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underestimate the maximum likelihood estimator. A suggestion for correcting the bias in
the first two moments is presented.

The pseudo-binomial confidence intervals are compared to the Greenwood and
Rothman confidence intervals using data generated from the Weibull distribution. The
pseudo-binomial intervals are shown to be significantly more accurate than the
Greenwood intervals. They are also shown to demonstrate less error overall than the
Rothman intervals, although the difference is not statistically significant.

The pseudo-binomial and Rothman intervals are then constructed using the
Berliner-Hill estimator and Peto effective sample size. These are compared to the
intervals constructed using the Kaplan-Meier estimator and Cutler-Ederer effective
sample size. Although the Rothman intervals improved with the use of the Peto effective

sample size, the pseudo-binomial intervals still demonstrated less error overall.

iii
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CHAPTER 1
INTRODUCTION
The term survival time is used to describe the measurement of time to any given
event, whether it be death, end of disease remission, failure of a machine, or change in
employment. Analysis of survival time data has been performed within a variety of
disciplines, including biomedical research, economy, engineering, and insurance to name
a few. The purpose of survival analysis, common to all fields in which survival studies
are conducted, is the development of probability statements about the survival times

(Gross & Clark, 1975).

A simple mortality table was published in 1693 by Halley. His work is discussed
by Todhunter (1949) and Nelson (1982). Halley’s table merely lists the number of
people alive at each age. Since that time, reliability and mortality studies have been
concerned with determining the probability of failure of a system or death of a patient.
Davis (1952) introduced the conditional density function and defined its relationship with
the probability density function and the cumulative probability function of failure time
data. While Davis focused on the failure of machines, he noted that the force of mortality

observed in actuarial studies is merely the conditional density function, where the system

being observed is the human being.
Medical researchers in the past have relied on survival analysis techniques as a

way to determine the effectiveness of a treatment. The 5-year cure rate, or the proportion

L e—— ———— e - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of patients alive 5 years after treatment, was the preferred indicator of cancer treatment.
Berkson and Gage (1952), dissatisfied with the assumptions that a) any cancer patient
who survives 5 years can be considered cured, b) all deaths in the 5-year period are due to
cancer, ¢) any person without cancer would still be alive after S years, and d) all deaths
after the 5-year period are not attributable to cancer, introduced a survival curve. This
curve was defined by an equation with two adjustable parameters, the fraction cured and
the instantaneous risk of death from cancer. From their curve, an expectation of life
could be determined.

Kaplan and Meier (1958) developed a nonparametric method to estimate the

probability of survival. In their work, they also discussed the problem of incomplete

T S S D AT

observations, those losses not attributable to the condition being studied. Although
research has continued in the area of survival analysis, the Kaplan-Meier estimator is still
most commonly used. The Kaplan-Meier product-limit estimator is the basis of the
LIFETEST procedure in SAS (SAS Institute, 1990).

This chapter contains a brief explanation of the functions used in the analysis of
survival data. An introduction to the proposed pseudo-binomial distribution will be
presented and a description of some of the topics pertaining to survival analysis that have

been discussed in literature is given. Finally, an overview of the remainder of this work

is presented.

Functions Used in Survival Analysis

3

The measured time of survival is a random variable and, therefore, forms some
distribution. The distribution of the survival times is characterized by three

mathematically equivalent functions: the probability density function, the hazard

- ——
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The hazard function measures the proneness to an event as a function of age (Nelson,
1982). The shape of the hazard function (increasing, decreasing, constant, J-shaped, or
“bathtub”) is an indicator of the type of risk to which the study population is exposed as a
function of time (Gross & Clark, 1975; Lee, 1992).

The survivorship function, or cumulative survival rate, is the probability of an
event occurring after time ¢. The survival function is given by

S(1) = P(event occurs after time ¢)
=P(T>t)

and has the following properties:
1. S(1) is nonincreasing; and

lfort=0

t
z S(t)::{o fort >0
The survival function is most often used to determine various percentiles of survival time
with the median, or 50th percentile, being an estimate of “typical” life (Nelson, 1982).
From the survival function S(?), a survival curve can be drawn to illustrate the survival
rate over time.
Introduction to the Pseudo-Binomial Distribution

Working with Blackstone, Kirklin, Pluth, Turner, and Parr (1977), Bradley used

the relationship between the binomial probability function and the incomplete beta

function to construct confidence limits for the probability of survival. In the study, the

RIT

observed outcome was poppet escape after aortic valve replacement. The random

variable X, the number of patients remaining event free, was termed a pseudo-binomial

——
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random variable. This dissertation extends the work of Fox (1995) in describing this
distribution and further examines its applicability in survival studies.
Issues in Survival Analysis
Research into survival analysis methods has considered several problematic
issues. These include estimation of survival probability, the treatment of partial survival
information, and the presentation of survival data. A brief introduction to these topics
will be given here, with further discussion presented in chapter 3.
One topic debated in the literature is the appropriate estimation of the
survivorship function. The analysis of survival data often is concerned with estimating
* the unknown parameters of a distribution hypothesized to fit the data. Generally, the
distributions considered are the exponential, Weibull, lognormal, and gamma
distributions. However, if the survival distribution of the data is not known or does not
adequately describe the data, estimation must be made without assuming a distribution.
Nonparametric techniques are employed in such instances. The most commonly
used nonparametric estimator of survival probability is the Kaplan-Meier estimator. A
modification to that estimator, the Berliner-Hill estimator, was developed through the use
of Bayesian theory. Both the Kaplan-Meier and Berliner-Hill estimators will be

considered in this study.

Gedlizo

Another area of concern is the treatment of partial survival information. In most

survival studies, the exact survival time is not known for all subjects in the study. Some

subjects may still be event-free at the end of the study, while others are lost to follow-up.
It is likely that some events occurring during the study cannot be attributed to the

condition being observed. In all of these scenarios, the subjects are considered censored

.
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distribution and more complete analysis methods. Chapter 5 focuses on the pseudo-
binomial and Rothman intervals, incorporating alternative survival estimation and
effective sample size calculations. Chapter 6 presents the application of the pseudo-
binomial confidence limits to survival data. Chapter 7 discusses the results of this study
and presents suggestions for further research into the pseudo-binomial distribution and its

applications.

?
4
£
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CHAPTER 2
AN EXPLORATION OF THE PSEUDO-BINOMIAL DISTRIBUTION
The pseudo-binomial distribution, derived from the relationship between the
binomial probability distribution and the incomplete beta function, was previously
explored by Fox (1995). The cumulative distribution function of the pseudo-binomial
distribution was defined, and numerical analysis techniques were used to approximate the

first two moments of the distribution. This chapter further examines the pseudo-binomial

5
3
¢

distribution. The probability density function is derived, the analytical derivation of the

first two moments is discussed, suggestions for improving the behavior of the pseudo-

binomial distribution are presented, and the maximum likelihood estimator for p is given.
Probability Density Function

The cumulative distribution function of the pseudo-binomial distribution is

Y TN+ t
Fr (k)= Il‘(k+l)l"(N-k)(1-t

4

)k(l—t)”"dt.

The probability density function is obtained by taking the derivative of the cumulative

3 distribution function.

_d ]t T(N+D e Y
fx(k)‘dk{jr(kn)r(zv-k)(:-:) (-0 d’}

4

_ d| 1 t vt
‘F(N'I)I{Ir(kn)r(zv-k)(l-:) L) d’} '

P

Y
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The derivative of the gamma function can be determined from the digamma function,
y(k). That is,

d —yh)=—— 2 rp=K)
Zc T =y = o Tk = 1o

Thus, I''(k) = (k)w(k). Also, -:Ta* =a*Ina. Using these results, the probability

density function is

Y T(V+D e Y ,.,_.[ o ;]
fx(k)_!l"(k+l)I‘(N-k)(l-t) A=0"" w(V -k “’(k”)“"(l-:) .

Moments of the Pseudo-Binomial Distribution

The expected moments of a distribution can be found by using the Equation

E(X*)= [x*f(x)dv=a [x*"[1- F(x)]dx )
0 0
(Feller, 1966). The first two noncentral moments of the pseudo-binomial distribution are

given by

N-1
E(X)= [I,(k+1,N-k)dk @)
0

and

N-1
E(X*)=2 [k I,(k+1,N - k)dk 3)
0
where I,(k+1,N —k)is the incomplete beta function. The results of the numerical

analysis techniques performed by Fox (1995) suggested that the expected value and the
variance of X, the pseudo-binomial random variable, are E(X)=Np-1/2 and

var(X) = Np(1- p)-1/12 for N 250. These initial results are shown in Table 1.
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Table 1

Mean and Variance of the Pseudo-Binomial Distribution Obtained Through Numerical
Integration

N p E(X) var(X) N P E(X) var(X)

50 .10 4.5015 4.4020 80 10 7.5001 7.1157
.20 9.5000 7.9166 20 15.5000 12.7167
.30 14.5000 10.4167 .30 23.5000 16.7167
40 19.5000 11.9167 40 31.5000 19.1167
50 24.5000 12.4167 .50 39.5000 19.9167
.60 29.5000 11.9167 .60 47.5000 19.1167
.70 34.5000 10.4167 .70 55.5000 16.7167
.80 39.5001 7.9167 .80 63.5000 12.7167
.90 44.5001 44173 90 71.5000 7.1167
60 .10 5.5005 5.3107 90 10 8.5000 8.0163
20 11.5000 9.5167 20 17.5000 14.6137
.30 17.5000 12.5167 .30 26.5000 18.8167
40 23.5000 14.3167 40 35.5000  21.5167
50 29.5000 14.9167 .50 44.5000 22.4167
.60 35.5000 14.3167 .60 53.5000  21.5167
.70 41.5000 12.5167 .70 62.5000 18.8167
.80 47.5000 9.5167 .80 71.5000 14.3167
90 53.5000 5.3169 90 80.5000 8.0167
70 .10 6.5002 6.2143 100 10 9.5000 8.9165
20 13.5000 11.1167 20 19.5000 15.9167
.30 20.5000 14.6167 30 29.5000  20.9167
40 27.5000 16.7167 40 39.5000  23.9167
.50 34.5000 17.4167 .50 49.5000  24.9167
.60 41.5000 16.7167 .60 59.5000  23.9167
.70 48.5000 14.6167 .70 69.5000  20.9167
.80 55.5000 11.1167 .80 79.5000 15.9167
.90 62.5000 6.2167 .90 89.5000 8.9167

Note. E(X) is the expected value and var(X) is the variance of the pseudo-binomial
random variable X.

‘ An attempt to analytically derive the first two moments of the pseudo-binomial
distribution was made. The derivations are contained in Appendix A. The Euler-

Maclaurin expansion (Abramowitz & Stegun, 1974) was used to approximate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

moments as defined in Equations 2 and 3. The expansion approximated the moments as

N _ N
E(X)sz_%+£1p_)2p_ “@)
and
2, 1 v_p +(1-p)*
E(X*)= N(N-Dp +g—(N-l)p e *)

The variance of X, given by var(X) = E(X?) - E?(X), is then

_p'+0-p"
6

2
+( Np- %)(p"-(l- P)N)_(a—p)z”-p”) .

The analytical approximation of the mean (Equation 4) and variance (Equation 6)

var(X) ~ Np(1- p) - %-(N ~np*
©)

support the conclusion suggested by the results of the numerical integration carried out

previously. Obviously, the terms containing p" and (1- p)" will become small as N
gets large. To determine at what point those terms become negligible, the numerical
integration was repeated for small N and the mean and variance calculated. The expected
values computed by numerical integration, denoted by u,, the initial estimate of the mean
(Np-1/2), n,, and the approximation of the mean defined in Equation 4, p;, are shown
in Table 2. Similarly, the variances as computed by numerical integration (0'2,), using the
initial estimate Np—1/12 (6%,), and from the definition shown in Equation 6 (6°;) are

contained in Table 3.

Table 2 shows that for N equal to or greater than 30, the terms containing p" and

(1- p)" have very little effect on the approximation Np—1/2 of the mean. Even for N

as small as 195, the simple approximation underestimates the mean by only 7% forp = .1,
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with the bias decreasing as p approaches 0.50. For N smaller than 15, more accurate
results would be obtained using the approximation defined in Equation 4. It should be
noted that the simple approximation underestimates the mean for p < .50 and
overestimates the mean for p > .50, while the more complete approximation behaves
oppositely.

Table 3 shows similar results for the variance approximation. With an N of at

least 30, very little additional information over the approximation Np(1-p)-1/12 is

gained through the use of the terms involving p" and (1- p)”. However, the simpler
approximation consistently overestimates the variance of X, while the approximation
defined in Equation 6 consistently underestimates the variance.

The power of a test is inversely related to the standard deviation (Rosner, 1990).
That is, as the standard devation increases, the power of a test decreases. Because the
true variance would be smaller than a conservative estimate of the variance, the true
power of a test would be greater than the power of a test conducted using the conservative
estimate. Therefore, although the bias is large for small N, the simpler approximation for
the variance of the pseudo-binomial random variable X may be more desirable than the
more definite approximation which underestimates the variance.

The expected value of a binomial random variable is Np, while numerical

integration suggested the expected value of a pseudo-binomial random variable to be

approximately Np—1/2. This shift in expectation is illustrated in Figures 1 and 2.
Mathcad 4.0 was used to estimate the probability density function of the pseudo-binomial
distribution. The probability density function of the pseudo-binomial distribution was

then superimposed over the binomial probability distribution. For both figures, N was
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Figure 1. Probability density function of the pseudo-binomial distribution superimposed over the binomial probability distribution,
N=20and p=.50.
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Figure 2. Probability density function of the pseudo-binomial distribution superimposed over the binomial probability distribution,
N=20and p=.75.
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EN=EX+U)=E(X)+E{U)=Np-1/2+1/2=Np
and

var(Y) = var(.X + U) = var(X) + var(U) + 2cov(X,U)
= Np(1-p)-1/12+1/12+0= Np(1- p).

The cumulative distribution function for the new random variable Y would be
F()=P(Y<y)=P(X+U<y)

Pr(X <y-u)f,(u)du

Fy(y—u)du

© Cemmy ™ © ey —

and the probability distribution function is

1
S ()= Ifx(}"'“)du .
0

The region in which the distribution of the new random variable Y is defined is now
0<Y < N, whereas the distribution for the random variable X was defined only for
0< X < N-1. Further research into the use of the Uniform(0,1) distribution as a
correction to the pseudo-binomial distribution was not conducted at this time.
Maximum Likelihood Estimation of the Pseudo-Binomial Parameter p
An unknown distributional parameter can be estimated using the likelihood

function,

L(p)= f(X\I|p)f(X,|p)--f(X,IP) .

The maximum likelihood estimator is that which maximizes the function L(p), or
equivalently, In L(p) (Dudewicz & Mishra, 1988). In the case of the pseudo-binomial

distribution, the unknown parameter p is the proportion of survivors at a given point.

3
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Therefore, the maximum likelihood function for the pseudo-binomial distribution is

merely L(p)= f(X]p).

The maximum likelihood estimator of p, p, is the solution of

O*F(X)
EI(XI P) s = Spox =—=|,.;=0. ™
Note that
’F(X)
ln -oF(X) _ _odXop 62 F(X) @)
oX ap oF (X) dXop
op
Therefore, because Eafln a’;}(’X) is proportional to ap;;f) the solution p of
Equation 7 is also the estimator that will maximize Equation 8. Thus p is the solution of
—OF (X)
a X ll'l I P=P

The partial derivative of the cumulative distribution function of the pseudo-
binomial distribution with respect to p is

OF(X) __ T(N+)
o  TLX+DI(N-X)

pa-p* &)

so that the function to be maximized is

1n 9P O =m( CNAD  xq py- x-)
op F(X+1)F(N-X)
=In[(N +1)~In[(X +1)-In[(N - X) (10)

+XInp+(N-X-DIn(1-p).
Then the maximum likelihood estimator p is the solution to

d ln—aF(X)I

2 —y(X +1)+y(N - X)+Inp-In(1- p)|,.,= 0

I

—— ——— . -
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which gives

—y(X +D)+y(N-X)+ i”—ﬁ)=o
so that

R ev(x+l)
p= I +ev(x+l) .

(1)

The usual estimate for a binomial proportion is p, = X/ N. The maximum
likelihood estimator for the pseudo-binomial parameter p given by Equation 10 was
compared to the usual binomial estimator p, and the binomial estimator using the
proposed new random variable Y=X+1/2, p,=(X+1/2)/N. For values of N
ranging from 5 to 50, and for each X = 0, 1, ... , N-1, the values of each of the three
estimators were computed. The results are contained in Table 4. The maximum
likelihood estimate of the pseudo-binomial distribution is denoted by p, the usual
binomial estimator is denoted by p,, and the estimator using the random variable Y is
denoted by p,. The results for N =5 and 10 are shown to indicate the behavior for smail
N, and N =50 for large N. Similarly, for N = 50, the values of X ranging from 0 to 10 and
from 40 to 49 were chosen as representative of the behavior of the estimators below and
above the median X value.

From Table 4, it is seen that the usual binomial estimator (p,) consistently

underestimates p. The estimator p,, however, underestimates p for values of X below

(N -1)/2 and overestimates p for values of X above (N —1)/2. Even for small values

of N, the estimator p, =(X +1/2)/ N is a better approximation to p than the usual
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CHAPTER 3

CONSIDERATIONS IN THE ANALYSIS OF SURVIVAL TIME DATA

There are several issues to be considered in the analysis of survival time data.
The estimation of the survivorship function, the treatment of censored observations, and
the presentation of analysis results are some of the topics that have been discussed in
literature. The variety of proposed methods of analysis indicate there is no “right” way to
summarize the results of a survival study. A few of the different methods that have been
proposed in each of these areas will be presented and discussed in this chapter.

Estimating the Survivorship Function

Often, the analysis of survival time data is concerned with estimating the
parameters of a distribution hypothesized to fit the sample data. It is usually the case,
however, that there is no distribution which adequately describes the data or that the data
are not recognized as following a known distribution. In such instances, an estimate of
the survivorship function must be made without assuming a distribution. The Kaplan-
Meier and Berliner-Hill estimators have been proposed as two different nonparametric
methods of estimating the survivorship function.

The nonparametric method most commonly used in estimating the survivorship

function is the Kaplan-Meier estimator. If the survival time for all subjects is exact and
known, the survival estimate is calculated by first arranging the N observed survival

times from smallest to largest so that 0 < £, < £ < ... < . The estimate of the

24
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survivorship function at any given time /; is simply

where N-i is the number of subjects surviving longer than time #,.

If the exact survival time is not known for all patients, the survivorship function
can be estimated by the Kaplan-Meier product-limit method. Kaplan and Meier (1958)
developed the product-limit method as a nonparametric technique to be used in the
estimation of the survivorship function. The product-limit estimate for the probability of

the i subject surviving for some period of time ¢ is given by

. A
i SKM(’(.')) =X Py X...X P X p;
where p; is the proportion of subjects surviving for time #;, after they have survived for

time ¢, ;. The proportion p; is given by

_ N-i
=N
which leads to the result
A A N-i
SKM('(;))=SKM('(:'—|))N_1.+1
or
- N-i
Syun (1) = . (12
() ,.,l;ls,N—ul (12

An alternative estimator based on Bayesian theory has been proposed. Berliner
and Hill (1988) pointed out that the primary focus of survival studies, particularly in the
medical field, is prediction rather than estimation. That is, rather than merely observing

the survival time of subjects in a study, an investigator is instead trying to predict the
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approximate length of time a new patient can expect to survive. Berliner and Hill argued
it is often the case that a probability of 0 is assigned to a future observation for which the
survival time is larger than the largest or smaller than the smallest survival time observed
in the study. It is unreasonable to expect that all future patients will survive at least as
long as the shortest survival time observed in a study, but no longer than the longest. Hill
(1992) suggested that a substantial proportion of censored patients could be expected to
survive longer than the time of the last death. Berliner and Hill believed that the
inappropriate assumption that all future deaths will occur within the length of time
observed in the study, particularly in the case of large survival times, led to the

unsuitability of the Kaplan-Meier estimate of the probability of survival.

2
¥

Based on the work of Berliner and Hill, Chang (1989) deveioped the Berliner-Hill
estimator. His work was further discussed by Hill (1992). The Berliner-Hill estimator is
calculated under the assumptions that a) a future subject is exchangeable with previous
subjects, and b) the probability of the next observation falling into the open interval I, is
equal for all i =0, ... , N. While the Berliner-Hill estimator is based on Bayesian theory
and the use of predictive posterior probabilities, Hill pointed out that the Berliner-Hill
estimator can be easily obtained using the Kaplan-Meier product-limit method by

substituting N + 1 for N. Thus,

A N-i+1
S.. (1) = —_—
ai () .-:E,-IS.N—H?.

(13)

Chang compared the Berliner-Hill estimator to the usual Kaplan-Meier estimator and
found that the Berliner-Hill estimator performed better than the Kaplan-Meier estimator

in estimating the mean and quartiles in most distributions.

—~—— —— _—
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Variance of the Survivorship Estimators
Greenwood (1926) used the Propagation of Error, or Law of the Total Differential,
to develop an approximate variance for the actuarial estimate of the survivorship function
(see Appendix B). Kaplan and Meier (1958) applied Greenwood’s formulation to their

product-limit estimator, resulting in what they termed Greenwood’s formula,

A A - d.
var{Suy (0} =Sam () D, ———— (14)
K™ o i1y St Ni(Ni -di)

where S‘m (1) is the Kaplan-Meier product-limit estimate of the survival function; g, is 1
if the i™ observation is a failure and 0 if censored; and N; is the number of observations

surviving just prior to time £, N;= N-i+1.
The approximate variance for the Berliner-Hill estimator is calculated the same
way, recognizing that the Berliner-Hill estimator is computed by adding one observation
to the number at risk at each time. Thus, the approximate variance of the Berliner-Hill

estimator is

(15)

A -~ ~ d-
var{Sg, (1)} = Sau (1) Z ’
BH BH s (N +D(N, +1-4))

where Sy, (7) is the Berliner-Hill estimator of the survival function; d; is 1 if the
observation at time ¢, is a failure and O if censored; and N;+1 is the number of

observations, plus one, surviving just prior to time /.

Partial Survival Information and Effective Sample Size

LT NP YRS

In a study, especially one which continues for several years, one or more subjects
may be lost. That is, a subject may withdraw from the study at some point. It is also

possible that a subject may still be alive at the end of the study or a subject has died as the
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result of some accident unrelated to the study. In each instance, the only survival time
information available is that the subject was still alive at the time of the last contact.
Such individuals are right-censored.

Censored observations are not the only concern when estimating the survival
function. It is common to continue to enter subjects into a study after the study has
begun. Thus it is possible that data from a 5-year study may include subjects who have
been observed for only 1 year. The calculation of an effective sample size allows the
partial survival inforation from both censored and late-entry observations to be used in
the analysis. Cutler and Ederer (1958) note that “the reliability of a statistical result
depends on the size of the sample” (p. 712) and so define effective sample size as the

F number of subjects which would have been needed, if they were all followed until death
or the end of the study and had the same survival rate as calculated in the current study, to
have a standard error equal to that found in the current study. An analysis using partial
survival information can be said to be as reliable as an analysis based on the effective
sample size where no censoring or late entry occurred.
The most commonly used effective sample size is the Cutler-Ederer definition.
Cutler and Ederer (1958) defined the effective sample size as
) S (-8 (®)
var B®) ’

(16)

where § e (t) is Kaplan-Meier estimate of the probability of survival and vir(S Py (t)) is

the variance obtained using Greenwood’s formula (Equation 14). The Cutler-Ederer

o e—
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effective sample size is the calculation usually used in the construction of confidence
limits in survival analysis (Anderson, Bernstein, & Pike, 1982).

A second definition of effective sample size was also considered in this research.
Peto et al. (1977) determined that the standard error as computed by Greenwood’s
formula tends to be underestimated in the tail of the survival curve. They proposed a

more conservative estimate of the standard error, given by

l‘§m(‘)

var {8y (0} = St (0 —24

where $,,,(f) is the Kaplan-Meier estimate and N, - d, is the number of subjects still at

: risk at time 7. The Peto effective sample size is then defined as

N -d
"=Tl——"‘ . 17
Skm () an

The final formulation for computing an effective sample size to be considered is the
4 Dorey-Komn effective sample size. Dorey and Korn (1985) determined that, while the
Cutler-Ederer calculation of sample size can underestimate variability when the survival

curve is flat, the effective sample size as given by Peto et al. tends to be overly

conservative. Therefore, they introduced a modification to the Cutler-Ederer formula.
They suggested that, if a censored observation occurs at time #, one could assume that the
last death before time ¢ actually occurred at 7. Let ¢, be the time at which the last failure

was observed, #;, be the time immediately preceding the last failure, and ¢, be the

current observation. Then with N, being the number of subjects surviving just prior to
some time /;, and d; being the number of deaths occurring at time ¢, S*(?) and V*(1) are

given by
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2 d - .
s*(:)=[l‘[1-7{][1- d;_l 1][1- ;:ll] (18)

Jj=1 Jj i

and

o en 2 4, d. -1 d; +1 19
vr=37 (t)l:g Nj(Nj-l) * Ni-l(Ni-l-di—l +1) " N"(N"+l):| >

where S*() is the estimate for the probability of survival and V*() is the estimate of the

variance of S*(?). The formula for calculating the effective sample size N* is

S*()(1-S*@®))
N*= 0 ] (20)

Dorey and Korn noted that their modified effective sample size N* reduced to the usual
Cutler-Ederer estimate if no censored observations occurred between f;, and 7;. It
should be noted, however, that Equation 19 is incorrect. Using the Law of the Total

Differential (Appendix B), Equation 19 should be

j=l

2 d, d_ -1 d; +1
V‘ =S*2 Jj i-1 ! . 21
Q) (’)[Z N,(N,-1) * N_ (N, -d_ +1) * (N; +D(N; ’di):| b

Dorey and Korn (1987) simplified Equations 18 and 19 in accordance with their

proposal to use the estimate only for censored observations, reducing d; to 0. Thus, the

’ simplified equations are
2 4 a4, -1 1
5 S*@)= 1-—= [1 - ][l - ] (22)
.“ [1;1 N, ] N, N, +1
: and
=2 d, :
Ve =S* ()Y 4 oy 1 + ! .23
SN, (N,-1) N_(N_-d_+1) N(N,+])
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The Dorey-Kom Modified Effective Sample Size
and Product-Limit Estimation

When Dorey and Korn (1985, 1987) introduced their modified effective sample
size, they applied their equations to data obtained from Grogan, Dorey, Rollins, and
Amstutz (1986). In the Grogan et al. study, 821 patients underwent total joint
arthroplasty of the knee. The outcome being observed was deep sepsis, a potentially life-
threatening complication of total joint arthroplasty.

Dorey and Korn (1987) calculated their modified effective sample size only when
there were no sepsis patients in an interval and compared their results to the Cutler-Ederer
effective sample size (Equation 16). However, in order to better determine the usefulness
of the Dorey-Korn modified effective sample size, this study calculated the Dorey-Korn
effective sample size at each interval. The data, the results obtained by Dorey and Komn,
and the results obtained by computing the modified effective sample size at each interval
are shown in Table 5. Although Dorey and Korn presented their results with three places
after the decimal, Table 5 carries the decimal four places to clarify the difference between
the Dorey-Korn results when calculations are performed only at intervals with no sepsis
[S*@) and D-K] and at every interval [S*@#), and D-K,]. The Kaplan-Meier estimate
S,a,(t) and the Cutler-Ederer effective sample size (C-E) are also shown.

From the results displayed in Table 5, it was determined that the Dorey-Korn

modified effective sample size changes in any interval following one in which censoring

occurs, not just in the intervals in which no failures occur as suggested. Further
examination of the Dorey-Kom effective sample size was made by reducing the intervals

so that only one subject failed or was censored at a time. This was done by assigning a
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Table 5

Comparison of the Cutler-Ederer (C-E) and Dorey-Korn (D-K) Effective Sample Sizes

Time At Number
(months)  risk sepsis  $p,() C-E S*t) D-K S*w, DK,

2 821 4 09951 821.0 0.9951 821.0 0.9951 821.0

4 778 2 0.9926 807.0 0.9926 807.0 0.9925 800.4

6 772 2 09900 799.2 09900 799.2 0.9900 798.7

12 768 1 09887 7964 09887 7964  0.9887 796.2

14 700 0 09887 7964 09886 7866 0.9886 786.6

16 652 1 09872 777.1 09872 777.1 0.9870 761.4

18 640 1 09857 760.7 0.9857 760.7 0.9856 758.8

20 628 1 09841 746.2 09841 746.2 09841 7445

24 572 0 09841 746.2 0.9839 736.0 0.9839 736.0

: 30 439 0 09841 746.2 09834 693.8 0.9834 693.8
: 36 399 1 09816 669.5 09816 669.5 0.9807 620.0
: 48 318 0 09816 669.5 09810 6143 09810 6143
60 200 0 09816 669.5 09792 4566 0.9792 456.6

72 140 0 09816 669.5 09771 3240 09771 324.0

84 90 0 09816 669.5 09733 1910 09733 191.0

96 43 0 09816 669.5 09617 724 09617 724

108 11 0 09816 669.5 0.9021 143 09021 143

Note. S‘m (t)is the Kaplan-Meier probability estimator, C-E is the Cutler-Ederer
effective sample size, S*#) and D-K are the Dorey-Korn probability estimator and
effective sample size calculated only for intervals with no sepsis, and S*(), and D-K, are
the Dorey-Korn probability estimator and effective sample size calculated at each
interval.

new survival time to those individuals in intervals where more than one failure occurred.
Again, the Dorey-Korn effective sample size was calculated only during those intervals
where no sepsis occurred as well as at each interval. These results are presented in Table

6, along with Cutler-Ederer effective sample size.

The most noticeable difference seen in Table 6 is between Times 4.1 and 4.2. The
Dorey-Korn effective sample size is smaller at Time 4.1 than at Time 4.2. If the estimate

were calculated only for those intervals during which no sepsis occurred, that behavior

——
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would not pose a problem. However, in most survival analysis studies, the censoring
pattern is such that, at least early in the observation period, it is rare for two or more
censored observations to occur in adjacent intervals. Also, because the Dorey-Kom
effective sample size changes only after a censored observation occurs, unless there were
two or more adjacent censored observations, no difference between the Dorey-Korn and
Cutler-Ederer effective sample sizes would be seen. The problem with computing the
Dorey-Komn estimator only during censored intervals and the inappropriate behavior of
the Dorey-Kom effective sample size is demonstrated in Table 7.

For this example, 30 observations were generated from the negative exponential
distribution, with 25% of the observations randomly censored. The Kaplan-Meier
estimator and the Cutler-Ederer effective sample size were computed for each
observation, and the Dorey-Kom estimator and effective sample size were computed for
censored observations as well as for each observation. The results clearly show that,
when the Dorey-Korn effective sample size is computed only for censored observations,
no difference between it and the Cutler-Ederer effective sample size is seen unless there
are two adjacent censored observations. Furthermore, when the Dorey-Korn effective
sample size is computed at each observation, the effective sample size computed for an

observation f; immediately following a censored observation /., is often smaller than

the effective sample size for the next observation, ¢, Therefore, because the Dorey-

Kom effective sample size is not monotonically decreasing, it will not be used as a

possible alternative in computing confidence intervals. The SAS programs written to

analyze the Dorey-Kom effective sample size are contained in Appendix C.
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Table 6

Comparison of the Cutler-Ederer (C-E) and Dorey-Korn (D-K) Effective Sample Sizes
Using One Patient per Interval

Time At Number
(months) risk sepsis Sy () C-E S*@) D-K S*1), DK,

2.1 821 1 0.9988 821.0 09988 821.0 0.9988 821.0
2.2 820 1 09976 821.0 09976 821.0 09976 821.0
23 819 1 0.9964 821.0 09964 821.0 0.9964 821.0
24 818 1 0.9951 8210 09951 821.0 0.9951 821.0
4.1 778 1 0.9939 8125 09939 8125 09938 8044
42 777 1 0.9926 807.0 09926 807.0 0.9926 807.0
6.1 772 1 0.9913 8025 09913 8025 09913 801.9
6.2 77 1 0.9900 7993 09900 799.2 0.9900 799.2
12.0 768 1 09887 7964 09887 7964 0.9887 796.2
14.0 700 0 09887 7964 09886 7866 09886 786.6
16.0 652 1 09872 777.1 09872 777.1 09870 761.4
18.0 640 1 0.9857 760.7 0.9857 760.7 0.9856 758.8
20.0 628 1 09841 7462 09841 746.2 09841 7445
24.0 572 0 09841 746.2 09839 736.0 0.9839 736.0
30.0 439 0 0.9841 7462 09834 6938 09834 693.8
36.0 399 1 09816 669.5 09816 669.5 09807 620.0
48.0 318 0 09816 669.5 09810 6143 09810 6143
60.0 200 0 09816 669.5 09792 4566 0.9792 456.6
72.0 140 0 09816 669.5 09771 3240 09771 324.0
84.0 90 0 09816 669.5 09733 1910 09733 191.0
96.0 43 0 09816 669.5 09617 724 09617 724
108.0 11 0 09816 669.5 09021 143 09021 143

Note. .§m(1) is the Kaplan-Meier probability estimator, C-E is the Cutler-Ederer
effective sample size, S*@) and D-K are the Dorey-Korn probability estimator and
effective sample size calculated only for intervals with no sepsis, and S*#), and D-K, are
the Dorey-Kom probability estimator and effective sample size calculated at each
interval.

Confidence Intervals for the Survival Curve
In survival analysis, it has often been the case that the estimated median survival

time or the probability of surviving longer than some period of time has been reported

- ———
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Table 7

Comparison of the Cutler-Ederer (C-E) and Dorey-Korn (D-K) Effective Sample Sizes
Using Data Generated From the Negative Exponential Distribution

At
Time risk Censor §,(¢ CE S*®W DK S*n DK,

0.032 30 1 1.0000 30.0 1.0000 30.0 1.0000 30.0
0.184 29 0 09655 290 09655 29.0 0.9644 28.2
0.185 28 0 09310 290 09310 290 09310 29.0
0.268 27 0 08966 290 0.8966 290 0.8966 29.0
0.294 26 1 08966 290 0.8966 290 0.8966 29.0
0.346 25 0 0.8607 28.7 08607 287 0.8594 284
0.445 24 0 0.8248 285 08248 285 0.8248 285
0.472 23 1 08248 285 08248 285 0.8248 285
0.480 22 0 0.7873 28.1 0.7873 28.1 0.7859 27.8
0.586 21 1 0.7873 28.1 0.7873 28.1 0.7873 28.1
0.718 20 1 07873 28.1 0.7856 27.7 0.7856 27.7
0.721 19 0 0.7459 272 0.7459 272 0.7423  26.7
0.731 18 0 0.7045 265 0.7045 26.5 07045 265
0.778 17 0 0.6630 26.1 0.6630 26.1 0.6630 26.1
0.870 16 1 0.6630 26.1 0.6630 26.1 0.6630 26.1
0.935 15 1 0.6630 26.1 0.6604 257 0.6604 25.7
1.008 14 0 0.6157 250 0.6157 25.0 0.6105 245
1.014 13 0 0.5683 242 0.5683 242 0.5683 242
1.030 12 1 0.5683 242 0.5683 242 0.5683 242
1.048 11 0 05166 23.1 05166 23.1 05131 228
1.163 10 0 0.4650 223 04650 223 04650 223
1.224 9 0 04133 21.7 04133 21.7 04133 21.7
1.272 8 0 0.3617 21.2 03617 212 03617 21.2
1.517 7 0 0.3100 208 03100 208 03100 208
1.608 6 1 0.3100 208 03100 208 03100 20.8
1.694 5 0 02480 193 02480 193 0.2411 189
1.819 4 1 02480 193 02480 193 02480 193
1.879 3 0 0.1653 156 0.1653 156 0.1550 153
2.552 2 0 0.0827 135 0.0827 135 0.0827 135
3.655 1 0 0.0000 13.5 0.0000 135 0.0000 13.5

Note. §XM(I) is the Kaplan-Meier probability estimator, C-E is the Cutler-Ederer
effective sample size, S*t) and D-K are the Dorey-Korn probability estimator and
effective sample size calculated only for intervals with no sepsis, and S*(#), and D-K, are
the Dorey-Korn probability estimator and effective sample size calculated at each
interval.

—~—— ———— - -
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without any indication of the reliability of the estimate (Simon & Lee, 1982).
Constructing a confidence interval at some predetermined level y (usually y = .95) around
the survival curve would define the range of values in which the true value of S(f) would
be contained in Y100% of repeated studies. The method one should use to determine the
confidence limits has been a topic of interest in recent years.

The most commonly used confidence intervals are the confidence limits based on

Greenwood’s formula, shown in Equation 14. These are calculated using the Equation

S-S ®)]”
$'m(t)i7[ e = ] (24)

N'
where Z is defined as the appropriate standard normal distribution percentage point and
N is the Cutler-Ederer effective sample size (Equation 16). The limits obtained using
this formula are the ones most often computed and are used by SAS in the LIFETEST
procedure (SAS Institute, 1990).

Rothman (1978) noted that the confidence limits based on Greenwood’s formula
(Equation 24) led to a symmetric interval about the point estimates. However, the

sampling distribution is not symmetric except when the probability of survival is 0.5.

Therefore, Rothman proposed a method for calculating confidence limits assuming that

A .
for the estimated cumulative survival probability at time ¢, P =Sy, (¢), and Cutler-

f Ederer effective sample size N, X'=N 'P has a binomial distribution. Although
binomial confidence limits could be computed exactly, Rothman instead proposed using

the quadratic limits obtained by the formula
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A A
N |~ Z? ‘[ P(1-P) 2Z?
*— P +Z ,
P N'+Z? * 2N' N' * 4N"? (23)

which are accurate limits even for small, asymmetric binomials. Simon and Lee (1982)
proposed constructing confidence intervals using Rothman’s method (Equation 25),
replacing the Cutler-Ederer effective sample size with the Peto, et al. formulation N''
(Equation 17).

Easterling (1972) used the binomial model to calculate approximate confidence
limits in system reliability. He noted that a lower ¥100% confidence limit for reliability
with x successes in 7 trials is given by

I(p,, x,;n-x+1)=1~-v
where

INa+p)

I(s,0,B) = TI®)

]t""(l T
0

is the incomplete beta function. If h(p) is the usual binomial estimate of system
reliability based on N trials and N' is the effective sample size, then X'= h(p)N' and the

lower and upper confidence limits are given by solving for A4; and A in the following

equations:

I(h, X', N'=X"+1) = "TY
and

I(hy , X'+1,N'-X") = ‘_‘_;l ,
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Bradley (Blackstone et al., 1977) used the relationship between the binomial
probability function and the incomplete beta function to define a distribution for X' , a
pseudo-binomial random variable. Recognizing that if X" has a beta distribution with

parameters a and B, then

nX'
n, +n X'

has an F-distribution with 7, = 2a numerator degrees of freedom and », = 2f§ denominator
degrees of freedom (Mood, Graybill, & Boes, 1963). The lower Y100% confidence limit
for p can be given by

= X' FI‘(I-Y)R].[ZX'Z(N'-»X'H)I (26)
(N —-X'+D) + X' FE(I-y)IZ].(ZX‘Z(N'-X'dn

) 43

where a = X' and f = N'-X'+1, and the Y100% upper limit is

Py = — ( {'('-q—l) F[:(l+7)/2|.[2(X'+l).2(N'—X')] @7
(N'=X") +(X'+1) Fyupymp20xsn2ov-x)

where o = X'+1 and B = N'-X"' (Ostle & Malone, 1988).
Comparing the Accuracy of Confidence Intervals

Several studies have focused on determining the most accurate confidence

intervals (Afifi, Elashoff, & Lee, 1986; Dorey & Korn, 1987; Rothman, 1978; Simon &

Lee, 1982; Slud et al., 1984). Fox (1995), using Equations 26 and 27 to calculate pseudo-

plsatihraas o/

binomial confidence intervals around a survival curve, conducted Monte Carlo

=T

simulations to compare the accuracy of the Greenwood (Equation 24), Rothman
(Equation 25), and pseudo-binomial confidence intervals. All confidence intervals were

constructed using the Cutler-Ederer effective sample size (Equation 16). Three different

It

- —
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levels of confidence, y = .90, .95, and .99, were selected to compare the three methods.
Sample sizes of 30, 60, and 120 were used with 0, 5, and 10% censoring. The survival
function was estimated using the Kaplan-Meier product-limit method (Equation 12).

To determine accuracy, data were generated from the negative exponential
distribution. Five different survival probabilities were selected as the points of
comparison. For each point, the true survival time was determined and the different
confidence intervals were computed. If a confidence interval contained the true
probability of survival, a success was recorded. The total number of successes for each

method was calculated and a percentage was obtained by dividing the total number of

CEY - A .

: successes by the total number of simulations. The confidence level error is defined to be
the calculated percentage of successful comparison minus the true confidence level.

Table 8 shows the mean error for each of the three methods at each confidence
level. At the .90 and .95 levels of confidence, the pseudo-binomial intervals were
determined to be significantly different from both the Greenwood and Rothman intervals
and significantly different from the Greenwood intervals at the .99 confidence level. The
pseudo-binomial intervals demonstrated less absolute error than either of the other two
methods; however, because tests on absolute error were not conducted, a conclusion on
whether the pseudo-binomial intervals are statistically significantly more accurate than
the Rothman intervals cannot be drawn. It is reasonable to conclude the pseudo-binomial

confidence intervals are significantly more accurate than the Greenwood intervals.

Further analyses compared the mean error of each of the three methods for each
confidence interval at each comparison point on the survival curve, at each sample size,

and at each level of censoring. In all comparisons, the pseudo-binomial method
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Table 8

Mean Error of the Three Methods at Each Level of Confidence

Confidence level
Method 90 95 99
Pseudo-binomial .018 .008 .001
Greenwood -.0616* -.0550* -.0480*
Rothman -.0202* -0137* -.006

Note. Significant results shown are in relation to the pseudo-binomial method.
L
p<.05

performed as well as or better than the Rothman method and consistently outperformed
the Greenwood method. While the Rothman method tended to construct intervals with
less error early in the survival curve, the pseudo-binomial confidence intervals were more

accurate overall.
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CHAPTER 4

COMPARISON OF CONFIDENCE INTERVALS FOR SURVIVAL ESTIMATES OF
DATA FROM THE WEIBULL DISTRIBUTION

Fox (1995) compared the pseudo-binomial, Greenwood, and Rothman confidence
intervals using simulated data generated from the negative exponential distribution. It
was determined that the pseudo-binomial confidence intervals performed as well as or
better than the Rothman intervals, with both the pseudo-binomial and Rothman methods
consistently outperforming the Greenwood method. As an extension to Fox, this
simulation study investigates the performance of the pseudo-binomial confidence
intervals in comparison to the Greenwood and Rothman intervals using data from the

more general Weibull distribution.

The survivorship function for the Weibull distribution is F(f) = e, where v
determines the shape of the distribution curve and A is the scale parameter. If v = 1, the
Weibull distribution reduces to the negative exponential distribution. The negative
exponential distribution has a constant hazard function; that is, the risk of an event
occurring remains the same for each subject throughout the observation period. The

shape parameter of the Weibull distribution allows for the possibility of changing risk.

When v < 1, the risk of an event decreases with time, while for v > 1, the risk of an event
increases. This simulation investigates the performance of the pseudo-binomial

confidence intervals for the probability of survival when the hazard function is not

41
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Figure 3. Hazard functions of the Weibull distribution for different shape parameter values.
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Simulation Results

The analysis of variance results indicated strong significant differences overall
between the three methods for all confidence levels. They also revealed that the three
methods differed in behavior at different points on the survival curve and at different
sample sizes. Although a strong significant effect due to the amount of censoring was
found, the performance of the three intervals did not change as the amount of censoring
increased. Also, the mean error of each of the three methods did not change significantly
as the value of the shape parameter changed.

Table 9 lists the mean error at each confidence level. The mean error in this table
was calculated over all comparison points on the survival curve, all values of the shape
parameter v, and all levels of sample size and percent censoring. For each of the three
survival distributions, the pseudo-binomial intervals were conservative for all levels of
confidence, while the Rothman and Greenwood intervals were anticonservative. As in
the previous simulation study, the pseudo-binomial intervals were statistically
significantly more accurate than the Greenwood confidence intervals. The pseudo-
binomial intervals had less error than the Rothman intervals, but results were statistically
significant only at the 99% confidence level.

The performance of the survival curves was also compared for each of the
different values of v, with the results shown in Table 10. The Greenwood and Rothman
intervals were anticonservative for all parameter values, while the pseudo-binomial
intervals remained conservative. Only the Greenwood intervals demonstrated a

statistically significantly greater error than the pseudo-binomial intervals. The Rothman
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Mean Error at Each Confidence Level

46

Confidence level
Method .90 95 .99
Pseudo-binomial 0.0192 0.0086 0.0009
Greenwood -0.0599** <0.0553** -0.0491**
Rothman -0.0203 -0.0133 -0.0073*
*p<0.05. **p<.0l
Table 10
Mean Error at Each Value of v
v
Method 0.5 1.0 4.0
v=.90
Pseudo-Binomial 0.0200 0.0188 0.0189
Greenwood -0.0574*+ -0.0616** -0.0609**
Rothman -0.0189 -0.0202 -0.0218
v=.95
Pseudo-Binomial 0.0086 0.0086 0.0086
Greenwood -0.0548*+ -0.0550%* -0.0560**
Rothman -0.0135 -0.0137 -0.0126
v=.99
Pseudo-Binomial 0.0013 0.0011 0.0005
Greenwood -0.0502*+ -0.0480** -0.0490**
Rothman -0.0072 -0.0064 -0.0084

*p<05. **p<.0l.

intervals consistently had more error than the pseudo-binomial intervals, although the

difference was not statistically significant

The mean confidence level errors for the three methods were also compared at

each specified point on the survival curve.

For this analysis, the mean error was
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calculated over all levels of v, sample size, and percent censoring. The mean error for
each method is illustrated in Figure 4. Statistically significant differences between the
methods at each point on the survival curve are noted in Table 11. The pseudo-binomial
intervals tend to be overly conservative early in the survival curve when the probability of
survival is large, S(¥ = .95 and .75. However, the Rothman and Greenwood intervals are
very anticonservative at the tail of the curve, where the probability of survival is low,
S(1) = .25 and .05.

Although not noted statistically in the table, the differences in behavior between
the three methods along the survival curve can be seen. The pseudo-binomial and
Rothman methods both start off with conservative intervals and tend to be
anticonservative in the middle of the curve; however, the pseudo-binomial grows
conservative again at the tail while the Rothman intervals continue to narrow. The
Greenwood intervals behave oppositely. The are extremely anticonservative early in the
survival curve, begin to widen in the middle yet remain anticonservative, and then
become narrow again at the tail.

The performance of each of the three methods for different sample sizes, with the
mean error calculated over the five points on the survival curve and all levels of v and
percent censoring, was evaluated. The results of this analysis, shown in Table 12,
indicate statistically significant differences between the pseudo-binomial and Rothman

intervals only at the 90% confidence level, while the pseudo-binomial intervals have

statistically significantly less error than the Greenwood intervals in almost all instances.
The pseudo-binomial intervals were conservative for the smaller samples, where n = 30

and 60, and anticonservative for the large sample, where » = 120. The Rothman

~
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Table 11

Mean Error at Specific Points on the Survival Curve

49

S®
Method 0.95 0.75 0.50 0.25 0.05
v=.90
Pseudo-Binomial 0.0540 0.0206 -0.0027 -0.0007 0.0251
Greenwood -0.1175** -0.0444** -0.0316** -0.0305** -0.0714**
Rothman -0.0002** -0.0051** -0.0215** -0.0375** -0.0374*
v=.95
Pseudo-Binomial 0.0327 0.0074 -0.0013 -0.0065 0.0108
Greenwood -0.1283**  -0.0264** -0.0214** -0.0213* -0.0789**
Rothman 0.0088**  0.0004 -0.0171* -0.0261**  -0.0323**
v=.99
: Pseudo-Binomial 0.0069 0.0024 -0.0009 -0.0029 -0.0007
! Greenwood -0.1102**  -0.0280** -0.0126* -0.0137 -0.0810**
Rothman 0.0018 -0.0001 -0.0040 -0.0116 -0.0228**
*p<005. **p<.0l.

- ——

intervals, while anticonservative, demonstrated less error than the pseudo-binomial
intervals for the smaller samples, and the pseudo-binomial intervals performed better with
the larger sample at all confidence levels.

Again, the significant differences in behavior between the methods as sample size
increased, indicated by the analysis of variance, can also be seen. The pseudo-binomial
and Rothman methods construct intervals which narrow as sample size increases, while
the Greenwood intervals widen.

The last comparison focused on the behavior of the intervals as the amount of
censoring increased. Table 13 lists the mean error for the different amounts of censoring
in the data. The Rothman intervals were more accurate than the pseudo-binomial

intervals when the amount of censoring was small, at 0 and 5%, with some significant
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Mean Error at Each Level of Sample Size
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Sample size
Method 30 60 120
v=.90
Pseudo-Binomial 0.0417 0.0131 0.0029
Greenwood -0.0787** -0.0540** -0.0471**
Rothman 0.0065** <0.0252** -0.0424**
v=.95
Pseudo-Binomial 0.0195 0.0129 -0.0065
Greenwood -0.0773** -0.0604** -0.0281**
Rothman -0.0048** -0.0091 -0.0259**
v=.99
Pseudo-Binomial 0.0048 0.0020 -0.0039
Greenwood -0.0974** -0.0241** -0.0257**
Rothman -0.0045 -0.0063 -0.0112
*p<.05. **p<.0l.

intervals which narrowed as censoring increased.

Conclusions and Discussion

differences noted at the 90 and 95% confidence levels. The pseudo-binomial intervals
were statistically significantly more accurate than the Rothman intervals at all confidence

levels where there was 10% censoring of the data. All three methods constructed

The simulation analyses conducted in this chapter were designed to compare the
accuracy of the three interval methods over different hazard functions. The value of the

shape parameter, and thereby the shape of the hazard function, did not significantly affect

the mean error of the confidence intervals. The pseudo-binomial intervals tended to be

more conservative overall than the Rothman and Greenwood intervals, a characteristic

that is desirable in the construction of confidence intervals.

- e—
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are conservative at the tail of the survival curve and they demonstrate less error overall

than the Greenwood and Rothman interva1§.
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CHAPTER 5
COMPARISON OF ESTIMATORS AND EFFECTIVE SAMPLE SIZES

The behavior of the pseudo-binomial, Rothman, and Greenwood intervals using
the Kaplan-Meier estimator and Cutler-Ederer effective sample size was examined in the
previous chapter. In this simulation, the accuracy of the confidence intervals constructed
using the Berliner-Hill estimator will be compared to the intervals based on the Kaplan-
Meier estimator. Both estimators will be used in conjunction with both the Cutler-Ederer
and Peto effective sample sizes. The Kaplan-Meier estimator combined with the Cutler-
Ederer effective sample size is denoted by KM, and the Berliner-Hill estimator with the
Cutler-Ederer effective sample size is denoted by BH. The Kaplan-Meier and Berliner-
Hill estimators used in conjunction with the Peto effective sample size are denoted by
PKM and PBH, respectively. The simulation conducted in the previous chapter indicated
that the pseudo-binomial and Rothman intervals were consistently superior to the
Greenwood intervals. Therefore, these analyses will focus only on the pseudo-binomial
and Rothman intervals.

For this simulation, the data were generated using the same seeds used previously

(Appendix D). The same levels of confidence, shape parameter v, sample size, and

percent censoring were used. The points on the survival curve at which the intervals were
compared were also those used in the previous simulation. The tables listing the

percentage of successes for each method are contained in Appendix E. The analyses in

33
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this chapter are presented in three parts. First, the four different pseudo-binomial
intervals are compared to determine the best pseudo-binomial interval. Then, the four
Rothman intervals are compared. Finally, the best pseudo-binomial interval will be
compared to the best Rothman interval.
Determining the Best Pseudo-Binomial Confidence Interval

The analysis of variance results are similar to those found in the previous
simulations. A significant difference in the mean confidence level error between the four
methods was found. Also, although sample size had a significant effect on mean
confidence level error, the behavior of each of the methods as sample size increased was

not significantly different. The methods did demonstrate significantly different behaviors

A,

as censoring increased and as the true probability of survival decreased. The shape of the
hazard function had no significant effect on mean confidence level error.

The mean error at each confidence level for each of the pseudo-binomial intervals

is shown in Table 14. This mean was calculated over all points on the survival curve and
over all levels of v, sample size, and percent censoring. The Berliner-Hill estimator
constructs intervals that are less conservative than those based on the Kaplan-Meier
estimator and are a statistically significant improvement over the Kaplan-Meier intervals
at the lower confidence levels, where y = .90 and .95. However, they are anticonservative

at the 95 and 99% confidence levels. The intervals constructed with the Peto effective

sample size are more conservative than those constructed with the Cutler-Ederer effective
sample size; the conservative effect of the Peto effective sample size statistically
significantly improves the anticonservative nature of the Berliner-Hill interval at the 95

and 99% confidence levels.
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Table 15

Mean Error of Pseudo-Binomial Intervals at Each Level of v

v
Method 0.5 1.0 40
Y=.90
KM 0.0200, 0.0188, 0.0189,
BH 0.0021, -0.0008, -0.0010,
PKM 0.0228, 0.0216, 0.0220,
PBH 0.0060, 0.0035, 0.0028,,
Y=.95
KM 0.0086,, 0.0086,, 0.0086,
BH -0.0050, . -0.0051,, -0.0033,
PKM 0.0109, 0.0110, 0.0112,
PBH -0.0018, -0.0014, 0.0001,
v=.99
KM 0.0013, 0.0011, 0.0005,
BH -0.0033, -0.0036, -0.0049,
PKM 0.0021,, 0.0017, 0.0017,
PBH -0.0018,, -0.0021,, -0.0032,

Note. Means in the same column within each confidence level with different subscripts
differ significantly at p <.05. KM denotes intervals constructed using the Kaplan-Meier
estimator and the Cutler-Ederer effective sample size, BH denotes intervals constructed
using the Berliner-Hill estimator and the Cutler-Ederer effective sample size, PKM
denotes intervals constructed using the Kaplan-Meier estimator and the Peto effective
sample size, and PBH denotes intervals constructed using the Berliner-Hill estimator with
the Peto effective sample size.

17 and 18, respectively. Once again, as sample size increases, the pseudo-binomial
intervals narrow. Likewise, the intervals narrow as censoring increases. The Berliner-

Hill intervals are more accurate than the Kaplan-Meier intervals with smaller sample

sizes and less censoring of the data.
The pseudo-binomial intervals are inherently conservative in nature. The

Berliner-Hill estimator offsets the conservative behavior, yet often forces the intervals to

=
- _—

.
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Table 16

Mean Error of Pseudo-Binomial Intervals at Specific Points on the Survival Curve

S
Method 0.95 0.75 0.50 0.25 0.05
v=.90
KM 0.0540, 0.0206, -0.0027, -0.0007, 0.0251,
BH 0.0540, 0.0161, -0.0061, -0.0241, -0.0393,
PKM 0.0540, 0.0224, -0.0003, 0.0046, 0.0301,
PBH 0.0540, 0.0173, -0.0023, -0.0187, -0.0299,
Yy=.95
KM 0.0327, 0.0074, -0.0013, -0.0065, 0.0108,
BH 0.0327, 0.0092, -0.0090, -0.0195, -0.0357,
PKM 0.0327, 0.0082, 0.0007, -0.0027, 0.0162,
PBH 0.0327, 0.0094, -0.0066, -0.0140, -0.0268,
Y=.99
KM 0.0069, 0.0024, -0.0009,, -0.0029, -0.0007,
BH 0.0069, 0.0017, -0.0024, -0.0093, -0.0167,
PKM 0.0069, 0.0025, 0.0000, -0.0015, 0.0014,
PBH 0.0069, 0.0019, -0.0016,, -0.0069. -0.0120,

Note. Means in the same column within each confidence level with different subscripts
differ significantly at p<.05. KM denotes intervals constructed using the Kaplan-Meier
estimator and the Cutler-Ederer effective sample size, BH denotes intervals constructed
using the Berliner-Hill estimator and the Cutler-Ederer effective sample size, PKM
denotes intervals constructed using the Kaplan-Meier estimator and the Peto effective
sample size, and PBH denotes intervals constructed using the Berliner-Hill estimator with
the Peto effective sample size.

become anticonservative. The conservativeness of the Peto effective sample size
balances the anticonservative behavior of the Berliner-Hill estimator somewhat but

cannot compete with the Kaplan-Meier intervals. This undesirable characteristic of the

Berliner-Hill intervals was most clearly demonstrated in Figure 5. As was discussed
earlier, the emphasis of survival studies is on the tail of the survival curve. The extreme

anticonservative nature of the Berliner-Hill intervals at the tail of the survival curve

>
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Figure 5. Mean confidence level error of the pseudo-binomial intervals at each point on the survival curve. KM denotes intervals
constructed using the Kaplan-Meier estimator and the Cutler-Ederer effective sample size, BH denotes intervals constructed using the
Berliner-Hill estimator and the Cutler-Ederer effective sample size, PKM denotes intervals constructed using the Kaplan-Meier
estimator and Peto effective sample size, and PBH denotes intervals constructed using the Berliner-Hill estimator with the Peto
effective sample size.
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Table 18

Mean Error of Pseudo-Binomial Intervals at Each Level of Percent Censoring

Percent censored
Method 0 5 10
Y=.90
KM 0.0358, 0.0258, -0.0039,
BH 0.0321, 0.0075, -0.0393,
PKM 0.0358, 0.0281, 0.0026,
PBH 0.0321, 0.0109, -0.0308,
v=.95
KM 0.0216, 0.0130, -0.0088,
BH 0.0173, 0.0013, -0.0320,
PKM 0.0216, 0.0146, -0.0032,
PBH 0.0173, 0.0043, -0.0247,
¥=.99
KM 0.0056, 0.0018, -0.0046,
BH 0.0036, -0.0025, -0.0130,
PKM 0.0056, 0.0025, -0.0025,
PBH 0.0036, -0.0014, -0.0093,

Note. Means in the same column within each confidence level with different subscripts
differ significantly at p <.05. KM denotes intervals constructed using the Kaplan-Meier
estimator and the Cutler-Ederer effective sample size, BH denotes intervals constructed
using the Berliner-Hill estimator and the Cutler-Ederer effective sample size, PKM
denotes intervals constructed using the Kaplan-Meier estimator and the Peto effective
sample size, and PBH denotes intervals constructed using the Berliner-Hill estimator with
the Peto effective sample size.

different behavior along the survival curve and as sample size and amount of censoring
increased. Once again, the shape of the hazard function did not affect the mean

confidence level error.

The overall mean confidence level error for each of the Rothman intervals is
shown in Table 19. The conservative nature of the Peto effective sample size combines

with the anticonservative property of the Rothman method to construct a confidence

N
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Table 19

Mean Error of Rothman Intervals at Each Confidence Level

Confidence level
Method 90 95 .99
KM -0.0203, -0.0133, -0.0073,
BH -0.0484, -0.0403, -0.0204,
PKM -0.0172, -0.0107, -0.0060,
PBH -0.0444,_ -0.0370, -0.0179,

Note. Means in the same column with different subscripts differ significantly at p < .05.
KM denotes intervals constructed using the Kaplan-Meier estimator and the Cutler-
Ederer effective sample size, BH denotes intervals constructed using the Berliner-Hill
estimator and the Cutler-Ederer effective sample size, PKM denotes intervals constructed
using the Kaplan-Meier estimator and the Peto effective sample size, and PBH denotes
intervals constructed using the Berliner-Hill estimator with the Peto effective sample size.
interval with less error. However, the difference between the KM and PKM Rothman
intervals is not significant. The Berliner-Hill estimator adds to the anticonservativeness
of the Rothman intervals, creating confidence intervals significantly narrower than those
based on the Kaplan-Meier estimator.

The mean confidence level error for each method at each point on the survival
curve is shown in Table 20. Once again, the extreme anticonservative behavior of the BH
and PBH intervals is seen at the tail of the curve. Figure 6 illustrates the behavior of the
four methods at each point on the survival curve for each confidence level. The PKM

intervals are slightly more conservative than the KM intervals, leading to less error.

However, that difference is statistically significant only at S#) = .05 for the 99%

confidence level.

Table 21 contains the mean confidence level error for each method at each level

of v. The mean confidence level error at the each sample size is shown in Table 22, and

- ——
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Table 20

Mean Error of Rothman Intervals at Specific Points on the Survival Curve

S@)
Method 0.95 0.75 0.50 0.25 0.05
vy=.90
KM -0.0001, -0.0051, -0.0215,, -0.0375, -0.0374,
BH -0.0002, -0.0053, -0.0319, -0.0624, -0.1424,
PKM -0.0001, -0.0040, -0.0179, -0.0323, -0.0314,
PBH 0.0002, -0.0045, -0.0284,. -0.0567, -0.1327,
Y=.95
KM 0.0088, 0.0004, -0.0171, -0.0261, -0.0323,
BH 0.0088, -0.0062, -0.0267, -0.0513, -0.1262,
PKM 0.0088, 0.0009, -0.0152, -0.0209, 0.0272,
PBH 0.0088, -0.0060, -0.0244,, -0.0461, -0.1175,
v=.99
KM 0.0018, -0.0001, -0.0040,, -0.0116, -0.0228,
BH 0.0018, 0.0000, -0.0088, -0.0237, -0.0712,
PKM 0.0018, 0.0000, -0.0031, -0.0097, -0.0188,
PBH 0.0018, 0.0000, -0.0075,, -0.0211, -0.0624,

Note. Means in the same column within each confidence level with different subscripts
differ significantly at p < .05. KM denotes intervals constructed using the Kaplan-Meier
estimator and the Cutler-Ederer effective sample size, BH denotes intervals constructed
using the Berliner-Hill estimator and the Cutler-Ederer effective sample size, PKM
denotes intervals constructed using the Kaplan-Meier estimator and the Peto effective
sample size, and PBH denotes intervals constructed using the Berliner-Hill estimator with
the Peto effective sampie size.

the error for each method at the different levels of censoring is listed in Table 23. In all
instances, the KM and PKM intervals statistically significantly outperform the BH and

PBH intervals. In general, the PKM intervals demonstrate less error than the KM

intervals, although that difference is not statistically significant.
The Rothman method of constructing intervals works best with the Kaplan-Meier

estimator. The anticonservative nature of the Rothman method is not improved by an
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Table 21

Mean Error of Rothman Intervals at Each Level of v

v
Method 0.5 1.0 4.0
vy=.90
KM -0.0189, -0.0202, -0.0218,
BH -0.0482, -0.0482, -0.0488,
PKM -0.0157, -0.0168, -0.0190,
PBH -0.0444,, -0.0441, -0.0447,
v=.95
KM -0.0135, -0.0137, -0.0126,
BH -0.0398,, -0.0417, -0.0394,
PKM -0.0111, -0.0109, -0.0101,
PBH -0.0366,, -0.0379, -0.0365,
v=.99
KM -0.0072, -0.0064, -0.0084,
BH -0.0202, -0.0201,, -0.0208,,
PKM -0.0056, -0.0053, -0.0070,
PBH -0.0178, -0.0174, -0.0183,

Note. Means in the same column within each confidence level with different subscripts
differ significantly at p < .05. KM denotes intervals constructed using the Kaplan-Meier
estimator and the Cutler-Ederer effective sample size, BH denotes intervals constructed
using the Berliner-Hill estimator and the Cutler-Ederer effective sample size, PKM
denotes intervals constructed using the Kaplan-Meier estimator and the Peto effective
sample size, and PBH denotes intervals constructed using the Berliner-Hill estimator with
the Peto effective sample size.

anticonservative probability estimator. The Peto effective sample size works with the

Kaplan-Meier estimator to widen the Rothman intervals but is not a statistically

significant improvement over the Cutler-Ederer effective sample size.

Pseudo-Binomial Versus Rothman Intervals

£
i
d

The simulations performed in this chapter compared confidence intervals based on
different types of estimation methods. The Berliner-Hill probability estimator may have

been more accurate in estimating the median and percentiles of the distribution

H - — e -~
o
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Table 22

Mean Error of Rothman Intervals at Each Level of Sample Size

Sample size
Method 30 60 120
7=.90
KM 0.0065, -0.0252, -0.0424,
BH -0.0287, -0.0513, -0.0652,
PKM 0.0091, -0.0220, -0.0386,
PBH -0.0254, -0.0477, -0.0601,
Y=.95
KM -0.0048, -0.0091, -0.0259,
BH -0.0459, -0.0314, -0.0425,
PKM -0.0029, -0.0064, -0.0228,
PBH -0.0437, -0.0281, -0.0393,
Yy=.99
KM -0.0045, -0.0063, -0.0112,
BH -0.0229, -0.0180, -0.0202,
PKM -0.0036, -0.0051, -0.0092,
PBH -0.0204, -0.01564 -0.0175,,

Note. Means in the same column within each confidence level with different subscripts
differ significantly at p < .05. KM denotes intervals constructed using the Kaplan-Meier
estimator and the Cutler-Ederer effective sample size, BH denotes intervals constructed
using the Berliner-Hill estimator and the Cutler-Ederer effective sample size, PKM
denotes intervals constructed using the Kaplan-Meier estimator and the Peto effective
sample size, and PBH denotes intervals constructed using the Berliner-Hill estimator with
the Peto effective sample size. ~

(Chang, 1989), but using it to construct confidence intervals led to intervals that were
anticonservative in nature. This characteristic, although beneficial to the pseudo-

binomial intervals at the beginning of the survival curve, was too strong at the tail of the

AN 3T B

curve, forcing even the conservative pseudo-binomial method to construct extremely
anticonservative intervals. Similarly, the Berliner-Hill estimator only exacerbated the
anticonservative nature of the Rothman intervals. The Peto effective sample size added

some conservatism to both the Berliner-Hill and Kaplan-Meier intervals, which increased

R
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shown to be not statistically significantly different from the Rothman intervals based on
the Cutler-Ederer effective sample size. Therefore, it is reasonable to conclude that any
analyses comparing the PKM Rothman intervals to the KM pseudo-binomial intervals
would yield similar results as the analyses in chapter 4, where the Rothman and pseudo-
binomial intervals based on the Kaplan-Meier estimator and Cutler-Ederer effective
sample size were compared.

At the 95% confidence level, the Rothman intervals using the Peto effective
sample size had an overall mean error of -0.0107, while the psuedo-binomial intervals
based on the Cutler-Ederer effective sample size had an overall mean error of 0.0086.
The conservative nature of the Peto effective sample size decreased the overall error of

the Rothman intervals; however, the pseudo-binomial intervals still tended to be more

é
accurate, although not statistically significantly so. The Peto effective sample size was
also not able to overcome the anticonservative nature of the Rothman intervals at the tail
of the survival curve. Therefore, because the pseudo-binomial intervals demonstrated
less error overall and because they had the desirable property of being conservative when
the probability of survival is small, it is determined that the pseudo-binomial intervals

using the Kaplan-Meier estimator and the Cutler-Ederer effective sample size are

preferred over the anticonservative Rothman intervals.
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CHAPTER 6

APPLICATION OF PSEUDO-BINOMIAL CONFIDENCE LIMITS TO SURVIVAL
TIME DATA

Stanford Heart Transplant Program

The Stanford Heart Transplant Program was started in 1967. From the beginning
of the program to February 1980, 249 patients were accepted to receive transplants. Of
these, 184 received transplants and 65 died waiting for a new heart (Cox & Oakes, 1984).
For each patient in the study, there is a well-defined date on which the patient was
declared a heart transplant candidate. The transplant occurred usually within a few weeks
after this date, although some patients waited several months (Turnbull, Brown, & Hu,
1974).

Although several factors can influence survival, such as quality of life and age of
the patient, the focus of this example is only that of survival after receiving a transplant.
Those patients not receiving a new heart are not included in this example. The survival
time in this analysis is the length of time from transplant until death or the closing date of
February 1980. Thus, the length of time a patient remained on the waiting list is also not
included in this analysis.

Figure 7 shows the Kaplan-Meier survival curve with pseudo-binomial 95%

confidence limits. The median survival time for these patients was approximately 20.5
months. The 95% confidence interval for the probability of surviving 20.5 months is

(0.43, 0.58). The conservative nature of the pseudo-binomial confidence interval at the

68
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Figure 7. Kaplan-Meier survival curve with pseudo-binomial 95% confidence limits for Stanford Heart Transplant Program patients.
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53% (n = 40) of the IDR patients entered into the consolidation phase had relapsed along
with 74% (n = 48) of the DNR patients.

Vogler et al. (1992) compared the overall survival time between the two treatment
groups, as well as the remission duration. They found no statitically significant
difference between the overall survival rates of the two groups of all assessable patients.
The IDR patients demonstrated a median survival of 11 months (» = 105), while the DNR
patients had a median survival of 9 months (n = 113). Similarly, the median remission
duration for patients achieving complete remission was 13 months for IDR patients and 9
months for DNR patients. No statistically significant difference was found between the
duration of remission of the two treatment groups.

Figure 8 shows the Kaplan-Meier survival curve with pseudo-binomial 95%
confidence intervals for all DNR and IDR patients entered into induction therapy. The
data used to construct the survival curve was provided by Dr. A. A. Bartolucci. The
survival time, shown in months, is the number of days from the date of diagnosis to
death, or January 1, 1992, if still alive. The median survival time was approximately 10
months for patients receiving DNR (n = 115), while the IDR patients demonstrated a
median survival of about 11 months (n = 109). Again, the conservative nature of the
pseudo-binomial intervals is more clearly seen at the tail of the survival curve.

Localized Prostate Cancer

In 1978, the National Prostatic Cancer Project, later renamed the National

Prostatic Cancer Treatment Group, began two randomized studies to determine the
efficacy of adjuvant treatment after radical surgery (Protocol 900) or irradiation (Protocol

1000). Both protocols were closed in 1985. At that time, a total of 437 patients had been

%
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Figure 8. Kaplan-Meier survival curve with pseudo-binomial 95% confidence limits for
acute myelogenous leukemia patients treated with DNR (a) and IDR (b).
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enrolled, 184 patients in protocol 900 and 235 in protocol 1000. Follow-up information,
including time to the first recurrence and overall survival, was available in 170 protocol
900 and 233 protocol 1000 patients (Schmidt, Gibbons, Murphy, & Bartolucci, 1993,

1996).

After receiving protocol treatment, the patients were randomized into one of three
adjuvant therapy groups: a) observation only (None), b) intravenous cyclophosphamide
(Cytoxan), or ¢) estramustine phosphate (Emcyt). Adjuvant therapy was continued for up
to 2 years. Of the 170 protocol 900 patients for which follow-up information was
available, 52 received no adjuvant therapy, 57 received Cytoxan, and 61 received Emcyt.

Of the 233 protocol 1000 patients, 84 received no adjuvant therapy, 77 received Cytoxan,

SRR L~

and 72 received Emcyt. Disease progression, or recurrence, occurred in 53% of all
protocol 900 patients and 66% of all protocol 1000 patients.

Progression-free survival and overall survival of the two protocol groups were
compared within each adjuvant therapy (Schmidt et al., 1993). Also, progression-free
survival and overall survival rates of the adjuvant therapy groups were compared within
each protocol group (Schmidt et al., 1996). Due to the heavy censoring, or large number
of survivors, of the protocol 900 patients receiving no therapy, a median survival time
could not be determined. Protocol 1000 patients receiving no therapy demonstrated a
median survival time of approximately 112 months. The survival rates were determined

to be statistically significantly different. Similarly, progression-free survival was

significantly longer for protocol 900 patients than for protocol 1000 patients.
The median progression-free survival of protocol 900 patients receiving Cytoxan

was 75.7 months, while the median progression-free survival of protocol 1000 patients
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was 35.6 months. The median progression-free survival of protocol 900 patients
receiving Emcyt could not be determined due to heavy censoring, but the median
progression-free survival of protocol 1000 patients was 138.9 months. The progression-
free survival curves for the two protocol groups were significantly different for both the
Cytoxan and Emcyt therapies. The study also examined the effect of nodal involvement
on survival. The authors concluded that adjuvant estramustine phosphate (Emcyt)
benefitted patients with nodal involvement who received irradiation.

Figures 9, 10, and 11 shows the Kaplan-Meier survival curves with pseudo-
binomial 95% confidence limits for protocol 900 and protocol 1000 patients. The data

used to construct each survival curve was provided by Dr. A. A. Bartolucci. In each

2SR

figure, the measured time of survival, shown in months, is the number of days from
protocol treatment to death, or protocol closure in 1985 if still alive. The median overall
survival time could not be determined for protocol 900 patients in any therapy group.
Figure 9 illustrates the survival of patients receiving no adjuvant therapy. The protocol
1000 patients survived a median of approximately 90.5 months. Figure 10 demonstrates
the survival curves for patients receiving Cytoxan. Protocol 1000 patients survived a

median of approximately 84 months. Figure 11 shows the survival curves for patients

receiving Emcyt. The median survival time for protocol 1000 patients was about 133
months. The longer survival times for surgery patients (protocol 900) could be due to a

greater proportion of surgery patients having a lower stage disease (Schmidt et al., 1993).

CEweRER AR

These figures more clearly illustrate the conservative behavior of the pseudo-
binomial confidence intervals at both ends of the survival curve. The lower limit is

conservative at the upper end of the curve, where the probability of survival is large. The
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Figure 9. Kaplan-Meier survival curve with pseudo-binomial 95% confidence limits for
localized prostate cancer patients not receiving therapy after protocol 900 (a) or protocol
1000 (b) treatment.
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Figure 11. Kaplan-Meier survival curve with pseudo-binomial 95% confidence limits for
localized prostate cancer patients receiving estramustine phosphate (Emcyt) therapy after
protocol 900 (a) or protocol 1000 (b) treatment.
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upper limit tends to be more conservative at the tail of the curve when there is less
censoring. This can be seen in Figure 11. Protocol 900 patients survived longer, thus
more censoring was present. The lower confidence limit at the tail of the curve remains
conservative, while the upper limit is less so. Protocol 1000 patients , however, were less
heavily censored. The upper confidence limit for those patients at the tail of the survival

curve is clearly more conservative than the lower limit.
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CHAPTER 7
DISCUSSION OF RESULTS AND SUGGESTIONS FOR FUTURE RESEARCH
Summary and Conclusions

Survival time studies have been and are being conducted in a variety of
disciplines. The purpose of all such studies is to formulate a probability statement about
the time of survival. Several different approaches to the analysis of survival time data
have been proposed. Some of these are concerned with the appropriate estimator of the
probability of survival. Some focus on the issue of censoring and effective sample size.

* Others concentrate on the construction of confidence limits around the survival curve.
The issue of constructing confidence limits led to the development of the pseudo-
binomial distribution. By relating the binomial probability distribution to the incomplete
beta function, the cumulative distribution of the pseudo-binomial distribution was
defined. The confidence limits for the probability of survival could then be constructed

using the F-distribution. The purpose of this research was two-fold: first, to further

investigate the pseudo-binomial distribution, and second, to evaluate the performance of
the pseudo-binomial confidence limits.

The investigation of the pseudo-binomial distribution focused on the derivation of

‘ the probability density function and the first two moments. Also, the maximum
likelihood estimator for the unknown parameter p was determined. The Euler-Maclaurin

expansion was utilized to approximate the first two moments. For a sample size of

79
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N 230, the mean can be approximated by Np-1/2 while the variance can be
approximated by Np(1-p)-1/12. The shift in the first two moments was clearly
illustrated in chapter 2. The behavior of the maximum likelihood estimate of p was also
investigated. It was determined that the usual binomial proportion p=X/N
consistently underestimated the value of the maximum likelihood estimate.

The performance of the pseudo-binomial confidence intervals was evaluated using
data generated from the Weibull distribution. Three different shape parameters were
used, along with different sample sizes and levels of censoring. The pseudo-binomial
confidence intervals were found to be more accurate than the commonly used Greenwood
confidence limits. They also demonstrated less error overall than the Rothman intervals,
although the difference was not statistically significant.

The performance of the pseudo-binomial and Rothman confidence intervals for
different survival estimators and effective sample size calculations was also evaluated.
The pseudo-binomial intervals were most accurate using the usual Kaplan-Meier
estimator with the Cutler-Ederer effective sample size. The Peto effective sample size
combined with the Kaplan-Meier estimator improved the accuracy of the Rothman
intervals. However, the pseudo-binomial intervals still demonstrated less error than the
Rothman intervals overall. The Berliner-Hill estimator constructed intervals which were

extremely anticonservative and, therefore, undesirable.

Finally, three examples of constructing pseudo-binomial confidence intervals
around a survival curve were given. In each example, the conservative nature of the

pseudo-binomial intervals was clearly illustrated.

R —_———— . o=
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Suggestions for Future Research

The pseudo-binomial distribution as defined demonstrated a shift in the first two
moments. It is possible this shift in moments is a continuity correction factor. The shift
in the first moment could be resolved by defining a new random variable ¥ = X +1/2;
however, the second moment would remain unchanged. The shifts of both the first and
second moments would be corrected through the use of the Uniform(0,1) distribution.
The new random variable Y = X +U, where X is distributed as a pseudo-binomial
random variable and U as a Uniform(0,1) variable, would have an approximate expected
value of Np and an approximate variance of Np(l1- p)for N 230. Further research

a, into the appropriateness and usefulness of this new definition is suggested.

The wusual binomial proportion p=X/N was shown to consistently
underestimate the maximum likelihood estimate of p. It is possible, then, that the
survival curves based on that simple proportion estimate also underestimate the
probability of survival. The application of the maximum likelihood estimate to
estimating the survivorship function is also an area of future research.

The confidence limits evaluated in this study were those constructed for the

survival curve estimated using nonparametric techniques. However, the pseudo-binomial
confidence limits could also be applied to a parametric survival curve. Further evaluation

of the pseudo-binomial confidence limits in this area is warranted.

-
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DERIVATION OF MOMENTS
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The moments of a distribution can be found using the equation
E(X°)= [x*f(x)dx = [x*"[I- F(x)]ax
0 0

(Feller, 1966). Therefore, the moments of the pseudo-binomial distribution are given by

Nl T(N+1)

E(X)= Q-0 drdk
J !l"(k+l)l‘(N-k)

_ ”j‘ (N +1)

P
k(1 _ py\N-k-1
F(k+l)F(N—k)!t (-0 dt e

0

N-1
= [I(k+1,N-k)dk
0

and
E(X?) = 2~f 'ik TWVHD ey py+1grar
g Tk+1)I(N-k)
N-1
=2 [k I,(k+1,N - k)dk .
0
These equations can be evaluated using the Euler-Maclaurin expansion. If a
i function G(x) has its first 2n derivatives continuous on an interval (a, b), then divide the
interval into m equal parts so that 4 = (b-a)/m. For some 6, 0 < @< 1, the expansion is

given by

sz {G(Zk—l)(b) _ G(Zk-l)(a)}

1] _3 _G®)+Ga) K+
h!G(t)dt-Z;G(a+kh) > '§(2k)!

th m—1

- B,,> G (a+kh+6h),
(2,,)!2; ( )

L (IR S R R R M A NI

where B; is a Bernoulli number (Abramowitz & Stegun, 1974). The expansion can be

approximated using only the first three terms. That is,

o me—
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L m n-1 3,2k-1
% j' G(t)dt = ?_‘5 G(a + kh) - G+ Gla) ’2' G@ _ kz.: (iz'ﬁ B,, {G* " (b) - G* ™ (a)}.

The limits of integration for the expansion of the pseudo-binomial distribution are
a=0and b=N-1. In order to determine the moments of the distribution, let
m= N —1so that h=1 and choose n=2.
Derivation of the First Moment
Using the above constraints, m= N —1and n = 2, the Euler-Maclaurin expansion

of the first moment of the pseudo-binomial distribution can be written as

N-1 _
EQ0) = jl,,(k+1,1v-k)dkz2‘_‘:1,,(k+1,N-k)-"’(N’D;’"“’N)
0 k=0 , (l)

—%Bz {r,\(N)-I,(1,N)}.

where I,(k +1,N —k) is the incomplete beta function and I', (k) is the first derivative

of the incomplete beta function. Equation 1 is a combination of three distinct terms.
Thus, for readibility, the expansion will be evaluated in individual segments. The

working equations are

S LGk+LN k), @)
k=0
IP(N,I)-;-IP(I,N)’ 3)
and
SBAI, (N1, (AN}, @
so that

o e —_— - —
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N-1
E(X)= [L(k+LN-k)dk=(2)-(3)-(4).
0
The incomplete beta function can be expressed as
= (n) .
L(x,n-x+1)= Z( _)p!(r -p,
Jj=x
or, in the case of the pseudo-binomial distribution,
¥ (N) . .
L(k+LN-k)=>Y | |pPA-p"~. )
juk+1\J
Substituting the expression in Equation 5 into the first term of the Euler-Maclaurin
Nt N (N )
expansion (Equation 2) gives > > ( ‘ ) p’(1- p)"~ . This leads to the result

k=0 j=k+1\J

- N N N
E’,(H LN-k)= (1 )p(l-p)”" +2(2 )p’ a-p* +3(3 )p’ a-p"
k=0

6)
+ +(N—l)(N )p”" (1-p)+ N(N)p"
N-1 N

N
(see Table A1). Each of the combinatorials in Equation 6 are of the form k(k ) , which

can be reduced to

N kNt kN(N-1)! _ (N—l)
k(k)‘k!(N-k)!—k(k—l)!(N—-l—(k—l))!_Nk—l ' ?

Substituting Equation 7 into Equation 6, and factoring out a p, yields

¥

. —
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N-1 N-1 N-1 N -1
Y L(k+L,N-k)= Np[[o )(l-p)"”'(l Jp(l—p)”‘2 +(3 Jpz a-p)*’
k=0

. +(N-l) . ){N—l) ol
M v-2)P P n-1)?

= NPZ( pr a-p".

Jj=0

N-1
Since Z( J p’ (1- p)"*~7 =1, Equation 2, the first segment of the expansion, is

Jj=0

merely

Nz-llp(k-bl,N-k):Np. 3)

k=0
In order to evaluate Equation 3, the incomplete beta function must be evaluated at

k=N-1land k=0. Thatis, for k=N -1

TN +1)

C(N+1) (h- | 0 N
N.h= I I‘(N)I‘(l) —dr= C(N)C(1) N =P ©
and for k=0
F(N"'l) L Yo —(1—m¥
M= I F(I)F(N) —0dr= T(HDI(N) N =1-(-p". (10

Using these results, Equation 3, the second segment in the expansion, is

LND+L,(LN) _ pY+1-(-p)" 1 p"-(1-p)*
= SYNY Ml Uad Ny 1
2 2 2 2
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To evaluate Equation 4, %Bz {I',(N,)-TI,(1,N)}, the first derivative of

the incomplete beta function with respect to k must be evaluated at N ~1and 0. This

gives the following results:

' ['(N+]) (V-
r,(NJD= j——F(N)l"(l) {\p(l) \u(N)+ln( )}dt

N{w()- w(N)}j:” 'dt + N j:” ‘ln(l_ )dt

P
= N{y()) - w(M)} j‘z”"d: +N j:"" Intde— N j:”-' In(1-t)dt

= {y() -y }"

t"Inte ¥
6’+( 7 NZJ Nj:”'ln(l 1t

which yields

LN = fu() - w(M}p" + p”(ln p- %) - N;[t”" In(-f)dt,  (12)
and

r,a,n= Ilf((—l’v")‘r‘%( - '{w(N) v+ ]}dt

N-1 N-1
N{y(N) - w(l)}j(l OV'di+ N j(l f) ln(l_ )dt
= N{y(N) -y())} j(l -0 'dt+ N j(l -0)"'Int dt
0 0

P
-N j(l A Y

N TP I O S ST SR RPN NI I R LU YOI 002 1

1-0"In(l=1) _(1-1)"
=_{w(1v)—w(1)}:”g+(( S )|g

P
+N[(1-0""Intdr
0
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which is
N N 1 1
I 18 =~ o) -y}~ " ~1}+1- p)*(inc1 - p)-ﬁ)_ﬁ
’ (13)
-N[a-0""nt ar.

The Bernoulli number B, is 1/6. This identity and the results obtained in Equations 12

and 13 lead to the following solution for Equation 4:

N
1—12-[{w(l)— YHp" +1-0-p) 1 p" np- 2
(14)

N _ (1-p)" 1 t N1 _ _ V-l
~(1-p)" In(1- p) + =P+ = N!t In(1-0)+(1-1) lntdt].

The first moment then is approximated using Equations 8, 11, and 14, which give

L
:
the result
1 p"-(-p)*
E(X)~ Np——-£— "8/
(X)= Np 5 2

&
£
[
¥

= [ -van)p" +1-a-p ) P inp
~(-p)" - p) - (" - (1= p)" -1 1)

P
-N_[t"" In(1-8)+(Q-0)""Ins dt:l

0

1 p¥"-(-p)"*
aNp———-—F—rououun__
P=3 2

Derivation of the Second Moment
The function G(?) to be used in the expansion of the second moment of the
pseudo-binomial distribution is G(f) =2kl,(k+1,N-k). The Euler-Maclaurin

expansion for the second moment, again using m= N —1and n=2, is given by

2
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E(x*) = 2jkI(k+1N k)dkzZZkI(k+1N k)

=
-{V-n 1N D+01,0 N} 16)

=B, {I,(N.)+(N-DI',(N.})

~1,0,N)-0r', (1, N)}.
Again, for computation and readibility purposes, the expansion will be separated

into three separate terms. These are

2§k1,(k+l,N-k), a7
k=0
(N-DL,(N.D, (18)
and
B {I,(N.)+(N-DI',(N.)-L,(LN) . (19)

The derivation of Equation 17 is shown in Table A2. The summation gives

N-1 N 2 (N
Dkl (k+1,N-k) =(2 )pz(l -p)" P+ (3 )p’(l -p)"’
k=0

i=]

0 Jron Bl

i=|

(20)

k
Each term has as a factor Zi ,» Where k increases with each term from 1 to N -1. Using

i=]

n(n+1)

the result ii =

i=l

, Equation 20 can be written as

N N
Zu (k+1,N —k) _1——2 (2 )pz(l—p)”’z +%(3 )p’(l—p)””+

k=0
(N=2)N-D(N ) A (N—l)N(N] v
T (N—lp =P+ y)P"

——
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Z _1 —I 2 _l m _u‘ N k cu‘
zA umwiml:_-zuﬁ u..wt..:,za ucnm_Nj-zal_{us-z._i::”w
N)=n N) =~ N) = N =N

zaﬁz uc “N) =(I'N)1a-N)
N
W ST CR W (Gl 2% = @1- W1z~ K)
N N
N I-N £ d
Al ke d-)),..d e+ (d-))d =@-N®)IT
N AR O
N I-N € 4 a
d d-1),_.d d-)).d d-|)d =U-NDI
N ﬁzw +A —V- H Zu +m..zA —v HZV +~..2A —VN ﬁZu
0 =(N‘DT0

L1 uononbsy uoypunung fo uoisundxy

v alqe],
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Each term is now of the form M(NJ p'(1- p)"~/. The first two factors in each
2\ P
term can be reduced to
(j—l)j(N)=(j—1)j N _G-Dj M
2\ 2 JUN-D! 2 jU-DUG=2UN - )
- N(N -1)(N -2)!
2j-DN-2-(j -2
_ N(N-l)(N-ZJ
2 \j-2)

- 2
Using this result and factoring out -iv—(-N—Z})i,— from each term, Equation 20, the

solution to Equation 17, becomes

- N-2 N-2
2N2'k1,(k +LN-k)= N(N-l)pz[(o )(1 - p)"? +(1 ) p(1-p)*=3+...

k=0
N-=-2 N-=-2
N-30) N-2
+(N—3)p ( pH(N-z)p ] @

N2 N =2Y) _
= ~<N—»pzz( . ]p’(l-p)”'z"

i=0\J

=N(N-1)p?.

As was shown earlier in Equation 9, /,(N,l)= p" so that the Equation 18

becomes

(N=DL(N,))=(N-1)p". (22)

- RPN

Equation 19 can be determined using Equations 9, 10 and 12. Equation 19 is then

>
— . —————— - —
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B {I,(N)+(N-DI',(N.)- 1,0, }

1 ' '
="+ -, (w-n-a-a-p"}

: ) 23
=" -1+0-p" + (V- D) - w(¥ - D} =

+p” (lnp-%) -N ]'z" “'In(1 -t)dt]}.

Combining Equations 21, 22, and 23 approximates the second moment of the
pseudo-binomial distribution. The resulting equation is
E(X*)= N(N-)p*-(N-1p"

gy
~s ¥ -1+a-p"

N~ 1)[ - v} +p*(mnp- ) @4

N
-N ‘j't”“ In(1-1¢) dt]}

0

N Y
~ N(N-l)p2+%-(N—l)p” -”—i(—;—”)—.

From Equations 15 and 24 the variance of X can be determined. The variance is given

by E(X?)- E*(X) or

N ——————— - —
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6

var(X) =~ N(N -1)p? +%-(N—1)P~

-[(Np_%)_p”—(;-p)'”]z

_p'+(1-p"

1
=(Np)2 - Np? +-‘§---(Np)2 + Np—z-(N—l)p”

_ N _ N2
(w3 -a-p-{ =22

_p'+a-p*
6

1 1-p)¥ - p¥ 2
{o-3)6" -y (42220

6

=Np(1-p)—712-—(1v—1)p”

—— - ——— -— —_—
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APPENDIX B

PROPAGATION OF ERROR
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If f{x) is a function of x, Taylor’s series can often be used to express the effect on
ftx) of a small error in x (Deming, 1948). If we let Ax denote the error in x and Af the
error in f{x), the propagation of error is given approximately by Af = f'(x)Ax. This can
be extended to functions of several variables. Thus, if F is a function of three variables,
say x, ¥, and z, then the error in F can be expressed approximately as
AF = F Ax+ F Ay + F Az, where F, =0F /oK.

Cramer (1946) developed the following theorem which was later used by Ku
(1966) to derive the propagation of error formulas for various functions and determine
their accuracy .

Theorem: If, in some neighborhood of the point X = My, ¥ = M), the

function F(X,Y) is continuous and has continuous derivatives of the first

and second order with respect to the arguments X and Y, the random

variable w = F(X,¥)is asymptotically normal, the mean and variance of

the limiting normal distribution being given by:
meanw=F(M,,M,)

. [ar]z c? [aF] [aF aF]
varws=|— + —2+2
oX] n Y| n oX | oY

Using these results, the approximate variance of the survivorship estimator S‘KM can be

and

determined.

The Kaplan-Meier estimate of the probability of survival is given by

§KM(‘) = H NTi

ity St N-i+l

where the N-i is the number of subjects surviving longer than time f;. Then for any

given time, the proportion of survivors is
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N-i
N-i+l

b=

so that §m(t) = H p; - The proportion of deaths is 1-p;, or g; = 1/(N-i+1). The
ity st

proportion of deaths can be thought of as x; = one success out of N - i + 1 Bernoulli trials.

Thus, the variance of x; is given by var(x;) =(N —i+1)q(1-¢q) and the variance of the

proportion of deaths, equal to the variance of the proportion of survivors, is

var(g;) = var(p;) =q(1-q) /(N ~i+1).

Taking the natural log of the survivorship estimator yields

L=In8,, (1) = Zlnﬁi , so that dL = -aTLdiJ,. = Z ‘Ldﬁ, . The variance of L is

y P20, St iyt OP; ityyst Pi
approximated by

1
(N=-D(N-i+])’

6= Lvarp)= ¥

idyyst Fi ity)yst

Now, S, ()=e* and dS,, (1) = -aSgMT(t)dL. The approximate variance of the

survivorship estimator is then given by

25%,(0)’
&z=( m()) 52

S L

dL

S 2, NI

aeig 254

The approximate variance of the Berliner-Hill estimator of the survivorship function is

derived similarly by replacing N by N + 1 in the equation.
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APPENDIX C

SAS CODE USED TO ANALYZE DOREY-KORN EFFECTIVE SAMPLE SIZE
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Testing Dorey-Kom Modified Effective Size Calculations for Grogan, Dorey, Rollins,
and Amstutz Data

I* EEEERREEEREES R AR REREES SRR XA ERRREEERREREREREEEEEEBREREEEREE LSS R REEEE &/

/* DK_TEST.SAS SAS PROGRAM WRITTEN TO TEST COMPUTATION OF  */

* DOREY AND KORN EFFECTIVE SAMPLE SIZE EXAMPLE */
* */
/*  LAST MODIFIED: 6/4/97 */
/*  LAST EXECUTED: 6/4/97 */

/* EERRREESREEERERERRRREERRERRSERERERRERREIRRRBEERREEERRERRERERESRREEEE &/

OPTIONS NODATE LS=120 PS=65 PAGENO=1 NOTES;
TITLEDOREY AND KORN EFFECTIVE SAMPLE SIZE EXAMPLE’;

DATA A,

INPUT T COUNT CENSOR @@;

CARDS;

24033914205416207211210136711400
154711610171111810191112010215512400251321
30003139136103780148004911716000615917200
7349184008546196009731110800109101

PROC SORT DATA=A; BY T;

DATAB; SETA;BY T;
KEEP TIME CENSOR NUM;
RETAIN TIME;,
IF FIRST.T THEN TIME=T;
IF CENSOR=0 AND COUNT=0 THEN DO;
TIME=T; NUM=0; OUTPUT;
END;
ELSE IF (CENSOR=0 AND COUNT>0) THEN DO I=1 TO COUNT;
TIME=TIME+.001; NUM=1; OUTPUT;
END;
ELSE IF (CENSOR=1) THEN DO I=1 TO COUNT;
TIME=TIME+.001;, NUM=0; OUTPUT;
END;
RUN;
DATA B; SET B;
RENAME NUM=COUNT TIME=T;
RUN;

oy

e
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PROC PRINT DATA=C;
TITLE2 &TITLE;
VAR T COUNTRISK S KM N KM S_DKM N_DKM;
WHERE CENSOR=0;
RUN;
%MEND;

%DK(A,IF COUNT=0 THEN DO;,END;,

'"USING COLLAPSED LIFE TABLE - CALCULATING N_DKM ONLY WHEN NO
FAILURES")
%DK(A, ,,

'"USING COLLAPSED LIFE TABLE - CALCULATING N_DKM EACH TIME')
%DK(B,IF COUNT=0 THEN DO;,END;,

'"USING EXPANDED LIFE TABLE - CALCULATING N_DKM ONLY WHEN NO
FAILURES")
%DK(B, , ,

'"USING EXPANDED LIFE TABLE - CALCULATING N_DKM EACH TIME')
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Testing Dorey-Kom Modified Effective Sample Size Using Simulated Survival Data

/* SRREEREERERRRESREREERRREERREREEERREER KRR R REERREBEREEEER RS ERREERES ¥/

/* DKTEST2.SAS SAS PROGRAM WRITTEN TO FURTHER TEST THE */
* COMPUTATION OF THE DOREY AND KORN */
/* EFFECTIVE SAMPLE SIZE */
/* */
/* LAST MODIFICATION: 6/14/97 */
/* LAST EXECUTION:  6/14/97 */

/* RSB REEEREEERRRBREERRRERREEBERERERERBERRRRSEREEBERERREERRREEEEEEE ¥/

OPTIONS NODATE LS=120 PS=65 PAGENO=1 NONOTES;

DATA A;
KEEP CENSOR T;
T=0; CENSOR=1; OUTPUT;
DO I=1 TO 30;
U=UNIFORM(12345);
IF UNIFORM(12345)<.25 THEN CENSOR=1; ELSE CENSOR=0;
T=((-LOG(U)**(1/1))/1;
OUTPUT;
END;
RUN;
PROC SORT DATA=A;BY T;

%MACRO DK(RESTRICT,END_R,TITLE);
DATAC;SETA;BY T;

KEEP T CENSOR S_KM S_DKM N_KM N_DKM;

RETAIN S_KM KM1 KM2 SURV R1 F1 N_ KM N_DKM KM_SUM SUMK1
SUMK?2 0;

IF _N_=1 THEN DO;

S_KM=1; S_DKM=1; KMI=1; KM2=1;
N_KM=30; N_DKM=30;

KM_SUM=0; SUMK1=0; SUMK?2=0;
SURV=30; R1=30; F1=0;

END;

RISK=SURYV;
NFAIL=1-CENSOR;

KM_PROD=(RISK-NFAIL)/RISK;

IF NFAIL NE RISK THEN KM_SUM=KM_SUM + (NFAIL/(RISK*(RISK-NFAIL)));
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S_KM=S_KM*KM_PROD;
VAR_KM=S_KM*S_KM*KM_SUM;

IF VAR_KM NE 0 THEN N_KM=S_KM?*(1-S_KM)/'VAR_KM;

LRISK=R1; LFAIL=F1;
OLD_KM=KM1; SUM_KOLD=SUMKI;
IF CENSOR=0 THEN DO;

R1=RISK; F1=NFAIL;

KM1=KM2; SUMK1=SUMK2;

=S_KM; SUMK2=KM_SUM;

S_DKM=S_KM; N_DKM=N_KM;

END;

&RESTRICT;
S_DKM=OLD_KM * (1- (LFAIL-1)/LRISK) * (1 - (NFAIL+1)/(RISK+1));

IF RISK NE NFAIL THEN
VAR_DKM=S_DKM*S_DKM * (SUM_KOLD + (LFAIL-1)/(LRISK*(LRISK-
LFAIL+1))
+ (NFAIL+1)/((RISK+1)*(RISK-NFAIL)) );

IF S_DKM NOT IN (1,0) THEN N_DKM=S_DKM?*(1-S_DKM)/'VAR_DKM;
&END R;

IF _N_NE 1 THEN SURV=SURV-1;
RUN;

PROC PRINT DATA=C;
TITLE &TITLE;

RUN;

%MEND;

%DK(IF CENSOR=1 THEN DO;,END; /CALCULATING N_DKM ONLY WHEN
CENSORED)
%DK(, ,'/CALCULATING N_DKM EACH TIME")

——
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APPENDIX D

SAS PROGRAMS USED TO GENERATE DATA AND CONSTRUCT CONFIDENCE
INTERVALS

TN LS

R
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Greenwood, Psuedo-Binomial, and Rothman Intervals

/#####'t##t###tt##***t##*####‘t‘*##tt##‘#tt##*#t##tt#ttt##***#****‘#*##/

/* NEWSIM.BLD PROGRAM TO GENERATE DATA AND CONSTRUCT */
/* CONFIDENCE INTERVALS IN WEIBULL DATA */
/* SIMULATION STUDY */
/* */
/* LAST MODIFICATION: 5/21/97 */
/* LAST EXECUTION: 5/21/97 */

/#‘###t#‘###t##tt#tttt###tt##*tt‘####t#‘###t*#t#t*#t#‘#*‘*.t*###***#tt*/

OPTIONS LS=132 PS=60 PAGENO=1 NODATE NONOTES;
LIBNAME SIM V61! 'E:\LIESL\DISS\SAS_PGMS';

DATA FINAL; RUN;

%MACRO WEIBSIM(NS,MS,FC,L,NU,ALPHA SEED);
,“, DATA A;
KEEP J CENSOR T;
SEED=&SEED;
DO J=1 TO &MS;
DO I=1 TO &NS;
; U=UNIFORM(SEED);
IF UNIFORM(SEED)<&FC THEN CENSOR=1; ELSE CENSOR=0;
T=((-LOG(U))**(1/&NU))/&L;
OUTPUT;
END;
END;
RUN;

DATA ZERO;
DO J=1 TO &MS;
T=0; CENSOR=0; OUTPUT;
END;
RUN;
DATA A; SET A ZERO;
PROC SORT DATA=A;BYJT;

DATA C; SET A; BY J;
KEEP J T GL GU RL RU PL PU;

RETAIN S KM N KM SURYV SUM 0;

IF FIRST.J THEN DO;

SURV=&NS+1; SUM=0; S_KM=1; N_KM=&NS; PROD=1;
END;
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CENS=1-CENSOR;
RISK=SURYV;
SURV=SURV-1;

PROD=(RISK-CENS)/RISK;

IF (NOT FIRST.J) AND (NOT LAST.J) AND (CENSOR NE 1) THEN DO;
SUM=SUM+(CENS/(RISK*(RISK-CENS)));

S_KM=S_KM*PROD;

VAR_KM=S KM*S_KM*SUM;

N_KM=S_KM*(1-S_KM)/VAR_KM;

END;

IF LAST.J THEN S_KM=S_KM*PROD;

XPRIME=N_KM*S_KM;

Z=PROBIT(1-&ALPHA/2);
ZSQ=Z*Z;

/* CALCULATE GREENWOOD CONFIDENCE LIMITS */
GL=MAX(0,S_KM - Z*SQRT(S_KM*(1-S_KM)YN_KM));
z GU=MIN(1,S_KM + Z*SQRT(S_KM*(1-S_KM)YN_KM));

/* CALCULATE ROTHMAN CONFIDENCE LIMITS */
RL=MAX(0,(N_KM/(N_KM+ZSQ)) * (S_KM + ZSQ/(2*N_KM) -

Z*SQRT((S_KM*(1-S_KM))/N_KM + ZSQ/(4*N_KM*N_KM))));
RU=MIN(I,(N_KM/(N_KM+ZSQ)) * (S_KM + ZSQ/(2*N_KM) +

Z*SQRT((S_KM*(1-S_KM))/N_KM + ZSQ/(4*N_KM*N_KM))));

/* CALCULATE PSEUDO-BINOMIAL CONFIDENCE LIMITS */
IF XPRIME GT 0 THEN
F1=FINV(&ALPHA/2,2*XPRIME,2*(N_KM-XPRIME+1),0);
PL=MAX(0,XPRIME*F1/(N_KM-XPRIME+1+XPRIME*F1));
IF XPRIME LT N_KM THEN
F2=FINV(1-&ALPHA/2,2*(XPRIME+1),2*(N_KM-XPRIME),0);
PU=MIN(1,(XPRIME+1)*F2/(N_KM-XPRIME+(XPRIME+1)*F2));
RUN;

N
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CONF_LEV=1-&ALPHA;
SAMPLE=&NS;
P_CENS=&FC;
SEED=&SEED;
LAMBDA=&L;
NU=&NU;

GRN_PCT=G_05/&MS; RTH_PCT=R_05/&MS; PSU_PCT=P_05/&MS; $=.05;
OUTPUT;

GRN_PCT=G_25/&MS; RTH_PCT=R_25/&MS; PSU_PCT=P_25/&MS; §=.25;
OUTPUT;

GRN_PCT=G_50/&MS; RTH_PCT=R_50/&MS; PSU_PCT=P_50/&MS; S=.50;
OUTPUT;

GRN_PCT=G_75/&MS; RTH_PCT=R_75/&MS; PSU_PCT=P_75/&MS; S=.75;
OUTPUT;

GRN_PCT=G_95/&MS; RTH_PCT=R_95/&MS; PSU_PCT=P_95/&MS; S=.95;
OUTPUT;

RUN;

DATA FINAL; SET FINAL PCT; RUN;

WM e e

%MEND;
%WEIBSIM(NS,MS,FC,L.NU,ALPHA,SEED)

DATA SIM.NEWSIM; SET FINAL,;

KEEP PERCENT METHOD CONF_LEV SAMPLE P_CENS SEED LAMBDA NU §;
IF S=. THEN DELETE;

PERCENT=PSU_PCT; METHOD=PSEUDO-BINOMIAL'; OUTPUT;
PERCENT=GRN_PCT; METHOD="GREENWOOD'; OUTPUT;
PERCENT=RTH_PCT; METHOD='ROTHMAN'; OUTPUT;

RUN;
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Pseudo-Binomial and Rothman Intervals Using Alternative Estimators and Effective
Sample Sizes

J* SEREEERREEEE SRR R EERREREERREE SRS RS SR SRR RS XXX EREER LSRR EREBE RSB EEE &/

/* NEWSIM2.BLD PROGRAM TO GENERATE DATA AND CONSTRUCT */

/* PSEUDO-BINOMIAL AND ROTHMAN CONFIDENCE */
/* INTERVALS COMPARING S_BH AND S_KM ESTIMATORS*/
* AND DIFFERENT EFFECTIVE SAMPLE SIZES */
/* */
/* LAST MODIFICATION: 6/5/97 */
* LAST EXECUTION:  6/6/97 */

/* SERERE RSB RERSEEE RS LR RS SR REBEERBRBE RS EER RSB R R R XSRS RS R RERERE ¥/

OPTIONS NODATE LS=132 PS=60 PAGENO=1 NONOTES;
LIBNAME SIM V611 'E:\LIESL\DISS\SAS_PGMS’;

DATA FINAL; RUN;
%MACRO PBSIM(NS,MS,FC,L.NU,ALPHA,SEED);

DATA A;
KEEP J CENSOR T;
DO J=1 TO &MS;
T=0;, CENSOR=1; OUTPUT;
DO I=1 TO &NS;
U=UNIFORM(&SEED);
IF UNIFORM(&SEED)<&FC THEN CENSOR=1; ELSE CENSOR=0;
T=((-LOG(U))**(1/&NU))/&L;
OUTPUT;
END;
END;
RUN;
PROC SORT DATA=A; BY JT;

DATAB; SET A;BYJT;
KEEP J T CENSOR PKML PKMU PBHL PBHU PPKML PPKMU PPBHL PPBHU
RKML RKMU RBHL RBHU RPKML RPKMU RPBHL RPBHU;
RETAIN S_KM S_BH SURV N_KM N_BH NPETO!1 NPETO2 KM_SUM BH_SUM
0;

IF FIRST.J THEN DO;

S_KM=1; S_BH=I;

N_KM=&NS; N_BH=&NS+1; NPETO1=&NS; NPETO2=&NS+1;
KM_SUM=0; BH_SUM=0; SURV=&NS;

END;

L m—
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RISK=SURYV;
NFAIL=1-CENSOR;

KM_PROD=(RISK-NFAIL)/RISK;
BH_PROD=(RISK+1-NFAIL)/(RISK+1);

IF NFAIL NE RISK THEN KM_SUM=KM_SUM + (NFAIL/(RISK*(RISK-NFAIL)));
BH_SUM=BH_SUM + (NFAIL/((RISK+1)*(RISK+1-NFAIL)));

S_KM=S_KM*KM_PROD;
S_BH=S_BH*BH_PROD;

VAR_KM=S_KM*S_KM*KM_SUM;
VAR_BH=S_BH*S_BH*BH_SUM;

IF VAR_KM NE 0 THEN DO;
N_KM=S_KM*(1-S_KM)/VAR_KM;
NPETO1=(RISK-NFAIL)/'S_KM;

END;

IF VAR_BH NE 0 THEN DO;
N_BH=(S_BH*(1-S_BH))/VAR_BH;
NPETO2=(RISK+1-NFAIL)/S_BH;

END;
/*#*#**#‘*‘ttt‘#t#‘##*t#######‘*ttt‘##t**##‘####*###.tt*#*#*###*#***# t/
/* CALCULATE PSEUDO-BINOMIAL LIMITS USING KM AND N_KM */
XP1=S_KM*N_KM;
IF XP1 GT 0 THEN

F1=FINV(&ALPHA/2,2*XP1,2*(N_KM-XP1+1),0);
IF XP1 LTN_KM THEN

F2=FINV(1-&ALPHA/2,2*(XP1+1),2*(N_KM-XP1),0);
PKML=MAX(0,XP1*F1/(N_KM-XP1+1+XP1*F1));
PKMU=MIN(1,(XP1+1)*F2/(N_KM-XP1+(XP1+1)*F2));

/#*###t‘#t#*tt#*#*t#*###t#*‘##‘t#tt#t‘tt*t#t#.‘t#####*#t###t‘#**tt#*# */

/* CALCULATE PSEUDO-BINOMIAL LIMITS USING BH AND S_BH */

XP2=S_BH*N_BH;
IF XP2 GT 0 THEN

F1=FINV(&ALPHA/2,2*XP2,2*(N_BH-XP2+1),0);
IF XP2 LTN_BH THEN

F2=FINV(1-&ALPHA/2,2*(XP2+1),2*(N_BH-XP2),0);
PBHL=MAX(0,XP2*F1/(N_BH-XP2+1+XP2*F1));
PBHU=MIN(1,(XP2+1)*F2/(N_BH-XP2+(XP2+1)*F2));

o ——
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/* EEREEEEEEEREERREERER B EBERBEERRRREEREEREREERR AR RS R KSR EREREEREBEEE &/

/* CALCULATE ROTHMAN LIMITS USING BH AND NPETO2 */
RPBHL=MAX(0,(NPETO2/(NPETO2+ZSQ)) * (S_BH + ZSQ/(2*NPETO2) -
Z*SQRT((S_BH*(1-S_BH))/NPETO2 + ZSQ/(4*NPETO2*NPET02))));
RPBHU=MIN(1,(NPETO2/(NPETO2+ZSQ)) * (S_BH + ZSQ/(2*NPETO2) +
Z*SQRT((S_BH*(1-S_BH))/NPETO2 + ZSQ/(4*NPETO2*NPETO2))));

/* 2RSSR EEREREREREB LRSS ERREREREREEERBRRERERRRESE SRS E R SR bR R R Rk &/

IF NOT FIRST.J THEN SURV=SURV-1;
RUN;

PROC SORT DATA=B; BY J DESCENDING T;
DATA TEST; SET B; BY J;

KEEP PKM_05--PKM_95 PBH_05--PBH_95
PPKM_05--PPKM_95 PPBH_05--PPBH_95
RKM_05--RKM_95 RBH_05--RBH_95
RPKM_05--RPKM_95 RPBH_05--RPBH_95;

ARRAY S{*} S_05S_25S_50S_75S_95 (.05,.25,.50,.75,.95);

ARRAY PKM{*} PKM_05 PKM_25 PKM_50 PKM_75 PKM_95;
ARRAY PBH{*} PBH_05 PBH_25 PBH_50 PBH_75 PBH_95;

ARRAY PPKM({*} PPKM_05 PPKM_25 PPKM_50 PPKM_75 PPKM_95;
ARRAY PPBH{*} PPBH_05 PPBH_25 PPBH_50 PPBH_75 PPBH_95;

ARRAY RKM{*} RKM_05 RKM_25 RKM_50 RKM_75 RKM _95;
ARRAY RBH{*} RBH_05 RBH_25 RBH_50 RBH_75 RBH_95;

ARRAY RPKM{*} RPKM_05 RPKM_25 RPKM_50 RPKM_75 RPKM _95;
ARRAY RPBH({*} RPBH_05 RPBH_25 RPBH_50 RPBH_75 RPBH_95;

ARRAY TRUE({*} TRUE_05 TRUE_25 TRUE_50 TRUE_75 TRUE_95;
DO INDEX=1 TO DIM(TRUE);
TRUE{INDEX}=((-LOG(S{INDEX}))**(1/&NU))/&L;

END;

RETAIN NEXT _T;
NEXT_T=LAG(T);
IF FIRST.J THEN NEXT _T=T;

.
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DO IDX=1 TO 5;
IF T LE TRUE{IDX} LE NEXT_T THEN DO;
IF PKML LE S{IDX} LE PKMU THEN PKM{IDX}=1; ELSE PKM{IDX}=0;
IF PBHL LE S{IDX} LE PBHU THEN PBH{IDX}=1; ELSE PBH{IDX}=0;
IF PPKML LE S{IDX} LE PPKMU THEN PPKM({IDX}=1; ELSE PPKM{IDX}=0;
IF PPBHL LE S{IDX} LE PPBHU THEN PPBH{IDX}=1; ELSE PPBH{IDX}=0;

IF RKML LE S{IDX} LE RKMU THEN RKM{IDX}=1; ELSE RKM{IDX}=0;

IF RBHL LE S{IDX} LE RBHU THEN RBH{IDX}=1; ELSE RBH{IDX}=0;

IF RPKML LE S{IDX} LE RPKMU THEN RPKM{IDX}=1; ELSE RPKM{IDX}=0;
IF RPBHL LE S{IDX} LE RPBHU THEN RPBH{IDX}=1; ELSE RPBH{IDX}=0;
END;

IF FIRST.J AND TRUE{IDX} GT T THEN DO;

IF PKML LE S{IDX} LE PKMU THEN PKM{IDX}=1; ELSE PKM{IDX}=0;

IF PBHL LE S{IDX} LE PBHU THEN PBH{IDX}=1; ELSE PBH{IDX}=0;

IF PPKML LE S{IDX} LE PPKMU THEN PPKM{IDX}=1; ELSE PPKM{IDX}=0;
IF PPBHL LE S{IDX} LE PPBHU THEN PPBH{IDX}=1; ELSE PPBH{IDX}=0;

IF RKML LE S{IDX} LE RKMU THEN RKM{IDX}=1; ELSE RKM{IDX}=0;
IF RBHL LE S{IDX} LE RBHU THEN RBH{IDX}=1; ELSE RBH{IDX}=0;
IF RPKML LE S{IDX} LE RPKMU THEN RPKM({IDX}=1; ELSE RPKM{IDX}=0;
IF RPBHL LE S{IDX} LE RPBHU THEN RPBH{IDX}=1; ELSE RPBH{IDX}=0;
END; END;
RUN;

PROC MEANS DATA=TEST NOPRINT;

VAR PKM_05--PKM_95 PBH_05--PBH_95
PPKM_05--PPKM_95 PPBH_05--PPBH_95
RKM_05--RKM_95 RBH_05--RBH_95
RPKM_05--RPKM_95 RPBH_05--RPBH_95;

OUTPUT OUT=SUMS SUM=;

RUN;

DATA PCT; SET SUMS;
KEEP CONF_LEV SAMPLE P_CENS SEED LAMBDA NU PKM PBH PPKM PPBH
RKM RBH RPKM RPBH §;

CONF_LEV=1-&ALPHA;
SAMPLE=&NS;
P_CENS=&FC;
SEED=&SEED;
LAMBDA=&L,;
NU=&NU;

i
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PKM=PKM _05/&MS; PBH=PBH_05/&MS; PPKM=PPKM_05/&MS;
PPBH=PPBH_05/&MS;

RKM=RKM _05/&MS; RBH=RBH_05/&MS; RPKM=RPKM_05/&MS;
RPBH=RPBH_05/&MS; ‘

S=.05; OUTPUT;

PKM=PKM _25/&MS; PBH=PBH_25/&MS; PPKM=PPKM_25/&MS;
PPBH=PPBH_25/&MS;

RKM=RKM_25/&MS; RBH=RBH_25/&MS; RPKM=RPKM_25/&MS;
RPBH=RPBH_25/&MS;

$=.25; OUTPUT;

PKM=PKM_50/&MS; PBH=PBH_50/&MS; PPKM=PPKM_50/&MS;
PPBH=PPBH_50/&MS;

RKM=RKM_50/&MS; RBH=RBH_50/&MS; RPKM=RPKM_50/&MS;
RPBH=RPBH_50/&MS;

S$=.50; OUTPUT;

PKM=PKM_75/&MS; PBH=PBH_75/&MS; PPKM=PPKM_75/&MS;
PPBH=PPBH_75/&MS;

RKM=RKM_75/&MS; RBH=RBH_75/&MS; RPKM=RPKM_75/&MS;
RPBH=RPBH_75/&MS;

S=.75; OUTPUT;

PKM=PKM_95/&MS; PBH=PBH_95/&MS; PPKM=PPKM_95/&MS;
PPBH=PPBH_95/&MS;

RKM=RKM_95/&MS; RBH=RBH_95/&MS; RPKM=RPKM_95/&MS;
RPBH=RPBH_95/&MS;

$=.95; OUTPUT,;

RUN;

DATA FINAL; SET FINAL PCT; RUN;

%MEND;

%PBSIM(NS, 1000,FC,L NU,ALPHA,SEED)

L e
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Seed Values Used To Generate Data For Simulations
Table D1

Random Seeds Used In Data Generation

NS =30 NS =60 NS =120
FC ALPHA SEED FC ALPHA SEED FC ALPHA SEED
v=_05
0 .01 12345 0 01 1357963 0 01 987655
.05 2340569 .05 357915 .05 87654
.10 345681 .10 579137 .10 765433
05 .01 456791 05 .01 71359 05 .01 6545323
05 56793 .05 9103581 05 53221
.10 6789103 .10 246803 .10 432111
. .10 .01 789015 .10 .01 468027 10 .01 321099
R .05 890125 .05 68049 .05 21989
§ .10 90127 .10 8023471 .10 1098707
H v=1.0
0 01 123457 0 .01 135791 0 .01 987653
05 234567 .05 357913 .05 876543
.10 345679 .10 579135 .10 765431
05 .01 456789 .05 .01 791357 05 01 654321
.05 567891 05 913579 .05 543219
.10 678901 .10 246801 .10 432109
.10 01 789013 10 .01 468025 10 01 321097
.05 890123 05 680247 05 210987
.10 901235 .10 802469 .10 109875
v=4.0
0 .01 223469 0 .01 285803 0 .01 11665
.05 354579 .05 37925 .05 3165855
.10 47561 10 4749147 .10 405443
05 01 5146801 .05 01 501369 05 .01 594333
.05 667903 .05 613591 .05 67231
.10 718913 .10 76813 .10 7129121
? .10 .01 82905 .10 .01 8258037 .10 .01 891109
‘ .05 9209135 05 930259 05 920999
.10 151247 .10 192481 10 99987

o m— P -
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SURVIVAL FOR EACH METHOD
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Table E1

Percentage of Intervals Containing True Probability of Survival Whenv = 0.5

Method
Confidence Sample  Percent Pseudo-
level S() size censored COreenwood  pinomial  Rothman
0.99 0.05 30 0 0.797 0.999 0.986
0.05 0.800 0.996 0.979
0.10 0.796 0.990 0.951
60 0 0.957 0.995 0.987
0.05 0.947 0.992 0.973
0.10 0.953 0.986 0.953
120 0 0.926 0.992 0.992
0.05 0.985 0.983 0.962
0.10 0.985 0.978 0.929
0.25 30 0 0.950 0.996 0.991
0.05 0.978 0.997 0.987
0.10 0.984 0.993 0.986
60 0 0.976 0.998 0.996
0.05 0.983 0.989 0.983
0.10 0.981 0.983 0.970
120 0 0.991 0.994 0.991
0.05 0.984 0.986 0.977
0.10 0.961 0.953 0.929
0.5 30 0 0.977 0.995 0.995
0.05 0.972 0.990 0.988
0.10 0.968 0.992 0.998
60 0 0.994 0.998 0.994
0.05 0.981 0.989 0.987
0.10 0.974 0.987 0.983
120 0 0.984 0.994 0.994
0.05 0.976 0.984 0.979
0.10 0.962 0.970 0.965
0.75 30 0 0.952 0.991 0.985
0.05 0.943 0.996 0.992
0.10 0.932 0.993 0.991

- ——— PR
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Table E1 (Continued)

Method
Confidence Sample  Percent Pseudo-

level S®) size censored Greenwood  binomial = Rothman

0.95 0.50 60 0 0.958 0.984 0.958

0.05 0.927 0.953 0.933

0.10 0.904 0.931 0911

120 0 0.937 0.961 0.937

0.05 0.930 0.943 0.933

0.10 0.866 0.884 0.872

0.75 30 0 0.949 0.962 0.962

0.05 0.931 0.966 0.960

0.10 0.930 0.965 0.962

60 0 0.942 0.961 0.954

0.05 0.909 0.965 0.947

0.10 0.897 0.949 0.943

120 0 0.942 0.954 0.947

0.05 0.927 0.958 0.950

0.10 0.875 0.927 0918

0.95 30 0 0.789 0.988 0.953

0.05 0.751 0.986 0.945

0.10 0.764 0.994 0.962

60 0 0.800 0.991 0.971

0.05 0.777 0.995 0.978

0.10 0.740 0.996 0.982

120 0 0.921 0.963 0.947

0.05 0.923 0.977 0.961

0.10 0.919 0.964 0.947

0.90 0.05 30 0 0.770 0.983 0.946

0.05 0.790 0.957 0.916

0.10 0.779 0.929 0.841

60 0 0.807 0.929 0.885

0.05 0.846 0.934 0.867

0.10 0.881 0.890 0.814

120 0 0.869 0.957 0.889

0.05 0.896 0.911 0.858

0.10 0.861 0.840 0.780

0.25 30 0 0.843 0.932 0.899

0.05 0.872 0.922 0.888

0.10 0.867 0.908 0.861
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Table E1 (Continued)

9

Method
Confidence Sample  Percent Pseudo-

level S(1) size censored Greenwood  binomial  Rothman

0.90 0.25 60 0 0.897 0.934 0.919

0.05 0.896 0.919 0.883

0.10 0.870 0.886 0.839

120 0 0.911 0.927 0.897

0.05 0.885 0.893 0.876

0.10 0.791 0.796 0.753

0.5 30 0 0.899 0.899 0.899

0.05 0.892 0.908 0.894

0.10 0.840 0.894 0.849

60 0 0912 0912 0.912

0.05 0.878 0912 0.888

0.10 0.861 0.902 0.876

: 120 0 0.873 0918 0.918
0.05 0.865 0.889 0.871
’ 0.10 0.784 0.823 0.790
0.75 30 0 0.857 0.947 0.915
0.05 0.850 0.942 0.920

0.10 0.803 0911 0.899

60 0 0.884 0.932 0.900

0.05 0.855 0.926 0.905

0.10 0.831 0.900 0.878

120 ¢ 0.906 0.925 0.888

0.05 0.889 0.919 0.897

0.10 0.832 0.883 0.862

0.95 30 0 0.778 0.983 0.935

0.05 0.769 0.988 0.949

0.10 0.743 0.989 0.954

60 0 0.791 0.919 0.860

0.05 0.786 0.929 0.892

0.10 0.772 0.927 0.890

120 0 0.854 0.955 0.873

0.05 0.803 0.953 0.859

0.10 0.780 0.959 0.864
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Table E2 (Continued)
Method
Confidence Sample  Percent Pseudo-
level S@) size  censored Greenwood  binomial  Rothman
0.99 0.75 60 0 0.985 0.996 0.991
0.05 0.965 0.993 0.992
0.10 0.960 0.987 0.987
120 0 0.989 0.995 0.993
0.05 0.973 0.993 0.992
0.10 0.956 0.988 0.988
0.95 30 0 0.773 0.999 0.988
0.05 0.780 0.996 0.992
0.10 0.738 0.998 0.991
60 0 0.963 0.998 0.990
0.05 0.949 0.996 0.993
, 0.10 0.932 0.996 0.990
; 120 0 0.955 0.994 0.992
% 0.05 0.925 0.993 0.996
' 0.10 0.913 0.993 0.998
0.95 0.05 30 0 0.773 0.984 0.931
0.05 0.783 0.972 0.938
0.10 0.791 0.958 0.883
60 0 0.808 0.986 0.963
0.05 0.933 0.963 0.930
0.10 0.949 0.949 0.890
120 0 0.947 0.979 0.963
0.05 0.921 0.955 0.922
0.10 0911 0.894 0.833
0.25 30 0 0.949 0.974 0.974
0.05 0.923 0.958 0.940
0.10 0.935 0.954 0.910
60 0 0.939 0.961 0.947
0.05 0.944 0.954 0.936
! 0.10 0.903 0.909 0.880
: 120 0 0.946 0.960 0.947
0.05 0.946 0.951 0.934
0.10 0.868 0.865 0.828
0.5 30 0 0.949 0.949 0.949
0.05 0.942 0.957 0.946
0.10 0.939 0.963 0.942

L m——
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Table E2 (Continued)
Method
Confidence Sample  Percent Pseudo-
level S(t) size censored Greenwood  binomial  Rothman

0.90 0.25 60 0 0.881 0.908 0.884
0.05 0.878 0.907 0.874
0.10 0.845 0.867 0.823
120 0 0.898 0.922 0.874
0.05 0.897 0.901 0.874
0.10 0.804 0.814 0.773
0.5 30 0 0.908 0.908 0.908
0.05 0.873 0.909 0.885

0.10 0.849 0914 0.83
60 0 0.917 0917 0917
0.05 0.871 0.912 0.876
0.10 0.861 0.900 0.865
120 0 0.874 0910 0.910
0.05 0.871 0.899 0.878
0.10 0.810 0.844 0.820
0.75 30 0 0.846 0.941 0.910
0.05 0.853 0.938 0.920
0.10 0.814 0.916 0.903
60 0 0.862 0917 0.899
0.05 0.856 0.915 0.894
0.10 0.860 0.926 0.901
120 0 0.903 0.927 0.890
0.05 0.877 0910 0.882
0.10 0.827 0.871 0.853
0.95 30 0 0.761 0.986 0.946
0.05 0.744 0.988 0.953
0.10 0.735 0.988 0.962
60 0 0.788 0.924 0.879
0.05 0.778 0914 0.874
0.10 0.739 0.909 0.885
120 0 0.843 0.943 0.868
0.05 0.826 0.963 0.879
0.10 0.799 0.954 0.870

oo~ T —_———————— - —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

Table E3

Percentage of Intervals Containing True Probability of Survival When v = 4.0

Method
Confidence Sample  Percent Pseudo-
level S sizz  censored Greenwood  binomjal ~ Rothman
0.99 0.05 30 0 0.806 0.997 0.983
0.05 0.803 0.995 0.969
0.10 0.809 0.985 0.948
60 0 0.957 0.998 0.989
0.05 0.953 0.990 0.961
0.10 0.961 0.979 0.940
120 0 0.946 0.992 0.994
0.05 0.979 0.992 0972
0.10 0.987 0.966 0.923
0.25 30 0 0.958 0.998 0.993
0.05 0.976 0.994 0.986
0.10 0.980 0.984 0.972
60 0 0.972 0.992 0.988
0.05 0.980 0.990 0.983
0.10 0.977 0.979 0.964
120 0 0.986 0.997 0.996
0.05 0.982 0.980 0.970
0.10 0.963 0.959 0.941
0.5 30 0 0.986 0.993 0.993
0.05 0.976 0.998 0.996
0.10 0.978 0.992 0.991
60 0 0.985 0.996 0.985
0.05 0.976 0.986 0.980
0.10 0.968 0.986 0.982
120 0 0.986 0.993 0.993
0.05 0.984 0.990 0.988
0.10 0.960 0.973 0.966
0.75 30 0 0.967 0.998 0.992
0.05 0.955 0.997 0.993
0.10 0.943 0.995 0.990
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Table E3 (Continued)
_ Method
Confidence Sample  Percent Pseudo-

level S®) size  censored Greenwood  binomial  Rothman

0.95 0.50 60 0 0.894 0.924 0.902

0.05 0.939 0.958 0.939

0.10 0.950 0.959 0.952

120 0 0.862 0.893 0.870

0.05 0.937 0.964 0.964

0.10 0.862 0.893 0.870

0.75 30 0 0.937 0.964 0.964

0.05 0.946 0.969 0.967

0.10 0913 0.959 0.954

60 0 0.937 0.961 0.949

0.05 0.916 0.952 0.939

0.10 0.893 0.947 0.939

120 0 0.962 0.979 0.972

0.05 0.926 0.950 0.947

0.10 0.885 0.930 0.924

0.95 30 0 0.781 0.976 0.927

0.05 0.742 0.992 0.958

0.10 0.738 0.986 0.952

60 0 0.807 0.992 0.966

0.05 0.805 0.995 0.981

0.10 0.744 0.997 0.991

120 0 0.921 0.960 0.934

0.05 0.912 0.962 0.943

0.10 0.923 0.978 0.961

0.90 0.05 30 0 0.766 0.985 0.934

0.05 0.784 0.954 0.913

0.10 0.779 0.928 0.857

60 0 0.812 0.921 0.856

0.05 0.846 0.946 0.864

0.10 0.890 0.911 0.826

120 0 0.854 0.942 0.867

0.05 0.882 0913 0.871

0.10 0.854 0.837 0.756

0.25 30 0 0.847 0.941 0.907

0.05 0.875 0.937 0.887

0.10 0.858 0.901 0.840

o ——
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Table E3 (Continued)
Method
Confidence Sample  Percent Pseudo-
level S@) sizz  censored Greenwood  binomial = Rothman
0.90 0.25 60 0 0.884 0.929 0.899
0.05 0.877 0.904 0.876
0.10 0.838 0.851 0.806
120 0 0.903 0.921 0.882
0.05 0.883 0.898 0.879
0.10 0.783 0.792 0.757
0.5 30 0 0.907 0.907 0.907
0.05 0.893 0.926 0.909
0.10 0.850 0.890 0.862
60 0 0.909 0.909 0.909
0.05 0.871 0.902 0.877
: 0.10 0.839 0.888 0.847
120 0 0.879 0.908 0.908
‘ 0.05 0.864 0.884 0.865
0.10 0.797 0.832 0.806
0.75 30 0 0.851 0.946 0.914
0.05 0.854 0.938 0.923
0.10 0.801 0.926 0.910
60 0 0.907 0.944 0.914
0.05 0.855 0.912 0.889
0.10 0.817 0.911 0.859
120 0 0.908 0.927 0.884
0.05 0.877 0.920 0.887
0.10 0.827 0.885 0.867
0.95 30 0 0.755 0.988 0.946
0.05 0.771 0.990 0.949
0.10 0.750 C.996 0.966
60 0 0.809 0.935 0.879
0.05 0.770 0.920 0.879
0.10 0.743 0.905 0.866
! 120 0 0.832 0.951 0.871
' 0.05 0.820 0.940 0.863
0.10 0.789 0.961 0.885
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Table E4
Percentage of Pseudo-Binomial Intervals Containing True Probability of Survival When
v=05
Method
Confidence Sample  Percent
level S size  censored BH PKM PBH
0.99 0.05 30 0 0.986 1.999 0.986
0.05 0.983 0.997 0.986
0.10 0.965 0.994 0.973
60 0 0.987 0.995 0.987
0.05 0.979 0.993 0.928
0.10 0.966 0.992 0.974
: 120 0 0.992 0.992 0.992
: 0.05 0.968 0.987 0.974
; 0.10 0.950 0.978 0.959
0.25 30 0 0.993 0.996 0.993
0.05 0.991 0.998 0.991
0.10 0.989 0.995 0.991
60 0 0.996 0.998 0.996
0.05 0.986 0.991 0.986
0.10 0.973 0.984 0.980
120 0 0.991 0.994 0.991
0.05 0.980 0.986 0.981
0.10 0.936 0.961 0.948
0.5 30 0 0.997 0.995 0.997
0.05 0.991 0.990 0.991
0.10 0.992 0.994 0.993
60 0 0.997 0.998 0.997
0.05 0.988 0.990 0.989
! 0.10 0.983 0.988 0.984
! 120 0 0.994 0.994 0.994
0.05 0.980 0.985 0.983
$ 0.10 0.965 0.971 0.968
0.75 30 0 0.991 0.991 0.991
0.05 0.996 0.996 0.996
0.10 0.994 0.994 0.994
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Table E4 (Continued)
, Method
Confidence Sample  Percent Pseudo-

level S(1) size censored Greenwood  binomial  Rothman

0.99 0.75 60 0 0.997 0.997 0.997

0.05 0.997 0.997 0.997

0.10 0.992 0.993 0.993

120 0 0.991 0.997 0.991

0.05 0.986 0.986 0.987

0.10 0.982 0.983 0.983

0.95 30 0 0.991 0.991 0.991

0.05 0.997 0.997 0.997

0.10 1.000 1.000 1.000

60 0 0.999 0.999 0.999

. 0.05 0.999 0.999 0.999

;; 0.10 0.998 0.998 0.998

120 0 0.998 0.998 0.998

0.05 0.998 0.998 0.998

0.10 0.996 0.996 0.996

0.95 0.05 30 0 0.934 0.985 0.934

0.05 0911 0.982 0.922

0.10 0.891 0.9967 0.902

60 0 0.966 0.996 0.966

0.05 0.930 0.973 0.935

0.10 0.866 0.962 0.892

120 0 0.962 0.967 0.962

0.05 0.909 0.952 0919

0.10 0.849 0.921 0.860

0.25 30 0 0.985 0.977 0.985

0.05 0.952 0.970 0.957

0.10 0.932 0.955 0.935

60 0 0.956 0.957 0.956

0.05 0.935 0.953 0.942

0.10 0.904 0.930 0919

120 0 0.964 0.970 0.964

0.05 0.926 0.941 0.930

0.10 0.829 0..869 0.842

0.5 30 0 0.977 0.959 0.977

0.05 0.959 0.568 0.960

0.10 0.932 0.958 0.939

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

Table E4 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S@) size censored Greenwood binomial Rothman

0.95 0.50 60 0 0.969 0.981 0.969

0.05 0.937 0.953 0.941

0.10 0.914 0.934 0.918

120 0 0.947 0.961 0.947

0.05 0.938 0.945 0.940

0.10 0.873 0.889 0.876

0.75 30 0 0.976 0.962 0.976

0.05 0.976 0.966 0.976

0.10 0.967 0.965 0.967

60 0 0.961 0.961 0.961

0.05 0.959 0.965 0.961

0.10 0.947 0.957 0.948

120 0 0.954 0.954 0.954

0.05 0.959 0.958 0.959

| 0.10 0.926 0.929 0.926

. 0.95 30 0 0.988 0.988 0.988

! 0.05 0.986 0.986 0.986

0.10 0.994 0.994 0.994

60 0 0.991 0.991 0.991

0.05 0.995 0.995 0.995

0.10 0.996 0.996 0.996

120 0 0.963 0.963 0.963

0.05 0.977 0.977 0.977

0.10 0.964 0.964 0.964

0.90 0.05 30 0 0.946 0.983 0.946

0.05 0.893 0.960 0.899

0.10 0.799 0.935 0.820

60 0 0.930 0.929 0.930

0.05 0.875 0.879 0.939

0.10 0.792 0.901 0.808

120 0 0.935 0.957 0.935

0.05 0.846 0918 0.857

0.10 0.757 0.856 0.783

0.25 30 0 0.924 0.932 0.924

0.05 0913 0.925 0.915

0.10 0.868 0914 0.876
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Table E4 (Continued)
Method
Confidence Sample  Percent Pseudo-
level S size censored Greenwood  binomial = Rothman
0.90 0.25 60 0 0.935 0.934 0.935
0.05 0.894 0.922 0.897
0.10 0.837 0.900 0.847
120 0 0.913 0.927 0.913
0.05 0.883 0.895 0.888
0.10 0.749 0.804 0.766
0.5 30 0 0.926 0.899 0.926
0.05 0918 0.919 0.919
0.10 0.868 0.895 0.879
60 0 0.930 0.912 0.930
0.05 0.911 0.917 0912
0.10 0.886 0.907 0.896
120 0 0.912 0.918 0.942
0.05 0.879 0.891 0.883
0.10 0.795 0.832 0.806
0.75 30 0 0.947 0.947 0.947
0.05 0.947 0.943 0.947
0.10 0.913 0.920 0.913
60 0 0.932 0.932 0.932
0.05 0.925 0.927 0.926
0.10 0.890 0.905 0.891
120 0 0.906 0.925 0.906
0.05 0912 0.919 0.913
0.10 0.877 0.884 0.880
0.95 30 0 0.983 0.983 0.983
0.05 0.988 0.988 0.988
0.10 0.989 0.989 0.989
60 0 0.919 0.919 0.919
0.05 0.929 0.929 0.929
0.10 0.927 0.927 0.927
120 0 0.955 0.955 0.955
0.05 0.953 0.953 0.953
0.10 0.959 0.959 0.959
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Table E5 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S size censored Greenwood binomial Rothman

0.99 0.75 60 0 0.996 0.996 0.996

0.05 0.993 0.993 0.993

0.10 0.987 0.987 0.987

120 0 0.994 0.995 0.994

0.05 0.990 0.993 0.990

0.10 0.988 0.988 0.988

0.95 30 0 0.999 0.999 0.999

0.05 0.996 0.996 0.996

0.10 0.998 0.998 0.998

60 0 0.998 0.998 0.998

0.05 0.996 0.996 0.996

0.10 0.996 0.996 0.996

120 0 0.994 0.994 0.994

0.05 0.993 0.993 0.993

0.10 0.993 0.993 0.993

0.95 0.05 30 0 0.931 0.984 0.931

0.05 0.934 0.978 0.940

0.10 0.869 0.968 0.888

60 0 0.963 0.986 0.963

0.05 0.922 0.966 0.930

0.10 0.881 0.964 0.900

120 0 0.969 0.979 0.969

0.05 0.920 0.957 0.926

0.10 0.828 0.903 0.856

0.25 30 0 0.977 0.974 0.977

0.05 0.949 0.960 0.955

0.10 0916 0.965 0.927

60 0 0.961 0.961 0.961

0.05 0.940 0.957 0.941

0.10 0.881 0.920 0.891

120 0 0.962 0.960 0.962

0.05 0.937 0.953 0.944

0.10 0.829 0.875 0.847

0.5 30 0 0.968 0.949 0.968

0.05 0.956 0.957 0.958

0.10 0.950 0.966 0.954
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Table ES (Continued)
Method
Confidence Sample  Percent Pseudo-
level S@® size censored Greenwood  binomial Rothman
0.95 0.50 60 0 0.955 0.972 0.955
0.05 0.938 0.950 0.939
0.10 0.921 0.944 0.933
120 0 0.965 0.973 0.965
0.05 0.936 0.940 0.937
0.10 0.886 0.905 0.890
0.75 30 0 0.984 0.977 0.984
0.05 0.976 0.968 0.976
0.10 0.969 0.964 0.969
60 0 0.964 0.964 0.964
: 0.05 0.953 0.959 0.953
0.10 0.937 0.948 0.937
! 120 0 0.965 0.965 0.965
0.05 0.957 0.955 0.958
0.10 0.931 0.939 0.931
0.95 30 0 0.980 0.980 0.980
0.05 0.989 0.989 0.989
0.10 0.989 0.989 0.989
60 0 0.993 0.993 0.993
0.05 0.995 0.995 0.995
0.10 0.994 0.994 0.994
120 0 0.963 0.963 0.963
0.05 0.971 0.971 0.971
0.10 0.967 0.967 0.967
0.90 0.05 30 0 0.940 0.985 0.940
0.05 0.873 0.951 0.877
0.10 0.819 0.933 0.832
60 0 0.924 0918 0.924
0.05 0.868 0.934 0.878
; 0.10 0.783 0.897 0.805
! 120 0 0.925 0.953 0.925
0.05 0.850 0.903 0.862
0.10 0.768 0.875 0.793
0.25 30 0 0.938 0.946 0.938
0.05 0.894 0.932 0.898
0.10 0.853 0.903 0.866
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Table ES (Continued)
Method
Confidence Sample  Percent Pseudo-
level S size censored Greenwood binomial Rothman

0.90 0.25 60 0 0.925 0.908 0.925
0.05 0.889 0914 0.895
0.10 0.825 0.883 0.838
120 0 0.898 0.922 0.898
0.05 0.875 0.907 0.880
0.10 0.7 0.829 0.791
0.5 30 0 2.934 0.908 0.934
0.05 0.906 0.911 0.906
0.10 0.889 0916 0.894
60 0 0.932 0.917 0.932
0.05 0.890 0915 0.897
0.10 0.873 0.906 0.880
120 0 0.920 0910 0.920
0.05 0.887 0.901 0.895
0.10 0.824 0.854 0.832
0.75 30 0 0.941 0.941 0.941
0.05 0.940 0.941 0.940
0.10 0.916 0.919 0.918
60 0 0.917 0.917 0917
0.05 0.911 0917 0912
0.10 0.918 0.930 0.920
120 0 0.903 0.927 0.903
0.05 0.903 0.910 0.907
0.10 0.872 0.872 0.874
0.95 30 0 0.986 0.986 0.986
0.05 0.988 0.988 0.988
0.10 0.988 0.988 0.988
60 0 0.924 0.924 0.924
: 0.05 0914 0914 0914
0.10 0.909 0.909 0.909
: 120 0 0.943 0.943 0.943

: 0.05 0.963 0.963 0.96
0.10 0.954 0.954 0.954

—
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Table E6
Percentage of Pseudo-Binomial Intervals Containing True Probability of Survival When
v=40
Method
Confidence Sample  Percent
level N, size censored BH PKM PBH
0.99 0.05 30 0 0.983 0.997 0.983
0.05 0.973 0.996 0.978
0.10 0.956 0.990 0.966
60 0 0.989 0.998 0.989
0.05 0.973 0.991 0.979
0.10 0.953 0.986 0.962
120 0 0.994 0.992 0.994
0.05 0.978 0.992 0.982
0.10 0.932 0.977 0.945
0.25 30 0 0.993 0.998 0.993
0.05 0.987 0.995 0.987
s 0.10 0.975 0.989 0.980
' 60 0 0.991 0.992 0.991
0.05 0.985 0.990 0.986
0.10 0.967 0.983 0.974
120 0 0.996 0.997 0.996
0.05 0.973 0.981 0.975
0.10 0.945 0.967 0.954
0.5 30 0 0.996 0.993 0.996
0.05 0.998 0.998 0.998
0.10 0.991 0.994 0.991
60 0 0.991 0.996 0.991
0.05 0.984 0.988 0.985
0.10 0.983 0.987 0.984
120 0 0.995 0.993 0.995
: 0.05 0.988 0.992 0.989
0.10 0.968 0.977 0.971
0.75 30 0 0.998 0.998 0.998
! 0.05 0.997 0.997 0.997
0.10 0.995 0.995 0.995
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Table E6 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S size censored Greenwood  binomial  Rothman

0.99 0.75 60 0 0.997 0.997 0.997

0.05 0.990 0.990 0.990

0.10 0.988 0.989 0.988

120 0 0.985 0.991 0.985

0.05 0.989 0.989 0.989

0.10 0.976 0.977 0.976

0.95 30 0 0.999 0.999 0.999

0.05 0.997 0.997 0.997

0.10 0.996 0.996 0.996

60 0 0.997 0.997 0.997

0.05 0.998 0.998 0.998

0.10 0.999 0.999 0.999

120 0 0.999 0.999 0.999

0.05 0.995 0.995 0.995

0.10 0.996 0.996 0.996

0.95 0.05 30 0 0.949 0.982 0.949

0.05 0.918 0.979 0.925

0.10 0.904 0.981 0.916

60 0 0.971 0.987 0.971

0.05 0.935 0.973 0.942

0.10 0.857 0.950 0.882

120 0 0.960 0.972 0.960

0.05 0919 0.956 0.930

0.10 0.838 0.917 0.857

0.25 30 0 0.981 0.975 0.981

0.05 0.953 0.958 0.954

0.10 0.929 0.952 0.936

60 0 0.964 0.962 0.964

0.05 0.930 0.945 0.937

0.10 0.898 0.927 0914

120 0 0.963 0.962 0.963

0.05 0.936 0.959 0.941

0.10 0.834 0.890 0.848

0.5 30 0 0.979 0.963 0.979

0.05 0.957 0.964 0.960

0.10 0917 0.960 0.948
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Table E6 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S size censored Greenwood binomial Rothman

0.95 0.50 60 0 0.968 0.979 0.968

0.05 0.952 0.954 0.953

0.10 0.905 0.927 0913

120 0 0.950 0.958 0.950

0.05 0.956 0.961 0.957

0.10 0.873 0.900 0.879

0.75 30 0 0.981 0.964 0.981

0.05 0.974 0.969 0.974

0.10 0.962 0.959 0.962

60 0 0.961 0.961 0.961

0.05 0.956 0.953 0.956

0.10 0.943 0.950 0.945

120 0 0.979 0.979 0.979

0.05 0.953 0.950 0.953

0.10 0.928 0.937 0.928

0.95 30 0 0.976 0.976 0.976

0.05 0.992 0.992 0.992

0.10 0.986 0.986 0.986

60 0 0.992 0.992 0.992

0.05 0.995 0.995 0.995

0.10 0.997 0.997 0.997

120 0 0.960 0.960 0.960

0.05 0.962 0.962 0.962

0.10 0.978 0.978 0.978

0.90 0.05 30 0 0.934 0.985 0.934

0.05 0.877 0.956 0.889

0.10 0.801 0.938 0.812

60 0 0.901 0.921 0.901

0.05 0.872 0.948 0.883

0.10 0.799 0.923 0.820

120 0 0.921 0.942 0.921

0.05 0.869 0.918 0.878

0.10 0.741 0.856 0.761

0.25 30 0 0.939 0.941 0.939

0.05 0.907 0.939 0912

0.10 0.850 1.912 0.859
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Table E7

Percentage of Rothman Intervals Containing True Probability of Survival Whenv = 0.5

Method
Confidence Sample  Percent
level S@) size  censored BH PKM PBH
0.99 0.05 30 0 0.939 0.986 0.939
0.05 0.915 0.981 0.922
0.10 0.852 0.959 0.875
60 0 0.963 0.987 0.963
0.05 0.932 0.976 0.939
0.10 0.888 0.961 0.904
120 0 0.982 0.992 0.982
0.05 0.937 0.964 0.947
: 0.10 0.880 0.949 0.893
: 025 30 0 0.975 0.991 0.975
i 0.05 0.968 0.989 0.970
0.10 0.972 0.987 0.974
60 0 0.987 0.996 0.987
0.05 0.962 0.985 0.965
0.10 0.955 0.972 0.960
120 0 0.989 0.991 0.989
0.05 0.973 0.981 0.973
0.10 0.914 0.938 0.920
0.5 30 0 0.988 0.995 0.988
0.05 0.980 0.989 0.980
0.10 0.981 0.990 0.985
60 0 0.997 0.994 0.997
0.05 0.983 0.988 0.983
0.10 0.976 0.984 0.979
120 0 0.989 0.994 0.989
0.05 0.974 0.983 0.976
0.10 0.959 0.968 0.964
0.75 30 0 0.985 0.985 0.985
0.05 0.992 0.992 0.992
0.10 0.991 0.991 0.991
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Table E7 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S@) size censored Greenwood binomial Rothman

0.99 0.75 60 0 0.996 0.996 0.996

0.05 0.992 0.992 0.992

0.10 0.991 0.992 0.992

120 0 0.997 0.997 0.997

0.05 0.986 0.985 0.986

0.10 0.983 0.983 0.983

0.95 30 0 0.977 0.977 0.977

C.05 0.981 0.981 0.981

0.10 0.990 0.990 0.990

60 0 0.994 0.994 0.994

0.05 0.993 0.993 0.993

0.10 0.994 0.994 0.994

120 0 0.994 0.994 0.994

0.05 0.994 0.994 0.994

0.10 0.999 0.999 0.999

0.95 0.05 30 0 0.809 0.934 0.809

0.05 0.773 0.922 0.778

0.10 0.757 0.903 0.772

60 0 0.922 0.966 0.922

0.05 0.857 0.941 0.864

0.10 0.748 0.896 0.767

120 0 0.929 0.949 0.929

0.05 0.849 0918 0.857

0.10 0.760 0.860 0.786

0.25 30 0 0.944 0.977 0.944

0.05 0.912 0.953 0.916

0.10 0.895 0.930 0.899

60 0 0.940 0.939 0.940

0.05 0.914 0.933 0.919

0.10 0.860 0912 0.871

120 0 0.956 0.957 0.956

0.05 0.899 0.925 0.902

0.10 0.784 0.840 0.804

0.5 30 0 0.938 0.959 0.938

0.05 0.933 0.952 0.933

0.10 0.910 0.931 0.913
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Table E7 (Continued)
Method
Confidence Sample  Percent Pseudo-
level S®) size censored Greenwood  binomial Rothman
0.95 0.50 60 0 0.969 0.958 0.969
0.05 0.932 0.933 0.932
0.10 0.902 0.916 0.904
120 0 0.947 0.937 0.947
0.05 0.927 0.935 0.928
0.10 0.852 0.876 0.860
0.75 30 0 0.949 0.962 0.949
0.05 0.939 0.961 0.939
0.10 0.948 0.962 0.948
60 0 0.954 0.954 0.954
0.05 0.947 0.949 0.947
; 0.10 0.943 0.945 0.943
120 0 0.947 0.947 0.947
! 0.05 0.952 0.951 0.952
’ 0.10 0.917 0.921 0.919
0.95 30 0 0.953 0.953 0.953
0.05 0.945 0.945 0.945
0.10 0.962 0.962 0.962
60 0 0.971 0.971 0.971
0.05 0.978 0.978 0.978
0.10 0.982 0.982 0.982
120 0 0.947 0.947 0.947
0.05 0.961 0.961 0.961
0.10 0.947 0.947 0.947
0.90 0.05 30 0 0.809 0.946 0.809
0.05 0.767 0.922 0.776
0.10 0.651 0.855 0.666
60 0 0.828 0.885 0.828
0.05 0.791 0.872 0.802
0.10 0.685 0.826 0.700
120 0 0.859 0.889 0.859
0.05 0.766 0.865 0.780
0.10 0.661 0.792 0.683
0.25 30 0 0.881 0.899 0.881
0.05 0.880 0.892 0.886
0.10 0.789 0.872 0.802

L — _
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Table E7 (Continued)

_ Method

Confidence Sample  Percent Pseudo-
level S@ siza  censored Greenwood  binomial  Rothman
0.90 0.25 60 0 0.887 0.919 0.887
0.05 0.859 0.886 0.863
0.10 0.788 0.850 0.798
120 0 0.913 0.897 0.913
0.05 0.848 0.881 0.857
0.10 0.714 0.767 0.724
0.5 30 0 0.926 0.899 0.926
0.05 0.910 0.896 0.911
0.10 0.843 0.855 0.845
60 0 0.883 0.912 0.883
0.05 0.874 0.891 0.880
0.10 0.852 0.884 0.858
: 120 0 0.893 0.918 0.893
; 0.05 0.861 0.877 0.862
0.10 0.768 0.801 0.777
0.75 30 0 0.915 0.915 0.915
0.05 0.820 0.920 0.920
0.10 0.902 0.899 0.902
60 0 0.900 0.900 0.900
0.05 0.905 0.905 0.905
0.10 0.877 0.879 0.878
120 0 0.906 0.888 0.906
0.05 0.893 0.898 0.893
0.10 0.850 0.865 0.853
0.95 30 0 0.935 0.935 0.935
0.05 0.949 0.949 0.949
0.10 0.954 0.954 0.954
60 0 0.860 0.860 0.860
0.05 0.892 0.892 0.892
i 0.10 0.890 0.890 0.890
120 0 0.873 0.873 0.873
; 0.05 0.859 0.859 0.859
0.10 0.864 0.864 0.867

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



147

Table E8

Percentage of Rothman Intervals Containing True Probability of Survival Whenv = 1.0

Method
Confidence Sample  Percent
level N(7 size censored BH PKM PBH
0.99 0.05 30 0 0.946 0.985 0.946
0.05 0.903 0.981 0.918
0.10 0.854 0.857 0.873
60 0 0.966 0.990 0.966
0.05 0.932 0.981 0.939
0.10 0.884 0.957 0.901
120 0 0.975 0.993 0.975
0.05 0.941 0.974 0.946
0.10 0.858 0.935 0.881
0.25 30 0 0.978 0.992 0.978
0.05 0.980 0.993 0.981
0.10 0.959 0.981 0.963
60 0 0.987 0.993 0.987
0.05 0.969 0.984 0.970
0.10 0.953 0.977 0.964
120 0 0.986 0.987 0.986
0.05 0.970 0.976 0.972
0.10 0.927 0.947 0.934
0.5 30 0 0.988 0.998 0.988
0.05 0.971 0.984 0.974
0.10 0.986 0.994 0.988
60 0 0.997 0.993 0.997
0.05 0.977 0.984 0.978
0.10 0.972 0.978 0.974
120 0 0.989 0.992 0.989
0.05 0.980 0.983 0.981
0.10 0.965 0.973 0.967
3 0.75 30 ¢ 0.990 0.990 0.990
3 0.05 0.991 0.991 0.991
' 0.10 0.996 0.996 0.996
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Table E8 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S() size censored Greenwood  binomial Rothman

0.99 0.75 60 0 0.991 0.991 0.991

0.05 0.992 0.992 0.992

0.10 0.987 0.987 0.987

120 0 0.993 0.993 0.993

0.05 0.952 0.992 0.992

0.10 0.988 0.988 0.988

0.95 30 0 0.988 0.988 0.988

0.05 0.992 0.992 0.992

0.10 0.991 0.991 0.991

60 0 0.990 0.990 0.990

0.05 0.993 0.993 0.993

0.10 0.990 0.990 0.990

120 0 0.992 0.992 0.992

0.05 0.996 0.996 0.996

0.10 0.998 0.998 0.998

0.95 0.05 30 0 0.802 0.931 0.802

0.05 0.818 0.940 0.822

0.10 0.736 0.982 0.757

60 0 0.927 0.963 0.927

0.05 0.835 0.933 0.845

0.10 0.762 0.898 0.787

120 0 0.923 0.963 0.923

0.05 0.867 0.926 0.875

0.10 0.728 0.855 0.747

0.25 30 0 0.947 0.974 0.947

0.05 0.909 0.949 0.912

0.10 0.877 0.922 0.887

60 0 0.937 0.947 0.937

0.05 0.901 0.938 0.906

! 0.10 0.835 0.886 0.848

§ 120 0 0.946 0.947 0.946

' 0.05 0.903 0.941 0912

0.10 0.790 0.845 0.802

0.5 30 0 0.925 0.949 0.925

0.05 0.923 0.946 0.923

0.10 0.931 0.947 0.934

o me—
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Table E8 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S size censored Greenwood binomial Rothman

0.95 0.50 60 0 0.955 0.949 0.955

0.05 0.925 0.930 0.928

0.10 0.891 0.922 0.901

120 0 0.965 0.954 0.965

0.05 0.919 0.930 0.923

0.10 0.869 0.886 0.880

0.75 30 0 0.950 0.977 0.950

0.05 0.947 0.966 0.947

0.10 0.939 0.958 0.939

60 0 0.952 0.952 0.952

0.05 0.947 0.947 0.947

0.10 0.930 0.932 0.930

120 0 0.954 0.954 0.954

0.05 0.952 0.851 0.952

0.10 0.927 0.929 0.928

0.95 30 0 0.933 0.933 0.933

0.05 0.952 0.952 0.952

0.10 0.960 0.960 0.960

60 0 0.978 0.978 0.978

0.05 0.976 0.976 0.976

0.10 0.978 0.978 0.978

120 0 0.940 0.940 0.940

0.05 0.959 0.959 0.959

0.10 0.953 0.953 0.953

0.90 0.05 30 0 0.816 0.940 0.816

0.05 0.764 0.909 0.775

0.10 0.658 0.875 0.681

60 0 0.842 0.871 0.842

0.05 0.775 0.875 0.782

0.10 0.682 0.817 0.700

120 0 0.829 0.859 0.829

0.05 0.777 0.860 0.784

0.10 0.660 0.801 0.677

0.25 30 0 0.905 0.916 0.905

0.05 0.846 0.885 0.854

0.10 0.791 0.854 0.800

o ——
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Table E8 (Continued)
Method
Confidence Sample  Percent Pseudo-
level S@) size censored Greenwood  binomial Rothman
0.90 0.25 60 0 0.896 0.884 0.896
0.05 0.851 0.880 0.855
0.10 0.777 0.836 0.788
120 0 0.898 0.874 0.898
0.05 0.840 0.878 0.847
0.10 0.728 0.790 0.743
0.5 30 0 0.934 0.908 0.934
0.05 0.897 0.887 0.897
0.10 0.854 0.879 0.857
60 0 0.893 0.917 0.893
: 0.05 0.871 0.880 0.875
; 0.10 0.850 0.873 0.858
120 0 0.895 0.910 0.895
0.05 0.855 0.884 0.861
0.10 0.785 0.825 0.799
0.75 30 0 0.910 0.910 0.910
0.05 0.920 0.920 0.920
0.10 0.904 0.903 0.904
60 0 0.899 0.899 0.899
0.05 0.894 0.894 0.894
0.10 0.901 0.903 0.901
120 0 0.903 0.890 0.903
0.05 0.878 0.885 0.880
0.10 0.838 0.859 0.844
0.95 30 0 0.946 0.946 0.946
0.05 0.953 0.953 0.953
0.10 0.962 0.962 0.962
60 0 0.879 0.879 0.879
0.05 0.874 0.874 0.874
0.10 0.885 0.885 0.885
120 0 0.868 0.868 0.868
0.05 0.879 0.879 0.881
0.10 0.869 0.870 0.870
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Table E9

Percentage of Rothman Intervals Containing True Probability of Survival When v = 4.0

Method
Confidence Sample  Percent
level S@ size censored BH PKM PBH
0.99 0.05 30 0 0.947 0.983 0.947
0.05 0.907 0.973 0914
0.10 0.858 0.955 0.872
60 0 0.969 0.989 0.969
0.05 0.923 0.963 0.928
0.10 0.871 0.948 0.886
120 0 0.982 0.994 0.982
0.05 0.948 0.977 0.954
0.10 0.857 0.932 0.883
0.25 30 0 0.982 0.993 0.982
0.05 0.972 0.986 0.973
0.10 0.947 0.975 0.954
60 0 0.983 0.988 0.983
0.05 0.979 0.983 0.980
0.10 0.945 0.970 0.950
120 0 0.989 0.996 0.989
0.05 0.964 0.972 0.966
0.10 0.926 0.945 0.935
0.5 30 0 0.987 0.993 0.987
0.05 0.986 0.997 0.989
0.10 0.988 0.991 0.988
60 0 0.991 0.985 0.991
0.05 0.980 0.982 0.981
0.10 0.970 0.983 0.976
120 0 0.988 0.993 0.988
0.05 0.984 0.989 0.984
0.10 0.963 0.969 0.966
0.75 30 0 0.992 0.992 0.992
0.05 0.993 0.993 0.993
0.10 0.990 0.990 0.990

L —— _
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Table E9 (Continued)
Method
Confidence Sample  Percent Pseudo-

level S(1) size censored Greenwood binomial Rothman

0.99 0.75 60 0 0.992 0.992 0.992

0.05 0.989 0.989 0.989

0.10 0.987 0.988 0.988

120 0 0.988 0.988 0.988

0.05 0.988 0.987 0.988

0.10 0977 0.978 0.977

0.25 30 0 0.991 0.991 0.991

0.05 0.992 0.992 0.992

0.10 0.986 0.986 0.986

60 0 0.990 0.990 0.990

0.05 0.992 0.992 0.992

0.10 0.995 0.995 0.995

120 0 0.994 0.994 0.994

0.05 0.994 0.994 0.994

0.10 0.998 0.998 0.998

0.95 0.05 30 0 0.812 0.949 0.812

0.05 0.775 0.925 0.776

0.10 0.779 0.917 0.793

60 0 0.927 0.971 0.927

0.05 0.858 0.943 0.866

0.10 0.762 0.887 774

120 0 0.921 0.950 0.921

0.05 0.872 0.927 0.882

0.10 0.735 0.856 0.758

0.25 30 0 0.951 0.975 0.951

0.05 0.918 0.947 0.922

0.10 0.887 0.927 0.894

60 0 0.941 0.946 0.941

0.05 0.905 0.930 0.906

0.10 0.848 0.912 0.857

120 0 0.954 0.955 0.954

0.05 0.916 0.935 0918

0.10 0.796 0.845 0.815

0.5 30 0 0.936 0.963 0.936

0.05 0.924 0.948 0.924

0.10 0.925 0.943 0.928

—~—— e — —
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Table E9 (Continued)
Method
Confidence Sample  Percent Pseudo-
level S@) size censored Greenwood  binomial = Rothman
0.95 0.50 60 0 0.968 0.956 0.968
0.05 0.936 0.942 0.937
0.10 0.884 0.910 0.890
120 0 0.950 0.939 0.950
0.05 0.941 0.953 0.944
0.10 0.852 0.876 0.857
0.75 30 0 0.937 0.964 0.937
0.05 0.954 0.967 0.955
0.10 0.932 0.954 0.932
60 0 0.949 0.949 0.949
0.05 0.940 0.939 0.940
: 0.10 0.935 0.939 0.936
120 0 0.972 0.972 0.972
0.05 0.947 0.947 0.947
0.10 0.924 0.925 0.924
! 095 30 0 0.927 0.927 0.927
§ 0.05 0.958 0.958 0.958
¢ 0.10 0.952 0.952 0.952
60 0 0.966 0.966 0.9663
0.05 0.981 0.981 0.981
0.10 0.991 0.991 0.991
_ 120 0 0.934 0.934 0.934
] 0.05 0.943 0.943 0.943
; 0.10 0.961 0.961 0.961
3 0.90 0.05 30 0 0.827 0.934 0.827
0.05 0.768 0914 0.780
: 0.10 0.676 0.867 0.691
; 60 0 0.914 0.856 0.814
0.05 0.777 0.872 0.789
0.10 0.688 0.834 0.706
120 0 0.840 0.867 0.840
0.05 0.796 0.875 0.806
0.10 0.649 0.773 0.675
0.25 30 0 0.888 0.907 0.888
0.05 0.853 0.889 0.860
0.10 0.794 0.849 0.803
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Method
Confidence Sample  Percent Pseudo-
level S@® size censored Greenwood binomial Rothman
0.90 0.25 60 0 0.890 0.899 0.890
0.05 0.852 0.878 0.854
0.10 0.773 0.814 0.786
120 0 0.900 0.882 0.900
0.05 0.853 0.882 0.859
0.10 0.721 0.769 0.733
0.5 30 0 0.931 0.907 0.931
0.05 0917 0.911 0917
0.10 0.851 0.869 0.856
60 0 0.878 0.909 0.878
, 0.05 0.866 0.881 0.872
h 0.10 0.827 0.857 0.832
) 120 0 0.894 0.908 0.894
0.05 0.859 0.869 0.864
0.10 0.773 0.810 0.786
0.75 30 0 0914 0914 0914
0.05 0.924 0.923 0.924
0.10 0.912 0910 0912
60 0 0914 0914 0914
0.05 0.890 0.889 0.890
0.10 0.859 0.864 0.859
120 0 0.908 0.884 0.908
0.05 0.873 0.890 0.875
0.10 0.849 0.871 0.856
0.95 30 0 0.946 0.946 0.946
0.05 0.949 0.949 0.949
0.10 0.966 0.966 0.966
60 0 0.879 0.879 0.879
. 0.05 0.879 0.879 0.879
1 0.10 0.866 0.866 0.866
120 0 0.871 0.871 0.871
0.05 0.863 0.863 0.864
0.10 0.885 0.885 0.885
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APPENDIX F

SAS PROGRAMS USED TO PERFORM ANALYSIS OF VARIANCE AND
FISHER’S LEAST SIGNIFICANT DIFFERENCE TESTS

L (SR
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Program for Analysis of Variance and Fisher’s LSD Test Comparing Pseudo-Binomial,

Greenwood, and Rothman Confidence Intervals

Ad SREEEESERRRERERBEEERERSERLEEERE R EERER LSS X BB SR RS RRER SRR RERREEEREE ¥/

/* FISHER.SAS LEAST SIGNIFICANT DIFFERENCE TEST FOR MULTIPLE

/* COMPARISONS OF NEWSIM.SD2 DATASET
/*

/* LAST MODIFIED: 7/3/97

/* LAST EXECUTED: 7/3/97

*/
*/
*/
*/
*/

/* SREREEEFEEEER R R BB R R B RERRERRSBEE AR LRSS EERR SRR LS HEERRER RNk R RN R kEE &/

OPTIONS NODATE LS=120 PS=65 PAGENO=1;
LIBNAME DATA V611 'E:\LIESL\DISS\SAS_PGMS';

TITLE'Least Significant Difference Test - Absolute Value Of Mean';

DATA A; SET DATANEWSIM;
DIFF=PERCENT-CONF_LEV;
RUN;

PROC SORT DATA=A; BY CONF_LEV;

PROC GLM DATA=A OUTSTAT=SS_OUT;

CLASS METHOD NU S SAMPLE P_CENS NU;
MODEL DIFF=METHOD|NU|S|SAMPLE|P_CENS@2;
BY CONF_LEV;

RUN;

DATA SS_OUT; SET SS_OUT; BY CONF_LEYV;
KEEP DF SS CONF_LEV;

IF _SOURCE_=ERROR’;

RUN;

%MACRO TEST(BY,NUM,OBS,TITLE);

PROC SORT DATA=A; BY CONF_LEV &BY METHOD;
PROC MEANS DATA=A NOPRINT;

VAR DIFF;

BY CONF_LEV &BY METHOD;

OUTPUT OUT=MEANOUT MEAN=DIFF;
RUN;

DATA PB; SET MEANOUT; BY CONF_LEV &BY;

KEEP CONF_LEV &BY DIFF;

IF METHOD="PSEUDO-BINOMIAL";

RENAME DIFF=PDIFF;

DATA MEANOUT; SET MEANOUT; BY CONF_LEV &BY;
IF METHOD IN (GREENWOOD',ROTHMAN");
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DATA TEST; MERGE MEANOUT PB; BY CONF_LEV &BY;
DROP _TYPE ;
RUN;

DATA SIG; MERGE TEST SS_OUT; BY CONF_LEV;
DROP _FREQ_ DF SS MSE_CORR TEST;
MSE_CORR=SQRT((2*SS/DF)/_FREQ );
TEST=ABS(ABS(PDIFF)-ABS(DIFF));
SIG=(1-PROBT(TEST/MSE_CORR,&OBS-&NUM))*2;

RUN;

PROC SORT DATA=SIG; BY METHOD CONF_LEV &BY;
PROC PRINT DATA=SIG;

TITLE2 &TITLE;

RUN;

%MEND;

%TEST( ,3,405,/AT EACH CONF LEVEL");

%TEST(NU,9,405,'AT EACH CONF LEVEL*NU");
%TEST(S,15,405,'/AT EACH CONF LEVEL * S(T)");

i %TEST(SAMPLE,9,405,’AT EACH CONF LEVEL * SAMPLE SIZE");
%TEST(P_CENS,9,405,'/AT EACH CONF LEVEL * % CENSORING");

L ——
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Program for Analysis of Variance and Fisher’s LSD Test Comparing Alternative
Estimators and Effective Sample Sizes

/* REEREREEREREREREREEXEXEESEREERERERREEERERE BB REEEREREEEEERRSEEEERREE &/

/* FISHER2.SAS LEAST SIGNIFICANT DIFFERENCE TEST FOR MULTIPLE */

/* COMPARISONS OF NEWSIM2.SD2 DATASET */
/* */
/* LAST MODIFIED: 7/3/97 */
* LAST EXECUTED: 7/3/97 */

/* EEEEEERRESREREREE SRR RS R AR A ISR AERRREBR SRR REBRRER AR EREERE R REESRRE &/

OPTIONS NODATE LS=120 PS=65 PAGENO=1;
LIBNAME DATA V611 'E:\LIESL\DISS\SAS_PGMS';

TITLE'Least Significant Difference Test - Absolute Value Of Mean';

DATA A; SET DATANEWSIM2;
DIFF=PERCENT-CONF_LEV;
RUN;

PROC SORT DATA=A; BY CONF_LEV METHOD NU S SAMPLE P_CENS;

PROC GLM DATA=A OUTSTAT=P_OUT;
TITLE2'Pseudo-Binomial Confidence Limits’;

CLASS METHOD NU S SAMPLE P_CENS;
MODEL DIFF=METHOD|NUIS|SAMPLE|P_CENS@2;
BY CONF_LEV;

WHERE METHOD IN (PKM','PBH',PPKM','PPBH’);
RUN;

DATA P_OUT; SET P_OUT; BY CONF_LEV;

KEEP DF SS CONF_LEV;

RENAME DF=DF_P SS=SS_P;

IF _SOURCE_='ERROR';

RUN;

PROC GLM DATA=A OUTSTAT=R_OUT;
TITLE2'Rothman Confidence Limits';

CLASS METHOD NU S SAMPLE P_CENS;

MODEL DIFF=METHOD|NU|S|SAMPLE|P_CENS@2;
; BY CONF_LEV;

WHERE METHOD IN ('RKM',RBH',/RPKM','RPBH");
RUN;

——— - o
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DATA R_OUT; SET R_OUT; BY CONF_LEV;
KEEP DF SS CONF_LEV;

RENAME DF=DF_R SS=SS_R;

IF _SOURCE_="ERROR’;

RUN;

%MACRO TEST(BY,NUM,OBS,TITLE),
PROC SORT DATA=A; BY CONF_LEV &BY METHOD;
PROC MEANS DATA=A NOPRINT;

VAR DIFF;

BY CONF_LEV &BY METHOD;

OUTPUT OUT=MEANOUT MEAN=DIFF;

RUN;

DATA PKM; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF _FREQ ;

IF METHOD='PKM;

RENAME DIFF=PKM _FREQ_=FREQ P;;

DATA PBH; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF;

IF METHOD="PBH;

RENAME DIFF=PBH;

DATA PPKM; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF;

IF METHOD='PPKM};

RENAME DIFF=PPKM;

DATA PPBH; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF;

IF METHOD='"PPBH;

RENAME DIFF=PPBH;

DATA RKM; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF _FREQ ;

IF METHOD="RKM;

RENAME DIFF=RKM _FREQ_=FREQ R;;

DATA RBH; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF;

IF METHOD="RBH;

RENAME DIFF=RBH;

DATA RPKM; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF;

IF METHOD="RPKM;

RENAME DIFF=RPKM;
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DATA RPBH; SET MEANOUT; BY CONF_LEV &BY;
KEEP CONF_LEV &BY DIFF;

IF METHOD='"RPBH’;

RENAME DIFF=RPBH;

DATA TEST; MERGE PKM PBH PPKM PPBH RKM RBH RPKM RPBH; BY
CONF_LEV &BY;
RUN;

DATA SIG; MERGE TEST P_OUT R_OUT; BY CONF_LEV;

DROP FREQ P FREQ R DF_P DF_R SS_P SS_ R MSE_PMSE RIJK
PKM_PBH PKM_PPKM PKM_PPBH PBH_PPKM PBH_PPBH PPK_PPB
RKM_RBH RKM_RPKM RKM_RPBH RBH_RPKM RBH_RPBH RPK_RPB;

ARRAY TESTP{*} PKM_PBH PKM_PPKM PKM _PPBH PBH_PPKM PBH_PPBH
PPK_PPB;
ARRAY TESTR{*} RKM_RBH RKM_RPKM RKM_RPBH RBH_RPKM
RBH_RPBH RPK_RPB;
ARRAY SIGP{*} SP_KB SP_KPK SP_KPB SP_BPK SP_BPB SP_PKPB;
: ARRAY SIGR{*} SR_KB SR_KPK SR_KPB SR_BPK SR_BPB SR_PKPB;
ARRAY DIFFP{*} PKM PBH PPKM PPBH;
ARRAY DIFFR{*} RKM RBH RPKM RPBH;

MSE_P=SQRT((2*SS_P/DF_P)/FREQ_P);
MSE_R=SQRT((2*SS_R/DF_R)/FREQ_R);

RETAINI1;

I=1;

DO J=1TO 3;

DO K=J+1TO 4,
TESTP{I}=ABS(ABS(DIFFP{J})-ABS(DIFFP{K}));
TESTR{I}=ABS(ABS(DIFFR{J})-ABS(DIFFR{K}));
SIGP{I}=(1-PROBT(TESTP{I}/MSE_P,&OBS-&NUM))*2;
SIGR{I}=(1-PROBT(TESTR {I}/MSE_R,&OBS-&NUM))*2;
I+1;

END; END;
RUN;

fj. PROC SORT DATA=SIG; BY CONF_LEV &BY;
: PROC PRINT DATA=SIG;

TITLE2 &TITLE;

RUN;

%MEND;

L e—
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APPENDIX G

ANALYSIS OF VARIANCE TABLES AND RESULTS OF FISHER’S LSD TEST
COMPARING GREENWOOD, ROTHMAN, AND PSEUDO-BINOMIAL
INTERVALS
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Table G1

Analysis of Variance Table for y = .90

Source af SS F
Method 2 0.42324 480.31**
Nu 2 0.00051 0.58
Method * Nu 4 0.00017 0.10
Probability of Survival 4 0.01551 8.80**
Method * Probability of Survival 8 0.21309 60.45%*
Nu * Probability of Survival 8 0.00131 0.37
Sample Size 2 0.02406 27.31**
Method * Sample Size 4 0.09248 52.47**
Nu * Sample Size 4 0.00156 0.89
Probability of Survival* Sample Size 8 0.02713 7.70%*
Percent Censoring 2 0.12817 145.45%*
Method * Percent Censoring 4 0.00225 1.28
Nu * Percent Censoring 4 0.00131 0.74
Probability of Survival * Percent Censoring 8 0.03047 8.64%*
Sample Size * Percent Censoring 4 0.02646 15.01**

*p<.05. **p<.0l

~——
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Table G2

Analysis of Variance Table for y = .95

Source af SS F
Method 2 0.28476 206.98**
Nu 2 0.00000 0.00
Method * Nu 4 0.00007 0.02
Probability of Survival 4 0.04051 14.72**
Method * Probability of Survival 8 0.26060 47.36**
Nu * Probability of Survival 8 0.00043 0.08
Sample Size 2 0.00027 0.20
Method * Sample Size 4 0.08388 30.48**
Nu * Sample Size 4 0.00081 0.29
Probability of Survival* Sample Size 8 0.08195 14.89**
Percent Censoring 2 0.07590 55.16**
'_ Method * Percent Censoring 4 0.00345 1.25
; Nu * Percent Censoring 4 0.00012 0.04
i Probability of Survival * Percent Censoring 8 0.02599 4.72%%
5 Sample Size * Percent Censoring 4 0.02467 8.96**

*p<.05. **p<0l

-
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Table G3

Analysis of Variance Table for y = .99

Source df SS F
Method 2 0.19401 231.93**
Nu 2 0.00011 0.13
Method * Nu 4 0.00011 0.07
Probability of Survival 4 0.06840 40.88**
Method * Probability of Survival 8 0.15420 46.09**
Nu * Probability of Survival 8 0.00009 0.03
Sample Size 2 0.04025 48.12**
Method * Sample Size 4 0.12033 71.92%*
Nu * Sample Size 4 0.00020 0.12
Probability of Survival* Sample Size 8 0.07109 21.25**
Percent Censoring 2 0.01059 12.66**
Method * Percent Censoring 4 0.00133 0.79
Nu * Percent Censoring 4 0.00012 0.07
: Probability of Survival * Percent Censoring 8 0.00141 0.42**
Sample Size * Percent Censoring 4 0.00295 1.76**

*p<.05. **p<.0l

BRI TS
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APPENDIX H

ANALYSIS OF VARIANCE TABLES COMPARING PSEUDO-BINOMIAL AND
ROTHMAN INTERVALS CONSTRUCTED USING ALTERNATIVE ESTIMATOR
AND EFFECTIVE SAMPLE SIZE EQUATIONS
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Analysis of Variance Results for Pseudo-binomial Confidence Intervals

Table H1

Analysis of Variance Table for Pseudo-Binomial Intervals with y = .90

Source df SS F
Method 3 0.04841 95.29**
Nu 2 0.00047 1.40
Method * Nu 6 0.00012 0.12
Probability of Survival 4 0.29624 437.34%*
Method * Probability of Survival 12 0.07441 36.61**
Nu * Probability of Survival 8 0.00152 1.12
Sample Size 2 0.13476 397.89**
Method * Sample Size 6 0.00019 0.19
Nu * Sample Size 4 0.00166 2.45*
Probability of Survival * Sample Size 8 0.06223 45.93**
| Percent Censoring 2 0.25380 749.36**
Method * Percent Censoring 6 0.02266 22.30**
Nu * Percent Censoring 4 0.00164 2.43*
Probability of Survival * Percent Censoring 8 0.11812 87.19**
Sample Size * Percent Censoring 4 0.02829 41.76**

*p<.05. **p<.0l.
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Table H2

Analysis of Variance Table for Pseudo-Binomial Intervals with y = .95

Source df SS F
Method 3 0.02254 82.18**
Nu 2 0.00010 0.54
Method * Nu 6 0.00008 0.15
Probability of Survival 4 0.13921 380.72%*
Method * Probability of Survival 12 0.03927 35.80**
Nu * Probability of Survival 8 0.00043 0.59
Sample Size 2 0.06094 333.32%*
Method * Sample Size 6 0.00023 0.42
Nu * Sample Size 4 0.00077 2.11
Probability of Survival * Sample Size 8 0.01325 18.11**
Percent Censoring 2 0.12681 693.58**
Method * Percent Censoring 6 0.00840 15.31**
Nu * Percent Censoring 4 0.00001 0.04
Probability of Survival * Percent Censoring 8 0.06542 89.46**
Sample Size * Percent Censoring 4 0.03432 93.86**

*p<05. **p<.0l.
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Table H3

Analysis of Variance Table for Pseudo-Binomial Intervals with y = .99

Source df SS F
Method 3 0.00304 67.99**
Nu 2 0.00011 3.59*
Method * Nu 6 0.00003 0.34
Probability of Survival 4 0.01344 225.10**
Method * Probability of Survival 12 0.00433 24.18**
Nu * Probability of Survival 8 0.00031 2.61*
Sample Size 2 0.00695 232.81**
Method * Sample Size 6 0.00004 041
Nu * Sample Size 4 0.00015 2.51*
Probability of Survival * Sample Size 8 0.00215 18.01**
Percent Censoring 2 0.01315 440.43**
Method * Percent Censoring 6 0.00090 10.06**
Nu * Percent Censoring 4 0.00019 3.23*
Probability of Survival * Percent Censoring 8 0.00675 56.51**
Sample Size * Percent Censoring 4 0.00448 75.05**

*p<.05. **p<.l.

P
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Table H4

Analysis of Variance Table for Rothman Intervals with y = .90

Source ar SS F
Method 3 0.10516 158.23*+
Nu 2 0.00030 0.68
Method * Nu 6 0.00016 0.12
Probability of Survival 4 0.53546 604.26**
Method * Probability of Survival 12 0.20437 76.88**
Nu * Probability of Survival 8 0.00170 0.96
Sample Size 2 0.16242 366.58**
Method * Sample Size 6 0.00391 2.94*
Nu * Sample Size 4 0.00305 3.45*
Probability of Survival * Sample Size 8 0.05780 32.61**
Percent Censoring 2 0.34966 789.18**
Method * Percent Censoring 6 0.02097 15.77**
Nu * Percent Censoring 4 0.00190 2.14
Probability of Survival * Percent Censoring 8 0.20767 117.18%*
Sample Size * Percent Censoring 4 0.03015 34.02%*

*p<.05. **p<.0lL
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Table HS

Analysis of Variance Table for Rothman Intervals with y = .95

Source df SS F
Method 3 0.09722 177.36**
Nu 2 0.00018 0.49
Method * Nu 6 0.00007 0.06
Probability of Survival 4 0.47089 644.29**
Method * Probability of Survival 12 0.15466 70.54**
Nu * Probability of Survival 8 0.00100 0.69
Sample Size 2 0.01845 50.48**
Method * Sample Size 6 0.01438 13.11%*
Nu * Sample Size 4 0.00063 0.86
Probability of Survival * Sample Size 8 0.05721 39.14**
Percent Censoring 2 0.21228 580.89**
: Method * Percent Censoring 6 0.00865 7.89%*
; Nu * Percent Censoring 4 0.00038 0.51
i Probability of Survival * Percent Censoring 8 0.16168 110.61**
; Sample Size * Percent Censoring 4 0.05378 73.59**

*p<.05. ** p<.0l.
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