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Title i T t, jmati v i ient Using the

Kenel Estimation Technique
This study examines the sampling behavior of the overlapping coefficient, OVL. The

OVL is a proposed measure of the agreement between two probability distributions. The

OVL is defined for the continuous case as

ovL = [ min[f,). )] dx ;

where f,(x) and f,(x) are the probability density functions for two distributions of interest.
In addition, OVL =1 - D, where D is the usual index of dissimilarity, but defined for
continuous as well as discrete distributions.

Here the properties and sampling behavior of a nonparametric estimator of the OVL
are investigated. The nonparame&ic density estimator chosen to explore the behavior of the
OVL is the naive (Rosenblatt) kernel density estimator.

Using Monte Carlo techniques, it is discovered that the sampling estimator of the
OVL using the kernel density estimator is biased. The bias of the kernel estimator is a
function of the value of the overlap. Also, the bias increases as the similarity of the
distributions from which the samples are obtained increases. A bootstrap estimator of the

sampling variance of the estimator of the OVL is shown to perform well. The behavior of

il
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the sampling estimator of the OVL suggests that the OVL can best serve as a valuable check
in investigating the meaningfulness of differences detected between two distributions by

other statistical techniques.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

It has been a great pleasure working with Dr. Edwin Bradley, my advisor. I am
grateful to the members of my committee, Drs. Charles Katholi, Tonya Smoot, Mary
Hovinga, and Pauline Jolly. I am particular indebted to Dr. Charles Katholi for his help in
developing the fortran programs used for this study. I wish to express my sincere
appreciation to the entire Biostatistics department.

Finally, I acknowledge, with thanks, my indebtedness to my family for their patience
and support throughout the time this project was in progress and all through my academic

endeavors.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT .
ACKNOWLEDGMENTS
LIST OF FIGURES

I. INTRODUCTION

The Overlapping Coefficient .

Invariance Property of the OVL . .

The Relationship to the Index of DlSSlImlarlty .
Calculation of the OVL Between Known Distributions .
Newton-Raphson Method .

OVL Between Two Gamma Dlstnbunons

OVL Between Two Weibull Distributions

OVL Between Two Beta Distributions

Previous Work Related to the OVL

[I. NONPARAMETRIC ESTIMATION OF THE OVL

Kernel Density Estimation

Bias and Variance of the Kernel Esnmator .o
Choice of the Bandwidth of the Kernel Estimator
Estimation of the OVL with Kernel Estimates
Nonparametric Estimator of Variance

Monte Carlo Investigation .

Comparison of the Kernel Estimator of the OVL to the Mammum

Likelihood Estimator of the OVL
Modeling of the Bias .

[I. ALTERNATIVE NORMAL REFERENCE RULE FOR THE
BANDWIDTH OF THE NAIVE KERNEL ESTIMATOR .

Monte Carlo Investigation
Discussion

ii

v

vii

L elRYe RN~ - IR Be RV, BRV. I S}

p—
—

17
19
21
22
25
28

46

47

50

53
53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS (Continued)

Page
IV. EXAMPLES OF THEUSESOF THEOVL . . . . . . 58
Selectivity of the Migration of Farmers Between 1850 and 1860 . 58
Irish Education TransitionData . . . . . . . . . . 66
Acute Myocardial Infarction Registry . . . . . . . . 71
V. CONCLUSION . . . . . . . . . . . . . . 80
REFERENCES . . . . . . . . . . . . . . . 84
APPENDICES
A. FORTRAN SUBROUTINES USED IN THE MONTE CARLO
SIMULATION STUDIESOF THEOVL .. . . . . . . 88
B. DESIGNPOINTS . . . . . . . . . . . . . 107

C. RESULTS OF THE MONTE CARLO SIMULATION STUDY:
THE KERNEL ESTIMATOR OF THE OVL USING THE NORMAL
REFERENCE RULE B O 2

D. MONTE CARLO PROGRAM FOR THE MAXIMUM LIKELIHOOD
ESTIMATOROFTHEOVL. .. . . . . . . . . . 125

E. RESULTS OF THE MONTE CARLO SIMULATION STUDY:
MAXIMUM LIKELIHOOD ESTIMATOROF THEOVL . . . 132

F. STANDARD BIAS AND RELATIVE INEFFICIENCY OF THE
KERNEL ESTIMATOROFTHEOVL . . . . . . . . 137

G. MODELING OF THE BIAS OF THE KERNEL ESTIMATOR
OFTHEOVL . . . . . . . . . . . . . . 139

H. RESULTS OF THE MONTE CARLO SIMULATION STUDY:
KERNEL ESTIMATOR OF THE OVL USING THE
ALTERNATIVE REFERENCE RULE e O 1S

I. DATA USED FOR EXAMPLES OF THE KERNEL ESTIMATOR
OFTHEOVL . . . . . . . . . . . . . . 149

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS (Continued)

Page

J. RESULTS OF THE EXAMPLES OF THE KERNEL ESTIMATOR
OFTHEOVL . . . . . . . . . . . . . . 158

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure Page
1. The overlap between two normal distributions . . . . . . 3
2. The overlap between two gamma distributions . . . . . . 4
3. The overlap between two Weibull distributions . . . . . . 10
4. The overlap between two beta distributions . . . . . . . 12
5. The kernel density estimator for a standard normal distribution . . 23
6. The kernel density estimator for a normal distribution. . . . . 24

7. The overlap using the kernel densities for two normal

distributions . . . . . . . . . . . . . . . 26
8. The "true" overlap for two normal distributions . . . . . . 27
9. The kemel density estimator for a gamma distribution. . . . . 30
10. The kernel density estimator for a gamma distribution . . . . 31

11. The overlap using the kernel densities for two gamma

distributions . . . . . . . . . . . . . . . 32
12. The kernel density estimator for a Weibull distribution . . . . 33
13. The kernel density estimator for a Weibull distribution. . . . 34

14. The overlap using the kernel densities for two Weibull
distributions . . . . . . . . . . . . . . . 35

15. The kernel density estimator for a standard Cauchy distribution . 37

16. The overlap using the kernel densities for a standard Cauchy
distribution and a standard normal distribution . . . . . . 38

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES (Continued)

Figure Page
17. The kernel density estimator for a standard normal distribution
using the alternativerule. . . . . . . . . . . . 54

18. The kernel density estimator for a normal distribution using
the alternativerule . . . . . . . . . . . . . 55

19. The overlap using the kernel densities for two normal
distributions using the alternativerule. . . . . . . . . 56

20. The kernel density estimator for the wealth of the farmers who

persistedto1860 . . . . . . . . . . . . . . 60
21. The kernel density estimator for the wealth of farmers who

did not persistto 1860 . . . . . . . . . . . . 6l
22. The kernel estimator of the overlap for the wealthdata . . . . 62
23. Theoverlap forthewealthdata . . . . . . . . . . 63

24. The histogram of the B = 500 bootstrap estimators for the wealth
data . . . . . . . . . . . . . . . . . 65

25. The kernel density estimator for the Drumcondra Verbal
Reasoning Test scores for the malestudents . . . . . . 67

26. The kernel density estimator for the Drumcondra Verbal
Reasoning Test scores for the femalestudents . . . . . . 68

27. The kernel estimator of the overlap for the Irish Education
Transitiondata . . . . . . . . . . . . . . 69

28. The overlap for the Irish Education Transitiondata . . . . . 70

29. The histogram of the B = 500 bootstrap estimators for the Irish
Education Transitiondata . . . . . . . . . . . 72

30. The kernel density estimator for the minutes from onset of
ischemic chest pain to ECG for male patients . . . . . . 74

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES (Continued)

Eigure Page
31. The kernel density estimator for the minutes from onset of

ischemic chest pain to ECG for female patients . . . . . . 75
32. The kemnel estimator of the overlap for the acute myocardial

infarctiondata . . . . . . . . . . . . . . 76
33. The overlap for the acute myocardial infarctiondata. . . . . 77

34. The histogram of the B = 500 bootstrap estimators for the acute
myocardial infarctiondata . . . . . . . . . . . 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I. INTRODUCTION

Consider two probability distributions with densities denoted fi(x,A,) and f,(x,A,)
respectively, where A, and A, are parameters and the distributions are of the same parametric
form. The two distributions may be said to differ if A, # A,. The two parameters may in fact
differ, yet be somewhat similar in magnitude, thus implying that the two probability
distributions may be similar. It may also be the case that we have two distributions of
different parametric form, denoted f(x,A,) and fy(x,£,), which cannot be identical, yet the
parameters A, and &, may be similar.

In more practical cases, we may have two samples from two distributions. Assuming
the forms of the distributions to be f(x,8,) and £f,(x,0,), where 6, * 8,, the two distributions
can be shown to differ using an appropriate statistical test for the equality of the parameters
0, and 6, . Since the power of statistical tests is related to both the magnitude of the
difference of the parameters and the sample size from which the parameters are estimated,
small differences in the parameters can be declared statistically significant while the true
similarity of the two populations of interest goes undetected.

This study explores a measure of agreement between two probability distributions first
proposed by Bradley and Piantadosi (1982). The measurement, the overlapping coefficient,
denoted OVL, estimates the common area below two probability distributions. The two

distributions of interest may be of the same parameter family or from different parametric
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2
families. Figure 1 shows the OVL for two normal distributions, while Figure 2 shows the
OVL for two Gamma distributions. Bradley and Piantadosi derived the OVL for several
cases involving known distributions.

In this work the properties and sampling behavior of such an estimator of OVL is
investigated when sampling from two distributions estimated nonparametrically using the
naive kernel density estimator. Also, the properties of a nonparametric bootstrap variance
estimator of the overlapping coefficient is explored. The remainder of chaper I contains an
historical literature overview as an introduction of the overlapping coefficient. Chapter II
provides the development of the kernel estimator and the bootstrap variance estimator of the
overlapping coefficient. The Monte Carlo simulation study and its results are also
summarized. Chapter III explores an alternative reference rule for the kernel estimator.
Chapter I'V contains application of the nonparametric estimator of the overlapping coefficient
to real sets of data. Lastly, chapter V is a discussion of the research and suggestions for
further research.

The Overlapping Coefficient
If we let f,(x) and f(x) be two continuous probability functions defined on a common

domain of x, the formal definition of the OVL for the continuous case is

ovVL = [ min(f] (x),f,(¥)] dx . (1)
If the two densities of interest are discrete, the definition of the OVL becomes

OVL = Y min[f,(x)f,()] . )
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Figure 1. The overlap between two normal distributions. The solid line denotes a standard
normal distribution. The dotted line denotes a normal distribution with mean = 2 and
variance = 4.
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distribution with @=1.5. The dotted line denotes a gamma distribution with ¢ = 2.0.
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5

Bradley and Piantadosi (1982) showed that the OVL has properties that are desirable
for any measure of association. First, the OVL ranges between zero and unity. Second,
the OVL is unity if and only if the two distributions of interest are identical. Finally, the
OVL is zero if and only if the two distributions of interest are completely distinct.

Invariance Property of the OVL

A useful property of the OVL is the invariance property. If we let g(x) be a
continuous and differential function defined for all x, then the OVL may be written in terms
of this function as follows:

OVL=f
8

o inff,(g(x))/,(g(x)]dx . 3)

The invariance property of the OVL allows for the generalization of estimates of the OVL
under normal theory when using normalizing transformations (Tukey, 1975; Box & Cox,
1964).
The Relationship to the Index of Dissimilarity
The OVL is related to what has been known in the literature as the index of
dissimilarity, denoted D, which has been commonly used in its discrete form in the context
of 2 x C contingency tables. If Qe use the fact that the two probability density functions are

non-negative, the relationship between these two measures can be seen as follows:

min [£,(x) , £,()] = -;-m(x) £, - [1,6) ~ £ - 4)

Replacing this expression into Equations 1 or 2, it can be seen that OVL =1 - D; there D in
the continuous case is defined as

1
D = [ Ih) -] ax (5)
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and in the discrete case as

D= X, lfe - £ . ©)

Thus the index of dissimilarity is defined as the fraction of probability mass under either
distribution not shared with the other. The properties of the OVL apply to D, except that
D is zero when the two distributions of interest are identical and is unity when they are
completely distinct.

The dissimilarity index dates back to work performed by Karl Pearson in the 1890s.
He used a statistic equivalent to 2D as a measure of goodness-of-fit of sample data to some
theoretical distribution (Pearson, 1895). Goodman and Kruskal (1979) used D as a measure
of association in the context of 2 x C cross classification tables. In other literature, D has
been used as an indicator of racial segregation. It was used to compare the relative frequency
distribution of African-American and white residents in subdivisions of geographic units
(Cortese, Falk, & Cohen, 1976; Duncan & Duncan, 1955). Inman and Bradley (1991) re-
examined the behavior of the dissimilarity index under a random allocation model and used
it to compare the levels of racial segregation in Birmingham, Alabama and Richmond,
Virginia in 1970 and 1980, respectively. They also derived simple approximations for both
the mean and variance of D based on a multivariate normal approximation.

Calculation of the OVL Between Known Distributions

Bradley and Piantadosi (1982) present as examples the overlap between two normal

distributions, the overlap between the normal and the logistic distributions, and the overlap

between two two-parameter exponential distributions. In addition, Inman (1984) presented
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7
the overlap between the standard normal and standard Cauchy distributions and two Poisson
distributions. In this research, three additional examples are presented.

To determine the OVL between two distributions, it is necessary to determine the
point(s) of intersection between the two distributions of interest. The point(s) are found by
setting the two distributions equal and solving for the roots of the equation. The resulting
equations are non-linear in form. The approach used to find the roots of the non-linear
equation in this study is based on the Newton Raphson procedure also refered to as Newton’s
Method (Hamming, 1971).

Newton-Raphson Method

The Newton-Raphson Method (Newton's Method) is one of the most powerful
numerical methods for solving a root-finding problem, Hamming, (1971). It is based on a
quadratic Taylor Series expansion. Given a function f(x) which is continuous and twice
differentiable on the interval [a,b], let x, € [a,b] be an approximation to the root of the
equation, p, such that the first derivative of the function at x, differs from zero and |x, - p| is
small. We consider the first degree Taylor polynomial for the function expanded about x,,
such that:

) =)+ =2 + =2 e, ™
where n(x) lies between x and x,. Since f(p) = 0, equation 7 with x = p is as follows:

0 =flx,) +(@-x,)(x,) + -(-’i-;f"—)f ")) . ®)
If we assume that the term containing (p-x,)* is negligible, then solving the above equation

for p we obtain the following:
_fx)

. %)
fli=,)

P=x,
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The Newton's Method involves generating a sequence {p,} defined by:

ﬂp""), nxl. (10)
f®,.)

Pn zpn-l—

This process is an iterative process which is begun by giving an initial approximation, p,,
which is near the root p. This procedure is repeated until the iteration ultimately coverges to
a local, relative maximum, if not to a unique global maximum.

OVL Between Two Gamma Distributions

The density of the Gamma random variable is

f(x)z%% x>0 a,p>0. (11)
*T(a

The two densities will intersect at one or two points depending on the shape and scale
parameters used. These points can be found by setting the two densities equal and using
Newton's method to find the points of intersection. Once the point(s) of intersection are
found, equation 1 can be used to compute the value of the OVL.

For example, if &, = 1.5, B, = 1.0, &, = 2.0 and B, = 1.0, then the OVL can be
computed as follows. As shown previously in Figure 2, the two densities intersect at one
point. This point was found by setting the two densities equal and using Newton's method,
described previously, to determine the point of intersection, x, = 1.274. Next we use

Equation 1 to find the value of the OVL as follows:

1.274 -x, w 05 -x,
x, e x, e
OVL = f 2 + f = 0.363938 + 0.466679 = 0.830617 . (12)
0 e 1.274 P(.5)
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OVL Between Two Weibull Distributions

Suppose we have two Weibull distributions with probability density functions

defined as follows:

fix) = ¢ ﬁjx“’"'e'“"w x>0 a,B,>0. (13)
By equating the two densities, we find either one or two points of intersection depending on
the values of the shape and scale parameters. Again as with the gamma distribution, the
points of intersection can be found by using Newton's method. Once the points are found,
Equation 1 can be used to evaluate the OVL.

For example, if &, = 1.5, B, =4.0, a, = 3.0 and B, = 1.5 (see Figure 3) then the OVL
can be computed as follows, We first equate the two distributions and use Newton's method
to determine the "crossing point" which is x = 0.56771. Next, we use Equation 1 and the
CDF of the Weibull distribution to compute the value of the OVL as follows:

OVL =F,(0.56771) +[1 - F5(0.56771)] = 0.14428 +0.27714 = 0.42142. (14)
OVL Between Two Beta Distributions

Here the OVL between two beta distributions is computed. The density of the beta

random variable is

fix) = -f‘?’%x"’(l-x)"" 0<x<1 p,q>0. (15)
The two densities will intersect at one or two points depending on the shape and scale
parameters used. These points can be found by setting the two densities equal and using
Newton's method. Once the point(s) of intersection are found, Equation 1 can again be used

to compute the value of the OVL.  For example, ifp, =2.0,q,=2.0,p,= 1.0 and q .= 1.0,
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PROBABILITY DENSITY

Figure 3. The overlap between two Weibull distributions. The solid line denotes a weibull
distribution with &= 1.5 and p =4.0. The dotted line denotes a weibull distribution with &

=3.0and p = L.5.
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11
then the OVL can be computed as follows. As shown in Figure 4, the two densities intersect
at two points. These points were found by setting the two densities equal and using Newton's
method to determine the points of intersection, x, = 0.21111 and x, =0.78890. Next we use
Equation 1 to find the value of the OVL as follows:

OVL = F;(0.21111) + [F,(0.21111)-F,(0.78890)]+[1-F,(0.78890)]

=0.11489 + 0.57779 + 0.11487 = 0.80755 (16)
Previous Work Related to the OVL

Weitzman (1970) was one of the first to work with the OVL. His research included
work with the discrete case of the OVL to analyze differences in income distributions of
African-Americans and Whites in the United States. Gastwirth (1975) discussed several
properties of the OVL. He criticized the use of the OVL as a measure of association because
of its inability to detect changes in the location of the common probability mass shared by
the two distributions being compared. Weitzman found the OVL to be inferior to other
measures of association including the Mann-Whitney form of the Wilcoxon test for equality
of population means.

Other investigators have' published material using the concept of the overlap of
distributions in unrelated contexts. Marx (1976) developed the overlapping coefficient as
a measure of association between two normal distributions with equal variance. His
development comes close to the form developed by Bradley and Piantadosi. Marx
mistakenly relies on the relationship of a sample estimator of the overlap between two
identical normal distributions to the central t distribution to produce a table of critical values

for the sample overlapping coefficient.
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He also assumes that because the sample realizations of the OVL must lie between
zero and unity, the sample overlapping coefficient can be treated as the usual sample of a
population proportion. Sneath (1977, 1979) used the concept of the overlap in the context
of cluster analysis. He developed a method for testing the distinctness of two clusters in
Euclidean space.

Bradley and Piantadosi (1982) re-introduced the OVL as a valid measure of
association. They showed that the OVL was a useful method of determining the
meaningfulness of an estimated difference between two probability distributions of any form.
Bradley and Piantadosi derived the OVL for two normal distributions having equal and
unequal variances. Mishra, Shah, and Lefante (1986) generalized the two group t-test to
produce a hypothesis testing procedure and confidence intervals on the OVL of two normally
distributed populations with common variance. The hypothesis testing procedure and the
associated confidence limits were found to be flawed and were criticized in Inman and
Bradley (1994).

Inman (1984) investigated the properties and sampling behavior of the OVL when
sampling from two discrete distributions which are arranged in a 2 x C contingency table.
Estimates of the sampling variance were also derived. It was found that the estimator of the
OVL performed well. The estimator exhibited a downward bias (i.e., the value of the OVL
is under-estimated). Also, the bias increased as the similarity of the distributions from which
the samples were obtained increased.

Inman also expanded on the work of Bradley and Piantadosi. He developed a

maximum likelihood estimator and an approximate variance formula for the OVL for two
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normal distributions with equal variances. He examined the sampling behavior of this
estimator of the OVL. It was found that the sample estimators of the OVL had a downward
bias trend which increases as the similarity of the distributions of interest increases. Inman
and Bradley (1994) reviewed conditional tests of hypothesis and constructed direct tests of
hypothesis for the true overlap for the case of the OVL for two normal distributions with
equal variances. Their paper also included a method of constructing exact confidence
intervals for the true overlap, along with several alternative methods of obtaining confidence
intervals.

Inman also briefly looked at the case of two normal distributions with unequal
variances. He assumed that the variance of the second normal distribution was larger than
the variance of the first normal distribution. By equating the two probability functions he
found solutions, via the quadratic formula, for the intersection of the two probability
functions. Using these points he developed a maximum likelihood estimator of the OVL and
an approximate variance formula. Again the bias exhibited a downward trend and also
increased as the similarity of the distributions increased. Mishra and Mulekar (1992)
developed confidence limits for the OVL for two normal distributions with unequal variances
conditioned on the variances of the distributions which have been criticized. Clemons (1996)
reparameterized the OVL for two normal probability distribution functions with unequal
variances. It was found that the re-parameterization of the OVL greatly eased the
computation and evaluation of the OVL. A maximum-likelihood estimator for this re-
parameterization was developed. Yet the bias associated with the estimator was large for

small sample sizes (i.e., n < 50). Also the bias was largest when the two distributions were
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similar. Yet the bias greatly decreased as the two distributions became more distinct. For
the case of similar distributions, it was recommended that Inman's limiting case for equal
variances be used. An approximate variance formula for the OVL was also developed. It
was found that the approximate variance tended to over-estimate the variance of the OVL
with the bias again being greatest for small sample sizes. Clemons also examined the

performance of an asymptotic confidence interval for the reparameterized OVL.
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II. NONPARAMETRIC ESTIMATION OF THE OVL

It is sometimes the case that data collected suggest no reasonable parametric form
for fi(x) or £(x) or both. There are several approaches for the estimation of the OVL for such
a circumstance . First, one could try transforming the data and estimate the OVL using the
invariance property of the OVL. Second, one could use a "quasi-parametric” approach, using
a flexible family of distribution functions, such as Pearson, Burr, or Johnson families of
distributions (Johnson and Kotz, 1970, pp. 9-33), to characterize the two distributions. Using
the characterization of the two distributions, one can estimate the value of the OVL. The last
approach would be to estimate the two distributions nonparametrically, using one of several
available nonparametric density estimation procedures (Wegman, 1972, 1982).

The focus of a nonparametric density estimator is to obtain a good estimate of the
density function with minimum assumptions. Nonparametric techniques are used because
they eliminate the need to specify a form of the model. The disadvantage of the
nonparametric techniques is that these techniques result in a loss of efficiency. Yet, the loss
of efficiency is balanced by the reduction of the risk of misinterpreting the data by incorrectly
specifying the parametric form of the function.

Inman (1984) examined the properties of an estimator of the OVL when sampling
from two distributions estimated nonparametrically by quadratic splines. By fitting quadratic
spline functions to the empirical distribution through weighted least squares and taking the

derivatives of these spline functions as the estimated densities and using the density

16
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estimates to determine points of intersection, he obtained a nonparametric estimate of the
OVL between f,(x) and f;(x). Inman then used a bootstrap variance estimate to compute the
variance of the estimated OVL. Through a Monte Carlo study, he found that the
nonparametric estimator of OVL performed well as an estimator of OVL. It was found that
the estimator was a biased estimator of the OVL. The estimator generally under-estimated
the true overlap. The bias of the estimator was found to be related to the value of the OVL
and the sizes of the two samples. Inman suggested that because of the success of the spline-
density based technique of estimating the OVL, a less sophisticated nonparametric method
might prove adequate in settings where the distributional assumptions seem unwarranted.
One alternative is the naive kemnel estimate (Rosenblatt, 1956; Waterman & Whiteman,
1978), which will be examined in this study.

To learn something of the properties of the kernel estimator of the OVL, it is
compared to the true overlap for several known distributions, the normal, gamma, beta, and
Weibull distributions, via a Monte Carlo study. Also the nonparametric estimator is
compared to the maximum likelihood estimator of the OVL (Inman, 1984; Clemons, 1996)
for the normal distribution case:

Kernel Density Estimation

Until the 1950s the histogram was the only nonparametric density estimation
technique (Scott, 1992). Fix and Hodge (1951) introduced an algorithm for computing a
nonparametric density estimator by exploring the statistical discrimination when the

parametric density is unknown. Rosenblatt (1956) developed a general form of estimating
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a density function nonparametrically using what is called the naive or Rosenblatt kernel
density estimator.

The basic idea of the naive kernel estimator is adopted from the idea behind the basic
histogram. The kernel estimator uses the empirical density function which is a histogram-
type estimate of the underlying density function that is fairly easy to compute and
understand. The empirical density function is a simple modification of the histogram and
has convergence properties that are equivalent to those of the larger class of estimators
(Waterman & Whiteman, 1978). If we have an unknown density of a continuous random
variable from sample data, x,, ..., x,,, which are independent and identically distributed with

distribution function F(x), the empirical distribution function is defined as

number (Xi:X‘, < x)
- .

By an application of the binomial distribution (Hogg & Craig, 1970) it is has been shown

F(x) = (17)

that

lim __F (x) = F(x) (18)

with probability 1. The kernel density is a numeric approximation of the derivative of the
emperical cumulative distribution function. Using the fact that dF(x)/dx = f(x), the
approximate derivative of F,(x), the Rosenblatt estimator (naive kernel estimator) is given

by

X F(x h) - F (x-h)
R T SNl (19)

where 4 > 0 is a real valued number constant which is a function of the sample size and

approaches zero as n ~ «. This 4 is also known as the shaping parameter, window width, or

bandwidth of the kernel estimator.
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The Rosenblatt kernel estimator is constructed by placing a rectangle of width 24 and

height (2nh)"* on each observation and then summing to obtain the estimate. Kernel density

estimators inherit all properties of the kernel. Thus, since the naive kernel is discontinuous

the resulting estimate is also discontinuous. The discontinuity follows from the naive kernel

estimator having "bumps" at the points x; + 4 and zero derivatives elsewhere. This results
in a rough, jagged estimator.

In general, the basic kernel estimator is of the form

fy = [KewdF,0) = 3 %Z‘: K (xx), (20)
where K, is the kernel. .}o adapt the naive kernel density function to the above definition we
take K, to be as follows:

K (x,y) = 51’-,- for |[x -y| s h and zero elsewhere . @1

The estimator f,. is dependent on the data as well as on the kemel specified and the
bandwidth.
Bias and Variance of the Kernel Estimator

Since the bias of the kernel estimator depends on the value of the bandwidth, and
bandwidth is a function of the sample size, we can also say that the bias depends indirectly
on the sample size. The bias of the kernel estimator is expressed as follows (Silverman,
1986, p. 39):

bias,(x) = E fx -flx) = f h 'K[(x ~y)h1Ry)dy ~flx) . (22)

If we make a change of variable, y = x - ht and use the following assumptions about the
kemel, K,

f K(dr=1 , f tK(t)dt=0, and f £2K()dr=k,#0 ; (23)
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then the bias can be expressed as follows:

(24)
bias,(x) = f K(t) fix —ht) dt - fix) = f K(®) [fix - ht) - fix)]dr .
By using a Taylor's expansion we can express the term f(x-Af) as
fix—ht) = fix)-htf'(x) +-;-h 202600y + .. (25)

Using the assumptions on K shown in equation 23, the bias can be written as

bias,(x) = -hf'x)[tK(t)dt + %h 26/x) f t2 K()dt + - = %h 2 flleyk + O(h).  (26)

The variance of the estimator can be found as follows (Silverman, 1986, p. 39-40):
var fix) = n ! fh 2K[(x -y)h P Ay)dy - n M [Rx) + bias, ()] . @27
Using Equation 26 and substituting y = x-At into the above equation we obtain the following:
varfix) = n'h ! f fox~ht) K(0)%dt - n '[fix) + O(hH))>. (28)
Again, if we expand f(x-At) into a Taylor's series then

var fix)=n "' h 'If[ﬂx) ~htf(x) +-1K(@®*dt+0(n ") = n "'k "j(x)fK(t)zdt +0(n Y.

(29)
Thus, simplification of the variance of the estimator is given as follows:
varfix) = n 'k 'lf(x)fK(t)zdt. (30)

Choice of the Bandwidth of the Kernel Estimator
As shown above, the choice of the bandwidth, 4, is what drives the kernel estimator.
Since the kernel estimator has been shown to be a biased estimator, the criterion for
optimization is the mean integrated square error. The mean integrated square error is one of

the most widely used methods of placing a measure on the global accuracy of density
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estimators. Thus, the ideal value of h is that value which minimizes the approximate mean
integrated square error ,

f bias,(x)%dx + f var fix) dx = i—h g f F(x)2dx+n "k 7! f K(t)dt . 1)

It can be shown by calculus (Parzen, 1962) to be equal to

hop = k ‘2’5[ f K(t)zdt]us[f”(x)zdx]"lsn -S| (32)
We see that the optimum bandwidth depends on the unknown density function. Since we
are assuming that the density is unknown, it is unlikely that we will know enough to choose
the optimum h. The problem now becomes how to choose an efficient smoothing parameter.
Silverman (1986) states that a natural method for choosing the smoothing parameter
is to plot out several curves and choose the estimator that is most in accordance with one's
prior ideas about the density. This is called the subjective choice of a smoothing parameter.
Secondly, one could choose h by using a standard family of distributions to assign a value
to the term f 7"(x)%dx in equation 32. Scott (1992) used this second approach and the

normal distribution as the parametric family to obtain the normal reference rule bandwidth

4\ -
h =(;) on'® = 1060n"". (33)
Thus a simple way of choosing the smoothing parameter would be to estimate ¢ from the
data and substitute into Equation 33 . This method works well if the population is truly
normal, yet may tend to over-smooth if the population is multimodal since (f"(x)?)"* is
large relative to the standard deviation. Silverman suggests that a better result may be
obtained by using the interquartile range, R. Yet, if the underlying distribution is bimodal,

using the interquartile range tends to over-smooth even further. It is then suggested to use

an adaptive estimate of spread, A = min (standard deviation , interquartile range / 1.34) ,
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instead of o in Equation 33. Using this normal (adaptive) reference rule is attractive in that
itis a fully automatic method of choosing a smoothing parameter. It also allows researchers
reporting results a reference to a standardized method of estimating the shaping parameter.

Estimation of the OVL With Kernel Estimates
Given the procedure for estimating the unknown density using a kernel estimator
developed above, obtaining the estimate of OVL, OVL, will be approached as follows.
FORTRAN subroutines (Appendix A) were used to compute the kernel estimator of the
overlapping coefficient. The compilation and execution of the programs were performed
on the Cray C-90 supercomputer.
From two independent samples from unknown distributions, x,,, .. 1%, and

X

210 s Xpu s WE compute the density estimates using the FORTRAN subroutine OVCOEF,
which uses Equation 19 in conjunction with the Alternative Reference Rule for obtaining a
value of the bandwidth for the formulation of the density estimates. Once the density
estimates are computed, the value of the overlapping coeffiecient is computed by finding
the jump points (i.e., the points where the density of the kernel density estimator changes)
using the FORTRAN subroutine JUMPS. The jump points for each sample are then
combined into one set of points and then sorted using the IMSL (1991) FORTRAN
subroutine VSRTD. The intervals between consecutive points are computed using the
FORTRAN subroutine INTERV (de Boor, 1978). Finally, the OVL is computed by
summing the area under the smaller curve over each subinterval.

Consider for example the two kemnel estimated densities in Figures 5 and 6, which

are obtained from two samples of size 500 generated from two normal distributions. The
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Probability Density

Figure 5. The kernel density estimator for a standard normal distribution. The solid line
denotes a kernel density generated from pseudo normal random deviates using the normal
reference rule. The dotted line denotes a standard normal distribution.
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0.40 - ~

sl

PROBABILITY DENSITY
o
i
o

Figure 6. The kernel density estimator for a normal distribution. The solid line denotes a
kernel density generated from pseudo normal random deviates using the normal reference
rule. The dotted line denotes a normal distribution with mean = 1 and variance = 1. first
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first sample is generated from the standard normal distribution; the density estimate derived
from this sample is indicated by a dotted line. The second is from a normal distribution with
mean of 1 and variance of 1. Using the subroutines described previously we find that
the OVL is 0.63601374 (see Figure 7). The actual OVL (see Figure 8) between the two
normal distributions is 0.617075.

Nonparametric Estimator of the Variance

An alternative to the approximation of the variance of the overlapping coefficient
may be achieved by using a nonparametric estimation approach, the bootstrap, (Efron, 1979,
1981, 1982; Efron & Gong, 1983; Efron & Tibshirani, 1986, 1993). The bootstrap is one of
the simplest nonparametric variance estimation techniques available. It was introduced by
Efron (1979) as a computer-based method for estimating the standard error of a random
variable. The bootstrap algorithm works by drawing many independent bootstrap samples,
evaluating the corresponding bootstrap replications, and estimating the standard error of the
random variable by the empirical standard deviation.

The basic idea for a bootstrap estimator of variance is as follows. Suppose we are
given two independent samplesof x,,, ..., X0, and x,,.., Xon, - By treating the samples
as two finite populations of size n, and n, respectively, we can draw with replacement two
new bootstrap samples each of the size of the original samples. Thus we have what is
known as pseudo-data, x,},..,x " and X31+ - %5, - Using this pseudo data, we then
calculate the value of the kernel estimated OVL, OVL. This resampling procedure is

repeated some large number, say B, of times with a new bootstrap sample being generated

each time.
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Probability Density

Figure 7. The overlap using the kernel densities for two normal distributions. The solid line
den.otes a kemel'density generated from pseudo normal random deviates with mean = 1 and
variance = 1 using the normal reference rule. The dotted line denotes a kernel density

generated from pseudo standard normal random deviates.
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Probability Density

E.i gure 3.. The ."true" overlap for two normal distributions. The solid line denotes a normal
distribution with mean = 1 and variance = 1. The dotted line denotes a standard normal

distribution.
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Ifwelet OVL denote the value of OFL computed on the ith iteration, then the

bootstrap estimator of the variance of OFVL is given by:

B
Y 7L -ovL "y

VarOVL,(OVL) = = = (34)
where B _ .
Y o,
ovr = Ll (35)
B

The only difficulty in computing this new estimate is the value of B. According to
Efron and Tibshirani (1993, p.52) a small number of bootstraps, say B = 25, can be
considered informative. A value of B = 50 is often enough to give a good estimator. Very
seldom are more than B = 200 replications needed for estimating, yet a much larger value
of B is usually required for bootstrap confidence intervals.

Confidence intervals can be constructed using the percentile method for bootstrap

variance estimates (Efron, 1982). Let F, (") be the empirical distribution function

constructed from the bootstrap estimates of the OVL (e, OVL, (i =1, .., B)) and
Fy, () denote its inverse. A (1-)100% confidence interval for OVL is using the
percentile bootstrap variance method is as follows:
(F,,' T2y, F, T(1-an)). (36)
Monte Carlo Investigation
To determine the properties of the kernel estimator of the OVL, OVL has been

calculated on a set of Monte Carlo samples from two normal, two gamma, two Weibull, and

two beta distributions, using a selected number of design points for each distribution. This
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study will assess the OVL as an estimator when sampling from two distributions are
identical (i.e, OVL = 1); when the two distributions are similar (i.e., 1 > OVL > .500); and
when the two distributions are quite distinct (i.e., OVL <0.500). Since the OVL is a tool
used to measure the common area between two distributions deemed by hypothesis tests to
differ, this investigation is biased towards larger values of the OVL.

For the two normal distributions, the twelve design points chosen consist of
combinations of the following: p= 0,0%=1; p=2,0°=4; u=3,0°=5; p=1,02=1;

u=00*=3; p=5,0>=10; and p =3,0°=5. The gamma distribution (see Figures 9-11)
xa-l ~X

L(e)
twelve design points evaluated for the gamma distribution case will be combinations of the

used in the simulation study will be defined as follows: f(x) = for x, «>0. The

following: a =1.5; a =2.0; ¢ = 2.5; @ = 3.5; and & = 4.0. The Weibull distribution (see
Figures 12-14) used in the study is defined as follows: f(x) = aPxPle o’ forx, a, B>
0. The twelve design points for the Weibull distribution will consist of combinations of the
following parameters: @ =1.5,=4.0; «=2.0,=2.0;a2=1.5,=1.5; ¢ =2.0, = 3.0;
a=15p=15a=10,=20; «=1.0,p=3.0; anda=1.0, p =3.5. Four design points
for the beta distribution will consist of combinations of the following parameters: p=2, q
=2;p=1,q=1;p=3,q=3;and p =5, q = 3, where the beta distribution is defined as

fx) = HI;-(;%“](—L—):"‘(I )i " -e? gy <1and p,q > 0. A complete list of design
points and values of the OVL is shown in Appendix B. The OVL was also investigated
for two mixtures of distributional settings: Standard normal and standard Cauchy

distributions (see Figures 15 and 16) and gamma distribution with & = 3 and a chi square

distribution with 4 degrees of freedom. The sample sizes used to investigate the sampling
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Probability Density

n.ll—r..l....Ixﬁ..|.Trul.-.-‘.PrT‘rrTl‘rr.rl.n..‘m..‘.. T

0 12 3 4 5 6 7 8 9 10 11 12 13

X

Figure 9. The kernel density estimator for a gamma distribution. The solid line denotes a
kernel density generated from pseudo gamma random deviates using the normal reference

rule. The dotted line denotes a gamma distribution with ¢ = 2.5.
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PROBABILITY DENSITY

Figure 10. The kernel density estimator for a gamma distribution. The solid line denotes
a kernel density generated from pseudo gamma random deviates using the normal reference
rule. The dotted line denotes a gamma distribution with & = 2.0.
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Probability Density
o
M

0 1 2 3 4 56 7 8 9 10 11 1213
X

Figure 11. The overlap using the kernel densities for two gamma distributions. The solid
line denotes a kernel density generated from pseudo gamma random deviates with & = 2.0
using the normal reference rule. The dotted line denotes a kernel density generated from

pseudo gamma random deviates with a = 2.5.
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Probability Density

Figure 12. The kemel density estimator for a Weibull distribution. The solid line denotes
a kernel density generated from pseudo Weibull random deviates using the normal reference
rule. The dotted line denotes a Weibull distribution with ¢ = 2.0 and § =2.0.
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PROBABILITY DENSITY

Figure 13. The kernel density estimator for a Weibull distribution. The solid line denotes
a kernel density generated from pseudo Weibull random deviates using the normal reference
rule. The dotted line denotes a Weibull distribution with @ = 1.5 and B = 1.5.
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Probability Density

Figure 14. The overlap using the kernel densities for two Weibull distributions. The solid
line denotes a kernel estimator generated from pseudo Weibull random deviates with ¢ =2.0
using the normal reference rule. The dotted line denotes a kernel estimator generated from

_pseudo Weibull random deviates with & = 2.5.
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Probability Density

Figure 15. The kernel density estimator for a standard Cauchy distribution. The solid line
denotes a kernel density generated from pseudo standard Cauchy random deviates using the
normal reference rule. The dotted line denotes a standard Cauchy distribution.
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Probability Density

Figure 16. The overlap using the kernel densities for a standard Cauchy distribution and a
standard normal distribution. The solid line denotes a kernel estimator generated from
pseudo standard normal random deviates using the normal reference rule. The dotted line
denotes a kernel estimator generated from pseudo standard Cauchy random deviates.
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behavior of the Kernel estimator of OVL, OVL will be n, =n,= 100 and 500. The random
deviates were generated from the following IMSL (1991) routines:

DRNBET--generates double precision pseudo random numbers from a beta

distribution

DRNCHI--generates double precision pseudo random numbers from a chi-square

distribution

DRNGAM--generates double precision pseudo random numbers from a standard

gamma distribution

DRNNOA--generates double precision pseudo random numbers from a standard

normal distribution

DRNCHY--generates double precision pseudo random numbers from a Cauchy

distribution

DRNWIB--generates double precision pseudo random numbers from a Weibull

distribution.

On each of the 1000 Monte Carlo trials at each design-point-sample-size
combination, OVL is computed as described previously. To investigate the bootstrap
estimator of the variance of OVL, the bootstrap estimate of variance was calculated using
Equation 34 for each design-point-sample-size combinations using B = 200. The IMSL
random number generator for a uniform (0,1) distribution, DRNUNF, was used to generate
a random sample with replacement from the generated distributions. The bootstrap estimator

was then calculated using the subroutine MEANSTA (Miller, 1982).
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The Monte Carlo mean and variance were computed from the observed first and
second sample moments from the simulated samples. The "true" value of the OVL was
computed using Equation 1. Comparisons of the OVL were done using the standard bias
and the relative bias. The standard bias is defined as the Monte Carlo mean minus the OVL,
divided by the square root of the Monte Carlo variance. The relative bias is defined as the
Monte Carlo mean minus the OVL, divided by the OVL. Comparisons of the bootstrap
estimator of the variance of OVL were made using the variance ratio and the relative bias
of the variance. The variance ratio is defined as the ratio of the Monte Carlo variance to the
bootstrap variance. The relative bias is defined as the bootstrap variance minus the Monte
Carlo variance, divided by the Monte Carlo variance. The results of the Monte Carlo
simulation are shown in the table in Appendix C.

Comparisons of the Monte Carlo mean to the OVL show that the estimator, OVL,
is a biased estimator of OVL. This bias does not necessarily decrease as the sample size
increases. The bias also is a function of the value of the OVL. When the two distributions
were identical, the estimator tended to greatly under-estimate the value of the OVL in all of
the distributional settings. The bias then decreased as the distributions became more distinct.

The bootstrap estimator of variance of the OVL also performed well. The value
of the variance decreased as sample size increased, thus suggesting that O¥VL can be
considered to be a consistent estimator of OVL. The relative bias of the estimator of the
variance tended on average to be less than 10% for all distributional settings.

The relative bias of the OVL for the sample size of 100 shows that for the normal

case the bias was largest, 10.8%, when the two distributions were identical. Yet, this bias
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decreased to less than 2% when the two distributions became more distinct. As the value of
the OVL decreased to less than 0.4000, the bias of the estimator slightly increased to just
over 3%. When the two normal distributions were identical the OVL greatly under-
estimated the value of the OVL. For values of the OVL less than unity yet greater than
.6000, the estimator tended to under-estimate the value of the OVL. The OVL tended to
over-estimate the value of the OVL for values of the OVL less than 0.600. Thus the
estimator is a function of the value of the OVL. Also the standard bias was largest when the
two distributions were identical. This bias decreased as the distributions became more
dissimilar with the exception of the design points p, =0,0%, = 1,4, =0,05=3and y, =
1, 0% =1,u,=0, 0% =3. The bootstrap estimator of variance performed well for this case
as shown by the variance ratio being close to 1. As with the estimator of the OVL, the
bootstrap estimator failed when the two distributions were identical. For this case the
bootstrap estimator of the variance greatly overstated the apparent sampling variance of the
kernel estimator of the OVL with the relative bias of the bootstrap estimator being greater
than 50%. Yet, as the distributions became more distinct the relative bias was less than 10%.
The bootstrap estimator tended to-understate the apparent sampling variance of the OVL
with the exception of the design points u, =0,0% =1,, =1,0%=1and 4, =0, 6?, =1,
U, =2,0%,=4.

For a sample size of 500 and two normal distributions, the bias was again largest
when the two distributions were similar (i.e., approximately 5%). This bias decreased as the
two distributions became more distinct with the relative bias being less than 7.5%. The bias

of the estimator did not necessarily decrease with an increase in sample size. The standard
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bias was again largest for the case of equal distribution functions. Yet, this bias decreased
dramatically as the two distributions became more distinct. The bias is a function of the
value of the OVL with the estimator under-estimating the value of the OVL for values
greater than .75 and over-estimating the value of the OVL for values less than .75. As with
n = 100, the bootstrap estimator performed quite well (i.e., relative bias less than 7%) with
the exception of the case of equal distribution functions. For this case, the bootstrap variance
over-estimated the apparent sampling variance of the estimator with a relative bias of
approximately 50%. For two dissimilar normal distributions, the bootstrap estimator of
variance tended to under-estimate the value of the apparent sampling variance of the
estimator with the exception of the design points u, =0,0% =3,u, =2,0% =4;and u, =
0,0 =1,p,=2,0%5=4.

For the Weibull distribution, the bias was largest, 10.5%, for n, = n,= 100 when the
two distributions were identical. Yet, the bias decreased to less than 2% as the two
distributions were distinct with the exception of the design points a; =3.0,p, = 1.5, e, =
1.5 and B, = 4.0, where the bias was just over 5%. The OVL tended to under-estimate the
true value of the OVL with the exception of the following design points: &, = 1.0, B, = 1.5;
«,=1.0,B,=3.0;a, =15,B,=1.5;and ¢, = 1.5, B, =4.0. The standard bias was largest
for the case of identical distributions, yet it decreased as the distributions became more
distinct. The bootstrap estimator of variance performed well with the exception of equal
distributions. For this case the bootstrap variance over-estimated the apparent sampling
variance of the estimator of the OVL with a relative bias of approximately 55%. The bias

decreased as the distributions became more distinct (i.e., less than 10%), with the exception
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of ¢, =1.0,8,=2.0; a,=1.0, B,=3.5; ¢,=3.0,B,=1.5; and &0,=2.0, B, = 2.0, where the
bias was approximate 14% and 11% respectively. The bootstrap variance tended to
understate the apparent sampling variance of the estimator of the OVL when the two
distributions differed.

For two Weibull distributions with the sample size of 500, the bias was again largest
when the two distributions were similar, 4.7%. This bias decreased to less than 2.5% as the
distributions were dissimilar with the exception of the design points &¢;= 1.5, 8, = 1.5; ¢, =
20,B,=20; ¢, =3,8,=1.5;and a, = 1.5, B,=4.0. The bias did not necessarily decrease
with the increase in sample size. The kernel estimator of the OVL tended to over-estimate
the value of the OVL with the exception of the design points &, = 3.0, B, = 1.5; ¢,= 2.0, B,
=2.0; ,=1.0,B,=15; «,=1.0,8,=3.0;¢,=1.5,B,=1.5;and , = 1.5, B, =4.0. Again
the bootstrap estimator performed well (i.e., relative bias less than 8%) when the two
distributions were dissimilar with the exception of the following design points: e, = 2.0, f,
=30;0,=20, §,=20;a,=15,B,=40;and o, =2.0,,=2.0, where the bias was
approximately 13% and 15.7%, respectively. The estimator failed when the two distributions
were identical. For this case it over-estimated the apparent sampling variance of OVL,
with the relative bias being just over 50%. The bootstrap variance tended to under-estimate
the apparent sampling variance of the OVL for all other cases studied with the exception
of the design points ;= 1.5, ,=1.5and a,= 1.5, B, =4.0.

For the two gamma distributions and sample size of 100 , the bias was largest, 10.6%
when the two distributions were identical. The bias decreased to less than 4% as the

distributions became more distinct. The standard bias was also largest for the case of equal
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distribution functions. The OVL tended to under-estimate the value of the OVL for values
of the OVL greater than .75. For OVL less than .75 the OVL tended to over-estimate the
true value of the OVL. The bootstrap variance estimator also performed well. The estimator
failed for the case of identical distribution functions. In this case the bootstrap variance
under-estimated the apparent sampling variance of the OVL, with a relative bias of over
50%. Yet, this bias decreased to approximately 7% as the two distributions became more
distinct with the exception of the following design points: «,=4.0, a,=3.5; a,=2.5, a,=
3.5; ¢,=15 a,=25and o =2.5, 4 =4.0; where the bias was approximately 12% for
these cases. The bootstrap estimator of the variance tended to understate the value of the
apparent sampling variance of the estimator with the exception of the design points «,= 2.0,
2,=4.0; a,=1.5, a,=3.5;and ;= 1.5, a,=4.0.

For two gamma distributions and sample size of 500, the bias was largest,
approximately 5% when the two distributions were identical and for the design point &, =
1.5, @y = 40. The bias decreased to less than 3% for all other values of the OVL
investigated. The bias did not necessarily decrease with an increase in sample size. The
standard bias was largest when the two distributions were identical, yet decreased as the
distributions became dissimilar. The kernel estimator of the OVL tended to over-estimate
the value of the OVL with the exception of the design point ;= 4.0, &, = 3.5. The bootstrap
estimator of variance performed well with the exception of the case of identical distributions.
In this case, the bootstrap variance greatly overstated the apparent sampling variance of the

OVL with the bias being approximately 45%. As the distributions became more distinct,

the bias decreased to less than 6% with the exception of the design point, &,=2.5, a,=2.0,
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where the bias was approximately 11%. For values of the OVL between .90 and .80, the
bootstrap variance understated the apparent sampling variance of the OVL; for values of
OVL between .75 and .65, the bootstrap variance overstated the apparent sampling variance
of the OVL; the bootstrap variance understated the apparent sampling variance of the

OVL for values of the OVL between .65 and .50; and the bootstrap variance overstated
the value of the apparent sampling variance of the OVL for values less than .50.
The investigation of the four Beta distributional design points yield the following
results. For the sample size of 100, the bias of the kernel estimator of the overlapping
coefficient is largest, approximately 10.7%, when the two distributions are identical. The
bias decreases to less than 3.5% as the two distributions became more distinct. The standard
bias was also largest for identical beta distributions. The OVL tended to under-estimate the
value of the OVL for the design-points investigated. The bootstrap estimate of the variance
ofthe OVL performed well, with the exception of the case where the two beta distributions
were identical. For the case of identical beta distributions, the bias was just over 42%, with
the bootstrap estimate of variance greatly over-estimating the value of the apparent sampling
variance of the OVL. When the two beta distributions differed the bias of the bootstrap
variance decreased to less than 8% with the exception of the design point, p,= 5, q,=3, p,
=3,and q,= 3, where the bias was approximately 15.5%.
For the sample size of 500, the relative bias of the kernel estimator of the
overlapping coefficient was largest (4.7%) when sampling from two identical beta
distributions. The bias decreased to less than 3% as the two distributions became more

distinct. The bootstrap estimator of the variance performed well with the exception of
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identical distributions. When sampling from two identical beta distributions, the relative bias
of the bootstrap estimator of variance was approximately 51%. In this case the bootstrap
estimator tended to over-estimate the value of the apparent sampling variance of the OVL.
The relative bias of the bootstrap estimate decreased to less than 4% as the two distributions
became more distinct with the exception of the design pointp, =2, q,=2, p,=3,and q,=
3, where the bias was just over 10%. When the distributions differed, the bootstrap estimator
tended to under-estimate the value of the apparent sampling variance of the OVL.

The OVL was also explored for mixtures of distributions. For the standard normal
and standard Cauchy distributions, OVL under-estimated the value of the OVL for the
sample size of 100 with the bias being 2.2%, while OVL over-estimated the value of the
OVL for the sample size of 500 with the bias being less than 1%. The bootstrap estimate
of the variance performed well. For the sample size of 100, the bootstrap estimator of the
variance under-estimated the apparent sampling variance of the estimator with the bias being
4.5%. The bootstrap estimator also understated the apparent sampling variance of the
estimator by 3.2% for the sample size of 500.

For a gamma distribution with & = 3 and a chi-squared distribution with 4 degrees
of freedom, the OVL under-estimated the value of the OVL for both sets of sample sizes
with this bias being 4.2% for n = 100 and 2.5% for n = 500. The bootstrap estimate of the
variance understated the apparent sampling variance of the estimator with the bias being 11%
for n = 100 and 3.5% for n = 500. In both cases, the bootstrap estimate of the variance

tended to understate the value of the apparent sampling variance of the estimator.
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Comparison of the Kernel Estimator of the OVL to the Maximum
Likelihood Estimator of the OVL

The maximum likelihood estimator of the OVL was computed for 1,000 simulations
using the nine design points used in the investigation of the kemel estimator for the OVL for
sample of n, = n,= 100 and 500, where the variance of the two normal distributions differed
(see Appendix D for SAS program used for the simulation study). The maximum likelihood
estimator for the reparameterized overlapping coefficient developed by Clemons (1996) was
used to examine the accuracy of the kernel estimator of th OVL when sampling from two
normal distributions with unequal variances. The Monte Carlo mean and variance were
computed from the first and second moments from the 1,000 simulations. Also, the standard
bias and relative bias were computed as described previously. To compare the bias of the
kemnel estimator to that of the maximum likelihood estimator, the standard bias of the kernel
estimator was calculated as follows: the difference of the Monte Carlo mean minus OVL
divided by the Monte Carlo standard error of maximum likelihood estimator (see table in
Appendix D). In units of the standard error of maximum likelihood estimator of the OVL,
it is shown that the bias of the kernel estimator is greater than the bias of the maximum
ikelihood estimator with the exception of the following design points: u, =0, 6%, =1, p,=

100. It must be

Oand 0%, =3,m=n=500; 4 =5,0, =10, =3;and 6, =5, 7 =n
noted that although the bias of the kernel estimator of the OVL was greater than the
maximum likelihood estimator, this difference in most cases was not drastic.

The relative inefficiency of the kemel estimator of the OVL compared to the
maximum likelihood estimator of the OVL as estimators of the OVL between two normal

distributions is indicated by the ratio of their Monte Carlo variances, also shown in Appendix
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F. The variance of the kemel estimator is approximately 1.24 times the variance of
maximum-likelihood estimator, running from low of 1.00466 (u,= 0, ¢?, = 3, y,=2 and 6%,
=4, n,=n,= 500) to a high of 1.61661 (u,= 1, 6*,= 1, u,=2 and 6%,=4, n = n,= 500). The
ratio of the Monte Carlo variances of the kemel estimator and the maximum-likelihood
estimator increases with sample size when the value of the OVL is less than 65% and
decreases when the value of the OVL is greater than 65%. This shows that the relative
inefficiency of the kernel estimator of the OVL is a function of the value of the OVL. Thus
when using the kemnel estimator of the OVL when the samples follow a normal distribution,
the estimator is on average 80% efficient.
Modeling of the Bias
A regression analysis (Montgomery, 1991) was conducted to fit models for
predicting the OVL given the value of the kernel estimator of the OVL and sample size.
These models were developed to reduce the bias of the estimator of the overlapping
coefficient for the distributions and design points used in the Monte Carlo simulation study.
For the normal distribution it was noticed that for large values of the overlapping
coefficient (i.e. OVL < 0.6000) the kernel estimator of the OVL under-estimated the OVL;
the kernel estimator tended to over-estimate the value of the OVL for values of the OVL less
than 0.600. The following cubic model was fit to the data:
OVL = 0.208039 - 0.00005429*N + 1.426574*MCOVL? - 0.530713*MCOVL® (37)
Using this model for larger values of the OVL, when the kernel estimator under-estimates
the value of the OVL, the model tends to increase the estimate of the OVL. For smaller

values of the OVL, when the kernel estimator overstates the value of the OVL, the model
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tends to decrease the estimate of the OVL. Also the model adjusts by slightly reducing the
estimator of the OVL with an increase in sample size. This model adjusts the bias of the
kernel estimator of the overlapping coefficient assuming that the data from the two samples
come from a normal distribution and also that the two samples are of equal sample size.
Appendix G shows the percent change in the relative bias using the model. The model
works reasonably well in reducing the bias of the kernel estimator of the overlapping
coefficient.

For the Weibull distributions the kernel estimator tended to overstate the value of
the OVL with the bias being largest for larger values of the OVL (i.e. OVL = 1). Thus, a
qu‘adratic model was fit to the data. The model is as follows:

OVL =0.333109 - 0.0000712874*N + 0.779401 *MCOVL? (38)
This model adjusts the kernel estimator by increasing the estimator of the overlapping
coefficient thus reducing the bias. As the value of the OVL increases, the model adjusts for
the increase in bias by increasing the value of the estimator. The model adjusts for the
increase in sample size. The change in relative bias given in Appendix E shows that the
model performs reasonably well in reducing the bias of the kernel estimator when sampling
from two Weibull distributions with equal sample size.

When sampling from two Gamma distributions, the kemel estimator tended to
overstate the value of the OVL for the smaller values of the OVL (< 0.7000) and under-
estimate the value of the OVL for the larger values of the OVL. The best model for the data
was as follows:

OVL =0.296354 - 0.00006970*N + 0.832176*MCOVL?. 39)
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With this model, for smaller values of the overlapping coefficient when the kernel estimator
tends to overstate the value of the OVL, the estimator is reduced. For larger values where
the kernel estimator tends to understate the value of the OVL, the estimator is increased.
The model also adjusts for the increase in sample size. Appendix E again shows that the
model for reducing the bias of the kernel estimator when sampling from two gamma
distributions with equal sample size, performs reasonably well.

Appendix G contains the analysis of variance (ANOVA) tables and the R-squared
values; tests of the various parameters; and the predicted values produced given the Monte
Carlo estimates of the OVL, relative biases, and percent change of the bias of the estimator
for the above models. Again, these models performed quite well, with the bias being
significantly reduced for the case of sampling from two identical distributions with equal

sample sizes.
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I1I. ALTERNATIVE NORMAL REFERENCE RULE FOR THE BANDWIDTH OF
THE NAIVE KERNEL ESTIMATOR

As noted previously, the kernel estimator using the normal reference rule did not
asymptotically reduce the value of the bias of the OFL. We know from the previous
discussion of the kemel density estimator that the estimator is dependent on the value of the
shaping parameter or bandwidth, h. As the sample size increases, the value of the shaping
parameter is reduced thus increasing the number of jump points in the distribution. While
this is desirable when one is using the kernel technique in estimating the density, it may also
have an adverse effect on estimation the value of the OVL. This can be alleviated by
increasing the value of the shaping parameter. In this chapter we will explore the kernel
density estimator using an alternative value of the shaping parameter.

Rosenblatt (1956) showed that for the integrated expected mean-square error
criterion, the best shaping parameter, h, was a constant times n''*. This technique was also
used by Scott (1992) in development of the normal reference rule. Waterman and Whiteman
(1978) suggested an alternative method of determining an optimum value of the shaping
parameter. By using the Kolmogrov-Smirnov statistic, they were able to obtain bounds for
the shaping parameter using only properties of the first derivative of the density function as
follows. It must be briefly noted that Rosenblatt (1956) required the existence of three

derivatives of the density function.
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The process for determing the optimal bandwidth using the Kolmogrov-Smimov

statistic is as follows. We have that

|¥G) _Faesh)~Fah)| [Y@) Feevh)-Feh)| [Fash) -Fah o 40)
[2nh 2h || 2nA 2h L 2h ’
where,
Y(x) = n(F (x+h)-F (x-h)). “41)

Then to bound the first quantity on the right-hand side,

Ir(x) _F@x+h)-F(x-h)|_ F (x+h)-F (x-h) . F (x+h)-F (x -h)l @2)
|2nh 2k 2h | 2k i
If we let D,(e) satisfy the following
D (o)
P(max_|F (x)-F(x)|> - =g, (43)
then
[¥(x)  Flx+hy-Fex —h)lS D (&) @
|2nk 2h " &

with probability of at least 1 - @. To bound the second quantity of the right hand side, it

should be noted that

Fx)xh?)

F(xxh) = F(x)+F '(x)(xh)+ (45)
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{F "‘“’”’2': (=) -f(x)’=Lf(x)*‘j:l(f'(x,)“f’(xz)) )| =§ )l . (46)

If if (x)| < C for all x, then

IF (x+h)-F (x—h) D (@) chn
n n - Lt + 2B (). 47
| 2h ﬂx)lS h * 2 1) @7

The h which minimizes B,(h) is

h = (2D ()/C)"*. (48)

If we let D, (&) = K(et)/n'?, the asymptotic form given in Lindgren, 1968, then
h=(2K(a)/C)"2p 14, (49)

The results hold uniformly for all x with probability at least 1 - & (Waterman & Whiteman,
1978). Thus using the above shaping parameter an alternative normal reference rule can
be obtained by using the normal density function for the value of C. From the normal
density we obtain [f(x)] s(/(2T)ec®) . If we leta=0.05, then K(&) = 1.36 and we obtain
a shaping parameter of 4 = 3.350n ""*. If 0 is unknown we can use the usual sample
standard deviation, s, as an estimator of 6. The kemnel density estimator, OVL, can then

be estimated as before yet incorporating the alternative value of the shaping parameter.
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Let us consider for example the two kernel estimated densities in Figures17-19

which are obtained from two samples of size 500 generated from two normal distributions.

The first sample is generated from the standard Normal distribution; the density estimate

derived from this sample is indicated by a dotted line. The second is from a normal

distribution with mean = ] and variance =1. Using the subroutines described in Appendix
A, we find that the OVL is 0.688772. The actual overlap is 0.617075.

Monte Carlo Investigation

A Monte Carlo simulation study was used to investigate the properties of the kernel

estimator of the OVL using the alternative normal reference rule. Using the design points

used in the previous simulation study for two normal distributions and sample sizes of 100

and 500, OVL was computed. The FORTRAN programs described in chapter II and

shown in Appendix A were used for the study with an adjustment made to the value of the

shaping parameter. The results of the Monte Carlo study are summarized in Appendix H.

Discussion

The kemnel estimator of the overlapping coefficient using the alternative rule is again

a biased estimator. When the two distributions were identical, use of the alternative

reference rule results in a bias that is smaller than the bias of the kernel estimator of the OVL

using the normal reference rule discussed in chapter II. Yet, when the two distributions

became more distinct, the bias dramatically increased with the exception of OVL = 0.740641

(ie, iy =0,0f =1, 4 =0, =3). As with the normal reference rule, the bias of

the OVL calculated using the alternative reference rule did not necessarily decrease with

an increase in sample size. Thus the use of the this alternative reference rule, which
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Probability Density

Figure .1 7. The kemel .density estimator for a standard normal distribution using the
alternative rule. T}}e solid line denotes a kernel density estimator generated from pseudo
normal random deviates. The dotted line denotes a standard normal distribution
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Probability Density

Figure }8. .The kernel density estimator for a normal distribution using the alternative rule.
The- solid line denotes a kernel density estimator generated from pseudo normal random
deviates. The dotted line denotes a normal distribution with mean = | and variance = 1.
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Probability Density

Figure 19. The overlap using the kernel densities for two normal distributions using the
alternative rule. The solid line denotes a kernel density estimator generated from pseudo
normal random deviates. The dotted line denotes a kernel density estimator generated from
pseudo standard normal random variates.
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increases the shaping parameter used to compute the kernel estimator of the OVL, only
improves the kernel estimator when the two distributions are identical. For distinct
distributions, the alternative rule does not improve the estimator of the OVL. Since the
objective of this study is to develop a kernel density estimator which is robust for all
distributional settings, sample size, and values of the overlap between the two distributions,
it is recommended that the normal reference rule used for the development of the kernel

estimator of the OVL in chapter II be employed.
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IV. EXAMPLES OF THE USES OF THE OVL
Selectivity of the Migration of Farmers Between 1850 and 1860

As an example of the use of OVL, letus consider one part of a study designed to
investigate the selectivity of the migration of Alabama farmers between 1850 and 1860
(Inman, 1981) which was used by Inman (1984) as an example of the OVL for two normal
cases with equal variances. A simple random sample of 664 farm operators was obtained
from the 1850 census of agriculture for ten Alabama counties. Each farm operator in the
sample was matched to the corresponding entries for his household and his slave-force in the
1850 census of free population and slave population; from this information his wealth in
1850 was estimated. Those farm operators in the sample who could be located in the same
county in the 1860 census are classified as persistent farmers. Those who were not found
in the 1860 census of the county in which they resided in 1850 did not persist. (A
rudimentary adjustment for the effect of mortality, not discussed here, is also made.) We
shall concern ourselves with a subset of this sample, consisting of 601 male farm operators
who were listed as the heads of their households in the census of free population and for
whom consistent census data is available.

Since the distribution of the data was highly skewed, Inman used a logarithmic
transformation in his evaluation ofthe OVL. This same transformation will be used in this
examination of OVL (see Appendix I) for comparison to Inman's cubic spline estimator

ofthe OVL. A test for normality was done for each sample using the Shapiro-Wilks statistic
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(Shapiro & Wilks, 1974). For the 317 persistent farmers, the p value for the test was 0.0001
and for the 284 non persistent farmers the p value was 0.0266. Thus we can reject the null
hypothesis in both cases that the two distributions are normal.

Using the natural logarithms, the sample median for the persistent farmers is 7.34225.

For the nonpersistent farmers, the sample median is 6.80445. A nonparametric test, the
Median Two Sample Test using a normal approximation, yields a z value of -3.22691 which
is statistically significant at the 0.0013 level. Thus it appears reasonable to assume that the
median wealth of persistent Alabama farmers exceeds the median wealth of the nonpersistent
counterparts, indicating that the migration of Alabama farm operators between 1850 and
1860 to some degree selected poorer farmers.

According to Inman (1984), the degree of selectivity depends not on the difference
in population medians but instead on the actual difference in the distribution of wealth of the
two groups of farmers. If the distributions are highly distinct, then a strong case can be made
for migration selective with respect to wealth. The wealthy farmers were able to persist
while the poorer farmers were forced to relocate. The OVL obtained for the two groups
was 0.87771356, which indicates that the distributions of wealth for these two groups of
Alabama farmers are not as distinct as a simple comparison of the sample medians might
suggest (see Figures 20-23) . Therefore, we can conclude that the difference in wealth for
the farmers who persisted and those who did not persist is not as distinct as suggested by a

comparison of the medians.
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PROBABILITY DENSITY

2 ¥“U 16

Figure 20. The kernel density estimator for the wealth of the farmers who persisted to 1860.
The dotted line denotes the midpoints of the histogram of the data. The solid line denotes

the kernel density estimator for the data.
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PROBABILITY DENSITY

0 12 1’ 16

Figure 2]1. The kernel density estimator for the wealth of the farmers who did not persist to
1860. The dotted line denotes the midpoints of the histogram of the data. The solid line

denotes the kernel density estimator for the data.
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PROBABILITY DENSITY
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Figure 22. Thff kemc;l estimator of the overlap for the wealth data. The solid line denotes
the kemel density estimator for farmers who persisted to 1860. The dotted line denotes the
kemel density for farmers who did not persist to 1860.
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PROBABILITY DENSITY

Figure 23. The overlap for the wealth data. The solid line denotes the midpoints for the
histogram for farmer who persisted to 1860. The dotted line denotes the midpoints of the

histogram for farmers who did not persist to 1860.
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Bootstrap estimates of the variance of OVL were obtained using Equation 34.

The results for three different values of B are as follows:

For B=100, Var,(OVL) = 0.000919;

ForB=200, Var,(OVL) = 0.000878;

For B =500, Var,(OVL) = 0.000823.
Using the results obtained when B = 500, the percentile method for constructing a bootstrap
confidence interval for OVL described previously was used to compute a confidence interval
for OVL using the 1850 wealth data. A 90% confidence interval for the true overlap between
wealth distribution of the persistent and nonpersistent Alabama farmers, using the bootstrap
distribution constructed from the 500 OVL °, is given by

-1 -1
5000:051F 559

(F* (0.95)] = (0.816950,0.901633).

Figure 24 is a histogram of the 500 bootstrap estimates. A Shapiro-Wilks test for normality
was performed to test whether the empirical distribution of the bootstrap estimates can be
considered normal. The p value for the test was 0.1242.

Inman (1984) considered this example in his work with the maximum likelihood
estimator and the cubic spline estimators of overlapping coefficient. Using the maximum
likelihood estimator, the value of the estimator was 0.859614 with a 90% confidence interval
of (0.808967 , 0.915465). For the cubic spline estimator of the OVL, the value of the
estimator was 0.869152 with a 90% confidence interval of (0.848472, 0.941238) . Our
value of the kernel estimator of the OVL, 0.877714, was larger than both values computed

in Inman (1984).
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Figure 24. The histogram of the B = 500 bootstrap estimators for the wealth data.
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Irish Education Transition Data

Next we considered data on the Irish Education Transition for a sample of 469 Irish

school children aged 11 in 1976 (Greaney and Kelleghan, 1984). Each student was classified
by sex and the measure of interest was the students' Drumcondra Verbal Reasoning Test
score (see Appendix I). A test for normality using the Shapiro-Wilks test for the 231 males
yields a p value of 0.011. While the test for normality for the 238 females yields a p value
of 0.2783. Since the male sample cannot be considered to follow a normal distribution, a
nonparametric test was conducted to test differences in the median test scores between males
and females. The median Drumcondra Verbal Reasoning Test score for males is 104. While
the median Drumcondra Verbal Reasoning Test score for females is 100.5. A Median Two
Sample Test using a normal approximation yields a z statistic of 2.04991, which is
statistically significant at the 0.0404 level. Thus it appears reasonable to assume that the
median Drumcondra Verbal Reasoning Test score for males exceeds the median Drumcondra
Verbal Reasoning Test score for females. The OVL for the two distributions was 0.85528,
which suggests that the distributions may not be as distinct as suggest by the simple
comparison of medians (see Figures 25-28). A re-evaluation of the data shows that the
Drumcondra Verbal Reasoning Test scores for female students tended to be concentrated
around the median test score. While for male students, scores tended to be on the higher end
of the distribution thus causing the distribution to be right skewed. Thus the difference is

more in the right tails of the distributions, where elsewhere the two distributions overlapped.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

0.028 ]
0.026 4

)
0.024 -

0.022 -
0.020°

0.018
0.016 {
0.0%:
0.012

4

0.0104

PROBABILITY DENSITY

0.008 ‘]
i p
0.006 - |
] ;
0.004 -

0.002 - /

o000 —/' .
50 60 70 80 90 100 110 120 130 140 150 160

X

Figure 25. The kernel density estimator for the Drumcondra Verbal Reasoning Test scores
for the male students. The dotted line denotes the midpoints of the histogram of the data.
The solid line denotes the kernel density estimator for the data.
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Figure 26. The kemnel density estimator for the Drumcondra Verbal Reasoning Test scores
for the female students. The dotted line denotes the midpoints of the histogram of the data.

The solid line denotes the kernel density estimator for the data.
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Figure 27. The kernel estimator of the overlap for the Irish Education Transition data. The
solid line denotes the kernel density estimator for the scores of male students. The dotted
line denotes the kernel density for the scores of the female students.
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Figure 28. The overlap for the Irish Education Transition data. The solid line denotes the
midpoints for the histogram for the scores for male students. The dotted line denotes the
midpoints of the histogram for the scores for female students.
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Bootstrap estimates of the variance of OVL were obtained using Equation 34.
Results for three different values of B are as follows:
For B=100, Var,(OVL) = 0.000874;
For B=200, Vary (OVL) = 0.000929;
For B =500, Var,(OVL) = 0.000823.
Using the results obtained when B = 500, the percentile method for constructing a bootstrap
confidence interval for OVL described previously was used to compute a confidence interval
for OVL using the 469 test scores. A 90% confidence interval for the true overlap between
Drumcondra Verbal Reasoning Test scores for females versus male students, using the

bootstrap distribution constructed from the 500 OVL °, is given by

-1

(F 500

(0.05),F '5310(0.95)] = (0.788187,0.891234).
Figure 29 is a histogram of the 500 bootstrap estimates. A Shapiro-Wilks test for normality
was performed to test whether the empirical distribution of the bootstrap estimates can be
considered normal. The p value for the test was 0.0731 .
Acute Myocardial Infarction Registry

For a last example of the use of OVL, we considered data from the Acute
Myocardia Infarction Registry (Rogers, Dean, Moor, Wool, Burgard, & Bradley, 1993). A
simple random sample of 1,156 patients were obtained from the registry. Each patient was
identified by two variables: gender and whether or not the patient experienced chest pain for

more than 6 hours before treatment. The response variable of interest was minutes from

onset of ischemic chest pain to ECG (see Appendix I).
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Figure 29. The histogram of the B = 500 bootstrap estimators for the Irish Education
Transition data.
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Using this data those patients experiencing chest pain for more than 6 hours before

treatment were classified by gender. A Shapiro-Wilks test for normality of this data for the
131 males yielded a p value of 0.0001. The Shapiro-Wilks test for normality for the 69
females yielded a p value of 0.4358. Since the distribution for the minutes from onset of
ischemic chest pain to ECG for males cannot be considered to follow a normal distribution,
a nonparametric test was conducted to test differences in the median time (in minutes) from
onset of ischemic chest pain to ECG between males and females. The median time for males
is 508. While the median time for females is 565. A Median Two Sample Test using a
normal approximation yields a z-statistic of 1.93862 which is moderately significant at the
0.0525 level. Thus it appears reasonable to assume that the median time (in minutes) from
onset of ischemic chest pain to ECG differed significantly for male and females.

The bigger question might be to ask whether the distribution of the minutes from
onset of ischemic chest pain to ECG differs for males and females. To make this
comparison, we caculate the value of the overlapping coefficient. The OVL for the two
distributions was 0.79234, which suggests that the distributions may not be as distinct as
suggest by the simple comparison of medians (See Figures 30-33). The distribution of the
time from onset of ischemic chest pain to ECG for males tended to be left skewed. The time
from onset of ischemic chest pain to ECG for females tended to be concentrated near the
median time. Thus the difference between the two distributions is more prominent the left

tail of the distribution, while elsewhere the two distribitions tended to overlap.
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Figure 30. The kernel density estimator for the minutes from onset of ischemic chest pain
to ECG for male patients. The dotted line denotes the midpoints of the histogram of the data.
The solid line denotes the kernel density estimator for the data.
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Figure 31. The kernel density estimator for the minutes from onset of ischemic chest pain
for female patients. The dotted line denotes the midpoints of the histogram of the data. The
solid line denotes the kernel density estimator for the data.
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Figure 32. The kernel estimator of the overlap for the acute myocardial infarction data. The
solid line denotes the kernel density estimator for the minutes from onset of ischemic chest
pain for male patients. The dotted line denotes the kernel density estimator for the minutes

from onset of ischemic chest pain for female patients.
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Figure 33. The overlap for the acute myocardial infarction data. The solid line denotes the
midpoints for the histogram for the minutes from onset of ischemic chest pain for male
patients. The dotted line denotes the midpoints for the histogram for the minutes from onset
of ischemic chest pain for female patients.
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Bootstrap estimates of the variance of the estimator of the OVL were obtained using
Equation 34. Results for three different values of B are as follows:
ForB=100, Var,(OVL) = 0.0018893;
ForB=200, Vary (OVL) = 0.0015787;
For B=500, Var, (OVL) = 0.0016212.
It must be noted that the variance increased slightly from B=200 to B=500. Using the results
obtained when B = 500, the percentile method for constructing a bootstrap confidence
interval for OVL described previously was used to compute a confidence interval for OVL
using the 196 values. A 90% confidence interval for the true overlap between the time (in
minutes) from onset of ischemic chest pain to ECG for females versus males who
experienced chest pain for more than 6 hours before treatment, using the bootstrap
distribution constructed from the 500 OVL °, is given by
[F* 5310(0.05),1-" : 5;)10(0.95)] = (0.704385 , 0.846907) .
Figure 34 is a histogram of the 500 bootstrap estimates. A Shapiro-Wilks test for normality
was performed to test whether the empirical distribution of the bootstrap estimates can be
considered normal. The p-value for the test was 0.1258. A summary of the results from

the three examples is given in Appendix J.
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V. CONCLUSION

The analysis of the behavior of the kernel estimator of the overlapping coefficient
using the normal reference rule for the bandwidth for the naive kernel shows that the
estimator of the OVL is a consistent estimator for the true overlap between two distributions.

Also, the bootstrap variance estimator of the overlapping coefficient performs well as an
estimator of variance.

The primary advantage of the kernel estimator of the overlapping coefficient is its
distribution-free approach. In comparisons of the kernel estimator to the maximum
likelihood estimator of the overlapping coefficient in the Normal distributional setting, it is
seen that the kernel estimator should perform quite adequately in situations of more
immediate interest, where the maximum likelihood estimator of the OVL would be
inappropriate.

First, in evaluating the kernel density estimator using the normal reference rule, we
have shown that the estimator (although it is one of the more simple kernel estimators, thus
providing a rough estimator of the density of interest), tends to work adequately for all of
the distributional settings used in the study. As for the kernel estimator of the overlapping
coefficient, the estimator proves to be a biased estimator of the OVL where this bias is
related to the value of the OVL and the sample size. With the exception of identical
distributions, the mean bias was minimal. When sampling from two normal distributions the

mean absolute relative bias of the kernel estimator of the overlapping coefficient was 1.5%

80
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for n= 100 and 1.9% for n = 500; for two Weibull distributions the mean absolute relative
bias was approximately 1.8% for » = 100 and 500; and for two gamma distributions the
mean absolute relative bias was approximately 2.1% for n = 100 and 500. The estimator
performed well when sampling from two beta distributions and mixtures of various
distributions.

The bootstrap variance estimator also performed well with the exception of
sampling from two identical distributions. For the case of equal distributions, the bootstrap
estimator of variance greatly overestimated the variance with this bias being approximately
50% for each distributional-design-point-sample-size combination. For the case of distinct
distributions, when sampling from two normal distributions, the mean absolute relative bias
of the bootstrap estimator of the variance was 4.6% for n = 100 and 3.6% for n = 500; for
two Weibull distributions the mean absolute relative bias of the bootstrap variance was 6.5%
for n = 100 and 6.9% for n = 500; and for two gamma distributions the mean absolute
relative bias was 7.3% for n = 100 and 4.5% for n = 500. The bootstrap estimator performed
well when sampling from two beta distributions and mixtures of distributions.

As the examples indicate the kernel estimator of the OVL along with the bootstrap
estimator of variance are efficient when dealing with real problems of data analysis where
the distributional setting of the data is unknown. Also, it must be noted that the kernel
density estimator using the normal reference rule performed reasonably well in estimating
the densities of interest.

The properties of the kernel estimator of the OVL observed in the Monte Carlo

experiment provide realistic guidance to the actual use of the estimator. In particular, the
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bias of the kernel estimator of the OVL and the problem of estimating its variance accurately
circumscribe the use of the kernel estimator as an inferential statistic. Thus, the kernel
estimator can best be used as a check of the meaningfuiness of the differences in parameters
that are detected using various non-parametric methods. Thus, the OVL offers a technique
of exploring the meaningfulness of an apparent statistical difference between two
distributions.

The disadvantage of using the OVL as a measure of association noted in Gastwirth
(1975) is that the magnitude of the OVL does not indicate where the common probability
mass is located. However, Inman and Bradley (1989) observed the OVL has some
advantages compared to other measures of association. It offers a common approach for the
measurement of agreement between two distributions in any distributional setting. Thus the
OVL is less restrictive than other procedures keyed directly to distributional assumptions that
may or may not prove warranted in data analysis. Also the OVL is based on a simple, easily
comprehended concept of the association between two probability distributions. The OVL
has an alternative interpretation based on the classification of individuals into two
populations. Given the two distrtbutions of the populations of interest, the OVL can be said
to represent the sum of the conditional probabilities of misclassifying an individual into the
two populations. The classification rule is the assignment of an individual at any level of the
characteristic of concern to the population. In other words, the OVL is an indicator of the
difference between individuals in two populations or the two distributions in general.
Whether or not the OVL is useful in any situation depends of the meaning the OVL has in

the context of a specific problem.
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Further work in this area includes the development of conditional and/or
unconditional tests of the overlapping coefficient using the maximum likelihood estimator
of the reparameterized OVL. In addition, the development of tests for the OVL using the

nonparametric estimator of the overlapping coefficient provides an area for further research.
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APPENDIX A

FORTRAN SUBROUTINES USED IN THE MONTE CARLO SIMULATION
INVESTAGATION OF THE KERNEL ESTIMATOR OF THE OVL
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routi ANST
The subroutine MEANST (Miller, 1982) computes the mean and variance from a

simple random sample.
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SUBROUTINE MEANST(X,NX,U,V)
DOUBLE PRECISION X(1)
REAL U,V,SUM,SUMSQ
INTEGER NX,I

SUM=0.0D0
SUMSQ=0.0D0
DO 10 I=1NX
SUM=SUM+X(I)
SUMSQ=SUMSQ+X(I)*X(1)

10 CONTINUE
U=SUM/NX
V=((SUMSQ-SUM*SUM/NX)/(NX-1))
RETURN
END
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91
routine QV E
The subroutine OVCOEF calculates the overlapping coefficient for the distributions of
two sets of random variables by estimating the densities using the naive/Rosenblatt kernel

estimator:

Called subroutines: VSRTD (IMSL), JUMPS, and INTERYV (de Boor, 1978)
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ct#***#ttt***t**#*#t***#t****t*#**#*#***ﬁ#*t#*#*******#t#****#*tt**

c* *
c*  This routine is to calculate the overlapping coefficient for *
c* the distributions of two sets of random variables by estimating *
c* the densities and hence the OVC by means of the naive kernel *
c* estimator. *
c*  The arguments of the routine have the following meanings: *
c* *
c* s1()......double precision array of size at least nsl used to *
c* pass the data from sample 1 to the routine. On *
c* exit from the routine the array is sorted in *
c* ascending order. *
c* *
c*  nsl.......integer variable used to pass the number of elements *
c* in s1() to the routine. *
c* *
c* §2()......double precision array of size at least ns2 used to *
c* pass the data from sample 2 to the routine. On *
c* exit from the routine the array is sorted in *
c* ascending order. *
C* *
c*  ns2.....integer variable used to pass the number of elements *
c* in s2() to the routine. *
ct *
c*  work()....double precision array which must have diemnsion *
c* larger than 2(ns1+ns2). It is used internally in *
c* the calculation of OVC. *
c* *
c* h1,h2.....double precision variables which respectively are *
c* the step sizes for the kernel estimators for samples *
c* 1 and 2.

*
c* *
c* ovc.......double precision variable used to return the value *
c* of the overlapping coefficient *
c* *
c* Latest Revision: November 1996 *
c* *
c* Routines called: VSRTD, JUMPS , INTERV *
c* *
C******#*****************************************#*******t*******
c* *
c* CAVIAT RECEPTOR

*
c* *
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subroutine ovcoef{sl nsl,s2,ns2 work hl,h2 ovc)
double precision s1(1),s2(1),work(1),h1,h2,0ovc
integer nsl ns2

local variables

double precision zero,half,one,x,y,intlen,f1(0:1),£2(0:1)
double precision df1,df2

integer nptsl npts2,left,mflag,i,j
parameter(zero=0.0d0,half=0.5d0,one=1.0d0)

open(10,file='scratch’,status='unknown')
call vsrtd(sl,ns1)
call vsrtd(s2,ns2)
call jumps(s1,ns1,hl,work(1),nptsl)
do i=1,npts1
write(10,900) work(i)
end do
call jumps(s2,ns2,h2, work(npts1+1),npts2)
do i=1,npts2
write(10,900) work(npts1+i)
end do
nptsl=nptsl+npts2
call vsrtd(work,npts1)
do i=1,nptsl
write(10,900) work(i)
900 format(lh,l1pd15.7)
end do
close(10,status="keep")

change points for each ECDF now found and merged in the
work storage array work(). Next calculate the OVC by
summing the area under the smaller curve over each
subinterval.

Q00 0 00

ovc=zero
do i=1,nptsl-1

intlen=work(i+1)-work(i)

x=work(i)+half*intlen

do j=0,1
y=x+dfloat(2*j-1)*half*h1
call interv(s1,ns1,y,left,mflag)
select case(mflag)
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case(-1)
fl1(j)=zero
case(0)
if{y.eq.s1(ns1)) then
f1(j)=one
else
f1(j)=dfloat(left)/dfloat(ns1)
endif
case(1l)
f1(j)=one
end select
end do
df1=(f1(1)-f1(0))/h1

do j=0,1
y=x+dfloat(2*j-1)*half*h2
call interv(s2,ns2,y,left,mflag)
select case(mflag)
case(-1)
f2(j)=zero
case(0)
if(y.eq.s2(ns2)) then
f2(j)=one
else
f2(5)=dfloat(left)/dfloat(ns2)
endif
case(1)
f2(j)=one
end select
end do
df2=(f2(1)-f2(0))/h2

ovc=ovc+dminl(dfl,df2)*intlen
end do

return
end
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routine V

The subroutine VSRTD (IMSL) sorts a given array by the algebraic values.
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C IMSL ROUTINE NAME - VSRTD

C

C

C

C COMPUTER - IBM/SINGLE

C

C LATESTREVISION -JANUARY 1, 1978
C

C PURPOSE - SORTING OF ARRAYS BY ALGEBRAIC VALUE
C

C USAGE -CALL VSRTA (A,LA)

C

C

ARGUMENTS A - ONINPUT, A CONTAINS THE ARRAY TO BE
SORTED.

ON OUTPUT, A CONTAINS THE SORTED ARRAY.
LA -INPUT VARIABLE CONTAINING THE NUMBER OF
ELEMENTS IN THE ARRAY TO BE SORTED.

PRECISION/HARDWARE - DOUBLE/ALL
REQD. IMSL ROUTINES - NONE REQUIRED
NOTATION - INFORMATION ON SPECIAL NOTATION AND

CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP

COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED.
WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS
BEEN

APPLIED TO THIS CODE. NO OTHER WARRANTY,
EXPRESSED OR IMPLIED, IS APPLICABLE.

SUBROUTINE VSRTD (A,LA)
SPECIFICATIONS FOR ARGUMENTS

SEENeNeNoNoNoRoNoNoNoNoNoNo oo oo Xo o Ro o Ne)

INTEGER LA
DOUBLE PRECISION A(LA)
C SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER 10(21),IL(21),IM,J K, IJ.L
DOUBLE PRECISION T,TT,R
C FIRST EXECUTABLE STATEMENT
M=1
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I=1
J=LA
R=375D0
IF (LA.LE.0) RETURN

10 IF (I .EQ. J) GO TO 55

15 IF (R .GT. .5898437D0) GO TO 20
R=R+3.90625D-2

GO TO 25
20 R=R-.21875D0
25 K=I
C SELECT A CENTRAL ELEMENT OF THE
D=I+(J-I)*R
T=A(1J)
C IF FIRST ELEMENT OF ARRAY IS GREATER
C THAN T, INTERCHANGE WITH T
IF (A(I) .LE. T) GO TO 30
A(IN=AQ)
A(=T
T=A(J)
30 L=]
C [F LAST ELEMENT OF ARRAY IS LESS THAN
C T, INTERCHANGE WITH T
IF (A(J) .GE. T) GO TO 40
A(IN=A(J)
A(=T
T=A(IJ)
C IF FIRST ELEMENT OF ARRAY IS GREATER
C THAN T, INTERCHANGE WITH T
IF (A(I) .LE. T) GO TO 40
A(IN=A(T)
A(D=T
T=A(lJ)
GO TO 40
35 IF(A(L).EQ.A(K)) GO TO 40
TT=A(L)
A(L)=A(K)
AK)=TT
C FIND AN ELEMENT IN THE SECOND HALF OF
C THE ARRAY WHICH IS SMALLER THAN T
40 L=L-1
IF (A(L) .GT. T) GO TO 40
C FIND AN ELEMENT IN THE FIRST HALF OF
C THE ARRAY WHICH IS GREATER THAN T
45 K=K+1

IF (A(K) LT. T) GO TO 45
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C INTERCHANGE THESE ELEMENTS
IF (K .LE. L) GO TO 35
C SAVE UPPER AND LOWER SUBSCRIPTS OF
C THE ARRAY YET TO BE SORTED
IF (L-I .LE. J-K) GO TO 50
IL(M)=I
TUM)=L
1=K
=M+1
GO TO 60
50 IL(M)=K
TUM)=J
J=L
M=M+1
GO TO 60
C BEGIN AGAIN ON ANOTHER PORTION OF
C THE UNSORTED ARRAY
55 M=M-1
IF (M .EQ. 0) RETURN
[=IL(M)
JI=IUM)

60 IF (J-1 .GE. 11) GO TO 25
IF (I EQ. 1) GO TO 10
I=I-1

65 I=I+1
IF (1 .EQ. J) GO TO 55
T=A(I+1)

IF (A(I) .LE. T) GO TO 65
K=l
70 A(K+1)=A(K)
K=K-1
IF (T LT. A(K)) GO TO 70
A(K+1)=T
GO TO 65
END
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Subroutine JUMPS
The subroutine JUMPS locates the points at which the naive/Rosenblatt kernel

density estimator has jumps.

Called subroutines: INTERV
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CHEFRRRA R RRA R KRR R R A KRR R AR KRR KRR SRR KRR AR AR AR R
®

c*  The purpose of this routine is to locate the points at which

c* the naieve kemnel density estimator has jumps. The routine assumes
c* that the vector of observations passed to the routine are sorted

c* from smallest to largest. The arguments of the routine have the

c* following meanings:

c*
c* X().......double precision vector of observations upon which
c* the empirical distribution function is based. This
c* vector is on length nx and is assumed to be sorted
c* in ascending order.
c#
c* nx........ integer variable used to tell the routine how many
c* elements there are in the vector x().
C*
c* ho.... double precision variable used to define the step
c* size used by the naieve kernel estimator. This
c* routine assumes the formula
c* f(x)=[F(x+h/2) - F(x~-h/2))/h
C*
c*  wk()......double precision vector of length at least 2*nx
c* in which the routine will return the jump points
c* of the kernel estimator.
C*
c* npts......integer variable in which the routine will return
c* return the number of jump points in the vector wk()
c*
c* Latest Revision. November 1996
c*
c* Routines called: interval.for
c*
c*#*t**********#**t*##******tt**#*t**##*******t**#*t****t*t********
c*
c* CAVIAT RECEPTOR
c*
c***********#*****#****#****t****#*****t***#*#****t***t********#***
c
subroutine jumps(x,nx,h,wk,npts)
double precision x(1),wk(1),h
integer nx,npts
c
c local variables
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double precision lower,upper,halfh,dl,du

integer mflagl leftl mflagu,leftu

npts=0

halfh=0.5d0*h

upper=x(1)-halfh

lower=upper-h

call interv(x,nx,upper,leftu,mflagu)
call interv(x,nx,lower,leftl. mflagl)

start main loop

do while (lower.It.x(nx))
select case(mflagl)

case(-1)
di=x(1)-lower
case(0)
di=x(leftl+1)-lower
case(1)
stop TERMINAL ERROR ..lower larger than x(nx)'
end select
select case(mflagu)
case(-1)
du=x(1)-upper
case(0)
iflupper.lt.x(nx)) then
du=x(leftu+1)-upper
else
du=1.0d+200
endif
case(1)
du=1.0d+200
end select

ifldu .le. dl) then
if{imflagu.eq.-1) then
upper=x(1)
else
upper=x(leftu+1)
endif
npts=npts+1
if{npts.gt.2*nx) stop 'Terminal error...wk() too large'
wk(npts)=upper-halfh
lower=lower+du
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else
iflmflagl.eq.-1) then
lower=x(1)
else
lower=x(leftl+1)
endif
npts=npts+1
if(npts.gt.2*nx) stop ‘Terminal error...wk() too large'
wk(npts)=lower+halfh
upper=upper-+dl
endif
call interv(x,nx,upper,leftu,mflagu)
call interv(x,nx,lower,leftl, mflagl)

end do
c
c
return
end
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Subroutine INTERV
The subroutine INTERYV, from de Boor (1978), computes the interval between

consecutive jump points.
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subroutine interv ( xt, Ixt, x, left, mflag )
¢ from * a practical guide to splines * by C. de Boor
computes left = max(i: xt(i) .It. xt(Ixt) .and. xt(i) le.x) .

c
c**#*** l npu t * %k Kk Kk

c xt.....a real sequence, of length Ixt , assumed to be nondecreasing
¢ Ixt.....number of terms in the sequence xt .

¢ x.....the point whose location with respect to the sequence xt is
c to be determined.

c

c*****t out p ut kxR kkk

c left, mflag.... both integers, whose value is

c

1o-1if x lt. xt(1)

i 0 if xt(i) .le x It xt(i+1)

i 0 if xt(q) It x .eq. xt(i+1) .eq. xt(Ixt)

i1 if xt(i) It xt(i+1) .eq. xt(Ixt) .It. x

In particular, mflag =0 is the 'usual' case. mflag .ne. 0

indicates that x lies outside the CLOSED interval

xt(1) .le. y .le. xt(Ixt) . The asymmetric treatment of the

intervals is due to the decision to make all pp functions cont-
inuous from the right, but, by returning mflag = 0 even if

x = xt(Ixt), there is the option of having the computed pp function
continuous from the left at xt(Ixt) .

00 MOOOO0600aaon

c****** met h o d 12 222 2 ]
The program is designed to be efficient in the common situation that
it is called repeatedly, with x taken from an increasing or decrea-
sing sequence. This will happen, e.g., when a pp function is to be
graphed. The first guess for left is therefore taken to be the val-
ue returned at the previous call and stored in the lo ¢ al varia-
ble ilo . A first check ascertains that ilo .It. Ixt (this is nec-
essary since the present call may have nothing to do with the previ-
ous call). Then, if xt(ilo) .le. x .It. xt(ilo+1), we set left =
ilo and are done after just three comparisons.

Otherwise, we repeatedly double the difference istep = ihi - ilo
while also moving ilo and ihi in the direction of x , until

xt(ilo) .le. x .It. xt(ihi),

after which we use bisection to get, in addition, ilo+1 =ihi .
left = ilo is then returned.

(o2 o]

O 00000000000 O0

integer left,Ixt,mflag, ihi,ilo,istep,middle
double precision x,xt(Ixt)
save ilo
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data ilo /1/
ihi =ilo + 1
if (ihi .It. Ixt) go to 20
if (x .ge. xt(Ixt)) goto 110
if (Ixt .le. 1) go to 90
lo=Ixt -1
ihi =[xt
c
20 if (x .ge. xt(ihi)) go to 40
if (x .ge. xt(ilo)) go to 100
c
c **%* now x .It. xt(ilo) . decrease ilo to capture x .
istep = 1
31 ihi=ilo
ilo = ihi - istep
if (ilo .le. 1) go to 35
if (x .ge. xt(ilo)) go to 50
istep = istep*2
goto 31
35ilo=1
if (x .It. xt(1)) go to 90
go to 50
c **** now x .ge. xt(ihi) . increase ihi to capture x .
40 istep = 1
41 ilo=ihi
ihi = ilo + istep
if (ihi .ge. Ixt) go to 45
if (x .It. xt(ihi)) go to SO
istep = istep*2
go to 41
45 if (x .ge. xt(Ixt)) goto 110
ihi = Ixt
c
c **** now xt(ilo) .le. x .It. xt(ihi) . narrow the interval.
50 middle = (ilo + ihi)/2
if (middle .eq. ilo) go to 100
¢ note. it is assumed that middle = ilo in case ihi = ilo+1 .
if (x .It. xt(middle)) goto 53
ilo = middle
goto 50
53 ihi = middle
go to 50
c**** set output and return.
90 mflag = -1
left=1
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return
100 mflag =0
left =ilo
return
110 mflag = 1
if (x .eq. xt(Ixt)) mflag =0
left = Ixt
111 1f (left .eq. 1) return
left =left - 1
if (xt(left) It. xt(Ixt)) return
goto 111
end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

DESIGN POINTS
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Table B1

The Twelve N istributi i
mean 1 variance 1 mean 2 variance 2 OVL
0 1 0 1 1.00000
2 4 2 4 1.00000
0 1 3 5 0.31532
0 1 1 1 0.61708
0 1 0 3 0.74064
2 4 0 1 0.45339
1 1 0 3 0.63943
5 10 3 5 0.68421
2 4 3 5 0.80847
0 3 2 4 0.58875
1 1 3 5 0.45740
1 1 2 4 0.60993
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Table B2
lv for th

alpha 1 alpha 2 OVLI

1.5 2.5 0.69163957
1.5 20 0.83061704
1.5 4.0 0.40174569
1.5 3.5 0.48122526
25 20 0.85447962
2.5 4.0 0.65488521
25 35 0.75591698
20 40 0.52950408
20 3.5 0.62178956
40 3.5 0.89132310
1.5 1.5 1.00000000
4.0 40 1.00000000
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Table B3

The Twelve Wej istri Poi i
alpha 1 betal 1 alpha 1 beta 2 OVL
1.5 4.0 20 2.0 0.64209627
1.5 1.5 1.5 4.0 0.57323190
20 3.0 20 20 0.80280065
3.0 1.5 20 20 0.73724924
1.5 1.5 20 20 0.85696873
3.0 1.5 1.5 4.0 0.42141420
3.0 1.5 3.0 1.5 1.00000000
2.0 2.0 20 20 1.00000000
1.0 1.5 1.0 20 0.86784119
1.0 1.5 1.0 30 0.69097628
1.0 2.0 1.0 3.0 0.81489838
1.0 2.0 1.0 35 0.74739131
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Table B4

111

alpha 1 beta 1 alpha 2 beta 2 OVL

2 2 1 1 0.80755008
3 3 2 2 0.89266882
5 3 3 3 0.72247886
5 3 5 3 1.00000000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




APPENDIX C

RESULTS OF THE MONTE CARLO SIMULATION STUDY: THE KERNEL
ESTIMATOR OF THE OVL USING THE NORMAL REFERENCE RULE
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Table C1
esults of the Monte Carlo Simulation Study: The Kernel Estimator of OVL Ba ndependent Sample w ]
Distributions
Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias _ Ratio QVL (%) Variance (%)
p,=0,0% =1, p,=0and 0% =1, OVL = 1.000000
100 0.0013639 0.89156 0.00092446 -3.56655 0.6778014 -10.84404 47.53584
500  0.0002742 0.951053 0.00017599 - 3.68967 0.6418855 -4.89475 55.79102
#, =2, 0% =4, 1,=2 and 0%, =4, OVL = 1.000000
100  0.00139068 0.892119 0.00090138 -3.59327 0.6481556 -10.78806 54.28394
500  0.00025195 0.950718 0.00016714 -3.81198 0.6633796 -4.92824 50.74324
p, =2, 0% =4, 1,=3 and 0% = 5, OVL = 0.808473
100  0.00266908 0.796343 0.00287713 -0.22615 1.0779476 -1.50039 -7.23111
500 .000628652 0.811475 0.00064401 -0.11563 1.0721509 0.37132 - 6.72955
n,=0,0%=1,y,=0and 6% =3, OVL = 0.740641
100  0.00234662 0.724487 0.0025474 -3.20072 1.0855615 -2.18116 -7.88177
500  0.00054237 0.736323 0.00057393 -0.01802 1.0581726 -0.58297 -5.49746

(1able continues)
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mcan Variance Bias Ratio OVL (%) Variance (%)
=5, 0% =10, , =3 and 0?, = 5, OVL = 0.683020
100  0.00264340 0.674443 0.00289080 -0.15952 1.0935910 - 1.25575 - 8.55813
500 .000581291 0.688872 0.00058938 0.24105 1.0139174 0.85679 - 1.37264
w,=1,0%=1,pn,=0and 0>, =3, OVL =0.639430
100  0.00247203 0.631868 0.00253316 - 3.20072 1.0247273 - 1.18255 -2.41306
500  0.00537266 0.644058 0.00053212 0.20065 1.0682326 0.72388 - 6.38743
n,=0,0%=1,n,=1and 0% =1, OVL =0.617075
100 0.00316916 0.624577 0.00312376 0.13422 0.9678459 1.21568 3.32224
500 0.00061978 0.630828 0.00062559 0.54984 1.0093701 2.22868 - 0.92831
n=10%=1,p,=2and 0% =4, OVL = 0.609934
100 0.00235149 0.602939 0.00238396 -0.14328 1.0138089 - 1.14697 - 1.36209
500  0.00050378 0.613520 0.00054184 0.15406 1.0755569 0.58794 - 7.02491

(table continues)
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL () Variance (%)
i, =0,0% =3, 4,=2and 0%, =4, OVL = 0.588750
100 0.00280185 0.599083 0.00295912 0.18996 1.0561286 1.75518 - 5.31456
500  0.00059996 0.603017 0.00057122 0.59696 0.9823646 2.42336 1.79520
m=1,0%=1,n,=3and 0}, =5, OVL = 0.457402
100 0.00214170 0.460238 0.00226334 0.05961 1.0567947 0.61980 -5.37424
500  0.00044314 0.468227 0.00043951 0.51637 0.9920800 2.36671 -0.79832
1, =0,0%=1,1,=2and 0%, =4, OVL = 0.453388
100  0.00222756 0.459458 0.00214563 0.13103 0.9632191 1.33870 3.81854
500 0.00046184 0.466920 0.00044598 — 0.64075 0.9656596 2.98452 3.55616
pn,=0,0"=1,p,=3and 0*,=5 OVL =0.315318
100  0.00177039  0.325574 0.00178051 0.24305 1.0057169 3.25248 - 0.56844
500  0.00368558 0.332589 0.00037529 - 0.89152 1.0182619 5.47727 - 1.79344
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
a,=3.0,8,=15,a,=3.0and B,=1.5 OVL = 1.000000
100  0.00134596 0.895581 0.00086694 - 3.546364 0.6441050 -10.44185 55.25419
500 0.00026180 0.953311 0.00017337 - 3.545980 0.6621966 - 4.66893 51.01256
«,=20,8,=20,a,=2.0and ,=2.0, OVL = 1.000000
100  0.00135755 0.894509 0.00087026 - 3.575953 0.6410524 -10.54914 55.99348
500  0.00026572 0.952482 0.00017360 - 3.606483 0.6533218 - 4.75181 53.06393
o, =10,p,=15,a,=1.0and §,=2.0, OVL =0.867841
100  0.00180877 0.844289 0.00184481 - 0.548357 1.0227823 - 2.71393 - 2.22748
500 0.00049736 0.868469 0.00053016 - 0.027264 1.0659471 0.07234 - 6.18672
o,=158,=15 0,=2.0andp,=2.0, OVL = 0.856969
100  0.00175138 0.856243 0.00182789 -0.016976 1.0436842 - 0.08469 - 4.18558
500  0.00047459 0.888312 0.00050382 1.396392 1.0615973 3.65746 - 5.80233

(table continues)
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)

«,=10,8,=20,0a,=1.0and §,=3.0,OVL = 0.814898

100  0.00213969 0.796958 0.00234121 -0.370774 1.0941807 -2.20154 - 8.60742

500 0.00055286 0.817126 0.00057163 0.093170 1.0339482 2.73357 - 3.28335
a,=2.0,8,=3.0,a,=2.0and §,=2.0, OVL = 0.802801

100  0.00208043 0.797459 0.00229485 -0.111515 1.1030646 - 0.66543 - 9.34348

500 0.00052013 0.815774 0.00059749 0.530744 1.1487463 1.61601 -12.94858
o,=10,p,=20,a,=1.0and §,=3.5,OVL =0.747391

100  0.00234276 0.738898 0.00273571 - 0.162375 1.1677294 - 1.13634 -14.36373

500 0.00055134 0.751224 0.00056605 0.161107 1.0266937 0.51286 - 2.59997
o,=3.0,8,=15,ea,=2.0and §,=2.0, OVL =0.737249

100  0.00276862 0.725117 0.00313173 -0.216789 1.1311516 - 1.64556 -11.59452

500 0.00066599 0.735910 0.00071848 - 0.049951 1.0789804 - 0.18161 - 7.30600

(table continues)
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
o, =10,8,=15,a,=1.0and B,=3.0, OVL = 0.690976
100 0.00229675 0.692287 0.00234908 0.270444 1.0199242 0.18970 - 2.22748
500  0.00050670 0.699696 0.00052742 0.379681 1.0408907 1.26192 - 3.92843
a, =1.5,p,=4.0, a,=2.0and B, =2.0, OVL = 0.642096
100  0.00273173 0.624900 0.00287333 -0.320799 1.0518359 -2.67809 - 492813
500  0.00051202 0.633298 0.00060685 -0.357147 1.1852077 - 1.37021 -15.66601
o, =15p,=15a=15andf,=4.0,0VL =0.573232
100  0.00216456 0.581249 0.00234628 0.165510 1.0839562 1.39857 - 7.74535
500 0.00046681 0.587127 0.00045128 0.654070 0.9667304 2.42391 3.44146
o, =3.0,8,=1.5,a,=1.5and B, = 4.0, OVL = 0.421414
100  0.00234763 0.399402 0.00235331 -0.453758 1.0024209 - 5.22342 - 0.24151
500  0.00046199 0.404222 0.00050245 - 0.766997 1.0875798 - 4.07973 - 8.05273
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Table C3

Results of the Monte Carlo Simulation Study: The Kernel Estimator of OVL Based on Independent Samples from Two Gamma

Distributions

Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
a, =15 a,=15 OVL=1.000000
100 0.00135007 0.894091 0.00087504 -3.580311 0.6481425 -10.59094 54.28705
500  0.00027304 0.952504 0.00019297 -3.419126 0.7067401 - 4.74963 41.49474
a, =4.0,x,=4.0, OVL =1.000000
100 0.00132939 0.894121 0.00088684 - 3.555366 0.6671053 -10.58786 49.90137
500  0.00026669 0.951625 0.00017396 -3.667674 0.6522953 - 4.83745 53.30480
o, =4.0,a,=3.5, OVL=0.891323
100 0.00173601 0.857861 0.00195780 -0.756264 1.1277583 - 3.75425 -11.32852
500 0.00054142 0.890024 0.00056521 - 0.546267 1.0439343 - 0.14570 - 420853
@, =25,0,=2.0, OVL=0.854480
100 0.00202232 0.833808 0.00215044 - 0.445768 1.0633557 - 241919 - 5.95809
500  0.00060572 0.858150 0.00068738 0.139957 1.1356381 0.42958 -11.94378

(table continues)
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)

o =1.5,0,=2.0, OVL=0.830617
100 0.00220538 0.815459 0.00238677 -0.310276 1.0822461 - 1.82496 - 7.59958
500 0.00061676 0.835435 0.00062997 0.191967 1.0214133 0.58007 - 2.09644

o, =25, a,=3.5 OVL=0.755917
100  0.00258534 0.754192 0.00295801 -0.031714 1.1441486 -0.22818 -12.59877
500  0.00065256 0.763558 0.00061675 0.307690 0.9451338 1.01087 5.80513

a, = 1.5, a,=2.5, OVL=0.691640
100  0.00276211 0.693917 0.00317429 0.040421 1.1492239 0.32927 -12.98475
500  0.00063438 0.703530 0.00060286 0.484261 0.9503242 1.71913 5.22725

o, =25,0,=4.0, OVL =0.654885
100  0.00279217 0.661026 0.00315809 0.109273 1.1310523 0.93769 -11.58676
500  0.00063021} 0.668112 0.00059676 0.541438 0.9469238 2.01969 5.60512

(table continues)
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
o, =2.0,0,=3.5 OVL=0.621790
100  0.00278195 0.631951 0.00286496 0.189840 1.0298397 1.63419 - 2.89751
500 0.00061673 0.636882 0.00061714 0.607534 1.0006587 2.42727 - 0.06583
o, =20,a,=40, OVL=0.529504
100  0.00270272 0.542811 0.00267436 0.251306 0.9895098 2.51306 1.06014
500 0.00056157 0.546648 0.00059220 0.032377 1.0545355 3.23775 -5.17152
o, =15, a,=3.5 OVL=0481225
100 0.00255794 0.495070 0.00248876 0.277520 0.9729553 2.87698 2.77964
500  0.00054015 0.502054 0.00052604 0.908120 0.9738730 432818 2.68279
a,=15,0,=4.0, OVL =0.401746
100 0.00232771 0.419519 0.00222816 0.376528 0.9572334 4.42405 4.46773
500  0.00044278 0.423282 0.00043242 1.035634 0.9766022 5.36055 2.39541
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Table C4
esult. he Monte Carlo Simulati udy: The Kemel Estimat VI, Base ndepende iple B
Distributions
Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
P =95,q,=3,p,=5and B, =3, OVL = 1.000000
100 0.0013893 0.892312 0.00097386 - 3.450789 0.7009629 -10.76879 42.66090
500  0.0002776 0.952482 0.00018356 -3.507243 0.6613681 - 475180 51.20173
Pi=2,q,=2,p,=3and q, =3, OVL = 0.892669
100  0.00174045 0.861193 0.00160425 - 0.785844 0.9217418 - 3.52599 8.49025
500  .000480867 0.890796 0.00053912 - 0.080651 1.1211597 - 0.20978 -10.80664
P=2,9=2,p,=1andq,=1, OVL = 0.807550
100 0.00207295 0.805789 0.00215627 - 0.379486 1.0401970 - 0.21821 - 3.86437
500 0.00068300 0.782637 0.00071247 - 0.933357 1.0431455 - 3.08504 - 4.13609
P =5,9,=3,p,=3and q,=3,0VL =0.722479
100  0.00277571 0.717282 0.00328779 - 0.090635 1.1844861 - 0.71932 -15.57520
500 0.00065956 0.730782 0.00068633 0.316390 1.0440814 1.14919 - 4.22203

[44!



Table C5
Results of the Monte Carlo Simulation Study: The Kernel Estimator of OVL, Based on Independent Samples from a Standard Normal
Distribution and a Standard Cauchy Distribution
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
OVL =0.748835
100  0.00188767 0.731943 0.00197737 -0.379879 1.0475164 -2.25581 -4.53610
500  0.00044291 0.751965 0.00045762 - 0.146309 1.0332051 0.41797 -3.21380
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Table C6

Results of the Monte Carlo Simulation Study: The Kernel Estimator of OVL Based on Independent Samples from a Gamma

Distribution with e = 3 and a Chi Squared Distribution with 4 degrees of freedom

Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mecan Variance Bias Ratio OVL (%) Variance (%)
OVL =0.815890
100 0.00235402 0.781535 0.00264487 - 0.668016 1.1235552 -4.21073 -10.99681
500  0.00061259 0.795894 0.00063506 - 0.793482 1.0366929 - 245084 - 3.53942
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APPENDIX D

MONTE CARLO PROGRAM FOR THE MAXIMUM LIKELIHOOD ESTIMATOR
OF THE OVL
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OPTIONS LS=132 PAGENO=1 NODATE;
LIBNAME SIM V604 'A:\

DATA OUTPUT,
RUN,;

DATA STAT,

ARRAY B{500} B1-B500;
ARRAY C{500} C1-C500;

N1=500;
N2=500;
M=1000;
SEED1=85652;
SEED2=32247,

PI=ARCOS(-1);

DO =1 TO M;

DO J=LBOUND(B) TO HBOUND(B),
B(J) =0+SQRT(1)*NORMAL(SEED1);,
END;

DO J = LBOUND(C) TO HBOUND(C);
C(J) =1+ SQRT(1)*NORMAL(SEED2),
END;

MEANI1=MEAN(OF B1-B500);
MEAN2=MEAN(OF C1-C500);
VARIB=VAR(OF B1-B500);
VAR2B=VAR(OF C1-C500),

VARI=((VAR1B)*(N1-1))/N1;
VAR2=((VAR2B)*(N2-1))/N1;

KEEP MEAN1 MEAN2 VAR1 VAR2;

STD1=SQRT(VARI1);
STD2=SQRT(VAR?2);

DELTAH = (MEAN1-MEAN2)/STDI;
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GAMMAH=VAR2/VARI;
A = SQRT(DELTAH**2 + (GAMMAH-1)*LOG(GAMMAH)),

Z11 =(DELTAH - SQRT(GAMMAH)*A)/(GAMMAH-1),
Z22 = (SQRT(GAMMAH)*DELTAH + A)/(GAMMAH-1),
Z12 = (SQRT(GAMMAH)*DELTAH - A)/(GAMMAH-1),
Z21 = (DELTAH + SQRT(GAMMAH)*A)/(GAMMAH-1),

PHIZ11 = PROBNORM(Z11),
PHIZ22 = PROBNORM(Z22),
PHIZ12 = PROBNORM(Z12),
PHN.21 = PROBNORM(Z21),

OVL =PHIZ11 + PHIZ22 - PHIZ12 - PHIZ21 +1,

DZ11D = (1 - SQRT(GAMMAH)*DELTAH*A**(-1))/(GAMMAH-1);
DZ22D = (SQRT(GAMMAH)+DELTAH*A**(-1))/(GAMMAH-1),
DZ12D = (SQRT(GAMMAH)-DELTAH*A**(-1))/(GAMMAH-1);
DZ21D = (1 + SQRT(GAMMAH)*DELTAH*A**(-1))(GAMMAH-1);

DZ11G = ((2*SQRT(GAMMAH)*A - 2*DELTAH) -
(GAMMAH**(-1/2)*A*(GAMMAH-1)+ SQRT(GAMMAH)*A**(-1)*
((GAMMAH-1)/GAMMAH) + LOG(GAMMAH))*(GAMMAH-1)))/(2*(GAMMAH
-1)**2),

DZ22G = (GAMMAH**(-1/2)*(GAMMAH-1)*DELTAH +
A**(-1)*(((GAMMAH-1)/GAMMAH) + LOG(GAMMAH))*
(GAMMAH-1)) - (2*SQRT(GAMMAH)*DELTAH + 2 * A))/(2*(GAMMAH -1)**2),

DZ12G = ((GAMMAH**(-1/2)*(GAMMARH-1)*DELTAH -
A**(-1)*((GAMMAH-1)/GAMMAH) + LOG(GAMMAH))*
(GAMMAH-1)) - (2*SQRT(GAMMAH)*DELTAH - 2 * A))/(2*(GAMMAH -1)**2);

DZ21G = ((-2*SQRT(GAMMAH)*A - 2*DELTAH) +
(GAMMAH**(-1/2)* A*(GAMMAH-1)+ SQRT(GAMMAH)*A**(-1)*
(((GAMMAH-1)/GAMMAH) + LOG(GAMMAH))*(GAMMAH-1)))/(2*(GAMMAH
-1)**2),

VARG = (2*N1**2*(N2-1)*(N 1+N2-4))/(N2**2*(N1-3)**2*(N1-5)) *GAMMAH**2;

Z1=(N1-2)/2;
Z2=(N1-1)/2;

GAMZ11 =EXP(-Z1/3)*EXP(-Z1/3)*EXP(-Z1/3);,
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GAMZ2A = Z1**((Z1-(1/2))/3),
GAMZ2B = Z1**((Z1-(1/2))/3),
GAMZ2C = Z1**((Z1-(1/2))/3),
GAMZ3 = (2*3.141592654)**(1/2),

GAMZ4 = (1 + 1/(12*Z1) + 1/(288*Z1**2) - 139/(51840*Z1**3) -
571/(2488320*Z1**4)),

GAMZ12 = EXP(-Z2/3)*EXP(-Z2/3)*EXP(-22/3),
GAMZ22A= Z2**((Z2-(1/2))/3),

GAMZ22B= Z22**((Z2-(1/2))/3),

GAMZ22C= Z2**((Z2-(1/2))/3),

GAMZ32 = (2*3.141592654)**(1/2),

GAMZ42 = (1 + 1/(12*Z2) + 1/(288*Z2**2) - 139/(51840*Z2**3) -
571/(2488320*Z2**4));,

GAM1=GAMZ11/GAMZ12;

GAMZA = GAMZ2A/GAMZ22A,

GAM2B = GAMZ2B/GAMZ22B;

GAM2C = GAMZ2C/GAMZ22C,;

GAM3 = GAMZ3/GAMZ32;

GAM4 = GAMZ4/GAMZ42;

GAM = GAMI*GAM2A*GAM2B*GAM2C*GAM3*GAMY,

VARD = (1 + GAMMAH*(N1/N2))/(N1-3) + DELTAH**2 *(N1/(N1-3) -
((SQRT(N1/2)*(GAM))**2));

Z1=(N1-4)/2;
Z2=(N1-1)/2;

GAMZ11 = EXP(-Z1/3)*EXP(-Z1/3)*EXP(-Z1/3);
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GAMZ2A =Z1**((Z1-(1/2))/3),
GAMZ2B = Z1**((Z1-(1/2))/3),
GAMZ2C = Z1**((Z1-(1/2))/3),
GAMZ3 = (2*3.141592654)**(1/2),

GAMZ4 = (1 + 1/(12*Z1) + 1/(288*Z1%*2) - 139/(51840*Z1**3) -
571/(2488320*Z1**4)),

GAMZ12 = EXP(-22/3)*EXP(-Z2/3)*EXP(-Z2/3);,
GAMZ22A= Z2**((Z2-(1/2))/3),

GAMZ22B= Z2**((Z22-(1/2))/3);

GAMZ22C= Z2**((Z2-(1/2))/3);

GAMZ32 = (2*3.141592654)**(1/2),

GAMZA42 = (1 + 1/(12*Z2) + 1/(288*Z2**2) - 139/(51840*Z2**3) -
571/(2488320*Z2**4));

GAM1=GAMZ11/GAMZ12,

GAM2A = GAMZ2A/GAMZ22A;

GAM2B = GAMZ2B/GAMZ22B,

GAM2C = GAMZ2C/GAMZ22C,

GAM3 = GAMZ3/GAMZ32,

GAM4 = GAMZ4/GAMZ42,

GAM2 = GAM1*GAM2A*GAM2B*GAM2C*GAM3*GAMY,
COVDG = DELTAH*GAMMAH*(N2-1)/N2*((N1/2)**(3/2)*(GAM2))*(1/(N1-3));
PHZ11=(EXP(-Z11**2/2))/SQRT(2*PI),
PHZ12=(EXP(-Z12**2/2))/SQRT(2*PI);
PHZ21=(EXP(-Z21**2/2))/SQRT(2*PI);
PHZ22=(EXP(-Z22**2/2))/SQRT(2*PI);

VAROVLA = (PHZ11*DZ11D + PHZ22*DZ22D - PHZ12*DZ12D - PHZ21*DZ21D);
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VAROVLB = (PHZ11*DZ11G + PHZ22*DZ22G - PHZ12*DZ12G - PHZ21*DZ21G),
VAROVLC = VAROVLA*VAROVLB;

VAROVL = VAROVLA**2*VARD + VAROVLB**2*VARG +
2*VAROVLC*COVDG;

KEEP J GAMMAH DELTAH OVL VAROVL,;

OUTPUT,; END;

PROC MEANS NOPRINT MEAN VAR ; VAR OVL VAROVL; OUTPUT
OUT=STAT2 MEAN=MCOVL PREDVAR VAR=MCOVLVAR VARVAR;

DATA STAT]I,

DELTAH = 0,
GAMMAH=1,
N1=500;
N2=500;

A = SQRT(DELTAH**2 + (GAMMAH-1)*LOG(GAMMAH));
Z11 = (DELTAH - SQRT(GAMMAH)*A)/(GAMMAH-1);

Z22 = (SQRT(GAMMAH)*DELTAH + A)/(GAMMAH-1);
Z12 = (SQRT(GAMMAH)*DELTAH - A)/(GAMMAH-1),

Z21 = (DELTAH + SQRT(GAMMAH)*A)/(GAMMAH-1);
PHIZ11 = PROBNORM(Z11);

PHIZ22 = PROBNORM(Z22);

PHIZ12 = PROBNORM(Z12);

PHIZ21 = PROBNORM(Z21);

TOVL =PHIZ11 + PHIZ22 - PHIZ12 - PHIZ21 +1;
KEEP TOVL N1 DELTAH GAMMAH,

DATA A,

MERGE STAT1 STAT2;

KEEP MCOVL MCOVLVAR TOVL PREDVAR N1 DELTAH GAMMAH;

DATA STAT3;
SET A;
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STDBS = (MCOVL - TOVL)/(SQRT(MCOVLVARY)),
VARATIO = (PREDVAR/MCOVLVAR),

STDBSV =1 - VARATIO;

RLBIASOL = (MCOVL-TOVL)/TOVL,
RLBIASV = (PREDVAR-MCOVLVAR)MCOVLVAR;

DATA OUTPUT; SET OUTPUT STAT3; RUN;

DATA OUTPUT; SET OUTPUT,; IF N1=. THEN DELETE; RUN,
PROC APPEND BASE=SIM.OUTPUT DATA=OUTPUT,

RUN;
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APPENDIX E

RESULTS OF THE MONTE CARLO SIMULATION STUDY: MAXIMUM
LIKELIHOOD ESTIMATOR OF OVL
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Table E1

Results of the Monte Carlo Simulation Study: Maximum-Likelihood Estimator of QVL, Based on Independent Samples from Two

Normal Distributions

Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
y=2,0% =4,p,=3and 6%,=5, OVL = 0.808473
100 0.00300140 0.805266 0.00282875 - 0.06031 1.0610348 - 0.39670 6.10348
500  0.00060004 0.807427 0.00062293 - 0.04192 0.9632467 -0.12941 -3.67534
B, =0,0%=1,,=0and 6*,=3, OVL = 0.740641
100  0.00217388 0.737767 0.00193680 - 0.06532 1.1224109 - 0.38813 12.24110
500  0.00040968 0.739943 0.00039606 -0.03510 1.0343996 - 0.09431 3.43996
i, =5, 0% = 10, p, =3 and 0%, = 5, OVL = 0.683020
100  0.00258851 0.674511 0.00261027 -0.16654 0.9916621 - 1.24575 - 0.83379
500  0.00050871 0.681301 0.00050871 - 0.07541 0.9790895 -0.25165 - 2,09105
i, =1, a% =1, 1,=0and 0%, =3, OVL = 0.639430
100 0.00215594 0.631886 0.00195512 - 0.17061 1.1027150 - 1.17980 10.27150
500  0.00041049 0.637845 0.00043590 - 0.07591 0.9417093 - 0.24786 - 5.82908

(table continues) o
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Relative Relative
Predicted Monte Carlo Standard Variance Bias Bias
N Variance Mean Variance Bias Ratio OVL (%) Variance (%)
n=10%=1,n,=2and 0, =4, OVL = 0.609934
160 0.00189284 0.607985 0.00179963 - 0.04594 1.0517945 -0.31955 5.17945
500  0.00035856 0.609155 0.00033517 - 0.04259 1.0697860 -0.12784 6.97861
u,=0,0%=3,1,=2and 0%, =4, OVL = 0.588750
100 0.00275533 0.587354 0.00262018 - 0.02721 1.0515834 -0.23710 5.15834
500  0.00054066 0.587747 0.00056857 - 0.04206 0.9509089 -0.17035 -4.90911
n=104=1p,=3and 6% =5, OVL = 0.457402
100  0.00169228 0.455049 0.00162205 - 0.05843 1.0432971 -0.51445 432971
500  0.00032703 0.456442 0.00032307 - 0.20982 1.0122758 - 0.20982 1.22759
i, =0,0%=1,p,=2and 0?,=4, OVL = 0.453388
100 0.00189513 0.450932 0.00181286  -0.05768 1.0453843 - 0.54170 4.53843
500  0.00037053 0.452333 0.00037433 - 0.05452 0.9898433 - 0.23266 - 1.01567

(table continues)
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APPENDIX F

STANDARD BIAS AND RELATIVE INEFFICIENCY OF THE KERNEL
ESTIMATOR OF OVL
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Table F1

Standard Relative
N Bias Inefficiency
U, =2, 0% =4,u,=3and 0’, =5, OVL = 0.808473
100 0.2018649 1.0171030
500  0.1202793 1.0819996
u, =0, ¢% =1, u,=0and 0% =3, OVL = 0.740641
100  -0.3670605 1.3152623
500 -0.2169712 1.4490980
w, =5, 0% = 10, u, =3 and ¢%, = 5, OVL = 0.683020
100 -0.1678776 1.1074716
500  0.2567309 1.1343393
u,=1,0%=1,u,=0and 6%, =3, OVL = 0.639430
100 -0.1710212 1.2956545
500  0.2216664 1.2207387
u,=1,6% =1, u,=2and 6% =4, OVL = 0.609934
100 -0.1648907 1.3246945
500  0.1958744 1.6166125
w,=1,0%=1,u,=3 and 0%, =5, OVL = 0.457402
100 0.2018649 1.1293575
500  0.5983299 1.0046608
u,=1,0%=1,u,=3 and 0%, =5, OVL = 0.457402
100  0.0704164 1.3953577
500  0.6022539 1.3439440
(table continues)
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Standard Relative
N Bias Inefficiency
u,=0,0%=1,u,=2and 0%, =4, OVL = 0.453388
100 0.1425629 1.1835608
500 0.6994146 1.1914087
u, =1, 0% = 1,u,=3and 0%, =5, OVL = 0.457402
100 0.2689872 1.2247620
50 0.9796321 1.2074191
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APPENDIX G

MODELING OF THE BIAS OF THE KERNEL ESTIMATOR OF THE OVL
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Table G1

Source df SS MS F-Value
N 1 0.00279811 0.00279811 7.89*
MCOVL® 1 0.04213873 0.04213873 120.14**
MCOVL? 1 0.00652833 0.00652833 18.61**
Error 20 0.00701516 0.00035076

Total 23 0.94532505

*p<0.05 **p<0.01

Rsquare = 0.992579

Parameter Estimates

Parameter T for HO:

Variable Estimate Standard Error Parameter = 0
Intercept 0.208030872 0.02053459 10.13**
N(Sample Size) - 0.000054292 0.00001922 - 2.82¢
MCOVL? 1.426573818 0.13015396 10.96**
MCOVL? -0.530712853 0.12301619 - 431%*
*p<0.05 **p < 0.01
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Table G2

100 031532 0.32557 0.33550 6.401 3.253 - 3.148
500 0.31532 0.33259 0.31916 1.219 5.477 4.259
100 045339 0.45946  0.45228 -0.245 1.339 1.094
500 045339 046692 043787 -3.422 2.985 - 0.437
100 0.45740 046024 0.45304 -0.954 0.620 - 0.334
500 0.45740 0.46823 043916 -3.990 2.367 - 1.621
100 0.58875 0.59908  0.60049 1.994 1.755 - 0.239
500 0.58875 0.60302 0.58326 -0.933 2423 1.490
100 0.60993 0.60294  0.60488 -0.828 - 1.147 0319
500 0.60993 0.61352  0.59530 -2.400 0.588 - 1.812
100 0.61708 0.62458  0.62980 2.062 1.216 - 0.846
500 061708 0.63083  0.61535 -0.279 2.229 1.950
100  0.63943 0.63187  0.63828 -0.179 -1.183 1.004
500 0.63943 0.64406  0.63086 - 1.341 0.072 - 0.617
100 0.68302 0.67444  0.68870 0.831 - 1.256 0.425
500 0.68302 0.68887  0.68437 0.197 0.857 0.660
100 0.74064 0.72449  0.74957 1.206 -2.181 0.976
500 0.74064 0.73632  0.74246 0.246 -0.583 0.337
100 0.80847 0.79634  0.83927 3.809 - 1.500 - 2.308
500 0.80847 0.81148  0.83669 3.490 0.300 - 3118
100 1.00000 0.89157  0.96046 -3.954 -10.843 6.889
100 1.00000 0.89212 0.96116 -3.884 -10.788 6.904
500 1.00000 0.95105 1.01469 1.469 - 4.895 3.426
500 1.00000 0.95072 1.01426 1.426 - 4928 3.884
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Table G3
Model: Two Weibull Distributi
Source df SS MS F Value
N 1 0.00483966 0.00483966 7.45*
MCOVL*? 1 0.60604026 0.60604026 032.78*%*
Error 21 0.01364394 0.00064971
Total 23 0.61968420

*p<0.05 **n<0.01
Rsquare = 0.977982
Parameter Estimates

Parameter T for HO:

Variable Estimate Standard Error Parameter =0
Intercept 0.3310906562 0.01696710 19.51**
N(Sample Size) -0.0000712874 0.00002612 - 2.73¢
MCOVL? 0.7794010304 0.02551940 30.54**

*p<005 **p<0.0l
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Table G4

100 0.42141 039940  0.44829 6.378 ~ 5.223 - 1155
500 0.42141 040422  0.42280 0.328 - 4.080 3.751
100 0.57323 0.58125  0.58728 2.451 1.399 - 1.053
500 0.57323 0.58713  0.56412 ~ 1.590 2.424 0.835
100 0.64210 0.62490  0.62832 - 2.146 - 2.678 0.532
500 0.64210 0.63330 0.60804 - 5.304 - 1.370 - 3.934
100 0.69098 0.69229  0.69750 0.944 0.190 - 0.754
500 0.69098 0.69970 0.67702 - 2.020 1.262 - 0.758
100 0.73725 0.72512  0.73377 - 0472 - 1.646 1.173
500 073725 0.73591 0.71754 - 2673 - 0.182 - 2491
100 0.74739 0.73890  0.74949 0.281 - 1.136 0.855
500 0.74739 075122  0.73529 - 1.619 0.513 - 1.106
100 0.80280 0.79746  0.81961 2.094 0.665 - 1.429
500 0.80280 081577 0.81413 1.411 1.616 0.205
100  0.81490 0.79696  0.81899 0.502 - 2.202 1.699
500 0.81490 0.81713  0.81585 0.117 0.273 0.157
100 0.85697 0.85624  0.89538 4.482 - 0.085 - 4398
500 0.85697 0.88831 091047 6.243 3.657 - 2.586
100 0.86784 084429 0.87954 1.348 -2714 1.366
500 0.86784 0.86847  0.88330 1.781 0.072 - 1.709
100  1.00000 0.89558  0.94909 - 5.091 -10.442 5.351
100 1.00000 0.89451  0.94760 - 5.240 -10.549 5.309
500 1.00000 0.95331 1.00377 0.377 - 4.669 4.292
500 1.00000 0.95248  1.00254 0.254 - 4752 4.498
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Table G5

Model: Two G Distributi
Source df SS MS F-Value
N 1 0.00463796 0.00463796 9.94**
MCOVL? 1 0.84338585 0.84338585 1806.76**
Error 21 0.00980266 0.00046679
Total 23 0.85318851

*p<0.05 **p<0.01
Rsquare = 0.988511
Parameter Estimates

Parameter T for HO:

Variable Estimate Standard Error Parameter =0
Intercept 0.2963542028 0.01286178 23.04**
N(Sample Size) - 0.0000696988 0.00002211 - 3.15**
MCOVL? 0.8321760157 0.01957782 42 51**

*p<0.05 **n <0.01
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Table G6

100 040175 041952 0.43584 8.488 4.424 - 4.064
500 040175 0.42328 0.41060 2.205 5.361 3.156
100 048123 0.49507 0.49335 2519 2.877 0.358
500 048123 0.50205 0.47126 - 2.070 4328 2.258
100 052950 0.54281  0.53458 0.959 2513 1.555
500 0.52950 0.54665 0.51018 - 3.650 3.238 - 0412
100 062179 0.63195 0.62172 - 0.011 1.634 1.624
500 0.62179 0.63688  0.59905 - 3.657 2.427 - 1.230
100 0.65489 0.66103  0.65301 - 0.287 0.938 0.651
500 0.65485 0.66811  0.63297 - 3.347 2.020 - 1.327
100 069164 0.69392  0.69009 - 0.224 0.329 0.106
500 0.69164 0.70353 0.67339 - 2.638 1.719 - 0919
100 0.75592 0.75419  0.76273 0.904 - 0.228 - 0.673
500 0.75592 0.76356  0.74668 - 1.222 1.011 - 0.211
100 083062 0.81546 0.84276 1.462 - 1.825 0.363
500 0.83062 0.83544  0.84232 1.409 0.580 - 0.829
100 0.85448 0.83381 0.86794 1.576 - 2419 0.844
500 0.85448 0.85815 0.87434 2.324 0.430 - 1.894
100 0.89132 0.85786  0.90180 1.176 - 3.754 2.578
500 0.89132 0.89002  0.92071 3.297 - 0.146 - 3.151
100  1.00000 0.89409 0.95462 - 4.534 -10.591 6.053
100  1.00000 0.89412 0.95467 - 4533 -10.588 6.055
500 1.00000 095250 1.01651 1.651 - 4750 3.099
500 1.00000 0.95163 1.01512 1.512 - 4.837 3.326
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APPENDIX H

RESULTS OF THE MONTE CARLO SIMULATION STUDY: KERNEL
ESTIMATOR OF THE OVL USING THE ALTERNATIVE REFERENCE RULE
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Table H1
its of the M Carlo Simulation Study: The Kemnel Esti the OVL Usi
The Alternative Normal Reference Rule
Relative
Monte Carlo Standard Bias
N Mean Variance Bias OVL (%)
u,=0,0%=1,pu,=0and 0%, =1, OVL = 1.000000
100 0.936678 0.00071107  -2.37458 - 6.33202
500 0971878 0.00012386  -2.52692 - 2.81223
u, =2, 0% =4,u,=2and 0%, =4, OVL = 1.000000
100  0.935638 0.00069486 - 2.44163 - 6.43620
500 0.971051 0.00015674  -2.31229 - 2.89488
=2, 04 =4, u,=3and 6%, =5, OVL = 0.808473
100  0.851653 0.00142078 1.14557 5.34096
500  0.862247 0.00030772 3.08129 6.68568
u =0, 6% =1, u,=0and 0%, =3, OVL = 0.740641
100  0.725801 0.00225026  -0.31284 - 2.00371
500  0.728332 0.00044842  -0.58129 - 1.66198
u, =5, 0%, =10, p, =3 and 0, =5, OVL = 0.683020
100  0.742837 0.00165764 1.46920 8.75774
500 0.751072 0.00033362 3.72580 9.96348
,=1,0%=1,u,=0and 0%, =3, OVL = 0.639430
100 0.677575 0.00166378 0.93518 5.96553
500 0.681896 0.00034403 2.28953 6.64133
(table continues)
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Relative
Monte Carlo Standard Bias
N Mean Variance Bias OVL (%)

u,=0,0%=1,p,=1and 0%, =1,0VL =0.617075

100  0.730267 0.00158729 2.84110 18.34330

500 0.732179 0.00026977 8.86412 18.65320
u, =1, 0% =1, p,=2and 0% =4, OVL = 0.609934

100  0.632031 0.00165720 0.54280 3.62276

500 0.632441 0.00031625 1.26562 3.69006
p,=0,0% =3, u,=2and 6% =4, OVL = 0.588750

100 0.703841 0.00149100 2.98060 19.54842

500 0.708157 0.00030745 6.59874 20.281578
,=1,0%=1,p,=3and 0% =35, OVL = 0.457402

100  0.528375 0.00118608 2.06081 15.51662

500  0.533580 0.00024381 4 87868 16.65445
u,=0,0%=1,p,=2and 0%, =4, OVL = 0.453388

100 0.547419 0.00119628 2.71865 20.73957

500 0.551347 0.00024535 6.25392 21.60599
u,=0,04=1,pu,=3and 0%,=5 OVL =0.315318

100  0.440854 0.00101119 3.94792 39.81402

500  0.442932 0.00020726 8.86412 40.47132
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APPENDIX I

DATA USED FOR EXAMPLES OF THE KERNEL ESTIMATOR OF THE OVL
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Table |
jthm of Estimg h f Alabama Farn Y in 850
Farmers Who Persisted to 1860 (N =317)
421416 421416 425323 4.56381 4.64991 4.73280 4.90533 5.07689 5.11912 5.20518
5.40509 5.40509 5.42741 5.44254 5.44473 5.45063 5.4919] 5.53405 5.53529 5.53899
5.60263 5.60263 5.60400 5.64703 5.69217 5.73735 5.74271 5.77358 5.77829 5.80419
5.82005 5.82005 5.82648 5.83656 5.84276 5.84852 5.88618 5.89659 5.90832 5.90980
5.94187 594187 5.97209 5.97529 5.98740 6.00174 6.01016 6.02725 6.03722 6.04100
6.05349 6.05349 6.06085 6.08041 6.10489 6.11453 6.17563 6.18173 6.18475 6.19665
6.20839 6.20839 6.22106 6.22539 6.22588 6.23464 6.25085 6.25871 6.2594} 6.26258
6.29788 6.29788 6.30155 6.30818 6.32650 6.33811 6.34261 6.34819 6.35085 6.35309
6.36389 6.36389 6.38295 6.39990 6.40032 6.40186 6.41668 6.42937 6.44204 6.45252
6.46440 6.46440 6.46913 6.48949 6.49052 6.49404 6.52893 6.56313 6.56939 6.58554
6.62493 6.62493 6.63224 6.63248 6.64069 6.65178 .68081 6.68311 6.68788 6.69689
6.70338 6.70338 6.72479 6.74065 6.74329 6.75940 6.76556 6.79926 6.80825 6.81386
6.84763 6.84763 6.86236 6.89961 691177 6.92975 6.93548 6.93619 6.93809 6.94488
(table continues)
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Farmers Who Persisted to 1860 (N = 317)

9.38209 9.38209 9.39970 9.40017 9.44978 9.47143 9.47947 9.48789 9.61620 9.63652
9.69919  9.69919  9.72719  9.73754 974478  9.74801 9.75506  9.77395  9.79344  9.83127
984009  9.84009 9.85847 987027 994377 995733 999520 1001175 10.04653 10.06632
10.11141  10.11141 1012518 10.16019 10.17805 10.22034 10.26689 10.29022 10.45151 10.55801
10.68460 10.68460 10.78461 10.84595 10.85365 10.92429 11.09359
Farmers Who Did Not Persist to 1869 (N=284)
3.22865  3.22865  3.34510 347189 381473 393256  4.21257 424103 426971  4.40593
4.48537 448537 453567 462215 492249 501930 508780  5.17036 5.17768  5.18133
5.22241 5.22241 5.22378 522744 5.22862 5.26090 5.26587 5.27674 5.28179 5.30354
535598 535598  S38269  5.4276) 5.4693) 547113 549400 550709 552812  5.53407
5.55836  5.55836  5.56169  5.59500  5.60516  5.65823 567502 569517  5.69685  5.70189
570704 570704  5.71368 571909 577522  5.78250  5.78418  5.80651 581317  5.84040
5.87017 5.87017 5.93218 5.93701 5.95070 5.95475 5.95720 5.96532 5.98925 5.99823
(1able continues)
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Male students' Drumcondra Verbal Reasoning Test scores (N =231)

71 72 72 73 74 76 78 78 79 79
80 80 81 81 81 82 82 83 83 84
84 84 84 84 84 85 85 85 86 86
86 86 86 87 87 87 83 88 88 88
88 89 89 90 90 90 90 90 90 90
90 90 91 91 91 91 92 92 92 92
93 93 93 93 94 94 94 95 95 95
95 95 96 96 96 96 97 97 97 98
98 98 98 99 99 99 99 99 99 99
99 100 100 100 100 101 101 101 101 101
101 101 102 102 102 102 103 103 103 103
103 103 103 103 103 104 104 104 104 104
104 104 105 105 106 106 106 106 106 107
107 107 107 107 107 107 108 108 108 108
108 108 108 109 109 109 109 109 109 109
110 110 110 110 110 111 112 112 112 112
113 113 113 113 113 113 113 114 114 114
114 114 114 114 114 115 115 115 116 116
116 117 117 117 117 118 118 118 119 119
120 120 121 121 121 121 122 122 122 123
123 123 123 123 124 124 124 125 125 125
125 125 126 126 126 127 127 127 127 129
129 129 130 131 132 134 135 136 136 137
140
(table continues)
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Female students' Drumcondra Verbal Reasoning Test scores (N = 238)

72
81
84
86
89
90
91
93
9%
97
99
100
101
102
103
104
106
108
109

72
81
85
86
89
90
92
93
94
97
99
100
101
102
104
104
106
108
109
111
114
115
118
123

73
81
85
86
89
91
92
93
94
97
99
100
101
102
104
104
106
108
109
111
114
115
119
123

73
82
85
86
90
91
92
93
94
97
99
100
101
103
104
105
106
108
109
111
114
116
119
127

75
82
85
87
90
91
92
93
94
97
99
100
102
103
104
105
106
109
110
111
114
116
120
127

75
83
85
87
90
91
92
94
95
97
99
100
102
103
104
105
107
109
110
111
114
116
120
127

77
83
85
88
90
91
93
94
96
98
100
100
102
103
104
105
107
109
110
112
114
117
120
134

78
84
85
88
90
91
93
94
96
98
100
100
102
103
104
105
107
109
110
112
114
117

135

78
84
86
88
90
91
93
94
96
98
100
100
102
103
104
105
107
109
111
112
114
117
122

81
84
86
89
90
91
93
94
97
99
100
101
102
103
104
106
107
109
111
113
115
117
123
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Table

3

157

Male Patients who experienced chest pain for more than
6 hours before treatment (N = 131)

17 17 51 58 71 78 88 100 117 180
205 251 253 297 316 321 325 333 333 343
350 35§ 375 387 389 394 394 395 397 403
407 416 416 423 425 425 431 432 443 444
446 450 450 453 455 459 461 465 470 471
471 474 474 478 478 480 480 485 490 492
493 497 499 500 503 508 512 513 517 520
521 525 531 538 540 549 550 559 562 564
568 569 570 576 576 571 577 577 582 597
599 603 616 617 624 624 626 630 634 636
637 641 648 649 655 659 667 670 674 675
676 692 696 700 702 712 720 720 725 728
733 751 762 772 800 808 840 900 1305 1377
1435

Female Patients who experienced chest pain for more than 6 hours before treatment

(N = 69)

115 213 258 303 370 380 386 401 408 414
434 435 443 446 450 472 473 475 476 491
495 501 505 505 514 516 522 530 530 531
535 544 549 556 565 566 570 570 570 571
572 577 583 587 590 595 604 617 633 635
635 661 664 684 689 692 693 696 697 700
711 716 717 720 729 745 750 769 870
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APPENDIX J

RESULTS OF THE EXAMPLES OF THE KERNEL ESTIMATOR OF THE OVL
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Example 1 Example 2 Example 3
n 317 231 131
n, 284 238 69
median, 7.34225 104 508
median, 6.80445 100.5 565
oVL 0.87714 0.85528 0.79234
Var(OVL) B=100 0.000919 0.000874 0.0018893
Var(OVL) B=200 0.000878 0.000929 0.0015787
Var(OVL) B=500 0.000823 0.000823 0.0016212
Lower 95% CL 0.816950 0.788187 0.704385
Upper 95% CL 0.901633 0.891234 0.846907

Note:

Example 1: Comparison of the median wealth for persistent and non-persistent Alabama
farmers between 1850 and 1860.

Example 2: Comparison of the median Drumcondra Verbal Reasoning Test Score for Irish
School children by gender in 1976.

Example 3: Comparison of the median minutes from onset of ischemic chest pain to ECG
by gender for patients who experienced chest pain for more than six hours.
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