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ABSTRACT OF DISSERTATION 
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Doctor o f Philosophy_____________ Major Subject  Physics___________

Name o f Candidate Govind K. Menon_____________________________________

Committee Chair Dr. John HL Young_____________________________________

Title An Exact Solution to the Einstein-Maxwell Equations Representing a_______

Nonspherical, Highly Charged Object__________________________________

The Reissner-Nordstrom solution possesses a naked singularity when e2 >m3, 

where m  is the mass and e is the net charge o f the system. Also, the singularity at r  = 0 

is repulsive [i.e., no timelike geodesics (neutral particles) can reach the singularity]. 

These unusual properties o f the Reissner-Nordstrom geometry are considered as an 

accident resulting from the highly symmetric nature o f the space-time.

Here we wish to generalize the condition of spherical symmetry to axial 

symmetry and to probe into the issues of naked singularity and gravitational repulsion. 

To do this, we must construct a nonspherical solution to the Einstein-Maxwell set of 

equations in the event that e2 >m2 .

The Erez-Rosen extension o f the vacuum Schwarzschild solution to the non­

spherical case gave one o f the first physically significant solutions o f the Einstein field 

equations. Nonvacuum extensions o f the Erez-Rosen solution representing a non­

spherical mass containing a very high net charge (i.e., when e2 >m2) will be 

discussed. The special case o f spherical symmetry, as would be expected, results in 

the Reissner-Nordstrom solution.

ii
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The search for the physical singularities involves die calculation o f a nontrivial 

scalar constructed from the Riemann curvature tensor. As it turns out, the resulting 

geometry does indeed possess a naked singularity. In addition, the space-time also 

entertains gravitational repulsion. However, unlike the Reissner-Nordstrom solution, it 

has been found that all timelike geodesics are not necessarily repelled from the origin.

iii
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CHAPTER 1 

INTRODUCTION

General Relativity: A Primer

The general theory o f relativity was proposed by Einstein in 1915 as a 

relativistically correct theory o f gravitation. It is based upon the equivalence o f the 

gravitational and inertial mass and upon the principle of general covariance. All fields 

in nature can be viewed as generating their own gravitational fields, and, in doing so, 

interacting gravitationally with other fields and particles. Such field interactions can be 

formulated by including not only the energy o f fields as a gravitational source, but also 

the momentum and the flux o f energy-momentum. One is immediately reminded of 

the energy-momentum tensor as a quantity that has the above-mentioned properties. 

This line of thinking led Einstein to  propose gravitational field equations

(n . V = 0JJ.3)  (1.1)

where are the components o f the Ricci curvature, R  is the scalar curvature, and

7;v is the components o f the energy-momentum tensor o f source fields present in an

arbitrary coordinate system.

The gauge freedoms o f the Einstein equation, unlike those o f special relativistic 

theories, require no preferred set o f inertial observers, but instead are infinite 

dimensional and are comprised o f arbitrary difieomorphisms; see, for example, Wald

I
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[1]. The gravitational field itself is described by the metric tensor, ; hence the

familiar explanation o f gravitation as a  curvature in the fabric o f space-time. The Ricci 

curvature is given by

= rv« - r v ¥ +rvrp,v-r%vrV (1.2)
The object on the right hand side o f the above expression is defined in equation (1.4), 

and the comma denotes partial differentiation with respect to the appropriate 

coordinate. Unless otherwise specified, summation is to be understood over the full 

range o f values o f any repeated index.

The equivalence o f gravitational and inertial mass led to the geodesic postulate 

which states that free particles follow geodesic trajectories. This can be viewed as a 

covariant generalization o f special relativistic dynamics [2]. The geodesic is 

determined by the solution to

d2X* _  dX* dX* „

_* 3 _ + r - " s r  a ' =<’ ’ (1 3 >

where t  is an affine parameter, X *  is a curve representing the worldline o f the 

particle, and Pop is the Christofiel symbol o f the connection, given by

= ̂ -{^vo.p -«ap.v} • (14>

Naively, one could view Pap as a gravitational force. However, unlike special 

relativity, a free particle does not come with its share o f conserved quantities. This is 

because, in general, a space-time does not necessarily admit Killing vector fields, and 

therefore, Noether’s theorem would be inapplicable. Hence, solving the geodesic 

equation can be a nontrivial matter.

permission of the copyright owner. Further reproduction prohibited without permission.



Of interest to us is the spherically symmetric solution to the Einstein-Maxwell 

system o f equations, found independently by Reissner [3] and Nordstrom [4]. This 

was the first solution to the Einstein-Maxwell equations that demonstrated the 

gravitational effect o f the electromagnetic field. The gravitational field is then 

described by the following metric

g  =
( .  2GM Gq2 ( .  2GM Gq2 Y  ^

c2r 4 m 0c*r2

where r  is the radial coordinate. Here AS is the total mass in kilograms, q  is the net 

charge in coulombs, and e0 is the permittivity o f free space. In Heaviside-Lorentz units

the above metric becomes

g  =
' 2m e3^
I  + —

r r* j
d t2 j  dr2 - r 3d£l2 , (1.5)

where m is related to the total mass M  o f the distribution by me2 = G M , e is related 

to the total charge q o f the source by e2c4 -  4nGq2, and dCl2 is the standard 

Euclidean metric on a sphere o f radius r. From this point on, we set c = 1 = G . 

Physically, this represents the gravitational field of a uniformly charged spherical 

object producing electromagnetic potential

( 1-6)

which is the familiar Coulomb potential.

The corresponding metric in the uncharged case was obtained earlier by 

Schwarzschild [5] and is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

0-7)

While the Newtonian analog o f (1-5) and (1.7) are identical (since charge plays no role 

in Newtonian gravity), in general relativity the physical consequences are dramatically 

different. One crucial difference is the phenomenon o f gravitational repulsion.

It is desirable to investigate the phenomenon o f gravitational repulsion o f a 

neutral particle by a charged mass. If  the space-time admits a well-defined notion of a 

radial coordinate r, then repulsion in the radial coordinate is very much like in a 

Newtonian setting: r> 0  implies the force is repulsive. One needs a charged test 

particle to invoke such an event in Newtonian mechanics, which would be a simple 

Coulomb repulsion, not gravitational

The origin of gravitational repulsion in this geometry is seen by studying the 

time-like radial geodesics. Parametrization by proper time gives

Since — is a time-like Killing vector field, the energy o f the particle is conserved; i.e.,

where e is the energy per unit mass o f the particle. Here the term in parenthesis is the 

effective potential to which the particle is subjected.

Objective

gooitf +g, ,(r)2 = / . 0 -8)

& »(0 = e (1.9)

This gives

(1.10)
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Equation (1.10) is very similar to the Kepler problem in classical mechanics, 

but the source of the effective potential is very different because angular momentum is 

the cause o f such a term in classical mechanics. Therefore, the radial coordinate value 

o f an infalling free particle must take a nonzero minimum, which leads to gravitational 

repulsion at this minimum value. Also, nonrdativistic particles (i.e., those with e < 1) 

permit radial oscillations because the particle is trapped in the potential well. Figure 1 

is a plot o f the potential for e3 /  m2 >1.

One reaches a sim ilar conclusion by taking the simpler approach o f the pseudo- 

Newtonian gravitational potential as introduced by Peters [6] and extended to 

incorporate electromagnetic effects by Young [7]. Newtonian gravity is described 

completely by a potential, 4>, satisfying

A<1> = 4np , (1.11)

where A is the Laplacian and p is the mass density o f all sources. Analogous to the 

electrostatic case, a  gravitational energy density Ug can be defined as

-(V<D)2

From the mass-energy equivalence we get

p (H 2b)

Including the electrostatic field energy as a source o f gravitation we get

Uf  = 2 jt(v<p)2, (1.13)

where <p is the electrostatic potential [Jackson (8)]. As above, we get pf  = U f . 

Setting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1

R. R,

Figure I. The effective potential in the Reissner-Nordstrom space­
time for radial geodesics when e2 > m2.
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P = P * + P /+ P «

in (1.11) we get the pseudo-Newtonian gravitational field equation

(1.14)

In regions void o f pm (i.e., occupied by fields only),

(1-15)

For a spherically symmetric charged source, d> is given by [7]

« r )  = '  ( /  + ^ )  •

where M  (in kilograms) and q  (in Heaviside-Lorentz units) are the mass and charge o f 

the source.

The similarities in the two very different approaches are clear from the plot o f 

the pseudo-Newtonian potential (Figure 2). As before, the dynamical equation gives

where the pseudo-Newtonian potential takes its minimum at R0.

Various attempts have been made to understand the nature o f gravitational 

repulsion [10-12]. The physical meaning o f gravitational repulsion was investigated by 

Cohen and Gautreau [13], and later by Gron [14]. Yet another explanation was given

1 For further details of the account see Young and Menon [9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rise to gravitational repulsion1 provided Q  is greater in absolute value than M. 

Oscillatory behavior under a simple harmonic approximation has a period

(1.17)



8

Figure 2. Plot o f the pseudo-Newtonian potential versus r.
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by Mahajan et al. [15] by reintroducing the concept o f a gravitational force. Cohen 

and Gautreau compute the mass o f a spacelike ball using Whittaker’s theorem and 

come up with the expression

M R = m - e—  (118)

for the mass o f the ball o f radius R. Clearly, this quantity becomes negative for small 

values o f R. This effective negative mass is what Cohen and Gautreau claim to be the 

cause o f gravitational repulsion.

The spherically symmetric mass is completely devoid o f structure. For the case 

o f a structured source having quadrupole mass and charge moments, the coupled 

Einstein-Maxwell system of equations will be solved to  give an exact metric o f the 

Weyl class. The source structure can be represented in a very convenient way through 

multipole expansion in spheroidal coordinates. This method was initially carried out 

by Erez and Rosen [16] for the charge-free case. An extensive resurrection of interest 

in the Erez-Rosen geometry arose several years ago [17-24]. A major significance of 

the present work is that it extends the work o f Erez and Rosen to include 

electromagnetic effects on gravitation. The space-time geometry represented is that o f 

a mass and charge distribution with a quadrupole moment such that the absolute value 

o f its charge to mass ratio is greater than unity.

What then are the properties o f such a space-time? Does it entertain 

gravitational repulsion, or is repulsion due to the extreme symmetry of the Reissner- 

Nordstrom metric? Also of importance is whether or not the geometry admits a naked

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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singularity.2 In essence, a naked singularity is a physical singularity that is in the causal 

past o f spatial infinity. Details o f the procedure to  investigate such issues will be taken 

up in the next chapter.

2 The Reissner-Nordstrtm metric admits a naked singularity when e2 /  m} > 1. This is in direct 
violation of the cosmic censorship conjecture proposed by Penrose [25]. Cosmologists view the naked 
singularity here as an accident because of its highly symmetric nature and do not regard it as a 
cosmologically reasonable space-time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

A PARTICULAR SOLUTION TO THE STATIC, AXIALLY SYMMETRIC 
EINSTTEN-MAXWELL SYSTEM OF EQUATIONS

Weyl Geometiy

It is intended to describe a static, axially symmetric space-time resulting from a 

charged object with a nontrivial quadrapole moment in the event that the charge, e 

parameter, o f the source is greater than that o f  its mass, m. That this is possible in a 

curved space-time is not immediately obvious. In describing a field that satisfies a 

linear equation, one can think o f multipole moments o f a field in connection with the 

muhipole expansion of that field. To make matters more complicated, the 

electromagnetic field is coupled to the gravitational field in a nontrivial way. 

However, in an asymptotically flat space-time, the coupling o f the electromagnetic 

field to the gravitational field becomes weak as spatial infinity is approached, and 

individual pure multipoles can be identified there.

The general, static, axially symmetric Einstein-Maxwell space-time can be 

described by the Weyl [26] metric. In cylindrical coordinates (t,p,z,q>) this is given by 

g - e ^ d t 2 ~e2r~2v(dp2 +dz2) - p 2e~2vdQ2, (2.1)

where v  and y are functions o f p and z  only.

Since the Maxwell stress tensor is trace free - 0 ) ,  the Einstein-Maxwell 

equations are [27]

11
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K * = ~ K (2-2)

where k  = 8ic and

(2-3)

In a charge-free region the Maxwell field tensor must satisfy

( F g p - ) . . = o .

and

(2.4a)

(2.4b)

The electromagnetic potential considered here is o f the form ^  =(O t0,0,0), where

the electrostatic potential <t>, is assumed to be a function o f p and z only. The above- 

mentioned relations yield the following system o f coupled equations1

with

and

+ o f ] ,

V * 0 « 2 [v p 0 p + V ,0 ,] ,

Yp = p[vf ~ v f - * V 2M,( o f  -  O f)], 

y t = 2 f { ^ ^ t - k 3e-3̂ t \ .

(2-5)

(2.6)

(2.7)

(2 .8)

Here k 2 = —k  , and V2 is the Laplacian in a cylindrical coordinate system, that is, 
2

1 It is convenient at this point to redesignate partial differentiation by omitting the comma, for 
£8>
3p

example, O p s .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For vacuum solutions to the Einstein equations (corresponding to 

d> = 0 everywhere), Erez and Rosen [16] constructed a  method to yield exact 

solutions that correspond to a mass distribution with multipole moments and that 

contain the Schwarzschild solution as the spherically symmetric, or monopole, 

contribution to the field. Young and Bentley [28] have modified the Erez-Rosen 

space-time to describe the field due to a charged, structured mass. The resulting 

geometry, however, was restricted to cases in which the charge-to-mass parameter 

ratio was such that e2 / m2 < / .  Here we make the necessary modifications to 

describe the reverse situation (i.e., e2 /  m2 > 1) for we might expect gravitational 

repulsion in this case.

The method employed by Young and Bentley [28] uses an intermediate 

function, \p, which, when assumed to be related to through certain derivative 

conditions, reduces the system o f equations, (2.5) -  (2.8), to  that o f the vacuum form. 

They also show that the exact solutions to the problem o f the static axially symmetric 

charge-mass distribution can then be obtained as a generalization of the Erez-Rosen 

method. Here we do the same, but we make appropriate changes so that the resulting 

geometry has e2 / m2 > I .

Introduction o f an Auxiliary Function

The choice o f an auxiliary function to simplify the Einstein-Maxwell system of 

equations has a considerable degree o f freedom and has been discussed by several

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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authors [29]. Here, the auxiliary function, v , is related to \|/ in terms o f a parameter, 

a , as follows

e~v = a c o s \|i+  sw»v. (2-9)

Equations (2.5) - (2.8) can be rewritten in terms o f y  as

V*\|/ = V -V y , (2.10a)

but

 d\u
v v = v v — . (2.10b)

Therefore,

V-V\y = V -f^rV vj7| 
\ d y  )

(2.10c)

Also,

d_
d y

— Vvj7 
Kcfy

d2\u _  dyu d  / _ _ \  

= d y  d y (  ^
(2.10d)

Since the last term in the above equation vanishes, (2.10c) gives

(2.10e)

From equation (2.9) we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Therefore,

V =  - /n ja c m if / -f-57WV(/].

d y  [-ttsw u y + cm y ] 
d y  [a  cm  v + 57/1 ̂ /]

(2.11a)

(2.1 lb)

and so

d 2\f
cRf2 =  /  +

asm \y  — cosy
2  -

(2.11c)
acosxy+ sm y

Substituting equation (2.11b) and (2.11c) into equation (2.10e), equation (2.5) can be 

written as

fasinij7-<a  sin vy -  cos \y 
acosvj? + sin \\t /+ (a  cos v

\ \ t - c o s \y f  \ _ 2 _ 2\
» + i ^ r - + v *)

= k 2(acos\y  +soth/)2[<&p +

We now make the assumption that \j7 and 4> can be related as

(2.12)

Vp k fa c o sy  + sm \yj2 r<pp

. v r . J l + a 2 k J
(2.13)

Equation (2.12) now reduces to

V2\j7 = 0 . (2.14a)

A similar calculation using q7 and equation (2.13) can be used to replace equation 

(2.7) with

r „ = - P ^ - v f ) ,  (2  14b)

and equation (2.8) can be written as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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y , = -2 p v py/r . (2.14c)

Computational details for equation (2.14b) and (2.14c) can be found in Appendix A. 

Equation (2.14a) - (2.14c) are simply the vacuum equations of the Weyl-type field and 

can be used as replacements for the field equations (2.5) - (2.8). The above equations 

are much simpler and are effectively decoupled; they are, in feet, exactly o f the 

vacuum form solved by Erez and Rosen [16].

Since y  satisfies the Laplace equation, the possible solutions for vj7 are well 

known. Having obtained the necessary solution for \j7, getting <t> is only a matter o f 

integrating equation (2.13). Integrating equation (2.14b) and (2.14c) gives y. Before 

we proceed in the direction of the above-mentioned computations, we must check to 

see that equations (2.13) and (2.6) are consistent To this end we note

and

*> = ~ (2- 15 a)

= (2.15b)

Also,

I  y jl+ a 2 e2* _—<p  -----------------
P p k  P
—  ------ 1------- r*V p- (2.15c)

Similarly,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since VJ<t> = <D + —<!>_ + d>c , the above relations givep

V24> = 2[vpOp + Vr<*,r ]  Vpp+^Vp + Vc je ^

= 2[vptPp + vy.<f>.]- e ^ v 2\j; (2 .15e)

Equation (2.1Se) in conjunction with equation (2.14a) gives

V*<t> = 2 [v pO p + y r<&r], (2.150

which is equation (2.6). Therefore, we conclude that equation (2.13) does not give 

rise to any internal inconsistencies.

An expression for d> can be given in terms o f vj7 by integrating equation (2.13)

and is given by

<£_ f djtany)
k  (a  + tanxjir)2

•Jl+CL2 M -]V a+ m m w
+ C . (2.16)

tan \f)

We fix the integration constant such that at spatial infinity d> -»0 . For an

asymptotically flat space-time -*  1 as one approaches spatial infinity. Clearly, 

from equation (2.9), this is possible when v  = jc /2 at spatial infinity. Therefore, we 

must have

$ - * 0  as x / 2 ,  (2.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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that is, the electromagnetic potential is given by

= (2.18)
k  a + ta n vf

A Generalization to  the Reissner-NordstrOm Solution

We now proceed to solve the field equations by first transforming to a 

spheroidal system o f coordinates. The coordinate transformations are given by

p = (2-Wa)
a

j  = - X h , (2.19b)
a

where m is a constant yet to be determined. Since vj7 satisfies Laplace’s equation, vj7 

satisfies

[(2.; + # 4  + [(/ -  = 0 (2 JO)

in the new coordinate system [30], Equations (2.14b) and (2.14c), when written in the 

spheroidal coordinate system, become

Y ̂  ^  + + X(7 "  V2) v l  + 2p(/ + X2 ) ^ j  (2.21)

and

Y» = ~ li2)V j “ 2 \ ( l -  (2.22)

Details o f the above computation can be found in Appendix B.

Equation (2.20) is separable in the usual manner, that is, by setting

WX.1L> = A a ) M ( \ i ) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Choosing l ( l  + /) as the separation constant, gives separated equations for A and M. 

They are

(k! + [ ) ^ r + 2 ^ - « . t + l ) \ = ° ,  (2.23)

and

( / -  H2) ~ 2 Vi ~ + l { l  + l )M  = 0 . (2.24)

Equation (2.24) is simply the Legendre’s equation. We take the Legendre polynomials 

as solutions to equation (2.24). Then y  has the general solution

?  = (2.25)

where i  = 0,1,2,..., and a, ’s are just the coefficients o f the expansion.

Proposition 1: For I  — 0 , A = tan-l(A.) is a solution to  (2.23).

Proof;

Let

A. = ta n 1 (k) .

Then

d \ ___ I _
dk ~ 1+k2

and

d 2 A - 2 k
&  ~ ( j+ k 2)2 '

Substituting the above in (2.23), we get
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Therefore, A = tan"‘(X) is a  solution to equation (2.23) when I -  0 .

We temporarily pause to analyze the space-time corresponding to the I  — 0 

solution for \j7. More precisely,

is a valid solution for iy. Clearly \y0 has no angular (|i) dependence, and hence <t> and 

y are spherically symmetric. As a  consequence of the BirkofF Theorem [31] the space- 

time corresponding to (2.26) must be isometric to the Reissner-NordstrOm solution. 

To better understand this isometry, we calculate the electromagnetic potential <t>, 

using (2.18) to give

We now transform to yet another set o f coordinates (r ,0 ), to rewrite 0  in a familiar 

form. The coordinate transformations are given by

where 0 < r  < ao, and 0 < 0  < 7t. In this coordinate system, the electromagnetic 

potential 4> takes the form

Wo ~  A0(A.)/»0(n) 

= ta n ‘(k) (2.26)

(2.27)

(2.28)

(2.29)
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provided we set

m
a  = (2.30)

where e2 = {k q f  and m is the mass parameter o f the space-time. Here ^  is the net

charge of the mass distribution. Obviously, we must take e2 to be greater than m2. 

Since here Q >=q/r, we are guaranteed to get the Reissner-Nordstrom metric as the 

unique solution. A quick computation o f g M will easily convince the reader o f this

fact. Here

goo =

Also, tan\|/0 = X, implies

la  cos i|/0 + sin \|/ . r

Therefore,

goo —
I + k2 

(a  + \ ) 2

(2.31)

(2.32)

m2
r2CL2

l + a f l - T + l -  —  
\m  m j

. 2m e2
(2-33)

which is as expected. Indeed, upon calculating the other terms o f the metric we find
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ds2 =

22

1 - ^ + j ^ d t 2 ) dr2 - r 2(dd2 + sin2fkfcp2) , (2.34)

which is the Reissner-Nordstrom metric.

A generalization o f the Reissner-Nordstrom solution can be obtained by taking 

for equation (2.2S)

V = V0 + A tPt . (2.35)

In the Erez-Rosen problem, the expansion coefficient, a ,,  can be related to the mass 

multipole moment o f order I  by comparing the general form o f gm with its 

asymptotic form, {l + 2 $ /c 2) , where 4 is the Newtonian gravitational

potential. However, no such generalization can be made in a charged spacetime. 

When e2 /  m2 < 1, Young and Bentley [28] argue that expectations of continuity in 

the family o f solutions can be used to conclude the same result (i.e., looking at the 

geometry as e —>0). This is not possible in our case since e2 / m2 > I  and e —► 0 

would imply m ~ > 0 , and no muitipole moments exist in this limit. However, it turns 

out that the £ = I  solution corresponds to  the case when the electric dipole moment is 

nontrivial. Since what we have in mind are homogenous charge distributions (i.e., 

p > 0 or p < 0 , where p is the electric charge density), we should not expect any 

meaningful t - 1  solution (because the net dipole moment o f the electric potential can 

be made to vanish). The space-time o f interest to us is obtained by taking a linear 

combination o f the 1 - 0  and the I  -  2 solutions for \j7. Keep in mind that, either 

way, they are valid solutions to the Einstein-Maxwell system o f equations.

Proposition 2: For 1 = 2 , A = (iX7 + l )c o t '1 \~ 3 X  is a solution to (2.23).
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Proof

Let

A = (3A.7 + /) « * " 'JI-3 X .

Then

dX
-  6 X co rl X - —- - . y '  - 3 ,  

I  + X

and

d 2 A „ ,  6X
W = t a "  7 H *

5X(/+A5)-2X(3Ar +7)

(y+ ^ r

For 7 = 2 , the left side o f equation (2.23) is

(X2 + l ) ^ L+ 2 X ^ i - 6 A  v ' dx  dk

= (X2 +1)6cot~l X - 6 X -6 X + 2 X ^ - * y  + 12X2 c o r ' XL *T' Tv

- 2X^ k -^ / - - 6 X - 6 ( 3 X 2 + l ) c o r l X + 18X = 0,
I+ X 2 v

which is the right side o f equation (2.23).

Proposition 3: For A = (jX,7 + l)cot~l X — 3X, lint A = 0 , and A « — + higher

order toms.

Proof 

For large X

cor7 A. * (---^7 + ..,).
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Therefore,

A * (5*J + / ) ( £  -  -  3 X = (SX2 +■ -  3X

9X5 3X3 3X3 X
3X4 3X4 + 3X4 3714

I
3XS

Therefore A * higher order terms. Clearly Am A = 0 .

As per (2.35) and the following discussion, for vy we choose the solution

\j7 = ta n 1 X +q[(ifc* +  l)cot~l X -  37^P3( n ) ,  (2.36)

where q =a3. Also l im y  = n /  2 , which implies lim gM = / .  Thus, vj7 as defined in

equation (2.36) has all the necessary properties consistent with asymptotic flatness.

The equation to be solved for y involve derivatives o f vj7 which are readily

obtained from (2.36) and are

Vj. = I+ X 7
+ q 6 X co r ' x  - (2.39)

and

= i ^ J X 2 + l)cot~l X -  5A.jp,. (2.40)

Substituting (2.39) and (2.40) into the equation for y , equation (2.22) becomes

Yu = X2 + n2
2(3X2 +2)

l + —-\6 X c o rl X
2 I  + X2

~\2
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k2 +\t2
-  6 q k ( l -  n2){(iA.2 + i ) c o r ‘ k  -  iA ,} |/ + 6 k  c o t 1 k

- * £ y ' W ’X v - i ) ] (2-41)

The integration of y^ is obtained in a straightforward manner with the result 

y = + H2) - f ( /  + k2K f ip 2 -(3 k 2 + l)h {k2 + n 2)]

' ^ r U  + *-3Y * 2i 9 \ - 3 v ? ( n ?  + 2)+ (l+ 6k2 +9k4)b tk 2 +\l2) 8 2

+ ^ q 2( l  + k2)n22 - ^ j - + p 2(y+X2)-(X 2 + k4)in(k2 + p 2)

-iqrX7t2[(/ + k2)ln(k2 + p2) -  ̂ J - j ^ y  + X2)* ,* , - 3 y  + H2(4 + 3X2)

-  ( I  + 4k2 + 3k4)  ln(k2 + li2)] +  /(X ) .

H ere/X ) is the integration constant, and n, and it2 are given by

2(3k2 +2)
it, - 6 k c o t  k  :—Tj—1 l  + k

(2-42)

and

7t2 = (3k2 + l)cat~l k - 3 k .

Applying the condition2 y | = 0 , the constant of integration is easily determined and

the final form for y is

2 As we shall see, the condition yj — 0 leads to the result //ft? y = 0 .
i l l s /  2 ->■«X—mo
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+3qkiz2

- /)+ (* * * + -# x /-n 2)

+(-#X2 + /  + 3A/)/n^ ^2 ^ (2.43)

which is the expression for y for the form o f \y chosen. Equation (2.43) has the 

desired asymptotic behavior, that is, limy - 0 , as can easily be checked.3 The
X -vn

parameter q can be better understood by looking at the asymptotic behavior o f the

electromagnetic potential 4>. For large values o f r,

^  _ qq (e2 - m 2)P1(\i)
<P« —+ —----------- j---------

r 3 r
(2.44)

At large distances from the source, we expect the expression for the electromagnetic

3 From (2.41) we see that lim y u = 0 .
X -vo  K

Since y| = 0 , we have

j g j r l n )  =  W = f  t a r t * * '  -  # .  * »  v
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potential to agree with its special relativistic analog. Therefore,

(2  4 5 )

where Q is the classical electric quadrupole moment and q  is the net charge o f the 

distribution. Computational details for (2.44) can be found in Appendix C.

To summarize, we have obtained a one-parameter family o f solutions to the 

Einstein-Maxwell system o f equations for a charged object with a nontrivial 

quadrupole moment. The question remains as to what the topology of such a 

geometry is. Physically speaking, we are looking for the singularities in the space­

time. Unlike special relativity, where the ambient manifold is 9t4, in general relativity, 

the topology can be nontrivial if the geometry is not globally hyperbolic [1]. The 

issues of physical singularities will be our primary concern in the next chapter.
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CHAPTER 3

CALCULATION OF SCALAR CURVATURES AND INFINITIES 

It is intended to calculate coordinate invariant quantities so as to separate the 

coordinate singularities from the physical singularities. We start by calculating the 

metric in the (r,X,p,<p) coordinate system. The Weyl metric can be rewritten as

y = r !V d H - ^
a

V ( / - n 2)
\ 2 + I

+ \L2

m2 i2(X2 +j)

. l ^ v T
+ x2 e*-2̂ 2 -  + /X / -  \L2)e-2xvd y2. (3.1)

Clearly the metric is singular when p  = / ,  but we do not expect this to be a physical 

singularity since the spherical coordinate is singular along the z axis (p  = /) . From the

expression for e_v in (2.9) and also from (3.1) we see the metric is singular when

tan\y = - a ,  (3.2)

since

ggg = e 2w = [acas\j/+.w/i vj/j 2

Also, from (2.43) we see that y may not be well defined when

y = 0 = p .

(3.3)

(3.4)

Physical singularities may be detected by computing scalars derived from the 

curvature tensor [1]. The scalar curvature R  is zero everywhere in the Einstein-

28
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Maxwell geometry. In light o f (2.2), the simplest, nontrivial curvature scalar that can 

be constructed in the Einstein-Maxwefl geometry is RvvR>iV.

Since R ^  is given in terms o f in equation (2.2), we begin by computing

F ^ .  Also, 4  = (<&(x,p),0,0.0), and = d uAy - d vA^ ; therefore, the only non­

vanishing terms o f the Maxwell stress tensor are

F0i — S0At dtAq — &k ’

FlO ~ Fl0 — -n  1dk

and

dtp
Fq2 — 30A2 — d2A0 — — ,

F20 ap ‘

(3.5)

(3.6)

(3.7)

(3.8)

We also need F ^  to compute R ^ R ^  The nonvanishing independent terms o f

F “ = g°°g"F0,

„ 2 - 2 yor e 0d>

m2 v ( i - s ) , . 
1 F W +>1

a ’
(3.9)

and

F 02 = g oog 22F003
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a V * d o

m2
2{k2 +l)

+ \2
dp

The scalar

F * F *  = F„F°‘ *F <aF 'a  +F,CF<° +F11F ,°

The above can be rewritten as

F ^  =
- 2 a  e2̂ -2-r

m2
  d<P

K + I + V-

A * -2 **)
1-M 2 + K

f a s
dp ,

The nontrivial components o f the Ricci tensor can now be calculated; they are

R o °= -k

= 7 [ V ” + V " ] ,

r ; = - k F10F°‘ + ~ F * F *

R,1 = -* [

30

(3.10)

(3-11)

(3-12)

(3-13)

(3-14)

(3.15)

(3.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

R,2 = - k F / ffl+ - / rapf af (3.17)

and

f? 3   F4 r °»r (3.18)

A similar calculation o f /?% enables us to evaluate RVVR'IV.

F  F 01   Fr I0r  ^  4 r a#r

2k, [F,0F 02\ F “‘F„] + k 2 (3.19)

But

i  ( d b d v
c'ka*. <W [,iJ()iJ+/)+>.J( / - tiJ)[x.J( / - n 2) + nI(XJ+/)]

> 0. (3.20)

From (3.20) it is quite clear that every term of the right side o f (3.19) is greater than or 

equal to zero. Therefore, R ^ R 0̂  is infinite if any o f the terms in the right side of

(3.19) are infinite, and in particular if F ^ F ^  is infinite.

As mentioned before, the space-time metric is singular when |r = / ;  in 

particular, g w (|x = /) is not defined. A quick inspection o f equations (3.5) - (3.10)

leads to the conclusion that Fl0, F20, F 10 and F 20 are finite when p.= 1 provided
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and are finite. Also, from (3.19) we see that R ^ R ^  is finite when p = /  

since R^R*™ is made o f well-behaved combinations o f F]0, F20, F t0, and F20 so

long as the electromagnetic potential has well-behaved coordinate derivatives. 

Therefore, we can conclude that p. = /  is only a coordinate singularity. Points in 

space-time where (3.2) is satisfied are valid candidates for physical singularities. We 

now proceed to analyze the above-mentioned situation case by case.

The rest of the chapter involves taking limits, and we shall continually use 

simple results from “limit theory” to make the necessary conclusions. Here we simply 

state the required theorems without proof.1

Theorem I. Let f  and g  be functions such that lim f  = C , and lim g =  L ; then
x-»x0

lim fg  = CL.
x-+x9

Theorem 2. Let/ and g  be functions such that lim f  = qo , and lim g =  L ; then
x-*x0 X-¥X9

lim fg  = when/, > 0, and lim Jg = -o o when/. < 0.
X-+Xg X-*X9

Theorem 3. If lim f  / g  results in the indeterminate form 0 /0  or qo/ ao, then
x -* x .

lim f { x ) /  g(x) = lim f i x )  /  g '(x)  provided the latter limit exists (or is infinite).
X->X„ X->Xa

Let A.0, p 0 be such that tan\y(X0,n 0) = - a . The singularities in the

Reissner-Nordstrom geometry are well known. Therefore, in all o f the following 

calculations, we shall assume that q * 0 .

1 The interested reader may refer to any standard texts in elementary real analysis: for example see. 
Bartle [32].
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Case 1.

Let p 0 *  0 and \i0 *  1 . Then y is finite; also,2

557
* 0 (3-21)

Ho

From the second term in (3.12), and (3.21), we see that i raP/ r“p(X0,M.(?) is infinite,

since

ta n y ( \0,\L0) = - a  => aaw nz + swii/ = 0 , 

and so from theorem 2 we have

53>
.5*1

(3-22)

y ( / + a J) r ^ 2 I
y , ( k ! l i J(*o4*o) (a ca sy  + smvp)4

= ao . (3.23)

Therefore, is infinite when p.0 *■ 0 , and n 0 *  / ,  and tow\i/(A.0,|x0) = - a , and

so (a.„,(x0) is a physical singularity.

Case 2.

Let p 0 = 1. Then, as before, y is finite. Now the effective second term (using 

theorem 1) in (3.12) is

( / - V )  f a o y

[n2(x2 +/)+x2(/-n2) ]^
which is of the form 0 / 0  at(X0,/) . By using theorem 3, the value o f the above

5vj7 
5p

Therefore. (3 a 2 + l)Cot ~l (— a )  + 3 a  = 0 . This is impossible since a  > 0.

2 Suppose -7— = 0 . Then tar^tan'1 X + o] = - a . This implies X = - a
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expression as n  -> /  can be calculated.

( / - n * )  fd $ Y  

™ + / ) + K ( i  -  n*)] ̂  ̂

(l+CL2) ( d y \ ,  - 2 \ i
= -J 7 -Z  d  ~r~   Z ----Z v 7 --------- Z --------ZT • (3 -2 4 >

k  »~*14\aicos\y+sin\v\ { - a s m y  + casy)

Therefore, from (3.22) we have

UmF^F°*n-*0 ^ • 00 .

- a

or equivalently

that is, (X0^) is a physical singularity if tanij/(A.0f p.0) =

Case 3.

Let = 0 and k 0 *  0 ; then y(a.0,o) is finite. Once again from (3.12) we have

^ 1

= CImtf— ;------- r—1—;------- r*---------------^T7> (3-25)
*-° [lt2(^o + /) + ( /  -  p 2) J a  cos \j/+ srrnj/]

which is again o f the form 0 / 0  at (A.0 ^ 0 ,\ i 0 = 6) (where C is a nonzero positive 

constant). Again using L’Hopital’s rule (theorem 3), we get

/ r m ^ F 02! = ac. (3.26)
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Therefore, l im R ^ R ^  ->•<» when ta7i(v{/(>,0>n 0)) = - a ,  where |x0 =0 and k 0 * 0  

Therefore, (>-0 * 0 ,\ i0 = o) such that ran(vj7(^0 * 0,0)) = - a  is a  physical singularity.

Case 4.

Let k 0 =0 and n 0 = 0 and tarcvj/(X0,n 0) = = - a . From the expression

for y we find that

lime-2' ' = t (3.27) 
x-»o v

where A(|x) is nonvanishing, continuous, bounded function given by the expression 

From (3.12) we have

(3.28)

limFg.F01 =
X-*0

- j g V ^ ( x ^ y )  (av  /  5X)J 

^m ^A .2̂ —^2)+ n 2(X2 + /)][acas\j? + smTj?f

Also, from (2.39) we have that

I-2 q (3 \i2 - / )  (3.30)
*--0 dk '  '

is finite and well defined, and so from the theorem 1, (3.29), and (3.30) we have

s v  - ~ > ) t (»»x~*° m [a  cos y/ + sin y  J

/
If q *  — , then from (3.30) we have that —— * 0 . Therefore,

2 ok
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limlimFg.Fll-to K-+0
01 = ao if 8q2 +8q < 0 .

that is,

limlimFg.F01 
11 -*o x-*o = aowhen^ e

(3-32)

(3-33)

/  ,
Suppose q = then

limF0lF 01 =x-+o
-  2aL2h [ \ t ) { l -  /)}~ 

m2\i2(acos\\r+ s in y )
(3-34)

The above expression is certainly of the form 0 / 0  at n 0 = 0 . Taking limits using

theorem 3, we get

limlimFg.F01 =  00. (3-35)

or equivalently

limlimRaBRa9 = ao when q  e [ - 1,0\.(i-*0 X-*0 ^
(3.36)

Otherwise, the above limit is still undetermined. After successive applications o f 

theorem 3 and theorem 1 on (3.31), we get

•8qz+8q-8

or equivalently

limlimFg.F01 -  lim-,------------------------ cn-*o x-*o n-*> y finite nonzero termJ

= oo if and only if 8q + 8 q —8< 0 , (3.37)

(3-38)
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In addition, lim lim FolF 01 is finite if  qfi-fOX-*o 1 \  2 2

see whether we can extract any more information from the term

37

. The next step is to

[ I S ]
a  =  - * »  V " ( / - n V ______________ _____  „  39)

02 /n2[ji2(x2 •+•1) + X2(l -  ji2)] [acorij/ + sin y]

Accordingly, we find that

2+8q+8q2

lim lim F ^F 02 = (nonzero const) lim- —------------------------ (3.40)
it -*ox-*o ti-*o jacosn; + sin \yj

=oo if  2+ 8q+ 8q2 < 0. (3.41)

However, if q &(-1,0) , 2 + 8q + 8 q 2 > 0 . That is, when q &(-1,0) ,  the above limit 

is undetermined. Using theorem 3, we find

Sq+8q2
r<a ' ___ -  if.-— **•lim lim F02F  = (nonzero const) lim j  _  _ ,5

»-+o\.-*o |1"*<’[ac:o5V|/ + jmv/J

8̂q+Sq~
< (nonzero const) lim j ------ —------H v - (3-42)

p-*0 [a  cos \jr +sin J

Therefore, from (3.31) it clear that we gain no new information. It turns out that the 

mixed term in (3.19) gives us no further information. Therefore,

limlimRaBR a9 =|l-t0X-*0

f _  - / + V T |
ao when q  e l   ---- ,------ —

\  2 2
finite otherwise

(3-43)

when tt
'a i 3r ) s , a -
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Finally let q and a  be such that Therefore, while

tan y{0,0) *  - a , y(0 ,0 ) may not be finite. 

Case a. Let q + - I  /  2.

Then from (2.39) and (3.30)

dk

= I  + 2q

* 0

Then

limF0lF  = lim
- 2a V 27(xf+/ )  fad>V

\-*0 x~*° m2̂ ^ !  -  p2) + |j.2(A.2 + /)]

2+8q+8q2
= Cnonzero constant) —— 7

It'

Therefore,

limlimF0lF 0t

Or equivalently

(3.44)

(3.45)

= 00 ifandon ly if q j  — ,0j  . (3.46)

and when tan\y{0,0) *  - a . The other terms in the expression for R ^ R ^  do not give

us any further information, and so

lim lim R^RT  = 00 if  and only if q e ^ - / - ' ° )  * (3.48)
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provided q = -  y .

Caseb. Let q  = - y .

Then from (3.12) we have

( ; + ( V - / ) ) ;
limlimFo.F01 = (nonzero constant) lim\i-*o p.*

= lim36\i2 -  6 , (3 .49)
fl-*0

which is finite. Therefore, limlimF01F 01M M is finite when q = —/  /  2 . Similarly,

lim lim F ^F 02 = (nonzero constant) lim ̂ 2*at*8q' . (3.50)

Since 2 + 8q + 8 q 2 = 0 when q  = - 1 / 2 ,  we have that the above expression is finite. 

It turns out that a similar calculation using the mixed term {F0lF a2\ F t0Fm) in 

gives us no further information. Therefore, from (3.48) we have

lim lim R ^ R ^  =oo if and only if q e ^ -  A -y ) 

when tan\y(o,o) - a .
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS

Naked Singularities

In the previous chapters we have calculated an exact solution to the Einstein- 

Maxwell system o f equations. In this chapter, we will conclude our discussion after 

examining a few physical properties o f this geometry.

We begin by briefly summarizing the results o f the last chapter.

1. |p| = 1 is only a coordinate singularity.

2. All points that satisfy the condition tanvj/(A.0,p.0) = - a  are true 

physical singularities if the condition \ o =0 = \io is not satisfied.

3. At kg = 0 = p 0, if tan(qiz/4) = a , then limtimRa$Ra* = ao if and only if

q  e ((- / - VJ) / 2, (-1 + VJ) / 2 ) .

Therefore, (0,0) is a physical singularity, under the above conditions.

4. AtA.„ = 0  = p 0, if tarAqit /  4 ) *  a , then limlimRaBR a* =ao if and only if
1i-*o X-*0 ^

q < = ( - J - l / 2 ) \ X - 1/2,0).

As before, (0,0) is a physical singularity when the above conditions are met. 

However, this does not mean that all the singularities are accounted for. Although, 

any unaccounted singularity may occur only at \ 0 = 0 = \i0, we have not exhausted

40
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the cases as to when the singularities may occur; for example, there could be infinities 

in limlimRaaRafi. A more comprehensive analysis is required on this issue to
k-tO  \x-*0

determine the shape of the mass distribution that leads to this geometry.

From the form of the metric it is quite clear that t is everywhere timelike. 

Much like the Reissner-Nordstrom solution when e2 >m2, the singularity at r  -  0 is 

naked along p = ± 1 /V J. This can be seen as follows. Alongp = ± 1 /V J, we have 

that vj? = tart'1 X . Therefore, the metric is singular if and only if r  — 0 (i.e., at 

X = - a )  whenp = ± 1 /V J. It is intended to construct a future pointing causal curve 

originating from the singularity which approaches spatial infinity as t —> oo. Clearly, 

then, the singularity at r  = 0 is a naked singularity. Since

limk-HB X +1

there exists a constant C, such that for 0 < X < oo

= / ,  (4.1)

( 4 2 )

For exactly the same reason, there exists a constant C2 such that for 0 < X < ao

C2 > e2y. (4.3)

Also,

e~*v = [a  cosij7+sm  \j?]* < (|a| + . (4.4)

Let T be curve defined by
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r(/) = ^C tC2(\a | + lY tJ .C o s  I ^ j J ’Vo (4.5)

then from (4.2)-(4.4) we have

c ^ M + i ) 4 - ,2V

> 0. (4.6)

Therefore, T has the following properties: a)T is timelike, b) T (0) is located at the 

physical singularity r  = 0, and c) the particle T approaches spatial infinity as t ->  ao.

Hence we conclude that the singularity at (r = 0 ,p  = /  /  V i)  is a naked singularity.

This geometry does not describe a black hole. Although the 1-paramater solution we 

have obtained does not make the property o f “naked singularities” stable about the 

Reissner-Nordstrom solution, nonetheless, this implies that the naked singularity in the 

Reissner-Nordstrom solution when e2 >m2 is not accidentally due to spherical 

symmetry. On account o f the Penrose Cosmic Censorship Conjecture, our result lends 

itself to perhaps another conjecture that, in nature (in an asymptotically predictable 

space-time), the condition o f e2 >m2 is not realized!

Gravitational Repulsion

As mentioned in the Introduction, the phenomenon of gravitational repulsion is 

well known [11-15]. Here we look for geodesic repulsion, since after all, the solution

we have is a generalization of the Reissner-Nordstrom solution for the specific case of

2 2 e >m .

The simplest geodesic one can study in this geometry is the geodesic along the 

symmetry axis (i.e., along 0 = 0 in the (f,r,0,<p) coordinate system). It is then
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necessary to check that there exists a geodesic along the symmetry axis, that is, we are 

looking for a geodesic o f type

A'(t) = (/(t), r(x),0, <p0) , (4.7)

where t is an affine parameter and <p0 is a constant value of the coordinate. The

geodesic equation is

d 2x» r,u dxa cbc*
d i1 + r  ■* *  *  ~ °  (48 )

</20
Since for X , — 7  =  0 , we need to check whether dr'

2F2mir + T2ooi2 + F2tlr 2 = 0 . (4.9)

Similarly, we need to check whether

2T30,ir + r ’ooi2 + T V 2 = 0 , (4.10)

d 2<p0
since - - ■ = 0. To check (4.9) and (4.10), we compute the necessary connection ctz

coefficients

F2oi = l~ g n {d0g l2 +dtgo2 ~ d 2g0l}

= 0 , (4.11)

F  OO ~ ~ g 2 2  { ^ o g o 2  +  d 0 g ( ) 2  ~~ 3 2g ( X ) }

= - y  (4.12)

r 2// =  ^ g 22{ d lg l2 +  d , g l2 - d 2g t,}
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r J0/ = +d„g05 - d sgoi)

=o

^  00 — 2 & 1 {PoSoO + d 0g03 d jg o o} 

= 0 ,

and

r J/z = ̂ g33{d,g,3 + 5f&j -  5^ ,,}

=  0 .

From (4.14)-(4.16) we get

2T 30,ir +  T V  +  r  V '  =0+0+0

= 0 ,

which verifies (4.10). Using (4.11)-(4.13), we get

2T20,if  +  r 2ooi2 +  r 2/ / r 2 =  - y ^ ( d e & w ) '2 “  V*

Clearly,

5 6 ^ )  = ^

56 [acosv]/ +

2(-asTO\j7 + cojvj7) 5ij7 
[a  cos vj7 + s/w y ] 50
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and similarly

a . ( * J L - ® -  (418b)

Therefore, (4.17) gives

2T2oiif + T2ooi- + = ®»

since

Q(X(z)) = 0.

This verifies (4.9). This readily proves that X  is a geodesic along 0 = 0 if

X{0) = i(0)dt +f{0)dr. We will now proceed to look at geodesic with the above-

mentioned property.

The affine parameter z can be chosen such that

g j 2 + gltt 2 = l  (419>

But since y = 0 along 0 = 0 , we have 

Clearly dt is Killing; therefore,

g{d,,x) = constant = e ,

that is,

g j  = *. (4.21)
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By (4.21), equation (4.20) becomes

r2= e - goo. (4.22)

The turning points for the particle are where

s2 -g o o = 0 - (4-23)

The number of turning points o f  the neutral particle X depends on the values a ,  and q

of the space-time, and e (the energy o f the particle).

Since goo>0 y for sufficiently low energies, a neutral particle never reaches

r = 0 (Figure 3-Figure 6). I f  tanfon/  4) = a , then goo^o =ao; therefore, from

(4.22) and (4.23), no timelike geodesics can reach r = 0 . From Figures 3-6, it is clear 

that the particle may be repelled even before it reaches the origin ( r  = 0). Since 

ggo —> 1 from below as r —► oo, the particle may oscillate if e 2 < / ,  just as in the case

of the Reissner-Nordstrom solution when e2 > mr. However, here the particle could 

pass through r = 0 and approach r  —> oo along 0 = it provided the necessary 

conditions are met (Figure 5, whene is greater than the maximum value attained by 

g ^). The radial geodesic along the symmetry axis here is far more exotic than in the 

Reissner-Nordstrom geometry. This is perhaps due to the fact that the exact shape of 

the mass distribution depends on the values of a  and q .

Yet another curious property o f this geometry is that the gravitational field 

depends on q ocQ / q (this follows from (2.45)). In the Reissner-Nordstrom 

geometry, the gravitational field is independent o f the sign o f the net charge of the 

space-time. This is also true here. If the charge distribution in our case is
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Figure 3. Graph of along the symmetry axis when q ~ 0  and
a  = I.
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goo

r = 0 r = m

Figure 4. Graph o f gM along the symmetry axis when q  = 0.1 and
a  = 1.
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r = 0 r = m

Figure 5. Graph o f along the symmetry axis when q  = 0.6 and
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GO

r = 0

Figure 6. Graph o f along the symmetry axis when q = 2 and
a  = 1.
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homogeneous (i.e., p >0 or p < 0 , where p is the electric charge density), then q , 

hence the gravitational field is independent o f the charge distribution since

Q  Qzz fp(r2-:2)  ̂ J-P(r2- z 2 ) d v
- p------------- . (4.24)

<7 <7 J pc/v> j - p d v

To summarize, we have obtained a family of solutions to the Einstein-Maxwell 

system of equations. The solutions correspond to that o f a charged mass distribution 

with a nontrivial quadrupole moment. The resulting geometry is such that its charge to 

mas* ratio in absolute value is greater than one. As expected, the solution

corresponding to a trivial quadrupole moment (q = tf)is isometric to the Reissner-

Nordstrom solution.

Upon calculation o f the scalar , we find that, for all values o f q , the

geometry admits a naked singularity. Furthermore, for sufficiently low energies, 

neutral particles are repelled from the singularity at r  = 0.
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APPENDIX A

PROOF OF EQUATIONS (2.14b) AND (2.14c)
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Here we give a proof o f (2.14b) and (2.14c). We first note that since

\p = -InfoLCOsy + siny), (A l)

we have

> ■ (-asmxy + cosy) v;
.v.-. (a co sy  +sm\\r) .v r.

(A2)

Using the above relation and substituting (2.13) into (2.7) we have

(i +cl2) /_,
YP =P '  p 'V. aco5\jr +sm\\f J (acoiyvj/+5w\j/)

/ J a 2srn2 v + coj2 \|/-2a5w ivcasv{/-/-a2
= -p(Vp -  V.- H---------------- -(------- z — z z ----------------

(acasv+-s*w v)

= - p ( v p - v f ) ,

which is (2 .14b).

Similarly, from (2.8) we get

( -  a  sin vj7+ cos y )2 ____

(A3)

y , =2p
( / + a 2) -------

2 VpV: —( ZS— -\2V ?Vt(acasxy + srri\y)2 P 1 (acosy/ +sin

a 2 cos2 vj7 — sin2 \jjr -  2a cos sin a
= - 2pvj/pvj/_

{acos\^+stn\\f)2

= - 2 p W PW Z’ (A4)

which is (2.14c).
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PROOF OF EQUATION (2.21)
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Here we compute the expression satisfied by the quantities y^ and y^. The 

coordinate transformations o f interest are

p = +k2 ̂ jl-p .2 , and r= X |i, (B l)

where - a < X . < a o  and - / ^  p < / .  The coefficient m /a h a s  been dropped in (B l) 

since (2.14b) and (2.14c) are invariant under transformations o f the type 

(p ' z'} = x {p *}, where % is an arbitrary constant. Here, the Jacobian is given by

fdA (dp dzy
(d  \dk dk

dz
dp.j

-  \ i \ I  + X2

. 4 1 ^

fa  \
(B2)

Hence we can relate the partial derivatives of y  with respect to  the (p,z) coordinate 

system to the same in the (X., |x) coordinate system as follows:

f v > 7*.

\ y j

k y j l - p 2

T f T T
-p.V 7+x7

-i

x
A___

nV7+x?

z i£
A

aV T -p7  avT+x2J

( y "i• p
(B3)

where
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A =
\ 2+\i2

Similarly,

a J i - v2 aV7+xTv

rv P>

I v J
(B4)

Solving for yk from (B3), we get

Yx =
kyJl-[L2

V 7+aT
T - + M Y , (B5)

Substituting (2.14b) and (2.14c) in the above results in

Y x = P yll + X2
(B6)

The expression for y  z and \j/p in terms o f ant* Vp can be obtained from (B4). A 

resubstitution o f this result into (B6) gives

Yx = l y  [~ * { l+ V ) v l  +*■{*- + ^ m (/+ ^ )v (1Vx]» C®7)

which is (2.21). A similar calculation gives (2.22).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C

THE ASSYMPTOTIC BEHAVIOR OF THE 
ELECTROSTATIC POTENTIAL
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It is intended here to calculate the asymptotic form o f <t>. From (2.18) we

have

#  =  -
V z+ g 2 Z 

k  a + ta n y

Let x  — — . Then 
r

<D = d>(x = 0) +
d #
dx

I  I d 2# i  i  d3#
x=o r  2 dx2 r 2+  3! dx3

z=Q

(Cl)

But

<l>(x = 0) = <h(r = oo) =  0 , 

so it remains to calculate the partial derivatives of <t>. Let

I<D =
a  + tany

(C2)

(C3)

then

d # d # d k )
dx

x=0
cfy

V= x/3
\ d k dx) x=0

(C4)

Clearly,

d #
d\j7

(C5a)

= - 2 a , (C5b)

and

</*<&
= - (2 + 6 a 2). (C5c)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

Also,

&K 7+X2 2 V '

, (3 \2 + l) ,
<5Xco/ X - (C6)

and

d k _ d _  
dx dx

(C7)

To leading order

ovj7 
dX rfr

m
a -y/x

(C.8)

Therefore,

JX2 X2
y+x2 y+x2

m
a

(C9)

For large X

-  . qP* y x ta n  X - -^ y , (CIO)

that is,

dy_
dX ^y+X 2 ’ X" ’

7 (C11)

Then

f) (C12)
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Also,

d2̂  dk 8 ( fSjTj 
~ & P ~ ~ d cd kV ^J

,a V ( * + / + » U\ a 2 a  J dk

7 *>■ a  nr
r k2 , 2k>
—2+ 1  -I-----VoT a ;

/  2A. 2?P, 1
W { l  + k2)2 a 2

2X ^ P , 2 (/-A.3) 6?/>,
* + '

(/+X*)2 ^  <*(/+k2)2 ok4

that is,

3*v|/
5r

= <x2m, Jt3 2 ( -  l)k2

r=0 a*’ a ( /  + Ar)2 X-xo

2nr
a

Taking another derivative, we find

But

d3y  _ dk d f dV ĵ 
dx3 dx dk I cfcr J

/  3 f  d2\y'
a'/w dk\dx J dk

( k2 2k]
— +  /  +  —  va' a ;

1 2k 
a 2 (l + k2)2

2qP2 2k  2 ( l - k 2) 
a 2XJ ( / + X*)2 ‘ a ( /  + X3)2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(C13)

(C14)



63

that is,

2 X6 2qP2 2 X6 4 X6
v  ( i + x 2)4 + «<x2 V  (1 + x * y  V  ( i + x2)4 7

d3̂
a?

_  3  3* - a  m
-2  X6 2qP,
a ' (/  + *> ) '+ a V

2 A5 ^ X6
+ rrr + '

a-7 ( / + x 2)'

Taking limits, we have

dJM?
acJ

= - a w
r=0

 7 +
2qP2 2

4  '  7 + 'a  a  a~ a

2mJ 2m3qP2 6m3
a 3 a 3 a

From (C5a) and (C9) we have

d® d y
dx dw

x=0 Y -  , x=0

\  a J  a

Also,

g7s> g f d $ )  d 2& (d vj7V g2y
dx2 dx t  dx J d y 2 I dx) + d j7 dx2

From (C5a), (C9), (C5b), and (C13) we get

d2®
dx2

x=0
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Finally,

d f  a V

dx3

d 2Q> d y  d*\y cW> d3\\r 
dy/J V dxJ cR(r2 dx dx2 c/vj7 dx3
d 3® f d y Y  
(M3 v & /

Therefore from (C5c), (C9), (C5b), (C13), (C5a), and (C17), we have

(C21)

d2®
dx3

2m3 6m3 8m3 4m3 2m3 2m qP2 6m
+  -

x=0
a a a  a a a'

2m3qP2
a

(C22)

Now we are in a position to find the asymptotic behavior o f <t> from (C3), (C l), 

(C l8), (C19) and (C21), resulting in

tJi  + CL2
o ^ L + 0 J m ‘qP ' M  1

a  r 6a.3

(C23)
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