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ABSTRACT 

 
Outliers are observations with extreme standardized deviations between the 

observed dependent variable and the predicted value. Within linear regression, outliers 

are detected by using studentized residuals. Leverage is a measure of the standardized 

deviation of an observation’s row vector of independent variables from the mean vector 

of the independent variables. Within linear regression, leverage may be assessed by using 

the diagonal of the projection matrix H = X(X`X)-1X`. An observation that is both an 

outlier and a leverage point is an influential observation. Influential observations affect 

estimation of regression parameters and therefore lead to poor estimation of the 

regression line, to incorrect inference, and to inaccurate predictions. Detection of these 

observations is often difficult because of the masking and swamping effects. The 

masking effect occurs when some or all influential points are difficult to identify with the 

use of regression diagnostics because the extremeness of one observation obscures the 

extremeness of another. Swamping occurs when an observation is incorrectly identified 

as an outlier and/or leverage point. We present a robust regression (Robust Forward 

Detection) method that extends the concept of robust distances by using the minimum 

covariance determinant and the concept of least trimmed squares. By downweighting any 

observations considered atypical (outliers, leverage, and influential), we extend the use of 

the Robust Forward Detection method beyond the application of dichotomous weights 

and include all observations in the dataset. Results from utilizing our proposed method 

 ii



are illustrated and compared with that of ordinary least squares via simulations and 

examples. We illustrate that our proposed approach is capable of overcoming masking 

and swamping, properly identifies influential observations (i.e., outliers and leverage), 

and is robust to their influence. 
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INTRODUCTION 
 

 Linear regression is used to describe relationships among variables, such as a 

response or dependent variable and one or more independent variables. The general linear 

model employed is y = Xβ + ε, where y is an nx1 vector for which each row corresponds 

to an observation’s response; X is an nxp matrix of fixed, known constants for which 

each column corresponds to an independent variable or predictor including the intercept; 

β is a px1 vector of the unknown parameters; and ε is an nx1 vector of the unobservable 

random errors. Note that n corresponds to the sample size and that p is the number of 

parameters specified in the model. Using matrix notation, it can be written such that  
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Ordinary Least Squares 

Within the statistical framework of linear regression, β is typically estimated by 

using ordinary least squares (OLS). The assumptions associated with OLS are 

homogeneity of the errors (i.e., Var[ε]=σ

β̂

2I, where I is an nxn identity matrix consisting 

of 1’s on the diagonal and 0’s off the diagonal), independence of error terms, linearity in 

terms of the parameters (i.e., E[y]=Xβ), and finite variance (Muller and Fetterman, 2002). 

The random errors, ε, are estimated by the residuals: 
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                  e = y – ,                                                        (1) ŷ

where is the nx1 vector of predicted values and where  = X . As illustrated in (1), the 

residuals measure the difference between the observed values and the predicted values.  

ŷ ŷ β̂

Utilizing OLS and assuming that X is full rank, the estimator for β can be 

computed by using the sums of squares of error (SSE). As indicated below, the sum of 

the squared deviations of the observed dependent values and the predicted values is 

minimized with respect to                    :β̂

         SSE  = e`e 

      = ( ) ( )yyyy ˆ  `ˆ       

  = ( ) ( )βXyβXy ˆ  `ˆ         

           = βXXββXyyXβyy ˆˆ  ˆ    ˆ    `````` +  

= βXXβyXβyy ˆˆ  ˆ2    ````` +  

            = Λ  

            
β̂∂
Λ∂  = βXXyX ˆ2  2   `` + .                       (2) 

Set (2) equal to zero and solve for : β̂

 0  ˆ2  2   `` =+ βXXyX  

⇒                              2  ˆ2   `` yXβXX =

⇒                                                    ˆ   `` yXβXX =

⇒                            ( ) yXXXβ `1`  ˆ −= ,            (3) 
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where β  is unbiased and has minimum variance (Neter et al., 1996). The properties of 

the estimator are derived as follows: 

ˆ

              E(β ) = E[(X`X)ˆ -1X`y] 

          = E[(X`X)-1X`(Xβ + ε)] 

                        = E[(X`X)-1X`Xβ + (X`X)-1X`ε] 

     = E[β + (X`X)-1X`ε] 

           = E[β] + E[(X`X)-1X`ε] 

               = β + (X`X)-1X` E[ε] from E[ε]=0 

                = β  

and  

Var(β ) = Var[(X`X)ˆ -1X`y] 

 = (X`X)-1X`Var[y]((X`X)-1X`)` 

 = (X`X)-1X`( σ2I )((X`X)-1X`)` from Var[ε]= σ2I  

 = σ2I*X`X (X`X)-1

 = σ2(X`X)-1. 

Based on the previous derivations and assuming the unobservable random errors are 

normally distributed, with mean 0 and variance σ2I such that ε ~ N(0, σ2I), it can be 

written such that β ~ N(β, σˆ 2(X`X)-1). It is noted that distributional assumptions are not 

necessary when estimating parameters using OLS. However, distributional assumptions 

are pertinent when hypotheses are being tested and when inferences are being made. 
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Diagnostic Issues 

 There are several diagnostic issues encountered when the OLS method is being 

applied: outliers, leverage points, influential observations, masking, and swamping. 

Outliers are observations with extreme standardized deviations between the observed 

dependent variable and the predicted value. Within simple linear regression (regression 

on one predictor), these deviations in the y-direction can be visually identified via scatter 

plots such as plots of the dependent variable versus the independent variable and/or plots 

of the studentized residuals versus the predicted outcome. Two types of studentized 

residuals have been proposed. Gray and Woodall (1994) defined the internally 

studentized residuals, ri, as  

)-(1*MSE
 )ˆ( 

ii

ii
i h

yyr −
=  

and the externally studentized residuals, ti, as  

,
)-(1*MSE

 )ˆ(
 

)( iii

ii
i h

yy
t

−
=  

where MSE = e`e/(n-p); the mean squared error (MSE) is the sum of the squared 

residuals divided by (n-p), where n is the sample size and where p is the number of 

parameters. MSE(i) is the mean squared error with the ith case deleted from the 

calculation, and hii is the ith diagonal element of the hat matrix. 

 The diagonal elements of H, denoted hii, are utilized to assess leverage. Leverage 

is a measure of the standardized deviation of an observation’s row vector of independent 

variables from the mean vector of the independent variables. From (3), we can write the 

predicted values such that 

                                                        = X  ŷ β̂
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= X(X`X)-1X`y 

                                 = Hy, 

where 

                                                        `.)`( 1
x

XXXXH −=
nn

                               (4) 

As indicated, the hat matrix, H, involves matrix multiplication only of the data matrix X. 

Utilizing (4), it can be shown that HX = X. This property identifies H as a projection 

matrix (projects onto the column space of X) which is both symmetric (hij = hji for all i,j) 

and idempotent (HH=H). Hence, the hat matrix H has the following properties: 

i. 0 < hij < 1 

ii. = p. ∑
=

n

i
iih

1

Muller and Fetterman (2002) suggested that hii
n
p2>  can be used as the “rule of thumb” 

in order to indicate that the ith observation has an extreme value in the predictor space and 

thus is a leverage point. In small datasets, high leverage points can have an unusually 

large effect on the estimated regression parameters. This effect can lead to distortion and 

poor approximations of the fitted regression line. As previously stated, these high 

leverage points are sometimes identified by evaluating the diagonal elements of the hat 

matrix.  

 An observation that is both an outlier and a leverage point is an influential 

observation. Influential observations affect estimation of regression parameters and 

therefore lead to poor estimation of the fitted regression line, to incorrect inference, and 

to inaccurate predictions, especially for small datasets. Influential observations may be 

detected by evaluating the changes in the estimated regression line and/or estimated 
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regression parameters that result from the inclusion/exclusion of those particular 

observations in the model. Influential observations may also be identified by using 

Cook’s Distance, better known as Cook’s D:  

D = ( ) ( ))()( ˆ - ˆ`ˆ - ˆ ii yyyy /(p*MSE), 

where is the nx1 vector of predicted values when the i)(ˆ iy th case is deleted from the 

calculation of the least squares estimate β of β. Cook’s D measures the standardized 

deviation of the predicted values using all observations and the predicted values using all 

observations but with the i

ˆ

th observation deleted. 

 Detection of extreme observations (outliers, leverage, and influential points) can 

be difficult because of masking and swamping. Masking occurs when some or all atypical 

(outliers, leverage, and influential points) observations are difficult to identify via 

regression diagnostics because the extremeness of one observation obscures the 

extremeness of another. Swamping is the type of effect that occurs when non-

contaminated observations are incorrectly identified as atypical.  

 Because the primary objective of our research is to properly detect and manage 

the diagnostic issues that we encounter when using OLS, we utilize robust regression. 

Robust regression is a statistical approach originally designed to be robust toward 

outliers. Unlike ordinary least squares, it allows observations to be weighted unequally. 

Robust regression first fits a line to a subset of the data and then attempts to identify the 

outliers. Common robust regression approaches produce a fitted line and estimators that 

are not strongly affected by outliers. However, several forms of robust regression remain 

strongly affected by influential points. Within this dissertation, we propose robust 
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regression methods that are resistant to influential points, as well as to outliers and 

leverage points.  

 

Robust Regression 

Over the years, statisticians have defined robust regression differently. Huber 

(1981) stated,  

The word ‘robust’ is loaded with many—sometimes inconsistent—connotations. 
We use it in a relatively narrow sense: for our purposes, robustness signifies 
insensitivity to small deviations from the assumptions. Primarily, we are 
concerned with distributional robustness: the shape of the true underlying 
distribution deviates slightly from the assumed model (usually the Gaussian law).  
 

In addition to Huber, Hampel et al. (1986) also offered several definitions of ‘robustness’.  

Hampel et al. in 1986 stated, “robust statistics is a body of knowledge…relating to 

deviations from idealized assumptions in statistics.” He and his co-authors made 

reference to a topic that is more of concern to us: “Robust statistics in the broad, vague, 

informal sense obviously encompasses rejection of outliers, although this field seems to 

lead an isolated life of its own, and only in recent years do some specialists for the 

rejection of outliers appreciate the close natural relationship (cf. Barnett and Lewis, 

1978).”  

Hampel et al. (1986) suggested that the two goals of robust statistics should 

consist of using the majority of the data and detecting outliers and highly influential 

points, which they denote as leverage points. They stated that identifying outliers can be 

problematic when the dataset is beyond two dimensions and when visual inspection is 

unreliable and sometimes no longer feasible. Furthermore, the greater the number of 

dimensions and the more complex the dataset, then the more one should rely on the safety 
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of robust methods instead of on simple methods like OLS (Hampel et al., 1986). Hampel 

et al. (1986) declared that identifying outliers can sometimes be difficult when typical 

regression diagnostics are being used and can be less difficult when robust regression 

methods are being used.  

For the moment, it suffices to note that: (1) a single huge unnoticed gross error 
can spoil a statistical analysis completely (as in the case of least squares); (2) 
several percent gross errors are rather common; and (3) modern robust techniques 
can deal with outliers relatively easily, even better than classical methods for 
objective or subjective rejection of outliers (Hampel et al., 1986).  
 

Note that “gross errors” are errors related to incorrect measurements and/or data entry 

inaccuracies.  

Several statistical techniques have been developed that serve as contributions to 

the field of robust regression. However, only a few will be presented within this 

dissertation, including those authors whose work serves as a foundation for our proposed 

method and whose work is to an extent comparable to ours. We present methods by 

Hampel, Edgeworth, Huber, Rousseeuw, Hadi, Hadi and Simonoff, and Atkinson and 

Riani. Special attention should be given to Hadi (1992, 1994), Hadi and Simonoff (1993), 

and Atkinson and Riani (2000), whose contributions to robust regression are similar to 

but different from certain aspects of our proposed method. 

 

Influence and Breakdown 

 Hampel’s (1968) dissertation contributed to measures of robustness: the influence 

function and the breakdown point. The influence function (IF), formerly known as the 

influence curve, determines the amount of bias that an outlier causes. In other words, this 

function evaluates the asymptotic behavior of the estimator. The breakdown point 
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indicates the amount of contamination (i.e., outliers) that an estimator can withstand 

without “breaking down” or becoming unreliable; it reflects the sensitivity of a method to 

outliers. Based on the work of Hampel, many statisticians such as Rousseeuw (1984, 

1985) began to focus on estimators with a high breakdown point. 

 

L1 Regression 

 Robust regression dates back to the 1800’s. Specifically, in 1887, Edgeworth 

proposed the least absolute values (L1) regression method: 

∑
=

n

i
ii yy

1
 

β̂
|ˆ -| Min . 

This method minimizes, with respect to the estimated regression parameter , the sum of 

the absolute value of the residuals whereas OLS minimizes the sum of the squared 

residuals. This estimator obtained from L

β̂

1 regression is robust to outliers in linear 

regression. It is known that, in comparison to the OLS approach, L1 regression has a 

higher breakdown point. This difference implies that the L1 estimator is more robust 

toward outliers than OLS is found to be. Unfortunately, L1 regression is not protective 

against or robust to the impact of leverage points.   

 

M-estimation 

 Huber is attributed for the development of several components such as the 

minimax approach, the gross-error model, and maximum likelihood type estimates (better 

known as M-estimators). However, only the M-estimators are reviewed in this 

dissertation. Huber (1964) defined an M-estimate as being any estimate Tn such 
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that , where 0  ) ;( =∑ ni Txψ );()/(  );( θρθθψ xx ∂∂=  and where ρ(·) is some arbitrary 

function. For the specific case of linear regression, Huber noted that the M-estimate could 

be derived from 

)ˆ -( Min
1

 
β̂
∑
=

n

i
ii yyρ . 

This approach is similar to OLS but replaces the residuals with an arbitrary but 

symmetric function of the residuals, ρ(·). This estimator is insensitive to outliers but fails 

to be robust in the presence of leverage points.  

 

LMS Estimator 

 Rousseeuw recognized the problems associated with OLS, such as outliers and the 

masking effect. After Huber’s M-estimators and Hampel’s influence function and 

breakdown point were developed, Rousseeuw introduced estimators that are also robust 

to outliers. In 1984, he developed the least median squares (LMS) estimator: 

2
β̂

)ˆ - ( med Min iii
yy . 

Instead of the sum, the median of the squared residuals is minimized with respect to . 

This estimator is thought to be robust to outliers.  However, it performs poorly in terms of 

statistical asymptotic efficiency because its convergence rate to its limiting distribution is 

slow.   

β̂

 

LTS Estimator 

 To improve the poor performance of the LMS estimator, Rousseeuw (1985) 

introduced the use of the least trimmed squares (LTS) estimator: 
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ni

h

i
ii yy :

2

1
 

β̂
))ˆ -(( Min∑

=

. 

This estimator indicates that the sum of the h smallest squared residuals is minimized 

with respect to . As suggested by Rousseeuw, the lower bound on h should be [n/2] + 1. 

This estimator is robust to outliers also. 

β̂

 Like Huber (1981) and Hampel et al. (1983), Rousseeuw and Leroy (1987) 

offered a definition of robust regression. In 1987, they stated, “…robust regression…tries 

to devise estimators that are not so strongly affected by outliers.” In this dissertation, we 

are concerned about robustness toward influential observations, as well as toward outliers 

and leverage points. Hence, we model our research after Rousseeuw’s (1985) concept of 

least trimmed squares and after Rousseeuw and van Zomeren’s (1990) concept of robust 

distances using the minimum covariance determinant. However, before we define their 

concepts, we give a brief overview of the robust regression approaches by Hadi (1992, 

1994), Hadi and Simonoff (1993), and Atkinson and Riani (2000). 

 

Hadi (1992, 1994) 

 Hadi’s (1992, 1994) proposed multivariate approach for the detection of outliers 

is as follows: 

 Step 0: Initial Ordering – Compute CM, which is the vector consisting of the  

co-ordinatewise medians and SM = . Arrange the data in 

ascending order based on the robust distances:  

( ) ( )(∑
=

− −−−
n

i
ii xxn

1
MM

1 `CC1 )

Di(CM, SM) = [(xi – CM)` (x-1
MS i – CM)]1/2  
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for i = 1, ..., n. Next, assign weights such that wi = 1 if i < integer part of (n+p+1)/2 and 

such that wi = 0 otherwise. Compute CR and SR, where  

CR =   i

n

i
i

n

i
i xww ∑∑

=

−

=

⎟
⎠

⎞
⎜
⎝

⎛

1

1

1

and where 

SR = . ( )( )̀CC1
1

1

1
RiRi

n

i
i

n

i
i xxww −−⎟

⎠

⎞
⎜
⎝

⎛ − ∑∑
=

−

=

Again, arrange the data in ascending order based on the robust distances but this time 

utilizing CR and SR such that  

Di(CR, SR) = [(xi – CR)` (x-1
RS i – CR)]1/2 for i = 1, ..., n. 

 Step 1: Basic Subset – The ascending dataset based on CR and SR is divided into 

two subsets such that the first subset contains the first p+1 observations and such that the 

second contains the remaining n-p-1 observations. Hadi (1992) refered to the first set as 

the “basic” subset and the second subset as “non-basic”. Considering only full rank cases, 

compute another robust distance: 

          Di(Cb, Sb) = [(xi – Cb)` (x-1
bS i – Cb)]1/2 for i = 1, ..., n,                          

(5) 

where Cb and Sb are the mean and covariance matrix, respectively, for the “basic” subset.  

 Step 2: Size of Basic Subset Increased – The observations are rearranged in 

ascending order based on (5). The number of observations in the “basic” subset is 

denoted as r. An observation is added to the “basic” subset so that the new “basic” subset 

contains the first r+1 observations. The other subset of the data contains the remaining n-

r-1 observations. 
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 Step 3 – Step 1 and Step 2 are repeated until the “basic” subset has h observations, 

where h = [(n+p+1)/2]; that is, h is the integer part of (n+p+1)/2.  

 Step 4 – The data are rearranged according to a new set of robust distances as seen 

in (5). Now, however, Cb and Sb are the mean and covariance matrix, respectively, for the 

new “basic” subset. Let be the (r+1)2
)1( +rD th order statistic with the modification such that 

Sb is multiplied by the correction factor  

.1
-

1  1  
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+
+

+=
phnpn

pc  

If the  2
)1( +rD > , then this process should be stopped, and all observations with the 

modified robust distance (obtained by using the correction factor) greater than are 

considered outliers. If not, then proceed to Step 5. Note that

2
/, np αχ

2
/, np αχ

2
,αχ p is the (1 – α) percentile 

of the chi-square distribution with p degrees of freedom. 

 Step 5 – The observations are again divided into two subsets in which the first 

subset contains r+1 observations and the second contains the remaining n-r-1 

observations. If n = r+1, stop, and proclaim that there are no outliers in the data. 

Otherwise, return to Step 4.  

 

M1 Algorithm 

Hadi and Simonoff (1993) proposed an algorithm claimed to detect and test for 

multiple outliers in linear models. The procedure begins with applying OLS to the entire 

dataset. Thereafter, observations are ranked by some appropriately selected regression 

diagnostic tool. The data are divided into two subsets such that the initial subset consists 

of the first h observations, which is assumed to be “clean” or free of outliers. A new 
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regression model is fitted to the h observations in the initial subset. On the basis of this 

fit, the studentized residuals are computed and arranged in ascending order. The size of 

the initial subset is increased by one, and the (h +1)th studentized residual is compared to 

t(α/2(h+1), h – p). If the studentized residual is found to be larger than the t statistic then 

testing is stopped, and all remaining observations are declared outliers. Otherwise, this 

process is continued until the first outlier is identified. Pena and Yohai (1999) noted, 

“According to a Monte Carlo study…the procedure works well for low-leverage outliers 

but may fail when the sample contains a set of high-leverage outliers.”  

 

Forward Search 

 Atkinson and Riani (2000) utilized a “forward search” approach. They focused on 

parameter estimation and the removal of outliers. Atkinson and Riani (2000) stated,  

…the emphasis is on using the forward search to find a single set of parameter 
estimates and of outliers. The emphasis in this book is very different: at each 
stage of the forward search we use information such as parameter estimates and 
residual plots to guide us to a suitable model. 

 
 The starting point of their approach uses the estimate obtained from Rousseeuw’s (1984) 

LMS estimator. The data are then divided into two sections such that the first is intended 

to be free of outliers and such that the second may contain outliers. The initial subset, 

which is thought to be free of outliers, contains m observations. The residuals are squared 

and then arranged in ascending order. The approach then moves forward by adding 

observations to the initial subset on the basis of the smallest squared residuals. (Note that 

they sometimes utilize the raw residuals.) This approach continues until all observations, 

which are not considered potential outliers, enter into the subset. Atkinson and Riani 

(2000) monitored the search by using the MSE and observing changes in the parameter 
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estimates. This method is known to be capable of detecting outliers. However, as Pena 

and Yohai (1999) mentioned in their article, it is not robust toward influential 

observations. 

 Many other robust estimators and techniques have been developed to 

accommodate the diagnostic issues (outliers, leverage, influence, masking, and 

swamping) that OLS does not overcome. The purpose of this dissertation is to propose a 

robust statistical technique that will be capable of detecting and limiting the impact of 

potential outliers, leverage points, and influential observations in linear regression. The 

objective discussed in Paper 1 was to develop the Robust Forward Detection (RFD) 

method that will properly detect atypical observations (outliers, leverage points, and 

influence), as well as overcome the masking and swamping effects. The RFD is an 

extension of and utilizes a combination of Rousseeuw’s (1985) concept of least trimmed 

squares (LTS) and Rousseeuw and van Zomeren’s (1990) concept of robust distances, 

using the minimum covariance determinant. In Paper 2, we downweight and limit the 

impact of the atypical observations identified by the detection tool proposed in Paper 1. 

We illustrate the sensitivities of OLS and the robustness of the RFD method by 

comparing the following methods: OLS, RFD with dichotomous weights of 0 and 1, and 

RFD with continuous weights ranging between 0 and 1, inclusive. An application of the 

RFD method using the Lung Health Study I data is demonstrated in Paper 3. The method 

is implemented to identify any potential atypical observations (outliers, leverage, and 

influential points). Thereafter, the RFD method with dichotomous and continuous 

weighting functions is applied. The results are compared to those obtained by using OLS. 

In addition, the RFD method is utilized to determine whether any study participants 
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identified as an outlier, leverage point, or influential observation in either the response or 

the predictors are more likely to have died of lung cancer during the five year follow-up 

period.  
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Abstract 

Diagnostic issues such as outliers, leverage points, influential observations, and 

masking and swamping effects are often encountered in linear regression when data are 

analyzed by using ordinary least squares (OLS). Robust regression methods are 

recommended for proper detection and management of these diagnostic issues. Although 

many robust regression methods are resistant to the effects of outliers or leverage points, 

the methods remain susceptible to influential points. We present a Robust Forward 

Detection (RFD) method within the framework of linear regression that is resistant to the 

effects of outliers, leverage points, and influential observations. Our RFD method is 

based on the concepts of robust distances, the minimum covariance determinant, least 

trimmed squares, and nearest neighbor multiple testing. The properties of the proposed 

method are evaluated via simulations. Examples are used to further illustrate both the 

robustness of the RFD method toward diagnostic issues and the method’s ability to 

overcome the masking and swamping effects.  
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1. Introduction 

 The general linear model as applied in linear regression is y = Xβ + ε, where y is 

an nx1 vector of the observed response values; X is an nxp matrix of the predictors, 

including the intercept; β is a px1 vector of the unknown regression parameters; ε is an 

nx1 vector of the unobservable random errors; and ε ~ N(0, σ2I). The random errors, ε, 

are estimated by the residuals: 

          e = y – ,                                                           (1) ŷ

where  = X  is the estimate for the unknown parameter β, and y is the vector 

containing the predicted values. As illustrated in equation (1), the residuals measure the 

difference between the observed values and the predicted values.  

ŷ ,β̂ β̂ ˆ

 The most common approach used to estimate β in the general linear model is 

ordinary least squares (OLS). When the OLS method is applied in the linear regression 

framework, several diagnostic issues are often encountered: outliers, leverage points, 

influential observations, masking, and swamping. Outliers are observations with extreme 

standardized deviations between the observed dependent variable and the predicted value. 

Leverage is a measure of the standardized deviation of an observation’s row vector of 

independent variables from the mean vector of the independent variables. An observation 

that is both an outlier and a leverage point is declared an influential observation. 

Detection of these extreme observations (outliers, leverage, and influential points) can be 

difficult because of masking and swamping. Masking is the effect of not being able to 

identify all true atypical observations because the extremeness of one observation 

obscures the extremeness of another. On the other hand, swamping occurs when one or 

more observations are incorrectly identified as atypical. 
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 To address these diagnostic issues, we, like other statisticians, suggest utilizing a 

robust regression method. Unlike many of the current robust regression techniques, the 

robust statistical approach that we propose is robust not only to outliers but also robust to 

leverage and influential observations. In this paper, we develop a robust statistical 

approach modeled after Rousseeuw’s (1985) concept of least trimmed squares (LTS) and 

after Rousseeuw and van Zomeren’s (1990) concept of robust distances (RD), using the 

minimum covariance determinant (MCD). We first present Mahalanobis distance (MD), 

which is the foundation of RD. MD is a standardized measure of the distance of each 

independent row vector from the mean vector. Because there is a monotonic relationship 

between MD and hii (the diagonal elements of the hat matrix H=X(X`X)-1X`), MD may 

be used to assess leverage:  

nn
h i

ii
1  

1-
)(MD

  
2

+= ,                 (2) 

where MDi = [(xi-T(X))C(X)-1(xi-T(X))`]1/2 and xi = (xi1 xi2 … xi,p-1) for i = 1, 2, …, n. 

Note that T(X) and C(X) are the mean vector and sample covariance matrix, respectively. 

That is, T(X) = ,1
1
∑
=

n

i
in

x and C(X) = . By using 

equation (2) and by using Hoaglin and Welsch’s (1978) recommendation that any 

observation with a diagonal element h

( ) ( ) (∑
=

− −−−
n

i
iin

1

1 )(T`)(T1 XxXx )

ii > 2p/n should be considered a leverage point, we 

can establish the following: 

hii > 2p/n 
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n
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i .                                           (3) 

 The MD suffers from the masking effect because of the use of non-robust 

estimators, the mean and the covariance matrix. We, therefore, know that hii is not always 

an effective measure for assessing leverage. Because of this fact, Rousseeuw and van 

Zomeren (1990) introduced the concept of RD, which is the standardized distance of each 

independent row vector xi from the weighted mean vector:   

                         RDi = [(xi – Tw(X))Cw(X)-1(xi – Tw(X))`]1/2,                                (4) 

with weighted mean vector 

Tw(X) =  i

n

i
i
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i
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and with weighted covariance matrix 
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The weighted mean Tw(X) and weighted covariance matrix Cw(X) from the RD are 

estimated by using Rousseeuw’s (1984, 1985) originally proposed MCD, which is 

computed by randomly and repeatedly selecting at least half of the data and choosing the 

subset that has the smallest determinant of the covariance matrix. Rousseeuw and van 

Zomeren (1990) determined that an observation should be considered a leverage point if 

RDi > .  2
-1 , αχ p

 Our proposed RFD method utilizes familiar diagnostic tools, unlike Rousseeuw 

and van Zomeren’s (1990) threshold for the robust distances, but transformed so they fit 

in the robust regression statistical framework. Rousseeuw and van Zomeren (1990) use a 
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2
-1 , αχ p  cutoff value to identify leverage points, which suggests that either X or the RD 

have an underlying normal distribution. Of course, neither possibility is likely because 

the nxp matrix X does not consist of random variables and therefore does not carry 

distributional assumptions. On the other hand, we compare the robust distances to the 

familiar but transformed regression leverage diagnostic rules 2p/n and 3p/n. 

 We present our proposed method in section 2. In section 3, we present 

simulations to evaluate the performance of our method. In addition, we compare our 

method to LTS (ROBUSTREG), a procedure utilized in SAS® version 9.1.3, because 

LTS (ROBUSTREG) utilizes a combination of LTS (Rousseeuw, 1985) and RD’s 

(Rousseeuw and van Zomeren, 1990) and because it is most similar to our proposed 

method. Last, in section 4, we illustrate our proposed method with applications based on 

two published datasets. Discussions are presented in section 5, and concluding remarks 

and future research are provided in section 6. 

 

2. Method 

 On the basis of Rousseeuw and van Zomeren’s (1990) RD and MCD concepts, we 

propose the Robust Forward Detection (RFD) approach to detect and properly manage 

diagnostic issues often encountered in linear regression when OLS is being used.  

Step 1. Select a subset of m observations from the X-space by using the minimum 

covariance determinant in order to obtain a leverage-free subset.  

This first step of our method provides an initial subset free of leverage because we 

begin with an examination of our data with respect only to the X-space and not to 
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⎥⎦
⎤

⎢⎣
⎡

2
ny. Use the MCD to select m observations, such that m > +1 and [ ]  is the least 

integer, until the method finds the subset that has the smallest determinant of the 

covariance matrix. At this step, the weights w

⋅

i for Tw(X) and Cw(X) from equation 

(4) are determined:  

⎩
⎨
⎧

=
ns.observatio  ofsubset   the withinincluded ispoint    theif 1,   

nsobservatio  ofsubset   thefrom excluded ispoint    theif 0,  th

th

mi
miwi  

Step 2. Order the data according to the robust distances in X. 

Note that, once step 1 is completed, the chosen subset is expected to be free of 

leverage points because the MCD yields the subset of the data consisting of m 

observations that are most compact in the X-space.  

2.1. For the remaining n – m observations, compute RD’s in equation (4) for each  

     observation by setting wi = 1 for the ith observation for which the RDi is being  

       calculated. Then reset wi = 0. 

2.2. Arrange the robust distances RDi in ascending order.  

Step 3. Conduct nearest neighbor multiple testing for leverage. 

The nearest neighbor is the jth observation (j = m+1, m+2, …, n) that has the 

smallest RDi of all of the observations excluded from the chosen subset (i.e., 

observations with wi = 0). Conduct multiple testing by moving forward from the 

chosen subset (mth observation) to the nearest neighbor ((m+1)th observation), and 

test whether the nearest neighbor is a leverage point.  
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 3.1. Use a robust version of equation (3), to assess whether the nearest    

             neighbor is a leverage point, by replacing MDi with RDi and by replacing n  

       with∑ . The nearest neighbor is considered a leverage point if  
=

n

i
iw
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   Instead of utilizing the 2p/n rule for leverage, transform the 3p/n rule     

   (discussed later in section 3) such that 
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 3.2. If the nearest neighbor is identified as a leverage point, then conclude that the  

     jth observation and all remaining observations are leverage points, and set wj  

   = 0 for the jth observation and all remaining observations. Otherwise, set wj =  

    1, repeat steps 2 and 3 until all observations have been evaluated. 

Step 4. Use the LTS method to select a subset of h observations among the subset of non-

leveraged points from the data in order to have a subset free of outliers, leverage, 

and influence. 

At this point, we now begin examining the data with respect to the standardized 

deviation of y – E[y|X]. Use the LTS (least trimmed squares) method to select h 

observations among the non-leveraged points (i.e., where wi = 1), such that h > 

⎥
⎦

⎤
⎢
⎣

⎡
∑
=

n

i
iw

12
1 +1, until the method finds the subset for which the fit minimizes the 

least squares function. Initialize weights vi such that    
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⎩
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Define V as an nxn diagonal matrix consisting of the weights vi along the 

diagonal. At this step, the subset of h points is expected to be free of outliers, 

leverage points, and influential observations. 

Step 5. Conduct nearest neighbor multiple testing for outliers. 

5.1. Fit a linear regression model based on the subset of data for which vi = 1.  

5.2. Let xk = (1 xk1 xk2 … xk,p-1), bx ~  ˆ kky = , b~ = (X`VX`)-1X`Vy, ,  ⎟⎟
⎠
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  MSEV = (y – X b~ )`V(y – X b~ )/(vsum– p), and dk = 
VMSE

ˆ kk yy − . Compute  

  standardized prediction residuals dk for all observations excluded from the  

  subset for which vi  = 0.  

5.3. The nearest neighbor is the kth observation (k = h+1, h+2, …, n) that has the  

 smallest standardized prediction residual dk of all the observations excluded    

 from the chosen subset (i.e., observations with vi = 0). Compute the  

 100(1–α)% adjusted prediction interval for yk, the kth observation using      
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 5.5. Conduct multiple  testing by moving forward from the chosen subset (hth  

observation) to the nearest neighbor ((h+1)th observation), and test  

whether the nearest neighbor is an outlier. If the standardized prediction 

residual dk for the nearest neighbor, which is the kth observation, is beyond 

the lower and upper bounds seen above, then vk remains equal to zero and the 

nearest neighbor is an outlier. Otherwise, update the diagonal weight matrix 

V such that vk = 1. Repeat step 5 until all points have been evaluated. 

Step 6. Note that, if the observation is identified as both a leverage point (wk = 0) and an 

outlier (vk = 0), it is declared an influential observation on the basis of the 

aforementioned steps.  

 

3. Simulation results 

3.1. Leverage rules: 2p/n versus 3p/n  

 We now address the issue of identifying leverage by utilizing equations (5) and 

(6), which are associated with the 2p/n and the 3p/n rules, respectively. Belsley, Kuh, and 

Welsch (1980) stated, “For small p, 2p/n tends to call a few too many points to our 

attention.” Velleman and Welsch (1981) suggest using the 3p/n rule to identify leverage 

points when p > 6 and (n – p) > 12. In general, the decision of whether to use the 2p/n 

versus the 3p/n rule should be decided on the basis of the ratio of the number of 

parameters to the sample size. Figure 1 illustrates this point.  
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Figure 1 depicts the proportion of leverage points identified within a dataset on 

the basis of a simulation of 1000 iterations per n and p. The data were simulated from a 

multivariate normal distribution, and the correlation among each variable was set to 0.25. 

An observation was identified as a leverage point if the diagonal element of the hat 

matrix hii > 3p/n. When n = 30 and p < 4, Figure 1 suggests that 8% of the data is the 

maximum proportion of leverage points expected when the 3p/n rule is being used. On 

the other hand, when the same n and p criteria are considered, 20% – 26% of the data are 

detected as leverage points under the 2p/n rule. The simulation results suggest that, on 

average, at least six observations are classified as leverage points if utilizing the 2p/n 

rule. The results from the 2p/n rule (not shown) identify more observations as leverage 

points when p is small.  
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Figure 1. Proportion of leverage identified on the basis of 1000 iterations per n and p 
when the 3p/n rule is used. 
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3.2. Evaluation of the RFD method 

 Simulations were performed to evaluate the proposed RFD method described in 

section 2 and to compare this method to the LTS (ROBUSTREG) procedure as presented 

in SAS® version 9.1.3. The MCD was computed in SAS® by using Rousseeuw and van 

Driessen’s (1999) FAST-MCD algorithm to aid in the computation of the RD’s for the 

RFD method. The LTS method that we utilize for the RFD method is based on 

Rousseeuw and van Driessen’s (2006) FAST-LTS algorithm. The LTS (ROBUSTREG) 

procedure in SAS® also utilizes a combination of Rousseeuw and van Driessen’s (1999) 

FAST-LTS and Rousseeuw and van Driessen’s (2006) FAST-MCD algorithms. For the 

LTS (ROBUSTREG) procedure, the default cutoff value to identify outliers was + 3 

standard deviations below/above the value of the residuals. The default cutoff value to 

identify leverage points for LTS (ROBUSTREG) was , with α = 0.025. To make 

valid comparisons between the RFD and LTS (ROBUSTREG) approaches, we 

programmed both methods so that [n/2]+1 observations were selected for the FAST-

MCD algorithm. 

2
-1 , αχ p

 Both methods were examined under four conditions ([1] no contamination, [2] 

outliers, [3] leverage, [4] influence) and four different contamination levels (10%, 20%, 

30%, 40%). We generated 100 observations for each of the 1000 iterations from the 

linear regression model y = Xβ + ε; β = (25 2 2 2)`; x1, x2, x3 ~ N(0,1); and ε ~ N(0, I). 

For scenario [2], we generated 10% outliers by increasing the errors by 6 units. To ensure 

that we were generating outliers, we specified x1, x2, x3 to be distributed as U(-1,1) for 

the same subset of the data. For scenario [3], each predictor was increased by 5 units to 

simulate leverage for 10% of the data. To ensure that influence was being generated for 
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scenario [4] with a contamination level of 10%, we shifted 10% of the observations to the 

right in X (creating leverage), and we shifted those same observations downward in y 

(creating outliers); this shifting guaranteed placement of the contaminated observations 

below the fitted regression line which is based on the majority of the data. Note that, 

when generating influence, we specified x1, x2, x3 to be distributed as U(0,1). We 

continued in a similar manner for the remaining contamination levels for scenarios [2] to 

[4].  

The simulation results are presented in Tables 1, 2, and 3. As shown in Table 1, 

when a dataset contains no simulated outliers or leverage points, the RFD method, on 

average, identifies 0.05% + 0.22% (mean + standard deviation) of the observations as 

outliers and 1.24% + 1.31% of the observations as leverage points. On the other hand, the 

LTS (ROBUSTREG) procedure identifies 0.99% (standard deviation = + 1.28%) of the 

observations as outliers and 7.74% (standard deviation = + 4.04%) as leverage points. 

The remainder of Table 1 and Table 2 can be interpreted in a similar manner. Table 3 

demonstrates the simulation results for the probability of the number of true/correct, 

masked, and swamped atypical observations identified by the RFD and LTS 

(ROBUSTREG) methods. Note that the leverage results presented in Tables 1, 2, and 3 

for the RFD method are based on equation (6) because equation (5) tends to overestimate 

the mean proportion of leverage points identified for each level of contamination.  
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Table 1. Simulated outlier and leverage results for the RFD method using equation (6) 
and for the LTS (ROBUSTREG) procedure 

able 1. Simulated outlier and leverage results for the RFD method using equation (6) 
and for the LTS (ROBUSTREG) procedure 

  RFD method,equation (6) RFD method,equation (6)  LTS (ROBUSTREG)  LTS (ROBUSTREG) 
 

Simulation  
Specification 

Outlier  
Mean %  

(Std Dev %) 

Leverage  
Mean %  

(Std Dev %) 

Outlier 

Mean %  
(Std Dev %) 

Leverage 
 Mean %  

(Std Dev %) 
No contamination     0.05   (0.22)     1.24 (1.31)    0.99   (1.28)     7.74 (4.04) 

10% outliers 
20% outliers 
30% outliers 
40% outliers 

    9.92   (0.55) 
  19.10   (3.83) 
  26.77   (9.04)
  32.99 (15.05)

    1.69 (1.61) 
    2.33 (1.93) 
    3.16 (2.27) 
    3.89 (2.51) 

10.55   (0.96) 
20.09   (0.93) 
28.88   (3.40) 
21.09 (15.62) 

    8.86 (4.02) 
    9.94 (4.17) 
11.33 (4.06) 
12.16 (3.84) 

10% leverage 
20% leverage 
30% leverage 
40% leverage 

    0.04   (0.22) 
    0.04   (0.20) 
    0.04   (0.21) 
    0.04   (0.19)

11.09 (1.23) 
20.97 (1.16) 
30.82 (1.08) 
40.66 (1.00) 

1.21   (1.84) 
1.00   (1.29) 
0.95   (1.22) 
0.95   (1.22) 

15.22 (2.98) 
23.30 (2.09) 
31.93 (1.46) 
41.15 (0.99) 

Note: Std Dev = Standard Deviation. 
 
 
 As indicated in Tables 1 to 3, our RFD method is comparable to and even 

outperforms the LTS (ROBUSTREG) procedure in certain cases. When no true leverage 

exists, the LTS (ROBUSTREG) procedure tends to overestimate the proportion of 

leverage points more than our proposed RFD method (see Table 1). Table 2 shows that, 

in comparison with the LTS (ROBUSTREG) procedure, the RFD method is better at 

detecting influence at a level of 20% or more. This difference results from the fact that 

the LTS (ROBUSTREG) procedure masks many of the outliers among the influential 

observations, as indicated in Table 2. In addition, the LTS (ROBUSTREG) procedure 

masks almost half of the simulated outliers when the data are contaminated with 40% 

outliers and masks more than 70% of the simulated influential observations when the data 

are contaminated with 30% or more of influence (see Table 3). 
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Table 2. Simulation results for the RFD and LTS (ROBUSTREG) methods identifying influential observations  
 RFD method using equation (6) LTS (ROBUSTREG) 

 
Simulation specification 

Influence 
Mean % 

(Std Dev %) 

Outlier 
Mean % 

(Std Dev %) 

Leverage 
Mean %  

(Std Dev %) 

Influence 
Mean % 

(Std Dev %) 

Outlier 
Mean % 

(Std Dev %) 

Leverage 
Mean %  

(Std Dev %) 
10% influence 
20% influence 
30% influence 
40% influence 

  9.97 (0.55) 
19.98 (0.63) 
29.97 (0.95) 
39.92 (1.79) 

10.03 (0.61) 
20.03 (0.68) 
30.02 (0.98) 
39.97 (1.81) 

10.01 (0.13) 
20.01 (0.13) 
30.01 (0.13) 
40.01 (0.15) 

  9.74   (1.63) 
15.26   (8.44)
  7.77 (12.93) 
  0.64   (3.80)

10.34  (1.78) 
15.68  (8.31) 
  8.16 (12.89) 
  0.97   (3.86) 

12.56 (3.38) 
20.82 (1.66) 
30.17 (0.54) 
40.05 (0.24) 

Note: Std Dev = Standard Deviation. 
 

 
Table 3. Simulation results for the proportion of true, masked, and swamped observations obtained by utilizing the RFD and 
LTS (ROBUSTREG) methods 

 RFD method using equation (6) LTS (ROBUSTREG) 
Simulation 

specification 
True 

Proportion (%) 
Masked 

Proportion (%) 
Swamped 

Proportion (%)  
True 

Proportion (%) 
Masked 

Proportion (%)  
Swamped 

Proportion (%) 
10% outliers 
20% outliers 
30% outliers 
40% outliers 

98.79 
95.34 
89.11 
82.37 

1.21 
4.66 
10.89 
17.63 

0.04 
0.06 
0.05 
0.07 

99.49 
98.95 
95.84 
52.70 

0.51 
1.05 
4.16 
47.30 

0.66 
0.37 
0.18 
0.02 

10% leverage 
20% leverage 
30% leverage 
40% leverage 

100.00 
100.00 
100.00 
100.00 

0.00 
0.00 
0.00 
0.00 

1.21 
1.21 
1.16 
1.65 

100.00 
100.00 
100.00 
100.00 

0.00 
0.00 
0.00 
0.00 

5.80 
4.12 
2.76 
1.91 

10% influence 
20% influence 
30% influence 
40% influence 

99.70 
99.90 
99.90 
99.80 

0.30 
0.10 
0.10 
0.20 

0.00 
0.00 
0.00 
0.00 

97.21 
76.23 
25.79 
1.60 

2.79 
23.77 
74.21 
98.40 

0.03 
0.02 
0.003 
0.00 
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4. Examples 

 Two datasets, which have been previously used to illustrate the non-robustness of 

OLS, are utilized to compare our RFD method to LTS (ROBUSTREG). We begin with 

the Hawkins-Bradu-Kass (HBK) data and follow up with the Hertzsprung-Russell Star 

Cluster data. We specify the RFD method to utilize adjusted confidence and prediction 

intervals to identify outliers and to utilize equation (6) to identify leverage points for both 

examples. When the results based on the RFD method are presented, “interval” refers to 

adjusted confidence intervals if h < ⎥
⎦

⎤
⎢
⎣

⎡
∑
=

n

i
iw

12
1 + 1 and adjusted prediction intervals 

otherwise, as explained in section 2. Also, as previously defined in section 2, an adjusted 

residual is a studentized residual if the observation is in the initially chosen subset based 

on the FAST-LTS algorithm and a standardized prediction residual otherwise. Results 

from the LTS (ROBUSTREG) method are based on default cutoff values for leverage 

and outliers. 

 

4.1. HBK data 

 Hawkins, Bradu, and Kass (1984) generated the HBK dataset. This dataset 

consists of 75 observations with three independent variables and one dependent variable. 

Hawkins, Bradu, and Kass (1984) intentionally constructed the data so that observations 

1 to 10 are influential and observations 11 to 14 are leverage points. Furthermore, the 

data provide an example of the masking effect. Table 4 indicates which observations in 

the HBK data are identified as outliers, leverage points, and influential observations 

according to OLS, RFD, and LTS (ROBUSTREG). OLS suggests that observation 11 is 

an outlier, that observation 14 is a leverage point, and that observations 12 and 13 are 
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influential (i.e., both an outlier and a leverage point). Unlike OLS, our proposed RFD 

method and LTS (ROBUSTREG) properly identify observations 1 to 10 as influential 

and observations 11 to 14 as leverage points; these findings duplicate the simulations 

developed by Hawkins, Bradu, and Kass (1984).  

 
Table 4. Comparison of methods identifying atypical observations for the HBK data 

Method Outliers Leverage Influential 
OLS 11 – 13 12 – 14 12 – 13 
RFD 1 – 10 1 – 14 1 – 10 
LTS 1 – 10 1 – 14 1 – 10 

 
 
 Figure 2 illustrates the results of using the RFD approach with the adjusted 

residuals plotted against the rank of the robust distances. The Upper Bound and Lower 

Bound represent the upper and lower adjusted confidence/prediction bounds, 

respectively, for the intervals previously defined in section 2. As stated in step 5 in 

section 2, any observation with an adjusted residual beyond the bounds of its interval is 

identified as an outlier. Figure 2 shows observations 1 to 10 beyond the Upper Bound 

band.  

 On the basis of the sorted robust distances, observation 1 is the first to be 

identified as a leverage point by the RFD method. Any observation with a robust distance 

that exceeds that of observation 1 is also identified as a leverage point. Therefore, the 

RFD approach identifies observations 1 through 14 as leverage points on the basis of the 

robust distances and equation (6).  
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Figure 2. Plot of adjusted residuals vs. the rank of the robust distances for the HBK data. 

 

4.2. Star Cluster CYG OB1 data 

 The Hertzsprung-Russell diagram of the Star Cluster CYG OB1 data (Rousseeuw 

and Leroy, 1987), containing 47 observations, describes the logarithm of the light 

intensity of the star (y) by using the logarithm of the effective temperature at the surface 

of the star (x). OLS identifies observations 11, 20, 30, and 34 as leverage points only (see 

Table 5). Unlike the RFD and LTS (ROBUSTREG) methods, OLS does not detect any 

outliers or influential observations within the dataset. Our RFD approach declares the 

same set of leverage points and influential observations as declared by the LTS 

(ROBUSTREG) procedure, with one exception; observation 7 is detected as an 

influential point by the LTS (ROBUSTREG) procedure but only as a leverage point by 

our RFD method.  
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Table 5. Comparison of methods identifying atypical observations for the Star Cluster 
data 

Method Outliers Leverage Influential 
OLS ––– 11, 20, 30, 34 ––– 

RFD 11, 20, 30, 34 7, 11, 14, 20, 30, 34 11, 20, 30, 34 

LTS 7, 11, 20, 30, 34 7, 11, 14, 20, 30, 34 7, 11, 20, 30, 34 
 
 
 As seen in Figure 3, in which the adjusted residuals are plotted against the rank of 

the robust distances, the RFD method identifies the following observations as outliers 

because their residuals are beyond the Lower Bound and Upper Bound: 11, 20, 30, and 

34. Observation 14 is the first detected as a leverage point by the RFD. Thus, any 

observation with a robust distance greater than that of observation 14 is also declared as 

leverage. 
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Figure 3. Plot of adjusted residuals vs. the rank of the robust distances for the Star 
Cluster data. 
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5. Discussion  

 We propose a robust regression method for the proper detection and management 

of diagnostic issues often encountered in linear regression when OLS is being utilized. 

Many robust regression techniques are resistant to the effects of outliers or leverage 

points but remain susceptible to influential observations (Hadi and Simonoff, 1993; Pena 

and Yohai, 1999; Wisnowski et al., 2001). Our RFD method is based on the concepts of  

robust distances, the minimum covariance determinant, least trimmed squares, and 

nearest neighbor multiple testing. Note that we utilize adjusted confidence and prediction 

intervals. Prediction intervals are adjusted according to the size of the non-outlier subset 

(vsum) plus one, which is due to the nearest neighbor (or the observation with the smallest 

standardized prediction residual outside the non-outlier subset) being tested as an outlier.   

 For the simulations in subsection 3.2 and the examples in section 4, we set m = 

[n/2] +1 in step 1 and h = ⎥
⎦

⎤
⎢
⎣

⎡
∑
=

n

i
iw

12
1 +1 in step 4 of the RFD method. We wanted the 

MCD to contain at least the majority of the data but no more than [n/2] + 1. By including 

more than our threshold, we would decrease the chance of the initially chosen subset 

being free of leverage points; however, recall that we want to begin our proposed RFD 

method with a subset free of leverage points in step 1 and later free of outliers in step 4. 

The default quantile or number of observations used in the minimization process for the 

MCD and LTS algorithms in LTS (ROBUSTREG) in SAS® is ((3n+p)/4). However, we 

specified [n/2] + 1 observations for minimization for LTS (ROBUSTREG) in order to 

make valid comparisons between LTS (ROBUSTREG) and our proposed RFD method. 

Again, LTS (ROBUSTREG) was the method selected for comparison purposes because it 
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is the method found to be most similar to our proposed RFD because of its use of a 

combination of robust distances and the least trimmed squares method.  

 As previously seen, with few exceptions, our proposed RFD method is 

comparable to that of LTS (ROBUSTREG) when atypical observations (outliers, 

leverage, and influential points) are being identified and when the masking and 

swamping effects are being revealed. The results in subsection 4.1 for the HBK data 

illustrate that the RFD method and LTS (ROBUSTREG) identify the same set of leverage 

points and influence. In subsection 4.2, in which the Star Cluster data are presented, the 

RFD and LTS (ROBUSTREG) yield the same results, with the exception of observation 

7 being detected as an outlier when the LTS (ROBUSTREG) procedure is used.  

 However, there are instances when our RFD method outperforms the LTS 

(ROBUSTREG) procedure. The simulation results (see section 3), indicate that, in the 

presence of no contamination and in the presence of outlier contamination only, the LTS 

(ROBUSTREG) procedure tends to overestimate the proportion of leverage points more 

than what our RFD method does. In the presence of 40% outlier contamination, the LTS 

(ROBUSTREG) procedure breaks down quicker and masks more of the outliers than the 

RFD method. As we hoped, our proposed RFD method, in the presence of influential 

observations, performs better than the LTS (ROBUSTREG) procedure. Furthermore, the 

RFD method captures 99% of the influential observations for each specified level of 

contamination.  
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6. Concluding remarks and future research 

 In this paper, we were interested in developing a detection method capable of 

identifying atypical observations (outliers, leverage, and influential points) and 

overcoming the masking and swamping effects. Our RFD approach, as previously seen 

via simulations and examples, properly detects outliers and leverage points. In addition, 

the method we proposed, the RFD, is resistant to influential observations and overcomes 

both the masking and swamping effects in linear regression. 

 Further investigation of additional weights and weighting functions, such as those 

presented by Draper and Smith (1998), will be explored. We will implement weighting 

functions in order to downweight any observations declared atypical by the RFD method. 

Properties of the corresponding estimators will be examined. 
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Abstract 

When utilizing ordinary least squares (OLS) within linear regression, statisticians 

often encounter diagnostic issues such as outliers, leverage points, and influential 

observations. These diagnostic issues can affect estimation of regression parameters and 

therefore can lead to poor estimation of the regression line, to incorrect inference, and to 

inaccurate predictions in linear regression when OLS is being used. In this paper, we 

utilize weight functions that allow unequal weighting of atypical observations identified 

by the Robust Forward Detection method. Simulations are conducted to evaluate 

performance of weighting functions, and bootstrapping procedures are utilized to make 

inferences about parameter estimates. As an application of the proposed weighting 

approach, two datasets well known to the robust statistical literature are presented. We 

illustrate that, without completely discarding any of the points, our proposed weighting 

approach allows robust estimation of parameters by downweighting any observations 

identified as atypical (outliers, leverage, or influential) by the Robust Forward Detection 

method.  
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1. Introduction 

In linear regression, ordinary least squares (OLS) is typically utilized to estimate 

β in the general linear model y = Xβ + ε, where y is an nx1 vector of the observed 

response values; X is an nxp matrix of the predictors, including the intercept; β is a px1 

vector of the unknown regression parameters; and ε is an nx1 vector of the unobservable 

random errors. However, it is well known that OLS is not robust toward outliers, leverage 

points, and influential observations and that OLS suffers from both masking and 

swamping effects. Outliers are observations with extreme standardized deviations of y – 

E[y|X], where E[y|X] is the expected value of y conditional upon X; leverage points are 

those observations considered to be far away from the center of the data in the X–space; 

influential observations are those observations that are extreme in both (y – E[y|X]) and 

X (i.e., both an outlier and a leverage point). Masking occurs when some or all of the 

outliers, leverage points, and influential observations are “masked” or hard to detect via 

regression diagnostics; swamping occurs when observations are incorrectly identified as 

influential. Because they cause poor parameter estimation, these diagnostic issues can 

lead to inaccurate predictions and inaccurate inference. 

Jones and Redden (2007) proposed a detection tool, the Robust Forward 

Detection (RFD) method, capable of identifying outliers, leverage points, and influential 

observations while overcoming the masking and swamping effects associated with OLS. 

However, it has remained unclear to investigators whether observations declared atypical 

should be deleted from the analysis and/or included in the analysis but with an 

appropriate warning detailing their potential impact. Some investigators use a form of 

weighted ordinary least squares (WOLS) that has the same assumptions as OLS, with the 
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exception that the variances of the error terms are no longer necessarily homogeneous; 

that is, ε ~ N(0, σ2W-1). Weights are either known or unknown. In the simple case in 

which weights wi are known, it can be shown that  

WyXWXXβ `)`(  ˆ -1
WOLS = , 

where Wnxn =  is a diagonal matrix (Neter et al., 1996) and the distribution 

of ~ N(β, σ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nw

w
w

  .  .  .   0     0 
.             ..
.             ..
.             ..
 0   .  .  .  0 

0   .  .  .    0   

 

           
           
           

2      
1

β̂ 2(X`WX)-1). If the weights are unknown, they can be estimated (Neter et al., 

1996; Carroll and Cline, 1988; Draper and Smith, 1998; Davidian and Carroll, 1987; 

Carroll, 1982), mostly via iterative algorithms. Several weighting functions have already 

been proposed (see Hampel et al., 1986; Rousseeuw and Leroy, 1987; Draper and Smith, 

1998; McKean, 2004). However, estimating weights on the basis of the data complicates 

the analysis regarding the expectation and variance of the weighted estimator. Seber 

(1977) suggested that the notion of the weights being random should be ignored and that 

the variance of the OLS estimator should be utilized for the variance of the weighted 

estimator.  

We are interested in downweighting atypical observations via weight functions 

still in the form of WOLS. However, we use the fact that our weights are random because 

they are functions of random variables, and we acknowledge that the properties of our 

weighted estimator are no longer exactly the same as the properties of OLS-based 

estimators. Furthermore, unlike weighting functions in WOLS, our weighting functions 

are not based on iterative algorithms. 
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The purpose of this paper is twofold: (1) to illustrate a weighting method that will 

allow atypical observations (outliers, leverage, and influential points) identified by the 

RFD method to be included in the data analysis and (2) to evaluate the properties of the 

weighted estimators via bootstrapping procedures. We also compare OLS, RFD with 

dichotomous weights, and RFD with continuous weights. In section 2, we implement 

weight functions and continue with a brief overview of the properties of the parameter 

estimates obtained by using the RFD method with weight functions consisting of random 

variables. Section 3 presents results based on simulations and bootstrapping procedures 

for the RFD method in comparison to the results from OLS. Examples are used to 

illustrate the application of our method in section 4. A discussion and conclusions are 

given in sections 5 and 6, respectively. 

 

2. Method 

 We implement unequal weights by using weight functions based on the 

extremeness of observations detected as outliers and/or leverage points by the RFD 

method. Unlike the dichotomous weights of 0 and 1, the continuous weights are unequal 

and range between 0 and 1, inclusive. With this particular weighting scheme, no 

observation is excluded from the statistical analyses (i.e., no weight of 0 is allowed). 

Each observation is allowed to have a different impact in the analysis, and this impact 

depends upon the observation’s distance from the center of the data within its respective 

space. 

 We first review necessary concepts from Jones and Redden’s (2007) RFD method 

in order to identify atypical observations: weighted mean squared error (MSEV), 
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standardized prediction residuals, adjusted prediction intervals, Rousseeuw and van 

Zomeren’s (1990) concept of robust distances (RD), the minimum covariance 

determinant (MCD), and the RD threshold. Let xk = (1 xk1 xk2 … xk,p-1), bx ~  ˆ kky = , b~ = 

(X`VX`)-1X`Vy, , MSE⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

n

i
ivv

1
sum V = (y – X b~ )`V(y – X b~ )/(vsum– p), and dk = 

VMSE
ˆ kk yy − , where dk are standardized prediction residuals. Note that V is a diagonal 

matrix with diagonal elements  

⎩⎨
⎧=  otherwise 1,

 methodRFD  theoutlier byan  asdetected  isn observatio   theif 0,  
thivi  

for i = 1, …, n. Thus, vsum is the number of observations in the dataset not detected as 

outliers by the RFD approach. The adjusted 100(1–α)% prediction interval for yk, the kth 

observation using ( ) `xVXXx kkk
1`h −= , was shown by Jones and Redden (2007) to be  

( ) ( ) .h1,
1)2(

-1  ,h1,
1)2(

-1 21
sum

sum

21
sum

sum
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
− kk pv

v
tpv

v
t αα  

The upper bound of this adjusted prediction interval, denoted as UpperPIadj, is utilized to 

define outliers and to design weights vi, previously defined. 

 Rousseeuw and van Zomeren (1990) defined RD such that  

RDi = [(xi – Tw(X))Cw(X)-1(xi – Tw(X))`]1/2, 

with weighted mean vector  

Tw(X) =  i

n

i
i

n

i
i ww x∑∑

=

−

=

⎟
⎠

⎞
⎜
⎝

⎛

1

1

1

and with weighted covariance matrix  
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Cw(X) = . ( ) ( ))(T`)(T1
1

1

1

XxXx wiwi

n

i
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n

i
i ww −−⎟

⎠

⎞
⎜
⎝

⎛ − ∑∑
=

−

=

The wi for the initial weighted mean Tw(X) and for the initial weighted covariance matrix 

Cw(X) are dependent upon the MCD, which randomly selects subsets consisting of at 

least half of the data and outputs the subset with the smallest determinant of the 

covariance matrix. However, for the final update and computation of the RDi’s after all 

observations have been examined for leverage as given in Jones and Redden (2007), we 

can define    

⎩⎨
⎧=  otherwise 1,

 methodRFD the point by leveragea  asdetected  isn observatio   theif 0,  
thiwi  

for i = 1, …, n. Jones and Redden (2007) determined that an appropriate upper threshold 

for RD’s in order to properly identify leverage points should be set such that  

Rule =  1 )1(3

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

− ∑
∑ =

=

n

i
in

i
i

w
w

p . 

 Unlike other methods that compute weights iteratively on the basis of β, our 

method does not compute weights iteratively by using mathematical algorithms; iterative 

weights are commonly used in weighted ordinary least squares. Dichotomous weights in 

this paper are based on weights vi and wi, previously defined. Continuous weights are 

generated on the basis of weight functions by using the previously defined standardized 

prediction residuals, adjusted prediction intervals, and RD’s instead of by using an 

iterative approach.  

 We create diagonal matrices Anxn and Bnxn with ak and bk, respectively, along the 

diagonals. We define diagonal elements ak such that  
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( )
⎩
⎨
⎧

=
otherwise 1,

outlieran  isn observatio   theif   
th2

adj kdUpperPIa k
k  

 
and diagonal elements bk such that 

( )
⎩
⎨
⎧= otherwise. 1,

 pointleveragea  isn observatio   theif RD  
th2 kRuleb kk  

Now let Gnxn = Anxn * Bnxn be a diagonal matrix consisting of weights gk on the diagonal 

and 0’s off the diagonal. Then,   

21
xnnG  = diag( … ) 2/1

1g 2/1
ng

                      =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

21
              
              
              

21
2          

21
1

    .  .  .      0       0 
.                  ..
.                  ..
.                  ..
 0     .  .  .   0 

0     .  .  .       0    

 

ng

g
g

. 

Note that = ( . We use g2/1G )̀2/1G k to downweight and limit the effect of outliers, 

leverage points, and influential observations identified by the RFD. Note that gk = 1 for 

those observations that are neither outliers or leverage points. 

Because we are now using a form of WOLS, we begin with the general linear 

model y = Xβ + ε and assume that X is full rank. We further assume that the 

unobservable random errors are distributed like before such that ε ~ N(0, σ2G-1). We 

make this assumption to account for the portion of data that is contaminated with outliers, 

leverage, and/or influential observations. Now, we can downweight each observation that 

is declared by the RFD method to be atypical (outlier, leverage point, and influential). 

We rewrite the general linear model by implementing the continuous weights from matrix 

such that our new linear model is denoted as  1−
nxnG

        y = Xβ + ε.          (1)  2/1G 2/1G 2/1G
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Note that  

                               y1 = X1β + ε1 where ε1 ~ )σ ,N( -1
1

2G0  

represents the portion of the data consisting of atypical observations and that  

y2 = X2β + ε2 where ε2 ~ N(0, σ2I2) 

represents the portion of the data not contaminated. Thus, we can rewrite the general 

linear model in the form of partitioned matrices such that , , , 

and , where y

⎥⎦
⎤

⎢⎣
⎡=

2
1  y

yy ⎥⎦
⎤

⎢⎣
⎡=

2
1 X

XX ⎥⎦
⎤

⎢⎣
⎡=

2
1 ε
εε

1

2
11

      
`     

−
−

⎥⎦
⎤

⎢⎣
⎡= I0

0GGnxn 1 is a kx1 vector, where y2 is a (n-k)x1 vector, where G1 

is a kxk matrix, where 0 is an (n-k)xk matrix of 0’s, and where I2 is an (n-k)x(n-k) identity 

matrix. 

If we let yw = y, X2/1G w = X, and ε2/1G w = ε, then we can rewrite the linear 

model in (1), which incorporates the weights, as  

2/1G

yw = Xwβw + εw. 

Following the same pattern as that of OLS, we solve for εw = yw – Xwβw. Weighting each 

element of the general linear model adjusts SSE, with residuals ew, in the following 

manner: 

           SSEw  = ẁe we  

         = ( ) ( )w  ww  w ˆ  `ˆ  yyyy  

     = ( ) ( )ww   www  w
ˆ  `ˆ   βXyβXy  

              = ww
`
w

`
www

`
ww

`
w

`
ww

`
w

ˆˆ  ˆ    ˆ    βXXββXyyXβyy +  

         = ww
`
w

`
ww

`
w

`
ww

`
w

ˆˆ  ˆ2    βXXβyXβyy +  

              = .wΛ  
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Continuing from above, we derive the new estimator βw by minimizing the sum of 

the weighted squared deviations of the observed and predicted values with respect to : wβ̂

w

w

β̂∂
Λ∂

 = ww
`
ww

`
w

ˆ2  2   βXXyX + .           (2) 

We then set (2) equal to zero and solve for : wβ̂

 0  ˆ2  2   ww
`
ww

`
w =+ βXXyX  

⇒                           2  ˆ2 w
`
www

`
w yXβXX =

⇒                                              ˆ    w
`
www

`
w yXβXX =

⇒                             ( )    ˆ    w
`
w

1
w

`
ww yXXXβ −=  

⇒              .                         (3) GyXGXXβ `)`(  ˆ -1
w =

As can be seen in (3), consists of functions of random variables G and y. 

Using known facts and the Sherman-Morrison Woodbury Theorem (Hager 1989), we can 

rewrite the estimator (see Appendix A). On the basis of the derivation of , we can 

conclude that our new weighted estimated parameter is biased because of the 

additional terms. Thus, using the properties of WOLS would seem to be inappropriate 

and unreliable, particularly in the case of small sample sizes. Because of the complex 

nature of the estimator and because it consists of functions of several random 

variables, we will not directly derive the exact properties of this estimator. However, 

simulation results are presented in section 3 showing the average of the weighted 

estimator along with corresponding 95% confidence intervals.  

wβ̂

wβ̂ wβ̂

wβ̂

wβ̂

,ˆ
wβ
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3. Simulations and results 

3.1 Simulations  

We conducted simulations ranging from 0% to 40% of outlier, leverage, and 

influence contamination. However, only results illustrating 10% and 20% contamination 

are presented. Simulations were performed to assess whether implementing different 

weighting schemes resulted in accuracy and parameter estimation that were superior to 

those produced by OLS. Data were generated so that 100 observations per 1000 

simulations, as described in Jones and Redden (2007), had a true parameter β = (25 2 2 

2)`. The results are presented in Tables 1 to 12.  

 

3.2 Notation 

RFD1 denotes the application of the RFD method using dichotomous weights of 0 

and 1 only, and RFD2 represents the RFD method utilizing continuous weights on the 

interval of (0,1] via weight functions that were explained in section 2. Further notation is 

as follows: MSEOLS )ˆ( *β , MSERFD1 )ˆ( *β , and MSERFD2 )ˆ( *β  indicate the average squared 

deviations between the true parameter of the simulated data and the estimated parameters 

from OLS, RFD1, and RFD2, respectively.  

 

3.3 Results 

Average parameter estimates, MSE, and R2 for 1000 simulations (100 

observations per simulation) for OLS, RFD1, and RFD2 are presented in Table 1. When 

there are no simulated outliers or leverage points, these estimates do not deviate far from 

each other or from the true parameter with the use of any of the three methods—OLS, 
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RFD1, and RFD2—as expected. Table 1 shows that, when the same method of simulating 

data is used but with outlier contamination, the parameter estimates computed by using 

OLS, RFD1, and RFD2 are similar to the true parameters for both 10% and 20% outlier 

contamination. However, the impact of outlier contamination is seen in the inaccurate 

estimation of the intercept by using OLS compared to the true parameter for the intercept.  

 
Table 1. Average parameter estimates (std dev), MSE, and R2 for 1000 simulations  
(100 observations per simulation) for outlier contamination for OLS, RFD1, and RFD2 
  OLS RFD1 RFD2 
10% outliers     

 
*
0β̂  

 (Std Dev)
25.6130764 

(0.10465473) 
25.0045134 

(0.11314764) 
25.2509982 

(0.12090112) 

 
*
1β̂  

 (Std Dev)
2.00434705 

(0.16773101) 
1.99883883 

(0.11414173) 
1.99870325 

(0.12640626) 

 
*
2β̂  

 (Std Dev)
1.99728055 

(0.16673811) 
1.9979373 

(0.11435645) 
1.99840157 

(0.12647563) 

 
*
3β̂  

 (Std Dev)
2.00033737 

(0.16506273) 
2.0004015 

(0.11648385) 
2.00187875 

(0.12382746) 
 MSE 4.3213 1.0078 2.1952 
 R2 0.7242 0.9186 0.8295 

20% outliers     

 
*
0β̂  

 (Std Dev)
26.2229517 

(0.10479193) 
25.0539535 

(0.26137389) 
25.5577183 

(0.19759345) 

 
*
1β̂  

 (Std Dev)
1.99845648 

(0.23460129) 
1.99763873 

(0.13346761) 
1.99777125 
(0.1632396) 

 
*
2β̂  

 (Std Dev)
1.99738343 

(0.22213519) 
1.99749041 

(0.13356535) 
1.99737992 

(0.15677151) 

 
*
3β̂  

 (Std Dev)
2.00763734 

(0.22139617) 
2.00291025 

(0.13314137) 
2.00568105 
(0.1566355) 

 MSE 6.8969 1.2237 3.3658 
 R2 0.6052 0.9044 0.7406 

Note: Std Dev = Standard Deviation. 
 

This difference exemplifies the finding that the parameter estimates obtained by using 

OLS seem to be biased. Note that the parameter estimate associated with the intercept 

  



 53

also exhibits bias under RFD2. In addition, although the weights for RFD1 are 

dichotomous, they are still a function of the random variables. However, when there 

exists both 10% and 20% outlier contamination, there is much less bias produced by 

using the RFD1 method than results from using OLS or RFD2 (see Table 1). Similar 

findings were evident in the simulations for which 30% and 40% outlier contamination 

were generated.  

Again, note that the average squared deviations of the true parameter from the 

simulations and of the parameter estimates obtained by using OLS is denoted as 

MSEOLS )ˆ( *β . Similar notation is used also for the deviations determined by comparing 

the true simulated parameters to the parameter estimates obtained by using RFD1 and 

RFD2. These average squared deviations (see Table 2) indicate that using either 

dichotomous or continuous weights with the RFD method produces parameter estimates 

more accurate than OLS does when no adjustments are made to offset outlier 

contamination of observations.  

Simulation results based on 10% and 20% leverage contamination are presented 

in Tables 3 and 4. Parameter estimates obtained by utilizing either dichotomous weights 

via RFD1 or continuous weights via RFD2 are comparable to those obtained by the use 

of OLS, as indicated in Table 3. Because the RFD method is able to properly detect 

leverage points, more consistency is found among the parameter estimates, especially for 

the intercept, than is found when there is outlier contamination for RFD1 and RFD2. The 

MSE for RFD2 gradually decreases because the level of contamination increases and 

because RFD2 is able to capture and downweight all of the simulated leverage points. 

Because the dichotomous weights of 0 and 1 cause RFD1 to exclude several observations  
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Table 2. Average squared deviations for parameter estimates for the true simulated 
parameter from OLS, RFD1, and RFD2 for 1000 simulations (100 observations per 
simulation) in the presence of outlier contamination 

  MSEOLS )ˆ( *β  MSERFD1 )ˆ( *β  MSERFD2 )ˆ( *β  
10% outliers     

 *
0β̂  0.3868043 0.0128100 0.0776025 

 *
1β̂  0.0281245 0.0130167 0.0159642 

 *
2β̂  0.0277812 0.0130686 0.0159826 

 *
3β̂  0.0272186 0.0135551 0.0153214 

20% outliers     
 *

0β̂  1.5065811 0.0711590 0.3500539 
 *

1β̂  0.0549851 0.0178014 0.0266255 
 *

2β̂  0.0493015 0.0178282 0.0245596 
 *

3β̂  0.0490256 0.0177174 0.0245424 

Note: MSEOLS )ˆ( *β )ˆ( *β, MSERFD1 , and MSERFD2 )ˆ( *β  denote the average squared 
deviations between the true parameter of the simulated data and the parameter  
estimates obtained by using OLS, RFD1, and RFD2, respectively.  
 

from the analysis, the degrees of freedom for RFD1 differ from those for OLS and RFD2; 

therefore, caution is warranted when MSE is being compared. The results for the 

simulations with 30% and 40% of leverage points follow the same pattern.  

Unlike the weighting functions used when there is outlier contamination, the 

weighting functions used in the presence of leverage contamination are not random. 

Therefore, the estimators produced under the utilization of both RFD1 and RFD2 are 

expected to produce unbiased estimates. This notion is supported in Table 3, which 

contains a comparison of the parameter estimates obtained using RFD1 and RFD2 to the 

true simulated parameters. Table 4 presents the average squared deviations for each 

method from the truth, which was obtained by using the simulations previously 

described, for each parameter estimate in the presence of 10% and 20% leverage 

contamination. These average squared deviations indicate how close each parameter 
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Table 3. Average parameter estimates (std dev), MSE, and R2 for 1000 simulations (100 
observations per simulation) for leverage contamination for OLS, RFD1, and RFD2 

  OLS RFD1 RFD2 
10% leverage     

 
*
0β̂   

(Std Dev)
25.0001710 

 

(0.1060576) 
25.0001894 

 

(0.10902695) 
25.0002722 

 

(0.10743667) 

 
*
1β̂   

(Std Dev)
2.00109725 

 

 (0.08684433) 
1.99979039 

 

(0.11227716) 
2.00062167 

 

(0.1039884) 

 
*
2β̂  

 (Std Dev)
1.9988195  

 

(0.08608599) 
1.99778778 

 

(0.11150812) 
1.99848404 

 

(0.10388387) 

 
*
3β̂  

 (Std Dev)
1.99971058  

 

(0.08580192) 
2.00114872 

 

(0.11385609) 
2.00138489 

 

(0.10607359) 
 MSE 0.9975 0.9912 0.8904 
 R2 0.9897 0.9211 0.9319 
20% leverage     

 
*
0β̂  

 (Std Dev)
25.0005430  

 

(0.10948341) 
25.0002478  

 

(0.11244732) 
25.0003427 

 

(0.11070164) 

 
*
1β̂  

 (Std Dev)
2.0009665  

 

(0.08554408) 
1.99941147  

 

(0.11964304) 
2.0004938 

 

(0.1063941) 

 
*
2β̂  

 (Std Dev)
1.9992210  

 

(0.08448195) 
1.99705907  

 

(0.11749118) 
1.99771486 

 

(0.10562747) 

 
*
3β̂  

 (Std Dev)
1.99925902  

 

(0.08556984) 
2.00130211  

 

(0.12056428) 
2.0011754 

 

(0.10910281) 
 MSE 0.9975 0.99095 0.7907 
 R2 0.9939 0.9211 0.9403 

Note: Std Dev = Standard Deviation. 
 

estimate produced by utilizing OLS, RFD1, and RFD2 is to the true parameters from the 

simulated data. We note that the average squared deviations for each parameter produced 

by using RFD1 and RFD2 are close in value, especially in the presence of 10% leverage 

contamination. Again, the weighting functions utilized for both the RFD1 and RFD2 are 

no longer based on random variables. Instead, the weights produced are functions of the 

design matrix X, which consists of fixed, known constants. Utilizing these non-random 

weights, we noticed that the average squared deviations for the true parameter and the  
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Table 4. Average squared deviations for parameter estimates for the true simulated 
parameter from OLS, RFD1, and RFD2 for 1000 simulations (100 observations per 
simulation) in the presence of leverage contamination 

  MSEOLS )ˆ( *β  MSERFD1 )ˆ( *β  MSERFD2 )ˆ( *β  
10% leverage *

0β̂  0.0112370 0.0118750 0.0115312 
 *

1β̂  0.0075356 0.0125936 0.0108032 
 *

2β̂  0.0074048 0.0124265 0.0107834 
 *

3β̂  0.0073547 0.0129516 0.0112423 
20% leverage     

 *
0β̂  0.0119749 0.0126318 0.0122427 

 *
1β̂  0.0073114 0.0143005 0.0113086 

 *
2β̂  0.0071307 0.0137990 0.0111512 

 *
3β̂  0.0073154 0.0145229 0.0118929 

Note: MSEOLS )ˆ( *β )ˆ( *β )ˆ( *β, MSERFD1 , and MSERFD2  denote the average squared 
deviations between the true parameter of the simulated data and the parameter  
estimates obtained by using OLS, RFD1, and RFD2, respectively.  
 

parameter estimates produced under OLS are slightly smaller than those resulting from 

using the RFD1 and RFD2 methods.  

It is apparent in Tables 5 and 6 that OLS is not robust to influential observations; 

this lack of robustness can cause distortion in parameter estimates and therefore can lead 

to incorrect inference. The parameter estimate  associated with the intercept obtained 

by using OLS is not as close to the true parameter as that obtained by utilizing RFD1 and 

RFD2. In addition, all other parameter estimates obtained by using OLS do not resemble 

the true parameters. The results suggest that the estimated parameters are no longer 

positively associated with the outcome. On the other hand, RFD1 and RFD2 are able to 

accurately estimate all four parameters (see Table 5). In addition, the results from the two 

methods are comparable to each other. Again, because the degrees of freedom differ, 

caution is warranted when the MSE and R

*
0β̂

2 of RFD1 are being compared to those  
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Table 5. Average parameter estimates (std dev), MSE, and R2 for 1000 simulations (100 
observations per simulation) for influence contamination for OLS, RFD1, and RFD2 

  OLS RFD1 RFD2 
10% influence     

 
*
0β̂  

(Std Dev) 
28.2163596 

(0.18350817) 
24.9916008 

(0.33420571) 
24.9969275 

(0.33312225) 

 
*
1β̂  

(Std Dev) 
-0.1588182 

(0.38659137) 
2.01371168 

(0.37421373) 
2.00955023 

(0.37322495) 

 
*
2β̂  

(Std Dev) 
-0.1826541 

(0.38759689) 
1.99587374 

(0.36545691) 
1.99271331 

(0.36552697) 

 
*
3β̂  

(Std Dev) 
-0.1747713 

(0.39041338) 
2.00316059 

(0.38824705) 
1.99968924 

(0.38642813) 
 MSE 2.1895 0.9887 0.8944 
 R2 0.2371 0.5136 0.5107 
20% influence     

 
*
0β̂  

(Std Dev) 
28.2277201 

(0.19698372) 
24.9935508 
(0.3554853) 

25.0081207 
(0.35647496) 

 
*
1β̂  

(Std Dev) 
-0.1739830 

(0.38381836) 
2.01154553  

(0.39381616) 
2.00088364 

(0.39255028) 

 
*
2β̂  

(Std Dev) 
-0.1900160 
(0.3907799) 

1.99514232 
(0.3875676) 

1.98520851 
(0.38901811) 

 
*
3β̂  

(Std Dev) 
-0.1876814 

(0.39086025) 
2.00049627 

(0.41861528) 
1.99168781 

(0.41744265) 
 MSE 2.1959 0.9869 0.7913 
 R2 0.3758 0.5150 0.5105 

Note: Std Dev = Standard Deviation. 
 

obtained using OLS and RFD2. The results obtained from RFD2 indicate that it 

consistently produces a smaller MSE and a larger R2 than what OLS yields; this finding 

is expected because, unlike OLS, RFD2 is able to properly detect and able to downweight 

influential observations. In addition, the MSE of RFD2 decreases as contamination level 

increases. This condition is expected because observations are downweighted causing a 

smaller numerator in the MSE while the degrees of freedom do not change and because 

the RFD method captures 99% of the contaminated observations. We note that, across all  
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three methods, the results obtained under both 30% and 40% influential contamination 

are similar to those produced under 10% and 20% influential contamination. 

Unlike those for leverage, the weighting functions implemented, when influence 

exists among the data, are functions of random variables as described in section 2. On the 

basis of the derivation of our weighted estimator , we expect our estimator to be 

biased when RFD1 and RFD2 are being implemented. However, the results in Table 5 

suggest that there is no severe bias in parameter estimates when either RFD1 or RFD2 is 

implemented. On the other hand, the results from using OLS indicate that there is bias, 

especially in the intercept, and that the estimated parameters are inaccurate which can 

lead to incorrect inference.  

wβ̂

Table 6 further supports the results shown in Table 5. The average squared 

deviations indicate that, in the presence of 10% and 20% influence, the estimates from 

both RFD1 and RFD2 are closer to the true parameter of the simulated data than that 

from using OLS. The average squared deviations indicate that both RFD1 and RFD2 

yield parameter estimates that are close to the true simulated parameters underlying the 

uncontaminated data. The average squared deviations seen in Table 6 under both 10% 

and 20% influence contamination indicate that OLS produces parameter estimates that 

are not close to the true parameters underlying the uncontaminated data. Both Tables 5 

and 6 indicate that OLS is not the most appropriate method to utilize when there is 

influential contamination in the data. These results indicate that OLS will distort 

parameter estimates, and this distortion can lead to incorrect inference. The results are 

similar for the simulated datasets containing 30% and 40% influence contamination.  
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Table 6. Average squared deviations for parameter estimates for the true simulated 
parameter from OLS, RFD1, and RFD2 for 1000 simulations (100 observations per 
simulation) in the presence of influence contamination 

  MSEOLS )ˆ( *β  MSERFD1 )ˆ( *β  MSERFD2 )ˆ( *β  
10% influence     

 *
0β̂  10.3786108 0.1116523 0.1108689 

 *
1β̂  4.8097993 0.1400839 0.1392488 

 *
2β̂  4.9140602 0.1334422 0.1335295 

 *
3β̂  4.8819004 0.1505950 0.1491775 

20% influence     
 *

0β̂  10.4569411 0.1262850 0.1270133 
 *

1β̂  4.8733714 0.1550694 0.1539424 
 *

2β̂  4.9487262 0.1500820 0.1514025 
 *

3β̂  4.9385690 0.1750638 0.1741532 

Note: MSEOLS )ˆ( *β )ˆ( *β )ˆ( *β, MSERFD1 , and MSERFD2  denote the average squared 
deviations between the true parameter of the simulated data and the parameter  
estimates obtained by using OLS, RFD1, and RFD2, respectively.  

 
 

Because our weights are functions of random variables, we did not derive direct 

calculations of the expectation and variance of our parameter estimator. Salibian-Barrera 

and Zamar (2002) proposed using bootstrapping approaches to make inferences for 

robust regression methods. Therefore, we utilized bootstrapping procedures, which 

randomly selects observations from the data with replacement. This procedure is a 

resampling technique that can be used to provide robust estimates for the mean of our 

weighted parameter because the estimator is involved and because exact derivation is not 

computed. 

We conducted 10,000 bootstrap recalculations based on one sample (n = 100) of 

1000 iterations from the simulations previously mentioned. Tables 7 – 12 provide 

estimates for the mean (standard deviation) and corresponding 95% confidence intervals 

for the parameter estimates for RFD1 and RFD2. To maintain consistency, we included 
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only the results for 10% and 20% contamination. Table 7 illustrates the bootstrap results 

for the condition when there is 10% outlier contamination. Because the 95% confidence 

intervals for the average estimated parameters for both RFD1 and RFD2 are narrow, the 

parameter estimates obtained via bootstrapping procedures are considered to be stable 

and therefore reliable. This parallelism is also exhibited in Tables 8 – 12.  

 
Table 7. Bootstrap results illustrating average estimated parameters (std dev) and 
corresponding 95% confidence intervals for the parameters when RFD1 and RFD2 are 
used in the presence of 10% outlier contamination (based on 10,000 iterations) 

10% 
outliers RFD1 RFD1 95% CI RFD2 RFD2 95% CI 

*
0β̂  

(Std Dev) 
24.7386248 

 

(0.11499146) 
(24.5187, 24.9481) 

–––– 
24.943871 

 

(0.13225057)
(24.6974, 25.2094) 

–––– 
*
1β̂   

(Std Dev) 
1.76465105 

 

(0.13552229) 
(1.5145, 1.9909) 

–––– 
1.77914618 

 

(0.12314166)
(1.5431, 2.0014) 

–––– 
*
2β̂   

(Std Dev) 
1.82296745 

 

(0.12757483) 
(1.5957, 2.0664) 

–––– 
1.77230737 

 

(0.11819354)
(1.5410, 1.9932) 

–––– 
*
3β̂  

(Std Dev) 
2.0672577 

 

(0.17861244) 
(1.8259, 2.3575) 

–––– 
2.11721222 

 

(0.13809592)
(1.9024, 2.3543) 

–––– 
Note: Std Dev = Standard Deviation. 
 

Table 8. Bootstrap results illustrating average estimated parameters (std dev) and 
corresponding 95% confidence intervals for the parameters when RFD1 and RFD2 are 
used in the presence of 10% leverage contamination (based on 10,000 iterations) 

10% 
leverage RFD1 RFD1 95% CI RFD2 RFD2 95% CI 

*
0β̂  

(Std Dev) 
24.7358469 

 

(0.13195725) 
(24.5125, 24.9467) 

–––– 
24.7314601 

 

(0.11316298)
(24.5233, 24.9358) 

–––– 
*
1β̂   

(Std Dev) 
1.77141887 

 

(0.15821) 
(1.5128, 1.9959) 

–––– 
1.81007861 

 

(0.11679315)
(1.5961, 2.0084) 

–––– 
*
2β̂   

(Std Dev) 
1.82406522 

 

(0.14810129) 
(1.5936, 2.0633) 

–––– 
1.83811203 

 

(0.10713411)
(1.6457, 2.0291) 

–––– 
*
3β̂  

(Std Dev) 
2.06506364 

 

(0.2273945) 
(1.8236, 2.3427) 

–––– 
2.08897823 

 

(0.1384549) 
(1.9018, 2.2863) 

–––– 
Note: Std Dev = Standard Deviation. 
 
 

  



 61

Table 9. Bootstrap results illustrating average estimated parameters (std dev) and 
corresponding 95% confidence intervals for the parameters when RFD1 and RFD2 are 
used in the presence of 10% influence contamination (based on 10,000 iterations) 

10%  
influence RFD1 RFD1 95% CI RFD2 RFD2 95% CI 

*
0β̂  

(Std Dev) 
25.5202477 

 

(0.44231619) 
(24.7715, 26.2537) 

–––– 
25.5315321 

 

(0.39614002) 
(24.7875, 26.2636) 

–––– 
*
1β̂   

(Std Dev) 
1.76328731 

 

(0.54149699) 
(1.0328, 2.5186) 

–––– 
1.75228651 

 

(0.4280524) 
(1.0280, 2.5017) 

–––– 
*
2β̂   

(Std Dev) 
1.35093058 

 

(0.4251826) 
(0.6138, 2.1122) 

–––– 
1.34404026 

 

(0.39118199) 
(0.6148, 2.0983) 

–––– 
*
3β̂  

(Std Dev) 
1.62933624 

 

(0.38802613) 
(0.9257, 2.3573) 

–––– 
1.62238345 

 

(0.36875902) 
(0.9225, 2.3508) 

–––– 
Note: Std Dev = Standard Deviation. 
 
 
Table 10. Bootstrap results illustrating average estimated parameters (std dev) and 
corresponding 95% confidence intervals for the parameters when RFD1 and RFD2 are 
used in the presence of 20% outlier contamination (based on 10,000 iterations) 

20% 
outliers RFD1 RFD1 95% CI RFD2 RFD2 95% CI 

*
0β̂  

(Std Dev) 
24.8025359 

 

(0.13049551) 
(24.5785, 25.0184) 

–––– 
25.2764087 

 

(0.18198965)
(24.9591, 25.6508) 

–––– 
*
1β̂   

(Std Dev) 
1.80312619 

 

(0.13829204) 
(1.5492, 2.0456) 

–––– 
1.70782935 

 

(0.13799236)
(1.4245, 1.9580) 

–––– 
*
2β̂   

(Std Dev) 
1.89184562 

 

(0.16225068) 
(1.6303, 2.1535) 

–––– 
1.85793274 

 

(0.14289782)
(1.5696, 2.1252) 

–––– 
*
3β̂  

(Std Dev) 
2.03494299 

 

(0.15872077) 
(1.7512, 2.3305) 

–––– 
2.13596181 

 

(0.15077055)
(1.8497, 2.4342) 

–––– 
Note: Std Dev = Standard Deviation. 
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Table 11. Bootstrap results illustrating average estimated parameters (std dev) and 
corresponding 95% confidence intervals for the parameters when RFD1 and RFD2 are 
used in the presence of 20% leverage contamination (based on 10,000 iterations) 

20%  
leverage RFD1 RFD1 95% CI RFD2 RFD2 95% CI 

*
0β̂  

(Std Dev) 
24.7939242 

 

(0.13418223) 
(24.5710, 25.0118) 

–––– 
24.79184 

 

(0.11586054)
(24.5812, 24.9993) 

–––– 
*
1β̂   

(Std Dev) 
1.80944449 

 

(0.14271638) 
(1.5560, 2.0362) 

–––– 
1.84484736 

 

(0.11202608)
(1.6302, 2.0373) 

–––– 
*
2β̂   

(Std Dev) 
1.8879437 

 

(0.14097053) 
(1.6471, 2.1368) 

–––– 
1.89770276 

 

(0.10474466)
(1.7080, 2.0878) 

–––– 
*
3β̂  

(Std Dev) 
2.04289263 

 

(0.20611349) 
(1.7806, 2.3100) 

–––– 
2.07514349 

 

(0.13022677)
(1.8793, 2.2658) 

–––– 
Note: Std Dev = Standard Deviation. 
 
 
Table 12. Bootstrap results illustrating average estimated parameters (std dev) and 
corresponding 95% confidence intervals for the parameters when RFD1 and RFD2 are 
used in the presence of 20% influence contamination (based on 10,000 iterations) 

20% 
 influence RFD1 RFD1 95% CI RFD2 RFD2 95% CI 

*
0β̂  

(Std Dev) 
25.7045929 

 

(0.44292862) 
(24.8651, 26.4934) 

–––– 
25.7324604 

 

(0.41555077)
(24.9131, 26.5202) 

–––– 
*
1β̂   

(Std Dev) 
1.62270814 

 

(0.4488016) 
(0.8282, 2.4701) 

–––– 
1.60079286 

 

(0.41836524)
(0.8111, 2.4351) 

–––– 
*
2β̂   

(Std Dev) 
1.25156098 

 

(0.49530289) 
(0.4264, 2.1127) 

–––– 
1.2333293 

 

(0.43758561)
(0.4299, 2.0688) 

–––– 
*
3β̂  

(Std Dev) 
1.51005453 

 

(0.4319931) 
(0.7856, 2.2791) 

–––– 
1.4915569 

 

(0.38560809)
(0.7672, 2.2469) 

–––– 
Note: Std Dev = Standard Deviation. 
 

 
4. Examples 

We demonstrate the effect of downweighting atypical observations with two well-

known datasets commonly used to demonstrate robust statistical methods: Hawkins-

Bradu-Kass (HBK) and Hertzsprung-Russell Star Cluster data. These datasets are used to 
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illustrate and compare results obtained by using OLS to results obtained by applying the 

weighting functions previously mentioned for RFD1 and RFD2. 

 

4.1. HBK data 

Hawkins, Bradu, and Kass (1984) simulated the well-known HBK dataset, which 

contains 75 observations, three predictors, and one response. Observations 1 – 10 were 

intentionally generated to be influential, and observations 11 – 14 were intentionally 

generated to be leverage points. Using the RFD1 method previously explained, 

observations 1 to 14 are downweighted with weights of zero and are therefore excluded 

from the analysis. When RFD2 is employed, outliers are downweighted by using weights 

ak, and leverage points are downweighted by using weights bk. Weights gk, which is the 

product of ak and bk, are utilized to substantially downweight influential observations 

such as observations 1 – 10. Table 13 demonstrates the limited impact that the weights ak, 

bk, and gk caused each leverage point and influential observation to have in the analysis.  

Observations identified by the RFD method as influential have smaller weights 

than leverage points. As a result, observations 1 to 10 have a more restricted or limited 

impact in the analysis. In addition, the magnitude of each weight is an indication of an 

observation’s extremeness in the standardized deviation of y – E[y|X] or an observation’s 

extremeness in X relative to the remaining observations. For instance, on the basis of its 

weight ak (see Table 13), observation 7 has the most extreme standardized deviation in y 

– E[y|X]. This finding is consistent with the graph supplied in Jones and Redden (2007). 

Observation 14 is considered to be the most extreme observation in the predictor or X- 
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space because it has the smallest bk. Furthermore, on the basis of the weights gk, 

observation 5 is considered to be the most influential observation in the HBK data. 

 
Table 13. Weights gk (= ak*bk) implemented by using weight functions via the  
RFD2 method for the HBK data  

Id gk ak bk Contamination type 
1 .000007550 0.04871 .000155006 Influential 
2 .000006139 0.04422 .000138828 Influential 
3 .000005085 0.04507 .000112841 Influential 
4 .000005110 0.05162 .000098984 Influential 
5 .000004948 0.04669 .000105969 Influential 
6 .000006276 0.04702 .000133477 Influential 
7 .000005239 0.03970 .000131970 Influential 
8 .000006342 0.04315 .000146985 Influential 
9 .000005610 0.05037 .000111376 Influential 
10 .000006051 0.04738 .000127699 Influential 
11 .000064966 1.00000 .000064966 Leverage 
12 .000055797 1.00000 .000055797 Leverage 
13 .000062076 1.00000 .000062076 Leverage 
14 .000041061 1.00000 .000041061 Leverage 

 
 
Table 14 displays the parameter estimates, MSE, and R2 for the HBK data after 

weights gk are implemented in order to downweight those observations identified as 

atypical by the RFD method. The magnitude and the direction of some of the parameter 

estimates are inconsistent among the three methods. Because the RFD method is capable 

of detecting outliers, leverage points, and influential observations, we assume that the 

parameter estimates based on the RFD1 method can serve as the baseline for comparison 

of and with OLS and RFD2. It is noted that the results obtained by using RFD2 is more 

similar to the results obtained by using the baseline RFD1 than to that of OLS. This 

finding is expected since it is well known that OLS is not robust to outliers, leverage 

points, or influential observations. However, caution must be taken when the MSE and R2 

for the HBK data are being compared across all three methods. Because the RFD1 
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method excludes observations 1 to 14 from the analysis by implementing dichotomous 

weights of 0 and 1, the degrees of freedom for RFD1 differ from those for OLS and 

RFD2. Nevertheless, when parameters were estimated by implementing the RFD2 

method versus implementing OLS, the MSE decreased by 94.95% (= (5.063 –

0.2556)/5.063). 

 
Table 14. Parameter estimates, MSE, and R2 obtained when OLS, RFD1, and RFD2 are 
used to analyze the HBK data 
 OLS RFD1 RFD2 

*
0β̂   -0.3876  -0.0105  -0.0122  
*
1̂β   0.2392  0.0624 0.0625  
*
2β̂   -0.3346  0.0119  0.0123  
*
3β̂   0.3833  -0.1070  -0.1064  

MSE 5.063 0.3183 0.2556 
R2  0.6018 0.0472 0.0469 

 

We conducted 10,000 bootstrap recalculations for the HBK data. Table 15 

provides the average parameter estimates (standard deviation) and corresponding 95% 

confidence intervals for RFD1 and RFD2. Overall, the 95% confidence intervals for the 

average parameter estimates indicate that the results utilizing RFD1 and RFD2 are stable. 

However, based on bootstrap recalculations, the 95% confidence intervals computed for 

the average parameter estimates under RFD2 are slightly narrower than those provided by 

RFD1.  
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Table 15. Bootstrap results illustrating average estimated parameters (std dev) and 
corresponding 95% confidence intervals for the parameters when RFD1 and RFD2 are 
used for the HBK data (based on 10,000 iterations) 

 RFD1 RFD1 95% CI RFD2 RFD2 95% CI 
*
0β̂  

(Std Dev) 
0.0263 

 

(0.3789) 
(-0.4636, 1.1467) 

–––– 
0.0088 

 

(0.2845) 
(-0.4439, 0.7216) 

–––– 
*
1β̂   

(Std Dev) 
0.06210 

 

(0.1196) 
(-0.1846, 0.2358) 

–––– 
0.0643 

 

(0.0890) 
(-0.1044, 0.2246) 

–––– 
*
2β̂   

(Std Dev) 
0.0061 

 

(0.1254) 
(-0.1946, 0.1680) 

–––– 
0.0076 

 

(0.0928) 
(-0.1693, 0.1588) 

–––– 
*
3β̂  

(Std Dev) 
-0.1157 

 

(0.1283) 
(-0.3847, 0.0665) 

–––– 
-0.1117 

 

(0.0985) 
(-0.3043, 0.0566) 

–––– 
Note: Std Dev = Standard Deviation. 
 
 
 
4.3. Star Cluster CYG OB1 data 

The Hertzsprung-Russell diagram of the Star Cluster CYG OB1 data (Rousseeuw 

and Leroy 1987), containing 47 observations, describes the logarithm of the light 

intensity of the star (y) by using the logarithm of the effective temperature at the surface 

of the star (x). The RFD method in Jones and Redden (2007) declared observations 7 and 

14 as leverage points and observations 11, 20, 30, and 34 as influential. Therefore, these 

observations are excluded from the RFD1 analysis because of the dichotomous weights 

of 0 and 1 that are implemented. Table 16 illustrates weights ak, bk, and gk implemented 

toward each observation identified as atypical. The weights were implemented to limit 

the impact of these observations within the linear regression analysis. The leverage 

impact of observations 7 and 14 is limited in the analysis via weights bk. Because 

observations 11, 20, 30, and 34 were identified by the RFD as outlying in both (y – 

E[y|X]) and the X-space, these observations are downweighted by using weights gk. 

Furthermore, consistent with Jones and Redden (2007), we found that observation 34 was 
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the most extreme observation in (y – E[y|X]) and that observation 30 was the most 

extreme observation in the X-space or predictor space. On the basis of weights gk given 

in Table 16, we can conclude that observation 34 is the most influential observation in the 

Star Cluster dataset.  

 
Table 16. Weights gk (= ak*bk) implemented by using weight functions via the  
RFD2 method for the Star Cluster data  

Id gk ak bk Contamination type 
7 0.03116 1.00000 0.03116 Leverage 
11 0.00251 0.54404 0.00461 Influential 
14 0.12836 1.00000 0.12836 Leverage 
20 0.00224 0.48371 0.00464 Influential 
30 0.00190 0.43136 0.00439 Influential 
34 0.00171 0.37047 0.00462 Influential 

 
 
Parameter estimates, MSE, and R2 obtained for the Star Cluster data by using 

OLS, RFD1, and RFD2 are provided in Table 17. Again, RFD1 is utilized as the baseline 

measurement for comparison of parameter estimates. The direction of the fitted 

regression line is indicated by the slope . The results from OLS indicate that the fitted 

regression line slopes downward, whereas the RFD1 and RFD2 results indicate that the 

fitted regression line should slope upward. When utilizing OLS, the logarithmic light 

intensity of the star increases as the logarithmic temperature at the surface of the star 

decreases. On the other hand, the results from RFD1 and RFD2 indicate that as the 

logarithmic temperature at the surface of the star increases then the logarithmic light 

intensity of the star increases. Table 17 further indicates that the MSE decreased by 

59.72% (= (0.3188 – 0.1284)/0.3188) when estimating parameters by using the RFD2 

method compared to using OLS. 

*
1β̂
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Table 17. Parameter estimates, MSE, and R2 obtained when OLS, RFD1, and RFD2  
are used to analyze the Star Cluster data 

 OLS RFD1 RFD2 
*
0β̂   6.79   -8.21   -7.61   
*
1β̂   -0.41  2.98   2.85   

MSE 0.3188 0.1435 0.1284 
R2  0.0443 0.4287 0.4171 

 

In addition, a basic scatterplot of the Star Cluster data can be utilized to illustrate 

the relationship between the response and the predictor. Figure 1 reveals that, with the 

exception of the atypical observations identified by the RFD method, the data form a 

positive linear relationship between the response and the predictor. This finding supports 

the results obtained by using the RFD1 and RFD2 methods provided in Table 17, and this 

finding further suggests that the fitted regression line from OLS is affected by the masked 

outliers (11, 20, 30, and 34) which are identified by the RFD.   
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Figure 1. Scatterplot of logarithmic light intensity of the star versus the logarithmic 
temperature at the surface of the star for the Star Cluster data. 
 

  



 69

Table 18 provides results for the 10,000 recalculations of the bootstrapping 

procedure for the average parameter estimates, as well as the corresponding 95% 

confidence intervals, for the Star Cluster data obtained by utilizing both the RFD1 and 

RFD2 methods. The confidence intervals provided for the intercept are fairly large when 

both the RFD1 and RFD2 methods are used. On the other hand, the 95% confidence 

intervals are much narrower for the logarithm of the effective temperature at the surface 

of the star. This finding suggests that the parameter estimates provided for the one 

predictor are more stable. In addition, based on the bootstrapping results in Table 18, we 

can conclude that is statistically significantly different from zero. *
1β̂

 
Table 18. Bootstrap results illustrating average estimated parameters (std dev)  
and corresponding 95% confidence intervals for the parameters when RFD1  
and RFD2 are used for the Star Cluster data (based on 10,000 iterations) 

 RFD1 RFD1 95% CI RFD2 RFD2 95% CI 
*
0β̂   

(Std Dev) 
-10.35 
(18.96) 

(-21.19, -1.60) 
–––– 

-8.32 
(6.55) 

(-16.17, -2.40) 
–––– 

*
1β̂   

(Std Dev) 
3.46 

(4.28) 
(1.48, 5.92) 

–––– 
3.01 

(1.48) 
(1.68, 4.78) 

–––– 
Note: Std Dev = Standard Deviation. 

 
 

5. Discussion 

Any of the three methods—OLS, RFD1, RFD2—can be utilized when there is no 

contamination in the data. However, the previous results indicate that, when any type of 

contamination exists, RFD1 or RFD2 is a more appropriate method to utilize than OLS. 

The parameter estimates for RFD1 and RFD2 were comparable across all contamination 

levels for the given simulations, as well as for the HBK and Star Cluster examples.  
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According to the results from the simulations, parameter estimates based on 

RFD2 are closer to the true parameters than parameter estimates based on RFD1 when 

the data were contaminated with leverage points only, whereas RFD1 provided better 

parameter estimates when only outlier contamination existed. When it is known that only 

outlier contamination exists, the RFD1 method yields a smaller MSE than OLS and 

RFD2. However, we must take caution when comparing the MSE and R2 for the RFD1 

method with those for OLS and RFD2. This caution is necessary because the MSE’s are 

not based on the same degrees of freedom. The RFD1 method excludes each observation 

considered to be an outlier, leverage point, or an influential observation. This exclusion 

causes a decrease in the sample size and a change in the degrees of freedom for the MSE. 

No observations are excluded from the analysis when OLS or RFD2 is being applied. 

Instead, as seen in this paper, the impact of atypical observations is downweighted via 

weight functions when using RFD2.  

The weight functions for outliers and influence consist of random variables. 

Although the histograms for RFD2 in Figures 2 and 4 suggest normality of the estimated 

parameters, caution is warranted when inference is being made by utilizing RFD2. 

Weight functions specified for leverage points for RFD2 are based on fixed values. Thus, 

we can continue with the assumption that, as the histograms in Figure 3 suggest, our 

estimated parameter follows a normal distribution. In addition, Figure 2 indicates that the 

parameter estimate associated with the intercept for RFD1 is bimodal because the RFD 

masks several of the contaminated observations when there is 20% outlier contamination. 

This bimodality becomes even more apparent as outlier contamination increases to 30% 

and 40%.  
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*Figure 2. Histograms for parameter estimates in the presence of 20% outlier contamination: for OLS (a), RFD1 (b), and RFD2 (c); 
 for OLS (d), RFD1 (e), and RFD2 (f);  for OLS (g), RFD1 (h), and RFD2 (i); and  for OLS (j), RFD1 (k), and RFD2 (l).
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Figure 3. Histograms for parameter estimates in the presence of 20% leverage contamination: * for OLS (a), RFD1 (b), and RFD2 
(c);  for OLS (d), RFD1 (e), and RFD2 (f);  for OLS (g), RFD1 (h), and RFD2 (i); and  for OLS (j), RFD1 (k), and RFD2 (l).

0β̂
*
1̂β *

2β̂ *
3β̂

 

72



 

 

73

27.60000 27.84000 28.08000 28.32000 28.56000 28.80000

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate        
-1.40000 -1.00000 -0.60000 -0.20000 0.20000 0.60000 1.00000 1.40000

0

5

10

15

20

25

P
e
r
c
e
n
t

Parameter Estimate        
-1.40000 -1.00000 -0.60000 -0.20000 0.20000 0.60000 1.00000

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

P
e
r
c
e
n
t

Parameter Estimate        
-1.42500 -0.97500 -0.52500 -0.07500 0.37500 0.82500

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate  
                   (a)                                               (d)                                                      (g)                                                (j) 
 

23.77500 24.22500 24.67500 25.12500 25.57500 26.02500

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate        
0.67500 1.12500 1.57500 2.02500 2.47500 2.92500

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate        
0.97500 1.27500 1.57500 1.87500 2.17500 2.47500 2.77500 3.07500

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate        
0.50000 0.90000 1.30000 1.70000 2.10000 2.50000 2.90000 3.30000

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
e
r
c
e
n
t

Parameter Estimate  
                   (b)     (e)     (h)       (k) 
 

23.85000 24.30000 24.75000 25.20000 25.65000 26.10000

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate        
0.67500 1.12500 1.57500 2.02500 2.47500 2.92500

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate        
0.97500 1.27500 1.57500 1.87500 2.17500 2.47500 2.77500 3.07500

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
r
c
e
n
t

Parameter Estimate        
0.40000 0.80000 1.20000 1.60000 2.00000 2.40000 2.80000 3.20000

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
e
r
c
e
n
t

Parameter Estimate  
        (c)    (f)     (i)     (l) 
Figure 4. Histograms for parameter estimates in the presence of 20% influence contamination: * for OLS (a), RFD1 (b), and RFD2 
(c);  for OLS (d), RFD1 (e), and RFD2 (f);  for OLS (g), RFD1 (h), and RFD2 (i); and  for OLS (j), RFD1 (k), and RFD2 (l).
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6. Conclusion 

It is well known that OLS is not robust to atypical observations. This lack of 

robustness causes distortion of parameter estimates and therefore leads to inaccurate 

predictions and inference, both of which were illustrated in the HBK and the Star Cluster 

data examples. Because of this problem, we implemented a method that downweights the 

impact of influential observations within linear regression. Unlike an ordinary least 

squares analysis, this robust regression method weights observations unequally. 

Observations were downweighted based on their extremeness in (y – E[y|X]) and/or the 

X-space.  

 Weights were implemented to limit the impact of each outlying or atypical 

observation on the overall fit and on the estimation of the parameters. Two versions of 

the Robust Forward Detection method were utilized: RFD1 and RFD2. The RFD1 

method was used to implement dichotomous weights of 0 and 1 and therefore exclude 

each observation identified as an outlier, a leverage point, or an influential observation. 

The RFD2 method utilized continuous weights. As a result, the sample size is maintained 

because all observations are included in the analysis but with a different weight 

contribution.  

 When a robust procedure is implemented, it should produce results similar to, if 

not the same, as those produced by using the ordinary least squares approach when no 

atypical observations (outliers, leverage, and influential points) are present within the 

dataset. This fact was evident in the results from utilizing OLS, RFD1, and RFD2 in the 

simulations with no contamination (not shown). The weighting approach presented in this 

paper is a robust application that does not allow atypical observations (outliers, leverage, 
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and influential observations) to have a large impact on the estimation of parameters. The 

RFD2 method was shown to limit the impact of extreme observations in the X-space and 

in the standardized deviations of y – E[y|X]. The weight functions for the RFD2 method 

are based on the standardized prediction residuals, adjusted prediction intervals, and the 

robust distances. In contrast, the weights for some forms of weighted least squares are 

computed iteratively on the basis of the estimation of β.  

 Because of the random weights, we were unable to derive an exact calculation of 

the mean and variance of the weighted estimator. Instead, we utilized bootstrapping 

procedures, which are typically used to provide robust estimates of the mean and variance 

of statistics for which there are doubts regarding assumptions or for which the direct 

derivation is not straightforward. The 95% confidence intervals for the average parameter 

estimates from the simulations were presented. The confidence intervals indicated 

whether the estimates were stable and whether the estimates were statistically significant 

from zero. 
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Abstract 

The Lung Health Study data collected from October 1986 to April 1994 are 

utilized to illustrate the potential clinical applications of the Robust Forward Detection 

(RFD) method proposed by Jones and Redden.11 The goal in this paper is to identify 

atypical observations (outliers, leverage, and influential points) by using the RFD 

method. We believe that this method may assist researchers in identifying atypical 

clinical observations. The RFD method is used to determine the relationship of atypical 

observations to lung cancer status by using forced expiratory volume in one second 

(FEV1) as the response and by using age, smoke duration, and average number of 

cigarettes smoked per day as the predictors. The RFD method identified 111 leverage 

points. However, the RFD method did not declare any observations to be outliers. 

Therefore, no observations were identified as influential. The RFD identified 6.56% 

subjects to be extreme in the predictors (age, smoke duration, and average number of 

cigarettes smoked per day). In addition, an association between lung cancer status and 

leverage status (p-value=0.0324 < 0.05=α) was found. The odds ratio indicated that the 

odds of possessing high values of the risk factors age, smoke duration, or average number 

of cigarettes smoked per day is 3.19 times higher for participants who died of lung cancer 

during the five year follow-up period than for those who did not do so during that time. 

On the basis of our results, we cannot conclude that extreme values of FEV1 are 

significantly related to lung cancer. However, we did reconfirm that there is a 

relationship between dying of lung cancer and having extreme values of risk factors (age, 

smoke duration, and/or average number of cigarettes smoked per day), which are 

declared leverage points. 
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1. Introduction 

As an important assessment of lung function, the forced expiratory volume in one 

second (FEV1) measures the amount of air exhaled in a forcible manner in the first 

second. Typically, FEV1 is measured in liters via a spirometer. Wise1 indicated that FEV1 

is an important predictor of chronic obstructive pulmonary disease. Other researchers 

have examined the relationship of FEV1 to lung cancer.2,3,4,5 From previous studies and 

their meta-analysis, Wasswa-Kintu et al4 concluded that there is “a strong inverse 

relationship between FEV1 and lung cancer which applies to all levels of FEV1. The risk 

increases even with a relatively modest reduction in FEV1, especially among women.” 

Because it is one of the leading causes of cancer-related deaths in the United States,6 lung 

cancer is an important topic and a type of cancer that needs much attention. Furthermore, 

cigarette smoking is, at present, known to be one of the main risk factors associated with 

this seemingly preventable condition.7  

The objective in this paper is to utilize the Lung Health Study (LHS) data to 

examine the relationship of FEV1 and lung cancer via robust statistical techniques. The 

Robust Forward Detection method (RFD), the robust statistical technique proposed by 

Jones and Redden,8 is a statistical tool that identifies potential outliers, leverage points, or 

influential observations while overcoming the masking and swamping effects that are 

difficulties encountered with using traditional methods. Masking refers to incorrectly 

declaring an observation to be non-atypical, and swamping is falsely identifying an 

observation as atypical (outlier, leverage, or influential). For the purpose of this paper, 

the RFD identifies as outliers those subjects whose extreme standardized deviations in the 

response FEV1 differ greatly from the bound of the observation’s corresponding adjusted 
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prediction interval. If a subject is extreme or has high values in any of the risk factors in 

comparison with the majority of the data, that subject is declared a leverage point 

according to the RFD method. Any subject extreme in both the response FEV1 and the 

predictors is identified as an influential observation.  

The goal in this paper is to detect atypical observations by using the RFD method 

in the LHS. We hypothesize that the atypical observations identified by the RFD method 

will identify those subjects who died of lung cancer within a five year follow-up period.  

 

2. Methods 

2.1 Study design 

The Lung Health Study (LHS) is a randomized multi-center clinical trial 

conducted from October 1986 to April 1994. The study was designed to determine the 

effectiveness of intervention via smoking cessation and the use of a bronchodilator 

among 5887 cigarette smokers aged 35 to 60 at the time of enrollment. Any persons with 

FEV1 values ranging between 55% and 90% were allowed to participate in the study. 

There were 1962 participants randomized to the no intervention group, 1962 randomized 

to the smoking intervention program with a placebo inhaler, and 1963 randomized to the 

smoking intervention program with an inhaler containing bronchodilator ipratroprium 

bromide.9 Questionnaires and spirometry tests were administered yearly. 

Of the entire sample of 5887 subjects in the LHS, more than 94% reported to the 

annual visit at the fifth year.7 For the purpose of this paper, we restricted our analyses to 

data obtained within the five year follow-up period and to subjects who were at least 54 

years of age (i.e., the 75th percentile of age). This restriction was implemented because it 
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is believed that lung cancer is more prevalent in the older population. Therefore, our 

sample included 1691 of the 5887 smokers initially enrolled in the LHS. The first annual 

FEV1 was utilized as the response variable predicted by age, smoke duration, and the 

average number of cigarettes smoked per day. Age, at baseline, was defined as the age of 

the subject on the day of randomization into one of the three groups. Smoke duration was 

considered the length of time between the person’s age when he/she first began smoking 

cigarettes and his/her age at enrollment. The average number of cigarettes smoked per 

day was based on the average across the entire time that the subject smoked. Because of 

the limitation of using categorical variables in the RFD method, we were unable to 

include dichotomous variables such as gender in our model. 

 

2.2 Statistical methods 

The Robust Forward Detection method,8 is a robust regression method 

appropriate for the linear regression framework, is a screening tool utilized to detect 

atypical observations (outliers, leverage, and influential points) that Ordinary Least 

Squares (OLS) is not always capable of detecting. In addition, the RFD is capable of 

overcoming masking and swamping. To ensure that masking or swamping does not 

occur, the RFD method uses robust distances, the minimum covariance determinant, and 

Rousseeuw’s10 concept of least trimmed squares (LTS) to begin with a subset free of 

atypical observations. Note that the method begins with a leverage-free subset and moves 

forward and continuously updates the robust distances in order to identify leverage 

points. After this step, the procedure continues by using LTS to select a subset of the 

observations among the non-leveraged points that is free of outliers. The method 
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identifies outliers via standardized prediction residuals. An observation is declared an 

outlier if its standardized prediction residual is located beyond the bounds of the adjusted 

prediction intervals. This step continues until all observations have been evaluated and 

tested for outliers. Furthermore, any observation that is detected as an outlier and a 

leverage point is declared an influential observation.  

Our statistical analyses exemplify results obtained by utilizing the RFD in two 

capacities: RFD1 and RFD2. RFD1 is the RFD method with the application of 

dichotomous weights. That is, any subject identified by the RFD method as an outlier 

and/or a leverage point, is given a weight of 0 and therefore excluded from the analyses. 

Otherwise, the subject receives a weight of 1 and is included in the statistical analyses. 

The RFD2 method is the RFD approach that utilizes continuous weights. These weights 

range from 0 to 1, inclusive, and are defined on the basis of the adjusted prediction 

intervals, standardized prediction residuals, and robust distances, all of which are defined 

in Jones and Redden.11 All statistical analyses were performed using SAS® version 

9.1.3.12  

 

3. Results 

Table 1 provides baseline characteristics by lung cancer status for our sample of 

1691 subjects. Many subjects lived beyond the five year follow-up period. There were 

approximately 4.85% (= 82/1691*100) deaths of which 34.15% (= 28/82*100) were 

attributed to lung cancer. Our sample consisted of 1098 males (64.93%) and 593 females 

(35.07%). Table 1 indicates that 71% of the participants in the sample who died of lung 

cancer within the five year follow-up period were males and that 29% were females. The 
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sample consisted of 95.03 % (n = 1607) Caucasians and 4.73% (n = 80) African 

Americans. Because this distribution was skewed, we did not utilize race as a variable in 

our model when predicting FEV1. As can be seen in Table 1, no statistically significant 

differences were found between those participants, using baseline characteristics, who 

died of lung cancer and those who did not die of lung cancer during the five year follow-

up period. 

 
Table 1. Baseline characteristics for subjects 54+ years of age by lung cancer status 
during the 5 year follow-up period 
 Died of lung cancer 

(n=28) 
Did not die of lung 

cancer (n=1663)  

Baseline characteristics Mean Std Dev Mean Std Dev p-value 
Age (years) 56.57 1.85 56.57 1.78 0.9956 
Gender (%)    
    Males     

 
71.43 

 
–– 

 
64.82 

 
–– 

 
0.5525 

Race (%) 
    Caucasians  
    African Americans    

 
89.29 
10.71 

 
–– 
–– 

 
95.13 

     4.63 

 
–– 
–– 

 
0.1591 
0.1433 

Average cigarettes/day  28.89 12.22 25.37 9.86 0.1399 
FEV1 2.49 0.5046 2.45 0.5669 0.6942 
Smoke duration 39.46 7.53 38.49 4.56 0.5020 
Age started smoking (years) 17.11 7.15 18.08 4.29 0.4807 
Treatment group (%) 
   No intervention 
   Intervention+placebo 
   Intervention+active 

 
28.57 
42.86 
28.57 

 
–– 
–– 
–– 

 
32.95 
33.67 
33.37 

 
–– 
–– 
–– 

 
0.6902 
0.3184 
0.6889 

Note: Std Dev = Standard Deviation. 
 
 

For this paper, the RFD method was implemented to identify atypical (outliers, 

leverage, and influential points) observations among the 1691 subjects in the LHS. The 

RFD method identified 111 leverage points. However, the RFD method did not declare 

any observations to be outliers; therefore, no observations were identified as influential. 

That is, no observations were identified by the RFD method to have extreme values of 
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FEV1. On the other hand, the RFD identified 6.56% subjects as having extreme values in 

the predictors (age, smoke duration, and average number of cigarettes smoked per day).  

Downweighting is important because it prevents a single observation from unduly 

influencing the analysis. When RFD2 is being utilized, outliers are intended to be 

downweighted by using weights ak, and leverage points are intended to be downweighted 

using weights bk (see Table 2 in which a partial list of the observations identified by the 

RFD as leverage points is provided). Weights gk ranged from 0.00664 to 0.98258, as 

indicated in Table 2. The magnitude of each weight is an indication of a subject’s degree 

of extremeness in the predictors (age, smoke duration, average number of cigarettes 

smoked per day) relative to the remaining subjects. On the basis of the information 

provided in Table 2, we are able to determine that the subject with id 5733 was identified 

as the subject most extreme in the predictors. We can make this conclusion because this 

subject has the smallest weight. Among the atypical observations, the subject with id 125 

was the least extreme in the predictors. 

 
Table 2. Weights gk (= ak*bk) implemented by using weight functions via the RFD2 
method for the Lung Health Study data 

id gk ak bk Contamination type 
5733 0.00664 1 0.00664 Leverage 
485 0.01462 1 0.01462 Leverage 
5863 0.01741 1 0.01741 Leverage 
… … … … … 

5707 0.97668 1 0.97668 Leverage 
5877 0.98203 1 0.98203 Leverage 
125 0.98258 1 0.98258 Leverage 

 

Table 3 displays the parameter estimates (standard deviation), MSE, and R2 

obtained when OLS, RFD1, and RFD2 are used on the Lung Health Study data. Note 

that, under OLS, all variables were statistically significant (p-value < 0.0001) in 
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predicting FEV1 in the presence of each other. Parameter estimates for the RFD2 are 

obtained by implementing weights gk to limit the impact of those observations identified 

as leverage points. We assume that, because the RFD method is capable of detecting 

leverage points and overcoming the masking effect, the parameter estimates based on the 

RFD1 method can serve as the baseline for comparison of and with OLS and RFD2. It is 

noted that all three methods produce similar parameter estimates. Because the LHS was 

found to be contaminated with leverage points only, the weights implemented by using 

RFD1 and RFD2 are not functions of random variables. Therefore, we know that the 

standard deviations produced by SAS® version 9.1.312 are valid. Furthermore, while 

controlling for the length of time that a subject smoked and for the average number of 

cigarettes a subject smoked per day, the results from each method suggest that, as a 

person ages, there is a reduction in his/her FEV1. 

 
Table 3. Parameter estimates (Std Dev), MSE, and R2 obtained when OLS, RFD1,  
and RFD2 are used to analyze the Lung Health Study data 

 OLS RFD1 RFD2 
Intercept 
(Std Dev) 

3.56264        
(0.43579) 

3.59196        
(0.46929) 

3.54137        
(0.44605) 

Age 
(Std Dev) 

-0.03263        
(0.00812) 

-0.03887        
(0.00918) 

-0.03638        
(0.00855) 

Smk_dur 
(Std Dev) 

0.01555        
(0.00315) 

0.02297        
(0.00439) 

0.02107        
(0.00387) 

F31ctavg 
(Std Dev) 

0.00542        
(0.00138) 

0.00695        
(0.00169) 

0.00620        
(0.00151) 

MSE 0.31097 0.31324 0.30126 
R2  0.0304 0.0338 0.0335 

Note: Std Dev = Standard Deviation. 
 
 

Caution must be taken when the MSE and R2 for the LHS are compared across all 

three methods, especially because the RFD1 method implements dichotomous weights of 
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0 and 1. This implementation causes the degrees of freedom for RFD1 to differ from 

those computed using OLS and RFD2. The MSE under OLS is lower than the MSE under 

RFD1. This difference occurs because the sample size is large and because SSEOLS = 

524.61 (dfOLS = 1687) and SSERFD1 = 493.67 (dfRFD1 = 1576).  

We were interested in knowing whether the RFD method is capable of identifying 

lung cancer patients based on those subjects with extreme FEV1 values and/or extreme 

values in the predictors (age, smoke duration, and average number of cigarettes smoked 

per day). We were able to link the atypical observations back to participants who died of 

lung cancer within the five year follow-up period. As Table 1 indicates, 28 subjects died 

of lung cancer before the end of the five year follow-up period. Table 4 indicates that less 

than 0.5% of our sample who had extreme values in the predictors died of lung cancer. In 

addition, only 5 of the 111 subjects (4.5%) identified as leverage points by the RFD 

method died of lung cancer. The corresponding Fisher’s Exact test (utilized because of 

the small expected cell counts) for Table 4 suggests there is an association between lung 

cancer status and leverage status (p-value=0.0324 < 0.05=α). The odds ratio indicates that 

the odds of possessing extreme values of age, smoke duration, or average number of 

cigarettes smoked per day is 3.19 times higher for participants who died of lung cancer 

during the five year follow-up period than for those who did not do so during that time 

period. The 95% confidence interval for the odds ratio (1.19, 8.57) further supports the 

conclusion based on Fisher’s Exact test and allows us to reject the null hypothesis. 

Therefore, we can conclude that there exists an association between whether a subject 

died of lung cancer by the end of the fifth year follow up and whether a subject had 

extreme values on any of the predictors in comparison with the majority of the data. 
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Table 4. Crosstab of leverage status (determined by using the RFD method) by lung  
cancer status for the Lung Health Study 

 Died of lung cancer  Did not die of lung 
cancer  Total 

Leverage 5 106 111 

No leverage 23 1557 1580 

Total  28 1663 1691 

 
 

4. Discussion  

The LHS data from the National Heart, Lung, and Blood Institute was examined 

for influential observations by utilizing the RFD method. OLS, RFD1, and RFD2 

produced similar results for the parameter estimates, the MSE, and the R2. However, 

because the degrees of freedom obtained by using the RFD1 method differ from those 

obtained using OLS and RFD2, caution is warranted when the MSE and R2 for RFD1 are 

being directly compared with those found for OLS and for RFD2. Jones and Redden’s8 

RFD method identified 111 observations to have extreme values in at least one of the 

predictors (age, smoke duration, and average number of cigarettes smoked per day). Of 

the 111 subjects identified as leverage points, only 5 of 28 subjects were identified to 

have died of lung cancer by the end of the five year follow-up period.  

Table 4 can be viewed in terms of specificity and sensitivity where the truth is 

lung cancer status and where the test outcome is whether a subject was identified by the 

RFD as being extreme in any of the predictors (i.e., leverage). Specificity, which 

measures the proportion of people who did not die of lung cancer and were not captured 

as leverage, is 93.6% (= [1557*100/1663]). Sensitivity, which measures the proportion of 
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subjects who died of lung cancer and were identified by the RFD to be extreme in the 

predictors, is approximately 18%. This information indicates that FEV1 is not the best 

screening tool to use to determine which patients are at highest risk of dying of lung 

cancer.  

 

5. Concluding remarks 

In this paper, we utilized the Robust Forward Detection method to identify 

atypical observations in the Lung Health Study, with continuous variables (age, smoke 

duration, and average number of cigarettes smoked per day) predicting FEV1. Weight 

functions were used that allowed unequal weighting of atypical observations identified by 

the RFD method. We illustrated and compared parameter estimates obtained by utilizing 

OLS with those obtained by using RFD1 and RFD2. There was a statistically significant 

association between leverage status and lung cancer related death status. Based on our 

results, we cannot conclude that extreme values of FEV1 are significantly related to lung 

cancer related deaths. However, we did reconfirm that subjects who died of lung cancer is 

related to their having extreme levels of risk factors (age, smoke duration, and/or average 

number of cigarettes smoked per day), which are declared leverage points. 
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CONCLUSIONS 
 

Diagnostic issues such as atypical observations (outliers, leverage, and influential 

points), masking, and swamping, which are often encountered in linear regression via 

ordinary least squares (OLS), were the motivation for this dissertation. Outliers are 

observations with extreme standardized deviations of (y – E[y|X]); leverage points are 

observations with extreme deviations in the predictor or X-space, and influential 

observations are those observations considered to be both outliers and leverage points. 

The masking effect occurs when a contaminated observation is not identified as atypical, 

whereas swamping occurs when an observation is incorrectly identified as atypical. It is 

well known that OLS is not robust or resistant to these diagnostic issues and that their 

presence can have a large impact on estimation, prediction, and inference.  

 

Concluding Remarks for Paper 1 

We developed the Robust Forward Detection method (RFD) under the robust 

regression statistical framework. This method uses a combination of Rousseeuw and van 

Zomeren’s (1990) concept of robust distances (RD), which uses the minimum covariance 

determinant (MCD), and Rousseeuw’s (1985) concept of least trimmed squares (LTS). At 

first glance, our RFD method may seem to resemble the Forward Search (FS) method by 

Atkinson and Riani (2000), but the two approaches have their differences. Both methods 

begin with a robust procedure to obtain an initial subset. However, our RFD method 

utilizes Rousseeuw and van Driessen’s (1999) FAST-MCD to obtain an initial subset that 

 



 93

is free of leverage points, whereas Atkinson and Riani’s (2000) FS method utilizes either 

Rousseuw’s (1984, 1985) LMS or LTS method to attain an initial subset free of outliers. 

In addition, both methods monitor the forward progression of adding observations to the 

initial subset. Unlike Atkinson and Riani’s (2000) FS method, which adds observations to 

the initial subset based on the smallest squared unadjusted residuals, our RFD subset 

allows an observation to enter the subset on the basis of its robust distance and its 

standardized prediction residuals.  

Simulations were conducted using various levels of contamination ranging from 

0% to 40% of outliers, leverage, and influential observations. It was demonstrated via 

simulations that our proposed method is comparable to LTS (ROBUSTREG) as 

presented in SAS® version 9.1.3; the latter method is known to be robust to outliers and 

leverage points. The two methods are similar but yet differ in how the combination of RD 

and LTS is utilized. Unlike LTS (ROBUSTREG), the RFD method begins with both 

leverage-free and outlier-free subsets. Leverage points are identified on the basis of the 

threshold given in Jones and Redden (2007) for the robust distances. The initial subset for 

the LTS method in the RFD approach is based on the non-leveraged observations. That 

is, an outlier-free subset is obtained after all of the leverage and non-leveraged points are 

identified within the data. By proceeding in this manner, the RFD approach is capable of 

detecting 99% influential observations, even when there is 40% contamination. The LTS 

(ROBUSTREG) method does not possess this capability. We do note that LTS 

(ROBUSTREG) has better detection capability when there is 30% or less outlier 

contamination. However, in the presence of 40% outlier contamination, LTS 

(ROBUSTREG) captures approximately 53% of the outliers and thus masks 47%. On the 
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other hand, when outlier contamination is present, our proposed RFD is capable of 

detecting 82% of the outliers and masks approximately 18%. We conclude that the RFD 

approach can overcome swamping and masking to a certain extent while properly 

detecting influential observations. 

 

Concluding Remarks for Paper 2 

The RFD approach utilizes dichotomous weights of 0 and 1 when computing final 

parameter estimates; this approach is also the RFD1 method. We were interested in the 

effects of implementing continuous weights on atypical observations so that all 

observations could be included in the analyses; this approach is denoted RFD2. Based on 

simulation results, we noticed that there was little bias in the parameter estimates under 

RFD1 and RFD2 in the presence of outlier and leverage contamination. Therefore, we 

can conclude that parameter estimates based on using both the RFD1 and RFD2 methods 

in the presence of outlier and leverage contamination were comparable to those of the 

true simulated parameter underlying the uncontaminated data. When estimating 

parameters, both the RFD1 and RFD2 methods provide parameter estimates closer to the 

true simulated parameter than OLS does. In addition, the simulation results indicated that 

the parameter estimates obtained by using the RFD1 and RFD2 methods when there was 

influence were more reliable than those obtained by using OLS. Note that, because there 

is a change in the degrees of freedom under RFD1, caution is advised when the MSE is 

being compared across all three methods. 

In the presence of leverage contamination only, weights were based on non-

random variables, and the usual distributional assumptions of the parameter β held. 
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However, the weights obtained from the weight functions in the presence of outlier or 

influential contamination were random because of the use of standardized prediction 

residuals and because of the use of the upper bound of the adjusted prediction interval. 

This randomness caused changes in the distributional assumptions for our parameter; as a 

result, we exercise caution when making inference. Due to indicated derivations, we 

expected our new parameter to be biased. We also expected that the variance of our 

parameter estimates under the RFD1 and RFD2 methods would differ from what would 

be obtained by implementing the theory of WOLS as if the weights are known. 

Therefore, we recommend against using WOLS to approximate standard errors of robust 

regression estimators when weights are based on functions of random variables and if 

inference is required. We agree with Salibian-Barrera and Zamar (2002) that 95% 

confidence intervals for parameter estimates should be estimated from bootstrapping 

approaches. Our simulation tables indicated that the confidence intervals were narrow. 

This finding suggests that the parameter estimates obtained via bootstrapping are stable 

and reliable. Note that, if researchers are concerned about the normality assumption, 

inference can be made by using the appropriate bootstrapped confidence intervals. If a p-

value is desired, permutation tests can be utilized. 

wβ̂

 

Concluding Remarks for Paper 3 

 A comparison of the RFD method with OLS was performed by using the Lung 

Health Study data conducted from October 1986 to April 1994. There were 5887 smokers 

who were 35 to 60 years old. For the purpose of this dissertation, we restricted our 

sample so that it consisted only of subjects at least 54 years of age; this criterion yielded a 
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sample size of 1691 subjects. Our statistical model predicted FEV1 based on the 

continuous predictors age, smoke duration, and average number of cigarettes smoked per 

day. The RFD method was implemented, and it declared no outliers but identified 111 

observations as leverage. Unequal weighting of observations was allowed via the RFD2 

method. OLS, RFD1, and RFD2 yielded similar results in terms of the parameter 

estimates and standard deviations. Although caution is warranted when RFD1 is being 

compared with OLS and RFD2, we noticed that the MSE and R2 were similar across all 

three methods. Based on the results from the RFD method and lung cancer related death 

status, we were able to determine that approximately 7% of the 1691 subjects were 

identified as leverage points, less than 2% of the sample died of lung cancer, and that less 

than 0.5% of the sample died of lung cancer and was extreme in at least one of the 

predictors. Based on the results in Paper 3, we are not able to conclude that there is a 

statistically significant relationship between extreme values of FEV1 and deaths due to 

lung cancer. 

 

Future Research 

Future research needs to be conducted to obtain a better understanding of the 

limitation of using dichotomous variables under the RFD method. In addition, it is 

appropriate to extend the development of the RFD method by utilizing both dichotomous 

and continuous weights that are functions of random variables in order to conduct 

hypothesis testing and make inference. Exact or asymptotic derivations and computations 

of the distribution of the weighted parameter can lead to the development of test statistics 

and corresponding p-values when inference needs to be made. In addition, further 
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investigation of the relationship between FEV1 and lung cancer via robust statistical 

methods beyond linear regression can contribute to the current body of knowledge and 

possibly lead to improved statistical models. 
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DERIVATION OF  wβ̂
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We use previous information from Paper 2 and the Sherman-Morrison Woodbury 

Theorem (Hager 1989) to provide the derivation of  that yields more 

insight into computing the expectation and variance when the weights are functions of 

random variables. From Jones and Redden (2007) and Hadi and Simonoff (1993), we 

know that  

GyXGXXβ `)`(  ˆ -1
w =

dk ~ t(1–
1sum +v

α , vsum – p). 

Basic statistical textbooks such as Rice (1995) teach us that  

t2 ~ F(1, vsum – p) 

and that 

(1/F) ~ F(vsum – p, 1). 

Therefore, we can write  

(1/dk)2 ~ F(vsum – p, 1). 

Note that the adjusted upper prediction interval is a constant dependent on α, vsum, and 

( ) `xVXXx kkk
1`h −= . Hence,  

( )2adj  kk dUpperPIa =  

     = )1 ,(c sum* pvF − , 

where is some constant.  *c

We are interested in the form of the weighted estimator in the presence of atypical 

observations. If we look at the case in which there is only one outlier, then we can 

generalize our results to see how the random weights affect the estimator. Let   
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Continuing with (1), we use the Sherman-Morrison Woodbury Theorem (Hager 1989) to 
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. Now, we can 

rewrite K and solve for α and β in the following manner: 
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⇒         FF ** c1  uc-)u1( −=++ βαα  
 
⇒                  (i) 1 )u1( =++ βα    and   (ii) FF ** c uc- −=α .               

We can solve (ii) such that 
u
1  =α . By substitution, solve (i) by using the solution from 

(ii) such that  
1  u)(1 =++ βα  
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⇒               1)u1(
u
1 =++ β  

⇒                     11
u
1 =++ β  

⇒           
u
1 −=β . 

So, we can now rewrite (2) such that 
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Now let  
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1

+
.            (4)  

We can rewrite (3) in the following manner: 
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From basic statistical textbooks such as Rice (1995), we know that the probability 

distribution function of a random variable following an F-distribution with η and 1 

degrees of freedom is as follows: 
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Using this information and the fact z is a function of F as seen in (4), we can find its 

probability distribution function: 
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Combining the above results, we can write the following equation. 
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Then, we can write the new weighted estimator in the following manner: 
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In the presence of only one outlier, we have 

 ˆ
wβ = β + (X`X)-1X` ε + ⎥⎦

⎤
⎢⎣
⎡

I0
0

   
` 1g ⎟

⎠
⎞

⎜
⎝
⎛ − z

u
1MM `

11  X` ε ⎥⎦
⎤

⎢⎣
⎡

I0
0

   
` 1g

       = β + (X`X)-1X`  + 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

2
11

 
.  
.  
.  

 

ε

ε
εg

⎟
⎠
⎞

⎜
⎝
⎛ − z

u
1MM `

11 X`  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

2
11

 
.  
.  
.  

 

ε

ε
εg

       = β + (X`X)-1X`  + 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

2
11

 
.  
.  
.  

 

ε

ε
εg

⎟
⎠
⎞

⎜
⎝
⎛

u
1MM `

11 X`  – X`  , 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

2
11

 
.  
.  
.  

 

ε

ε
εg

`
11MM z

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

2
11

 
.  
.  
.  

 

ε

ε
εg

where M1, u, and z are previously defined. From this derivation, we noticed that, in the 

presence of one outlier, functions of random variables are found in several components of 

our new estimator  Therefore, we can conclude that, in the presence of multiple 

outliers, will contain functions of random variables throughout its derivation. 
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APPENDIX B 

INSTITUTIONAL REVIEW BOARD FOR HUMAN USE APPROVAL FORM 
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