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ABSTRACT OF DISSERTATION 
GRADUATE SCHOOL, UNIVERSITY OF ALABAMA AT BIRMINGHAM

Degree Doctor of Philosophy Program Physics

Name of Candidate Todd Edward DeVore___________________________________  

Committee Chair Dr. Ryoichi Kawai_______________________________________  

Title Ab Initio Molecular Dynamics Simulation of Charged_____________________ 

and Neutral Solitons in Polyacetylene

The polyacetylene (PA) system has a two-fold degenerate ground state that al­

lows for excitations known as solitons. Solitons are believed to be highly mobile, with 

a predicted effective mass on the order of the electron mass me. Both semiempirical 

and first principles methods have been used by others to investigate static proper­

ties of solitons. Dynamics studies have been limited almost entirely to semiempirical 

methods. We employ density functional theory and Car-Parrinello ab initio molecu­

lar dynamics to investigate charged and neutral solitons in finite polyenes (CnHn+2). 

Calculations are performed for both even-membered (n is even) and odd-membered 

polyenes. Our calculations indicate that these finite systems have a dimerization 

which is reasonably close to observed experimental values obtained from PA films. 

We find a soliton state for the ground state of odd-membered polyenes of the trans- 

transoid isomer of PA.

Car-Parrinello ab initio molecular dynamics allows us to observe the inter­

action of the soliton with the chain end or conformational defects while treating 

electron-electron correlation and electron-phonon coupling from first principles. We 

simulate mobile neutral and charged solitons in polyene chains both with and without 

an important common defect. The defect we include in the otherwise trans-transoid 

chain of PA is a single bond that forms a cis-transoid structure. Our simulations 

indicate the soliton has a small effective mass and moves with an average speed of 

about 1.0 x 105 m/s in the absence of an external field, in general agreement with

ii
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previous results from semiempirical studies. However, we find the soliton’s motion is 

greatly affected by the finite chain ends, lattice vibrations, and the presence of the 

cis-transoid defect. The qualitative nature of the soliton motion with these factors 

included has not been previously shown.
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1 INTRODUCTION

Polyacetylene (PA) is the simplest example of a material categorized as a 

conducting polymer. The polymer takes the form of either of two isomers, trans- 

transoid or cis-transoid. These are shown schematically in Fig. 1. In both forms 

the carbon atoms have three out of four valence electrons in sp2 hybridized orbitals 

forming a type bonds in the molecular plane. Each C-H unit contributes a it electron 

to form a quasi-one-dimensional valence band along the chain. The trans-transoid 

isomer is the thermodynamically stable form of polyacetylene [1], While cis-transoid 

and trans-transoid polyacetylene can coexist at low temperatures, pure czs-PA will 

be isomerized to trans-PA if the film is heated above 150° C. This dissertation will 

focus on the trans-transoid isomer. From here on the abbreviation PA shall refer to 

trans-transoid polyacetylene unless otherwise noted.

Pure PA is an electrical insulator with a band gap of about 1.5 eV. The 

conductivity of the material has a value on the order of 10-4 S cm-1 [2], However, 

PA may be doped with impurity atoms such as iodine to raise the conductivity over 

many orders of magnitude. The maximum conductivity of doped PA is over 105 S 

cm-1, which is comparable to metals like Cu [2,3].

One obvious reason for interest in conducting polymers is the wide range of 

applications that could be found for materials with mechanical properties of plas­

tics that conduct like metals. There are processes readily available for casting thin, 

flexible layers of conducting polymer film on a wide variety of substrates. Practi­

cal applications include preventing the buildup of charge on surfaces with antistatic 

polymer films [4]. Camouflage fabrics can be treated to prevent radar reflection [4]. 

Considerable effort has been focused on using conducting polymers as a replacement

1
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2

for conventional inorganic semiconductors for making LEDs [5]. A main drawback 

encountered thus far is the generally faster degradation rate of the polymer materials 

due to overheating or oxidative reactions. Environmental instability is particularly 

severe for the PA films, although the material is still intensively studied due to its 

unique properties.

Despite the simplicity of the idealized PA system (CH)n, real polymer mate­

rials are very complex due to the high degree of disorder in the crystalline structure. 

The details of a real sample’s morphology are extremely sensitive to polymerization 

methods and conditions and are difficult to reproduce. The polymer material is grown 

as a film which can have thickness from 10-5 to 0.5 cm [3]. The as-grown films con­

sist of randomly oriented fibrils about 200-300 Â in diameter and are typically a few 

thousand Â in length [2]. The as-grown films are mostly of the cis-PA form which is 

converted to the trans form above 150° C. The films can be stretched and the fibrils 

aligned to produce material with a high degree of crystallization. Experimental data 

indicate 75-90% of such a sample is crystallized. The disordered regions are not well 

characterized due to the combination of intrinsic defects such as cross-links, chain 

twists, and interstitial impurities. Only with high quality stretched samples is it 

possible to achieve conductivities on the order of 105 S cm-1 after doping [2]. Refine­

ments in preparation techniques have led to an increase of the maximum conductivity 

of doped PA over almost four orders of magnitude since the late 1970’s.

While the quality of the material has improved, scientists have continued to 

study PA intensively to understand its insulator-metal transition and to explain its 

unusual transport, optical, and magnetic properties. Experiments show pure PA 

exhibits Curie paramagnetism corresponding to about one spin per several thousand 

CH groups [6]. Electron spin resonance (ESR) experiments show these spins are 

highly diffusive along the polymer chains [7]. If one assumes that charge is associated 

with these spins, a significant electric current is expected. However, only a very small 
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3

current is observed. When crystalline PA is doped with donor impurity atoms, the 

Curie paramagnetism decreases while the conductivity increases. In order to explain 

these results, it is necessary to assume the existence of spinless charged excitations. 

Such unusual excitations can be explained by traveling solitons. The nature of soliton 

transport along a PA chain is the main focus of this dissertation. Soliton excitations 

are unique to the trans isomer of the polymer and owe their existence to the quasi- 

one-dimensionality of the system, a two-fold degenerate ground state, and coupling 

between ionic and electronic degrees of freedom.

Microscopic details of soliton transport are unknown due to the complexity of 

the PA material. These complications arise from interactions between neighboring 

chains, cross-links, sp3 carbon defects, bending and twisting of fibrils in crystalline 

PA, and residual czs-PA sections. It is estimated from infrared-absorption data [8] 

and near-infrared photoluminescence experiments [9] that after heat treatment iso­

merization the cis isomer still exists at a level of at least 5-7%. Due to this large 

concentration, these residual cis bonds may significantly affect the dynamics of charge 

and spin carriers in the PA system.

Idealized PA systems have been extensively investigated with semiempirical 

methods that treat explicitly only the tt electrons that contribute to the valence band 

of PA. Highly accurate ab initio methods have also been employed. Among ab initio 

methods, density functional theory (DFT) has been used by many groups due to the 

computational efficiency of this method.

The investigation of soliton dynamics has been almost exclusively limited to 

semi-empirical methods. Generally, ab initio investigations have focused on static 

structures. It is highly desirable to investigate soliton dynamics with a first-principles 

method. Since solitons exist due to electron-phonon interaction, a method that treats 

both electrons and nuclear motion from first principles is necessary. Furthermore, it 

is difficult to treat impurities with semiempirical methods due to the uncertainty 
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of how semiempirical parameters should be determined. This investigation employs 

DFT with the local density approximation (LDA) and Car-Parrinello ab initio molec­

ular dynamics. This method allows us to simulate dynamics from first principles. 

Mobile solitons in both idealized single PA chains and chains with a cis bond defect 

are considered. Results will be compared with previous model calculations and ex­

periments where applicable. Our goal is to investigate the transport properties of a 

soliton in pure and defective PA using first-principles methods. We also investigate 

the applicability of a popular semi-empirical method to the study of soliton dynamics. 

The famous model of Su, Schrieffer, and Heeger (SSH model) [10,11] has been to this 

point a de facto standard paradigm used to discuss mobile solitons.

The general outline of the document proceeds as follows: The second major 

section, following this Introduction, describes PA in more detail. Evidence supporting 

the existence of the soliton is reviewed. An overview of the theoretical methods used 

to investigate PA is given. The third major section reviews the methodology of 

DFT/LDA and Car-Parrinello ab initio molecular dynamics simulations. Test results 

of our density functional code for small hydrocarbon molecules are given. The fourth 

major section will describe our results for the ground state of various finite chains 

of PA. Results are shown for polyenes both with and without the common defect 

of a cis bond. The fifth major section reviews briefly results from previous studies 

of soliton dynamics. The sixth major section describes our own Car-Parrinello ab 

initio molecular dynamics simulation results for mobile solitons in finite polyenes 

with and without a defect. The final section concludes and summarizes what can 

be learned about soliton transport from ab initio molecular dynamics simulations of 

mobile solitons.
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trans-transoid PA ( trans- PA )

cis-transoid PA ( cis- PA )

FIG. 1: Geometry of the two experimentally detected isomers of PA. trans-PA is the 
main focus of this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 OVERVIEW OF PA INVESTIGATIONS

Peierls [12] proved a general theorem on the stability of a one-dimensional 

lattice. For a system with a partially filled valence electron energy band, the theorem 

predicts the nuclear configuration to be unstable. It states a new nuclear configuration 

with a larger unit cell is formed such that a band gap appears at a new Brillouin zone 

boundary. For example, a system with a half-filled band forms a unit cell twice as 

large as the original. The effect of unequal distances between a nuclear site and 

its nearest neighbors caused by this instability is called dimerization. Although PA 

is not exactly a linear system, it is generally considered the physical system most 

likely to exhibit dimerization due to the Peierls instability. X-ray scattering [13] and 

nuclear magnetic resonance studies [14] confirm the system does exhibit alternating 

carbon-carbon bond lengths (see Fig. 1). These lengths are approximately 1.44 Â 

and 1.36 Â.

Bond ordering can occur with either of the two phases shown in Fig. 2. If the 

two different phases coexist in the same system, there must be a domain boundary as 

shown in Fig. 3. This domain boundary is typically referred to as a soliton. In this 

dissertation, I shall call a boundary consisting of two adjacent single bonds a kink, 

and I shall call a boundary with two adjacent double bonds an antikink.

In this section I explain the Peierls instability and structure of the domain 

boundary using an empirical method. Empirical methods have been used extensively 

to anticipate important physical characteristics of PA and the soliton excitation.

6
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2.1 SSH model

In 1979 Su et al. [10] investigated PA using a tight-binding model with explicit 

electron-phonon coupling. In their model only tt electrons are considered and the 

effects of a electrons are included as an interaction potential between the nuclei.

Taking a harmonic approximation, their Hamiltonian is given by

Un—l)2 +— 52 [<o+“(un—Un+1)] (Cn+1,s^n,s + C^Cn+l,s),

n,s
(1)

where t0 is the electron hopping integral between nearest neighbors on an undimerized 

carbon chain, a is the electron-phonon coupling constant, K is a spring constant 

arising from the a bonds and M is the mass of a CH unit. The dynamical variables 

un represent the displacement of the nth carbon site from its equilibrium position 

on the undimerized chain. In this one-dimensional model, un is the actual nuclear

displacement projected on the axis of the polymer. The bonded carbon-hydrogen 

pairs are considered to move as a unit. The Cn<s is the annihilation (creation) 

operator for the tt electron on the nth site with spin s.

The dimerization is described by the alternating sign of the displacement pa­

rameter u, which oscillates in sign for the perfectly dimerized chain.

ui = (-l)'uo = uoc^2'^. (2)

*' - Ta O

Here u0 is the absolute value of the displacement of each C-H unit, kj is the Fermi 

wave vector, and 2u is the size of the unit cell. The parameter a is the projection of the 

equidistant (average) C-C bond length along the one-dimensional axis of the polymer. 

With this alternation, the resonance integrals tu+1 must also have an alternating 

value:

t(ui, ui+J = to — -(—l)zAo- (4)

△o = 4cm0. (5)
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The quantity △, called the bond alternation order parameter, has units of energy 

and is directly related to the dimerization. The energy dispersion relation for this 

dimerized system with 2 C-H pairs in each unit cell can be written as follows:

E% = 4t0 cos2 (ka) + sin2(&a). (6)

This relation shows there is a band gap of magnitude 2A0 at the zone boundary. A 

band gap of approximately 1.4-1.8 eV is found by experiment [3,15].

The equilibrium displacement u0 depends on the choice of parameters used.

There is no unique way to determine a and K in this model.Values are typically 

determined such that the observed band gap of about 1.5 eV is reproduced and uq is 

a few hundredths of an angstrom, which compares well to the experimental value of 

about 0.030 Â [13]. The following set of values are commonly used:

△o = 0.7 eV.

W = 4to = 10 eV(W is bandwidth).

(7)

(8)

a = 4.1

K = 21

eV
10~10m‘ 

eV
10'^m

(9)

(10)

The adiabatic potential E(u) for a uniformly dimerized system is shown in Fig. 4. 

E(u = 0) corresponds to the unstable nondimerized geometry, while E(u = ±u0) is 

the energy for the two degenerate ground states. The existence of these two degenerate 

ground states is consistent with Peierl’s prediction. As indicated in Fig. 4 the two 

degenerate minima of E(u) correspond to the two possible phases shown in Fig. 2. 

Without dimerization [at E(u = 0)], the system is symmetric about reflection in any 

plane perpendicular to the PA chain and containing a (CH) group; with dimerization, 

such a reflection brings phase A into phase B and vice versa. In physical terms this 

phenomenon is called “symmetry breaking” [16].
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2.2 Ab initio PA studies

The small energy differences and very small atomic displacements away from 

equidistant bond positions are a challenge for ab initio methods. Many ab initio 

studies have been performed on PA since the late 1980’s. The explicit inclusion of 

electron-electron interaction and the effect this may have on the predicted dimer­

ization suggest an opportunity to generalize the Peierls mechanism to include the 

effect of these interactions. A very wide range of methods has been used to study 

PA. These methods include Hartree-Fock [17,18], Hartree-Fock with many-body per­

turbation theory [17,19,20], and DFT [17,19,21-23]. The variants of DFT meth­

ods include the linear-muffin-tin-orbital method [23], psuedopotentials [21], and the 

linear-combination-of-atomic-orbitals (LCAO) approach [17,19]. Density functional 

calculations have employed both the local density approximation (LDA) and gradi­

ent correction methods used to improve many-body effects. These approximations 

are described below in chapter 3.

Results of calculations using some of the techniques mentioned above are listed 

in Table 1. Results are taken from Suhai [19]. Here MP2 and MP4 are the second and 

fourth order Môller-Plesset perturbation theory methods [24]. HF is the Hartree-Fock 

method. The BHH procedure, developed by Becke [25], uses a gradient-corrected 

exchange functional with a mixture of exact HF exchange that is determined by 

semiempirical methods. BP86 and BLYP each use a gradient-corrected exchange 

functional of Becke [26] and correlation functionals developed by Perdew [27] (BP86) 

or by Lee, Yang, and Parr [28] (BLYP).

From these results some general conclusions can be made regarding the ef­

fects of treating explicitly the electron interactions with different approximations. 

Hartree-Fock calculations overestimate the dimerization, while LDA calculations tend 

to predict dimerization much smaller than the experimental value [19,29]. When a 

gradient-corrected energy functional that incorporates the exact Hartree-Fock ex­
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TABLE I: Predicted energetic and structural parameters as calculated by Suhai us­
ing different theoretical methods and a double-zeta basis set. Here tq is the optimal 
carbon-carbon distance for the nondimerized chain, AE(alt-equ) is the energy differ­
ence between the nondimerized and dimerized structure, and Ar is the difference in 
bond lengths for the dimerized chain. Distances are in Â and the energy is in au/(CH 
unit).
Method To AEXalt-equ) Ar

HF 1.3962 -0.00202 0.1074
BHH 1.4042 -0.00087 0.0819
BP86 1.4163 -0.00018 0.0187
BLYP 1.4189 -0.00042 0.0120
MP2 1.4250 -0.00091 0.0834
MP4 1.4290 -0.00084 0.0843

change energy is used, a dimerization close to the experimental value is obtained. 

The computationally expensive MP2 and MP4 methods, which also incorporate the 

exact exchange, also give a bond alternation close to the experimental value of about 

0.08 Â [14]. These results show how the predicted structure depends highly on the 

details of the technique used to describe the electron-electron interactions. Inclusion 

of exact exchange energy appears to play an important role in producing correct 

dimerization values. The density functional calculations listed have been shown to 

give results that are sensitive to how the Brillouin zone is sampled with k points 

to determine the energy [29]. It has been pointed out that the small dimerization 

predicted by LDA may be a systematic error of LDA directly comparable to the error 

one obtains with SSH using a weak electron-lattice coupling parameter [30].

2.3 Soliton state in the SSH model

A quantity used to describe the extent of lattice dimerization or local changes 

in the bond length alternation pattern is referred to as an order parameter. A site 

dependent order parameter useful for investigating the soliton is given by

Az = 4(—1 )laui. (11)
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This order parameter has dimensions of energy. In the ideal dimerized ground state 

Az = +A0 (for phase A) or A/ = —Ao (for phase B) for the entire chain. For a 

system with both phases coexisting on the same chain, the order parameter changes 

sign at the domain boundary. Su et al. [11] showed that the SSH Hamiltonian has an 

excited state where the order parameter does make such a transition, described by 

the equation
A i = Ao tanh^), (12)

where £ is the coherence length. This is given by

£=^. (13)

The coherence length serves as a unit of measure of the width of this geometrical phase 

transition (soliton). The transition occurs over a region of length 2£. The predicted 

width of the geometrical soliton depends on the exact values of the parameters used 

in the SSH Hamiltonian. Using parameters introduced above, the SSH model predicts 

£ = 7a, which is in general agreement with experiment [31].

The SSH model provides some specific predictions for the electronic state asso­

ciated with a soliton. Eigenfunctions of the SSH Hamiltonian can be written in terms 

of single-particle wave functions V'z.v, whose modulus squared describes the probabil­

ity of finding an electron localized at the Zth C-H unit for the uth eigenfunction. The 

midgap soliton state has an eigenfunction with the following characteristics:

V,Z=2m+l — 0. (14)

A=2m ~ (-1)^0 cosh-V-y-)- (15)

This form of corresponds to a modulated spin density that vanishes on every other 

C-H site as seen in Fig. 5.

In the ground state of the PA system, there exists the same number of occupied 

states in the valence band and unoccupied states in the conduction band. This 
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situation is not changed when a midgap soliton state is present. When the system is 

neutral, a midgap soliton state will be singly occupied. The addition or removal of 

an electron from this highest occupied state will give a system with both a soliton 

and a net charge. The manner in which the charge and spin of the soliton depend 

on the occupation of the midgap state is pictured in Fig. 6. If there are zero or two 

electrons occupying the soliton state, there will be no net spin density associated with 

the soliton, but there will be a modulated charge density varying as Vf-

Unlike other electronic excitations which carry both charge and spin, the soli­

ton has a very unusual charge-spin relation. The existence of solitons with this prop­

erty is thought to explain unusual experimentally observed characteristics of the PA 

system. For example, when PA is doped with donor impurity atoms, the conductiv­

ity increases significantly; however, the Curie paramagnetism drops. This is an effect 

that can be explained if the donor atoms promote population of the midgap soliton 

states, increasing the number of charged but spinless solitons. The above results for 

the soliton molecular orbital and soliton geometry have been checked with ab initio 

methods. These results, including results from the present study, will be discussed. 

Other predictions from the model which will be compared with results from ab ini­

tio calculations include the predicted formation energy and activation energy of the 

soliton. The activation energy, the energy required for the soliton center to move 

along the chain from one site to the next, is estimated to be roughly 0.002 eV/C-H 

unit [11] using the SSH model. This is an important quantity related to the dynamical 

behavior investigated here.

2.4 Experimental evidence for solitons

As discussed above, the SSH model was the first independent electron model 

to predict the existence of the soliton. Some brief observations on the experimental 

evidence for the soliton and its properties follow. Most of this information is summa­
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rized in detail in the reviews by Yu [16], Kahol et al. [31], and others in this collection, 

as well as in the references listed in these reviews.

The existence of neutral solitons in undoped PA implies the existence of un­

paired spins. Before the soliton model was established, ESR experiments were per­

formed during the 1970’s on samples of undoped PA [3,6]. The results suggest Curie 

paramagnetism corresponding to roughly one spin per several thousand lattice con­

stants. Above 50 K these spins are diffusive in the direction of the polymer chains. 

It was difficult to explain before the soliton model why the conductivity remains neg­

ligible in the presence of mobile spins. Although the soliton model helps to explain 

some anomalous properties, the microscopic details of PA structure and dynamics are 

not well understood.

Time-resolved ESR detects both “pinned” defects and mobile defects in PA. 

The two types cannot be distinguished below 50 K. The pinning mechanism has 

been suggested to be due to the trapping of solitons by the uncontrolled presence of 

oxygen [32] and the presence of remnant sections of the cis isomer in otherwise pure 

(trans) PA [8,9].

The ESR spectrum of undoped PA has been simulated using various model 

Hamiltonians that predict the spin density distribution due to the soliton [31]. A given 

spin density distribution is used to determine the components of the hyperfine tensors 

needed to construct the Hamiltonian used to simulate the spectrum. The models used 

to determine the spin densities include the SSH model and the Peierls-Hubbard model, 

which is a tight-binding model like SSH that includes on-site and nearest-neighbor 

electron-electron interactions. It turns out that when a large number of protons are 

coupled to single spin, many different forms for the spin density distribution can be 

used to fit the ESR spectrum equally well [31]. The form of the soliton spin density 

distribution predicted by SSH was shown in Fig. 5. It has been determined that spin 

densities given by functional forms that lead to a Gaussian or even rectangular form 
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of the distribution fit the ESR power spectrum as well as the form predicted by SSH. 

ESR does not unambiguously define the spin density distribution of the soliton.

More detailed information about the soliton spin distribution can be obtained 

from the electron-nuclear-double-resonance (ENDOR) technique and the electron- 

nuclear-nuclear-triple-spin resonance technique. Experiments with these resonance 

techniques have confirmed the 7r electron character of the spin carrier in PA. The 

ENDOR experiments indicate a small negative spin density distribution on every 

other site within the soliton. These are the carbon atom sites that SSH theory predicts 

to have zero spin density. The negative spin densities appear to be a consequence of 

electron-electron interaction as they are anticipated by models and ab initio methods 

that include these interactions explicitly. Models used to fit the ENDOR spectra 

also seem to indicate a total spin distribution length of about 50 carbon-carbon bond 

lengths with a half-width of 11 carbon-carbon bonds. The spin density distribution 

with this width as predicted by SSH is shown in Fig. 5.

It should be noted that while the existence of the mobile soliton is supported 

by spin resonance experiments, there is no agreement among researchers on the value 

of diffusion rates for solitons along and perpendicular to the chain direction. It is 

known that below 30 K most solitons are trapped, whereas above this temperature 

the diffusion constant is proportional to the square root of temperature. The mech­

anism which traps solitons is not clearly understood. Furthermore, there are several 

difficulties involved with interpreting any experimental results. First, it is difficult to 

compare results from different samples made by different techniques that tend to have 

quite different morphologies and conjugation lengths (uninterrupted alternating bond 

lengths). One type of pure PA, referred to as “Durham” PA, is believed to have an 

average conjugation length of only 30-40 carbon-carbon bonds [33]. The densities of 

samples made from different methods range from 0.4 g/cm3 to 1.2 g/cm3 [3]. Further­

more, it is difficult to simulate experimental spectra using models that incorporate 
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electron-electron correlation. The fact that it is difficult to determine the typical 

abundance of defects, including cis-bonded regions, twisted chains, or cross-linking, 

complicates analysis.
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c

H H

FIG. 2: Two possible configurations or “phases” of trans-PA. The different ordering 
of the single and double bonds is emphasized by the schematic representation shown 
at the right of each chain.

H H

phase "a* phase "b"

s

soliton connects a to b

FIG. 3: The soliton kink and antikink both connect the two possible phases of bond 
ordering. The region where the bond ordering is interrupted is also known as a domain 
wall.
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FIG. 4: Energy as a function of displacement u away from equidistant C-C bonding. 
The minima at ±uq correspond to ground states with bonding order of phase A or 
phase B.

E(u)

uo
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FIG. 5: Net spin density predicted from SSH model for the width parameters 1 = 7 
and I = 11.
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FIG. 6: Reversed spin-charge relation for neutral, negative, and positive soliton.
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3 AB INITIO CALCULATION METHODOLOGY

Due to dimerization each (CH) unit is shifted about 0.02 Â from a position 

that would correspond to an undimerized chain. To describe such minute details of 

the structure accurately from a first-principles method is very challenging. Methods 

such as the Hartree-Fock and configuration interaction have been used to study more 

real-world systems with the availability of increasingly powerful computers. However, 

most methods such as these are still only practically applicable to systems with a few 

tens of atoms.DFT can be used with a total-energy pseudopotential method to model 

systems of a few hundred atoms from first principles. Unlike the Hartree-Fock method, 

both electronic exchange and correlation are taken into account. DFT has been used 

for both molecular and crystal systems to predict with accuracy equilibrium bond 

distances, phonons, and phase-transition pressures and temperatures [34,35].

3.1 Density functional theory and the LDA approximation

DFT, like other total-energy theories, attempts to describe as precisely as 

possible the ground state of interacting electrons moving in a potential v(r). The 

total energy of the electron system is given by the time-independent Schrodinger 

equation:

HV = EV, (16)

where # is the wave function describing the system of electrons and H is the Hamil­

tonian. V depends on both the spin and position of each electron:

V = ^(ri,<7i,r2,<72...). (17)

19
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H can be expressed in terms of three operators:

H =T 4- Vne + Vee, (18)

where T is the kinetic energy operator, Vne is the electron-ion potential energy oper­

ator, and Vee is the electron-electron repulsion energy operator.

N
Vne = ^(ri) •

i=l
N

t<j

(19)

(20)

(21)

Based on the variational principle, the ground state #o can be obtained by minimizing 

the total-energy expectation value. The total-energy E can be written in functional 

form:

Every eigenstate 'I' that satisfies Eq. (16) corresponds to a stationary point of the 

energy functional. Taking the variation of Eq. (22), we find

(23)

Although it is difficult to find the exact wave function #o that gives the lowest E 

satisfying Eq. (23), it is possible to find an upper bound to the true ground state 

energy by using the energy variational principle. When Eq. (23) is solved with an 

approximate solution a resulting energy E' will be above the ground state energy.

E' > Eo. (24)

If one can make successively better approximations for #o, the approximate energy

E' should converge closer to Eq from above.
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Hohenberg and Kohn showed [36] that the energy E could be written as a 

unique functional of the electron density p(r), where p(r) is given in terms of » by

^(n) = N j • I l^(ri, 0-1, r2, cr2,...) |2 daidr2da2 .... (25)

The first Hohenberg-Kohn theorem states that the external potential v(r) is deter­

mined within a trivial additive constant by the electron density p(r). Since p(r) 

uniquely determines w(r), it also determines the ground state and all physical prop­

erties related to the total energy. The second Hohenberg-Kohn theorem establishes 

the energy variational principle in terms of p(r). It states that for a trial density p'(r) 

such that p'(r) > 0 and f p'^dr = N, the following is true for the energy functional:

Eo < Ev[p']. (26)

The fundamental energy functional can be written as follows:

W]=/v(r)^ f ^^-drdr' + Ts[p'] + Exc{p']. (27)

The terms on the right-hand side of Eq. (27) represent the potential energy due 

to the external field, the classical Coulomb energy, the kinetic energy of a non­

interacting electron gas of density p', and the exchange-correlation energy. The 

exchange-correlation is defined in terms of other functionals as follows:

EXM = T[p] - Ts[p] + VeM - J[P]• (28)

The functional T[p] is the energy functional for the exact kinetic energy for interacting 

electrons. Explicit mathematical expressions for T[p] and Ke are unknown. J[p] is 

the classical Coulomb repulsion energy, which is part of the functional (27) above:

JM = 5/ / <29)

The functional Ta[p] can be written down exactly for a noninteracting reference sys­

tem. If a system of electrons with no electron-electron repulsion is described in terms 
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of a wavefunction the kinetic energy Ts[p\ is given by

N
= (30)

Since for the noninteracting system can be expressed as a slater determinant 

of individual electron orbitals Ts[p] can be further specified as

N
= <31) 

i=l

Kohn and Sham [37] developed a total-energy functional using single electron orbitals. 

These individual orbitals are determined by a self-consistent method [37]. Kohn and 

Sham further proposed an approximate Exc[p], taking into account only the local 

component of the exact exchange energy. This approximation is called the LDA. 

This approximation made it possible to apply DFT to realistic systems. For this 

dissertation, I will apply LDA to the PA system.

The significance of the Kohn-Sham energy functional relation, Eq. (27), and 

the computational advantages motivated by the functional are briefly outlined below. 

The Khon-Sham method replaces the full interacting particle problem with a coupled 

single particle problem. In the Kohn-Sham picture, the density is defined by
N

(32) 

s i

Using this definition of density, Kohn and Sham developed self-consistent equations 

for Solutions to these self-consistent equations provide the density that corre­

sponds to the minimum of the energy functional as shown below.

The minimization of E[p] subject to a normalization constraint on the density 

leads directly to the Kohn-Sham self-consistent equations. These equations provide 

the mathematical “machinery” for practical DFT calculations. The constraint asso­

ciated with the density is specified as follows:

f p(r) dr = N (33)
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The N-electron charge density which makes Eq. (27) stationary satisfies the the fol­

lowing Euler equation:

Here p is a Lagrange undetermined multiplier associated with the constraint from 

Eq. (33). This relation is written more compactly as follows:

= ye//(r) +(^S)

If the functional derivative of Exc was not included with the other terms above, 

finding the density satisfying Eq. (35) would be accomplished by solving the self- 

consistent Hartree equations. Kohn and Sham proved that with the effective potential 

veff the density which satisfies Eq. (35) can be found with the following self-consistent 

single orbital equations with the same form as the simple Hartree equations:

[-j V2 + veff]ÿi = eiipi. (36)

?Wr) = u(r) + y (3?)

N

= (38)
i a

3.2 Exchange-correlation energy functional

An expression for the exchange-correlation energy must be specified to utilize 

the above Kohn-Sham orbital equations. LDA provides the simplest method for this 

specification. LDA has been the most commonly used approximation in total-energy 

pseudopotential calculations. It is utilized in calculations to be described here. It is 

constructed by assuming the exchange-correlation energy per electron at a point r 

in the electronic system is equal to the exchange-correlation energy per electron in a 

homogeneous electron gas that has the same density as the electronic system at point 

r. Therefore, if exc is the exchange-correlation energy per electron in a homogeneous 

gas of density p, the functional is thus specified:
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Exc[p(r)] = J eTC[p(r)]p(r)dr. (39)

The term incorporated into vejy above involving Exc is known as the exchange­

correlation potential. It is specified using LDA as follows:

SExc[p] _ J[p(r)^c(r)]
&P M r) I /

This local density approximation makes the vef/ a local operator in the above 

Kohn-Sham equations. This is an important advantage over other methods such as 

Hartree-Fock which provide one-electron Hamiltonians with nonlocal potential oper­

ators. Self-consistent equations with nonlocal operators require considerably greater 

computational effort. The total electronic energy is given by the following expression:

(«)

Several parameterizations have been developed for the exchange-correlation 

energy of the homogeneous electron gas exc. The calculations discussed here use a form 

obtained by Vosko, Wilk, and Nusair (38). These parameterizations use interpolation 

formulas to link exact results for a high-density electron gas and calculations of the 

exc for intermediate-and low-density electron gases.

The LDA cannot be formally justified for systems with dramatic density vari­

ations such as atoms and molecules. However, in practice LDA can be used to predict 

properties such as binding energy and ground state geometries with accuracy at least 

as good as Hartree-Fock methods. Examples of results for small molecules obtained 

with the LDA computer code used in this study are shown below.

Some of the polyene systems discussed below have a net spin. The use of the 

spin- polarized version of the Kohn-Sham equations is necessary for such systems. 

The spin Kohn-Sham equations allow electrons of different spins to have different 

spatial densities. The spin-polarized energy functional and self-consistent equations 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

are analogous to the above Eqs. (27), (31), and (36). These are summarized as 

follows [39]:

[~V2 + Veff[p^ P^ia = (42)

ye//(r) = v(r) + J (43)

EXc[Pt» Px\ — J ^xc[p^i P4-]p(r)dr. (44)

occupied
PaW = 52 • (45)

p(r) = Pt(r) +p±(r). (46)

The use of the homogeneous spin-polarized electron gas to specify Exc in the 

third equation above is called the local spin density approximation (LSDA), analogous 

to the approximation of Eq. (39).

3.3 Basis set and energy minimization

In order to minimize the energy functional using LDA (LSDA), a basis set 

must first be chosen for the expansion of the orbitals 1/%. A plane-wave basis set 

is used for the calculations in this study. A plane-wave basis provides a complete 

orthonormal basis with no system-dependent parameters. However, a plane-wave 

basis forces the use of periodic boundary conditions. Nonperiodic systems such as 

molecules require the use of periodic supercells, which are repeated over all space. 

Each supercell contains one molecule separated from neighboring cells with a large 

vacuum. For any such periodic system, Bloch’s theorem states that each orbital wave 

function can be written as a sum of plane waves:

^(r) = 52 %'k+G exp'(k+^r . (47)
G

This expression is based on the existence of periodic boundary conditions for 

the system with reciprocal lattice vectors G The long finite polyenes considered in 
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this study are incorporated into a periodic system via the use of periodic supercells. 

Each finite polyene is centered in a cell large enough to avoid interaction with others 

in the lattice.
Each plane-wave with coefficient c^k+G has a kinetic energy of magnitude 

^|k + G|2. To perform a calculation, the infinite summation must be truncated. 

The truncation of the plane-wave basis occurs at a finite reciprocal vector Gmai. 

The accuracy of the basis is measured by the cutoff energy Ec = ^Gm«x- A higher 

cutoff energy Ec provides more accurate results. The truncation always leads to to 

some error in the computed total energy. In practice the number of plane-waves is 

increased until the increasing cutoff energy produces a converged result for the total 

energy. For the polyene calculations performed for this study, it was determined that 

an acceptable energy cutoff should be given by about 60 Rydbergs, which requires 

the use of several hundred thousand plane-waves.

The use of a plane-wave basis requires a pseudopotential approximation for 

the potential v(r) for the ions and non-valence shell electrons. An extremely large 

number of plane-waves would be needed to expand the tightly bound core orbitals 

and the rapidly oscillating valence orbitals in the core region. The pseudopotential 

approximation allows valence wave functions to be expanded with a much smaller 

basis set than would otherwise be possible. This approximation removes the core 

electrons and replaces them and the strong ionic potential with a weaker pseudopo­

tential. This pseudopotential acts on a set of pseudo wave functions rather than the 

true valence wave functions. Outside a well-defined core region, the pseudopotential 

and original potential are identical. An important requirement of pseudopotentials is 

norm conservation of wave functions. It is important to conserve the norm of wave 

functions in order to ensure the real and pseudo wave functions are identical outside 

the core region. The pseudopotential is also constructed to produce the same scatter­

ing outside the core region as that produced by the real potential. The most general 
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expression for a pseudopotential is

^pseudo — (48)
l,m

where | Im) are the spherical harmonics and Vt is the pseudopotential for angular 

momentum quantum number Z. A pseudopotential that uses a different potential V/ 

for each different angular momentum component of the wave function is known as a 

nonlocal pseudopotential. A set of norm-conserving, nonlocal pseudopotentials de­

veloped by Hamann [40] is used here for v(r). Bylander and Kleinman [41] suggested 

a separable form of the pseudopotential as follows:

pseudo = Viocal H" 52 l&X&h (49)
i •

where the first term is a local part of the pseudopotential and second term is the 

completely nonlocal contribution for angular momentum Z. Although a real-space 

expression for vpseudo is complicated by this procedure, computations involving the 

pseudopotential are sped up considerably when performed in reciprocal space.

Although a very large number of plane-waves are required, this basis set is 

preferred in the present calculation for reasons other than the ease of controlling basis 

set size and error. The simple form of the plane-waves helps in the design of highly 

efficient algorithms for massively parallel computers. The form of the Hamiltonian in 

the Kohn-Sham equations has a particularly simple form using this basis. Substituting 

Eq. (48) into the eigenvalue equation, Eq. (36), gives

y ][-—|k + G|25gG' + (G — = Ei Ci,k+G• (50)
œ 2 m

The kinetic energy term is diagonal in the plane-wave basis, and each component of 

veff is expressed in terms of its discrete Fourier transform.

The total-energy functional is minimized when self-consistent solutions are 

obtained for the eigenvalue Eq. (50). Conventional matrix diagonalization techniques 

are not practical. The large number of required basis states makes storage of the entire 
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Hamiltonian matrix prohibitive. Furthermore, the cost of matrix diagonalization 

increases as the third power of the number of basis states. The formalism used for 

FDA energy calculations in reciprocal space is elaborated in the Appendix.

This study uses a simple iterative method to minimize the total-energy func­

tional. For a given ionic configuration R, this functional is given by

occ 11 1 -y ZrZ j
.E[W,Rz] = |Ri _ njp (51)

i,c ~

This is the same relation given above for the electronic energy functional with $ 

representing the Coulomb interaction between electrons and the ion-ion repulsion 

energy included. It is often desirable to know the and R corresponding to the 

ground state (global minimum of E) for the system of interest. Also, given an initial 

non-ground-state configuration R, we often wish to find the which minimizes the 

total energy E. This second case is useful for starting subsequent molecular dynamics 

simulations where the trajectory of the system should be on the Born-Oppenheimer 

surface. In other words, the should remain close to the instantaneous lowest-energy 

set for each new R^

It is not necessary to approach the minimum of E along the Born-Oppenheimer 

surface. Therefore, the and R can be treated as independent degrees of freedom. 

The method of steepest descent minimization used in this study takes this approach 

and provides a simple algorithm for obtaining the nearest minimum starting from 

an initial set of and R. Only first-order derivatives of the energy functional are 

required with this method. A generalized force for the electronic orbitals is defined 

as follows:
A-r = ~^7" + 52 (52)

where the second term on the right-hand side ensures that the wave functions satisfy 

the orthonormal constraint using a Lagrangian multiplier matrix Ay. The first “force” 
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term is expressed as the following:

(53)

where H is the one-electron Hamiltonian of the Kohn-Sham equations. The force 

(—is the gradient of the Kohn-Sham energy functional at the point in Hilbert 

space corresponding to the wave function The force on the ions is given by

Fi = -V/S. (54)

Given these force equations, the system converges towards a minimum accord­

ing to the following finite difference equations;

= + (55)

R?-*-' = R" + tjFj (56)

where the parameters £ and 77 control step lengths.

3.4 Testing the implementation of the plane-wave LDA/LSDA method

We tested our implementation of the method by calculating systems of small 

molecules containing carbon and hydrogen. The results are shown in Table II under 

the column LDA-PW. For comparison other ab initio results obtained by Johnson,Gill, 

and Pople [42] are also shown. Molecular geometries generally agree with experiment 

with errors less than a few percent. Therefore, we believe it is appropriate to use this 

method for PA.

3.5 Gradient corrections to the local density approximation

Including the lowest-order gradient correction, the exchange-correlation energy 

Exc[p] has the form

ExcWYï = j £xc[p(r)]p(r)dr + j rxc(p(r))|Vp(r)|2dr. (57)
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TABLE II: Theoretical and experimental geometries. Bond distances in angstroms 
and bond angles in degrees. Theoretical values from Johnson et al. were obtained 
using 6-31G* basis set (except plane-wave calculations).
Molecule Param. S-VWN B-LYP HF MP2 QCISD LDA-PW Expt

CH Rc-/r 1.152 1.146 1.108 1.120 1.131 1.130 1.120
ch3 Rc-h 1.093 1.090 1.073 1.078 1.083 1.075 1.079
ch4 Rc-h 1.101 1.100 1.084 1.090 1.094 1.084 1.086

HCCH Rc-c 1.212 1.215 1.185 1.216 1.211 1.189 1.203
Rc-h 1.078 1.073 1.057 1.066 1.069 1.061 1.061

H2CCH2 Rc-c 1.331 1.341 1.317 1.335 1.337 1.310 1.339
Rc-h 1.098 1.095 1.076 1.085 1.088 1.081 1.085

0(HCH) 116.4 116.2 116.4 116.6 116.3 116.5 117.8
H3CCH3 Rc-c 1.513 1.541 1.527 1.524 1.528 1.501 1.526

Rc-W 1.105 1.104 1.086 1.093 1.097 1.089 1.088
0(HCH) 107.2 107.5 107.7 107.7 107.7 107.2 107.4

o2 Ro-o 1.215 1.240 1.168 1.246 1.221 1.206 1.207
n2 R N-N 1.122 1.118 1.078 1.130 1.114 1.089 1.098
NO R N-O 1.161 1.176 1.127 1.143 1.174 1.143 1.151
BeH ^Be—H 1.370 1.355 1.348 1.348 1.357 1.343 1.343

It is difficult to find a form for rzc(p(r)) which recovers the exact known result of 

EIC for the uniform homogeneous electron gas [43]. Furthermore, gradient-corrected 

schemes often produce exchange-correlation potentials with unphysical asymptotic 

behavior close to the atomic nucleus or in the tail of the electron distribution of finite 

systems [44]. Furthermore, pseudopotentials generated with most gradient-correction 

schemes tend to have strong oscillations and other irregularities inside the core region, 

which limits their practicality [45].

Recent attempts to find an improved gradient-corrected functional separate 

the exchange-correlation energy into separate exchange and correlation contributions. 

One such widely tested method employs a gradient-corrected exchange functional 

proposed by Becke [26] and a gradient-corrected correlation energy functional pro­

posed by Perdew [27]. This corresponds to the method listed as BP86 in Table I. I 

implemented this approximation in my plane-wave density functional code. To con­

struct pseudopotentials with these gradient-corrected formulas, I followed closely the 
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prescription given by Hamann [40]. Our generated pseudopotentials match those gen­

erated by Ortiz and Ballone [45]. Our calculations testing bond lengths and cohesive 

energies of small molecules matched results reported in Ref. [45].

As will be shown in chapter 4, the inclusion of this gradient correction does not 

improve the agreement of our predicted dimerization (for the infinite PA system) with 

experiment. Suhai [19] also found that only gradient-corrected methods that include 

some mixing of exact exchange energy improve LSDA predictions for PA. Gradient­

correction schemes are known to often fail to improve predictions for equilibrium 

lattice constants in extended systems even while they generally improve structural 

predictions for molecules [46].

3.6 Molecular dynamics methodology

The Car-Parrinello molecular dynamics method is used here for dynamical 

simulations of solitons in PA. Again, as in the steepest descent algorithm, the and 

the R/ are treated as independent degrees of freedom. Car and Parrinello proposed 

the following Lagrangian with the electronic orbitals treated as dynamical variables 

[47]: ’
L = '52 MlLltL) + |MjR2 - S^iaR/]- (58)

iff
Here, /z is a fictitious mass associated with the electronic orbitals and Mi is the ionic 

mass. The wave functions are subject to the orthonormal constraint for all times.

= Ôtj. (59)

The resulting equations of motion are expressed as

+ 52 (60)
3 .

Af/R/ = — VjE (61)
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The Cia is a Lagrange multiplier to hold the orthogonality of Eq. (59). The conserved 

quantity includes the sum of two classical mechanical kinetic energies as given by

Etotai — Ki + Ke + Elda (62)
K, = |MjRj (63)

Ke = , (64)
i,a

where Elda is given by the value of the LDA energy functional. This Etotai is moni­

tored as the dynamics evolve as a check against calculation errors.

The equations of motion above are solved using a standard finite difference 

technique known as Verlet’s algorithm [48]. It gives the value of the ith electronic 

state after a consecutive time step At as

^^(△t) = 2^^(O) — ipiaÇ—At) + At2^i(0), (65)

where At is the time step, is the value of the state at the present time step, and 

At) is the value of the state at the previous time step. Substitution of Eq. (60) 

into Eq. (65) gives

^(△i) = 2^(0)------- [Hipia — ^^e^^(O)]. (66)
M 3

The Verlet algorithm introduces an error of order At4 into the integration of the 

equations of motion.

The Car-Parrinello algorithm offers computational advantage over other meth­

ods used to observe the trajectory of a system on the Born-Oppenheimer surface. The 

electronic wave functions “move” with velocities in such a manner that they remain 

very close to the instantaneous ground state wave functions for the ionic configuration 

at each time step. It is not necessary to diagonalize and store the entire Hamiltonian 

matrix. Instead, it is necessary to store only the wave functions operated on by the 

Hamiltonian in the form of their expansion coefficients. Updating the wave functions 
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for a new time step requires the storage of the wave functions for the current and 

previous time steps, as evident from Eq. (66). For the dynamics studies described 

here, /z = 300me and the time step At = 1 au (% 0.024 fs).
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4 RESULTS OF AB INITIO CALCULATIONS OF MODEL PA

We have investigated the infinite PA system with periodic boundary conditions 

using the method described above in section 3. Since the supercell used must be finite, 

we have a finite number of reciprocal lattice vectors (k points) for use in these total­

energy calculations. The results for the predicted bond alternation using different 

numbers of atoms in increasingly larger supercells are shown in Table III. Calculations 

listed using a generalized gradient correction use functionals proposed by Becke [26] 

and Perdew [27] and are implemented with a pseudopotential method as described by 

Ortiz and Ballone [45]. The computer code for generating pseudopotentials developed 

by Hamann [49] was modified to include the gradient correction. Again, as discussed 

above, this particular gradient-correction scheme has not given an improvement for 

predicted dimerization.

TABLE III: Bond alternation as predicted by LDA with and without generalized 
gradient correction. Aexp « 0.08 — 0.1 À

Unit cell Rc-c Rc=c A (A)
c8h8 1.46 1.34 0.12

c8h8 ggc 1.46 1.33 0.13
CieHie 1.42 1.35 0.07

Ci6H16 GGC 1.43 1.36 0.07
C32H32 1.41 1.35 0.06

C32H32 GGC 1.42 1.37 0.05

In agreement with previous studies [19,29], I find that the dimerization de­

creases as the number of k points used for the calculation increases. This result was 

also confirmed by Bylaska [50] in an extensive study of carbon chain systems using 

this method. For an infinitely large unit cell size, I expect that my predicted dimer-

34
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ization will be considerably smaller than experiment. Therefore, based on my own 

and other previous results, I conclude that LDA/LSDA or the gradient-correction 

method I have tested to this date is not appropriate for describing the dimerization 

of the infinite PA system. This is one reason I use finite polyene chains in this study 

to model the infinite PA system.

I investigate polyenes of the form CnHn+2 for even and odd values of nup ton 

= 33. The end of a polyene chain forces dimerization. The final carbon-carbon bond is 

forced to be a double (short) bond by the presence of the extra terminating hydrogen 

atom. I refer to polyenes where n is an even(odd) integer as an even(odd)-membered 

polyene. As discussed below, it is possible to have only one phase of bond ordering 

in an even-membered polyene. However, odd-membered polyenes must have at least 

two phases present. The ground state of an odd-membered polyene is a soliton state.

4.1 Results for even-membered polyenes

The tendency of LDA to underestimate dimerization was discussed above. For 

calculations for the idealized infinite system, LDA calculations typically give a small 

dimerization that is 10% of the experimental value. Results from the LDA plane-wave 

basis method used here were tested for systems with as many as 32 carbon atoms 

in the unit cell (see Table III). While the difference in long and short bond lengths 

(rc-c — rc=c = 0.06Â) is smaller than the experimental value of 0.08 Â [14], the 

value is reasonably close. Using larger unit cell sizes should gradually lead to smaller 

and negligible dimerization according to other previous results [19,29].

Calculations were performed for this study on even-membered polyenes of 

pristine trans-PA to check how the predicted structure changes with increasing chain 

size. The results performed with the LDA plane-wave technique are listed in Table 

IV with the label LDA-PW. For comparison results of other ab initio methods [17,51] 

are also included. These other calculations use techniques including second-order
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TABLE IV: Predicted lengths of short/long central bonds in even-membered polyene 
systems. All calculations (except LDA-PW) used a 6-31G* basis set except results 
shown for B-LYPd, which used a 6-31G** basis. 

Method C10H12 C18^2O C30H32 Û32I/34 00 limit
HF“ 1.332/1.459 1.325/1.462
MP26 1.360/1.440 1.373/1.423
B-LYPC 1.326/1.439 1.384/1.428 1.390/1.422 1.398/1.413
B-LYPd 1.376/1.438 1.398/1.417
B3-LYPC 1.360/1.438 1.366/1.430 1.368/1.426
LDA-PW 1.360/1.410 1.360/1.400 1.351/1.410
exp/ 1.36/1.44
(a) Ref. [53]
(b) Ref. [54]
(c) Ref. [17]
(d) Ref. [17]
(e) Ref. [14]

Môller-Plesset (MP2) and gradient-corrected LDA. These calculations are performed 

with different exchange functionals given by Becke [25,26] (labeled by B and B3) 

and correlation functionals given by Lee, Yang and Parr [52] (labeled by LYP). The 

details of the methods are found in the references. The table gives calculated bond 

lengths for the long and short bonds near the center of each polyene. A schematic 

picture of an even-membered all- trans polyene is shown in Fig. 7. Figure 8 plots the 

bond length of each carbon-carbon bond from end to end for C32H34 as calculated 

by LDA-PW. The bond alternation is very uniform except near the ends, where the 

dimerization is accentuated by the terminal atoms. The highest occupied molecular 

orbital (HOMO) level contour plot shows the paired 7r electron bonding in the central 

section of the polyene that is expected to be characteristic of the ideal infinite chain.

In contrast to the infinite PA system, the finite even-membered polyene has 

a unique ground state. There are not two “phases” of bond ordering that give the 

same energy. This is obviously due to the effect of the chain ends. The total energy 

is lowest when the terminal carbon-carbon bonds are short instead of long. The 

electronic environment and lattice coupling should be similar to that for the ideally 
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electronic environment and lattice coupling should be similar to that for the ideally 

infinite chain with the degenerate ground state when the soliton is not too close to the 

chain ends. The study of the interaction of the soliton with a chain end is important 

since real solitons must, of course, exist on finite chains.

Density functional calculations tend to underestimate the dimerization in the 

infinite chain limit by at least 40%. However, for finite chains the dimerization appears 

to rather independent of chain size and close to what is predicted with each method 

for the infinite chain limit. The B-LYP dimerization result is significantly reduced 

in the infinite limit; however, as discussed above, the value for the infinite chain is 

extremely sensitive to how the Brillioun zone is sampled. Although the experimental 

difference in rc-c and rc=c is extremely small and sensitive to the specifics of how 

electron exchange and correlation are treated, different methods are seen to give very 

similar results. Although the dimerization in the long polyenes is found from these 

calculations to be roughly half of the experimental value, it is qualitatively correct. It 

will be assumed in the following analysis that LDA provides at least a good qualitative 

description of the electronic and lattice coupling that is important for studying soliton 

dynamics. This assumption is based on the above results and on the well known fact 

that density functional methods have been successfully used to predict with accuracy 

vibrational frequencies, bulk moduli, lattice constants, and other properties for a large 

variety of chemical systems. This general accuracy of LDA is discussed in detail in 

the reviews [39,43].

4.2 Polyenes with a cis bond defect

As mentioned above, trans-PA is the lowest-energy and most thermally stable 

isomer of PA. Films of trans-PA are made from as-grown films of c^-PA by heating 

the film above 100° C. Experiments indicate that isomerization is not totally complete. 

Infrared absorption experiments indicate that residual cis segments are an important 
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defect at a typical estimated level of 5% [8]. In the real material a mobile soliton is 

likely to encounter such a defect, which is likely to impose an energy barrier. It has 

been suggested that solitons in trans regions of the chain may be trapped by bounding 

cis regions at low temperatures [8,9]. It is well known that a small number of neutral 

solitons are localized (trapped) within short trans segments in PA that is mostly 

cis-PA [55]. Several researchers have used a model of PA that includes temperature­

dependent trapping probabilities to explain data from ESR and dynamical nuclear 

polarization experiments [31,32,55,56]. Results of these experiments generally imply 

that below 10 K there is no soliton diffusion, and between 10 K and 150 K trapped 

solitons gradually become mobile. Besides oxygen impurities adsorbed on sample 

surfaces and residual catalyst atoms, the presence of cis bonds may be an important 

source of soliton trapping.

There are two possible configurations of czs-PA as shown in Fig. 9. The cis- 

transoid is the only experimentally detected isomer and is closer to the lowest-energy 

trans-PA by about 0.05eV/(C2H2) according to ab initio calculations [57,58]. The 

trans-cisoid form is suspected to be a meta-stable form of PA as there is no detected 

local energy minimum in calculations where the bond order is gradually changed from 

the cis-transoid to the trans-cisoid configurations [57].

Calculations to determine the static properties of polyenes with one or two cis 

bond defects on an otherwise trans chain were performed for this study. It is useful 

to have some information on how the energy and bond order structure changes in 

the system before trying to simulate mobile solitons in the defect system. An even­

membered polyene with a cis bond in the center is shown schematically in Fig. 10. It 

is expected that inclusion of a cis bond should not affect the general alternating bond 

length pattern for even-membered polyenes.. A central cis bond should be long if 

there are 4N carbon atoms and short if there are 4N — 2. It is also expected that the 

lowest-energy configuration for the polyene structure should be a bent “boomerang” 
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angles between any three carbon bonds equal to about 125° [57,59]. It is interesting 

to note that a single cis bond geometrically separates the two possible "phases" or 

bond ordering of trans-PA like the soliton does. However, unlike the soliton there is 

no interruption or mismatch in the regular short-long bond alternation, which is a 

defining characteristic of a soliton.

The results of some calculations for the small system C10H12 are shown in 

Fig. 10. The “bent” structure with the middle cis bond is lower in energy, as expected, 

than the corresponding straight structure by 0.71 eV. When the geometry is allowed 

to relax, the straight system does not move towards the bent configuration. The 

average bond length is slightly larger for the straight structure, especially around the 

cis structure, where the lattice strain would intuitively be the largest. This strain 

energy is apparently more significant than the energy change created by moving the 

cis to another position along the chain while keeping the C-C-C bond angles % 125°. 

As shown in Fig. 10 the energy was minimized with the cis bond at the end of the 

polyene instead of the middle. The cis bond is long in this case and corresponds to the 

trans-cisoid isomer of cis-PA shown above, which again has not been experimentally 

detected as a physically existing isomer. The difference in energy from the “bent” 

structure with the cis bond in the middle is smaller in this case, suggesting that 

retaining the energetically favorable 125° bond angles may be more important than 

exact position or type of cis bond when considering small energy differences.

Figure 11 shows similar results for bond lengths of when the pure trans 

form of the polyene is compared to the same system with one cis bond in both the 

bent and straight chain geometries. The pure trans form is 0.024 eV lower in energy 

than the bent cis form. The trans form is lower than the straight chain with one cis 

by 0.90 eV and lower than a chain with two cis bonds in the middle by 1.44 eV. It 

appears that the presence of each cis bond in the straight polyene chain raises the 

energy on the order of Q.leV/(C2H2 unit). These differences are of the same order of
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energy on the order of unit). These differences are of the same order of

magnitude as the predicted difference between the infinite pure isomers (per C2H2) 

shown in Fig. 9. A single cis bond in a straight chain causes increase in bond length 

around the cis bond as seen in Fig. 11. The bond lengths shown for the bent structure 

are almost identical to the trans form. It is reasonable to infer that the increase in 

energy for the straight cis system comes from the distortion or strain caused by the 

cis region where the C-C-C bond angles are away from 125°. The C-C-C bond angle 

for the section connecting the cis bond to the trans chain is % 150° when the chain 

with one cis bond is straight.

We are interested in the energy barrier encountered by a mobile soliton caused 

by a single cis bond. Since the geometrical defect is expected to be distributed 

over roughly 15 carbon bonds, there must be a collective motion of all these C-H 

units to produce the motion depicted. However, each unit must only shift a very 

small amount as the soliton passes and changes one degenerate bonding phase to the 

other possible phase. The only estimate made to date for the energy required to 

promote the soliton center from one site to the next has been by Su et al. [11]. They 

estimated this activation energy with the SSH model to be % 0.002 eV. However, it 

seems clear that the changes in bond length ordering seen around the cis region may 

change the activation energy required near the central cis bond. Furthermore, as the 

soliton passes over the cis bond, it is changing the bond from one possible type of 

cis structure to the other. However, as indicated above for finite even polyenes, the 

two forms or “phases” of cis bonds will not be energetically equivalent for a given 

finite chain. Therefore, the soliton should lose (or gain) some kinetic energy as the 

cis bond is transformed from one form to another, if indeed the soliton has enough 

kinetic energy to pass over the cis region. These ideas are discussed further in light 

of results of molecular dynamics simulations for a soliton colliding with a cis region 

described in chapter 6.
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4.3 Odd-membered polyenes of trans-PA: Static calculations

Total-energy calculations for polyenes similar to those discussed above were 

performed to investigate properties of a static soliton. Like the polyenes above, these 

odd-membered polyenes have terminal carbon-carbon bond lengths that are shorter 

than the others. Figure 12 shows the calculated bond lengths of polyenes of various 

charge species with 17 and 33 carbon atoms. The bond lengths alternate between the 

ends and the polyene center. It is impossible for the short-long alternation pattern 

to proceed uninterrupted from one end to the other if the bond length pattern is 

symmetric about the polyene center. Figure 12 shows the symmetry is preserved 

with a topological “kink” or phase change in the bonding order characteristic of the 

soliton. An important quantity characterizing the soliton is the geometric width. This 

is the length of the chain segment over which the bond alternation changes from one 

phase to another. The changing bond alternation is usually described by the bond 

order parameter. The bond order parameter introduced in section 2.1 was given 

in terms of the shift distance un of each of the carbon atoms away from a position 

that would correspond to an undimerized chain. The bond order parameter can also 

be discussed in terms of the length difference between adjacent bonds. The order 

parameter is then given by △ rn, which is specified as follows:

&rn = -ln[(rn+1 - rn) - (rn - rn_i)]. (67)

Here Arn describes the difference in nearest-neighbor bond lengths with respect to 

a carbon atom labeled by integer n. The rn specifies the position of the nth carbon 

atom site. For the ideal infinite PA system with no excitations or defects, Arn is 

equal to a constant ±Aroo due to the uniform dimerization with the two possible 

“phases” of bond ordering. The bond alternation for the PA system with a soliton is 

predicted by the SSH model to have the form

Arn = — lnArootan/i(^-y^). (68)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Here the integer n again labels each carbon atom on a chain with a soliton 

distortion centered about carbon atom ng. The factor — ln gets rid of the oscillating 

sign of the bond length differences so that when n — ng 3> l the order parameter 

△rn = ±Atoo. The total geometrical width of the soliton is 21 carbon-carbon bond 

lengths. This is the width of the segment over which the bond order changes from 

—Aroo to +Atoo or vice versa.

The bond alternation Arn for and obtained from our LDA

code is shown in Fig. 13. Also shown is the bond order predicted from the SSH model 

using the 1 = 10 for the soliton half-width. While the experimental soliton width is 

uncertain, it has been reported that 1 = 11 generates a best fit for models used to 

simulate ENDOR spectra [31,60]. Most SSH calculations use 1 = 7 since the use of 

this value leads to reasonable results for quantities like the bandwidth which have 

experimental values which are easier to measure.

From the figures it is apparent that SSH predicts an essentially complete tran­

sition over a length of about 22 carbon bonds, whereas the transition for the LDA 

predicted structure is more gradual and encompasses the whole chain. The shape of 

the tanh function does not seem to fit the LDA results very well. A common feature 

of both Hartree-Fock and LDA structures is that the bond length of the terminal 

carbon bonds is practically independent of system size. The environment around the 

terminal carbon atoms seems to fix Ar for the ends, and the bond alternation is 

greater than the experimental value of 0.08 A near the ends. The curve for CnH^ 

is especially steep since the change in bond alternation pattern takes place over a 

segment half as large as that available in the larger system. Charged polyenes with 

up to 37 carbon atoms have been studied previously by Champagne, Deumens, and 

Ohrn [61] using Hartree-Fock self-consistent field calculations. The Hartree-Fock re­

sults better reflect the SSH tanh function shape for the alternation, although the best 

fit is for the relatively small half-width value of 1 = 5.7.
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The bond alternation data show that far from the kink center the bond alter­

nation is greater than the experimental value for Atqo for the Hartree-Fock results 

and smaller for the LDA case. These results mirror the tendencies of these methods 

to overestimate (Hartree-Fock) and underestimate (LDA) the dimerization when the 

infinite system is considered. These results can be interpreted in terms of the SSH 

model. The SSH model gives us the following relations among the band gap (Ao), the 

valence bandwidth (4t0), the electron-phonon coupling constant (a), and the soliton 

width 1.

Ao = 4auo (69)

1 = -^- 
2au0

Here a is the unit cell length and u0 is given by Aroo/4. Kawai et al. [30] have shown 

that LDA results for carbon rings correspond to SSH results with a weak coupling 

constant a, while Hartree-Fock results map to a strong coupling constant. They also 

show that weak coupling leads to small dimerization and strong coupling leads to 

large dimerization. The very large width Z of the distortion shown above is supported 

by Eq. (70) if LDA results correspond to SSH results with small a in finite as well as 

periodic systems.

In chapter 2 the modulated form of the soliton wave function was given in 

Eq. (15) as predicted by SSH. The density (charge or spin) is described by SSH by 

the relation

Pj = (1/1) sech2 ( j /Z) cos2 ( J tt/2) . (71)

Clearly, the width of the electronic density associated with the soliton is expected to 

be much greater than its geometric width. From Fig. 5 above we see that a soliton 

with a geometric half-width of Z — 7 is still at about half of its maximum amplitude 

at a distance of 7 carbon bond lengths from the soliton center. Figure 14 shows the 

spin polarization density — p^ along a line parallel to the axis of neutral 
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and Lan above the plane of the polyene, as calculated from our LDA computer code. 

This happens to be a soliton in motion, the density taken from a molecular dynamics 

time step when the soliton is near the center of the chain. The dynamics will be 

discussed in detail below. The very diffuse nature of the soliton as predicted by the 

LDA is again evident. Unlike the SSH density which is exactly zero on every other 

carbon site, the soliton density of Fig. 14 shows the density to be slightly negative 

there. This small negative density has been observed by triple resonance experiments 

(triple-ENDOR) [31,60]. This effect has also been anticipated by models such as the 

Peierls-Hubbard model [62,63] and ab initio studies [18,61,64] where electron-electron 

correlation is explicitly taken into account.

It is difficult to make detailed comparisons between the soliton nature shown 

here and that of other studies and experiments. This is due to the large uncertainties 

of the experimental data and the dependence of typical model calculations based on 

unknown guessed parameters. These static calculations show clearly that a soliton 

structure is located at the center of the chain in odd-membered polyenes of the trans 

form. In the idealized infinite chain, the soliton is expected to move anywhere along 

the chain with essentially no change in total energy of the system since each unit cell 

is equivalent. The dynamics simulations described in following sections confirm that a 

soliton distortion near an end of a finite chain is energetically unfavorable. The finite 

chain system provides a potential well, and it will be shown that as the soliton moves 

toward a chain end, the ionic kinetic energy decreases while the total potential energy 

(including electronic energy) increases. Although the soliton width described by LDA 

appears to be greater than that described by other methods such as Hartree-Fock, I 

expect that the energy difference calculated as the soliton center moves from site to 

site should be well described by molecular dynamics calculations using either method. 

As will be described, I am particularly interested in the change of the potential energy 

caused by the presence of a single cis-bond defect. This defect has a geometric 
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width of a few carbon-carbon bond lengths. The new qualitative information about 

the soliton-defect interaction given by LDA and molecular dynamics simulations is 

discussed below.

4.4 Odd-membered trans polyenes with one cis bond

The results above confirm that a soliton state exists as the ground state of 

odd-membered polyenes of the trans-PA form. Our density functional code was also 

used to find the ground state structure of the same odd-membered polyenes with one 

cis type bond near the center. Figure 15 shows the calculated carbon-carbon bond 

lengths and spin-polarization density for the polyene C31H33 with one cis bond. The 

system lacks the symmetry about the central carbon atom that exists for the all­

trans odd-membered polyene. We find that the symmetry breaking introduced by the 

cis bond leads to a ground state without the existence of a soliton. In Fig. 15 the cal­

culated bond lengths and spin-polarization density are shown. The spin-polarization 

density is concentrated on every other carbon atom site. However, unlike the soliton 

density there is a visibly greater concentration on one side of the cis bond over half 

of the "polyene length. The bond length distribution also lacks symmetry about the 

central carbon atom. The bond ordering changes from one “phase” of bond ordering 

to the other in the central part of the polyene. This again satisfies the topological 

constraints imposed by the short bonds at the ends. The transition from one bond 

ordering to the other does not have the smooth, gradual character expected of a 

soliton.

While it is energetically favorable for a soliton to be located at the center of 

an odd-membered all-trans polyene, the ground state for the case with a cis bond 

gives no such indication. Dynamical simulations described below involve both a 

central cis bond and a soliton on the same odd-membered polyene chain. Before 

performing the full dynamics simulation, we need to “create” an initial excited state 
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of the polyene that leads to soliton-cis bond interaction. The initial geometries and 

ensuing dynamics are discussed below.
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FIG. 7: Example of an all-irons CnHn+2 polyene. Here n = 14.
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FIG. 8: Carbon-carbon bond lengths and HOMO density 1 au above the polyene 
plane for C32H34.
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FIG. 9: The two possible isomers of all-czs-PA.
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FIG. 10: Structure, total energy, and calculated bond lengths for CwH^ with one 
cis bond.
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FIG. 11: Comparison of carbon-carbon bond lengths between all-irons and
the same system with a central cis bond and either a straight or bent geometry.
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FIG. 13: Order parameter Arn from calculated geometry of C33H35 and C^H^. Here 
n = 0 labels the central carbon atom. Also shown is the order parameter predicted 
from SSH [Eq. (68)].
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5 DYNAMICS SIMULATION OF SOLITONS

In this chapter we review results of other recent dynamics studies of mobile 

solitons in PA. Previous studies have used empirical Hamiltonians almost without 

exception to investigate the qualitative motion of solitons. Methods used to initiate 

soliton dynamics are discussed. The initial conditions used for our simulations are 

also described below.

5.1 Brief summary of previously published simulation results

Most of the previous studies of solitons in PA address the soliton’s dynamical 

properties through observations of static properties of chains containing the soliton 

defect. For example, Chance et al. [65] used a semiempirical method to find solu­

tions of the Hartree-Fock Hamiltonian for a polyene with 17 carbon atoms and a 

static soliton kink. Specifically, the method known as MNDO (modified neglect of 

differential overlap) [66] was used. By performing many calculations with the kink 

centered on different points along the chain, they found the total-energy changes with 

a magnitude on the order of 1/100 eV until the kink is translated to within a few 

atoms of the terminal ends. Here the energy change away from the central position 

was « 0.08 eV. Others have investigated the energetics of static kink-antikink pairs 

on finite chains using DFT [22,67]. The results of these studies support the SSH 

picture of solitons as free quasiparticles in the absence of defects or interaction with 

phonon modes unrelated to soliton translation.

The dynamics of soliton have been studied exclusively with the SSH Hamil­

tonian and slight variants thereof, with only a couple of exceptions. There are other 

limitations of this model besides the dependence on uncertain parameters as discussed
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above. With an SSH type model, only one type of lattice vibration is explicitly taken 

into account. It is not possible to distinguish neutral and charged defects from dif­

ferences in geometry or kinetic properties. For finite chains, it can be shown that the 

system is unstable with respect to a shrinking of the entire chain, which makes an 

external force to keep a constant length necessary [68].

Despite the model’s simplicity, the corresponding equations of motion appear 

to give qualitatively correct descriptions of dynamical properties. Su and Schrieffer 

used the model to predict that solitons could be photogenerated by a mechanism 

where electron-hole pairs evolve into solitons within an optical phonon period (« 10-13 

sec). This result has been confirmed by experiment [3]. Results from simulations 

performed by Su and Schrieffer for a mobile soliton on a chain with 31 carbon atoms 

predict a nearly constant soliton velocity of % 1.4 x 104 m/sec. In the SSH simulations 

the soliton seems to “bounce” elastically from chain end to chain end as if moving 

in a “particle in a box” potential well. The speed should, of course, depend on the 

parameters and initial conditions chosen. The only initial condition reported by Su 

and Schrieffer (for a dynamics with a single soliton) is the configuration where Arn = 

Aroo. This corresponds to the energetically unfavorable geometry with uninterrupted 

bond alteration (see Fig. 16). The system distorts to form a double bond at each end 

plus a mobile soliton. The speed is on the order of the speed of sound in this model, 

% 1.5 x 104 m/sec. The effective mass of the soliton has also been estimated within 

the SSH model and given by [11]

(72) 

where uq is the dimerization amplitude along the chain axis, a is half the unit cell 

length of the infinite chain, M is the mass of a carbon-hydrogen bonded unit, and 

I describes the number of unit cell lengths covered by the soliton half-width. Using 

estimate from experiments gives Mejj = 7.0 x 10“30 kg, which is « 8 me.
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One of the very few previous dynamical studies not using SSH was done by 

Fôrner et al. [69] for a soliton in a {CH)29 system. They employed a Parisar-Parr- 

Pople Hamiltonian, which is a semiempirical Hamiltonian extending the SSH by in­

cluding “on-site” and “off-site” electron-electron repulsion plus nearest-neighbor ex­

change. It is basically an approximate tt electron self-consistent field method. This 

method has some practical difficulties like those mentioned for SSH. As for SSH a 

fictional force must be introduced to stabilize the system against lattice shrinking. 

The kink width is highly dependent on the exact value chosen for the on-site Hubbard 

U correlation parameter, and the velocity and spin density are highly dependent on 

the method used to compute the resonance integrals needed to compute the Fock 

matrices. With a parameter set used to reproduce experimental dimerization in long 

even-membered chains, Fôrner et al. found a narrow soliton covering about 6 lattice 

sites with a velocity of « 3.1 x 104 m/sec. Their rough estimate for the effective 

(kinetic) mass is « 15.0 me. A distorted initial geometry corresponding to the order 

parameter shown in Fig. 17 was used to initiate soliton dynamics. The point along 

the chain where the order parameter changes sign (the soliton center) is energetically 

favored to be at the center, and the kink does in fact move from the end regions 

toward the center as expected.

The one previously published ab initio molecular dynamics simulation of soli­

ton in PA was done by Champagne et al. [61]. The dynamics treatment here simu­

lated a charged soliton in a polyene system. The initial soliton structure is 

obtained from the ground state geometry of a restricted Hartree-Fock/Slater-type- 

orbitals method. A standard molecular dynamics procedure is used where the system 

evolves according to the equation

MzR/ = -Vr/S[Rz,^]. (73)

This is the same as Eq. (60) above except here ip is a single spin unrestricted determi­

nant built from nonorthogonal spin orbitals with complex coefficients. Soliton motion 
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is initiated by switching on an external static electric field pulse parallel to the chain 

axis. The total evolution of the simulation in this study was 210 au (5.06 fs), which 

was enough time to observe the soliton center move just two carbon-carbon bond dis­

tances along the chain. The speed of the soliton was estimated at % 5.9 x 104 m/sec 

and the (kinetic) effective mass is estimated at « 10mc. This study also attempts to 

identify the vibrational normal modes having a pronounced soliton-like motion com­

ponent. They find that chains with 21 or more carbon atoms have at least 3-4 modes 

making a substantial contribution to the mobile bond-alternation pattern expected 

(from SSH theory) for soliton translation.

My own ab initio molecular dynamics simulations represent an attempt to 

extend and qualitatively improve upon the above results. Specifically, I performed 

simulations of long enough duration to observe periodic soliton motions along the en­

tire chain, including interaction with carbon atoms near the chain end. I investigated 

both charged and neutral soliton species at the ab initio level. I included the presence 

of a conformational defect that should be very common in the real PA system, a cis 

bond. Finally, I performed simulations for chains with up to 33 carbon atoms, which 

is more than twice the length considered in the ab initio study above and probably 

more representative of PA chain segments in the real bulk sample.

5.2 Initial conditions used for this dynamical study

I used two of the methods described above to initiate soliton motion in CnHn+2 

polyenes of various charge species for n = 17 and n = 33. For systems with all-irons 

type PA bonding, a geometry distortion similar to that used by Fôrner et al. was 

employed. For systems with a cis bond interruption of the trans-PA bonding, a 

method similar to that used by Su et al. was employed. These systems started out 

in an energetically unfavorable state with uninterrupted dimerization. A soliton was 

created as the system relaxed.
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5.3 Initial configurations for all-trans polyenes

The initial bond length ordering I used for the all- trans polyenes with 17 or 

33 carbon atoms is shown in Fig. 18. The initial order parameter for the longer 

polyene systems is shown in Fig. 19. The energy for each system was minimized using 

our density functional program as described above. These calculations were performed 

for (neutral) C^Hi9, C33H35, CnHÿg , and 633//^. This geometry was arrived at 

by inspecting the geometries of the ground states of each of the systems and by 

guesswork. The aim was to observe the soliton kink in motion as the system distorts 

towards a lower energy configuration while minimizing the excitation of vibrational 

modes unrelated to soliton motion. The change in the sign of the order parameter is 

more gradual than the abrupt transition chosen by Fôrner et al. for their simulations. 

However, as will be shown, I did not avoid the excitation of large-amplitude long- 

wavelength acoustic phonons. The vibrational motion significantly affects the soliton 

transport and can make the determination of the soliton center difficult since many 

changes in the sign of the order parameter can be induced. The order parameter 

probably has appreciable fluctuations even when the system is very close to the ground 

state. Su [70, 71] and Fradkin and Hirsch [72, 73] have shown that quantum zero 

point fluctuations of the ground state lattice should disrupt the dimerization and 

cause random changes in sign of the order parameter. Su reports that using a Monte 

Carlo functional integration method to evaluate the expectation value of the order 

parameter for a 16 carbon atom PA system gives | () | % 0.8, where the exact 

ground state is characterized by = ±1.

5.4 Initial configurations for polyenes with one cis bond defect

Dynamics calculations were performed for the systems CUH^ C33H35, and 

C33H35 with one cis bond defect adjacent to the central carbon atom. A bent con­

figuration was chosen to minimize lattice strain around the cis region as shown in 
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Fig. 20. The initial bond lengths and order parameter chosen are shown in Figs. 21 

and 22. There is no interruption of the short-long bond alternation pattern; there­

fore, the order parameter does not change sign. This is an energetically unfavorable 

initial condition that will create a soliton as the system starts to relax to a lower 

energy state. It was shown above in section 4.4 that polyenes with a central cis bond 

do not have a soliton kink in the ground state. It is therefore not possible to guess 

at an initial soliton geometry based on a distortion of the ground state. However, 

it is still desirable to have the resulting soliton kink moving across the chain with 

a minimum number of large-amplitude phonons which complicate observation of the 

soliton. To achieve this aim, I used the following procedure to obtain the geometry 

described by Figs. 21 and 22. The ground state of the polyene systems with an extra 

hydrogen atom bonded to a terminal carbon atom was calculated. The extra hydro­

gen on the terminal end of the resulting or polyene causes the final 

carbon-carbon bond to be longer than average as seen in Fig. 21. The bond length 

alternation pattern on the rest of the polyene is the same as that found previously for 

the all-trans C32H34 system shown in Fig. 8. Before starting the molecular dynamics 

simulation, one of the terminal hydrogen atoms is removed from the system, making 

a configuration such as that in Fig. 20. The long terminal carbon-carbon bond is 

energetically unfavorable in the resulting system. A soliton is created at the polyene 

end and moves towards the cis region.

The method used to define the order parameter seen in Fig. 22 for the system 

with one cis bond is slightly different than the method used for ZXrn shown for the 

all-trans polyene. The order parameter is given by Qn, defined as

Qn = (74)
^7*00

Here dn is the length of the nth carbon-carbon bond and dave is the average bond 

length of the corresponding all-trans polyene system. Ar# as above is the difference 

in length between any two adjacent carbon bonds in the infinite idealized trans-PA 
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system (0.08 Â). This way of finding the order parameter gives the same basic in­

formation concerning the position along the chain where the bond length alternation 

pattern changes. Plotting the order parameter defined this way gives some informa­

tion about the change of individual bonds as time passes. This is useful information 

when observing the dynamical behavior of the simulated system with one cis bond 

shown above since the extreme motions of the individual atoms near the polyene end 

and changes in bond length there greatly affect the observed soliton propagation.
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H HH

H HH H

FIG. 16: Schematic representation of an odd-membered polyene with a uniform, 
uninterrupted dimerization. Such an initial configuration can be used to initiate 
soliton dynamics in simulations.

2 6 10 18 22 26

FIG. 17: Bond order parameter for the initial geometry used by Forner et al. to
initiate soliton dynamics.
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FIG. 18: Starting bond length configurations for our dynamics simulations.
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FIG. 20: Schematic picture of the polyene with one cis bond for which dynamics 
simulations were performed.
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FIG. 21: Initial bond lengths of polyene system with one cis bond. The dotted line 
indicates the bond lengths found for the all-trans polyene shown for comparison.
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of dynamics simulation.
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6 CAR-PARRINELLO AB INITIO MOLECULAR DYNAMICS RESULTS 

Car-Parrinello ab initio molecular dynamics were performed for the polyenes 

CnHn+2 (n = 17, 33) with initial polyene geometries as described above. The molec­

ular dynamics time step At used for all simulations is At = 1 au (0.0242 fs). The 

fictitious mass associated with the electronic orbitals is = 300me. The use of these 

parameters is described above in section 3.6. The total time for which each simulation 

was performed ranges between 1500 and 4000 au. For each system this time duration 

is sufficient for at least one “round trip” of the soliton kink across the polyene chain. 

This means that the soliton travels across the midpoint of the chain until it loses all 

kinetic energy and then returns back across the chain close to its initial position. The 

position of the soliton center is determined by direct inspection of the bond order 

parameter such as that in Fig. 19. The changing position along the chain length 

where the order parameter changes sign corresponds to the changing position of the 

soliton center.

I list in Table V the average speeds of the soliton in each system. The table 

lists the average speed of each soliton during each trip over the center region of each 

chain. With the initial conditions described above, the soliton velocity is ~ 1 x 105 

m/s for each system. The speed of the solitons tends to diminish by 10-30% with each 

pass over the chain. This reduction is probably due to scattering by phonon modes 

which are not coupled to the collective motion of the soliton. This is qualitatively 

different from the results described above obtained by Su and Fôrner et al.,who found 

an essentially constant soliton velocity with the strictly one-dimensional models they 

employed. The speed of sound in metallic (doped) PA has been reported to be 

vs = 1.85 x 104 m/s [74], about one-fifth the typical speed I found. My result is also

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

TABLE V: Average speed of the soliton in each simulated system for each pass over 
the chain center (m/s).

polyene system 1st pass 2nd pass 3rd pass 4th pass
C33H35 2.0 x 105 1.4 x 105
C33H35 8.6 x 104 9.9 x 104 7.4 x 104

633#^ with cis 2.7 x 105 1.8 x 105 1.2 x 105 8.6 x 104
C33H33 with cis 1.6 x 105 1.3 x 105 2.4 x 105

1.3 x 105 1.3 x 105 1.0 x 105 7.9 x 104
C17-H19 1.2 x 105 8.4 x 104 8.3 x 104

slightly higher than the speeds predicted by Champagne et al. (5.9 x 104 m/s), Forner 

et al. (3.5 x 104 m/s), and Su et al. (1.3 x 104 m/s) with their methods as described 

above. Comparing these speeds may not be so meaningful, however, since the initial 

conditions used to initiate the soliton motion are different in each case. Also, since 

the soliton is moving in a nonlinear system, slight differences in initial conditions 

may lead to considerable differences in speed. It is apparent from the results in Table 

V that for each chain length, the soliton in the polyene with a net negative charge 

moves noticeably faster across the chain than the soliton in the corresponding neutral 

or positive system. The initial conditions were used for each polyene system. Ab 

initio molecular dynamics results for solitons of different charge species in the same 

polyene system have not been previously reported to my knowledge; thus, this is the 

first observation of this effect.

6.1 Details of soliton motion: A neutral soliton in all-trans C33H35

I attempt here to illustrate some details of the soliton motion observed from 

simulation of the all-trans C33.ZZ35 (neutral) system. The motion of the negatively 

charged soliton in the C33H23 system is qualitatively the same, although the speed is 

faster. In Figs. 23 through 31, I show the bond order parameter Arn from Eq. (67) 

for consecutive time intervals 50 au (1.21 fs) apart. The initial geometry chosen
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does not result in an order parameter that is well fit by a tahn function as described 

by Eq. (68). The subsequent order parameters are also generally not of this form, 

which is not surprising given that my ground state soliton pictured in Fig. 13 did 

not match this form either. At each time interval there is at least one location along 

the chain where the order parameter crosses Arn = 0. For most consecutive pictures, 

it is easy to observe this crossing, which signifies the soliton center, change position 

along the chain. Keeping track of the soliton position in this manner is complicated, 

however, by occasional disruptions in the bond ordering that result in three crossings. 

Inspection of the figures shows times including t = 450 au and t = 2250 au where there 

are three such crossings, which correspond to three interruptions or “kinks” in the 

bond ordering. The bond ordering in the region of the bond numbered 24-26 changes 

more abruptly than in other areas of the chain, perhaps due to the initial condition 

chosen. The initial order parameter does not change smoothly in this region. This is 

the region where kinks other than the original are created during the simulation.

As described in chapter 2, each kink in the bond ordering separates segments 

of the chain with the two different possible “phases” of bond ordering. When there 

are two kinks in the bond ordering, the second is called an “antikink” since it returns 

the bond ordering to the phase present before the first kink. A third kink, if present, 

must be a regular kink since it again changes the phase of the bond ordering (the 

sign of the bond order parameter) back to the opposite of what was present before 

the first kink. Because of topological constraints forced by the end bonds in our odd­

membered polyene, there must be only an odd number of phase changes, or changes 

of sign (kinks) of the bond order parameter. When there are three kinks present, the 

middle one must be an antikink. A kink and an antikink can annihilate each other 

and leave only a single kink in the odd-membered chain.

Figure 32 is a plot of the position along the length of the chain of each of these 

kinks during the time of the simulation. As seen in the figure the original kink moves
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by itself as the only kink until some vibrational excitation creates a a kink-antikink 

pair at t % 350 au. The original kink and the antikink move towards each other and 

are each destroyed at some time between t = 550 au and t = 600 au. The remaining 

kink is left to move towards the chain center, which my static calculations indicate 

is the lowest-energy position for a soliton. As previously discussed the term soliton 

refers to a geometrical kink and an electron state with a modulated density expected 

to be well described by Eq. (71). The net spin-polarization density of the system 

for times between t = 950 au and t = 1450 au is shown in Fig. 33. The modulated 

character of the density is what we expect for a neutral soliton, and the position 

maximum density corresponds with the position of the geometrical kink. When three 

kinks are present at the same time, the modulated density appears to stay centered 

around the original kink until annihilation occurs, when the soliton density quickly 

shifts to be centered around the remaining geometrical kink.

Figures 34 and 35 show the value of the potential energy vs. time. Also shown 

are the bond length configurations at various times from which it is possible to see 

the soliton kink changing position along the chain. The ground state of the static 

system is found to have a total energy of E = —206.6075 au. The initial dynamics is 

started with the system having energy about .631 eV higher than this ground state 

value. As the system evolves, the energy remains at least 0.13 eV above the ground 

state value. It seems clear that the extra energy has excited some phonon modes 

not directly related to the soliton motion. The soliton moves from site to site in a 

time period on the order of 50 au. The change in the value of the potential energy 

during such an interval varies from about 0.025 to 0.05 eV, depending on how steep 

the potential energy surface happens to be. The energy required for a soliton to move 

from one carbon atom site to the next was estimated by Su et al. to be 0.002 eV 

by using the SSH Hamiltonian. This estimate was made without any nuclear motion 

unrelated to the soliton translation. I can estimate that an activation energy of about
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0.025 eV is required for my simulated system with vibrational modes that gradually 

slow the soliton.

Figure 32 shows that during the time interval 600-2300 au, when there is one 

soliton kink in the chain, the position of the soliton moves back and forth across 

the center along a length roughly symmetric about the center. It is presumed that 

the soliton has an effective mass, so that as it gains some kinetic energy by moving 

towards the center region, it proceeds to “overshoot” the minimum energy position 

until all the gained kinetic energy is again converted to potential energy. The effective 

mass Ms of the soliton is considered an important characteristic directly related to 

its mobility. We can make a very rough estimate of this quantity. We assume that 

the time average of the nuclear kinetic energy T is primarily associated with soliton 

displacement. Then Ms is given by 2T/v^, where vs is the average speed. This 

estimate yields Ms = 1.2 x 10~30kg (« 1.3me). This rough estimate is of the same 

order of magnitude as the estimates made by Su et al. [10] and Champagne et al. [61].

6.2 Details of soliton motion: A negatively charged soliton in a trans polyene C33H35 
with a central cis bond

The initial geometry and bond length configuration used to initiate Car- 

Parrinello ab initio molecular dynamics for C33H35 with a central cis bond were 

described above in Figs. 21 and 22. To illustrate the changing position of the mobile 

soliton peak, I again show the bond order parameter for the entire chain at intervals of 

50 au for times from t = 0 to t = 2650 au. The modified order parameter Qn described 

above in Eq. (74) is plotted in Figs. 36 through 44. The plots appear more jagged at 

times here than those above since here the plots vary according to individual bond 

lengths. At time t — O through t = 150, the order parameter does not change sign. 

A soliton kink does not appear in the bond ordering until around 200 au. Figure 45 

shows a contour plot of the HOMO level density at t = 0. Although a geometrical 

kink does not exist, there is already a modulated density of a soliton which shifts to­
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wards the middle of the chain and follows the position of the geometrical kink as the 

system relaxes. The bond length of the final carbon bond is seen to be much greater 

than average bond length of the rest of the chain. This results in a large vibrational 

amplitude of the final bond that can be seen from the order parameter plots. This 

vibrational motion appears to induce a second bond ordering kink (an antikink) at 

t = 850 au. As seen from the order parameter plots the kink and antikink move 

towards each other and annihilate between t = 1000 and t = 1050 au, after which 

there is no geometrical soliton kink until about t = 1150 au. At this point in time 

the shrinking of the elongated carbon-carbon bond is again forcing the creation of a 

new soliton kink, which proceeds to make another trip across the polyene chain.

A plot of the position along the chain of each kink is shown in Fig. 46. The 

position of the central cis bond corresponds to the y = 0 position on the vertical axis. 

As the soliton starts from the right-hand extremity of the chain and moves toward the 

cis region, it is moving at a nearly constant speed until it crosses over into the other 

side of the chain. The distance the soliton travels across this second half of the chain 

before returning back is at least 30% less than the distance covered on the other side. 

The unsymmetric motion of the soliton is most likely due to a small energy barrier 

encountered when the bond ordering of the cis region is changing as the soliton passes 

through. The change of the bond length order in the cis region is shown in Fig. 52. 

We see that the horizontal cis bond (with length “b” ) is originally longer than the 

adjacent bonds, like the structure seen in the trans-cisoid isomer of Fig. 9. As the 

soliton moves towards the central kink region, the ordering gradually changes until 

the horizontal cis bond is shorter than its neighbors, like the structure of the cis- 

transoid isomer of Fig. 9. We see the bond ordering never completely reverses. The 

system prefers a longer horizontal cis bond; as the bond ordering changes back to this 

ordering as the soliton passes back over the cis, we see from Fig. 46 that the soliton 

seems to recover the speed it had before passing over the cis bond. In other words, 
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it appears that the cis region raises the potential energy surface seen by the soliton 

as it passes over, but the kinetic energy lost is restored on the return trip.

Contour plots of the HOMO level density 1 au above the plane of the polyene 

are shown in Figs. 47 through 51 for times between t = 325 au and t = 1025 au. The 

density is shown for intervals of 100 au. Also pictured is the change in the HOMO 

level density Ap between these time intervals. As for the case of the all-trans polyene, 

the electronic density of the soliton covers the full length of the polyene. The position 

of maximum density (soliton center) moves back and forth across the chain, just as 

the neutral soliton discussed above does. The pictures of the change in density show 

that as the soliton moves the density generally increases over the seven or eight carbon 

atom sites nearest the leading edge of the soliton. For times between t = 725 au and t 

= 925 au, we see that the change in density is mostly concentrated on the final carbon 

atom site on the extreme leading edge of the soliton. It is during this time that the 

antikink is being created from the vibration of the final carbon-carbon bond. By the 

time t = 1025 au, the bulk of the density is at the extreme right side of the polyene 

and both the electronic and geometric configurations are returning close to their state 

at t=0. In this simulation we see that interruptions in bond ordering produced by 

large amplitude vibration affect the shifting of the soliton density in a subtle way. As 

the geometrical kink is being destroyed, the electronic density shifts quickly to the 

end until a new geometrical kink develops to move across the chain again. The new 

soliton kink moves with a noticeably smaller velocity than the original. This is clear 

from the position vs. time plot of Fig. 46. Presumably, the soliton-phonon interaction 

has dissipated some of the soliton’s energy. The soliton makes a shorter trip across 

the center of the polyene and continues this slowing trend on its way back across the 

chain.

Figure 53 shows the how the length of the final carbon-carbon bond distance 

changes with time. The bond shrinks or expands to an extremum away from an 
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apparent equilibrium distance of 2.55 au every 450-500 atomic time units. The other 

carbon bonds also change lengths as the soliton passes over their position on the chain; 

however, their change is more gradual, as indicated by the change in the central cis 

bond in Fig. 52. The potential energy vs. time curve for the system in Fig. 54 has 

peaks at intervals of about 450-500 au that correspond closely to the times when the 

final carbon-carbon bond is at an amplitude extrema. This strong chain end vibration 

seems to have a strong effect on the potential energy surface.
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FIG. 34: Potential energy and carbon-carbon bond lengths for times shown.
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FIG. 35: Potential energy and carbon-carbon bond lengths for times shown.
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FIG. 45: HOMO level density 1 au above polyene at t = 0.
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FIG. 46: Position of each kink and antikink vs. time.
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FIG. 47: HOMO density and change for times specified and change in HOMO density 
between times specified 1 au above the plane of the polyene.
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FIG. 48: HOMO density and change for times specified and change in HOMO density 
between times specified 1 au above the plane of the polyene.
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FIG. 49: HOMO density and change for times specified and change in HOMO density 
between times specified 1 au above the plane of the polyene.
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FIG. 50: HOMO density and change for times specified and change in HOMO density 
between times specified 1 au above the plane of the polyene.
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FIG. 51: HOMO density and change for times specified and change in HOMO density 
between times specified 1 an above the plane of the polyene.
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FIG. 52: Difference in bond length between horizontal cis bond (of length “b” ) and
adjacent bond (of length “a” ) vs. time.
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7 CONCLUSIONS

We list here some general conclusions from this study of PA and mobile solitons 

in finite polyenes.

(a) My study of the infinite PA system using a supercell method and a plane­

wave basis set with LDA finds that the dimerization is underestimated by about 25% 

when a supercell containing 32 carbon atoms is used. The use of a gradient correction 

to the LDA using functionals of Becke [26] and Perdew [27] does not improve agree­

ment to experiment. These results agree with other previous calculations. Suhai [19] 

has reported that the uses of a more recently proposed gradient-corrected functional 

designed by Becke leads to predicted dimerization within 2% of the experimental 

value. It may be of interest to use this functional in future dynamics studies to see if 

there are significant changes to the dynamical behavior.

(b) I find that polyenes of trans-PA {CnHn+2} have a dimerization nearly half 

of the experimental value for the infinite PA system for even-membered polyenes. I 

find a soliton structure for the ground state of odd-membered polyenes. The geometric 

width of the soliton predicted by this LDA method is at least twice that predicted by 

others using a Hartree-Fock method.

(c) I initiate soliton dynamics simulations with Car-Parrinello ab initio molec­

ular dynamics by using an initial distortion of the ground state geometry that has 

a soliton structure off-center or near the polyene end. I find the average speed of 

solitons started from these geometries to be about 1.0 x 105 m/s. This is about 5 to 

10 times faster than speeds reported from model calculations using similar geometry 

distortions to start simulations. Unlike simulations such as those by Su et al. which 

use the popular SSH Hamiltonian, I find the velocity varies with position along the
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chain and noticeably decreases with time. The results here seem to indicate that 

negatively charged solitons move with a slightly higher velocity than neutral solitons 

with the same geometrical initial conditions.

(d) Inspection of the potential energy change during dynamics reveals that 

the soliton activation energy, or the energy required to translate the soliton to a 

nearest-neighbor site, is roughly estimated to be about 0.025 eV. This is about an 

order of magnitude greater than an estimate given by Su et al. which uses the SSH 

model and does not consider the effects of phonon interaction. My rough estimate of 

the effective mass is the same order of magnitude as values estimated from SSH and 

other models. This small effective mass indicates the need to treat the soliton as a 

quantum particle.

(e) From results of simulations of a charged soliton moving in a polyene with 

a central cis bond, I find that a soliton moving with a speed on the order of 105 

m/s has enough kinetic energy for the soliton center to pass over the cis bond. The 

soliton charge density wave appears to stay coherent as the soliton moves back and 

forth across the cis region.

In summary, we have shown that LDA and Car-Parrinello molecular dynamics 

are useful tools for the study of mobile solitons in long polyenes. Due to the complexity 

of the bulk PA material, experimental information about the microscopic details of 

solitons is still inconclusive; thus, it is not yet possible to compare these simulation 

results with experiment. Our results are qualitatively similar to previous model and 

ab initio simulations. However, our simulations include correlation effects and a 

common cis bond defect which represents only one of the many types of defects 

present in the real material. Many fundamental questions remain concerning the 

importance of interchain interactions and their role in promoting soliton transport. 

Perhaps this type of ab initio investigation can be extended in the future to study 

these issues.
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Electronic density and total energy are calculated using the Kohn-Sham (KS) 

scheme of the local DFT [37], in which the total energy of the system is defined as a 

function of electron orbitals and coordinates of ions Ri by

ERM, {H,}]
occ f I r

= 52 / dr + / dr Kxt(r)n(r)
MJ J

+ ydrir.n^+EM^^

where and n; are spin electron densities for spin up and spin down, respectively, 

and n(r) is total electron density, defined as

OCC 

n(r) = 52 (76)
{’.O’}

Vext(r) is the total external potential felt by electrons; in pseudopotential formulation, 

Vext(r) is a sum of ionic pseudopotentials. Exc is the exchange-correlation energy. The 

last term in Eq. (75) represents the Coulomb interaction of ionic cores, where Zi is 

ionic core charge. The single-particle orbitals {^^} are subject to the orthonormality 

constraints

dr ^{r^j^r) = 5id. (77)

The derivative of {H/}] with respect to with constraint 52
’ 3

leads to the Euler-Lagrange equations Ha^a = 52 where 
3

SE
ÿiAr) +

SExc[n^,nR Sna(r)
Sna(r) 6^(r)

5 [j dr VexRr)n(r) + j/dr dr' 

5n(r)

Mr) + VexRr) + J dr' ^(r) + ^(r)^^(r)

= HaM<r}- (78)
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The Hamiltonian operator Ha, which is associated with Euler-Lagrange equation, is 

defined as

Ha = -^ + ^(r) + V„W + ^c(r), (79)

where VH(r) = J dr' is the Hartree potential and ^(r) = with a =t or

J, is the exchange-correlation potential. Therefore, Eq. (75) can be rewritten as

— 52 + Exc [%, nJ + Eion-ion, (80)

where P"c = f dr ^(r)n^(r).

In the plane-wave formalism, the wave function is expanded in a sum of plane­

waves, i.e.,

(81)

where G is a reciprocal lattice vector, defined as Gi = 27with a as the basis

vector in r space and i, j, k = x, y, z. The orthonormal condition is 53 = <%.
G

In practical application the sum over G is truncated to include only M plane-waves, 

defined by the condition ^G2 < Ecut- The energy cutoff Ecut determines the accuracy 

of the calculation. In order to complete the calculation of the electronic part, similar 

to Eq. (78), I solve the derivative of energy E with respect to §C*q , which is

^17 = J2 HGG,CG' + contraint. 
G Q'

(82)

The total energy E is now
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WU.WJ = £ £ cÿHkG-c£. 
\G'G" / °"

+EXC + Eion—ion, (83)

where the Hamiltonian matrix is given by

H%n, = 1 [ dr e~iG rHaéG r 
GG Q

= TGG'5G,G + VG-G' + VG-G' +

Since the kinetic energy operator is diagonal in momentum space and the po­

tential energy operating on a wave vector is a convolution [see Eq. (84)], the number 

of operations required to solve the KS equation can be reduced dramatically by using 

fast Fourier transform (FFT) [75] and some minimization technique such as the steep­

est descent method. The fast-Fourier-transform algorithm can reduce the number of 

operations from O(M2} to OiMlogzM), where M is total number of plane-waves for 

expansion of the wave functions. Solving the KS equation for a system in momentum 

space requires calculating Eqs. (82) and (83). The first term of Eq. (82) is essential 

to calculate in momentum space, which is the object in the first part of this 

Appendix. The calculation of Hamiltonian and total energy are shown term by term 

in the following sections.

A.1 Calculation of Hamiltonian

The first most important task is how to evaluate Hamiltonian matrix GG"
The following is the detailed calculation of Hamiltonian.

Kinetic Part

The first term of Eq. (84) is from kinetic energy; by definition,
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TGG' =

= (G£l [ dr
2 Q Jn 

G2
= ~25G,G' = T^^GG' (85)

where 7(G) =

Local and Nonlocal Pseudopotentials

IZe;rt is the total external potential felt by electrons, which is sum of the ionic 

pseudopotential, i.e.,

%=t(r) = X^ (r-*/): (86)
i 

the ionic pseudopotential is usually taken as [49,76]

z-i
^(r) = ^uz(r)P( = vi(r) + △^(r) = ^-(r) 4- △^z(r)Pi, (87)

z z=o
where P; is the projector onto the /th angular momentum and A«/(r) = v<(r) — vz-(r) 

with [ = Zmaæ. This equation assumes vi(r) = ^(r) when I > L The values of 

pseudopotentials v;(r) and correspondent pseudo wave functions ^(r) with r < rcut 

are given numerically by Hamann’s result [49]. The first term of Eq. (87) is purely 

local and defined as vlocai(r) = where

A.
r < Veut

r > T’eut*
(88)

Therefore, the Fourier transform of viocai(r) is

/dre Tviocai (r) POO PIT p2t

f I / g-^Gr cos e^z^z(r) r2 sin 6drdf)d(j>
0 Jo Jo
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= 27F / f e iGTCOseviocai(r)r2drd(cos6) 
J o J o

= "q J rviocai(r) sin(Gr}dr

= [ rvï^r} sin(Gr)dr----- --- f sin(Gr)dr
G Jo ^rcul

= j r«Kr) sin(Gr)dr + cos(Gr)|~ e

= y rvz-(r) sin(Gr)dr - ^^^(Grcut). (89)

At G = 0,

v local
G=o

roo

I r2viOcai(r)dr 
o 
/Tout /*OO

f r2Vi(r)dr — / rdr
0 ** T'eut

PTcut
I r2Vî(r)dr + 27rZ„r^ - 27rZ„r^0. 
o

(90)

The last term of Eq. (90) will be canceled by the divergence term of Hartree potential 

for a neutral system (will be shown later). The second term in Eq. (87) is the nonlocal 

contribution. In order to reduce the calculation to M operations, it is made completely 

separable, as suggested by Bylander and Kleinman [41],i.e.,

i-1
DnonlocalW = △^(r)PZ = |^m)AuZ(r)(^|

Z=0 lm

" (^ZmlAvzl^Zm) ’
(91)

where 4>Zm(r) = 0)> with yz(r) the pseudo wave function in correspondence

of the pseudopotential vz(r) from Hamann’s results. vnonZocaZ is also separable in

momentum space, i.e.,

..non—local
VGG'

lm
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= E (/ * (/
= Z^G" (92)

Im
where

yi(r) ==^(r^r)

and = f dr ^x,(r)%(^, ^). Expanding the plane-wave [e^'r] in spherical 

harmonic functions,

oo I
etG r _ ^2 ilji(Gr) Yik(MWim(6G, (94)

/=0 m=—l
Inserting Eq. (94) into Z^ yields

= f dre'G%(r)%,(U)

OO I' -
= 4tt 23 Xi(r)ji'(Gr}r2dr x

l'=0 m'=-Z' J
/ (95)

Because we have relations 0) = (—l)mYi_m(6, ÿ) and orthonormality condition 

/ / ^(^, 0)^'m' (0, 0) sin edOdd> = W,nm<,

oo e

zg = 471-52^ 22 Yi'm'(eG,</>G} Xi(r)ji'(Gr)r2dr x (-1)^^ 
l'=0 m'=—l' J

= 47rz<(-l)—%-™(^ y xi(T)ji(Gr)r2dr

= 47rz'%(gG,^G) /Xi(r)ji(Gr)r2dr. (96)

Therefore, Eq. (92) can be written as
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.^y^G'^GOx J Xi{r}ji(Gr)r2dr J Xi(r)ji(G'r)r2dr.

Because of the addition theorem

Pi(cOS0ggÙ = 21 + ^lm^G,d>G)yim(0G',^G1'), (98)
m——l

where Pi(cos6ggÙ is the Legendre polynomial of the angle between the wave vector

G and G', i.e., cosOqg' = cos 9g cosgv + sin 6G sin 9G' cos(<j>c — ^c)- Insert Eq. (98), 

and Eq. (97) can be written as

v^P11 = Y'4ir(2l + l)P/(cos0GG') / Xi^ji^Gr^dr / Xi^jiÇG'r^dr. (99) 
i J J

The addition theorem can be also written in a different form, which is

Pz(cos0GG,) = Pi (cos 9g) Pt (cos 9g' )

" +2 22 ^-^^(cos 9g)P™(cos 9g-) cos [m - ÿG')] •

(100)

Insert this equation into Eq. (99), then

v^çal = ^47T(2/ + l)[Pz(cos0G)Pz(cos0G,)^';, 
i

22 vy—^-^(cos 0G)Pzm(cos 0G-) cos m^G cos 
m=l ' '*

m=l

vr——kpr(cos 9G)pp(cos 9G-) sin m^G sin m^G»^^,],

(101)

where Çq = f xi(r)ji(Gr)r2dr. The first few Legendre polynomials are
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FoW = 1

Fi (%) = x

P2(x) = |(3x2 - 1)
(102)

The first few associate Legendre functions are [P™(x) = (1 — x2)^ -^P^x)]

I = 0 Po° = 0

I = 1 P^ = sin 9

P° = cos 9

Z = 2 P22 = 3sin20 (103)

?2 = 3 sin 6 cos S

P2° = |(3 cos2 6 - 1)

The first few spherical Bessel functions are

Jo(z) =

h(x) = — 1) sinx —

If only s, p, and d states (Z < 2) are considered,

nonlocal
VGG'

Ï27T COS 9c^ • V127T COS 9c

12ît sin 9g cos ■ VÏ27T sin 9c cos 4>g'£q'

12tt sin 9g sin ^G^g • x/12tf sin 9c sin ^g-^q-

e3cos^-l 3 cos2 9g< — I _2
2 %

+ V207tV3 sin 9q cos 9g cos • V2ÔttV3 sin Oc cos 9g, cos
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+ V2Ôtt V5 sin 0q cos 9q sin (/>g£q • V20ttV3 sin Qq1 cos Oq' sin
- V3 sin2 9g cos 2^ 2 - VS sin2 9c cos 2^' ,2

+ V207T---------- 2---------- -------------------------2-----------%
- VS sin2 9G sin 2^ _2 4^ VS sin2 gg, sin 2^ 2

+ * 20%---------- ----------- % ' -----------2-----------%
9

j=1

With sin9g — ^-5—-, cos9G - %-, sin0G - 

have

%G =
Xg = v^^^G

%G = Vl2%^^

Xg = ^^^G

= ÆV3^(^

X^ = ÆV3^%

x^ = ÆV3^%

and

(105)

, and cos 0G = , we

(106)

^sin(GrWr)Auo(r)^ 

fo™1 r2ipo(r)&vQ(T)^

0

G = 0
(107)

’Tout

0,

0,

_ cos(Gr)l y>i(r)Avi (r)c?r, G 0

G = 0
(108)

6 - sin(Gr)] ^(rJA^r)*, G#0

G = 0
(109)
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where △v/(r) = v/(r) — with r < and is 0 with r > Tout- All the values of

and
CrU

are precomputed only once for each chosen number of plane-waves.

When summed over all the atoms in the system, the local and nonlocal pseu­

dopotentials in momentum space are written as

VGG = n ^LdT e~iG'rv'O«^

= 1 52 e-iG R, (J ^G* R,

= ^ye-iG■R,vl̂ eiG'R, 
Q trG

(110)

and

Az// e-<Gr ( z - riWt* - ) e<G'r'“ j JnJn \j /

(/dr dr' eiG'r'x^r')^

jG'Rn

However, in practical calculation of Hip, the local pseudopotential part is first to

fast-Fourier-transformed to r space for combining with other potentials in real space.

The local psuedopotential is then transformed back to k space, i.e.,

\yiocal3pi,a\(5r = F FT FFT (112)

The nonlocal pseudopotential part, when acting on ip in momentum space, is as 

follows:

G'
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= ALEE(x<k'^')% (“si 
1 3 G

Therefore, in order to calculate Vnon-iocai^i^ in momentum space, the separable form 

suggested by Bylander and Kleinman [41] only requires NjPM' operations, where Ni 

is total number of atoms and M' is the number of nonzero Fourier coefficient.

Hartree Potential

The third term of Hamiltonian [Eq. (84)] is the Hartree potential. The Fourier 

transform of the Hartree potential is

=
47r

= (114)

where tiq is the Fourier transform of the electronic charge density and is defined by 

nQ = Jn dr e~lG'rn(r), which can be integrated by FFT. At G = 0, Vq_o = 

27rTVer^0, which is divergent. For a neutral system, ZvNr = Ne; this divergence term 

will be canceled by the divergence term from the local pseudopotential [Eq. (90)]. 

Similar to the treatment of the local pseudopotential, when acting on

= FFT [FFT (Vg) Wr)] • (115)

Exchange-correlation Potential

The last term of Hamiltonian [Eq. (84)] is the exchange-correlation potential. 

A parametrized form of the exchange-correlation energy (exc = ez + ec) obtained by 
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Vosko et al. [38] is used. In this form exchange energy in real space can be written 

in the form

fz (r„C) = Cz(r«) + K W - tzW /«), (116)

where rs = (^)3 and ( = (n^ — n^/n are the standard variables for density and 

spin polarization. P/F stands for para/ferro-magnetic states, with

and

3 
27rar5 25

4 
97r (117)

/(C) =
[(l+C)l + (l-Oi-2]

2 (25 - 1)
(118)

ez can be evaluated directly if the electronic density % and n± are known.

Similarly, the correlation energy is written as

Cc (r„ 0 = ef (rj + [ef (rj - ef (rj] /«), (119)

with

anln X(z)
26 H—— tan Q 

2x + 6
6æo R_ (z - z„)^ t 2(6 + 2z0) x _1 

X(zo) [ln X(z) + Q tan 2z + 6 (120)

where z = ^/rj, X(z) = z2 + 6z + c and Q = y^4c — 62. The required parameters are 

given in the following table:

paramagnetic ferromagnetic
A 3.10907 x 10"2 1.55453 x IO"2
Xo -1.04980 x 10-i -3.25000 x 10-i
6 3.72744 7.06042
c 1.29352 x 10+i 1.80578 x 10+i
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Therefore, the correspondent exchange-correlation potential is written as

/4c(r„ C) 8 r r[/ir + n^exc{rs,Q

^xc (r„ 0 + (nt + nJ dr, J d< dexc(rs, J 
dna dr5 dna d(

_ rJdexc(r„C) d( de^fr^Q
3 drs dnCT d( (121)

because

^"(r.) = t^(r.) - (122)
D Ü/ 5 D

Insert this equation and Eq. (116) into Eq. (121):

Mr„ <) = (4M + /(fl Kfr.) - ^(r.)] - [sSn(») - f) [^(r,) - eP (r>)] , 
“s

(123)
where

syn(cr) =
1

-1
(o’ =T)
(o =4-) (124)

and

#«)_4(l + <)i-(l-C)i 
df 3 21-2 (125)

Therefore, the value of p.°xc^CT in k space is obtained directly by FFT, i.e.,

McMg = fftkcWiAt^ (126)

Operation Counts to Evaluate Hxj)

The kinetic term is diagonal in reciprocal space so that its action on the wave 

functions requires only O(NeM) operations, where Ne is total number of electrons and
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M is the number of plane-waves for calculation. The local pseudopotential, Hartree 

potential, and exchange-correlation potential require O(Ne^- log2 M) operations to 

transform from real space to momentum space. To calculate nonlocal pseudopotential 

requires O(LNjNeM'), with L = P and M' is the number of nonzero Fourier coeffi­

cient if cutting Fourier space as a sphere. Another log2 M) is required in order 

to calculate the electronic density and to perform the Gram-Schmidt pro­

cedure for orthonormalization. Therefore, considering only the most time-consuming 

terms, the total operations are O(NeM log2 M + (LNrNe +

A.2 Calculation of Total Energy

Orbital Energy

The first term of Eq. (83) is trivial in momentum space.

Hartree Energy

The second term of Eq. (83) is Hartree Energy. n(r) = TiQe^ T,
G

Eh =

1 f f * eiG.(r-r') .
- I I dr dr > > ------- —e

g^°g,g-

G*o
(127)
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The second term of Eq. (127) is divergent. However, it is canceled by the divergence 

term from ion-ion interaction, which will be shown in the following.

Exchange-correlation Energy

The third and fourth terms of Eq. (83) come from the exchange-correlation 

potential/energy, which defined in section A.I. By definition, they can be written as

Exc = dr 6zc(n)n(r), P£c = dr ^c(r)n(r). (128)

Ion-Ion Interaction

The last term of Eq. (83) is from ion-ion interaction. Since the cluster is

confined in a periodic unit cell, by definition,

'ion—ion
1 Z]Zj _ Zy
2^\Rj- Rj| " 2

1
I Ri — Rj — o|

V 1 . Z^Nj v 1
2 a \Rl ~ Rj ~ a\ 2 àü° (129)

where Zv is total number of valence electrons on atom and a is the lattice vector.

From Ewald summation,

= + Ç - .,}. (130)

Substituting Eq. (130) into Eq. (129),

Eion—ion
G2 

4Gcut

i*J G

1
IR-i — Rj — °|

erf^G^R! - Rj - a\}] +
a* o
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3-V-e 
20 G2G# o . u ■

i__gLl 
. 4GLJ

j5^r^ïer/c{G“‘|H' '
Z^Nj

2
1 4tf—---- lim lai- g™o Q G2La^o1 1

Z^Nj 4% 
2Q Sg2

1E ti%i' - %]G#
-\erfc{Gcut\Ri - Rj - a|}

(131)

where Sq = g- G A/ which is the structure factor; r' = (^)3 ; and the constant

a is

1.7601188 (sc)
a = < 1.791753 (fee)

1.791860 {fee)

(132)

The error function erfc(x) is defined by

erfc{x)
9 poo 1 poo

1 — erf(x) = — dt — — e~Tr~dr
Jx n JX2

e-^ / 1 l 3 _ 1-3-5 \
xÆæ V 2æ2 22x4 2^æ^ /

(133)

For a neutral system (ZvNj = Ne), the last term of Eq. (131) will be canceled with 

the second term of Hartree energy [Eq. (127)] when subtracting two energies. In my 

case, I chose 1 unit size for G cut, i.e., G cut =
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A. 3 Hellmann-Feynman Force

I apply the Hellmann-Feynman theory [77,78] to calculate the forces on ionic 

cores, i.e.,

Fl = nlE\{ipi^},{Ri}] =-^7 REion-io^

âvr 
dRi (134)

Local Pseudopotential Part

By definition,

plaçai — J dr n(r)V rv^t — Ri)

- nG [ dr eiG'rVR{vi(r - Rr) 
G J

^G)éG-R>,
G

(135)

where n(r) = and fg"' = f dr e lG'rviOcai(r\

Nonlocal Pseudopotential Part

By definition,

pnonlocal drdr' ^(r) r - Ri)Xj(r' - -Hz)] ^(r')
J dr' V^(r')%j(r' - Ri)
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(136)G' .
where and = f dr e~l^'rXj(r}

G

Ion-ion Interaction Part

From Eq. (131),

n 1 °

2
(137)
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