
Advisory Committee Chair
Vladimir Parpura
Advisory Committee Members
Alan W Eberhardt
Ho-Wook Jun
Timothy M Wick
Lori L McMahon
Document Type
Dissertation
Date of Award
2015
Degree Name by School
Doctor of Philosophy (PhD) School of Engineering
Abstract
Single-walled carbon nanotubes, chemically-functionalized with polyethylene glycol (SWCNT-PEG) have been shown to modulate the morphology and proliferation characteristics of astrocytes in culture, when applied to the cells as colloidal solutes or as films upon which the cells can attach and grow. These changes were associated with a change in the immunoreactivity of the astrocyte-specific protein, glial fibrillary acidic protein (GFAP); the solutes and films caused an increase and a decrease in GFAP levels, respectively. To assess if these morpho-functional changes induced by the SWCNT-PEG modalities are dependent on GFAP or if the changes in GFAP levels are independent events, I used astrocytes isolated from GFAP knockout mice and found that selected changes induced by the SWCNT-PEG modalities are mediated by GFAP, namely the changes in perimeter, shape and cell death for colloidal solutes and the rate of proliferation for films. Since the loss GFAP has been shown to hamper the trafficking of glutamate transporters to the surface of astrocytes, which plays a vital role in the uptake of extracellular glutamate and maintaining homeostasis in the brain and spinal cord, in a subsequent study, I assessed if the SWCNT-PEG solute causes any change in the glutamate uptake characteristics of astrocytes. Using a radioactive glutamate uptake assay and immunolabeling, I found that SWCNT-PEG solute causes an increase in the uptake of glutamate from the extracellular space along with an increase in the immunoreactivity of the glutamate transporter, L-glutamate L-aspartate transporter (GLAST), on their cell surface, a likely consequence of the increase in GFAP levels induced by the SWCNT-PEG solute. These results imply that SWCNT-PEG could potentially be used as a viable candidate in neural prosthesis applications to prevent glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries, and alleviate the death toll of neurons surrounding the injury site.
Recommended Citation
Gottipati, Manoj K., "Probing Astrocytes With Carbon Nanotubes And Assessing Their Effects On Astrocytic Structural And Functional Properties" (2015). All ETDs from UAB. 1769.
https://digitalcommons.library.uab.edu/etd-collection/1769