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This dissertation presents some results in dynamical systems relevant to nonequi­

librium statistical mechanics.

In Chapter 2 we consider piecewise smooth, uniformly hyperbolic systems on a 

Riemannian manifold, allowing the angle between the unstable direction and the 

singularity manifolds to vanish. Under natural assumptions we prove that such sys­

tems exhibit exponential decay of correlations and satisfy a central limit theorem 

with respect to a mixing Sinai-Ruelle-Bowen measure (SRB-measure). These results 

have been shown previously for systems in which, the angle between the singularity 

manifold and unstable direction is uniformly bounded away from zero.

In Chapter 3 we consider piecewise smooth, expanding maps of the unit interval 

with small holes. Assuming only that the size of the holes is small, we establish 

existence of a conditionally invariant, smooth measure for the transformation. Under 

the additional assumption that images of the holes do not overlap up to a certain 

iterate we also obtain uniqueness. Previous results assume tha t the transformation 

satisfies a Markov condition.
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CHAPTER 1 

INTRODUCTION 

1.1. H yperbolic Dynam ics and S ta tistica l M echanics

Modem statistical mechanics comprises two rather distinct areas: equilibrium and 

nonequilibrium statistical mechanics. Founded in the 1870s, equilibrium statistical 

mechanics is well-developed and has led to a deep understanding of many phenomena. 

Quite on the contrary, the development of nonequilibrium statistical mechanics was 

largely based on investigating the approach to equilibrium as introduced by Boltz­

mann and has progressed significantly slower. Over the past decade, a new point of 

view of nonequilibrium statistical mechanics has emerged. This new formalism stud­

ies nonequilibrium steady states by taking into account the underlying microscopic 

time evolution of the system, thus giving rise to a  profound connection between dy­

namical systems and nonequilibrium statistical mechanics. In this chapter we explore 

this relationship and, in doing so, provide an informal physical motivation for the 

study of hyperbolic dynamical systems and decay of correlations. A splendid intro­

duction to this new field of research is given in [D]. For an excellent survey of recent 

advancements, see [R2].

1.1.1. Chaotic M odels in  Nonequilibrium  S tatistica l M echanics. To main­

tain a system x  — F(x)  on a compact, smooth Riemannian manifold M  out of equilib­

rium, we subject it to non-Hamiltonian forces. As the energy of the system increases 

due to these forces (it ’’heats up”), the need for the mathematical equivalent of a 

thermostat arises. We therefore replace the system of equations by x  =  F(x)  4- 0(x) 

with Q(x) a thermostat dissipating excess energy. Systems of this kind are the subject 

of both ongoing research and hot debate in theoretical and computational physics;

1
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see [R2] and the references therein. We avoid discussing physical objections to those 

models, but rather restrict ourselves to formally deriving their implications. Of par­

ticular interest to us is the isokinetic thermostat in which 0 (x) is chosen such that 

the total kinetic energy remains constant.

The thennostated system will attain  a steady state, and a suitable representation 

of the system is needed, analogous to a canonical ensemble in equilibrium statisti­

cal mechanics. Due to phase space contraction, the interesting dynamics of these 

systems usually takes place on an compact, invariant set A C  M , called an at­

tractor, with smaller volume than  the total phase space. We set some notation. 

Restricting ourselves to discrete time we introduce a transformation T : M  —> M  

of a compact, smooth, Riemannian manifold M  endowed with an absolutely con­

tinuous probability measure hq. For x E  M  define the stable manifold at x  to be 

Ws(x) = {y E  M : d(Tnx , T ny) —► 0 as n  —► oo}, and the unstable manifold at x  to 

be W u(x) = {y E  M : d(T~nx, T~ny ) —>• 0 as n —► oo}. We furthermore assume the 

existence of an attractor and rather heuristically define the basin o f attraction of A 

to be the set of points approaching A under the forward dynamics.

To obtain a distribution representing a system in steady state Ruelle introduced 

the following as a principle (R) [Rl]:

The time averages of observables, on motions with initial da ta  randomly 
sampled with the Liouville distribution /i0, are described by a stationary 
probability distribution fi obtained by attributing a suitable probability 
density to the surface elements of the unstable manifolds of the points 
in the phase space.

In a laboratory situation, unstable manifolds are difficult to observe. Experi­

menters, including computational physicists, deem it natural to describe steady states 

by the long-time evolution of an absolutely continuous probability measure //q under 

the flow $(x, t) =  $ f(x) introduced by x  =  F(x) 4-0(x). Physically, this corresponds 

to putting test particles in the system and observing their long time distribution. 

More formally, we say that nonequilibrium steady states (in discrete time) are natu­

rally described by weak limits of fin =  £ YlkZa T f y 0, where T,/z0 (A) =  fj.0(T~lA) for
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3

all measurable subsets A  C M .  These weak limit points are commonly denoted by

fx+.

On a theoretical level, we acknowledge that Principle (R) has been shown to hold 

only for very specific (hyperbolic) classes of systems. A closed subset A c M i s  called 

uniformly hyperbolic if T(A)  =  A and for each x  6  A the tangent space to M  at x  can 

be written as a direct sum of an expanding subspace Ef. and a contracting subspace 

A?*, i.e. % M  =  and the angle between E sx and A?“ has a positive lower bound,

uniformly on A. So. each tangent vector u £  Ef. (E*) is expanded (contracted) by at 

least A (A-1), with A >  1. A diffeomorphism T : M  M  is called Anosov if M  is 

uniformly hyperbolic. A classic result in dynamical systems [B] states tha t Principle 

(R) follows as a theorem under these hyperbolicity assumptions, i.e. if T  is a (C2-) 

Anosov diffeomorphism and A c  M  an attractor, then for any continuous observable 

ib: M  —> K. one has

probability measure referred to in Principle (R). A measure with this property is also 

known as a Sinai-Ruelle-Bowen (sr b ) measure. The measure m  denotes Lebesgue 

measure, and the set W 5 (A) == UxeAW s(x) is the basin of attraction.

To enhance our understanding of nonequilibrium statistical mechanics, it has been 

proposed [GC], [R2] to impose strong hyperbolicity assumptions on the underlying 

dynamics, such as to validate Principle (R) and then retain the consequences. An 

analogous approach in equilibrium statistical mechanics, with the ergodic hypothesis 

as a principle to obtain an equilibrium distribution, has proved successful. Despite 

the fact that these assumptions are physically quite unrealistic, this approach has led 

to some remarkable results, one of which is discussed in the next section.

1.1.2. D ecay o f Correlations in  Statistical M echanics. In this section we 

investigate how the new insights have been used to prove Ohm’s law in a  model for

The measure fi+ is a weak limit point of qT^ hq and is exactly the suitable
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electrical conductivity in the periodic Lorentz gas. We present a simplified version 

of the system under consideration in [C4]. Principle (R) holds for this model in the 

sense that hyperbolicity and the existence of an SRB measure are indeed established.

The dynamical system corresponds to the 

motion of a single unit-charged particle subject 

to a weak external electrical field E  between a 

finite number of fixed, disjoint, convex scatter- 

ers in a periodic domain of the plane, a  so-called 

periodic Lorentz gas; see Figure 1. Between col­

lisions the motion of the particle is governed by

q = p / m

p  = e - € p ,

with m  =  1 , q =  (gl5 q2) the coordinates of the particle, and p =  (p i,p 2 ) the corre­

sponding momenta. We will also write X  =  (q, p). Initially the system is a t rest,

and at t  =  0 a constant electrical field E  =  {E, 0) is turned on. The scalar isokinetic 

therm ostat f  is chosen such th a t p-p  is constant. Setting p-p =  0 yields <f =  

and choosing p-p =  1 we finally obtain =  E -p  =  Epi.  The system (1.1) induces a 

flow o lE on the compact phase space M.  Define a class of measures on M  by setting 

<£e«^o(A) =  Po($££A) for all Borel sets A, where dpo =  dqdp is equilibrium (or Liou- 

ville) measure. The density pt = p t ( X ) of the measure 4>tE,po (with respect to p0) at 

time t satisfies the generalized Liouville (or continuity) equation -I- W x \ X p t\ =  0. 

Since =  —2£, it follows th a t the Liouville measure is not preserved whenever

E  ^  0. The density pt satisfies

^ ■  + X - ( V xfit ) = - ( V x - X ^ M X )  = 2 E p ^ l ‘)p t( X ) ,  

which can be written as £ p t = 2Epi(<f>Et) Pt{X).  Integrating both sides we obtain

pt( X ) -  p0( X )  =  2E  f p ^ )  Ps(X) ds.
Jo

F igure 1 . A two- 
dimensional periodic 
Lorentz gas.

(1.1)
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So, for any smooth function F :  M  -» R2 we have Pt{F) =  f M F { X ) p t{X )  d X  =  

Po(F) -F 2E f M F ( X )  fg Pi(4>eS) ps{X )  ds . Assuming integrability and changing co­

ordinates Y  =  0 £SX ,  we can write

pt( F ) =  fi0(F) + 2E  f  fi0(pi(F o <(>%)) ds.
Jo

wpalcty . ^
We will assume here that (j>Empo —> pE as t oo. This is an assumption as 

suggested by Principle (R) from Section 1.1.1. As a result, we obtain

Pb(F) = M F )  +  2E f° °  fi0(pi(F  o <{>%)) ds.
Jo

The microscopic current is defined as p. In equilibrium po{p) =  0. From a physical 

perspective this is obvious, and mathematically this can be seen from a symmetry 

argument. Indeed, po has a  constant density, and p is an odd function under reversal 

of the velocity vector. We therefore obtain

J {E )  = p%{p) = 2E  f  po(Pi(p ° $%)) ds.
Jo

This formula, known as the Kawasaki formula, gives the exact current response as a 

nonlinear function of the field. The inner integral on the right-hand side CPUPi{t) =  

Po(Pi(Pi0 <t>E:)) a ^ me correlation function. If the decay of correlations is sufficiently 

fast-for example for all smooth f E, 9e -  Af —>■ R we have Po{fE{9E°4>E)) — Co i f ,  9)9^  

{stretched exponential decay of correlations) with Co(f,g) a constant uniformly in E  

and 0  < 0  < 1-we can employ Dominated Convergence to write

P o i f (9  o <Po)) =  ^o(lim f E {9E o 4>e )) =  K m poi fE igE  °  4>e )) ^  CQ{ f , g ) d y/i.

In this particular case we need fast decay of correlations with respect to the measure 

p 0, which is not invariant under the dynamics. Thus, we obtain Ohm’s Law J { E )  — 

D -E  + o\E \, with the m atrix -valued diffusion coefficient D  given by the Green-Kubo 

formula

D  = 2 [  po(p<8>(po<t>s0))ds, (1.2)
Jo

where <g> denotes the tensor product. Decay of correlations is often referred to as 

a statistical property of a dynamical system (4>o,Pq), and it provides a measure of
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”randomness” of the system. Indeed, if in addition /  and g satisfy no( / )  =  f*a(g) =  0 

and fio is invariant, we see that ° 4>q)) ~ ®  expresses a rate of mixing of the

system. A different measure of chaoticity is provided by a dynamical central limit 

theorem (CLT), which states that the average of the dependent random variables 

/(</>5 (X)) converges in distribution to the normal distribution.

1.1.3. H istory  and R ecent D evelopm ents. In the late 1960s mathematical 

physicists introduced thermodynamic formalism, the study of topological Markov 

chains endowed with an invariant probability measure, in an effort to understand 

the mathematics governing equilibrium statistical mechanics. These symbolic sys­

tems were shown to exhibit strong statistical properties.

In the early 1970s exponential decay of correlations (EDC) and a CLT were also 

shown to hold for smooth, uniformly hyperbolic dynamical systems; see e.g. [B]. 

Although of great mathematical interest, these results have only limited physical 

value. More realistic physical models exhibit nonuniform hyperbolic behavior and/or 

contain singularities-billiards and attractors being the most well-known examples 

of these. The methods employed in [B], a finite Markov partition of the manifold 

relating the dynamics to a topological Markov chain, do not easily generalize to 

systems with singularities. The singularities necessitate a countable Markov partition, 

corresponding to a topological Markov chain with infinitely many states.

Over the past two decades, investigating statistical properties for nonsmooth sys­

tems has grown into an active research area, with some of the forefront researchers in 

the field believing that singularities slowed the decay of correlations. Recent results 

show otherwise.

A CLT for billiards was shown by Bunimovich and Sinai [BS] in the early 1980s, 

but EDC proved much harder to obtain. In the early 1990s, stretched exponential 

decay for certain billiards was obtained by approximations of Markov partitions. In 

fact, this is the method employed in [C4]. An exponential upper bound on the decay of 

correlations was first obtained by Liverani [LI] for a class of two dimensional systems
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with singularities preserving a symplectic 2-form. Young [Y] recently developed a 

new technique to establish an exponential upper bound for more general class of 

dimensional systems preserving an SRB measure tha t is not necessarily smooth. In 

Chapter 2 we extend Young’s result by relaxing some of the assumptions made in

[Y]-

1.2. Scattering Dynam ics—Expanding M aps w ith  Sm all H oles

Pianigiani and Yorke [PY] give the follow­

ing pictorial model of open systems, i.e. chaotic 

dynamical systems with holes in the phase space 

through which mass can escape. Imagine a 

Sinai billiard table (with dispersing boundary) 

in which the dynamic behavior of the ball is 

strongly chaotic. Let one or more holes be cut 

in the table, so tha t the ball can fall through, 

see Figure 2. One can also think of these holes 

as ’’pockets” a t the comers of the table. Let the initial position of the ball be chosen 

at random with some smooth probability distribution. Denote by P (t) the probability 

that the ball stays on the table for a t least time t, and if it does, by p(t) its (nor­

malized) distribution on the table at time t . Some natural questions follow: At what 

rate does P(t)  converge to zero as £ —> oo? W hat is the limit probability distribution 

limt^oo p(£)? And does it depend on the initial distribution p(0)? These axe still open 

questions.

Over the past decade, the study of open systems has become an active research 

area in physics, known as chaotic scattering theory. A detailed account of results in 

this area is beyond the scope of this introduction, but we would like to briefly mention 

the following remarkable observation [GN]. Consider a  two-dimensional periodic 

Lorentz gas {0 <  x  < L, —oo <  y <  oo}, with absorbing boundaries at x  =  0 and 

x  =  L. Choose Nq test particles with respect to an initial smooth distribution. Some

F ig ur e  2 . A Sinai 
billiard table with 
holes.
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of these particles will escape through the boundary after some time, and the number 

of particles present in the system at time t  decreases exponentially N t ~  N q exp (—j t ) .  

The parameter 7  is known as the escape rate. Assume that there exists an invariant 

set in the phase space of this system, consisting of "trapped” trajectories. In physics 

literature this set is commonly denoted as the repeller A. Assume furthermore that the 

system has a positive Lyapunov exponent AL with respect to an appropriate invariant 

measure on A and has positive Kolmogorov-Sinai entropy hKS. Then the following 

escape rate formula is believed to hold true: 7  =  A! — hKS. From this equation the 

following relationship can be derived:

with D  the diffusion coefficient of the system. This equation is yet another example 

of a profound relationship between macroscopic quantities (diffusion coefficient) and 

microscopic, dynamical quantities (right-hand side).

These developments renewed mathematical interest in open systems, and over 

recent years a number of publications in this area appeared ([C M T 1 ], [CMT2], 

[CMS], [LM], [PY]). Pianigiani and Yorke [PY] studied one-dimensional, piecewise 

C2, expanding (i.e., s =  inf|!T'(x)| > 1 ) )  transformations T : .4 — R, where .4 =  

Uf=1-4Z- and .4, C I  are disjoint, open intervals. It is assumed that A  C T(A)  and 

that T  satisfies a  Markov condition in the sense that A n T ( d A )  =  0. One of the first 

problems to consider is how to properly describe such systems. Indeed, we do not 

expect to find an equivalent invariant measure (equivalent to Lebesgue measure fi0) 

since images of such measures will have exponentially decreasing norms as mass leaks 

out through the holes at a constant rate. However, if we renormalize the images of pQ, 

we obtain a sequence of probability measures that may converge to some probability 

measure fj.+. The limit measure p+ is known as a conditionally invariant measure 

and is not invariant under the dynamics. Instead, the image of n+ is proportioned 

to itself /j.+(T~1E) =  XpA(E) for measurable subsets E  C A . The parameter A is 

usually referred to as the eigenvalue of the measure and satisfies A <  1.
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Pianigiani and Yorke show that an absolute­

ly continuous conditionally invariant probabil­

ity measure exists for these expanding trans­

formations with holes. Moreover, if T  satisfies 

a transitivity condition, then /z+ is unique in 

the class of probability measures with a contin­

uous density bounded away from 0. If, further­

more, all iterates of T  are transitive, it is shown 

that any measure u with a continuous density 

bounded away from 0 converges to in the following sense. Define for any measur­

able set E  C A  the conditional probability isn(E) = (T~nA)~lu0(T~nE ). Then un 

converges weakly to the unique invariant measure /z+.

The subject of Chapter 3 is the study of rather arbitrary piecewise C 2 maps T  with 

s =  inf IT'1 > 1 on an interval in which finitely many small, open holes are punched. 

The approach taken in Chapter 3 differs from Pianigiani and Yorke’s in that we start 

with a piecewise C , expanding transformation T  of the unit interval I.  We remove 

a finite number of small, open intervals from I  to obtain a transformation T  with 

holes tha t is not necessarily Markov. We show existence of an absolutely continuous, 

conditionally invariant probability measure fi+. If, in addition, we assume tha t T  

is mixing, /z+ is equivalent to Lebesgue measure and unique in the class of prob­

ability measures with a density of bounded variation. Convergence of the conditional 

probabilities un as described above is believed to be within reach.

T(x)

F igure  3 . An ex­
panding map T  with 
hole H.
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CHAPTER 2

STATISTICAL PROPERTIES OF HYPERBOLIC SYSTEMS WITH 
TANGENTIAL SINGULARITIES

2.1. Introduction

Recent developments in nonequilibrium statistical mechanics have sparked the 

interest in the investigation of statistical properties (in particular, EDC) of nonuni- 

formly hyperbolic dynamical systems. In Chapter 1 we have seen that the first result 

in this direction, an exponential upper bound for the decay of correlations for a class 

of two-dimensional systems with singularities preserving a symplectic 2 -form, was 

obtained by Liverani [Ll]. Young [Y] only recently proved the existence of an ex­

ponential upper bound for more general two-dimensional systems preserving an SRB 

measure that is not necessarily smooth. Both Liverani and Young assume that the 

singularity manifolds S  and the unstable cones are uniformly transversal.

In some physical models, however, the angle between the singularity manifolds 

and the unstable direction vanishes. This is the case in, for example, Wojtkowski’s 

’’falling balls”-model [W]. Consider the vertical half line {q: q > 0} with n > 2  point 

masses m i > m 2 > . . .  >  at positions 0 < qi < q2 < qn freely falling due

to a constant gravitational force. The masses collide elastically with each other, and 

m i collides elastically with the floor q =  0. In some parts of the phase space of the 

arising Hamiltonian flow with collisions, the singularity manifolds and the unstable 

direction are tangential whenever the system comprises n > 3 balls.

This motivates us to generalize Young’s result by allowing the angle between the 

unstable direction and S  to vanish. We will consider uniformly hyperbolic, piecewise 

smooth maps (the exact definitions can be found in Section 2.2) together with an srb- 

measure (the existence of such a measure will be proved). We allow for tangencies

10
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of the singularity manifolds and the unstable directions, but exclude coincidence of 

the two on a set of positive (induced) volume. Under natural conditions, we prove 

EDC for a class of Holder continuous functions and show that a  central limit theorem 

(CLT) holds. We do so by showing th a t our systems meet the conditions Young uses 

in [Y] to obtain EDC and CLT. We have included some examples.

2-2. S ettin g

Let M  denote a compact, smooth Riemannian manifold, possibly with boundary. 

For simplicity we restrict ourselves to two dimensions. Assume that M  is endowed 

with Riemannian metric d and Lebesgue measure m. The induced metric and measure 

on submanifolds 7  of M  are denoted by du, and m7, respectively. Throughout, we 

denote the tangent space to a (sub) manifold S  a t the point x  by TXS. Let Si C M, 

i =  1 , . . .  , N  denote a finite collection of compact, smooth curves, where d M  C Ui«Sj. 

We may assume that for every Si <£. d M  we have dSi C U7- Int«Sy, i.e. every component 

of S  not in the boundary d M  term inates in the interior of another component. This 

is not a restrictive assumption, because we can extend every component so that it 

satisfies this condition. The set S  =  Ui«S'1 is the singularity set of T . The following 

six assumptions define the setting more precisely.

Hy p  1 . T  is a C2-diffeomorphism from M  — S  onto its image T (M  — S ) . Both 

T  and T ~ l are twice differentiable up to the boundaries o f their domains.

Note that the derivatives of T  and T ~ l are bounded since M  is compact. We let 

S n = S  U . . .  U T~n+lS  denote the singularity set of Tn, the n-fold composition of T  

with itself.

H y p  2 . T  is uniformly hyperbolic; i.e., fo r  each x  E M  there exist cones C “, C sx C 

TXM  such that DXT(C*) C C£x and D xT ~ l (C*) C C f-ix whenever these derivatives
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exist and

\\DxT{v)\\ > A||u|[ fo r a l i v e  C l

||Dr r _ l(t;)|| >  X\\v\\ for allv  G C*x

for some constant X >  1 . These cones vary continuously with x , and the angle between 

C l and C l has a positive lower bound.

The constant A above, thus, is a lower bound on the expansion factor o f unstable 

vectors and contraction factor o f stable vectors.

We introduce some more notation. An n-unstable curve is a curve 7  of finite 

diameter such that T~n7  consists of a  single smooth component and for all k  =  

0 , . . .  , n and 2  G T~k 7  we have TzT ~ kj  n Q ^ { 0 } .  A 0-unstable curve will simply 

be called a u-curve. An n-stable curve is defined similarly. The diameter of a curve

is defined as diam(7 ) =  supxyeydy(x,y).  Following [P], we define M + (M~) to be

the set of points x  G M  for which the future (past) orbit is defined; i.e.

M + = M  — (J T ~ nS,  M ~  = f ] T n( M - S n).
n>0 n>L

The set M° =  M + fl M~  consists o f  points for which the entire orbit is defined. 

Furthermore, let

E sx =  p |  T»r nrT - n( C f lI ) for x  G M +
n >  0

E l = p |  DT-«xr i{O f-n:c) for x  G M~.
ra> 0

Then TXM  =  E l®  E l  whenever x  G M ° and the angle between E l and E l  has a 

positive lower bound, uniformly on M °. For a connected submanifold uj C M  the 

sm ooth components of T~n{uj—U1l >lT kS)  are called the components of T~nu . We call 

a submanifold w a local unstable manifold (lu m ) if T ~ ncv has exactly one component 

for all n >  0 and for all x, y  G w we have d(T~nx, T~ny ) —> 0 as n —> 00 exponentially  

fast. We denote the closed e-ball in w centered at x  (whenever it exists) by W f  (x ) . 

Local stable manifolds (lsm s) and Wf{x)  are defined analogously for forward iterates
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of T.  Define for k, >  1

M~e ={x €  M ~ : d(T~nx .T S )  > €K~n Vn >  0}

M*e ={x E : d(Tni ,  S)  >  e/c_Tl Vn >  0}

K ,  =AC n M+

e>0

Observe that is a closed set for a fixed e > 0 and that M°  is T-invariant. 

Proposition 4 of [P] implies that there exists a o l  such that for all x  E M ^ e( M ^ e) 

and some 5(e) > 0 the C L-submanifold Wg(x)(Wf(x))  exists and is unique. At this 

point it is not clear that M^ t ^  0. This is discussed at the end of this section.

In showing statistical properties of systems satisfying Hyp 1 and 2. previous results 

([Y], [C3]) assume that u-curves intersect the singularity manifolds transversallv. We 

would like to relax that assumption and allow for tangencies. Intuitively, x  E S  is a 

■point of tangency if TXS  n  Ef. #  {0}. We can not use this definition because E f  may' 

not exist. The following assumption allows singularity manifolds to intersect LUMs 

tangentially, provided they separate fast enough away from the point of intersection.

H yp 3. There exists a 0 <  p < oo and a constant C > 0 such that fo r all e > 0 

and all LUMs 7 we have

m -r( 7  n  B e(S )) <  Cep.

We call the number p the order o f the tangency.

A point x  E S 11 is called multiple with multiplicity Lxn if it belongs to LXiJl > 2 

smooth components of S 11.

H y p  4 . There exists a K  > 1 and an m  > 1 such that for all x  E S™ we have

** .m  <  K  <  ^ = i .

Similar assumptions are standard (see for example [C3]) and necessary to ensure 

that LUMs grow faster than they get shredded by singularity manifolds. Note that 

Hyp 4 implies that there exists an e0 >  0 such that every e0-ball in M  intersects at 

most K  smooth components of «Sm.
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Allowing for tangencies introduces a new problem, to the  study of decay of corre­

lations: a  smooth component of S  may intersect a lum  infinitely many times. The 

following assumption excludes this possibility. Let S™ denote a smooth component 

of S m, with m  as in Hyp 4.

H yp 5. There exists an tj >  0 such that fo r all e >  0 the intersection 7 n  B e ( S l n ) 

consists of at most two disjoint subintervals o f  7 whenever 7  is a LUM with diam (7 ) <  

V-

The number of subintervals in Hyp 0  is fixed a t two for notational convenience; it 

can be replaced by any finite number (Hyp 4 should then be modified accordingly).

Without loss of generality we can set m  =  1 in Hyps 4 and 5. Indeed, assumptions 

1-3 still hold for T771, and it suffices to show our main theorem for T m- Henceforth 

we will assume that m =  1. Note that Hyp 3 and Hyp 5 prevent the singularity 

manifolds from coinciding with a LUM 7 on a set of positive m7 -measure. The last 

two Hyps lead us to formulate the following lemma.

Lemma 2.1. Set e— minfyo,*?}- Then fo r  all 5l > 0 and for every LUM 7  with 

diam(7 ) <  e, the set {1 6 7 : dy(x, S) > has < 2K  +  1 == Kq connected compo­

nents.

As remarked above, it is not obvious that M% ^  0 in our setup. It is well known 

that systems satisfying Hyp 1, 2 and the following assumption

(H3) There exist a C > 0  and a q > 0  such that fo r all e > 0  and n  > 1

m{T~nB e(S)) < Ceq,

have the property that M? ^  0 (see [P]). Chernov [C3] uses u-curves to show that 

systems satisfying Hyps 1, 2, 4 and a transversality condition on the intersection 

of u-curves and singularity manifolds satisfy (H3), thus establishing the existence of 

LUMs. In the current setup we can not hope to use u-curves to obtain (H3), because 

we can not control the intersection of u-curves and neighborhoods of S .  Instead, we 

will assume that contains at least one point x; i.e.,

H yp 6 . M ^e 0 for  e >  0 small enough.
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In Section 2.5 it is then shown th a t there exists a T-invariant probability measure p. 

with p{M^)  =  1 .

It was observed by Chernov that Hyp 6  is necessary in the sense that it does not 

follow from the first five assumptions. We adapt his example from Section 10 in [C2].

E x a m p l e  2.2. Let R  :=  {(or, y ) : 0 <  x  <  l , y  > 1 } be an open strip in R2 

and let M ' :=  {(s, t): 0 <  s <  1,0 <  t < 1 } with the identification o f s  =  0 and 

s =  1 be a closed cylinder. Define T i: R  R  given by (x,y) ( f , 2y  — 1) and 

T2: R  M ' given by s =  y  mod 1 and t  =  exp(—y) 4 -r (ex p (— y  — 1 ) — exp(—y)). 

Define T  =  T2 o 7 \ o Tf~l . Obviously, Hyp 1 and 2 are satisfied fo r T . Since fo r  each 

point at most finitely many pre-images are defined, no LUMs exist. Hence Hyp 3-5 

are trivially satisfied, yet M%e =  0 . fo r  all e > 0 .

D e f in itio n  2 .3 . A T-invariant measure pSrb, supported on M °, is called an SRB- 

measure i f  the conditional measures o f  ̂ Srb on local unstable manifolds are absolutely 

continuous with respect to the Lebesgue measure on those manifolds.

Measures with the SRB property describe the asymptotics of observables in phys­

ical models: If fj.SRB is an ergodic SRB measure concentrated on a set A C  M°, there 

exists a set W S(A) containing A with positive volume such that for any continu­

ous : M  - I  E w e  have lim ^oo L $  ° T kz — f Aip dps rb for m-almost every 

x  e  W S(A). If the map T  preserves a smooth measure m 0, it is automatically an 

SRB measure. In case the set M° has full volume and pSRB is singular, its support 

can still coincide with M  . This typically happens for transitive Anosov systems. If 

m (M °) <  m (M ),  the support of /zSRB may have zero volume, and the set A above is 

sometimes called an attractor fo r  (T,/xSRB).

We conclude this section with an elementary example of a dynamical system 

satisfying Hyp 1-6.

E x a m pl e  2.4. Consider a hyperbolic toral automorphism 7 \ : T2 — T2 given by 

(x, y) !->• (2x  + y ,x  + y). Cut out an open disk S  in T2 and define T2 : S  —»• S  to be the 

map that rotates the disk over an angle ir and leaves the rest of the torus invariant.
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The singularity manifold S  for the map T  — T\ o T2 is given by the boundary o f the 

disk d S , which has two points oftangency with the unstable direction.

2.3. R esults

We state the main results of this paper. The proofs can be found in Sections 

2 .5-2.7.

T heorem  2 .5 . Let T  satisfy Hyp 1-6. Then

(a) T  admits an SRB measure /zSrb. which is not necessarily unique.

(b) Any measure fj.SRB has a finite number o f ergodic components on each of which 

it is. up to a finite cycle, mixing and Bernoulli.

Let Ti,, denote the class of Holder continuous functions on M  with Holder exponent

D e f in i t io n  2 .6 . The dynamical system (T, fi) exhibits exponential decay of cor­

relations for Holder continuous functions i f  fo r any rj > 0 there exists a 0 <  0 < 1 

such that for all E 7iv

for some C  >  0 depending on the functions <j>, ib.

D efin itio n  2 .7 . Let d> € H n such that f  4>dfj. =  0. We say that <$> satisfies a CUT

77 >  0; i.e.

'Hr, := {(f) : M  —> R: \4>{x) — <f>(y)\ < Cd(x , y)v for all x, y E M},

where C > 0 depends on the function 4>. The time correlation function CM (n) is 

defined by

(4> o T ^ ty d n

with respect to (T, /z) i f  the random variables <j> o T n satisfy
rt T

where N  denotes the normal distribution and a  depends on (j>.
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T heorem  2.8. Let T  satisfy Hyp 1-6 and suppose that (T”, pSkb) is ergodic for  

all n > 1. Then (T, ^SRB) exhibits exponential decay o f correlations and satisfies a 

central limit theorem.

2.4. Standard Facts

We introduce some notation, definitions, and standard results for dynamical sys­

tems with, singularities; see also [KS]. Let 7 denote a u-curve. For x  €  7 let 

J u{x) =  | det DXT  \T I 'y\ denote the Jacobian at the point x, restricted to 7 .

D is t o r t io n  a lo n g  u -c u r v e s . Let x ,y  e  7 — S 71 and T”x, T ny belong in the 

same connected component cj C T’n7 - Then

(2.i)

for some C'(T) >  0.

B o u n d ed  c u r v a tu r e .  The curvature of lu m s and lsm s is uniformly bounded 

by some constant B > 0.

A bso lute  c o n tin u ity . Let W“(x) and W%(x') denote two lums and let

:= { y  e : W7(jlfo) n w jM  #  0}.

Assume that J(y), 77, 77' are small enough such that any LSM intersects each of those 

LUMs at most once. Define a map h: —y W£(x')  by y  t-t W f^ { y )  D W^(x').

Then h is absolutely continuous with respect to mw%(x)? and its Jacobian is

bounded at any point of density of mw*(x)', i-e.

1 nriw«Ci,)(fc(Woo))
7^  <  — f  (w , <  Co (2.2)O0 m Wu(x) (Woo)

for some Cq > 0 .

2.5. E xistence o f s r b  M easures

In this section we prove Theorem 2.5(a) by constructing an SRB-measure for T. 

In [P], Pesin proves the existence of an s r b  measure (called a Gibbs u-measure) for
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system s satisfying four assumptions, including our Hyps 1  and 2 and the additional 

(H3) mentioned in Section 2.2. We can not verify Pesin’s hypotheses for our systems 

and use a different approach to obtain an SRB-measure.

The class o f systems Young studies in Section 7 o f [Y] does satisfy Pesin’s as­

sumptions, but a direct argument for the existence of an SRB measure is given there. 

Young proves the existence of some invariant probability measure p  satisfying (2.4) 

below and later proves the existence o f  an SRB-measure. We extend her approach to 

our system s and argue directly that the measure obtained from (2.3) below is SRB.

Choose e > 0 such that ^  0. Let 7 denote the l u m  corresponding to one of 

the points in M ^ e. Define

1 s ~ l

Mat =  ^ 2  T,fcm7; (2.3)
k=0

i.e. we iterate Lebesgue measure on the local unstable manifold 7 . Any (normalized) 

limit point p  of {^,v} in the weak*-topology is an invariant Borel probability measure 

on M°.  Since the set M ° is not compact, mass may escape from M ° in the limit 

of (2.3). The following lemma prevents this from happening. Once we obtain (2.4) 

below, it easily follows tha t any limit point p  of (2.3) is supported on M°.

Lem m a  2 .9 . Let T  satisfy Hyp 1 - 6  and let p. be a normalized limit point of 

(2.3). Then for all e > 0 we have

p(Be(S)) < Cep (2.4)

for some C > 0.

Following Young [Y], we will use the idea of stopping times on l u m s  in the proof 

of this lemma. Let 7  denote an arbitrary LUM with diam(7 ) <  e. The idea is to keep 

record of the length of the connected components of T117 . We set y0 :=  7  — S . which 

consists of finitely many connected components a/*. In general, yn :=  yn- i  — T~nS.  

The stopping times are defined by a sequence of mappings s x <  S2 < • - - from subsets
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of 7  into N as follows. For 1 6 7  let

Si(x) =  min{m7^u>r(TTla;x) >  e}, n>I

with u x the component of j n- i  containing x. If no such n  exists, we set si(x) = 00. 

The n-dependence of uix will be tacitly understood in the remainder of this paper. 

Lem m a 2 .1 0 . Let 7  and 7 n be defined as above. Then

7Th(ln -  {*-- Si(x) < n}) < e ( ^ y ) n. (2.5)

P r o o f .  Since diam (7) <  e, 7 0  consists o f at most K q connected components 70i 

with diam(70i) <  e. For those components with s l(x ) f 7o, #  1, diam (X70i) <  e. At 

the 72th step we have that yn — { x :  Si(x) <  72} is the union of at most Kq  components 

7nk C 7n with diam(Tn7„fc) <  e. Pulling back we obtain (2.5). □

In particular, Si(x) <  00 for 772̂ ,-almost every x  €  7 . On the full measure subset 

of 7 for which s i(x ) <  00, define

s2(x) =  min {7727^ (T™^) >  e},n>si(x)

with uix the component of 7 n_i containing x. It is easily seen that s2 is also defined 

on a subset of full measure of 7 . Continuing this procedure we obtain that for any 

LUM 7  with diam(7 ) <  e and for any k > 1 the kth  stopping time Sfc(x) is defined 

772-y-almost everywhere.

P r o o f  o f  L e m m a  2 .9 . Let e > 0 be given. Let 7  be a l u m  with diam(7 ) < e 

and fj. a normalized limit point of the sequence given by (2.3). Our strategy is to 

estimate J2n=o m-y(T~nB e(S)).

Fix an integer N  > 0. Let Si be defined on 7  as above. Observe th a t {x: s*(x) <  

N }  is a disjoint union of a finite number of connected components of 7  for all k <  

N.  We will evaluate Y2n=o m -r(T~nB e(S)) on the subsets {x: si(x) >  N },  Sk ~  

{x:  sjt(x) <  N }  n {x: s*+i(x) >  N } for 1 <  k  <  N  — 1 and {x: sa t-i(x ) =  N  — 1 } 

separately.

Consider the set {x: s L(x) >  AT}. As in the proof of Lemma 2.10, we see that for 

each natural n the set {x: Si(x) >  72} is a disjoint union of at most countably many
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components. Consider one of these components u j  with Si [o' 7̂  n. Then m-r^uiT71̂ )  < 

e, and by Lemma 2.1 it intersects Be(S ) in <  Ko components. Therefore, by Hyp 3

mr^tj(T71̂  n  i?e(«S)) <  K 0Cep.

Pulling back to uj and summing up to the (IV — l)-st iterate over the components in

( x :  S i(x )  >  AT}, we obtain
N’—l N~l jy-

n  {*: S l( i)  >  AT}) <  K„Cei £ ( - ^ ) “ (2.6)
A

n = U

sN-lNext, we estimate m~,(T~n Be(S)) on the subsets Sk for I <  k  < N  — 1 . Let

u j  denote a  component o f l 3 - i  and S k  \  u j  =  j .  Observe that j  >  k .  Partition l j  into 

u j i  U . . .  U ujm with |  <  mnuiTiuJi) < e. We use the exact same procedure as above, 

choosing T3uj as our starting point and with u j  replaced by T 3uj{.

It may happen that T~xB €{S)C\uj ^  0, 0 <  i < j  for such a component uj. Observe 

that the measure of this set is already taken into account by the estimates up to the 

fcth stopping time. Indeed, for a segment in the set (x : s((x) <  N},  0 <  I < k, we 

in fact overestimate the measure covered by pre-images of Be(S) at the n th  iterate 

by assuming that all its Kq components have diam(T’no/) < e, regardless of whether 

they are contained in {x: sL+l < N }.

We compute the fraction o fT 3uJi covered by pre-images of Be(S) before the A;-F 1-st 

stopping time and claim that this fraction approximately equals the fraction covering 

Sk H u j . This claim is made precise in Lemma 2.11 below. We obtain that
^~^~3 n Ty~ N—l—j -r.
Y  mw{ T ~ ^ B e{S) n  Sk) < mu(uj) expfC'e) — 6 Y
n = 0  6  n = 0

Summing over all components uj £  {x: st(x) <  N }  we obtain
N-l N—l—j  N-l-k
Y  Y  m-r{T-(n+j)Be(S)nSk) <  exp(C'e)2Ki>Ce? £  ( ^ ) n.
j=k n = 0 n = 0

Hence, summing up to (xr sa/-_2 (x) <  N },  adding (2.6), dividing by N ,  and writing 

S  :=  UN~2Sk U  (x : si(x) >  iV}, we obtain for all N  > 0

n  S)  <  exp(C'l)2K„Cei  f ^ ) " .  (2.7)
n= 0 7i=0
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Finally, we estimate m-r(X~nB e(S)) on {x: s^r-i =  N —1}. Fora; C {x: s^r-i =  

N  — 1} we have m ^ u(Tnw) >  e for all n  =  1 , . . .  , N  — 1. Fix an n  and partition 

u  into W1 U .. .U  o/m with |  <  mT*u(Tn(Ji) < e. Using the same estimates as above, 

we first sum over all components in ©/\r-i, and then over n . After dividing by AT, we 

obtain

(T-"B,(5) n {*: = I f  -  1}) < £ ( ^ ) \
71=1  *  71= 0

Adding this last sum to (2.7) and letting N  —> oo yields (2.4). Q

In the proof, we estimate the measure of the fraction of {x: st(x) <  N }  n  

{x: Sfc+i(x) >  N }  covered by pre-images of B e(S ) by the corresponding fraction 

of T^uii. The following lemma justifies this estimate. The main idea is that the j th  

iterate of Lebesgue measure on a/*, denoted by T 3m Ui, has an almost constant density 

with respect to

Lemma 2.11. Let u  be as in the proof o f Lemma 2.9 and B  C Tj u  a measurable 

subset. Then

exp (—C'e) \  < m^ T  <  exp(C'e) (2.8)m TluJ(T3uj) m u {uj) mr ,w( P u )
P r o o f .  Define a density p(x) on a component T 3ujik of TJuii by

dT3 m w.
p(x) =

dmTJuJik

On each of those T 3ujik the distortion estimate (2.1) gives exp (—C'e) <  <

exp (C'e), which yields (2.8). □

Next, we turn to the existence of local stable and unstable manifolds. Recall 

that for every x E M? both an LSM and a LUM exist. A standard application of the 

Borel-Cantelli Lemma gives that p(M%) =  1 . In particular, the following corollary 

holds.

COROLLARY 2.12. Let p. be a normalized limit-point of (2.3). Then fo r p-almost 

every x  E M° and some measurable functions t} ( x ) , t] ' ( x ) > 0, the LUM W * ^(x ) and 

the LSM W ^ xj(x) exist.
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From the above corollary it does not immediately follow tha t for every z  E 

W “x)(x) an LSM W ^ ^ { z )  exists. Indeed. (x) may not be completely contained 

inside M%. We obtain -almost everywhere existence of LSMs on (rr), how­

ever, from applying the Borel-Cantelli Lemma to the measure (x)t cf. [C3]_

Finally, we conclude that the invariant measure obtained from (2.3) is an s r b  

measure. Indeed, for almost every x  E M° a l u m  exists. From the construction of 

jj. (iteration of a smooth measure) it follows that on such a LUM the measure /j  is 

absolutely continuous. This concludes the proof of Theorem 2.5(a). Henceforth we 

will denote limit points of (2.3) by /iSRB-

2 .6 . C o n s tru c tio n  o f  th e  H yperbo lic  S et A a n d  R e tu r n  T im es

The key instrument in [Y] to obtain exponential decay of correlations for hy­

perbolic dynamical systems is a set A C M  with hyperbolic product structure: a 

” generalized horseshoe.” In this section we present a generic method to construct 

finitely many sets At with hyperbolic product structure such that A =  U,-A,- covers 

a ” large part” of M°. The reader may think of this construction as a generalized 

Markov partition of A. However, a warning should be issued. Although we indeed 

construct finitely many "rectangles” At-, these rectangles do not necessarily cover the 

support of /xSRB and are generally not disjoint. Once A is constructed, we define a 

return map T r : Ui A* —► LI*A*.

2 .6 .1 . C o n s tru c tio n  o f  th e  H y perbo lic  S e t A. Choose 4d0 <  e, with I  as 

in Lemma 2.1, such tha t Aga :=  {x  E  M ~ : WfQ{x) exists} ^  0. O ur choice of 6q is 

such that 5q jj, with ^  the minimum radius of curvature of l u m s  and LSMs. For 

x  E -4(j0 we can not conclude th a t the l u m  W f^{x) exists uniquely. Therefore, let
3

W (x) : = W ^ ( x ) e { W ^ ( z ) } zeAso
3 3
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denote an arbitrary LUM about x E  Ag0. We will construct a  subset W ^ x )  C  W {x) 

with the property tha t for all y E  Woo(x) a  ’’sufficiently long” LSM exists; i.e. for 

some Si -C Sq to be determined, W§^(y) exists Vy e  ( x ) . We construct W ^ x )
3

as follows. Let u>i denote the connected components of W {x) n Bst (S). Delete u>i 

from W (x) only if the minimum distance between u t and S  is less than 4}. Call 

the resulting set WQ (x). Suppose Wn_i(x) is defined inductively as above, and let in 

the nth  step a/, be the connected components of {y E Wra_ i(x ) : d(Tny, S) <  c^A- "}. 

Delete uii from Wn_t(x) only if d i^ u j^ S )  <  |<5iA_n. Now let W ^ x )  =  n nWn(x). 

Note that Woo (or) is a  closed subset of W {x).

L e m m a  2.13. Let 0 <  c <  1 be arbitrary. Then there exists a 6i > 0 such that

m w t t iW a o tx ) )  >  c m w {x)(W (x ) )

for all W (x) as above.

Set W  W {x) and Wn = Wn(x). The proof closely follows that of Lemma 2.9: 

our strategy is to estimate ]T^Lo m w {T~n . Define a sequence of stopping 

times Si < s2 <  - - - on W  as in Section 2.4 with the following difference. For x  E W  

let

si(x) =m in{m rn (T"a/X) >  e},
n > l

with uix the component of Wn_i containing x . If no such n  exists, or x  is deleted 

from W  before the stopping time is reached, we agree tha t si(x)  is not defined. On 

0 X := {x E W :  S i(x )  is defined} define

s2 (x) =  min { m ^  (Tnwx) > e},
n > s i ( x )

with cjx the component of Wn^i  containing x. Set 0 2 :=  (x  E  0 i : s2 (x) is defined}, 

and so on. It is again easily seen that each ©fc is a disjoint union of a countable 

number of components.

P r o o f  o f  L e m m a  2.13. Observe that whenever x E  © t for all k, the point 

x  never gets within an S i A “"-neighborhood of S . Hence, it suffices to consider 

m w (T~nBs1\-^ (S ))  on the subsets W  — ©i and 0* — © * + 1  for all k > 1 .
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Starting with W  — 0 i  we obtain, using the same methods as in Lemma 2.9, that 

the total measure deleted from W  — ©i is at most

j r  mw(T~aBsL\-«(S) n (W - ©,)) < K„cs; £  A'f ( ^ ) \
71=0 71=0

Using the second part of the proof of Lemma 2.9, we obtain for the total measure 

deleted from ©fc — Qk+i

f 2 m w {T -nB Slx-«(S) n  (0* -  ©fc+1)) <  e x p (C 'e ) \-h K 0C6? A"f ( ^ ) « .
71=0 71=0

Summing over k  we see th a t the total measure deleted can be made arbitrarily small 

by choosing <5i accordingly. □

We proceed with the construction of the set A C M . For the remainder we fix 

the constant c from Lemma 2.13 close to 1 and set S =  Note that W/(y) exists

uniquely for all y  E Woo. For each W00(r), x  E A&0. set

r s (Woo(x)) =  (W /(y ): y  E W ^ x ) } .

Since the angle between C “ and C | has a positive lower bound and LSMs have 

bounded curvature uniformly on M , there exists an rj > 0  depending only on this 

angle and the curvature such that for all WJ^(x) E { W ^ (z ) } zeAs
3 3 °

d { d W j ( y ) ^ JL(x ) )> r l (2.9)
3

for all Wg(y) E r s(W0O(x)). For the remainder of this paper, fix 0 <  77 <  |  satisfying 

(2.9).

We let K,(M) denote the collection of all nonempty compact subsets of the mani­

fold M , endowed with the Hausdorff metric

H {K x,K 2) =  inf{5: K x C B 5{K2) and K 2 C B S{K ,)}.

Since M  is compact, the space JC(M) is compact.

Let {W^(a:t)}tA L be the smallest finite |-dense subset of {W ^(z)}z6^ o c  1C{M), 

distinguishing the x,- by their index. For each xt- set

f»fe) := { W l ( z ) :  »(*£(*),»-£(*,)) < §},
3 3 /
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and define a set with hyperbolic product structure by At :=  A(xt) =  T5 (xt) n f  “ (x*), 

where r s(xj) :=  r 5 (W00(xi)). W ith each At we associate a slightly larger set At :=  

r s(xt) n r u(xi) where

r “fe )  =  { » £ (* ) :  Ij)) < n).
3 3

We will call the sets At rectangles and refer to W ^ x f j  as the central LUM of A*-. Note
3

that rectangles are not necessarily disjoint; they may overlap. Observe tha t each 

W? {z) G r u(xi) intersects every LSM W f{y) G r s(x*). Indeed. H (W ^l (z), W ^ x f ) )  <
3 3

77 for all such Ws^(z). In fact, if in rectangle Aj we let [z, y]i = W ^(z)n W g (y )r (W^o(z)
3

denotes a single element of {HQ* (z)}: [z, y]t may not be unique.), then W ^([z, y]i )  C
3

Wf0{z) for all W f(y) G r s(x,-). This follows from 77 <  5 6q.

D e f i n i t i o n  2.14. We say that a l u m  W u u-crosses a rectangle A, i f

W* n  r “ (x,-) D W £(z)
3

for some W ^ (z )  G r u(xi).
3

Note that every LUM W u with diam(W u) >  2S0 u-crosses one of the A*. Indeed,

W u = Wf0 (z) for some z  G Ag0 and, hence, there is an integer i such that Wg0 (z) G

r u(x,-). Again, we conclude that W%^([z, y],-) c  W$Q(z) for all W f{y) G r s(xi).
3

For later use, we define the notion of u- and s-subrectangles.

D e f i n i t i o n  2.15. A subrectangle A“ c  A* is called a u-subrectangle if

w u{x) n  A“ =  r ( x ) n  Ai

for all x G A“ . An s-subrectangle is defined similarly.

Obviously, A i s  a u-subrectangle of At- for each i.

Finally, we set A =  U^A,-. We will regard this union to be disjoint and construct 

a map T r : UA At U^A*.

2.6.2. R e tu rn  T im es. Here we define a return map T r : UN A * —> UNA  Fix 

a point Xi with its rectangle At-, and let Wn =  Wn(x,-). Let ui denote a component 

of Wn. Intuitively, we think of a point x  G uj returning to A a t time r(x) =  n if
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x 6 w ( 1  T~nA j for some n  and j  and 'T'u> u-crosses Ay. The idea is to first partition 

Wn for each n  into a countable collection of subsets uj*  with k > 0. to keep control of 

the length of their images. Then we define return times on and finally we show 

that whenever flw D  T~n Ay ^  0 for some n  and j  and T ^u  u-crosses Ay, we in 

fact have tha t an entire s-subrectangle of A, returns (to Ay).

We say tha t a set A^ C At is an 5-subrectangle based on w C i f  if A“  :=  { r  €

At : W s{x) n W  G to}. We do not allow returns to occur before a certain iterate N  of 

the map T. This minimum, return time N  is chosen so that any s-subrectangle under 

T N has contracted sufficiently in the stable direction to return as a u-subrectangle, 

or more precisely:

D e f i n i t i o n  2.16. Let u j  C  Wn be a connected component and let A!f be the s- 

subrectangle based on u j .  The minimal return time N  is the smallest integer N  with 

the property that i f  T ^ u j  u-crosses Ay fo r  some j ,  then T nA f is a u-subrectangle o f  

Ay whenever n >  N .

Denote by Wn the points of Wn tha t have not yet returned at time n: i.e.

Wn = W n - { x e  W : r(x) < n}.

We define a partition Vn of Wn inductively in n on the connected components ujn, 

distinguishing between times before and after N . The fcth element of the partition 

Vn T d)n of ujn will be denoted by u j * .

T he case n  < N . Suppose uj*^^ 3X1 elenient of the partition on level n  — 1, and 

let u j *  be a component of Wn D Since we do not allow returns yet, u j *  C Wn

and we define V n fw j as follows

1. If diam(Tno;*) <  4d0, then u j *  G Vn.

2. If diam(Tno;*) >  4<5o, we partition u;* into components with 2S0 <  diam(Tncj*') < 

4£0 for every I and put u j*1 G V n.

T he case n  > N . Suppose again th a t is an element of the partition on

level n  — 1, and let uj*  be a component of Wn fl

1. As above put uj*  G Vn whenever diam(Tno;^) <  4£0.
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2. If diamfT^u;*) >  A5q, partitioned into components u/*£ with. 25q <  diam(7mu;*f) < 

4<5o for every L For each I choose a Ay such that T ^ u 1̂  u-crosses Ay. For 

x  E  uJn FI T~nA.j we set r(x) =  n. Now, cj*c — {x : r(x) =  n \  C Wn and we let 

V n on this set be the partition into its connected components.

Note that although it is not hard to see that whenever y E  T nu>̂1 n  Ay one has 

T~ny E  Woo H fl T~nAj, some portion of T^W *, Hcj*1) may fall through gaps of 

Ay. Next, we need to extend the definition of a return time to the entire rectangle 

A,. It turns out that whenever part of the central l u m  of A, returns, an entire s- 

subrectangle of A* returns. Young proves the following lemma (Sublemma 3. Section 

7 in [Y]), which also holds in our setup.

Lem m a 2 .17 . Let u>% C Wn be a connected component such that diam(71Tla;*1) > 

26q for some n > N t and let Af denote the smallest s-subrectangle of A, containing 

Woo Fl n T~nk j. Then T 71 A| is a u-subrectangle o f Ay.

2.7. Proofs o f  th e  Theorem s

2.7.1. P roof o f Theorem  2.5. The existence of an SRB-measure was already 

established in Section 2.5. It is well-known (see for example [P]) that any SRB-measure 

has at most countably many ergodic components M°, on each of which it is, up to a 

finite cycle, mixing and Bernoulli. We argue that the number of ergodic components 

is finite in our setup. It is well known that //SRB-a.e. LUM ( ls m )  in M~ is almost 

surely contained in one ergodic component. From a standard argument one then gets 

that each rectangle A, is almost surely contained in one ergodic component M f. So, it 

suffices to show that /iSRB-almost every LUM in M ~  grows under iteration until some 

component reaches a length >  25q for some n  and lands on a typical unstable fiber of 

some At-.

Replacing e with 26q, the first statement follows from Lemma 2.10, which says 

that for m7-almost every x  E  7  there exists a  natural n  such that diam(TnCi;x) >  250,
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with tux the component containing x. Therefore, /ZsRB-almost every LUM returns to 

one of the A,-, but possibly lands on a nontypical fiber. Let A  denote the set of 

nontypical LUMs in U,T“(xt). Then — Un>0T~nA) =  1, and so fiSRB-almost

every unstable fiber in M ~  returns to a typical fiber in some A*. It follows that the 

number of ergodic components is finite.

R e m a r k  2.18. In fact, Lemma 2.10 states that the measure of the set o f points 

not having a long LUM at the nth iterate is exponentially small. This is a much 

stronger statement than needed here. Indeed, to obtain finitely many ergodic compo­

nents it suffices to know that there exists a natural n such that diam(Tnu;x) > 25q.

2.7.2. P roof o f  Theorem  2.8. The abstract class of systems Young studies in 

[Y] satisfies conditions she labels (P l)-(P5). For such systems she establishes the 

existence of an SRB-measure u, supported on Un^oT^A*. The main result of that 

paper is that whenever (T n, v) is ergodic for all n  >  0 and

m w {x  £  Woo: r(x) >  n) < C0n, (2-10)

for some C  > 0 and 6 <  1, then (T, u) has exponential decay of correlations and 

satifies a central limit theorem.

We prove Theorem 2.8 by showing that Hyp 1-6 imply (P1)-(P5) and that fisnB =  

v,  whenever fiSKB is ergodic. Theorem 2.8 then follows from (2.10), which is shown in 

Section 2.9.

We verify that our system satisfies (Pl)-(P5). For x  and y  in the same element of 

ru(xt), define a separation time by sep(x, y) =  n, with n  the largest integer such that 

x and y still belong to the s-subrectangle based on a connected component us C Vn- 

W ith this separation time, (P3)-(P5) are standard. Furthermore, instead of one set 

A C M  with hyperbolic product structure, in Section 2.6 we obtained finitely many 

of those sets At-. From Lemma 2.13 we have mw^Xi'i(W00(xi)) > c m w X̂i)(W (xi)), 

which in conjunction with absolute continuity of T5 gives mw* (W u n At) >  0 for all 

W u 6  ru. This is (P i); (P2) immediately follows from the construction of the A,-’s.
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Next, let /zSRB be an ergodic SRB-measure such that ^srb(Ai) >  0. It is well-known 

that every SRB-measure is a linear combination o f (unique) ergodic SRB-measures fii 

supported on the finitely many (disjoint) components (see again [P])- Uniqueness 

immediately gives ^ SRB =  v. To finish the proof, it remains to show (2.10).

2.8. D iscussion and Further Rem arks

It is easily checked that the dynamical system from Example 2.4 preserves volume 

measure mo, which is an SRB measure. From Theorem 2.5(b) it then follows that 

(T, m 0) has at most finitely many ergodic components. In fact, from Chernov’s local 

ergodicity theorem [Cl], we obtain ergodicity of (T71, m0) for all n > 1; therefore 

(T, m0) satisfies EDC and CLT.

The present results do not allow us to conclude that the falling balls satisfy EDC 

and CLT. First of all, the results in this paper are limited to two dimensions, whereas 

tangential intersections occur only for n >  3 balls. This does not seem to be a m ajor 

obstacle, since we expect that techniques developed by Chernov (see [C3] and [C2], 

in particular Chernov’s Z-function) can be employed to extend our results to high 

dimensions. Second, the derivatives of the system of falling balls are not bounded. 

This problem can easily be overcome by applying the techniques described in Section 

8 of [Y].

The absence of uniform hyperbolicity poses a more serious problem. Although 

recently the system of falling balls was shown to have all relevant Lyapunov exponents 

nonzero [S], it is not uniformly hyperbolic. In general, there is very little hope for 

exponential decay of correlations in systems where the expansion factor is not bounded 

away from unity. In this particular case, however, careful analysis of the cross section 

map may lead to some results. Finally, we mention that as of yet nothing can be said 

about the nature of the intersections of LUMs and for this model: coincidence can
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not be ruled out a priori. This also stands in the way of proving ergodicity for the 

system. This is a rich area of future research-

2.9. Tail E stim ate

In this section we show (2.10). The techniques we use are standard; we will be 

following [Y] closely in this section. Fix an integer k  >  0. and let a; be a connected 

component of T kWk, with Wk as defined in Section 2.6.2. We introduce some more 

notation- Besides Wn and Vn from Section 2.6.2 we introduce for n =  0 .1 . . . . ,

u n =  UJ D T kWk+n uin = UJ n T kWk+n =  T kV k+n r W„.

Note tha t ujn consist of finitely many connected components for each n, whereas uin 

may contain countably many. We write uj^  to denote uj f l  T kW oa. Abusing notation, 

we denote the collection of components Ua p €p U (ui v  n  u n) by V ^_l f l  u n.

2.9.1. Growth, o f  P artition  Elem ents. Once more we will introduce a stop­

ping time s(x). On the connected component u  E  T kVk define

s(ar) =  min{diam(Tna;x) >  2(5o},
n > l

where ujx  6 ^  wn contains x. If no such n  exists, or x  is deleted from u  before

this stopping time is reached, we agree that s{x) is not defined. Observe that returns 

do not play a part, because the stopping time is reached before a return is possible. 

From Lemma 2.10 (replacing 7 n by u n) we therefore see

m w(un -  {x: s(x) < n}) <  260( ^ - ) n. (2-11)

As an immediate corollary, we have that s(x) is finite for m u-almost every x  E  uj0Q.

2.9.2. G row th o f  G aps. Let u Q E T kVk~i be a segment u-crossing Aj  for some 

j  a t time k, and let w C w o denote the smallest subsegment containing ojq n  Ty. The 

set ujc =  uj — consists of countably many connected components uj' ,  corresponding
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to the gaps of :=  W ^ x f ) .  The components u/  that "fall through” the gaps of  

Aj are of small size and need to grow in order to return as well. Our goal is to show  

that these gaps grow exponentially fast in the number o f iterations n.

Formally, a gap in W0c is a connected component o f C W  — W ^. By sliding along 

the stable manifolds of W00 at the edges of u j '  . these gaps transfer to gaps u / in all 

W^L{z) €  r “. We say that of is a  gap of generation q if q is the smallest nonnegative
3

integer such that Of n  — Wq -f- 0. So, a gap uf is of generation q, written 

Gen(ti/) =  q, if q is the first time (part of) the corresponding gap Cf is removed in 

the construction of WQc. Define Gq :=  {u/: Gen(o/) =  q}-

Define a stopping time s(x) on u j c  as in the previous subsection, replacing u j  with 

u j '  , where of is a gap in the Tfc-image of an element of Vk-i- Write u/£ =  ojcn T kWk+n. 

In the next step we show that gaps grow exponentially fast, which is the content of 

Lemma 2.21. We will use that for all e > 0
e n

mw(cj£ — {x : s[x) <  n}) <  ^  ^  mu (u' — {x : s{x) < n}) -I- ^  ^  mu (a;').
<7=1 a/eG, q>enu/e.Gq

(2.12)

We need an additional lemma to show that the length of a gap is bounded below.

Lemma 2.19. Let u j  be as above and u j '  C u j  be a gap o f generation q. Then T quj' 

has only one connected component and mT<tw(Tqujr) >

P r o o f .  Since of C u j  is a gap of generation q, we have of C Wq- 1, which means 

that T quj' has one component. Moreover, gap of generation q does not intersect gaps 

of previous generations. By construction of W00l there exists an x  E o)r such that 

d(Tqx ,S )  < so d(Tqx ,d T qui') > ^  and, therefore, <  mT9ty {Tquj') <  C (|^ )p . 

where the upper bound is obtained from Hyp 3.

Since d(Tzu ', S) > ^  for all i =  0 , . . .  , q — 1, we can choose a continuous family 

of g-stable curves qx on u j '  such that d(dqx,u>') =  77, with 0 <  77 < |  as in Section 2.6. 

So, in particular, T qof has one component. Also, T qo f is almost flat and, hence, any
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lum  7  intersecting all curves T qqx satisfies diam(7 ) > ld iam (T guj'). Recalling the 

construction of A£ we obtain mTqUJ(Tqus') > □

R em ark  2.20. The proof above reveals that at the time o f  creation o f a gap also 

rriT9u‘{Tqui') <  2 m T^ ( T qu r). Since T q is smooth on the fam ily o f q-stable curves on 

us', the bounds on distortion (2.1) give m tJ/{us') <  Cm&ius') fo r  some C  > 0.

L e m m a  2.21. There exists a constant C2 > 0 and a d2 < 1 such that fo r  all n > 1

m^ius^ — {x : s(x) < n }) <  C20£, for all us. (2.13)

P r o o f .  We use (2.12). For e >  0 to be determined, we estimate
cn

y !  y  mw( J  -  {x: s(x) <  n}).
u/

Consider a gap us' G Gq for some fixed q < n .  Then T qusr has only one component. If 

d ia m ^ u /)  > 2S0 for some i  < q, then s \ us' < q and we do not consider us'. Apply 

(2 .1 1 ) to T q~lus' and pull back to obtain

  (../ r „ . „t„\ ^  ^  Gxp(C e)mu/(us )25q ^Ko^n-q+i-  {x: s {x ) < n \)  < — ------- ( — )
m7’,-Lcy ( i  q " A

Bjr the previous lemma % , - v  (Tq~lus') > , so that summing over all components

in us' G Gq yields

^  m u (us'n -  {x: s(x) < n}) <  C exp{C'e)mu{us) ) n~qXq.
u/eG„

Choose e > 0  small enough such that ^ ( ^ ) 2c <  1- Then
Cn _ S TS~ \ 2 \  Tl

2 ^  -  i x: s (x ) < <  C  exp (C'e) (a;) ( j -
9=1 a/eG, R 0 J

Next, we turn to the second sum in (2.12). From the remark above and the proof of 

Lemma 2.13 one obtains

T .  2 Z  < c \ ~ ^ .
q > e n  u /  £ G q

Finally, set d2 =  m a x { ^ ( ^ - ) 2e, A~p} to obtain (2.13). □
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2.9 .3 . R eturn  R ate. Define stopping times Si: 0 , — N, i =  1 ,2 .- - - . with 

Si(x) <  s2(x) <  - - - on subsets ©, of W  by

Si(x) =  m in{diam (Tnu/r) >  2<f0},
n > N

where u>x is the component of 'P"_ln u n containing x. If no such n  exists or x  is deleted 

from W  before the stopping time is reached, we agree that Si (x) is not defined. Let 

©i =  {x E W z Si(x) is defined}. From (2.11) we obtain that ©x is defined almost 

everywhere on W ^. Note that Si(x) is precisely the first time part of W  returns to 

A. For x  E (©i — (x : r(x) =  s-t (x)}) define

s2(x) =  min{diam(Tnu/x) >  2J0},Tl>Sl

where, as above, u;r  is the component of ‘P£'_l n  u n containing x. Again, we say that 

s2 is not defined whenever x  is deleted from W  before s2 is reached or if no such 

n exists. We let ©2 =  {x E © i: s2(x) is defined}. Note that ©2 is defined almost 

everywhere on fl (©i — {x: r(x) =  s L(x)}). This follows from applying (2.11) to 

each of the (countably many) components of ©i — (x : r(x) =  s L(x)}. In general, set 

Q/t =  {x  £  ©fc-i Sfc(x) is defined}, define Sk+i(x) for x E (©fc — {x: r(x) =  Sfc(x)}) 

and obtain tha t ©t+i is defined almost everywhere on fl ( 0 fc — (x : r(x) =  S/t(x)}). 

From this construction it obviously follows that for m ^-alm ost every x E either 

r(x) <  oo or x  E 0* for all k.

For every n  E N+ and k < n

(x  E Woo ■ r(x) >  n}  C{x E W , : s*(x) >  n} U
(2.14)

U{x E Woo'. Sfc(x) <  n and r(x) >  Sfc(x)}.

We first show that the measure of the second set a t the right-hand side decreases

exponentially- fast in k. The bound on the Jacobian of the holonomy map (2.2) and

Lemma 2.13 give that at a return at time n, a fraction

m w {u  H {x : r  (x) =  n}) c exp (—C'e) 
m w {u) 6C0
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of a component u  C Vn- i  n  Wn is absorbed by A. Since Sk+i C  (0*  — {x: r(x) =  

«*(*)})>
Tnw ( e k+i) _  cexp(-C 'e) 
m w {Qk) 6Co

and hence

T T l w i & k )  <  m n r ( 0 i ) ( l ------------------------ — ) * - 1 .
oGo

In particular

E Woo-' r(ar) > Sfc(x)} <  m wr(0i)(l -  ^ ^ 7 7 — —)*_1roCo
so that for the second term  on the right-hand side of (2.14) we obtain

f*- pYT) ( __
m w ({x  E Woo: sk(x) < n  and r(x) >  sk(x)}) <  ranr(0x) ( l  — -------)*_ l.

oCo
(2-15)

It remains to show

L e m m a  2.22. There exists a D3 > 0 ,  a 0z < 1 and a 0  > 0 such that

m w ({x  E W„: s^ nj(x) >  n}) <  D3d%, (2.16)

for all n > 0.

Indeed, combined with (2.15) above, this lemma yields (2.10) with 90 =  (m ax{(l —
c e x p (-C 'e )  \

6Co— i i O s i )  -

P r o o f  o f  L e m m a  2.22. Fix a sequence N  <  <  —  <  kj <  n, with JV the

minimum return time. Define, for N  < k < n,

A k :=  {x  E W t: st-(x) =  hi for all <  k}.

We estimate the measure of A k. Note that the Ak s form a decreasing sequence of

sets.

We start with estim ating m w (Akl- i) .  Let uj E V n , apply (2.11) to T ^ uj and pull 

back to obtain

™ r . . ^  a \ ^  exp(C 'e)m„(u;)2<5o,iW i-Jv-im w [uj n A*!-!) < ——---- --  — ( — )
m rN ^T ^u j)  v A '

Summation over the finitely many components uj E V n  yields,

<  C ex p C C ^A -^C ^ )* 1" ^ - 1.
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Next we estimate mw(A.*2_ 1)- Let uj C A kl-\r[W kl with «i(x) \us =  k i. Write u j— 

{x: r(x) = ki} =  (Uu/') U (Uw"), where T kl (Uu;') is the union, of gaps of some Aj  and 

Uuj" consists of the two components wri,r2 6  uj — (smallest subsegment containing U 

u]'r). Observe ^  ^ ( T klujr^r2) <  ĵ2-. Applying Lemma 2.21 to T fcl(Uu/')

and pulling back, we obtain

with aY C Wkl the smallest subsegment of ui containing Uu/' n  Afc2_i. The last 

inequality follows from the fact that we have finitely many rectangles.

For the components T klujri>r2 we obtain using (2.11)

  (  a \  ^  r '  e x P ( C  ^ )rrl(ij(Si;r i , r 2 ) ^ 0  f K o  \ k z — k \_—1
n <  c ,  j  (T )

<  C;exp(C'f)m„(tvllr j ( - ^ ) t,_it_L-

Since uj C summing over all those components uj we obtain

TTlw(Ak2- l) <  kl lm w{A kl-l)

for some C3 > 0 and 03 =  m a x { ^ , d2} independent of kj.

Repeating the steps above for k i-i and ki, i  =  2 , . . .  , j  we have

 ̂ _  m w{An) m w (Akj- i)  m w (Ak2- i ) \ <r
‘ 71 m w (Akj- i)  m vr( 4 J_l- i)  m w (A kl- i)  W kl~l ~  

and hence
m  [/m n r
5 2  5 2  ........ * ; ) ) < c £ (  ) ( / ) ’»?•
j = l  N < k i < - < k j < n  j = l  J  3

Choosing 0 < |  we can rewrite the above expression using Stirling's formula as

(
m w ({x  6  Wn i W x )  >  n}) <  C [ j p ^ _  0 y - aT '

Choosing Q <  |  small enough such that the expression in brackets is less than one 

finishes the proof.

□
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CHAPTER 3

CONDITIONALLY INVARIANT MEASURES FOR PIECEWISE EXPANDING
MAPS WITH SMALL HOLES

3.1. Introduction

We study smooth, invariant measures for a piecewise C2. expanding (i.e. s =  

inf \T'\ > 1) transformation T  of the unit interval (Rigorous definitions can be found 

in Section 3.2.) Under the dynamics of T,  a collection of starting points {xt} in the 

unit interval is transformed into a new collection of points {T'(xt)}. Assuming that 

the starting points are chosen with respect to a probability density function / ,  the 

new set of points {T(x,-)} will be distributed according to a new probability density 

function

P f  = M L .

Instead of following orbits of the points xit the evolution of the probability density 

{/, P f f ,  P~f, -. -} may be studied. The obvious advantage is th a t while T  may be 

discontinuous and nonlinear, the Perron Frobenius operator P f  is linear and bounded 

on L l . Limits of these sequences of densities are expected to be invariant densities 

on invariant sets in the system.

Lasota and Yorke [LaY] developed this technique to obtain an absolutely con- 

tinuous invariant measure (a c im ) for a piecewise C , exp an d in g  map T  of the unit 

interval. A key element in their proof is the observation that the Perron Frobenius 

operator is a contraction with respect to the norm v(-) -F ||-|| i in the space of functions 

of bounded variation, where v ( f ) is the total variation of /  over the unit interval. 

Since its appearance in [LaY], the bounded variation proof has been generalized in 

a number of directions. In [LiY] it is shown that the number of invariant densities 

at most equals the number of discontinuities of T . Hofbauer and Keller [HK] apply

36
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the same technique to obtain a t most finitely many ACiMs for a slightly more general 

class of transformations and study ergodic and statistical properties.

Pianigiani and Yorke [PY] studied piecewise C 2, expanding maps T : .4 —► R, 

where A  =  u£=1Ai and A, C 7 are disjoint, open intervals. It is assumed that 

A  C T(A)  and that T  satisfies a  Markov condition in the sense that A  fl T (dA )  =  0. 

Suppose a point x  is chosen in A  with respect to some initial probability measure /i0- 

Whenever T(A)  - . 4 ^ 0 ,  points will escape and we can interpret fj.0(T ~ lA) as the 

probability that T{x) E A . Whenever this probability is nonzero, define a  conditional 

measure Hi by setting

A*i(J5) =  for all Borel sets B.fi o (T  A)
A measure fi0 is said to be conditionally invariant if /ii =  /i0- Pianigiani and Yorke 

show existence of an absolutely continuous, conditionally invariant measure for this 

class of maps. It is unique in the class of continuous densities bounded away from 0 

under an additional transitivity condition on T . The techniques employed in [PY] 

are based on the bounded variation proof, but an important modification is that due 

to loss of mass the Perron Frobenius operator needs to be renormalized after each 

iteration.

We generalize the results in [PY]. Let T :  I  —> I  be an exp an d in g , piecewise C2 

map of the unit interval. We remove a few tiny open intervals from I  to  obtain a 

union of intervals 1° and define T : I ° n T ~ lI° —> 7°. The removed open intervals can 

be thought of as holes for the map T  through which mass escapes. We show that 

T N admits an absolutely continuous, conditionally invariant probability measure of 

bounded variation for some natural N  < oo. If we furthermore assume that T  is 

mixing and the holes are in ” generic” position, i.e. their images do not overlap up 

to certain iterate of T,  this conditionally invariant measure is equivalent to  Lebesgue 

measure and unique. Our methods are based on the bounded variation proof as well.
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3.2. Expanding M aps w ith  H oles

Let T : I  —> I  be a piecewise monotonic, C 2 map of the unit interval 7 =  [0.1] 

such that s — inf [T'| >  1; i.e.

(a) there exists a partition V  := {60, ___, bq} of 7 such that the restriction of T  to

the open interval (6*, bi+i) is a C 2 map;

(b) I T ^ x )! >  s for all x  €  (&i, & i+ i);

(c) T  can be C2-extended to [6i,6i+1] and we set t  :=  sup \T'\.

The family of open intervals (bi, bi+t) is denoted by A q. and for later use we introduce 

a class of partitions given by An =  V%.qT~ 1A q. We remove a total of L small, disjoint 

open subintervals 7Tt from 7 such that 1° = I  — UHi is again a union of intervals.

The sets Hi will be referred to as holes for the map T , and we set H° =  UHi. For

now it suffices to remark that we require the holes to be in generic position and the 

total length of the holes |Ff°| :=  22iLo 1-̂ *1 to very small; what this means exactly 

will be discussed below. Denote T  \ 1° by T, and observe that 7° is also partitioned 

in intervals of monotonicity { 5 ° , . . .  , B^}.

Under iteration of T, points may disappear into the holes and never return. For 

any n > 1 define
n

r n =  p i  f ~ ki °  (3 .1)
b=0

and set T nB  — T ^ ^ B n l* 71) for any measurable B  C 7. The sets 7-n consist of points 

x  for which T nx, the n-fold composition of T  with itself, is defined. Singletons, should 

these occur, are eliminated from I~n. thus creating slightly larger holes. Note that 

the total size of the holes H n = I —I~ n for T n is bounded by

l**l S  (3.2)
1=0

Denote the intervals of monotonicity for T ^ x  by 7?” ; i.e. I~ n = Writing

Tv- = T n I Bv  we furthermore let
p(re)

I? = T V B ?  and I 71 =  |J 7p. (3.3)
i = l
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The sets I n consist of points x  for which T~nx  ^  0. We will write 7* to denote T / 

and T~n denotes (Tp)~l .

3.3. A  Perron-Frobenius O perator for T 71

Let m  denote normalized Lebesgue measure on 1° and let L l (m) =  { / :  7° —► 

IR: / /0 1/| dm  < oo} denote the integrable real-valued functions with respect to this 

measure. For /  E L l (m) and A  any subset of 1°, define furthermore
Tt

VA{f) = su p { y : j /(a fc) - /(a * _ L ) |:  a0 < - -- <  a ^ n  > 2, a* 6  A}
fc=i

and

v (f)  =  inf{V}o(/): /  is a version of /} .

Let B V  :=  { /  E L l (m ): v (f)  < oc} denote the functions of bounded variation. 

Define a norm on B V  by || - 1|„ =  v(-) +  || - ||i, and let for all k  > 0

Ek := { /  6 L \m )  : f >  0, |[/|[t =  1, [|/(|v <  k}.

Lem m a  3 .1 . For each k > 0, the set Ek is a compact, convex subset o f L 1(m). 

P r o o f .  Fix k > 0. Clearly, Ek is convex. Also, the set { /  e  Ll (m ): ||/ ||„  <  k } 

is compact in (L l{m),\\ - ||L) (see [HK] lemmas 4 and 5). We show that E k is a 

closed subset of { /  e  L l (m ): ||/ ||„  <  k}. Let f n e  E k such that f n f  in L L(m). 

Since f n E E k for all n > 0, it is easily seen that there exists an Sk > 0 such that 

ll/nll oo <  Sk for all n. A standard dominated convergence argument completes the 

proof. □

For any /  E Ek let dpj =  fd m  be the probability measure on 1° with density 

function f .  Define T,p.f by setting
p(i)

T . ^ B )  =  nf { T - lB) =  Y , V j ( T - \ B  n  /!))
:=1

whenever B  C 7° is a measurable subset of 1°. Furthermore, for any finite measure 

fj. on 1° set [|/i||i =  and define a Perron-Frobenius operator by

A / ( * )  =
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with the Radon-Nikodym derivative of Tmfif  with respect to m . Note that

|[Pr / |[ i  =  \\Tmfif\\i <  1, so we need to renormalize a t each step. We introduce a 

modified (nonlinear) Perron-Frobenius operator by

Prf(x)  =  iir .M /llr^r/to, x e i ° .

Note that PTf{x)  — 0 whenever x  E 1° — I 1. Clearly, P r f  may not exist for /  E 

Ufcxj-E*- Indeed, the holes may allow all mass to escape, in which case \\T,fif\\i = 0. 

This problem is addressed in Section 3.4; for the moment we will assume that P r f  

exists. The following properties of the Perron-Frobenius operator are easily verified:

PTf  > 0 for ah f >  0 (3.4)

lier /lli =  f  =  IIT.M/llr1 J =  1- (3.5)

P r f  = f  if and only if T ./i/ =  Af if  with A =  ||T«/z/||i <  1. (3.6)

Due to the holes, we can not expect to find an invariant measure equivalent to 

Lebesgue measure for T. A measure satisfying (3.6) is called a conditionally in­

variant measure; its image under T  is proportional to itself, and the constant of 

proportionality A =  [|X ,^/||i is usually referred to as the eigenvalue of the measure

[PY].

We compute an explicit expression for PT{f) .  The maps 7* are one-to-one for 

each i, so for a measurable subset B  C I 1 we obtain T .fif(B ) =  XTi=i f  dm =

I b f  ° Tx~l \Tr l'\dm . Therefore

ll̂ /llr1 Y m  f ( T ~ lx ) \T~Vx \x TiB\O) x E l 1 

o x  e  I 0 - 1 1

The operator can also be formally defined for any iterate T n of T , provided HX̂ M/lli ^

0. For any n > 1 the modified Perron Frobenius operator for T 71 can be defined as

P r . /  =  i i ^ / i i r 1̂ £ , (3 .7 )

Pt S{x ) =  t
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or explicitly
p(«)

P r-m  = nr«iirl ̂ /pr^iir'^xw w. * e i° (3.8)
1=1

where, as before, we note that P r * f  =  0 whenever x  E I ° —I n . Note that P f f  =  P r ^ f -

3.4. E xistence o f a  C onditionally Invariant M easure

In this section we show tha t any piecewise monotonic, expanding map T  with

holes admits a conditionally invariant measure, provided the holes are small enough.

Our strategy is to show that that there exist values of n and k  such that Pt™ (Ek) C Ek

and that Pt* is well-defined and continuous on Ek- The desired result then follows

from a simple application of the Schauder-Tykhonov fixed point theorem.

Let W  :=  maxKKp Vbq -L, fix N  E N such that

2 W N
“  :=  p r  +  p f= r  <  !• <3-9>

A computation similar to [BP] Chapter 5.2 yields v[PTn (f) )  < a v ( f)  +  /5 ||/ | |i ,  for 

some P > 0, where Pt n f ( x )  =  Yli=i^ f ( T ~ N x)\T ~ n ' x \x t*  b n (x ) denotes the linear 

part of the operator as in the previous section. It is easily checked that for all 

/  E L l (m) with H/lli =  1 and [ |/ ||w >  ^  +  1 we have ||Pr w(/)||w <  ll/IU-

This defines a lower bound kmin :=  kmia(N) on the variation of the densities in 

E k- Indeed, for k < &m;n the set Ek may not be invariant. Furthermore, given any 

upper bound kmax > kmin on the variation, we need the holes to be small enough such 

that UTjV/lh >  c >  0 for some constant c, thus ensuring that Pr ,v(/) is well defined 

for all /  E Ek, k < kmax. This is the content of Lemma 3.2.

Lem m a  3 .2 . Let N  satisfy (3.9). Then there exists a km-m E R such that for all 

real kmax > kmin there exists an h0 such that whenever |i?°| <  hQ the operator PTx is 

well-defined on Ek and

PTs{Ek) C E k

for all k E (kmin, ^max) -
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PROOF. Set :=  ^  4-1  and let Armax >  be given. Then ||/[|oo <  Skmtx 

for all /  G Ek, k  G (kmin, kmax) and some Skmmx <  oo. Let h0 satisfy

«=0

implying ||T jV /lli >  a  +  for all /  G E k. An elementary calculation yields

I IJ W ll. <  \ \T ? P f \ \ I l ( * o ( f )  + 0 )  +  1 <  l l/ l l .  (3.10)

for all /  G Ek. □

R em ark  3 .3 . Observe that the modified Perron-Frobenius operator Pt kn defined 

with respect to iterates of T N is also well defined on the sets E k, k  G (km-m, km30C). 

Indeed, Pt kn f  =  P ^n f- In particular, we have PTK,v(Ek) C Ek, k  G (kmin, kmax) for  

all K .

S ublemma 3 .4 . Let N  satisfy (3.9), and let kmax >  and hQ as in Lemma 

3.2 . Then the operator Pt n is continuous on E k, k G (kmin, Armax).

P r o o f . Indeed, write Pt n =  \\Tfi Pp* - From (3.10) we obtain that for all
-"N. --s.____________

/  G Ek the linear operator Pt n satisfies ||Prw/|[u =  |[T. ^ /llil l^ r iV/Ilu <  kmax and 

is thus continuous. Moreover, [|T j'V /||i is continuous, considered as a map from E k 

into R and ||T jV /lli >  a  -+- □

Next we show that for any N  satisfying (3.9) the map T H admits a conditionally 

invariant measure.

P roposition  3 .5 . Let N  satisfy (3.9), and let kmax > km and ho as in Lemma

3.2. Then for all k G kmax) there exists an f  G E k such that P p ttf =  f ;  i.e.

Tfiptf =  Xfj.f  with A = HrJV/ll!-

P r o o f .  The operator Pt n is continuous and satisfies P r^(E k) C Ek for all k  G 

(£mm?&max)- The Schauder-Tykhonov fixed point theorem yields the existence of a 

density /  G E k with the property tha t Pt n ( / )  =  / .  □
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3.5. Uniqueness o f  a C onditionally Invariant AC M easure

It is well known [HK] that the transformation T  admits a weakly mixing ACIM nh. 

In this section it is assumed that the density h of satisfies h > 0 [Lebesgue-a.e.], 

and is thus unique. Recall that a measure is weakly mixing if for all measurable 

sets A  and B  we have \f*h.(T~kA  D B) — [ih(A)nh{B)\ —* 0 as n  —> oo. In

[HK] it is shown that weakly mixing implies exactness of the system (T\^fc); i.e. 

Iimn^oo fihCT'A) =  1 for all A  with fJ.h(A) >  0. Liverani shows th a t such a map is 

covering [L2]: i.e. for every n f N  there exists K (n)  such that for all A  G A n

fK W A  =  (3.11)

with set equality up to finitely many points. We show that under additional conditions 

on the holes, the fixed point of the modified Perron-Frobenius operator P p ^ f  obtained 

in Section 3.4 is unique. The idea of the proof is simple. We show that each density in 

Ek eventually becomes bounded away from zero under iteration of the usual Perron- 

Frobenius operator. The additional conditions on the holes are such th a t the same 

property holds for the operator P r ^ f-  Uniqueness of a conditionally invariant AC 

measure is then obtained by an argument similar to the one used in [PY]. Before we 

state the result in Proposition 3.12, we prove some preparatory lemmas.

Let N  satisfy (3.9). Then T N is mixing with respect to the invariant density h 

and thus covering. In the remainder of this section we need to consider iterates of 

the operator PTn . From Remark 3.3 we obtain that kmax can be fixed so that Pt kn 

is well defined and that for k > km-,„ the sets Ek are still invariant under application 

of Pt kiv . We fix kmax > kminiN) a t this point.

S ublem m a  3 .6 . For all real 0 <  c  <  1 there exists a real 0 <  M  < 1 such that 

for all f  G EkmAX we have

m { x : f ( x )  > c} > M.
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P r o o f . Suppose, on the contrary, tha t there exists a c <  1 such that for all 

M  <  1 we can find /m  €  E kmmx for which m { x : /m {x ) >  c} <  M . F ix c. and choose 

M  < . Then f,0 f M dm  < M S ktnBX -+- (1 — M )c  <  1. which is a  contradiction- □

Fix a Co > | ,  denote the corresponding M  by Mo, and let N0 denote a multiple 

of N  satisfying > 2kmax for all A €  A nq; i.e. the set { r : f ( x )  > Cq} intersects 

at least 2km3x elements of A n0. Replace T  by T No in (3.11), choose K  :=  -ft'(O) and 

consider the map T KNo; i.e. T Ky°A  =  I  for all A £  A n0- Observe th a t for every x  

(except finitely many) we have T ~ KNqx  n  ,4: ^  0 for all At- £  Aat0- We write PfKK0 

to denote the usual Perron-Frobenius operator defined with respect to r fClV°.

S u b le m m a  3 .7 .  For all 0 < c < j  there exists an e > 0 such that PfKs-af{x )  < e  

implies f(y )  <  c fo r all y  £  T ~ KN°x.

P r o o f . Fix c <  | ,  choose e <  ct~KNo with t  — sup \T'\, and suppose f{y ) > c 

for some y  £ T~KN°x. Then

y *  f { y \ >  — +  V  J {y) > e
tKNo y€f--o^\TKNo'(y)\

□
S u b l e m m a  3 .8 .  There exists an e > 0 such that PfKN0f  >  e fo r  all f  £  Ek.

P r o o f .  Fix some 0 <  c <  j ,  and set e > 0 as in Sublemma 3.7. Suppose 

P fKtiofi.x ) < £■ for some f  £  E k. From Sublemma 3.7 we obtain f ( y )  < c < j  for 

all y  £  T ~ kn°x. Since T KN° is covering, each A £  A n 0 contains such a  point y. Our 

choice of N 0 implies that at least 2k elements of A n 0 contain a point x  for which 

f ( x )  > Co > f. Thus v( f )  > 2k^ , which is a contradiction. □

Next, we will take a closer look at the holes. For technical reasons we will choose 

an even higher iterate of the map, T 2KNq. Let x  £  7°. Since T KNo is covering, we 

expect x  to have ’’many” pre-images under T 2KN°. But it may in fact happen that 

{T~2KN°x} n  T~k> Hi 7̂  0 for more than one natural kj < 2K N Q. To ensure that 

sufficiently many pre-images of each x  £  7° survive the holes we impose the condition 

that holes are ’’generic”:

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



45

G e n e r i c i t y  C o n d i t i o n s  o n  t h e  H o l e s .  The collection of holes H° satisfies 

the following assumptions.

(a) T ~ lx  7̂  0 for each x  E  7°.

(b) Images of the corresponding holes for the map T 2KNo do not overlap. In partic­

ular, we assume that T k is one-to-one on Hi, 0 <  k  < 2KNq  and furthermore 

require

T { H k) n  T j {Hk) = 0  1 < i < j <  2K N 0

f m j  n  ? i(H k2) = 0  1 < i , j <  2K N 0. k, #  k2.

Hence, all x  €  7° satisfy T~2KN° x n T ~ kHi ^  0 for at most one pair of naturals 

k < 2K N 0 and i  < L.

Z€H ‘̂K✓ X

I I
x  Tx

*KN.+t
Tx = T x  Tx

Zff.

T  x T  xT x T x

(a) i > KNq. At most one branch of 
pre-images is affected by the holes. The 
points 2/i, 1/2 €  T ~ k n °x  have a  hill set of 
pre-images under T KN°

(b) i < K N 0. The points j/i,j /2 €  
T ~ k n °x  have a  full set of pre­
images under T KN ° .

F i g u r e  4 . Pre-images of the original map T.  Dashed branches disap­
pear into holes.

R e m a r k  3.9. As an alternative to (a) above, we could consider an iterate of the 

map T  for which all x  satisfy # { T -dx} >  2 before punching holes. Such an iterate 

exists since T KN° is covering and > 2.
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S u b l e m m a  3.10. Let x  G 1°. Then there exists a point y  G T ~ KN°x such that y  

has a full set o f pre-images under T KNo ; i.e. T ~ KN°y = T ~ KNoy.

P r o o f .  If T~2KN°x  =  T~2KNax, there is nothing to show; so assume T~2KiV°x  is a  

proper subset of T~2KN°x  and let z = T l~2KI*°xC\H 0 for some i — 0, — , 2K N q — 1. 

From (a) in the genericity conditions we obtain T ~ KN°x ^  0. If i  > K N q, it follows 

from the genericity conditions that for every  y  G T ~ KN°x we have T ~ KN°y = T~KNoy. 

see Figure 4(a). If i  < K N q the genericity condition gives that T ~ KN°x =  T~KNax  

and we know # { T ~ K1̂ 0x} > 2. Again we have Xi~KN°y D H  ^  0 for at most one 

y G t ~k n ° x, see Figure 4(b). □

Lemma 3.11. There exists an e > 0 such that Pj^kxo f  > e fo r all f  G E k.

P r o o f .  Let x  G 1° and yi G T~KN°x  such that y\ has a full set of pre-images 

under T KN° as in Sublemma 3.10. Then,

[ P ^ / i i r 1 y . i r ^ £ L i s
y g r -  i K t f 0 x \ vyyi

f { y )

yef-Kff0yi \TKHo' M \  \TKNo,(y)\

= K ^ M l L p .  f (V ) > ° £ .
fK N o  ^ T KNo j { y U  —  t K N 0 ' 

with C  =  miny \\TfKHo [if\\fl > 1 .  □

P ro positio n  3.12. Let N  satisfy (3.9). Let km-m and kmax be as set in this 

section, and suppose |/f° | <  ho- Assume that the collection of holes H° in addition 

satisfies the genericity conditions. Then fo r  all k  G {km-m, kmax) there exists a unique 

f  G Ek such that P^n f  =  / .

R em ark  3.13. Note that the conditionally invariant measure [if defined by the 

unique invariant density obtained in Proposition 3.12 is equivalent to Lebesgue mea­

sure. Indeed, inf /  =  inf P t k n 0 f  > 0. Observe furthermore the existence of an upper 

bound on the variation o f the unique conditionally invariant density f . Indeed, the 

sets Ek are nested, and therefore f  G Ek in-
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P r o o f .  Proposition 3.5 ensures existence o f a density f  E Ek  satisfying P ^ f  =  

f , k E  (fcmmr fcmax)- Suppose Pt n fixes distinct densities / t and / 2 in E k . Then  

f i  =  Pt kno f i  #  Pt khq f i  — f i -  We distinguish two cases:

1. The densities f x and / 2 have equal eigenvalues =  ||T<frNo^ /2lli- For

s G K set / s =  s f i  +  (1 — s)fo. Then for all s, f [0 f s dm  =  1, and as long as f s > 0 we 

have P t k n 0 / s = f s. Let cr >  1 such that f a(:r) =  0 for some x. Since f a =  lims_o- f s we 

have E Ek, and therefore P^k.vq fa  > s. But then fa  =  P rK'iVo fa = /V 2K-vo fa  > -- 

which is a contradiction.

2. The eigenvalues are not equal. Let I IT /^ /f /i i l i  >  Since f i  > e

there exists a 0  >  0 such that 0 f 2 >  fy. Choose a set A  C 7° such that fift (A) >  0. 

Using (3.6) we obtain for all n

.(-I).

implying p.f2(A) > ( jj5^v0M/l 111)n/3~ V /i (-4) for all n, which is impossible. □

C o r o l l a r y  3 .14 . Lei Armill and kmax be as set in this section, and suppose |i7°| < 

ho. Assume that the collection o f holes H° in addition satisfies the genericity condi­

tions. Then P r f  =  /  for at most one f  E  Ek-

The following example illustrates that some transformations admit many AC con­

ditionally invariant measures of bounded variation.

E xa m ple  3 .1 5 . Fix an e <C consider

T{x) =
—  0 <  x  <  —l-£ U — X — 2

=2* _l_ _1 _  i±£ <  x  <  1 1—e ^  1—e 2 — X —

and. denote \T'(x)\ — A > 2. Observe that 1° =  [0, U [-^ ,1 ] and m (T ~ nH ) =  

e(2A~l)n,n  >  0. Furthermore, 10 =  \si<£L.lT ~ nH , up to a Cantor set o f Lebesgue 

measure 0. Choose 0 < 0 < 1/2, and put a density on pre-images of holes by setting 

fp{x) =  /?n_1 whenever x  E  T~nH  f o r n  > 1 and fg{x) =  0 otherwise. The functions 

f 3 =  {A — 20)fpf2e define a family o f probability densities on I °. The variation of fp  

is easily computed to equal (A — 20)e~l {l — 20)~l <  oo, and for all 0  the measure p./8
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is conditionally invariant. Naturally, normalized Lebesgue measure is conditionally 

invariant as well.

Observe that fg  £  Ek whenever 0 <  /3 <  1/2. Indeed, the variation o f fg  is an 

increasing function o f 3 with minimum value A/e. I t is easy to construct a density g 

with v(g) < A/e such that the modified Perron-Frobenius operator is not defined for  

g by putting a density o f A/2e on the first pre-image o f the hole. So, g 0  Ek, and 

therefore f  £  Ek-

Also observe that (ii) o f the genericity conditions is violated. Indeed, no matter 

how T  is defined on H , we have T KN°H  = I .  thus violating (ii).
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