All ETDs from UAB

Advisory Committee Chair

John C Mayer

Advisory Committee Members

Marius Nkashama

Frank Patane

Mahmut Unan

Document Type

Thesis

Date of Award

2022

Degree Name by School

Master of Science (MS) College of Arts and Sciences

Abstract

Imagine that we have an unlimited number of congruent equilateral triangles. We define a trapezoid number as the number of equilateral triangles used to tile a trapezoid. Similarly, we define a parallelogram number as the number of equilateral triangles needed to tile a parallelogram. We define the multiplicity of a trapezoid or parallelogram number as the number of ways we can construct the polygon for given number up to congruence. We show a parallelogram number can always be written as 2kh and a trapezoid number as h(2k + h), where we define the height h as the length of the non-parallel sides, and the width k as the length of the shorter of the parallel sides, all in unit triangle lengths. The relationship between multiplicities and trapezoid/parallelogram numbers can be defined through equations relating the multiplicity to the number’s prime factorization. Our findings extend to multiplicities of hexagon numbers, or the number of congruent equilateral triangles tiling an equiangular hexagon. Based on numerical evidence, Hale et. al. [3] conjecture that “the multiplicity of a hexagon number is a function of its prime factorization.” They showed that if the height p of a hexagon is a prime number congruent to 1 (mod 3), then it produces all residues (mod 2p). Our main result is: If the height of a hexagon is pq, where p > 5 is the product of prime factors congruent to 1 (mod 4), and q is the product of unique prime factors congruent to 3 (mod 4), then the height pq produces all residues (mod 2pq). iii

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.