
University of Alabama at Birmingham University of Alabama at Birmingham

UAB Digital Commons UAB Digital Commons

All ETDs from UAB UAB Theses & Dissertations

1998

Automated knowledge acquisition of case-based semantic Automated knowledge acquisition of case-based semantic

networks for interactive enhancement of the data mining process. networks for interactive enhancement of the data mining process.

Aubrey Eugene Hill
University of Alabama at Birmingham

Follow this and additional works at: https://digitalcommons.library.uab.edu/etd-collection

Recommended Citation Recommended Citation
Hill, Aubrey Eugene, "Automated knowledge acquisition of case-based semantic networks for interactive
enhancement of the data mining process." (1998). All ETDs from UAB. 6209.
https://digitalcommons.library.uab.edu/etd-collection/6209

This content has been accepted for inclusion by an authorized administrator of the UAB Digital Commons, and is
provided as a free open access item. All inquiries regarding this item or the UAB Digital Commons should be
directed to the UAB Libraries Office of Scholarly Communication.

https://digitalcommons.library.uab.edu/
https://digitalcommons.library.uab.edu/etd-collection
https://digitalcommons.library.uab.edu/etd
https://digitalcommons.library.uab.edu/etd-collection?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F6209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.uab.edu/etd-collection/6209?utm_source=digitalcommons.library.uab.edu%2Fetd-collection%2F6209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.uab.edu/office-of-scholarly-communication/contact-osc

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9 black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AUTOMATED KNOWLEDGE ACQUISITION OF CASE-BASED SEMANTIC
NETWORKS FOR INTERACTIVE ENHANCEMENT OF THE DATA MINING

PROCESS

by

AUBREY E. HILL

A DISSERTATION

Submitted to the graduate faculty of the University of Alabama at Birmingham,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

BIRMINGHAM, ALABAMA

1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9839837

Copyright 1998 by
Hill, Aubrey Eugene

All rights reserved.

UMI Microform 9839837
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright by
Aubrey E. Hill

1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF DISSERTATION
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Ph.D. Program Computer and Information Sciences

Name of Candidate Aubrey E. Hill

Committee Chair Warren Jones

Title Automated Knowledge Acquisition of Case-Based Semantic Networks for

Interactive Enhancement of the Data Mining Process

This work presents a knowledge acquisition algorithm for the automated

construction of a case-based semantic network model from conventional relational

databases. An associative retrieval algorithm is also provided to support interactive use

of the model. Scalability of the performance of the knowledge acquisition algorithm is

investigated with a parallel version. In addition to acquiring explicit information, which

is represented as cases, the knowledge acquisition algorithm also captures the semantic

and associative relationships which are implicit in the database. The semantic links

define set membership for the acquired cases and the associative relationships define

concepts. A user friendly graphical user interface has been developed to facilitate access

to the knowledge base. A browsing facility, which supports navigation of semantic links,

is particularly suited for enhancing interactivity of the data mining process with original

data after interesting patterns have been identified.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to acknowledge and thank those who have helped make this research

possible. First, I thank my advisor, Dr. Warren Jones, for his flexibility and for bringing

me into the research group in the summer of 1996. Also, I would like to thank the other

members of my committee: Dr. Sanjay Singh, for his encouragement; Dr. Mike Hardin,

for his advice and discussions of Bayesian techniques; Dr. Barrett Bryant, for his editing

and comments; and Dr. Robert Hyatt, for his advice on parallelism.

I would also like to acknowledge and thank Dan Austin of BellSouth, for his

flexibility and friendship; Lewis Hughes of BellSouth, for the use of his multiprocessor

computer; my wife, Donna, for her support during the writing of this dissertation; and,

finally, God, for providing the means at every step of the way towards this degree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

ABSTRACT... 111

ACKNOWLEDGMENTS...1V

LIST OF TABLES..vn

LIST OF FIGURES...vm

CHAPTER

1 INTRODUCTION... 1

Purpose..1
The Need for Knowledge.. 1
Declarative Knowledge Versus Procedural Knowledge.................................3
The Problem of Brittleness...5
Objectives..?

2 PREVIOUS AND RELATED WORK.. 9

CBR... 9
Origins of CBR.. 10
Case-Based Learning.. 1$
Knowledge Discovery/Data Mining and Machine Learning........................ 17

3 THE KNOWLEDGE BASE ARCHITECTURE...21

The Conceptual Knowledge Base...
The Database Implementation of the Knowledge Base...................................... 27

4 KNOWLEDGE ACQUISITION...33

A More Detailed Description of the Algorithm.. 37
Counting duplicate input records... 37
Determining if a case already exists.. 37
Determining if an item already exists in the IS_A_Table.......................38
Dynamic recalculation of the links.. 39

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page
TABLE OF CONTENTS (Continued)

CHAPTER

An Example to Demonstrate the Knowledge Acquisition Algorithm.......... '
A Parallel Version of the Knowledge Acquisition Algorithm...................... '

5 PERFORMANCE EXPERIMENTS.. '

6 THE ASSOCIATIVE RETRIEVAL PROCESS...

7 CONCLUSIONS AND FUTURE WORK.. 1

LIST OF REFERENCES..

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Cage

1 Example of Input Data...25

2 The Case Base Table..28

3 IS_A_TABLE... 28

4 CASE_IS_A_TABLE.. 29

5 DB_ASSOCIATIONS_TABLE...29

6 Input Records... 41

7 The CASE_BASE Table..41

8 The CASE_IS_A Table..42

9 DBASSOCIATION Table..43

10 IS_A Table..44

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

LIST OF FIGURES

Figure

1 Nearest neighbor similarity metric...

2 Conceptual view of the knowledge base..

3 A high level view of the algorithm..

4 Comparison of serial and parallel versions for 4 attributes....................

5 A high level view of the parallel algorithm..

6 Comparison of one-process versus two-processes as a function of the
number of attributes (time in seconds)..

7 Comparison of serial and parallel versions for one attribute..............

8 Comparison of serial and parallel versions for two attributes...........

9 Comparison of serial and parallel versions for three attributes..........

10 Comparison of serial and parallel versions for five attributes.............

11 Performance of one process as a function of number of attributes..

12 Performance of two processes as a function of number of attributes

13 Effect of database reorganization on performance...............................

14 Performance of the strength calculation routines

15 The initial screen..

16 The initial search window.....................................

17 The case details window.......................................

18 Examples of IS_A_Organism...............................

19 Following relationship links.................................

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES (Continued)

Figure Page

20 CASE STACK implementation... 65

21 Example of minimized detail display windows...66

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Purpose

This research proposes an approach to the problem of constructing artificially in

telligent systems with the common world knowledge which they require to become in

creasingly intelligent and useful. It describes an algorithm for the automated acquisition

of declarative knowledge from existing databases. An architecture for the resulting

memory is also presented. The algorithm, in conjunction with this memory architecture,

will allow the system to add continually to the contents of its cumulative, persistent,

probabilistically associative, case-based semantic memory. In addition to the knowledge

acquisition algorithm and the memory architecture, an algorithm for the retrieval of

items from memory is also presented. This retrieval mechanism is designed to work with

the memory to provide probabilistic recall and intelligent traversal of the entire memory.

The Need for Knowledge

Knowledge-based systems are based on the physical symbol system hypothesis

(Laird, Newell, & Rosenbloom, 1987; Newell & Simon, 1976). This hypothesis states

that a general intelligence must be realized with a symbolic system. In this viewpoint the

physical world is represented as a mental model consisting of a collection of symbols

and their interrelationships. The knowledge-based system “reasons and thinks by ma

nipulating its internal mental model. This manipulation often consists of simulation

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

and/or search by the activation and following of causal or associative links in the mental

model. This hypothesis is related to the characterization of computer programs as con

sisting of data structures and algorithms. Computer implementations of such mental

models include Patil’s (1981) causal model of electrolyte and acid-base disorders and

Hill’s (1987) AMEX system for the diagnosis of malfunctions in an ammonia synthesis

plant. Ford, Bradshaw, Adams-Webber, and Agnew (1993) have made the case that

know-ledge acquisition is actually an exercise in domain modeling.

Knowledge-based systems often perform tasks such as diagnosis, which in hu

mans requires the possession of a body of knowledge and experience referred to as ex

pertise. It has been acknowledged that artificial intelligence (AI) depends upon the pos

session of large amounts of knowledge, both domain specific and general world know

ledge. “Artificial intelligence” and “knowledge based” are often used synonymously.

Minsky and Papert (1974), as quoted in Harris (1985, p. 9), contrast the knowledge based

approach to AI to the previously favored power-based approach as follows:

The power strategy seeks a generalized increase in computational power.
It may look toward new kinds of computers.. .The knowledge strategy
sees progress as coming from better ways to express, recognize, and use
diverse and particular forms of knowledge... .The view that the process
of intelligence is determined by the knowledge held by the subject.

Paul Cohen and Edward Feigenbaum (1981, Preface xv) note in the preface to

volume 3 of their Handbook of Artificial Intelligence, that “The power of an arti

ficial intelligence program is directly proportional to what it knows... . The per

formance of learning programs is directly proportional to what they know.” Riese-

beck (1979, p. 409) notes the need for knowledge in natural language processing:

“Understanding natural language texts requires knowledge-lots of it. It requires .

.. knowledge about the physical world.” Harris (1985) makes the case that world

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

knowledge is needed for pragmatic analysis (in addition to the usual syntactical

and semantic analysis) in natural language processing. She defines pragmatics as

involving knowledge of the physical world, frames of reference, and the context

in which a single statement is made. The importance of knowledge for the reali

zation of AI is the same as she defines for natural language understanding, which

is that a great deal of the information that people use is not stated explicitly but

can be inferred from what is stated. As an example, if it was stated that someone

had fallen in the water, most people could infer wetness as a result. This is pos

sible because people have stored the fact that water has the property of imparting

wetness to almost any object that it touches. In contrast, a knowledge-lean com

puter program might simply assert the fact that the person had changed position

from out of water to in water. Benjamin Kuipers (1979), one of the leading re

searchers in the field of qualitative simulation, defines commonsense knowledge

as

knowledge about the structure of the external world that is acquired and
applied without concentrated effort by any normal human that allows him
or her to meet the everyday demands of the physical, spatial, temporal
and social environment with a reasonable degree of success, (p. 394)

Declarative Knowledge Versus Procedural Knowledge

The knowledge used by AI programs is typically classified as being either de

clarative or procedural. Declarative knowledge is the static knowledge about events, ob

jects, relationships, and the physical world. Procedural knowledge is “know how” or

“how to” knowledge. Goldstein and Papert (1977) describe procedural knowledge as

follows: “An item of knowledge, a concept... is seen as an active agent rather than as a

passive manipulatable object.” (p. 98).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

As a simple example, a subroutine which adds two numbers is procedural knowl

edge, whereas a table-lookup of sums uses the declarative knowledge stored in the table.

Declarative knowledge is usually explicit, while procedural knowledge is implicit.

Both types of knowledge are needed. Declarative knowledge is usually thought of as the

data structures of a program, whereas procedural knowledge is thought of as the code that

manipulates those structures to reach new conclusions. Declarative knowledge without

procedural knowledge is passive and does not lead to new inferences. Totally procedural

systems often resemble single purpose black boxes that cannot explain their reasoning or

describe their knowledge. They are not as likely to be able to “muse” (as described by

Fertig and Gerlemter, 1988, who coined the term “musing databases”) about what they

know. Bjork and Bjork (1996, p. 364), in their book, Memory, stress the importance of

declarative knowledge: “A major component of thinking seems to be the possession of

accessible and usable declarative knowledge.”

Preserving knowledge in an explicit, declarative form, as opposed to the deriva

tion of rules or decision trees, is an issue of representation. While representation may

not matter to the computer, it is very important for the interaction with humans. It is easy

to see that in many instances a particular system could be implemented as a neural net

work, a set of production rules, a case base, or a semantic network. However, case bases

and semantic networks are much more understandable than rules or neural networks.

Case bases and semantic networks also lend themselves to the production of explana

tions. Representation is a very important issue. Findler (1979) wrote that the structure

of knowledge representation is of paramount importance and that the success of the proj

ect concerned critically depends on it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

The Problem of Brittleness

In 1997 the chess-playing program, Deep Blue, defeated the reigning human

chess champion, Gary Kasparov. Following this event, Kasparov was asked for his

thoughts and analysis of the match, which he provided. By the standard of chess-playing

ability, Deep Blue is more intelligent than Kasparov; however, no one considered asking

Deep Blue for its thoughts and analysis. This example points out one of the major prob

lems with AI programs and especially with expert systems—brittleness. Brittleness is de

fined as abrupt failure when a system reaches the limits of its domain knowledge. There

fore, while Deep Blue possessed the procedural knowledge to be extremely competent at

chess, it did not have the declarative world knowledge and natural language processing

capability to be able to comment on its recent encounter with Kasparov. The need for

world knowledge is being addressed in a number of ways. For expert systems in limited

domains, human experts are interviewed to obtain expertise. This is usually an ineffi

cient, expensive, and time-consuming approach to knowledge acquisition. Domain ex

perts are valuable, and their available time is limited and fragmented. Often, those with

the most expertise are the least introspective. Among the other approaches are the CYC

project (Lenat & Guha, 1990), which is attempting to hand code enough information so

that the system can then begin to acquire information on its own. The SNOWY project

(Gomez, Hull, & Segami, 1994) attempts knowledge acquisition by reading encyclopedia

articles. A number of techniques in the categories of machine learning, data mining, and

knowledge discovery address the knowledge acquisition problem. Among these are the

creation of decision trees, rules by induction from a large number of examples, and the

construction of Bayesian belief networks. Langley and Simon (1995) list the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

five basic learning paradigms: (a) neural networks, (b) case-based reasoning (CBR), (c)

genetic algorithms, (d) rule induction, and (e) analytic learning.

While each of these has produced impressive results, the end result, with the pos

sible exception of CBR, is not what is usually intended when it is said that a human has

learned something. Neural nets, genetic algorithms, rule induction, and analytic learning

all result in rules, functions, or optimal parameters. CBR results in the clustering of epi

sodic memories. The intended use of most of these techniques is the creation of systems

which can classify new inputs based on past training examples. In practice, most of the

learning is procedural, limited to a single domain, and not cumulative. To begin the pro

cess of building intelligent systems will require that these systems be capable of acquir

ing both procedural and declarative knowledge in multiple domains. This knowledge ac

quisition should be cumulative so that the system becomes increasingly knowledgeable.

The difficulty of knowledge acquisition has resulted in the descriptive term,

“knowledge acquisition bottleneck.” Entire books (Eysenck & Keane, 1995) have been

devoted to the techniques for acquiring knowledge.

Ideally, artificially intelligent systems would learn nouns and fundamental con

cepts by direct observation of the physical world, in conjunction with labeling by a “par

ent” or “teacher.” This fundamental knowledge could then be used to bootstrap the

leaming-by-reading process. This learning by direct observation is not currently possi

ble. This research proposes the learning of nouns and concepts by a process of automated

knowledge acquisition from conventional databases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Objectives

In general, the proposed techniques could result in populated memories which

could serve as a basis/testbed for various AI projects. A generic associative memory with

known mechanisms for knowledge acquisition, storage, organization, and recall could

serve as a starting point for subsequent AI research. A more specific, practical use

would be as a knowledge acquisition tool for knowledge-based expert systems.

At a conceptual level the memory will be represented as a dynamic, probabilistically as

sociative, case-based semantic network. At a lower level it will utilize a conventional

database management system. The concurrent implementation of these three representa

tions—(a) probabilistic associations, (b) cases as the elemental item in the memory, and

(c) semantic/associative networks-will allow several modes of reasoning. Among these

are (a) simple associative recall, (b) CBR/recall, (c) model-based reasoning/qualitative

simulation, and (d) the use of hierarchies/taxonomies. The implementation of cases will

simulate human episodic memory (Eysenck & Keane, 1995), while the construction

(where possible) of named links such as “is-a and causes will simulate human se

mantic memory (Quinlan, 1966).

This work has the following specific objectives: (a) the design of an algorithm for

the conversion of conventional databases to declarative knowledge bases, (b) the design

of a parallel version of this database conversion algorithm, (c) the comparison of the per

formance of serial and parallel versions of the algorithm, (d) a conceptual model and im

plementation model for the resulting probabilistically associative case-based semantic

memory, (e) an algorithm to retrieve items from memory which utilizes the probabilistic

nature of the knowledge base, (f) a demonstration of the knowledge base as an intelligent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

database, and (g) proposing an enhanced interactivity version of the data mining process

model.

In chapter 2, we discuss related research. Chapter 3 describes the knowledge base

architecture. The knowledge acquisition algorithm is presented in chapter 4, and a

parallel version is discussed in chapter 5. Chapter 6 describes the associative retrieval

process. Finally, conclusions and future work are presented in chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

PREVIOUS AND RELATED WORK

This work is positioned at the intersection of a number of subdisciplines of com

puter science. It was originally conceived from the perspectives ofCBR and data mining.

It specifically addresses the processes of case acquisition and case retrieval. Case-based

retrieval, in turn, is related to the area of associative memory. The problems of inserting

new items into an associative memory and retrieving these same items suggested both the

memory architecture and its retrieval mechanisms. There is also intersection with the dis

ciplines of knowledge-based systems, machine learning, and intelligent databases.

CBR

CBR can be viewed as a knowledge representation technique, a reasoning mecha

nism, and a machine learning technique. Leake (1996) describes CBR as reasoning based

on remembering versus reasoning by the chaining together of generalized rules. He de

scribes the knowledge source for CBR as a collection of stored cases recording specific

prior episodes. Kolodner (1993) describes CBR as a reasoning strategy in which the rea

soner remembers previous situations similar to the current one and uses them to help solve

the new problem. According to Leake (1996), CBR is based on two principles: (a) The

world is regular and similar problems have similar solutions, and (b) the problems tend to

recur. The full cycle of CBR (Kolodner, 1993) involves the following steps:

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

1. Retrieve cases from the collection of cases.

2. Propose an approximate solution.

3. Adapt the approximate solution to fit the new situation.

4. Criticize the retrieved solution to determine if it is the best alternative.

5. Evaluate the goodness of the solution in the real world.

Cases are the basic unit of knowledge in CBR. A case is a thing or a situation

which is remembered. Kolodner and Leake (1996) define a case as a contextualized piece

of knowledge representing an experience that teaches a lesson. A collection of cases

forms a case base which serves as an episodic memory of specific events. The retention

of specific memories as opposed to generalizations distinguishes episodic memory from

semantic memory. For example, the memory of a specific person is episodic, whereas the

memory of the general characteristics of people is an example of semantic memory. In

dividual cases can be represented as objects or records, or as entries in a database. A very

useful definition of a case base is a database which allows fuzzy or ambiguous queries

(CBR Express for Windows User’s Guide. 1990-1995). Case-based methods are used in

legal, medical and business education and in the practice of these professions. In the legal

field much of the decision-making process is based on discovering precedents. Medical

diagnosis often consists of matching symptoms to diseases and retrieving a diagnosis from

memory. Many business schools use actual cases as a teaching method.

Origins of CBR

A number of researchers have proposed structures which could be called CBR.

The most obvious path to the development of CBR as it is currently defined begins with

the work of Roger Schank and Robert Abelson (1977). Schank s student, Janet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Kolodner, further refined the concept and established it as a separate subdiscipline of

computer science. Schank, a linguist by training, in the course of developing programs

which could understand natural language, proposed the idea of conceptual dependency

(Schank, 1973). In conceptual dependency theory, concepts are used to guide natural

language understanding by generating conceptual expectations. As an analogy to the

parser component of a compiler, which has certain language-dependent syntactical expec

tations based on previous input, a natural language processing system has certain con

ceptual expectations based on what concepts have occurred previously. A compiler, hav

ing seen a left parenthesis, would expect to encounter a matching right parenthesis. A

natural language system, based on conceptual dependency theory, having seen the sen

tence, “The ball was thrown across the plate,” would use its conceptual knowledge to de

termine first that the plate in question was a piece of baseball equipment and not some

thing used to hold food. Having this piece of information would, in turn, help determine

that the ball was probably a baseball. Purely syntactical analysis could never disambigu

ate the two senses of “plate.” Schank and Abelson continued to elaborate on their con

tention that true natural language understanding required episodic world knowledge

(Schank & Abelson, 1977; Schank, 1982). They proposed that the understanding of sto

ries involved the use of scripts, plans, and goals to produce expectations which were then

checked for conceptual consistency with the previous input. In their 1977 book, Schank

and Abelson describe a script as a standardized, generalized episode. In the 1982 book.

Dynamic Memory (Schank, 1982), their refined, practical definition of a script was, “a

data structure that was a useful source of predictions.” Plans are described as general in

formation about how actors achieve goals. Schank and Abelson (1977) introduce goals to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

generate expectations of likely events from contextual information about the characters

and from well developed belief systems about the world.

Their idea of a dynamic memory is based on the concept that we use what we

know to process new information. New input matches some existing structure in mem

ory, causes a modification to that structure ,or causes a new structure to be created. This

is referred to as failure-driven memory. Schank and Abelson’s (1997) view of such a

memory is not that of a passive repository from which facts are retrieved but rather that of

a dynamic organization in which reminding, understanding, and learning are all closely

related processes. Reminding is finding the correct memory structure to process an input.

Understanding is defined as finding the closest match to past experience for an input, and

coding that input in terms of the previous memory, indicating the difference between the

new input and the matching memory. Any expectation failure results in learning, where

learning is defined as a modification of memory structures. If none of the existing mem

ory structures provides expectations which are met by the current input, then the current

input must be something that has not been previously encountered; therefore, it is deemed

to be interesting. Interesting items are remembered.

Schank (1982) elaborates on the types of memory structures which are necessary

for understanding and learning. Specific memories are stored as scenes which consist of

physical aspects and goals. Scenes are connected together by structures which he calls

memory organization packets (MOPs). Scripts are attached to scenes to fill in the par

ticulars of that scene. As MOPS organize scenes, so scenes organize scripts. Scenes pro

vide general information about their attached scripts. The attached scripts provide the

particular details for scenes. Thematic organization points (TOPs) are structures that rep

resent abstract, domain-independent information. The ability to create TOPs is the key to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

reminding, memory organization, and generalization. TOPs, being defined in terms of

goals, plans, and themes, provide for cross-contextual remindings. All of these ideas

concerning dynamic memory and the use of existing memory structures to process new

inputs depend upon the successful retrieval of the appropriate items from memory. A key

issue in successful retrieval is the assignment of the proper indexes to items in memory.

Beginning with these ideas Kolodner (1983) developed CYRUS, a case-based

cognitive model of former Secretary of State, Cyrus Vance. Both Schank (1982) and

Kolodner (1983) address the issue of indexing in an episodic memory. Schank (1982) de

scribes indexing as the ultimate problem of memory. Indexes, also referred to as the la

bels of a case (Kolodner, 1996), are their important or defining sets of features. Indexes

are those sets of features which distinguish individual cases from others. As Kolodner

(1996) points out, it is important to understand the difference between the term index, as

used in the context ofCBR, and the term index as used in computer science. As stated, in

the context ofCBR an index is a distinguishing characteristic or a feature which makes an

case memorable. In computer science and database technology the term index is usually

interpreted as “pointer," which means a memory address calculated from the content of

the item to be stored. CBR uses indexes to find relevant cases. Database management

and file systems use indexes to provide random access to records and to avoid exhaustive

sequential searches. Of course, a distinguishing feature of a case can be indexed by a da

tabase management system to aid in finding particular records, but this is a separate issue

from the relevance of that feature to case retrieval. Cases can be simultaneously indexed

by various features. This can yield retrieval from various view-points.

Having collected a number of cases of interest and indexed them by their relevant

and distinguishing features, a CBR system is faced with its primary task of retrieving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

cases which are similar to the current input. This involves the process of matching and

ranking. These processes require the use of a similarity metric for the comparison of

cases. A simple nearest neighbor similarity metric is shown in Figure 1.

n
V w, x sim(f'.fR)

i = l i i

n
Z W,

i = 1

Figure 1. Nearest neighbor similarity metric. In this metric, i represents each of the indi
vidual features, w is the importance of each feature, and sim is the similarity measurement
for each feature, f1 is the value of the feature for the input and f R is the value of the fea
ture for the retrieved case. This calculation provides a means of comparing and ranking
each retrieved case (from the total casebase) to the input.

Although the path from Schank and Abelson (1977) through Kolodner (1983) is

one of the clearest routes to CBR. others have proposed similar approaches, although they

have not always referred to their work as CBR. Among these is the MBRtalk project,

which dealt with the pronunciation of English text (Stanfill & Waltz, 1986). Their prem

ise is that the intensive use of memory to recall specific episodes from the past, rather than

rules, should be the foundation of machine reasoning. The memory-based reasoning hy

pothesis is that reasoning may be accomplished by searching a database of worked prob

lems for the best match to the problem at hand. They contrast their work to rule induction,

which infers rules that reflect regularities in the data, by noting that their approach works

directly from the database of examples rather than first deriving rules. They claim that

memory-based reasoning differs from CBR and explanation-based reasoning in that their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

approach does not require the use of a strong domain model. Having made this claim,

they go on to

discuss the importance of context in the weighting of features and the interaction of fea

tures. Much of the emphasis by Stanfill and Waltz (1986) is on the use of parallelism in

retrieval. At the time both were involved with The Connection Machine project. Their

work seems to be CBR from a different viewpoint.

In his 1994 review article Aamodt (1994) notes that CBR is just one of a set of

terms used to refer to similar types of systems. He lists several related types of reasoning

which used past experiences as their basis:

1. Exemplar-based reasoning-which defines concepts extensionally as a set of its

exemplars. The Protos system is an example (Porter & Bareiss, 1986).

2. Instance-based reasoning—a specialization of exemplar-based reasoning to a

syntactic CBR approach. A large number of instances are needed to define a concept to

compensate for the lack of general background knowledge. Simple representations such

as feature vectors are used. The focus is on automated learning.

3. Memory-based reasoning—a large memory of many cases and parallel search are

the emphasis of this approach. Often, storage and access are more syntactic than sematic.

4. Analogy-based reasoning-often used to solve problems by the use of

cross-domain analogies versus the single domain emphasis of typical CBR.

5. CBR-typical CBR is distinguished from the previously mentioned methods by

the richness of information contained in the cases, the background knowledge which is

available, and the ability to modify and adapt retrieved solutions. This “full” CBR also

has a basis in cognitive psychology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Case-Based Learning

According to Kolodner (1993), case-based learning (CBL) is accomplished pri

marily by accumulating new experiences in memory and indexing them appropriately.

Learning also takes place when failures are explained and repaired, when successful con

clusions are explained, and when “good” indexes are generated. She holds the same view

proposed by early work ofSchank (1982) that learning is most often the result of the fail

ure of expectations. It is important to distinguish the failure of expectations from the fail

ure to achieve goals. In comparing the current input to a stored case(s), a reasoner will

have generated certain conceptual expectations. If these expectations are not met, an ex

pectation failure has occurred and must be explained and corrected. Learning has hap

pened by the modification or addition to memory. To begin reasoning a minimal number

of cases must be used to seed the case base. In many systems additional cases are learned

when expectation failure occurs.

CBL algorithms are often called “lazy learning” algorithms because they store the

entire training set and postpone all inductive generalization until classification time

(Wettschereck, Aha, & Mohri, 1997).

Aha (1991) proposes a number of CBL algorithms and discusses the most common

criticisms of this type of machine learning. In his view CBL algorithms are examples of

supervised learning algorithms which output a concept description. They process a set of

training cases and use them to classify new inputs into categories. The purpose of Aha’s

(1991) work was to correct the supposed deficiencies of CBL algorithms which had previ

ously been outlined by the critics of CBL. The simplest type, CBL1, stores all cases after

its preprocessor has normalized all numeric feature values. CBL2 differs from CBL1 in

that it retains only incorrectly classified cases in its concept descriptions. This is done in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

an attempt to reduce the computational load of computating similarity metrics for a large

number of cases and to reduce the storage requirements. Aha’s (1991) CBL3 algorithm

determines which stored cases correctly classified new input. Only those cases which

were successful were allowed to participate. The purpose of this modification is to gain a

tolerance for noisy cases. In part to address the criticism that CBL algorithms are sensi

tive to the choice of similarity function. Aha’s (1991) CBL4 learns a separate set of fea

ture weight settings for each feature.

CBL algorithms allow incremental learning. In contrast to approaches such as ar

tificial neural networks (ANNs), CBL allows the addition of new cases at any time with

out have to recalculate the weights of links between the nodes, as is done in ANNs. This

allows a CBL to do cumulative learning. Of all the machine learning techniques, CBL is

the closest to allowing the learning and use of declarative knowledge. Other techniques

such as the induction of decision trees and ANNs tend to be inexplicable black boxes

which cannot display their reasoning process or the original data from which it was de

rived. However, like most other machine learning techniques, the ultimate purpose of cur

rent efforts in CBL is to produce a system which can classify its inputs. While this is use

ful, the term machine learning generates expectations of more. To the uninitiated, ma

chine learning implies having computers learn as humans learn. This should consist, at

least in part, of learning declarative knowledge which can later be used for a number of

purposes, including discussion, browsing, and musing.

Knowledge Discovery/Data Mining and Machine Learning

Knowledge discovery in databases and data mining (KDD) is defined as the over

all process of discovering useful knowledge in data (Fayyad, Piatetsky-Shapiro, & Smith,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

1996) and also as “the nontrivial extraction of implicit, previously unknown, and poten

tially useful information from data" (Frawley Piatetsky-Shapiro, & Matheus, 1991). In

recent years KDD has been recognized as a new and useful area of research. The first

KDD workshop was held in 1989. KDD has developed in response to the existence and

constant growth of databases. The value of data is dependent upon being able to extract

useful information for decision support or understanding the phenomenon from which the

data were derived. Data mining is one step in the process (Fayyad et al., 1996) of knowl

edge discovery. The overall process has been described in terms of the following steps

(John, 1997):

1. Understand the problem.

2. Extract the data

3. Clean/engineer the data

4. Engineer a data mining algorithm.

5. Search for potentially interesting patterns by running the data mining al

gorithm.

6. Evaluate the patterns.

The data mining step makes use of specific algorithms for extracting patterns or

models from data. The data mining algorithms are often borrowed from the field of ma

chine learning.

Prediction and description are the two generally accepted high level goals of data

mining according to Fayyad et al. (1996). Prediction/Description can be facilitated by

constructing a model of the data and then using that model for prediction or description of

the underlying data (Epstein, 1997). This is much like doing a simple linear regression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

model of a number of data points. The resulting slope and intercept give both a descrip

tion of the data points and can be used to predict y-values for given x-values.

According to this view (Epstein, 1997; Fayyad et al., 1996), there are a number of

functions performed by the models resulting from data mining. These are (a) classifica-

tion-the determination of what attributes/values constitute a specified category and the

use of this knowledge to properly classify new inputs; (b) regression-building a model

and then using that model to predict continuous values; (c) time-series forecasting—similar

to regression, uses past data to attempt to predict future trends, (d) clustering—the group

ing of members into groups or clusters which are not known when the process is started

(clusters will be determined dynamically); (e) associations/link analysis-determining

which things consistently occur together; (f) sequence discovery/analysis-finding asso

ciations over time; (g) summarization—seeks a concise description of the data, and (h) de

pendency modeling—searches for dependencies among variables. The models which re

sult from data mining can be represented in a number of ways. Among the more com

monly used representations are decision trees; classification rules; linear models, nonlin

ear models such as neural networks, example-based methods (CBR), probabilistic graphi

cal dependency models (Bayesian networks); and relational attribute models (Wu, 1995).

Almost all of these techniques are intended either to classify new inputs or to predict fu

ture values. No research has been identified which proposes to provide an interactive fa

cility to support browsing a declarative knowledge base of the original data within the

context of interesting patterns identified by data mining.

This research also overlaps with the construction of ontologies. The dictionary de

fines ontology as the branch of philosophy that deals with being. Ontological engineering

(building knowledge bases) is the fundamental problem being addressed by the CYC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

project (Lenat & Guha, 1990). Copeland (1997) gives a review of the progress of CYC

and its prospects. The current problem with CYC and other ontological projects is that

much of the early work is expected to be manually constructed knowledge bases.

Another area which, to a large extent, depends upon the manual construction of

links and hypertext is the field of intelligent databases. As Parsaye, Chignell, Khoshafian,

and Wong (1989) describe in their book, the defining attributes of intelligent databases are

object-orientation, deduction and hypermedia (associative) technologies. They discuss

machine learning in conjunction with intelligent databases, but it is machine learning as

previously described. They do not describe how the construction of the associative hy

perlinks can be automated.

Finally, this research uses what could be described as a somewhat connectionist

architecture to represent its cases. There are precedents for this such as that described by

Tirri, Kontkanen, and Myllymaki (1996) in their paper on instance-based learning. How

ever, in the very first sentence of the abstract, the theme of using the acquired knowledge

for prediction is mentioned. While there are similarities to this instance-based learning,

their emphasis is on the ability to classify and predict using the joint probability distribu

tions of the various attributes to define a class or concept. The knowledge base architec

ture which is automatically generated by our approach is presented in the following chap

ter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

THE KNOWLEDGE BASE ARCHITECTURE

This work proposes a new approach to the acquisition of a declarative mental

model or declarative associative memories. This section presents the architecture of the

knowledge base which is the ultimate product of the knowledge acquisition. This archi

tecture will serve as an introduction to the algorithm which creates the knowledge base

from conventional databases and as an introduction to the associative retrieval algorithm.

The design of all three components, the declarative memory structures, the learning algo

rithm, and the retrieval algorithm, was coordinated to ensure the proper functioning of the

knowledge base as an associative memory/intelligent database. First, a conceptual view

of the knowledge base is presented with an explanation of the motivation for each com

ponent and feature. Next, the details of the relational database implementation of the

knowledge base is presented. The function of each table is described and related back to

the conceptual architecture. As mentioned in the introduction, the ideas and motivation

for this research came primarily from an interest in CBR and data mining for association

rules. At the time that this research was conceived, other members of our research group

were involved in the discovery of association rules in databases. The domain of that

work was the detection of the development of antibiotic resistance in organisms which

were of medical/public health significance (Brussette et al., in press). These association

rules were associations of two or more values which were actually part of a larger inci

dence of resistance. Associations were considered to be interesting For example, a certain

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

level of antibiotic resistance by a particular bacterium might be expected and known.

This level was considered background noise rather than a signal indicating a problem. It

is only when the change in the number of incidences of resistance over time (the slope)

changes dramatically that epidemiologists would consider it to be a public health prob

lem. The association rules which were discovered offered valuable indicators of devel

oping antibiotic resistance but were not easily linked back to the underlying data.

Epidemiologists might want to view the underlying cases from which the associa

tion rules were derived. It was recognized that each record in the database from which

the association rules were derived could be thought of as a case in the sense of CBR.

One of the original ideas was to save these as summarized memories of past incidents of

the development of antibiotic resistance or epidemics so that, when the kinetics of an in

dividual association rule indicated a developing situation, it could be related back to a

particular case (such as an epidemic) so that epidemiologists could realize what was hap

pening before they had all the data. This would allow public health workers to take ac

tion in the early stages of the developing situation. We discovered, in fact, that a similar

approach had been implemented (Bull, Kundt, & Gierl,1997). Saving every association

and relating each of these back to every record is computationally expensive and requires

large amounts of secondary storage. Every association means every n-item association,

where n is the number of items participating in the association. For an original record

having five attributes, this might include all 2-item associations, all 3-item associations,

all 4-item associations, and all 5-item associations. From these original ideas came the

view that every attribute-value pair and record combination could be considered an asso

ciation and that if the relative frequency of this association was included an association

rule could be created. These association rules would capture the knowledge which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

would, in human terms, reflect a person’s most recent experience or their normal context.

Consider the example of presenting a number of people with the word “screen” and ask

ing for their most immediate associations. A computer user might respond with refer

ences to monitors or cathode ray tubes, and a chemist would most likely be reminded of

the process of sorting particles by size (“screening”), whereas a carpenter might think of

the metal mesh used to cover windows. In addition to discovering these associations,

other objectives were to preserve the original data and to capture the semantic and class

membership information which was implicit in the original data. In one sense this be

comes an exercise in learning nouns by observing databases. The potential uses of the

resulting knowledge base include as a persistent, cumulative memory for an intelligent

system and as an intelligent, browsable database. As the knowledge acquisition algo

rithm was being developed, the interface as a memory for an intelligent system and the

needs of an intelligent database were kept in mind and influenced the design of the

learning algorithm. Actually, there are few differences in the use as a memory versus the

use as an intelligent database. The intelligent database with its graphical user interface

(GUI) provides a better demonstration, but the retrieval mechanisms would be the same.

In the first instance items would be returned from memory and displayed by the GUI.

One of the objectives of the intelligent database was to provide the ability to let the user

browse the database with no prior knowledge of the structure (or even the content) of the

database. In essence the user could approach the database/knowledge base with the

question, “What do you know about S. aureus?” The database would then find those

cases with which S. aureus was most frequently associated. These cases would be ranked

and presented to the user. The user could then view other examples of bacterial infec

tions, examine the attributes of bacterial infections or see other examples of cases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

involving bacteria (not necessarily just infections). This interactive browsing can be re

stricted to the domain of bacterial infections or expanded to all domains. This example

reflects reminding within a single domain, such as the current knowledge of a medical

technologist. The relative frequency of associations of attribute =/value pairs such as the

association of S. aureus with infections in certain demographic groups would be expected

to change with time. When the medical technologist was first asked about infections in

volving a particular organism, the strongest reminding might be associated with children,

whereas a year later the same organism might be more frequently associated with infec

tions following surgery. The conceptual knowledge base design presented here can re

flect these changes in the strength of associations. When used as a memory for an intelli

gent system, items returned from the knowledge base would be placed in the expected

data structures rather than displayed by the GUI.

The Conceptual Knowledge Base

Conceptually, the model consists of nodes and associational and semantic links

between these nodes. The strength of the links is dynamic. The calculation of these

strengths is based on the relative frequency of a particular association compared to all

other associations in which that item participates. The memory is persistent and cumula

tive. It will continue to learn with time. Multiple, diverse databases can be included so

that the memory is knowledgeable about multiple domains. Table 1 presents example

input data. It consists of nine records from a database of bacterial infections which

might be encountered in a hospital laboratory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Example of Input Data

Table 1

Organism Site of infection Race Gender
E. coli Liver white Male
E. coli Liver white Male
Mvcobacterium Lung white Female
S. aureus Ear Asian Male
S. aureus Ear Asian Male
S. aureus Bone black Male
S. aureus Bone black Male
S. aureus Bone black Male
S. aureus Bone black Male

Figure 2 is a conceptual diagram of the associative memory created from Records

1 and 2 from the data in Table 1. The original records (duplicates combined) are repre

sented as nodes. Attributes and values associated with each record are also represented

as nodes. The arcs represent an association between each attribute/value and the indi

vidual cases. The numbers attached to each are represent the relative strength of each

association. The arcs linking the value nodes to the attribute nodes are designated as

“IS_A” links.

Conceptually and physically, the knowledge base uses a distributed representation

for cases. The item labeled “case 1” in Figure 2 holds only a case identifier. This node

represents both Record 1 and Record 2 of the original input shown in Table 1. The real

definition of the case is through the linking of this unique case identifier with the nodes

representing the various attributes such as site of infection, gender, race, and organism

and their corresponding values of liver, male, white, and E. coli.

The IS-A link between “case 1” and “infection” represents the set membership of

that particular case in the set of infections. This set membership is derived from the

name of the original input database table. This can be presented to the user simply as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

infection

organis0.22 0.22

HAS

HAS

male

HAS

0.22
whiterace

0.33

liver

Figure 2. Conceptual view of the knowledge base

site of
infection

HAS
▼ ' IS_A

0.88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

fact or it can allow the user to request other examples from that particular set. The same

is true for the other IS-A links shown in Figure 2. IS-A links serve to capture the implicit

semantic information which was included in the original conventional database.

The links between the case identifier node and the values of liver, male, white,

and E. coli can be interpreted as HAS-A links. For simplicity, the corresponding HAS-A

links between the case identifier node and its attributes such as site of infection, gender,

race and organism were not included in Figure 2. As discussed below in the section on

the retrieval process, a case can be retrieved from an attribute, a value, or a combination

of the two.

The strengths of the links are calculated by comparing the number of instances of

a particular value to the total number of values. For example, there were nine records

contained in the input table shown in Table 1. Of these nine records, two had E^coli as

the value for the attribute organism. Therefore, 2/9 yields a relative frequency of 0.22,

which means that most of the time when organism is considered, E. coli would not come

to mind. In contrast, S. aureus occurs as the value for organism. Its relative frequency is

0.77. As a final illustration, according to the input data, it is far more common for males

to have bacterial infections than for females.

The Database Implementation of the Knowledge Base

The knowledge acquisition algorithm reads conventional relational databases as

input and constructs the physical implementation of the conceptual design shown in Fig

ure 2. This is done by populating tables in yet another relational database. Each of these

tables implements a node and/or a link from the conceptual model. Tables 2-5 show the

database tables resulting from the data mining process. The first of these is the CASE_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

The Case Base Table

Table 2

Case ID Attribute Value Value to Case Strength Occurrences
1 ORGANISM E. coli 1.0000 2
1 SITE OF IN- liver 1.0000 2
1 RACE white 0.6667 2
1 GENDER male 0.2500 2
2 ORGANISM Mycobacterium 1.0000 1
2 SITE OF IN- lung 1.0000 1
2 RACE white 0.3333 1
2 GENDER female 1.0000 1
3 ORGANISM S. aureus 0.3333 2
3 SITE OF IN- ear 1.0000 2
3 RACE Asian 1.0000 2
3 GENDER male 0.2500 2
4 ORGANISM S. aureus 0.6667 4
4 SITE OF IN- bone 1.0000 4
4 RACE black 1.0000 4
4 GENDER male 0.5000 4

IS_A_TABLE

Table 3

Member Strength Set Occurrences
E. coli 0.2222 ORGANISM 2
Liver 0.2222 SITE OF INFECTION 2
White 0.3333 RACE 3
Male 0.8889 GENDER 8

Mycobacterium 0.1111 ORGANISM 1
Lung 0.1111 SITE OF INFECTION 1

Female 0.1111 GENDER 1
S.aureus 0.6667 ORGANISM 6

Ear 0.2222 SITE OF INFECTION 2
Asian 0.2222 RACE 2
Bone 0.4444 SITE OF INFECTION 4
Black 0.4444 RACE 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Table 4

CASE_IS_A_TABLE

Table 5

Member Strength Set Occurrences Domain
1 0.2222222 INFECTION 2 BACTERIAL INFECTIONS
7 0.1111111 INFECTION 1 BACTERIAL INFECTIONS
3 0.2222222 INFECTION 2 BACTERIAL INFECTIONS
4 0.4444444 INFECTION 4 BACTERIAL INFECTIONS

DB_ASSOCIATIONS _TABLE

DB V alue_T oDomainS trength Attribute Value Occurrences

BACTERIAL
INFECTIONS

0.08 ORGANISM E. coli 2

BACTERIAL
INFECTIONS

0.08 SITE OF IN
FECTION

liver 2

BACTERIAL
INFECTIONS

0.08 RACE white 2

BACTERIAL
INFECTIONS

0.08 GENDER male 2

BACTERIAL
INFECTIONS

0.04 ORGANISM Mycobacterium I

BACTERIAL
INFECTIONS

0.04 SITE OF IN
FECTION

Lung 1

BACTERIAL
INFECTIONS

0.04 GENDER Female I

BACTERIAL
INFECTIONS

0.08 ORGANISM S.aureus 2

BACTERIAL
INFECTIONS

0.08 SITE OF IN
FECTION

ear 2

BACTERIAL
INFECTIONS

0.08 RACE Asian 2

BACTERIAL
INFECTIONS

0.16 SITE OF IN
FECTION

bone 4

BACTERIAL
INFECTIONS

0.16 RACE Black 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

BASE_TABLE which contains a distributed representation of each case. Its structure and

example data are presented in Table 2. The following is a detailed description of the pur

pose of each field of the CASE. BASE, TABLE. Each row (with duplicates incorpo

rated) in the original database table becomes a case which is stored as a set of 5-tuples

(one for each attribute-value pair) consisting of the following fields: (a) CASE ED-a

unique identifier for each case, (b) ATTRIBUTE--the name of each attribute from the

original database table, (c) VALUE-the corresponding value from the original database

table, (d) OCCURRENCES--the number of times that this case appeared (duplicates) in

the original database table, and (e) VALUE-TO-CASE-STRENGTH-the strength of as

sociation of this value to this case relative to the total number of associations with all

other cases. This table implements the value-to-case associations. Thus, a case exists as

a virtual entity consisting of multiple entries in the CASEBASETABLE. Original rec

ords 1 and 2 were combined into CASE1. Following the conceptual example shown in

Figure 1, CASE1 consists of four entries (one for each attribute-value pair), all of which

have the common CASE.ED, “1”. The VALUE.TO.CASE.STRENGTH shows the

relative frequency of a particular value-to-case association compared to all other cases

with which that value has an association. For example for CASE 1, E. coli is the value

for the attribute “ORGANISM.” Because original records 1 and 2 were duplicates, E.

coli occurred two times as the value for the attribute “ORGANISM”. In the original da

tabase there were no other cases associated with the value E. coli. Thus, the probability

of CASE 1 being selected when E. coli is the input to the memory is 1.00.

The IS.A.TABLE defines the set membership of values to attributes. It allows a

single value to potentially have membership in one or more sets (attributes). Table 3

shows the IS.A.TABLE resulting from the nine original records shown in Table 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

The following is a detailed description of the purpose of each field of the

IS A TABLE. Each attribute value pair from the original database is stored as a 4-tuple

consisting of the following fields. This table captures the semantic information which is

implicit in the original database schema. The IS_A_TABLE represents the set member

ship of the various values: (a) ATTRIBUTE—the name of each attribute from the original

database table, (b) VALUE-the corresponding value from the original database table, (c)

OCCURRENCES-the number of times that this attribute value pair appeared (dupli

cates) in the original database table, and (d) VALUE-TO-ATTRIBUTE-STRENGTH—

the strength of association of this attribute to this value relative to the total number of as

sociations with all other values. Consider the attribute, “ORGANISM”. E. coh occurs as

its value in two instances. There are seven other instances in which this attribute takes on

other values. Thus, the probability that “ORGANISM” will have the value BcoH is 2/9

or approximately 22%.

Table 4 is an example of the CASE_IS_A_TABLE. This table is similar to the

[SAT AB LE. It records the fact that each case is a member of a larger domain. The

following is a detailed description of the purpose of each field of the CASE_IS_A_ TA

BLE. Each case is stored (as a unique case identifier) to show its relationship to the

original database table from which it was derived. Like the IS_A_TABLE, it captures the

semantic information which is implicit in the database schema. This table stores the set

membership information for each case. Entries in this table are 4-tup les consisting of the

following fields: (a) Case ED-a unique identifier for each case, (b) Table Name-the

name of the original database table, (c) occurrences-the number of times that this case

appeared (duplicates) in the original database table, and (d) Case-to-Table-Strength—the

strength of association of this case to this table relative to the total number of associations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

with all other cases. In this example the domain of each case is bacterial infections.

Cases were placed in their own IS_A table to provide a cleaner design and to separate the

calculation of case-to-domain strengths from that of the attribute/value strengths.

The final table is the DB_ASSOCIATIONS table shown in Table 5. This was cre

ated to store the relative frequencies of various values to the entire database or domain.

For example if one mentioned the domain of bacterial infections, the associative memory

should retrieve the most common values (in its experience) which are related to infec

tions. In this example, if Table 5 represented the memory of a medical technologist, the

strongest associations with bacterial infections are where the attribute race has the

value “black” and where the attribute “site of infection” has the value “bone.” The weak

est associations are “Mycobacterium” as the value of “ORGANISM” and “female as

the value of “GENDER.” As a further illustration of the intended use of this table con

sider the scenario where a colleague asked a medical technologist what type of infections

were currently occurring in the hospital. The technologist would respond, We are see

ing quite a few S. aureus bone infections in black males."

The algorithm which builds this knowledge base is described in the following

chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

KNOWLEDGE ACQUISITION

A high level view of the algorithm is shown in Figure 3. The following pages de

scribe this algorithm in increasing detail. Many details have been deferred.

Given the name and location of the input database, the first task of the algorithm

is to read the database schema. From the schema a list of the database tables is created.

Each table is processed until the list is exhausted. For each table, the schema is consulted

to derive a list of attributes for that table. This list of attributes is stored in an ATTRIB

UTE-VALUE array.

Next the total number of records in the current input table is counted. This count

is retained to be used later in the calculation of the relative frequencies which are as

signed as the strengths between nodes in the knowledge base.

For each attribute the corresponding value from the current record is stored in the

ATTRIBUTE-VALUE array. The remaining preliminary step prior to actually making

entries into the knowledge base is to count the number of input records which are dupli

cates of the current input record. This count is also retained to be used later in the calcu

lation of the relative frequencies which are assigned as the strengths between nodes in

the knowledge base.

The first step in creating a new case in the knowledge base is to make an entry for

each attribute/value pair from the current input record in the IS_A table. As shown in

Table 3, the IS_A table consists of four fields: the member, the set, the strength, and the

number of occurrences. The set corresponds to the attributes of the current input record.
33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

For each database
Make a list of tables
For each table

Make a list of attributes
Count No_of_Records
For each Attribute-Value Pair

Make an entry in the Attribute_Value_Array
Next Attribute-Value Pair
For each Record

Make a list of values for this record
Count the No_of_Duplicates
For each AttributeValue Pair

Add a record to the IS A TABLE
Add a record to the DBASSOCIATIONS table

Next Attribute
Add a record to the CASE BASE TABLE
Add a record to the CASE_IS A_TABLE
Delete all occurrences of this record from original table

Next Record
Next Table
Recalculate IS A TABLE strengths
Recalculate CASE_IS_TABLE strengths
Recalculate DBASSOCLATIONSTABLE strengths

Next Database

Figure 3. A high level view of the algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

The member refers to the corresponding value for that attribute. The number of

occurrences is the count of the number of duplicate records previously mentioned. The

strength field represents the relative strength of the current value to its attribute compared

to all other values for that attribute. Strength is calculated later using the number of oc

currences. The purpose of making these entries in the ISA table is to capture the se

mantic set-membership information which is implicit in the original database schema.

This information is used later in the retrieval step to offer additional examples of mem

bers of a particular set.

The next step in creating the knowledge base is to make an entry in the

DB ASSOCIATIONS table as shown in Table 5. The purpose of this table is to capture

the associations between each value and the domain (database name) from which it was

acquired. As shown in Table 5, the DB.ASSOCIATIONS table consists of five fields:

the database name, the attribute, the value, the value-to-domain-strength, and the number

of occurrences. The number of occurrences is the count of the number of duplicate rec

ords previously mentioned. The strength field represents the relative strength of the cur

rent value to its domain compared to all other values for that attribute. Strength is calcu

lated later using the number of occurrences.

At this point, if a case representing the current input record (duplicate records in

cluded) is not found in the knowledge base, the distributed representation is created in

the CASE BASE table. Each new case is assigned a unique case identification number

which is calculated by incrementing the maximum current case number. In addition to

the CASE_ID field, the CASE_BASE table has an attribute field, a value field, a value-

to-case-strength field, and a number-o(-occurrences field. To create the distributed repre

sentation for a case, a record is created for each attnbute/value pair from the original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

input record. Each of these entries in the CASEBASE table is assigned the same unique

case identification number. The strength field represents the relative strength of the cur

rent value to this particular case as compared to all other cases with which the value has

an association. Strength is calculated later using the number of occurrences. The inclu

sion of the attributes in this table implements the HAS_A links which were described in

the conceptual model. This association of values to cases and its relative strength are

central to the retrieval process.

The final table involved in the population of the memory is the CASE lS_A table.

It serves the same function for cases that the IS_A table serves for individual values. It

captures and makes available the semantic and set-membership information which is im

plicit in the original database schema concerning cases. The CASE_IS_A table consists

of the fields member, set, strength, occurrences, and domain, where domain corresponds

to the name of the table in the original input database. This information is used later in

the retrieval step to offer additional examples of members of a particular set.

Following the entries into the various tables to create the knowledge base, the cur

rent input record (and any duplicates) is deleted from the input database. This is done to

avoid erroneously entering that record again. Doing so would result in an inaccurate

number of occurrences being recorded. This, in turn, would affect the calculation of the

strength of the links between nodes in the memory. The process described above is re

peated for each input record. When all input records have been processed, calls are made

to three separate subroutines to recalculate the strengths in the IS_A table, the

CASE_IS_A table, and the DB.ASSOCIATIONS table, respectively. These calculations

were originally made each time a input record was processed; however, in the interest of

computational efficiency, they were moved outside the record processing loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

A More Detailed Description of the Algorithm

This section describes the details of some of the more important parts of the algo

rithm. Because this research was implemented using a relational database management

system (Microsoft’s Access 2.0), all manipulations of both the input database and the

output database (referred to as the case base, knowledge base or memory) were imple

mented as structured query language (SQL) queries.

Counting duplicate input records. After reading an input record, it must be de

termined if the record is unique among the input records or is one of several duplicate

records. This is determined by the function COUNT_DUPLICATE_ RECORDS, which

accepts as parameters the name of the input database, the name of the table from which

the current input record came, an array containing the attnbute/value pairs for the current

record, and a count of the number of attributes for the current input record.

COUNT_DUPLICATE_RECORDS makes a call to CONSTRUCT_ SIMILAR_

RECORDS_QUERY, a subroutine which, using the parameters passed to it, constructs a

query for duplicate records. COUNT_DUPLICATE_RECORDS makes an SQL call to

execute this query and receives a count of duplicates of the current input record. This

count is used by the overall algorithm as the previously mentioned number of occur

rences” to calculate the strengths of the various links as described in the conceptual

knowledge base.

Determining if a case already exists. In the description ofSchank’s (1982) work,

it was noted that only novel inputs caused the creation of new structures in memory. In

this work it is also necessary to determine if a case already exists in the knowledge base.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

If not, a new distributed representation is created for the new input record. Otherwise,

the number of occurrences is simply updated. The function which determines if a case

corresponding to the current input record already exists is called IS_IT_ ALREADY _

IN CASE BASE, which receives as parameters the database name, the number of attrib

utes, and the attribute/value array for the input record.

The existence of a case which is identical to the input record is detected by deter

mining if there is a case in the CASE_BASE table which has exactly the same attributes

and values as the input record. Because cases have a distributed representation in the

CASE BASE table, this process requires that, for each attribute, a query must be con

structed for that attribute and its corresponding value from the input record.

IS_IT_ALREADY_IN_CASE_BASE is assisted in this process by the subroutine CON-

STRUCT_ONE_ATTRIBUTE_QUERY, which constructs a query for each attrib-

ute/value pair from the current input record. These queries are executed, and for each

record in the CASEBASE table (where the record consists of a case id, an attribute, and

its corresponding value) which matches the criteria, its score in the CASE SCORE table

is incremented. To ensure that only exact matches are returned, the total score is divided

by the number of attributes. Only those cases with a score of 1.0 are considered exact

matches.

Determining if an item already exists in the IS A Table. It is also necessary to

determine if an attribute/value pair already exists in the IS_A table. If the pair is not in

the IS_A table, a new entry is made; otherwise, the number of occurrences for that pair is

updated. The function ALREADY_IN_IS_A_TABLE determines which is required.

This is accomplished by constructing and executing an SQL query which performs a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

SELECT for all records which have the current attribute of the input record as the SET

field in the IS_A table and its corresponding value in the MEMBER field. This is done

for each attribute/value pair of the input record. The end result is that a particular attrib-

ute/value pair should appear only once in the IS_A table. All subsequent occurrences of

that pair in input records will cause the number of occurrences field to be incremented,

rather than creating a new entry.

Dynamic recalculation of the links. All input records are processed as described

above. The number of occurrences of each item is noted in its respective table. How

ever, the recalculation of the strengths of the various links is deferred until all input rec

ords have been processed by the main loop of the algorithm. This is a more efficient ap

proach which eliminates the repeated recalculation of the same link strengths. These re

calculations are done by four separate subroutines—one for each of four tables.

The first of these is RECALCULATE_VALUE_TO_DOMAIN_STRENGTHS.

This subroutine first performs a query to make a list of all values in the

DBASSOCIATIONS table. Then, for each of these values it determines the sum of the

number of occurrences. For each individual record which contains the value, the number

of occurrences (previously saved) is divided by the sum to derive the strength of that

value in the input database relative to all other values found in the input database.

The strengths of the IS_A links, as in the example E. coli IS_A bacterium, is re

calculated by the subroutine, RECALCULATE_IS_A_STRENGTHS. It does a similar

calculation where the number of occurrences of a specific value for an attribute is divided

by all occurrences of all values for that attribute. Updates are made to the IS_A table.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

RECALCULATE_VALUE_TO_CASE_STRENGTHS calculates the relative

strength of the links from individual values to cases. This strength is the relative strength

of the link between this value and a particular case when compared to the links between

that value and all other cases. This number indicates with which case a particular value is

most strongly associated. This subroutine updates the strengths in the CASE BASE ta

ble.

RECALCULATE_CASE_TO_DB_STRENGTHS performs an update of the

strength of association of each case to the database table from which it was derived. To

illustrate, within a database called “Bacterial Infections,” there might be two tables, “In

fections” and “Organisms.” Given a number of records in the “Infections” table, this sub

routine captures the implicit fact that each of these records is an example of an infection

and the relative frequency of occurrence. If each record is unique, then all are equal ex

amples of an infection. However, if some records are not unique and actually represent

duplicates, then these would be more common examples of the set of infections. This

relative frequency of occurrence is calculated by the subroutine and used later by the re

trieval procedures. These updates are performed in the CASE IS A table.

An Example to Demonstrate the Knowledge Acquisition Algorithm

The following is a demonstration of the algorithm using specific input records as

a example. Table 6 presents the example input records. This example assumes that the

knowledge base is initially empty. First, it is determined that there are a total of three

records in the input database. The construction of the knowledge base begins when the

knowledge acquisition algorithm reads the first record. Next, the algorithm constructs and

executes an SQL query to determine the number of records which are duplicates of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Table 6

Input Records

Organism S ite_o f_Infection Race Gender
E. coli liver white female
E. coli liver white female

S. aureus bone black male

current record. In this example there is one duplicate where a white female has a liver

infected by E. coli.

Table 7 shows the resulting CASE_BASE table. Records 1 and 2 are combined

into Case 1. The “occurrences” field records the fact that there were two occurrences of

this record. Case 2 represents the single remaining record. Notice that it has only one

occurrence.

The CASE_BASE Table

Table 7

Case_ID Attribute Value Value_to_Case_Strength Occurrences
1 ORGANISM E. coli 1.0000 2

1 S ITE_OF_INFECTION liver 1.0000 2

1 RACE white 1.0000 2

1 GENDER female 1.0000 2

2 ORGANISM S. aureus 1.0000 1

2 S ITE_OF_INFECTION bone 1.0000 1

2 RACE black 1.0000 1

2 GENDER male 1.0000 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

In this example, each value has a value-to-case-strength of 1.0, which indicates that the

particular value is associated exclusively with a single case. This strength is calculated

by dividing the number of occurrences for a specific value/case by all occurrences for

that value.

Table 8 presents the CASE_IS_A table, which was created from the three original

records. This table records the fact that each of these cases belongs to the set of infections

in the domain of bacterial infections. The domain of bacterial infections might include

other sets such as “organism” and “antibiotics.” Case I represents two input records and

therefore has an association to the set “INFECTION,” which is twice as strong as that for

Case 2, which represents only one record. This strength is calculated by dividing the

number of occurrences for a single case by the total number of cases in a given set.

Table 8.

The CASE_IS_A Table

Case ID Strength Set Occurrences Domain
1 0.6666667 infection 2 BACTERIAL INFECTIONS

2 0.3333333 infection 1 BACTERIAL INFECTIONS

Table 9 presents the database association table. The function of this table is to re

cord the relative number of occurrences of a single value to the total number of values

found in the input database. This provides a means to preserve and retrieve the associa

tions of values to a particular domain of expertise. In the current example, the values

“female,” E. coli, “white,” and “liver” occur at twice the frequency as do the values

“male,” S. aureus, “black," and “bone.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Table 9

DB_ASSOCIATION Table

Table 10 presents a populated IS_A table, which implements a semantic hierar

chy. Each value is used to populate the MEMBER field. Its membership in a particular

set is noted by entries in the SET field. In this example, “bone” has been the site of in

fection 33% of the time as compared to “liver,” which has been the site of infection 66%

of the time. Similarly, “female,” as the value for gender, is twice as common as “male.”

Db Attribute Value Value_to_Domain_Strength Occurrences
BACTERIAL-
INFECTIONS

GENDER female 0.1667 2

BACTERIAL-
INFECTIONS

GENDER male 0.0833 1

BACTERIAL-
INFECTIONS

ORGANISM E. coli 0.1667 2

BACTERIAL-
INFECTIONS

ORGANISM S.aureus 0.0833 1

BACTERIAL-
INFECTIONS

RACE black 0.0833 1

BACTERIAL-
INFECTIONS

RACE white 0.1667 2

BACTERIAL-
INFECTIONS

SITE-OF-
INFECTION

bone 0.0833 1

BACTERIAL-
INFECTIONS

SITE-OF-
INFECTION

liver 0.1667 2

All the strengths in these tables are dynamic. As new input records are converted

to cases, the relative strengths may change to reflect the most recent observations of the

knowledge base. Since the application of this algorithm to large databases is of practical

interest, the issues of scalability of the algorithm are investigated in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

IS_A Table

Table 10

Member Set Strength Occurrences
black RACE 0.3333 1
bone SITE OF 0.3333 1

INFECTION
E. coli ORGANISM 0.6667 2
female GENDER 0.6667 2
liver SITE OF 0.6667 2

INFECTION
male GENDER 0.3333 1

S. aureus ORGANISM 0.3333 1
white RACE 0.6667 2

A Parallel Version of the Knowledge Acquisition Algorithm

One intent of this research was that the knowledge base was to be persistent and

cumulative. That is, the system should continue to learn and should never forget any fact

that it had previously learned. In addition, it was intended to learn from databases from

various fields. If the process that has been described above can be considered to be the

learning of nouns, then multiple databases would begin to address the brittleness prob

lem which was previously mentioned. The system could simultaneously have knowledge

of bacterial infections and soccer. The performance of the algorithm which has been de

scribed begins as a linear function and with time degrades to a low order polynomial

(O(nx)). Although this is quite tractable, for large databases time does become a factor.

To compensate for this a parallel version of the algorithm was developed. Multiple cop

ies of this algorithm can be run on separate processors. Each of these copies works from

its own subset of the original input database. All copies write to a shared knowledge

base. To prevent conflicts and the entry of duplicate items into the knowledge base, a

form of database locking based on semaphores was implemented. This simple locking is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

the only form of interprocess communication that is required. Figure 4 presents a high

level view of the parallel version of the learning algorithm. The addition of the eight

lines of code which are preceded by an asterisk is all that is required to convert the serial

algorithm to a parallel algorithm. The case base (knowledge base) is implemented as a

set of relational tables. This design decision allowed for a simple conversion to a parallel

algorithm. The basic idea is that multiple processes could work simultaneously on the

creation of a common case base because each could work on different tables at different

times. The only requirement was a mechanism of locking and unlocking individual ta

bles when a process was working on that particular table. As soon as a process was done

with a table, the table was unlocked or released for use by another process. An additional

table for system use was created to implement the locking mechanism. This LOCK table

consists of only two fields. The first field contains the name of the table to be locked.

The other field contains the name of the process which has a lock on the table. A unique

database index was placed on the table field which prevents that table name from being

entered again by causing an error condition. When this error condition occurs, the lock

ing routine simply loops until it can successfully make the desired entry in the lock table.

This looping allows one process to wait on another. In addition to the subroutine which

locks certain tables by making entries into the LOCK table, there is also an UNLOCK

subroutine. At various points in the algorithm, a process will finish with a database table

and call the UNLOCK routine to release the table for use by other processes. The UN

LOCK routine receives as parameters the name of the table to be released and the name

of the calling process. By using the name of the calling process, errors in unlocking are

avoided. A process can only unlock those tables which it has previously locked. A proc

ess cannot unlock another process’s locks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

For each database
Make a list of tables
For each table

Make a list of attributes
Count No_of_Records
For each Attribute-Value Pair

Make an entry in the Attribute_Value_Array
Next Attribute-Value Pair
For each Record

Make a list of values for this record
Count the No_of_Duplicates
* LOCK_A_TABLE("IS_A_TABLE", CASEBASE)
* LOCK_A_TABLE("DB_ASSOCIATIONS", CASEBASE)
For each AttributeValue_Pair

Add a record to the IS A TABLE
Add a record to the DB_ASSOCIATIONS table

Next Attribute
* UNLOCK_A_TABLE("IS_A_TABLE", CASEBASE)

*UNLOCK_A_TABLE("DB_ASSOCIATIONS",CASEBASE)
*LOCK_A_TABLE("CASE_BASE_TABLE", CASEBASE)
*LOCK_A_TABLE("CASE_SCORE_TABLE", CASEBASE)
Add a record to the CASE_BASE_TABLE
Add a record to the CASE_IS_A_TABLE
* UNLOCK_A_TABLE("CASE_BASE_TABLE", CASEBASE)
* UNLOCK_A_TABLE("CASE_SCORE_TABLE", CASEBASE)

Delete all occurrences of this record from original table
Next Record

Next Table
Recalculate IS A TABLE strengths
Recalculate CASE_IS_TABLE strengths
Recalculate DB_ASSOCIATIONS_TABLE strengths

Next Database

Figure 4. A high level view of the parallel algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

PERFORMANCE EXPERIMENTS

The algorithm was implemented in Microsoft’s Visual Basic 3.0 Professional

Edition. All experiments were run on a personal computer utilizing two 200-Mhz

Pentium processors. The operating system was Microsoft’s Windows NT 4.0. The pa

rameters which were common to all experiments are listed below: (a) two 200-Mhz Intel

Pentium processors; (b) 64 megabytes of random access memory; (c) Windows NT 4.0;

(d) Windows NT multiprocessor kernel; (e) each process was run under its own copy of

the NT DOS virtual machine running in a separate address space; (f) database manage

ment system: Microsoft’s Access 2.0.

The following experiments were run for both the serial and parallel algorithms:

(a) five experiments, each of which adds an additional attnbute/value the purpose being

to characterize performance as a function of the number of attributes; and (b) an experi

ment in which 1,000 records are processed. Following this an additional 500 records

were added to the input database, both the input and output databases were compacted,

and processing resumed. The purpose of this experiment was to demonstrate the effect of

database fragmentation on performance. Figure 5 presents the data in tabular form for

both a single process and for two processes in which 1,000 records are processed. The

results of these experiments are presented graphically in Figures 6-12. Each experiment

processed 1,000 records. For those experiments with two processes, records were as

signed as follows. Records 1-500 were assigned to the first process, while Records

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Number of Attributes

1 2 3 4 5
Records 1-P 2-P 1-P 2-P 1-P 2-P 1-P 2-P 1-P 2-P
100 34 22 39 26 39 26 48 27 49 31
200 73 46 84 53 84 54 100 56 104 61
300 118 73 134 83 134 84 157 87 164 97
400 168 103 190 116 190 116 219 120 228 130
500 224 137 252 149 252 151 286 156 298 166
600 285 171 319 185 319 188 359 198 373 205
700 354 210 397 223 397 230 443 238 456 245
800 439 253 491 264 491 272 546 282 552 289
900 549 297 607 309 607 318 668 330 674 335

1000 675 351 729 356 790 370 804 379 816 385

Figure 5. Comparison of one-process versus two-processes as a function
of the number of attributes (time in seconds).

OUU •
- -

700 ■

to 600 -
*o
c - - * •

tn - ♦ 1 process
J 400 -
f - ■

- . - » _ 1 1 ■ 2 processes

□ 300 ■
3
w 2UU •

- . - -
1 -

100 ■

. 1 ‘ ■ 1 - . • ■ -■
0

) 200 400 600 800 1000 1200

Number of Records

Figure 6. Comparison of serial and parallel versions for one attribute.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

800

700

* 600
■o
I 500

8
e 400

1 300

E
O 200

100

0
0 200 400 600 800 1000 1200

Number of Records

♦ 1 process

e 2 processes

Figure 7. Comparison of serial and parallel versions for two attributes.

C
um

ul
at

iv
e

Se
co

nd
s

co

o

800

Number of Records

»

700

600

400

500

300

200

100

0
0 200 400 600 800 1000 1200

♦ 1 process

B 2 processes

Figure 8. Comparison of serial and parallel versions for three attributes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

co ♦ 1 process

■ 2 processes

u

<e
o

m

900

800

700

600

500

400

300

200

100

0
200 400 600 800 1000 1200

Number of Records

C
um

ul
at

iv
e

Se
co

nd
s

Figure 9. Comparison of serial and parallel versions for five attributes.

in

<0

Ü

900

um
ul

at
iv

e
Se

co
nd

s

O

800

700

600

400

500

300

200

100

0

0 200 400 600 800

Number of Records

1000 1200

♦ 1 process

e 2 processes

Figure 10. Comparison of serial and parallel versions for four attributes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

o

w

10

M

900

800

700

600

500

400

300

200

100

0

zb

- ♦ 1 attribute

e 2 attributes

3 attributes

4 attributes

x 5 attributes

Number of Records

Figure 11. Performance of one process as a function of number of attributes.

C
um

ul
at

iv
e

Se
co

nd
s

200 400 600 800 1000 1200

400

350

300

250

200

150

100

50

0

X

X

X

x

♦ 1 attribute

■ 2 attributes

x 5 attributes,
S 3
E 3
o

Number of Records

200 400 600 800 1000 1200

Figure 12. Performance of two processes as a function of number of attributes.

e> •o c 5
tno

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

501-1,000 were assigned to the second process. Each record was unique. This series of

10 experiments show the effect of increasing the number of attributes from one to five.

As shown by the table in Figure 6 and the graphs in Figures 7-12, the single process re

quires approximately twice the amount of time required by the two-process version. Both

versions exhibit a basically linear response as a function of the number of input records.

A linear regression of the data confirmed this. In all of the experiments the correlation

coefficient was at least 0.98. The slope of the lines for the one-process version was ap

proximately double that of the two-process version. In Figure 7, the slope of the one-

process version was 0.68, while the slope of the two-process version was 0.36, giving a

ratio of 1.88. As shown in Figure 10, where each input record had five attributes, the

slope of the one-process version was 0.82, while the slope of the two-process version was

0.39, giving a ratio of 2.10. As the graphs in Figures 7-12 demonstrate, the one-process

version shows a faster increase in curvature with an increasing number of input records.

As Figures 11 and 12 illustrate, the performance of both the one-process version

and the two-process version is basically a linear function of the number of records. The

number of attributes per record has very little effect on the time required to process an

individual record. This is especially true of the two-process version.

The real source of performance degradation for this algorithm is the fragmenta

tion of both the input and output databases. It is especially a problem for the input data

base. By using the debugging utility of Visual Basic™, it was determined that a major

source of performance degradation was in counting the number of duplicates in the input

database table for each input record and also in deleting these duplicates from the input

database. Most other performance bottlenecks were corrected by the use of a number of

indexes (in the database sense) on the various tables of the output database (the case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

base) and by proper structuring of the algorithm. No attempt was made to index the input

tables because it was assumed that their structure would not always be known to the user.

One not-so-elegant solution to the problem of database fragmentation is to compact or

reorganize the database periodically. Figure 13 presents the results of using Microsoft’s

Access compact utility on both the input and output databases. This figure shows the

time record to process 100 records as a function of cumulative total records processed.

In this example, 1,000 unique records were processed with the resulting performance de

crease shown in Figure 13. Following these 1,000 records, the process was stopped and

both input and output databases were compacted. The process was then restarted to add

an additional 500 unique records. This is shown as the abrupt drop in time required to

process 100 records in Figure 13.

1.4

3 12

I ’

o 0.8

1 0.6

«
% 0.4
I 02

0
o 500 1000 1500 2000

Number of Records

1 Process. 1 attribute

♦ 1 Process. 1 attribute

Figure 13. Effect of database reorganization on performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

The experiments described thus far dealt only with the portion of the algorithm

which makes the initial entries into the various case base tables. The four subroutines

which then recalculate the strengths of the various links are run outside the main proc

essing loop. The following experiment was run to determine the performance of these

subroutines. Recalculations were run for 100-1,000 records in 100-record increments.

Each record had one attribute. The results are shown in Figure 14, which makes the ini

tial entries into the various case base tables.

250

200

150

100

50

0
0 100

Number of Records
200 300 400 500

Figure 14. Performance of the strength calculation routines.

These experiments have demonstrated the scalability of the knowledge acquisition

algorithm for generating the knowledge base. In the next chapter we describe the asso

ciative retrieval algorithm which provides user access to this knowledge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

THE ASSOCIATIVE RETRIEVAL PROCESS

The ultimate purpose of all the work previously described was to construct and

populate a memory from which items could be retrieved by both associative and semantic

links. This section describes the procedure which was created to retrieve items from this

memory. As stated earlier, this research can be considered from two viewpoints. The

first of these is as the construction of a memory and a retrieval mechanism for an intelli

gent system with the intent that the intelligent system is learning about the world by ob

serving the items in various databases. It is, in effect, learning nouns.

The alternate, although very closely related, view is as the conversion of conven

tional, passive databases into intelligent, active, interactive databases which take the ini

tiative, return more than was asked, and have the ability to muse about their contents.

This view as an intelligent, interactive database is used to describe the retrieval process.

The retrieval algorithm expects a memory which is structured as outlined in the

description of the data mining algorithm. Interaction with the knowledge base begins

with the user being presented with the screen shown in Figure 15. The user can enter

words which describe the topic being searched for or can select items from the drop

down lists of DOMAINS, ATTRIBUTES, OR VALUES. The result is basically the

same. The drop-down lists, in addition to providing a means of initiating a search, also

are a form of metaknowledge which can be presented to the user. This metaknowledge is

a list of the topics about which the system has knowledge. When input has been

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

HBB

EXIT

VALUESATTRIBUTES

fl PACK.
INPUTS TO MEMORY

SEARCH | CLEAR |

nilTPUTS FROM MEMORY

USE CASE AS INPUT | DISPLAY DETAILS I RESTRICT DOMAIN |

DOMAINCASES |IS A

Figure 15. The initial screen.

specified and the SEARCH button is chosen, a call is made to the underlying subroutine

ACTIVATE_ASSOCIATIONS. Conceptually, this routine activates the various items

which are attached to cases as attribute/values. For example, referring back to Figure 3,

E coli is attached to Case 1 as a value of the attribute “organism.” If the user enters E.

coli, conceptually an activation flows from this value to Case 1. All other cases which

have a link to E. coli are also activated. This activation of cases is implemented by in

crementing that case’s score in the CASE_SCORE table. For each attribute or value that

matches exactly, a case’s score is incremented by the strength of the link from that attnb-

ute/value to that particular case. The strength of the link from an attnbute/value to a case

was calculated by the knowledge acquisition algorithm as previously described. To pro

vide a degree of fuzzy matching if no exact match is found, an attempt is then made to

match on those attributes or values which have the input item as a prefix. If the input

item is found as a prefix, then all cases which have a link with that attribute/value have

their score incremented by 90% of the strength of the link from that attribute/value to

that particular case. if both the exact match and the prefix match fail, then a substring

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

match is attempted. That is, a search is conducted for attributes/values which have the

input item as an embedded substring. If a substring match is found, all cases which have

a link with that attribute/value have their score incremented by 75% of the strength of the

link from that attribute/value to that particular case. The exact match, prefix match, and

substring match correspond to the sim (f \ f R) component of the similarity metric of

Figure 1. The values of 1.00, 0.90, and 0.75 correspond to the w' or feature weighting

factor in the similarity metric described in Figure 1. In this algorithm both the similarity

function and the weighting factor are changed in an attempt to find partial matches. In

crementing case scores by 0.90 and 0.75 for prefix and substring matches, respectively,

was an arbitrary decision. No attempt was made to devise more justifiable weights for

partial matches. This process of matching against input terms and incrementing case

scores is repeated for each input item. Queries are constructed for each of these searches

by yet another subroutine(s). By restricting the CASE BASE table to records containing

only a single attribute/value combination searches, as described above can be conducted

with the user (or calling program) having no knowledge of the structure or contents of the

knowledge base or the original input databases.

A provision is also made to search for cases when the input item has been desig

nated by the user as a domain name. If only the domain name is entered, then all cases

which belong to that domain are retrieved from the CASE_IS_A table. Only exact

matches of the domain name are attempted. Cases are returned in descending order of

their “strength” field in the CASE_IS_A table. This strength was set by the data mining

algorithm as previously described and represents the relative frequency of occurrence of

this particular case relative to all other cases found in the same table of the input data

base.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

If both a domain name and potential attribute/value terms are entered, the algo

rithm first matches on the attnbute/value’s and then on the domain name. Only those

cases which match on the attnbute/value’s and are members of the specified domain will

be returned. For matches of the attribute/value items, case scores are calculated using the

attribute/value to case strength as described above. The domain matches do not use the

case-to-domain strength. For each domain match each case score is incremented by a

constant factor.

Cases are returned to the gnd as shown in Figure 16. This gnd consists of three

fields—a CASEJD field, an IS_A field, and a DOMAIN field. The CASEID field con

tains the unique identifier of the case retrieved from the CASEBASE table. The contents

of the IS_A field and the DOMAIN field are obtained by querying the CASE_IS_A table

using the case identifier as a key. The IS_A field contains the name of the input table

from which the case was constructed such as “Bacterial Infection.” The DOMAIN field

contains the name of the input database from which the case was originally acquired.

Having retrieved an initial set of cases, the user has several options. The first of

these is to use one of the retrieved cases as input to find similar cases. This is similar to

the concept of musing described by Fertig and Gerlemter (1988). Schank (1982) de

scribes a similar idea in which two people are having a conversation. Each story or

comment by one of the individuals reminds the other of yet another episode and so on.

until they find that the topic of conversation had drifted far from the original. In the cur

rent work this musing or reminding is implemented by querying the CASE_BASE table

for all attributes and values which are a part of the case selected by the user. This list of

attributes and values is then used as input to construct additional queries for cases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

PACK

MEMORY
DOMAIN

noNSINFECTION

INPUT

Figure 16. The initial search window.

which share these characteristics. The retrieved cases are not required to share all attri-

butes/values with the original case. Any subset can lead to other cases.

A second option which is available to the user is to restrict the search to a par

ticular domain. When a case in the grid has been highlighted and the “Restrict Domain"

button has been toggled on, a variable, GLOBAL_DOMAIN, is assigned the value of the

selected case’s domain. This is done because cases from various domains can have

common attributes and values. When an initial search is done, the user may not be aware

of this and may receive cases which are of no interest.

The third option available to the user when a set of cases has been retrieved is to

select the “DISPLAY DETAILS” function. This function notes which of the columns in

the grid have been selected. Based on this information it supplies the details of the case,

the IS_A semantic links, or the domain. This process can be repeated as often as desired

and allows yet another way to browse through the memory. Displaying the details of

each of these items is described below. To illustrate these ideas the search begins with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

the initial window shown in Figure 16. In this example, Mycobacterium has been en

tered as a search term. “CASE2” has been retrieved as the only case containing some

form of the search term. The next two columns of the grid indicate that this case is an

infection and that it came from the domain (input database) of bacterial infections. When

the details of a case are requested, the case identifier is used to query the CASE_BASE

table and retrieve the attributes and values of the case. The details of the case (including

attributes and values) are displayed in a newly created window using Visual Basic’s

Multiple Document Interface (MDI) capability, in which identical windows (each dis

playing different information) are created based on an original parent or prototype win

dow. Continuing with the example from Figure 16. the details of CASE2 are displayed

in Figure 17. Referring to Figure 17 (Case Details Window), the definition of the case is

given by a listing of its attributes and their corresponding values. By selecting any of

these attribute/value pairs and toggling the “More Values of This Attribute button, the

user can access the IS_A hierarchy which was created by the data mining algorithm. As

an example for CASE2, the organism is Mycobacterium. If this attribute/value combina

tion is selected, all examples of organism are displayed as shown in Figure 18. In this

instance, the other examples of an organism are E. coli. Mycobacterium, and S. aureus.

Once again, the traversal of memory can complete the cycle by requesting a search using

any of these organisms as an input.

Referring again to Figure 17 (Case Details Window), the final path through mem

ory from this window is by following the relationship links from case to case. These

links were not constructed by the knowledge acquisition algorithm but were manually

built into the memory. These links represent an area for future research. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Mycobacterium

DOMAINS

BONSINFECTION

INPUTUSE

-INFECTION
DOMAIN

AttributeMore Values
SIMULATE

ORGANISM - Mycobacteriun
SFTE OF INFECTION - lung
GENDER - male___________

PACK
INPUTS TO MEMORY

FROM MEMORY
I DOMAIN

Figure 17. The case details window.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOMAINS

CASES
HONSTERIAL

INPUTUSE

CASE2- INFECTION
DOMAIN INFECTIONS

ORGANISM
ATTRIBUTE - ORGANISM

INPUTS TO MEMORY

MEMORY
[DOMAIN

Figure 18. Examples of IS_A_Organism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

relationship links are those other than the IS_A and HAS_A links which can be derived

from the original data base schema. They are links such as “causes or results_in. In

the current example as shown in Figure 19 the first such link is a Resultsin link from

CASE2 (tuberculosis) to a case called CASE5 (Tubercles). That is, an infection by My

cobacterium can result in the formation of tubercles in the lungs. CASE5 (Tubercles) can

in turn cause CASE6 (Pain). Each time the simulation option is chosen, a new MDI form

displays the case which is the result of the relationship. In addition to displaying the de

tails of cases, the retrieval process can directly display the details of the IS_A hierarchy

and the domain. Either of these two items can be displayed by selecting the appropriate

column from the grid and requesting a display of details. This allows the user to explore

the IS_A hierarchy or the domain directly without having first to go through a specific

case.

It was decided that any intelligent system/memory should possess a certain

amount of short-term memory. That is, it should be able to remember its recent path

through long term memory (the case base or knowledge base). To elaborate on this idea

the previous discussion dealt with finding cases in long-term memory by searching for

attributes/values or domains. Having found an interesting case, the system can then find

similar cases and cases which are in the same domain or IS_A hierarchy. The path

through memory consists of those cases which were interesting enough to open or display

in detail. These cases are put into a data structure (array) which can be traversed in either

direction. The items in this array consist of the following defined data type (Figure 20),

where CASEJD is used as a key into the CASEBASE table for the reconstruction of

the case from its distributed representation. The case is then displayed in an MDI win

dow in the usual way. The integer items BACK_POINTER and FORWARD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

INPUTS TO MEMORY

SEARCH CLEAR
EXIT

Tgq- Mycobacterium

DOMAINS ATTRIBUTES VALUES

Mycobacterium

OUTPUTS FROM MEMORY

CASES |IS A

CASEZ INFECTION

(DOMAIN
BACTERIAL INFECTIONS

DOMAIN BACTERIAL INFECTIONS

USE CASE AS INPUT |
DISPLAY DETAILS RESTRICT DOMAIN

=1_______ CASE2-INFECTION ■di
Explore Domain 1

ATTRIBUTES/VALUES
ORGANISM = Mycobacteriunit
SITE OF INFECTION = lung
GENDER = male_________

RELATIONSHIPS

More Valu

*| (RESULTS IN->TUBERCLES(CASE5)____________

| CASE2 - INFECTION RESULTS IN->TUBERCLES(CASE5)

DOMAIN

Explore Domain i

ATTRIBUTES/VALUES

SYMPTOM = TUBERCLE RELATIONSHIPS

USES—>PAIN(CASE6

Figure 19. Following relationship links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Type STACK_ENTRY
CASE_ID As Integer
BACK_POINTER As Integer
FORWARD-POINTER As Integer

End Type

Figure 20. CASE-STACK implementation.

-POINTER are indexes into the CASE-STACK array used by the system to remember

its path through memory.

When a case is displayed in detail, an MDI window is opened. These windows

can remain open, can be closed, or they can be minimized. This is at the discretion of the

user. The ability to minimize case windows can be useful in saving interesting cases as

the user browses through memory. The same ability applies to IS_A and domain detail

display windows. Figure 21 shows an example of these minimized windows. Different

(hopefully intuitive) icons were chosen for the different types of detail displays. A paper

clip, a globe, and generic windows icons were chosen for cases, domains, and IS A hier

archies, respectively. While not fundamental to the algorithms of this research, this fea

ture hopefully will prove helpful to a user browsing the case base and will suggest the

type of user interface for future work on intelligent databases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

VALUESDOMAINS

MEMORY

IONSINFECTION

DOMAINDISPLAYINPUTUSE

DOMAIN-INFECTION

INFECTION
INFECTIONS

INPUTS TO MEMORY

Figure 21. Example of minimized detail display windows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This research has presented an algorithm for the construction of a case

base/knowledge base. The algorithm can be viewed in several ways. First, it can be

thought of as supporting the data mining process. The result of data mining can be a set

association rules. However, in contrast to the conventional definition, we are not using

association rules in the usual sense where two or more attribute/value combinations are

found to be associated to some degree but with no contextual or explanatory information

included. In the present work the association that is discovered and made available is the

association between an attribute/value and the larger episode from which it was derived.

These episodes are thought of as cases in the sense of CBR. The strengths of the asso

ciations are the relative frequency of the association between that attribute/value pair and

anv given case, relative to the strength of its association to all other cases. These

strengths are intended to be dynamic so that as newer versions of the input database or

databases from different domains are processed, the strengths of the links are recalcu

lated to reflect the new inputs. This feature can be used to make the meaning of the asso

ciation rules readily available and understandable.

We propose that the traditional data mining process described in chapter 2 be ex

tended by the addition of a seventh step, described below.

1. Understand the problem.

2. Extract the data.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

3. Clean/Engineer the data.

4. Engineer a data mining algorithm.

5. Search for potentially interesting patterns by running the data mining

algorithm.

6. Evaluate the Patterns.

7. Retrospectively browse original data as episodal context for patterns of

interest.

Addition of this Step 7 represents an enhancement of the data mining process and pro

vides what Brachman and Anand (1996) have called “a human centered process" which

includes a high level of human interaction. This view is captured by their definition of

knowledge discovery: “Knowledge discovery is a knowledge-intensive task consisting of

complex interactions, protracted over time, between a human and a (large) data base. pos

sibly supported by a heterogeneous suite of tools.”

This research can also be viewed as the construction and population of a memory.

It is a first step toward having computers learn about the world by the observation of da

tabases. In a sense it can be viewed as the learning of nouns. The memory that is con

structed is intentionally associative. As the algorithm was being developed, the ultimate

purpose of associative retrieval was kept in mind and guided the design of the algorithm.

In addition to capturing the associations which are explicit in the input databases, the al

gorithm also preserves and makes available the semantic information which is implicit in

the input databases.

A view of this research which is closely related to the construction and population

of an associative memory is the view that what the algorithm is actually doing is con

verting conventional databases into intelligent, interactive, proactive databases. In the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

memory construction viewpoint, the intended user of the memory is an intelligent soft

ware system. In the intelligent database conversion viewpoint, the intended user is a hu

man who queries and browses the database. With this in mind an associative retrieval

mechanism with a GUI was implemented. This GUI demonstrates the capabilities of the

system as an intelligent database. The retrieval mechanisms which are demonstrated

would apply in exactly the same way if the memory is accessed by an intelligent software

system.

This research suggests several directions for future work. Among these are the ef

forts to make the algorithm more efficient. As noted in the previous section, the main

source of performance degradation is fragmentation of the input databases. This could be

corrected to some extent by counting and eliminating duplicate records prior to process

ing the input. This might require the addition of a field for each record which could rec

ord the number of its duplicates. Another approach is the addition of indexes to each of

the input fields so that direct access would replace database scans. There are also oppor

tunities for further research in the use of parallelism. The experiments which were pre

sented were conducted on a two-processor machine. An approximately twofold increase

in efficiency was achieved by the use of two processors. Additional processors might

result in greater efficiency. In addition to simply applying more processors to the entire

algorithm, there are opportunities for dividing the algorithm into its functional parts and

assigning each of these functions to a separate processor. Some preliminary work was

done in which the CASE_BASE table and the CASE_IS_A table were populated sepa

rately from the IS_A table and the DB_ASSOCIATIONS table. Because there is no in

terference between these tables, there is no need for interprocess communication; there

fore, multiple processors could prove to be extremely efficient. To accomplish this each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

process is given its own duplicate copy of the input. This further eliminates any need for

any interprocess communication.

The recalculation of the strengths of the various links is an obvious opportunity

for pure parallelism. Each of the strengths is independent of all the others. Finally there

is also an opportunity for research into the use of parallelism in the associative retrieval

algorithm.

Concerning the construction of the memory an issue which could be addressed is

the derivation of prototype cases rather than or in addition to the use of all individual in

stances. This is an area of CBR research which others are pursuing. Inferencing/sim-

ulation by the memory is a feature which would extend the original intent for this knowl

edge base. In its present form the memory is “reminded” of similar cases, other examples

of the current item, and some relationships. It would be helpful if the memory could

automatically perform all types of inferencing any time one of its items is activated. For

example, in the introduction to this work it was noted that people instantly and without

apparent effort know that things that come in contact with water become wet. This sort

of background inferencing would make the system much more intelligent.

The system which has been described could very easily be adapted to document

classification and retrieval. Having constructed a knowledge base from various domains,

if a document abstract is used as input, a number of items in memory would be activated.

When these items are returned as cases, their associated domains are also returned. The

document could be classified into the most strongly activated domains. Having classified

a number of documents, it could then recognize by the new input that, while a document

search seems strongly associated with viruses, the user actually might be interested in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

infections in general and not just viral infections. The system could then offer the user

documents from the domain of infections.

If this research is viewed as the learning of nouns and concepts, then the most in

teresting direction for future research is machine learning by reading. This has been ac

complished with quite good success by a number of researchers, but the limiting factor is

the possession of enough common world knowledge to generate expectations which are

then used to disambiguate word senses and to construct the internal representations of

what has been read.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF REFERENCES

Aamodt, A. (1994). Case-based reasoning: Foundational issues, methodological varia
tions, and system approaches. Artificial Intelligence Communications 7(1). 39
59.

Aha, D. W. (1991). Case-based learning algorithms. Proceedings of the Defense Ad
vanced Research Projects Agency Case-Based Reasoning Workshop, pp.147-158.

Bjork, E. L„ and Bjork, R.A. (1996). Memory. New York & London: Academic Press.

Brachman, R. J., & Anand, T. (1996). The process of knowledge discovery in databases.
In U.M. Fayyad et al. (Eds.), Advances in knowledge discovery and data mining
(pp. 37-57). Cambridge, MA: MIT Press.

Brussette. S., Sprague, A. Hardin, J. M., Waiates, K. B., Jones, W. T.. & Moser, S. A. (in
press). Association rules and data mining in hospital infection control and public
health surveillance. The American Medical Informatics Association.

Bull, M., Kundt, G., & Gierl, L. (1997). An early warning system for detection and pre
diction of outbreaks of epidemics. Proceedings of GEOMED '97, 214-224.

CBR Express for Windows User’s Guide. (1990-1995). (p. 4). El Segundo, CA: Inference
Corporation.

Cohen, P„ & Feigenbaum. E. (1981). The Handbook of Artificial Intelligence.
Vol, 3. Los Altos, CA: William Kaufmann.

Copeland, J. (1997). CYC: A case study in ontological engineering. Electronic Journal of
Analytic Philosophy [On-Line]. Available: http://www.phil.indiana.edu/ejap/
copeland976.2.html

Epstein, H. (1997). Data mining: Exploiting the hidden trends in your data. DB2 Maga;
zine, 2(1). 18-25.

Eysenck, M.W., & Keane, M.T. (1995). Cognitive psychology: A student’s handbook
(3rd ed.). Hillsdale, NJ: Lawrence Erlbaum.

Fayyad, U. M„ Piatetsky-Shapiro, G„ & Smyth, P. (1996). The KDD process for ex
' tracting useful knowledge from volumes of data. Communications of the Asso

ciation for Computing Machinery 39(11) 27-34.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.phil.indiana.edu/ejap/

73

Fertig, S., & Gerlemter, D. (1988). Musing in an expert database. Expert Database Sys
tems Proceedings from the Second International Conference, 605 -620.

Findler N. V. (1979). A heuristic information retrieval system based on associative net
works in associative networks. In N. V. Findler (Ed.), Representation and use of
knowledge by computers (p. 307). New York: Academic Press.

Ford, K. M„ Bradshaw, J. M., Adams-Webber, J. R., & Agnew, N. M. (1993).
Knowledge acquisition as a constructive modeling activity. In K. M. Ford & J. M.
Bradshaw (Guest Eds.), [Special Issue] International Journal of Intelligent Sys^
tems Knowledge acquisition as modeling 8(1), Part I, 9-32.

Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1991). Knowledge discovery in
databases: An overview in knowledge discovery. In Databases (pp. 1-27). Menlo
Park, CA: American Association for Artificial Intelligence Press.

Goldstein, I. & Papert, S. (1977). Artificial intelligence, language, and the study of
knowledge. Cognitive Science, 1(1), 84-123.

Gomez, F., Hull, R., & Segami, C. (1994). Acquiring knowledge from encyclopedic
texts. Institute for Electrical and Electronic Engineers International Journal of
Artificial Intelligence Tools, 4(3), 349-367.

Harris, Mary D. (1985). Representation of knowledge. In introduction to natural language
processing (p. 9). Reston, VA: Reston.

Hill, A. E. (1987). An expert system for the diagnosis of malfunctions in a Kellogg am:
monia plant. Unpublished master’s thesis, Jackson State University, Jackson.
MS.

John, G. H. (1997). Enhancements to the data mining process. Unpublished doctoral
dissertation, Stanford University, Palo Alto, CA.

Kolodner, J. L. (1983). Maintaining organization in a dynamic long-term memory. Cogs
nitive Science. 7(4), 243-280.

Kolodner, J. L. (1993). What is case-based reasoning? In Case-Based reasoning (p. 4).
San Mateo, CA: Morgan Kaufmann.

Kolodner, J. L. (1996). Making the implicit explicit: Clarifying the principles of case
based reasoning. In D. B. Leake (Ed.), Cased-Based Reasoning, Experiences,
Lessons, and Future Directions (pp. 349 - 370). Menlo Park, CA: AAAI Press.

Kolodner, J. L., & Leake, D. B. (1996). A tutorial introduction to case-based reasoning.
In D. B. Leake (Ed.), Cased-Based reasoning, experiences, lessons, and future dL
rections (pp. 31-65). Menlo Park, CA: American Association for Artificial Intel
ligence Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Kuipers, B. (1979). On representing commonsense knowledge. In N. V. Findler (Ed.),
Associative networks, representation and use of knowledge by computers (p.
394). New York & London: Academic Press.

Laird, J. E., Newell. A., & Rosenbloom, P. S. (1987). Soar: An architecture for general
intelligence. In P. S. Rosenbloom, J. E. Laird, & A. Newell (Eds.), The Soar
Papers: Vol. 1. Cambridge, MA: MIT Press.

Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induc
tion. Communications of the Association for Computing Machinery, 38(11),
55-64.

Leake, D. B. (1996). CBR in context: The present and future. In D. B. Leake (Ed.)
Cased-Based reasoning, experiences, lessons, and future directions (pp. 3-30).
Menlo Park. CA: American Association for Artificial Intelligence Press.

Lenat, D. B., & Guha. R. V. (1990). Building large knowledge-based systems.
Reading, MA: Addison-Wesley.

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and
search. Communications of the Association for Computing Machinery, 19(j).
113-126.

Parsaye, K., Chignell, M., Khoshafian, S., & Wong, H. (1989). Intelligent Databases,
New York: John Wiley & Sons.

Patil. R. S. (1981). Causal representation of patient illness for electrolyte and acid-base
diagnosis. (Tech. Rep. No. 167) MIT Laboratory for Computer Science. Cam
bridge, MA.

Porter. B., & Bareiss, R. (1986). PROTOS: An experiment in knowledge acquisition for
heuristic classification tasks. Proceedings of the First International Meeting on
Advances in Learning. Les Arcs, France, pp. 159-174.

Quinlan, J. R. (1966). Semantic memory (Rep. No. AFCRL-66-189). Cambridge, MA:
Bolt Beranek & Newman.

Reisebeck, C. K. (1979). Representations to aid distributed understanding in a multipro
gram system. In N. V. Findler, (Ed.), Associative networks, representation and
use of knowledge by computers (p. 409). New York & London: Academic Press.

Schank, R. C. (1973). Identification of the conceptualizations underlying natural lan
guage. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and
language. San Francisco: Freeman.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding
Hillsdale, NJ: Lawrence Erlbaum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Schank, R. C. (1982). Dynamic memory. New York: Cambridge University Press.

Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Communications of
the Association for Computing Machinery, 29(12), 1213-1228.

Tirri, H., Kontkanen, P„ & Myllymaki, P. (1996). Probabilistic instance-based learning,
machine learning. In L. Saitta (Ed.), Proceedings of the Thirteenth International
Conference. San Francisco: Morgan Kaufmann.

Wettschereck, D., Aha, D. W., & Mohri, T. (1997). A review and empirical evaluation of
feature-weighting methods for a class of lazy learning algorithms in artificial in
telligence review. Artificial Intelligence Review, 11, 273-314.

Wu, X. (1995). Knowledge acquisition from databases. Norwood, NJ: Ablex.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GRADUATE SCHOOL
UNIVERSITY OF ALABAMA AT BIRMINGHAM

DISSERTATION APPROVAL FORM
DOCTOR OF PHILOSOPHY

Name of Candidate Aubrey Hill__________________ __________________________—.

Major Subject Computer and Information Sciences_____ _________________________

Title of Dissertation Automated Knowledge Acquisition of Case-Based Semantic

Networks for Interactive Enhancement of the Data Mining Process___________________

I certify that I have read this document and examined the student regarding its
content. In my opinion, this dissertation conforms to acceptable standards of
scholarly presentation and is adequate in scope and quality, and the attainments of
this student are such that he may be recommended for the degree of Doctor of
Philosophy.

Dissertation Committee:

Name

Dr. Warren Jones. Chair

Dr. Robert Hyatt

Dr. Barrett Bryant

Dr. J. Michael Hardin

Dr. Sanjay Singh

Signature

Dean, UAB Graduate School

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (QA-3)

1

2.2

2.0

150mm

APPLIED IlWIGE . Inc
-= 1653 East Main Street

-=~- Rochester. NY 14609 USA
- ^^3 Phone: 716/482*0300

Fax: 716/288-5989

© 1993. Applied Image. Inc.. All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Automated knowledge acquisition of case-based semantic networks for interactive enhancement of the data mining process.
	Recommended Citation

	tmp.1716579362.pdf.IAJfT

