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ABSTRACT OF DISSERTATION 
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Degree Ph.D. Program Biostatistics________________________________

Name of Candidate Traci E. Clemons___________________________________________

Committee Chair Dr. Edwin Bradley. Jr._______________________________________

Title A Nonparametric Approach to Estimating the Overlapping-Coefficient Using the

Kernel Estimation Technique____________________________________________

This study examines the sampling behavior of the overlapping coefficient, OVL. The

OVL is a proposed measure of the agreement between two probability distributions. The

OVL is defined for the continuous case as

O V L  = j  min |f ^ x )  , f 2 ( x ) ]  d x  ;

where f,(x) and f2(x) are the probability density functions for two distributions of interest. 

In addition, OVL = 1 - D, where D is the usual index of dissimilarity, but defined for 

continuous as well as discrete distributions.

Here the properties and sampling behavior of a nonparametric estimator of the OVL 

are investigated. The nonparametric density estimator chosen to explore the behavior of the 

OVL is the naive (Rosenblatt) kernel density estimator.

Using Monte Carlo techniques, it is discovered that the sampling estimator of the 

OVL using the kernel density estimator is biased. The bias of the kernel estimator is a 

function of the value o f the overlap. Also, the bias increases as the similarity of the 

distributions from which the samples are obtained increases. A bootstrap estimator of the 

sampling variance of the estimator of the OVL is shown to perform well. The behavior of

ii
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the sampling estimator of the OVL suggests that the OVL can best serve as a valuable check 

in investigating the meaningfulness of differences detected between two distributions by 

other statistical techniques.
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I. INTRODUCTION 

Consider two probability distributions with densities denoted ft(x,X,) and 

respectively, where A, and Aj are parameters and the distributions are of the same parametric 

form. The two distributions may be said to differ if Aj * A2. The two parameters may in fact 

differ, yet be somewhat similar in magnitude, thus implying that the two probability 

distributions may be similar. It may also be the case that we have two distributions of 

different parametric form, denoted fifoA^ and f ^ Q ,  which cannot be identical, yet the 

parameters A, and £2 may be similar.

In more practical cases, we may have two samples from two distributions. Assuming 

the forms of the distributions to be ̂ (*,0,) and f2(x,02), where 0j * 02, the two distributions 

can be shown to differ using an appropriate statistical test for the equality o f the parameters 

0 t and 02 . Since the power o f statistical tests is related to both the magnitude of the 

difference of the parameters and the sample size from which the parameters are estimated, 

small differences in the parameters can be declared statistically significant while the true 

similarity of the two populations o f interest goes undetected.

This study explores a measure of agreement between two probability distributions first 

proposed by Bradley and Piantadosi (1982). The measurement, the overlapping coefficient, 

denoted OVL, estimates the common area below two probability distributions. The two 

distributions of interest may be of the same parameter family or from different parametric

1
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families. Figure 1 shows the OVL for two normal distributions, while Figure 2 shows the 

OVL for two Gamma distributions. Bradley and Piantadosi derived the OVL for several 

cases involving known distributions.

In this work the properties and sampling behavior o f such an estimator of OVL is 

investigated when sampling from two distributions estimated nonparametrically using the 

naive kernel density estimator. Also, the properties of a nonparametric bootstrap variance 

estimator of the overlapping coefficient is explored. The remainder of chaper I contains an 

historical literature overview as an introduction o f the overlapping coefficient. Chapter II 

provides the development of the kernel estimator and the bootstrap variance estimator of the 

overlapping coefficient. The Monte Carlo simulation study and its results are also 

summarized. Chapter III explores an alternative reference rule for the kernel estimator. 

Chapter IV contains application of the nonparametric estimator of the overlapping coefficient 

to real sets of data. Lastly, chapter V is a discussion of the research and suggestions for 

further research.

The Overlapping Coefficient 

If we let f,(x) and f/x) be two continuous probability functions defined on a common 

domain of x, the formal definition of the OVL for the continuous case is

OVL = J  min[/;(x)/2(x)] <& . (1)

If the two densities o f interest are discrete, the definition o f the OVL becomes

OVL = min[/;(x)/2(x)]. (2)
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Figure 1. The overlap between two normal distributions. The solid line denotes a standard 
normal distribution. The dotted line denotes a normal distribution with mean = 2 and 
variance = 4.
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Bradley and Piantadosi (1982) showed that the OVL has properties that are desirable

for any measure of association. First, the OVL ranges between zero and unity. Second,

the OVL is unity if and only if the two distributions o f interest are identical. Finally, the

OVL is zero if  and only if the two distributions o f interest are completely distinct.

Invariance Property o f the OVL

A useful property of the OVL is the invariance property. If we let g(x) be a

continuous and differential function defined for all x, then the OVL may be written in terms

of this function as follows:

OVL -  f  m in [/;(£ (x))/(£ (x))] dx . (3)
J * (*>

The invariance property of the OVL allows for the generalization of estimates of the OVL 

under normal theory when using normalizing transformations (Tukey, 1975; Box & Cox, 

1964).

The Relationship to the Index o f Dissimilarity 

The OVL is related to what has been known in the literature as the index of 

dissimilarity, denoted D, which has been commonly used in its discrete form in the context 

of 2 x C contingency tables. If we use the fact that the two probability density functions are 

non-negative, the relationship between these two measures can be seen as follows:

m in[/;(*) ,/,(*)] = I[/;(x ) V 2(x) -  l/i(x) - / 2(x)|] . (4)

Replacing this expression into Equations 1 or 2, it can be seen that OVL = 1 - D; there D in 

the continuous case is defined as

D = I f l / i t o - Z a t o l d *  (5)2 J  x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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and in the discrete case as

D  =  j E x L W  " / 2 W I  • ( 6 )

Thus the index of dissimilarity is defined as the fraction of probability mass under either 

distribution not shared with the other. The properties of the OVL apply to D, except that 

D is zero when the two distributions of interest are identical and is unity when they are 

completely distinct.

The dissimilarity index dates back to work performed by Karl Pearson in the 1890s. 

He used a statistic equivalent to 2D as a measure o f goodness-of-fit o f sample data to some 

theoretical distribution (Pearson, 1895). Goodman and Kruskal (1979) used D as a measure 

of association in the context of 2 x C cross classification tables. In other literature, D has 

been used as an indicator of racial segregation. It was used to compare the relative frequency 

distribution of African-American and white residents in subdivisions of geographic units 

(Cortese, Falk, & Cohen, 1976; Duncan & Duncan, 1955). Inman and Bradley (1991) re

examined the behavior of the dissimilarity index under a random allocation model and used 

it to compare the levels of racial segregation in Birmingham, Alabama and Richmond, 

Virginia in 1970 and 1980, respectively. They also derived simple approximations for both 

the mean and variance of D based on a multivariate normal approximation.

Calculation of the OVL Between Known Distributions 

Bradley and Piantadosi (1982) present as examples the overlap between two normal 

distributions, the overlap between the normal and the logistic distributions, and the overlap 

between two two-parameter exponential distributions. In addition, Inman (1984) presented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the overlap between the standard normal and standard Cauchy distributions and two Poisson 

distributions. In this research, three additional examples are presented.

To determine the OVL between two distributions, it is necessary to determine the 

point(s) of intersection between the two distributions o f interest. The point(s) are found by 

setting the two distributions equal and solving for the roots o f the equation. The resulting 

equations are non-linear in form. The approach used to find the roots of the non-linear 

equation in this study is based on the Newton Raphson procedure also refered to as Newton’s 

Method (Hamming, 1971).

The Newton-Raphson Method (Newton's Method) is one of the most powerful 

numerical methods for solving a root-finding problem, Hamming, (1971). It is based on a 

quadratic Taylor Series expansion. Given a function f(x) which is continuous and twice 

differentiable on the interval [a,b], let x0 e [a,b] be an approximation to the root of the 

equation,/?, such that the first derivative of the function at Xq differs from zero and |xo - p| is 

small. We consider the first degree Taylor polynomial for the function expanded about x<„ 

such that:

where q(x) lies between x andx0. Since f(p) = 0, equation 7 w ithx  =/? is as follows:

If we assume that the term containing (p -X q ) 2 is negligible, then solving the above equation 

for p we obtain the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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The Newton's Method involves generating a sequence {pn} defined by:

P . " P . - r ^ r -  (>°)
f < P n - 1)

This process is an iterative process which is begun by giving an initial approximation, Pq, 

which is near the root p. This procedure is repeated until the iteration ultimately co verges to 

a local, relative maximum, if not to a unique global maximum.

OVL Between Two Gamma Distributions 

The density of the Gamma random variable is

_X
Y-®"1 e Pfc)  = £ — L _  x > 0 a , p >0 .  (11)
Pa r(a )

The two densities will intersect at one or two points depending on the shape and scale 

parameters used. These points can be found by setting the two densities equal and using 

Newton's method to find the points of intersection. Once the point(s) of intersection are 

found, equation 1 can be used to compute the value of the OVL.

For example, if = 1.5, Pt = 1.0, Oj = 2.0 and P2 = 1.0, then the OVL can be 

computed as follows. As shown previously in Figure 2, the two densities intersect at one 

point. This point was found by setting the two densities equal and using Newton's method, 

described previously, to determine the point of intersection, xa = 1.274. Next we use 

Equation 1 to find the value of the OVL as follows:

i »  e x° °° x°'5 e x°
OVL = f  ------ + f  ^ --------  = 0.363938 + 0.466679 = 0.830617 . (12)J T(2) J  1X1.5)

0 v J 1.274 v 7
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OVL Between Two Weibull Distributions

Suppose we have two Weibull distributions with probability density functions 

defined as follows:

By equating the two densities, we find either one or two points of intersection depending on 

the values of the shape and scale parameters. Again as with the gamma distribution, the 

points of intersection can be found by using Newton's method. Once the points are found, 

Equation 1 can be used to evaluate the OVL.

For example, if  a, = 1.5, P, = 4.0, = 3.0 and p2 = 1.5 (see Figure 3) then the OVL

can be computed as follows. We first equate the two distributions and use Newton's method 

to determine the "crossing point" which is x  = 0.56771. Next, we use Equation 1 and the 

CDF of the Weibull distribution to compute the value of the OVL as follows:

OVL = F,(0.56771) + [1 - F2(0.56771)] = 0.14428 + 0.27714 = 0.42142. (14)

OVL Between Two Beta Distributions 

Here the OVL between two beta distributions is computed. The density of the beta 

random variable is

The two densities will intersect at one or two points depending on the shape and scale 

parameters used. These points can be found by setting the two densities equal and using 

Newton's method. Once the point(s) of intersection are found, Equation 1 can again be used 

to compute the value of the OVL. For example, if p, = 2.0, q , = 2.0, p 2= 1.0 and q 2= 1.0,

(13)

(15)
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Figure 3. The overlap between two Weibull distributions. The solid line denotes a weibull 
distribution with a =  1.5 and p = 4.0. The dotted line denotes a weibull distribution with a  
= 3.0 and p = 1.5.
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then the OVL can be computed as follows. As shown in Figure 4, the two densities intersect 

at two points. These points were found by setting the two densities equal and using Newton's 

method to determine the points of intersection, xa = 0.21111 and x, = 0.78890. Next we use 

Equation 1 to find the value of the OVL as follows:

OVL = Fj(0.21111) + [F2(0.21111)-F,(0.78890)]+[1-F2(0.78890)]

= 0.11489 + 0.57779 + 0.11487 = 0.80755 (16)

Previous Work Related to the OVL 

Weitzman (1970) was one of the first to work with the OVL. His research included 

work with the discrete case of the OVL to analyze differences in income distributions o f 

African-Americans and Whites in the United States. Gastwirth (1975) discussed several 

properties of the OVL. He criticized the use of the OVL as a measure of association because 

of its inability to detect changes in the location of the common probability mass shared by 

the two distributions being compared. Weitzman found the OVL to be inferior to other 

measures of association including the Mann-Whitney form of the Wilcoxon test for equality 

of population means.

Other investigators have published material using the concept of the overlap o f 

distributions in unrelated contexts. Marx (1976) developed the overlapping coefficient as 

a measure of association between two normal distributions with equal variance. His 

development comes close to the form developed by Bradley and Piantadosi. Marx 

mistakenly relies on the relationship of a sample estimator of the overlap between two 

identical normal distributions to the central t distribution to produce a table of critical values 

for the sample overlapping coefficient.
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Figure 4. The overlap between two beta distributions. The solid line denotes a beta 
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He also assumes that because the sample realizations of the OVL must lie between 

zero and unity, the sample overlapping coefficient can be treated as the usual sample o f a 

population proportion. Sneath (1977,1979) used the concept of the overlap in the context 

of cluster analysis. He developed a method for testing the distinctness of two clusters in 

Euclidean space.

Bradley and Piantadosi (1982) re-introduced the OVL as a valid measure of 

association. They showed that the OVL was a useful method of determining the 

meaningfulness of an estimated difference between two probability distributions of any form. 

Bradley and Piantadosi derived the OVL for two normal distributions having equal and 

unequal variances. Mishra, Shah, and Lefante (1986) generalized the two group t-test to 

produce a hypothesis testing procedure and confidence intervals on the OVL of two normally 

distributed populations with common variance. The hypothesis testing procedure and the 

associated confidence limits were found to be flawed and were criticized in Inman and 

Bradley (1994).

Inman (1984) investigated the properties and sampling behavior of the OVL when 

sampling from two discrete distributions which are arranged in a 2 x C contingency table. 

Estimates of the sampling variance were also derived. It was found that the estimator o f the 

OVL performed well. The estimator exhibited a downward bias (i.e., the value of the OVL 

is under-estimated). Also, the bias increased as the similarity of the distributions from which 

the samples were obtained increased.

Inman also expanded on the work of Bradley and Piantadosi. He developed a 

maximum likelihood estimator and an approximate variance formula for the OVL for two
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normal distributions with equal variances. He examined the sampling behavior of this 

estimator of the OVL. It was found that the sample estimators of the OVL had a downward 

bias trend which increases as the similarity o f the distributions o f interest increases. Inman 

and Bradley (1994) reviewed conditional tests o f  hypothesis and constructed direct tests of 

hypothesis for the true overlap for the case o f  the OVL for two normal distributions with 

equal variances. Their paper also included a method of constructing exact confidence 

intervals for the true overlap, along with several alternative methods of obtaining confidence 

intervals.

Inman also briefly looked at the case o f two normal distributions with unequal 

variances. He assumed that the variance of the second normal distribution was larger than 

the variance of the first normal distribution. By equating the two probability functions he 

found solutions, via the quadratic formula, for the intersection of the two probability 

functions. Using these points he developed a maximum likelihood estimator of the OVL and 

an approximate variance formula. Again the bias exhibited a downward trend and also 

increased as the similarity of the distributions increased. Mishra and Mulekar (1992) 

developed confidence limits for the OVL for two normal distributions with unequal variances 

conditioned on the variances of the distributions which have been criticized. Clemons (1996) 

reparameterized the OVL for two normal probability distribution functions with unequal 

variances. It was found that the re-parameterization of the OVL greatly eased the 

computation and evaluation of the OVL. A maximum-likelihood estimator for this re

parameterization was developed. Yet the bias associated with the estimator was large for 

small sample sizes (i.e., n z 50). Also the bias was largest when the two distributions were
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similar. Yet the bias greatly decreased as the two distributions became more distinct. For 

the case of similar distributions, it was recommended that Inman's limiting case for equal 

variances be used. An approximate variance formula for the OVL was also developed. It 

was found that the approximate variance tended to over-estimate the variance of the OVL 

with the bias again being greatest for small sample sizes. Clemons also examined the 

performance of an asymptotic confidence interval for the reparameterized OVL.
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II. NONPARAMETRIC ESTIMATION OF THE OVL 

It is sometimes the case that data collected suggest no reasonable parametric form 

for f,(r) or f/x) or both. There are several approaches for the estimation of the OVL for such 

a circumstance . First, one could try transforming the data and estimate the OVL using the 

invariance property of the OVL. Second, one could use a "quasi-parametric" approach, using 

a flexible family of distribution functions, such as Pearson, Burr, or Johnson families of 

distributions (Johnson and Kotz, 1970, pp. 9-33), to characterize the two distributions. Using 

the characterization of the two distributions, one can estimate the value of the OVL. The last 

approach would be to estimate the two distributions nonparametrically, using one of several 

available nonparametric density estimation procedures (Wegman, 1972, 1982).

The focus o f a nonparametric density estimator is to obtain a good estimate of the 

density function with minimum assumptions. Nonparametric techniques are used because 

they eliminate the need to specify a form of the model. The disadvantage of the 

nonparametric techniques is that these techniques result in a loss of efficiency. Yet, the loss 

of efficiency is balanced by the reduction of the risk of misinterpreting the data by incorrectly 

specifying the parametric form of the function.

Inman (1984) examined the properties of an estimator of the OVL when sampling 

from two distributions estimated nonparametrically by quadratic splines. By fitting quadratic 

spline functions to the empirical distribution through weighted least squares and taking the 

derivatives o f these spline functions as the estimated densities and using the density

16
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estimates to determine points of intersection, he obtained a nonparametric estimate of the 

OVL between f,(x) and f2(x). Inman then used a bootstrap variance estimate to compute the 

variance of the estimated OVL. Through a Monte Carlo study, he found that the 

nonparametric estimator of OVL performed well as an estimator o f OVL. It was found that 

the estimator was a biased estimator of the OVL. The estimator generally under-estimated 

the true overlap. The bias of the estimator was found to be related to the value of the OVL 

and the sizes o f the two samples. Inman suggested that because of the success of the spline- 

density based technique of estimating the OVL, a less sophisticated nonparametric method 

might prove adequate in settings where the distributional assumptions seem unwarranted. 

One alternative is the naive kernel estimate (Rosenblatt, 1956; Waterman & Whiteman, 

1978), which will be examined in this study.

To learn something of the properties of the kernel estimator of the OVL, it is 

compared to the true overlap for several known distributions, the normal, gamma, beta, and 

Weibull distributions, via a Monte Carlo study. Also the nonparametric estimator is 

compared to the maximum likelihood estimator of the OVL (Inman, 1984; Clemons, 1996) 

for the normal distribution case.

Kernel Density Estimation 

Until the 1950s the histogram was the only nonparametric density estimation 

technique (Scott, 1992). Fix and Hodge (1951) introduced an algorithm for computing a 

nonparametric density estimator by exploring the statistical discrimination when the 

parametric density is unknown. Rosenblatt (1956) developed a general form of estimating
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a density function nonparametrically using what is called the naive or Rosenblatt kernel 

density estimator.

The basic idea of the naive kernel estimator is adopted from the idea behind the basic 

histogram. The kernel estimator uses the empirical density function which is a histogram- 

type estimate of the underlying density function that is fairly easy to compute and 

understand. The empirical density function is a simple modification of the histogram and 

has convergence properties that are equivalent to those of the larger class o f estimators 

(Waterman & Whiteman, 1978). If we have an unknown density o f a continuous random 

variable from sample data, xh ..., x„, which are independent and identically distributed with 

distribution function F(x), the empirical distribution function is defined as

number (X iX  < x)
F (x) = -------------- !-J-------  • (17)

" n

By an application of the binomial distribution (Hogg & Craig, 1970) it is has been shown 

that

lim(,_ F B(x) = F(x) (l8)

with probability 1. The kernel density is a numeric approximation o f the derivative of the

emperical cumulative distribution function. Using the fact that dF(x)/dx = f(x), the

approximate derivative of Fn(x), the Rosenblatt estimator (naive kernel estimator) is given

bv

F (x h) -  F (x-h)
m  = "— . d9)2 h

where h > 0 is a real valued number constant which is a function o f the sample size and 

approaches zero a s n - « .  This h is also known as the shaping parameter, window width, or 

bandwidth of the kernel estimator.
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The Rosenblatt kernel estimator is constructed by placing a rectangle of width 2h and 

height (2nh)'1 on each observation and then summing to obtain the estimate. Kernel density 

estimators inherit all properties of the kernel. Thus, since the naive kernel is discontinuous 

the resulting estimate is also discontinuous. The discontinuity follows from the naive kernel 

estimator having "bumps" at the points x ,±  h and zero derivatives elsewhere. This results 

in a rough, jagged estimator.

In general, the basic kernel estimator is o f the form

/ .  * /* .< * jOrfF.M -  £  K J t e ) . (20)i. n ,=i
where K„ is the kernel. To adapt the naive kernel density function to the above definition we 

take K„ to be as follows:

Knix ,y )  = —  for  |x -  y\ £ h and zero elsewhere. (21)
2 h

The estimator f n is dependent on the data as well as on the kernel specified and the 

bandwidth.

Bias and Variance o f the Kernel Estimator

Since the bias of the kernel estimator depends on the value of the bandwidth, and 

bandwidth is a function of the sample size, we can also say that the bias depends indirectly 

on the sample size. The bias of the kernel estimator is expressed as follows (Silverman, 

1986, p. 39):

biashlx) = E fx  -fix)  = j h  ' lK[(x-y)lh]fiy)dy - fix )  . (22)

If we make a change of variable, y  = x -  ht and use the following assumptions about the 

kernel, K,

^K{t)dt=1 , pK(t)dt=0, and f t 2K(t)dt=k2* 0 ; (23)
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then the bias can be expressed as follows:

r r <24)biask(x) = j m f i x ~ h t ) d t  - fix)  = fK(t)  [fix -  h t)- f ix )]d t .

By using a Taylor’s expansion we can express the term f{x-ht) as

fix  - ht) = fix) -htf'ix) +±h 2t 2f \ x )  + ... . (25)

Using the assumptions on K shown in equation 23, the bias can be written as

biash{x) = - h  / '( X) 11 K{t) dt + 2f"[x) J t 2 K(t)dt + -  = 2 f"[x)k + 0{h) . (26)

The variance of the estimator can be found as follows (Silverman, 1986, p. 39-40):

varfix) = n~lj h  ~2 K[(x - y ) h  ~l]2fiy ) dy -  n ' l\fix) + biash(x)]2 . (27)

Using Equation 26 and substituting y  = x-ht into the above equation we obtain the following: 

varfix) = n~l h~x j f i x  -ht) K{t)2dt -  n ~x\fix) + 0(h 2)]2. (28)

Again, if we expand f(x-ht) into a Taylor's series then 

varfix)-n h j[fix) ~htf'(x) + •••]K{tfdt + 0{n ~‘) = n ~lfix)| K(tfdt + 0(n  ' ’).

(29)

Thus, simplification of the variance o f the estimator is given as follows:

varfix) = n - ' h  ~lf{x)fK (t)2d t . (30)

Choice of the Bandwidth o f the Kernel Estimator 

As shown above, the choice of the bandwidth, h, is what drives the kernel estimator. 

Since the kernel estimator has been shown to be a biased estimator, the criterion for 

optimization is the mean integrated square error. The mean integrated square error is one of 

the most widely used methods of placing a measure on the global accuracy o f density
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estimators. Thus, the ideal value of h is that value which minimizes the approximate mean 

integrated square error,

j b i a s h(x)2dx + jv a r f (x )d x  -  -jA *k 2j j f" (x )2dx +n ~xh ~x jK ( t )2d t . (31)

It can be shown by calculus (Parzen, 1962) to be equal to

hopt = k - ^ m 1d t ^ ,(x?dx\~'Kn M/s. (32)

We see that the optimum bandwidth depends on the unknown density function. Since we 

are assuming that the density is unknown, it is unlikely that we will know enough to choose 

the optimum h. The problem now becomes how to choose an efficient smoothing parameter.

Silverman (1986) states that a natural method for choosing the smoothing parameter 

is to plot out several curves and choose the estimator that is most in accordance with one's 

prior ideas about the density. This is called the subjective choice of a smoothing parameter. 

Secondly, one could choose h by using a standard family o f distributions to assign a value 

to the term j f"(x)2dx in equation 32. Scott (1992) used this second approach and the 

normal distribution as the parametric family to obtain the normal reference rule bandwidth

h  =
f  4 \ I / S

On "1/s = 1.06 Oh ~l/5 . (33)
\ 3 )

Thus a simple way of choosing the smoothing parameter would be to estimate a  from the 

data and substitute into Equation 33 . This method works well if the population is truly 

normal, yet may tend to over-smooth if the population is multimodal since (/"(x)2)~1/s is 

large relative to the standard deviation. Silverman suggests that a better result may be 

obtained by using the interquartile range, R. Yet, if  the underlying distribution is bimodal, 

using the interquartile range tends to over-smooth even further. It is then suggested to use 

an adaptive estimate of spread, A = min (standard deviation, interquartile range /1 .3 4 ),
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instead of o in Equation 33. Using this normal (adaptive) reference rule is attractive in that 

it is a fully automatic method of choosing a smoothing parameter. It also allows researchers 

reporting results a reference to a standardized method of estimating the shaping parameter.

Estimation of the OVL With Kernel Estimates 

Given the procedure for estimating the unknown density using a kernel estimator 

developed above, obtaining the estimate of OVL, OVL,  will be approached as follows. 

FORTRAN subroutines (Appendix A) were used to compute the kernel estimator of the 

overlapping coefficient. The compilation and execution of the programs were performed 

on the Cray C-90 supercomputer.

From two independent samples from unknown distributions, x , , ,... , x ln and 

xn  • •• ’ x2n ' we comPute the density estimates using the FORTRAN subroutine OVCOEF, 

which uses Equation 19 in conjunction with the Alternative Reference Rule for obtaining a 

value of the bandwidth for the formulation of the density estimates. Once the density 

estimates are computed, the value of the overlapping coeffiecient is computed by finding 

the jump points (i.e., the points where the density of the kernel density estimator changes) 

using the FORTRAN subroutine JUMPS. The jump points for each sample are then 

combined into one set of points and then sorted using the IMSL (1991) FORTRAN 

subroutine VSRTD. The intervals between consecutive points are computed using the 

FORTRAN subroutine INTERV (de Boor, 1978). Finally, the OVL is computed by 

summing the area under the smaller curve over each subinterval.

Consider for example the two kernel estimated densities in Figures 5 and 6, which 

are obtained from two samples of size 500 generated from two normal distributions. The
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Figure 5. The kernel density estimator for a standard normal distribution. The solid line 
denotes a kernel density generated from pseudo normal random deviates using the normal 
reference rule. The dotted line denotes a standard normal distribution.
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Figure 6. The kernel density estimator for a normal distribution. The solid line denotes a 
kernel density generated from pseudo normal random deviates using the normal reference 
rule. The dotted line denotes a normal distribution with mean = 1 and variance = 1. first
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first sample is generated from the standard normal distribution; the density estimate derived 

from this sample is indicated by a dotted line. The second is from a normal distribution with 

mean of 1 and variance of 1 . Using the subroutines described previously we find that 

the OVL is 0.63601374 (see Figure 7). The actual OVL (see Figure 8) between the two 

normal distributions is 0.617075.

Nonparametric Estimator of the Variance 

An alternative to the approximation of the variance o f the overlapping coefficient 

may be achieved by using a nonparametric estimation approach, the bootstrap, (Efron, 1979, 

1981,1982; Efron & Gong, 1983; Efron & Tibshirani, 1986,1993). The bootstrap is one of 

the simplest nonparametric variance estimation techniques available. It was introduced by 

Efron (1979) as a computer-based method for estimating the standard error of a random 

variable. The bootstrap algorithm works by drawing many independent bootstrap samples, 

evaluating the corresponding bootstrap replications, and estimating the standard error o f the 

random variable by the empirical standard deviation.

The basic idea for a bootstrap estimator of variance is as follows. Suppose we are 

given two independent samples of xu  ,..., x1(|| and x21,..., x^  . By treating the samples 

as two finite populations of size ni and n2 respectively, we can draw with replacement two 

new bootstrap samples each of the size of the original samples. Thus we have what is 

known as pseudo-data, x,*,, . . . ,  x  U| and x21, . . . ,  x 2'Hj. Using this pseudo data, we then 

calculate the value of the kernel estimated OVL, OVL. This resampling procedure is 

repeated some large number, say B, o f times with a new bootstrap sample being generated 

each time.
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Figure 7. The overlap using the kernel densities for two normal distributions. The solid line 
denotes a kernel density generated from pseudo normal random deviates with mean = 1 and 
variance = 1 using the normal reference rule. The dotted line denotes a kernel density 
generated from pseudo standard normal random deviates.
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Figure 8 . The "true" overlap for two normal distributions. The solid line denotes a normal 
distribution with mean = 1 and variance = 1. The dotted line denotes a standard normal 
distribution.
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If we let O VL~ denote the value of O VL computed on the ith iteration, then the 

bootstrap estimator o f the variance of O VL is given by:

£ (  OVL ; -O V L ')2
VarOVLJOVL) = —---------------------- (34)

B 5-1

where b£ o v l;
OVL ' = — . (35)

B

The only difficulty in computing this new estimate is the value of B. According to 

Efron and Tibshirani (1993, p.52) a small number of bootstraps, say B = 25, can be 

considered informative. A value of B = 50 is often enough to give a good estimator. Very 

seldom are more than B = 200 replications needed for estimating, yet a much larger value 

of B is usually required for bootstrap confidence intervals.

Confidence intervals can be constructed using the percentile method for bootstrap 

variance estimates (Efron, 1982). Let Fa*(-) be the empirical distribution function 

constructed from the bootstrap estimates of the OVL (i.e., OVLt‘ (i = 1, ..., B)) and 

FB l(-) denote its inverse. A (l-a)100% confidence interval for OVL is using the 

percentile bootstrap variance method is as follows:

[f 'b '\<*J2),f ;  _1(1 -a/2 )). (36)

Monte Carlo Investigation

To determine the properties of the kernel estimator of the OVL, OVL has been 

calculated on a set of Monte Carlo samples from two normal, two gamma, two Weibull, and 

two beta distributions, using a selected number of design points for each distribution. This
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study will assess the OVL as an estimator when sampling from two distributions are

identical (i.e, OVL = 1); when the two distributions are similar (i.e., 1 > OVL > .500); and

when the two distributions are quite distinct (i.e., OVL < 0.500). Since the OVL is a tool

used to measure the common area between two distributions deemed by hypothesis tests to

differ, this investigation is biased towards larger values of the OVL.

For the two normal distributions, the twelve design points chosen consist of

combinations of the following: p = 0, o2= l ;  p = 2, o2 = 4; p = 3, o 2 = 5; p = 1, o2 = 1;

p = 0, o2 = 3; p = 5, o2= 10; and p = 3, o 2= 5. The gamma distribution (see Figures 9-11)

x a~le ~xused in the simulation study will be defined as follows: /  (x) = ----------  for x, a > 0. The
T(a)

twelve design points evaluated for the gamma distribution case will be combinations of the

following: a = 1.5; a = 2.0; a = 2.5; a = 3.5; and a = 4.0. The Weibull distribution (see

Figures 12-14) used in the study is defined as follows: f x{x) = a$x p'*e ~“xP for x, a, P >

0. The twelve design points for the Weibull distribution will consist of combinations o f the

following parameters: a = 1.5, p = 4.0; a = 2.0, P = 2.0; a = 1.5, p = 1.5; a = 2.0, p = 3.0;

a = 1.5, P = 1.5; a = 1.0, P = 2.0; a =1.0, p = 3.0; and a = 1.0, p = 3.5. Four design points

for the beta distribution will consist o f  combinations of the following parameters: p = 2, q

= 2; p = 1, q = 1; p = 3, q = 3; and p = 5, q = 3, where the beta distribution is defined as

f x(x) = _ JlCP +4)_ - x)g-lP ‘g ~ctlP , 0 < x < l a n d  p,q >0. A complete list of design 
r (p)+T(q)

points and values of the OVL is shown in Appendix B. The OVL was also investigated 

for two mixtures of distributional settings: Standard normal and standard Cauchy

distributions (see Figures 15 and 16) and gamma distribution with a  =  3 and a chi square 

distribution with 4 degrees o f freedom. The sample sizes used to investigate the sampling
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Figure 9. The kernel density estimator for a gamma distribution. The solid line denotes a 
kernel density generated from pseudo gamma random deviates using the normal reference 
rule. The dotted line denotes a gamma distribution with a  = 2.5.
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Figure 10. The kernel density estimator for a gamma distribution. The solid line denotes 
a kernel density generated from pseudo gamma random deviates using the normal reference 
rule. The dotted line denotes a gamma distribution with a  = 2.0.
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Figure 11. The overlap using the kernel densities for two gamma distributions. The solid 
line denotes a kernel density generated from pseudo gamma random deviates with a  = 2.0 
using the normal reference rule. The dotted line denotes a kernel density generated from 
pseudo gamma random deviates with a  = 2.5.
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Figure 12. The kernel density estimator for a Weibull distribution. The solid line denotes 
a kernel density generated from pseudo Weibull random deviates using the normal reference 
rule. The dotted line denotes a Weibull distribution with a = 2.0 and P = 2.0.
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Figure 13. The kernel density estimator for a Weibull distribution. The solid line denotes 
a kernel density generated from pseudo Weibull random deviates using the normal reference 
rule. The dotted line denotes a Weibull distribution with a  = 1.5 and P = 1.5.
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Figure 14. The overlap using the kernel densities for two Weibull distributions. The solid 
line denotes a kernel estimator generated from pseudo Weibull random deviates with a = 2.0 
using the normal reference rule. The dotted line denotes a kernel estimator generated from 
pseudo Weibull random deviates with a  = 2.5.
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Figure 15. The kernel density estimator for a standard Cauchy distribution. The solid line 
denotes a kernel density generated from pseudo standard Cauchy random deviates using the 
normal reference rule. The dotted line denotes a standard Cauchy distribution.
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Figure 16. The overlap using the kernel densities for a standard Cauchy distribution and a 
standard normal distribution. The solid line denotes a kernel estimator generated from 
pseudo standard normal random deviates using the normal reference rule. The dotted line 
denotes a kernel estimator generated from pseudo standard Cauchy random deviates.
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behavior of the Kernel estimator o f OVL, O VL will ben, = n 2= 100 and 500. The random 

deviates were generated from the following IMSL (1991) routines:

DRNB ET—generates double precision pseudo random numbers from a beta 

distribution

DRNCHI-generates double precision pseudo random numbers from a chi-square 

distribution

DRNGAM—generates double precision pseudo random numbers from a standard 

gamma distribution

DRNNOA—generates double precision pseudo random numbers from a standard 

normal distribution

DRNCHY—generates double precision pseudo random numbers from a Cauchy 

distribution

DRNWIB—generates double precision pseudo random numbers from a Weibull 

distribution.

On each of the 1000 Monte Carlo trials at each design-point-sample-size 

combination, OVL is computed as described previously. To investigate the bootstrap 

estimator of the variance of OVL , the bootstrap estimate of variance was calculated using 

Equation 34 for each design-point-sample-size combinations using B = 200. The IMSL 

random number generator for a uniform (0,1) distribution, DRNUNF, was used to generate 

a random sample with replacement from the generated distributions. The bootstrap estimator 

was then calculated using the subroutine MEANSTA (Miller, 1982).
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The Monte Carlo mean and variance were computed from the observed first and 

second sample moments from the simulated samples. The "true" value of the OVL was 

computed using Equation 1. Comparisons of the OVL were done using the standard bias 

and the relative bias. The standard bias is defined as the Monte Carlo mean minus the OVL, 

divided by the square root of the Monte Carlo variance. The relative bias is defined as the 

Monte Carlo mean minus the OVL, divided by the OVL. Comparisons of the bootstrap 

estimator o f the variance of O VL were made using the variance ratio and the relative bias 

of the variance. The variance ratio is defined as the ratio of the Monte Carlo variance to the 

bootstrap variance. The relative bias is defined as the bootstrap variance minus the Monte 

Carlo variance, divided by the Monte Carlo variance. The results of the Monte Carlo 

simulation are shown in the table in Appendix C.

Comparisons of the Monte Carlo mean to the OVL show that the estimator, O VL, 

is a biased estimator of OVL. This bias does not necessarily decrease as the sample size 

increases. The bias also is a function of the value of the OVL. When the two distributions 

were identical, the estimator tended to greatly under-estimate the value of the OVL in all of 

the distributional settings. The bias then decreased as the distributions became more distinct.

The bootstrap estimator of variance o f the OVL also performed well. The value 

of the variance decreased as sample size increased, thus suggesting that o  VL can be 

considered to be a consistent estimator of OVL. The relative bias of the estimator o f the 

variance tended on average to be less than 10% for all distributional settings.

The relative bias of the O VL for the sample size o f 100 shows that for the normal 

case the bias was largest, 10.8%, when the two distributions were identical. Yet, this bias
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decreased to less than 2% when the two distributions became more distinct. As the value of 

the OVL decreased to less than 0.4000, the bias o f the estimator slightly increased to just 

over 3%. When the two normal distributions were identical the OVL greatly under

estimated the value of the OVL. For values o f the OVL less than unity yet greater than 

.6000, the estimator tended to under-estimate the value of the OVL. The OVL tended to 

over-estimate the value of the OVL for values o f the OVL less than 0.600. Thus the 

estimator is a function of the value of the OVL. Also the standard bias was largest when the 

two distributions were identical. This bias decreased as the distributions became more 

dissimilar with the exception o f the design points p, = 0, o2, = 1, p2 = ~ 3 and p, =

1, o2! = 1, p2= 0, o \  = 3. The bootstrap estimator o f variance performed well for this case 

as shown by the variance ratio being close to 1. As with the estimator of the OVL, the 

bootstrap estimator failed when the two distributions were identical. For this case the 

bootstrap estimator of the variance greatly overstated the apparent sampling variance of the 

kernel estimator of the OVL with the relative bias of the bootstrap estimator being greater 

than 50%. Yet, as the distributions became more distinct the relative bias was less than 10%. 

The bootstrap estimator tended to understate the apparent sampling variance of the O VL 

with the exception of the design points p, = 0, a 2, = 1, p2 = 1, o22 = 1 and p, = 0, o2, = 1, 

p2 = 2, o22 = 4.

For a sample size of 500 and two normal distributions, the bias was again largest 

when the two distributions were similar (i.e., approximately 5%). This bias decreased as the 

two distributions became more distinct with the relative bias being less than 7.5%. The bias 

of the estimator did not necessarily decrease with an increase in sample size. The standard
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bias was again largest for the case of equal distribution functions. Yet, this bias decreased 

dramatically as the two distributions became more distinct. The bias is a function o f the 

value of the OVL with the estimator under-estimating the value of the OVL for values 

greater than .75 and over-estimating the value of the OVL for values less than .75. As with 

n = 100, the bootstrap estimator performed quite well (i.e., relative bias less than 7%) with 

the exception of the case of equal distribution functions. For this case, the bootstrap variance 

over-estimated the apparent sampling variance o f the estimator with a relative bias of 

approximately 50%. For two dissimilar normal distributions, the bootstrap estimator of 

variance tended to under-estimate the value of the apparent sampling variance of the 

estimator with the exception of the design points p, = 0, a2, = 3, p2 = 2, o22 = 4; and p, = 

0, o2, = 1, p2 = 2, a22 = 4.

For the Weibull distribution, the bias was largest, 10.5%, for n, = «2= 100 when the 

two distributions were identical. Yet, the bias decreased to less than 2% as the two 

distributions were distinct with the exception of the design points a, = 3.0, p , = 1.5, ctn = 

1.5 and p2 = 4.0, where the bias was just over 5%. The O VL tended to under-estimate the 

true value of the OVL with the exception of the following design points: a, = 1.0, p , = 1.5; 

a2= 1.0, p2 = 3.0; a, = 1.5, p, = 1.5; and a 2 = 1.5, p2 = 4.0. The standard bias was largest 

for the case of identical distributions, yet it decreased as the distributions became more 

distinct. The bootstrap estimator of variance performed well with the exception of equal 

distributions. For this case the bootstrap variance over-estimated the apparent sampling 

variance of the estimator of the OVL with a relative bias of approximately 55%. The bias 

decreased as the distributions became more distinct (i.e., less than 10%), with the exception
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of a, = 1.0, p i = 2.0; 0 2 = 1.0, p2 = 3.5; a, = 3.0, P ,=  1.5; and =2.0, p2 = 2.0, where the 

bias was approximate 14% and 11% respectively. The bootstrap variance tended to 

understate the apparent sampling variance of the estimator o f the OVL when the two 

distributions differed.

For two Weibull distributions with the sample size o f 500, the bias was again largest 

when the two distributions were similar, 4.7%. This bias decreased to less than 2.5% as the 

distributions were dissimilar with the exception of the design points a, = 1.5, P , = 1.5; a2 = 

2.0, p2 = 2.0; a , = 3, p , = 1.5; and a 2 = 1.5, p2 = 4.0. The bias did not necessarily decrease 

with the increase in sample size. The kernel estimator o f the OVL tended to over-estimate 

the value of the OVL with the exception of the design points a, = 3.0, p , = 1.5; a2 = 2.0, p, 

= 2.0; a ( = 1.0, Pi = 1.5; a2= 1.0, p2 = 3.0; a ,=  1.5, p , = 1.5; and = 1.5, p2 = 4.0. Again 

the bootstrap estimator performed well (i.e., relative bias less than 8%) when the two 

distributions were dissimilar with the exception of the following design points: a, = 2.0, p, 

= 3.0; a2 = 2.0, p2 = 2.0 ; a, = 1.5, p , = 4.0 ; and a2 = 2.0, p2 = 2.0 , where the bias was 

approximately 13% and 15.7%, respectively. The estimator failed when the two distributions 

were identical. For this case it over-estimated the apparent sampling variance of OVL, 

with the relative bias being just over 50%. The bootstrap variance tended to under-estimate 

the apparent sampling variance of the O VL for all other cases studied with the exception 

o f the design points a, = 1.5, P , = 1.5 and a2 = 1.5, p2 = 4.0.

For the two gamma distributions and sample size o f 100, the bias was largest, 10.6% 

when the two distributions were identical. The bias decreased to less than 4% as the 

distributions became more distinct. The standard bias was also largest for the case of equal
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distribution functions. The O VL tended to under-estimate the value of the OVL for values 

o f the OVL greater than .75. For OVL less than .75 the OVL tended to over-estimate the 

true value of the OVL. The bootstrap variance estimator also performed well. The estimator 

failed for the case of identical distribution functions. In this case the bootstrap variance 

under-estimated the apparent sampling variance of the OVL, with a relative bias of over 

50%. Yet, this bias decreased to approximately 7% as the two distributions became more 

distinct with the exception of the following design points: a, = 4.0, a 2 = 3.5; a, = 2.5, a 2 = 

3.5; a, = 1.5, = 2.5 and q  = 2.5, a  = 4.0; where the bias was approximately 12% for

these cases. The bootstrap estimator of the variance tended to understate the value of the 

apparent sampling variance of the estimator with the exception of the design points a, = 2.0, 

a 2=4.0; a,=  1.5, a2=3.5; and a , = 1.5, 02 = 4.0.

For two gamma distributions and sample size of 500, the bias was largest, 

approximately 5% when the two distributions were identical and for the design point a, = 

1.5, o2 = 4.0. The bias decreased to less than 3% for all other values o f the OVL 

investigated. The bias did not necessarily decrease with an increase in sample size. The 

standard bias was largest when the two distributions were identical, yet decreased as the 

distributions became dissimilar. The kernel estimator of the OVL tended to over-estimate 

the value of the OVL with the exception of the design point a, = 4.0, a2= 3.5. The bootstrap 

estimator of variance performed well with the exception of the case of identical distributions. 

In this case, the bootstrap variance greatly overstated the apparent sampling variance of the 

O VL with the bias being approximately 45%. As the distributions became more distinct, 

the bias decreased to less than 6% with the exception of the design point, a, = 2.5, a 2 = 2.0,
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where the bias was approximately 11%. For values o f the OVL between .90 and .80, the 

bootstrap variance understated the apparent sampling variance of the OVL ; for values of 

OVL between .75 and .65, the bootstrap variance overstated the apparent sampling variance 

of the OVL ; the bootstrap variance understated the apparent sampling variance o f the 

OVL for values o f the OVL between .65 and .50; and the bootstrap variance overstated 

the value o f the apparent sampling variance of the OVL for values less than .50.

The investigation of the four Beta distributional design points yield the following 

results. For the sample size of 100, the bias o f the kernel estimator of the overlapping 

coefficient is largest, approximately 10.7%, when the two distributions are identical. The 

bias decreases to less than 3.5% as the two distributions became more distinct. The standard 

bias was also largest for identical beta distributions. The OVL tended to under-estimate the 

value of the OVL for the design-points investigated. The bootstrap estimate of the variance 

of the OVL performed well, with the exception of the case where the two beta distributions 

were identical. For the case of identical beta distributions, the bias was just over 42%, with 

the bootstrap estimate of variance greatly over-estimating the value of the apparent sampling 

variance of the OVL. When the two beta distributions differed the bias of the bootstrap 

variance decreased to less than 8% with the exception o f the design point, pj = 5, q, = 3, p2 

= 3, and qj=  3, where the bias was approximately 15.5%.

For the sample size of 500, the relative bias o f the kernel estimator o f the 

overlapping coefficient was largest (4.7%) when sampling from two identical beta 

distributions. The bias decreased to less than 3% as the two distributions became more 

distinct. The bootstrap estimator of the variance performed well with the exception of
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identical distributions. When sampling from two identical beta distributions, the relative bias 

of the bootstrap estimator of variance was approximately 51%. In this case the bootstrap 

estimator tended to over-estimate the value of the apparent sampling variance of the OVL. 

The relative bias o f the bootstrap estimate decreased to less than 4% as the two distributions 

became more distinct with the exception of the design point p, = 2, q, = 2, p2 = 3, and qi = 

3, where the bias was just over 10%. When the distributions differed, the bootstrap estimator 

tended to under-estimate the value of the apparent sampling variance of the OVL.

The OVL was also explored for mixtures o f distributions. For the standard normal 

and standard Cauchy distributions, OVL under-estimated the value of the OVL for the 

sample size o f 100 with the bias being 2.2%, while OVL over-estimated the value of the 

OVL for the sample size of 500 with the bias being less than 1%. The bootstrap estimate 

of the variance performed well. For the sample size o f 100, the bootstrap estimator of the 

variance under-estimated the apparent sampling variance of the estimator with the bias being 

4.5%. The bootstrap estimator also understated the apparent sampling variance of the 

estimator by 3.2% for the sample size of 500.

For a gamma distribution with a = 3 and a chi-squared distribution with 4 degrees 

of freedom, the OVL under-estimated the value o f the OVL for both sets o f sample sizes 

with this bias being 4.2% for n = 100 and 2.5% for n = 500. The bootstrap estimate of the 

variance understated the apparent sampling variance of the estimator with the bias being 11 % 

for n = 100 and 3.5% for n = 500. In both cases, the bootstrap estimate of the variance 

tended to understate the value of the apparent sampling variance of the estimator.
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Comparison of the Kernel Estimator of the OVL to the Maximum 
Likelihood Estimator o f the OVL

The maximum likelihood estimator of the OVL was computed for 1.000 simulations 

using the nine design points used in the investigation of the kernel estimator for the OVL for 

sample of nx = n2= 100 and 500, where the variance of the two normal distributions differed 

(see Appendix D for S AS program used for the simulation study). The maximum likelihood 

estimator for the reparameterized overlapping coefficient developed by Clemons (1996) was 

used to examine the accuracy of the kernel estimator of th OVL when sampling from two 

normal distributions with unequal variances. The Monte Carlo mean and variance were 

computed from the first and second moments from the 1,000 simulations. Also, the standard 

bias and relative bias were computed as described previously. To compare the bias o f  the 

kernel estimator to that o f the maximum likelihood estimator, the standard bias of the kernel 

estimator was calculated as follows: the difference of the Monte Carlo mean minus OVL 

divided by the Monte Carlo standard error of maximum likelihood estimator (see table in 

Appendix D). In units o f the standard error of maximum likelihood estimator of the OVL, 

it is shown that the bias of the kernel estimator is greater than the bias of the maximum 

ikelihood estimator with the exception of the following design points: p, = 0, o2, = 1, p2 = 

0 and o~2 = 3, n, = », =  500; p, = 5, <?, = 10, p  = 3; and d 2 = 5, q = n = 100. It must be 

noted that although the bias of the kernel estimator of the OVL was greater than the 

maximum likelihood estimator, this difference in most cases was not drastic.

The relative inefficiency of the kernel estimator of the OVL compared to the 

maximum likelihood estimator of the OVL as estimators of the OVL between two normal 

distributions is indicated by the ratio o f their Monte Carlo variances, also shown in Appendix
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F. The variance of the kernel estimator is approximately 1.24 times the variance of 

maximum-likelihood estimator, running from low of 1.00466 (p, = 0, o2, = 3, p2 = 2 and o22 

= 4, «, = /72= 500) to a high of 1.61661 (p,=  1, d2l = 1, p 2= 2 and a22= 4 ,n {= n 2= 500). The 

ratio o f the Monte Carlo variances of the kernel estimator and the maximum-likelihood 

estimator increases with sample size when the value of the OVL is less than 65% and 

decreases when the value of the OVL is greater than 65%. This shows that the relative 

inefficiency of the kernel estimator of the OVL is a function of the value of the OVL. Thus 

when using the kernel estimator of the OVL when the samples follow a normal distribution, 

the estimator is on average 80% efficient.

Modeling of the Bias 

A regression analysis (Montgomery, 1991) was conducted to fit models for 

predicting the OVL given the value of the kernel estimator o f the OVL and sample size. 

These models were developed to reduce the bias of the estimator of the overlapping 

coefficient for the distributions and design points used in the Monte Carlo simulation study.

For the normal distribution it was noticed that for large values of the overlapping 

coefficient (i.e. OVL < 0.6000) the kernel estimator of the OVL under-estimated the OVL; 

the kernel estimator tended to over-estimate the value of the OVL for values of the OVL less 

than 0.600. The following cubic model was fit to the data:

OVL = 0.208039 - 0.00005429*JV + 1.426574*MCOVL2 - 0.530713*MCOVL3 (37) 

Using this model for larger values of the OVL, when the kernel estimator under-estimates 

the value of the OVL, the model tends to increase the estimate of the OVL. For smaller 

values o f the OVL, when the kernel estimator overstates the value of the OVL, the model
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tends to decrease the estimate o f the OVL. Also the model adjusts by slightly reducing the 

estimator of the OVL with an increase in sample size. This model adjusts the bias o f the 

kernel estimator of the overlapping coefficient assuming that the data from the two samples 

come from a normal distribution and also that the two samples are of equal sample size. 

Appendix G shows the percent change in the relative bias using the model. The model 

works reasonably well in reducing the bias o f the kernel estimator of the overlapping 

coefficient.

For the Weibull distributions the kernel estimator tended to overstate the value of 

the OVL with the bias being largest for larger values of the OVL (i.e. OVL = 1). Thus, a 

quadratic model was fit to the data. The model is as follows:

OVL = 0.333109 - 0.0000712874*V+ 0.779401 *MCOVL2 (38)

This model adjusts the kernel estimator by increasing the estimator of the overlapping 

coefficient thus reducing the bias. As the value of the OVL increases, the model adjusts for 

the increase in bias by increasing the value of the estimator. The model adjusts for the 

increase in sample size. The change in relative bias given in Appendix E shows that the 

model performs reasonably well in reducing the bias of the kernel estimator when sampling 

from two Weibull distributions with equal sample size.

When sampling from two Gamma distributions, the kernel estimator tended to 

overstate the value of the OVL for the smaller values of the OVL (< 0.7000) and under

estimate the value of the OVL for the larger values o f the OVL. The best model for the data 

was as follows:

OVL = 0.296354 - 0.00006970*V + 0.832176*MCOVL2 . (39)
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With this model, for smaller values of the overlapping coefficient when the kernel estimator 

tends to overstate the value of the OVL, the estimator is reduced. For larger values where 

the kernel estimator tends to understate the value of the OVL, the estimator is increased. 

The model also adjusts for the increase in sample size. Appendix E again shows that the 

model for reducing the bias of the kernel estimator when sampling from two gamma 

distributions with equal sample size, performs reasonably well.

Appendix G contains the analysis of variance (ANOVA) tables and the R-squared 

values; tests of the various parameters; and the predicted values produced given the Monte 

Carlo estimates of the OVL, relative biases, and percent change of the bias o f the estimator 

for the above models. Again, these models performed quite well, with the bias being 

significantly reduced for the case of sampling from two identical distributions with equal 

sample sizes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



III. ALTERNATIVE NORMAL REFERENCE RULE FOR THE BANDWIDTH OF
THE NAIVE KERNEL ESTIMATOR

As noted previously, the kernel estimator using the normal reference rule did not 

asymptotically reduce the value of the bias of the OVL. We know from the previous 

discussion of the kernel density estimator that the estimator is dependent on the value o f the 

shaping parameter or bandwidth, h. As the sample size increases, the value of the shaping 

parameter is reduced thus increasing the number of jump points in the distribution. While 

this is desirable when one is using the kernel technique in estimating the density, it may also 

have an adverse effect on estimation the value of the OVL. This can be alleviated by 

increasing the value of the shaping parameter. In this chapter we will explore the kernel 

density estimator using an alternative value of the shaping parameter.

Rosenblatt (1956) showed that for the integrated expected mean-square error 

criterion, the best shaping parameter, h, was a constant times n '1/5. This technique was also 

used by Scott (1992) in development of the normal reference rule. Waterman and Whiteman 

(1978) suggested an alternative method of determining an optimum value of the shaping 

parameter. By using the Kolmogrov-Smimov statistic, they were able to obtain bounds for 

the shaping parameter using only properties of the first derivative of the density function as 

follows. It must be briefly noted that Rosenblatt (1956) required the existence o f three 

derivatives of the density function.

50
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The process for determing the optimal bandwidth using the Kobmogrov-Smimov 

statistic is as follows. We have that

TO) F(x+h)-F(x-h) Y(x) F(x +h) -F{x -h)
2nh 2 h 2 nh 2 h 2h m

(40)

where,

TO) = n(Fn(x+h)-Fn(x-h)) . 

Then to bound the first quantity on the right-hand side,

Y(x) F(x+h)-F(x-h) F „(x +h) -F  n(x -h) Fn(.x+h)-Fn{x-h)

2nh 2 h 2 h 2 h

(41)

(42)

If we let D„(a) satisfy the following

D (  a)
P(maxjFB0)-F 0)l> —11—  = a,

then

Y(x) F(x+h)-F(x-h)  
2nh 2 h

(43)

(44)

with probability o f at least 1 - a. To bound the second quantity of the right hand side, it 

should be noted that

F{x±h) = F(x) +F'(x)(±h) +
F (xt)(±h 2)

(45)
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Thus,

F{x+h)-F(x-h)
2h

Ax) ■■ \Kx) +- ( f '(*,) -f'{x2)) -fix) I = -  [/■'(*,) -f'ix2) I . (46)
4 4

If |f (x)| s C for all x, then

F ( x + h ) - F ( x - h )

2 h ~Ax)
D (a) rh

(47)

The h which minimizes B,(/j) is

h = (2Dn{_a.)tC)m . (48)

If we let D„(o) = K(a)ln'm, the asymptotic form given in Lindgren, 1968, then

h=(2K(a.)/C)mn ' m . (49)

The results hold uniformly for all x with probability at least 1 - a  (Waterman & Whiteman, 

1978). Thus using the above shaping parameter an alternative normal reference rule can 

be obtained by using the normal density function for the value of C. From the normal 

density we obtain |f(x)| <,(_yJ{2‘K)edx) 'x. If we let a  = 0.05, then K(a) = 1.36 and we obtain 

a shaping parameter of h = 3.3Son ‘l/4. If  o is unknown we can use the usual sample 

standard deviation, s, as an estimator of o. The kernel density estimator, O VL , can then 

be estimated as before yet incorporating the alternative value of the shaping parameter.
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Let us consider for example the two kernel estimated densities in Figures 17-19 

which are obtained from two samples o f size 500 generated from two normal distributions. 

The first sample is generated from the standard Normal distribution; the density estimate 

derived from this sample is indicated by a dotted line. The second is from a normal 

distribution with mean = 1 and variance = 1. Using the subroutines described in Appendix 

A, we find that the OVL is 0.688772. The actual overlap is 0.617075.

Monte Carlo Investigation

A Monte Carlo simulation study was used to investigate the properties of the kernel 

estimator of the OVL using the alternative normal reference rule. Using the design points 

used in the previous simulation study for two normal distributions and sample sizes of 100 

and 500, OVL was computed. The FORTRAN programs described in chapter II and 

shown in Appendix A were used for the study with an adjustment made to the value of the 

shaping parameter. The results o f the Monte Carlo study are summarized in Appendix H.

Discussion

The kernel estimator of the overlapping coefficient using the alternative rule is again 

a biased estimator. When the two distributions were identical, use of the alternative 

reference rule results in a bias that is smaller than the bias o f the kernel estimator of the OVL 

using the normal reference rule discussed in chapter II. Yet, when the two distributions 

became more distinct, the bias dramatically increased with the exception of OVL = 0.740641 

(i.e., p, = 0, o? = 1, p. = 0 , | j  = 3 ). As with the normal reference rule, the bias of 

the OVL calculated using the alternative reference rule did not necessarily decrease with 

an increase in sample size. Thus the use of the this alternative reference rule, which
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Figure J 7 .  The kernel density estimator for a standard normal distribution using the 
alternative rule. The solid line denotes a  kernel density estimator generated from pseudo 
normal random deviates. The dotted line denotes a standard normal distribution
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Figure 18. The kernel density estimator for a normal distribution using the alternative rule. 
The solid line denotes a kernel density estimator generated from pseudo normal random 
deviates. The dotted line denotes a normal distribution with mean = 1 and variance = 1.
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Figure 19. The overlap using the kernel densities for two normal distributions using the 
alternative rule. The solid line denotes a kernel density estimator generated from pseudo 
normal random deviates. The dotted line denotes a kernel density estimator generated from 
pseudo standard normal random variates.
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increases the shaping parameter used to compute the kernel estimator o f the OVL, only 

improves the kernel estimator when the two distributions are identical. For distinct 

distributions, the alternative rule does not improve the estimator of the OVL. Since the 

objective of this study is to develop a kernel density estimator which is robust for all 

distributional settings, sample size, and values of the overlap between the two distributions, 

it is recommended that the normal reference rule used for the development o f the kernel 

estimator o f the OVL in chapter II be employed.
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IV. EXAMPLES OF THE USES OF THE OVL 

Selectivity of the Migration of Farmers Between 1850 and 1860 

As an example of the use of OVL , let us consider one part o f a study designed to 

investigate the selectivity of the migration of Alabama farmers between 1850 and 1860 

(Inman, 1981) which was used by Inman (1984) as an example of the OVL for two normal 

cases with equal variances. A simple random sample o f 664 farm operators was obtained 

from the 1850 census o f agriculture for ten Alabama counties. Each farm operator in the 

sample was matched to the corresponding entries for his household and his slave-force in the 

1850 census of free population and slave population; from this information his wealth in 

1850 was estimated. Those farm operators in the sample who could be located in the same 

county in the 1860 census are classified as persistent farmers. Those who were not found 

in the 1860 census o f the county in which they resided in 1850 did not persist. (A 

rudimentary adjustment for the effect of mortality, not discussed here, is also made.) We 

shall concern ourselves with a subset of this sample, consisting of 601 male farm operators 

who were listed as the heads of their households in the census of free population and for 

whom consistent census data is available.

Since the distribution of the data was highly skewed, Inman used a logarithmic 

transformation in his evaluation of the OVL. This same transformation will be used in this 

examination of OVL (see Appendix I) for comparison to Inman's cubic spline estimator 

of the OVL. A test for normality was done for each sample using the Shapiro-Wilks statistic

58
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(Shapiro & Wilks, 1974). For the 317 persistent fanners, the p  value for the test was 0.0001 

and for the 284 non persistent farmers the p  value was 0.0266. Thus we can reject the null 

hypothesis in both cases that the two distributions are normal.

Using the natural logarithms, the sample median for the persistent farmers is 7.34225.

For the nonpersistent farmers, the sample median is 6.80445. A nonparametric test, the 

Median Two Sample Test using a normal approximation, yields a z value of -3.22691 which 

is statistically significant at the 0.0013 level. Thus it appears reasonable to assume that the 

median wealth of persistent Alabama farmers exceeds the median wealth of the nonpersistent 

counterparts, indicating that the migration o f Alabama farm operators between 1850 and 

1860 to some degree selected poorer farmers.

According to Inman (1984), the degree o f selectivity depends not on the difference 

in population medians but instead on the actual difference in the distribution of wealth of the 

two groups of farmers. If the distributions are highly distinct, then a strong case can be made 

for migration selective with respect to wealth. The wealthy farmers were able to persist 

while the poorer farmers were forced to relocate. The O VL obtained for the two groups 

was 0.87771356, which indicates that the distributions of wealth for these two groups of 

Alabama farmers are not as distinct as a simple comparison of the sample medians might 

suggest (see Figures 20-23). Therefore, we can conclude that the difference in wealth for 

the farmers who persisted and those who did not persist is not as distinct as suggested by a 

comparison of the medians.
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Figure 20. The kernel density estimator for the wealth of the farmers who persisted to 1860. 
The dotted line denotes the midpoints of the histogram of the data. The solid line denotes 
the kernel density estimator for the data.
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1860. The dotted line denotes the midpoints o f the histogram of the data. The solid line 
denotes the kernel density estimator for the data.
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Figure 22. The kernel estimator of the overlap for the wealth data. The solid line denotes 
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Bootstrap estimates of the variance of OVL were obtained using Equation 34. 

The results for three different values o f B are as follows:

For B = 100, Var b(OVL) = 0.000919;

For B = 200, VarB(OVL) = 0.000878;

For B = 500, Varg(OVL) = 0.000823.

Using the results obtained when B = 500, the percentile method for constructing a bootstrap 

confidence interval for OVL described previously was used to compute a confidence interval 

for OVL using the 1850 wealth data. A 90% confidence interval for the true overlap between 

wealth distribution of the persistent and nonpersistent Alabama farmers, using the bootstrap 

distribution constructed from the 500 O V L ' ,  is given by

[F 'S00(0'°5)’F  ’S0()(()-95)1 = (0.816950 , 0.901633).

Figure 24 is a histogram of the 500 bootstrap estimates. A Shapiro-Wilks test for normality 

was performed to test whether the empirical distribution of the bootstrap estimates can be 

considered normal. The p  value for the test was 0.1242.

Inman (1984) considered this example in his work with the maximum likelihood 

estimator and the cubic spline estimators o f overlapping coefficient. Using the maximum 

likelihood estimator, the value of the estimator was 0.859614 with a 90% confidence interval 

o f (0.808967 , 0.915465). For the cubic spline estimator of the OVL, the value of the 

estimator was 0.869152 with a 90% confidence interval o f (0.848472, 0.941238). Our 

value of the kernel estimator of the OVL, 0.877714, was larger than both values computed 

in Inman (1984).
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Figure 24. The histogram o f the B = 500 bootstrap estimators for the wealth data.
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Irish Education Transition Data 

Next we considered data on the Irish Education Transition for a sample o f 469 Irish 

school children aged 11 in 1976 (Greaney and Kelleghan, 1984). Each student was classified 

by sex and the measure of interest was the students' Drumcondra Verbal Reasoning Test 

score (see Appendix I). A test for normality using the Shapiro-Wilks test for the 231 males 

yields a p  value of 0.011. While the test for normality for the 238 females yields a p  value 

of 0.2783. Since the male sample cannot be considered to follow a normal distribution, a 

nonparametric test was conducted to test differences in the median test scores between males 

and females. The median Drumcondra Verbal Reasoning Test score for males is 104. While 

the median Drumcondra Verbal Reasoning Test score for females is 100.5. A Median Two 

Sample Test using a normal approximation yields a z statistic of 2.04991, which is 

statistically significant at the 0.0404 level. Thus it appears reasonable to assume that the 

median Drumcondra Verbal Reasoning Test score for males exceeds the median Drumcondra 

Verbal Reasoning Test score for females. The OVL for the two distributions was 0.85528, 

which suggests that the distributions may not be as distinct as suggest by the simple 

comparison of medians (see Figures 25-28). A re-evaluation of the data shows that the 

Drumcondra Verbal Reasoning Test scores for female students tended to be concentrated 

around the median test score. While for male students, scores tended to be on the higher end 

of the distribution thus causing the distribution to be right skewed. Thus the difference is 

more in the right tails of the distributions, where elsewhere the two distributions overlapped.
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Figure 25. The kernel density estimator for the Drumcondra Verbal Reasoning Test scores 
for the male students. The dotted line denotes the midpoints of the histogram of the data. 
The solid line denotes the kernel density estimator for the data.
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Figure 26. The kernel density estimator for the Drumcondra Verbal Reasoning Test scores 
for the female students. The dotted line denotes the midpoints of the histogram of the data. 
The solid line denotes the kernel density estimator for the data.
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Bootstrap estimates of the variance of OVL were obtained using Equation 34. 

Results for three different values of B are as follows:

For B = 100, Varg(OVL) = 0.000874;

For B =  200, Varg(OVL) = 0.000929;

For B = 500, VarB(OVL) = 0.000823.

Using the results obtained when B = 500, the percentile method for constructing a bootstrap 

confidence interval for OVL described previously was used to compute a confidence interval 

for OVL using the 469 test scores. A 90% confidence interval for the true overlap between 

Drumcondra Verbal Reasoning Test scores for females versus male students, using the 

bootstrap distribution constructed from the 500 O V L ' , is given by

[ F VoO(0-05)^ ’s~oV0-95)1 = C0-788187,0.891234).

Figure 29 is a histogram of the 500 bootstrap estimates. A Shapiro-Wilks test for normality 

was performed to test whether the empirical distribution of the bootstrap estimates can be 

considered normal. The p  value for the test was 0.0731 .

Acute Myocardial Infarction Registry 

For a last example of the use of OVL,  we considered data from the Acute 

Myocardia Infarction Registry (Rogers, Dean, Moor, Wool, Burgard, & Bradley, 1993). A 

simple random sample of 1,156 patients were obtained from the registry. Each patient was 

identified by two variables: gender and whether or not the patient experienced chest pain for 

more than 6 hours before treatment. The response variable o f interest was minutes from 

onset of ischemic chest pain to ECG (see Appendix I).
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Ficmre 29. The histogram o f the B = 500 bootstrap estimators for the Irish Education 

Transition data.
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Using this data those patients experiencing chest pain for more than 6 hours before 

treatment were classified by gender. A Shapiro-Wilks test for normality o f this data for the 

131 males yielded a p  value o f  0.0001. The Shapiro-Wilks test for normality for the 69 

females yielded a p  value of 0.4358. Since the distribution for the minutes from onset of 

ischemic chest pain to ECG for males cannot be considered to follow a normal distribution, 

a nonparametric test was conducted to test differences in the median time (in minutes) from 

onset of ischemic chest pain to ECG between males and females. The median time for males 

is 508. While the median time for females is 565. A Median Two Sample Test using a 

normal approximation yields a z-statistic o f 1.93862 which is moderately significant at the 

0.0525 level. Thus it appears reasonable to assume that the median time (in minutes) from 

onset of ischemic chest pain to ECG differed significantly for male and females.

The bigger question might be to ask whether the distribution o f the minutes from 

onset of ischemic chest pain to ECG differs for males and females. To make this 

comparison, we caculate the value of the overlapping coefficient. The O VL for the two 

distributions was 0.79234, which suggests that the distributions may not be as distinct as 

suggest by the simple comparison of medians (See Figures 30-33). The distribution of the 

time from onset of ischemic chest pain to ECG for males tended to be left skewed. The time 

from onset of ischemic chest pain to ECG for females tended to be concentrated near the 

median time. Thus the difference between the two distributions is more prominent the left 

tail of the distribution, while elsewhere the two distribitions tended to overlap.
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Figure 30. The kernel density estimator for the minutes from onset of ischemic chest pain 
to ECG for male patients. The dotted line denotes the midpoints of the histogram o f the data. 
The solid line denotes the kernel density estimator for the data.
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Figure 31. The kernel density estimator for the minutes from onset of ischemic chest pain 
for female patients. The dotted line denotes the midpoints of the histogram of the data. The 
solid line denotes the kernel density estimator for the data.
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solid line denotes the kernel density estimator for the minutes from onset of ischemic chest 
pain for male patients. The dotted line denotes the kernel density estimator for the minutes 
from onset of ischemic chest pain for female patients.
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Bootstrap estimates of the variance of the estimator of the OVL were obtained using 

Equation 34. Results for three different values of B are as follows:

For B = 100, Varg(OVL) = 0.0018893;

For B = 200, Varg(OVL) = 0.0015787;

For B = 500, Varg{OVL) = 0.0016212.

It must be noted that the variance increased slightly from B=200 to B=500. Using the results 

obtained when B = 500, the percentile method for constructing a bootstrap confidence 

interval for OVL described previously was used to compute a confidence interval for OVL 

using the 196 values. A 90% confidence interval for the true overlap between the time (in 

minutes) from onset of ischemic chest pain to ECG for females versus males who 

experienced chest pain for more than 6 hours before treatment, using the bootstrap 

distribution constructed from the 500 O V L ' , is given by

[F '^ ( 0 .0 5 ) ,F ’^ ( 0 .9 5 ) ]  = (0.704385,0.846907).

Figure 34 is a histogram of the 500 bootstrap estimates. A Shapiro-Wilks test for normality 

was performed to test whether the empirical distribution of the bootstrap estimates can be 

considered normal. The p-value for the test was 0.1258. A summary of the results from 

the three examples is given in Appendix J.
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Fipnre 34. The histogram of the B = 500 bootstrap estimators for the acute myocardial 
infarction data.
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V. CONCLUSION

The analysis of the behavior o f the kernel estimator of the overlapping coefficient 

using the normal reference rule for the bandwidth for the naive kernel shows that the 

estimator of the OVL is a consistent estimator for the true overlap between two distributions. 

Also, the bootstrap variance estimator o f the overlapping coefficient performs well as an 

estimator of variance.

The primary advantage o f the kernel estimator o f the overlapping coefficient is its 

distribution-free approach. In comparisons of the kernel estimator to the maximum 

likelihood estimator of the overlapping coefficient in the Normal distributional setting, it is 

seen that the kernel estimator should perform quite adequately in situations of more 

immediate interest, where the maximum likelihood estimator o f the OVL would be 

inappropriate.

First, in evaluating the kernel density estimator using the normal reference rule, we 

have shown that the estimator (although it is one of the more simple kernel estimators, thus 

providing a rough estimator of the density o f interest), tends to work adequately for all of 

the distributional settings used in the study. As for the kernel estimator of the overlapping 

coefficient, the estimator proves to be a biased estimator o f the OVL where this bias is 

related to the value of the OVL and the sample size. With the exception of identical 

distributions, the mean bias was minimal. When sampling from two normal distributions the 

mean absolute relative bias of the kernel estimator of the overlapping coefficient was 1.5%

80
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for m= 100 and 1.9% for n = 500; for two Weibull distributions the mean absolute relative 

bias was approximately 1.8% for n = 100 and 500; and for two gamma distributions the 

mean absolute relative bias was approximately 2.1% for n = 100 and 500. The estimator 

performed well when sampling from two beta distributions and mixtures of various 

distributions.

The bootstrap variance estimator also performed well with the exception of 

sampling from two identical distributions. For the case of equal distributions, the bootstrap 

estimator of variance greatly overestimated the variance with this bias being approximately 

50% for each distributional-design-point-sample-size combination. For the case o f distinct 

distributions, when sampling from two normal distributions, the mean absolute relative bias 

of the bootstrap estimator of the variance was 4.6% for n = 100 and 3.6% for n = 500; for 

two Weibull distributions the mean absolute relative bias of the bootstrap variance was 6.5% 

for n = 100 and 6.9% for n = 500; and for two gamma distributions the mean absolute 

relative bias was 7.3% for n = 100 and 4.5% for n =  500. The bootstrap estimator performed 

well when sampling from two beta distributions and mixtures of distributions.

As the examples indicate the kernel estimator o f the OVL along with the bootstrap 

estimator of variance are efficient when dealing with real problems of data analysis where 

the distributional setting of the data is unknown. Also, it must be noted that the kernel 

density estimator using the normal reference rule performed reasonably well in estimating 

the densities of interest.

The properties of the kernel estimator o f the OVL observed in the Monte Carlo 

experiment provide realistic guidance to the actual use o f the estimator. In particular, the
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bias of the kernel estimator of the OVL and the problem of estimating its variance accurately 

circumscribe the use of the kernel estimator as an inferential statistic. Thus, the kernel 

estimator can best be used as a check of the meaningfulness of the differences in parameters 

that are detected using various non-parametric methods. Thus, the OVL offers a technique 

of exploring the meaningfulness of an apparent statistical difference between two 

distributions.

The disadvantage of using the OVL as a measure o f association noted in Gastwirth 

(1975) is that the magnitude of the OVL does not indicate where the common probability 

mass is located. However, Inman and Bradley (1989) observed the OVL has some 

advantages compared to other measures of association. It offers a common approach for the 

measurement of agreement between two distributions in any distributional setting. Thus the 

OVL is less restrictive than other procedures keyed directly to distributional assumptions that 

may or may not prove warranted in data analysis. Also the OVL is based on a simple, easily 

comprehended concept of the association between two probability distributions. The OVL 

has an alternative interpretation based on the classification of individuals into two 

populations. Given the two distributions of the populations of interest, the OVL can be said 

to represent the sum of the conditional probabilities of misclassifying an individual into the 

two populations. The classification rule is the assignment of an individual at any level of the 

characteristic of concern to the population. In other words, the OVL is an indicator of the 

difference between individuals in two populations or the two distributions in general. 

Whether or not the OVL is useful in any situation depends of the meaning the OVL has in 

the context of a specific problem.
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Further work in this area includes the development o f conditional and/or 

unconditional tests of the overlapping coefficient using the maximum likelihood estimator 

of the reparameterized OVL. In addition, the development of tests for the OVL using the 

nonparametric estimator of the overlapping coefficient provides an area for further research.
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Subroutine MEANST 

The subroutine MEANST (Miller, 1982) computes the mean and variance from a 

simple random sample.
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SUBROUTINE MEANST(X,NX,U,V) 
DOUBLE PRECISION X(l)
REAL U,V,SUM,SUMSQ 
INTEGER NX,I

SUM=0.0D0
SUMSQ=0.0D0
DO 101=1,NX
SUM=SUM-X(I)
SUMSQ=SUMSQ+X(I)*X(I)

10 CONTINUE 
U=SUM/NX
V=((SUMSQ-SUM*SUM/NX)/(NX-1))
RETURN
END
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Subroutine OVCOEF

The subroutine OVCOEF calculates the overlapping coefficient for the distributions of 

two sets o f  random variables by estimating the densities using the naive/Rosenblatt kernel 

estimator:

Called subroutines: VSRTD (IMSL), JUMPS, and INTERV (de Boor, 1978)
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c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c* *
c* This routine is to calculate the overlapping coefficient for *
c* the distributions o f two sets of random variables by estimating *
c* the densities and hence the OVC by means of the naive kernel *
c* estimator. *
c* The arguments of the routine have the following meanings: *
c* *
c* sl()......double precision array of size at least nsl used to *
c* pass the data from sample 1 to the routine. On *
c* exit from the routine the array is sorted in *
c* ascending order. *
c* *
c* nsl.......integer variable used to pass the number of elements *
c* in s i() to the routine. *
c* *
c* s2()......double precision array of size at least ns2 used to *
c* pass the data from sample 2 to the routine. On *
c* exit from the routine the array is sorted in *
c* ascending order. *
c* *
c* ns2.......integer variable used to pass the number of elements *
c* in s2() to the routine. *
c* *
c* workQ ...double precision array which must have diemnsion *
c* larger than 2(nsl+ns2). It is used internally in *
c* the calculation of OVC. *
c* *
c* hl,h2...double precision variables which respectively are *
c* the step sizes for the kernel estimators for samples *
c* 1 and 2.

*
c* *
c* ovc...... double precision variable used to return the value *
c* of the overlapping coefficient *
c* *
c* Latest Revision: November 1996 *
c* *
c* Routines called: VSRTD, JUMPS , INTERV *
c* *
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c* *
c* C A V I A T  R E C E P T O R

*

c *  *
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£************#***************************************************

subroutine ovcoef(s 1 ,ns 1 ,s2,ns2,work,h 1 ,h2,ovc) 
double precision s 1 (1 ),s2( 1),work( 1 ),h 1 ,h2.ovc 
integer nsl,ns2

c
c local variables
c

double precision zero,half,one,x,y,intlen,fl (0:1),f2(0:1) 
double precision dfl,df2 
integer nptsl,npts2,left,mflag,i,j 
parameter(zero=0. 0d0,half=0.5 d0,one= 1. OdO)

c
c

open( 10,file='scratch',status-unknown') 
call vsrtd(sl,nsl) 
call vsrtd(s2,ns2)
call jumps(s 1 ,ns 1 ,h 1, work( 1 ),npts 1) 

do i=l,nptsl 
write( 10,900) work(i) 
end do

call jumps(s2,ns2,h2, work(npts 1+1 ),npts2) 
do i=l,npts2
write( 10,900) work(nptsl+i) 
end do 

nptsl=nptsl+npts2 
call vsrtd(work,nptsl) 

do i=l,nptsl 
write( 10,900) work(i)

900 format(lh ,lpdl5.7) 
end do
close( 10,status-keep')

c
c change points for each ECDF now found and merged in the
c work storage array work(). Next calculate the OVC by
c summing the area under the smaller curve over each
c subinterval,
c

ovc=zero 
do i=l,nptsl-l 

intlen=work(i+1 )-work(i) 
x=work(i)+half* intlen 
do j=0,1 

y=x+dfloat(2*j-l)*halP‘hl 
call interv(sl,nsl,y,left,mflag) 
select case(mflag)
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case(-l) 
fl(j)=zero 

case(0) 
i% .eq.sl(nsl)) then 

fl(j)=one 
else

fl (j)=dfloat(left)/dfloat(ns 1) 
endif 

case(l) 
fl(j)=one 

end select 
end do
dfl=(fl(l)-fl(0))/hl

c
do j=0,1 

y=x+dfloat(2*j-l)*haIf*h2 
call interv(s2,ns2,y,left,mflag) 
select case(milag) 

case(-l) 
f2(j)=zero 

case(O) 
if(y.eq.s2(ns2)) then 

£2(j)=one 
else

f2(j)=dfloat(left)/dfloat(ns2) 
endif 

case(l) 
f2(j)=one 

end select 
end do
df2=(f2( 1 )-f2(0))/h2

c
ovc=ovc+dmin 1 (dfl ,dG) *intlen 

end do
c

return
end
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Subroutine VSRTD

The subroutine VSRTD (IMSL) sorts a given array by the algebraic values.
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C EMSL ROUTINE NAME -VSRTD

COMPUTER - IBM/SINGLE

LATEST REVISION - JANUARY 1, 1978

PURPOSE - SORTING OF ARRAYS BY ALGEBRAIC VALUE

USAGE - CALL VSRTA (A,LA)

ARGUMENTS A - ON INPUT, A CONTAINS THE ARRAY TO BE 
SORTED.

ON OUTPUT, A CONTAINS THE SORTED ARRAY.
LA - INPUT VARIABLE CONTAINING THE NUMBER OF 

ELEMENTS IN THE ARRAY TO BE SORTED.

PRECISION/HARDWARE -DOUBLE/ALL

REQD. IMSL ROUTINES - NONE REQUIRED

NOTATION - INFORMATION ON SPECIAL NOTATION AND
CONVENTIONS IS AVAILABLE IN THE MANUAL 
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED.

WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS
BEEN

APPLIED TO THIS CODE. NO OTHER WARRANTY, 
EXPRESSED OR IMPLIED, IS APPLICABLE.

SUBROUTINE VSRTD (A,LA)
C SPECIFICATIONS FOR ARGUMENTS

INTEGER LA
DOUBLE PRECISION A(LA)

C SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IU(21 ),IL(21 ),I,M, J,K,IJ,L
DOUBLE PRECISION T,TT,R 

C FIRST EXECUTABLE STATEMENT
M=1
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1=1
J=LA
R=.375D0
IF (LA.LE.O) RETURN 

10 IF (I .EQ. J) GO TO 55 
15 IF (R GT. .5898437D0) GO TO 20 

R=R+3.90625D-2 
GOTO 25 

20 R=R-.21875D0 
25 K=I

C SELECT A CENTRAL ELEMENT OF THE
IJ=I+(J-I)*R 
T=A(IJ)

C IF FIRST ELEMENT OF ARRAY IS GREATER
C THAN T, INTERCHANGE WITH T

IF (A(I) LE. T) GO TO 30 
A(IJ)=A(I)
A(I)=T
T=A(IJ)

30 L=J
C IF LAST ELEMENT OF ARRAY IS LESS THAN
C T, INTERCHANGE WITH T

IF (A(J) GE. T) GO TO 40 
A(IJ)=A(J)
A(J)=T
T=A(IJ)

C IF FIRST ELEMENT OF ARRAY IS GREATER
C THAN T, INTERCHANGE WITH T

IF (A(I) LE. T) GO TO 40 
A(IJ)=A(I)
A(I)=T
T=A(IJ)
GOTO 40 

35 IF(A(L).EQ.A(K)) GO TO 40 
TT=A(L)
A(L)=A(K)
A(K)=TT

C FIND AN ELEMENT IN THE SECOND HALF OF
C THE ARRAY WHICH IS SMALLER THAN T

40 L=L-1 
IF (A(L) GT. T) GO TO 40 

C FIND AN ELEMENT IN THE FIRST HALF OF
C THE ARRAY WHICH IS GREATER THAN T

45 K=K+1 
IF (A(K) LT. T) GO TO 45
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C INTERCHANGE THESE ELEMENTS
IF (K LE. L) GO TO 35

C
C

SAVE UPPER AND LOWER SUBSCRIPTS OF 
THE ARRAY YET TO BE SORTED

IF (L-I .LE. J-K) GO TO 50
IL(M)=I
IU(M)=L
I=K
M=M+1 
GOTO 60 

50 IL(M)=K 
IU(M)=J 
J=L
M=M+1 
GOTO 60

C BEGIN AGAIN ON ANOTHER PORTION OF
C THE UNSORTED ARRAY

55 M=M-l 
IF (M .EQ. 0) RETURN 
I=IL(M)
J=IU(M)

60 IF (J-I .GE. 11) GO TO 25 
IF a  .HQ. 1) GO TO 10 
1= 1-1  

65 1=1+1 
IF (I EQ. J) GO TO 55 
T=A(I+1)
DF (A(I) .LE. T) GO TO 65 
K=I

70 A(K+1)=A(K)
K=K-1
IF (T LT. A(K)) GO TO 70
A(K+1)=T
GOTO 65
END
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Subroutine JUMPS

The subroutine JUMPS locates the points at which the naive/Rosenblatt kernel 

density estimator has jumps.

Called subroutines: INTERV
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c* *
c* The purpose of this routine is to locate the points at which
c* the naieve kernel density estimator has jumps. The routine assumes
c* that the vector of observations passed to the routine are sorted
c* from smallest to largest. The arguments of the routine have the
c* following meanings:
c*
c* x()........ double precision vector of observations upon which
c* the empirical distribution function is based. This
c* vector is on length nx and is assumed to be sorted
c* in ascending order,
c*
c* nx......... integer variable used to tell the routine how many
c* elements there are in the vector x().
c*
c* h double precision variable used to define the step
c* size used by the naieve kernel estimator. This

c* routine assumes the formula
c* f(x)=[F(x+h/2) - F(x-h/2)]/h
c*
c* wk().......double precision vector of length at least 2*nx
c* in which the routine will return the jump points
c* of the kernel estimator,
c*
c* npts.......integer variable in which the routine will return
c* return the number of jump points in the vector wk()
c*
c* Latest Revision. November 1996 
c*
c* Routines called: interval.for
c*

C *

c* C A V I A T  R E C E P T O R

c*
* * * * * * * * * *

c
subroutine jumps(x,nx,h,wk,npts) 
double precision x( 1 ),wk( 1 ),h 
integer nx,npts

c
c local variables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

double precision lower,upper,halfh,dl,du 
integer mflagl,leftl,mflagu,leftu

c
c

npts=0
halfh=0.5d0*h
upper=x(l)-halfh
lower=upper-h
call interv(x,nx,upper,leftu,mflagu) 
call interv(x,nx,lower,leftlmflagl)

c
c start main loop
c

do while (lower.lt.x(nx)) 
select case(mflagl) 

case(-l) 
dl=x( 1 )-lower 

case(0) 
dl=x(leftl+1 )-lower 

case(l)
stop 'TERMINAL ERROR...lower larger than x(nx)' 

end select 
select case(mflagu) 

case(-l) 
du=x( 1 )-upper 

case(0) 
if(upper.lt.x(nx)) then 

du=x(leftu+1 )-upper 
else 

du=1.0d+200 
endif 

case(1) 
du=1.0d+200 

end select 
iffdu .Ie. dl) then 

if(mflagu.eq.-l) then 
upper=x(l) 

else
upper=x(leftu+l)

endif
npts=npts+l
if(npts.gt.2*nx) stop Terminal error...wk() too large'
wk(npts)=upper-halfh
lower=lower+du
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else
if(mflagl.eq.-l) then 

lower=x(l) 
else

lower=x(leftl+l)
endif
npts=npts+l
if(npts.gt.2*nx) stop 'Terminal error...wk() too large' 
wk(npts)=lower+halfh 
upper=upper+dl 

endif
call interv(x,nx,upper,leftu,mflagu) 
call interv(x,nx,lower,leftl,mflagl) 

end do
c
c

return
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Subroutine INTERV

The subroutine INTERV, from de Boor (1978), computes the interval between 

consecutive jump points.
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subroutine interv ( xt, lxt, x, left, mflag)
c from * a practical guide to splines * by C. de Boor 
computes left = max( i : xt(i) It. xt(lxt) .and. xt(i) le. x ) 
c

i n p u t  ******
c xt a real sequence, o f length bet, assumed to be nondecreasing
c lxt number of terms in the sequence x t .
c x... the point whose location with respect to the sequence xt is
c to be determined,
c
c****** o u t p u t  ******
c left, mflag both integers, whose value is
c
c 1 -1 if x .It. xt(l)
c i 0 if xt(i) .le. x .It. xt(i+l)
c i 0 if xt(i) .It. x .eq. xt(i+l) .eq. xt(bct)
c i 1 if xt(i) .It. xt(i+l) .eq. xt(lxt) .It. x 
c
c In particular, mflag = 0 is the 'usual' case, mflag .ne. 0
c indicates that x lies outside the CLOSED interval
c xt( 1) le. y .le. xt(lxt). The asymmetric treatment of the
c intervals is due to the decision to make all pp functions cont-
c inuous from the right, but, by returning mflag = 0 even if
C x = xt(lxt), there is the option of having the computed pp function 
c continuous from the left at xt(bct).
c
c****** m e t h o d  ******
c The program is designed to be efficient in the common situation that 
c it is called repeatedly, with x taken from an increasing or decrea- 
c sing sequence. This will happen, e.g., when a pp function is to be 
c graphed. The first guess for left is therefore taken to be the val- 
c ue returned at the previous call and stored in the l o c a l  varia- 
c ble ilo . A first check ascertains that ilo .It. bet (this is nec- 
c essary since the present call may have nothing to do with the previ- 
c ous call). Then, if xt(ilo) le. x .It. xt(ilo+l), we set left = 
c ilo and are done after just three comparisons, 
c Otherwise, we repeatedly double the difference istep = ihi - ilo 
c while also moving ilo and ihi in the direction of x , until 
c xt(ilo) .le. x .It. xt(ihi),
c after which we use bisection to get, in addition, ilo+1 = ihi. 
c left = ilo is then returned, 
c

integer left,lxt,mflag, ihi,ilo,istep,middle 
double precision x,xt(bct) 
save ilo
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data ilo / l /  
ihi = ilo + 1
if (ihi .It. lxt) go to 20

if (x .ge. xt(lxt)) go to 110
if (lxt .le. 1) go to 90
ilo = lxt - 1 
ihi = lxt

c
20 if (x .ge. xt(ihi)) go to 40

if (x .ge. xt(ilo)) go to 100
c
c **** now x .It. xt(ilo). decrease ilo to capture x .

istep = 1 
31 ihi = ilo 

ilo = ihi - istep
if (ilo .le. 1) go to 35
if (x .ge. xt(ilo)) go to 50
istep = istep*2

go to 31
35 ilo = 1 

if(x It. x t(l)) go to 90
go to 50

c **** now x ge. xt(ihi). increase ihi to capture x .
40 istep = 1
41 ilo = ihi

ihi = ilo + istep
if (ihi .ge. lxt) go to 45
if (x .It. xt(ihi)) go to 50
istep = istep*2

go to 41
45 if (x .ge. xt(lxt)) go to 110

ihi = lxt
c
c **** now xt(ilo) le. x .It. xt(ihi). narrow the interval. 

50 middle = (ilo + ihi)/2 
if (middle .eq. ilo) go to 100

c note, it is assumed that middle = ilo in case ihi = ilo+1 . 
if (x .It. xt(middle)) go to 53

ilo = middle
go to 50

53 ihi = middle
go to 50 

c**»* set output and return.
90 mflag = -1 

left = 1
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return
100 mflag = 0 

left = ilo
return

110 mflag = 1
if (x .eq. xt(lxt)) mflag = 0 
left = lxt

111 if (left eq. 1) return 
left = left -1
if (xt(left) .It. xt(lxt)) return 

go to 111
end
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Table B1

The_T_welve Normal Distribution Design Points Used for the Simulation Study

mean 1 variance 1 mean 2 variance 2 OVL

0 1 0 1 1.00000

2 4 2 4 1.00000

0 1 3 5 0.31532

0 1 1 1 0.61708

0 1 0 3 0.74064

2 4 0 1 0.45339

1 1 0 3 0.63943

5 10 3 5 0.68421

2 4 3 5 0.80847

0 3 2 4 0.58875

1 1 3 5 0.45740

1 1 2 4 0.60993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

Table B2

The Twelve Gamma Distribution Design Points Used for the Simulation Study

alpha 1 alpha 2 OVL1

1.5 2.5 0.69163957

1.5 2.0 0.83061704

1.5 4.0 0.40174569

1.5 3.5 0.48122526

2.5 2.0 0.85447962

2.5 4.0 0.65488521

2.5 3.5 0.75591698

2.0 4.0 0.52950408

2.0 3.5 0.62178956

4.0 3.5 0.89132310

1.5 1.5 1.00000000

4.0 4.0 1.00000000
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Table B3

The_T_welve Weibull Distribution Design Points Used forthe Simulation Study

alpha 1 betal 1 alpha 1 beta 2 OVL

1.5 4.0 2.0 2.0 0.64209627

1.5 1.5 1.5 4.0 0.57323190

2.0 3.0 2.0 2.0 0.80280065

3.0 1.5 2.0 2.0 0.73724924

1.5 1.5 2.0 2.0 0.85696873

3.0 1.5 1.5 4.0 0.42141420

3.0 1.5 3.0 1.5 1.00000000

2.0 2.0 2.0 2.0 1.00000000

1.0 1.5 1.0 2.0 0.86784119

1.0 1.5 1.0 3.0 0.69097628

1.0 2.0 1.0 3.0 0.81489838

1.0 2.0 1.0 3.5 0.74739131
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Table B4

The.f ourBeta Distribution Design Points Used for the Simulation Study

alpha 1 beta 1 alpha 2 beta 2 OVL

2 2 1 1 0.80755008

3 3 2 2 0.89266882

5 3 3 3 0.72247886

5 3 5 3 1.00000000
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RESULTS OF THE MONTE CARLO SIMULATION STUDY: THE KERNEL 
ESTIMATOR OF THE OVL USING THE NORMAL REFERENCE RULE
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Table Cl

Results o f the Monte Carlo Simulation Study ; The Kernel Estimator of OVL Based on Independent Samples from Two Normal 
Distributions

N
Predicted
Variance

Monte Carlo Standard 
Mean Variance Bias

Variance
Ratio

Relative 
Bias 

OVL (%)

Relative 
Bias 

Variance (%)
U, = 0, o2, = 1, p2 = 0 and o22 = 1, OVL = 1.000000

100 0.0013639 0.89156 0.00092446 -3.56655 0.6778014 -10.84404 47.53584

500 0.0002742 0.951053 0.00017599 -3.68967 0.6418855 -4.89475 55.79102

ft, = 2, o2, = 4, ft2 = 2 and o22 = 4, OVL =1.000000

100 0.00139068 0.892119 0.00090138 -3.59327 0.6481556 -10.78806 54.28394

500 0.00025195 0.950718 0.00016714 -3.81198 0.6633796 -4.92824 50.74324

fi, = 2, o2, = 4, ft2 = 3 and <j22 = 5, OVL = 0.808473

100 0.00266908 0.796343 0.00287713 -0.22615 1.0779476 -1.50039 -7.23111

500 .000628652 0.811475 0.00064401 -0.11563 1.0721509 0.37132 - 6.72955

ft, = 0, o2, = 1, fi2 = 0 and a \  = 3, OVL = 0.740641

100 0.00234662 0.724487 0.0025474 -3.20072 1.0855615 -2.18116 -7.88177

500 0.00054237 0.736323 0.00057393 -0.01802 1.0581726 -0.58297 - 5.49746

(table continues)
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Relative Relative

Predicted Monte Carlo Standard Variance Bias Bias

N Variance Mean Variance Bias Ratio OVL (%) Variance (%)

H, = 5 ,o 2, = 10, n2= 3 and o22 = 5, OVL = 0.683020

100 0.00264340 0.674443 0.00289080 -0.15952 1.0935910 - 1.25575 - 8.55813

500 .000581291 0.688872 0.00058938 0.24105 1.0139174 0.85679 - 1.37264

P i=  l , o 2, = 1,m2= 0 and o \  = 3, OVL = 0.639430

100 0.00247203 0.631868 0.00253316 - 3.20072 1.0247273 - 1.18255 -2.41306

500 0.00537266 0.644058 0.00053212 0.20065 1.0682326 0.72388 - 6.38743

=  0, o2, = 1, |lt2 = 1 and o22 = 1, OVL = 0.617075

100 0.00316916 0.624577 0.00312376 0.13422 0.9678459 1.21568 3.32224

500 0.00061978 0.630828 0.00062559 0.54984 1.0093701 2.22868 -0.92831

H, = 1, o2, = 1,m2= 2 and o22 = 4, OVL = 0.609934

100 0.00235149 0.602939 0.00238396 -0.14328 1.0138089 - 1.14697 - 1.36209

500 0.00050378 0.613520 0.00054184 0.15406 1.0755569 0.58794 -7.02491

(table continues)
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Relative Relative

Predicted Monte Carlo Standard Variance Bias Bias

N Variance Mean Variance Bias Ratio OVL (%) Variance (%)

H, = 0, a \  = 3, \i2= 2 and o22 = 4, OVL = 0.588750

100 0.00280185 0.599083 0.00295912 0.18996 1.0561286 1.75518 -5.31456

500 0.00059996 0.603017 0.00057122 0.59696 0.9823646 2.42336 1.79520

= l , o 2,=  1, Ma = 3 and o22 = 5, OVL = 0.457402

100 0.00214170 0.460238 0.00226334 0.05961 1.0567947 0.61980 - 5.37424

500 0.00044314 0.468227 0.00043951 0.51637 0.9920800 2.36671 - 0.79832

Pi ~ 0, o2, = l ,p 2= 2 and o22 = 4, OVL = 0.453388

100 0.00222756 0.459458 0.00214563 0.13103 0.9632191 1.33870 3.81854

500 0.00046184 0.466920 0.00044598 0.64075 0.9656596 2.98452 3.55616

H, =0 , o2, = 1, m2= 3 and a \  = 5, OVL = 0.315318

100 0.00177039 0.325574 0.00178051 0.24305 1.0057169 3.25248 - 0.56844

500 0.00368558 0.332589 0.00037529 - 0.89152 1.0182619 5.47727 - 1.79344
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Table C2

Results o f the Monte Carlo Simulation Study: The Kernel Estimator of OVL Based on Independent Samples from Two Weibult 
Distributions

N
Predicted
Variance

Monte Carlo 
Mean Variance

Standard
Bias

Relative 
Variance Bias 

Ratio OVL (%)

Relative 
Bias 

Variance (%)
a, = 3.0, p ,=  1.5, a 2= 3.0 and p2 = 1.5, OVL = 1.000000

100 0.00134596 0.895581 0.00086694 - 3.546364 0.6441050 -10.44185 55.25419

500 0.00026180 0.953311 0.00017337 - 3.545980 0.6621966 - 4.66893 51.01256

a, = 2.0, p, = 2.0, a 2= 2.0 and p2 = 2.0, OVL = 1.000000

100 0.00135755 0.894509 0.00087026 - 3.575953 0.6410524 -10.54914 55.99348

500 0.00026572 0.952482 0.00017360 - 3.606483 0.6533218 - 4.75181 53.06393

a, = 1.0, p, = 1.5, a 2= 1.0 and p2 = 2.0, OVL = 0.867841

100 0.00180877 0.844289 0.00184481 - 0.548357 1.0227823 - 2.71393 - 2.22748

500 0.00049736 0.868469 0.00053016 - 0.027264 1.0659471 0.07234 - 6.18672

a, = 1.5, p, = 1.5, a 2= 2.0 and p2 = 2.0, OVL = 0.856969

100 0.00175138 0.856243 0.00182789 -0.016976 1.0436842 - 0.08469 - 4.18558

500 0.00047459 0.888312 0.00050382 1.396392 1.0615973 3.65746 - 5.80233

(table continues)
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N

Predicted

Variance

Monte Carlo 

Mean Variance

Standard

Bias

Relative 

Variance Bias 

Ratio OVL (%)

Relative 

Bias 

Variance (%)

a, = 1.0, p, = 2.0, a 2= 1.0 and p2 = 3.0, OVL = 0.814898

100 0.00213969 0.796958 0.00234121 - 0.370774 1.0941807 -2.20154 - 8.60742

500 0.00055286 0.817126 0.00057163 0.093170 1.0339482 2.73357 - 3.28335

a, = 2.0, p, = 3.0, a 2= 2.0 and p2 = 2.0, OVL = 0.802801

100 0.00208043 0.797459 0.00229485 -0.111515 1.1030646 -0.66543 - 9.34348

500 0.00052013 0.815774 0.00059749 0.530744 1.1487463 1.61601 -12.94858

= 1.0, Pi = 2.0, a2= 1.0 and p2 = 3.5, OVL = 0.747391

100 0.00234276 0.738898 0.00273571 -0.162375 1.1677294 - 1.13634 -14.36373

500 0.00055134 0.751224 0.00056605 0.161107 1.0266937 0.51286 - 2.59997

tti = 3.0, p, = 1.5, a 2= 2.0 and p2 = 2.0, OVL = 0.737249

100 0.00276862 0.725117 0.00313173 -0.216789 1.1311516 - 1.64556 -11.59452

500 0.00066599 0.735910 0.00071848 -0.049951 1.0789804 - 0.18161 - 7.30600

(table continues*!
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Relative Relative

Predicted Monte Carlo Standard Variance Bias Bias

N Variance Mean Variance Bias Ratio OVL (%) Variance (%)

a, = 1.0, p ,=  1.5, a 2= 1.0 and p2 = 3.0, OVL = 0.690976

100 0.00229675 0.692287 0.00234908 0.270444 1.0199242 0.18970 - 2.22748

500 0.00050670 0.699696 0.00052742 0.379681 1.0408907 1.26192 - 3.92843

a, = 1.5, P, = 4 .0 ,a 2= 2.0 and p2 = 2.0, OVL = 0.642096

100 0.00273173 0.624900 0.00287333 - 0.320799 1.0518359 2.67809 - 4.92813

500 0.00051202 0.633298 0.00060685 -0.357147 1.1852077 1.37021 -15.66601

a, = 1.5, p, = 1.5, a 2= 1.5 and p2 = 4.0, OVL = 0.573232

100 0.00216456 0.581249 0.00234628 0.165510 1.0839562 1.39857 - 7.74535

500 0.00046681 0.587127 0.00045128 0.654070 0.9667304 2.42391 3.44146

<*i = 3.0, p, = 1.5, a 2= 1.5 and p2 = 4.0, OVL = 0.421414

100 0.00234763 0.399402 0.00235331 - 0.453758 1.0024209 5.22342 - 0.24151

500 0.00046199 0.404222 0.00050245 - 0.766997 1.0875798 4.07973 - 8.05273

00



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission

Table C3

Results o f the Monte Carlo Simulation Study. The Kernel Estimator of OVL Based on Independent Samples from Two Gamma 
Distributions

N
Predicted
Variance

Monte Carlo Standard 
Mean Variance Bias

Variance
Ratio

Relative 
Bias 

OVL (%)

Relative 
Bias 

Variance (%)
a, = 1.5, a 2 = 1.5, OVL = 1.000000

100 0.00135007 0.894091 0.00087504 -3.580311 0.6481425 -10.59094 54.28705

500 0.00027304 0.952504 0.00019297 -3.419126 0.7067401 - 4.74963 41.49474

a, = 4.0, a 2 = 4.0, OVL = 1.000000

100 0.00132939 0.894121 0.00088684 - 3.555366 0.6671053 -10.58786 49.90137

500 0.00026669 0.951625 0.00017396 -3.667674 0.6522953 - 4.83745 53.30480

a, = 4.0, a 2 = 3.5, OVL = 0.891323

100 0.00173601 0.857861 0.00195780 -0.756264 1.1277583 - 3.75425 -11.32852

500 0.00054142 0.890024 0.00056521 -0.546267 1.0439343 - 0.14570 - 4.20853

a, = 2.5, oc2 = 2.0, OVL = 0.854480

100 0.00202232 0.833808 0.00215044 -0.445768 1.0633557 - 2.41919 - 5.95809

500 0.00060572 0.858150 0.00068788 0.139957 1.1356381 0.42958 -11.94378

(table continues"!
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N

Predicted

Variance

Monte Carlo Standard 

Mean Variance Dias

Variance

Ratio

Relative 

Dias 

OVL (%)

Relative 

Dias 

Variance (%)

a, = 1.5, a 2 = 2.0, OVL = 0.830617

100 0.00220538 0.815459 0.00238677 -0.310276 1.0822461 - 1.82496 - 7.59958

500 0.00061676 0.835435 0.00062997 0.191967 1.0214133 0.58007 - 2.09644

a, = 2.5, a 2 = 3.5, OVL = 0.755917

100 0.00258534 0.754192 0.00295801 -0.031714 1.1441486 -0.22818 -12.59877

500 0.00065256 0.763558 0.00061675 0.307690 0.9451338 1.01087 5.80513

a, = 1.5, a 2 = 2.5, OVL = 0.691640

100 0.00276211 0.693917 0.00317429 0.040421 1.1492239 0.32927 -12.98475

500 0.00063438 0.703530 0.00060286 0.484261 0.9503242 1.71913 5.22725

a, = 2.5, a2 = 4.0, OVL = 0.654885

100 0.00279217 0.661026 0.00315809 0.109273 1.1310523 0.93769 -11.58676

500 0.00063021 0.668112 0.00059676 0.541438 0.9469238 2.01969 5.60512

(table continues!
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N

Predicted

Variance

Monte Carlo Standard 

Mean Variance Bias

Variance

Ratio

Relative 

Bias 

OVL (%)

Relative 

Bias 

Variance (%)

a, = 2.0, a 2 = 3.5, OVL = 0.621790

100 0.00278195 0.631951 0.00286496 0.189840 1.0298397 1.63419 - 2.89751

500 0.00061673 0.636882 0.00061714 0.607534 1.0006587 2.42727 - 0.06583

a, = 2.0, a 2 = 4.0, OVL = 0.529504

100 0.00270272 0.542811 0.00267436 0.251306 0.9895098 2.51306 1.06014

500 0.00056157 0.546648 0.00059220 0.032377 1.0545355 3.23775 -5.17152

a, = 1 .5 ,a2 = 3.5, OVL = 0.481225

100 0.00255794 0.495070 0.00248876 0.277520 0.9729553 2.87698 2.77964

500 0.00054015 0.502054 0.00052604 0.908120 0.9738730 4.32818 2.68279

a, = 1.5, a 2 = 4.0, OVL = 0.401746

100 0.00232771 0.419519 0.00222816 0.376528 0.9572334 4.42405 4.46773

500 0.00044278 0.423282 0.00043242 1.035634 0.9766022 5.36055 2.39541

N>
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Table C4

Results of the Monte Carlo Simulation Study: The Kernel Estimator of OVL Based on Independent Samples from Two Beta 
Distributions

Relative Relative

Predicted Monte Carlo Standard Variance Bias Bias

N Variance Mean Variance Bias Ratio OVL (%) Variance (%)

Pi = 5, q, = 3, p2 = 5 and p, = 3, OVL= 1.000000

100 0.0013893 0.892312 0.00097386 - 3.450789 0.7009629 -10.76879 42.66090

500 0.0002776 0.952482 0.00018356 - 3.507243 0.6613681 - 4.75180 51.20173

Pi = 2, q, = 2, p2 = 3 and q2 = 3, OVL = 0.892669

100 0.00174045 0.861193 0.00160425 - 0.785844 0.9217418 - 3.52599 8.49025

500 .000480867 0.890796 0.00053912 -0.080651 1.1211597 - 0.20978 -10.80664

Pi = 2, qj = 2, p2 = 1 and q2 = 1, OVL = 0.807550

100 0.00207295 0.805789 0.00215627 - 0.379486 1.0401970 - 0.21821 - 3.86437

500 0.00068300 0.782637 0.00071247 - 0.933357 1.0431455 - 3.08504 - 4.13609

Pi = 5, q, = 3, p2 = 3 and q2 = 3, OVL = 0.722479

100 0.00277571 0.717282 0.00328779 - 0.090635 1.1844861 - 0.71932 -15.57520

500 0.00065956 0.730782 0.00068633 0.316390 1.0440814 1.14919 - 4.22203
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Table C5

ix tau iib  t/i iiic ivioiiic i^ario oiniuiaiion o iu q v . l i ic  ■vcriici 
Distribution and a Standard Cauchv Distribution

n s n m a io r  o i u v l nasea on maepicuae iu  dUiupics trom a aianoaru normal

N

Predicted

Variance

Monte Carlo 

Mean Variance

Standard

Dias

Variance

Ratio

Relative 

Bias 

OVL (%)

Relative 

Bias 

Variance (%)

OVL = 0.748835

100 0.00188767 0.731943 0.00197737 - 0.379879 1.0475164 -2.25581 -4.53610

500 0.00044291 0.751965 0.00045762 -0.146309 1.0332051 0.41797 -3.21380

N>
U>
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Table C6

Results of the Monte Carlo Simulation Study: The Kernel L.stimator of OVL Rased on Independent Samples from a Gamma 
Distribution with a -  3 and a Chi Squared Distribution with 4 decrees of Freedom

N

Predicted

Variance

Monte Carlo 

Mean Variance

Standard

Dias

Variance

Ratio

Relative 

Bias 

OVL (%)

Relative 

Bias 

Variance (%)

OVL = 0.815890

100 0.00235402 0.781535 0.00264487 -0.668016 1.1235552 -4.21073 -10.99681

500 0.00061259 0.795894 0.00063506 - 0.793482 1.0366929 - 2.45084 - 3.53942

NJ
4*-



APPENDIX D

MONTE CARLO PROGRAM FOR THE MAXIMUM LIKELIHOOD ESTIMATOR
OF THE OVL
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OPTIONS LS=132 PAGENO=l NODATE; 
LIBNAME SIM V604 'A:\';

DATA OUTPUT,
RUN;

DATA STAT;

ARRAY B{ 500} B1-B500;
ARRAY C{ 500} C1-C500;

Nl=500;
N2=500;
M=1000;
SEED 1=85652,
SEED2=32247;

PI=ARCOS(-l);

DO 1=1 TO M,
DO J=LBOUND(B) TO HBOUND(B);
B(J) =0+SQRT (1 )*NORMAL(SEED 1);

END;

DO J = LBOUND(C) TO HBOUND(C); 
C(J) = 1 + SQRT(l)*NORMAL(SEED2), 
END;

MEANl=MEAN(OF B1-B500); 
MEAN2=MEAN(OF C1-C500); 
VAR1B=VAR(0F B1-B500); 
VAR2B=VAR(OF C1-C500);

VAR1=((VAR1B)*(N1-1))/N1; 
VAR2=((VAR2B)*(N2-1 ))/N 1,

KEEP MEAN1 MEAN2 VAR1 VAR2;

STD1=SQRT(VAR1);
STD2=SQRT(VAR2);

DELTAH = (MEAN 1 -MEAN2)/STD 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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GAMMAH=V AR2/VAR1,

A = SQRT(DELTAH**2 + (GAMMAH-1 )*LOG(GAMMAH));

Z11 = (DELTAH - SQRT(GAMMAH) *A)/(GAMMAH-1);
Z22 = (SQRT(GAMMAH)*DELTAH + A)/(GAMMAH-1);
Z12 = (SQRT(GAMMAH)*DELTAH - A)/(GAMMAH-1),
Z21 = (DELTAH + SQRT (GAMMAH)* A)/(GAMMAH-1);

PHIZ 11 = PROBNORM(Z 11);
PHIZ22 = PROBNORM(Z22);
PHIZ12 = PROBNORM(Z 12);
PHE21 = PR0BN0RM(Z21);

OVL = PHIZ11 + PHIZ22 - PHIZ12 - PHIZ21 +1;

DZ11D = (1 - SQRT(GAMMAH)*DELTAH*A**(-1))/(GAMMAH-1);
DZ22D = (SQRT(GAMMAH)+DELTAH* A**(-l ))/(GAMMAH-1);
DZ12D = (SQRT (GAMMAH)-DELTAH* A* *(-1 ))/(GAMMAH-1);
DZ21D = (1 + SQRT(GAMMAH)*DELT AH* A* *(-1 ))/(GAMMAH-1);

DZ11G = ((2*SQRT(GAMMAH)*A - 2*DELTAH) - 
(GAMMAH* *(-1/2)* A*(GAMMAH-1)+ SQRT(GAMMAH)* A* *(-1 )*
(((GAMMAH-1)/GAMMAH) + LOG(GAMMAH))*(GAMMAH-1 )))/(2*(GAMMAH 
-1)**2);

DZ22G = ((GAMMAH**(-1/2)*(GAMMAH-1)*DELTAH +
A* *(-1 )*(((GAMMAH-1 )/GAMMAH) + LOG(GAMMAH))*
(GAMMAH-1)) - (2 * SQRT (GAMMAH)*DELTAH + 2 * A))/(2* (GAMMAH -1)**2);

DZ12G = ((GAMMAH**(-1/2)*(GAMMAH-1)*DELTAH - 
A* *(-1 )*(((GAMMAH-1 )/GAMMAH) + LOG(GAMMAH))*
(GAMMAH-1)) - (2*SQRT(GAMMAH)*DELTAH - 2 * A))/(2*(GAMMAH -1)**2),

DZ21G = ((-2*SQRT(GAMMAH)*A - 2*DELTAH) +
(GAMMAH* *(-1/2)* A*(GAMMAH-1)+ SQRT(GAMMAH)* A* *(-1 )*
(((GAMMAH-1)/GAMMAH) + LOG(GAMMAH))*(GAMMAH-l)))/(2*(GAMMAH 
-1)**2);

VARG = (2*Nl**2*(N2-l)*(Nl+N2-4))/(N2**2*(Nl-3)**2*(Nl-5))*GAMMAH**2,

Zl=(Nl-2)/2;
Z2=(Nl-l)/2;

GAMZ11 = EXP(-Z 1 /3) *EXP(-Z 1 /3) *EXP(-Z 1/3);
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GAMZ2A = Zl**((Zl-(l/2))/3);

GAMZ2B = Zl**((Zl-(l/2))/3);

GAMZ2C = Zl**((Zl-(l/2))/3);

GAMZ3 = (2*3.141592654)**(l/2);

GAMZ4 = (1 + 1/(12*Z1) + 1/(288*Z1**2)- 139/(51840*Z1**3)- 
571/(2488320*Z1**4));

GAMZ12 = EXP(-Z2/3)*EXP(-Z2/3)*EXP(-Z2/3),

GAMZ22A= Z2**((Z2-(l/2))/3);

GAMZ22B= Z2**((Z2-(l/2))/3);

GAMZ22C= Z2**((Z2-(l/2))/3);

GAMZ32 = (2*3.141592654)**(l/2);

GAMZ42 = (1 + 1/(12*Z2) + 1/(288*Z2**2) - 139/(51840*Z2**3) - 
571/(2488320*Z2**4));

GAM1=GAMZ11/GAMZ12;

GAM2A = GAMZ2A/GAMZ22A;

GAM2B = GAMZ2B/GAMZ22B;

GAM2C = GAMZ2C/GAMZ22C;

GAM3 = GAMZ3/GAMZ32;

GAM4 = GAMZ4/GAMZ42;

GAM = GAM1 *GAM2A*GAM2B*GAM2C*GAM3*GAM4;

VARD = (1 + GAMMAH*(N1/N2))/(N 1-3) + DELTAH**2 *(Nl/(Nl-3) - 
((SQRT(N1/2)*(GAM))**2));

Zl=(Nl-4)/2;
Z2=(Nl-l)/2,

GAMZ11 = EXP(-Z 1 /3) *EXP(-Z 1 /3 )*EXP(-Z 1/3);
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GAMZ2A = Z1 **((Zl-(l/2))/3);

GAMZ2B = Z 1 * *((Z 1 -(1 /2))/3);

GAMZ2C = Zl**((Zl-(l/2))/3);

GAMZ3 = (2*3.141592654)**(l/2);

GAMZ4 = (1 + 1/(12*Z1) + 1/(288*Z1**2)- 139/(51840*Z1**3)- 
571/(2488320*Z1**4));

GAMZ12 = EXP(-Z2/3) *EXP(-Z2/3 )*EXP(-Z2/3);

GAMZ22A= Z2**((Z2-(l/2))/3);

GAMZ22B= Z2**((Z2-(l/2))/3);

GAMZ22C= Z2**((Z2-(l/2))/3);

GAMZ32 = (2*3.141592654)**(l/2);

GAMZ42 = (1 + 1/(12*Z2) + 1/(288*Z2**2) - 139/(51840*Z2**3) - 
571/(2488320*Z2**4));

GAM 1 =GAMZ 11/GAMZ12;

GAM2A = GAMZ2A/GAMZ22A,

GAM2B = GAMZ2B/GAMZ22B;

GAM2C = GAMZ2C/GAMZ22C;

GAM3 = GAMZ3/GAMZ32;

GAM4 = GAMZ4/GAMZ42;

GAM2 = GAM1 *GAM2A*GAM2B*GAM2C*GAM3 *GAM4;

COVDG = DELTAH*GAMMAH*(N2-l)/N2*((Nl/2)**(3/2)*(GAM2))*(l/(Nl-3)), 
PHZ11=(EXP(-Z1 l**2/2))/SQRT(2*PI);
PHZ12=(EXP(-Z 12**2/2))/SQRT(2*PI);
PHZ2 l=(EXP(-Z21**2/2))/SQRT(2*PI);
PHZ22=(EXP(-Z22**2/2))/SQRT(2*PI);

VAROVLA = (PHZ11*DZ1 ID + PHZ22*DZ22D - PHZ12*DZ12D - PHZ21*DZ21D);
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VAROVLB = (PHZ 11*DZ11G + PHZ22*DZ22G - PHZ12*DZ 12G - PHZ21 *DZ21G); 
VAROVLC = VAROVLA* VAROVLB;

VAROVL = VAROVLA**2*VARD + VAROVLB**2*VARG + 
2*VAROVLC*COVDG;

KEEP J GAMMAH DELTAH OVL VAROVL;
OUTPUT, END,
PROC MEANS NOPRINT MEAN VAR; VAR OVL VAROVL; OUTPUT 
OUT=STAT2 MEAN=MCOVL PREDVAR VAR=MCOVLVAR VARVAR,

DATA STAT1;

DELTAH = 0;
GAMMAH=1;
Nl=500;
N2=500,

A = SQRT(DELTAH* *2 + (GAMMAH-l)*LOG(GAMMAH));

Z11 = (DELTAH - SQRT(GAMMAH)*A)/(GAMMAH-1);
Z22 = (SQRT(GAMMAH)*DELTAH + A)/(GAMMAH-1);
Z12 = (SQRT(GAMMAH)*DELTAH - A)/(GAMMAH-1);
Z21 = (DELTAH + SQRT(GAMMAH)* A)/(GAMMAH-1);

PHIZ 11 = PROBNORM(Z 11);
PHIZ22 = PROBNORM(Z22);
PHIZ12 = PROBNORM(Z 12);
PHIZ21 = PROBNORM(Z21);

TOVL = PHIZ11 + PHIZ22 - PHIZ 12 - PHIZ21 +1;

KEEP TOVL N1 DELTAH GAMMAH;

DATA A;
MERGE ST ATI STAT2;

KEEP MCOVL MC OVL VAR TOVL PREDVAR N1 DELTAH GAMMAH;

DATA STAT3; 
SETA;
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STDBS = (MCOVL - TOVL)/(SQRT(MCOVLVAR)); 
VARATIO = (PREDVAR/MCOVLVAR);

STDBSV= 1 -VARATIO;

RLBIASOL = (MCOVL-TOVL)/TOVL;
RLBIASV = (PRED VAR-MCO VL V AR)/MCO VL V AR;

DATA OUTPUT; SET OUTPUT STAT3; RUN;

DATA OUTPUT, SET OUTPUT; IF Nl=. THEN DELETE; RUN, 
PROC APPEND BASE=SIM. OUTPUT DATA=OUTPUT;
RUN;
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APPENDIX E

RESULTS OF THE MONTE CARLO SIMULATION STUDY: MAXIMUM 
LIKELIHOOD ESTIMATOR OF OVL
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Table El

Results oFthe Monte Carlo Simulation Study; Maximum-Likelihood Estimator of OVL Rased on Independent Samples From Two 
Normal Distributions

Predicted Monte Carlo Standard Variance
Relative

Bias
Relative

Bias

H, = 2, a2, = 4, p2 = 3 and o22 =
1V.UUU

5, OVL = 0.808473
u v u / o / vtiritiiicc i /oi

100 0.00300140 0.805266 0.00282875 -0.06031 1.0610348 - 0.39670 6.10348

500 0.00060004 0.807427 0.00062293 -0.04192 0.9632467 -0.12941 - 3.67534

p, = 0, o2, = 1, |t2 = 0 and o22 = 3, OVL = 0.740641

100 0.00217388 0.737767 0.00193680 -0.06532 1.1224109 -0.38813 12.24110

500 0.00040968 0.739943 0.00039606 -0.03510 1.0343996 -0.09431 3.43996

= 5, a2, = 10, \i2 = 3 and o \  == 5, OVL = 0.683020

100 0.00258851 0.674511 0.00261027 -0.16654 0.9916621 - 1.24575 - 0.83379

500 0.00050871 0.681301 0.00050871 -0.07541 0.9790895 -0.25165 - 2.09105

H, = 1, o2, = I, jr2 = 0 and o22 = 3, OVL = 0.639430

100 0.00215594 0.631886 0.00195512 -0.17061 1.1027150 - 1.17980 10.27150

500 0.00041049 0.637845 0.00043590 -0.07591 0.9417093 - 0.24786 - 5.82908

(table continues')
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Relative Relative

Predicted Monte Carlo Standard Variance Bias Bias

N Variance Mean Variance Bias Ratio OVL (%) Variance (%)

H, = 1, o \  = 1, n2 = 2 and a \  = 4, OVL = 0.609934

100 0.00189284 0.607985 0.00179963 -0.04594 1.0517945 -0.31955 5.17945

500 0.00035856 0.609155 0.00033517 -0.04259 1.0697860 -0.12784 6.97861

M, = 0, o2, = 3, n2 = 2 and a \  = 4, OVL = 0.588750

100 0.00275533 0.587354 0.00262018 - 0.02721 1.0515834 -0.23710 5.15834

500 0.00054066 0.587747 0.00056857 - 0.04206 0.9509089 -0.17035 -4.90911

H, = 1, a 1, = 1, ft2 = 3 and a \  = 5, OVL = 0.457402

100 0.00169228 0.455049 0.00162205 -0.05843 1.0432971 -0.51445 4.32971

500 0.00032703 0.456442 0.00032307 -0.20982 1.0122758 - 0.20982 1.22759

H, = 0, a 2, = 1, = 2 and o22 = 4, OVL = 0.453388

100 0.00189513 0.450932 0.00181286 -0.05768 1.0453843 -0.54170 4.53843

500 0.00037053 0.452333 0.00037433 - 0.05452 0.9898433 - 0.23266 - 1.01567

(table continues')
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APPENDIX F

STANDARD BIAS AND RELATIVE INEFFICIENCY OF THE KERNEL
ESTIMATOR OF OVL
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Table FI

Standard Bias and Relative Inefficiency of the Kernel Estimator o f the OVL 
fpL Comparison to.the Nfoqmum-Likelihppd Estimator o f thg.QYL

Standard Relative

N Bias Inefficiency

________ H, = 2, a \  = 4, n2 = 3 and a \  = 5, OVL = 0.808473________

100 0.2018649 1.0171030

500 0.1202793 1.0819996

 = 0, a2, = 1, n2 = 0 and a \  = 3, OVL = 0.740641________

100 -0.3670605 1.3152623

500 -0.2169712 1.4490980

H, = 5, a2! = 10, n, = 3 and a 2, = 5, OVL = 0.683020 

100 -0 1678776 1.1074716

500 0.2567309 1.1343393

H, = 1, <j2j = 1, n2 = 0 and a \  ~  3, OVL = 0.639430 

100 -0.1710212 1.2956545

500 0.2216664 1.2207387

Mi = 1, a2! = 1, m2 = 2 and a22 = 4, OVL = 0.609934 

100 -0.1648907 1.3246945

500 0.1958744 1.6166125

Mi = 1, a 2, = 1, m2 = 3 and a 22 = 5, OVL = 0.457402 

100 0.2018649 1.1293575

500 0.5983299 1.0046608

Mt = 1, a 2, = 1, m2 = 3 and a \  = 5, OVL = 0.457402 

100 0.0704164 1.3953577

500 0.6022539________________ 1.3439440_________________

(table continues)
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Standard Relative

N Bias Inefficiency

Mi = 0. ° 2i = 1, H2 = 2 and o \  = 4, OVL = 0.453388

100 0.1425629 1.1835608

500 0.6994146 1.1914087

Mi = 1, ° 2i = 1, n2 = 3 and az2 = 5, OVL = 0.457402

100 0.2689872 1.2247620

50 0.9796321 1.2074191
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MODELING OF THE BIAS OF THE KERNEL ESTIMATOR OF THE OVL
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Table G1

Model: Two Normal Distributions

Source df SS MS F-Value
N 1 0.00279811 0.00279811 7.89*
MCOVL2 1 0.04213873 0.04213873 120.14**
MCOVL3 1 0.00652833 0.00652833 18.61**
Error 20 0.00701516 0.00035076
Total 23 0.94532505
* p < 0.05 **p<0.01

Rsquare= 0.992579 

Parameter Estimates

Variable
Parameter
Estimate Standard Error

T for HO: 
Parameter = 0

Intercept 0.208030872 0.02053459 10.13**
N(SampIe Size) - 0.000054292 0.00001922 - 2.82*
MCOVL2 1.426573818 0.13015396 10.96**
MCOVL3 -0.530712853 0.12301619 - 4.31**
* p < 0.05 **p<0.01
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Table G2

Predicted Values of the OVL for the Model for reducingJhe Bias of the Kernel Estimator
of the JP.VL faUwp Normal Distributions

N QYL MCQ-VL YHAT
MODEL
RELATIVE

OLD
RELATIVE PERCENT

100 0.31532 0.32557 0.33550

BIAS %

6.401

BIAS %

3.253

CHANGE 

- 3.148
500 0.31532 0.33259 0.31916 1.219 5.477 4.259
100 0.45339 0.45946 0.45228 - 0.245 1.339 1.094
500 0.45339 0.46692 0.43787 -3.422 2.985 - 0.437
100 0.45740 0.46024 0.45304 - 0.954 0.620 - 0.334
500 0.45740 0.46823 0.43916 - 3 .990 2.367 - 1.621
100 0.58875 0.59908 0.60049 1.994 1.755 - 0.239
500 0.58875 0.60302 0.58326 -0.933 2.423 1.490
100 0.60993 0.60294 0.60488 - 0.828 - 1.147 0.319
500 0.60993 0.61352 0.59530 - 2.400 0.588 - 1.812
100 0.61708 0.62458 0.62980 2.062 1.216 - 0.846
500 0.61708 0.63083 0.61535 - 0.279 2.229 1.950
100 0.63943 0.63187 0.63828 -0.179 - 1.183 1.004
500 0.63943 0.64406 0.63086 - 1.341 0.072 - 0.617
100 0.68302 0.67444 0.68870 0.831 - 1.256 0.425
500 0.68302 0.68887 0.68437 0.197 0.857 0.660
100 0.74064 0.72449 0.74957 1.206 -2.181 0.976
500 0.74064 0.73632 0.74246 0.246 -0.583 0.337
100 0.80847 0.79634 0.83927 3.809 - 1.500 - 2.308
500 0.80847 0.81148 0.83669 3.490 0.300 - 3.118
100 1.00000 0.89157 0.96046 -3.954 -10.843 6.889
100 1.00000 0.89212 0.96116 -3.884 -10.788 6.904
500 1.00000 0.95105 1.01469 1.469 - 4.895 3.426
500 1.00000 0.95072 1.01426 1.426 - 4.928 3.884
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Model -Two Wsibull Distributions
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Source df SS MS F Value
N 1 0.00483966 0.00483966 7.45*
MCOVL2 1 0.60604026 0.60604026 932.78**
Error 21 0.01364394 0.00064971
Total 23 0.61968420
* p < 0.05 **p<0.01

Rsquare = 0.977982

Parameter Estimates
Parameter 

Variable Estimate Standard Error
T for HO: 
Parameter = 0

Intercept 0.3310906562 0.01696710 19.51**
N(Sample Size) - 0.0000712874 0.00002612 - 2.73*
MCOVL2 0.7794010304 0.02551940 30.54**
* p < 0.05 **p<0.01
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Table G4

Predicted Values of the OVL for the Model for reducing the Bias o f the Kernel Estimator
of the O VL for Two Weibull Distributions

MODEL OLD
N OVL MCOVL YHAT RELATIVE. RELATIVE PERCENT

BIAS.% BIAS % CHANGE

100 0.42141 0.39940 0.44829 6.378 - 5.223 - 1.155
500 0.42141 0.40422 0.42280 0.328 - 4.080 3.751
100 0.57323 0.58125 0.58728 2.451 1.399 - 1.053
500 0.57323 0.58713 0.56412 - 1.590 2.424 0.835
100 0.64210 0.62490 0.62832 - 2.146 - 2.678 0.532
500 0.64210 0.63330 0.60804 - 5.304 - 1.370 - 3.934
100 0.69098 0.69229 0.69750 0.944 0.190 - 0.754
500 0.69098 0.69970 0.67702 - 2.020 1.262 - 0.758
100 0.73725 0.72512 0.73377 - 0.472 - 1.646 1.173
500 0.73725 0.73591 0.71754 - 2.673 - 0.182 - 2.491
100 0.74739 0.73890 0.74949 0.281 - 1.136 0.855
500 0.74739 0.75122 0.73529 - 1.619 0.513 - 1.106
100 0.80280 0.79746 0.81961 2.094 0.665 - 1.429
500 0.80280 0.81577 0.81413 1.411 1.616 0.205
100 0.81490 0.79696 0.81899 0.502 - 2.202 1.699
500 0.81490 0.81713 0.81585 0.117 0.273 0.157
100 0.85697 0.85624 0.89538 4.482 - 0.085 - 4.398
500 0.85697 0.88831 0.91047 6.243 3.657 - 2.586
100 0.86784 0.84429 0.87954 1.348 - 2.714 1.366
500 0.86784 0.86847 0.88330 1.781 0.072 - 1.709
100 1.00000 0.89558 0.94909 - 5.091 -10.442 5.351
100 1.00000 0.89451 0.94760 - 5.240 -10.549 5.309
500 1.00000 0.95331 1.00377 0.377 - 4.669 4.292
500 1.00000 0.95248 1.00254 0.254 - 4.752 4.498
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Table G5

Model; Two Gamma Distributions

Source df SS MS F-Value
N 1 0.00463796 0.00463796 9.94**
MCOVL2 1 0.84338585 0.84338585 1806.76**
Error 21 0.00980266 0.00046679
Total 23 0 85318851
* p < 0.05 **p<0.01

Rsquare = 0.988511

Parameter Estimates

Variable
Parameter
Estimate Standard Error

T for HO; 
Parameter = 0

Intercept 0.2963542028 0.01286178 23.04**
N(Sample Size) - 0.0000696988 0.00002211 - 3.15**
MCOVL2 0.8321760157 0.01957782 42.51**
* p < 0.05 **p<0.01
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Table G6

Predicted Values of_the OVL for the Model for Reducing the Bias of the. Kernel Estimator
pflhs OVL for .Tw.fi .Gamma Distributions

MODEL OLD.
RELATIVE RELATIVE PERCENT

N QYL MCQVL YHAT EIAS.% E IA S^ CHANGE

100 0.40175 0.41952 0.43584 8.488 4.424 - 4.064
500 0.40175 0.42328 0.41060 2.205 5.361 3.156
100 0.48123 0.49507 0.49335 2.519 2.877 0.358
500 0.48123 0.50205 0.47126 - 2.070 4.328 2.258
100 0.52950 0.54281 0.53458 0.959 2.513 1.555
500 0.52950 0.54665 0.51018 - 3.650 3.238 - 0.412
100 0.62179 0.63195 0.62172 - 0.011 1.634 1.624
500 0.62179 0.63688 0.59905 - 3.657 2.427 - 1.230
100 0.65489 0.66103 0.65301 - 0.287 0.938 0.651
500 0.65489 0.66811 0.63297 - 3.347 2.020 - 1.327
100 0.69164 0.69392 0.69009 - 0.224 0.329 0.106
500 0.69164 0.70353 0.67339 - 2.638 1.719 - 0.919
100 0.75592 0.75419 0.76273 0.904 - 0.228 - 0.673
500 0.75592 0.76356 0.74668 - 1.222 1.011 - 0.211
100 0.83062 0.81546 0.84276 1.462 - 1.825 0.363
500 0.83062 0.83544 0.84232 1.409 0.580 - 0.829
100 0.85448 0.83381 0.86794 1.576 - 2.419 0.844
500 0.85448 0.85815 0.87434 2.324 0.430 - 1.894
100 0.89132 0.85786 0.90180 1.176 - 3.754 2.578
500 0.89132 0.89002 0.92071 3.297 - 0.146 - 3.151
100 1.00000 0.89409 0.95462 - 4.534 -10.591 6.053
100 1.00000 0.89412 0.95467 - 4.533 -10.588 6.055
500 1.00000 0.95250 1.01651 1.651 - 4.750 3.099
500 1.00000 0.95163 1.01512 1.512 - 4.837 3.326
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RESULTS OF THE MONTE CARLO SIMULATION STUDY: KERNEL 
ESTIMATOR OF THE OVL USING THE ALTERNATIVE REFERENCE RULE
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Table HI

Results of the Monte Carlo Simulation Studv: The Kernel Estimator .of the OVL Using 
The Alternative Normal Reference Rule

N

Monte Carlo 

Mean Variance

Standard

Bias

Relative 

Bias 

OVL (%)

Hi = 0, a \ = 1, p2 = 0 and o22= 1, OVL = 1.000000

100 0.936678 0.00071107 - 2.37458 - 6.33202

500 0.971878 0.00012386 - 2.52692 - 2.81223

Hi = 2, a \ = 4, p2 = 2 and a2 2 = 4, OVL = 1.000000

100 0.935638 0.00069486 -2.44163 - 6.43620

500 0.971051 0.00015674 -2.31229 - 2.89488

Hi = 2, o \ = 4, (x2 = 3 and o22 = 5, OVL = 0.808473

100 0.851653 0.00142078 1.14557 5.34096

500 0.862247 0.00030772 3.08129 6.68568

Hi=0, o2, = 1, |i2 = 0 and a12 = 3, OVL = 0.740641

100 0.725801 0.00225026 -0.31284 - 2.00371

500 0.728332 0.00044842 -0.58129 - 1.66198

Hi = 5, a \  ■■= 10, p2 = 3 and ct22 = 5, OVL =’ 0.683020

100 0.742837 0.00165764 1.46920 8.75774

500 0.751072 0.00033362 3.72580 9.96348

Hi = 1, = 1, p2 = 0 and a \  = 3, OVL = 0.639430

100 0.677575 0.00166378 0.93518 5.96553

500 0681896 0.00034403 2.28953 6.64133

(table continues)
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Relative

Monte Carlo Standard Bias

N Mean Variance Bias OVL (%)

Hi = 0, a 2, = 1, p2= 1 and o 22 = 1, OVL = 0.617075

100 0.730267 0.00158729 2.84110 18.34330

500 0.732179 0.00026977 8.86412 18.65320

Hi = U = 1, H2 = 2 and o 22 = 4, OVL = 0.609934

100 0.632031 0.00165720 0.54280 3.62276

500 0.632441 0.00031625 1.26562 3.69006

Hi = 0, a 2, = 3, n2 = 2 and a 22 = 4, OVL = 0.588750

100 0.703841 0.00149100 2.98060 19.54842

500 0.708157 0.00030745 6.59874 20.281578

Hi = U o21= 1, n2 = 3 and a \  = 5, OVL = 0.457402

100 0.528375 0.00118608 2.06081 15.51662

500 0.533580 0.00024381 4.87868 16.65445

Hi = 0, a 2, = 1, p2 = 2 and a \  = 4, OVL = 0.453388

100 0.547419 0.00119628 2.71865 20.73957

500 0.551347 0.00024535 6.25392 21.60599

Hi = 0, a 2, = 1, n2 = 3 and o \  = 5, OVL = 0.315318

100 0.440854 0.00101119 3.94792 39.81402

500 0.442932 0.00020726 8.86412 40.47132
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Table 1

Natural Logarithm of Estimated Wealth ($) of Alabama Farm Operators in 1850

Farmers Who Persisted to 1860 (N = 317)

4.21416 4.21416 4.25323 4.56381 4.64991 4.73280 4.90533 5.07689 5.11912 5.20518

5.40509 5.40509 5.42741 5.44254 5.44473 5.45063 5.49191 5.53405 5.53529 5.53899

5.60263 5.60263 5.60400 5.64703 5.69217 5.73735 5.74271 5,77358 5.77829 5.80419

5.82005 5.82005 5.82648 5.83656 5.84276 5.84852 5.88618 5.89659 5.90832 5.90980

5.94187 5.94187 5.97209 5.97529 5.98740 6.00174 6.01016 6.02725 6.03722 6.04100

6.05349 6.05349 6.06085 6.08041 6.10489 6.11453 6.17563 6.18173 6.18475 6.19665

6.20839 6.20839 6.22106 6.22539 6.22588 6.23464 6.25085 6.25871 6.25941 6.26258

6.29788 6.29788 6.30155 6.30818 6.32650 6.33811 6.34261 6.34819 6.35085 6.35309

6.36389 6.36389 6.38295 6.39990 6.40032 6.40186 6.41668 6.42937 6.44204 6.45252

6.46440 6.46440 6.46913 6.48949 6.49052 6.49404 6.52893 6.56313 6.56939 6.58554

6.62493 6.62493 6.63224 6.63248 6.64069 6.65178 .68081 6.68311 6.68788 6.69689

6.70338 6.70338 6.72479 6.74065 6.74329 6.75940 6.76556 6.79926 6.80825 6.81386

6.84763 6.84763 6.86236 6.89961 6.91177 6.92975 6.93548 6.93619 6.93809 6.94488

(table continues! ©
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Fanners Who Persisted to 1860 (N = 317)

9.38209 9.38209 9.39970 9.40017 9.44978 9.47143 9.47947 9.48789 9.61620 9.63652

9.69919 9.69919 9.72719 9.73754 9.74478 9.74801 9.75506 9.77395 9.79344 9.83127

9.84009 9.84009 9.85847 9.87027 9.94377 9.95733 9.99520 10.01175 10.04653 10.06632

10.11141 10.11141 10.12518 10.16019 10.17805 10.22034 10.26689 10.29022 10.45151 10.55801

10.68460 10.68460 10.78461 10.84595 10.85365 10.92429 11.09359

Farmers Who Dill Not Persist to 1869 (N=284)

3.22865 3.22865 3.34510 3.47189 3.81473 3.93256 4.21257 4.24103 4.26971 4.40593

4.48537 4.48537 4.53567 4.62215 4.92249 5.01930 5.08780 5.17036 5.17768 5.18133

5.22241 5.22241 5.22378 5.22744 5.22862 5.26090 5.26587 5.27674 5.28179 5.30354

5.35598 5.35598 5.38269 5.42761 5.46931 5.47113 5.49400 5.50709 5.52812 5.53407

5.55836 5.55836 5,56169 5.59500 5.60516 5.65823 5.67502 5.69517 5.69685 5.70189

5.70704 5.70704 5.71368 5.71909 5.77522 5.78250 5.78418 5.80651 5.81317 5.84040

5.87017 5.87017 5.93218 5.93701 5.95070 5.95475 5.95720 5.96532 5.98925 5.99823

(table continues)
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Table 2

Irish Educational Transition Data^ Dmmcondra Verbal Reasonny Test Score

155

Male students' Drumcondra Verbal Reasoning Test scores (N = 231)

71 72 72 73 74 76 78 78 79 79

80 80 81 81 81 82 82 83 83 84

84 84 84 84 84 85 85 85 86 86

86 86 86 87 87 87 88 88 88 88

88 89 89 90 90 90 90 90 90 90

90 90 91 91 91 91 92 92 92 92

93 93 93 93 94 94 94 95 95 95

95 95 96 96 96 96 97 97 97 98

98 98 98 99 99 99 99 99 99 99

99 100 100 100 100 101 101 101 101 101

101 101 102 102 102 102 103 103 103 103

103 103 103 103 103 104 104 104 104 104

104 104 105 105 106 106 106 106 106 107

107 107 107 107 107 107 108 108 108 108

108 108 108 109 109 109 109 109 109 109

110 110 110 110 110 111 112 112 112 112

113 113 113 113 113 113 113 114 114 114

114 114 114 114 114 115 115 115 116 116

116 117 117 117 117 118 118 118 119 119

120 120 121 121 121 121 122 122 122 123

123 123 123 123 124 124 124 125 125 125

125 125 126 126 126 127 127 127 127 129

129

140

129 130 131 132 134 135 136 136 137

(table continues)
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Female students' Drumcondra Verbal Reasoning Test scores (N = 238)

72 72 73 73 75 75 77 78 78 81

81 81 81 82 82 83 83 84 84 84

84 85 85 85 85 85 85 85 86 86

86 86 86 86 87 87 88 88 88 89

89 89 89 90 90 90 90 90 90 90

90 90 91 91 91 91 91 91 91 91

91 92 92 92 92 92 93 93 93 93

93 93 93 93 93 94 94 94 94 94

94 94 94 94 94 95 96 96 96 97

97 97 97 97 97 97 98 98 98 99

99 99 99 99 99 99 100 100 100 100

100 100 100 100 100 100 100 100 100 101

101 101 101 101 102 102 102 102 102 102

102 102 102 103 103 103 103 103 103 103

103 104 104 104 104 104 104 104 104 104

104 104 104 105 105 105 105 105 105 106

106 106 106 106 106 107 107 107 107 107

108 108 108 108 109 109 109 109 109 109

109 109 109 109 110 110 110 110 111 111

111 111 111 111 111 111 112 112 112 113

113 114 114 114 114 114 114 114 114 115

115 115 115 116 116 116 117 117 117 117

118 118 119 119 120 120 120 122 122 123

123 123 123 127 127 127 134 135
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Table 3

Acute Myocardial Infarction Registry: Minutes from onset of ischemic chest oaiato ECG

Male Patients who experienced chest pain for more than 
6 hours before treatment (N = 131)

17 17 51 58 71 78 88 100 117 180

205 251 253 297 316 321 325 333 333 343

350 355 375 387 389 394 394 395 397 403

407 416 416 423 425 425 431 432 443 444

446 450 450 453 455 459 461 465 470 471

471 474 474 478 478 480 480 485 490 492

493 497 499 500 503 508 512 513 517 520

521 525 531 538 540 549 550 559 562 564

568 569 570 576 576 577 577 577 582 597

599 603 616 617 624 624 626 630 634 636

637 641 648 649 655 659 667 670 674 675

676 692 696 700 702 712 720 720 725 728

733 751 762 772 800 808 840 900 1305 1377

1435

Female Patients who experienced chest pain for more than 6 hours before treatment
(N = 69)

115 213 258 303 370 380 386 401 408 414

434 435 443 446 450 472 473 475 476 491

495 501 505 505 514 516 522 530 530 531

535 544 549 556 565 566 570 570 570 571

572 577 583 587 590 595 604 617 633 635

635 661 664 684 689 692 693 696 697 700

711 716 717 720 729 745 750 769 870
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APPENDIX J

RESULTS OF THE EXAMPLES OF THE KERNEL ESTIMATOR OF THE OVL
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Example 1 Example 2 Example 3

317 231 131

«2 284 238 69

median, 7.34225 104 508

median2 6.80445 100.5 565

OVL 0.87714 0.85528 0.79234

Var(0 VL) B=100 0.000919 0.000874 0.0018893

Var(OVL) B=200 0.000878 0.000929 0.0015787

Var(OVL) B=500 0.000823 0.000823 0.0016212

Lower 95% CL 0.816950 0.788187 0.704385

Upper 95% CL 0.901633 0.891234 0.846907
Nats;
Example 1: Comparison of the median wealth for persistent and non-persistent Alabama 
farmers between 1850 and 1860.
Example 2: Comparison of the median Drumcondra Verbal Reasoning Test Score for Irish 
School children by gender in 1976.
Example 3: Comparison of the median minutes from onset o f ischemic chest pain to ECG 
by gender for patients who experienced chest pain for more than six hours.
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