All ETDs from UAB

Advisory Committee Chair

Claudiu T Lungu

Advisory Committee Members

Andrei Stanishevsky

Evan L Floyd

Julia M Gohlke

Michelle V Fanucchi

Uday Vaidya

Document Type

Dissertation

Date of Award

2016

Degree Name by School

Doctor of Philosophy (PhD) School of Public Health

Abstract

FABRICATION AND CHARACTERIZATION OF BUCKYPAPERS FOR USE IN AIR SAMPLING JONGHWA OH ENVIRONMENTAL HEALTH SCIENCES ABSTRACT Occupational exposure to volatile organic compounds (VOCs) is a concern from a public health perspective. In many industrial activities, workers’ exposure to VOCs can be sufficiently high to induce adverse health effects, so their monitoring is necessary. In exposure assessment, post sampling extraction and quantification are the typical analytical procedures. Recently, our group developed the photothermal desorption (PTD) technique in which a pulse of light thermally desorbs an analyte directly from a sorbent. Advantages of this technique are; it is solvent free, repeated analysis is possible, sorbents are reusable, and no high cost of equipment is required. PTD overcomes almost all drawbacks of current extraction methods. This study was aimed to develop and test a new sorbent which will efficiently work with PTD. Single-walled carbon nanotubes (SWNTs) were examined as potential sorbents because of their high surface area, great thermal conductivity, and efficient light absorption. SWNTs were fabricated into a self-supporting form (i.e., buckypaper (BP)) which will preserve its physical integrity under normal working conditions. Largely two types of SWNTs were used, arc discharge (AD) and high-pressure carbon monoxide (HiPco), and different fabrication methods were examined. Upon fabrication, their adsorption properties were characterized in terms of Brunauer, Emmett, and Teller (BET) surface area, pore size, and toluene adsorption capacity. HiPco BP and methanol-cleaned AD BP (suspended/rinsed with methanol) were the top two materials, showing the highest surface area (649 and 387 m²/g, respectively) and adsorption capacity (106 and 46 mg/g, respectively) with relatively small mean pore diameter (7.7 and 8.8 nm, respectively). To further improve the adsorption properties, specific heat treatment conditions for each type of BPs were employed. After initial treatments only HiPco BP and acetone-cleaned AD BP (suspended/rinsed with acetone) were selected for further investigations based on obtained surface area (933 and 970 m²/g, respectively) and physical integrity. These two BPs were then examined for PTD and the AD BP showed higher recovery rate (0.016 - 0.431 %) at all energy levels examined (1.84 - 7.37 J). The AD BP has been shown to be an efficient sorbent for toluene and possibly a good candidate for PTD.

Included in

Public Health Commons

Share

COinS