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Data mining is the partially automated process of finding potentially interesting 

patterns in data. As a new discipline, it has been driven by the desire to find previously 

unknown, meaningful patterns in real-world databases. In this dissertation, I explore the 

use of data mining in epidemiologic surveillance both at the hospital and public health 

levels. As in many data mining research projects, our work on specific applications has 

fueled the development of more generally applicable ideas, strategies, and methods.

In this document, we describe our research, including the development of the Data 

Mining Surveillance System, DMSS. We also give experimental results obtained by 

using DMSS to analyze clinical laboratory infection control data obtained from 

University of Alabama at Birmingham Hospital, and invasive Streptococcus pneumoniae 

data obtained from the Centers for Disease Control and Prevention. Analysis of the 

results show that DMSS can efficiently identify interesting, complex, and previously- 

unknown patterns in epidemiologic data sets.

We believe that DMSS and systems like it will be indispensable tools in hospital 

infection control and public health surveillance systems of the future.
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CHAPTER 1

INTRODUCTION

Data mining is the partially automated process of finding potentially interesting, 

previously unknown patterns in data. Like all new academic disciplines, it is at the same 

time something old and something new.

Since patterns are necessary for the construction of scientific hypotheses and causal 

models, the identification of meaningful patterns in data has always been an integral part 

of scientific discovery. Traditionally, however, scientists have relied on intuition and 

serendipity together with traditional data analysis to bring these patterns to the light of 

day. Automated pattern discovery was for many years only an elusive goal

Within the last 15 years, however, computer-based methods for extracting patterns 

from data have been developed in the fields of statistics, economics, artificial 

intelligence, decision theory, and astronomy, amongst others. Until the early 1990s, 

though, the work of researchers in one field was largely unknown to those in others, 

despite the fact that the strategies they employed were often similar. Recently, the field 

of data mining has served to bring together these researchers to share their experiences 

and to form a new academic discipline.

Over the last quarter century, our ability to collect and store data has grown 

significantly faster than our ability to analyze data. According to current estimates, the 

amount of data stored in the databases of the world doubles every 20 months (Frawley, 

1
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Pietetsky-Shapiro, and Matheus 1992). As a result, there is a general consensus amongst 

experts that significant untapped knowledge lies hidden in many large databases.

Therefore, an important factor behind the emergence and development of data mining has 

been the realization that today’s databases, due to their size and complexity, contain 

knowledge that is not discovered by traditional methods.

Traditional analytical methods, in which the user formulates a query, then 

statistically compares the results of the query to a prior assumption, are largely 

confirmatory; they start with a null hypothesis, and they end with the null hypothesis 

being rejected or confirmed (not rejected). Consequently, if an existing pattern is not 

suspected (hypothesized), it will likely go undiscovered.

The challenge of data mining is to assist the user in uncovering deposits of 

interesting and unknown patterns whose discovery would otherwise require large 

amounts of time, resources, and luck using traditional hypothesis-driven methods. To 

accomplish this, data mining depends on exploratory analytical methods.

In data mining, as in statistics, exploratory methods search for interesting patterns 

by testing more than one hypothesis. These tests, called multiple comparisons, stray from 

formal assumptions of statistical inference, but are often useful for discovering new 

patterns (Tukey 1977). Elder and Pregibon (1996) have noted,

With increasingly huge and amorphous databases, it is clear that methods 
for automatically hunting down possible patterns worthy of fuller, 
interactive attention are required. The existence of such tools can free one 
up to, for instance, posit a wider range of candidate data features and basis 
functions (building blocks) than one would wish to deal with, if one were 
specifying a model structure “by hand . (p. 96)

In data mining, exploratory methods are automated by data mining algorithms. 

The careless application of these algorithms, however, often results in an abundance of 
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spurious and uninteresting findings—pattern glut. Pattern glut is the product of data 

dredging,” a derogatory term used to conjure up images of junk from a polluted riverbed 

(Armitage 1971). While some uninteresting results are inevitable in all data mining 

projects, too many can make their evaluation cumbersome and unmanageable. The 

resulting problem, too many patterns, is hardly better than the original problem, too much 

data.

Well-planned data mining projects, however, successfully deal with pattern glut 

and yield a manageable number of results that can be reviewed in a timely and efficient 

manner. Therefore, a difference between data dredging and data mining is that data 

dredging produces too many uninteresting patterns, i.e., pattern glut, whereas data mining 

does not. For this reason, data mining is not a canned process that can be successfully 

applied to any database; it is an iterative and interactive process whose success depends 

on careful planning and refinement for its success.

In the remainder of this chapter, we outline the motivation of our research, define 

data mining, describe the data mining process, and give an overview of the Data Mining 

Surveillance System.

1.1 Motivation

Data mining, as a field, has been powered by the desire to find meaningful, new 

patterns in real-world databases. For example, retail data are mined to determine sales 

and inventory patterns (Anand and Kahn 1992); credit card data are mined for suspect 

fraudulent activity (Blanchard 1994); financial market data are mined to aid in the 

development of stock selection strategies (Hall, Mani, and Barr 1996; John 1997);
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molecular sequence data are mined for structural motifs (Holtacker, Huynen, Stadler, and 

Stolorz 1996); satellite image data are mined for earthquake patterns (Shek, Muntz. 

Mesrobian, and Ng 1996); and even basketball statistics are mined to help identify key 

match-ups in upcoming games (IBM Advanced Scout 1995).

In health care, however, there have been relatively few data mining ventures. 

Matheus, Piatetsky-Shapiro and McNeill ( 1995) have developed the KEFIR system to 

identify possible cost saving measures based on deviations in pre-selected health 

outcomes, and several groups have used statistical and machine learning techniques to 

generate diagnostic and prognostic rules from clinical data sets (Prather et al. 1997, Tsai 

et al. 1997; Tsumoto and Tanaka. 1996).

In this dissertation, we address the use of data mining in epidemiologic 

surveillance. In particular, we focus on the use of data mining in infectious disease 

surveillance and antibiotic resistance surveillance both at the hospital and public health 

levels. As in many data mining research projects, our work on these specific applications 

has fueled the development of more generally applicable ideas, strategies, and methods.

This document describes our research, including the development of the Data 

Mining Surveillance System, DMSS. In the next section, we introduce the subject of 

epidemiologic surveillance to put in context the motivation behind much of our work.

1.2 Epidemiologic Surveillance

Epidemiology is the study of the occurrence of disease or other health outcomes 

(Rothman and Greenland 1997). Epidemiologic surveillance is the process by which 

changes in the occurrence of health outcomes are detected. Although some prefer the 
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phrase “public health surveillance” to “epidemiologic surveillance” (Thacker 1994), we 

prefer the latter because surveillance within a hospital, while epidemiologic, is generally 

not considered public health. We also realize that epidemiologic surveillance entails 

much more than data analysis (Teutsch and Churchill 1994). However, for the purposes 

of this document, “epidemiologic surveillance" refers only to the data analysis 

component of epidemiologic surveillance unless otherwise noted.

Like traditional data analysis, traditional epidemiologic surveillance is largely 

based on confirmatory, hypothesis-driven methods. Consequently, the systematic 

discovery of unknown patterns requires extensive time and resources, both of which few 

epidemiologists have.

Of course, surprise outbreaks of disease are sometimes recognized. Usually, 

however, these outbreaks are brought to the attention of epidemiologists by astute 

citizens and local physicians, not by systematic surveillance efforts (Buehler 1997, 

Kheifets 1993; Smith and Neutre 1993). In fact, state health departments spend a 

considerable amount of time investigating candidate disease outbreaks reported by 

concerned citizens (Smith and Neutre 1993).

Active surveillance involves systematically monitoring disease incidence data for 

interesting patterns. Typically, active surveillance is reserved for identifying specific 

pre-defined incidence patterns of known diseases. In this kind of analysis, which we call 

traditional active surveillance, the epidemiologist explicitly defines a case or outcome, 

then monitors a surveillance group for changes in the incidence of that outcome over 

time.
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An outcome is a specific event or health indicator whose incidence is monitored 

within one or more surveillance groups. Outcomes can be complex entities. For example, 

an outcome may be a specific 3-drug resistance pattern in a group of bacterial isolates. If 

each member of the group is tested against 15 antibiotics, then there are 455 different 3­

drug combinations, or outcomes, to which a group member may show resistance.

A surveillance group is a population that is monitored for changes in the 

incidence of an outcome. For example, a surveillance group may be a demographic 

population such as 18 to 34 year-old, Asian men in San Francisco, or it may be a 

population of medical cases such as bacterial isolates from ventilated patients in the 

surgical intensive care unit. Since surveillance groups can be described by a number of 

attributes (e.g. residence, gender, race, ethnicity, age, occupation, education, and health 

status for human populations), some of which may themselves contain a number of sub­

attributes, all surveillance groups for a given outcome occupy a high-dimensional group 

space.

In traditional active surveillance efforts, epidemiologists simply do not have the 

time or the resources to search for interesting changes in the incidence of complex 

outcomes in high-dimensional groups. Often, only simple outcomes over a few low­

dimensional groups can be considered. For example, the incidence of a specific disease 

may be monitored nationally, or by race, or a combination of two attributes such as 

region and age group, but rarely, however, would the disease be monitored in groups that 

are described by more than two or three variables. As a result, we claim that important, 

subtle, and high-dimensional patterns are often missed. Enter data mining.
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The need for data mining in public health surveillance has not gone unnoticed. In 

a chapter on computerized public health surveillance systems in Principles and Practice 

of Public Health Surveillance, Dean, Fagan, and Panter-Connah ( 1994) describe an ideal 

public health surveillance system. In doing so, they give a hypothetical example in which 

the user, an epidemiologist, uses the ideal system to compare data recently collected with 

similar data collected in the past. Specifying few constraints, the user asks the system to 

produce a series of maps for all conditions with unusual patterns. Identifying those 

patterns that are most interesting, the user then employs traditional epidemiologic 

methods to investigate them further. The system merely suggests potentially interesting 

patterns. Whether or not they are acted on depends on the judgement of the user.

In addition to the political and administrative barriers that the authors identify as 

obstacles to practically realizing such a system, they correctly identify the following 

challenge: “Several kinds of mental shifts, as well as corresponding technical 

developments, will be necessary before a computerized system can be used to examine 

automatically a ‘time slice’ of disease and injury records that originate in clinics and 

hospitals” (p. 203). It is this challenge that we address.

1.3 Data Mining

Extensive reviews of data mining have been given by Fayyad, Pietetsky-Shapiro 

and Smyth (1996) and John (1997). In this section, we define some basic terms and 

briefly review the data mining process.

John (1997) provides a thorough, well-written, and timely overview of data 

mining. Sharing his sentiment, we consider “data mining” synonymous with “knowledge 
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discovery in databases,” and use “data mining” since it is the simpler of the two phrases 

and it is the more recognized outside of academic circles.

Fayyad et al. ( 1996) defines data mining as the non-trivial process of identifying 

valid, novel, potentially useful, and ultimately understandable patterns in data, and John 

(1997) defines it as the process of discovering advantageous patterns in data. Since the 

use of automated methods distinguishes data mining from more traditional methods of 

data analysis, we define data mining as the partially automated process of finding 

potentially interesting, previously unknown patterns in data.

A pattern, as defined by John (1997), is a parsimonious statement about a 

probability distribution. While we generally agree with this definition, a pattern may not 

always have a probabilistic interpretation ( Section 4.1.1). For this reason, we define 

pattern as a description of a configuration of elements that is simpler than the 

enumeration of those elements. Patterns are useful in constructing causal models and, 

therefore, play an important role in knowledge discovery.

1.3.1 The Data Mining Process

Data mining is an iterative, interactive, and involved process. While the exact 

structure of the process differs from one description to another, it consists of the 

following basic steps (John 1997):

1. Understand the problem.

2. Extract the data.

3. Clean / engineer the data.

4. Engineer a data mining algorithm.
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5. Search for potentially interesting patterns by running the data mining algorithm.

6. Evaluate the patterns.

Importantly, results from each step of the process are subject to critical review by 

domain experts. This review often yields additional insight into the problem that can be 

incorporated into the data mining process. Consequently, iterating through the data 

mining process is usually required to make the entire process more efficient and effective. 

Due to this user-interaction, data mining is only a partially automated process. 

Furthermore, it seems unlikely that it will ever become fully automated: after all. whether 

or not a pattern is interesting is ultimately determined by the user.

1.4 The Data Mining Surveillance System (DMSS)

The primary goal of our research is to use data mining techniques to identify new, 

unexpected, and interesting temporal patterns in epidemiologic surveillance data. To this 

end, we constructed the Data Mining Surveillance System (DMSS). Unlike traditional 

surveillance systems, DMSS is not constrained to looking for changes in the incidence of 

simple outcomes in low-dimensional, pre-specified groups.

For the past 3 years, DMSS has been the test bed for many ideas, some of which 

are described in this document. Before launching into these ideas, however, we need to 

define several terms, describe how association rules can be used in epidemiologic 

surveillance, and introduce the UAB data set.
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1.4.1 Definitions

An itemset is a subset of the set of all items. The support of an itemset x, sup(.r), is 

the number of records in a data set that contain x. If sup(x ) T, where T is the frequent 

set support threshold (FSST), then x is a frequent set. The itemset that contains no items, 

EmptySet, has support N, the number of records in the data set.

The following example illustrates the concept offrequent set. In a super market 

database, where each record contains the names of the items in a basket at the checkout, 

the itemset {bread, milk, cheese} is likely to be to contained in many records from a 

single day because bread, milk, and cheese are frequently purchased together. If {bread, 

milk, cheese} is a frequent set, then so too are {bread}, {milk}, {cheese}, {bread, milk/, 

{milk, cheese}, and {bread, cheese} since the support of each of these itemsets must be at 

least that of the frequent set {bread, milk, cheese}.

_An association rule, A => B. where A and B are frequent sets and .4n 5 = 0. is a 

statement about how often the items of B are found with the items of A. The incidence 

proportion of A => B, denoted ip(zl 5 ), is equal to sup(.-l u 5)/sup(.-l). The incidence 

proportion is the numerator and the denominator, whereas the confidence is their 

quotient. For example, in the supermarket setting,

ip( {milk, cheese}=> {bread}) = sup({milk, cheese, bread})/sup({milk, cheese}) 

is the incidence of bread in baskets with milk and cheese. The incidence proportion of 

EmptySet => {Bread} is sup( {bread} )/N, the incidence of bread in all baskets.

The precondition support of association rule A => B is supM). Association rules 

that have relatively high precondition support are often more meaningful than rules with 

relatively low precondition support because the former are statements about the incidence 
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of B in non-trivial groups A. The precondition support is often referred to as denominator 

data in epidemiology.

Traditional data mining applications based on association rules focus on 

discovering high-confidence association rules because these rules describe high- 

probability events (Piatetsky-Shapiro 1991). For example, a high-confidence rule that 

says that young men who purchase items a, b, and c also purchase item d 65% of the 

time, could be used in designing a marketing strategy which places all 4 items 

contiguously on a shelf. Such a strategy may increase sales of one or more of the items.

While high-confidence rules are useful in epidemiologic surveillance, low- 

probability rules are often more useful. To understand why this is the case, we first need 

to describe how association rules can be used in epidemiologic surveillance.

1.4.2 Association Rules in Epidemiologic Surveillance

Association rules are well suited for epidemiologic surveillance because they 

naturally describe the incidence of an outcome within a group. Let us look at a couple of 

examples (Table 1). Rule 1 of Table 1 describes the incidence of Streptococcus 

pneumoniae infection in HIV-positive, white, 18-24 year-old, California women. Rule 2 

of Table 1 describes the incidence of piperacillin and ticarcillin resistance in nosocomial 

(hospital acquired), non-Pseudomonas gram-negative rod (NPGNR) isolates from the 

surgical intensive care unit (SICU). In general, the left-hand side (LHS) of an association 

rule is the surveillance group and the right-hand side (RHS) of an association rule is the 

outcome.
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Table 1 : Example Association Rules from Epidemiologic Surveillance.

LHS RHS

1. {HIV+, white, 18-24, California, female} => {5. pneumoniae^

2. ! nosocomial, NP_GNR, SICU} {R-piperacillin, R~ticarcillin}

The incidence proportion of an association rule A => B in data partition p; 

describes the incidence of the outcome, B, in the group, A, during t;. For example, in a 

data set that contains records for hospital bacterial infections from the month January, let 

us say 24 describe nosocomial, NP_GNR from the SICU. If 4 of the 24 describe isolates 

that are resistant to piperacillin and ticarcillin, then the incidence proportion of 

association rule 2 of Table 1 for January is 4/24.

Since an incidence proportion of an association rule A B in partition p, 

describes the incidence of B in A in t., a series of incidence proportions for A B from 

partitions p,. p?, ..., p„ describes the incidence of the outcome B in group A from n 

through tn. Therefore, by analyzing the time-series of incidence proportions of an 

association rule A => B, it should be possible to detect important shifts or trends in the 

incidence of B in A over time. In this way. epidemiologic surveillance of B in A is 

possible.

The reason why low-confidence association rules are often more interesting than 

high-confidence ones is simple: if B occurs every time A occurs, and A occurs frequently, 

then the rule A => B is probably known or trivial and, therefore, uninteresting. However, 

if B occurs infrequently with AanàA occurs frequently, then A => B is a low-confidence 
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rule and changes in ip(J => S) are likely to go undetected by traditional methods. This is 

especially true if either the group or the outcome is complex.

1.4.3 The UAB Data Set

To facilitate an overview of DMSS and descriptions of ideas in upcoming 

chapters, we find it helpful to refer to the infection control / antibiotic resistance data set 

from the University of Alabama at Birmingham (UAB) Hospital. For short, we call this 

±e UAB data set. We describe the UAB data set here, and give a full description of its 

analysis in Chapter 5.

1.4.3.1 Data Description and Extraction

Fifteen months (September 1996 to November 1997) of bacterial antimicrobial 

susceptibility results and related patient information were extracted from the UAB 

clinical laboratory information system. Each record describes a single bacterial isolate 

and contains items for the following attributes: organism name, gram stain/morphology, 

date collected, nosocomial status, source of isolate (e.g., sputum, blood, urine), location 

of patient in hospital (e.g., Surgical Intensive Care Unit, Medical Intensive Care Unit), 

and test results Resistant (R~), Intermediate resistance (I ), or Susceptible (S~), 

according to NCCLS criteria (NCCLS 1997), for each member of a set of antimicrobials.

The gram stain/morphology attribute is “GPC” for gram-positive cocci, ‘ NP- 

_GNR” for non-Pseudomonas gram-negative rod, and empty for Pseudomonas. The 

nosocomial status attribute is either “nosocomial” or “community,” depending on when 

the sample was obtained from the patient. If an isolate is from a sample collected on or 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

after the patient’s third day in the hospital, then the isolate was likely acquired in the 

hospital. Such isolates are classified as “nosocomial.” If the isolate is from a sample 

obtained on the first or second day of the patient’s stay, the isolate is classified as 

“community.”

To demonstrate the ability of DMSS to identify outbreaks of resistant organisms, 

we seeded the data set with records describing a nosocomial outbreak of highly resistant 

Acinetobacter baumanii that occurred in the UAB hospital in 1994. This was done by 

removing all nosocomial Acinetobacter baumanii records from the corresponding months 

of the 1997 data set, and replacing them with the outbreak Acinetobacter baumanii 

records from the same months in 1994.

1.4.3.2 Data Cleaning and Partitioning

Duplicate records were removed so that the data set contains no more than one 

record per patient per organism per month. Additionally, for each record, results (S, I, R.) 

for antimicrobials to which the organism historically tests resistant ( > 50%) are removed. 

Consequently, of R/S/I-Antimicrobial items that remain, most are of the S-Antimicrobial 

type. Then S~Antimicrobial and I-Antimicrobial items are removed from each record so 

that only R-Antimicrobial items remain. These steps significantly reduce the number of 

frequent items in the data set. By reducing the number of frequent items, we reduce the 

computational burden of generating frequent sets.

Finally, all records are split into disjoint monthly partitions and the “date 

collected” attribute is removed from each.
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nosocomial, Klebsiella pneumoniae, NP-GNR, SICU, urine, R~piperacillin. 

non-nosocomial, Morganella morganii, NP-GNR, VNAP, urine, R~cefuroxime. 

nosocomial, Enterobacter cloacae, NP-GNR, MICU, tracheal aspirate, R~ceftazidime, 

R~ceftriaxone, R-piperacillin.

Figure 1 : Example records from a monthly partition of the UAB data set.

1.4.4 DMSS Data Considerations

DMSS requires that each partition be a text file composed of records where each 

record is a set of items. Records may contain different numbers of items, but each item 

must be categorical.

Items may be from a taxonomy, but DMSS currently has no mechanism for 

explicitly using a taxonomy. Instead, relevant portions of the taxonomy should be 

expanded in-line. For example, in the UAB data set, NP_GNR is a class of bacteria that 

contains the items Klebsiella pneumoniae, Morganella morganii, Enterobacter cloacae, 

and others.

To expand the class NP_GNR in-line, the item “NP_GNR” was inserted into all 

records that contain a member of the class NP_GNR. The resulting records are like those 

in Figure 1. Likewise, for records that contain members of the class GPC, the item 

“GPC” is inserted. Of course, portions of the taxonomy to be expanded must be specified 

by a domain expert. This is yet another example of data mining’s dependence on the 

user.

Expanding parts of a taxonomy in-line leads to redundant frequent sets (Section 

2.2). For example, if every record that contains a member of the class NP_GNR is
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GPCNP-GNR

Bacteria

Pseudom

{Klebsiella pneumoniae, 
Morganella morganii, 
Enterobacter cloacae,...}

Figure 2: A partial taxonomy on bacteria.

expanded to include the item “NP-GNR,” then pairs of frequent sets are generated such 

that for each pair, both frequent sets have the same support and differ by one item, 

namely, “NP-GNR.” For example, if {Enterobacter cloacae, SICU, tracheal aspirate} is 

a frequent set with support 5, then {Enterobacter cloacae, NP_GNR, SICU, tracheal 

aspirate} is also a frequent set with support 5 since “NP_GNR” always appears with 

Enterobacter cloacae. Redundancies from in-line taxonomy expansions such as this are 

trivial and can be eliminated by not counting an itemset that contains both an item and its 

ancestor (Srikant, Vu, and Agrawal 1997). The clone algorithm presented in Chapter 2 

handles these types of taxonomy redundancies as a simple cases of clonal behavior.

1.4.5 An Overview of DMSS

A general diagram of DMSS is given in Figure 3. As a data mining system, 

DMSS embodies many of the steps of the data mining process. Data analysis starts by 

extracting relevant data from a database, cleaning it, modifying it, and dividing it into 

disjoint partitions. Partitions are then processed one at a time by the procedure outlined 

in Figure 4. Usually, a search for potentially interesting patterns is conducted after ea
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1 ) Use the clone algorithm / *Chapter 2*/ to generate the set FS of all frequent sets in pi. 

2) Use FS to generate all association rules that have minimum precondition support.

/* Section 3.1 */

3) For each r e AR:
4) if (r passes a user-defined set of association rule templates) /* Section 3.2 */ 

5) /* Update the history with r. Section 3.3 */
6) If r is new to the history, add r to the history and query the database to get the

incidence proportions of r for prior partitions. Update the history with these 

incidence proportions.
7) Update the history with the incidence proportion of r in pi. 

Figure 4: Procedure for processing a data partition.

partition is processed. This simulates the manner in which patterns are generated in real­

time surveillance studies where data is collected continuously; as soon as the most recent 

partition is complete, it is processed and a search for patterns is conducted (Figure 3).

DMSS searches for patterns by looking for changes in the incidence proportion 

time-series of each association rule in the history. Significant changes in these time­

series are called alerts (Section 4.2). Due to the hierarchical and sometimes redundant 

nature of alerts, DMSS uses alerts to construct events (Section 4.6.2). Events, in turn, are 

presented to the user as potentially interesting patterns. The process of constructing 

events from alerts reduces the number of patterns the user is required to evaluate, thereby 

reducing pattern glut.
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1.5 Related Work

DMSS is an example of the active data mining paradigm presented by Agrawal 

and Psaila (1995). It differs from this paradigm, however, in several important ways. 

First, it tracks low-confidence association rules instead of high-confidence rules. This 

introduced new challenges. First, there are many more low-support frequent sets than 

there are high-support ones. This led us to identifying clonal frequent sets along with a 

new frequent set discovery algorithm that recognizes them (Chapter 2). Second, there are 

many more low-confidence association rules than there are high-confidence ones. In 

order to deal with all of these rules, we use association rule templates (Section 3.2) to 

classify certain “flavors” of them as interesting and other “flavors” as uninteresting. Rule 

templates are indispensable in reducing pattern glut. We also employ windowing 

schedules and statistically based methods (Chapter 4) instead of shape queries for 

detecting patterns, and develop the concept of event clusters (Section 4.6) to reduce the 

number of redundant patterns presented to the user.

As far as we know, DMSS is the only example of an active data mining system 

other than the one briefly described in Agrawal and Psaila (1995). Even there, only an 

incomplete description of a system was provided and no experimental results were given.

Frequent set discovery algorithms are usually discussed in the context of 

generating association rules. Association rules were introduced with frequent sets by 

Agrawal and Swami (Agrawal, Imielinski, and Swami 1993). Since then, frequent set 

discovery algorithms have been the subjects of many papers in the data mining literature 

including Agrawal and Srikant (1994), Savasare, Omiecinski and Navathe (1995), and 

Brin, Motwani, Ullman and Tsur (1997). The clone algorithm, presented in Chapter 2, is 
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a fundamentally new frequent set discovery algorithm that was developed from our 

experiences with antibiotic resistance data.

Association rule templates were introduced by Klemettinen et al. ( 1994) as a way 

to allow the user to describe forms of potentially interesting and uninteresting rules. Rule 

templates are extremely useful in DMSS for reducing the number of rules stored in the 

history and for reducing pattern glut (Section 3.2). Without them, data mining in 

epidemiologic surveillance is extremely cumbersome and practically impossible.

In epidemiology, a number of statistical strategies have been used for detecting 

disease clusters and outbreaks in surveillance data. These include the scan statistic (Naus 

1966; Wallenstein 1980), the MAX statistic (Ederer, Meyers, and Mantel 1964; Crimson 

1993), cumulative sums (Hutwagner et al. 1997) and log-linear regression (Farrington, 

Andrews, and Beale 1996). The MAX statistic was considered for use in DMSS, but was 

eventually excluded in favor of tests of two-proportions (Section 4.5).

In data mining, several strategies have been proposed for detecting deviations in 

time-series data. The shape queries of Agrawal and Psaila (1995) and the dynamic 

programming strategies developed by Berndt and Clifford (1996) are two examples. 

These methods do not have current implications for DMSS, but are included here for 

completeness.

1.6 Preview of Upcoming Chapters

In the remainder of the dissertation, we describe in detail specific components of 

DMSS and present experimental results obtained by using DMSS on real epidemiologic 
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data sets. Throughout, contributions that have broad implications for data mining and 

epidemiologic surveillance are emphasized.

Chapter 2 contains a description of the clone algorithm for discovering frequent 

sets and includes results that illustrate its advantage over other frequent set discovery 

algorithms for certain types of data.

Chapter 3 describes processes for generating association rules from frequent sets 

and for updating the history. This includes a description of association rule templates and 

their role in DMSS.

Chapter 4 contains a discussion of the role of statistical significance testing and 

multiple comparisons in data mining, and a description of how DMSS identifies 

potentially interesting patterns in time-series data. Events and event clusters are also 

described here.

Chapter 5 presents the complete analysis of the UAB data and the CDC data sets, 

and Chapter 6 contains final comments and possibilities for future research.
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CHAPTER 2

CLONAL FREQUENT SETS AND THE CLONE ALGORITHM

Clonal frequent sets appear in real-world surveillance data and can severely tax 

known frequent set discovery algorithms. In this chapter, we define clonal frequent sets, 

describe real situations in which they arise, present a new frequent set algorithm that 

recognizes them, and give experimental results of our new algorithm on real data from a 

medical surveillance application.

2.1 Introduction

Frequent set discovery algorithms are extensively discussed in the data mining 

literature (Agrawal and Srikant 1994; Brin et at 1997; Savasare et at 1995). The 

problem of discovering frequent sets from data, first defined by Agrawal et ah (1993), is 

usually framed in the context of generating association rules from market-basket data. 

Market-basket data analysis, however, is not the only use for association rules (Brin et al 

1997). We employ association rules in analyzing infection control surveillance data 

(Brossette et at 1998) which has different characteristics than market-basket data. It is in 

this surveillance context that clonal frequent sets arise and the inefficiency of traditional 

frequent set algorithms to handle them becomes apparent.

Clonal frequent sets get their name from our experience with records describing 

clonal bacterial isolates in infection control surveillance data. In this data, each record

22
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describes a single bacterial isolate from a patient and includes the name of the organism 

isolated along with the names of the antibiotics that organism tested resistant to in the 

laboratory. If one bacterial clone is responsible for several isolates, a cluster, each isolate 

in the cluster will test resistant to the same antibiotics, and each corresponding record 

will contain identical lists of antibiotic names. If such a clonal cluster is resistant to 

many antibiotics, an occurrence that is unfortunately becoming more common, then each 

record in the cluster will contain the same long list of antibiotic names. This antibiotic 

name list alone can be 10 to 20 items long. If the clonal cluster is limited to a specific 

location or patient population, the number of identical items in the corresponding records 

grows even further.

Here is a short illustrative example. The data set shown in Figure 5 contains only 

4 records. Records 2 and 3 describe a clonal cluster of Organism 1 in Location2 that is

1) Orgl, Loci, Antbl, Antb3.
2) Orgl, Loc2, Antb 1, Antb2, ..., Antb 12.
3) Orgl, Loc2, Antbl, Antb2, ..., Antb 12.
4) Org2, Loc2, Antb3, Antb4._____________________________

Figure 5: Example clonal data set.

resistant to antibiotics one through twelve. Record 1 describes an isolate of Organism 1 

that is not part of the clonal cluster just described. Record 4 describes an isolate of 

Organism2. Now we want to generate frequent sets from this data. With an absolute 

frequent set support threshold of 2, there will be many redundant frequent sets generated. 

For example, the frequent sets {Orgl, Loc2} and {Orgl, Loc2, Antb2} are redundant 

because all records that contain Orgl and Loc2 also contain Antb2. In fact, with a 
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traditional frequent set algorithm about 2" redundant frequent sets and only 4 non- 

redundant frequent sets will be generated from this data. Those 4 non-redundant frequent 

sets are shown in Table 2. Of them, frequent sets 2, 3 and 4 are clonal frequent sets.

The key to not generating redundant frequent sets is to be able to recognize clonal 

frequent sets during processing. Our new frequent set algorithm does this and, in the case 

where significant clonal activity exists in a data set, offers significant improvement over 

traditional algorithms.

Table 2: Non-Redundant Frequent Sets for the Data Set in Figure 5.

frequent set: support:

1. {Antb3} 4
2. {Loc2, Antb3, Antb4} 3
3. {Orgl, Antbl, Antb3} 3
4. {Orgl, Loc2, AntbI, Antb2,. ., Antbl2} 2

2.2 Definitions

Given the set of all items Z, an itemset is a subset of 1, and a k-itemset is an itemset 

that contains exactly k items. A record t, itself a subset of Z, is said to contain an itemset 

x if x is a subset of t. The support of itemset x, sup(x), is the number of records that 

contain x, or the fraction of records that contain x. If sup(x) 5 > T, where T is the 

frequent set support threshold, then x is a frequent set.

Let x be an itemset and n,..., rn be the records containingx. The closure ofx, 

closure(x), is the set of all items appearing in each of the records n,..., rn. Alternatively, 

closure(x) is the intersection of records n,..., rn. For instance, in the example data set in 
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Figure 5, closure( {Loc2, Antb4}) is {Loc2, Antb3, Antb4} since the intersection of 

records 2, 3, and 4 is exactly {Loc2, Antb3, Antb4}.

We say that two itemsets are equivalent if they have the same closure. Any non­

trivial equivalence class, which is an equivalence class that contains more than one 

itemset, is called a clone. A clonal itemset is an itemset that belongs to a clone. Each 

clone contains a maximal itemset, namely the union of all itemsets in the clone (which is 

the same as the closure of any itemset in the clone). This maximal itemset is called max­

clone. If a non-trivial equivalence class F contains a k-item max-clone and ay-item 

itemset(s) but not an z-item itemset, i < j. then we call F a (j.k)-clone.

For each equivalence class, all itemsets in the class have the same support. An 

equivalence class infrequent if any itemset in the class is frequent. Our intention is to 

generate for each frequent equivalence class, a representative for that class. The intention 

of other frequent set algorithms is to generate every member of all frequent equivalence 

classes. For each non-trivial frequent equivalence class, i.e., clone, we want to generate 

its max-clone as a representative. We consider all other frequent sets in the clone 

redundant.

A collection S of itemsets covers all frequent k-itemsets if for each frequent k- 

itemset 5 3s’e5 such that s ç s’and closure(s) = closure^’). A k-cover is a collection 

of frequent sets that covers all k-item frequent sets.

2.3 The Clone Algorithm

The structure of the clone algorithm (Figure 6) is similar to that of Apriori 

(Agrawal and Srikant 1994) and other Apriori-like frequent set algorithms. The clone
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1) k = 1.
2) .Y, = all frequent 1-itemsets.
3) Si = 0.
4) do
5) k = k + 1.
6) Using /Vk.i, generate k-item frequent sets M.
7) Using 2Vk.i and Sk.i, generate special frequent sets Sk'1'.
8) Using Sk-i, generate special frequent sets Sk 2\ U) |2)
9) Construct bipartite graph G on vertex set (AV i uSk-i) u (A^ u Sk u Sk" ).
10) Construct Skl3) from the nontrivial connected components of G.
11 ) Modify Ak by removing from it frequent sets belonging to nontrivial connected 

components of G.
12) Sk = Sk"' u Sk'2) u Sk(3) uSk-i.
13) while (A4 u Sk"3 u Sk<2) * 0 )
14) Answer = Uk (A4 uSk).

Algorithm for step 6: Using N^, generate k-item frequent sets Me­
I) Ni=0.
2) For each s e Vk-b
3) For each t e .Vk-i having the same (k-2)-item prefix as si
4) If sut is frequent, adjoin it to AV

Algorithm for step 7: Using AVi and Sk-i, generate special frequent sets Sk .
1) Sk"’=0.
2) For each 5 e Sk-b
3) For each r e Ak-i such that |r — s| = 1:
4) If sut is frequent, adjoin it to Sk '.

Step 8 is similar to steps 6 and 7: for each pair of special frequent sets s and t m Sk.i 
sut is frequent, adjoin it to Sk'"_________________________________________

if

Figure 6: The clone algorithm.

algorithm is different from existing algorithms, however, because, instead of generating 

all k-item frequent sets from (k-l)-item frequent sets, the clone algorithm generates a 

cover for k-item frequent sets from a cover of (k-l)-item frequent sets. Specifically, the 

k-cover consists of the clones that have already been discovered (called special frequent 

sets) together with k-item frequent sets, called normal frequent sets, that are not covered 
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by the clones. In Figure 6, the special frequent sets generated in iteration k are denoted 

St, and the normal frequent sets generated in iteration k are denoted W*.

In steps 9-11 of the algorithm, clones are identified by the analysis of a bipartite 

graph on the cover of all (k-l)-item frequent sets and the cover of k-item frequent sets.

Each frequent set, no matter whether generated in steps 6 or 7 or 8, is generated 

from a pair of frequent sets from and Su. These two members are called parents of 

the newly generated frequent set.

In graph G, frequent sets s e Vu u Su and t e Vk u ' u Sk are 

joined by an edge iff:

I. s is a parent of t and,

2. s and t have the same support.

Note that since every item in s is also an item in t, s and t have the same support 

iff closure(s) = closure^. A component is called trivial if it contains a single member of 

,Vk uS/') u Skt2) . even if it contains several members of Au u Su- It is clear that all 

frequent sets of a component are equivalent. For each nontrivial component, the union of 

the itemsets is computed; this is a special frequent set and is adjoined to Skt3) 

Correspondingly, each frequent set in the nontrivial component is removed from

We have not been able to demonstrate the necessity of step 8 of the algorithm 

with either real or concocted data, and suspect that it is not necessary. However, since 

we have not been able to prove this conjecture, it remains.

The idea behind the clone algorithm is to recognize clonal frequent sets as early as 

possible in frequent set generation so that most of their sub-clones do not have to be 

generated. Therefore, Wk, k> 1, may be substantially smaller when generated by clone 
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algorithm than it is when generated by traditional frequent set algorithms. In the next 

section, we illustrate the efficiency of the algorithm on real data sets.

2.4 Experimental Results

In this section we present experimental results from applying the clone algorithm 

and our Apriori-like (Alike) algorithm to hospital infection control surveillance data. 

This data describes bacterial isolates collected from patients. Each record includes the 

location of the patient, the name of the organism isolated, the source of the isolate, and 

the names of the antibiotics that the organism tested resistant to in the laboratory. The 

number of items per record, therefore, depends on the number of antibiotics to which the 

organism was resistant. Records that describe highly resistant organisms can contain 10­

20 antibiotic names.

Results from experiments with five data sets are given in Table 3. All 

experiments were conducted on an AMD K6-233 with 128MB RAM running Linux 

2.0.30. In all experiments, an absolute frequent set support threshold of 3 was used.

Each of the data sets contains substantial clonal behavior as illustrated by the 

difference between the number of frequent sets generated by Alike and the size of the 

cover generated by the clone algorithm. In the experiments, Alike generated 15 to 100 

times as many frequent sets as the clone algorithm, and was 3 times faster to twice as 

slow as the clone algorithm.

The largest differences in the performance of the two algorithms can be seen in 

the results from data sets 3, 4, and 5. Each of these data sets contain records describing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

Table 3: Results from Experiments with the Clone Algorithm.

Apriori-Iike (Alike) The clone algorithm

data set # frequent 

sets

time

(sec)

# frequent 

sets in cover

time

(sec)

1 834 32,813 48 2,215 122

2 742 20,548 31 1,829 78

3 788 >290,000 >150 2,029 103

4 772 90,548 51 1,947 74

5 
i

728 279,271 117 1,942 65

clonal outbreaks of a highly resistant organism. For example, data set 3 contains a 

(2,20)-clone, a (3,18)-clone, and a (4,20)-clone amongst others. For these 3 data sets. 

Alike generated more than 110 times the number of frequent sets than the clone algorithm 

and was more than 30% slower.

In other experiments, we modified the clone algorithm so that small clones, i.e., 

(j,k)-clones where k-j < m, were ignored. The results of these experiments for m = 5, 8 

are given in Table 4.

With m = 5, the modified clone algorithm generated more than 4 times the 

number of frequent sets than the clone algorithm in about two-thirds the time. For m=8, 

the modified clone algorithm generated about nine times the number of frequent sets as 

the clone algorithm in about two-thirds the time. Due to the large differences in the 

number of the frequent sets generated, for these data, the clone algorithm is prefered over 

the modified algorithm.

On data that contains no clones, the clone algorithm runs in about the same 

amount of time as Apriori.
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Table 4: Results from Experiments with the Modified Clone Algorithm.

m = 5 m = 8

data set # frequent sets in time # frequent sets in cover time (sec)

cover (sec)

1 10.786 82 22,769 84

2 6,312 47 13,756 1 44

3 13.326 68 22,190
—----------------

4 7,020 47 16,387 60
---------------------

5 7,175 34 12,575 39

2.5 Discussion

The clone algorithm is more efficient than Apriori on data that contains 

substantial clonal behavior, i.e., on data that contains clones of many frequent sets. In 

this case, the clone algorithm avoids generating many redundant frequent sets that 

Apriori is forced to generate. When the data contains clones whose max-clones contain 

only a few more items than the smallest clonal frequent set(s) in the clone, the space 

savings offered by the clone algorithm over Apriori will probably be outweighed by the 

cost incurred by the clone algorithm in crossing Aw with Sk-i and 5k-i and Sw- The 

exact number and/or size of clones that are necessary for the clone algorithm to 

outperform Apriori in time is not known. This is an area for further research. We see 

from the results of experiments on real data, however, that the clone algorithm can be 

faster than Apriori in cases where Apriori generated about 100 times as many frequent 

sets.

One significant potential improvement to the clone algorithm would be to have it 

estimate after the graph analysis step, the time and space savings of constructing each 
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clonal frequent set in S^i} that has connected frequent sets in AV The alternative to 

constructing the frequent set is to not construct it and not remove the components from 

;Vk. This estimate may then be used to help ensure that if an frequent set is 

generated, the time and/or space savings would justify the effort. Results from 

experiments with the modified clone algorithm (Table 4) were given to provide some 

insight into this problem. We see that ignoring small clones, in the case of our data, is 

not very useful. It will be interesting to see if this result applies to other data.

It should be noted that clonal frequent sets are unlikely to occur in market-basket 

data because their presence implies the existence of association rules with confidence 

one. In market-basket data, such rules are extremely rare or non-existent. However, 

clonal frequent sets appear regularly in infection control surveillance data, and we 

suspect they also appear in other surveillance contexts.

2.6 Conclusion

We have defined clones and clonal sets and have introduced a new frequent set 

discovery algorithm, the clone algorithm, that can offer substantial time and space 

savings over traditional frequent set algorithms when applied to data with clonal 

behavior.
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CHAPTER 3

ASSOCIATION RULES AND THE HISTORY

Association rules were introduced by Agrawal, Imielinski, and Swami (1993), 

extended by Agrawal at ah (1996), and briefly discussed in Section 1.4.1. An association 

rule is an expression of the form A => B, where A and B are frequent sets and Ary B = 0. 

The association rule X=> Y is a statement about how often the items of Y are found with 

the items of X.

Since generating association rules from frequent sets is less costly than generating 

frequent sets themselves, efficient frequent set discovery algorithms are necessary for 

efficient association rule generation. In Chapter 2, we described the clone algorithm for 

discovering frequent sets and showed that it is more efficient than other frequent set 

algorithms for certain types of data.

In this chapter, we review a basic algorithm for generating association rules from 

frequent sets, and describe a modified version of the algorithm that generates only those 

with high precondition support. Then we define association rule templates, describe their 

role in DMSS, and show how they are essential in decreasing pattern glut. In the last part 

of the chapter, we describe the history and how it is maintained.

3.1 Generating Association Rules

The association rule generation algorithm described by Agrawal et ah (1996) is 

shown in Figure 7. This algorithm generates high-confidence (> minconf) association

32
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1) for each k-item frequent set L - -Jai,.... aid : / L is ordered s.t. a, < a, for all i<j
2) Hi = { L-a^ ah L-a2 => a2, .... £-ak ak} / all rules w/ I item on RHS
3) for (i= 1 to k-1):
4) for each he Hi'.
5) if (ip(A) < minconf}
6) Remove h from Hx
7) Use Hi to generate H-\

8) Answer = Answer u [J H
1=1

Algorithm for step 7:
a) for each heH:
b) for each left, / * h:
c) if (A.RHS and /.RHS share the first i-l items)
d) newRuie.LHS = A.LHS n Z.LHS
e) new Rule. RHS = h. RHS u /.RHS
f) Add newRule to

Figure 7: An algorithm for generating high-confidence association rules.

rules from frequent sets. The algorithm utilizes the fact that if an association rule >a, 

b} {c. d) has high-confidence, then so do the rules {a, b, cj =>{d} and {a. b. d} => ।c. 

In other words, if either {a. b. c} d ) or ;a. b. d}=>{c) is low confidence, then so is {a. 

b} => {c, d} because sup( {a, b, c \ ) < supl ; a. b ; ) and sup( 1 a. b, d} ) < sup( {a. b} ). As 

described in Section 1.4.1, the confidence, or incidence proportion of association rule A 

=> B. is ipf4 => 5) = supM u 5)/sup(.4).

For epidemiologic surveillance, we want to generate rules that have high precondition 

support regardless confidence (Section 1.4.2). To do this, we need to slightly modify 

algorithm in Figure 7. The modified algorithm (Figure 8) uses the fact that if {d}o{a, b, 

c) is low support, then so is {c, d} => {a. b( becausesup({c,d})<sup({d}). In the 

modified algorithm, only lines 2, 5, C, D. and E are different from the algorithm in Figure 

7. DMSS uses the modified algorithm to generate all high support association rules from
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1) for each k-item frequent set £= {a,, ...,ak}: // L is ordered s.t. a; < a, for all i<j
2) = { a,=> L-ai, a? => L-a?,ak => L-ak} // all rules w/1 item on LHS
3) for (i=l to k-1):
4) for each h e
5) if (sup(A.LHS) < minsup)
6) Remove h from Hx
7) Use Hx to generate H+\

t-1
[ ) Answer = Answer u (J Hi

Algorithm for step 7:
a) for each h e //i:
b) for each leH, l*h:
c) if (A.LHS and /.LHS share the first i-1 items)
d) newRule.LHS = A.LHS u /.LHS
e) newRule.RHS = A.RHS n /.RHS
f) Add newRule to H+1

Figure 8: An algorithm for generating high-precondition support association rules.

frequent sets discovered by the clone algorithm. For each k-item frequent set, a 

maximum of 2k+l high-support association rules are possible. With so many high 

support association rules, many are inevitably uninteresting.

3.2 Association Rule Templates

Association rule templates, introduced by Klemettinen et al. (1994), can be used 

to describe “flavors” of interesting and uninteresting rules. As such, they can be used to 

discard inherently uninteresting association rules.

Association rule templates are constructs of the form be, => be2 where bet and be2 

are Boolean expressions over items and attributes. An association rule A => B satisfies 

rule template bei=> be2 if A satisfies bel and B satisfies be 2.
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Two types of association rule templates are used: inclusive templates and 

restrictive templates. Inclusive templates describe types of rules that are tentatively useful 

by specifying necessary group and outcome items. A tentatively useful rule becomes 

useful only if it does not satisfy a restrictive template. Alternati vely, an association rule A

B passes a set of rule templates if A => B satisfies at least one inclusive template in the 

set and does not satisfy any restrictive template in the set.

In DMSS, the user can specify a set of rule templates that contains any number of 

inclusive and restrictive templates. Once a rule passes this set, it is included in the 

history.

Since rule templates contain domain knowledge, they must be handcrafted by a 

domain expert. In general, an expert usually has an idea of some types of rules that are 

interesting, or may know of some types that are never interesting. Even if this is not 

known initially, iterations through the data mining process often provide insight.

We have found the following strategy effective for creating a set of association 

rule templates. First, a trial iteration through the DMSS process is performed using as 

few restrictions as possible on the types of rules generated. Then, the results should be 

carefully reviewed by a domain expert. The results may look ridiculous. Not to worry, 

these are only the first steps. By reviewing them, the expert will begin to recognize 

“flavors” of rules that are useful and others that are not. In the process, he will also 

recognize types of rules that were unanticipated but are quite useful. With each iteration 

through the process, rule templates are created, deleted, and modified. After 5 or 6 

iterations, the results look good; their number is manageable and some are interesting. It 

is then time to run a full analysis.
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An association rule is useful if it describes the incidence of a meaningful outcome 

in a meaningful group. For example in the UAB data set, the rule:

[ nosocomial, E. coli, MICU} => {R~piperacillin} (3.1)

is useful because it describes the incidence of piperacillin resistance in nosocomial. E. 

coli isolates from the MICU. Significant changes in the incidence proponion of (3.1 ) 

over time are interesting to MICU physicians, hospital pharmacists, and infection control 

officers. On the other hand, the rule

{R~piperacillin} => {nosocomial, E. coli, MICU} (32)

describes the proportion of piperacillin resistant isolates that are E. coli from the MICU. 

Since we normally consider piperacillin resistance an outcome, not a group and {E. coli, 

.MICU} a group, not an outcome, (3.2) is awkward and inherently uninteresting; 

therefore, it is not useful.

In general, association rules that have a location item, e.g., MICU, are useful only 

if the location is on the left-hand side of the rule. This condition can be specified by the 

following set of association rule templates:

include: Location* => **

restrict: ** => Location*

where ** is any item and Location* is any item of the Location attribute.

The rule templates used in the analysis of the UAB data set are shown in Figure 9. 

These templates were obtained over 5 or 6 iterations of trial analysis, examination of 

results, and template modification.

Template 1 of Figure 9 specifies that a rule of the form EmptySet => B is 

tentatively useful only if B contains an organism item, gram stain/morphology item, or a
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1 ) include: EmptySet => Organism* v GrMp* v R~*

2) include: Organism* v GrMp* v Location* => Organism* v GrMp* v R~*

3) restrict: R~* => **

4) restrict: *♦ => Source*

5) restrict: NS* v Organism* v GrMp* => NS* v Organism* v GrMp*

6) restrict: -, EmptySet => Location*

7) restrict: —, (Location* v EmptySet) => Organism* v GrMp* v NS* 

8) 8. restrict: Location* =5- (Organism* v GrMp*) a R~*

Figure 9: Association rule templates used in the analysis of the U AB data set. GrMp = 
gram stain/morphology (NP-GNR, GPC). R~ = resistant antibiotic. NS — nosocomial 
status (nosocomial, non-nosocomial).

resistant antibiotic item. Template 2 of Figure 9 says that a rule that contains an 

organism, gram stain/morphology, or location item on the LHS (left-hand side) and an 

organism item, gram stain/morphology item, or a resistant antibiotic item on the RHS is 

also tentatively useful.

Of the tentatively useful rules, i.e., those that satisfy an inclusive template, only 

some are useful - the others are excluded by restrictive templates. For example, template 

3 of Figure 9 excludes all rules with a resistant antibiotic item on the LHS. This makes 

sense because the LHS of a rule is reserved for groups, and resistant antibiotic items are 

components of outcomes. Template 4 of Figure 9 excludes tentatively interesting rules 

that have a source item on the RHS because source outcomes are not useful. However, 

certain outcomes from source-specific groups are useful. For example, a significant 

change in the incidence of cephalothin resistance in nosocomial, NP_GNR, unne isolates 

is interesting. Therefore, we want to include the rule {NP-GNR, urine, nosocomial} => 
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{R~cephalothin}, but we do not want to include the rule {NP-GNR, nosocomial} => 

{R~cephalothin, urine}. Templates 2 and 4 accomplish this. Templates 5 through 8 of 

Figure 9 are more complex. Template 5 excludes tentatively useful rules that have NS, 

organism, or GrMp items on both the RHS and LHS. For example, template 5 excludes 

the rule {P. aeruginosa, NP-GNR} => {community-acquired, R~ticarcillin ( but does not 

exclude the rule {P. aeruginosa, NP-GNR, community-acquired } => {R~ticarcillin}. 

This is desirable because the first rule is awkward; it describes the incidence of non- 

nosocomial, ticarcillin resistance in P. aeruginosa isolates. The second rule is more 

intuitive; it describes the incidence of ticarcillin resistance in community-acquired, P. 

aeruginosa isolates. Likewise, rules like {P. aeruginosa} => {NP-GNR, R~ticarcillm} 

and {NP-GNR} => {P. aeruginosa, R~ticarcillin} are excluded by template 5 because the 

organism item, P. aeruginosa, and the GrMp item, NP-GNR, are on opposite sides of the 

rules. Since every record that contains "P. aeruginosa” also contains “NP-GNR” 

(Section 1.4.4) and the clone algorithm generates max-clones (Section 2.3), every 

frequent set that contains “P. aeruginosa" also contains “NP-GNR.” Therefore, template 

5 is required to exclude nonsense rules such as \P. aeruginosa} => {NP-GNR, 

R~ticarcillin} and uninteresting rules such as {NP-GNR} => {P. aeruginosa, 

R~ticarcillin}. Templates 6 through 8 also exclude tentatively useful association rules by 

specifying combinations of group and outcome items that are inherently uninteresting.

In the analysis of the U AB data set, an average of 36,129 association rules were 

generated for each of the 15 data partitions of which 1,820 passed the rule templates of 

Figure 9. Therefore, about 5% of all rules generated for each data partition made it into 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

the history. If the number of findings is proportional to the number of rules in the history 

(a decent approximation), the rule templates significantly reduce pattern glut.

We end this section with a cautionary note. Specifying rule templates requires 

considerable care; templates that pass too many rules clutter the history and lead to 

pattern glut, while those that exclude too many rules lead to no new findings. Striking a 

balance between these two extremes is important to the success of a DMSS analysis. We 

have found the iterative strategy described above useful in arriving at an appropriate set 

of association rule templates.

3.3 Updating the History

The history H is a database that holds association rules and their incidence 

proportions for different data partitions. Only association rules that pass the rule 

templates are included in the history.

From the current data partition pc, let Rc be the set of high-support association 

rules that pass the user-defined association rule templates. Using Rc, DMSS updates the 

history by the procedure outlined in Figure 10. The incidence proportion of rule r in 

partition p, is denoted ip(r, pj.

The history can be conceptualized as a table that contains a row for each 

association rule and a column for each data partition processed (Table 5). A cell (n.pj) 

contains the incidence proportion of association rule n in partition pj, ip(r, pû-

In step 2 of Figure 10, if r is a new rule, i.e., one not already stored in the history, 

then the incidence proportions of r in prior partitions are computed and stored in the 

history. These prior incidence proportions constitute a baseline for r so that an extreme
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1 ) For each association rule re Rc:
2) If r is new to H, add r to Hand query the database to get the incidence proportions 

of r for previous partitions. Update H with these incidence proportions.

3) Update H with ip(r, pc).
4) For each association rule re H such that r e Rc".

5) Query the database to get ip(r, pc).

6) Update H with ip(r, pc).

Figure 10: Procedure for updating the history.

Table 5: A Conceptual Structure of the History.

Pl P2 pc-r Pc-3 Pc-2 Pc-1 p=

n ipfrhPi) ipfri,p:) ip(r1,pc_1) ip(n,Pc-i) ip(n.Pc-2) ip(ri,pc.i) ip(n,Pc)

n ip(r:,p.) ip(r:,Pz) ip(r2,pc-i) ip(r2,Pc.3) ip(r2,Pc-2) ip(r2,Pc-i) ip(r2,Pc)

Tn ipfrnTh) ip(rn,P2) ipfrn.pd) ip(r„,pc.3) ip(rn,Pc-2) ip(rn,Pc-i) ip(rn,pc)

deviation in incidence proportion of r from the past to the present can be detected. For 

example, in the analysis of the UAB data set, a new association rule {NP_GNR, 

nosocomial} => {R~cefotetan, R-cefuroxime, R~cipro floxacin} with incidence 

proportion 5/121 was generated for the January 1997 partition. This means that in 

January 1997, of the 121 hospital-bom, non-Pseudomonas gram-negative rod isolates, 5 

were resistant to cefotetan, cefuroxime, and ciprofloxacin. To establish a baseline for the 

new association rule, the incidence proportions of the 3 previous partitions are obtained 

and stored in H (Table 6). Since the frequent set support threshold was 3 and the 

precondition support threshold was 8, we know that in all previously processed partitions 
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sup({NP_GNR, nosocomial, R~cefotetan, R~cefuroxime, R~ciprofloxacin} ) < 3 and/or 

sup({NP_GNR, nosocomial} <8. In this case, it was the numerator that was less than 3 

(Table 6).

Table 6: A Baseline of Incidence Proportions for an Association Rule.

Pc-3

Oct96

Pc-2

Nov96

Pc-I

Dec96

Pc

Jan97

{NPJ3NR, 

nosocomial}

{R~cefotetan, 

R-cefuroxime, 

R~cipro floxacin}

0/124 0/130 1/100 5/121

Once a rule is stored in the history, it is updated for each new partition regardless 

of whether or not it is generated in the partition. Therefore, for every association rule in 

the history, the history contains an up-to-date time-series of incidence proportions. As a 

result, each row of the history is guaranteed to have incidence proportions for the most 

recent n partitions including pc, but may not have incidence proportions for partitions 

before pc.n. Therefore, the conceptual structure of the history in Table 5 is generally not 

correct.

The number of previous partitions, n, to be baselined is domain specific and 

depends on the frequent set support threshold and the windowing schedule used to search 

for alerts (Section 4.2.1). For the UAB data set, n = 3 is appropriate.

Before launching headlong into the next chapter, let us summarize how the 

current partition pc is processed. First, the clone algorithm is used to discover frequent 
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sets in pc (Chapter 2). Then, high support association rules are generated using the 

algorithm in Table 10. Those rules are then filtered by user-defined association rule 

templates (Section 3.2), and the useful rules are used to update the history. Once the 

history is updated by the procedure in Figure 10, DMSS is finished processing the current 

partition. At this point, it can either process another partition, or search the history for 

interesting patterns. The next chapter is devoted to the search for patterns.
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CHAPTER 4

SEARCHING FOR PATTERNS

In this chapter, we describe the process by which DMSS generates potentially 

interesting patterns. This process includes generating alerts (Section 4.2), eliminating 

redundant alerts (Section 4.3), and generating event sets (Section 4.6). Since DMSS uses 

statistical methods to help identify interesting patterns, this chapter also includes a 

discussion about the role of statistics in data mining and epidemiology. We visit this 

subject first.

4.1 Statistical Considerations

A couple of statistical issues need to be addressed with respect to the work 

described in this dissertation. The first is the use (or abuse) of significance tests in 

epidemiology. The second is the issue of multiple comparisons or “data dredging” as it 

relates to epidemiological investigations in particular and to data mining in general.

4.1.1 Significance Testing and P-Values

Given a population and a sample from it, classical inferential statistics is 

concerned with making probabilistic statements about properties of the population based 

on the corresponding properties of the sample. Specifically, given a population P that has 

some measurable property k, we form a null hypothesis Ho: k = m, where m is the

43
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suspected value of k in P. Assuming the sampling distribution of a statistic S based on k 

is known, we can compute a p-value for a sample value of S which is the probability that 

the observed sample or one more extreme than it is from P under Ho- If this p-value is 

sufficiently small, p < a , then under the paradigm of significance testing, one of two 

conclusions can be made. First, although the chance of drawing this sample from P under 

Ho is small, we conclude that the population value of k = m is consistent with the sample. 

Second, since the probability of drawing this sample from P under Ho is so small, that we 

reject Ho and, with probability a that we are wrong, conclude that in P, k* m. Either 

way, we have made an inference about the population P. Such inferences, however, 

require known sampling distributions. These distributions are almost always based on 

random sampling.

Classical inferential statistics is firmly based on the idea of random sampling. 

Randomization, or random sampling, provides known sampling distributions for test 

statistics under Ho. Consequently, without random samples, sampling distributions of test 

statistics are unknown and no p-value can be computed for a sample. As a result, no 

probabilistic inferential statement can be made about the null hypothesis.

In the world of epidemiology, one rarely obtains true random samples. In a 

review of randomization and causal inference in epidemiology, Greenland (1990) 

discussed the Framingham study of heart disease and addressed the effect of 

randomization on the study’s interpretation.

In the Framingham heart study, a strong association was noted between cigarette 

smoking and heart disease—an important result that has often been applied to the 

population at large. A strict interpretation of the result, however, limits its interpretation 
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to the population from which the Framingham cohort was taken. The Framingham study 

cohort, though, was composed mostly of Anglo-English white males born after 1900. 

Therefore, any claim that the cohort was a random sample of U.S. white males is 

incorrect, for it fails to account for ethnic diversity of the U.S. white male population at 

the time. Additionally, of those studied, full compliance and follow-up was not achieved 

(Gordon, Moore, and Shurtleff 1959). Consequently, the cohort was not a random 

sample of any population, and the association between cigarette smoking and heart 

disease has no formal statistical interpretation outside of the study group itself. This does 

not mean, however, that the result of the study is meaningless. Greenland (1990) stated: 

“The point is that the study was informative despite the fact that the study statistics bore 

no randomization interpretation, and that any defensible descriptive interpretation would 

have been trivial in character.” It seems, therefore, that statistical tests devised under 

strict assumptions of randomization are useful even when those assumptions are violated 

in real-world studies. So how should one interpret p-values in the absence of 

randomization?

If a significance test cannot be given a probabilistic interpretation due to the lack 

of randomization, it can still be used for data description (Greenland 1990) or for 

decision-making (Fleiss 1986). For example, if one takes 2 samples with no assurance of 

randomness and wants to compare the proportion of the first sample that is defective, 61, 

to the proportion of the second sample that is defective, 6 2, a statistical significance test 

of 2 proportions under Ho: 61 = 62 could be performed. The resulting p-value may 

indicate that the difference between the proportions is extreme, but because the samples 

are not guaranteed random, it does not give the probability of getting a more extreme 
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result under Ho- Therefore, no statistical inference about Ho can be made based on the 

result of the test. A careful consideration of the result by one who has an understanding 

of the processes responsible for generating the samples, however, may still lead to 

interesting and meaningful conclusions. Therefore, as in the case of the Framingham 

study, useful information can be extracted from non-probabilistic interpretations of 

statistical significance tests. All that is needed is critical, expert evaluation of the result.

In the remainder of this document, a result from a significance test on non-random 

data is called “statistically extreme” or “extreme” if that result would have been 

statistically significant had the data been randomized. No probabilistic meaning is given 

to “statistically extreme." It is merely suggests that the result may be interesting.

In some observational studies, the entire group, not a sample, is monitored for the 

presence of a characteristic B. If the monitoring consists of observing the group at 

specific points in time, is there a way to detect whether or not B has changed over time? 

Specifically, if some proportion pi of group A at time I has characteristic B, and some 

proportion p2 of group A at time 2 has characteristic B, what is the probability that the 

processes that generated characteristic B in group A at time I are the same as the 

processes that generated characteristic B in group A at time 2? This is a fundamental 

question in observational epidemiological studies. Walker (1986) described the problem 

as follows: “In an observational study, we hypothesize that unmeasured determinants are 

distributed between comparison groups as if by chance and we apply techniques proper to 

the analysis of truly probabilistic phenomena to access the possible contribution of 

‘chance’ to a study’s finding.”
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[f the processes that generate characteristic B in group A are the same at time 1 

and time 2, we can envision a Population Y of which some proportion has characteristic 

B. From Y , group A at time 1 and group A at time 2 are randomly selected. In other 

words, group A at each time is a random sample from Y . Under the null hypothesis Ho: 

pi = p-,, i.e., the 2 samples were both randomly drawn from Y, we can compute a test 

statistic using pi and p? whose sampling distribution is known. Using this test statistic, 

we can then compute a p-value for Ho. This p-value is the probability that the 2 samples 

or 2 samples whose proportions are more extreme were drawn from Y . As we know, 

however, probabilistic statements of this type depend on a random distribution of 

determinants among all possible samples in Y . Therefore, a probabilistic statement 

about Ho depends on the knowledge that the determinants of B are randomly distributed 

in A over time. This proposition, however, as Walker (1986) noted, is not testable. 

Therefore, the best that we can do is to describe the plausibility of the proposition before 

giving any probabilistic interpretation to the result of a significance test.

The rampant abuse of significance testing in epidemiology is well-described 

(Fleiss 1986; Walker 1986; Poole 1987; Thompson 1987; Greenland 1990; Rothman and 

Greenland 1997). The key to the rational use of such tests is to make explicit their 

purpose and possible interpretations while at the same time considering the limitations of 

the study designs. Specifically, if the samples are not random, probabilistic 

interpretations of null hypotheses should be avoided. Additionally, no attempt to state 

the scientific importance of a result should be based on a p-value alone. With that said, 

let us move to the second statistical issue that needs to be addressed.
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4.1.2 Multiple Comparisons

In data mining, the search for unexpected, potentially interesting patterns requires 

that many significance tests or comparisons be performed on the data - one for each 

candidate pattern. Armitage (1971) refered to this process as "data dredging.” Data 

dredging has been criticized by some statisticians for the following reason: if many tests 

are performed on random samples under null hypotheses that differences between factors 

of interest are caused by chance alone, then some tests will return a significant result by 

chance alone. Specifically, if the significance level of each test is a , and N tests of N 

null hypotheses are performed, one can expect a *N significant results with the 

probability (1-(1-a )N) of getting at least one significant result assuming all N null 

hypotheses are true. Therefore, in some sense, the null hypotheses are rejected too often 

and too many false positive results are generated. False positive results, some claim, are 

the problem of multiple comparisons.

A common solution to reduce the number of false positives generated is to 

"correct” a by decreasing it in some way that depends on the number of tests to be 

performed. Rothman (1990) wrote a nice exposition on the philosophical implications of 

the multiple comparisons problem and argued that the presumptions that underlie 

"corrections” for multiple comparisons are wrong. Since data mining depends on 

multiple comparisons, this subject deserves some attention here. The remainder of this 

section is based largely on the arguments presented by Rothman (1990).

“Corrections” for multiple comparisons assume that all null hypotheses, one per 

test, are true. This assumption, known as the universal null hypothesis, means that no
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association exists between any pair of variables. If this is the case, then chance alone is 

the cause of every unusual finding, and all unusual findings are false positives.

To reduce the number of false positives in real-world studies, one usually reduces 

a based on the number of tests performed. Such strategies, however, assume that the 

universal null hypothesis is true—an assumption that Rothman argues is logically 

inconsistent with our notions of causality.

In truly random systems, there can only be false-positives in the form of chance 

unusual findings. In the real world, however, we naturally search for causal explanations 

to observed events. Rothman ( 1990) noted.

No empiricist could comfortably presume that randomness underlies the 
variability of all observations... In a body of data replete with associations, 
it may be that some are explained by what we call “chance, but there is no 
empirical justification for a hypothesis that all associations are unpredictable 
manifestations of random processes... Without a firm basis for posing a 
universal null hypothesis, the adjustments based on it are counterproductive. 
Instead, it is always reasonable to consider each association on its own for 
the information it conveys, (p 45)

Walker (1986) argued against corrections for multiple comparisons when he asked, 

“Should I discount an interesting finding because the investigator tested some hypothesis 

which I consider to be absurd?” (p. 558). This question embodies the logical conundrum 

of mechanistic corrections for multiple comparisons, namely, that the interestingness of a 

finding depends on the number of tests performed. Thompson (1987) agreed with 

Walker when he wrote, “Large numbers of comparisons do greatly increase the 

likelihood of inappropriately excluding the null value for at least one of the total set of 

associations examined, but the result of a particular association depends in no way on 

what else has been examined” (p. 193)
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The conclusion seems clear. The sensitivity of a significance test should not be 

adjusted based on the number of comparisons made. Doing so compromises our ability 

to reject the null hypothesis when the null hypothesis should be rejected. As a result, 

patterns or associations that deserve further consideration may go undetected. Rothman 

(1990) boldly concluded,

To the extent that adjustment for multiple comparisons shields some 
observed associations from more intensive scrutiny by labeling them as 
chance findings, it defeats the purpose of scientists... Since an empirical 
scientist presumes that nature follows regular laws, the scientist confronted 
with an extreme observation or association should grasp at every 
opportunity to understand it rather than ignore it. Being impressed by an 
extreme result should not be considered a mistake in a universe brimming 
with interrelated phenomena. The possibility that we may be misled is 
inherent to the trial-and-error process of science; we might avoid all such 
errors by eschewing science completely, but then we learn nothing, (p. 46)

According to these arguments, data mining should not be constrained in contrived 

ways allowing the user should have access to all potentially interesting findings. Clearly, 

however, this must be done in a reasonable fashion, for if the user is overwhelmed with 

potentially interesting finding, i.e., pattern glut, little is accomplished. Therefore, the 

delicate balance between ignoring potentially interesting findings and overwhelming the 

user with too many of them is important to the success of any data mining effort. 

Therefore, each step taken to reduce pattern glut allows us to maximize the sensitivity of 

the system. This is desirable, for in the spirit of the Rothman s argument, data mining 

should present as many potentially interesting findings to the user as possible so that each 

finding can be evaluated on its own merit.

In the remainder of the chapter, we describe how DMSS generates potentially 

interesting findings.
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4.2 Alerts

DMSS discovers low-level patterns, then clusters them into higher level patterns. 

The higher level patterns, called events. are presented to the user as potentially interesting 

findings. The low-level patterns, called alerts, are not seen by the user, but are used to 

construct events. Therefore, the search for potentially interesting findings begins with 

alerts.

DMSS generates alerts by analyzing information stored in the history. An alert 

describes an extreme change in the incidence of an outcome B in a group A over time.

Table 7: A Possible Outbreak of Bacterial Infection.

Association Rule pc-5 Pc-t Pc-3 Pc-2 Pc-l Pc

{nosocomial, SICU, 

trach aspirate l

{Acinetobacter 

baumannii}
0/11 0/10 0/9 0/13 2/9 3/9

Wp Wc

For example, Table 7 describes the incidence of Acinetobacer baumannii in 

nosocomial, tracheal aspirate, surgical intensive care unit (SICU) isolates over the past 6 

partitions. Clearly, a shift in incidence occurs between the first 4 months and the most 

recent 2 months of the series. If we call the first, second, third, and fourth months the 

past window, wp, and the fifth and sixth the current window, wc, we can ask if there is an 

extreme change in the incidence between wp and wc. To find out, we compute the 

cumulative incidence proportion for wp and the cumulative incidence proportion for wc, 
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compare the two by a statistical test of 2 proportions, and compute their relative 

difference. If the difference between the 2 proportions is statistically extreme and their 

relative difference exceeds a user-defined threshold, we say there is an extreme difference 

in the incidence proportions of wp and wc.

This is exactly how DMSS generates an alert for an association rule r. First, it 

constructs a current window and a past window on the time-series of incidence 

proportions of r (Section 4.2.1). Second, it computes the cumulative incidence 

proportion for each window (Section 4.2.2). Third, it compares the two cumulative 

incidence proportions by a test of 2 proportions (Section 4.2.3), then computes their 

relative difference (Section 4.2.4). Finally, if the difference between the proportions is 

statistically extreme, and if the relative difference exceeds a user-defined threshold, it 

generates an alert. If an alert is not generated, then a different pair of current and past 

windows is formed and their cumulative incidence proportions are compared. This 

continues for the same association rule until an alert is generated or no more current and 

past window pairs remain to be formed. DMSS generates all alerts by executing the 

procedure just described on every association rule in the history. In the following 

sections, we describe this procedure in detail.

1 ) The difference between the two cumulative incidence proportions is statistically 
extreme.

2 ) The relative difference between the two cumulative incidence proportions exceeds a 
user-defined threshold.

Figure 11 : Criteria for an extreme difference between two cumulative incidence 
proportions.
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1 ) Compute cumulative incidence proportions for wc, wp.
2 ) If there is an extreme difference between the two cumulative incidence proportions, 

generate a type-one-alert.

Figure 12: Process for generating an alert given wp and wc.

4.2.1 Time Windows and Windowing Schedules

Generating an alert for an association rule r = A=>B starts with constructing a 

current window, wc, and a past window, wp, on the time-series of incidence proportions 

of r. Each time window corresponds to a set of contiguous data partitions. For example, 

in Table 7, wc corresponds to partitions from the two most recent partitions: pc and pc-i, 

and wp to the 4 previous partitions: pc-2, p^, Pc-4, and pc-5- The example in Table 7 also 

illustrates several properties of current and past windows. These properties are listed in

Figure 13.

Given a time-series of incidence proportions for an association rule r, a 

windowing schedule specifies a series of past window and current window pairs for the 

time-series. Each entry in the schedule is of the form (|wp|, |wc|) where |wp| is the number 

of partitions in wp and |wc| is the number of partitions in wc.

1) Each is composed of one or more contiguous partitions, p;.

2) wc contains pc, the current partition.

3) wc and wp are disjoint and contiguous.

Figure 13: Properties of current and past time windows.
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The windowing schedule used in the analysis of the UAB data set (Figure 14) 

specifies a series of window pairs for each rule A B in the history such that changes in 

the incidence of B in A over several time scales can be detected.

1) (3, 1)
2) (6, 2)

3) (9,3)______________________________________________________________

Figure 14: Windowing schedule for the analysis of the UAB data set.

For example, when this schedule (Figure 14) is used to generate window pairs for 

the time-series of incidence proportions in Table 8, the two window pairs of Table 9 are 

created. Since window pair 3 of the schedule requires more than 8 partitions in the time­

series, it could not be created.

Each window pair forms the basis for a comparison between the cumulative 

incidence proportion of the past window and the cumulative incidence proportion of the 

current window. Therefore, window pair I ot Table 9 allows the comparison of the 

incidence proportion of current partition to the cumulative incidence proportion from the 

previous 3 partitions, and window pair 2 allows tor the comparison of the cumulative 

incidence proportion from the most recent 2 partitions to that from the previous 6 

partitions.

When a difference between cumulative incidence proportions is extreme by the 

criteria in Figure 11, DMSS generates an alert. When this happens, no additional 

window pairs for that rule are considered. For example, if an extreme difference is found 

between the proportions of the window pair specified by the first entry of a windowing
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Table 8: A Series of 8 Incidence Proportions.
{SICU} => {NP_GNR, nosocomial, Enterobacter cloacae}

Pc-7 Pc-6 Pc-5 Pc-4 Pc-3 Pc-2 Pc Pc

3/38 1/26 2/32 3/33 1/26 3/54 7/50 9/46

Table 9: Window Pairs Generated when the Windowing Schedule of Figure 14 is 
Applied to the Incidence Proportions of Table 8.

window 

pair 1
Q1/26 03/54 07/50 *9/46

i
!

window 

pair 2
Q3/38 01/26 Q2/32

i
03/33 i 01/26 03/54 '7/50 *9/46

I

[] => in wp * => in wc

schedule, then window pairs specified by the following entries in the schedule are not 

generated, and the next rule in the history is considered.

In the UAB data set, detecting emerging problems and outbreaks is a primary 

concern. Therefore, the windowing schedule (Figure 14) is designed so that window pairs 

more sensitive to recent changes in incidence are generated before those less sensitive to 

recent changes.

4.2.2 Cumulative Incidence Proportion

A cumulative incidence proportion is itself an incidence proportion computed by 

“summing” one or more incidence proportions in a time window. The cumulative 

incidence proportion of a rule r = A => B in a time window w is given by:
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^sup(A<J B, pi) 
. . x pi€W

piew

Simply stated, the numerator of the cumulative incidence proportion is the sum of the 

numerators of all incidence proportions in w; the denominator is the sum of the 

denominators of all incidence proportions in w. For example, for window pair 1 in Table 

9. the cumulative incidence proportion of wp, cip(r, wp), is 11/130, and the cumulative 

incidence proportion of wc, cip(r,wc), is 9/46. For window pair 2 in Table 9, cip(r,wp) is 

13/209 and cip(r,wc) is 16/96.

With 2 cumulative incidence proportions in hand, it is time to compare them to 

see if they are extremely different.

4.2.3 Statistical Tests of 2 Proportions

The comparison of 2 cumulative incidence proportions for extreme difference is a 

2 step process (Figure 11) that starts with a statistical test to see if the difference between 

the two proportions is statistically extreme. To see how this is accomplished, it helps to 

summarize the proportions in a 2 x 2 contingency table.

The 2x2 contingency table, sometimes called the fourfold table, is commonly 

used for summarizing statistical data to detect associations between two independent 

binomial random variables. In general, the 2 x 2 contingency table looks like the one in

Table 10.

Typically, significance tests on data in 2 x 2 contingency tables test for the 

independence of the 2 variables A and B. The test hypothesis is that the presence of 

characteristic A in the population is independent of the presence of characteristic B in the
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Tabie 10: A General 2x2 Contingency Table.

Characteristic A

Characteristic B :
__ *

Present Absent ' Total

Present nt i ni2 n>
Absent n2. i n22 ; n2

Total n i n2 : n.

same population. Generally, this null hypothesis can be tested by computing a chi- 

squared statistic or a Fisher’s exact statistic and comparing it to an arbitrary cut-off 

value, a , in the respective distribution. Both statistics are based on the cell values in the 

observed table versus the cell values in the table that would be expected if characteristic 

B was independent of characteristic A.

The 2x2 contingency table is discussed in most introductory statistics texts. A 

thorough basic treatment of 2x2 contingency tables is given by Rosner (1990). Subtle 

issues about creating 2x2 contingency tables and assessing their significance are 

discussed by Fleiss (1973).

The 2x2 contingency table can also be used to summarize 2 cumulative 

incidence proportions. In Table 11, the incidence of outcome B in group A during time 

window one is hl = nn/nL, and the incidence ofB in A during time window two is h2 = 

n2/n2.. To compare the two incidence proportions, a p-value for Ho:hi=h2 is computed. If 

the expected values of nu, m2, n2i, n^ are each greater than five under Ho, then a chi- 

squared test statistic is computed. If any of the 4 expected values is less than 5, then an 

exact p-value given by Fisher’s exact test is computed. From here on, we refer to a test 

of two proportions hi and h2 that returns a p-value under Ho-hi — h2 as ttp(h[,h2).
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Table 11: A General 2x2 Contingency Table for the Comparison of two Incidence 
Proportions.

Outcome B 1 Group A ■

Present Absent ! Total i

Time window one nu ni: :
Time window two H21 Û22 ' ri2 !

Total n.i n 2 : n :
_____ i_______________ »

Whether ttp(h|,h2) is returned by the chi-squared or Fisher’s exact test depends on the 

expected frequencies of the cell data in the corresponding 2x2 contingency table. A 

justification for using the chi-squared statistic to compare two binomial proportions is 

given by Brownlee (1965). General descriptions of the chi-squared test for the equality 

of two binomial proportions and of Fisher’s exact test for the same purpose are given by 

Rosner (1990).

DMSS employs tests of two proportions for classifying pairs of cumulative 

incidence proportions as statistically extreme or not. "Statistically extreme as discussed 

in Section 4.1.1, carries no probabilistic interpretation. When a significance test of two 

cumulative incidence proportions returns a p-value less than et (e.g. 0.01), the two 

proportions are classified as statistically extreme. For example, the contingency table for 

the two cumulative proportions computed from window pair 1 of Table 9 is given in 

Table 12. The cell values are adjusted according to Yate’s continuity correction (Rosner 

1990). Since the expected value of each cell is greater than 5, the following statistic is 

computed.

, = 176[(11.5)(37.5)-(118.5X8.5)]2 
(130)(46)(20)(156) ‘
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Table 12: A 2 x 2 Contingency Table for the Comparison of Two Cumulative Incidence 
Proportions from Table 9.

{Enterobacter cloacae, NP_GNR, 

nosocomial 1

{SICU} ।

Present Absent Total

Wp 11.5 118.5 130

Wc 8.5 37.5 46 
--------------------------- -4

Total 20 r 156
1

176

The sampling distribution of this statistic under Ho is the chi-squared distribution with 

one degree of freedom (DOF). Since X^, = 6.635 is the value of chi-squared with one 

DOF that corresponds to a p-value of 0.01, X" =3.13 leads us to conclude that the 

difference between the two cumulative incidence proportions is not statistically extreme.

For the two cumulative incidence proportions computed from window pair 2 of 

Table 9, X2 = 7.56 which is greater than X^., = 6.635. This allows us to conclude that 

the difference between the two incidence proportions computed from window pair 2 of 

Table 9 is statistically extreme.

The choice of a for classifying the results of significance tests is rather arbitrary, 

and indeed, this is a general criticism of significance testing (Rothman and Greenland 

1997). However, since significance testing is used in DMSS for exploratory purposes 

only, the rather arbitrary choice of a is not troublesome. In our experience, an alpha of 

0.01 is preferable to an alpha of 0.05 because the latter tends to classify too many patterns 

as statistically extreme thereby increasing the number of potentially interesting findings 

that the user is required to evaluate.
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The first step in comparing two cumulative incidence proportions is complete. 

Given two proportions, DMSS classifies them as statistically extreme or not. The second 

step in comparing two cumulative incidence proportions is simply to evaluate their 

relative difference.

4.2.4 The Relative Difference between 2 Incidence Proportions

At first thought, evaluating the relative difference between two incidence 

proportions seems redundant. After all, the proportions have already been compared 

statistically and their difference should have already been considered. The problem with 

comparing two observed proportions, however, is that the populations giving rise to the 

observed samples will inevitably differ to some extent (Fleiss 1973). In our model, this 

means that the processes responsible for the cumulative incidence proportion of a past 

window will almost always differ, at least by some miniscule amount, from the processes 

responsible for the cumulative incidence proportion of the current window. 

Consequently, according to Fleiss (1973), a type-1 error under the null hypothesis that the 

processes are identical probably never occurs in practice because the null hypothesis is 

usually false. Therefore, given sufficiently large samples, even small differences in 

observed proportions are statistically significant (or in our case statistically extreme), 

thereby leading to the rejection of Ho.

The ability of statistical significance tests to identify small differences between 

proportions as statistically significant when large samples are obtained has practical 

implications for DMSS. Namely, the user is generally not interested in small changes in 

incidence over time. Therefore, if alerts are generated only on the condition that two
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proportions are statistically extreme, the user would inevitably be required to review 

findings that are uninteresting because they describe incidence changes that are small in 

magnitude. To alleviate this problem, DMSS evaluates the relative difference between 

the two incidence proportions and compares it to a user-defined threshold. For example, 

if cip(R,wp) is 15/100 and the cip(R,wc) is 30/100, then the relative difference between 

the two is (30-15)/15 = 1. In general, the relative difference between two proportions is

_ p2-pl
rd(pl,p2)-------- -— 

Pl

where pl = cip(R,wp) andp2 = cip(R,wc).

If the user provides an relative difference threshold of 1, then for two cumulative 

incidence proportions pl andp2, p2 must be at least twicep 1 forrd(pl,p2) > 1.

In our experiments, a relative difference threshold of 1 is appropriate. This 

threshold reduces the number of alerts generated in the analysis of the LAB and CDC 

data sets by about 15%. Importantly, review of those alerts excluded by this criterion 

reveals that no potentially interesting alerts were rejected by it. This type of domain 

expert review and interaction is crucial to real-world data mining exercises, and in this 

case, it guided the selection of the relative difference threshold.

4.3 Redundant Alerts

Since DMSS is designed to be a real-time surveillance system, it searches for 

interesting patterns after each new data partition is processed. Because some window 

pairs of the windowing schedule usually extend the current window back in time to 

include partitions before the current partition, it is possible for DMSS to generate alerts 
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that are essentially repeats of alerts generated in the past. For example, let us consider 

the series of incidence proportions in Table 13.

Table 13: A Series of Incidence Proportions that Contains a Redundant Alert.

Pc-7 Pc-6 Pc-5 Pc-4 | Pc-3 Pc-2 Pel Pc

0/20 1/18 0/25 0/18 0/22
i _

1/19 11/20 15/19 1

With the windowing schedule in Figure 14, the first window pair generated for the 

proportions in Table 13 is wc = {pc} and wp = {pc-i,Pc-2,Pc-3}- For this pair, there is no 

statistically extreme difference between the two corresponding cumulative incidence 

proportions. The next window pair generated by the schedule is wc = {pc,pc-i} and wp = 

{pc-2,Pc-3,Pc*Pc-5,Pc*pc-7}- For this pair, the difference between the corresponding 

cumulative incidence proportions is statistically extreme and since rd(cip(R,wp), 

cip(R,wc)) = 25, an extreme difference between the two proportions is noted and an alert 

is generated. This is called the current alert.

A casual look at the series of proportions, however, indicates that the incidence 

actually peaks at pc-i. This suggests that a more alarming alert may have been generated 

immediately after pc-i was processed and the user would have already been notified of 

this problem. If so, the current alert is redundant.

To determine if the current alert is redundant, we return to the windowing 

schedule (Figure 14) and again use entry 1, only this time to generate wc = {pc.i} and wp 

= {pc_2, pc_3, p^h fa order not to confuse this window pair with the one that was used to 

identify the current alert, we call this pair (wc\ wp’). Therefore, (wp , wc ) — ( {pc-2, pc* 

pc-4, (Pc-i}) and (wp, wc) = ((p^, pc-3, Pc* Pc* Pc* Pc-?}, {pc, Pc-i})- Now, we repeat 
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the test of two proportions on cip(R, wp’) — 1/59 and cip(R, wc ) — 11/20 and see if their 

difference is statistically extreme. It is. Next, we compute rd(cip(R, wp’), cip(R. wc*)) = 

32 and compare it rd(cip(R, wp), cip(R, wc)) = 25. Since 32 is greater than 25, an alert 

was indeed generated with window pair (wp\ wc ). Moreover, the current alert is likely 

not as alarming as the one identified with (wp , wc ) since rd(cip(R, wp), cip(R, wc)) 

smaller than rd(cip(R, wp’), cip(R, wc’)) indicates that the change in incidence was more 

pronounced in the previous alert than in the current one. Therefore, the problem, while it 

still may exist, is less in magnitude than it was in the previous alert. Since the current 

alert is less alarming and the user is already aware of the problem from the previous alert, 

the current alert is redundant.

The process used in the example is generalized in the procedure outlined in Table 

26. DMSS uses this procedure to identify redundant alerts. Line 6 of the procedure 

(Figure 15) specifies that wc’ is the least current (M-dJ partitions ofwcandline7 

specifies that wp’ is the most current (|wp| — dp) partitions of wp. For example, if (wp, wc) 

for the current alert is ({pc.5.P^ {pc.2. p^. pe}) and the windowing schedule

contains entries (3,1), (3,2), and (2,2), then the procedure will test (wp\ w/) = ({pc-s. P<m. 

Pcj}, {pc.2,}) for schedule entry (3,1), (wp\ w/) = ({pc-5. Pc-4. Pc-3}, {Pc-2. Pc-i}) for entry 

(3,2), and (wp\ w/) = ({p^. Pc-3}, {Pc-2. Pci i ) for entry (2,2) as needed.

Removing duplicate alerts is yet another example of an attempt to reduce pattern 

glut. Our experiments on the UAB data set and the CDC data set (Section 5.3) show that 

by eliminating redundant alerts, the number of alerts generated in a search for interesting 

patterns is reduced by as little as 1% to as much as 25%. For the entire analysis of the
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1) (wp, wc) = window pair for current alert.

2) for each pair (x, y) e windowing schedule:

3) if (x< |wp| & y < |wc| )

4) de = |w<| - y.

5) dp = |wp| - x.
6) Wc' = wc without the de most current partitions.

7) wp’ = wp without the dp least current partitions.

8) if ((cip(R, wc’) - cip(R. wp’) is statistically extreme)

9) & (rd(cip(R, wp'), cip(R, wc’)) > rd(cip(R, wp), cip(R, wc)))

10) current alert is redundant.

11 ) break.

Figure 15: Procedure to identify redundant alerts.

UAB data set, eliminating redundant alerts decreases the total number of alerts by about 

10%.

4.4 Alerts: The Big Picture

Let gen_typel_alert(r,wp,a) be a function that takes an association rule r and a 

window pair wp. gen_typel_alert utilizes the entire process for generating an alert, 

including ignoring duplicate alerts, and returns true and an alert in a, if an alert is 

generated, and false if an alert is not generated.

Until now, we have described how to identify an alert and how to generate them, 

but have not specified exactly what an alert contains. An alert simply contains the 

information that was used to identify it: the association rule, a description of the window
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1) alerts = 0.

2) For each rule e history:
3) for each (x,y) € windowing schedule:
4) Generate the current window pair wp using (x,y).

5) if (gen_typel_alert(rule, wp, a))

6) alerts = alerts u a.

7) break. II for each (x.y)

Figure 16: Algorithm for generating all alerts.

pair, the result of the test of the two cumulative incidence proportions, and the relative 

difference between the two cumulative incidence proportions.

4.5 An Alternate Method for Identifying Alerts

In this section, we examine the use of cell occupancy models and exact 

probability distributions to identify alerts. Cell occupancy models are useful in 

epidemiologic investigations (Ederer et al. 1964; Crimson 1993; Wallenstein 1980). In 

particular, the MAX statistic and the scan statistic are used in epidemiologic cluster 

investigations (Ederer et al. 1964; Crimson 1993). In this section we briefly describe the 

MAX statistic and why it is not used in DMSS.

An ordinary cell occupancy model consists of L cells and N items randomly 

distributed among them. MAX(N,L) is the sampling distribution of the maximum 

number of items, MAX, found in any cell under the null hypothesis that N items are 

randomly assigned to L cells. pMAX(n,N,L) is the probability of finding at least n items 

in a single cell under Ho. Consider the event frequency data for the 12 disjoint partitions 

in Table 14.
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Table 14: An Apparent Cluster of Disease.

# cases 1 I 1 2 1 0 5 1 0 I 1 I

partition 1 2 3 4 5 6 7 8 9 10 11 12

Looking over this data, we may suspect that the 5 events of partition 7 comprise a 

cluster of events. Under the null hypothesis that the 15 events are randomly distributed 

over the 12 partitions, pMAX(5.15.12) = 0.07 is the probability of observing 5 or more 

events in any one partition. After a critical examination of data with respect to Ho, we 

may or may not conclude that the 5 events of partition seven comprise a cluster. Again, 

the interpretation of a p-value depends on a critical examination of the data and the 

assumptions of the model distribution.

For the use of .WAT in epidemiologic studies, the following 2 conditions must be 

met:

1. The population at risk of an event must be constant over all cells.

2. The risk of an event for each member of the population must be the same within 

and between cells.

While condition 2 is also a condition of the statistical tests of 2 proportions described in 

Section 4.2.3, condition 1 is not a condition of those tests. Therefore, Af/Lfhas an 

additional constraint that needs to be considered.

In observational studies, condition 2 is rarely, if ever, satisfied. Disease processes 

that generate health events are not static over time. Moreover, this condition is not 

testable. This was discussed in Section 4.1.1. With little thought, it is clear that condition 

I is rarely satisfied. As a result, probabilistic interpretations of p-values from 

observational studies are not allowed. This is consistent with our statistically extreme 
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interpretation of p-values from tests of 2 proportions in Section 4.2.3. A similar 

interpretation could be given to values of pMAX.

While it is not valid to make statistical inferences from significance tests in 

observational studies, we nevertheless want to violate as few assumptions of the 

underlying statistical models as possible so that the test result is in some sense as accurate 

as possible. This presents a significant problem for the use of the MAX statistic in 

DMSS because for an association rule A =3» B, the size of the population at risk, i.e., 

sup(A), usually changes from one partition to another. Consequently, condition 1 for 

using the MAX statistic is blatantly and consistently violated. Therefore, to use the MAX 

statistic when the population or group size changes requires attempts to normalize its size 

for each partition. This extra normalizing step is not required in the tests of 2 

proportions.

The MAX statistic also requires that a database of p-values be generated for 

certain values of n, N, and L so that a p-value does not have to be computed or simulated 

each time it is required. In addition, since L must be an integer, the MAX statistic does 

not allow one to compare say the incidence proportion over the last 2 months to that of 

the previous three months. The tests of 2 proportions do not have this restriction.

Even with these disadvantages, we tried the MAX statistic in DMSS. This effort 

included generating a sizable database of p-values and employing a normalizing scheme 

for group sizes across partitions. After much work, we concluded that tests based on the 

MAX statistic work about as well as the tests of 2 proportions in identifying statistically 

extreme changes between the incidence proportions of past and current windows. Since 

the methods that employ tests of 2 proportions are conceptually cleaner and more
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efficient than the methods that use the MAX statistic for identifying alerts, we currently 

use the former DMSS.

4.6 Event Sets and Events

Consider the set of alerts in Figure 17. This set has several characteristics. First, 

the left-hand sides of the association rules for alerts 1 through 5 are each a subset of the 

left-hand side of the association rule for alert 6. Likewise, the right-hand sides of the 

rules for alerts 1 through 5 are each a subset of the right-hand side of alert 6. Second, the 

current window, wc = {4}, is the same for all alerts. The past window, wp = {1, 2, 3}, is 

also the same for all alerts. Finally, changes in the cumulative support of {SICU, 

NP_GNR, nosocomial, K. pneumonia, sputum, R~A1, R~A2} between wp and wc, which 

is the change in the numerator of the cumulative incidence proportion between wc and wp 

in alert 6, account for most of the changes in the numerators of the cumulative incidence 

proportions between wp and wc in alerts 1 through 5. From these characteristics, our 

intuition tells us that alert 6 is responsible for alerts 1 through 5. If so, alert 6 contains 

the pertinent information about all alerts in the set and is, therefore, the only alert from 

the set that need be presented to the user. Indeed, for this set, alert 6 is the event and the 

entire set is the event set of alert 6.

4.6.1 Alert capture

Association rule Al => B1 is called a descendent of association rule A2 => B2 if 

A2 is contained in A1 and B2qB1. A2 => B2 is called an ancestor of A1 => B1 if the 

same conditions hold.
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For any two alerts x and y, x is said to capture y if the association rule of x, Ax => 

Bx, is a descendent of the association rule ofy, Ay => By, (wp, wj of x is equal to (wp, wj 

ofy, and

ttp
sup( A v u By, wd ) - sup( Ax u Bx, wP ) sup( Ay u By, wc) - sup( Ax u Æv, wv ) 

sup(^y, wP) sup( Ay. wc) v

is greater than 0.01. Intuitively, alert r captures alert y if when x is "removed” from y. y 

is no longer an alert.

1 ) {EmptySet} => {R~ A2 \
[] 1: 1/950 | []2: 1/812 | []3: 2/768 | *4: 8/780

2) {SICU}=>{R~A2}
[]1: 0/57 | []2: 1/60 | []3: 2/52 | *4: 7 65

3) {SICU, NP_GNR}=>{R~A1. R~A2;
[]1: 0/23 | []2: 0/20 | []3: 2/18 | *4: 7 21

4) ; SICU, NP_GNR, nosocomial} => I R~A1. R~A2}
[] 1: 0/11 | []2: 0/10 | []3: 1/12 | *4: 5 13

5) JSICU, NP_GNR, nosocomial, K. pneumonia) =>{R.~AA. R-A2J-
[]1: 0/5 | []2: 0/5 | []3: 1/6 | *4: 5.7

6) {SICU, NP_GNR, nosocomial, K. pneumonia, sputum} =>{R~A 1, R~A2} 
[] 1: 0/5 | []2: 0/4 | []3: 1/4 | *4: 5/6

Figure 17: A set of related alerts. Bracketed partitions (e.g. []D are in wp,. Starred 
partitions (*4) are in wc.

For example, let us test alerts 3 and 6 from Figure 17 to see if alert 6 captures 

alert 3, as we suspect. First, we must check to see if the rule of alert 6 is a descendant of 

the rule of alert 3. It is. Next, we want to check if (wp, wc) of x is equal to (wp, wJ ofy. 

It is. Now, we want “remove” alert 6 from alert 3, then test the altered alert 3 to see if it 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

is still statistically extreme. Substituing the appropriate values into expression 4.1, we get 

ttDf ~ 32 which is greater than 0.01. Therefore, alert 6 does capture alert
I 61 ' 21 , "

3. By the same process, alert 6 also captures alerts 1.2,4. and 5.

4.6.2 Event Sets

An event set x ' is the alert x together with all alerts that x captures. Event sets are 

created by the algorithm in Figure 18.

1 ) A is the set of all alerts.

2) whileA*0:

3) for each ae A:
4) if (A does not contain a descendant of a)

5) Create a new event set a

6) Add a to a ’ as the event.

7) Remove a from A.

8) for each be A:

9) if (a captures b)

10) Add b to a'.

11 ) Remove b from A.

Figure 18: Algorithm for generating event sets.

4.6.3 Events and Pattern Glut

After executing the algorithm in Figure 18 on a set of alerts, each alert is a 

member of an event set. Some event sets may contain only one alert - the event. Others, 

however, will contain many alerts, only one of which is the event.
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Since the event of an event set contains all pertinent information for the entire set, 

only events are shown to the user as potentially interesting patterns; all other alerts are 

redundant.

Figure 19 contains an actual event set generated during the analysis of the UAB 

data set. The event is the first alert listed in the table.

In the analysis of a data set, a search for potentially interesting patterns is usually 

conducted after each partition is processed. For the UAB data set, each search generated 

an average of 119 alerts and 27 events. The Jan-97 search yielded 413 alerts and 28 

events, and the Aug-97 search generated 462 alerts and 49 events. Table 15 contains 

other related summary statistics.

One purpose of eliminating redundant alerts (Section 4.3) and generating event 

sets is to reduce pattern glut. Pattern glut is a subjective measure that depends in part on 

the time and resources that the user can commit to evaluating potentially interesting 

patterns. With fewer patterns to consider, the user will feel less taxed by the data mining 

process. Consequently, less time is spent analyzing misleading results, and more time is 

spent doing productive investigations and taking corrective action. After all, data mining 

is useless unless its results can be evaluated and acted upon in an efficient manner. In 

our experiences with the UAB and CDC data sets, DMSS generates a manageable 

number of patterns. Without association rule templates (Section 3.2) and the methods 

described in this chapter, however, the number of patterns generated for each data set 

would be completely unmanageable. After all, the task of looking over 27 patterns is 

much less daunting than that of looking over 119, much less 462! Therefore, DMSS is 
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event* \ Klebsiella pneumoniae. NP_GNR} —> ! R-Ccfotetan. R—Ceftazidime. R~Cefuroxime.
R-Cefazolin. R-Cephalothin. R-CeRriaxone}
[]9609: 0/79 | []9610: 1 79 | []9611: 4/85 | *9612: 8/76 |

— \ Klebsiella pneumoniae. NP_GNR| => ' R—Cephalothin}
[]9609: 7/79 | []9610: 5/79 | []9611: 7'85 | *9612: 14/76 |

- {NP_GNR} => ! R~Cefotetan. R~Ceftnaxone}
[]9609: 0/563 | []9610: 7'504 | []9611: 9/439 | *9612: 13/392 |

- ;NP GNR} => !R~Ceftazidime. R-Cefazolin}
[]9609: 8,563 | []9610: 11/504 | []9611: 8/439 | *9612: 16/392 |

- ;NP_GNR| => ’R-Ceftazidime. R~Cephalothin}
[]9609: 5'563 | []9610: 6/504 | []96l 1: 7/439 | *9612: 13/392 |

- ;NP_GNR} => {R-Ceftazidime. R-Ceftriaxone}
[]9609: 2. 563 | []9610: 15/504 | []9611: 19/439 | *9612: 19/392 |

- {NP_GNR} => {R~Cefuroxime. R~Cephalothin}
[]9609: 11,563 | []96l0: 9/504| []9611: 8/439 | *9612: 18/392 |

_ {NP_GNR} —> {R-Cefazolin. R~Cephalothin}
[]9609: 18/563 | []9610: 14/504 | []9611: 18/439 | *9612: 27/392 I

— [Klebsiella pneumoniae. NP_GNRJ => {R~Cefuroxime. R—Cephalothin}
[]9609: 5/79 | []9610: 3/79 | []9611: 5/85 | *9612: 11 76 |

— [Klebsiellapneumoniae. NP_GNR} => {R-Cefazolin. R~Cephalothin}
[]9609: 2/79 | []9610: 2/79 | []9611: 5/85 | *9612: 10/76 |

- {NP_GNR} => {R-Cefotetan, R-Ceftazidime, R-Ceftriaxone}
[]9609: 0/563 | []9610: 7 504 | []961l: 9/439 | *9612: 12/392 |

- {NP_GNR} => {R-Ceftazidime. R-Cefuroxime. R-Cephalothin}
[]9609: 5-563 | []9610: 6/504 | []9611: 7/439 | *9612: 12/392 |

.. {NP_GNR} => {R-Ceftazidime. R-Cefuroxime. R-Ceftriaxone}
[]9609: 0/563 | []9610: 8/504 | []9611: 11,439 | *9612: 15/392 |

- {NP_GNR} => {R-Ceftazidime. R-Cefazolin. R-Cephalothin}
[]9609: 5/563 | []96l0: 6/504 | []96l I: 5/439 | *9612: 12'392 |

- {NP_GNR} => {R-Cefuroxime. R-Cefazolin. R-Cephalothin}
[]9609: 7 '563 | []9610: 8/504 | []9611: 6/439 | *9612: 15/392 |

- {NP_GNR} => {R-Cefuroxime, R-Cefazolin. R-Ceftriaxone}
[]9609: 1,563 | []9610: 9/504 | []9611: 8/439 | *9612: 13/392 |

- [Klebsiellapneumoniae, NP_GNR} => {R-Ceftazidime. R-Cefazolin. R-Cephalothin}
[]9609: 1 79 | []96l0: 1/79 | []9611: 4/85 | *9612: 9/76 |

„ { NP GNR} => {R-Cefotetan. R-Ceftazidime, R-Cefuroxime. R-Ceftriaxone}
[]9609: 0/563 | []9610: 6/504 | []9611: 8/439 | *9612: 12/392 |

- {NP_GNR} => {R-Ceftazidime, R-Cefuroxime. R-Cefazolin. R-Cephalothin}
[]9609: 5/563 | []9610: 6/504 | []961l: 5/439 | *9612: 11/392 |

- - {NP_GNR} => {R-Ceftazidime. R-Cefuroxime. R-Cefazolin, R-Ceftriaxone}
[]9609: 0/563 | []96l0: 8/504 | []9611: 8/439 | *9612: 13/392 |

_ {NP_GNR} => {R-Ceftazidime, R-Cefuroxime, R-Cephalothin. R-Ceftriaxone}
[]9609: 0/563 | 09610:3/504 | □9611:7/439| *9612: 10/392 |

- { NP_GNR} => {R-Cefotetan. R-Ceftazidime, R-Cefuroxime, R-Cephalothin 
R-Ceftriaxone}
[]9609: 0/563 |[]9610: 1/504 | []9611: 5/439 | *9612: 9/392 |

„ {NP_GNR} => {R-Ceftazidime, R-Cefuroxime, R-Cefazolin, R-Cephalothin R-Ceftnaxone} 
09609: 0/563 | 09610: 3/504 | 09611: 5/439 | *9612: 9/392 |

Figure 19: An event set from the analysis of the UAB data set.
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Table 15: Summary Statistics for Alerts and Events from the UAB Data Set.

alerts events

total 1423 322

mean 118.6 26.8

st. dev. 155.1 12.4

max 462 52

min 12 10

effective in reducing pattern glut while preserving potentially interesting findings for 

expert evaluation.

4.6.4 Event Sets and Descriptive Specificity

Event sets ensure that the events presented to the user are as specific as possible 

according to the data processed. For example, let us consider the following real event 

(4.2) from the analysis of the UAB data set.

{NP_GNR, nosocomial) => {R~PiperaciIlin, R~Ceftazidime, R-Gentamicin) (4.2) 
[J9609: 0/180| []9610: 2/124 | []9611: 1/130 | *9612: 6/100 |

How do we know that the increase in piperacillin, ceftazidime, and gentamicin resistance 

did not occur only amongst nosocomial Klebsiella pneumoniae isolates? After all, these 

are nosocomial, non-Pseudomonas gram-negative rods. Simply put, if nosocomial 

Klebsiella pneumoniae isolates were responsible for the increase in piperacillin, 

ceftazidime, and gentamicin resistance in NP_GNRs, then (4.2) would have been 

captured by the alert with association rule {Klebsiella pneumoniae, NP_GNR, 

nosocomial) => {R~Piperacillin, R~Ceftazidime, R-Gentamicin), and this alert, not 

(4.2), would have been presented to the user. Therefore, since an event with rule
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{Klebsiella pneumoniae, NP_GNR. nosocomial} => {R—Piperacillin. R~Ceftazidime. 

R~Gentamicin) was not presented, we can be confident that Klebsiella pneumoniae 

isolates are not responsible for (4.2). An easy way to verify this is to look at the original 

data. In this case, from partition 9612 of the UAB data set. of the 6 NP_GNR. 

nosocomial isolates, resistant to piperacillin, ceftazidime, and gentamicin. 3 are K. 

pneumoniae, one is E. coli, one is E. cloacae, and I is M. morgannil. By similar logic, 

we can also be certain that the isolates of (4.2) are not all from the same location. Again, 

checking the data to verify this, we find that 2 are from the NICU. 1 from J10, 1 from J5. 

1 from W9NW, and 1 from BMT. Whether the isolates are related in other ways. e.g.. 

the service to which the patient was assigned, can not be known from looking at the 

original data set because these attributes were not available at the time of analysis. 

However, if they had been, then DMSS could have used them to construct events that are 

even more specific. Although not done in this case, (4.2) could be investigated by 

traditional means in more detail to determine if other possible associations exist.

In the next chapter, we present the culmination of everything presented up to this 

point—experimental results from 2 real-world epidemiologic data sets.
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CHAPTERS

EXPERIMENTAL RESULTS

The value of any data mining project is ultimately determined by whether or not 

new and interesting patterns are discovered. In this chapter, we present the fruits of our 

data mining labors — the patterns generated by DMSS in the analysis of the UAB data set, 

and the CDC Streptococcus pneumoniae data set Notably different from other data 

mining analyses are the sizes of these data sets. Whereas traditional data mining focuses 

on very large data sets that are megabytes to terabytes in size, our data sets are 

substantially smaller. As we will show, however, they contain a wealth of previously 

unknown, complex, and interesting patterns. One could call this data mining in the small, 

but small, in this case, is interesting and important.

5.1 introduction

The impact of nosocomial (hospital-acquired) infections on health care can hardly 

be overstated. Each year in the United States, nosocomial infections affect 2 million 

patients, cost more than $4.5 billion, and account for half of all major hospital 

complications (Centers for Disease Control 1992). Even more alarming is that amongst 

nosocomial infections, the number of drug-resistant infections has reached unprecedented 

levels (Goldman et at 1996). Vancomycin-resistant enterococci, extended beta­

lactamase producing gram-negative rods, and multi-drug resistant tuberculosis are but a 

few examples of emerging, highly-resistant bacteria that now cause significant morbidity 

75
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and mortality. While the biology and epidemiology of bacterial drug resistance is 

complex, the overuse of antimicrobials by both hospital and community physicians is 

largely responsible for the problems that exist today (Schlaes et al. 1997; Gold and 

Moellering 1996).

Bacterial resistance is a global problem, but like most large-scale problems, its 

origins are local. Microenvironments, especially hospitals and hospital intensive care 

units, are usually where resistant organisms originate and propagate, only to spread to 

larger environments as opportunity provides (Jones 1992; Koontz 1992; Neu et al. 1991, 

Schlaes et al. 1997). Therefore, early recognition of emerging problems requires 

proactive surveillance at the hospital and sub-hospital levels (Jones 1992; Koontz 1992, 

Neu et al. 1991; Schlaes et al. 1997). Unfortunately, most hospital surveillance efforts 

are passive; if no one suspects a problem, it goes undetected. Additionally, active 

surveillance for trends in bacterial resistance usually consists of yearly, hospital-wide 

summaries that are compiled in a table of susceptibility results with one entry per 

organism/drug combination. These summaries are not timely and often mask emerging, 

complex problems within the hospital (Neu et al. 1992). Consequently, it has been 

widely recognized that sophisticated, active, and timely intra-hospital surveillance is 

needed (Neu et al. 1991; Schlaes et al. 1997).

One source of surveillance data within the hospital is the antibiotic susceptibility 

data from the clinical microbiology laboratory (Schlaes et al. 1997). Such data, if 

carefully analyzed, can be used to identify local outbreaks. Extensive analysis of these 

data sets, however, requires considerable time and resources, both of which few hospital 
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epidemiologists have. Consequently, these data sets are underutilized and the patterns 

they contain go undiscovered. DMSS can be used to address this problem.

5.2 The UAB Data Set

The UAB data set, first described in Section 1.4.3, is 15 monthly partitions 

(September 1996 through November 1997) of data obtained from the clinical 

microbiology laboratory information system at UAB hospital. Each record of the data set 

describes a single bacterial isolate and contains items for the attributes listed in Section 

1.4.3.1.

DMSS analysis of the data set was conducted with frequent set support threshold 

(FSST) 3, rule support threshold (RST) 8. the association rule templates in Figure 9, and 

the windowing schedule in Figure 14. The partitions were processed sequentially and a 

search for potentially interesting patterns was conducted after each of the December 1996 

through November 1997 partitions was processed. These searches resulted in 12 sets of 

events, one for each search. The sequential nature in which these searches were 

performed simulates real-time surveillance in which emerging patterns are searched for at 

the end of each month. Each event in each set was then evaluated by a domain expert for 

interestingness.

As described in Section 1.4.3.1, the data set was seeded with records describing a 

nosocomial outbreak of Acinetobacter baumanni that occurred in 1994.

Figures 20, 21, 22, and 23 summarize some characteristics of the UAB data set 

and its analysis. Importantly, no more than 52 events (April 1997) were generated by any
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search (Figure 22). Consequently, the reviewer was easily able to inspect each set of 

events in less than a half-hour.
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Figure 20: Sizes of the UAB partitions.
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Figure 21 : Numbers of frequent sets and rules generated for the UAB data set.
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Figure 22: DMSS running times in seconds for the UAB data set.
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Figure 23: Numbers of alerts and events generated for the UAB data set.
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5.2.1 Interesting Events

An event can be interesting for a number of reasons. Some properties of an 

interesting event are:

I. It is unexpected.

2. The outcome is nosocomial or is within a nosocomial group.

3. It is about a problematic organism.

4. The outcome or group is specific to a hospital unit or location.

5. The outcome contains antimicrobial resistance items, especially those for

broad-spectrum antibiotics.

Criteria 2-5 are domain specific. Criterion 1, however, is a general criterion for 

interestingness; it is also usually a necessary one.

All events presented from this point on have the following format:

A =>B
[]yymm: n/m | []yymm: n/m |... | []yymm: n/m | *yymm: n/m | ... | *yymm: n/m | 
p = xx rel diff = xx

where “.-1 => B" is the association rule, “(]yymm” is the year and month of a partition m 

wp, “*yymm” is the year and month of a partition in wc, “n/m is an incidence proportion, 

“p” is the p-value from the test of two proportions, and “rel diff is the relative difference 

between the cumulative incidence proportions computed from wp and wc. For example, 

event (5.1):

{NP_GNR, nosocomial} => {R~Piperacillin, R~Ceftazidime, R~Gentamicin} 
[]9609: 0/1801 []9610: 2/124 | []9611: 1/130 | *9612: 6/100 | (5.1)
p = 0.004 rel diff = 8.68

This event describes an increase in the incidence of piperacillin, ceftazidime, and 

gentamicin resistance in nosocomial, non-Pseudomonas gram-negative rod isolates from
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September, October. November, and November of 1996 to December of 1996. A p-value 

of 0.004 indicates that the difference between the corresponding cumulative incidence 

proportions is statistically extreme, and a relative difference of 8.68 tells us that there was 

almost a nine-fold increase in the cumulative incidence proportion from wp to wc.

Let us take this moment to briefly review how DMSS arrives at an event by using 

(5.1) as an example. In processing partition 9612, DMSS generated the frequent set 

[NP_GNR, nosocomial, R-Piperacillin. R-Ceftazidime. R-Gentamicin} with support 6. 

Then, it created all high-support association rules for that frequent set. Of those 

association rules, {NP_GNR. nosocomial} => ! R~Piperacillm. R-Ceftazidime. 

R-Gentamicin} passed the rule templates in Figure 9 and therefore was used to update 

the history. Since the rule was not already in the history. DMSS added the rule to the 

history, then queried the original database to get the incidence proportions of the rule in 

the previous 3 partitions. It then added these prior incidence proportions along with 

current incidence proportion to the history. In the search for interesting patterns 

performed after partition 9612 was processed. DMSS identified an extreme change in the 

incidence proportion of {NP_GNR, nosocomial; => {R-Piperacillin, R-Ceftazidime. 

R~Gentamicin} between wp = {9609, 9610, 9611 ; and wc = {9612} and so generated an 

alert identical to (5.1). Then, in constructing event sets for all alerts discovered in the 

search, DMSS identified this alert as the event of an event set. As such, it was presented 

to the user as a potentially interesting finding.

From the 322 events generated in the entire analysis, Appendix B contains the 41 

that were interesting to the domain expert. Each event is accompanied by a short 

description of why it was selected.
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Interesting events, such as those in Appendix A, can be investigated in a number 

of ways. Any in-depth investigation should begin by carefully looking over the original 

data that corresponds to the event. For example, (5.1) which is also event 1 in Appendix 

A, indicates an extreme increase in the incidence in piperacillin, ceftazidime, and 

gentamicin resistance amongst nosocomial non-Pseudomonas gram-negative rods. 

Inspection of the data reveal that three K. pneumoniae, one E. coli, one E. cloacae, and 

one M. morgannil comprise the 6 isolates from partition 9612. One K. pneumoniae and 

the M. morgannil were from the NICU, and the other isolates were from J10, J5, W9NW. 

and BMT. In this case, nothing else seems suspicious about the organisms or locations.

Highlights from the events in Appendix A include a number of potential 

nosocomial outbreaks of specific organisms, including the seeded Acinetobacter outbreak 

from 1994 (Table 16) and trends in nosocomial, multiple-organism antimicrobial 

resistance (Table 17).

5.3 The CDC Data Set

DMSS is also useful in the analysis of public health surveillance data. In this 

section, we present results from a preliminary analysis of 15 months (January 1995 — 

March 1996) of Streptococcus pneumoniae data received from the Centers for Disease 

Control and Prevention (CDC).

Since the late 1980’s, drug-resistant Streptococcus pneumoniae (DRSP) has been 

emerging problem in the United States (Cetron et al. 1997; Gold and Moellering 1996).

The goal of DRSP surveillance is to monitor the prevalence and geographic 

distribution of DRSP and to rapidly recognize outbreaks and new patterns of resistance
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Table 16: An Index ofUAB Events that Describe Possible Nosocomial Outbreaks of 
Disease.

Organism
Index of event in 
Appendix A

1
Comment i

Acinetobacter baumannii 14 known outbreak from 1994 
(seeded)31

Citrobacter freundii 9
Enterobacter aerogenes 32

Enterobacter cloacae
24
39 SICU

Klebsiella oxvtoca 15 J

Klebsiella pneumoniae 5
30

Proteus mirabilis 21 ccu
Serratia marcescens 35 NICU

Staph aureus
4 MRSA, W9NW
25 MRSA, S9SW

Streptococcus pneumoniae 13

Table 17: An Index ofUAB Events that Describe Changes in Nosocomial Antimicrobial 
Susceptibilities.

Antimicrobials
Index of event in 
Appendix A

Comment !

piperacillin, ceftazidime, 
gentamicin________________

1 1

piperacillin________________ 11 W7NW
cefazolin 16 ____ MICU

19
ceftriaxone 37 SICU_____________________ 1

piperacillin & pan­
cephalosporin

8 SICU

(Cetron et al. 1997). To this end, the CDC collects data on invasive pneumococcal 

isolates from approximately 15 hospital laboratories around the United States. The data 

set contains demographic attributes such as county, hospital, patient s zip code, race, and 
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ethnicity, as well as attributes describing infection outcome, serotype, and antibiogram, 

amongst others. CDC generously sent us 15 months of data for analysis. All data 

received is coded to keep anonymous the identity of states, counties, hosptials, and zip 

codes.

In general, this data set is not as clean or as timely as the UAB data set. Some 

records have missing data that should not be missing. For example, the bacteremia and 

meningitis fields are binary and one or both should be true for an infection to be invasive 

and, therefore, get included in the data set; some records have missing values for both. 

Additionally, all DRSP reporting to the CDC is currently voluntary. This delays the 

arrival of some data and perhaps makes for an incomplete and biased data set. 

Nationwide, consistent, timely, and mandatory reporting of invasive isolates is clearly 

desirable (Cetron et al. 1997). Until then, however, we make due with what we have.

Also limiting our analysis was our lack of communication with the CDC. As a 

result, we were not able to compare our findings to theirs, an exercise that would have 

been valuable. In any case, we believe that our results, while “raw, demonstrate 

DMSS’s ability to find interesting, emerging patterns in public health surveillance data.

5.3.1 Analysis

DMSS analysis was performed with a frequent set support threshold of 3, a rule 

support threshold of 8, a p-value threshold of 0.01, a relative difference threshold of 1, 

the association rule templates in Figure 24. and the windowing schedule in Figure 25. 

The 15 partitions were processed sequentially and a search for potentially interesting 

patterns was conducted after each of the April 1995 through March 1998 partitions was 
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processed. These searches resulted in 12 sets of events, one for each search. The 

sequential nature in which these searches were executed simulates real-time surveillance 

in which emerging patterns are searched for at the end of each month. Although this data 

set was not collected in a timely enough manner for monthly searches, future data sets 

assembled by more timely and sophisticated surveillance systems could be analyzed 

monthly. Figures 26, 27, 28, and 29 summarize characteristics of the CDC data set and 

its analysis. On average, 76,741 association rules were generated for each of the 15 

partitions, 1,793 of which passed the rule templates in Figure 24. Therefore, only 2% of

1. include: EmptySet => State* v R—*

2. include: -, EmptySet => **

3. exclude: R~* v I~* v Antbgram* => ♦♦

4. exclude: Outcome* => **

5. exclude: ** => Outcome 1

6. exclude: Bacteremia v Pneumonia => **

7. exclude: Hiv v Aids => Hiv v Aids

8. exclude: Race* v Ethnic* => Race* v Ethnic*

9. exclude: -, EmptySet => State* v Race* v Sex* v AgeGrp*

Figure 24: Association rule templates used in the analysis of the CDC data set.

1. (3,1)
2. (6,2)

3. (9,3)_____________________________________________________

Figure 25: The windowing schedule for the analysis of the CDC data set.
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the rules generated for each data partition passed the rule templates to get included in the 

history. If as a result, the history was 2% the size it would have been if all rules were 

included, and the number of events generated by a given search is proportional to the size 

of the history at the time of the search, then the templates in Figure 24 reduce pattern glut 

in the CDC analysis by about 98%. This may seem extreme, but in our experience, most 

of the rule space is truly uninteresting.

Again, as discussed in Section 3.2, specifying rule templates requires considerable 

care because templates that include too many rules in the history will lead to pattern glut 

while those that exclude too many rules will lead to no interesting findings. In the 

analysis of the CDC data set, as in the analysis of the UAB data set, we have found the 

iterative strategy described in Section 3.2 useful in arriving at an appropriate set of 

association rule templates.

5.3.2 Interesting Events

Forty-nine interesting events from the analysis are given in Appendix B. Most of 

the interesting events are location-specific. They describe possible state, county, 

hospital, and zip-code outbreaks of invasive disease. Of these, some describe outbreaks 

amongst specific ethnic, age, and race groups, some describe possible serotype-specific 

outbreaks, and others describe possible outbreaks of DRSP. In all, Appendix B contains 

some very interesting events. For example, events 4 and 7 of Appendix B describe a 

possible outbreak of invasive pneumococci amongst infants in hospital AA015. An index 

to some events in Appendix B is given in Table 18.
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5.4 Inter-Seasonal Analysis

Unlike the UAB data set, the CDC data set has a clear seasonal component. The 

number of invasive Streptococcus pneumoniae isolates is relatively high in the early 

Table 18: An Index of CDC Events.

Indeces in Appendix B

zip code specific events 25, 28, 29,31,39,43

hospital specific events 4, 7, 8, 9, 13, 26, 32, 34, 39, 40, 42,46, 48

serotype specific events 11, 15, 18, 20,21,24,35.41

DRSP events 11, 16, 17, 30, 45,47,49

winter months and relatively low in the summer months (Figure 23). Typically with 

seasonal data, it is customary to analyze trends between like seasons of successive years 

so that inter-seasonal trends can be identified.

Inter-seasonal analysis can be accomplished by DMSS. In such an analysis, each 

partition should contain data from an entire season in a given year, and successive 

partitions should contain data from the same season in successive years. Then user- 

defined parameters should be set appropriately. To do an inter-seasonal analysis requires 

at least several years of data Since this much data was not available to us for either the 

UAB or CDC data sets, we were unable to do an inter-seasonal analysis for either 

domain.
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5.5 Processing Larger Data Sets

In the CDC data set, the attribute of largest geographic location is “state” (e.g. 

Louisiana), and the attributes of smallest geographic location are “hospital” and “ZIP 

code.” If we require that all interesting events contain location information, then we need 

to estimate the incidence of such events that would constitute an outbreak at the smallest 

and largest locations in the data set. In the analysis of the CDC data set, we require that 

an event occur at least 3 times in a hospital or ZIP code in a single partition to be 

included in the history and monitored for interesting changes in time. Consequently, to 

detect an outbreak of events of at least 3 cases in a calendar month in a hospital or ZIP 

code, we used an FSST of 3 for processing each partition.

For a state-wide outbreak, i.e., one that is state-specific but not specific to smaller 

geographic areas, we may want to see at least 12 cases of an event in a single partition. 

The frequent set support threshold for such an analysis could therefore be set to 12. This 

means that in the analysis of the CDC data set, we could have looked for state-wide 

events by rerunning the entire analysis with a higher FSST. If an outbreak of 12 cases 

occured in one county or ZIP code, then DMSS would still generate a county or ZIP code 

specific event. It would not, however, detect an outbreak of 6 cases within a county or 

ZIP code.

An estimation of outbreak size is relevant because for data sets larger than the 

CDC data set, generating low-support frequent sets becomes prohibitive. For such data 

sets, several analyses should be done with different subsets of the data and different 

FSSTs. For example, if the CDC data set contained just 5 times the number of records 

per partition, DMSS would not be able to efficiently generate frequent sets with an FSST 
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of 3. This does not mean, however, that we could not do an analysis. Since the attribute 

of largest geographic location is “state,” we could run an analysis of the entire data set 

with FSST = 12 to detect state-wide outbreaks. If 12 was still too low, then we could 

break the data set up into pieces, one piece per region (several states) and run the analysis 

with FSST=12 on a time series of partitions from each region We would still detect all 

state-wide outbreaks of events that occurred 12 times per partition, but we would have to 

run a separate analysis for each region. This way, we distribute the work by running a 

separate analysis for each of region Assuming an FSST = 12 is reasonable for analyzing 

the entire data set, we could then break the data set up by “state” and run a more detailed 

analysis (Le., lower FSST) for each state. In each of these state analyses, we want to find 

county, ZIP code, and hospital outbreaks. Therefore, we could try the analysis with 

FSST = 3. If this were too small, then we could analyze the state data with an FSST of 

say 6 to search for county outbreaks, then break up a county’s data into smaller subsets to 

look for zip-code and hospital-specific outbreaks.

In summary, we believe that a strategy of recursively splitting a data set and 

analyzing each smaller piece with a lower FSST would be effective for analyzing larger 

data sets.
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CHAPTER 6

THE FUTURE OF DATA MINING AND EPIDEMIOLOGIC SURVEILLANCE 

As data-intensive health information systems of the future are created, 

epidemiologists will need new tools to help them more efficiently utilize the data that are 

collected. In this dissertation, we have constructed a link between data mining and 

epidemiologic surveillance through the development, implementation, and application of 

the Data Mining Surveillance System (DMSS). Using DMSS to analyze the UAB data 

set, we demonstrated that DMSS could efficiently find complex and emerging patterns of 

nosocomial disease by examining clinical laboratory data. With the CDC data set, we 

demonstrated the potential for using DMSS in the analysis of public health surveillance 

data.

New and sophisticated analytical tools are needed in both public health and 

hospital epidemiology surveillance. As described by Dean et at (1994), the ideal public 

health surveillance system of the future will include analysis tools that automatically 

identify, on different time and geographical scales, unusual and interesting patterns from 

time-slices of raw data. DMSS is a representative of the first generation of these tools. 

Likewise, in hospital epidemiology, the infection control systems of the future will 

require efficient and timely recognition of trends in nosocomial infection and 

antimicrobial resistance (Schlaes et at 1997). Systems like DMSS, therefore, will be 

needed.

92
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We hope that the work presented here is only the beginning of the use of data 

mining in epidemiologic surveillance. While we believe it is a good start, many issues 

need more research. For example, data mining is clearly a human-centered process. 

With this in mind, how can we improve the interaction between DMSS and the user or a 

group of users? A more efficient interaction would be especially valuable for defining 

association rule templates. Once templates are satisfactory, i.e., useful results are 

generated, can they be made to adapt to the changing perceptions of users over time.

Other areas for research include better, perhaps automated, ways to analyze large 

data sets (Section 5.5), more intuitive information presentation, developing a distributed 

version of the clone algorithm, and increasing the expressiveness of association rule 

templates and windowing schedules.

Other strategies for detecting trends and outbreaks in time-series data could be 

investigated. These include cumulative sums, log-linear regression, the scan statistic, and 

shape templates. Would any of these be more effective than tests of two proportions for 

detecting certain trends? Could DMSS use one or more of these at a time.

A fertile area of research is the use of maps or graphs for detecting geographic 

outbreaks of disease. While DMSS can currently identify geographic patterns, it can only 

do so to the extent that the geography can be represented in a taxonomy. A significant 

improvement would allow DMSS to utilize maps (e.g., a floor plan of a hospital, or a ZIP 

code graph) to identify outbreaks that cover contiguous or related geographic units.

Utilization research issues are plentiful. For example, comprehensive hospital 

and public health surveillance will need to utilize automated analysis systems such as 

DMSS. To do so, what data are needed for the types of surveillance desired, and how do 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

we collect it and clean it in a timely fashion? How will the results be used to make 

proactive policy decisions, and how are those decisions going to be implemented to 

change current practice? The answers to these questions will require new paradigms for 

both public health and hospital epidemiology.

We hope that the work described in this dissertation is a start of a new 

relationship between data mining and epidemiologic surveillance.
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EVENTS FROM THE 9612 SEARCH

1. {NP_GNR, nosocomial} => {R~Piperacillin R~Ceftazidime R~Gentamicin} 
• []9609: 0/180| []9610: 2/124 | []9611: 1/130 | *9612: 6/100 |
• p = 0.004 rel diff = 8.68
. increased nosocomial NP_GNR resistance to three important gram-negative drugs. 

Not location or organism specific.

2. {NP_GNR, nosocomial} => {R~Piperacillin, R~Ceftazidime, R~Ceftiroxime, 
R~Cefazolin R~Ceftriaxone}
• []9609: 0/180 | []9610: 1/124 | []9611:4/130 | *9612: 7/100 |
• p = 0.005 rel diff = 6.076
• Piperacillin and cephalosporin resistance up in nosocomial NP_GNR. Not location 

or organism specific.

3. {Klebsiella pneumoniae, NP_GNR} => {R~Cefotetan, R~Ceftazidime, 
R~Cefiiroxime R~Cefazolin, R~Cephalothin, R~Ceftriaxone}
• []9609: 0/79 | []9610: 1/79 | []9611: 4/85 | *9612: 8/76 |
• p = 0.007 rel diff = 5.11579
• Pan-cephalosporin resistance up in Klebsiella pneumoniae.

EVENTS FROM THE 9701 SEARCH

4. EmptySet => {LocW9NW, GPC, Staphylococcus aureus, R-AmoxicillinCIK, 
R~Cefazolin R~ErythromycinEst R~Cephalothin R~Clindamycin R~Oxacillin} 
. []9610: 0/894 | []9611: 0/760 | []9612: 0/709 | *9701: 4/834 |
• p = 0.009 rel diff = Inf
• Possible MRS A outbreak in W9NW.

5. {Klebsiellapneumoniae, NP_GNR, nosocomial} (R-Piperacillin R-Cefotetan, 
R-Cefiazidime, R-Cefiiroxime, R~Cefazolin, R-Cotrimazole, R~Cephalothin, 
R~Gentamicin, R~Ceftriaxone}
. []9610: 1/12 | []9611: 1/25 | []9612: 1/23 | *9701: 10/26 |
• p = 0 rel diff = 7.69231 .
• Possible clonal, nosocomial outbreak ofhighly-resistant Klebsiella pneumoniae.

EVENTS FROM THE 9702 SEARCH

6 {LocM8} => {NP_GNR, nosocomial}
. []9611: 3/17 | []9612: 2/12 | []9701: 5/15 | *9702: 10/15 |
• p = 0.002 rel diff = 2.9333
• Incidence of NP_GNR isolation up in M8.
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7. {LocHTIC} => {nosocomial, GPC, Staphylococcus aureus}
• []9611: 0/16 | []9612: 0/16 | []97O1: 0/12 | *9702: 4/15 |
• p = 0.006 rel diff = Inf
• Possible outbreak of nosocomial S. aureus in the HTIC.

8. {NP_GNR, nosocomial, LocSICU} => {R~Piperacillin, R~Cefotetan, 
R~Ceftazidime, R-Cefuroxime, R~Cefazolin, R~Cephalothin}
• []96l 1:0/21 | []9612: 1/15 | []970l: 1/24 | *9702: 5/15 |
• p = 0.006 rel diff = 10
• Cephelosporin and piperacillin resistance up in nosocomial, non-psuedomonas gram­
negative rods in the SICU.

9. EmptySet => {NP_GNR, Citrobacterfreundii, nosocomial, R~Piperacillin, 
R~Cefotetan, R~Ceftazidime, R~Cefuroxime, R~Cefazolin, R~Cephalothin, 
R-Ceftriaxone^
• []9611: 0/760 | []9612: 0/709 | []9701: 1/836 | *9702: 5/742 |
• p = 0.008 rel diff = 15.5323
• Possible clonal outbreak of nosocomial Citrobacter freundii.

EVENTS FROM THE 9703 SEARCH

10. EmptySet => {NP_GNR, nosocomial, LocURO}
• []9612: 0/709 | []9701: 1/836 | []9702: 2/744 | *9703: 7/798 |
• p = 0.009 rel diff =6.69298
• Possible infection control breach in URO.

11. EmptySet => {nosocomial, R~Piperacillin, LocW7NW}
• []9612: 0/709 | []9701: 0/836 | []9702: 0/744 | *9703: 4/798 |
• p = 0.009 rel diff = Inf
• Nosocomial piperacillin resistance up in W7NW.

12. {non-nosocomial, Pseudomonas aeruginosa} => {R~TicarcillinClavK}
. []9612: 1/43 | []9701: 2/55 | []9702: 1/46 | *9703: 10/52 |
• p = 0.001 rel diff =6.92308
• Ticarcillin resistance amongst community-acquired P. aeruginosa.

13. EmptySet => {nosocomial, Streptococcus pneumoniae, GPC, R~ErythromycinEst} 
• []9612: 0/709 | []970l: 0/836 | []9702: 1/744 | *9703: 6/798 |
• p = 0.003 rel diff = 17.2105
• Possible nosocomial outbreak of Strep, pneumoniae.
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14. {NP_GNR, nosocomial} => {Acinetobacter baumannii, R~Piperacillin, 
R~Cefotetan, R-Ceftazidime, R-Cefuroxime, R~Cefazolin, R~Ampicillin, 
R~Cephalothin, R~Gentamicin, R~Tobramycin, R~Ciprofloxacin, R~Amikacin, 
R~Aztreonam, R—Mezlocillin, R~TicarcillinClav, R~Ofloxacin, R—Cefotaxime, 
R~T rimethoprim}
• []9612: 0/100 | []9701: 0/121 | []9702: 0/108 | *9703: 5/106 |
• p = 0.002 rel diff = Inf
• !! An apparent nosocomial outbreak of highly resistant Acinetobacter baumannii. 

This is the seeded outbreak from 1994.

EVENTS FROM THE 9704 SEARCH

15. EmptySet => { NP_GNR, nosocomial, Klebsiella oxytoca} 
e []9701: 2/836 | []9702: 5/742 | []9703: 1/800 | *9704: 10/784 | 
• p = 0.01 rel diff =3.79145
• Possible outbreak of nosocomial Klebsiella oxytoca.

16. {LocMICU} => {nosocomial, R-Cefazolin}
• []9609: 0/26 | []9610: 3/15 | []961 1: 0/23 | []9612: 0/16 | []9701: 1/15 | []9702: 1/23 | 
*9703:5/24|*9704:4/17|
• p = 0.003 rel diff =5.18049
• Nosocomial resistance to cefazolin is up in the MICU.

17. {Pseudomonas aeruginosa} => {R~TicarcillinClavK, R-Ciprofloxacin}
• []9609: 0/98 | []9610: 3/1001 []9611: 1/79 | []9612: 1/73 | []9701: 2/83 | []9702:
0/66 | *9703: 5/85 |*9704: 6/69 |
• p = 0.001 rel diff =5.09184
• p. aeruginosa is becoming increasingly resistant to two important anti­

pseudomonas drugs.

18. {NP_GNR, nosocomial} => {R~Ceftazidime, R-Cefuroxime, R~Ciprofloxacin} 
• []9609: 0/180 | []9610: 1/124 | []9611: 0/130 | []9612: 3/100 | []9701: 4/121 | 
[]9702: 6/108 | *9703: 8/106 | *9704: 5/122 |
• p = 0.002 rel diff =3.10746
• Cephalosporin and fluoroquinolone resistance is on the rise amongst non­

Pseudomonas gram-negative rods.

EVENTS FROM THE 9705 SEARCH

19. {nosocomial, LocMICU} => {R~Cefazolin}
• []9610: 3/8 | []96l 1: 0/141 []9612: 0/11 | []9701: 1/7 | []9702: 1/13 | []9703: 5/20 | 
*9704:4/11 | *9705: 7/17 |
• p = 0.005 rel diff = 2.86786
• Cefazolin resistance remains up amongst nosocomial MICU isolates.
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20. {Pseudomonas aeruginosa} => {R~TicarcillinClavK, R~Ciprofloxacin}
• []9610: 3/100 | []9611: 1/79 | []9612: 1/73 | []9701: 2/83 | []9702: 0/66 | []9703:
5/85 | *9704: 6/69 | *9705: 6/74 |
• p = 0.001 rel diff = 3.3986
• P. aeruginosa resistance to ticarcillin and ciprofloxacin remains high.

21. i LocCCU} => {NP_GNR, Proteus mirabilis, nosocomial}
• []9702: 0/20 | []9703: 0/23 | []9704: 0/21 | *9705: 3/13 |
• p = 0.008 rel diff = Inf
• Nosocomial P. mirabilis makes an appearance in the CCU.

22. {Pseudomonas aeruginosa} => {R~Piperacillin, R~Tobramycin, 
R~TicarcillinClavK}

• []9702: 0/66 | []9703: 0/85 | []9704: 0/69 | *9705: 4/74 |
• p = 0.008 rel diff = Inf
• A new combination of P. aeruginosa resistance comes on the scene.

EVENTS FROM THE 9706 SEARCH

23. {LocP7} => {NP_GNR, nosocomial}
• []9611: 4/21 | []9612: 0/13 | []9701: 1/29 | []9702: 0/24 | []9703: 0/21 | []9704: 1/15 |
*9705:4/181*9706: 5/21 |
• p = 0.004 rel diff = 4.73077
• Possible infection control breach in P7.

24. {NICU} => {NP_GNR, nosocomial. Enterobacter cloacae}
e []9703: 1/32 | []9704: 0/33 | []9705: 0/24 | *9706: 3/12 |
• p = 0.01 rel diff = 22.25
• Nosocomial Enterobacter cloacae up in the NICU.

EVENT FROM THE 9707 SEARCH

25. EmptySet => {GPC, Staphylococcus aureus, LocS9SW, R~Cefazolin, 
R-AmoxicillinCIK, R~Cephalothin. R~Oxacillin}
• []9704: 0/786 | []9705: 0/742 | []9706: 0/717 | *9707: 5/901 |
• p = 0.004 rel diff = Inf
• A possible outbreak of MRS A in S9SW.

EVENTS FROM THE 9708 SEARCH

26. EmptySet => {NP_GNR, Nosoocomial. LocIM}
• []9705: 0/742 | []9706: 0/717 | []9707: 0/903 | *9708: 4/787 |
e p = 0.008 rel diff = Inf
• Possible infection control breach in IM.
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27. {NP_GNR, nosocomial} => {R~TicarcillinClavK}
• []9705: 1/118 1 []9706: 1/120 | []9707: 2/141 | *9708: 12/127 |
e p = 0 rel diff = 8.95276
• Ticarcillin resistance on the rise amongst nosocomial NP_GNR.

28. {nosocomial, LocRNIC} => {R~Ceftazidime}
• []9705: 1/10 | []9706: 0/8 | []9707: 1/13 | *9708: 6/13 |
e p = 0.01 rel diff = 7.15385
• Ceftazidime resistance up in nosocomial isolates from the RNIC.

29 EmptySet => {nosocomial, GPC, LocNICU, Staphylococcus aureus}
• []9701: 3/834 | []9702: 3/742 | []9703: 2/800 | []9704: 6/784 | []9705: 5/740 |
[]9706: 3/715 | *9707: 9/901 | *9708: 9/787 |
• p = 0.009 rel diff = 2.23691
• Higher incidence of nosocomial Staphylococcus aureus from the NICU.

30. {Klebsiella pneumoniae, NP_GNR, nosocomial} => {R~Piperacillin, 
R~Cefotetan, R~Ceftazidime, R~Ceftiroxime, R~Cefazolin, R~Cotrimazole, 
R~Cephalothin, R~Tobramycin, R-TicarcillinClavK, R-Cipro floxacin, 
R~Ceftriaxone}

• []9705: 0/28 | []9706: 0/28 | []9707: 0/21 | *9708: 4/26 |
• p = 0.007 rel diff = Inf
• Possible clonal outbreak of highly-resistant Klebsiella pneumoniae.

31. {NP_GNR, nosocomial} => {Acinetobacter baumannii, R~Piperacillin, 
R~Cefotetan, R-Cefuroxime, R~Cefazolin R~Cephalothin R~Gentamicin 
R~Tobramycin R~Ciprofloxacin R-Amikacin R~Aztreonam R-Mezlocillin 
R~Ofloxacin R~Cefotaxime R-Trimethoprim}
. []9705: 3/118 | []9706: 0/120 | []9707: 0/141 | *9708: 7/127 |
• p = 0.007 rel diff = 6.96325
• Vicious strain of nosocomial Acinetobacter baumannii seen in the 9703 search 

makes a return appearance.

EVENTS FROM THE 9709 SEARCH

32 EmptySet => {NP_GNR, nosocomial, Enterobacter aerogenes} 
’ • []9706: 1/717 | []9707: 5/901 | []9708: 7/787 | *9709: 13/872 |
• p = 0.007 rel diff = 2.75803
• Nosocomial Enterobacter aerogenes up in each of last four months.

33. {LocIM} => {NP_GNR, nosocomial}
• []9702: 0/40 | []9703: 0/28 | []9704: 0/28 | []9705: 0/35 | []9706: 0/20 | []9707: 0/41 | 

*9708: 4/39 | *9709: 2/34 |
e p = 0.001 rel diff= Inf
• Rare nosocomial NP_GNR isolates from the IM. Possible infection control breach.
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34. EmptySet => {Serratia marcescens. NP_GNR. nosocomial. R~Ceftazidime}
• []96I0: 1/894 | []961l: 1/760 | []9612: 0/709 | []9701: 3/834 | []9702: 0/744 | 
[]9703: 0/800 | []9704: 2/786 | []9705: 1/742 | []9706: 1/717 | *9707: 2/903 | *9708: 
3/787 | *9709: 6/872 |
• p = 0.004 rel diff =3.33273
• Nosocomial, ceftazidime resistant Serratia marcescens up in last three months.

35. EmptySet => {NP_GNR, nosocomial. LocNICU. Serratia marcescens} 
• []9706: 0/717 | []9707: 0/903 | []9708: 0/789 | *9709: 4/872 |
• p = 0.01 rel diff = Inf
• Possible outbreak of nosocomial Serratia marcescens in the NICU.

EVENTS FROM THE 9710 SEARCH

36. EmptySet => {NP_GNR, nosocomial, LocS6SW}
• []9707: 0/903 | []9708: 1/789 | []9709: 0/874 | *9710: 5/8541
• p = 0.009 rel diff = 15.0234
• Possible infection control breach in S6SW.

EVENTS FROM THE 9711 SEARCH

37. EmptySet => {nosocomial, LocSICU. R~Ceftriaxone}
• []9704: 0/786 | []9705: 1/742 | []9706: 1/717 | []9707: 2/903 | []9708: 0/789 |
[]9709: 1/874 | *9710: 5/856 | *9711: 4/764 |
• p = 0.005 rel diff = 5.34556
• Nosocomial, SICU, Ceftriaxone resistance up.

38. EmptySet => {non-nosocomial, GPC, Streptococcus pneumoniae}
• []9708: 1/789 | []9709: 4/872 | []9710: 4/856 | *9711: 10/762 |
• p = 0.01 rel diff = 3.67017
• Community acquired Streptococcus pneumoniae up. (expected seasonal)

39 {LocSICU} => {NP_GNR, nosocomial, Enterobacter cloacae}
' • []9704: 3/38 | []9705: 1/26 | []9706: 2/32 | []9707: 3/33 | []9708: 1/26 | []9709: 3/54 |

* 9710: 7/50|*9711:9/46|
• p = 0.004 rel diff = 2.67949
• Nosocomial Enterobacter cloacae up in the SICU.

40. {LocRNIC} => {nosocomial, Staphylococcus epidermidis, GPC}
• []9708: 5/13 | []9709: 6/13 | []9710: 5/12 | *9711: 10/11 |
• p = 0.004 rel diff =2.15909
• Investigate infection control practices in RNIC
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4L EmptySet => {nosocomial, Staphylococcus epidermidis, GPC, R~AmoxicillinClK, 
R~ErytiiromycinEst, R~Clindamycin, LocRNIC}
• [19612: 1/709 | []9701: 2/836 | []9702: 2/744 | []9703: 4/798 | []9704: 1/786 | 
[]9705: 2/742 | []9706: 4/715 | []9707: 3/901 | []9708: 3/787 | *9709: 5/874 | *9710: 
5/854|*9711:8/762|
• p = 0.007 rel diff = 2.30602
• Related to event 40. Suggests increase incidence of a specific strain of 

Staphylococcus epidermidis in the RNIC.
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EVENTS FROM THE 9504 SEARCH

1. {StateEE} => {Ethnic9}
• []9501: 1/39 | []95O2: 4/38 | []9503: 11/51 | *9504: 19/46 |
• p = 0 rel diff =3.30435

2. (Sex2, StateBB} => {Bacteremia, Ethnic2, CountyBB03}
• []9501: 0/41 []9502: 0/9 | []9503: 1/13 | *9504: 6/13 |
• p = 0.006 rel diff = 12

EVENTS FROM THE 9505 SEARCH

3. {Sexi, StateDD} => {CountyDD20}
• []9502: 0/0 | []9503: 0/0 | []9504: 2/17 | *9505: 10/18 |
• p = 0.006 rel diff =4.72222

4. {StateAA, AgeGrp2YRS} => {Ethnic9, Bacteremia, HospIDAA015} 
• []9502: 0/16 | []95O3: 0/14 | []9504: 0/22 | *9505: 3/11 |
• p = 0.008 rel diff = Inf

EVENTS FROM THE 9507 SEARCH

5. {StateCC, CountyCC02} => {Ethnic9}
• []9504: 2/16 | []9505: 2/16 | []9506: 2/8 | *9507: 8/8 |
• p = 0 rel diff = 6.66667

6 {RaceWHITE, StateHH, CountyHH031 => {Bacteremia} 
. []9504: 1/18 | []9505: 1/8 | []9506: 1/8 | *9507: 4/6 |
• p = 0.01 rel diff = 7.55556

7. {StateAA, Ethnic9, AgeGrp2YRS} => {Bacteremia, HospIDAA015} 
• []9504: 0/16 | []9505: 3/10 | []9506: 19 | *9507: 7/13 |
• p = 0.009 rel diff = 4.71154

8. {RaceBLACK, Sexi, Ethnic2, StateEE} {HospIDA25}
• []9504: 1/10 | []9505: 2/10 | []9506: 2/7 | *9507: 7/8 |
• p = 0.002 rel diff = 4.725

9. {Sexi, StateCC} => {Ethnic9, CountyCC02, HospIDCC002}
• []9504: 0/32 | []9505: 0/241 []9506: 0/14 | *9507: 4/18 |
• p = 0.003 rel diff = Inf
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EVENTS FROM THE 9508 SEARCH

10. {Ethnic9, StateCC} => {CountyCC02'f
• []9501: 0/0 | []9502: 0/0 | []9503: 3/23 | []9504: 2/18 | []9505: 2/15 | []9506: 2/9 |

*9507: 8/20 | *9508: 4/8 |
ep = 0.002 rel diff =3.09524

11. {StateAA} => {Bacteremia, R~CotSIR2, R~TaxSIR, Serotype23F} 
• []9505: 0/50 | []9506: 1/37 | []9507: 1/34 | *9508: 3/11 I
• p = 0.008 rel diff = 16.5

EVENTS FROM THE 9510 SEARCH

12. {StateCC} => {Ethnic9, CountyCC02}
e []9503: 3/60 | []9504: 2/59 | []9505: 2/50 | []9506: 2/39 | []9507: 8/29 | []9508: 4/16 |

*9509: 4/25 | *9510: 15/53 |
e p = 0 rel diff =2.93468

13. {Ethnic9, StateCC, CountyCC02} => {HospIDCC021} 
e []9507: 0/8 | []9508: 0/4 | []9509: 0/4 | *9510: 7/15 | 
e p = 0.005 rel diff = Inf

14. {StateBB} => {Bacteremia, Pneuml. Ethnic2, CountyBBOS} 
• []9507: 0/7 | []9508: 1/6 | []9509: 2/10 | *9510: 9/17 |
• p = 0.006 rel diff = 4.05882

EVENTS FROM THE 9511 SEARCH

15. {StateAA, Ethnic9} {Serotype23F}
• []9504: 3/50 | []9505: 1/45 | []9506: 3/34 | []9507: 3/32 | []9508:

*9510: 6/35 1*9511: 10/52 |
• p = 0.006 rel diff = 2.50903

l 9 | []9509: 3/21 |

16. {RaceWHITE, StateCC} {R~CotSIR2, R~PenSIR2}
• []9504: 3/41 | []9505: 3/38 | []9506: 1/25 | []9507: 0/16 | []9508: 0/9 | []9^09: 1/15 |

*9510: 3/35 | *9511: 10/42 |
•p = 0.006 rel diff =3.03896

17. EmptySet => {R~CotSIR2, R~PenSIR2, Ethnic2, AntbgramRISRSSSSI}
• []9508: 0/89 | []9509: 0/134 | []9510: 0/266 | *9511: 6/305 |
• p = 0.006 rel diff = Inf
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18 {StateAA, Sex2, Ethnic9} => {Bacteremia, Serotype014}
• []9504: 1/23 | []9505: 0/21 | []9506: 3/14 | []9507: 0/15 | []9508: 0/2 | []9509: 1/9 |

*9510: 3/16|*9511:8/28|
• p = 0.002 rel diff =4.2

19 {Sex2, StateBB} => {Bacteremia, Ethnic2, CountyBB05}
• []9504: 2/13 | []9505: 2/9 | []9506: 1/4 | []9507: 0/2 | []9508: 1/4 | []9509: 2/5 |

*9510: 6/7|*9511:7/12|
• p = 0.001 rel diff = 3.16447

EVENTS FROM THE 9512 SEARCH

20. {StateAA, Ethnic9} => {Serotype004}
• []9509: 1/21 | []9510: 1/35 | []9511: 1/52 | *9512: 13/81 |
e p = 0.001 rel diff = 5.77778

21. {StateAA, Ethnic9} => {Serotype06B{
• [19501: 4/56 | []9502: 3/64 | []9503: 2/55 | []9504: 3/50 | []9505: 3/45 | []9506: J/34 | 

[]9507: 2/32 | []9508: 0/9 | []9509: 1/21 | *9510: 5/35 | *9511: 6/52 | *9512: 10/81 |
• p = 0.007 rel diff = 2.17857

22. {StateCC} => {Ethnic9, CountyCC02{
e [19501: 0/0 | []9502: 0/0 | []9503: 3/60 | []9504: 2/59 | []9505: 2/50 | []9506: 2/39 | 
[]9507: 8/29 | []9508: 4/16 | []9509: 4/25 | *9510: 15/53 | *9511: 13/66 | *9512: 21/89

I
• p = 0 rel diff = 2.61962

23. {Ethnic2, StateDD} => {CountyDD20[
. []9509: 2/7 | []9510: 0/8 | []95ll: 2/10 | *9512: 9/14 |
• p = 0.007 rel diff =4.01786

24 {StateAA, AgeGrp 1864YRS} => {Ethnic9, Serotype004}
• []9509: l/8|[]9510: 1/18 | []9511: 0/16 | *9512: 10/40 |
• p = 0.01 rel diff = 5.25

25. {StateAA, CountyAA05} => {Ethnic9, ZipAA03Z}
• []9509: 0/5 | []9510: 0/6 | []95ll: 0/11 | *9512: 7/21 |
• p = 0.007 rel diff = Inf

26 {StateCC} => {Ethnic9, CountyCC02, HospIDCC002} 
‘ • []9509: 0/25 | []9510: 0/53 | []9511: 0/66 | *9512: 8/89 |
• p = 0.001 rel diff = Inf
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27. {AgeGrp 1864YRS. StateDD} => {Pneuml, CountyDD20}
• []9509: 0/2 | []9510: 0/7 | []9511: 1/10 | *9512: 12/27 |
• p = 0.004 rel diff = 8.44444

28. {StateCC, CountyCC07} => {Pneuml, ZipCC51D}
• []9505: 0/16 | []9506: 1/18 | []9507: 1/7 | []9508: 0/0 | []9509: 0/10 | []9510: 2/12 | 

*95U:3/19|*9512:8/25|
• p = 0.006 rel diff = 3.9375

29. {StateAA} => {Ethnic9, Bacteremia, CountyAA05, ZipAA03Z}
• []9509: 0/24 | []9510: 0/39 | []9511: 0/65 | *9512: 6/90 |
• p = 0.009 rel diff = Inf

30. {Sex2, StateBB} => {Bacteremia, R~CotSIR2, R~PenSIR2}
• []9505: 0/9 | []9506: 1/4 | []9507: 0/2 | []9508: 0/4 | []9509: 1/5 | []9510: 0/7 | 

*9511: 5/12 | *9512: 5/16 |
e p = 0.005 rel diff = 5.53571

31. {RaceBLACK, StateCC} => {Pneuml. CountyCC07, ZipCC51D}
• []9505: 0/8 | []9506: 1/11 | []9507: 1/9 | []9508: 0/5 | []9509: 0/7 | []9510: 1/12 | 

*9511:3/14|*9512:7/25|
• p = 0.007 rel diff = 4.44444

32. {StateHH , CountyHH03} => {Pneuml, Ethnic2, HospID00002} 
•[]9509: 0/5 | []9510: 0/10 | []9511: 2/22 | *9512: 7/15 | 
•p = 0.002 rel diff = 8.63333

EVENTS FROM THE 9601 SEARCH

33. {StateEE} => {CountyEE08}
• []9510: 1/38 | []9511: 2/50 | []9512: 4/80 | *9601: 10/61 |
• p = 0.007 rel diff = 3.93443

34. {StateDD} => {Ethnic9, HospIDDD524}
• []9510: 0/42 | []9511: 1/38 | []9512: 0/64 | *9601:5/35 |
• p = 0.002 rel diff =20.5714

35. {StateAA, Ethnic9, AgeGrp 1864YRS} => {Serotype004}
• []9506: 0/13 | []9507: 0/10 | []9508: 1/2 | []9509: 1/5 | []9510: 1/17 | []9511: 0/13 | 

*9512: 10/37|*9601:5/26|
• p = 0.003 rel diff =4.7619

36 {Sex2, StateDD} => {Ethnic9, CountyDD14} 
. []9510: 0/16 | []9511: 0/12 | []9512: 1/27 | *9601: 5/14 | 
• p = 0.002 rel diff = 19.6429
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37. {Sex2, Ethnic9, StateDD} => {CountyDD14}
• []9510: 0/13 | []9511: 0/7 | []9512: 1/18 | *9601: 5/11 |
• p = 0.003 rel diff= 17.2727

38. {Sex2, Ethnic2, StateCC} => {Bacteremia}
. []9506: 0/18 | []9507: 0/2 | []9508: 0/2 | []9509: 0/2 | []9510: 1/6 | []9511: 0/8 |

*9512: 4/14 | *9601: 2/4 |
• p = 0.006 rel diff = 12.6667

39 {Sexi, StateCC, CountyCC02} {Ethnic9, ZipCC90Z, HospIDCC028}
• []9510: 0/10 | []9511: 0/9 | []9512: 0/20 | *9601: 3/8 |
• p = 0.007 rel diff = Inf

40. {Sexi, AgeGrpl864YRS, StateCA, CountySANFRANCI} => {Outcome9, 
HospEDSF051}
• []9510: 0/7 | []9511: 0/11 | []9512: 0/10 | *9601: 5/16 |
• p = 0.008 rel diff = Inf

EVENTS FROM THE 9602 SEARCH

41. {StateAA} => {Ethnic9, Bacteremia, Serotype004}
• 119503- 1/72 I [19504: 2/66 | []9505: 3/50 | []9506: 0/37 | []9507: 2/34 | []9508: 0/11 | 

[]9509: 1/24 | []9510: 1/39 | []9511: 1/65 | *9512: 7/90 | *9601: 5/64 | *9602: 2/19 |
• p = 0.004 rel diff =2.92801

42. {StateHH, CountyHH03} => {Ethnic2, HospID00006}
• []9507: 0/7 | []9508: 0/10 | []9509: 0/5 | []9510: 0/10 | []95U: 1/22 | []9512. 0/15 | 

*9601: 3/21 | *9602: 8/35 |
• p = 0.001 rel diff = 13.5536

43. {StateAA} => {CountyAA07, Ethnic9, Bacteremia, ZipAA31B}
• []9511: 2/65 | []9512: 2/90 | []9601:0/64 | *9602: 4/19 |
• p = 0.003 rel diff = 11.5263

44. {StateAA, Ethnic9, RaceWHITE, AgeGrp65YRS| =» {Pneuml, CountyAA°81
• [19503- 0/5 I [19504: 0/7 | []9505: 1/6 | []9506: 0/8 | []9507: 0/1 | []9508. 0/1 | 

[]9509: 0/1 | []9510: 0/5 | []9511:0/7 | *9512: 3/10 | *9601: 2/6 | *9602: 1/2 | 
• p = 0.005 rel diff = 13.6667

EVENTS FROM THE 9603 SEARCH

45. {StateAA} => {Ethnic9, R~CotSIR2, R~PenSIR2}
• []9512: 7/90 | []9601: 6/64 | []9602: 1/19 | *9603: 11/44 |
• p = 0.002 rel diff = 3.08929
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46. {StateHH, CountyHH03} => {Ethnic2. HospID00006}
• []9508: 0/10 | []95O9: 0/5 | []9510: 0/10 | []9511: 1/22 | []9512: 0/15 | []9601: 3/21 |

*9602: 8/35 | *9603: 5/26 |
e p = 0.002 rel diff = 4.42213

47. {StateAA, Sex2} => {Ethnic9, Bacteremia, R~TetSIR2}
. []9512: 1/41 | []9601: 2/25 | []9602: 0/10 | *9603: 5/14 |
e p = 0.004 rel diff = 9.04762

48 {Sex2, StateHH, CountyHH03} => [Ethnic2, HospID00006}
• [19504: 0/8 | [19505: 0/7 | []9506: 0/6 | []9507: 0/4 | []9508: 0/7 | []9509: 0/1 | 

[]9510: 0/4 | []9511: 1/10 | []9512: 0/6 | *9601: 1/7 | *9602: 4/18 | *9603: 4/15 |
• p = 0.004 rel diff = 11 925

49. {StateAA, Sex2} => {Bacteremia, R~CotSIR2, R~PenSIR2, R-TaxSIR, 
R~ErySIR2, R~TetSIR2}
• []9512: 0/41 | []9601: 0/25 | []9602: 0/10 | *9603: 3/14 |
• p = 0.006 rel diff = Inf
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