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BIOSTATISTICS 
 

ABSTRACT  
 
 Older drivers, when contrasted with their younger counterparts, tend to drive 

fewer miles annually, yet their motor vehicle crash rates adjusted for miles driven are 

higher than all groups except the youngest drivers. Identifying factors associated with the 

risk of automobile crashes among the elderly is vital. In many elder driver studies, error 

free covariates such as gender or age, and error prone covariates like annual mileage or 

cognitive performance, are used to study time to an at-fault motor vehicle crash. We 

performed a simulation study that mimics this situation, using both an error free covariate 

as well as a correlated mismeasured covariate with replicates, to explore the effects of 

measurement error while conducting proportional hazards modeling. The pair, correlation 

and measurement error are considered, since both affect parameter estimates. We used 

modified regression calibration and risk set calibration to account for and correct for the 

measurement error among correlated variables.   

 The focus of this research was consideration of approaches that correct for 

measurement error when using correlated covariates in Cox Regression modeling. Three 

methods, regression calibration, risk set calibration and maximum likelihood each 

adjusted for correlated covariates, were explored. More specifically, the former methods 

were used to simulate situations where two correlated covariates are used as prognostic 

factors to determine a relationship between time to an at-fault or fault unknown motor
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vehicle crash. After construction of data conforming to the correlation/measurement error 

structure, the data were then analyzed via the aforementioned methods. The resulting 

parameter estimates were then assessed to determine the ability of each method to correct 

for the effects of correlation and measurement error.  The amount of both absolute and 

relative bias, along with coverage, mean square error and relative efficiency was 

examined at each correlation/measurement error design point. As a result of this 

simulation study, it was concluded that regression calibration corrected for correlation 

method tended to outperform risk set calibration corrected for correlation in the 

estimation of the true parameter estimates.  
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CHAPTER 1 

 
INTRODUCTION 

 
The literature on elder driver crash risk is extensive, yet of this body of work, few 

studies describe risk factors associated with predicting time to an at-fault or fault 

unknown motor vehicle crash (MVC). The UAB Maryland Motor Vehicle Study 

(UABMVS), a prospective design, evaluates the likelihood of experiencing motor vehicle 

crashes among elder drivers. The objective of the study is to assess the relationship 

between time to MVC and a battery of performance based screening measures and 

demographic risk factors related to elder driver competence. 

The null hypothesis is as follows: 

 Ho: There is no relationship between time to MVC and performance based 

 cognitive measures related to elder driver competence. 

 For the UABMVS, to assess the hazard associated with specific risk factors, Cox 

proportional hazard survival models will be used. The Cox model is an important 

statistical tool as it allows for proportionality among any two sets of covariates when 

examining differences in hazards.1, 2 When all the covariates are fixed at baseline, the 

hazard rate for two subjects with distinct values of one specific covariate is proportional. 

Survival time is based on time to event occurrence or time to censoring.1 In the 

UABMVS, baseline risk factors are annual mileage, cognitive test results such as Trails 

Making A and B, Useful Field of View®, Motor Free Visual Perception Test and 
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demographic information; survival time is measured as the time to censoring or MVC. It 

is thought that a subset of the covariates may be measured with error, including annual 

mileage, Trails Making A and B, walk time and tap time (in seconds). 

 For the covariates measured precisely or without error, the planned analyses will 

produce accurate parameter estimates and tests.3 However, analyses including those 

variables that are error contaminated or both error contaminated and correlated with other 

important risk factors will produce biased parameter estimates.4 It is the latter situation 

which motivates the problem addressed in this dissertation. 

 

Statement of the Problem 

Measurement error problems arise frequently in statistical analyses of failure time 

data. Complexities in the data, which make analysis difficult, arise due to the data 

measurement mechanism, the environment, biological variability, data of questionable 

quality, laboratory analysis error or reliance on self report data. As a result, precise 

measurements of the variables of interest are not directly observable. Thus, these 

variables are measured with error. Further, in addition to containing considerable 

amounts of error, the variables may be correlated with error free variables. Statistical 

analyses based on data of this type may result in biased parameter estimates and 

subsequently inaccurate inferences for both the mismeasured variable and the variable 

free of error.  

Some scenarios to consider include:  

1. A single mismeasured, continuous covariate; 

2. One error prone, continuous covariate, uncorrelated with others free of error; or 
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3. One mismeasured, continuous covariate, correlated with covariates that are free of 

error. 

In each of scenarios 1 and 2, the parameter estimate for the mismeasured variable will be 

biased towards the null.5 Yet in the third, the bias may follow any direction based on the 

amount of error and the strength and direction of the correlation, as well as the other 

covariates in the regression model.6 Moreover, estimates for variables that are not 

measured with error may also be biased.5 

 The difficulties resulting from measurement error also affect inference based on 

biased estimates. There is a loss of statistical power to detect important differences and 

relationships among variables of interest. Furthermore, measurement error may mask 

features of the data, making graphical model analysis difficult.7 This is compounded 

when correlation among variables of interest exists.  

 In this work, the effect of measurement error identified in scenario three is 

investigated. Specifically, the resulting bias when observing two correlated variables, one 

error free and the other measured with error, is evaluated and methods to correct for the 

resulting bias are explored. The choice of two continuous variables is common in social 

science research settings. In the UABMVS, the error prone covariate of interest is annual 

mileage, while either age or the resulting cognitive exam score represents the error free 

variable.  

 

The Cox Proportional Hazards Regression Model 

 Assume that a random sample of n observations from the population of interest is 

observed. Throughout the text X represents the vector of true values of the error prone 
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covariate. X may be an exposure or confounder variable. The surrogate vector, W, 

represents the vector of observed values of the error prone variable, X. Vector Z contains 

predictors which are measured accurately and free of error. The predictors represented by 

Z may or may not be correlated with the exposure variables found in X. 

Let i i( , ),  =1,...,V C i n , represent independent failure and censoring time random 

variables respectively. The survival time for the ith subject, Ti, is the minimum of failure 

and censoring times, ( )i i iT = min V ,C . The event indicator, iδ , takes the value of 1 when 

failure time is less than or equal to the censoring time or ( ) i i i= I V Cδ ≤ . Consequently, 

observed, right censored survival data for the ith subject is written as ( )i i, , ,i iT δ X Z where 

Ti is the length of time on the study for the ith subject, ( ),i iX Z  is the observed covariate 

vector for the ith subject.1, 2 The survival time is related to the covariates of interest 

through the hazard function  

(1.1) ( ) ( )0| , ( ) exp +T T
i i X i Z it tλ λ=X Z β X β Z , 

where ( ),
TT T

X Zβ β is a p × 1 vector of regression coefficients. The vector of error prone 

covariates, X, is a k × n vector and Z is a p-k × n vector of the covariates that are 

accurately measured. In the hazard function, t denotes elapsed time, 0 ( ) 0tλ > is an 

unspecified baseline hazard function for continuous time t.1, 8, 9 

 Two components comprise the Cox model: an unspecified baseline hazard and 

parametrically modeled relationship between the survival time t and the covariates of 

interest. Because of this, the Cox model is deemed semiparametric. More specifically, a 

parametric form is assumed for only the covariate effect. Since the model is 
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semiparametric, special methods are used to conduct inference on parameters of interest. 

Partial likelihood methodology is used to determine the parameters of interest. 1, 10, 11  

 

Measurement Error Modeling 

 There are three major defining characteristics for measurement error models: the 

properties of the unobserved values, the structure of the error model, and the type of 

additional data available. In this section we will describe these characteristics in some 

detail.  

 

Properties of Unobserved Data 

 The unobserved data X are modeled as either structural or functional. In structural 

modeling, a parametric distribution may be assigned to the data such as ( )~ , 2
x xX N μ σ . 

Alternatively, in functional modeling, the Xi, i=1,…,n, is taken as either a fixed constant 

or random variable. No assumptions or minimal assumptions are made regarding Xi.12 

 

Models for the Measurement Error Process 

The classical measurement error model can be expressed as W=X+U. The 

measurement error, U, has a mean of 0 and variance of u
2σ . W is unbiased for X. It 

follows that the expectation of W given both X and covariates free of error, Z, is equal to 

X. Also, U is independent of X. The corresponding error structure of U can be either 

homoscedastic or heteroscedastic.  
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Data Sources 

The data sources necessary for modeling the error structure can be divided into 

two categories: internal data and external data. An internal data set is a subset of the 

primary data. A data set is classified as external when the measurement error process is 

not assessed directly, but rather from independent studies. When external data sets are 

used, the transportability of the model must be assessed. Transportability is defined as the 

event when the model and the relevant parameter estimates can be transported from one 

model to another without bias.13 It is often the case that the same classical error model 

can be assumed to hold across different studies, hence the model is transportable. 

Therefore, the parameters from one study can be transported to another. Typically, only a 

subset of the model parameters need be transportable in order to use the information in an 

analysis.7  

Each of internal and external data can be further divided into three subgroups: 

validation data, instrumental data and replication data. A validation data set has the true 

measurement X observed alongside the error prone value in a subset of study data; 

whereas a data set in which the error prone measurement is made more than once in some 

or all of the subjects is called a replication data set. An instrumental data set is one that 

has, in addition to W, another observable variable, the instrumental variable, T which 

satisfies the following: T must be independent of (W-X); and T must be a surrogate for X 

and T must be correlated with X.14  

 

Non-differential and Differential Error 

Measurement error is non-differential when the model relating the dependent 
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variable given (Z,X,W) is the same as the model relating the dependent variable given 

(Z,X); otherwise, measurement error is differential. Non-differential error allows for 

estimation of parameters relating the response to the true predictor with only minimal 

additional information on the error distribution. W contains no information about the 

response other than what is available in X. In this event, W is called a surrogate for X. 

Thus, the true predictor necessarily need not be observed.  

 Differential error generally occurs in case-control studies. Disease or response 

status is obtained first, and then the exposures, as well as other covariates, are measured 

later. Also, differential measurement error may occur when the observed value W is a 

separate variable serving as a substitute for X. Analysis of models with differential error 

can be challenging. It is necessary to observe the true value of X on some subjects. 

Problems with differential error are generally analyzed using missing data techniques.7  

 

Scope of Dissertation 

Several methods are useful in assessing the effects of measurement error in 

variables both measured with and without error. Yet, failure to consider other measured, 

correlated variables is a major limitation of the current literature. It is this situation which 

will be addressed in this dissertation. Our goal is to assess the effect of measurement 

error and correlation among covariates and provide guidance on choosing the most 

appropriate methods in the proportional hazards setting, in light of the amount of error 

and correlation.  

 The remainder of Chapter 1 contains an overview of related literature. Chapter 2 

provides a close examination of regression calibration and risk set calibration each 
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corrected for correlation, including similarities, differences and benefits of the 

approaches. Chapter 3 explores the maximum likelihood method. A detailed explanation 

of the research methodology and simulation study is contained chapter 4. In Chapter 5, 

the proposed methods of analysis are applied to real data. The performance of each 

method related to parameter estimation will be examined. Lastly, the dissertation 

concludes with a discussion of the findings, conclusions and suggestions for further 

research in Chapter 6. 

 

Review of Related Literature 

Various approaches have been proposed to handle measurement error in time to 

event settings. Generally, these approaches are classified as providing either approximate 

estimation or consistent estimation in the presence of measurement error. In the presence 

of mild levels of error, approximate methods are sufficient to handle the measurement 

error problem. Alternatively, moderate to high levels of measurement error are best 

handled by consistent methods.  

The ensuing discussion is a description of the literature relevant to the problem 

proposed in this dissertation. While not exhaustive, its intent is to acquaint the reader 

with various methodologies related to fitting Cox regression models with mismeasured 

covariates. Several of the methods are applicable to the UABMVS data; however, none 

address our specific hypothesis of interest.  

 

Approximate Methods 

 One generally applicable approach to account for measurement error in regression 
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models is regression calibration. Prentice (1982) extended the Cox proportional hazards 

model to handle measurement error.15 From equation (1.1), Prentice wrote the induced 

hazard as  

(1.2) ( )0( | ) ( ) exp | ,TTt t E tλ λ ⎡ ⎤= ≥⎣ ⎦XX β X W . 

Assuming independent censoring, the hazard function for T is independent of W given X, 

the distribution of X given W is normal, and that event occurrence is rare, the regression 

calibration procedure includes replacing W with the estimate ( )|E X W and then 

applying the standard analysis.15 Partial likelihood methodology, used in the Cox 

Proportional Hazards setting, may still be applied to solve for parameter estimates since 

the partial likelihood does not depend on the unknown hazard function. Since ( )|E X W , 

the calibrated function, is a function of the observed data W, it can be estimated once an 

error model for X is specified.  

 In 1995, the regression calibration method was extended to missing data.16 Using 

discrete auxiliary data, the relationship between the missing covariate and the observed 

mismeasured covariate is estimated nonparametrically. Zhou and Wang continued along 

this line by including continuous covariates and using a kernel smoother method for 

estimating the induced hazard.17 Regression calibration incorporating missing covariates 

was also studied by Wang. Here, the distribution of X given Z is estimated using 

validation data then used to impute missing data. 18 

 Regression calibration is commonly used due to the simplicity of implementation. 

It reduces bias in the parameter estimates relative to the naïve approach. However, in the 

presence of large amounts of error, regression calibration may yield biased results.19 
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A modification to Prentice’s regression calibration work was introduced by 

Clayton. While an assumption of Prentice’s work is that event occurrence is rare, 

Clayton’s method is applicable in the absence of a validation data set and with or without 

the rare event assumption. At each event time, Clayton suggests that regression 

calibration be completed within each risk set.20 

 Stefanski and Cook and then later Cook and Stefanski introduced and further 

developed a simulation based method of estimating and reducing bias due to 

measurement error.21, 22 This simulation extrapolation approach is referred to as SIMEX. 

SIMEX is akin to regression calibration in that this method is easily implemented. 

SIMEX can be used with any error such as additive or multiplicative, that can be imitated 

using Monte Carlo methods. 

 

Consistent Methods 

Nakamura introduced the approximately corrected score function for parameter 

estimation in proportional hazards regression.23, 24 Nakamura’s approach assumes that the 

measurement errors are additive, independently, identically and normally distributed with 

known covariance. The approximately corrected score function is based on first and 

second order Taylor expansion. This process reduces bias as compared to naïve 

estimation because the corrected score function satisfies regularity conditions. The first 

order correction is consistent and asymptotically normal.3, 25 The correction is not 

affected by whether the covariates are time dependent or not.  

Similar to the work of Nakamura, Buzas also provided a class of corrected score 

estimators where the measurement error is additive.4 Different from Nakamura, Buzas 
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represented the error distribution by including the existence of a known moment 

generating function and considered uncorrelated mismeasured covariates and those free 

of error.4  Here, the scores change based on the moment generating function of the 

measurement error. Kong and Gu further extended the work of Nakamura by showing 

that as the sample size grows, the estimator resulting from the corrected score is 

consistent, and that the covariance structure may be estimated using a sandwich 

estimator.25 Hu and Lin also extended the work of Nakamura and Buzas by using 

validation data to estimate the error distribution. Each of the measurement error and the 

covariate distributions remain unspecified. This approach can be extended to more than 

one mismeasured predictor.26 

 Likelihood (ML) approaches provide another class of consistent estimators. They 

differ from corrected score or regression calibration methods in that stronger 

distributional assumptions are required. Also, the baseline hazard does appear in the 

likelihood function while it does not appear in the partial likelihood function which all of 

the other methods described here utilize. In ML, the baseline hazard at each event time, 

as well as the regression coefficients are estimated. Using normal additive error, Hu and 

colleagues examined three approaches to single parameter estimation using maximum 

likelihood: fully parametric, fully nonparametric and semiparametric.27 The fully 

parametric method requires a specific parametric distribution be placed on the error prone 

covariate; while the semiparametric approach allows for a milder assumption, such as 

that the covariate has a density. Alternatively, the nonparametric approach allows for 

using a class of discrete distributions to describe the covariate. While ML provides 

consist estimates, these methods can be computationally intensive.  
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 Additional related approaches include Lin and Ying, Paik and Tsai, and Chen and 

Little who introduce consistent approaches to estimate regression parameters in the 

presence of missing covariates.28-30 Lin and Wei (1989) explore the effects of 

misspecification of the hazard function.31
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CHAPTER 2 

 
REGRESSION CALIBRATION (RCCORR) AND RISK SET CALIBRATION 

(RSCCORR) CORRECTED FOR CORRELATION  
 

 In this chapter, we will discuss regression calibration and risk set calibration each 

corrected for correlation. Additionally, the similarities, strengths and weakness will be 

discussed.  

 

Regression Calibration Corrected for Correlation (RCCORR) 

 The regression calibration algorithm is a replacement approach to compute an 

estimate for mismeasured observations by employing analysis of variance techniques. 

Unobserved X is replaced with a calibrated estimate and then the standard analyses are 

conducted. Regression calibration is applicable in a broad number of settings where 

replication or validation data is available.  

 When both X and Z are observed, the proportional hazards failure time regression 

model can be written as 

(2.1) ( ) ( ) ( )0; , expλ λ= +X Zt X Z t β X β Z . 

In the absence of error and ties among event times, the partial likelihood, 

 ( )
( )1

1

exp( ),
exp( )

i

n
X i Z i

n
i

l i X l Z l
l

X ZPL
Y x X Z

δ

β β

β β=

=

⎡ ⎤
⎢ ⎥+
⎢ ⎥=
⎢ ⎥+⎢ ⎥⎣ ⎦

∏
∑

X Zβ β
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is maximized to determine ( ), ;X Zβ β where ( )l iY x is the risk set indicator and the event 

indicator is .iδ  ( ) 1 if l i l iY x t t= >  where tl indicates the survival time for the lth subject 

and 1iδ =  if subject i experiences an event.10 A consistent estimator 

( ) ( )ˆ ˆ,  of , X Z X Zβ β β β  can be obtained by solving the partial likelihood score 

function
0
0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

X

Z

β
U

β
, where  

(2.2) ( )
( )

( )
1

1

1

exp( )

exp( )

n

l l i X l Z ln
j

X i i n
i

l i X l Z l
l

X Y X X Z
X

Y X X Z

β β
β δ

β β

=

=

=

⎧ ⎫
+⎪ ⎪⎪ ⎪= −⎨ ⎬

⎪ ⎪+
⎪ ⎪⎩ ⎭

∑
∑

∑
U  

and 

 ( )
( )

( )
1

1

1

exp( )
.

exp( )

n

l l i X l Z ln
j

Z i i n
i

l i X l Z l
l

Z Y X X Z
Z

Y X X Z

β β
β δ

β β

=

=

=

⎧ ⎫+⎪ ⎪⎪ ⎪= −⎨ ⎬
⎪ ⎪+
⎪ ⎪⎩ ⎭

∑
∑

∑
U  

Suppose that rather than the true covariate X, W the surrogate for X is observed. 

The hazard model, (2.1), can be rewritten as, 

(2.3) ( ) ( ) ( )0; , expλ λ= +* ZX
t W Z t β W β Z . 

In this setting, it is impossible to directly estimate ( ) ( )0, , λX Zβ β t  or to conduct inference 

about the effect of X based on these parameters. In order to alleviate the problem caused 

by observing a surrogate or measurement error in the true covariate, Prentice introduced 

the induced hazard function.7, 15 The induced hazard function provides a setting under 

which inference on the hazard ( ); ,tλ W Z can lead to inference on ( ); , .tλ X Z  
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 In order for inference based on ( ); ,tλ W Z to lead to inference on ( ); ,tλ X Z , 

nondifferentiability must be assumed. Nondifferentiability indicates that the observed 

covariate W, has no predictive value given the true covariate X. As a consequence of 

nondifferentiability  

(2.4) ( ) ( ); ; .t tλ λ≈W, X, Z X, Z  

It follows that ( );tλ W, Z  can be written as the conditional expectation of the distribution 

of ( ); , ,λ t W X Z  given , , ;≥T t W Z  that is  

(2.5) ( ) ( )( ); ; | , .t E t T tλ λ= ≥W, Z W, X, Z W, Z  

Using (2.4), equation (2.5) can be rewritten as  

(2.6) ( ) ( )( ); ; | , .t E t T tλ λ= ≥W, Z X, Z W, Z  

Combining (2.1) and (2.6) results in  

(2.7) 
( ) ( ) ( )( ){ }( )

( ) ( ) ( ){ }
; exp | ,

                exp exp | , .

o

o

E

E

λ λ

λ

≅ + ≥

= ≥

X Z

Z X

t W,Z t β X β Z T t W,Z

t β Z β X T t W,Z
 

In the absence of measurement error, when solving for ( ),X Zβ β  using partial likelihood 

methodology, the partial likelihood factors into a product of the baseline hazard and the 

rest of the likelihood. In (2.7), ( ){ }exp | ,E ≥Xβ X T t W, Z  has some dependence on the 

baseline hazard due to conditioning on .T t≥ Assumptions must be specified before 

partial likelihood methodology can be applied. 

 Prentice suggested that the rare event assumption must follow in order to conduct 

inference on (2.7). Suppose the rare event assumption holds. This indicates that most 
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subjects will survive beyond time t, or ( ) 1.P T t≥ ≈ 15 Applying the rare event assumption 

to (2.7) results in the following: 

(2.8) ( ) ( ) ( ) ( ){ }; exp exp | .o Eλ λ≅ Z Xt W, Z t β Z β X W, Z  

The induced hazard belongs to the class of proportional hazards models since the ratio of 

hazards,  

 ( )
( )

1 1

2 2

;
;

λ
λ

t W ,Z
t W ,Z

, 

for two subjects with regression vectors ( ) ( )1 1 2 2 and W , Z W , Z does not vary with time.1, 

10, 11  

  Suppose that ( )|X W, Z is normal with specified mean and constant variance. 

Under this normality assumption, regression calibration can be applied. Assume there is a 

single X and a single Z. Let ( )1, , ,..., TT
kX Z U U=Q be a ( )2 1k + ×  vector. Also, let the 

multivariate normal distribution of Q be described as  

(2.9) 

2

1
2

0
~ , 0 .

0 0

X
T

Z X XZ K
T

U XZ Z K

K K U k

k U

X
Z
U MVN

I
U

μ
μ σ σ
μ σ

σ
μ

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ Σ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

M M

 

Under the classical error model, ,ij i ijW X U= + where 1,...,  and 1,..., ;i n j k= =  k is the 

number of replicates for subject i. The ijU are independent identically distributed. Each 

ijU  has mean 0 and variance 2
Uσ . The variance, 2

Uσ , is estimated using the available data. 

The vectors (X, Z) and U are independent. Since ,ij i ijW X U= +  

it follows that   
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(2.10) 1 2
1

2 *

~ ,0

0

i X

i Z T

i

ik

X
Z
W MVN

W

μ
μ

⎡ ⎤⎡ ⎤ ⎛ ⎞
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥ ⎛ ⎞Σ Σ⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟

Σ Σ⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠
⎢ ⎥⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

M M

, 

where 

2 2 2

2 2
2

1 2 *2
2 22 2

2
2 2 2

,   and .

W X X

X XZ X
X XZ

XZ Z
X XZ Xk

X X W k k

σ σ σ
σ σ σ

σ σ
σ σ

σ σ σ
σ σ σ

×
×

×

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟Σ = Σ = Σ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

L L

O M

M M M O M

M O

L L

 

Since ( )| ,X W Z follows a multi-variable normal distribution, ( )| ,X W Z  does too. 

( )( ){ }exp | ,XE X W Zβ is the moment generating function for ( )| ,X W Z . Therefore 

( )( ){ }exp | ,XE X W Zβ can be rewritten as  

(2.11) ( )( )| ,exp exp | , ,
2

T
X XX W Z

X E X W Z
β β

β
⎛ ⎞Σ
⎜ ⎟⎜ ⎟
⎝ ⎠

 

resulting in  

(2.12) 
( ) ( ) ( ) ( )( )

( ) ( )( )

| ,

*
0

; , exp exp exp | ,
2

                  = exp | , .

T
X XX W Z

o Z X

X

t W Z t Z E X W Z

t E X W Z

β β
λ λ β β

λ β

⎛ ⎞Σ
≅ ⎜ ⎟⎜ ⎟

⎝ ⎠  

At this point, the regression calibration algorithm begins with replacing unobserved 

iX with its calibrated value .( | , ).i i iE X W Z  The calibrated value is found by regressing 

. on and .i i iX W Z  Correlation between and i iX Z is accounted for in the calibrated value 

of ,
ˆ,  i i RCCorrX X . It follows that the calibrated value, ,

ˆ ,i RCCorrX is written as 
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(2.13) ( )
12

2
2 .

, .
2 .

ˆ ..ˆ ˆˆ ˆ ˆ( | , ) ..  ;
ˆ ˆ

U
iX XZ

i RCCorr i i i X XZ
i

XZ Z

W W
X E X W Z W k

Z Z

σσ σσ σ
σ σ

−
⎛ ⎞ ⎛ ⎞−+⎜ ⎟= = + ⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎝ ⎠⎝ ⎠

 

where 2
Uσ is the error variance. The error variance is calculated as  

(2.14) 
( )
( )

2

1 12

.
ˆ .

1

n k

ij i
i j

U

W W

n k
σ = =

−
=

−

∑∑
 

Using observed replicate data, the estimated variance for X and Z, 2ˆ ,Xσ is calculated as 

follows: 

(2.15) 
( )
( )

2
2

2 1

. .. ˆˆ
1

n

i
i U

X

W W

n k
σσ =

−
= −

−

∑
 

and 

(2.16) 
( )
( )

2

2 1

.
ˆ .

1

n

i
i

Z

Z Z

n
σ =

−
=

−

∑
 

The estimate for correlation is 

(2.17) 
( )( )

( )

2

1

. .. .
ˆ

1

n

i i
i

XZ

W W Z Z

n
σ =

− −
=

−

∑
 

where ..W is the grand mean or  

(2.18) 1

1
.. .

n

i
i

W n W−

=

= ∑ ; 

and  

(2.19) 1

1
.

n

i
i

Z n Z−

=

= ∑  
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represents the overall mean of the error free covariate Z. After obtaining the calibrated 

value for each iX  from(2.13), partial likelihood methodology is used to obtain estimates 

for Z and .Xβ β  

 

Advantages and Limitations of RCCORR  

In terms of measurement error modeling, RCCORR has one as of its main 

advantages that it is easily implemented and applied in standard software. The algorithm 

for implementation of RCCORR can be used when there is validation or replication data 

to estimate the error variance 2 .Uσ  

There are some limitations to implementation of RCCORR. One limitation to the 

RCCORR algorithm occurs in the presence of large amounts of error and correlation. 

Parameter estimates produced in this setting tend to be more biased than the naïve 

approach. Also, this method can not be implemented in the absence of rare events. 

Despite the limitations, this method is a good first order correction for error in 

proportional hazards modeling when the classical error model is appropriate.  

 

Risk Set Calibration Corrected for Correlation (RSCCORR) 

 In survival analysis, the risk set at time t is the set of all those subjects alive at 

time t.1, 10, 11 Risk Set Calibration Corrected for Correlation is another replacement 

approach used to compute an estimate for mismeasured observations. Similar to 

RCCORR, RSCCORR also uses analysis of variance techniques to provide calibrated 

estimates for unobserved X. This method differs from RCCORR in that at each event 
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time, all subjects in the risk set at time t receive a calibrated value. The calibrated value 

then contributes to the calculation of the partial likelihood at time t. 

 Similar to the methods employed in the RCCORR algorithm, suppose that 

( )| ,X W Z  follows a normal distribution within each risk set. As with RCCORR, under 

the classical additive error model, the measurement error variance is calculated using 

(2.14). The calibrated value, ( ) ( ).,
ˆ | ,i i ii RSC t

X t E X Z W= , is defined as follows: 

(2.20) ( ) ( )
12

2
,2 , ,

. , , ,
2 ,

, ,

ˆ ˆ.ˆ ˆ
ˆ ˆ ˆ| ,  .

ˆˆ ˆ

U
i t Wt X t XZ

i i i t W t X t XZt
i t Z

t XZ t Z

W
E X W Z k

Z

σ μσ σ
μ σ σ

μσ σ

−
⎛ ⎞

⎛ ⎞−+⎜ ⎟= + ⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎝ ⎠
⎝ ⎠

 

Let ,t iY be the risk set indicator. The risk set indicator is defined as ( ), .t i iY I t t= > When 

the survival time for subject i is greater than event time t , 1.t iY = The grand mean of 

observed replicates at time t, ,ˆt Wμ , can be written as  

(2.21) 
,

1
,

,
1

.
ˆ

n

t i i
i

t W n

t i
i

Y W

Y
μ =

=

=
∑

∑
 

and 

(2.22) 
,

1
,

,
1

ˆ

n

t i i
i

t Z n

t i
i

Y Z

Y
μ =

=

=
∑

∑
 

is the grand mean for the observed error free covariate at time t. The variance for X for 

those subjects in the risk set at time t is  

(2.23) 
( )
( )

2
2, ,

2 1
,

ˆ. ˆˆ
1

n

t i i t W
i U

t X
t

Y W

n k

μ
σσ =

−
= −

−

∑
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and the covariance is as follows: 

 

(2.24) 
( )( )

( )

2

, , ,
1

,

ˆ ˆ.
ˆ .

1

n

t i i t W i t Z
i

t XZ
t

Y W Z

n

μ μ
σ =

− −
=

−

∑
 

The variance of Z for those at risk at time t, 2
,ˆ ,t Zσ is calculated using ,ˆt Zμ  and observed Zi.  

(2.25) 
( )

( )

2

,
2 1
,

.
ˆ .

1

n

t i i
i

t Z
t

Y Z Z

n
σ =

−
=

−

∑
 

Each of the means and covariance matrices are generated at each event time. This 

increases computational complexity. When the risk set is small, the variance estimates 

tend towards 0, which makes estimation of the calibrated value difficult.  

While the distribution of ( ), ,X W Z is normal at t=0, the distribution of ( ), ,X W Z  

may not be normal within subsequent risk sets. It follows that ( ) ,
ˆ

i RSC
X t  is an 

approximation to .( | , )i i i tE X Z W . Therefore, the resulting parameter estimate, ˆ
RSCβ  will 

be asymptotically biased but the estimate should still be an improvement over the naïve 

estimate ˆ
NVEβ . 

 

Advantages and Limitations of RSCCORR 

Similar to RCCORR, RSCCORR is advantageous in that no new statistical 

programming software is necessary. Also, this method is applicable in both univariate 

and multivariate covariate settings. As with RCCORR, this method may be implemented 

in the presence of replicate data or validation data. As with replicate data, validation data 
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may be used to estimate the error variance. A limitation to implementation of RSCCORR 

is that the calculation of means within each risk may be cumbersome. In the presence of 

large amounts of correlation and/or error, the estimation of the variance components can 

cause the calibrated estimate to become unstable, thus causing the parameter estimates 

produced in this setting to be unstable.32 While there may be limitations to this method, 

and situations for which RCCORR outperforms this method, it should be a reasonable 

approach to adjust for correlation and measurement error in the proportional hazards 

setting when using the classical error model.
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CHAPTER 3 

LIKELIHOOD METHODOLOGY 

The final approach under consideration used to analyze survival data with 

correlated covariates subject to exposure measurement error is maximum likelihood (ML) 

methodology. This chapter will discuss ML methodology in detail, including construction 

of the likelihood and the individual components of the likelihood function. The numerical 

integration method, Gauss-Hermite quadrature will be discussed and its use in 

determining parameters of interest. Finally, the potential strengths and weaknesses of this 

method will be explored.  

 

Likelihood 

In order to implement the ML approach, contributing pieces of the likelihood 

must be specified. Our observed data consists of variable ( ), ,T W Z . We begin by 

specifying the distribution of ( ), ,T W Z , denoted , ,T W Zf . 

(3.1) 
( )
( ) ( )

, , , , ,

| , , , ,

, , , ,

           = .| , , , , ,
i i i i i i i

i i i i i i i

T W Z T W X Z ii i i i

T W X Z W X Z ii i i i i i i

f f dxt w x z

f f dxt w x z w x z

φ

φ

=

⎡ ⎤×⎣ ⎦

∫
∫

 

Interest lies in estimating ,φ where φ  represents the set of parameters were are interested 

in making inference on. Since W serves as a surrogate for X, it follows from 

nondifferentiability that (3.1) can be rewritten as  

(3.2) ( ) ( ), , | , , ,| , , , ,
i i i i i i i i iT W Z T X Z W X Z ii i i i i if f f dxt x z w x zφ⎡ ⎤= ×⎣ ⎦∫ .
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Thus, (3.2), the ith term of the likelihood, can be expressed as  

(3.3) ( ) ( ) ( ) ( )| , | , | .| , , | , |
i i i i i i i i ii T X Z W X Z X Z Z ii i i i i i i i iL f f f f dxt x z w x z x z zφ

∞

−∞

⎡ ⎤= × × ×⎣ ⎦∫  

The observed data likelihood is given by  

(3.4) , ,
1 1

i i i

n n

T W Z i
i i

f L
= =

=∏ ∏ , 

where the underlying model of primary interest, given ,T X Z , is denoted | ,T X Zf , the 

error model is denoted by | ,W X Zf  and the exposure model is described as ,X Zf .  

 

Model of Primary Interest 

In order to perform likelihood analysis, every component of the data must have a 

specified parametric model. To this end, we begin with specification of the model of 

primary interest. Suppose for i=1,…,n, Vi represents independent and identically 

distributed (i.i.d) failure times with corresponding density ( | );Vf t φ where φ is a vector of 

parameters associated with the failure time distribution. The corresponding survival 

function is defined as  

(3.5) 
( ) ( )

( )
| 1 |

          | ;

S t P T t

P T t

φ φ

φ

= − ≤

= >
 

and the hazard function is defined as  

(3.6) ( ) ( )
( )

|
| .

|
f t

t
S t

φ
λ φ

φ
=  

Due to censoring for reasons such as: loss to follow-up or study termination, the failure 
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times may not be observed. Therefore, let the possible i.i.d censoring times be denoted as 

1 n,...,C C with corresponding density, ( | ).Cg t ϕ  Likewise, the survival and hazard 

functions for ( | )Cg t ϕ are defined similarly to equations (3.5) and (3.6). Suppose that the 

censoring times are governed by parameter .ϕ  Under the assumption of random 

censoring,  and i iT C are independent. Consequently, the distribution of the primary 

model, | , ,T X Zf is derived using both failure and censored times.11, 33, 34  

Let the survival time for the ith subject, Ti, be the minimum of failure and 

censoring times, ( )i i iT = min V ,C . The event indicator, iδ , takes on the value of 1 when 

failure time is less than or equal to the censoring time, that is, ( ) i i i= I V Cδ ≤ . Subjects 

who do not experience an event or do not fail during the study are right censored. 

Consequently, the observed right censored survival data point for the ith subject is written 

as ( )i i, , ,i iTδ X Z  where ( ),i iX Z  is the observed covariate vector of interest.  

Using the data, the probability density function for the model of primary interest may be 

derived. 

(3.7) 
( ) ( )

( )
, 1| , , , , | , , ,

                                                  , | , , , .
i i i i i i i i

i i i i

P t T t h x z P t V t h C V x z

P t V t h C t x z

δ φ ϕ φ ϕ

φ ϕ

≤ < + = = ≤ < + >

= ≤ < + >
  

Because the survival and censoring times are independent, (3.7) can be rewritten as 

(3.8) ( ) ( ) | , ,  | , , .i i i i i iP t V t h x z P C t x zφ ϕ≤ < + >  

( )| , ,i i iP C t x z ϕ> is the survival function of C, which can be written as ( )| , , .
iC i iH t x z ϕ  

Applying the limit definition of derivative to (3.8) results in  
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(3.9) 
( ) ( )

( ) ( )
0

| , , | , ,
lim

                                    | , , | , , .
i i

i i i i i i

h

V i i C i i

P t V t h x z P C t x z
h

f t x z H t x z

φ ϕ

φ ϕ
→

≤ < + >

=
 

Similarly, when δ=0 or censoring has occurred, 

(3.10) 
( ) ( )

( )
( )

, 0 | , , , , | , , ,

                                                    , | , , ,

                                                     = |  |

i i i i i i i i

i i i i

i i

P t T t h x z P t C t h V C x z

P t C t h V t x z

P t C t h P V t

δ φ ϕ φ ϕ

φ ϕ

ϕ φ

≤ < + = = ≤ < + >

= ≤ < + >

≤ < + >( ), , .i ix z

 

The survival function of V, ( ) | , ,i i iP V t x zφ> , can be written as ( )| , , .
iV i iS t x zφ  It 

follows from again applying the limit definition of the derivative to (3.10) that  

(3.11) 
( ) ( )

( ) ( )
0

|   | , ,
lim

                                 | | , , .
i i

i i i i

h

C V i i

P t C t h P V t x z
h

g t S t x z

ϕ φ

ϕ φ
→

≤ < + >

=
  

Combining (3.9) and (3.11) results in the density  

(3.12) 
( ) ( ) ( )

( ) ( )
1

| , , , | , , |

                          | | , , .

i

i i i

i

i i

T i i i V i i C

C V i i

f t x z f t x z H t

g t S t x z

δ

δ

φ δ φ ϕ

ϕ φ
−

⎡ ⎤= ⎣ ⎦

⎡ ⎤× ⎣ ⎦

 

Using hazard function notation, (3.12) can be rewritten as  

(3.13) 

( ) ( ) ( )

( )
( ) ( )

| ,

1

( | , , )
| , , , | , ,

| , ,

|
                            | .

|

i

i

i i i i

i

i

i

i

i

V i i
T X Z i i i V i i

V i i

C
C

C

f t x z
f t x z S t x z

S t x z

H t
g t

g t

δ

δ

φ
φ δ φ

φ

ϕ
ϕ

ϕ

−

⎧ ⎫⎡ ⎤⎪ ⎪= ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎪ ⎪× ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

The interest of survival modeling is to characterize the distribution of T using the 

parameter φ . Secondly, assume noninformative censoring. Under this assumption, the 

density ( | )Cg t ϕ is unrelated to φ  or censoring times are independent of the failure times.  

Therefore, ( )| , | , ,
i i iT X Z i if t x zφ  is proportional to the following: 
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(3.14) 
( ) ( )
( | , , )

| , , .
| , ,

i

i

i

i

V i i
V i i

V i i

f t x z
S t x z

S t x z

δ
φ

φ
φ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Using the definition of hazard function, (3.14) can be rewritten as  

(3.15) ( ) ( )| , , | , , .i

ii i V i it x z S t x zδλ φ φ  

Using (1.1), 

( ) ( ) ( )( )0| , , exp .i i j X i Z it x z T X Zλ φ λ β β= +  

Substituting this into (3.15) results in  

( ) ( )( ){ } ( ) ( )| , 0 0
0

exp exp exp .
ii

i i i

T

T X Z j X i Z i X i Z if T X Z u X Z du
δ

λ β β λ β β
⎧ ⎫⎪ ⎪= + − +⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭
∫  

Under the exponential hazard model, which suggests a constant hazard, | ,i i iT X Zf can be 

rewritten as  

(3.16) ( )( ){ } ( )| ,
0

exp exp exp .
ii

i i i

T

T X Z X i Z i X i Z if X Z X Z du
δ

λ β β λ β β
⎧ ⎫⎪ ⎪= + − +⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭
∫  

 

Error Model 

In measurement error modeling, it is assumed that the distribution of the error 

model is known or specified. Suppose that  

(3.17) 
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Under the classical error model, , for 1,..., .i i iW X U i n= + =  It follows that 

( ), , , ,
i i iW X Z i i if w x z follows a multivariate normal distribution as follows: 
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(3.18) 
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Let 2 2 2
W X Uσ σ σ= + .Consequently, the error model, ( )| , | ,

i i iW X Z i i if w x z , is normal with 

(3.19) 
12

2
| , 2i i i

i Xx xz
W X Z x xzw

i Zxz z

X
Z

μσ σ
μ σ σμ

μσ σ

−
−⎡ ⎤ ⎡ ⎤

⎡ ⎤= + ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦⎣ ⎦
 

and  

(3.20) 
| ,

12 2
2 2 2

2 .
W X Zi i i

x xz x
w x xz

xz z xz

σ σ σ
σ σ σ σ

σ σ σ

−
⎡ ⎤ ⎡ ⎤

⎡ ⎤= − ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

 

For simplicity, we write the density of ( )| , | ,
i i iW X Z i i if w x z  as follows: 

(3.21) ( ) ( )| ,

| ,

| ,

2
1

22
| , 2

2 exp .
2

W X Zi i i

i i i W X Zi i i

W X Zi i i

i

W X Z

W
f

μ
πσ

σ

− ⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

 

 

Exposure Model 

The distribution of the exposure model or the model containing the covariate 

information may be specified in terms of the parameters of interest. Suppose that  

(3.22) 
2
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Z XZ Z
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μ σ σ
μ σ σ
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While other distributions are plausible, for simplicity, suppose that the exposure model, 

| ,
i iX Zf also follow a normal distribution, with unknown mean and variance. Suppose zi is 

observed and Xi and zi are correlated. The density function of |i iX Zf  is given by 
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(3.23) ( )( )
( )

( )

2
2

21
22 2

| 2 2
2 1 exp ,

2 1

i i

i i

X
i X i Z

Z
X Z X

X

X Z
f

σμ ρ μ
σ

π ρ σ
ρ σ

−

⎧ ⎫⎛ ⎞⎛ ⎞
− + −⎪ ⎪⎜ ⎟⎜ ⎟

⎪ ⎪⎝ ⎠⎝ ⎠= − −⎨ ⎬
−⎪ ⎪

⎪ ⎪
⎩ ⎭

 

with unknown parameters { }2 , ,X Xσ ρ μ . 

 

Parameter Estimation Using Gauss-Hermite Quadrature 

Using the parametric specification for the model of primary interest, (3.16), the 

error model, (3.21), and the exposure model, (3.23), the likelihood may be calculated. 

Since zi is observed, the ith term of the likelihood is 

(3.24) ( ) ( ) ( ) ( )| , | , || , , | , |
i i i i i i i i ii Z T X Z W X Z X Z ii i i i i i i i iL f f f f dxz t x z w x z x zφ

∞

−∞

⎧ ⎫
⎡ ⎤= × × ×⎨ ⎬⎣ ⎦

⎩ ⎭
∫  

where the parameter space of the full likelihood is  

{ }2, , , , , .X Z X Xλ β β σ ρ μ  

The likelihood consists of the product of integrals where each integrand is the product of 

functions of the unknown, error prone covariate xi. 35, 36 The full likelihood is defined 

over the real line, (-∞, ∞). Characteristically, the log-likelihood is maximized over the 

unknown parameters to solve for the parameters of interest.  

 The difficulty in solving the full likelihood is that it involves several integrals. 

Consequently, due to the complexity of the likelihood, numerical methods provide a 

better approach in parameter estimation. In order to estimate the parameters of interest, 

quadrature must be used. Quadrature is a form of numerical integration which allows for 

the determination of a numerical value of an integral. Gauss-Hermite quadrature may be 

used to evaluate the integral. It is often used because of its relation to Gaussian 
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densities.35, 36 In order to perform numerical integration, the integral found in (3.24) must 

be rewritten in the following form 

(3.25) ( ) ( )2exp .g y y dy
∞

−∞
−∫  

 

In general, a Gauss-Hermite quadrature method for the integration of 

(3.26) ( ) ( )2exp
b

a
I g y y dy= −∫  

has weight function of the form  

(3.27) ( )
1

.
m

i i
i

I w g y
=

≈ ∑  

Combining (3.26) and (3.27), 

( ) ( ) ( )2

1

exp ,
mb

i ia
i

g y y dy w g y
=

− ≈∑∫  

where the pairs ( ),i iw y depend on the kernel function ( )2exp .y− The yi are the zeros of 

the mth order orthogonal polynomial with respect to the kernel function.  

Rewriting Li results in  

(3.28) 

( ) ( )

( )

( )

| , | ,
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2

2 2

    | , , | ,

               exp ,
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L q f ft x z w x z

X Z
dx
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ρ σ

∞

−∞
= × ×
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⎪ ⎪
⎩ ⎭

∫

 

where ( ) ( )( )
1

22 2= 2 1 .
ii Z Xiq f z π ρ σ

−

× −  To this end, let yi, be a sampling node; then yi and 

xi are related by  
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(3.29)  
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It follows that 

(3.30) ( ) ( )
2

2 2
2 2 1 .

i i

X
i X i Z i X

Z

x Z yσμ ρ μ ρ σ
σ

⎛ ⎞
= + − + −⎜ ⎟
⎝ ⎠

�  

So  

 ( )( )2 22 1i X ix yρ σ∂ = − ∂  

and 

( )( )2 2
.

2 1
i

i

X

x y
ρ σ

∂
= ∂

−
 

This change of variables reduces the integral from an infinite range to a finite range 

allowing for the expression to be put in a form suitable for Gauss-Hermite quadrature.36 

Consequently, (3.28) can be rewritten as 

(3.31) ( ) ( )
2 2

2 2
2

exp( )2 1 . .
i i

X
i X i Z i X i

Z

yq g Z y dyσμ ρ μ ρ σ
σ π

∞

−∞

⎛ ⎞⎛ ⎞ −
+ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ �  

Under Gauss-Hermite quadrature,(3.31) is approximately equal to  

(3.32) ( ) ( )
2

2 2
2

1

2 1 ;
i i

m
i X

i X i Z i X
i Z

q w g Z yσμ ρ μ ρ σ
σπ =

⎛ ⎞⎛ ⎞⎛ ⎞
+ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑ �  

where the weights are .i iq w
π

 The nodes yi and weights i iq w
π

are uniquely 

determined by the likelihood space and function ( )g y . Thus, 
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(3.33) ( ) ( )
2

2 2
2

11

2 1 .
i i

n m
i X

i i X i Z i X
ii Z

qL w g Z yσμ ρ μ ρ σ
σπ ==

⎛ ⎞⎛ ⎞⎛ ⎞
= + − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑∏ K �  

 Quadrature relies on a deterministic approximation to an integral as a weighted 

sum of the integrand evaluated at selected set of values. The approximation requires the 

integrand to be evaluated at each node and then the values are weighted and summed. 

The nodes and weights factors can be obtained from tabulations found in Abramowitz & 

Stegun (1964).35-38 Using (3.33) to determine the parameters of interest, 

{ }2, , , , , ,X Z X Xθ λ β β σ ρ μ= the derivative of the loglikelihood is maximized with respect 

to .iθ   

Due to the computational difficulties inherent to this method, we will not explore 

its properties either in simulation or real data. However based on Hu, Tsiatis, Davidian 

(1998), we would expect that maximum likelihood estimation would provide the best 

performing parameter estimates.26, 39 These resulting parameter estimates tend to have 

both smaller bias and variability. 
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CHAPTER 4 

SIMULATION STUDY 

In this chapter, a detailed explanation of the research methodology is presented. 

The objectives of the simulation study are explained followed by a description of the 

steps involved in the simulation procedure. Finally, measures used to compare the 

properties of the parameter estimates are presented. In addition, conclusions regarding the 

simulation results from the different methods are summarized.  

 

Objectives of Simulation Study 

The problem under investigation is the effect of correlation between continuous 

error prone and non-error prone covariates. More specifically, we are interested in 

comparing methods used to correct the effects of correlation between error free and error 

prone covariates in Cox regression settings. We will perform a simulation study to assess, 

compare and contrast the effectiveness of regression calibration and risk set calibration 

each corrected for correlation. Further, we will compare each of these methods to the 

Naïve method. The ability of each method to reduce bias and minimize variance will be 

assessed and we will discuss the settings in which each method may or not be preferred.  

 

Simulation Details 

 To develop these methods and study the resultant parameter estimates achieved 

via ignoring correlation and measurement error, regression calibration without correcting 
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for correlation (RCNO), RCCORR and RSCCORR, we performed a simulation study. 

The simulation study sought to produce parameter estimates from each method and 

compare properties of the methods. As a result of computational difficulty, a third 

method emerged-risk set calibration adjusted for small risk sets (RSCADJ). Although 

three methods were compared, they each adhered to the same organizational structure. In 

this section, the specifications of the simulation study are discussed. 

 

Sample Size and Number of Required Simulations 

 For this simulation study, each sample size was n=150. Determination of the 

number of simulations is based on consideration of precision and computing expense and 

parameter estimate accuracy.40 Our primary interest is in the parameter estimate of the 

error prone correlated covariate. Suppose that κ represents the acceptable difference from 

the true estimate. This is also referred to as the level of accuracy. In our setting, the 

variance is assumed known. The number of simulations is based on the ability to detect a 

κ  difference from the true value with power ( )1 β− . The following may be used to 

calculate the number of Monte Carlo data sets;  

( ) ( )( ) 2

1 2 1Z Z
N α β σ

κ
− −

⎡ ⎤+
⎢ ⎥=
⎢ ⎥
⎣ ⎦

% . 

In order to produce an estimate within 2% of the true estimate, 1000 simulations were 

necessary.  

After running the RSCCORR method, approximately 6% of the simulations failed 

to converge. Therefore, the number of simulations was increased to 1060 to maintain the 

ability to produce an estimate within 2% of accuracy. 
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Simulating Covariate Data 

Many sociological studies use multivariate models to model a subject’s outcome 

of interest. In order to replicate that via simulation study, the vector 

1( , , , , )i i i ikX Z U UK was generated using a multivariate normal distribution,  

(3.34) 
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where Uij is independent from Zi and Xi; also, Zi and Xi are correlated, 

1,..., . i n= Assuming the additive error model holds, the observed value ijW  was 

generated by adding iX  and ijU , .ij i ijW X U= +  It follows that the transformed vector 

1( , , , , ),i i i ikX Z W WK  has multivariate normal distribution and can be written as 

(3.35) 11 12
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where 

(3.36) 
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σ σ
σ σ
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L
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and 
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(3.38) 
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The dimensions of 11 12 22,   and ∑ ∑ ∑ are 2 2, 2 , and k k k× × ×  respectively where k is the 

number of replicates. Common to measurement error modeling, the distribution of 

( )| , | ,W X Z i i if W X Z  is assumed to be known. Thus, data that correspond to these 

distributional constraints were generated. Using the description of small, moderate and 

large levels of correlation presented by Cohen, we modeled correlation between X and Z 

at three levels 0.1, 0.3 and 0.5, with error estimates of 0.1, 0.3, 0.5, 1.0 and 2.0.41 The 

combination of correlation and error resulted in 15 design points, summarized in Table 1. 

The correlation/measurement error combinations prove to be salient too in the real data 

analysis. These levels of correlation and error are similar to what is presented in the real 

data analysis found in Chapter 6. 

 

Simulating Censoring and Survival Times 

 In Chapter 3, the importance of random and noninformative censoring was 

elucidated. It follows that the censoring distribution along with the survival distribution 

must be specified.10, 40, 42 For simplicity, the censoring distribution was set to follow an 

exponential distribution with lambda equal to one, 

( ) t
Cg t e−= . 
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Table 1 Design Points for Simulation Study 
  Error   

Correlation 0.1 0.3 0.5 1.0 2.0 
0.1 (0.1, 0.1) (0.1, 0.3) (0.1, 0.5) (0.1, 1.0) (0.1, 2.0) 
0.3 (0.3, 0.1) (0.3, 0.3) (0.3, 0.5) (0.3, 1.0) (0.3, 2.0) 
0.5 (0.5, 0.1) (0.5, 0.3) (0.5, 0.5) (0.5, 1.0) (0.5, 2.0) 

*Table entries represent all combinations of correlation and measurement error 
*Error estimates were generated using 3 replicates, ( )1 2 3, ,i i i iW W W W=  

* N% =1060 Monte Carlo Data sets 
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 Let T have probability density function f(t) and cumulative density function F(t). 

Using the definitions from (3.5) and (3.6), the survival and hazard functions were defined 

as  

(3.39) ( )( ) 1S t F t= −  

and  

(3.40) ( ) ( )
( )

f t
t

S t
λ =  

respectively. The hazard function can be used to model survival times T. The cumulative 

hazard, H(t), is defined as 

(3.41) ( ) ( )
0

.
t

H t u duλ= ∫  

It follows that the cumulative hazard found in (3.41) can be rewritten as a function of the 

survival function. 

(3.42) 

( ) ( )

( )
( )

0

0

   
( )

          =  
1

           = - ln ( ).

t

t

f u
H t du

S u

f u
du

F u
S t

=

−

∫

∫  

Exponentiation applied to (3.42) results in  

(3.43) ( )( )( )   exp .S t H t= −  

This definition may be applied to the Cox proportional hazards model, 

( ) ( ) ( )0; , exp .X Zt X Z t X Zλ λ β β= +  

It follows for the Cox proportional hazards model, the survival function is given as 

(3.44) ( )( )0( ; , ) exp X ZX ZS t X Z H t eβ β+= − . 
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where  

( )0 0
0

t

H u duλ= ∫  

is the cumulative baseline hazard.  

Let U be a continuous random variable with probability density 

function ( ; , )F t X Z . It follows that U and 1-U both follow a uniform distribution on the 

interval (0,1).43 Let T be the survival time to be modeled. Since ( )0 0tλ > , we may invert 

H0 and represent the survival time T for the Cox model as 

(3.45) ( )( ){ }1
0 exp lnX ZT H X Z Uβ β−= − − + . 

The time on study for each subject is the minimum of the resulting survival time and 

censoring time. Commonly used survival time distributions are exponential, Weibull and 

Gompertz. These distributions meet the assumption of proportional hazards needed when 

utilizing the Cox model. For simplicity, we used the exponential distribution in this study. 

This distribution specifies a constant hazard, λ  with corresponding cumulative hazard 

function,  

(3.46) ( )0 .H t tλ=  

The inverse cumulative hazard function is 

(3.47) ( )1 1
0 .H t tλ− −=  

Applying the inverse cumulative hazard function to (3.45) results in  

(3.48) 
( )

ln
exp X Z

UT
X Zλ β β

= −
+
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and the corresponding hazard function is ( ) ( ); , exp X Zt X Z X Zλ λ β β= + . Survival times 

for each subject can be generated using equation (3.48). In this simulation, the survival 

times have a constant hazard of 1, with 1 and 1.X Zβ β= =  

 

Evaluating the Performance of Methods 

 In order to evaluate the performance of the methods, the average of the parameter 

estimates for each Monte Carlo run, along with their corresponding sample standard error 

and average standard error will be computed. Also, absolute and relative bias are useful 

to gauge performance of each method. Absolute bias indicates how well a method 

approximated the true value of the parameter while relative bias provides an indication of 

how large an error in estimation is made in comparison to the actual parameter value. The 

Monte Carlo mean is defined as  

(3.49) 
1

1ˆ ˆ .
N

i
iN

β β
=

= ∑
%

%
 

Absolute bias is calculated as  

(3.50) ( ) ˆABS BIAS ;β β= −  

and relative bias, which is reported as a percentage is calculated as  

(3.51) ( )
ˆ

REL BIAS 100.β β
β
−

= ×  

 The mean square error (MSE) of an estimator is the expected squared deviation 

between the sample mean and the parameter to be estimated. MSE is very useful because 

it provides a summary of accuracy and precision of the estimator. It is calculated as 

follows:  
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(3.52) 
( ) ( )
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2 2

1

2

1ˆ ˆMSE
1

ˆ          = var .

N

i
iN

BIAS

β β β β

β
=

= − + −
−

+

∑
%

%  

Relative efficiency (RE) of estimator is a measure of the variability of a new 

estimator to another. In settings where the estimators are not unbiased, the MSE is used 

to compute relative efficiency. The following is used to calculate relative efficiency, 

(3.53) 
( )
( )

ˆ
RE .

ˆ
new

Naive

MSE

MSE

β

β
=  

If RE < 1, then the new method is more efficient than the older method. 

 Finally, we use coverage as a criterion for evaluating the estimators. The 

proportion of times that the confidence interval contains the true parameter value is 

defined as the coverage of the confidence interval. The nominal coverage rate should be 

approximately equal to the coverage rate. Coverage should fall within 2 standard errors of 

the nominal coverage probability which is calculated as follows: 

(3.54) (1 ) / .p p N− %  

 
In our setting we use a 95% coverage rate, p=0.95. This indicates that the true value 

should be contained in approximately 993 to 1022 confidence intervals.40 

 

Summary 

 Using each of the Monte Carlo trials, parameter estimates at each design point 

were computed using each of the five methods under study, as described in Chapters 1, 2 

and 4, the censoring times followed an exponential distribution with mean and variance 
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of one. The hazard function corresponding to survival time followed an exponential 

distribution with the hazard,  

( ) ( ); , exp .t X Z X Zλ = +  

The distributions for the censoring and survival times were selected for simplicity.  

The Monte Carlo mean and variance are calculated for the Naïve, regression 

calibration not adjusted for correlation, RCCORR and risk set calibration approaches. 

The criteria for evaluating and comparing parameter estimates are absolute and relative 

bias, relative efficiency and coverage. The results of the Monte Carlo simulation are 

shown in the next section. 

 

Simulation Results 

 The method for conducting the simulation was explained in detail in earlier 

sections of Chapter 4. For simplicity, regression parameters were selected as 

1 and 1.X Zβ β= =  The censoring rates ranged from 35% to 45% for each simulation run 

based on the minimum time on study determined from the minimum of the censoring and 

failure distributions. There were three replicates of the error prone covariate. The 

distribution of the measurement error was  

(3.55) 
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where the variance ranged from 0.1 to 2.0. The results based on 1,060 samples of size 

150 are shown in Tables 2 through 18. In order to evaluate the methods, the average of 

the parameter estimates and corresponding standard errors for each Monte Carlo run, 
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along with their corresponding standard deviations was computed. Additionally, 95% 

coverage, relative bias, absolute bias and relative efficiency were calculated.  

 

Methods that Ignore Correlation and Measurement Error 

 As a baseline assessment of the impact of ignoring correlation and measurement, 

we first ran Monte Carlo simulations of the correlation-error combinations and estimated 

Naïve parameter estimates. The standard error is the square root of the sample variance of 

the resulting estimates and the average standard error is the average of the 1060 standard 

error estimates.  

The results from the Naïve approach are found in Table 2 and 3. The Naïve 

estimators provide similar estimates within each level of error. As the correlation within 

each level of error increases, the estimates attenuate towards 0. This approach does a poor 

job of estimating the mean values of both of ˆ
Xβ and ˆ .Zβ  In the error prone estimate, the 

value of ˆ ,Xβ  varies from 0.47 to 0.95 depending on the magnitude of the correlation and 

measurement error. This range represents a great departure from the true value of 1. 

Correlation and measurement error do not impact the parameter estimates of the error 

free covariate as much as the error prone covariate. The values of the error free parameter 

estimates ˆ ,Zβ are less biased towards the null. The values vary from 0.92 to 1.10. Larger 

amounts of correlation and error result in attenuated parameter estimates in the error 

prone covariate. In the covariate that is not mismeasured, the Naive method is more 

robust. As expected, the Naïve approach is most robust in the setting of low correlation 

and error, 0.1 and 0.1 respectively. 
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Coverage probabilities, relative and absolute bias for the Naïve approach are all 

found in Table 3. The coverage probability for the error free estimate at small to 

moderate levels of error is greater than 95% which indicates that the naive method is 

somewhat robust at these levels of error. Alternatively, for most design points, the 

coverage for ˆ
Xβ  is below the nominal level indicating that failing to correct for 

correlation and error will provide inaccurate estimates.  

Within each level of error, the relative bias indicates that the error prone covariate 

is underestimated as correlation increases. Simultaneously, correlation affects the error 

free estimate, ˆ ,Zβ differently. The magnitude of relative bias changes from negative to 

positive indicating at higher levels of correlation and error, the parameter estimate is 

overestimated as opposed to under estimated. These results indicate that failure to correct 

for correlation and measurement error may lead to misleading inference.  

 

Methods that Incorporate Correlation and Measurement 

 Tables 4 – 18 report results of the estimates obtained from the methods which 

incorporate a correction for correlation and measurement error. Estimates for Zβ resulting 

from RCNO should be the same as the results from the Naïve approach. This occurs 

because RCNO only corrects for measurement error and not correlation. The correlation 

measurement error combination not only impacts the error prone covariate, it also 

impacts the error free one.  

 Table 4 reports the average parameter estimates, standard error and average 

standard error when 2 0.1.Uσ =  Notice that for design points found in this table, the range 

for the RCNO estimates is 0.017 for both ˆ
Xβ and ˆ .Zβ  Correspondingly, the range for 
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RCCORR is 0.012 and 0.009 for ˆ
Xβ and ˆ

Zβ  respectively; for RSCCORR, the range is 

0.033 and 0.068 and for RSCADJ, the range is 0.029 and 0.66 for ˆ
Xβ and 

ˆ
Zβ respectively. Under the method RCNO, the estimates of Xβ  are all less than 1. This 

indicates that RCNO does correct for the expected attenuation that occurs as a result for 

the correlation/measurement error problem. Also, as we observe the estimates of 

Xβ resulting from RCCORR, RCSCORR and RSCADJ, it is evident that these methods 

also correct for the expected attenuation problem as the estimates are relatively close to 1. 

Yet, each method over estimates our expected value except at design point (0.5, 0.1). 

RCCORR provides an estimate at this design point slightly below 1. Also, this same 

method tends have to better estimates as correlation increases. Additionally, note that the 

estimates for standard error and average standard error are acceptable. The estimates of 

Zβ indicate that each method corrects for attenuation. Failure to correct for correlation 

and measurement error results in the best results. When correlation is small, RSCCORR 

and RSCADJ perform well followed by RCCORR. As correlation increases, we see a 

separation in the performance of the methods. At moderate levels of correlation, 

RCCORR, RSCCORR and RSCADJ perform similarly, yielding similar results. At the 

highest level of correlation, we see that the performance of the risk set methods is not a 

good and the regression calibration methods. Again, the standard error and average 

standard error estimates are appropriate.  

The performance of estimators is also examined by the empirical coverage, 

relative and absolute bias. These results are displayed in Table 5. At each level of 

correlation, the coverage for the regression calibration methods is adequate. 
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Alternatively, the coverage of ˆ
Xβ resulting from RSCCORR and RSCADJ is not as 

robust; it is less than the nominal level. Correspondingly, the risk set calibration methods 

overestimate the true value of Xβ by at least 11.6%. The regression calibration methods 

perform better. The impact of correlation/measurement error is not as great in the error 

free estimators. Relative bias for these same methods ranges from -7% to 0%. The results 

in Table 5 corroborate the results found in Table 4. The absolute bias is small for RCNO 

and RCCORR at each level of correlation. In the estimate of ,Xβ  we observe that as 

correlation increases, the RCCORR method outperforms that of RCNO. As expected, the 

correlation adjustment improves the ability to estimate true .Xβ  The risk set calibration 

methods do not perform as well as the regression calibration methods at this level of 

error. While the amount of bias is acceptable, both of these methods are outperformed by 

the Naïve approach as found in Table 3. The absolute bias for the Naïve method is 

smaller at each level of correlation than either risk set calibration method. The same 

trends do not occur in methods used to estimate .Zβ At the lowest level of correlation, we 

observe that RSCCORR and RSCADJ perform well, yet, as correlation increases, the 

absolute bias increases, indicating that the methods are sensitive to increases in 

correlation. As correlation increases, the estimates acquired from the RCNO method are 

more accurate than the other methods. As expected, the largest absolute bias occurs under 

the RSCCORR method, which is very sensitive to risk set size. The estimates of Xβ  

indicate that each method corrects for the attenuation effect observed in Table 2.  

Table 6 records the mean square error and relative efficiency of the estimator 

from each method under the prescribed design points. The relative efficiency is the ratio 
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of the mean square error of the estimator resulting from the method that corrects for 

correlation and error and the mean square of the naive method. The mean square error for 

each method at each level of correlation is consistent. The relative efficiency is greater 

than 1 for estimates from the RSCCORR and RSCADJ methods. This indicates that 

under each design point, the Naïve method is more efficient than the methods that utilize 

the risk set approach. Alternatively, RCNO is more efficient than the Naïve approach 

because the relative efficiency of ˆ
Xβ resulting from RCNO is less than 1 at each level of 

correlation. As indicated earlier, the performance of RCCORR improves as correlation 

increases. We observe that the relative efficiency of RCCORR goes from greater than 1 

to less than 1 as correlation increases. Also note, the relative efficiency for ˆ
Zβ resulting 

from RCNO is 1. This will occur at every design point since the method does not adjust 

for correlation; the parameter estimate is the same as the Naïve approach. The relative 

efficiency of ˆ
Zβ  resulting from RSCCORR at the lowest level of correlation is 0.997. 

This indicates the RSCCORR is more efficient than the Naïve method.  

Tables 7, 8 and 9 show the results from 2 0.3.Uσ =  Notice, for these design points, 

that we observe similar results to that of the previous design point configuration. The 

estimates for Xβ  and Zβ vary from 0.96 to 1.65 and 0.74 to 1.03 respectively. RCNO and 

RCCORR seem to estimate the true parameters relatively well. When correlation is small, 

RCNO seems to perform slightly better as the parameter estimate is very close to 1. As 

the amount of correlation increases, RCCORR shows better performance in estimating 

1.Xβ =  Both RCNO and RCCORR provide estimates that are closer to 1Xβ =  as 

compared to the Naïve approach found in Table 2. Upon closer inspection of Table 7, we
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Table 2 Simulation Summary Statistics for ˆ ˆand X Zβ β with true 1,  1X Zβ β= = and sample size n= 150; True covariates  
are generated from bivariate normal distributions; Results are from 1060 replicates 
Method 

 
ρ  2

Uσ  ˆ
Xβ  ( )ˆ

XSE β  ( )( )ˆAverage XSE β ˆ
Zβ  ( )ˆ

ZSE β  ( )( )ˆAverage ZSE β

Naïve  0.1 0.1 0.954 0.135 0.142 0.992 0.135 0.146 
 0.3  0.948 0.140 0.146 0.999 0.141 0.151 
 0.5  0.938 0.152 0.156 1.009 0.155 0.162 
         
 0.1 0.3 0.877 0.133 0.135 0.977 0.136 0.145 
 0.3  0.867 0.138 0.139 0.998 0.142 0.150 
 0.5  0.848 0.149 0.148 1.025 0.155 0.161 
         
 0.1 0.5 0.812 0.131 0.130 0.965 0.137 0.144 
 0.3  0.800 0.135 0.133 0.997 0.142 0.150 
 0.5  0.773 0.145 0.141 1.039 0.155 0.161 
         
 0.1 1.0 0.685 0.123 0.118 0.943 0.138 0.143 
 0.3  0.669 0.126 0.121 0.996 0.144 0.149 
 0.5  0.635 0.134 0.127 1.066 0.156 0.159 
         
 0.1 2.0 0.523 0.109 0.102 0.916 0.140 0.141 
 0.3  0.506 0.111 0.104 0.997 0.145 0.147 
 0.5  0.468 0.116 0.108 1.101 0.156 0.158 

The measurement error is Normal (0, 2
Uσ ); Sample standard error, ( )ˆ ,XSE β is the standard deviation of Monte Carlo estimates; 

Average standard error, ( )( )ˆAverage ,XSE β is the average of Monte Carlo estimated standard errors.  
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Table 3 Coverage, Relative and Absolute Bias of Average Parameter Estimates for Naïve Method 
Method ρ  2

Uσ  Coverage 
ˆ

Xβ  
Relative Bias 

ˆ
Xβ  

Absolute Bias
ˆ

Xβ  
Coverage 

ˆ
Zβ  

Relative Bias 
ˆ

Zβ  
Absolute Bias

ˆ
Zβ  

Naïve 0.1 0.1 95.1 -4.6 0.046 97.6 -0.8 0.008 
 0.3  94.8 -5.2 0.052 97.1 -0.1 0.001 
 0.5  93.9 -6.2 0.062 97 0.9 0.009 
         
 0.1 0.3 83.5 -12.3 0.123 95.9 -2.3 0.023 
 0.3  81.3 -13.3 0.133 97.1 -0.2 0.002 
 0.5  78.3 -15.2 0.152 97.3 2.5 0.025 
         
 0.1 0.5 65.4 -18.8 0.188 95 -3.46 0.035 
 0.3  63.4 -20.0 0.200 96.7 -0.3 0.003 
 0.5  59.5 -22.7 0.227 96.5 3.9 0.039 
         
 0.1 1.0 24.8 -31.5 0.315 92.8 -5.7 0.057 
 0.3  24.1 -33.1 0.331 96.4 -0.4 0.004 
 0.5  20.8 -36.5 0.365 95.1 6.6 0.066 
         
 0.1 2.0 1.9 -47.7 0.477 90.1 -8.4 0.084 
 0.3  1.6 -49.4 0.494 96.2 -0.3 0.003 
 0.5  0.9 -53.2 0.532 92.7 10.1 0.101 
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Table 4 Simulation Summary Statistics for ˆ ˆand X Zβ β with true 1,  1X Zβ β= = and sample size n= 150; True  
covariates are generated from bivariate normal distributions; measurement error variance is 2 0.1Uσ =   

Approach 
 

ρ  ˆ
Xβ  ( )ˆ

XSE β  ( )( )ˆAverage XSE β ˆ
Zβ  ( )ˆ

ZSE β  ( )( )ˆAverage ZSE β

RCNO§ 0.1 0.999 0.142 0.149 0.992 0.135 0.146 
RCCORR ‡  1.011 0.144 0.150 0.969 0.134 0.144 
RSCCORR *  1.120 0.167 0.161 0.999 0.135 0.140 
RSCADJ°  1.116 0.167 0.166 1.000 0.138 0.146 

        
RCNO§ 0.3 0.992 0.148 0.153 0.999 0.141 0.151 
RCCORR ‡  1.002 0.149 0.155 0.978 0.141 0.151 
RSCCORR *  1.127 0.177 0.168 0.975 0.141 0.145 
RSCADJ°  1.121 0.175 0.173 0.974 0.143 0.151 

        
RCNO§ 0.5 0.982 0.160 0.164 1.009 0.155 0.162 
RCCORR ‡  0.999 0.163 0.167 0.978 0.157 0.163 
RSCCORR *  1.153 0.202 0.187 0.931 0.160 0.159 
RSCADJ°  1.145 0.197 0.191 0.934 0.162 0.165 
§ Regression Calibration No Adjustment for Correlation 
‡ Regression Calibration Adjusted for Correlation 
* Risk Set Calibration Corrected for Correlation 
° Risk Set Calibration Corrected for Correlation and adjusted to improve efficiency 
Sample standard error, ( )ˆ ,XSE β is the standard deviation of Monte Carlo estimates;  

Average standard error, ( )( )ˆAverage ,XSE β is the average of Monte Carlo estimated standard errors.  
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Table 5 Coverage, Relative and Absolute Bias of Average Parameter Estimates for 2 0.1Uσ =  
Method ρ  Coverage 

ˆ
Xβ  

Relative Bias 
ˆ

Xβ  
Absolute Bias

ˆ
Xβ  

Coverage 
ˆ

Zβ  
Relative Bias 

ˆ
Zβ  

Absolute Bias
ˆ

Zβ  
RCNO§ 0.1 95.9 -0.1 0.001 97.6 -0.8 0.008 
RCCORR ‡  95.8 1.1 0.011 95.8 -3.1 0.031 
RSCCORR *  91.1 12.0 0.120 97.1 0.1 0.001 
RSCADJ°  91.0 11.6 0.116 97.3 0.0 0.000 
         
RCNO§ 0.3 96.4 -0.8 0.008 97.1 0.1 0.001 
RCCORR ‡  96.5 0.3 0.002 97.1 -2.2 0.022 
RSCCORR *  90.1 12.7 0.127 96.6 -2.5 0.025 
RSCADJ°  90.6 12.1 0.121 96.8 -2.6 0.026 
         
RCNO§ 0.5 96.7 -1.8 0.018 97 0.9 0.009 
RCCORR ‡  97.0 -0.1 0.001 95.9 -2.2 0.022 
RSCCORR *  89.1 15.3 0.153 92.9 -6.9 0.069 
RSCADJ°  90.5 14.5 0.145 93.1 -6.6 0.066 
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Table 6 Mean Square Error, Relative Efficiency 2 0.1Uσ =  
Method ρ  Error Mean Square 

Error ˆ
Xβ  

Relative 
Efficiency ˆ

Xβ
 Mean Square 

Error ˆ
Zβ  

Relative 
Efficiency ˆ

Zβ
RCNO§ 0.1 0.1 0.020 0.991   0.018 1.000 
RCCORR ‡   0.021 1.025  0.019 1.034 
RSCCORR *   0.042 2.079  0.018 0.997 
RSCADJ°   0.041 2.033  0.019 1.041 
            
RCNO§ 0.3 0.1 0.022 0.985  0.020 1.000 
RCCORR ‡   0.022 0.996  0.020 1.024 
RSCCORR *   0.047 2.128  0.021 1.031 
RSCADJ°   0.045 2.030  0.021 1.063 
            
RCNO§ 0.5 0.1 0.026 0.962  0.024 1.000 
RCCORR ‡   0.027 0.986  0.025 1.043 
RSCCORR *   0.064 2.383  0.030 1.259 
RSCADJ°   0.060 2.220   0.031 1.269 
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observe RSCCORR and RSCADJ perform similarly. These two methods are very similar 

in that the calibration method is the same with the exception of the tails of the risk set. 

The resulting behavior of the estimates should be similar. There is a slight inflation in the 

estimate ˆ
Xβ as correlation increases. Larger levels of correlation result in a larger value 

of ˆ .Xβ  For RSCCORR and RSCADJ, we observe that the estimate of the standard error 

has been inflated. The regression calibration approaches, with the exception of design 

point (0.5, 0.3) (correlation, measurement error), yield downwardly biased estimates for 

.Zβ  We also observe that as correlation increases, the estimates obtained from risk set 

calibration approaches become more variable and downwardly biased. 

Table 8 contains estimates which describe the coverage and accuracy of the 

methods. For both regression calibration methods, the results ˆ ˆand X Zβ β resulting from 

RCNO and RCCORR have reasonable coverage; the coverage is relatively close to the 

nominal rate. Alternatively, coverage for ˆ
Xβ is particularly poor for the risk set 

calibration methods and fair for ˆ .Zβ This is due to the increase in the standard error and 

absolute bias estimates. It follows that the confidence interval used to determine the 

coverage has a shifted location yet not a wider interval. Again, we observe that as 

correlation increases, the absolute bias of Xβ is smaller for RCCORR compared to 

RCNO. Also, when correlation is small, RSCCORR and RSCADJ perform well when 

estimating Zβ but not so when estimating .Xβ  Each has an absolute bias of 0.002 when 

estimating ,Zβ  yet the absolute bias in Xβ  is 0.462 and 0.446 for RSCCORR and 
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RSCADJ respectively. RCNO still underestimates Xβ  by at most 3.7%. Alternatively, the 

risk set calibration methods overestimate Xβ  by at least 44.6%.  

 The results in Table 9 provide a comparison of the method designed to correct for 

correlation and measurement error to ignoring both correlation and measurement error. 

The results found in Table 9 are not surprising based on what we have observed thus far. 

At this point, we observe that the MSE for ˆ
Xβ has increased considerably from what was 

observed in Table 6. More specifically, there is a 7 fold increase in MSE for the risk set 

calibration methods. While not as steep as what was observed in MSE for ˆ
Xβ , the impact 

of increased measurement error also affects the MSE of ˆ .Zβ  There is a 1- to 4-fold 

increase in the estimates as compared to measurement error of 0.1. In methods used to 

estimate Xβ , we observe that the relative efficiency, for both RCNO and RCCORR is less 

than 1 indicating that the Naïve method is inefficient compared to the regression 

calibration methods. Alternatively, RSCCORR and RSCADJ are considerably larger than 

1. Hence, the risk set calibration methods are not as efficient as ignoring correlation and 

measurement error. The relative efficiency for methods used to estimate Zβ take on a 

different structure. Each ratio is greater than 1 indicating that the Naïve method is more 

efficient the RCCORR, RSCCORR and RSCADJ. 

 For 2 0.5,Uσ =  we again see a similar situation as to the previous value of 2 .Uσ  The 

results are found in Tables 10, 11 and 12. As we have seen in previous tables, RCNO and 

RCCORR outperformed RSCCORR and RSCCADJ in estimating the true value of the 
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Table 7 Simulation Summary Statistics for ˆ ˆand X Zβ β with true 1,  1X Zβ β= = and sample size n= 150; True  
covariates are generated from bivariate normal distributions; measurement error variance is 2 0.3Uσ =  

Approach 
 

ρ  ˆ
Xβ  ( )ˆ

XSE β  ( )( )ˆAverage XSE β ˆ
Zβ  ( )ˆ

ZSE β  ( )( )ˆAverage ZSE β

RCNO§ 0.1 0.997 0.158 0.154 0.977 0.136 0.145 
RCCORR ‡  1.018 0.164 0.157 0.924 0.137 0.143 
RSCCORR *  1.462 0.328 0.222 1.002 0.152 0.137 
RSCADJ°  1.446 0.298 0.229 1.002 0.153 0.147 

        
RCNO§ 0.3 0.986 0.163 0.158 0.998 0.142 0.150 
RCCORR ‡  1.013 0.171 0.163 0.935 0.145 0.150 
RSCCORR *  1.502 0.367 0.238 0.900 0.166 0.142 
RSCADJ°  1.484 0.325 0.246 0.902 0.164 0.151 

        
RCNO§ 0.5 0.963 0.175 0.168 1.025 0.155 0.161 
RCCORR ‡  1.010 0.188 0.177 0.939 0. 164 0.164 
RSCCORR *  1.649 0.535 0.287 0.726 0.253 0.168 
RSCADJ°  1.609 0.400 0.296 0.740 0.220 0.180 
§ Regression Calibration No Adjustment for Correlation 
‡ Regression Calibration Adjusted for Correlation 
* Risk Set Calibration Corrected for Correlation 
° Risk Set Calibration Corrected for Correlation and adjusted to improve efficiency  
Sample standard error, ( )ˆ ,XSE β is the standard deviation of Monte Carlo estimates;  

Average standard error, ( )( )ˆAverage ,XSE β is the average of Monte Carlo estimated standard errors.  
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Table 8 Coverage, Relative and Absolute Bias of Average Parameter Estimates for 2 0.3Uσ =  
Method ρ  Coverage 

ˆ
Xβ  

Relative Bias 
ˆ

Xβ  
Absolute Bias

ˆ
Xβ  

Coverage 
ˆ

Zβ  
Relative Bias 

ˆ
Zβ  

Absolute Bias
ˆ

Zβ  
RCNO§ 0.1 94.7 -0.3 0.003 95.9 -2.3 0.023 
RCCORR ‡  94.4 1.8 0.018 92.0 -7.6 0.076 
RSCCORR*  50.3 46.2 0.462 93.2 0.2 0.002 
RSCADJ°  54.0 44.6 0.446 94.5 0.2 0.002 
        
RCNO§ 0.3 94.8 -1.4 0.014 97.1 -0.2 0.002 
RCCORR ‡  94.6 1.3 0.013 93.7 -6.5 0.065 
RSCCORR*  49.6 50.2 0.502 87.6 -10.0 0.100 
RSCADJ°  53.5 48.4 0.484 89.2 -9.8 0.098 
        
RCNO§ 0.5 94.1 -3.7 0.037 97.3 2.5 0.025 
RCCORR ‡  95.1 1.0 0.010 93.4 -6.1 0.061 
RSCCORR*  46.8 64.9 0.649 63.8 -27.4 0.274 
RSCADJ°  49.8 60.9 0.609 67.7 -26.0 0.260 
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Table 9 Mean Square Error, Relative Efficiency 2 0.3Uσ =  
Method ρ  Error Mean Square 

Error ˆ
Xβ  

Relative 
Efficiency ˆ

Xβ
 Mean Square

Error ˆ
Zβ  

Relative 
Efficiency ˆ

Zβ
RCNO§ 0.1 0.3 0.025 0.761   0.019 1.000 
RCCORR ‡   0.027 0.829  0.025 1.290 
RSCCORR*   0.321 9.782  0.023 1.215 
RSCADJ°   0.288 8.767  0.023 1.231 
            
RCNO§ 0.3 0.3 0.027 0.729  0.020 1.000 
RCCORR ‡   0.029 0.801  0.025 1.252 
RSCCORR*   0.387 10.527  0.038 1.862 
RSCADJ°   0.340 9.253  0.037 1.810 
            
RCNO§ 0.5 0.3 0.032 0.706  0.025 1.000 
RCCORR ‡   0.035 0.782  0.031 1.242 
RSCCORR*   0.707 15.615  0.139 5.642 
RSCADJ°   0.531 11.718   0.116 4.706 
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The estimates resulting from RCNO vary from 0.942 to 0.990 and 0.965 to 1.039 for ˆ
Xβ  

and ˆ
Zβ respectively. The intervals (1.014, 1.024) and (0.880, 0.905) for ˆ

Xβ  and 

ˆ
Zβ respectively, represent the minimum and maximum values of the estimates produced 

by the RCCORR method. The estimates, ˆ
Xβ  and ˆ ,Zβ from the RSCCORR method vary 

from (1.641, 1.837) and (0.673, 0.994) respectively. Finally, for estimates resulting from 

RSCADJ, the minimum maximum combination is (1.692, 1.822) and (0.655, 0.996) 

for ˆ
Xβ  and ˆ

Zβ respectively. Again, the methods make a correction for attenuation. 

RCCORR, RSCCORR and RSCADJ overestimate ˆ
Xβ  and underestimate ˆ

Zβ at each level 

of correlation with an exception occurring at design point (0.5, 0.5). Also note, the 

standard error for risk set calibration methods has become inflated.  

 While fair for both RCNO and RCCORR, coverage, found in Table 11 for the 

other methods is lower than the nominal level of 95. Interestingly, notice that the 

coverage for Zβ increases for RCCORR as correlation increases. While the risk set 

calibration methods overestimate Xβ  by more than 60%, the same methods 

underestimate true Zβ by at most 34.0%. With the exception of the lowest level of 

correlation, the absolute bias indicates that the regression calibration methods provide a 

more accurate approximation of the true values of and X Zβ β . The absolute bias of ˆ
Xβ  

indicates that as correlation increases, RCCORR out performs all methods yet at the 

lowest level of correlation, RCNO provides a more accurate estimate. The performance 

of each RSCCORR and RSCADJ is similar. Now consider the estimates ˆ .Zβ When 

correlation is 0.1, the resulting absolute bias indicates that RSCORR and RSCADJ 
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provide more precise estimates. As correlation increases, RCNO produces more accurate 

estimates of Zβ as shown by smaller values for absolute bias.  

As before, there are similar patterns in the MSE and relative efficiency for both 

ˆ
Xβ and ˆ

Zβ which are found in Table 12. All of the estimates of MSE have increased as 

compared to what has been observed at smaller levels of measurement error. Due to the 

increased variability and decrease in accuracy, the largest MSE estimate results from 

RSCCORR followed RSCADJ. The RCNO and RCCORR estimators are more efficient 

than Naive method for estimating Xβ as the resulting relative efficiency is less than 1. On 

the contrary, the RSCCORR and RSCADJ methods are less efficient than Naïve. The 

ratio of mean square error of the risk set calibration methods and the Naïve method is 

greater than 1. When ρ=0.1, the estimates for Zβ have the opposite pattern. The relative 

efficiency of RCCORR is greater than that of RSCADJ. This pattern does not occur when 

correlation is 0.3 or 0.5.  

We now progress to a higher level of measurement error, 2 1.0.Uσ =  Tables 13 

through 15 contain the results for design point (0.1, 1.0), (0.3, 1.0) and (0.5, 1.0). In 

contrast to the performance that we have already observed, we now see in that 

RSCCORR and RSCADJ now underestimate the true parameter value, Xβ while the 

estimates resulting from the RCNO and RCCORR methods produce familiar results. The 

RSCCORR estimates (standard error) vary in value from -0.64 (1.35) to -0.30 (2.30) 

while those for RSCADJ estimates (standard error) vary from -0.66 (0.57) to -0.11 (0.93). 

The large standard errors for the risk set calibration methods indicate that estimates have 

large variability. RCNO and RCCORR correct for attenuation. In contrast, risk set 
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Table 10 Simulation Summary Statistics for ˆ ˆand X Zβ β with true 1,  1X Zβ β= = and sample size n= 150; True  
covariates are generated from bivariate normal distributions; measurement error variance is 2 0.5Uσ =  
Approach 

 
ρ  ˆ

Xβ  ( )ˆ
XSE β  ( )( )ˆAverage XSE β ˆ

Zβ  ( )ˆ
ZSE β  ( )( )ˆAverage ZSE β

RCNO§ 0.1 0.990 0.173 0.158 0.965 0.137 0.144 
RCCORR ‡  1.024 0.187 0.164 0.880 0.141 0.142 
RSCCORR*  1.800 0.771 0.329 0.994 0.194 0.134 
RSCADJ°  1.798 0.508 0.343 0.996 0.181 0.148 

        
RCNO§ 0.3 0.974 0.178 0.162 0.997 0.142 0.150 
RCCORR ‡  1.018 0.195 0.170 0.898 0.150 0.150 
RSCCORR*  1.837 0.942 0.371 0.812 0.239 0.144 
RSCADJ°  1.822 0.595 0.380 0.818 0.203 0.157 

        
RCNO§ 0.5 0.942 0.189 0.172 1.039 0.155 0.161 
RCCORR ‡  1.014 0.217 0.185 0.905 0.173 0.166 
RSCCORR*  1.641 1.837 0.483 0.673 0.640 0.218 
RSCADJ°  1.692 0.893 0.476 0.655 0.369 0.225 
§ Regression Calibration No Adjustment for Correlation 
‡ Regression Calibration Adjusted for Correlation 
* Risk Set Calibration Corrected for Correlation 
° Risk Set Calibration Corrected for Correlation and adjusted to improve efficiency  
Sample standard error, ( )ˆ ,XSE β is the standard deviation of Monte Carlo estimates;  

Average standard error, ( )( )ˆAverage ,XSE β is the average of Monte Carlo estimated standard errors.  
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Table 11 Coverage, Relative and Absolute Bias of Average Parameter Estimates for 2 0.5Uσ =  
Method ρ  Coverage 

ˆ
Xβ  

Relative Bias 
ˆ

Xβ  
Absolute Bias

ˆ
Xβ  

Coverage 
ˆ

Zβ  
Relative Bias 

ˆ
Zβ  

Absolute Bias
ˆ

Zβ  
RCNO§ 0.1 92.8 -1.1 0.01 95.0 -3.5 0.035 
RCCORR ‡  92.3 2.4 0.024 85.7 -12.0 0.120 
RSCCORR*  35.1 80.0 0.800 86.4 -0.6 0.006 
RSCADJ°  37.2 79.8 0.798 89.7 -0.4 0.004 
        
RCNO§ 0.3 93.4 -2.6 0.026 96.7 -0.3 0.003 
RCCORR ‡  92.4 1.8 0.018 89.5 -10.2 0.102 
RSCCORR*  35.9 83.7 0.837 70.3 -18.8 0.188 
RSCADJ°  41.7 82.2 0.822 73.1 -18.2 0.182 
        
RCNO§ 0.5 91.7 -5.8 0.058 96.5 3.9 0.039 
RCCORR ‡  92.6 1.4 0.014 89.8 -9.5 0.095 
RSCCORR*  44.5 64.1 0.641 53.6 -32.7 0.327 
RSCADJ°  53.5 69.2 0.692 58.6 -34.5 0.345 
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Table 12 Mean Square Error, Relative Efficiency 2 0.5Uσ =  
Method Correlation Error Mean Square 

Error ˆ
Xβ  

Relative 
Efficiency ˆ

Xβ
 Mean Square 

Error ˆ
Zβ  

Relative 
Efficiency ˆ

Zβ
RCNO§ 0.1 0.5 0.030 0.572   0.020 1.000 
RCCORR ‡   0.036 0.677  0.034 1.715 
RSCCORR*   1.234 23.511  0.038 1.884 
RSCADJ°   0.895 17.043  0.033 1.639 
            
RCNO§ 0.3 0.5 0.032 0.556  0.020 1.000 
RCCORR ‡   0.038 0.659  0.033 1.631 
RSCCORR*   1.588 27.272  0.092 4.584 
RSCADJ°   1.030 17.685  0.074 3.685 
            
RCNO§ 0.5 0.5 0.039 0.539  0.026 1.000 
RCCORR ‡   0.047 0.652  0.039 1.525 
RSCCORR*   3.785 52.174  0.517 20.220 
RSCADJ°   1.276 17.591   0.255 9.989 
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calibration no longer provides a correction for attenuation as the estimates are very small. 

The variability of the estimates resulting from the risk set methods is large. Consider the 

estimates generated for Zβ . Again, estimates from RCCORR improve as correlation 

increases yet variability increases. Also, as correlation increases, RSCCORR and 

RSCADJ overestimate .Zβ  All methods are affected by increased levels of correlation 

and measurement error but the effect is more pronounced in the risk set calibration 

methods.  

The coverage rates, found in Table 14, for the estimates of Xβ are below the 

nominal level. The coverage rates for the RCNO estimates of Zβ  are at or slightly above 

nominal level while the rates for RCCORR, RSCCORR and RSCADJ are below the 

nominal level. Looking at the relative and absolute biases found in Table 14, we can 

inspect more closely the quality of the estimates. There is evidence to support that 

regression calibration methods do a better job at estimation of .Xβ  As correlation 

increases, the absolute bias indicates that the estimates of Xβ  resulting from RCCORR 

are more accurate than RCNO. Alternatively, RCNO outperforms RCCORR in 

estimation of Zβ as the absolute bias is smaller at each level of correlation. The absolute 

bias for Xβ resulting from RSCCORR is larger than the absolute bias from the RSCADJ 

at small to moderate levels of correlation. The risk set calibration methods underestimate 

true Xβ by more than 110% which substantiate the findings in Table 13.  

Results found in Table 15 show that the RCNO estimator and RCCORR estimator 

are satisfactory for .Xβ At each level of correlation, both regression calibration methods 

prove to be more efficient than the Naïve approach. The relative efficiency associated 
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with each of RSCCORR and RSCADJ indicate that the Naïve approach is more efficient 

than both risk set calibration methods. In each, RSCCORR and RSCADJ, the measure of 

bias and precision, MSE, indicate that the methods are not performing well. Again, the 

largest estimate of MSE occurs when using RSCCORR followed by RSCADJ. The 

variability and accuracy of these two methods has been diminished by the amounts 

correlation and measurement error. Also, the MSE for each method is greater than what 

has been observed at the previously mentioned levels of measurement error. It is here that 

we see the damaging effects of correlation and measurement error.  

 In order to finish studying the ability of our methods to estimate  and X Zβ β , we 

consider the last level of measurement error under consideration, 2 2.0.Uσ =  The results 

are found in Tables 16 through 18. As shown in Table 16 all methods under consideration 

underestimate the true parameter estimate, 1.Xβ =  The estimates ˆ
Xβ  vary from -0.550 to 

0.906 while the estimates for Zβ vary from 0.699 to 1.390. Note that for each method, the 

estimate of Zβ increases at each level of correlation. This indicates that the methods are 

correcting for attenuation. However, this pattern is not observed in the estimates ˆ .Xβ The 

correction for attenuation is apparent in the results from methods RCNO and RCCORR. 

The standard error estimates are much larger than what has appeared in earlier tables. The 

estimates are more variable at this high level of measurement error. While RCNO and 

RSCCORR outperform the risk set calibration methods in estimating ,Xβ  we observe 

that the ability of these regression calibration methods has diminished in light of the 

increased levels of measurement error and correlation. 

 For the design points under consideration found in Table 17, we observe that 
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Table 13 Simulation Summary Statistics for ˆ ˆand X Zβ β with true 1,  1X Zβ β= = and sample size n= 150; True  
covariates are generated from bivariate normal distributions; measurement error variance is: 2 1.0Uσ =  
Approach 

 
ρ  ˆ

Xβ  ( )ˆ
XSE β  ( )( )ˆAverage XSE β ˆ

Zβ  ( )ˆ
ZSE β  ( )( )ˆAverage ZSE β

RCNO§ 0.1 0.949 0.205 0.164 0.943 0.138 0.143 
RCCORR ‡  1.011 0.245 0.175 0.794 0.156 0.141 
RSCCORR*  -0.467 1.665 0.368 0.861 0.252 0.123 
RSCADJ°  -0.113 0.933 0.359 0.853 0.187 0.144 

        
RCNO§ 0.3 0.927 0.208 0.168 0.996 0.144 0.149 
RCCORR ‡  1.004 0.255 0.182 0.826 0.171 0.152 
RSCCORR*  -0.639 1.349 0.366 1.163 0.337 0.147 
RSCADJ°  -0.343 0.857 0.354 1.085 0.242 0.162 

        
RCNO§ 0.5 0.879 0.216 0.176 1.066 0.156 0.159 
RCCORR ‡  1.000 0.296 0.201 0.844 0.208 0.173 
RSCCORR*  -0.936 1.150 0.299 1.619 0.511 0.186 
RSCADJ°  -0.660 0.572 0.311 1.481 0.308 0.205 
§ Regression Calibration No Adjustment for Correlation 
‡ Regression Calibration Adjusted for Correlation 
* Risk Set Calibration Corrected for Correlation 
° Risk Set Calibration Corrected for Correlation and adjusted to improve efficiency  
Sample standard error, ( )ˆ ,XSE β is the standard deviation of Monte Carlo estimates;  

Average standard error, ( )( )ˆAverage ,XSE β is the average of Monte Carlo estimated standard errors.  
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Table 14 Coverage, Relative and Absolute Bias of Average Parameter Estimates for 2 1.0Uσ =  
Method ρ  Coverage 

ˆ
Xβ  

Relative Bias 
ˆ

Xβ  
Absolute Bias

ˆ
Xβ  

Coverage 
ˆ

Zβ  
Relative Bias 

ˆ
Zβ  

Absolute Bias
ˆ

Zβ  
RCNO§ 0.1 86.3 -5.1 0.051 92.8 -5.7 0.057 
RCCORR ‡  86.9 1.1 0.011 66.3 -20.6 0.206 
RSCCORR*  27.6 -146.7 1.467 68.1 -13.9 0.139 
RSCADJ°  26.1 -111.3 1.113 74.2 -14.7 0.147 
        
RCNO§ 0.3 85.7 -7.3 0.073 96.4 -0.4 0.004 
RCCORR ‡  88.2 0.4 0.004 76.5 -17.4 0.174 
RSCCORR*  22.7 -163.9 1.639 70.8 16.3 0.163 
RSCADJ°  20.0 -134.3 1.343 82.3 8.5 0.085 
        
RCNO§ 0.5 80.8 -12.1 0.121 95.1 6.6 0.066 
RCCORR ‡  86.8 0.0 0.000 81.7 -15.6 0.156 
RSCCORR*  13.9 -193.6 1.936 39.4 61.9 0.619 
RSCADJ°  6.5 -166.0 1.66 34.9 48.1 0.481 
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Table 15 Mean Square Error, Relative Efficiency 2 1.0Uσ =  
Method ρ  Error Mean Square 

Error ˆ
Xβ  

Relative 
Efficiency ˆ

Xβ
 Mean Square

Error ˆ
Zβ  

Relative 
Efficiency ˆ

Zβ
RCNO§ 0.1 1.0 0.045 0.390   0.022 1.000 
RCCORR ‡   0.060 0.526  0.067 2.995 
RSCCORR*   4.924 43.062  0.083 3.715 
RSCADJ°   2.109 18.445  0.057 2.538 
            
RCNO§ 0.3 1.0 0.049 0.387  0.021 1.000 
RCCORR ‡   0.065 0.519  0.060 2.868 
RSCCORR*   4.506 35.923  0.140 6.753 
RSCADJ°   2.538 20.234  0.066 3.170 
            
RCNO§ 0.5 1.0 0.061 0.405  0.029 1.000 
RCCORR ‡   0.088 0.580  0.068 2.356 
RSCCORR*   5.071 33.540  0.644 22.455 
RSCADJ°   3.083 20.391  0.326 11.370 
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coverage is unacceptable except for ˆ ,Zβ produced by RCNO at the 0.3 level of 

correlation. Turning to the relative and absolute biases, we observe that RSCCORR and 

RSCADJ underestimate the true value of Xβ by at least 130%. RCNO and RCCORR 

outperform the risk set calibration methods in estimating .Xβ  More specifically, 

RCCORR provides more accurate results than RCNO as the absolute bias is smaller for 

RCCORR than for RCNO. As has been observed in the other design points, RCNO 

performs best in estimating .Zβ followed by RSCCORR and RSCADJ. At the highest 

level of correlation, RCCORR produces more accurate results than RSCCORR and 

RSCADJ. The absolute bias is smaller. At low to moderate levels of correlation, 

RSCCORR and RSCADJ outperform RCCORR  

Again, the relative efficiency for both RCNO and RCCORR is less than 1, again 

indicating that regression calibration methods are more efficient than the Naïve approach 

when estimating .Xβ  Conversely, RSCCORR and RSCADJ are less efficient than the 

Naive approach. The RCNO method is the best estimator of the true parameter value .Zβ  

At each level of correlation, the relative efficiency resulting from the RCNO method is 

approximately or less than 1; thus indicating that the RCNO method is barely more 

efficient than the Naïve method. At low to moderate levels of correlation, RSCCORR and 

RSCADJ outperform RCCORR in producing estimates for .Zβ   

 

Conclusions 

The methods under review can be classified as either regression calibration or risk 
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Table 16 Simulation Summary Statistics for ˆ ˆand X Zβ β with true 1,  1X Zβ β= = and sample size n= 150; True  
covariates are generated from bivariate normal distributions; measurement error variance is 2 2.0Uσ =  
Approach 

 
ρ  ˆ

Xβ  ( )ˆ
XSE β  ( )( )ˆAverage XSE β ˆ

Zβ  ( )ˆ
ZSE β  ( )( )ˆAverage ZSE β

RCNO§ 0.1 0.819 0.225 0.161 0.916 0.140 0.141 
RCCORR ‡  0.906 0.317 0.179 0.699 0.199 0.144 
RSCCORR*  -0.398 0.739 0.108 0.858 0.206 0.115 
RSCADJ°  -0.498 0.174 0.131 0.844 0.177 0.140 

        
RCNO§ 0.3 0.791 0.230 0.164 0.997 0.145 0.147 
RCCORR ‡  0.898 0.355 0.187 0.755 0.229 0.158 
RSCCORR*  -0.362 0.897 0.103 1.098 0.553 0.125 
RSCADJ°  -0.550 2.546 0.125 1.123 0.232 0.151 

        
RCNO§ 0.5 0.733 0.234 0.170 1.101 0.156 0.158 
RCCORR ‡  0.840 1.399 0.217 0.823 0.695 0.189 
RSCCORR*  -0.298 2.299 0.088 1.362 1.918 0.136 
RSCADJ°  -0.391 0.141 0.110 1.390 0.186 0.167 
§ Regression Calibration No Adjustment for Correlation 
‡ Regression Calibration Adjusted for Correlation 
* Risk Set Calibration Corrected for Correlation 
° Risk Set Calibration Corrected for Correlation and adjusted to improve efficiency  
Sample standard error, ( )ˆ ,XSE β is the standard deviation of Monte Carlo estimates;  

Average standard error, ( )( )ˆAverage ,XSE β is the average of Monte Carlo estimated standard errors.  
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Table 17 Coverage, Relative and Absolute Bias of Average Parameter Estimates for 2 2.0Uσ =  
Method ρ  Coverage 

ˆ
Xβ  

Relative Bias 
ˆ

Xβ  
Absolute Bias

ˆ
Xβ  

Coverage 
ˆ

Zβ  
Relative Bias 

ˆ
Zβ  

Absolute Bias
ˆ

Zβ  
RCNO§ 0.1 63.4 -18.1 0.181 90.1 -8.4 0.084 
RCCORR ‡  13.7 -9.4 0.094 72.9 -30.1 0.301 
RSCCORR*  13.7 -139.8 1.398 72.9 -14.2 0.142 
RSCADJ°  0.0 -149.8 1.498 70.4 -15.6 0.156 
        
RCNO§ 0.3 59.8 -20.9 0.209 96.2 -0.3 0.003 
RCCORR ‡  69.5 -10.2 0.102 64.7 -24.5 0.245 
RSCCORR*  13.7 -136.2 1.362 81.2 9.8 0.098 
RSCADJ°  0.0 -155.0 1.550 70.4 12.3 0.123 
        
RCNO§ 0.5 52.6 -26.7 0.267 92.7 10.1 0.101 
RCCORR ‡  68.5 -16.0 0.160 78.9 -17.7 0.177 
RSCCORR*  13.9 -129.8 1.298 39.4 36.2 0.362 
RSCADJ°  0.0 -139.1 1.391 37.1 39.0 0.390 
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Table 18 Mean Square Error, Relative Efficiency 2 2.0Uσ =  
Method ρ  Error Mean Square 

Error ˆ
Xβ  

Relative 
Efficiency ˆ

Xβ
 Mean Square

Error ˆ
Zβ  

Relative 
Efficiency ˆ

Zβ
RCNO§ 0.1 2.0 0.083 0.348   0.027 1.000 
RCCORR ‡   0.109 0.457  0.130 4.885 
RSCCORR*   2.501 10.445  0.063 2.348 
RSCADJ°   2.274 9.500  0.056 2.088 
            
RCNO§ 0.3 2.0 0.097 0.377  0.021 1.000 
RCCORR ‡   0.136 0.532  0.112 5.347 
RSCCORR*   2.660 10.375  0.315 14.995 
RSCADJ°   8.885 34.657  0.069 3.278 
            
RCNO§ 0.5 2.0 0.126 0.425  0.035 1.000 
RCCORR ‡   1.983 6.688  0.514 14.893 
RSCCORR*   6.970 23.510  3.810 110.310 
RSCADJ°   1.955 6.593   0.187 5.406 
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set calibration. The regression calibration methods seem to perform satisfactorily for 

small to moderate levels of correlation and measurement error. The other methods, 

RSCCORR and RSCADJ suffered under the impact of increased levels of correlation and 

measurement error.  

The regression calibration methods consistently did a good job in estimating true 

values. While RCNO consistently underestimated the value of true Xβ , the estimates 

including standard error remained stable at increased levels of correlation and 

measurement error. Consequently, making a correction for measurement error is better 

than ignoring measurement error and correlation. As levels of correlation increased, 

including a correction for correlation produced more accurate estimates. The RCCORR 

method, which adjusts for correlation, produced estimates of true Xβ that had smaller 

absolute bias and reasonable estimates for MSE. While RCCORR consistently 

overestimated estimates of true Xβ , the method also produced estimates that are stable. 

The estimates of true Zβ resulting from regression calibration methods too were stable. 

 The methods did encounter some problems as measurement error and correlation 

became large. When correlation and measurement error became large, the regression 

calibration estimates for true ,Xβ tended to be underestimated. RCCORR was 

outperformed by RCNO by producing estimates with small absolute bias; yet the 

variability increased. Nonetheless, that was not the case for estimates of true .Zβ RCNO 

provided less variable estimates. It is clear that the impact of the correlation/measurement 

error combination is greatest in the error prone variable and its effects are more 

pronounced at higher levels of correlation. It was not surprising to observe such erratic 
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results for the larger measurement error variances. As mentioned about the variability 

have great impact on the estimation processes. 

 The risk set calibration methods were not as steady as one would hope. In the 

presence of relatively large measurement error and correlation, the estimates were 

unstable. In some instances, where it was expected that the risk set calibration method 

would not estimate well, they actually outperformed the regression calibration methods. 

Although both RSCCORR and RSCADJ had problems with estimating the first 

parameter ,Xβ both typically did an adequate job at estimating .Zβ When RSCCORR and 

RSCADJ are pitted against the regression calibration methods, RCNO and RCCORR, the 

regression calibration methods, typically won. A major flaw of the risk set calibration 

methods was that they would severely underestimate Xβ when correlation and 

measurement error were at high levels. In sum, although the risk set calibration methods 

have potential to be helpful in adjusting for correlation and measurement error in Cox 

proportional hazards modeling, they do not have stability that is hoped for.  

 It is important to indicate the measurement error more than correlation was the 

driving factor behind poor performance in the methods of discussion. Methods tended to 

perform better at the lowest level of correlation/measurement error. At these lower levels, 

the standard error and mean standard error was not overly inflated. Also, the coverage 

tended to be reasonable. Methods showed peak performance when both measurement 

error and correlation were less than 0.3. Methods performed poorly when design point 

levels were greater than 0.3.   
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CHAPTER 5 

APPLICATION OF METHODS TO REAL UABMVS DATA 

In order to illustrate regression calibration corrected for correlation and risk set 

calibration corrected for correlation the data from the UABMVS was used. In the study, 

elder drivers, returning to a Maryland Motor Vehicle Administration (MMVA) site 

(Burnie, Annapolis and Bel Air ) to renew their drivers licenses were approached to 

participate in the study. Study participants were at least 55 years old. Those who agreed 

to participate completed the Gross Impairment Screening Battery (GRIMPS), a self-

reported mobility instrument and Useful Field of View Subtest 2.44   

 

Methods 

Data  

 The GRIMPS battery is composed of cognitive and physical abilities measures.  

Cognitive Measures were assessed using the following tests: the Visual Closure subtest of 

the Motor-Free Visual Perception test (MVPT); Delayed Recall, Trail Making test and 

Symbol Scan. Physical Measures were assessed via the following tests:  Rapid Walk, Tap 

Time, Arm Reach, Head/ Neck Rotation. 

 MVPT was used to detect visual pattern perception while the Delayed Recall 

Test was used to assess working memory.44, 45 The Trail-making test, Part B, (TRAILS) 

was used to measure participants' general cognitive function. The test measures abilities 

to perform a directed visual search and to divide attention effectively.44, 46 Symbol scan 
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was used to rule out neglect of one side of the visual field while driving.44 Rapid Walk, 

Foot Tap and Arm Reach were used to assess lower and upper limb mobility respectively; 

while the Head/Neck Rotation assessed head/neck flexibility.44, 45 

 In addition to these measures, speed of processing was measured by the Useful 

Filed of View®, Subtest 2 (UFOV®).44, 45, 47 Finally, each participant completed a self-

report mobility questionnaire. The questionnaire assessed general mobility, driving 

behaviors, such as annual and weekly mileage and driving avoidance. Annual mileage 

was presented as a categorical variable with twelve levels. Subjects selected the most 

appropriate category to indicate their driving pattern. The categories were as follows: 

{less than 1000 miles per year, (1,001- 2500), (2,501-5000), (5,001- 7500), (7,501- 

10000), (10,001- 12500), (12,501-15000), (15,001- 17500), (17,501-20000), (20,001- 

25000), (25,001- 30000), greater than 30,000}. Miles per week was provided by the 

participant as a numerical constant. It is evident that the estimates for annual mileage are 

measured with error. Subjects were able to provide a best guess at their driving behavior. 

The cognitive tests, speed of processing as well as mobility measures have been shown to 

be related to elder drivers and impaired driving ability.45, 48-50 

 

Outcome and Survival Time 

The primary outcome of interest was an at-fault motor vehicle crash. This 

information was provided by the MMVA.44 Survival time was defined as time from 

baseline assessment to either an at-fault motor vehicle crash, end of study or loss to 

follow up.  
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 Application of Measurement Error Methods  

The methods were illustrated by considering a subset of the data from UABMVS. 

The data used consisted of n=1804 subjects with complete baseline data, where m=88 at-

fault crashes occurred. The median time on the study for this subset of data was 5.15 

years with corresponding range (0.01, 6.07). For ease of analysis, all data were 

standardized. 

 

Covariates Under Study 

 Three bivariate models including the error prone covariate, annual mileage, 

and an error free continuous covariate found to be predictive of at-fault motor vehicle 

crashing were used. The error free covariates of interest were participant age at 

assessment, denoted AGE, TRAILS and UFOV®. The hazards can be written as  

(5.1) ( ) ( ) ( )0| , exp ;X Zt AGE MILES t AGE MILESλ λ β β= +  

(5.2) ( ) ( ) ( )0| , exp ;X Zt UFOV MILES t UFOV MILESλ λ β β= +  

(5.3) ( ) ( ) ( )0| , exp .X Zt TRAILS MILES t TRAILS MILESλ λ β β= +  

 Annual mileage, which is frequently subject to measurement error, is commonly 

used as a descriptor of driving exposure. Measurement error variance was estimated 

using two estimates of annual mileage. The estimates of annual mileage were treated as 

replicate measurements, ( )1 2, ,i iW W where the classic error model holds: 

,  1, , ;  1, 2.ij i ijW X U i n j= + = … =  The first estimate was defined as the midpoint of the 

categorical representation of annual mileage in the Self Report Mobility Questionnaire. 
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The second estimate was based on the value of weekly miles driven. From the weekly 

miles driven estimate, an annual mileage estimate was determined as follows:  

MILES 52.18 
WEEK YEAR

× . 

 

Results 

Several subjects were omitted from this analysis due to missing baseline values. 

This reduced the number from approximately 1900 subjects to N=1804 for this analysis. 

Of this, there were m=88 at-fault motor vehicle crashes as provided by MMVA. 

Figure 1 shows the baseline density of annual mileage using the naïve estimate 

1 2. ,
2

i i
i

W WW +
=  

the average of the replicates. Approximately 75% of the participants’ average annual 

mileage was less than 10,734 miles. The measurement error was estimated using (2.14). 

Measurement error along with the correlation between annual miles and the prognostic 

variable of interest was considered small to moderate. Specifically, the estimated 

measurement error variance was 2 0.311Uσ =  and the correlation between miles and age, 

UFOV® and TRAILS was -0.28, -0.17 and -0.15 respectively.  These values correspond 

closely to those used in the simulation study. Measurement error and correlation in this 

example ranges from small to moderate. 

Under models (5.1)-(5.3), comparisons of the naïve method to that of RCCORR 

and RSCCORR are found in Tables 19-21. The results for model (5.1) are found in Table 

19. The estimated coefficient for mileage ˆ ,Xβ  is 0.338, 0.342, and 0.432 for the Naïve 

Approach, RCCORR and RSCCORR respectively. The corresponding standard errors are
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Figure 1 Histogram and probability density function of Mileage estimate 
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0.078, 0.167, and 0.190. The Naïve approach may underestimate the effect of driving 

exposure on time to an at fault motor vehicle crash. Accounting for correlation and 

measurement error via RCCORR and RSCCORR increase the effect sizes by 1.18% and 

27.8% respectively. The results in the error free variable are not as dramatic yet follow a 

similar pattern. The estimated coefficient for age, ˆ ,Zβ  is 0.168 when correlation and 

measurement error is ignored. The corresponding standard error (SE) is 0.015. The 

estimate resulting for RCCORR is similar to the naïve estimate and RSCCORR increases 

the parameter estimate by 13.1% from 0.168 to 0.190.  

Estimates for ˆ ˆ,  X Zβ β and their standard errors, under model (5.2), are found in 

Table 20. Using the Naïve method, the estimated coefficient for annual mileage is 0.331 

with corresponding standard error 0.076. The estimate obtained from RCCORR is 0.335 

and 0.419 from RSCORR with standard errors of 0.077 and 0.096 respectively.  

The final model under discussion is (5.3). The estimated coefficient for MILES 

using the naïve method is 0.310 with standard error 0.076. The relative risk estimates 

based on the RCCORR estimates were 1.367 and 1.103 for ˆ ˆ,  X Zβ β respectively. 

Additionally, the relative risk estimates for RSCCORR were 1.478 and 1.114. The 

RSCCORR relative risk estimates are 8.44% and 1.0% larger than the naïve estimate.  

The estimates for RCCORR are intermediate to that.  

 

Discussion 

In order to use either method, RCCORR or RSCCORR, the rare event assumption 

must hold. In this data set, there were 88 events; consequently, less than 5% of the 
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subjects experienced an at fault motor vehicle crash. The assumption of normal 

measurement error was investigated graphically. 

(5.4) 
( ) ( )1 2 1 2

1 2              = .
i i i i i i

i i

W W X U X U
U U

− = + − +

−
 

 
Under the assumption of normal measurement error, it follows that 1 2i iW W−  should 

follow a normal distribution. Figure 2 shows the density of 1 2i iW W− . The graph exhibits 

some skewness. This indicates that the error may not be normally distributed. Also, 

Figure 3 and Figure 4 are kernel estimates of the densities of 1 2and .i iW W  Similarly, 

these plots too exhibit some skewness. It appears that annual miles may not be normally 

distributed.  

The number of replicates should be taken into consideration in this setting. In the 

simulation study, we used three replicates which provided a strong estimate of 

measurement error and also allowed us to estimate parameters fairly well when 

correlation and measurement error was small. Replicates provide additional information 

in terms of estimating measurement error and the calibrated estimate of true X. Two or 

more replicates are sufficient when conducting regression calibration methods. Yet, it is 

important to note that observing only two replicates does not provide as much 

information as three or more. Small numbers of replicates, like two, reduces our ability to 

accurately asses the amount of measurement error. In this setting, the quality of resulting 

parameter estimates may not be as good as compared to observing more replicates.  

 It is evident from Tables 19 through 21 that failure to account for correlation and 

measurement error does not change the determination that MILES and time to an at-fault 

motor vehicle crash have an association. For each bivariate model, Wald statistics for 
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0Xβ =  are significant at the 0.05 level. For the model with UFOV as an error free 

covariate, Wald statistics for 0Zβ = are significant. Alternatively, the remaining models 

show that AGE and TRAILS are not significant. However, the goal of this study was to 

show that correcting for correlation and measurement error will provide an accurate 

picture of the relationship between the covariates of interest and failure time. It is clear 

from each table in this section that failure to correct for correlation and measurement 

error may result in attenuated parameter estimates. 
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Table 19 Comparison of estimators ˆ ˆ,  X Zβ β in the UABMVS Example; Sample size n=1804; SE is estimated  
standard error.   

 

*Naïve regression based on average of observed replicates 
* 2ˆuσ is estimated using replicate mileage estimates 

Method 
 

 Annual Mileage  Age 

Naïve  0.338  0.168 
SE  0.078  0.115 
     
Regression Calibration  0.342  0.167 
SE  0.167  0.115 
     
Risk Set Calibration  0.432  0.190 
SE  0.190  0.116 
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Table 20 Comparisons of estimators ˆ ˆ,  X Zβ β in the UABMVS Example; Sample size n=1804; SE is estimated  
standard error.  

 

*Naïve regression based on average of observed replicates 
* 2ˆuσ is estimated using replicate mileage estimates  

Method 
 

 Annual Mileage  Useful Field of View 

Naïve  0.331  0.220 
SE  0.076  0.099 
     
Regression Calibration  0.335  0.219 
SE  0.077  0.099 
     
Risk Set Calibration  0.419  0.233 
SE  0.096  0.100 
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Table 21 Comparison of estimators ˆ ˆ,  X Zβ β in the UABMVS Example; Sample size n=1804; SE is estimated  
standard error. 

 
 

 

 

 

 

 

Method 
 

 Annual Mileage  TRAILS  

Naïve  0.310  0.098 
SE  0.076  0.095 
     
Regression Calibration  0.314  0.098 
SE  0.077  0.095 
     
Risk Set Calibration  0.391  0.108 
SE  0.096  0.096 
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Figure 2 Kernel density estimate of Wi1-Wi2 

P
e
r 
c
e
n
t

0 

20 

40 

60 

80 

100 

120 

-164000 -140000 -116000 -92000 -68000 -44000 -20000 4000 28000 52000  
 
 
 
Vertical Axis represents percentage. 
 
 
 
 
 
 
 

Wi1-Wi2 

 



 86

Figure 3 Kernel density estimate of Wi1 
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Figure 4 Kernel density estimate of Wi2 
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 CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

The problem under investigation in this dissertation was the assessment and 

correction of the effect of correlation and measurement error when conducting Cox 

proportional hazards modeling. More specifically, the research area was a comparative 

study of regression calibration and risk set calibration and their subsequent behavior and 

ability to adequately handle various levels of correlation and measurement error in 

parameter estimation. Here, the results are discussed. In addition, suggestions for further 

research, as well as specific recommendations for the replication of this research are 

provided.  

 

Summary of Study 

 In Chapter 4, a simulation study was performed to compare failure to correct for 

correlation and measurement error to regression calibration and risk set calibration 

methods. More specifically, regression calibration not adjusted for correlation, regression 

calibration corrected for correlation, risk set calibration corrected for correlation and risk 

set calibration corrected for correlation and adjusted for small risk sets were compared to 

the Naïve approach, as well as to one another. The rationale for conducting this study was 

to add to the body of research concerning methods recommended for the analysis of 

continuous, correlated covariates where one covariate is error prone. The goal of this 

study was to investigate the quality of parameters produced in this setting and methods 
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used to improve the estimates in this setting. Covariate data consisting of bivariate 

normal correlated observations, survival times and event indicators were generated. 

Parameter estimation was made using the Naïve method, Regression calibration adjusted 

and not adjusted for correlation along with risk set calibration methods. The estimates 

derived via these methods were studied to assess whether the methods could correct the 

resultant attenuation effects.  

As a result of the simulation study, it was observed that regression calibration 

methods and risk set calibration methods perform satisfactorily at low levels of 

correlation and measurement error. RCNO tended to outperform RCCORR at the lowest 

levels of correlation within a measurement error class. As correlation increased, 

RCCORR, which includes a correction for correlation would provide most accurate 

estimates yet slightly less efficient variable. The risk set calibration methods provided the 

least efficient variable estimates at each design point. At each design point, RSCADJ 

outperformed RSCCORR producing more consistent estimates yet each performed poorly 

in comparison to the regression calibration methods.  

There are some conclusions which can be made about the methods under 

investigation. Overall, it is better to make a correction for the correlation/measurement 

error problem versus ignoring the problem. Regression calibration methods work well at 

low to moderate levels of correlation/measurement error. More specifically, at the lowest 

level of correlation, simply adjusting for measurement error provides reasonable results. 

Yet, additionally incorporating an adjustment for correlation improves estimates as 

correlation increases. The risk set calibration methods too provide reasonable results at 

the lowest level of correlation within a level of measurement error but the methods are 
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unstable. The instability is a result of small risk sets since at each event time, the method 

calibrates the error prone variable within the risk set to provide a more accurate estimate 

of the true, unobserved variable. This becomes problematic as the risk sets become small. 

Part of the method includes taking the inverse of the variance. These estimates, due to 

size of risk set, can become very large or small which produce calibrated estimates that 

are unreasonable causing the method to fail to converge. In order to adjust for this 

problem, RSCADJ was developed. This method does not calibrate the observations of the 

last twenty subjects remaining in the risk set. The average of the error prone estimates is 

used in its place. As a result, RSCADJ provided better estimates than RSCCORR yet 

these estimates generally had large MSE values.  

In summary, regression calibration methods used to correct for correlation and 

measurement error can be sufficiently used when correlation and or measurement error is 

no greater 0.3. These methods can be easily implemented by a statistician of varied 

experience levels.  When the measurement error/correlation combination is less than 0.3 

and one has at least three replicates, the method works well at adjusting for the 

combination. Regression calibration will provide estimates that have small absolute bias 

and retain robust levels of coverage. When correlation or measurement error is greater 

than 0.3, different methods should be considered.  

 

Suggestions for Future Research 

Computing Resources 

 Using sing SAS IML, the simulation study was performed on a Pentium 4  
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computer with 1.25 GB of RAM and 37.5 GB hard drive. The original simulation took 

upwards of 2 hours to run. As the amount of correlation and error was increased, the 

amount of time to complete each design point run increased. This time expense can be 

eliminated with use of more efficient programming languages such as FORTRAN. The 

FORTRAN language would be useful because of its ability to handle mathematically 

complex functions. The compiler allows for intricate mathematical computing. Using a 

more efficient programming language would allow the investigation to look at 

mathematically dense methods to correct for correlation and measurement error. Also, 

FORTRAN allows for use of subroutines which would reduce the optimization time for 

finding parameter estimates.  

 

Parameter Values 

In this study, 1Xβ = and 1Zβ =  were used as the values of the true covariates. While this 

proved to be an interesting starting point, different parameter values can be investigated. 

A wide range of parameter values could be used. This examination would provide an 

indication of whether the parameter estimates influence the performance of the methods. 

 

Censoring Mechanisms 

Although censoring rates ranged from 35% to 45% for each simulation run, lower and 

higher amounts can be investigated. This investigation may provide an indication whether 

the amount of censoring truly affects the performance of the calibration methods 

empirically.  
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Model Specification 

In the simulation study, the classic error model was used to describe the error prone 

estimate. While, this parameterization worked well in the simulation, different 

parameterizations can be explored. We observed in the application of the methods to the 

real data, the classic error assumption may not be appropriate. It follows that the ability 

of the methods to produce reasonable quality estimates under different parameterizations 

would be beneficial to the body of research.  

Any of these suggestions has the ability to make a useful contribution to the body 

of research related to correcting the effects of the correlation/measurement error problem 

which commonly occurs in social science research settings.  
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APPENDIX B 

SIMULATION PROGRAMS
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/*********************************************************************/ 
/*Author: Tina Dube                  */ 
/*Data Generation                                                    */ 
/*This program generates bivariate normal covariate data with a     */ 
/*prespecified amount of correlation parameter. Additionally,        */ 
survival data                                                        */ 
/*is generated based on true parameter estimates Betax=1 and Beta_Z=1*/ 
/*Co-Authored by http://www.biostat.umn.edu/~john-c/5421/notes.019   */ 
**********************************************************************/ 
libname trial 'u:\Sas Library'; 
 
DATA MEANS; 
 INPUT  MEAN @@; 
 CARDS; 
0 0 0 0 0 
; 
RUN; 
 
%macro datagen(N,cohorts,CORRXZ,ERRORU); 
%do X = 1 %to &cohorts; 
 proc iml symsize=7000000 worksize=800000; 
 reset storage=trial.catalog3; 
 
  SIGMA={ 1.00 &CORRXZ 0.00 0.00 0.00, 
  &CORRXZ 1.00 0.00 0.00 0.00, 
  0.00 0.00 &ERRORU 0.00 0.00,  
  0.00 0.00 0.00 &ERRORU 0.00,   
  0.00 0.00 0.00 0.00 &ERRORU};                                       
*PRINT SIGMA;*DEFINE THE MVN(X,Z,U); 
 
  USE MEANS; *READ MEAN VECTOR; 
  READ ALL INTO MU; *PRINT MU; 
  P=NROW(SIGMA); *PRINT P; *CALCULATE NUMBER OF VARIABLES; 
  CALL VNORMAL(DATAMATRIX,MU,SIGMA,&N,&X);                            
*PRINT DATAMATRIX; 
  *GENERATE DATA MATRIX CALLED DATAMATRIX OF LENGTH N 
  MU IS THE MEAN VECTOR AND SIGMA THE CORRESPONDING 
COVARIANCE 
  MATRIX &J IS THE SEED; 
  CNAME={"Z" "XTRUE" "U1" "U2" "U3"}; *GENERATE DATA SET; 
  CREATE EXPECT FROM DATAMATRIX [COLNAME=CNAME]; 
  APPEND FROM DATAMATRIX; 
  *SHOW CONTENTS; *SHOW CONTENTS OF DATA SET; 
 
  use EXPECT;  
  read all ; 
  U=U1||U2||U3; *PRINT U;*measurement error; 
  K=NCOL(U); *PRINT K;*NUMBER OF REPLICATES; 
  Z=Z; *PRINT Z;*error-free covariate; 
  XTRUE=XTRUE; *PRINT XTRUE;*error prone covariate; 
  X=REPEAT(xtrue,1,K); *PRINT X; 
  W=X + U; 
  
  *GENERATE THE REMAINDER OF DATA; 
  DELTA=J(&N,1,.);                                                
*DELTA indicator; 
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  time=J(&N,1,.);                                                 
*failure time; 
  censor=J(&N,1,.);                                               
*censoring time; 
  time=J(&N,1,.);                                                 
*min(failure,censor); 
  runi =J(&N,1,.);                                                
*USED TO GENERATE SURVIVAL TIMES; 
  runi2=J(&N,1,.);  
   
  %do i = 1 %to &N;                                               
*GENERATE FAiLURE AND CENSORiNG TiMES; 
      runi[&i]=ranuni(123); 
      runi2[&i]=ranuni(1234); 
      time[&i]=-log(runi[&i])/(exp(z[&i]+XTRUE[&i]));         
*Generate Survival times using beta1=1 and beta2=1; 
      censor[&i]=-log(runi2[&i]); 
   
          if censor[&i] < time[&i] 
             then do; 
                 time[&i]=censor[&i]; 
                 DELTA[&i]=0; 
             end; 
  
             else do; 
                 time[&i]=time[&i]; 
                 DELTA[&i]=1; 
             end; 
  %end;                                                           
*END I LOOP FOR GENERATING FAILURE AND CENSORING TIMES 
                                                              
 INSIDE PROC IML; 
 
  ORIGDATA2=DELTA||TIME||XTRUE||W||Z;     
   *print ORIGDATA2; 
  CNAME1={"DELTA" "time"  "X" "W1"  "W2"  "W3" "Z"  }; 
  CREATE trial.DTA_0105_2a&x FROM ORIGDATA2 [COLNAME=CNAME1]; 
  APPEND FROM ORIGDATA2;    
 
  *SHOW CONTENTS; *SHOW CONTENTS OF DATA SET; 
  show storage; 
 
  store DELTA TIME W X XTRUE Z; 
   
  cohortnumber=&x; 
  print, "Cohort number:  " cohortnumber; 
  
  *remove xtrue CENSOR CNAME CNAME1 DATAMATRIX 
  K MU  ORIGDATA2   
  P RUNI RUNI2 SIGMA U U1 U2 U3 XTRUE; 
  
  free DELTA TIME W X  Z; 
 
 QUIT;                                                       *END 
PROC IML; 
 RUN; 
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proc sort data=trial.DTA_0105_2a&x; 
    by time; 
run; 
 
/*proc print data=trial.DTA_0105_2a&x; 
run;*/ 
%end; 
%mend datagen; 
%datagen(150,1060,0.3,0.1);   
*CALL THE MACRO; 



 104

/*********************************************************************/ 
/*Author: Tina Dube                  */ 
/*Module to generate the regression calibration estimates of the     */ 
/*error prone covariate. This module generates the individual        */ 
/*variance components in order to complete the calibration method.   */    
/*This module does not correct for correlation                       */ 
**********************************************************************/ 
 
*options symbolgen mlogic; 
proc iml symsize=7000000 worksize=800000; 
start rc_mod(w ,wbar, z ,delta, time,rcmatrix); 
n=100;*PRINT W WBAR Z DELTA TIME ; 
riskind=j(n,n,.); 
MUHATWATT=J(1,1,.); 
MUHATZATT=J(1,1,.); 
SIGMA_xz=J(1,1,.); 
MUHATW=J(1,1,.); 
MUHATZ=J(1,1,.); 
sigmax=j(1,1,.); 
sigmaxz=j(1,1,.); 
sigmaz=j(1,1,.);   
VAR_MAT=j(2,2,.);  
MULT_MATRIX1=j(1,2,.); 
MULT_MATRIX2=j(2,1,.); 
RCMATRIX=J(N,1,.);ONEVEC=J(N,1,1);ONEVEC=ONEVEC`;*PRINT ONEVEC; 
k=3; 
wbarmat=repeat(wbar,1,3); 
wbar_w=w-wbarmat; 
/********************************************************************/; 
do I = 1 to N; 
    do J = 1 to N; 
        if time[i] <= time[j]  then riskind[i,j]=1 ; 
        else if time[i] > time[j] then riskind[i,j]=0; 
    end; 
end;     
/****************************calculate sigma u****************/; 
sigma_u=ssq(wbar_w)/n*(k-1); 
 
*print sigma_u; 
/*************calculate mu hat x ************************************/; 
MUHATW=ONEVEC*WBAR/n; 
muhatx=muhatw;*print muhatx; *print muhatw;  
muhatwmat=j(n,1,muhatw);*print muhatwmat; 
/******************calculate mu hat z ******************************/; 
MUHATZATT=ONEVEC*Z/n;*print MUHATZATT; 
muhatz=z`[,:];*print muhatz; 
muhatzmat=j(n,1,muhatz);*print muhatzmat; 
 
*print MUHATZATT; 
/************************calculate sigma XZ ************************/; 
wbardiff=wbar-muhatwmat; 
zbardiff=z-muhatzmat; 
sigmaxz1=(wbardiff#zbardiff)[##]; 
sigmaxz=sigmaxz1/(n-1);*print sigmaxz; 
/*********************calculate sigma x ****************************/; 
c=sigma_u/k; 
sigmax1=(wbardiff#wbardiff)[##]; 
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sigmax=sigmax1/(n-1)-c;*print Sigmax; 
/*************************calculate sigma Z ***********************/; 
sigmaz1=(zbardiff#zbardiff)[##]; 
sigmaz=sigmaz1/(n-1); 
**********************calibrated  values***************************/; 
    VAR_MAT[1,1]=c+SIGMAX; 
    VAR_MAT[1,2]=0; 
    VAR_MAT[2,1]=0; 
    VAR_MAT[2,2]=SIGMAZ; *PRINT VAR_MAT;      
    INVVAR_MAT=GINV(VAR_MAT); 
    MULT_MATRIX1[1,1]=SIGMAX ; 
 MULT_MATRIX1[1,2]=0 ;                 *print MULT_MATRIX1; 
 
    do i = 1 to N;                 
 *subject index; 
        MULT_MATRIX2[1,1]=WBAR[i]- muhatwmat[i]; 
        MULT_MATRIX2[2,1]=Z[i]-muhatzmat [i];    
        RCMATRIX[i]=muhatwmat[i]+MULT_MATRIX1*INVVAR_MAT*MULT_MATRIX2; 
    END; 
               
 *PRINT RCMATRIX; 
*SHOW CONTENTS; *SHOW CONTENTS OF DATA SET; 
 /*DM "Output; Clear; Log; Clear";*/ 
 
finish rc_mod; 
 
reset storage=trial.catalog2; 
store module=rc_mod; 
quit; 
run; 
 
proc iml; 
 reset storage=trial.catalog2; 
 show storage; 
quit; 
run; 
proc iml; 
 reset storage=trial.catalog2; 
 show storage; 
  remove module=rc_mod; 
  show storage; 
quit; 
run; 
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/*********************************************************************/ 
/*Author: Tina Dube                  */ 
/*Module to generate the regression calibration estimates of the     */ 
/*error prone covariate. This module generates the individual        */ 
/*variance components in order to complete the calibration method.   */ 
/*Correction for correlation has been implemented into this module   */ 
**********************************************************************/ 
*options symbolgen mlogic; 
proc iml symsize=7000000 worksize=800000; 
 
start rc_mod(w ,wbar, z ,delta, time,rcmatrix); 
 
n=150;*PRINT W WBAR Z DELTA TIME ; 
riskind=j(n,n,.); 
MUHATWATT=J(1,1,.); 
MUHATZATT=J(1,1,.); 
SIGMA_xz=J(1,1,.); 
MUHATW=J(1,1,.); 
MUHATZ=J(1,1,.); 
sigmax=j(1,1,.); 
sigmaxz=j(1,1,.); 
sigmaz=j(1,1,.);   
VAR_MAT=j(2,2,.);  
MULT_MATRIX1=j(1,2,.); 
MULT_MATRIX2=j(2,1,.); 
RCMATRIX=J(N,1,.);ONEVEC=J(N,1,1);ONEVEC=ONEVEC`;*PRINT ONEVEC; 
k=3; 
wbarmat=repeat(wbar,1,3); 
wbar_w=w-wbarmat; 
/*********************************************************************/ 
do I = 1 to N; 
    do J = 1 to N; 
        if time[i] <= time[j]  then riskind[i,j]=1 ; 
        else if time[i] > time[j] then riskind[i,j]=0; 
    end; 
end;     
/*********calculate sigma u*******************************************/ 
sigma_u=ssq(wbar_w)/n*(k-1); 
 
*print sigma_u; 
/*****calculate mu hat x *******************************************/; 
MUHATW=ONEVEC*WBAR/n; 
muhatx=muhatw;*print muhatx; *print muhatw;  
muhatwmat=j(n,1,muhatw);*print muhatwmat; 
/************************calculate mu hat z *************************/; 
MUHATZATT=ONEVEC*Z/n;*print MUHATZATT; 
muhatz=z`[,:];*print muhatz; 
muhatzmat=j(n,1,muhatz);*print muhatzmat; 
 
*print MUHATZATT; 
/********************calculate sigma XZ *****************************/; 
wbardiff=wbar-muhatwmat; 
zbardiff=z-muhatzmat; 
sigmaxz1=(wbardiff#zbardiff)[##]; 
sigmaxz=sigmaxz1/(n-1);*print sigmaxz; 
/**********calculate sigma x **************************************/; 
c=sigma_u/k; 
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sigmax1=(wbardiff#wbardiff)[##]; 
sigmax=sigmax1/(n-1)-c;*print Sigmax; 
/**************calculate sigma Z ****************************/; 
sigmaz1=(zbardiff#zbardiff)[##]; 
sigmaz=sigmaz1/(n-1); 
***************calibrated  values******************************/; 
    VAR_MAT[1,1]=c+SIGMAX; 
    VAR_MAT[1,2]=SIGMAXZ; 
    VAR_MAT[2,1]=SIGMAXZ; 
    VAR_MAT[2,2]=SIGMAZ; *PRINT VAR_MAT;      
    INVVAR_MAT=GINV(VAR_MAT); 
    MULT_MATRIX1[1,1]=SIGMAX ; 
 MULT_MATRIX1[1,2]=SIGMAXZ ;                 *print MULT_MATRIX1; 
 
    do i = 1 to N;                 
 *subject index; 
        MULT_MATRIX2[1,1]=WBAR[i]- muhatwmat[i]; 
        MULT_MATRIX2[2,1]=Z[i]-muhatzmat[i];    
        RCMATRIX[i]=muhatwmat[i]+MULT_MATRIX1*INVVAR_MAT*MULT_MATRIX2; 
    END; 
               
 *PRINT RCMATRIX; 
*SHOW CONTENTS; *SHOW CONTENTS OF DATA SET; 
 /*DM "Output; Clear; Log; Clear";*/ 
 
finish rc_mod; 
 
reset storage=trial.catalog3; 
store module=rc_mod; 
quit; 
run; 
 
proc iml; 
 reset storage=trial.catalog3; 
 show storage; 
quit; 
run; 
 
/*proc iml; 
 reset storage=trial.catalog3; 
 show storage; 
  remove module=rc_mod; 
  show storage; 
quit; 
run; 
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/*********************************************************************/ 
/*Author: Tina Dube                  */ 
/*Module to calibrated data using the risk set calibration method    */          
/*Covariates are calibrated at each event time                       */ 
**********************************************************************/ 
*options symbolgen mlogic; 
proc iml symsize=7000000 worksize=800000; 
start rsc_mod(w ,wbar, z ,delta, time,rscmatrix); 
n=150; 
riskind=j(n,n,.); 
MUHATWATT=J(N,1,.); 
MUHATZATT=J(N,1,.); 
SIGMA_xz=J(N,1,.); 
sigma_x=j(n,1,.); 
sigma_z=j(n,1,.);   
VAR_MAT=j(2,2,.);  
MULT_MATRIX1=j(1,2,.); 
MULT_MATRIX2=j(2,1,.); 
RSCMATRIX=J(N,N,.); 
k=3; 
wbarmat=repeat(wbar,1,3); 
wbar_w=w-wbarmat; 
/*********************************************************************/
; 
do I = 1 to N; 
    do J = 1 to N; 
        if time[i] <= time[j]  then riskind[i,j]=1 ; 
        else if time[i] > time[j] then riskind[i,j]=0; 
    end; 
end;     
riskindsum=riskind[,+];  
riskindsum2=riskindsum; 
riskindsum2[N]=2; 
 
 
/******************calculate sigma u*********************************/; 
sigma_u=ssq(wbar_w)/n*(k-1); 
 
*print sigma_u; 
/**************************calculate mu hat x at t******************/; 
MUHATWATT=RISKIND*WBAR/RISKINDSUM; 
 
/*****************calculate mu hat z at t***************************/; 
MUHATZATT=RISKIND*Z/RISKINDSUM; 
 
*print MUHATZATT; 
/**************calculate sigma XZ at t**************************/; 
QR=J(N,1,.); 
MUZ=REPEAT(MUHATZATT,1,N);MUZ=MUZ`;ZMAT2=REPEAT(Z,1,N);ZDIFF=ZMAT2-MUZ; 
MUW=REPEAT(MUHATWATT,1,N);MUW=MUW`;WBARMAT2=REPEAT(WBAR,1,N);WDIFF=WBAR
MAT2-MUW; 
Q=ZDIFF#WDIFF; 
Q=Q`; 
Q2=RISKIND#Q; 
Q2A=Q2*J(N,1,1); 
 
sigma_xz=Q2A/(RISKINDSUM2-1); 
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sigma_xz[N]=0; 
 
*print sigma_xz; 
/****************calculate sigma x at t*****************************/; 
QT1=J(N,1,.); 
c=sigma_u/k; 
CMAT2=REPEAT(C,N,1); 
QS=WDIFF#WDIFF; 
QS=QS`; 
QT=RISKIND#QS; 
QT1=QT*J(N,1,1); 
sigma_x=(QT1/(RISKINDSUM2-1))-CMAT2; 
sigma_x[N]=-SIGMA_U/K; 
 
*print Sigma_x; 
/******************calculate sigma Z at t*************************/; 
QYT1=J(N,1,.); 
QY=ZDIFF#ZDIFF; 
QY=QY`; 
QYT=RISKIND#QY; 
QYT1=QYT*J(N,1,1); 
sigma_z=QYT1/(RISKINDSUM2-1); 
sigma_z[N]=0; 
 
*print sigma_z; 
*********************calibrated  values*****************************/; 
do j = 1 to N;         
 *time index; 
    VAR_MAT[1,1]=c+SIGMA_X[j]; 
    VAR_MAT[1,2]=SIGMA_XZ[j]; 
    VAR_MAT[2,1]=SIGMA_XZ[j]; 
    VAR_MAT[2,2]=SIGMA_Z[j];       
    INVVAR_MAT=GINV(VAR_MAT); 
    MULT_MATRIX1[1,1]=SIGMA_X[j] ; 
 MULT_MATRIX1[1,2]=SIGMA_XZ[j] ;                 *print 
MULT_MATRIX1; 
 
    do i = 1 to N;                 
 *subject index; 
        MULT_MATRIX2[1,1]=WBAR[i]- MUHATWATT[j]; 
        MULT_MATRIX2[2,1]=Z[i]-MUHATZATT[j] ;   *print 
VAR_MAT mult_matrix1 mult_matrix2; 
        
RSCMATRIX[j,i]=MUHATWATT[j]+MULT_MATRIX1*INVVAR_MAT*MULT_MATRIX2; 
    END; 
END;               
*SHOW CONTENTS; *SHOW CONTENTS OF DATA SET; 
 /*DM "Output; Clear; Log; Clear";*/ 
**********************************************************************; 
finish rsc_mod; 
***********************************************************************
*******************************; 
reset storage=trial.catalog3; 
store module=rsc_mod; 
quit; 
run; 
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proc iml; 
 reset storage=trial.catalog3; 
 show storage; 
quit; 
run; 
 
/*proc iml; 
 reset storage=trial.catalog3; 
 show storage; 
  remove module=rsc_mod; 
  show storage; 
quit; 
run; 
 
 



 111

/*********************************************************************/ 
/*Author: Tina Dube                  */ 
/*Module to calibrated data using the risk set calibration method    */          
/*Covariates are calibrated at each event time. This module adjusts  */ 
/*for small risk set size by adjusting when there are twenty         */ 
/*subjects left in the risk set. The remaining subjects will maintain*/ 
/*their original data.                                               */ 
**********************************************************************/ 
*options symbolgen mlogic; 
proc iml symsize=7000000 worksize=800000; 
*********************************************************************/; 
start rsc_mod_adj20(w ,wbar, z ,delta, time,rscmatrix); 
*******************************************************************/; 
n=150; 
riskind=j(n,n,.); 
MUHATWATT=J(N,1,.); 
MUHATZATT=J(N,1,.); 
SIGMA_xz=J(N,1,.); 
sigma_x=j(n,1,.); 
sigma_z=j(n,1,.);   
VAR_MAT=j(2,2,.);  
MULT_MATRIX1=j(1,2,.); 
MULT_MATRIX2=j(2,1,.); 
RSCMATRIX=J(N,N,.); 
k=3; 
wbarmat=repeat(wbar,1,3); 
wbar_w=w-wbarmat; 
/********************************************************************/; 
do I = 1 to N; 
    do J = 1 to N; 
        if time[i] <= time[j]  then riskind[i,j]=1 ; 
        else if time[i] > time[j] then riskind[i,j]=0; 
    end; 
end;     
riskindsum=riskind[,+];  
riskindsum2=riskindsum; 
riskindsum2[N]=2; 
 
 
/********************calculate sigma u****************************/; 
sigma_u=ssq(wbar_w)/n*(k-1); 
 
*print sigma_u; 
/**********************calculate mu hat x at t********************/; 
MUHATWATT=RISKIND*WBAR/RISKINDSUM; 
 
/**********************calculate mu hat z at t*******************/; 
MUHATZATT=RISKIND*Z/RISKINDSUM; 
 
*print MUHATZATT; 
/********************calculate sigma XZ at t*******************/; 
QR=J(N,1,.); 
MUZ=REPEAT(MUHATZATT,1,N);MUZ=MUZ`;ZMAT2=REPEAT(Z,1,N);ZDIFF=ZMAT2-MUZ; 
MUW=REPEAT(MUHATWATT,1,N);MUW=MUW`;WBARMAT2=REPEAT(WBAR,1,N);WDIFF=WBAR
MAT2-MUW; 
Q=ZDIFF#WDIFF; 
Q=Q`; 
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Q2=RISKIND#Q; 
Q2A=Q2*J(N,1,1); 
 
sigma_xz=Q2A/(RISKINDSUM2-1); 
sigma_xz[N]=0; 
 
*print sigma_xz; 
/*********************calculate sigma x at t************************/; 
QT1=J(N,1,.); 
c=sigma_u/k; 
CMAT2=REPEAT(C,N,1); 
QS=WDIFF#WDIFF; 
QS=QS`; 
QT=RISKIND#QS; 
QT1=QT*J(N,1,1); 
sigma_x=(QT1/(RISKINDSUM2-1))-CMAT2; 
sigma_x[N]=-SIGMA_U/K; 
 
*print Sigma_x; 
/******************calculate sigma Z at t***************************/; 
QYT1=J(N,1,.); 
QY=ZDIFF#ZDIFF; 
QY=QY`; 
QYT=RISKIND#QY; 
QYT1=QYT*J(N,1,1); 
sigma_z=QYT1/(RISKINDSUM2-1); 
sigma_z[N]=0; 
 
*print sigma_z; 
**************************calibrated  values************************/; 
do j = 1 to 130;         
 *time index; 
    VAR_MAT[1,1]=c+SIGMA_X[j]; 
    VAR_MAT[1,2]=SIGMA_XZ[j]; 
    VAR_MAT[2,1]=SIGMA_XZ[j]; 
    VAR_MAT[2,2]=SIGMA_Z[j];       
    INVVAR_MAT=GINV(VAR_MAT); 
    MULT_MATRIX1[1,1]=SIGMA_X[j] ; 
 MULT_MATRIX1[1,2]=SIGMA_XZ[j] ;                 *print 
MULT_MATRIX1; 
 
    do i = 1 to n;                 
 *subject index; 
        MULT_MATRIX2[1,1]=WBAR[i]- MUHATWATT[j]; 
        MULT_MATRIX2[2,1]=Z[i]-MUHATZATT[j] ;   *print 
VAR_MAT mult_matrix1 mult_matrix2; 
        
RSCMATRIX[j,i]=MUHATWATT[j]+MULT_MATRIX1*INVVAR_MAT*MULT_MATRIX2; 
    END; 
END;       
 
do j=131 to n; 
do i=1 to n; 
RSCMATRIX[j,i]=WBAR[i]; 
end; 
end;  
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*SHOW CONTENTS; *SHOW CONTENTS OF DATA SET; 
 /*DM "Output; Clear; Log; Clear";*/ 
 
finish rsc_mod_adj20; 
 
reset storage=trial.catalog3; 
store module=rsc_mod_adj20; 
quit; 
run; 
 
proc iml; 
 reset storage=trial.catalog3; 
 show storage; 
quit; 
run; 
 
/*proc iml; 
 reset storage=trial.catalog3; 
 show storage; 
  remove module=rsc_mod_adj20; 
  show storage; 
quit; 
run;
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/*********************************************************************/ 
/*Author: Tina Dube                  */ 
/*Module to calculate the Loglikelihood and 1st and 2nd order          */ 
/*derivative Set Calibration Adjusted for Small Risk Sets            */     
/*Using the data generated by the earlier program, this program 
/*generates the first and second order derivatives for the 
loglikelihood function,                                             */ 
/*is generated based on true parameter estimates Betax=1 and Beta_Z=1*/          
/*Co-Authored by http://www.biostat.umn.edu/~john-c/5421/notes.019   */          
**********************************************************************/ 
proc iml symsize=7000000 worksize=800000; 
  
/*************MODULE TO COMPLETE LOGLIKELIHOOD AND DERIVATIVES*******/ 
start loglike(beta,wbar, z,p,RSCMATRIX,time,delta,l,dl,d2l,evals); 
evals=evals+1; 
h=1e-6; 
n=150;  
riskind=j(n,n,.); 
*print delta wbar z p RSCMATRIX time delta;    
 
do i = 1 to n; 
    do j = 1 to n; 
        if time[i] <= time[j]  then riskind[i,j]=1 ; 
        else if time[i] > time[j] then riskind[i,j]=0; 
    end; 
end;              
 *print riskind; 
 
/*Section 2 Calculate the log likelihood for the ith observation****/; 
L1=0; 
do j=1 to N;*j=time; 
    jloglike_1=delta[j]*( (beta[1]*RSCMATRIX[j,j])+ (beta[2]*z[j]) ); 
    L1=L1+jloglike_1; 
end; 
*print L1; 
 
LogL2_sum=0; 
do j=1 to n;*j= time; 
    L2=0;*reset summation indication at each time; 
        do i=1 to n;*i=subject; 
        iLL1= riskind[j,i]*exp( beta[1]*RSCMATRIX[j,i]+beta[2]*z[i]   
); 
        L2=L2+iLL1;                                 *print j i l2 iLL1; 
        end; 
    ilogL2=delta[j]*log(L2); 
    LogL2_sum=LogL2_sum+ilogL2; 
end; 
 
L=L1-LogL2_sum;                                     *print L; 
*likelihood; 
/*DM "Output; Clear; Log; Clear";*/ 
/*Jth and JKth derivatives for the ith Subject;*** **************/ 
dl=j(p,1,0); 
Deriv_B1=0; 
Deriv_B2=0; 
do j=1 to n;*j=time; 
    iderivb1=delta[j]*RSCMATRIX[j,j]; 
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    iderivb2=delta[j]*z[j]; 
    Deriv_B1=Deriv_B1+iderivb1;      
    Deriv_B2=Deriv_B2+iderivb2;       
end;           *first derivatives for both beta 1 and beta 2 first sum; 
 
 
ratiosum_B1=0; 
ratiosum_B2=0; 
 
d2l=j(2,2,0); 
secondderiv_B1=0; 
secondderiv_B2=0; 
secondderiv_B1B2=0; 
 
do j=1 to n;*j= time; 
    jPL_B1_numer=0; 
    jPL_B2_numer=0; 
    jPL_B1B2_numer=0; 
    jPL_B1_numer2=0; 
    jPL_B2_numer2=0; 
    jPL_B1B2_numer2=0; 
 jPL_denom=0; 
 
    jPL_B1_numer2=0; 
    jPL_B2_numer2=0;*reset summation indication at each time; 
        do i=1 to n;*i=subject; 
        inumerx2=   RSCMATRIX[j,i]*RSCMATRIX[j,i]*riskind[j,i]*exp( 
beta[1]*RSCMATRIX[j,i]+beta[2]*z[i]   ); 
        inumerz2=                       z[i]*z[i]*riskind[j,i]*exp( 
beta[1]*RSCMATRIX[j,i]+beta[2]*z[i]   ); 
        inumerx=                   RSCMATRIX[j,i]*riskind[j,i]*exp( 
beta[1]*RSCMATRIX[j,i]+beta[2]*z[i]   ); 
        inumerz=                             z[i]*riskind[j,i]*exp( 
beta[1]*RSCMATRIX[j,i]+beta[2]*z[i]   ); 
        idenom=                                   riskind[j,i]*exp( 
beta[1]*RSCMATRIX[j,i]+beta[2]*z[i]   ); 
        inumerxz=             RSCMATRIX[j,i]*z[i]*riskind[j,i]*exp( 
beta[1]*RSCMATRIX[j,i]+beta[2]*z[i]   ); 
 
        jPL_B1_numer2=jPL_B1_numer2+inumerx2; 
        jPL_B1_numer=jPL_B1_numer+inumerx; 
        jPL_denom=jPL_denom+idenom; 
 
        jPL_B2_numer2=jPL_B2_numer2+inumerz2; 
        jPL_B2_numer=jPL_B2_numer+inumerz; 
 
        jPL_B1B2_numer2=jPL_B1B2_numer2+inumerxz; 
 
        end; 
 
 
 jratio_B1=       delta[j]*jPL_B1_numer/jPL_denom; 
    jratio_B2=       delta[j]*jPL_B2_numer/jPL_denom; 
    ratiosum_B1=     ratiosum_B1+jratio_B1; 
    ratiosum_B2=     ratiosum_B2+jratio_B2; 
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    jratio_B11a=jPL_B1_numer2/jPL_denom; 
    jratio_B11b=(jPL_B1_numer/jPL_denom)**2; 
    isum_B1=delta[j]*(jratio_B11b-jratio_B11a); 
    secondderiv_B1= secondderiv_B1+  isum_B1; 
 
 
    jratio_B22a=jPL_B2_numer2/jPL_denom; 
    jratio_B22b=(jPL_B2_numer/jPL_denom)**2; 
    isum_B2=delta[j]*(jratio_B22b-jratio_B22a); 
    secondderiv_B2= secondderiv_B2+  isum_B2; 
 
 
    jratio_B12a=jPL_B1B2_numer2/jPL_denom; 
    jratio_B12b=(jPL_B1_numer*jPL_B2_numer)/(jPL_denom)**2; 
    isum_B1B2=delta[j]*(jratio_B12b-jratio_B12a); 
    secondderiv_B1B2= secondderiv_B1B2+  isum_B1B2; 
end; 
 
DL_Beta1=Deriv_B1-ratiosum_B1;*first partial derivative beta 1; 
DL_Beta2=Deriv_B2-ratiosum_B2;*first partial derivative beta 2; 
dl[1]= DL_Beta1; 
dl[2]= DL_Beta2;                                         *print dl; 
 
d2l[1,1]= secondderiv_B1; 
d2l[1,2]= secondderiv_B1B2; 
d2l[2,1]= secondderiv_B1B2; 
d2l[2,2]= secondderiv_B2;                                   *print d2l; 
 
 
/*DM "Output; Clear; Log; Clear";*/ 
***********************************************************************
*******************************; 
finish loglike; 
***********************************************************************
*******************************; 
 reset storage=trial.catalog2; 
 store module=loglike; 
  
 *show storage; 
 
quit;run; 
 
proc iml; 
 reset storage=trial.catalog2; 
 show storage; 
print riskind; 
quit; 
run; 
/*proc iml; 
 reset storage=trial.catalog2; 
 show storage; 
  remove module=loglike; 
  show storage; 
quit; 
run; 
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/*********************************************************************/ 
/*Author: Tina Dube                  */ 
/*Risk Set Calibration Adjusted for Small Risk Sets                  */ 
/*Using the data generated by the earlier program, this program 
calculates the likelihood estimates by calling the log- 
Likelihood module and the risk set calibration module. bivariate normal 
covariate data with a     */ 
/*prespecified amount of correlation parameter. Additionally,        */ 
survival data                                                        */ 
/*is generated based on true parameter estimates Betax=1 and Beta_Z=1*/          
/*Co-Authored by http://www.biostat.umn.edu/~john-c/5421/notes.019   */          
**********************************************************************/ 
options nonotes PAGENO=1; 
title '   '; 
run; 
%macro CalcLike(N,cohorts); 
%do X = 1 %to &COHORTS; 
proc iml symsize=70000000 worksize=8000; 
 reset storage=trial.catalog3; 
 * Read data into IML ; 
  
 reset storage=trial.catalog3; 
 USE trial.DTA_0105_2a&x; 
 
 read all var {X}into X; 
    read all var {W1 W2 W3} into W;  
 k=ncol(W); 
 WBAR=W[,:]; 
 read all var {z} into Z; 
    read all var {time} into TIME;                 *read survival time 
matrix; 
    read all var {delta} into delta;                      *read DELTA 
matrix; 
     
 store x;free x; 
 store w;free w; 
 store wbar;free wbar; 
    store z;free z; 
    store time;free time;                   
    store delta;free delta;  
 
load w wbar z delta time; 
load module=rsc_mod_adj20; 
run rsc_mod_adj20(w ,wbar, z ,delta, time,rscmatrix); 
*print rscmatrix;         
 *check module processes; 
store rscmatrix;free rscmatrix; 
 
print "finished calibrating data for cohort: " &x "."; 
 
*Calculate the partial likelihood estimates; 
eps=1e-8; *tolerance limits for increments; 
diff=eps+1; *preset diff>eps; 
oldl=-1e20; *present old likelihood very small; 
p=2; *set number of parameters; 
beta={1.00, 1.00}; *initialize parameter vector; 
evals=0; *preset number of function evals; 
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*The following do loop stops when the increments in beta are 
sufficiently small, or when number of interactions reaches 20 provided 
the log likelihood increases; 
 
 
print, "Likelihood estimates for cohort number:" &x "."; 
cohortnumber=&x; 
 
load RSCMATRIX; 
do iter= 1 to 20 while (diff > eps); 
 load module=loglike_20; 
    run loglike_20(beta,wbar, z,p,RSCMATRIX,time,delta,l,dl,d2l,evals); 
    invd2l=inv(d2l); 
    factor=1; *print factor; 
    tbeta=beta-invd2l *dl; *The Newton Step; 
 
tl=l; 
tdl=dl; 
td2l=d2l; 
*Go to step halving if the likelihood does not increase 
if (l < oldl) then do; 
        factor=0.5 * factor; * print factor; 
        tl=oldl - 0.1*abs(oldl); 
        do halves = 1 to 10 while (tl < oldl); 
        tbeta=beta-factor *invd2l * dl; *step halving; 
  load module=loglike_20; 
        run loglike_20(tbeta,wbar, 
z,p,RSCMATRIX,time,delta,tl,tdl,td2l,evals); 
        factor=0.5*factor; * print factor; 
        * print, "Step halving: " iter halves tbeta tl oldl tdl td2l; 
        end; 
            if (tl < oldl) then do; 
                * print, "No convergence after " halves "step-
halves..." iter halves tbeta tl oldl tdl td2l; 
            end; 
end; 
 
beta=tbeta;tina=invd2l*dl;dube=factor*tina; 
diff=max(abs(dube)); 
l=tl; oldl=tl; dl=tdl; d2l=td2l; 
* print, iter beta l dl d2l diff; 
end; 
if (diff> eps) then do; 
    * print, "No convergence after " iter " iterations..." iter halves 
tbeta tl oldl tdl td2l; 
end; 
 
serralt=j(1,p,0); 
serr=j(p,1,0); 
do i = 1 to p; 
    serr[i]=sqrt(-invd2l[i,i]); *standard errors= square root of 
diagonal; 
end; 
 
minvd2l=-invd2l; 
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m2l=-2*l; 
 
*print, "Number of function evaluations :" evals; 
covar=-invd2l; 
*print, " -2 * loglikelihood: " m2l; 
*print, " Estimated Coefficients, standard errors: ",beta serr; 
*print, " Estimated Covariance matrix of coefficients: ",minvd2l; 
 
betaRSC=beta`; 
*print beta betarsc; 
serr=serr`;smallvec=j(1,2,1); 
bias=betaRSC-smallvec; 
 
BETA=&x||betaRSC||serr||bias; 
 
print beta; 
 
cname4={"cohortnumber" "XRSC" "ZRSC" "serr1" "serr2" "biasx" "biasz"}; 
create betavec&x from beta [COLNAME=CNAME4]; 
append from beta; 
*show storage; 
*show space; 
 
free RISKIND RSCMATRIX TIME WBAR Z beta; 
 
QUIT; *END PROC IML; 
RUN; 
 
%END;                                                   *END X LOOP RUN 
IML ; 
 
%do J = 2 %to &COHORTS; 
PROC APPEND BASE=betavec1 DATA=betavec&J; 
RUN; 
QUIT; 
%END; 
 
%mend CalcLike;          
 *END CalcLike MACRO; 
%CalcLike(150,1060); 
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