All ETDs from UAB

Authors

Molly Buckley

Advisory Committee Chair

Joel L Berry

Advisory Committee Members

Mary Kathryn Sewell-Loftin

Rebecca Arend

Erik Schwiebert

Palaniappan Sethu

Document Type

Dissertation

Date of Award

2022

Degree Name by School

Doctor of Philosophy (PhD) School of Engineering

Abstract

Mechanical forces imparted on an ovarian tumor have recently been shown to have a grave impact on cancer development, progression, metastasis, and chemoresistance. The forces present include compression throughout the tumor, intrinsic and extrinsic shear stresses from ascitic fluid present in the peritoneal cavity as well as blood flow through the tumor via leaky and disorganized vessels created through tumor angiogenesis, and tension at the tumor periphery because of the constantly growing mass. Studies of the signaling pathways impacted by these mechanical forces could give great insight into new therapeu-tic targets for ovarian cancer, however, these studies have been severely lacking in ovarian cancer. Additionally, preclinical models of ovarian cancer that accurately model a three-dimensional tumor microenvironment, mechanical stresses, and angiogenesis has yet to be developed but would have immense application in developing new cancer therapeutics. Herein, the effect of tensile stress on ovarian cancer cell lines SKOV-3, OVCAR-8 and SKOV-3.tr will be elucidated. Also, a three-dimensional model of ovarian cancer which includes a fully developed microvascular network, perfusion of nutrient-rich media, and appropriate matrix components that has been developed will be described.

Included in

Engineering Commons

Share

COinS