All ETDs from UAB

Advisory Committee Chair

Alan M Shih

Advisory Committee Members

Roy P Koomullil

Yasushi Ito

Document Type


Date of Award


Degree Name by School

Master of Science in Mechanical Engineering (MSME) School of Engineering


A three-dimensional object of interest in a volumetric data can be visualized using direct surface rendering methods or volume rendering approaches. Volume rendering is a visualization technique without providing the geometry information at all. However, an engineering analysis requires watertight surface geometry information of the object. Thus a three-dimensional object representation for the visualization using direct surface rendering may not necessarily be valid for engineering analysis, as such models are not necessarily watertight. Obtaining watertight surfaces has been a challenging task in the field of computational engineering due to presence of deficiencies such as gaps and holes in the surfaces. The focus of this thesis is to address the need to patch holes in the surfaces to obtain a watertight geometry. Most of the methods available for hole patching today are limited in their utility, in most cases, by the method with which the geometric model has been originally obtained. This research work provides an innovative and original method of creating surface patches for topologically simple holes in unstructured discrete geometry using parametric NURBS (Non-Uniform Rational B-Spline) surface formulation and Delaunay criteria for point insertion and edge swapping. Surface patches are generated using existing points surrounding the holes without altering the surrounding geometry. This study is to introduce the mathematic foundation and the computer algorithm developed, along with several examples to demonstrate the success of this approach. The watertight geometry so produced has a iii wide range of engineering applications in the field of mechanical simulation studies, using either computational fluid dynamics or computational structural mechanics.

Included in

Engineering Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.