t=r*l

2 
k*r*\

Thus, for independent populations say I we have

g

where / = 2 for our purposes, represents noncensored values, and // represents 

censored values.
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JOINT LIKELIHOOD, LINEAR-EXPONENTIAL
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The likelihood function of the linear-exponential model for noncensored and censored

data is

L&, Y) = H(Â+YT)e
z-1

' 2 ' IL e x - *
k=r~ 1

e
-zk^Y'') - 2 k-W

r = 1 \ *- / g t=r*I\ — i n(X+yr)
Z = 1

where /( represents noncensored values, and t* represents censored values.

But

2 =
&=r-l\ 2 /

2 \ z =l Æ=r-1 t

Let 
r n 

T = Sr+ S d 

z=l Æ=r-1 
r »

S = 2 (r/)2 .
z = l Ar=r-1

Thus,

-(Xr-lyS) r

UM) =e ' 2 ^(X+yO •
Z=1

Hence, for independent populations, say /, it follows

Ukti = n
7 = 1

n(X-yg
Z = 1

where / = 2 for our purposes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C

DISCREPANCY MEASURE, LIMITING FORMS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

The discrepancy measure is defined as

e

The limit of e^' as c-Ois

lim = lim g c
c-0 c-0

- Xf g _ clnA,
Now applying L’hopital’s Rule to----------, hence, rewriting as ---------- - -----  .

c c
Now let 7(c) = e and g(c) = c; thus, the derivatives of7(c) and g(c)are

/(c) =

= - XjlnXjw
-2

■1

and g^c) = 1.

Now evaluating

lime
c-0

(J A 
In —

lim e
c-0

lime^
c-0

lim—
c-0

Ao 1 

x;
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Now if X1 = X2 = X, then

Xe -Xe 0

e= e c = e c = e c = e° = 1 .

Thus, e= 1, if X, = X2.
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The linear-exponential distribution is defined as

At) = (A+y0® ' 2 ' t,yA>o .

From Appendix B, the joint likelihood function for the linear-exponential with 

noncensored and censored values is

Uk, Y) = e ' 2 ' n(X + yO 
/=!

r n

wAerg T = Sr + S 
i"=l A=r-1

S = Si/ * £ (l^ .
1 = 1 Æ=r-1

The joint likelihood function is plotted for Â > 0 and y > 0. The maximum likelihood 

estimator for y, say y, is obtained from coordinate (X,y) such that (X,y) maximizes 

uw.
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The Weibull distribution is defined as

AO = t,yA > 0 .

From Appendix A, the joint likelihood function for the Weibull with noncensored and 

censored values is

The joint likelihood function is plotted for X > 0 and y > 0. The maximum likelihood 

estimator for y, say y, is obtained from coordinate (X,y) such that (A,y) maximizes 

%y).
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The Weibull Model is defined as

.#) = CYA > 0 .

It is assumed that X1 and À2 have independently and identically distributed (iid) prior 

distributions. The assumed prior distribution is the Iverted-Gamma-One, /y,, that is,

m = to 1
> ° •

Now let us find /(&r|) where Ç = X, and r| = —^ =» X2 = £r|. 
*

NOTE: The subscript 1 in A, denotes ^slmdard therapy and the subscript 2 in X2 denotes 
^new therapy'

Since Xx and X2are iid, it follows that

( I V-’1 
%)bJ

g

Now performing the change of variables, 

À2 1 n = - - x2 =

redefining /?I(X1,X2) = Ç and A2(XpA2) = and finding the absolute value of the

Jacobian, it follows
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hence,

dh^) 
as 

ah2&n) 
at

dh^) 
^n 

a^n)
an .

Ln

\ n„-\

<:■ 2^*1 / P 

. n>

(,

I

i

0

i

1 i

< n

2
( 1

e

Now let us obtain the posterior density for t], that is,

^nlA?pY2) = —

0 0

Proceeding,

^,n,AŸpŸ2) = ^(inlAïpYz)^^) ■

Now performing the transformation on Z(X1,X2|D,y1,Y2)’
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previously shown. Thus, 

Z^n^YpYz) = 1^1

fY?S^'
Sr? - s

x
-((n^Sr?» s (r^: r«I t-r^t

Note: Zx ^(-) is the likelihood function for independent populations for the Weibull (see

Appendix A).

Hence,

^,t]AypY2) = i(tnP,YpY2)A^n)

/ = 1

"2 .
• s

i V-*1 — e

W2 it,?- %
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The linear-exponential model is defined as

-(V-l?r2) 
fit) = (X+Y 2 X,Y,/ > 0 .

The joint probability density function forX^t)) was previously derived for the

Weibull model, and it is 

where £ = X, and T| = —^ =* X2 = Çî].

Note: The subscript 1 in Xt denotes Xstandard lherapy, and the subscript 2 in X2 denotes 
^"new therapy

Now performing a transformation on the likelihood of the linear-exponential model, the 

likelihood was previously shown to be

I
KU) = n

7-1
E(X + YC) 
i=i

for / = 2 we have

/(U)=g : n(A;+Yige -
i=i i=i

Now performing the following transformation on /(X,y) for / = 2, we have

5 = X .

Thus, X2 = T|C ■ Now rewriting T| and £, we have
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hM) = C
= tn

and finding the absolute value of the jacobian

dh' dhx
dî]

dA2 dh2 
5Ç dr]

Thus,

=
1=1

e 2 e -
1=1

NOTE:

But the posterior kernel, that is, Z^-qlD.YpYz) say, ^,r^,-^,Y^ is
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g&nP.YpW = ^nl^,YpY2) Æn)

n(C+Y/h) e

x

C
2
( 1

X

\ 2w -1/

r(»J I
12

1 Ve*1 
— g

g \ - z

2

I n

o 1 1 \ «o’1

rw IU

Consquently, the posterior distribution of the parameter of interest, r|, is

gCnl^YpY2)

JgOZ),Ÿi,Ÿ2)^ 
o

^^(^|^YpY2)^^ 

o o
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The Weibull density is defined as

to = U,Y a o .

Note: The survivorship function is defined as

% = 1 - ^0

where

FW - f

and the hazard function is defined as

MO =

Now, let us find F(t):

M0 = f ltodx = f J -= J(

Let

u = xY
du = y*Y 1

Hence,

J 0

but u = xY

M 
S(0

>

0 < m < z/(r) .

■ -p lo
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_e -<w _ (-e -W>j

= 1 -e .

Thus,

F(t) = I - e .

Consequently, the survivorship function of the Weibull density is

% = 1 - HO
= 1 - [1 - e
= e

and the hazard function of the Weibull density is

AO . M
Sfr) e W 

= MW .
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The linear-exponential density is defined as

-(JU - lyt2)
KO = & + yO e 2 t, > 0

Note: The survivorship function is defined as

S(0 = 1 - KO

where

KO =

and the hazard function is defined as

A(O =

Now, let us find F(t)

KO = ( ' K^dx = f
J -OC J 0

Let

i 1 ",u = ÀX+—yx-

du = (k+^dx

Hence, 

u(O
= J e Udu 

0

but u = kx + —yx2

[ 'K^dx

KO

-(Xx - lyx-) 
(A+yx)e - dx .

0 < u < w(f) .

= “Io''
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-(Ax^Y*2)
-e 2

-(A^Y'2) -(A(O)-ly(O)
-e 1 - {-e 2 :

-(Az^Y'2)
1 - e 2 .

Thus,

- e 2= 1

Consequently, the survivorship function of the linear-exponential density is

5(0 = 1 - w

= 1 - 1 - e
-(Az - Ayr2)

= e 2

-(Az - lyz2)

and the hazard function of the linear-exponential density is

-(Az-lyz2)

HI = <A/Y»___L-
XO -(Az-lyz2)

e 2
= X + yt .
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Weibull Density Function:

FIGURE I
Weibull Density Curves, À = 2
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Weibull Hazard Function:

U,y > 0

o

FIGURE 2
Weibull Hazard Function Curves, A = 1
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Weibull Survivorship Function:

S(f) = e /A,Y > 0

FIGURES
Weibull Survivorship Function Curves, k = 2
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Linear-Exponential Density Function:

fit) =(k + Yt)e 2 U,y>0

2.5

FIGURE 4
Linear-Exponential Density Curves, À = 2
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Linear-Exponential Hazard Function:

h(t) =X+yt /,A,y>0

FIGURES
Linear-Exponential Hazard Function Curves, A = 2
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Linear-Exponential Survivorship Function:

-CU-lyr) .
5(0 = e 2 Y > 0

0.8

0.6

0.2

3.53

FIGURE 6
Linear-Exponential Survivorship Function Curves, À = 2
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PROGRAM INTEGRATION
C
C Weibull Model - Integration of the Normalizing Constant 
C
C Defining Variables involved in the Program 
C

DOUBLE PRECISION XM(32),XA(32),YM(32), YA(32),SEED2(32),SEED3(32)
DOUBLE PRECISION G(32),VG(32),S11(16),S22(16),TSI 1(16),ITER(16)
DOUBLE PRECISION NO11(16),TOI 1(16),TS22(16),TSI,TS2,SI,S2,NOI

INTEGER N, Q, II, P, TOI

N=6000

OPEN(UNIT= 12,FILE-INTP AR',STATUS-OLD')

OPEN(UNIT=30,FILE-OPUTS',STATUS= ,NEW')

DO 750 Q= 1,16
READ(UNIT=12,FMT=*) ITER(Q),TO11(Q),NO11(Q),S11(Q),S22(Q),

+ TS11(Q),TS22(Q)
750 CONTINUE

OPEN(UNIT= 15,FILE-IPUTS', ST ATU S-OLD')

DO 450 P=l,32
READ(UNIT=15,FMT=*) XM(P),XA(P),YM(P),YA(P),SEED2(P),

+ SEED3(P)
450 CONTINUE

DO 850 11=1,16

PRINT*,'ITER-,ITER(11 ),to 11 (i 1 ),no 11 (i 1 ),s 11 (i 1 ),s22(i 1 ),
+ tsll(il),ts22(il)

NO1=NO11(11)
TO1=TO11(11)
TS1=TS11(I1)
TS2=TS22(I1)
S1=S11(11)
S2=S22(I1)

CALL INTEG(XM, XA, YM, Y A, SEED2, SEED3, G, VG,N,TO 1 ,NO 1,
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+ TS1,TS2,S1,S2)
WRITE (30,40) ANSN(G), ANSD(G), TOI, NO 1

40 FORMAT ( 1 X,'NUM. AREA=',E 10.2E4,
+ DEN AREA=',E15.6E5,'TO1-,I3,'NO1-,F5.3)

850 CONTINUE
STOP
END

C
C Calculation of the Intergation
C

SUBROUTINE INTEG(XM,XAYM,YA,SEED2,SEED3,G,VG,N,TO1,
+ NO1,TS1,TS2,S1,S2)

DOUBLE PRECISION XM(32), XA(32), R(2000), TEMP, VAR, S(2000)
DOUBLE PRECISION YM(32), YA(32), LTEMP, LTEMP1, LTEMP2, SUM
DOUBLE PRECISION SEED2(32), SEED3(32), G(32), VG(32), SI, S2
DOUBLE PRECISION TSI, TS2, X, Y, NO1

INTEGER I, J, N, NI, K, C, TOI

SUM=0.0D0
VAR=0.0D0
Nl=N/2000
K=0

DO 1000 C=l,32

DO 10 1=1, N1
CALL URAN2(R, SEED2,2000,C)
CALL URAN3(S,SEED3,2000,C)

DO 20 J= 1,2000

X=XM(C)*R(J)+ XA(C)
Y=YM(C)*S(J)+ YA(C)

LTEMP 1 =(((S 1 * 104)+( S2* 104)-(2*NO 1 ))*LOG(X)) +
+ (((S2* 104)-NO 1 -1 )*LOG(Y))

LT1=(X**S1)*TS1
LT2=((X*Y)**S2)*TS2
LT3=(TO1/X)*(1+(1/Y))

Itemp2=-(LT 1+LT2+LT3 )
LTEMP=0.001 *(LTEMP 1+LTEMP2)
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K=K+1
TEMP=DEXP(LTEMP)
IF (K .EQ. 1) then
SUM=TEMP
goto 20 
end if
SUM=SUM+((TEMP-SUM)/DFLOAT(K))
VAR=VAR+(K-1 )*(TEMP-SUM)*((TEMP-SUM)/DFLOAT(K))

20 CONTINUE

IF (I EQ. Nl) G(C)=XM(C)*YM(C)*SUM
IF (I EQ. NI) VG(C)=VAR/DFLOAT(K-1 )

10 CONTINUE
1000 CONTINUE

RETURN
END

C
C Computing the Integral
C

FUNCTION ANSD(G)
DOUBLE PRECISION DEN, G(32)
INTEGER B

DEN=0.0D0
VDEN=0.0D0
DO 3000 B=1,32
DEN=DEN+G(B)

3000 CONTINUE
ANSD=DEN
END

C
C Generation of Random Variables for 1st Dimension
C

SUBROUTINE URAN2 (R, SEED2, N, C)
DOUBLE PRECISION R(2000),SEED2(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647.0D0
SCALE=65536.0D0
6=550007125.0D0

DO 200 1=1,N
SEED2(C)=B*DINT(SEED2(C)/SCALE)+A*DMOD(SEED2(C),SCALE)
SEED2(C)=DMOD(SEED2(C),M)
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R(I)=SEED2(C)/M 
200 CONTINUE 

RETURN 
END 

C 
C Generation of Random Variables for the 2nd Dimension
C

SUBROUTINE URAN3 (R, SEED3, N, C)
DOUBLE PRECISION R(2000),SEED3(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647.0D0
SCALE=65536.ODO
6=550007125.000

DO 200 1=1,N
SEED3(C)=B*DINT(SEED3(C)/SCALE)+A*DMOD(SEED3(C),SCALE)
SEED3(C)=DMOD(SEED3(C),M)
R(I)=SEED3(C)/M

200 CONTINUE 
RETURN 
END
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PROGRAM INTEGRATION
C
C Weibull Model - Integrating First Moment’s Numerator
C
C Defining Variables involved in the Program 
C

DOUBLE PRECISION XM(32),XA(32),YM(32),YA(32),SEED2(32),SEED3(32)
DOUBLE PRECISION G(32),VG(32),SI 1(16),S22(16),TSI 1(16),ITER(16)
DOUBLE PRECISIONNO11(16),TOI 1(16),TS22(16),TSI,TS2,SI,S2,NO1

INTEGER N, Q, II, P, TOI

N=6000

OPEN(UNIT= 12,FILE='INTPAR',  STATUS-OLD')

OPEN(UNIT=30,FILE='EVWO',STATUS='NEW')

DO 750 Q=l,16
READ(UNIT= 12,FMT=*) ITER(Q),TO11(Q),NO11(Q),S11(Q),S22(Q),

+ TS11(Q),TS22(Q)
750 CONTINUE

OPEN(UNIT= 15,FILE='IPUT 1 ',STATUS-OLD')

DO 450 P=l,32
READ(UNIT= 15 ,FMT=*) XM(P),XA(P),YM(P),YA(P),SEED2(P),

+ SEED3(P)
450 CONTINUE

DO 85011=1,16

PRINT*,'ITER=',ITER(11 )

NO1=NO11(11)
TO1=TO11(11)
TS1=TS11(I1)
TS2=TS22(I1)
S1=S11(I1)
S2=S22(I1)

CALL INTEG(XM,XA, YM, Y A SEED2, SEED3 ,G, VG, N,TO 1 ,NO 1,
+ TS1,TS2,S1,S2)

WRITE (30,40) ANSD(G), TOI, NO 1
40 FORMAT (IX,DEN. AREA=',E15.6E5,

+ 'TOI =',13,^01=',F5.3)
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850 CONTINUE 
STOP 
END 

C 
C Intergation 
C

SUBROUTINE INTEG(XM,XA,YM,YA,SEED2,SEED3,G,VG,N,TO1,  
+ NO 1 ,TS 1,TS2,S 1 ,S2)

DOUBLE PRECISION XM(32), XA(32), R(2000), TEMP, VAR, S(2000)
DOUBLE PRECISION YM(32), YA(32), LTEMP, LTEMP1, LTEMP2, SUM
DOUBLE PRECISION SEED2(32), SEED3(32), G(32), VG(32), SI, S2
DOUBLE PRECISION TSI, TS2, X, Y, NO1

INTEGER I, J, N, NI, K, C, TOI

SUM=0.0D0
VAR=0.0D0
Nl=N/2000
K=0

DO 1000 C=l,32

DO 10 1=1, N1
CALL URAN2(R,SEED2,2000,C)
CALL URAN3(S,SEED3,2000,C)

DO 20 J= 1,2000

X=XM(C)*R(J)+ XA(C)
Y=YM(C)*S(J)+ YA(C)

LTEMP 1 =(((S 1 * 104)+(S2* 104)-(2*NO 1 ))*LOG(X)) +
+ (((S2*104)-NOl)*LOG(Y))

LT1=(X**S1)*TS1
LT2=((X*Y)**S2)*TS2
LT3=(TO 1/X)*( 1 +( 1/Y))

Itemp2=-(LT 1+LT2+LT3)
LTEMP=LTEMP 1+LTEMP2

K=K+1
TEMP=DEXP(LTEMP)
IF (K EQ 1 ) then

SUM=TEMP 
goto 20
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end if
SUM=SUM+((TEMP-SUM)/DFLOAT(K))
VAR=VAR+(K- 1)*(TEMP-SUM)*((TEMP-SUM)/DFLOAT(K))

20 CONTINUE

IF (I EQ Nl) G(C)=XM(C)*YM(C)*SUM
IF (I EQ Nl) VG(C)=VAR/DFLOAT(K-1 )

10 CONTINUE
1000 CONTINUE 

RETURN 
END

C
C Computing the Integral 
C

FUNCTION ANSD(G)
DOUBLE PRECISION DEN, G(32)
INTEGER B

DEN=0.0D0
VDEN=0.0D0
DO 3000 B=1,32
DEN=DEN+G(B)

3000 CONTINUE 
ANSD=DEN 
END

C
C Generation of Random Variables for 1st Dimension 
C

SUBROUTINE URAN2 (R, SEED2, N, C)
DOUBLE PRECISION R(2000),SEED2(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647.0D0
SCALE=65536.0D0
8=550007125.000

DO 200 1=1,N
SEED2(C)=B*DINT(SEED2(C)/SCALE)+A*DMOD(SEED2(C),SCALE)  
SEED2(C)=DMOD(SEED2(C),M)
R(I)=SEED2(C)/M

200 CONTINUE 
RETURN 
END
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c
C Generation of Random Variables for the 2nd Dimension
C

SUBROUTINE URAN3 (R, SEED3, N, C)
DOUBLE PRECISION R(2000), SEED3 (32), A,B, SC ALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647. ODO
SCALE=65536.0D0
B=550007125.0D0

DO 200 1=1,N
SEED3(C)=B*DINT(SEED3(C)/SCALE)+A*DMOD(SEED3(C),SCALE)
SEED3(C)=DMOD(SEED3(C),M)
R(I)=SEED3(C)/M

200 CONTINUE
RETURN
END
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PROGRAM INTEGRATION
C
C Weibull Model - Integrating The Second Moment About The Mean Numerator
C
C Defining Variables involved in the Program 
C

DOUBLE PRECISION XM(32),XA(32),YM(32),YA(32),SEED2(32),SEED3(32)  
DOUBLE PRECISION G(32),VG(32),SI 1(16),S22(16),TSI 1(16),ITER(16)
DOUBLE PRECISION NO 11 ( 16),TO 11 ( 16),TS22( 16),TS 1 ,TS2,S 1 ,S2,NO 1
DOUBLE PRECISION AVGY, YBAR(16)

INTEGER N, Q, II, P, TOI

N=6000

OPEN(UNIT= 12,FILE-INTP AR2', STATUS-OLD')

OPEN(UNIT=3 0,FILE=E VW2O', STATUS='NEW')

DO 750 Q= 1,16
READ(UNIT=12,FMT=*) ITER(Q),TO11(Q),NO11(Q),S11(Q),S22(Q),

+ TSI 1(Q),TS22(Q),YBAR(Q)
750 CONTINUE

OPEN(UNIT= 15,FILE-IPUT2', STATUS-OLD')

DO 450 P=l,32
READ(UNIT=15,FMT=*) XM(P),XA(P),YM(P),YA(P),SEED2(P),

+ SEED3(P)
450 CONTINUE

DO 850 11=1,16

PRINT*,'ITER=',ITER(11 )

AVGY=YB AR(11 )
NO1=NO11(11)
TO1=TO11(I1)
TS1 =TS 11(11)
TS2=TS22(I1)
S1=S11(11)
S2=S22(11 )

CALL INTEG(XM,XA,YM,YASEED2,SEED3,G,VG,N,TO  1 ,NO 1,
+ TS1,TS2,S1,S2,AVGY)
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WRITE (30,40) ANSD(G), TOI, NO 1
40 FORMAT (IX,DEN. AREA=',E15.6E5, 

+ TOI—,13,^01—,F5.3)

850 CONTINUE 
STOP 
END

C
C Intergation
C

SUBROUTINE INTEG(XM,XA,YM,YA,SEED2,SEED3,G,VG,N,TO 1,
+ NO1,TS1,TS2,S1,S2,AVGY)

DOUBLE PRECISION XM(32), XA(32), R(2000), TEMP, VAR, S(2000)
DOUBLE PRECISION YM(32), YA(32), LTEMP, LTEMP1, LTEMP2, SUM
DOUBLE PRECISION SEED2(32), SEED3(32), G(32), VG(32), SI, S2
DOUBLE PRECISION TSI, TS2, X, Y, NO1, AVGY

INTEGER I, J, N, NI, K, C, TOI

SUM=0.0D0
VAR=0.0D0
Nl=N/2000
K=0

DO 1000 C=l,32

DO 10 1=1, N1
CALL URAN2(R,SEED2,2000,C)
CALL URAN3(S,SEED3,2000,C)

DO 201=1,2000

X=XM(C)*R(J)+ XA(C)
Y=YM(C)*S(J)+ YA(C)

LTEMP 1=(2*LOG(ABS(Y-AVGY))) +
+ (((S 1 * 104)+(S2* 104)-(2*NO 1 ))*LOG(X)) +
+ (((S2*104)-NOl-l)*LOG(Y))

LT1=(X**S1)*TS1
LT2=((X*Y)**S2)*TS2
LT3=(TO1/X)*(1+(1/Y))

Itemp2=-(LT 1+LT2+LT3 )
LTEMP=0.001 *(LTEMP 1+LTEMP2)
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K=K+1
TEMP=DEXP(LTEMP)
IF (K EQ. 1) then

SUM=TEMP
goto 20 
end if
S UM=SUM+((TEMP-SUM)/DFLO AT (K))
VAR=VAR+(K-1 )*(TEMP-SUM)*((TEMP-SUM)/DFLO  AT(K))

20 CONTINUE

IF (I EQ. Nl) G(C)=XM(C)*YM(C)*SUM
IF (I EQ. Nl) VG(C)=VAR/DFLOAT(K-1 )

10 CONTINUE
1000 CONTINUE

RETURN
END

C
C Computing the Integral
C

FUNCTION ANSD(G)
DOUBLE PRECISION DEN, G(32)
INTEGER B

DEN=0.0D0
VDEN=0.0D0
DO 3000 B=1,32
DEN=DEN+G(B)

3000 CONTINUE
ANSD=DEN
END

C
C Generation of Random Variables for 1 st Dimension
C

SUBROUTINE URAN2 (R, SEED2, N, C)
DOUBLE PRECISION R(2000),SEED2(32),A,B,SCALE,M

INTEGER I, N, C
A=950706376.0D0
M=2147483647.0D0
SCALE=65536.0D0
6=550007125.0D0

DO 200 1=1,N
SEED2(C)=B*DINT(SEED2(C)/SCALE)+A*DMOD(SEED2(C) SCALE)
SEED2(C)=DMOD(SEED2(C),M)
R(I)=SEED2(C)/M
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200 CONTINUE
RETURN
END

C
C Generation of Random Variables for the 2nd Dimension
C

SUBROUTINE URAN3 (R, SEED3, N, C)
DOUBLE PRECISION R(2000),SEED3(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647. ODO
SCALE=65536.0D0
B=550007125.0D0

DO 200 1=1,N
SEED3(C)=B*DINT(SEED3(C)/SCALE)+A*DMOD(SEED3(C),SCALE)
SEED3(C)=DMOD(SEED3(C),M)
R(I)=SEED3(C)/M

200 CONTINUE
RETURN
END
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PROGRAM INTEGRATION
C
C Integrating the Linear-Exponentail Model - Normalizing Constant 
C
C Defining Variables involved in the Program 
C

DOUBLE PRECISION XM(32),XA(32),YM(32),YA(32),SEED2(32),SEED3(32)
DOUBLE PRECISION G(32),VG(32),S1,S2,T1,T2,TI 1(16),T22(16)
DOUBLE PRECISION S11(16),S22(16),A1,A2, TOI, NO1
DOUBLE PRECISION M01(104),M02(104),ITER(16),T011(16),NO11(16)

INTEGER N,Q, 11, J1, L,P

N=6000

OPEN(UNIT= 12,FILE-LINTPAR', STATUS-OLD')

OPEN(UNIT=30,FILE-LOPUTS',STATUS=,NEW,)

DO 750 Q=l,16
READ(UNIT= 12,FMT=*) ITER(Q),TO11(Q),NO11(Q),S11(Q),S22(Q),

+ T11(Q),T22(Q)
750 CONTINUE

OPEN(UNIT= 11 ,FDLE='MONTHA', STATUS='OLD)

DO 95011=1,104
READ(UNIT=11,FMT=*) MO1(J1)

950 CONTINUE

OPEN(UNIT= 10,FILE=MONTHB ', ST ATU S-OLD')

DO 955 L=l,104
RE AD(UNIT= 10, FMT=* ) MO2(L)

955 CONTINUE

OPEN(UNIT= 15,FILE-LIPUTS',STATUS-OLD')

DO 450 P=l,32
READ(UNIT=15,FMT=*) XM(P),XA(P),YM(P),YA(P),SEED2(P),

+ SEED3(P)
450 CONTINUE

DO 850 11=1,6

PRINT*, 'ITER=',ITER(I1)
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NO1=NO11(I1)
TO1=TO11(11)
T1=T11(11)
T2=T22(I1)
S1=S11(I1)
S2=S22(I1)
Al=0.01
A2=0.01

CALL INTEG(XM,XA,YM,YA,SEED2,SEED3,G,VG, 
+ N,TO 1 ,NO 1 ,T 1 ,T2, S1, S2, A1, A2,MO 1 ,MO2)

WRITE (30,40) ANSD(G), TOI, NO 1
40 FORMAT (IX,DEN. AREA-,E15.6E5,'TOI-,F5.3,'NO1-,F5.3)

850 CONTINUE
STOP
END

C
C Integration
C

SUBROUTINE INTEG(XM,XA, YM, Y A, SEED2, SEED3, G, V G,N,
+ TO1,NO1,T1,T2,S1,S2,A1,A2,MO1,MO2)

DOUBLE PRECISION XM(32), XA(32), R(2000), TEMP, VAR, S(2000)
DOUBLE PRECISION YM(32), YA(32), LTEMP, LTEMP1, LTEMP2, SUM
DOUBLE PRECISION SEED2(32), SEED3(32), G(32), VG(32), SI, S2
DOUBLE PRECISION Tl, T2
DOUBLE PRECISION A1, A2,MO 1 ( 104),MO2( 104),X, Y,TO 1 ,NO 1

INTEGER I, J, N, NI, K, C

SUM=0.0D0
VAR=0.0D0
Nl=N/2000
K=0

DO 1000 C=l,32

DO 10 1=1, N1
CALL URAN2(R,SEED2,2000,C)
CALL URAN3(S,SEED3,2000,C)

DO 20 J= 1,2000

X=XM(C)*R(J)+ XA(C)
Y=YM(C)*S(J)+ YA(C)
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LTEMP1= -2*NO 1 *LOG(X)-(NO 1+1 )*LOG( Y)
+ + LOG(V1(X,A1,MO1)) + LOG(V2(X,Y,A2,MO2))

LT1=(X*T1)+((1/2)*A1*S1)
LT2= (X*Y*T2)+((1/2)*A2*S2)
LT3= (TO1/X)*(1+(1/Y))

Itemp2=-(LT 1+LT2+LT3 )
LTEMP=0.001 *(LTEMP 1+LTEMP2)

K=K+1
TEMP=DEXP(LTEMP)
IF (K EQ. 1) then

SUM=TEMP
goto 20 
end if
SUM=SUM+((TEMP-SUM)/DFLOAT(K))
VAR=VAR+(K-1 )*(TEMP-SUM)*((TEMP-SUM)/DFLOAT(K)) 

20 CONTINUE

IF (I EQ Nl) G(C)=XM(C)*YM(C)*SUM
IF (I EQ. NI) VG(C)=VAR/DFLOAT(K-1 ) 

10 CONTINUE 
1000 CONTINUE

RETURN 
END 

C 
C Computing the Integral 
C

FUNCTION ANSD(G)
DOUBLE PRECISION DEN, G(32) 
INTEGER B

DEN=0.0D0
VDEN=0.0D0
DO 3000 B=1,32
DEN=DEN+G(B) 

3000 CONTINUE 
ANSD=DEN 
END 

C 
C Computing the Observations: Summed & Squared Summed 
C for Treatment A/l 
C

FUNCTION V1(X,A1,MO1)
DOUBLE PRECISION X,A1,MOI(104)
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INTEGER I

PVl=1.0D0
DO 6501=1,104
PV1=PV1*(X+(A1*MO1(I)))

650 CONTINUE
V1=PV1
END

C
C Computing the Observations: Summed & Squared Summed
C for Treatment B/2
C

FUNCTION V2(X,Y,A2,MO2)
DOUBLE PRECISION X,Y,A2,MO2(104)
INTEGER I
PV2=1.0D0
DO 550 1=1,104
PV2=PV2*((X*Y)+(A2*MO2(I)))

550 CONTINUE
V2=PV2
END

C
C Generation of Random Variables for 1st Dimension
C

SUBROUTINE URAN2 (R, SEED2, N, C)
DOUBLE PRECISION R(2000),SEED2(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647.0D0
SCALE=65536.0D0
B=550007125.0D0

DO 200 1=1,N
SEED2(C)=B*DINT(SEED2(C)/SCALE)+A*DMOD(SEED2(C),SCALE)
SEED2(C)=DMOD(SEED2(C),M)
R(I)=SEED2(C)/M

200 CONTINUE
RETURN
END

C
C Generation of Random Variables for the 2nd Dimension
C

SUBROUTINE URAN3 (R, SEED3, N, C)
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DOUBLE PRECISION R(2000),SEED3(32),A,B,SCALE,M

INTEGER 1, N, C

A=950706376.0D0
M=2147483647.ODO
SCALE=65536.0D0
6=550007125.000

DO 200 1=1,N
SEED3(C)=B*DINT(SEED3(C)/SCALE)+A*DMOD(SEED3(C),SCALE)
SEED3(C)=DMOD(SEED3(C),M)
R(I)=SEED3(C)/M

200 CONTINUE
RETURN
END
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PROGRAM INTEGRATION 
C
C Integrating the Linear-Exponentail Model - Numerator 1st Moment
C
C Defining Variables involved in the Program 
C

DOUBLE PRECISION XM(32),XA(32),YM(32),YA(32),SEED2(32),SEED3(32)
DOUBLE PRECISION G(32),VG(32),S1,S2,T1,T2,T11(16),T22(16)
DOUBLE PRECISION SI 1(16),S22( 16),A1,A2,TO 1 ,NO 1
DOUBLE PRECISION M01(104),M02(104),ITER(16),T011(16),NO 11(16)

INTEGER N,Q,II,JI,L,P

N=6000

OPEN(UNIT= 12, FILE-LINTPAR', ST ATU S-OLD')

OPEN(UNIT=30,FILE=,EVLO',STATUS='NEW)

DO 750 Q=l,16
READ(UNIT= 12,FMT=*) ITER(Q),TO11(Q),NO11(Q),S11(Q),S22(Q),

+ T11(Q),T22(Q)
750 CONTINUE

OPEN(UNIT=11 ,FILE='MONTHA', ST ATUS-OLD')

DO 95011=1,104
READ(UNIT=11,FMT=*) MO1(J1)

950 CONTINUE

OPEN(UNIT= 10,FILE='MONTHB', ST ATUS-OLD')

DO 955 L=l,104
READ(UNIT = 10,FMT=* ) MO2(L)

955 CONTINUE

OPEN(UNIT= 15 ,FELE='LIPUT 1', ST ATU S-OLD')

DO 450 P=l,32
READ(UNIT=15,FMT=*) XM(P),XA(P),YM(P),YA(P),SEED2(P),

+ SEED3(P)
450 CONTINUE

DO 850 11=1,6

PRINT*, 'ITER=',ITER(11 )
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N01=N011(11) 
TO1=TO11(I1)
T1=T11(11)
T2=T22(I1)
S1=S11(I1)
S2=S22(I1)
Al=0.01
A2=0.01

CALL INTEG(XM, XA, YM, Y A, SEED2, SEED3, G, VG, 
+ N,TO LNO1 ,T 1 ,T2, S1, S2, A1, A2,M01 ,MO2)

WRITE (30,40) ANSD(G), TOI, NO 1
40 FORMAT (1X,*DEN. AREA-,E15.6E5,'TOI-,F5.3,'NO1-,F5.3)

850 CONTINUE
STOP
END

C
C Intergation
C

SUBROUTINE INTEG(XM,XA,YM,YA,SEED2,SEED3,G,VG,N, 
+ TO 1 ,NO 1 ,T 1 ,T2,S 1, S2,A1,A2,MO 1 ,MO2)

DOUBLE PRECISION XM(32), XA(32), R(2OOO), TEMP, VAR, S(2000)
DOUBLE PRECISION YM(32), YA(32), LTEMP, LTEMP1, LTEMP2, SUM
DOUBLE PRECISION SEED2(32), SEED3(32), G(32), VG(32), SI, S2
DOUBLE PRECISION Tl, T2
DOUBLE PRECISION Al,A2,M01 ( 104),MO2( 104),X, Y,TO 1,NO 1

INTEGER I, J, N, NI, K, C

SUM=0.0D0
VAR=0.0D0
Nl=N/2000
K=0

DO 1000 C=l,32

DO 10 1=1, N1
CALL URAN2(R,SEED2,2OOO,C)
CALL URAN3(S,SEED3,2OOO,C)

DO 20 1=1,2000

X=XM(C)*R(J)+ XA(C)
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Y=YM(C)*S(J)+ YA(C)

LTEMP1= -2*N01 *LOG(X)-NO 1 *LOG(Y)
+ + V1(X,A1,MO1) + V2(X,Y,A2,MO2)

LT1=(X*T1)+((1/2)*A1*S1)
LT2= (X*Y*T2)+((1/2)*A2*S2)
LT3= (T01/X)*(l+(l/Y))

Itemp2=-(LT 1+LT2+LT3 )
LTEMP=0.001 * (LTEMP 1+LTEMP2)

K=K+1 
TEMP=DEXP(LTEMP) 
IF (K EQ. 1) then 

SUM=TEMP 
goto 20 
end if
SUM=SUM+((TEMP-SUM)/DFLOAT(K))
V AR=V AR+(K-1 )*(TEMP-SUM)*((TEMP-SUM)/DFLOAT(K)) 

20 CONTINUE

IF (I EQ Nl) G(C)=XM(C)*YM(C)*SUM
IF (I EQ Nl) VG(C)=VAR/DFLOAT(K-1) 

10 CONTINUE 
1000 CONTINUE

RETURN 
END 

C 
C Computing the Integral 
C

FUNCTION ANSD(G)
DOUBLE PRECISION DEN, G(32) 
INTEGER B

DEN=O.ODO
VDEN=0.0D0
DO 3000 B=1,32
DEN=DEN+G(B) 

3000 CONTINUE 
ANSD=DEN 
END 

C 
C Computing the Observations: Summed & Squared Summed 
C for Treatment A/1 
C

FUNCTION VI (X, AI,MOI)
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DOUBLE PRECISION X,Al,MO 1(104) 
INTEGER I

PVl=0.0D0
DO 6501=1,104
PV1=PV1+LOG((X+(A1 *MO1(I)))) 

650 CONTINUE
V1=PV1 
END 

C
C Computing the Observations: Summed & Squared Summed 
C for Treatment B/2 
C

FUNCTION V2(X,Y,A2,MO2)
DOUBLE PRECISION X,Y,A2,MO2(104)
INTEGER I
PV2=0.0D0
DO 550 1=1,104
PV2=PV2+LOG(((X*Y)+(A2*MO2(I)))) 

550 CONTINUE
V2=PV2 
END 

C
C Generation of Random Variables for 1st Dimension
C

SUBROUTINE URAN2 (R, SEED2, N, C)
DOUBLE PRECISION R(2000),SEED2(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647.0D0
SCALE=65536.0D0
6=550007125.000

DO 200 1=1,N
SEED2(C)=B*DINT(SEED2(C)/SCALE)+A*DMOD(SEED2(C), SCALE)
SEED2(C)=DMOD(SEED2(C),M)
R(I)=SEED2(C)/M

200 CONTINUE 
RETURN 
END
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C Generation of Random Variables for the 2nd Dimension
C

SUBROUTINE URAN3 (R, SEED3, N, C)
DOUBLE PRECISION R(2000),SEED3(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647.0D0
SCALE=65536.ODO
6=550007125.ODO

DO 200 1=1,N
SEED3(C)=B*DINT(SEED3(C)/SCALE)+A*DMOD(SEED3(C),SCALE)
SEED3 (C )=DMOD(SEED3 (C),M)
R(I)=SEED3(C)/M

200 CONTINUE 
RETURN 
END
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PROGRAM INTEGRATION
C
C Integrating the Linear-Exponentail Model - Numerator 2nd Moment
C
C Defining Variables involved in the Program
C

DOUBLE PRECISION XM(32),XA(32),YM(32),YA(32),SEED2(32),SEED3(32)
DOUBLE PRECISION G(32),VG(32),S1,S2,T1,T2,T11(16),T22(16)
DOUBLE PRECISION S11(16),S22(16),A1,A2, N01,AVGY,YBAR(16)
DOUBLE PRECISION MO 1(104),MO2(104),ITER(16),TOI 1(16),NO11(16)

INTEGER N,Q,U,J1,L,P,TO1

N=6000

OPEN(UNIT= 12,FILE='LINTPAR2,, STATUS-OLD')

OPEN(UNIT=3 0,FILE='EVL2O,, ST ATUS=,NE W)

DO 750 Q=l,16
READ(UNIT=12,FMT=*) ITER(Q),TO11(Q),NO11(Q),S11(Q),S22(Q),

+ T11(Q),T22(Q),YBAR(Q)
750 CONTINUE

OPEN(UNIT=11 ,FILE-MONTHA',STATUS-OLD')

DO 95011=1,104
READ(UNIT=11,FMT=*) MOl(Jl)

950 CONTINUE

OPEN(UNIT= 10,FILE-MONTHB', STATUS-OLD')

DO 955 L=l,104
READ(UNIT= 10,FMT=*) MO2(L)

955 CONTINUE

OPEN(UNIT= 15,FILE-LIPUT2',ST ATUS-OLD')

DO 450 P= 1,32
READ(UNIT= 15,FMT=*) XM(P),XA(P),YM(P),YA(P),SEED2(P),

+ SEED3(P)
450 CONTINUE

DO 850 11=1,16

PRINT*, 'ITER-,ITER(I1)
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AVGY=YB  AR(11 )
NO1=NO11(I1)
TO1=TO11(I1)
T1=T11(11)
T2=T22(I1)
S1=S11(11)
S2=S22(I1)
Al=0.01
A2=0.01

CALL INTEG(XM,XA,YM,YA,SEED2,SEED3,G,VG, 
+ N,TO 1 ,N01 ,T 1 ,T2, S1, S2, A1, A2,M01 ,M02, A VGY)

WRITE (30,40) ANSN(G), ANSD(G), TOI, NO 1
40 FORMAT (IX,1DEN. AREA=',E15.6E5,'TO1=', 13,NO1=',F5.3)

850 CONTINUE
STOP
END

C
C Intergation
C

SUBROUTINE INTEG(XM,XA, YM, Y A, SEED2, SEED3, G, V G,N, 
+ TO 1 ,NO 1 ,T 1 ,T2, S1 ,S2, Al, A2,MO 1 ,MO2, AVGY)

DOUBLE PRECISION XM(32), XA(32), R(2OOO), TEMP, VAR, S(2OOO)
DOUBLE PRECISION YM(32), YA(32), LTEMP, LTEMP1, LTEMP2, SUM
DOUBLE PRECISION SEED2(32), SEED3(32), G(32), VG(32), SI, S2
DOUBLE PRECISION Tl, T2, AVGY
DOUBLE PRECISION A1,A2,M01(104),M02(104),X,Y,N01

INTEGER I, J, N, NI, K, C, TOI

SUM=0.0D0
VAR=0.0D0
Nl=N/2000
K=0

DO 1000 C=l,32

DO 10 1=1, N1
CALL URAN2(R, SEED2,2000,C)
CALL URAN3(S,SEED3,2000,C)

DO 20 J= 1,2000

X=XM(C)*R(J)+ XA(C)
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Y=YM(C)*S(J)+ YA(C)

LTEMP1= 2*LOG(ABS(Y-AVGY))-2*NO  1 *LOG(X)-((NO 1+1 )*LOG( Y))
+ + V1(X,A1,MO1) + V2(X,Y,A2,MO2)

LT1=(X*T1)+((1/2)*A1*S1)
LT2= (X*Y*T2)+((1/2)*A2*S2)
LT3= (T01/X)*(l+(l/Y))

Itemp2=-(LT 1+LT2+LT3 )
LTEMP=0.001 *(LTEMP 1+LTEMP2)

K=K+1
TEMP=DEXP(LTEMP)
IF (K .EQ. 1) then

SUM=TEMP
goto 20 
end if
SUM=SUM+((TEMP-SUM)/DFLOAT(K))
VAR=VAR+(K- 1)*(TEMP-SUM)*((TEMP-SUM)/DFLOAT(K)) 

20 CONTINUE

IF (I EQ Nl) G(C)=XM(C)*YM(C)*SUM
IF (I EQ NI) VG(C)=VAR/DFLOAT(K-1 )

10 CONTINUE
1000 CONTINUE

RETURN 
END 

C 
C Computing the Integral 
C

FUNCTION ANSD(G)
DOUBLE PRECISION DEN, G(32)
INTEGER B

DEN=0.0D0
VDEN=O.ODO
DO 3000 B=1,32
DEN=DEN+G(B ) 

3000 CONTINUE 
ANSD=DEN 
END 

C 
C Computing the Observations: Summed & Squared Summed 
C for Treatment A/l 
C

FUNCTION V1(X,A1,MO1)
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DOUBLE PRECISION X,Al,MO 1(104) 
INTEGER I

PVl=0.0D0 
DO 6501=1,104 
PV1=PV1+ LOG((X+(A1*MO1(I)))) 

650 CONTINUE
V1=PV1 
END 

C
C Computing the Observations: Summed & Squared Summed 
C for Treatment B/2 
C

FUNCTION V2(X,Y,A2,MO2)
DOUBLE PRECISION X,Y,A2,MO2(104)
INTEGER I 
PV2=0.0D0 
DO 5501=1,104
PV2=PV2+LOG(((X*Y)+(A2*MO2(I)))) 

550 CONTINUE
V2=PV2 
END 

C
C Generation of Random Variables for 1st Dimension
C

SUBROUTINE URAN2 (R, SEED2, N, C)
DOUBLE PRECISION R(2000),SEED2(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.OD0
M=2147483647.0D0
SCALE=65536.0D0
B=550007125.0D0

DO 200 1=1,N
SEED2(C)=B*DINT(SEED2(C)/SCALE)+A*DMOD(SEED2(C),SCALE)
SEED2(C)=DMOD(SEED2(C),M)
R(I)=SEED2(C)/M

200 CONTINUE 
RETURN 
END
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C
C Generation of Random Variables for the 2nd Dimension
C

SUBROUTINE URAN3 (R, SEEDS, N, C)
DOUBLE PRECISION R(2000),SEED3(32),A,B,SCALE,M

INTEGER I, N, C

A=950706376.0D0
M=2147483647. ODO
SCALE=65536.0D0
B=550007125.0D0

DO 200 1=1,N
SEED3(C)=B*DINT(SEED3(C)/SCALE)+A*DMOD(SEED3(C),SCALE)
SEED3(C)=DMOD(SEED3(C),M)
R(I)=SEED3(C)/M

200 CONTINUE
RETURN
END
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The derivation of the function in eqs. 4.4.4, 4.4.5, and 4.4.6 may proceed in the following 

manner: 

for eq. 4.4.4,

Z(Ÿ,Ÿ l\)=Z(Ÿ l\)Z(Y l\) (Ml)

but from Appendix D,

(M.2)

r n r n
where T = Stt + 2 t'k and S = S+ S (z/)2;

/ = I £=r-l t = I t=r*l

hence, continuing from eq. M.l,

(M.3)

Thus,

(m.4) 
1=1 1=1

Now for eq. 4.4.5,

£(Y,Yl\)=£(Y =ŸI\)Z(Ÿ =Ÿ|AJ (M.5)

from eq. M.2,

(M.6)

Therefore,

n(x; (M7)
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Regarding eq. 4.4.6, to compute (where ) one would obtain the posterior

distribution for Xr From Appendix D, the likelihood for L(X,y) can be written in the

following manner:

%y) = n(X+y t)e 
z = l

(M.8)

but one may condition the likelihood on a particular value for y, say y, hence,

WIŸ).

An /y] prior distribution is assumed for X. The /y, density is written as

"•"/f

(M.9)

(M.10)

Consequently, the posterior density for

UX\V>P\0i\no,t<)dX

(Mil)

o

P2M^o) =

= WI X

For distingushing between samples purposes, eq. M. 11 is written as
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Now,

n(X^t) 
/ = !

Ç is the following:

rM A,

Jr^

i V-’1 
— I e

1
"o-i - y T'^ 

e ' J ' dk

(M.12)

\ H(X +y<)I [i=i 
o

C ( i ”“*1 4e ' 1 ’ dX
(M.13)

o
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d

The intent is to show that, £(fj) - °2) The proof begins in the following

way, that is, showing that £(t]2) < =. This is done by the use of a constructive proof (i.e., 

show that the object exists or produce the object).

Since it is desirable to show that £(t]) <», the following is stated:

f f n2z(n,5)<%

lim £(r|2) = iim —--------------------= » . (p i )
n—* n—**

J[ 
0 0

If lim E(r)2) = », then this may occur in two ways, that is,

lim ( f t]2g(T],O^^ = «, (P.2)
n-» * *

while

lim J" J g(r|,£Wn = C, (P.3)

where C is some constant. This is denoted as Case 1. The second way is

lim J y g(T),M<A) = 0 (P . 4)

while

lim r f n2g(n^Wn = c, (p.5)
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where, again, C is some constant. This is denoted as Case 2.

Now one can proceed by showing that Case 1 and Case 2 are not true. For the

Weibull model

2

g(T|,^,ŸPY2) = ri^1" ri»?"
t=l

(P.6)

But because
L' rir?" Y?Y? is a constant and is present in the 

n . ni . .
numerator and denominator, it cancels. Now, letting = 2 1 + 2 (g ' and

r, .. n, _ ' = »
T2 = 2//P 2 for the evaluation of Case 1 and Case 2 g(t],Ç/),y1,Y2) becomes

1 = 1

gXn.^ŸpŸz), ^ere

g-(n,WpŸ2) = r'^^^
-1)) (P.7)

x e

P

s 72 72 s

Thus, for Case 1, it follows

0 0 0 0

- -<W-K
xg ' nWn (P.8)

“ * |ehT fŸ] Ÿ2, rJ 1 ulimf ' 2 A n)/^n

Because of the improper nature of the integral of the inner most integral, eq. P.8 is written 

in the following manner:
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o o

lim (P.9)

Now, integrating the inner most integral of eq. P.9, it follows

lim I lim

o

(P.10)

Now, evaluating the inner most integral at 0 and b , eq. P.10 becomes

= lim lim
b— (P-11)

b

Hence, when evaluating eq. P. 11 as b approaches «>, then the integral jv^g '(-)^ - 0. 
(F

Letting b be the point at which the l.u.b. (least upper bound) of the lim f q2g(-)^is 
n-*> * 

0
obtained. Consequently, it follows that eq. P 11 then becomes,

= lim
1)

o

4-1 n
(P.12)

Now, let us rewrite eq. P.12 as
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o

+ lim lim

because

(P.14)

o

lim

-dr]

»V 
b.

is a regular integral representing the area under the curve and as n-00 then 7p72-°°, 

subsequently, the integrand of eq. P. 14 approaches zero. Therefore, eq. P 14 is bounded.

Now, focusing on

lim lim
n — as

--
ül
njj

(P.15)

it is obvious that

(P.16)

b b\ 
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decreases faster than for k > 0. Hence, without loss of generality, one can assume 

m is a point, such that, for all values of r|>m, then eq. P.16 < rf*. Thus,

b
0 <

(Vi+Va-'U 1

nb bm (P.17)

If k = y2r2 -no+ 3, then the second integral of eq. P.17 becomes

X

m

x
T] 7/2''° 3t/r| = [ q 2di] = — 

J q 
m x

j__2 
m x

(P.18)

But as r-oo, the limit of eq. P.18 is —. Thus, 
m

(Yin+Y/2-»o)
b

dv[

m.

-n -1

= lim
- -z>yV2a-— (i

g \ \ n
(P.19)

\ " b\ n//

bo l n;

m

Futhermore, as n-*”, then Tv 7^ - and the integrand of eq. P.19 approaches zero. But 

this contradicts eq. P. 1 for Case I. Therefore, the lim £(q) <» by contradiction for Case 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

For Case 2 of the Weibull model, there is a theorem (Trench 1978, p. 161) which states 

that
6

If/in nonnegative and locally integrable on [a,b), then^J(x)dx converges 

a

X »

if the function F(x) = is bounded on [a, A) and jj(x)dx = «if it is 
a a

6

not. These are the only possbilities and in either case \J{t)dt = l.u.b.F{x).
J a<x<b
a

As a result, this contradicts Case 2 of lim£(r]2)for eq. P.4 and eq. P.5. Therefore, the

lim £(q2) < « for Case 2.

Thus , since it has been proved that the lim £(q2) < «, then by part (a) of the

Theorem 6.9 from Arnold (1990, p. 243), which states

Let Xv X2,... be a sequence of independently identically distributed 
random variables with EX, = p. Let A^and S„ respectively be the sample 
mean and sample variance computed from n of the Xt. Let

" S '

a) If o2 = var(X) < «, then

P P d
$n " °2 ’ \ ° ’ ln " 1 ).

b) Suppose that y = < «. Then
a4

d
/^-o2^ W~N{0,(y-l)o4).

2 n\x - p)
£(r|) ~W(p,5„), since if Z-A^OJ), where Z = —---------, one can derive the distribution

of as
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<h.

A similar proof can be constructed for the linear-exponential model.
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The Thoman and Bain method for testing the equality of the shape parameters 

from two independent Weibull densities is based on the maximum likelihood estimator

property that — (where y is the maximum likelihood estimator of y ) has the same 
Y

distribution as y ', where y ' is the maximum likelihood estimator of y based on a sample
Y y y î

from a standard Weibull distribution. Consequently, — — is distributed as — where 
Y, Yz y;

yj and yj are the maximum likelihood estimators of y, and y2, respectively shape

parameters, from two independent random samples from the standard Weibull distribution.

Thoman and Bain obtained the percentage points of the distribution of — by Monte
Yz

Carlo methods. They computed and tabled the percentage points of la such that

P — <la = otas a function of a and a common sample size N.
Yz

To test Ho: y, =y2 versus Hÿ y, =Ay 2 where A> 1, Thoman and Bain use the fact 
y

that under Hn, ■ 1 ‘ "
Ÿ2 Y

a test is given by rejecting Ho if -^ > /,

Yi'Y y i y
— has the same distribution as —, Le., P—>L \ = a and a sizeA ■ 7 * I“Œ 1 U“ " Ï2Yi

Yz
\ where /. can be obtained from the tabled

percentage points. Percentage points for 7, _a where a < 0.50 can be found by using the

fact that la =----- . In closing, Thoman and Bain method can be generalized to test
^1 -a

^o Yi=*Yzversus Y^^Yz-
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In Appendix N, it was shown that E(fj |D) - Y~N a2 
g,— 

n
as

Suppose a researcher is interested in computing probabilistic statement such as,

P (1 -A, 1 +△) ; then such a computation requires knowledge of the joint of

To derive the distribution of *)• let us begin by rewriting^ es 

(L,U) for simplicity. Before proceeding to derive joint of(L,U) it is necessary show that, 

given a researcher has a random variable, say X, that is distributed as A^o2), then the 

distribution of a random variable V = X+c, where c is a constant, is A^p +c, o2). Now 

this can be shown in the following way:

v = x +c =* x = v+c (P.l)

hence, h(y) = v - c — h ^v) = 1. Thus,

AM =/i<v-e)|h'(v)| =

i [(v-c)-gr
-J-e

V^TUO (P.2)

>-e
1
2 a2

Similarly, it can be illustrated to show that W = X+c is distributed as Mp -c, o2). 

Subsquently, it follows that

Z.~Mp-c,oj?) (P.3)

and 

t/~Mp*c, o:) (P.4)

where p = £(f|), c = .aô£(f|), and . Hence, by definition, it follows that

(P.5)
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then rewriting in terms of £(f|), 

£(f|) .

Thus,

U\L ~N^L +2z, _aôEmy 

and continuing by definition,

Note that 

1 2 A2
/(/) =----- ------ e

ô£(n)V^

where —</<-, 0^>0, and -<»<^(f|)-z^^â^<=o, and

1 2 a2
wb=-—4=e

= _ L_e 2
°£(n)V^

where , and

P.8, it follows

(P.6)

(P.7)

(P.8)

(P.9)

(P.10)

. Therefore from eq.

(P.ll)7(^0 ^(«IW) ■

As a result.
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1 2 A1
J(uJ) =----- :----- e V /

ô£(n)V^

x ___ !___ e \ "fini >
ôE(n)V^

(P. 12)

------------- e
2 â2"an)

Therefore, P[(£,(/)e(l -A, 1+A)] can be computed from the joint asymptotic density

//,"), that is,

P[(£,^6(1-A,UA)] =
l-A

1-A

j(l,u)dudl . (P.13)
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Table 1. Weibull Model Results

(90% Credibility Region) 
(95% Credibility Region)

no

1.7 4 6 9.5

‘o

10 1.00365 0.99271 0.98105 1.03805

90% (0.8936,1.1137) (0.8834,1.1020) (0.8733,1.0888) (0.9265,1.1496)

95% (0.8726, 1.1347) (0.8625, 1.1230) (0.8526, 1.1095) (0.9052, 1.1710)

17 0.99920 1.00607 0.99952 1.02424

90% (0.8900,1.1084) (0.8959,1.1162) (0.8896,1.1095) (0.9141,1.1344)

95% (0.8691, 1.1293) (0.8748, 1.1373) (0.8685, 1.1305) (0.8930, 1.1555)

24 0.98335 0.98258 0.98747 1.00998

90% (0.8740,1.0927) (0.8740,1.0912) (0.8779, 1.0971) (0.9002, 1.1198)

95% (0.8530,1.1137) (0.8532, 1.1120) (0.8569,1.1180) (0.8792,1.1408)

33 1.00037 0.98778 1.01231 0.99385

90% (0.8905,1.1102) (0.8774,1.0982) (0.9033, 1.1214) (0.8849, 1.1028)

95% (0.8695, 1.1313) (0.8562,1.1193) (0.8824,1.1422) (0.8640, 1.1237)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

Table 2. Linear-Exponential Results for Treatment 1

K = W 

",

1.7 4 6 9.5

10 0.1010 0.0995 0.0990 0.0977

17 0.1261 0.1227 0.1267 0.1234

24 0.1448 0.1445 0.1421 0.1419

33 0.1687 0.1667 0.1672 0.1659

Table 3. Linear-Exponential Results for Treatment 2 

&;=%)

9.51.7 4 6

10 0.0939 0.0931 0.0923 0.0911

17 0.1181 0.1165 0.1165 0.1145

24 0.1371 0.1365 0.1362 0.1350

33 0.1591 0.1583 0.1574 0.1561
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Table 4. Linear-Exponential Results for -21og(£.)

-21og(^)
-21og(^2)

"o

1.7 4 6 9.5

10 1.8058 1.8163 1.8198 1.8291

1.8570 1.8630 1.8690 1.8781

17 1.6491 1.6684 1.6457 1.6644

1.6954 1.7050 1.7050 1.7173

24 15515 1.5530 1.5648 1.5658

1.5952 1.5933 1.5944 1 6009

33 1.4447 1.4529 1.4509 1.4563

1.4855 1.4890 1.4930 1.4988
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Table 5. Linear-Exponential Model Results

(90% Credibility Region)
(95% Credibility Region)

"o

1.7 4 6

h
10 1.01586 0.99635 0.93210

90% (0.9035, 1.1283) (0.8876, 1.1051) (0.8242, 1.0400)

95% (0.8819, 1.1498) (0.8668, 1.1259) (0.8035, 1.0607)

17 1.03510 1.01845 0.99202

90% (0.9257, 1.1445) (0.9070, 1.1299) (0.8815, 1.1026)

95% (0.9048, 1.1654) (0.8857, 1.1512) (0.8603, 1.1237)

24 0.97751 0.96017 1.01327

90% (0.8687, 1.0863) (0.8501, 1.0702) (0.9003, 1.1263)

95% (0.8479, 1.1072) (0.8291, 1.0913) (0.8786, 1.1479)

33 1.05063 0.97425 0.99604

90% (0.9397,1.1615) (0.8658,1.0827) (0.8865,1.1056)

95% (0.9185,1.1828) (0.8451,1.1035) (0.8656, 1.1265)

9.5

1.00906

(0.8971, 1.1210)

(0.8757, 1.1424)

1.03438

(0.9247, 1.1440)

(0.9037, 1.1650)

1.02109

(0.9119, 1.1303)

(0.8910, 1.1512)

1.01763

(0.9097, 1.1256)

(0.8890, 1.1463)
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