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COMPARISONS OF SEQUENTIAL TESTING APPROACHES FOR DETECTION OF 
ASSOCIATION BETWEEN DISEASE AND HAPLOTYPE BLOCKS 

 
ANDRES AZUERO 

BIOSTATISTICS 

ABSTRACT  

 
Since Wald's development of the Sequential Probability Ratio Test (SPRT) in 

1945, sequential analysis has evolved into a rich and well-developed field. Sequential 

methods are commonly used in industrial applications, clinical trials, and genetic associa-

tion studies. Genetic association studies are typically conducted using a case-control de-

sign, where deoxyribonucleic acid (DNA) samples from affected cases and unaffected 

controls, unrelated to each other, are collected. The distribution of alleles for the groups 

is compared at a set of genetic markers. Substantial between-group differences in allele 

frequencies are indicative of association with susceptibility to the disease. The most 

common variation in the human genome is a single nucleotide polymorphism (SNP). 

SNPs are currently the most common markers in association studies. For a particular dis-

ease, testing all 10 million common SNPs in the human genome for association would be 

extremely expensive. However, adjacent SNP alleles tend to be inherited together. Haplo-

type blocks are inferred locations along the genome where sequences of linked alleles are 

likely to be inherited as units. Once there is more clarity about the haplotype block struc-

ture in the human genome, using blocks as markers could represent a drastic dimension 

reduction for association testing. In spite of this reduction, multiple testing will remain an 

obstacle in association studies. Ignoring multiplicity results in substantial numbers of 

false positive detections. Controlling for multiplicity results in a decrease of statistical 
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power; and increasing the sample size to maintain power translates into higher costs. Se-

quential procedures have been proposed as a solution to these problems. This dissertation 

modifies a fully sequential design for application in association studies; it develops an 

algorithm for simulation of markers in Linkage Disequilibrium; and through simulations 

of an association study using haplotype blocks, this dissertation compares the modified 

sequential procedure against ad hoc sequential procedures published during the past 15 

years, as well as common fixed sample size approaches, when applied to the problem of 

testing a relatively large number of markers in the same case-control cohort. Compari-

sons are made in terms of observed experiment-wise type I error rate, false positive rate, 

experiment-wise power, and a proposed measure of penalized power.  
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1. INTRODUCTION AND BACKGROUND 

1.1 Introduction to Sequential Analysis 

Formal sequential testing procedures have existed since the publication of Wald's 

(1945) seminal paper on sequential tests of hypotheses. However,  the history of sequen-

tial procedures dates back to the 18th and 19th centuries when the rudiments of sequential 

analysis were introduced by famous mathematicians such as Bernoulli, DeMoivre, La-

grange and Laplace while studying the problem known as the Duration of Play, a prob-

lem commonly referred to currently as the Gambler's Ruin (Ghosh, 1991). In the early 

20th century, sequential ad hoc procedures were developed for industrial applications in 

manufacturing. Research into sequential methods advanced again in 1942, when the 

United States Department of Defense formed a statistical research group at Columbia 

University in New York. The purpose of this research group was to advise the Depart-

ment of Defense on the use of statistical methods for large scale experiments which were 

being conducted due to the country’s World War II involvement. Wald, along with con-

tributions from other famous statisticians such as Friedman, Wallis, Wolfowitz and Ho-

telling, developed the Sequential Probability Ratio Test (SPRT) in 1943 for military ap-

plications. The SPRT's objective was to minimize sample size when the cost of each ob-

servation was high (i.e., firing an experimental rocket or testing anti-craft gunnery (Lai, 

2001)). The original technical reports on the SPRT were considered military secrets; 

however, at the end of World War II, the Department of Defense approved public release 



2 
 

 

of Wald's SPRT research. Shortly after the release, Wald published the seminal paper on 

sequential tests of hypotheses.  

A sequential test is a statistical testing procedure which at any stage of the expe-

riment gives a specific rule for making one of the following three decisions:  

a) Fail to Reject (FTR) the null hypothesis, i.e. 'accept' the null hypothesis, and 

stop collecting observations, 

b) reject the null hypothesis, i.e. accept the alternative hypothesis, and stop col-

lecting observations,  

c) continue the experiment by collecting an additional observation.  

The original SPRT is a sequential observation-by-observation Likelihood Ratio Test for 

simple hypotheses based on the Neyman-Pearson Lemma. The number of observations 

for a fully sequential test is not predetermined, but is a random variable that depends on 

the true parameter value, the hypothesized null and alternative parameter values, desired 

type I and type II error probabilities, and the previous observations. Wald derived ap-

proximations to the decision boundaries in terms of type I and type II error probabilities. 

When the true parameter value is close to either the null or the alternative hypothesized 

parameter values, the SPRT is optimal in the sense that it minimizes the sample size re-

quired to make a decision.  

Since the development of the SPRT, sequential analysis has evolved into a well-

developed field (Province, 2000). For instance, in statistical genetics, a major and direct 

application of the SPRT is the LOD score developed by Morton (1955) for detection of 

linkage between genetic loci. And in group sequential methods in clinical trials, O’Brien 

and Fleming (1979) proposed a class of group sequential tests based on an adaptation of a 
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truncated SPRT. The paper by O’Brien and Fleming, along with papers by Pocock (1977) 

and Lan & DeMets (1983) have been particularly influential and together form the start-

ing point for recent methodological research and the basis of current practice in clinical 

trial design (Jennison & Turnbull, 2000).  

Throughout the years, different versions of sequential likelihood ratio tests have 

been proposed that address some of the shortcomings of the original SPRT procedure 

both in the frequentist and Bayesian settings. Within the next section, the statistical issues 

facing genetic association studies that motivate the application of SPRT methodologies to 

genetic studies will be presented. 

 

1.2 The Problem of Multiple Testing in Genetic Association Studies  

Genetic association studies are typically conducted using a case-control design, 

where deoxyribonucleic acid (DNA) samples from affected cases and unaffected con-

trols, unrelated to each other, are collected. The distribution of alleles/genotypes for the 

two groups is compared at a set of genetic markers. The two common genetic association 

study designs are candidate gene association studies and genome-wide association scans. 

A candidate gene association study tests for association between disease status and a pre-

specified subset of candidate genetic markers from a few regions of the genome. In con-

trast, testing markers from all regions of the genome for association with disease status is 

referred to as a genome-wide association scan. Markers that show substantial between-

group differences in allele frequencies are taken to be associated with susceptibility to the 

disease under study (Siegmund & Yakir, 2007).  
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The ability to obtain a large number of markers, such as single-nucleotide poly-

morphisms (SNPs, pronounced 'snips'), has accelerated research interests in association 

studies (Satagopan & Elston, 2003). More than 10 million SNPs are estimated to occur 

commonly in the human genome (www.hapmap.org accessed on April 15th, 2008). Since 

2002, the International HapMap Project, a multi-country effort to identify and catalog 

genetic similarities and differences in four populations representing different parts of the 

world, has identified approximately 3.8 million SNPs in each of the four populations. For 

a particular disease, testing all 10 million common SNPs in the human genome for asso-

ciation would be extremely expensive and redundant. However, examination of high-

density SNP markers over contiguous regions suggested a surprisingly simple pattern. 

Adjacent markers form blocks of variable length that tend to be inherited as units. These 

blocks are delimited by recombination ‘hotspots’. And within each block only a few 

common sequences are observed (Daly et al., 2001; Gabriel et al., 2002). These se-

quences of linked markers are known as haplotypes. Consequently, the International 

HapMap Project has as goals to catalog the regions that contain haplotypes (referred to as 

‘haplotype blocks’) and to determine 'tag' SNPs that would identify the haplotypes within 

these blocks. It is believed that by identifying an individual's tag SNPs, researchers will 

be able to determine the collection of haplotypes in a person's DNA. It is anticipated that 

300,000 to 600,000 tag SNPs will summarize most of the genetic variability within hu-

man populations (www.hapmap.org accessed on April 15th, 2008). Although the vast ma-

jority of association studies are currently conducted using SNP markers, once there is 

more clarity about the haplotype structure in the human genome, the haplotype mapping 

approach could potentially be more efficient than single SNP mapping. 
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In spite of the potential drastic dimension reduction that using haplotype blocks 

represents, compared to single SNPs, the issue of multiple testing will still remain a sub-

stantial statistical problem in genetic association studies. If multiplicity is not accounted 

for, an inappropriately large number of false detections will be observed. To illustrate this 

point, assume an association study that tests 2000 approximately independent markers, of 

which none are truly associated to the disease. At a significance level of 0.05 for each 

individual test, approximately 100 false detections are expected, and further examination 

and study of these false leads might be very costly. For a fixed sample size, usual mul-

tiple testing correction methods such as Bonferroni will greatly decrease power. Howev-

er, large samples needed to maintain power after correcting for multiplicity translate into 

substantially higher costs. Sequential testing procedures have been proposed as potential 

solutions to these problems (Sobel et al., 1993; Sham, 1994; Satagopan et al., 2002; Sata-

gopan & Elston, 2003; Satagopan et al., 2004; Thomas et al., 2005; Skol et al., 2006; 

Wang et al., 2006).  

 

1.3 Dissertation Objectives  

The purpose of this dissertation is to 1) modify the Sequential Generalized Like-

lihood Ratio test (SGLR) for application in haplotype studies, and 2) compare and con-

trast the properties of the SGLR and four other sequential testing procedures proposed 

and published in the literature during the past 15 years, when applied to the problem of 

testing a relatively large number of haplotype blocks in the same case-control cohort. 

Each sequential procedure is to be compared against each other as well as with the stan-

dard fixed-sample-size chi-square test. The comparisons are to be made in terms of ob-

served experiment-wise type I error rate, False Positive Rate (FPR), observed experi-
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ment-wise statistical power, and a measure of penalized power. Table 1 summarizes the 

testing methods and multiplicity adjustments examined in this dissertation. 

 

Table 1. Testing methods and multiplicity adjustments examined in this dissertation.  

Testing Procedure Multiplicity Adjustment 

1) Fixed sample size Pearson’s ߯ଶ tests 

 a) Uncorrected 
b) Bonferroni 
c) Holm 
d) Benjamini and Hochberg 
e) Benjamini and Yekutieli 

2) Sobel et al., 1993 (2 and 3 stages)  

a) Holm 
3) Sham, 1994 (2 and 3 stages)  

4) Satagopan et al., 2004 (2 stages)  

5) Skol et al., 2006 (2 stages)  

6) Modified SGLR, Chan & Lai, 2005  a) Uncorrected 
b) Bonferroni 

 

  

Each simulated experiment consists of applying the testing methods in Table 1 to 

detect 100 blocks from a total of 2150 blocks (following a simulated block structure of 

the human chromosome 22), and with 400 subjects (200 per group). Since chromosome 

22 is small in length compared to other chromosomes, screening this chromosome should 

not require a very large sample size. Consequently, the specific aims of this dissertation 

are the following: 

a) Modify the SGLR for application in haplotype-based genetic association stu-

dies.  

b) Develop a novel simulation approach for generation of correlated multinomial 

variables (representing haplotype blocks). 
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c) Using the novel simulation approach, generate 1000 simulated datasets with 

the following characteristics:   

• Each dataset consists of 2150 correlated multinomial variables 

representing haplotype blocks. The underlying uniform (0,1) variables 

used to generate the multinomial variables have an approximate autore-

gressive structure with ρ=0.8 to simulate Linkage Disequilibrium (LD) 

across blocks.  

• Of the 2150 multinomial variables, 100 variables differ in proportions of 

realizations of multinomial outcomes (representing haplotypes) between 

case and control groups, according to predetermined chi-square effect siz-

es. The remaining 2050 multinomial variables have equal distribution of 

multinomial outcomes between case and control groups. 

• Each dataset has 800 observations (each of the 200 subjects per group con-

tributes two independent chromosomes, for a total of 400 observations per 

group)  

d) Using the simulated datasets from (c), compare and contrast the methods in 

Table 1, in terms of observed experiment-wise type I error rate, FPR, ob-

served experiment-wise power, and a measure of penalized power 

e) Propose improvements to the methods in Table 1. 
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2. LITERATURE REVIEW 

2.1 Sequential Analysis 

The history of sequential procedures dates back to the 18th and 19th centuries 

when the rudiments of sequential analysis were introduced by famous mathematicians 

such as Bernoulli, DeMoivre, Lagrange and Laplace while studying the problem known 

as the Duration of Play, a problem commonly referred to currently as the Gambler's Ruin 

(Ghosh, 1991). In the early 20th century, sequential ad hoc procedures were developed for 

industrial applications in manufacturing. However, with the publication of Wald's (1945) 

seminal paper on sequential tests of hypotheses using the Sequential Probability Ratio 

Test (SPRT), formal statistical research into the properties of sequential testing proce-

dures was introduced. Wald began this paper by defining a sequential test as a statistical 

testing procedure which at any stage of the experiment gives a specific rule for making 

one of the following three decisions:  

a) Fail to Reject (FTR) the null hypothesis, i.e. 'accept' the null hypothesis and 

collect no more observations,  

b) reject the null hypothesis, i.e. accept the alternative hypothesis and collect no 

more observations,  

c) continue the experiment by collecting an additional observation.  

The number of observations for a sequential test is not predetermined, but is a random 

variable that depends on the true parameter value, the hypothesized null and alternative 
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parameter values, desired type I and type II error probabilities, and the previous observa-

tions. Wald's idea was to use the 'current most powerful procedure' as he called it, in a 

sequential manner. He described the 'current most powerful procedure' as follows:  

The test is H0: the distribution of X is f0(x) versus HA: the distribution of X is f1(x).   

Determine the critical region by: 

∏ ଵ݂ሺݔሻே
ୀଵ

∏ ݂ሺݔሻே
ୀଵ

 ݇   i.e.  
ଵேܮ

ேܮ
 ݇ 

 where xi, i=1..N, are random observations from a variable X; f0(x) is the distribution of X 

under the null hypothesis H0; f1(x) is the distribution of X under the alternative hypothesis 

HA; L0N is the likelihood or joint probability of the N sample observations under H0, and 

L1N is the likelihood of the sample under HA. The critical value k is determined so that the 

probability of type I error is a pre-assigned value α, and N is equal to the smallest sample 

size for which the probability of type II error does not exceed a pre-assigned value β. If 

H0 and HA are simple hypotheses, then this likelihood ratio test is an application of the 

Neyman-Pearson Lemma (Casella & Berger, 2002), which defines the Uniformly Most 

Powerful Test for simple hypotheses. 

Thus, Wald developed the SPRT as a sequential, observation by observation, 

Neyman-Pearson-based test. H0 and HA are simple hypotheses, i.e. H0: θ = θ0 vs. HA: θ = 

θ1, where θ is the parameter of interest and θ0 and θ1 are the values of the parameter un-

der H0 and HA, respectively. The procedure is as follows:  

Let f(x|θ) be the distribution function of a random variable X with parameter θ. 

The hypothesis of interest is: H0: the distribution of X is f(x|θ0) vs. HA: the distribution of 

X is f(x|θ1). At each observation (at the mth observation), calculate  



10 
 

 

ଵܮ

ܮ
ൌ

∏ ݂ሺݔ|ߠଵሻ
ୀଵ

∏ ݂ሺݔ|ߠሻ
ୀଵ

 , 

Reject H0 (conclude HA) if:  భ
బ

  ,ܣ

FTR H0 (conclude H0) if:  
భ
బ

   ,ܤ

Collect an additional observation if:  ܤ ൏ భ
బ

൏  ,ܣ

or alternatively,  logሺܤሻ ൏ log൫ܮଵሺݔሻ൯ െ log൫ܮሺݔሻ൯ ൏ log ሺܣሻ,  

since it is easier to work with logarithms in practice.  

The solutions to the quantities A and B are not trivial (Bain and Engelhardt, 

1992), but Wald was able to cleverly derive practical approximations in terms of the type 

I error probability, α, and the type II error probability, β:  ܣ ൌ ଵିఉ
ఈ

  , and  ܤ ൌ ఉ
ଵିఈ

 . 

Hence for a test with α=0.05 and β=0.2, the boundaries A and B are equal to 16 and 0.21, 

respectively.  

Wald noted that the repeated assessment after each observation allows for termi-

nation immediately after the decision boundaries are crossed. However, the procedure 

can be used as a group-sequential test. The key feature of a group-sequential test is that 

the accumulating observations are analyzed in groups rather than after every new obser-

vation. In the case of the SPRT, since the likelihood ratios are calculated for each obser-

vation, the only effect of taking groups of observations at a time instead of a single ob-

servation is that more observations will be taken, approximately enough to fill the last 

group required to make a decision. But the benefit of such an approach is that the proba-

bility of making an incorrect decision will be somewhat smaller by having more observa-

tions (Wald, 1945). 
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Wald derived approximations to the expected number of observations required for 

the SPRT to reach a decision given a true value of a location parameter for a normal dis-

tribution with known variance, and for the case of a binomial proportion.  

The original SPRT has three major shortcomings:  

1) the procedure is restricted to simple null and simple alternative hypotheses, 

2) the procedure is only optimal, in the sense of the sample required to make a 

terminal decision, when the true value of the parameter of interest is either the 

null or the alternative hypothesized parameter,  

3) the SPRT is not be robust to distributional misspecifications.  

Soon after the publication of Wald’s paper, probabilists/statisticians recognized 

the SPRT as a stochastic process, and as consequence, the mathematical statistics journals 

now contain a vast literature on the subject of sequential analysis (Jennison & Turnbull, 

2000). Throughout the years, numerous versions of sequential likelihood ratio tests have 

been proposed that address some of the aforementioned shortcomings of the original 

SPRT both in the frequentist and Bayesian settings. Ghosh (1991) provides a detailed 

chronologic survey of statistical methods for sequential analysis up to 1990. Lai (2001) 

discusses more recent developments, including the use of Generalized Likelihood Ratios 

(GLRs), where the parameters of interest are replaced by their Maximum Likelihood Es-

timates (MLEs).  

In the frequentist paradigm, Chan & Lai (2005) propose a sequential test for com-

posite hypotheses based on GLRs.  The Sequential Generalized Likelihood Ratio test 

(SGLR) is as follows:  
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Let f(x|θ) be the distribution function of a random variable X with parameter θ. Let Θ be 

the parameter space of θ.  

The hypothesis of interest is: H0: ߠ א Θ vs. H1: ߠ א Θଵ, where Θ0 is the parameter space 

restricted to the null hypothesis, and Θ1 is the parameter space restricted to the alternative 

hypothesis. Let Θଵ ת Θ ൌ and Θଵ ,   Θ ൌ Θ . 

At each observation (at the mth observation), calculate  

ߣ ൌ
∏ ݂ሺݔ|ߠሻ

ୀଵ

∏ ݂ሺݔ|ߠሻ
ୀଵ

    and     ߣଵ ൌ
∏ ݂ሺݔ|ߠሻ

ୀଵ

∏ ݂ሺݔ|ߠଵሻ
ୀଵ

 

where ߠ,  ଵ are respectively the unrestricted MLE of θ, the restricted MLE of θߠ andߠ

under the parameter space defined by H0, and the restricted MLE of θ under the parame-

ter space defined by H1. The decision rules are defined as:  

Reject H0 (conclude H1) if ߣ   ,ோீܤ

FTR H0 (conclude H0) if ߣଵ   ,ோீܤ

Otherwise, collect an additional observation. 

Chan and Lai (2005) propose using Monte Carlo methods in order to calculate the 

decision boundary BGLR. In the direct Monte Carlo approach, K simulations of the expe-

riment under H0 are generated until a terminal decision is reached in each of the K expe-

riments. For a desired type I error probability, α, the boundary BGLR is calculated numeri-

cally by:   

ோீܤ ൌ  :ܤ
∑ሺܫሺఒஹሻሻ

ܭ  ሺఒಱಳሻܫ  where  , ߙ ൌ ൜ 0 if ߣଵ               ܪ i.e.  FTR ,ܤ
1 if ߣ   is rejectedܪ  .i.e ,ܤ   

To illustrate this approach consider an experiment where independent observa-

tions xi come from a normal distribution f(x|µ,σ) with known scale parameter σ=1, and 
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location parameter µ such that 0≤µ<∞. Suppose the hypothesis test of interest is of the 

form: 

: 0ܪ  ߤ  0.2  vs.  ܪଵ : ߤ  0.2. Assume the true value of µ=0.1. 

Also suppose that this test is truncated at m=1000, i.e. H0 is not rejected, if after 1000 

collected observations, no terminal decision has been made. For this example, Figure 1 

shows calculated type I error rates for different values of B, for K=2000 simulations un-

der H0.   

 

Figure 1. Calculated type I error rates by the direct Monte Carlo method, for K=2000 

simulations under H0 of the SGLR test of ܪ: 0  ߤ  0.2  vs.  ܪଵ : ߤ  0.2 , where xi 

~N(µ=0.1,σ=1), with Boundaries B=3, 5, 7, 9 and 11. 

 

  

In the example in Figure 1, for an approximate type I error rate of α=0.035, the 

boundary BGLR should be set at the value B=9. As in fixed sample size tests, lower error 
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rates require larger sample sizes. Table 2 shows the average sample size used to reach a 

decision for the K=2000 simulations under H0 for different values of B. 

 

Table 2. Observed type I error rate and average sample size used by the direct Monte 

Carlo method, for K=2000 simulations under H0 of the SGLR test of ܪ: 0  ߤ 

0.2  vs.  ܪଵ : ߤ  0.2 , where xi ~N(µ=0.1,σ=1), with Boundaries B=3, 5, 7, 9 and 11. 

B 
Observed 
Type I error 

rate

Sample size used, m

Average Std. Dev. 
3  0.143 112.32 174.04
5  0.080 197.55 245.34
7  0.051 265.06 278.62
9  0.035 315.33 299.19
11  0.032 345.61 311.54

 

 

Chan & Lai (2005) also propose the use of importance sampling for calculating 

the decision boundary BGLR. This is a technique that consists of giving weights (i.e. im-

portance) to different values of the parameter space. Thus, if there is prior knowledge of 

values most likely to be the true values of the parameter, then greater weights are given to 

these values. The parameter weights with greater values have higher probability of being 

used in generating the K simulated samples. In Bayesian analysis, importance sampling is 

often used to estimate posterior densities or posterior expectations in probabilistic models 

that are difficult to treat analytically. In the Bayesian setting, specified prior distributions 

of the parameters are used as weight functions. 

Chan & Lai (2005) also compare through simulations their proposed SGLR pro-

cedure to the Adaptive Likelihood Ratio test (ALR), an older frequentist extension of the 
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SPRT for composite hypotheses, proposed by Pavlov (1990). The ALR procedure has the 

advantage of using a simple decision boundary in terms of the type I error probability, α. 

The ALR procedure is as follows:      

As with the SGLR, let f(x|θ) be the distribution function of a random variable X with pa-

rameter θ. Let Θ be the parameter space of θ.  

The hypothesis of interest is: H0: ߠ א Θ vs. H1: ߠ א Θଵ, where Θ0 is the parameter space 

restricted to the null hypothesis, and Θ1 is the parameter space restricted to the alternative 

hypothesis. Let Θଵ ת Θ ൌ and Θଵ ,   Θ ൌ Θ . 

At each observation (at the mth observation), calculate  

ߣ
כ ൌ

∏ ݂ሺݔ|ߠିଵሻ
ୀଶ

∏ ݂ሺݔ|ߠሻ
ୀଶ

    and     ߣଵ
כ ൌ

∏ ݂ሺݔ|ߠିଵሻ
ୀଶ

∏ ݂ሺݔ|ߠଵሻ
ୀଶ

  

where ߠ and ߠଵ are the restricted MLEs of θ under the parameter spaces defined by H0 

and H1, respectively, and θi-1 is an estimate of θ calculated with the x1,.., xi-1 for each i. 

The decision rules are defined as: 

Reject H0 (conclude H1) if ߣ
כ   ,ோܤ

FTR H0 (accept H0) if ߣଵ
כ   .ோܤ

The decision boundary BALR is simply 1/α, where α is the type I error probability. 

Pavlov (1990) shows that  ߣ
כ  under H0 is a stochastic process known as a non-negative 

submartingale with expected value under H0 of 1. Due to a property of non-negative 

submartingales known as Doob’s inequality we have:  

ܲబሺߣ
כ  ሻܤ  ா౸బሺఒబ

כ ሻ


ൌ ଵ


 . Thus setting ଵ


ൌ  provides a bound in terms of  ߙ

the desired type I error rate.  
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The simple decision boundary BALR =1/α, of the ALR test makes it somewhat eas-

ier to apply than the SGLR procedure. However, Chan & Lai (2005) criticize the ALR 

procedure for restricting each xi in the numerator of ߣ
כ  and ߣଵ

כ  to be associated only 

with θi-1 even though m observations have already been collected. Chan & Lai (2005) de-

scribe the ALR procedure as “contrived and inefficient”. In addition, Chan & Lai’s 

(2005) simulation results suggest that the SGLR procedure results in considerable savings 

in sample size compared to the ALR procedure. 

Casella & Berger (2000) provide an asymptotic approximation for a fixed sample 

size test of the form H0: ߠ ൌ ߠ : vs. H1ߠ ്  , using a Generalized Likelihood Ratioߠ

(GLR) statistic. This two-sided test can be approximated asymptotically relying on the 

fact that this test statistic converges asymptotically in distribution to a chi-square distribu-

tion with 1 degree of freedom. This can be symbolically represented by:  

െ2logߣ൫ݔ൯
      
ሱۛሮ ߯ሺଵሻ

ଶ  ; ൯ݔ൫ߣ   ൌ  
∏ ݂ሺݔ|ߠሻ

ୀଵ

∏ ݂ሺݔ|ߠ
ୀଵ ሻ

 ; ߠ  ൌ MLEሺߠሻ. 

This asymptotic approximation is useful because when a closed form of the GLR 

statistic λ(x) cannot be analytically obtained, the MLE of θ can usually be computed nu-

merically and thus the test statistic λ(x) can be obtained from the observed data. For a 

significance level α, the asymptotic approximation rejects H0 if  ߣ൫ݔ൯  exp ൬
ఞሺభሻభషഀ

మ

ିଶ
൰, 

where ߯ሺଵሻଵିఈ
ଶ  is the (1-α)th percentile of the chi-square distribution with 1 degree of free-

dom. For example, at a significance level α≈0.05, H0 is rejected if ߣ൫ݔ൯  ଵ

 . However, 

for the asymptotic approximation to be valid, four regularity conditions must hold. The 

first condition is that the xi be iid, i.e. independent and identically-distributed. The second 

condition is that range of the xi must not depend upon θ. The third condition is that θ0 is 
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an interior point of the parameter space of θ. The fourth condition is that f(x|θ) is diffe-

rentiable in θ. 

Apart from the asymptotic approximation to the GLR statistic discussed imme-

diately above, up to this point this review has discussed an area of sequential analysis re-

ferred to as ‘fully sequential procedures’, i.e. sequential procedures based on likelihood 

ratios calculated on accumulating independent observations. In the paragraphs below, this 

review focuses on a different area of sequential analysis referred to as ‘repeated signific-

ance tests’. In a repeated significance test, at each analysis, a non-sequential test is ap-

plied to the data collected up to that point. The null hypothesis is rejected if the non-

sequential test statistic is significant at a modified significance level that accounts for 

multiple looks at the data.  

Through the widespread use of repeated significance tests, one of the areas where 

sequential analysis methods have been most influential is clinical trials. In clinical trials, 

repeated significance tests are often referred to as ‘group sequential’ tests. Jennison & 

Turnbull (2000) provide a short history of sequential analysis in clinical trials. Fully se-

quential plans in the medical field were pioneered in the 1950’s. However, these methods 

did not receive widespread acceptance, perhaps because the assessment of study results 

after each collected observation was considered impractical. Later in the 1970’s group 

sequential designs with small numbers of interim analyses were introduced using re-

peated significance tests.  

Major impetus for group sequential methods came after Pocock (1977) provided 

clear and easy guidelines for the implementation of group sequential experimental de-

signs that attained approximate type I error rates and statistical power requirements simi-
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lar to the fixed-sample size approach. In Pocock’s approach, patient entry is divided into 

k=1, 2, .., K equally sized groups containing m subjects on each treatment. Assuming that 

the responses of subjects allocated to two treatments, A and B, are distributed ݔ 

ܰሺߤ, ݔ  ሻ andߪ  ܰሺߤ,  ሻ, for testing the null hypothesis of no treatment differenceߪ

H0: ߤ ൌ ߤ : vs. H1ߤ ് -, Pocock’s test rejects H0 if the absolute value of the stanߤ

dardized test statistic ܼ ൌ ଵ
ඥሺଶఙమሻ

ሺ∑ ݔ

ୀଵ െ ∑ ሻݔ

ୀଵ , calculated after the observa-

tions on each k group of patients have been collected, is greater than a constant CP(K, α), 

such that ఓܲಲୀఓಳሼڂ ሺ|ݖ|  ,ܭሺܥ  ሻሻߙ
ୀଵ ሽ ൌ -The constant CP(K, α), is calculated nu .ߙ

merically, using the joint distribution of the sequence of zk. The numerical calculations 

are described in detail by Jennison & Turnbull (2000). 

Shortly after Pocock’s paper, O’Brien & Fleming (1979) propose a class of group 

sequential tests with conservative stopping significance levels at early analyses and a de-

cision rule similar to the fixed sample size test if the last stage is reached. Thus, with the 

O’Brien-Fleming test it is more difficult to reject H0 at the earliest analyses, but easier 

later on, a feature that turned out to be very appealing to practitioners (Jennison & Turn-

bull, 2000). For a testing problem similar to that described for Pocock’s test, the O’Brien-

Fleming test rejects H0 if the absolute value of the standardized test statistic ܼ is greater 

than a critical value ܥைିሺܭ, ,ܭைିሺܥ The value of . ݇/ܭሻඥߙ -ሻ is calculated numericalߙ

ly, such that: 

ఓܲಲୀఓಳሼڂ ሺ|ݖ|  ,ܭைିሺܥ  ሻሽ݇/ܭሻඥߙ
ୀଵ ൌ   .ߙ

The numerical calculations are described in detail by Jennison & Turnbull (2000). 

Figure 2 shows an example of critical values for Pocock’s and O’Brien-Fleming’s tests, 

with K=5 equally-sized groups of observations, and α=0.05. 
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Figure 2. Critical values for Pocock’s and O’Brien-Fleming’s tests, with K=5 equally-

sized groups of observations, and α=0.05. 

 

 

Both Pocock’s and O’Brien-Fleming’s approaches require the interim analyses to 

follow a pre-specified schedule so that the calculated significance levels accurately pro-

tect for inflation of the type I error rate due to the multiple looks. A later paper by Lan & 

DeMets (1983) introduces type I error spending functions. A type I error spending func-

tion is a method for allocating the type I error probability based on the proportion of the 

total planned sample collected at each analysis. The error spending approach is based on 

modeling the sequence of test statistics as a stochastic process. This approach has the ad-

vantage of not requiring the timing of the analyses to be pre-specified, which adds flex-

ibility to the timing and number of interim looks. In addition, the type I error spending 

function can take shapes similar to those of the Pocock or the O’Brien-Fleming tests.  
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There have been a number of suggestions for the form of the alpha spending func-

tion. Lan & DeMets (1983) show that the function ݂ሺݐሻ ൌ min ሼ2 െ 2Φሺzଵି/ଶ/√tሻ,  ,ሽߙ

yields critical values similar to those of the O’Brien-Fleming test when group sizes are 

equal (Here, t is the ‘information fraction’, i.e. the proportion of the target sample size 

collected; Φ is the standard normal cumulative distribution function; and z1-α/2 denotes the 

(1- α/2)th percentile of the standard normal distribution). For a close analogue to the Po-

cock critical values, Lan & DeMets (1983) suggest ݂ሺݐሻ ൌ minሼߙ ሾ1݈݃  ሺ݁ െ 1ሻݐሿ ,  .ሽߙ

Kim & DeMets (1987) propose a family of spending functions indexed by a parameter 

ρ>0. The function ݂ሺݐሻ ൌ minሼܽݐఘ,  ሽ with ρ=1 and ρ=3 yields tests with propertiesߙ

similar to those of the Pocock and O’Brien-Fleming tests, respectively. Reboussin et al. 

(2000) developed a software application that calculates spending functions similar to the 

Pocock and O’Brien-Fleming tests, among others, for user-specific information fractions. 

Figure 3 shows an example of critical values for Pocock-type and O’Brien-Fleming-type 

spending functions with information fractions t=0.5, 0.6, 0.7, 0.8, 0.9, 1, produced with 

Reboussin et al.’s (2000) software application.  

 

Figure 3. Pocock-type and O’Brien-Fleming-type spending functions with information 

fractions t=0.5, 0.6, 0.7, 0.8, 0.9, 1, produced with the software application by Reboussin 

et al. (2000). 
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The aforementioned papers by Pocock, O’Brien and Fleming, and Lan & DeMets 

have been particularly influential and together form the starting point for recent methodo-

logical research and the basis of current practice in clinical trial design (Jennison & 

Turnbull, 2000). The properties of Pocock’s and O’Brien-Fleming tests, among other re-

cent developments, along with the error spending approach are studied in depth by Jenni-

son & Turnbull (2000) and Proschan et al. (2006). This concludes the review of sequen-

tial statistical methodologies. However, given that the application of these methods will 

be in the context of genetic association studies, it is imperative that genetic terms and 

concepts that will be important in this dissertation are reviewed and carefully defined. 

This review of genetic terms is presented in the following section.  
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2.2 Genetic Association Studies, SNPs and Haplotype Blocks   

Genetic association studies are typically conducted using a case-control design, 

where deoxyribonucleic acid (DNA) samples from affected cases and unaffected con-

trols, unrelated to each other, are collected. The distribution of alleles/genotypes for the 

groups is compared at a set of genetic markers. Testing only a subset of candidate genetic 

markers from a few regions of the genome for association with disease is referred to as a 

candidate gene association study. In contrast, testing markers from all regions of the ge-

nome for association to a particular disease is referred to as a genome-wide association 

scan. Assuming that the racial admixture for each group is similar, markers that show 

substantial between-group differences in allele frequencies are taken to be associated 

with susceptibility to the disease under study (Siegmund & Yakir, 2007). The ability to 

obtain a large number of markers, such as single-nucleotide polymorphisms (SNPs, pro-

nounced 'snips') on the human genome has accelerated research interests in association 

studies (Satagopan & Elston, 2003).  

DNA is a double-helix polymer consisting of two strands wound around each oth-

er. Each strand is composed of a long chain of nucleotides. Figure 4 depicts the three-

dimensional structure of DNA. A nucleotide of DNA consists of a deoxyribose sugar, a 

phosphate group and one of four nitrogenous bases: Adenine, Guanine, Cytosine, and 

Thymine (Speer, 1988). Figure 5 depicts the chemical structure of DNA. 

 

Figure 4. Depiction of the three-dimensional structure of DNA. 
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Note: From Wikipedia.org. Permission granted to copy, distribute and/or modify this im-
age under the terms of the GNU Free Documentation License, Version 1.2 or any later 
version published by the Free Software Foundation. 
 

Figure 5. Depiction of the chemical structure of DNA. 

 

Note: From Wikipedia.org. Permission granted to copy, distribute and/or modify this im-
age under the terms of the GNU Free Documentation License, Version 1.2 or any later 
version published by the Free Software Foundation. 
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More than 6 billion of these bases, strung together in 23 pairs of chromosomes, 

exist in a human cell. However, the genetic sequences of two different individuals are 

remarkably similar. On average, a difference in 2 unrelated individuals’ genetic se-

quences is observed in every 1200 bases (www.hapmap.org accessed on April 15th, 

2008).  A SNP involves a variation in the nucleotide at a specific location. For example, 

while some subjects in a population may have the base Cytosine at a given location on a 

particular strand of DNA, other subjects may have Thymine at the very same location in 

their DNA sequence. Figure 6 provides a depiction of a SNP.  

 

Figure 6. Depiction of SNP. A SNP is a change of a nucleotide at specific location in the 

DNA sequence. 

 

Note: From Wikipedia.org. Permission granted to copy, distribute and/or modify this im-
age under the terms of the GNU Free Documentation License, Version 1.2 or any later 
version published by the Free Software Foundation. 
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Although in principle, SNPs may have four distinct alternative forms (one for 

each base) they are typically bi-allelic, i.e. they typically present only two alternatives 

(Siegmund & Yakir, 2007). Approximately 10 million SNPs are estimated to occur com-

monly in the human genome (www.hapmap.org accessed on April 15th, 2008). Since 

2002, the International HapMap Project, a multi-country effort to identify and catalog 

genetic similarities and differences in four populations from different parts of the world, 

has identified approximately 3.8 million SNPs in each of these four populations 

(www.hapmap.org accessed on April 15th, 2008). For a particular disease, testing all 10 

million common SNPs in the human genome for association with a particular disease 

would be extremely expensive.  

Homologous recombination is the process during meiosis (cell division resulting 

in egg or sperm) by which an individual’s homologous chromosomes (similar chromo-

somes in length and structure, but inherited separately from each parent) exchange DNA 

and form new combinations of DNA sequences to be transmitted to the individual’s 

offspring (Speer, 1988). Examination of high-density SNP markers over contiguous re-

gions suggested a surprisingly simple pattern. Recombination rates are not uniform over 

the genome, and ‘cold’ and ‘hot’ spots of recombination cause the genome to appear par-

titioned into blocks that are inherited as units (Daly et al. 2001; Schaid, 2004). Within 

each block only a few common sequences are observed (Gabriel, et al., 2002). These se-

quences of linked markers are known as haplotypes. Consequently, the International 

HapMap Project has as goals to catalog the regions that contain haplotypes (referred to as 

haplotype blocks) and to determine 'tag' SNPs that would identify the haplotypes within 

these blocks. It is believed that by identifying an individual's tag SNPs, researchers will 
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be able to determine the collection of haplotypes in a person's DNA. It is anticipated that 

300,000 to 600,000 tag SNPs will summarize most of the genetic variability within hu-

man populations (www.hapmap.org accessed on April 15th, 2008). Although the majority 

of current association studies are conducted using SNPs, once there is more clarity about 

the haplotype structure of the human genome, the haplotype mapping approach is antic-

ipated to be more efficient than SNP mapping, which could require 10 million common 

SNPs. 

 It is now anticipated that haplotypes will play a key role in the discovery and 

mapping of common human disorders, yet debate still remains on the likely success of 

haplotype-based association studies (Schaid, 2004; Terwilliger & Hiekkalinna, 2006). 

The focus of this debate is whether common diseases are caused by common genetic va-

riants, and whether haplotype-block structure is a general feature of the human genome. 

The true test of the haplotype-map approach will come from application of a completed 

map to a variety of common diseases (Schaid, 2004). Another issue is that so far there is 

no universally accepted method to define blocks. Zhao et al. (2003) provide some exam-

ples:  

1. A contiguous set of markers in which the average allelic association measure, 

known as D’, is greater than some threshold. 

2. Regions with limited haplotype diversity and strong Linkage Disequilibrium (LD) 

except for a few markers. 

3. Regions with absolutely no evidence for historical recombination between any 

pair of SNPs.  
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The first definition is a common definition of a haplotype block proposed by Gabriel et 

al. (2002) and is one of the methods implemented in the software package HaploView 

(Barrett et al. 2005), which allows visualization of LD and haplotype blocks from SNP 

marker data publicly available at the HapMap project website. In this case, LD refers to 

the situation in which some combinations of alleles from adjacent markers occur more or 

less frequently than what would be expected if the combinations were formed randomly.  

For a particular set of data visualized with HaploView, the number and bounda-

ries of the blocks inferred would depend on the threshold for allelic association measure, 

D’, entered by the user. Figure 7 shows inferred haplotype blocks by HaploView, from a 

region in chromosome 22, in the sample of subjects of northern European descent col-

lected by the HapMap Project. 

 

Figure 7. Screenshot of some inferred haplotype blocks in a region on chromosome 22, 

from the sample of subjects of northern European descent collected by the HapMap 

Project. The haplotype blocks are defined according to the definition by Gabriel et al. 

(2002) and implemented in the software package HaploView. 

 

 

It is foreseeable that once large projects such as the HapMap are completed and 

there is more clarity about the haplotype block structure in the human genome, using 
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blocks as markers for association scans would provide higher statistical power than scans 

with individual SNPs due to a drastic dimension reduction. However, about 6% of the 

genome sequence falls within the recombination hotspots (The International HapMap 

Consortium, 2007). Thus, SNPs within the hotspots will not be included in any haplotype 

blocks. The implication for association studies is that thorough scans will have to include 

individual SNPs from recombination hotspots along with haplotype blocks. Furthermore, 

if association is detected between a haplotype block and a disease, not only the haplo-

types within the block should be further examined, but also the SNPs comprised in the 

block, since it is possible that either haplotypes or SNPs could be causative for the dis-

ease. This concludes the review of genetic terms and concepts used in this dissertation. 

Having discussed both sequential analysis concepts and genetics concepts, the following 

section reviews ad hoc sequential designs that have been proposed and published in the 

literature specifically for genetic association studies.  

 

2.3 Sequential Designs in Genetic Association Studies 

During the past 2 decades, the goals of sequential designs in genetic association 

studies have been twofold: first, to minimize genotyping costs, and second, to screen 

large numbers of markers. As it is further discussed in the paragraphs below, it is perti-

nent to note that rapid advances in ‘high throughput’ technologies have made genotyping 

costs less of a problem. The following paragraphs elaborate on sequential designs pro-

posed during the last 15 years in the context of genetic association studies.  

Sobel et al. (1993) propose a case-control sequential testing scheme with the ob-

jective of detecting association between a number candidate genetic markers and disease. 
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Their proposed testing scheme is as follows: calculate the sample size required to detect a 

target difference between cases and controls with a desired power and significance level 

α. This sample size of cases and controls is divided in two or three sub-samples to be 

used in two or three independent testing stages, respectively. After each stage, i.e. after 

each subsample test, two groups are selected: a group of definitive significant markers, 

with p-values ≤ α/i, where i is the marker number; and a group of suggestive markers, 

with p-values between α/i and 0.1. The suggestive genetic marker candidates are retained 

and then retested on the next subsample and, according to the authors, after the last stage 

only the true associations are likely to be retained. Sobel et al. (1993) state that their ap-

proach controls for false positive associations, while not seriously affecting power. An 

evident downside of their proposed step-wise multiplicity correction is that it depends on 

the order of the hypotheses tested. As a commentary to the sequential scheme proposed 

above, Sham (1994) considers that Sobel et al.’s (1993) proposed testing procedure con-

trols for false positives, but on the other hand, decreases the overall power, since it di-

vides the sample. However, Sham acknowledges that the advantage of Sobel et al.'s 

(1993) procedure is the fact that it decreases the amount of genotyping, because only a 

portion of the candidate markers are retained after each stage. Sham states that one way 

to overcome the decrease in power, under a sequential setting, is to use all existing data at 

the end of each stage in an overall test for association in order to reduce the effect of 

chance fluctuations on each independent stage. However the issue of dependency among 

test statistics calculated on accumulating data is not addressed by Sham. In the conclusion 

of his article, Sham (1994) suggests the study and adaptation of more formal sequential 
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test procedures; in particular the works of Wald (1945) and Morton (1955) to case-

control association studies.  

Schaid & Sommer (1994) who collaborated with Sobel et al. (1993), as a response 

to Sham, justify Sobel et al.’s (1993) method by the need to control for false positives. 

They acknowledge that there is greater power in the combined-sample approach, but state 

that the probability of false positive findings is greater when combining the subsamples 

than when analyzing them separately. Schaid & Sommer (1994) explain that the focus of 

Sobel et al.’s approach is the need to control for false positive detections and that their 

procedure requires each stage to be adequately powered. To this date, neither Sobel, 

Schaid, Sommer nor Sham has published further comments regarding their respective 

proposed procedures. Sham did not publish any further research from his idea of using 

Wald’s SPRT in genetic association studies, nor is he aware of other authors who have 

done so (Sham P., personal communication, January 23rd, 2007). 

Mitchell (1995) uses simulations to examine a two-stage approach based on Sobel 

et al.’s (1993) approach. The objective is to find association between 360 markers and a 

'rare oligogenic disease' i.e. a disease that is produced by two or more genes working to-

gether. There are two true associations by design. The simulated cohort consists of 200 

cases and 100 controls, and the significance level is set at α/i, where i is the marker num-

ber and α=0.05. The results are mixed. The observed power is low (0.5), yet the observed 

type I error rate is relatively low also (0.01). In agreement with Sham (1994), Mitchell 

concludes that Sobel et al.’s (1993) approach requires large samples to attain adequate 

power, but that the approach could provide a reasonable strategy for screening a large 

number of marker-disease associations. However, Mitchell does not consider the false 
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positive rate, i.e. the fraction of erroneous rejections among all hypotheses rejected, 

which, calculated from the results in that paper, is very high (0.83). 

Province (2000) proposes a Sequential Selection and Ranking test for linkage, 

based on sequential methods published in the monograph by Bechhoffer et al. (1968). 

Province suggests that the methodology could be extended also to genetic association 

studies. He proposes using Sequential Selection and Ranking methods as an analysis 

technique for data that have been collected with 'more practical fixed sample designs', 

and then using the data not used due to early termination of the sequential analysis proce-

dure to confirm (or refute) the positive regions detected by the sequential analysis me-

thods.  For the particular situation of a genome-wide linkage scan using the Haseman-

Elston regression method, Province uses simulations of sib-pair data to compare fixed 

sample analyses versus a Bonferroni Corrected SPRT and a Sequential Ranking and Se-

lection procedure. His simulation results suggest that both sequential methods on the av-

erage outperform the fixed sample designs in regards to number of the sib-pairs used to 

reach a decision within the specified error rates.  

Boddeker & Ziegler (2001) publish a review of the literature on sequential de-

signs in the context of genetic linkage and association studies. They begin by discussing 

Wald's SPRT and the linkage detection method by Morton (1955) and state that the as-

sessment required after each observation is taken, as well as the a-priori specification of a 

recombination fraction for linkage, rendered these methods impractical. The fact that 

group sequential methods have been developed to overcome the impractical issues of the 

fully sequential methods is discussed. Boddeker & Ziegler (2001) refer their readers to 

the textbook by Jennison & Turnbull (2000). The problem of multiplicity is acknowl-
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edged in the case of two-stage genomic screenings (which will be discussed further be-

low). Next, Boddeker & Ziegler (2001) review a group of 32 articles that they have clas-

sified as 'heuristic sequential designs', i.e. designs developed for a specific study, that are 

based on practical grounds but lack theoretical justification as well as conclusive evalua-

tion of type I and type II errors. It is noted that although lacking strong theoretical basis, 

these 'heuristic' designs were successful in stimulating further research and confirmation 

studies. A second group of 19 articles are classified as 'procedures based on computer 

simulations'. It is commented that these studies allow evaluation of error rates within the 

specific simulated scenarios, yet they cannot be generalized to other settings, thus requir-

ing simulations for every study. Finally Boddeker & Ziegler (2001) review a third group 

of 10 articles that they have classified as 'theoretically based procedures'. These articles 

propose formal sequential strategies in the context of genetic linkage or association stu-

dies. The discussion of this last group begins with the papers (cited above) by Sobel et al. 

(1993), Sham (1994), Schaid & Sommer (1994), and Mitchell (1995). It is commented 

that some studies introduce specific adjustments for type I error rates, such as Sobel et al. 

(1993); others aim to adapt group sequential designs for application in genetic epidemio-

logical studies (Chotai, 1984; Muller & Ziegler, 1998) and a third approach (Elston et al., 

1996; Guo & Elston, 2000) is specific for screening a large amount of markers in a first 

stage and then re-test in a second stage while minimizing a cost function. Boddeker & 

Ziegler (2001) conclude that the approaches, although promising, still require more de-

velopment: the procedure by Chotai (1984) does not consider power calculations, that of 

Muller & Ziegler (1998) is based on erroneous sample size calculations, and the proce-

dure by Elston et al.(1996) and Guo & Elston (2000) uses an 'inadequate cost function 
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and power definition'. Finally, 'more formal' sequential methods are suggested, including 

adaptations of Wald's SPRT, as was also suggested by Sham (1994). Considering these 

suggestions, one of the objectives of this dissertation is to apply modern fully sequential 

procedures such as the SGLR test (Chan & Lai, 2005), which is a recent adaptation of 

Wald's SPRT.   

Satagopan et al. (2002) propose a two-stage design for marker-disease association 

studies, that aims to minimize the amount of genotyping in a study by screening, in the 

first stage of testing, all markers under evaluation with a proportion of the individuals in 

the sample, and then in a second stage using the rest of the individuals, to validate the 

promising markers from stage one. Satagopan et al. (2002) avoid using significance tests 

and propose using absolute values of test statistics as measure of association. In their ap-

proach, the markers with the highest absolute value of test statistics at stage two would be 

selected as the markers most likely to be truly associated with the disease. However, the 

number of markers after stage two to be selected is an arbitrary number decided by the 

investigators conducting the association study. Assuming an asymptotically normally dis-

tributed test statistic, and a small correlation between markers, the proportions of subjects 

to be used and markers to be tested on each of the two stages that minimize a cost func-

tion under this model are calculated under a variety of conditions. In order to obtain 'near 

optimal' power compared to a one-stage design, those authors propose as a general rule 

using 75% of the genotyping resources in stage one to screen all markers and then using 

the remaining 25% genotyping resources to validate the top 10% markers ranked by 

magnitude of the test statistic from stage one.  
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It is pertinent to note that the method by Satagopan et al. (2002) aims to minimize 

the cost of genotyping in a study. At that time, 6 years ago, genotyping large numbers of 

markers on each study participant required the use of several different biological assays, 

since a single assay could only be used to genotype a relatively small number of markers. 

In addition, each assay was relatively expensive. New ‘high throughput’ technologies 

have made genotyping costs less of a problem. For instance, in 2000, a ‘genome-wide’ 

study was attempted with 600 SNPs (Mei, et al., 2000). In contrast, one of the latest SNP 

genotyping ‘chips’ produced by the company Affymetrix called “Genome-Wide Human 

SNP Array 6.0”, can genotype over 900,000 SNPs (www.affymetrix.com, accessed on 

April 16th, 2008). With respect to the rapid advance of genotyping technology, Siegmund 

& Yakir (2007) comment: “New technologies emerge almost daily, pushing down the 

price and increasing the rate of the genotyping of SNPs”. Although genotyping costs do 

not have the same importance that they had in the recent past, the procedure proposed by 

Satagopan et al. (2002), as well as some other procedures that will be mentioned below, 

have the advantage of allowing screening of large numbers of markers at stage one, 

which could be an advantage in regards to controlling the number of false positive detec-

tions.  

Satagopan & Elston (2003) recommend the procedure by Satagopan et al. (2002) 

for large numbers of markers, as in genome-wide scans, to obtain similar power com-

pared to a one-stage study but with a 45% decrease in genotyping costs. Also, Satagopan 

et al. (2004) consider the two-stage approach in a scenario where the number of subjects 

is fixed, and propose as general rule using 50% of the available subjects in stage one to 
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screen all markers and then using the remaining 50% of the sample to validate the top 

10% markers ranked by magnitude of the test statistic from stage one. 

Aplenc et al. (2003) suggests the use of Group Sequential Methods in association 

studies due to the fact that 'early termination' may result in significant cost and sample 

size savings, however the approach is shown for only two markers, and the issue of mul-

tiplicity was not discussed.  

Thomas et al. (2005) summarize the discussions of an international group of 165 

investigators at the University of Southern California on how best to design and analyze 

association studies with ultra-high genotyping volume: “A broad consensus emerged that 

the time was now ripe for launching such studies”, and several common themes are iden-

tified such as the problem of stratification in the samples, how to incorporate environ-

mental exposure information in the study, how to biologically validate positive associa-

tion detections, and the potential efficiency gains of multistage sampling designs, specifi-

cally the two-stage approach in which only a portion of the subjects are screened with a 

high-density genome-wide technology, followed by testing the promising SNPs identified 

by the first scan on the additional subjects in the sample.  Considering these common 

themes, one of the objectives of this dissertation is to compare and contrast the properties 

of the aforementioned sequential testing approaches, including the two-stage procedures, 

when applied to the problem of testing a relatively large number of markers in the same 

case-control cohort. 

Writing for less sophisticated statistical readers, Cordell and Clayton (2005) pro-

vide a very readable general overview of the methods for design and analysis of genetic 

association studies, and compare similarities with classic epidemiological studies of envi-
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ronmental risk factors, but point out the importance of the design, statistical analysis and 

interpretation of such studies. 

Wang et al. (2006) propose the two-stage approach by Satagopan & Elston (2003) 

as an efficient alternative to the typical one-stage approach in the context of high-

dimension data from genome-wide association studies. In the same context, Skol et al. 

(2006) suggest a 'joint analysis' at stage two, instead of a 'replication-based' analysis (as 

Skol et al. termed the two-stage approach originally proposed by Satagopan et al., 2004) 

in order to attain greater statistical power by using the pooled sample at stage two, in the 

same way that Sham (1994) suggests a joint approach as an improvement to the sequen-

tial design by Sobel et al. (1993) to attain higher power.  Skol et al.’s (2006) ‘joint analy-

sis’ consists of using 50% of the available subjects in stage one to screen all markers and 

then adding the remaining 50% of the sample to validate the top 10% markers ranked by 

magnitude of the test statistic from stage one. Then, significance tests are to be conducted 

at the second stage, controlling for multiplicity with a Bonferroni correction.  

Elston & Spence (2006) discuss advances in statistical human genetics over the 

last 25 years. In regards to association studies, the authors optimistically note: “we are in 

the middle of an explosion in the development of statistical methods to detect genetic as-

sociations, just as there is currently an explosion in the molecular methods to measure 

genetic markers”. However, some caution is suggested: “There is presently a rush to-

wards genome-wide association analyses, but we believe this is being driven more by the 

technology that is available than by any scientific rationale [...] Although genome-wide 

association analysis will perhaps one day be the method of choice for gene-finding, issues 

remain [...] This is an area in which new statistical research on both design and analysis 
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will continue unabated because we do not yet know the best statistical framework for 

such studies”. 
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however a value of D'=1 does not necessarily mean perfect LD, but higher values imply 

higher LD (non-random association). Figure 10 shows a histogram of the D’ values cal-

culated by HaploView in the 5Mb sample. 

 

Figure 10. Histogram of D' measures between adjacent haplotype blocks from the 216 

blocks detected by HaploView, contained in 5Mb on chromosome 22, locations 17M-

22M, from the HapMap northern European ancestry sample. 

 

  

         The histogram in Figure 10, as well as an average D’ of 0.72 (std. dev.= 0.25) cal-

culated among the 216 blocks from the sample, suggest that adjacent haplotype blocks 

are in high LD. This means that there is association between adjacent blocks, which must 

be included in the simulations. 

       Table 3 shows the number of haplotypes per block in the sample of 216 blocks. 
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Table 3. Tabulated number of haplotypes per block, from the 216 blocks detected by Hap-

loView, contained in 5Mb on chromosome 22, locations 17M-22M, from the HapMap 

northern European ancestry sample. 

Number of Haplotypes per 
block Frequency Percent 

2 29 13.43 
3 49 22.69 
4 35 16.20 
5 38 17.59 

6 or more 65 30.09 
Total 216 100.0 

 

 

        The frequencies shown in table 3 are followed in the simulations generated for this 

dissertation. Further details for the simulation setup are discussed in section 3.4.  

 

3.2 Example of a Simulated Haplotype Block  

        In this dissertation it is proposed to model, at a population level, a haplotype block 

as a multinomial random variable, where each haplotype in the block is a multinomial 

outcome. Figure 11 shows a parallel between block 211 from the sample of 216 blocks, 

and a hypothetical multinomial variable called B211.  

 

Figure 11. A parallel between block 211 from the 216 blocks detected by HaploView, 

contained in 5Mb on chromosome 22, locations 17M-22M, from the HapMap northern 

European ancestry sample, and a hypothetical multinomial variable called B211. 
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LD; values of 0.4<ρ≤0.8 indicate a scenario where markers are in medium to high LD; 

and values of ρ>0.8 characterize a scenario where markers are in high LD. 

A common method to generate random multinomial realizations from a multi-

nomial variable consist of generating uniform(0,1) variables and then transforming them 

into multinomial realizations by dividing the range [0,1] according to the respective 

probabilities of each multinomial outcome. For simulating high LD between adjacent 

haplotype blocks (represented by multinomial variables) in this dissertation it is proposed 

to specify an autoregressive structure (ρ=0.8) on a matrix of randomly generated uni-

form(0,1) variables and then transform these highly correlated uniform(0,1) variables into 

multinomial observations. As a consequence of the correlation among the underlying uni-

form(0,1) variables, some combinations of the resulting multinomial outcomes 

(representing haplotypes) from adjacent multinomial variables (representing blocks) oc-

cur more or less frequently than what would be expected if the combinations were formed 

randomly, thus providing a simplified model for LD. The proposed algorithm is ex-

plained in detail in the following paragraphs. 

 A common method to generate k correlated random standard normal variables, 

with n observations for each variable, given a symmetric moment correlation matrix Ck*k, 

consists of finding an upper triangular matrix Dk*k such that DTD=C, where D is calcu-

lated by an Eigenvalue decomposition or a Cholesky decomposition (for positive definite 

C). Then, after generating a matrix of uncorrelated random normal standard variables 

Rn*k, the matrix (RD)n*k yields a matrix of k standard normal variables with n observa-

tions, having the specified moment correlation structure among its k columns. In order to 

extend this method to non-normal variables, Phoon et al. (2004) consider the fact that for 
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uniform(0,1) variables the moment correlation is equal to the fractile or quantile correla-

tion. In Phoon et al’s (2004) approach the initial step is to select a fractile or quantile cor-

relation matrix Fk*k and then transform this matrix to a moment correlation matrix Ck*k 

by ܿ ൌ 2sin ሺగ
 ݂ሻ. This transformation, derived by Hotelling & Pabst (1936), applies 

only to standard normal variables. Next, the matrix D is calculated using an Eigenvalue 

decomposition. Then, after generating a matrix of uncorrelated random normal standard 

variables Rn*k and calculating the matrix of correlated standard normal variables (RD)n*k, 

a matrix Un*k of uniform (0,1) variables is obtained by applying the probability integral 

transformation to (RD), i.e. applying the standard normal cumulative distribution func-

tion (CDF) to each of the elements of (RD). This matrix U has the specified quantile cor-

relation structure among its k columns. Then the elements of U can be transformed from 

uniform(0,1) into a different distribution by an inverse CDF transformation. The quantile 

correlation is invariant to monotone transformations. Thus, as long as the inverse CDF 

transformation is monotone, the quantile correlation is not affected and therefore the new 

variables will retain the initial quantile correlation structure Fk*k, regardless of their final 

distribution function.  

          The aforementioned Choleski decomposition is a matrix factorization for symme-

tric positive definite matrices (Bock, 1998). It results in an upper triangular matrix and 

lower triangular matrix that is the transpose of the upper triangular matrix. Consider the 

Cholesky decomposition C=DTD, where Ck*k is a symmetric positive definite matrix, DT 

is the lower triangular matrix and D is the upper triangular matrix. Since DT and D are 

triangular matrices, one of the features of this decomposition is that the element in row 1 

column 1 of C, c11, is factored into √ܿଵଵ, that is: 
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ܿଵଵ ڮ ܿଵ

ڭ ڰ ڭ
ܿଵ ڮ ܿ

൩ ൌ 
݀ଵଵ ڮ 0

ڭ ڰ ڭ
݀ଵ ڮ ݀

൩ 
݀ଵଵ ڮ ݀ଵ

ڭ ڰ ڭ
0 ڮ ݀

൩,     

where ܿଵଵ ൌ ݀ଵଵ כ ݀ଵଵ  0 כ 0  ڮ  0 כ 0 ൌ ሺ݀ଵଵሻଶ  ֜ √ܿଵଵ ൌ ݀ଵଵ  

If C is a symmetric positive definite correlation matrix then all the diagonal elements of 

C are equal to 1 and since c11=1 then d11=√1 =1. Thus the first column of D is made of 

d11=1 and the remaining elements are equal to zero. The consequence of this feature 

when generating random variables is that if C=DTD is a Cholesky decomposition then 

after generating a matrix of uncorrelated random normal standard variables Rn*k, the ma-

trix (RD)n*k yields a matrix of k standard normal variables with n observations, having 

the specified moment correlation structure among its k columns, and the first column of 

(RD)n*k is equal to the first column of Rn*k. Based on this consideration, in this disserta-

tion an algorithm is proposed that generates a long sequence of uniform(0,1) variables 

with an approximate autoregressive structure (ρ>0). The proposed algorithm breaks the 

sequence in small parts and avoids having to define one large rank correlation matrix F 

for the whole sequence. Then, this sequence of correlated uniform(0,1) variables is used 

to generate the multinomial variables that represent haplotype blocks. The proposed algo-

rithm is as follows: 

1. Generate a matrix Rn*k of k=5 random standard normal variables (columns) with n 

rows. Each column will be independent of the other columns. 

2. Input the desired 5 by 5 autoregressive fractile correlation matrix Fk*k (must be 

symmetric, positive, definite). 

3. Transform the fractile correlation matrix Fk*k into a moment correlation matrix 

Ck*k by ܿ ൌ 2sin ሺగ
 ݂ሻ. 
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4. Calculate Dk*k, the upper triangular Choleski decomposition matrix of the mo-

ment correlation matrix C, where C=DTD. 

5. Postmultiply the matrix of independent standard normal variables Rn*k by the up-

per triangular Cholesky decomposition matrix D, i.e. (RD)n*k=R(1)
n*k. The trans-

formed set of standard normal variables will have the desired moment correlation 

structure, yet the first column remains unchanged, i.e. column 1 of R(1)
n*k is equal 

to column 1 of Rn*k. 

To generate the next set:  

6. Generate another matrix of 5 independent random standard normal variables (col-

umns) with n rows. 

7. Take the last column (column 5) of the previous set R(1)
n*k and make it the first 

column of the new set, resulting in a matrix of n by 6, Sn*k, k=6. 

8. Input the 6 by 6 autoregressive fractile correlation matrix Fk*k. 

9. Transform the fractile correlation matrix Fk*k into a moment correlation matrix 

Ck*k. 

10. Calculate the upper triangular Choleski decomposition matrix Dk*k of the moment 

correlation matrix C. 

11. Postmultiply the matrix of independent standard normal variables Sn*k by the up-

per triangular Cholesky decomposition matrix D, i.e. (SD)n*k The transformed set 

of standard normal variables will have the desired moment correlation structure, 

yet the first column remains unchanged, which is the last column (column 5) of 

the previous set R(1)
n*k. 
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12. Remove the first column of the new correlated set (SD)n*k (which is the same last 

column of the previous set R(1)
n*k), resulting in a second n by 5 matrix R(2)

 n*k. 

13. Join both n by 5 correlated sets, resulting in a n by 10 matrix of correlated stan-

dard normal variables Qn*2k = [R(1)
n*k | R(2)

 n*k] having an approximate autoregres-

sive correlation structure. 

To generate a long sequence:  

14. Repeat steps 6 to 13 as needed in order to generate the desired number of corre-

lated standard normal variables Q n*Kk = [R(1)
n*k | R(2)

 n*k | ... | R(K)
 n*k]. 

15. Transform the correlated standard normal variables Q into correlated uniform(0,1) 

columns using the probability integral transformation, i.e. U=Ф(Q), where Ф is 

the standard normal CDF. The uniform(0,1) columns of U will have approximate-

ly the desired autoregressive fractile correlation structure, and can be used to gen-

erate correlated multinomial variables. 

The simulations conducted for testing this algorithm resulted in a minimal decrease in 

correlation values when compared to an approach that models the correlation structure for 

all the variables in a single matrix.   

 

3.4 Simulation Set-up: Number of Blocks, Sample Size, and Differences to Detect 

           The simulations for this dissertation are based upon the following design. Assume 

a hypothetical case-control association study where the researchers seek to screen a spe-

cific human chromosome for association with a disease status in the context of a limited 

fixed amount of funds as well as a limited fixed number of cases and controls. Specifical-

ly assume chromosome 22 is under investigation with 400 total cases and controls being 

available for investigation. Under this context, the aim is to determine the effect sizes that 
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can be detected with adequate (80%) power after correction for multiple hypothesis tests. 

In order to estimate the effect sizes, the first step is to determine the total number of 

markers to test for association; the next step is to set a significance level that accounts for 

the multiple tests; and the third step is to determine the minimum detectable differences 

that can be declared significant with adequate power (80%). 

The simulation set-up for this dissertation is based on the steps above. The follow-

ing paragraphs elaborate on each these steps.  

 

3.4.1 Number of Markers to Test 

In the sample of subjects of northern European descent collected by the HapMap 

Project, the region from positions 17M to 22M (5Mb) in chromosome 22, discussed in 

section 3.1, yielded 216 haplotype blocks using the algorithm by Gabriel et al. (2002) 

implemented in HaploView (Barrett et al., 2005). This region includes 5,292 SNPs. As-

suming that this region is representative of the whole chromosome in terms of number of 

SNPs and number of haplotype blocks, these numbers extrapolated to the length of the 

whole chromosome (49.69Mb) result in approximately 58,922 SNPs and 2150 haplotype 

blocks for the entire chromosome. Due to the drastic dimension reduction that haplotype 

blocks represent compared to SNPs, blocks are selected as the ‘markers’ for this hypo-

thetical study. Thus the total number of haplotypes to test in this hypothetical study is 

2150. Accordingly, 2150 blocks are simulated, each block represented as a multinomial 

variable. For simulating high LD across blocks, for each simulation, a sequence of 2150 

uniform(0,1) variables is generated using the algorithm described in section 3.3 with an 

autoregressive structure (ρ=0.8). Then this correlated uniform(0,1) variables are trans-
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formed into ‘correlated’ multinomial variables. Of the 2150 multinomial variables, 100 

are simulated under the alternative hypothesis of different proportions of multinomial 

outcomes (representing haplotypes) between cases and controls. The remaining 2050 si-

mulated blocks are simulated under the null hypothesis with equal proportions of haplo-

types between cases and controls by design. It is acknowledged that in a realistic associa-

tion study it is not likely to observe 100 haplotype blocks associated with disease status 

within a single chromosome. This relatively large number of associations is designed 

with the objective of obtaining precise power estimates.  

 

3.4.2 Number of Participants and Sample Size 

           For a sample size of 200 cases and 200 controls, each participant contributes 2 

versions of chromosome 22. Each version is inherited independently from each parent for 

a total sample size of 800 chromosomes (400 in the case group, 400 in the control group).  

 

3.4.3 Significance Level 

           Under the null hypothesis of no association, at the traditional significance level of 

0.05 for each independent hypothesis, 2150*0.05= 108 hypotheses are expected to be de-

clared significant without any multiplicity correction. With a Bonferroni correction, the 

significance level goes down to 0.05/2150 =2.32*10-5 and thus 2150*0.05/2150= 0.05 

hypotheses are expected to be declared significant assuming all null hypotheses are true. 

However, if true associations are present, the downside of setting such strict significance 

level is a substantial decrease in statistical power to detect any true associations. In order 

to maintain power at the expense of type I errors, the hypothesis specific significance 



50 
 

 

level is set to 5/2150=2.32*10-3 (i.e. with tolerance for 5 experiment-wise type I errors if 

all hypotheses tested are true null hypotheses). Thus, if all 2150 hypotheses were actually 

independent null hypotheses, at this significance level, 5 false positive rejections would 

be expected.  

 

3.4.4 Detectable Differences 

           Consider a haplotype block for which at a population level 5 haplotypes have been 

observed. The haplotypes observed for this hypothetical block in a case-control group can 

be summarized in a 2 by 5 table of frequencies such as Table 4 below. In Table 4 the total 

number of observations NTotal is equal to two times the number of subjects, since each 

subject contributes 2 independent haplotypes to the 2 by 5 contingency table. Likewise, 

the row marginal totals NCases and NControls are equal to two times the number of subjects 

in the case and control groups, respectively. The column marginal totals N1, N2, N3, N4, 

and N5 are the number of haplotypes type 1, 2, 3, 4, and 5, respectively, observed in the 

combined case-control cohort.     

Table 4. Observed haplotype frequencies in a haplotype block.  

Disease  
Status Haplotype1 Haplotype2 Haplotype3 Haplotype4 Haplotype5 Total 

Case n1,1 n1,2 n1,3 n1,4 n1,5 NCases 
Control n2,1 n2,2 n2,3 n2,4 n2,5 NControls 

Total N1 N2 N3 N4 N5 NTotal 
 

With the data tabulated as a contingency table, a standard tool for association test-

ing is Pearson’s χ2 test, which compares the observed table of frequencies with the table 

of frequencies that would be expected under the assumption of independence (i.e. no as-
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sociation). The general form of the test statistic is: ܺଶ ൌ ∑ ∑ ሺை௦௩ௗ,ೕିா௫௧ௗ,ೕ ሻమ

ா௫௧ௗ,ೕ
  , 

where Observedi,j is the frequency at the cell in the ith row and jth column from the table 

of observed frequencies. In this hypothetical example, Observedi,j are equal to the ni,j in 

Table 4. The Expectedi,j are calculated using the marginal totals, as shown in Table 5.   

 

Table 5. Expected haplotype frequencies in a haplotype block.  

Disease  
Status Haplotype1 Haplotype2 Haplotype3 Haplotype4 Haplotype5 Total 

Case ଵܰ כ ܰ௦௦

்ܰ௧
 ଶܰ כ ܰ௦௦

்ܰ௧
 ଷܰ כ ܰ௦௦

்ܰ௧
 ସܰ כ ܰ௦௦

்ܰ௧
 ହܰ כ ܰ௦௦

்ܰ௧
 NCases 

Control ଵܰ כ ܰ௧௦

்ܰ௧
 ଵܰ כ ܰ௧௦

்ܰ௧

ଵܰ כ ܰ௧௦

்ܰ௧

ଵܰ כ ܰ௧௦

்ܰ௧
 ଵܰ כ ܰ௧௦

்ܰ௧
NControls 

Total N1 N2 N3 N4 N5 NTotal 
 

Under the null hypothesis of no association, the distribution of the test statistic X2 

has approximately a χ2 distribution with degrees of freedom equal to the product (I-1)(J-

1), where I is the number of rows and J is the number of columns in the table, thus in this 

example the degrees of freedom are equal to (2-1)(5-1)=4.  

For an individual Pearson’s χ2 test of hypothesis, the sample size necessary to 

detect significant association depends on the following quantities: a determined χ2 effect 

size, the degrees of freedom, a target statistical power, and a target type I error rate. In 

this case, since the sample size is fixed at N=800, the significance level is previously set 

at 2.32*10-3, and the desired power is 80%, the only quantities left to determine are the 

minimum χ2 effect sizes that can be detected under these conditions. These χ2 effect sizes 

for blocks having 2 to 6 haplotypes, are given in table 6: 
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Table 6. Minimum χ2 effect sizes that can be detected with N=800 observations, for 

blocks having 2 to 6 haplotypes. 

Haplotypes 
per Block 

Degrees of 
freedom 

Significance 
level  Power  N  Effect size, w  χ2 value 

2  1  0.00232  0.8  800  0.1374  15.1127 
3  2  0.00232 0.8 800  0.1482  17.5774 
4  3  0.00232 0.8 800  0.1556  19.3607 
5  4  0.00232 0.8 800  0.1614  20.8294 
6  5  0.00232 0.8 800  0.1662  22.1074 

 

 

In table 6, the effect size, w, is related to the χ2 value of the test statistic, and the 

sample size N by  ݓ ൌ ටఞమ

ே
 .  

For the simulations in this dissertation, the 100 multinomial variables representing 

haplotype blocks associated with disease status are set up so that the differences in pro-

portions of multinomial outcome realizations between case and control groups, when 

tested in contingency tables with Pearson’s χ2 tests, result in the effect sizes shown in Ta-

ble 6.  

For any one multinomial variable, the total sum of the probabilities of its outcome 

realizations must be equal to 1. This implies that when comparing frequencies of multi-

nomial outcome realizations between groups, for a variable with 2 outcomes, a change in 

the proportion of one outcome results in a change of the same magnitude in the opposite 

direction for the other outcome’s proportion. However, for a multinomial variable with 3 

or more outcomes, a change in the proportion of one outcome results in a change in the 

proportion of at least one of the other outcomes; the magnitude of these changes depend-

ing on how many outcomes’ proportions change. The more outcomes present in a varia-
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ble, the more possible combinations of proportions that when tested in contingency tables 

with Pearson’s χ2 test would result in the same effect size. For N=800 (400 chromosomes 

per group), Tables 7 to 11 each show five examples of combinations of multinomial out-

come proportions for 2, 3, 4, 5, and 6 haplotypes per block, respectively, that when tested 

in contingency tables with Pearson’s χ2 test result in the effect sizes shown in Table 6. 

These examples are a subset of the combinations that are used for the simulations in this 

dissertation.  

 

Table 7. Five combinations of case and control haplotype proportions for a Pearson’s χ2 

test with 1 degree of freedom that result in an effect size of approximately 0.1374, with 

N=800 (400 cases and 400 controls). 

Combination Control Case 
Hap1 Hap2 Hap1 Hap2 

1 0.5 0.5 0.364 0.636 
2 0.55 0.45 0.413 0.587 
3 0.6 0.4 0.463 0.537 
4 0.65 0.35 0.514 0.486 
5 0.7 0.3 0.568 0.432 

 

 

Table 8. Five combinations of case and control haplotype proportions for a Pearson’s χ2 

test with 2 degrees of freedom that result in an effect size of approximately 0.1482, with 

N=800 (400 cases and 400 controls). 

 

Combination Control Case 
Hap1 hap2 Hap3 Hap1 Hap2 Hap3 

1 0.4 0.36 0.24 0.282 0.36 0.358 
2 0.45 0.33 0.22 0.330 0.33 0.340 
3 0.5 0.30 0.20 0.380 0.30 0.320 
4 0.55 0.27 0.18 0.431 0.27 0.299 
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5 0.6 0.24 0.16 0.483 0.24 0.277 

 

 

Table 9. Five combinations of case and control haplotype proportions for a Pearson’s χ2 

test with 3 degrees of freedom that result in an effect size of approximately 0.1556, with 

N=800 (400 cases and 400 controls). 

Combination Control Case 
Hap1 Hap2 Hap3 Hap4 Hap1 Hap2 Hap3 Hap4 

1 0.35 0.33 0.23 0.10 0.258 0.33 0.23 0.189 
2 0.4 0.30 0.21 0.09 0.308 0.30 0.21 0.182 
3 0.45 0.28 0.19 0.08 0.358 0.28 0.19 0.174 
4 0.5 0.25 0.18 0.08 0.409 0.25 0.18 0.166 
5 0.55 0.23 0.16 0.07 0.461 0.23 0.16 0.157 

 

Table 10. Five combinations of case and control haplotype proportions for a Pearson’s 

χ2 test with 4 degrees of freedom that result in an effect size of approximately 0.1614, 

with N=800 (400 cases and 400 controls). 

Combination Control Case 
  Hap1 Hap2 Hap3 Hap4 Hap5 Hap1 Hap2 Hap3 Hap4 Hap5 
1 0.3 0.28 0.21 0.14 0.07 0.215 0.28 0.21 0.14 0.155 
2 0.35 0.26 0.195 0.13 0.065 0.264 0.26 0.195 0.13 0.151 
3 0.4 0.24 0.18 0.12 0.06 0.314 0.24 0.18 0.12 0.146 
4 0.45 0.22 0.165 0.11 0.055 0.365 0.22 0.165 0.11 0.140 
5 0.5 0.2 0.15 0.1 0.05 0.416 0.2 0.15 0.1 0.134 

 

 

Table 11. Five combinations of case and control haplotype proportions for a Pearson’s 

χ2 test with 5 degrees of freedom that result in an effect size of approximately 0.1662, 

with N=800 (400 cases and 400 controls). 

Combination Case Control 
Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 

1 0.25 0.263 0.188 0.15 0.113 0.038 0.177 0.263 0.188 0.15 0.113 0.111 
2 0.3 0.245 0.175 0.14 0.105 0.035 0.226 0.245 0.175 0.14 0.105 0.109 
3 0.35 0.228 0.163 0.13 0.098 0.033 0.275 0.228 0.163 0.13 0.098 0.107 
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4 0.4 0.210 0.150 0.12 0.090 0.030 0.326 0.210 0.150 0.12 0.090 0.104 
5 0.45 0.193 0.138 0.11 0.083 0.028 0.376 0.193 0.138 0.11 0.083 0.101 

 

 

3.5 Testing Procedures 

          The testing Procedures examined in this dissertation are listed in Table 1 (section 

1.3). These methods include the standard Pearson’s χ2 test; the sequential methods pro-

posed by Sobel et al. (1993); Sham (1994); Satagopan et al. (2004); Skol et al. (2006); 

and a modification of the SGLR test (original procedure proposed by Chan & Lai, 2005). 

Some adaptations are applied to these tests in order to utilize them in 1000 simulations of 

an association scan of chromosome 22, using haplotype blocks. The details for the 

aforementioned tests and the modifications applied are discussed in sections 3.5.1 to 

3.5.6. The testing results from each sequential procedure are compared against each other 

as well as with the standard fixed-sample-size Pearson’s χ2 tests. Comparisons among 

procedures are made in terms of observed experiment-wise type I error rate, FPR (False 

Positive Rate), observed experiment-wise statistical power, and a measure of experiment-

wise penalized power.  

           The observed experiment-wise type I error rate is calculated by the number of true 

null hypotheses rejected divided by the total number of true null hypotheses by design on 

each replication of the simulated chromosome scan. The range of the observed experi-

ment-wise type I error rate is [0,1]. 

            The observed experiment-wise power is calculated by the number of true alterna-

tive hypotheses rejected divided by the total number of true alternative hypotheses by de-

sign. The range of observed experiment-wise power is [0,1].  
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The FPR is calculated by the number of true null hypotheses rejected divided by 

the total number of rejections (Zakharkin et al., 2006). The range of observed FPR is 

[0,1].  

The proposed measure of experiment-wise penalized power is calculated by sub-

tracting the observed FPR from the observed experiment-wise power. The range for this 

measure is [-1,1], where the value of -1 corresponds to testing results where only null hy-

potheses were incorrectly rejected and no true alternative hypotheses were rejected. In 

contrast, the value of 1 corresponds to testing results where all the true alternative hypo-

theses were correctly rejected and no null hypotheses were incorrectly rejected. The pur-

pose of the proposed measure of penalized power is to capture the overall usefulness of a 

procedure by incorporating into one measure both statistical power and the rate of false 

positive detections. 

Details of the testing procedures examined in this dissertation are discussed be-

low. 

   

3.5.1 Pearson’s χ2 test 

            This test, described in detail in section 3.4, is a standard tool for association stu-

dies when the allele/genotype frequencies for case and control groups are tabulated in a 

contingency table. In each of the simulated case-control cohorts, for each of the 2150 

multinomial variables representing haplotype blocks, a contingency table is tabulated and 

a Pearson’s χ2 test of association is conducted. The first applied approach is the naïve ap-

proach in which there is no correction for multiple tests, at the customary significance 

level of α=0.05 for each individual hypothesis. Next, well-known multiplicity adjust-
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ments are applied including: Bonferroni correction, Holm correction (Holm, 1979), Ben-

jamini-Hochberg ‘control of False Discovery Rate’ (FDR) (Benjamini & Hochberg, 

1995), and Benjamini-Yekutieli control of FDR under dependency (Benjamini & 

Yekutieli, 2001). 

The Bonferroni and Holm corrections control a measure of error known as the 

family-wise error rate (FWER). The FWER is defined as the probability of incorrectly 

rejecting at least 1 null hypothesis. The FWER is an appropriate measure of error when 

there is an overriding reason to not make any incorrect rejections of null hypotheses 

(Sabatti, 2006). Control of the FWER is based on setting stringent significance levels on 

the hypotheses. The downside of setting such stringent significance levels is a substantial 

decrease in statistical power.  

In the well-known Bonferroni correction, each p-value is compared to a signific-

ance level of α divided by the total number of hypotheses tested. In this case the Bonfer-

roni significance level is α/2150.  

The Holm correction is a step-wise procedure in which the p-values are sorted 

from smallest to largest before comparing them to step-wise significance levels. To illu-

strate this approach, assume a study that involves testing n hypotheses. The n p-values are 

sorted from smallest to largest and then each ordered p-value, p-value number i, p(i), is 

compared to α/(n-i+1) in a step-wise manner, where i=1 corresponds to the smallest p-

value and i=n corresponds to the largest p-value. Beginning with i=1, if p(i)≤α/(n-i+1) 

then the corresponding null hypothesis is rejected and the procedure continues with the 

next p-value. The procedure stops if p(i)>α/(n-i+1) and all null hypotheses corresponding 
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to p-values i to n are not rejected.  This approach provides a less conservative correction 

than the Bonferroni correction. 

The Benjamini-Hochberg and Benjamini-Yekutieli procedures control a measure 

of error known as the False Discovery Rate (FDR). The FDR is a less stringent criterion 

than the FWER and is defined as the expected fraction of erroneous rejections among all 

hypotheses rejected i.e. ܴܦܨ ൌ ሺ௨  ௧௨ ௨ ௬௧௦௦ ௧ௗܧ
௨  ௧௦

ሻ. The FDR crite-

rion captures the idea that if in an experiment there are a number of true alternative hypo-

theses present, we become more lenient toward committing a small fraction of false rejec-

tions when detecting the true alternative hypotheses, because the error from a single erro-

neous rejection (i.e. the FWER criterion) is not considered as crucial as the detection of 

true alternative hypotheses. Thus the proportion of incorrect rejections is controlled in-

stead of the probability of a single incorrect rejection. It has been shown that adjusting for 

multiplicity with the FDR criterion substantially increases power compared to controlling 

the FWER. Another benefit of the FDR criterion is that if all hypotheses being tested are 

true null hypotheses, controlling the FDR is equivalent to controlling the FWER (Sabatti 

et al., 2003). 

           In Benjamini & Hochberg’s approach, the first step is sorting the p-values from 

smallest to largest. Assuming a number of n hypotheses being tested, beginning with the 

smallest of the n p-values, each p(i) is compared to α(i)=qi/n where the quantity q is the 

target FDR. If p(i)≤α(i) the corresponding null hypothesis is rejected and the procedure 

continues with the next p-value. The procedure stops if p(i)>α(i) and all remaining null hy-

potheses from i to n are not rejected. It has been shown that the Benjamini & Hochberg 

procedure controls the FDR when the hypothesis tests are independent as well as when 
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the tests are under a form of dependency technically referred to as ‘Positive Regression 

Dependency on each one from a Subset’ (PRDS).  The formal definition of PRDS is ra-

ther technical and may appear quite arcane. Formally, the definition of PRDS is as fol-

lows:  

The set D is called increasing if ݔ א ݕ and ܦ  ݕ imply that ݔ א  as well. The ܦ

random variables X1, …, Xn are PRDS on I0 if, for any increasing set D, and for each 

݅ א  :ܫ

ܲሺ ଵܺ, … , ܺ א |ܦ ܺ ൌ   .ሻ is non-decreasing in xݔ

However, Sabatti et al. (2003) note that PRDS is nothing other than a formal requirement 

for what it is less formally referred to as ‘positive dependence’. A simple example of pos-

itive dependence is a group of test statistics distributed multivariate normal with all corre-

lations greater or equal than zero (Benjamini & Yekutieli, 2001).  In the context of genet-

ic association studies, Sabatti et al. (2003) interpret positive dependence as follows: if 

two markers are in LD (i.e. non random association), and neither is related to the disease, 

the p-values of the tests conducted at each marker tend to be positively correlated. 

           The Benjamini & Yekutieli (2001) control of FDR under dependency is a modifi-

cation to the Benjamini and Hochberg procedure that takes into account dependency 

types between tests other than PRDS. In this approach, the first step is sorting the p-

values from smallest to largest. Beginning with the smallest of the n p-values, each p(i) is 

compared to ߙሺሻ ൌ 
 ∑ ଵ/

సభ
ൎ 

ሾlogሺሻାఊሿ
 where the quantity q is the target FDR and γ is a 

constant known as the Euler-Mascheroni constant (γ≈0.5772). If p(i)≤α(i) the correspond-

ing null hypothesis is rejected and the procedure continues with the next p-value. The 

procedure stops if p(i)>α(i) and all remaining null hypotheses from i to n are not rejected. 
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This approach provides a more conservative control of FDR than the Benjamini and 

Hochberg procedure, and it may lead to a substantial loss of power. However, it has been 

shown to control the FDR under any kind of dependency (Sabatti, 2006).  

 For both Benjamini & Hochberg and Benjamini & Yekutieli procedures, the tar-

get FDR level is set at q=0.05 for the simulations in this dissertation. 

                                                                                                                                                                        

3.5.2 Sequential procedure proposed by Sobel et al. (1993)  

 Sobel et al. (1993) proposed the sample size of cases and controls be divided in 

two or three sub-samples to be used in two or three independent testing stages, respec-

tively. The tests conducted at each stage for each simulated haplotype block are Pearson’s 

χ2 tests. In the original procedure after each stage, i.e. after each subsample test, two 

groups are selected: a group of definitive significant markers, with p-values ≤ α/i, where i 

is the marker number; and a group of suggestive markers, with p-values between α/i and 

0.1. The suggestive genetic markers are then retested on the next subsample. At the last 

stage, after the group of definitive significant markers with p-values ≤ α/i is selected, test-

ing is stopped. An evident downside of this procedure’s proposed step-wise multiplicity 

correction is that it depends on the order of the hypotheses tested. Thus a Holm-type cor-

rection is applied instead of the original proposed correction. At each stage the n p-values 

are sorted from smallest to largest and then each ordered p-value, p-value number i, p(i), 

is compared to α/(n-i+1) in a step-wise manner. A marker is selected as definitive signifi-

cant if its p-value is ≤ α/(n-i+1) and it is not tested any further. If a marker’s p-value falls 

between α/(n-i+1) and 0.1, then the marker is selected as suggestive and retested on the 

next stage. At the last stage, after the group of definitive significant markers with p-
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values ≤ α/(n-i+1) is selected, testing is stopped. For this procedure, the significance level 

is set at the customary α=0.05 level. 

 

3.5.3 Sequential procedure proposed by Sham (1994)  

 As in Sobel et al.’s (1993) approach, the sample size of cases and controls is di-

vided in two or three sub-samples. The tests conducted at each stage are Pearson’s χ2 

tests. However, the data is used cumulatively instead of independently in the two or three 

testing stages. A Holm-type correction is also applied here. At each stage the n p-values 

are sorted from smallest to largest and then each ordered p-value, p-value number i, p(i), 

is compared to α/(n-i+1) in a step-wise manner. A marker is selected as definitive signifi-

cant if its p-value is ≤ α/(n-i+1) and it is not tested any further. If a marker’s p-value falls 

between α/(n-i+1) and 0.1, then the marker is selected as suggestive and retested on the 

next stage. At the last stage, after the group of definitive significant markers with p-

values ≤ α/(n-i+1) is selected, testing is stopped. For this procedure, the significance level 

is set at the customary α=0.05 level. 

 

3.5.4 Sequential procedure proposed by Satagopan et al. (2004) 

In this approach 50% of the available subjects are used in stage one to screen all 

markers and then, at stage two, the remaining 50% of the sample is used to validate, in-

dependently, the top 10% markers ranked by magnitude of the test statistic from stage 

one. The tests conducted at each stage are Pearson’s χ2 tests. In the original procedure, 

the markers with the highest absolute value of test statistics at stage two would be se-

lected as the markers most likely to be truly associated with the disease. However, the 



62 
 

 

number of markers at the end of stage two to be selected is an arbitrary number decided 

by the investigators conducting the association study. Since the magnitude of the test sta-

tistic depends also on the degrees of freedom of the χ2 distribution, in this dissertation the 

procedure is modified by grouping the test statistics by their degrees of freedom, and then 

selecting the top 10% markers ranked my magnitude of test statistic within each group. 

Then at stage two significance tests are used, with a Holm correction, in order to detect 

significant associations. For this procedure, the significance level is set at the customary 

α=0.05 level. 

 

3.5.5 Sequential procedure proposed by Skol et al. (2006) 

This approach consists of using 50% of the available subjects in stage one to 

screen all markers and then, at stage two, using the full sample to validate the top 10% 

markers ranked by magnitude of the absolute value of the test statistic from stage one. 

Significance tests are to be conducted at the second stage, controlling for multiplicity 

with a Bonferroni correction. In this dissertation two modifications are made to this de-

sign. First, since the magnitude of the test statistic depends also on the degrees of free-

dom of the χ2 distribution, the first modification consists of grouping the test statistics by 

their degrees of freedom, and then selecting the top 10% markers ranked my magnitude 

of the test statistic within each group. Second, a Holm correction is applied instead of 

Bonferroni in order to attain higher power as the Bonferroni correction is too conserva-

tive.  

This procedure is also considered as a screening tool with 100% of the sample on 

stage one. Since the main motivation for this approach, as well as Satagaopan et al.’s 
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(2004) procedure, is to minimize the cost of genotyping, it is assumed a highly likely fu-

ture scenario where ‘high throughput’ technologies have made genotyping costs less of a 

problem. The main interest then is accurate detection of associations. Thus, tests using 

the full sample are conducted in order to calculate test statistics for all markers, next the 

top 10% markers ranked by magnitude of the test statistic are selected, and then signific-

ance testing is conducted with a Holm correction. For this procedure, the significance 

level is set at the customary α=0.05 level. 

 

3.5.6 Modified version of SGLR test (Chan & Lai, 2005) 

The original SGLR test is described in detail in section 2.1. Briefly, the procedure 

is as follows: Let f(x|θ) be the distribution function of a random variable X with parame-

ter θ. Let Θ be the parameter space of θ. The hypothesis of interest is: H0: ߠ א Θ vs. H1: 

ߠ א Θଵ, where Θ0 is the parameter space restricted to the null hypothesis, and Θ1 is the 

parameter space restricted to the alternative hypothesis. Let Θଵ ת Θ ൌ and Θଵ ,  

Θ ൌ Θ . 

At each observation (at the mth observation), calculate  

ߣ ൌ
∏ ݂ሺݔ|ߠሻ

ୀଵ

∏ ݂ሺݔ|ߠሻ
ୀଵ

    and     ߣଵ ൌ
∏ ݂ሺݔ|ߠሻ

ୀଵ

∏ ݂ሺݔ|ߠଵሻ
ୀଵ

 

Where ߠ,  ଵ are respectively the unrestricted MLE of θ, the restricted MLE of θߠ andߠ

under H0, and the restricted MLE of θ under H1.  

Reject H0 (conclude H1) if ߣ   ;ோீܤ

FTR H0 (conclude H0) if ߣଵ   ;ோீܤ

Otherwise, collect an additional observation. 
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The decision boundary BGLR is to be calculated by a Monte Carlo approach. If after cer-

tain number of observations a terminal decision has not been reached, then the test is 

truncated and H0 is not rejected. 

 As shown through the SGLR example discussed in section 2.1, it is straightfor-

ward to apply the SGLR test to situations involving a single stream of observed data. In a 

case-control scenario, as long as there is a form for the distribution of the difference be-

tween each pair of case and control observations, then the SGLR test can be easily ap-

plied. For instance, the difference between two normally distributed variables is a normal 

variable. In the case considered in this dissertation, using the SGLR to test a difference in 

proportions in case-control multinomial data presents major difficulties. First, each pair 

of case-control multinomial outcome realizations constitutes nominal-type data and thus 

it makes no sense to ‘subtract’ one from the other in the sense of continuous data, and 

then use the result of the subtraction individually in a likelihood function. Second, if the 

focus is on the difference in accumulating proportions instead of the outcome realizations 

themselves, then the proportions, calculated after each pair of multinomial outcome reali-

zations is observed, are not independent from the previously observed proportions, a situ-

ation more suited for repeated significance testing methods than for fully sequential pro-

cedures, which assume independence among accumulating observations. Third, apart 

from the aforementioned issue of non-independence between accumulating proportions, 

as discussed in section 3.4.4 when comparing frequencies of multinomial outcome reali-

zations between groups, for a multinomial variable with 3 or more outcomes, a change in 

the proportion of one outcome results in a change in the proportion of at least one of the 

other outcomes. Therefore, for multinomial variables with 3 or more outcomes, to test H0: 
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the proportions between case and control groups are equal, vs. H1: at least one proportion 

differs between case and control groups, there is no clear way to partition the parameter 

spaces between null and alternative spaces in a single SGLR test for all the proportions 

involved. Thus, since there are many combinations of proportions that can cause a signif-

icant change, more than one test would be required, which would result in multiplicity 

within a single test of hypothesis. In fact, to this date, the author of this dissertation has 

been unable to find in the literature a formal fully sequential test of association for con-

tingency tables.  

After careful consideration of the problems involved in conducting a SGLR test 

with case-control multinomial data, an adaptation to the procedure is proposed that con-

sists of using the Pearson’s χ2 tests statistic to calculate the likelihood ratios required for 

this test, and an error spending function to account for multiple looks at accumulating 

data. The proposed adaptation combines two ideas proposed in the literature separately. 

First, in a Bayesian setting, Johnson (2005) proposes likelihood ratio tests based on 

common test statistics such as Pearson’s χ2 and Student’s t. Second, Pearson’s χ2 test sta-

tistics have been used successfully in repeated significance testing since O’Brien and 

Fleming’s (1979) seminal paper, which directly deals with repeated looks at a Pearson’s 

χ2 test statistic resulting from accumulating case-control dichotomous data. The proposed 

adaptation is not free of problems, however, as it is discussed in the following para-

graphs. 

In Pearson’s χ2 test, under the null hypothesis of no association, the test statistic is 

approximately distributed as a (central) χ2 variable with degrees of freedom depending on 

the number of categories in the contingency table. Under the alternative hypothesis, the 
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test statistic is approximately distributed as a non-central χ2 variable with non-centrality 

parameter δ≥0. Since the non-central χ2 distribution with non-centrality parameter δ=0 

reduces to the (central) χ2 distribution, the SGLR test can be set in terms of the non-

centrality parameter δ. The test requires the MLE of the non-centrality parameter. Let xi, 

i=1..n be iid from a non-central χ2 distribution with ν degrees of freedom and non-

centrality parameter δ, the MLE of δ, ߜመ, is given by: 

መߜ ൌ max ሼሺ∑ ሻݔ െ ,ߥ݊ 0ሽ ൌ max ሼݔҧ െ ߭, 0ሽ
ୀଵ   (Saxena & Alam, 1982).  

According to the simulation design for this dissertation, 100 multinomial va-

riables representing haplotype blocks associated with disease status are set up so that the 

differences in proportions of multinomial outcome realizations between case and control 

groups, when tested in contingency tables with Pearson’s χ2 tests, result in the χ2 values 

shown in Table 6. For these χ2 values, the non-centrality parameters δ that can be ob-

served under the alternative hypothesis of different proportions of haplotype realizations 

between case and control groups, for blocks having 2 to 6 haplotypes, are given in Table 

12.  

 

Table 12. Non-centrality parameters δ that can be observed with N=800 observations, 

for blocks having 2 to 6 haplotypes, under the alternative hypothesis of different propor-

tions of haplotype realizations between case and control groups. 

Haplotypes 
per Block 

Degrees of 
freedom  χ2 value  δ 

2  1  15.1127 14.1127
3  2  17.5774 15.5774
4  3  19.3607 16.3607
5  4  20.8294 16.8294
6  5  22.1074 17.1074
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It is assumed that a non-centrality parameter <5 is considered noise, and therefore 

the minimum value of a non-centrality parameter to be considered relevant is 5, which is 

an interior point of the parameter space of δ. Thus, the SGLR hypothesis test can be for-

mulated as H0: ߜ  δ vs. H1: ߜ  δ, where δ0=5.  

At each observation (at the mth observation), calculate  

ߣ ൌ
∏ ݂ሺݔ|ߜመሻ

ୀଵ

∏ ఋ݂ஸஔబሺݔ|ߜመሻ
ୀଵ

    and     ߣଵ ൌ
∏ ݂ሺݔ|ߜመሻ

ୀଵ

∏ ఋ݂வఋబሺݔ|ߜመሻ
ୀଵ

 

Reject H0 (conclude H1) if ߣ   ;ோீܤ

FTR H0 (conclude H0) if ߣଵ   ;ோீܤ

Otherwise, collect an additional observation. If after certain maximum number of obser-

vations a terminal decision has not been reached, then the test is truncated and H0 is not 

rejected. 

Ideally, each ‘observation’ of the Pearson’s χ2 statistic is calculated sequentially 

after each pair of case and control multinomial observations is tabulated in an accumulat-

ing contingency table. However, for a fixed number of cells in a contingency table, the 

true sampling distribution of the Pearson’s χ2 statistic only converges to the chi-square 

distribution as the sample size increases. Low sample sizes and sparse tables result in test 

statistics poorly approximated to the chi-square distribution (Agresti, 2002). Therefore, 

the first problem of the proposed modified SGLR is convergence of the test statistic. 

Thus, as there is only assurance of good convergence with contingency tables including 

as many counts as possible, for this version of the SGLR test, the Pearson’s χ2 statistics 
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are calculated beginning with 80% of the sample, and then at 1% increases until 100% of 

the sample has been utilized, for a maximum number of 21 χ2 ‘observations’.  

In the original SGLR procedure, the decision boundary BGLR is calculated by a 

Monte Carlo approach. However in this case, the sequence of 21 Pearson’s χ2 ‘observa-

tions’ is not independent, and the autocorrelation in the sequence is unknown beforehand. 

Thus, an accurate Monte Carlo estimate of BGLR cannot be obtained with an acceptable 

degree of certainty. Therefore, the second problem of the proposed modified SGLR is 

obtaining the decision boundary BGLR. Instead of a Monte Carlo approach, the approach 

taken in this dissertation uses two tools to obtain an estimate of the boundary BGLR. The 

first tool is the asymptotic distribution of the GLR statistic. The second tool is an 

O’Brien-Fleming-type error spending function that accounts for repeated looks at a test 

statistic calculated on accumulating data.  

Under the regularity conditions stated in section 2.1, for a fixed sample size test of 

the form H0: ߠ ൌ ߠ : vs. H1ߠ ് -, the GLR statistic can be approximated asymptoticalߠ

ly by:  

െ2logߣ൫ݔ൯
      
ሱۛሮ ߯ሺଵሻ

ଶ  ; ൯ݔ൫ߣ   ൌ  
∏ ݂ሺݔ|ߠሻ

ୀଵ

∏ ݂ሺݔ|ߠ
ୀଵ ሻ

 ; ߠ  ൌ MLEሺߠሻ 

 Thus, for a significance level α≈0.05 using the asymptotic approximation, H0 is 

rejected if ߣ൫ݔ൯  ଵ

 . In this case, since the xi in x are not independent, one of the regular-

ity conditions is violated and an error spending function is needed to modify the signific-

ance level in order to account for the χ2 ‘observations’ arising from multiple looks at a 

test statistic calculated on accumulating data. Table 13 shows the nominal significance 

levels and respective λ(x) values that would cross the boundary resulting from an 
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O’Brien-Fleming-type error spending function with 21 information fractions, beginning 

with 80%, calculated with the software application by Reboussin et al. (2000). 

 

Table 13. Nominal significance levels and respective λ(x) values resulting from an 

O’Brien-Fleming-type error spending function with 21 information fractions, beginning 

with 80%, calculated with the software application by Reboussin et al. (2000) 

 

χ2 number 
Accumulated 
sample per 

group 

Information 
fraction 

Nominal 
significance 

level 
λ(x) 

1 320 0.8 0.00978 1/28 
2 324 0.81 0.0098 1/28 
3 328 0.82 0.00983 1/28 
4 332 0.83 0.00987 1/27 
5 336 0.84 0.00992 1/27 
6 340 0.85 0.01008 1/27 
7 344 0.86 0.01029 1/26 
8 348 0.87 0.01053 1/26 
9 352 0.88 0.01079 1/25 
10 356 0.89 0.01107 1/25 
11 360 0.9 0.01137 1/24 
12 364 0.91 0.01168 1/24 
13 368 0.92 0.012 1/23 
14 372 0.93 0.01234 1/22 
15 376 0.94 0.01268 1/22 
16 380 0.95 0.01303 1/21 
17 384 0.96 0.01338 1/21 
18 388 0.97 0.01374 1/20 
19 392 0.98 0.01411 1/20 
20 396 0.99 0.01449 1/19 
21 400 1  0.01487  1/19 
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For a naïve approach in which there is no correction for multiplicity at the customary 

α=0.05 significance level, for each hypothesis test the boundaries BGLR are set equal to 

the column λ(x) in Table 13, at each of the 21  χ2 ‘observations’ accordingly. 

 For an approach with a Bonferroni correction for multiplicity, Table 14 shows the 

nominal significance levels and respective λ(x) values that would cross the boundary re-

sulting from an O’Brien-Fleming-type error spending function with 21 information frac-

tions, beginning with 80%, calculated with the software application by Reboussin et al. 

(2000), with a Bonferroni correction for 2150 hypothesis tests. 

 

Table 14. Nominal significance levels and respective λ(x) values resulting from an 

O’Brien-Fleming-type error spending function with 21 information fractions, beginning 

with 80%, with a Bonferroni correction. 

χ2 number 
Accumulated 
sample per 

group 

Information 
fraction 

Nominal 
significance 

level 
λ(x) 

1 320 0.8 4.549*10‐6 1/36651 
2 324 0.81 4.558*10‐6 1/36580 
3 328 0.82 4.572*10‐6 1/36473 
4 332 0.83 4.591*10‐6 1/36331 
5 336 0.84 4.614*10‐6 1/36156 
6 340 0.85 4.688*10‐6 1/35606 
7 344 0.86 4.786*10‐6 1/34909 
8 348 0.87 4.898*10‐6 1/34147 
9 352 0.88 5.019*10‐6 1/33359 
10 356 0.89 5.149*10‐6 1/32550 
11 360 0.9 5.288*10‐6 1/31727 
12 364 0.91 5.433*10‐6 1/30921 
13 368 0.92 5.581*10‐6 1/30131 
14 372 0.93 5.74*10‐6 1/29336 
15 376 0.94 5.898*10‐6 1/28582 
16 380 0.95 6.06*10‐6 1/27847 
17 384 0.96 6.223*10‐6 1/27150 
18 388 0.97 6.391*10‐6 1/26469 
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19 392 0.98 6.563*10‐6 1/25804 
20 396 0.99 6.74*10‐6 1/25156 
21 400 1  6.916*10‐6  1/24541 

 

 

For an approach with a Bonferroni correction for multiplicity, for each hypothesis 

test the boundaries BGLR are set equal to the column λ(x) in Table 14, at each of the 21  χ2 

‘observations’ accordingly. 
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4. RESULTS 

4.1 Graphical Comparison of Simulation Testing Results 

 Figures 12, 13, 14, and 15 summarize graphically the simulation results in terms 

of observed experiment-wise type I error rate, FPR, observed experiment-wise power, 

and a proposed measure of penalized power, respectively. 

 

Figure 12. Observed experiment-wise type I error rate from 1000 simulations. For each 

procedure, the length of the solid bar represents the estimated mean; and the short lines 

extending from the solid bar represent a 95% C.I. for the mean.  
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 In terms of the mean observed experiment-wise type I error rate, Figure 12 shows 

that on the average, almost all methods resulted in low experiment-wise type I error rates. 

If the criterion for selecting the best procedure was experiment-wise type I error rate, 

then the procedure with the lowest experiment-wise type I error rate and therefore best 

result is Pearson’s χ2 test with a Bonferroni correction, closely followed by Pearson’s χ2 

test with a Holm correction, and Pearson’s χ2 with Benjamini-Yekutieli control of FDR 

under dependency. As expected, control of the FWER and strong control of the FDR re-

sult in very low type I error rates. Among the sequential approaches, it is noticeable that 

the sequential procedure proposed by Skol et al. modified with a Holm correction pro-

duces results comparable to those of the non-sequential approaches. The mean observed 

experiment-wise type I error rate for this sequential procedure is slightly higher than that 

of the three ‘best’ procedures according to this performance criterion. A surprising result 

is the mean observed experiment-wise type I error rate of about 0.015 obtained for the 

modified SGLR test uncorrected for multiplicity, which is substantially lower than the 

expected level of 0.05. On the other hand, Pearson’s χ2 test with no multiplicity adjust-

ment resulted almost exactly in the expected level of 0.05.     

 

Figure 13. False Positive Rate (FPR) from 1000 simulations. For each procedure, the 

length of the solid bar represents the estimated mean; and the short lines extending from 

the solid bar represent a 95% C.I. for the mean. 
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In terms of the mean FPR, Figure 13 shows that on the average, the fixed-sample-

size methods with multiplicity adjustments resulted in the expected low levels, whereas 

the sequential procedures produced mixed results. A surprising result is the mean FPR 

obtained for the sequential procedure proposed by Skol et al. modified with a Holm cor-

rection. If the criterion for selecting the best procedure was FPR, then this sequential pro-

cedure resulted in the lowest FPR and therefore best result, closely followed by the non-

sequential Pearson’s χ2 tests with multiplicity adjustments, thus suggesting the usefulness 

of this sequential method to filter out false positive detections. On the other hand, the se-

quential procedure proposed by Sobel et al. produced very poor results in regards to the 

FPR performance criterion. For instance, on the average, over 90% of the detections with 

Sobel et al.‘s procedure with 3 stages were false detections. 
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Figure 14. Observed experiment-wise power from 1000 simulations. For each procedure, 

the length of the solid bar represents the estimated mean; and the short lines extending 

from the solid bar represent a 95% C.I. for the mean. 
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corrected. A surprising result is the mean observed experiment-wise power of about 80% 

obtained for the modified SGLR test with a Bonferroni correction. On the other hand, 

Pearson’s χ2 test with Benjamini & Hochberg control of FDR adjustment resulted in sub-
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that the sequential methods that divide the sample size in independent subsamples pro-

duced the poorest results in regards of the experiment-wise power criterion.     

 

Figure 15. Penalized Power (experiment-wise power-FPR) from 1000 simulations. For 

each procedure, the length of the solid bar represents the estimated mean; and the short 

lines extending from the solid bar represent a 95% C.I. for the mean. 

 

 

The purpose of the proposed measure of penalized power is to capture the overall 

usefulness of a procedure by incorporating into one measure the procedure’s statistical 

power counterbalanced by its observed rate of false positive detections. In terms of this 

measure, Figure 15 shows that on the average, the non-sequential Pearson’s χ2 test with 

Benjamini & Hochberg control of FDR adjustment provided the best balance between 

‐1 ‐0.8 ‐0.6 ‐0.4 ‐0.2 0 0.2 0.4 0.6 0.8

Sobel_3_stages

Sobel_2_stages

Satagopan_Holm

Sham_2_stages

X2tests_Bonf

X2tests_Holm

X2tests

X2tests_BY_FDR

Sham_3_stages

Skol_Holm

NonSeqSkol_Holm

Modifed SGLR

Modifed SGLR_Bonf

X2tests_BH_FDR

Average Penalized Power (Power‐FPR)



77 
 

 

power and false positive detection, closely followed by the modified SGLR test with a 

Bonferroni correction. Although this is not a completely surprising result, it is noticeable 

that neither of these two procedures obtained the ‘best’ results in the other three perfor-

mance criteria examined; that is, neither of these two procedures obtained the ‘best’ mean 

observed experiment-wise type I error rate, FPR, or observed experiment-wise power.  

Results for the other sequential procedures were mixed. The sequential methods that di-

vide the sample size into independent subsamples produced the poorest results in regards 

of the penalized power criterion. However, the sequential methods that pool the sample 

obtained better results in this criterion than the non-sequential procedures, with the ex-

ception of the non-sequential modification to the procedure by Skol et al. with a Holm 

correction. The high power obtained by Pearson’s χ2 tests uncorrected for multiplicity 

was counterbalanced by high FPR as expected, whereas Pearson’s χ2 tests with FWER 

corrections although resulted in very low FPR, also resulted in low power, thus yielding a 

somewhat low performance in terms of the penalized power criterion.  

 

4.2 Detailed Simulation Results by Testing Procedure 

4.2.1 Pearson’s χ2 tests, uncorrected for multiplicity 

 The simulation results for this testing procedure are tabulated in Table 15. 

 

Table 15. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using Pearson’s χ2 tests with no multiplicity correction. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0.03073 0.04537 0.04927 0.04947 0.05366 0.06878 0.005778026 
FPR 0.3889 0.4894 0.51 0.5084 0.5298 0.5966 0.03003555 
Power 0.89 0.96 0.98 0.9741 0.99 1 0.02102801 
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Penalized Power 0.3263 0.44 0.466 0.4657 0.4907 0.6011 0.03976779 

 

  

Each row in Table 15 shows descriptive statistics for the measure in the leftmost 

column. For this procedure, at a significance level of 0.05 for each individual test, the 

mean observed experiment-wise type I error rate of 0.0495 (Table 15, row 1) is very 

close, as expected, to the significance level of 0.05. The average FPR of 0.508 (Table 15, 

row 2) is somewhat high and indicates that on the average, approximately 50.8% of the 

hypotheses rejected were true null hypotheses. The average observed experiment-wise 

power of 0.974 (Table 15, row 3) is high as expected and indicates that on the average the 

procedure detected 97.4% of the simulated true alternative hypotheses. The average pena-

lized power of 0.466 (Table 15, row 4) in this case indicates that the usefulness of the 

procedure to detect associations, resulting from high statistical power, is greatly counter-

balanced by a high FPR. The ideal procedure would have a Penalized Power close to 1 

indicating highly desirable characteristics such as high statistical power and low FPR.   

 

4.2.2 Pearson’s χ2 tests, Bonferroni correction 

The simulation results for this testing procedure are tabulated in Table 16. 

 

Table 16. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using Pearson’s χ2 tests with a Bonferroni correction. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0 0.0004878 0.0004878 0.0007415 0.0009756 0.003415 0.000614554 
FPR 0 0.02083 0.03704 0.04338 0.06522 0.2258 0.03642932 
Power 0.12 0.28 0.34 0.3455 0.4 0.61 0.08504818 
Penalized Power -0.02048 0.2347 0.3068 0.3021 0.37 0.5733 0.1014953 
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Each row in Table 16 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the mean experiment-wise type I error rate of 7.41*10-4 (Ta-

ble 16, row 1) is very low as expected. The average FPR of 0.043 (Table 16, row 2) is 

low and indicates that on the average, approximately 4.3% of the hypotheses rejected 

were true null hypotheses. However, the mean experiment-wise power of 0.345 (Table 

16, row 3) is also low, and indicates that on the average the procedure only detected 

34.5% of the true alternative hypotheses. The average penalized power of 0.302 (Table 

16, row 4) in this case indicates that the usefulness of the procedure to detect a high frac-

tion of true associations is somewhat low, resulting from low statistical power, even 

though the procedure has the advantage of a low FPR resulting from small numbers of 

false detections. 

 

4.2.3 Pearson’s χ2 tests, Holm correction 

The simulation results from this testing procedure are tabulated in Table 17. 

 

Table 17. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using Pearson’s χ2 tests with a Holm correction. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0 0.0004878 0.0004878 0.000742 0.0009756 0.003415 0.000614546 
FPR 0 0.02083 0.03704 0.04321 0.06522 0.2188 0.03621273 
Power 0.12 0.28 0.35 0.347 0.4 0.61 0.0852938 
Penalized Power -0.02048 0.2375 0.3074 0.3038 0.3745 0.5733 0.1015424 
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Each row in Table 17 shows descriptive statistics for the measure in the leftmost 

column. As expected, for this procedure the average observed experiment-wise type I er-

ror rate of 7.42*10-4 (Table 17, row 1) is low and slightly larger than the observed aver-

age experiment-wise type I error level of 7.41*10-4 for the Bonferroni-corrected proce-

dure. The average FPR of 0.0432 (Table 17, row 2) is low and indicates that on the aver-

age, approximately 4.32% of the hypotheses rejected were true null hypotheses; it is ap-

proximately the same average FPR of the Bonferroni-corrected procedure. However, as 

with the Bonferroni-corrected procedure, the mean experiment-wise power of 0.347 (Ta-

ble 17, row 3) is low and indicates that on the average the procedure only detected 34.7% 

of the simulated true alternative hypotheses. The average penalized power of 0.304 (Ta-

ble 17, row 4) in this case indicates that the usefulness of the procedure to detect a high 

fraction of true associations is somewhat low, resulting from low statistical power, even 

though the procedure has the advantage of a low FPR resulting from small numbers of 

false detections. 

 

4.2.4 Pearson’s χ2 tests with Benjamini and Hochberg’s control of FDR procedure  

The simulation results for this testing procedure are tabulated in Table 18. 

 

Table 18. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using Pearson’s χ2 tests with Benjamini and Hochberg’s control of FDR procedure. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0 0.001463 0.002439 0.002407 0.003415 0.006341 0.001186348 
FPR 0 0.03797 0.05682 0.05826 0.07692 0.1446 0.02661439 
Power 0.5 0.74 0.79 0.7868 0.84 0.98 0.07923096 
Penalized Power 0.3929 0.6767 0.7344 0.7285 0.7858 0.9297 0.08344801 
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Each row in Table 18 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the average observed experiment-wise type I error rate of 

0.0024 (Table 18, row 1) is low but, but as expected it is larger than that for both the 

Bonferroni-corrected and Holm-corrected procedures. The average FPR of 0.058 (Table 

18, row 2) is slightly larger than the set q-level of 0.05 expected under independence or 

positive dependence of the hypotheses. This average FPR of 0.058 indicates that on the 

average, approximately 5.8% of the hypotheses rejected were true null hypotheses. The 

mean observed experiment-wise power of 0.79 (Table 18, row 3) is over two times higher 

than that of the Bonferroni-corrected and Holm-corrected procedures and indicates that 

on the average the procedure detected 79% of the true alternative hypotheses. The aver-

age penalized power of 0.728 (Table 18, row 4) in this case indicates that the usefulness 

of the detections is not greatly counterbalanced by large numbers of false detections. 

Thus, in this case, this procedure results in an improvement in the balance between statis-

tical power and false detections compared to the non-sequential uncorrected, Bonferroni-

corrected, and Holm-corrected procedures. This procedure obtained the best average pe-

nalized power among all non-sequential and sequential procedures examined. 

 

4.2.5 Pearson’s χ2 tests with Benjamini and Yekutieli control of FDR under dependency 

procedure  

The simulation results for this testing procedure are tabulated in Table 19. 
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Table 19. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using Pearson’s χ2 tests with Benjamini and Yekutieli control of FDR under dependency 

procedure. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0 0.0004878 0.0009756 0.0008527 0.001463 0.003415 0.000671754 
FPR 0 0.01587 0.02985 0.03218 0.04762 0.1613 0.02504971 
Power 0.17 0.46 0.54 0.5322 0.61 0.82 0.1116895 
Penalized Power 0.06474 0.4247 0.5044 0.5 0.5783 0.7847 0.1189962 

 

 

Each row in Table 19 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the average observed experiment-wise type I error rate of 

8.5*10-4 (Table 19, row 1) is low but as expected, it is larger than that for the Bonferroni-

corrected and Holm-corrected procedures. The average FPR of 0.032 (Table 19, row 2) is 

lower than the set q-level of 0.05 expected under independence or positive dependence of 

the hypotheses. This observed average FPR of 0.032 indicates that on the average, ap-

proximately 3.2% of the hypotheses rejected were true null hypotheses. The mean ob-

served experiment-wise power of 0.53 (Table 19, row 3) is somewhat low and indicates 

that on the average the procedure detected 53% of the true alternative hypotheses. The 

average Penalized Power of 0.5 (Table 19, row 4) in this case indicates that the useful-

ness of the procedure to detect associations is somewhat low, resulting from somewhat 

low statistical power, even though the procedure has the advantage of a low FPR result-

ing from small numbers of false detections. Thus, in this case, this procedure does not 

result in an improvement in the balance between statistical power and false detections 

compared to the non-sequential procedure with Benjamini-Hochberg adjustment.  
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4.2.6 Sequential procedure proposed by Sobel et al. (1993), two stages 

The simulation results for this testing procedure are tabulated in Table 20. 

 

Table 20. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification of the sequential procedure proposed by Sobel et al. (1993) with two 

stages. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0.00976 0.01707 0.01951 0.01958 0.02195 0.0322 0.00331401 
FPR 0.4546 0.6964 0.76 0.7539 0.8113 0.9546 0.08099078 
Power 0.02 0.1 0.13 0.1338 0.17 0.39 0.05441359 
Penalized Power -0.9345 -0.713 -0.6305 -0.62 -0.5317 -0.1401 0.132517 

 

 

Each row in Table 20 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the average observed experiment-wise type I error rate of 

0.019 (Table 20, row 1) is lower than the uncorrected significance level of 0.05. Howev-

er, the average observed FPR of 0.754 (Table 20, row 2) is very high and indicates that 

on the average, approximately 75.4% of the hypotheses rejected were true null hypothes-

es. The average observed experiment-wise power of 0.17 (Table 20, row 3) is very low 

and indicates that on the average the procedure detected only 17% of the true alternative 

hypotheses. The average Penalized Power of -0.62 (Table 20, row 4) indicates a proce-

dure with very low usefulness, resulting from highly undesirable properties such as low 

power and high FPR.    

 

4.2.7 Sequential procedure proposed by Sobel et al. (1993), three stages 

The simulation results for this testing procedure are tabulated in Table 21. 
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Table 21. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification of the sequential procedure proposed by Sobel et al. (1993) with 

three stages. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0.05024 0.06293 0.06732 0.06703 0.07122 0.08927 0.005997684 
FPR 0.8079 0.8978 0.9156 0.9147 0.9353 0.9864 0.02868389 
Power 0.02 0.1 0.13 0.1285 0.15 0.3 0.04572199 
Penalized Power -0.9664 -0.8371 -0.79 -0.7862 -0.7429 -0.518 0.07378462 

 

 

Each row in Table 21 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the average observed experiment-wise type I error rate of 

0.067 (Table 21, row 1) is higher than the uncorrected significance level of 0.05. The av-

erage FPR of 0.914 (Table 21, row 2) is very high and indicates that on the average, ap-

proximately 91.4% of the hypotheses rejected were true null hypotheses. The average ob-

served experiment-wise power of 0.13 (Table 21, row 3) is very low and indicates that on 

the average the procedure detected only 13% of the true alternative hypotheses. The aver-

age Penalized Power of -0.78 (Table 21, row 4) indicates a procedure with very low use-

fulness, resulting from highly undesirable properties such as low power and high FPR.    

 

4.2.8 Sequential procedure proposed by Sham (1994), two stages 

The simulation results for this testing procedure are tabulated in Table 22. 
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Table 22. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification to the sequential procedure proposed by Sham (1994) with two 

stages. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0.00829 0.0161 0.01805 0.01832 0.02049 0.03024 0.003184611 
FPR 0.2208 0.3656 0.4043 0.4052 0.4444 0.5875 0.05835 
Power 0.25 0.49 0.56 0.5542 0.61 0.83 0.09302497 
Penalized Power -0.2954 0.05608 0.1576 0.149 0.2452 0.5587 0.1399902 

 

 

Each row in Table 22 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the average observed experiment-wise type I error rate of 

0.0183 (Table 22, row 1) is lower than the uncorrected significance level of 0.05. The 

average FPR of 0.405 (Table 22, row 2) is somewhat high and indicates that on the aver-

age, approximately 40.5% of the hypotheses rejected were true null hypotheses. The av-

erage observed experiment-wise power of 0.55 (Table 22, row 3) is somewhat low and 

indicates that on the average the procedure detected 55% of the true alternative hypothes-

es. The average Penalized Power of 0.15 (Table 22, row 4) in this case indicates that the 

usefulness of the procedure to detect true associations is low due to somewhat low power 

counterbalanced by a high FPR. 

 

4.2.9 Sequential procedure proposed by Sham (1994), three stages 

The simulation results for this testing procedure are tabulated in Table 23. 
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Table 23. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification to the sequential procedure proposed by Sham (1994) with three 

stages. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0.00049 0.00244 0.00341 0.003508 0.00439 0.0078 0.001310606 
FPR 0.01333 0.07812 0.1 0.1057 0.1292 0.2388 0.03858013 
Power 0.28 0.55 0.62 0.613 0.68 0.88 0.09326274 
Penalized Power 0.1285 0.4336 0.5167 0.5073 0.5866 0.8055 0.1140816 

 

 

Each row in Table 23 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the average observed experiment-wise type I error rate of 

0.0035 (Table 23, row 1) is lower than the uncorrected significance level of 0.05. Also, 

the average FPR of 0.105 (Table 23, row 2) is somewhat low and indicates that on the 

average, approximately 10.5% of the hypotheses rejected were true null hypotheses. The 

average observed experiment-wise power of 0.61 (Table 23, row 3) is however somewhat 

low and indicates that on the average the procedure detected 61% of the simulated true 

alternative hypotheses. The average Penalized Power  of 0.507 (Table 23, row 4) indi-

cates that the usefulness of the procedure to is somewhat limited, resulting from some-

what low statistical power, even though the procedure has the advantage of a low FPR 

resulting from low to moderate numbers of false detections. 

 

4.2.10 Sequential procedure proposed by Satagopan et al. (2004), Holm correction 

The simulation results for this testing procedure are tabulated in Table 24. 
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Table 24. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification to the sequential procedure proposed by Satagopan et al. (2004). 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0 0.00146 0.00195 0.001943 0.00244 0.00634 0.0009468 
FPR 0 0.2 0.2941 0.3112 0.4 1 0.1583019 
Power 0 0.06 0.09 0.09818 0.13 0.32 0.04875926 
Penalized Power -1 -0.325 -0.19 -0.213 -0.07 0.25 0.1933043 

 

 

Each row in Table 24 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the average observed experiment-wise type I error rate of 

0.002 (Table 24, row 1) is lower than the uncorrected significance level of 0.05. The av-

erage FPR of 0.31 (Table 24, row 2) is somewhat high and indicates that on the average, 

approximately 31% of the hypotheses rejected were true null hypotheses. The average 

observed experiment-wise power of 0.098 (Table 24, row 3) is very low and indicates 

that on the average the procedure detected only 9.8% of the true alternative hypotheses. 

The average Penalized Power of -0.21 (Table 24, row 4) indicates a procedure with unde-

sirable properties such as low power and high FPR. 

 

4.2.11 Sequential procedure proposed by Skol et al. (2006), Holm correction 

The simulation results for this testing procedure are tabulated in Table 25. 

 

Table 25. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification to the sequential procedure proposed by Skol et al. (2006) 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0 0.00049 0.00098 0.0008894 0.00146 0.00341 0.000673201 
FPR 0 0.01587 0.02985 0.03176 0.04762 0.1346 0.02383731 
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Power 0.28 0.4975 0.56 0.5578 0.62 0.85 0.09095859 
Penalized Power 0.1957 0.46 0.5308 0.5261 0.59 0.8051 0.09823053 

 

 

Each row in Table 25 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the observed experiment-wise type I error rate of 8.8*10-4 

(Table 25, row 1) is very low, about 1.17 times the observed experiment-wise type I error 

rate of 7.41*10-4 of the Pearson’s χ2 test with a Bonferroni correction. The average FPR 

of 0.031 (Table 25, row 2) is very low and indicates that on the average, approximately 

3.1% of the hypotheses rejected were true null hypotheses. However, the observed expe-

riment-wise power of 0.557 (Table 25, row 3) is somewhat low and indicates that on the 

average the procedure detected only 55.7% of the simulated true alternative hypotheses. 

The average Penalized Power of 0.526 (Table 25, row 4) is almost two times that of the 

non-sequential Bonferroni-corrected, and Holm-corrected procedures, and in this case 

indicates that even though the procedure does not attain very high power, the usefulness 

of the true detections is not greatly counterbalanced by large numbers of false detections. 

Thus, this procedure results in an improvement in the balance between statistical power 

and false detections compared to the non-sequential Bonferroni-corrected, and Holm-

corrected procedures, and the sequential procedures by Sobel et al. (1993), Sham (1994), 

and Satagopan et al. (2004).  

 

4.2.12 Non-sequential modification to the procedure proposed by Skol et al. (2006), 

Holm correction 

The results for this testing procedure are tabulated in Table 26. 
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Table 26. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a non-sequential modification to the procedure proposed by Skol et al. (2006) 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0 0.0004878 0.0009756 0.0009927 0.001463 0.003902 0.000717245 
FPR 0 0.01538 0.0303 0.03222 0.04688 0.122 0.02283374 
Power 0.28 0.55 0.62 0.6131 0.68 0.87 0.09386667 
Penalized Power 0.2133 0.5149 0.5856 0.5809 0.6504 0.85 0.1005349 

 

 

Each row in Table 26 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the observed experiment-wise type I error rate of 9.9*10-4 

(Table 26, row 1) is very low, about 1.3 times the observed type I error rate of 7.41*10-4 

of the Pearson’s χ2 tests with a Bonferroni correction. The average FPR of 0.032 (Table 

26, row 2) is very low and indicates that on the average, approximately only 3.2% of the 

hypotheses rejected were true null hypotheses. The observed experiment-wise power of 

0.61 (Table 26, row 3) is somewhat low and indicates that on the average the procedure 

detected 61% of the simulated true alternative hypotheses. The average Penalized Power 

of 0.458 (Table 26, row 4) is two times that of the non-sequential Bonferroni-corrected, 

and Holm-corrected procedures, and in this case indicates that even though the procedure 

does not attain very high power, the usefulness of the true detections is not greatly coun-

terbalanced by large numbers of false detections. Thus, this modified procedure results in 

an improvement in the balance between statistical power and false detections compared 

to the non-sequential Bonferroni-corrected, and Holm-corrected procedures, and the se-

quential procedures by Sobel et al. (1993), Sham (1994), Satagopan et al. (2004), and the 

original sequential procedure proposed by Skol et al. (2006) with a Holm correction.  
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4.2.13 Modified SGLR test, uncorrected for multiplicity 

The simulation results for this testing procedure are tabulated in Table 27. 

 

Table 27. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification to the SGLR test, uncorrected for multiplicity. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0.00732 0.01366 0.01561 0.01586 0.01805 0.02634 0.002951244 
FPR 0.14 0.24 0.27 0.2641 0.29 0.37 0.03732244 
Power 0.72 0.87 0.9 0.8991 0.93 1 0.04648739 
Penalized Power 0.4022 0.595 0.638 0.6349 0.6802 0.8136 0.06602789 

 

 

Each row in Table 27 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the observed experiment-wise type I error rate of 0.015 (Ta-

ble 27, row 1) is lower than the uncorrected significance level of 0.05. The average FPR 

of 0.264 (Table 27, row 2) is moderate and indicates that on the average, approximately 

26.4% of the hypotheses rejected were true null hypotheses. The observed experiment-

wise power of 0.899 (Table 27, row 3) is high and indicates that on the average the pro-

cedure detected 89.9% of the simulated true alternative hypotheses. The average Pena-

lized Power of 0.63 (Table 27, row 4) is somewhat high and indicates that the high power 

is somewhat counterbalanced by the false positive detections. Thus, this procedure results 

in an improvement in the balance between statistical power and false detections com-

pared to the non-sequential Bonferroni-corrected, and Holm-corrected procedures, and 

the sequential procedures by Sobel et al. (1993), Sham (1994), Satagopan et al. (2004), 

and the sequential procedure proposed by Skol et al. (2006). 
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4.2.14 Modified SGLR test, Bonferroni correction 

The simulation results for this testing procedure are tabulated in Table 28. 

 

Table 28. Testing results from 1000 simulated association scans of 2150 haplotype blocks 

using a modification to the SGLR test proposed, with a Bonferroni correction for multip-

licity. 

Measure Min 1st_Q Median Mean 3rd_Q Max Std_Dev 
Type I error 0.00049 0.00293 0.0039 0.00407 0.00488 0.01073 0.001478181 
FPR 0.01 0.07 0.09 0.09407 0.11 0.21 0.0317355 
Power 0.53 0.76 0.8 0.7982 0.84 0.97 0.06767282 
Penalized Power 0.44 0.6551 0.7091 0.7041 0.7625 0.9194 0.08039072 

 

 

Each row in Table 28 shows descriptive statistics for the measure in the leftmost 

column. For this procedure the observed experiment-wise type I error rate of 0.0048 (Ta-

ble 28, row 1) is low. The average FPR of 0.094 (Table 28, row 2) is somewhat low and 

indicates that on the average, approximately only 9.4% of the hypotheses rejected were 

true null hypotheses. The observed experiment-wise power of 0.798 (Table 28, row 3) is 

somewhat high and indicates that on the average the procedure detected 79.8% of the si-

mulated true alternative hypotheses. The average penalized power of 0.7041 (Table 28, 

row 4) is somewhat high and indicates that the somewhat high power is counterbalanced 

to a small extent by the false positive detections. Thus, this procedure results in an im-

provement in the balance between statistical power and false detections compared to the 

non-sequential Bonferroni-corrected, and Holm-corrected procedures, and the sequential 
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procedures by Sobel et al. (1993), Sham (1994), Satagopan et al. (2004), the sequential 

procedure proposed by Skol et al. (2006), and the uncorrected modified SGLR test.
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5. DISCUSSION AND CONCLUSIONS 

5.1 Summary  

In order to fulfill the main objective of this dissertation, which is to 1) modify the 

Sequential Generalized Likelihood Ratio test (SGLR) for application in haplotype stu-

dies, and 2) compare and contrast the properties of the SGLR and four other sequential 

testing procedures proposed during the past 15 years, when applied to the problem of 

testing a relatively large number of haplotype blocks in the same case-control cohort, the 

following steps are taken:  

1. Although current genetic association scans typically use bi-allelic SNPs as 

markers, it is foreseeable that once there is more clarity about the haplotype block struc-

ture in the human genome, using a haplotype mapping approach for association scans 

would provide higher statistical power compared to scans with individual SNPs, due to a 

drastic dimension reduction. It is noted that haplotype blocks can be modeled as multi-

nomial variables at a population level, and thus chromosomes can be modeled as long 

sequences of multinomial variables. Therefore, assuming a case-control study, this disser-

tation research seeks to simulate 1000 association scans of the human chromosome 22 

using haplotype blocks as genetic markers. In order to have an idea of the number of hap-

lotype blocks found in chromosome 22 for a determined human population, a sample of 

SNP marker data made publicly available by the HapMap project from the human chro-

mosome 22 is obtained. This sample encompasses approximately 10% of the length of 
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the chromosome and includes 5,292 SNPs. Next, one of the proposed algorithms in the 

literature that identify haplotype blocks within the SNP marker sample is applied. The 

algorithm yields 216 blocks in the sample. Then the results from the sample are extrapo-

lated to the length of the chromosome yielding 2150 haplotype blocks (containing 58,922 

SNPs) for the whole chromosome. This number of haplotype blocks is used for the simu-

lated chromosomes. Also other characteristics of the haplotype blocks identified in the 

sample are tabulated, such as the numbers of haplotypes per block and a measure of LD 

between adjacent blocks. In this case, LD refers to the situation in which some combina-

tions of haplotypes from adjacent blocks occur more or less frequently than what would 

be expected if the combinations were formed randomly. It is noted that adjacent haplo-

type blocks are in moderate to high LD on the average, a feature that is included in the 

design of the simulations. Also, frequencies of haplotypes within blocks are designed fol-

lowing those found in the HapMap sample. 

2. To simulate observed haplotype data, this dissertation research uses a novel al-

gorithm to generate long sequences of correlated uniform(0,1) variables with an approx-

imate autoregressive correlation structure (ρ=0.8) and then transform the highly corre-

lated uniform(0,1) variables into realizations of multinomial outcomes. As a consequence 

of the high correlation among the underlying uniform(0,1) variables, some combinations 

of the resulting multinomial outcomes (representing haplotypes) from adjacent multi-

nomial variables (representing blocks) occur more or less frequently than what would be 

expected if the combinations were formed randomly, thus providing a simplified model 

for LD. 
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3. From the 2150 simulated multinomial variables representing contiguous blocks 

in chromosome 22, 100 variables are designed with differences in proportions between 

case and control groups that would result in a rejection of the null hypothesis of no asso-

ciation, when the multinomial observations from the case-control cohort are tabulated in 

a contingency table and tested with Pearson’s χ2 test, with a sample size of 200 individu-

als per group, 80% power, and at significance level of 5/2150=2.32*10-3. The remaining 

2050 simulated multinomial variables are designed with the same proportions for case 

and control groups.  

4. During the past 2 decades, the goals of sequential designs in genetic association 

studies have been twofold: first, to minimize genotyping costs, and second, to screen 

large numbers of markers. Since rapid advances in ‘high throughput’ technologies have 

made genotyping costs less of a problem, this dissertation focuses on the latter objective 

of sequential designs in genetic association studies. Within this context, this dissertation 

examines sequential designs introduced in the last 15 years, including the procedures 

proposed by Sobel et al. (1993); Sham (1994); Satagopan et al. (2004); Skol et al. (2006); 

and the SGLR test by Chan & Lai (2005). The SGLR test is modified for application in 

haplotype studies and some adaptations are applied to the other sequential procedures in 

order to utilize them in the simulations.  

5. 1000 simulations of a hypothetical association scan are programmed, run and 

the results are tabulated. The testing results from each sequential procedure are compared 

against each other as well as with the standard fixed-sample-size Pearson’s χ2 tests with 

common multiplicity adjustments. Comparisons among procedures are made in terms of 

observed experiment-wise type I error rate, FPR (False Positive Rate), observed experi-
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ment-wise power, and a measure of experiment-wise penalized power, defined as the sub-

traction of FPR from observed experiment-wise power. The purpose of the proposed 

measure of penalized power is to capture the overall usefulness of a procedure by incor-

porating into one measure the procedure’s statistical power counterbalanced by its ob-

served rate of false positive detections. 

6. The comparisons among the examined methods indicated that, under the as-

sumptions of the simulations, on the average, the non-sequential Pearson’s χ2 test with 

Benjamini & Hochberg control of FDR provides the best balance between power and 

false positive detections, closely followed by the modified version of the SGLR test with 

a Bonferroni correction.    

 

5.2 Strengths and limitations of this dissertation research 

5.2.1 Strengths 

1. Testing methods examined are applicable to both haplotype blocks and SNP markers 

As previously mentioned, in this dissertation haplotype blocks are used as genetic 

markers instead of the more commonly used SNPs. Based on empirical observation 

reported by Daly et al. (2001) and Gabriel et al. (2002), among others, of what appears as 

a surprisingly simple haplotype structure of the human genome, in this dissertation it is 

assumed that regions of contiguous SNP markers can be ‘grouped’ into haplotype blocks, 

since adjacent SNPs in the genome tend to be in high LD, except for the ‘hot-spot’ re-

gions were genetic recombination occurs. If this assumption holds for the majority of the 

genome, then for testing purposes, the dimension reduction from SNP markers alone to 

haplotype blocks is drastic. It is recognized, however, that there is still much to learn 
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about the haplotype structure of the human genome, and debate still remains on the likely 

success of haplotype-based association studies (Schaid, 2004; Terwilliger & Hiekkalinna, 

2006). The focus of this debate is whether common diseases are caused by common ge-

netic variants, and whether the haplotype-block structure is a general feature of the hu-

man genome. The true test of the haplotype-map approach will come from application of 

a completed map to a variety of common diseases (Schaid, 2004). As a consequence the 

great majority of current genetic association scans typically use bi-allelic SNPs as mark-

ers. In spite of a degree of uncertainty on whether haplotype-based association studies 

will be viable in the future, it is noted that at a population level, observed bi-allelic SNPs 

from a case-control cohort can be seen as binomial variables, whereas observed haplo-

types within a block can be seen as multinomial variables. Since a binomial variable is 

equivalent to multinomial variable with only two outcomes, all the testing methods ex-

amined in this dissertation are applicable to SNP markers as well as haplotype blocks. 

    

2. Feasible sample sizes  

Elston & Spence (2006) comment on the so-called genome-wide association 

scans: “There is presently a rush towards genome-wide association analyses, but we be-

lieve this is being driven more by the technology that is available than by any scientific 

rationale”. The author of this dissertation concurs with Elton & Spence’s remark. The 

fact that hundreds of thousands of SNPs can be genotyped does not mean that they all 

should be tested simultaneously. Assuming that a particular disease is associated to the 

combined small effects of many variants, the consequence of such brute-force approach 

is a potential data deluge where the true signals are diluted by thousands of false positive 
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detections. It is sensible to first examine LD patterns among SNPs from data made avail-

able by consortiums such as the HapMap project. This would allow a reduction in the 

number of hypothesis tests by either applying a haplotype approach or, if testing SNPs 

directly, avoid testing thousands of redundant SNPs. Another consequence of conducting 

hundreds of thousands of tests simultaneously is that after adjusting for multiple testing, 

the sample size required for detection of association with an acceptable power can be so 

large that it might be economically unfeasible to obtain for a single study. Even if sample 

sizes of several thousand subjects would be feasible to obtain for common conditions 

(e.g. obesity, hypertension), for other less common conditions small prevalence of the 

condition would make the recruitment of large sample sizes unfeasible for a single study. 

An alternative approach is considered in this dissertation, by targeting a specific region of 

the genome (i.e. chromosome 22), as in candidate gene approaches, and thus in this dis-

sertation a relatively small attainable sample size is considered. For diseases with very 

small prevalence within large geographical areas, the author of this dissertation envisions 

networks of multi-country studies each targeting specific areas of the genome and recruit-

ing small attainable sample sizes. This, of course, brings other issues, such as population 

stratification and admixture, or environmental exposure differences.      

 

3. Simple and fast algorithm for simulating markers in LD 

 In this dissertation a novel, simple and fast-to-implement algorithm is proposed to 

model LD among long sequences of variables. This algorithm breaks the sequence in 

small parts and avoids having to define one large correlation matrix for the whole se-

quence. The proposed algorithm is of easy implementation and has no limitation with re-
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spect to the desired length of the sequence of variables to generate. It also avoids the need 

to specify the joint distribution of each pair of adjacent bi-allelic markers (in the case of 

SNPs), or multi-allelic markers (in the case of haplotype blocks), as it is the case with the 

common ‘moving window’ algorithms, such as the one used by Sabatti (2006). 

 

4. No assumptions with respect to a genetic model 

 As it would be the case in a realistic association study, a genetic model (dominant, 

co-dominant, or recessive) as well as penetrance (i.e. the probability of disease status giv-

en a particular genotype) are unknown. Thus, in the simulation design for this disserta-

tion, no assumption is made in regards of whether certain alleles (haplotypes) within the 

simulated haplotype blocks associated to the disease follow a dominant or recessive mod-

el, or whether individuals with certain combinations of alleles (haplotypes) have a higher 

probability of disease status. In this regard only two assumptions are made. The first as-

sumption is that for an individual, the haplotypes observed at any given haplotype block, 

are selected randomly from a ‘population’ of haplotypes, such as under random mating. 

The second assumption is that when comparing the haplotype frequencies between case 

and control groups, substantial divergence in frequencies between the groups is taken to 

be associated with disease status, as defined by Siegmund & Yakir (2007).    

 

5. Results in terms of one comprehensive performance measure 

In this dissertation, the testing results from each sequential procedure are com-

pared against each other as well as with those from the standard fixed-sample-size Pear-

son’s χ2 tests with common multiplicity adjustments. Comparisons among procedures are 
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made in terms of usual measures such as observed experiment-wise type I error rate, FPR 

(False Positive Rate), and observed experiment-wise power. In this dissertation a measure 

of experiment-wise penalized power is proposed, defined as the subtraction of FPR from 

observed experiment-wise power. The purpose of the proposed measure of penalized 

power is to capture the overall usefulness of a procedure by incorporating into one meas-

ure the procedure’s statistical power counterbalanced by its observed rate of false positive 

detections.  

 

5.2.2 Limitations 

1. Assumption of random mating, but no formal testing of Hardy-Weinberg equilibrium 

(HWE) 

 Under random mating, mating takes place at random with respect to the genotypes 

under consideration. Mating can be random with respect to some traits, but non-random 

with respect to others in the same population. In human populations, for example, mating 

seems to be random with respect to blood groups, and many other characteristics, but 

mating is nonrandom with respect to other traits such as skin color and height (Hartl, 

2000). Genotype frequencies are also influenced by various evolutionary forces including 

mutation, migration and natural selection. Under a random-mating model, the random 

mating of individuals is equivalent to random union of gametes (i.e. sperm or ovum) and 

as a consequence, the allele frequencies remain the same generation after generation, and 

so do genotype frequencies, a concept often called HWE. In order to illustrate the idea of 

HWE consider an autosomal chromosome with a bi-allelic marker whose alleles are 

called ‘A’ and ‘a’. The genotype of a randomly selected individual in a population can be 
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AA, Aa, or aa. Under HWE the frequencies of these genotypes are 
ଶ, ሺ12 െ

ሻ, and ሺ1 െ  , denotes the population proportion of allele A ሻଶ, respectively, where

and ሺ1 െ  ሻ the population proportion of allele a. These frequencies of genotypes are

expected in a random sample from a population that is assumed to be in HWE (and thus 

under random mating). In this dissertation, it is assumed that for an individual, the haplo-

types observed at any given haplotype block, are selected randomly from a ‘population’ 

of haplotypes, such as under random mating. In a realistic association study, however, 

this assumption should be tested especially among the controls (Siegmund & Yakir, 

2007). A violation of the HWE assumption in a sample may indicate divergence in the 

equilibrium of the population, errors in the determination of the genotypes, or a sample 

not representative of the population that can potentially cause spurious results. A com-

mon method to test for HWE is the χ2 goodness-of-fit test. The observed genotype fre-

quencies in the sample are tested against the expected genotype frequencies under HWE, 

calculated with the allele population proportions.      

 

2. Simplistic model for LD 

In this dissertation, for simulating high LD between adjacent haplotype blocks 

(represented by multinomial variables) an autoregressive structure (ρ=0.8) is specified on 

a matrix of randomly generated uniform(0,1) variables and then these highly correlated 

uniform(0,1) variables are transformed into multinomial observations. As a consequence 

of the high correlation among the underlying uniform(0,1) variables, some combinations 

of the resulting multinomial outcomes (representing haplotypes) from adjacent multi-

nomial variables (representing blocks) occur more or less frequently than what would be 
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expected if the combinations were formed randomly, thus providing a simplified model 

for LD. Sabatti et al. (2003) and Satagopan et al. (2004) use autoregressive structures as 

simplified models of dependency in order to account for LD-induced correlation between 

adjacent genetic markers. Satagopan et al. (2004) specifies an autoregressive structure 

directly on simulated test statistics, whereas Sabatti et al. (2003) specifies an autoregres-

sive structure on the joint distribution between each pair of adjacent bi-allelic markers. 

However, concurring with Satagopan et al. (2004), the author of this dissertation ac-

knowledges that an autoregressive structure is, at best, a crude approximation. With the 

sequencing of the human genome and development of high-throughput genomic methods, 

it has become clear that the human genome generally displays more LD than under sim-

ple population genetic models, and that LD is more varied across regions, and more seg-

mentally structured, than had previously been supposed (The International HapMap 

Consortium, 2005). For instance, as shown on the histogram in Figure 10, LD between 

adjacent haplotype blocks appears to be present, and to be moderate to high on the aver-

age, but it is not constant, suggesting that a more complex model is required to attain 

more realism in simulations.  

 

3. Limited number of multiplicity adjustments examined 

 In this dissertation four common multiplicity adjustment procedures are ex-

amined. Two of the examined procedures, the Bonferroni and Holm corrections, control a 

measure of error known as the family-wise error rate (FWER). The FWER is defined as 

the probability of incorrectly rejecting at least 1 null hypothesis. The two other proce-

dures examined, Benjamini-Hochberg and Benjamini-Yekutieli, control a measure of er-
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ror known as the False Discovery Rate (FDR). The FDR is a less stringent criterion than 

the FWER and is defined as the expected fraction of erroneous rejections among all hy-

potheses. Other recently-developed procedures based for instance on resampling or per-

mutation techniques that control either the FWER or the FDR, such as those discussed by 

Sabatti (2006) in the context of multiple testing in genomics, are not examined in this dis-

sertation.  

 

4. Non-applicability of the SGLR procedure 

As discussed in section 3.5.6, it is straightforward to apply the SGLR test to situa-

tions involving a single stream of observed data. In a case-control scenario, as long as 

there is a form for the distribution of the difference between each pair of case and control 

observations, then the SGLR test can be easily applied. However, using the SGLR to test 

a difference in proportions in case-control multinomial data presents major difficulties. 

First, each pair of case-control multinomial outcome realizations constitutes nominal-type 

data and thus it makes no sense to ‘subtract’ one from the other in the sense of continuous 

data, and then use the result of the subtraction individually in a likelihood function. 

Second, if the test is focused on the difference in accumulating proportions instead of the 

outcome realizations themselves, then the proportions, calculated after each pair of mul-

tinomial outcome realizations is observed, are not independent from the previously ob-

served proportions, a situation more suited for repeated significance testing methods than 

for fully sequential procedures, which assume independence among accumulating obser-

vations. Third, when comparing frequencies of multinomial outcome realizations be-

tween groups, for a multinomial variable with 3 or more outcomes, a change in the pro-
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portion of one outcome results in a change in the proportion of at least one of the other 

outcomes. Therefore, for multinomial variables with 3 or more outcomes, to test H0: the 

proportions between case and control groups are equal, vs. H1: at least one proportion dif-

fers between case and control groups, there is no clear way to partition the parameter 

spaces between null and alternative spaces in a single SGLR test for all the proportions 

involved. Thus, since there are many combinations of proportions that can cause a signif-

icant change, more than one test would be required, which would result in multiplicity 

within a single test of hypothesis. To this date, the author of this dissertation has been un-

able to find in the literature a formal fully sequential test of association for contingency 

tables. After careful consideration of the problems involved in conducting a SGLR test 

with case-control multinomial data, in this dissertation a modification to the procedure is 

proposed by means of using the Pearson’s χ2 tests statistic to calculate the likelihood ra-

tios required for this test, and an error spending function to account for multiple looks at 

accumulating data. However, this adaptation is an application of repeated significance 

testing methodologies, such as those used in clinical trials, as opposed to a fully sequen-

tial testing method as the original SGLR test is proposed by Chan & Lai (2005).  

 

5. Population stratification might cause spurious results 

 In the context of genetics, population stratification or population substructure re-

fers to the presence of a systematic difference in allele frequencies between subpopula-

tions comprised within a larger population, possibly due to different ancestry (Siegmund 

& Yakir, 2007).  Inspection of the haplotype block structure of the human genome by the 

HapMap consortium has shown substantially similarity in the haplotype patterns for the 
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four populations examined by that consortium. However, the frequencies of haplotypes 

across populations often differ (The International HapMap Consortium, 2003 and 2005). 

Failure to take into account population substructure, if present, may produce spurious as-

sociations between markers (blocks) and disease status due to natural differences in allele 

(haplotype) frequencies between subpopulations. The approach taken in this dissertation 

assumes that all subjects belong to the same population, or that differences due to popula-

tion substructure are negligible. A more complex model including population substruc-

ture would be needed to attain more realism in simulations.  

 

5.3 Lessons learned 

1. Performance of a procedure: balance between power and false positive detection rate  

As shown in Figure 15, under the assumptions of this dissertation, on the average, 

the non-sequential Pearson’s χ2 test with Benjamini & Hochberg control of FDR adjust-

ment, closely followed by a proposed modification of the SGLR test with a Bonferroni 

correction, provided the best balance between power and false positive detection, as 

measured by the proposed measure of penalized power. It is noticeable that neither of 

these two procedures obtained the ‘best’ results in the other three performance criteria 

examined; that is, neither of these two procedures obtained the ‘best’ mean observed ex-

periment-wise type I error rate, FPR, or observed experiment-wise power. As previously 

mentioned, the purpose of the proposed measure of penalized power is to capture the 

overall usefulness of a procedure by incorporating into one measure the procedure’s sta-

tistical power counterbalanced by its observed rate of false positive detections.  
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2. FWER vs. FDR  

The FWER is defined as the probability of incorrectly rejecting at least 1 null hy-

pothesis. The FWER is an appropriate measure of error when there is an overriding rea-

son to not make any incorrect rejections of null hypotheses (Sabatti, False Discovery Rate 

and Multiple Comparison Procedures, 2006). Control of the FWER is based on setting 

stringent significance levels on the hypotheses. The downside of setting such stringent 

significance levels is a substantial decrease in statistical power. On the other hand, the 

FDR is a less stringent criterion than the FWER and is defined as the expected fraction of 

erroneous rejections among all hypotheses rejected. The FDR criterion captures the idea 

that if in an experiment there are a number of true alternative hypotheses present, we be-

come more lenient toward committing a small fraction of false rejections when detecting 

the true alternative hypotheses, because the error from a single erroneous rejection (i.e. 

the FWER criterion) is not considered as crucial as the detection of true alternative hypo-

theses. Thus the proportion of incorrect rejections is controlled instead of the probability 

of a single incorrect rejection. Concurring with the results of this dissertation, it has been 

shown that with fixed sample size tests, adjusting for multiplicity with the FDR criterion 

substantially increases power compared to controlling the FWER. Another benefit of the 

FDR criterion is that if all hypotheses being tested are true null hypotheses, controlling 

the FDR is equivalent to controlling the FWER (Sabatti et al., 2003). Based on the con-

siderations discussed above, and the simulation results from this dissertation, it is the 

opinion of the author of this dissertation that the definition of error provided by the FDR 

criterion is much more appropriate for large dimensional hypothesis-generating explora-
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tory investigations such as genetic association studies. The behavior of sequential tests 

with control of FDR remains as an issue requiring further research. 

 

3. Fully sequential methods and repeated significance tests 

Currently available fully sequential methods (i.e. methods based on likelihood ra-

tios on accumulating independent observations) are not well suited for genetic association 

studies due to the nominal nature of the allele data. As previously mentioned, to this date, 

the author of this dissertation has been unable to find in the literature a formal fully se-

quential test of association for contingency tables. For this dissertation, using the SGLR 

procedure to test a difference in proportions in case-control multinomial data presents 

major difficulties. After careful consideration of the problems involved in conducting a 

SGLR test with case-control multinomial data, in this dissertation a modification to the 

procedure is proposed that consists of using Pearson’s χ2 test statistics to calculate the 

likelihood ratios required for the SGLR test, and an error spending function to account 

for multiple looks at accumulating data. However, this adaptation is an application of re-

peated significance testing methodologies, such as those used in clinical trials. Further-

more, in order to avoid convergence problems of the Pearson’s χ2 test statistic, the pro-

posed adaptation of the SGLR procedure requires the use of as much of the sample as 

possible, thus rendering the procedure unable to provide substantial savings in sample 

size, which is one of its objectives. However, the testing results from modified SGLR 

procedure with a FWER correction are very close, though not superior, to the non-

sequential test with the Benjamini-Hochgberg control of FDR (the test whose results are 

considered ‘best’ in this dissertation). Thus the adaptation of the SGLR procedure did not 
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result in a substantial improvement compared to the available non-sequential methods. 

Based on the considerations discussed above, and the simulation results from this disser-

tation, it is the opinion of the author of this dissertation that until a formal sequential test 

of association for contingency tables is developed, the currently-available fully sequential 

procedures are not only more difficult to apply but also do not constitute an improvement 

from the non-sequential methods in the context of genetic association studies.   

 

5. Ad hoc sequential procedures 

As shown in Figures 13, 14 and 15, under the assumptions of this dissertation, on 

the average, the sequential procedures that divide the sample size in independent sub-

samples (Sobel et al., 1993; Satagopan et al., 2004) produced poor results in regards to all 

the performance measures considered in this dissertation. These procedures should be 

avoided. The procedure proposed by Skol et al. (2006), while yielding the best perfor-

mance of all procedures examined in regards to the FPR performance measure, resulted 

in substantially lower power than the non-sequential and modified SGLR procedures. 

While Skol et al.’s procedure is a cost-effective approach when the cost of genotyping is 

considerable; it is pertinent to note that rapid advances in ‘high throughput’ technologies 

have made genotyping costs less of a problem. It is foreseeable that, in the context of ge-

netic association studies, if sequential procedures are used at all, their use would depend 

on how these procedures would help screening large amounts of markers or increasing 

power; but the focus of their use would not be on cost reductions due to a decrease in ge-

notyping. 
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6. High performance computing 

 The simulations for this dissertation were run in a computing cluster. Each com-

puting node in the cluster is equivalent to a single PC with a 2.4 GHz processor and 2GB 

of RAM memory. For the 1000 simulations in this dissertation, the code was divided in 

25 programs, which were submitted simultaneously to the cluster. The cluster allocated 

each program to a node, and the 25 nodes ran the programs simultaneously. The average 

running time for each program was about 4½ hours. If the programs were run by a single 

PC, it would have taken approximately 112.5 hours (4.7 days) to finish the 1000 simula-

tions. The advantage of using high performance computing clusters for simulations and 

analyses of large dimensional data are evident. However, computing clusters do not have 

graphic user interfaces, so commands in Unix/Linux are required to submit the programs. 

In addition, if programming from a Windows-based PC, the programs themselves need to 

be converted from DOS file format to Unix/Linux file format. Finally, statistical software 

available in the clusters is currently limited to the R system.  

 

5.4. Directions for future research 

1. A fully sequential test of association/independence for contingency tables   

This dissertation showed the limitations of currently available fully sequential me-

thods when applied to contingency tables. A challenging problem to be resolved is the 

development of a fully sequential test of association/independence for contingency tables.  

 

2. Sequential Ranking and Selection (SRS) procedures 
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The issue of multiple testing is not commonly addressed in the literature of formal 

sequential methods. However, a related topic that is commonly addressed is referred to as 

Sequential Ranking and Selection (SRS). The objective of SRS procedures is to select a 

subset of variables from a given set of variables (Lai, 2001). For instance, Gupta & Liang 

(1988) proposed a SRS procedure to select a subset of random variables with the largest 

location parameters from a given set of variables. The subset includes the variable with 

the individually largest location parameter. In this approach, as data accumulates, at each 

stage the variables with smaller location parameters are eliminated, while the variables 

with larger location parameters are labeled as 'good'. The procedure reaches a terminal 

decision when there is only one variable left, or when all variables left are labeled as 

'good'. An interesting and challenging problem is to determine whether it is possible to 

adapt an SRS procedure to genetic association studies, and if so, how. 

 

3. Comparison of association detection between haplotype-block and tag-SNP based ap-

proaches 

 This dissertation uses haplotype blocks as markers for association testing. In this 

approach, ‘tag-SNPs’ would be used exclusively for identification of a person’s collec-

tion of haplotypes in each haplotype block. The author of this dissertation acknowledges 

that this is an alternative approach. Currently, the main approach for association testing is 

the use of tag-SNPs directly as markers. In the main approach, ‘tag-SNPs’ are defined as 

representative SNPs in a region of the genome in high LD. The great majority of current 

association studies use tag-SNPs as markers. An interesting and challenging problem is to 
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determine in what situations a haplotype-based association testing approach is more effi-

cient than the common tag-SNP association testing approach. 

    

4. Algorithm for simulation of complex LD models 

In this dissertation a simple, easy-to-implement algorithm to simulate LD is de-

veloped. The downside of this algorithm is that the resulting autoregressive LD model is 

too simplistic. A useful contribution to the literature would consist of a fast and easy-to-

implement algorithm, but allowing complex LD structures, perhaps based on LD struc-

tures observed from real data available for instance from the HapMap project.    

 

5. Bayesian methods   

Finally, this dissertation has only dealt with procedures within the frequentist pa-

radigm. It would be interesting to compare the performance of frequentist methods vs. 

Bayesian alternatives. For instance Bayesian sequential and non-sequential testing ap-

proaches have been proposed in the literature in terms of Bayes factors (Kass & Raferty, 

1995; Berger et al. 1999; Johnson, 2005). In a Bayesian setting, let ݔ~݂ሺݔ,  ሻ where θ isߠ

the parameter of interest. For two competing hypotheses H1 and H2 in terms of the para-

meter of interest θ, let π(θ1) and π(θ2) be the prior distribution of θ under H1 and  H2 re-

spectively. The Bayes factor is defined as the ratio:  

 ݂൫ݔหߠଵ൯ · ଵߠଵሻ݀ߠሺߨ

 ݂൫ݔหߠଶ൯ · ଶߠଶሻ݀ߠሺߨ
 . 

Kass & Raferty (1995) provide guidelines for evaluation of Bayes factors as well as 

procedures for approximating the integrals, and methods for handling the problem of 

model uncertainity; Sabatti (2006) discusses Bayesian approaches to the multiplicity 
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problem; and Agresti & Hitchcock (2005) provide a survey of Bayesian inference for 

categorical data.   
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